Machine Learning with Microsoft Technologies

Selecting the Right Architecture and Tools for Your Project

Leila Etaati

www.EBooksWorld.ir

Machine Learning with Microsoft Technologies

Selecting the Right Architecture and Tools for Your Project

Leila Etaati

Apress[®]

Machine Learning with Microsoft Technologies: Selecting the Right Architecture and Tools for Your Project

Leila Etaati Aukland, Auckland, New Zealand

ISBN-13 (pbk): 978-1-4842-3657-4 https://doi.org/10.1007/978-1-4842-3658-1

ISBN-13 (electronic): 978-1-4842-3658-1

Copyright © 2019 by Leila Etaati

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr Acquisitions Editor: Joan Murray Development Editor: Laura Berendson Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com or visit www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book's product page, located at www.apress.com/9781484236574. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

To my lovely husband, Reza, without whose support I could not have achieved this

To my mother, for her patience and courage, and to my brothers, Kamran and Kouros, and my sister, Kiana, for all their encouragement

To all people who inspired me

Table of Contents

About the Author	xiii
About the Technical Reviewer	xv
Part I: Getting Started	1
Chapter 1: Introduction to Machine Learning	
Machine Learning Concepts	
Machine Learning Approaches	6
Supervised Learning	6
Unsupervised Learning	6
Machine Learning Life Cycle	7
Machine Learning Languages and Platforms	9
Summary	
References	
Chapter 2: Introduction to R	
Installing RStudio	
Installing Packages	
R Data Structure	
Vector—C()	
Factor	
Lists—list ()	20
Data Frames—data.frame()	
R for Statistical Analysis	
R for Machine Learning	
R for Visualization	
Summary	
References	
	V

TABLE OF CONTENTS

Chapter 3: Introduction to Python
Python IDE27
Install Packages
Python for Statistical Summary
Dimensions
Statistical Distribution
Python for Visualization
Python for Machine Learning
Summary
Chapter 4: R Visualization in Power BI
Power Bl
Setting Up R in Power BI
Writing R Code in Power Bl 41
R Features in Power Bl
Slice and Dice
Edit R Code in RStudio
Custom Visuals
Custom Visuals in the Power BI Office Store51
Creating Custom Visuals55
Summary64
Reference64
Part II: Machine Learning with R and Power BI65
Chapter 5: Business Understanding 67
Descriptive Analysis
Predictive Analysis
Prescriptive Analysis
Business Understanding
Summary74
References 74

Chapter 6: Data Wrangling for Predictive Analysis	75
Power Query Editor	
Data Wrangling in Power Query	
Reshaping Data	
Selecting Data	
Merging Data	
Data Transformation Using R Scripts	
Normalization	
Other Data Transformation	
Change Data Type	
Group By	91
Summary	
Chapter 7: Predictive Analysis in Power Query with R	
Neural Networks	
Decision Trees	
Automated Machine Learning Inside Power Query	
Summary	119
References	119
Chapter 8: Descriptive Analysis in Power Query with R	121
K-Means Clustering	121
Clustering Custom Visuals	
Clustering in Power Query	
Market Basket Analysis (Association Rules)	129
What Is Market Basket Analysis?	129
Summary	135
References	

TABLE OF CONTENTS

Part III: Machine Learning SQL Server	137
Chapter 9: Using R with SQL Server 2016 and 2017	
SQL Server 2016 and 2017	
Running R Scripts	
Packages in R	
RevoScaleR Package	
rxLinMod	
Azure ML Package	150
Creating R Visuals in SQL Server Reporting Services	151
R Code Section	152
Input Data	153
Return Data	153
Showing the Chart in SSRS	154
Summary	157
References	157
Chapter 10: Azure Databricks	
Databricks Environment	
Summary	
References	171
Part IV: Machine Learning in Azure	173
Chapter 11: R in Azure Data Lake	
Azure Data Lake Environment	
Running R Scripts in U-SQL	
Managing Folders via RStudio	
Summary	
References	199

ix

Azure Machine Learning Environment 201 Azure Machine Learning Experiment 203 Creating a Web Service 211 R and Azure ML Studio 218 Summary 223 References 223 Chapter 13: Machine Learning in Azure Stream Analytics 225 Azure Stream Analytics Environment 225 Case Study 229 Event Hub 229 Azure Stream Analytics 231 Azure Stream Analytics 234 Azure ML 238 Stream Analytics Function 241 Live Analytics on Stream Data 243 Summary 246 References 246 Chapter 14: Azure Machine Learning (ML) Workbench 247 Azure ML Workbench 247 Azure ML Workbench 247 Azure ML Workbench Installation 248 Azure ML Workbench Installation 248 Azure ML Workbench Import Data 255 Summary. 265 References 265 References 265 References 265	Chapter 12: Azure Machine Learning Studio	201
Azure Machine Learning Experiment203Creating a Web Service211R and Azure ML Studio.218Summary.223References223Chapter 13: Machine Learning in Azure Stream Analytics225Azure Stream Analytics Environment225Case Study.229Event Hub229Application231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary.246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench Installation248Azure ML Workbench Installation248Azure ML Workbench Installation246References255Summary.265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary.267Reference272Reference272	Azure Machine Learning Environment	201
Creating a Web Service211R and Azure ML Studio218Summary223References223Chapter 13: Machine Learning in Azure Stream Analytics225Azure Stream Analytics Environment225Case Study229Event Hub229Application231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench Installation248Azure ML Workbench Installation248Azure ML Workbench Installation246References265Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary268Summary267Reference272	Azure Machine Learning Experiment	203
R and Azure ML Studio. 218 Summary 223 References. 223 Chapter 13: Machine Learning in Azure Stream Analytics 225 Azure Stream Analytics Environment. 225 Case Study 229 Event Hub 229 Application. 231 Azure Stream Analytics 234 Azure ML 238 Stream Analytics Function 241 Live Analytics on Stream Data 243 Summary. 246 References. 246 Chapter 14: Azure Machine Learning (ML) Workbench 247 Azure ML Workbench 247 Azure ML Workbench Installation 248 Azure ML Workbench Installation 248 Azure ML Workbench Import Data 255 Summary. 265 References. 265 Chapter 15: Machine Learning on HDInsight 267 HDInsight Overview. 267 Setting Up Clusters in HDInsight 268 Summary. 272 Reference. 272	Creating a Web Service	211
Summary.223References223Chapter 13: Machine Learning in Azure Stream Analytics225Azure Stream Analytics Environment.225Case Study229Event Hub229Application.231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary.246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Import Data255Summary.265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary.265Reference272Reference272	R and Azure ML Studio	218
References223Chapter 13: Machine Learning in Azure Stream Analytics225Azure Stream Analytics Environment225Case Study229Event Hub229Application231Azure Stream Analytics234Azure Stream Analytics238Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Installation246References265Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary265Reference272Reference272	Summary	223
Chapter 13: Machine Learning in Azure Stream Analytics225Azure Stream Analytics Environment225Case Study229Event Hub229Application231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary268Summary267Reference272Reference272	References	223
Azure Stream Analytics Environment.225Case Study229Event Hub229Application231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary268Summary268Summary267Reference272Reference272	Chapter 13: Machine Learning in Azure Stream Analytics	225
Case Study.229Event Hub229Application231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary.246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Installation248Azure ML Workbench Import Data255Summary.265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary.272Reference272	Azure Stream Analytics Environment	
Event Hub229Application231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Installation248Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Case Study	229
Application231Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Event Hub	229
Azure Stream Analytics234Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary.265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary.272Reference272	Application	231
Azure ML238Stream Analytics Function241Live Analytics on Stream Data243Summary.246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment.251Azure ML Workbench Import Data255Summary.265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview.267Setting Up Clusters in HDInsight268Summary.272Reference272	Azure Stream Analytics	234
Stream Analytics Function241Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Azure ML	238
Live Analytics on Stream Data243Summary246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary265Summary267Setting Up Clusters in HDInsight268Summary272Reference272	Stream Analytics Function	241
Summary.246References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary.265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary.272Reference272	Live Analytics on Stream Data	243
References246Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Summary	
Chapter 14: Azure Machine Learning (ML) Workbench247Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	References	
Azure ML Workbench247Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Chapter 14: Azure Machine Learning (ML) Workbench	
Azure ML Workbench Installation248Azure ML Workbench Environment251Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Azure ML Workbench	
Azure ML Workbench Environment.251Azure ML Workbench Import Data255Summary.265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary.272Reference272	Azure ML Workbench Installation	
Azure ML Workbench Import Data255Summary265References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Azure ML Workbench Environment	251
Summary	Azure ML Workbench Import Data	255
References265Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Summary	265
Chapter 15: Machine Learning on HDInsight267HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	References	265
HDInsight Overview267Setting Up Clusters in HDInsight268Summary272Reference272	Chapter 15: Machine Learning on HDInsight	267
Setting Up Clusters in HDInsight	HDInsight Overview	
Summary	Setting Up Clusters in HDInsight	
Reference	Summary	
	Reference	272

TABLE OF CONTENTS

Chapter 16: Data Science Virtual Machine and Al Frameworks	273
Data Science Virtual Machine Overview	273
Setting Up the Data Science Virtual Machine	
Case Study	
Summary	
References	
Chapter 17: Deep Learning Tools with Cognitive Toolkit (CNTK)	287
Neural Network Concepts	
Microsoft Cognitive Service Toolkit	293
CNTK Setup	
Case Study	
Summary	
References	
Part V: Data Science Virtual Machine	
Chapter 18: Cognitive Services Toolkit	305
Overview of Cognitive Services	305
Text Analytics Services	
Data Set	
Create a Text Analytics Function	
Create a Text Analytics Function Intelligence Application, Face Recognition Services	314 318
Create a Text Analytics Function Intelligence Application, Face Recognition Services Summary	
Create a Text Analytics Function Intelligence Application, Face Recognition Services Summary References	
Create a Text Analytics Function Intelligence Application, Face Recognition Services Summary References Chapter 19: Bot Framework	
Create a Text Analytics Function Intelligence Application, Face Recognition Services Summary References Chapter 19: Bot Framework Bot Creation in Azure	
Create a Text Analytics Function Intelligence Application, Face Recognition Services Summary References Chapter 19: Bot Framework Bot Creation in Azure Question-and-Answer Chatbot	
Create a Text Analytics Function Intelligence Application, Face Recognition Services Summary References Chapter 19: Bot Framework Bot Creation in Azure Question-and-Answer Chatbot Summary	

TABLE OF CONTENTS

Chapter 20: Overview of Microsoft Machine Learning Tools	355
Overview of Microsoft Machine Learning Technologies	
loT Scenario	
Image, Text, and Voice Analytics	
Machine Learning on ETL	
Machine Learning Prototype	358
Index	

About the Author

Leila Etaati is a data scientist, BI consultant, trainer, and well-known speaker at many international conferences, such as MS Ignite, SQL PASS, Data Platform Summit, SQL Saturday, Power BI World Tour, in Europe, the United States, Asia, Australia, and New Zealand. She has more than 10 years of experience with databases and software systems. She is an active technical Microsoft AI blogger at RADACAD.

Leila is a codirector and data scientist at RADACAD, with many clients around the world. She is a co-organizer of the Microsoft Business Intelligence and Power BI User group in Auckland, New Zealand, which has more than 1,300 members. She is also a co-organizer of three principal conferences in Auckland: SQL Saturday Auckland (since 2015), Difinity (since 2017), and Global AI Bootcamp.

Leila is the first Microsoft AI MVP in New Zealand and Australia as well as a data platform MVP. She holds a Ph.D. from the University of Auckland.

About the Technical Reviewer

Christian Berg is a group product manager at Microsoft, where he is responsible for customer success with Power BI, with a focus on developing new solutions with R, Azure Machine Learning, and general AI integration.

PART I

Getting Started

CHAPTER 1

Introduction to Machine Learning

Machine learning allows decision makers to gain more insight from their data. Today, the application of machine learning is no longer limited to research and specific industries. In most fields, there is a valuable opportunity to use machine learning to obtain more concise and in-depth information from available data. As a result, most big software companies provide opportunities to their users to access machine learning via easy-to-use software. For example, Microsoft, a pioneer in developing business software, leverages machine learning in developing products such as the Bing search engine, Xbox, Kinect, and others. The use of machine learning in Microsoft is not limited to the production of new software. In many of Microsoft's software development tools, such as Microsoft SQL Server, Power BI, and .NET, there is an opportunity to use machine learning to create smarter applications and reposts.

In this chapter, you will learn the central concepts and approaches to machine learning, review machine learning types, and discover step-by-step the life cycle of machine learning. Also, you will learn about the highly useful machine learning tools that are available in Microsoft products.

Machine Learning Concepts

Machine learning is a subset of artificial intelligence (AI). Ian Goodfellow and his colleagues [1] introduced a diagram that shows the different approaches to AI. As you can see in Figure 1-1, machine learning is one of several methods of AI.

Figure 1-1. A Venn diagram showing the AI category and subcategories [1]

Academics and authors have proposed different definitions of machine learning. For example, Sebastian Raschka defined machine learning as tools for making sense of data, using algorithms [2]. He mentioned that we encounter a significant amount of structured (numbers) and unstructured (image, voice text, and so forth) data. Gaining insight from these data affects the decision-making process and helps managers to achieve a better understanding of what happened, why it happened, what will happen in future, and how to make it happen.

The concepts of machine learning are based on discovering common patterns from current data sets. Historically, we created reports and software to understand what happened in the past. Analyzing recent events and data always helps us to perform further analysis, such as finding key performance indicators (KPIs), and so forth. Investigating what happened in the past is straightforward and provides us some value (Figure 1-2). For the next step, we want to become more agile regarding change, so analyzing live data is essential. Analyzing recent data obviously provides more insight than legacy data does. The process is a bit more difficult than following prior approaches but offers more value to an organization.

Figure 1-2. Value and difficulty of various analyses, from past to future

The third step is the root cause analysis, a type of data investigation focused on cause and effect. For example, analyzing the primary cause of a sales decrease in a specific branch can provide lots of value for a business owner.

A further step for getting better value out of data is analyzing what will happen in the future, or *predictive analysis*. Understanding what will happen in the future, or having insight about the data pattern, will help decision makers implement better informed company policies. "What will happen" analysis requires more effort and is more time-consuming than previous steps. However, it is an opportunity for a business to obtain even more valuable and actionable information.

Finally, the last stage is "how to make it happen." This *prescriptive analysis* recommends steps to take after predicting the future. This process brings more insight into any organization, but it is far more challenging to implement, compared to the other stages.

Machine Learning Approaches

There are two main approaches to machine learning:

Supervised Learning

Unsupervised Learning

In the following paragraphs, a brief explanation of each is provided. In Chapter 5, I will go into more detail about these and offer examples of both.

Supervised Learning

The primary goal of supervised learning is to learn how to predict a group or value from past data. By another definition, supervised learning is the machine learning task of inferring a function from labeled training data [2].

There are different approaches to supervised learning. One is to predict a value, for example, predicting the number of subscribers to a video channel, which could range from one to millions of individuals. Supervised learning makes it possibile to predict how many people will subscribe to this channel. Another example is predicting sales for a forthcoming year that could range from \$1,000 to \$200,000. By this approach, an algorithm predicts the number of sales for the company. We call this method a *regression approach*, in which the outcome is a continuous value.

The other approach to supervised learning involves predicting a group, for example, predicting whether a customer will stay with a company or leave it. In this example, the goal is to predict whether a current customer will remain with a group. Another case could consider a company that provides different tiers of customers, such as gold, silver, and bronze. In this case, the supervised learning approach might predict whether a new customer will belong to the gold, silver, or bronze group. In this type of supervised learning, the prediction column should be a *discrete class label*.

Unsupervised Learning

In supervised learning, we already have an idea of the answer before creating and training the model. In unsupervised learning, we do not predict a column, and we do not attach any label to the data. The main goal of unsupervised learning is to find the natural data pattern, to explore the data and extract its meaningful information.

Machine Learning Life Cycle

The machine learning life cycle consists of four main steps:

- 1. Business understanding
- 2. Data acquisition and understanding
 - a. Data collection
 - b. Feature selection
 - c. Data wrangling
- 3. Modeling
 - a. Model selection
 - b. Split data set
 - c. Train model
- 4. Deployment
 - a. Evaluating the model
 - b. Monitoring model

Microsoft has proposed a Team Data Science Process (TDSP) that illustrates these phases (Figure 1-3).

Step 1 is to understand the business problem. People who know their business are the best resources for identifying the company needs and issues that machine learning is able to solve. However, not all issues can be addressed by machine learning! In addition, use cases for machine learning should be prioritized in collaboration with business stakeholders and data scientists and engineers, so that you start with solutions that are valuable, affordable, and have a high probability of being successful.

Step 2 is to ingest data, which involves collecting required data from different resources and exploring and cleaning it. Finding relevant data columns to a problem, mainly for supervised learning, helps to create more accurate algorithms. Furthermore, for each algorithm, specific data transformation must be complete before the modeling stage.

Step 3 is modeling, which consists of model selection. This is done by analyzing the nature of a problem and data. Most data should be allocated for model creation (training), with a small percentage left for testing and evaluating the model. As you can

see in Figure 1-3, the machine learning process is iterative. For example, after creating a model, there is a possibility that it might not be accurate. In this case, we would have to recheck the previous steps, such as business understanding or data acquisition.

Machine Learning Languages and Platforms

In order to create a machine learning model, you must be familiar with at least one language that facilitates machine learning. However, there are some tools, such as Microsoft Azure Machine Learning, that provide a drag-and-drop environment.

There are many different languages for doing machine learning, including Python, Java, R, C++, C, JavaScript, and so forth. However, among all these languages, Python and R are the most widely used, with a focus on creating models and the machine learning process.

There are also many different tools for doing machine learning. In this book, we will look specifically at the Microsoft tools that can help us perform machine learning, as well as how to use different Microsoft technologies to implement certain machine learning processes.

Microsoft has integrated machine learning in some of its tools, such as Bing search or Xbox, for many years now. In 2004, it embedded the data-mining tools in SQL Server. These tools helped SQL and business intelligence (BI) developers to leverage machine learning, to create more insightful reports.

SQL Server allows users to quickly produce mining models, using the current data in cubes. The main advantage of using data mining tools in SQL Server is that they are easy to deploy, have a great interface, and are user-friendly. However, there are some disadvantages. For example, there is no way to create custom code using R or Python, and only a limited number of algorithms are available.

Subsequently, Microsoft announced a cloud-based machine learning platform, Azure Machine Learning (AML), in 2014. This platform provides a smooth drag-anddrop environment and does not require any software to make it work. Azure Machine Learning supports R and Python and offers more than 25 algorithms specific to machine learning (Figure 1-4). You'll learn more about those in Chapter 12.

Figure 1-4. The Azure Machine Learning environment is easy to use and flexible

In addition to Azure Machine Learning, Microsoft provides the ability to embed the R or Python code in some of its other tools, such as Power BI, a self-service BI tool that is widely used for BI practices. In 2015, Microsoft began to offer new possibilities for machine learning in Power BI, for example, a custom visual in the reporting section that helps developers to write R code with the goals of visualization and machine learning. You will learn more about it in Chapter 4.

Another critical component of Microsoft Power BI is Power Query. Power Query helps developers to source data from different resources and offers many features for cleaning data. In 2016, Microsoft introduced the option of writing R code inside Power Query for machine learning. There is a difference between writing code in Power BI reporting and Power Query. In the former, you can create visuals (Figure 1-5), but not in the latter. Moreover, the code in the R visual runs every time the filter context changes or page opens, whereas the R scripts in Power Query Editor run only on refresh, unless there is a direct query connection. You will learn how to perform machine learning inside Power Query with R in Chapters 6, 7, and 8.

Figure 1-5. R visual for machine learning in Power BI report

Another Microsoft platform with embedded machine learning is Microsoft Azure, a cloud platform that includes various components for getting, storing, visualization, and output of data. Various parts of Microsoft Azure have the cabability for machine learning. As you can see in Figure 1-6, it is possible to write R or Python code in Microsoft Power BI, Microsoft SQL Server 2016 and 2017 (Chapters 9 and 10), Azure Data Lake (Chapter 11), Azure Stream Analytics (Chapter 13), Azure Machine Learning Studio (Chapter 12), and Azure Machine Learning Workbench (Chapter 14). Also some introduction on Azure HDInsight (Chapter 15) will be provided. Next in Chapter 16 an overview on Data Science Virtual Machine will be presented. In chapter 17 reader get familiar with CNTK concepts. Moreover, some services, such as cognitive services, provide different APIs for doing machine learning in natural language processing, text analysis, image and voice processing, and more. I will go into detail about these in Chapters 18 and 19. Figure 1-6 shows how all the Azure components interact with other Azure tools, to expedite the process of machine learning development.

Figure 1-6. Microsoft Azure components offering different possibilities for performing machine learning

There is also an option to create a Data Science Virtual Machine (DSVM) in the Azure portal (Figure 1-7). DSVM supports a variety of languages (e.g., R, Python, C#), machine learning models (Azure Machine Learning Workbench, H2O), data ingestion tools, data exploration, and development. I will cover how to work with these components in depth in Part V.

Figure 1-7. Microsoft Data Science Virtual Machine (DSVM) components [4]

Summary

This chapter offered an introduction to Microsoft machine learning products, providing a brief explanation of what machine learning is, the machine learning process, and the machine learning life cycle. In addition, some of the main machine learning approaches, such as descriptive, predictive, and prescriptive analysis were described. An overview of how we are able to leverage these tools for creating predictive, descriptive, and prescriptive analysis was provided. In the rest of the book, greater insight into most of the AI tools in the Microsoft stack will be introduced, and how to leverage them with the aim of machine learning will be explained.

References

- Goodfellow, Ian; Bengio, Yoshua; and Courville, Aaron. Deep Learning: Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press, 2016.
- [2] Raschka, Sebastian. *Python Machine Learning*. Birmingham, UK: Packt Publishing, 2015.
- [3] Microsoft Azure, "The Team Data Science Process lifecycle," https://docs.microsoft.com/en-us/azure/machine-learning/ team-data-science-process/lifecycle, 2019.
- [4] Microsoft Azure, "Pre-Configured environments in the cloud for Data Science and AI Development," https://azure.microsoft. com/en-us/services/virtual-machines/data-sciencevirtual-machines/, 2019.

CHAPTER 2

Introduction to R

R is undoubtedly one of the most popular languages for machine learning. It is a programming language and free software environment used mainly for statistical computing and data visualization. R has been used by academics, data scientists, and statisticians for a long time. It is a statistical language, which is excellent for machine learning, statistics, and use as a visualization tool. There is an integration between Microsoft technologies and R language that enhances the capability of machine learning in Microsoft applications and reports. R is an open source and proprietory language that is available for the Windows and Mac operating systems. It can be extended via packages [1]. This chapter provides an overview on installing RStudio, and how to extend the R capability via installing packages, R data structures, machine learning, and statistical analysis and visualization with R will be explained.

Installing RStudio

To write and use R for machine learning and statistical analysis, you must install one version of R on your machine. There are different versions of R and different tools to write the R codes, but for this book, we are going to write R scripts in RStudio, which is an integrated development environment (IDE) for R with the possibility of using a syntax-highlighting editor. To install RStudio, you must go to the web site located at www.rstudio.com/products/RStudio/. It is also possible to run R scripts on your desktop and via a server. In this book, RStudio for desktop has been used. Moreover, the free version of RStudio for desktop has been installed and used. To start, install the RStudio desktop on your machine and open it. The RStudio environment has four main parts, as shown in Figure 2-1.

CHAPTER 2 INTRODUCTION TO R

Figure 2-1. RStudio environment

You can write your R code in the R editor. The editor is more user-friendly compared to other R IDEs. The output or console area shows the result of running the codes. The plot area is where the visualization charts, help sections, etc., are shown. The last section, environment and run history, shows the variables and logs.

Let's start with a simple expression in R. We want to assign value 10 to variable name X. The simple statement is

X<-10

In R, the <- symbol is used to assign a value to a variable. To run the code, you just have to press Ctrl+Enter or click the run button in the editor window.

As you can see in Figure 2-2, I have run the statement x<-1, and the result is shown in the console editor. Now I am going to determine the type of the X variable. To do this, there is a function named typeof that gets a variable and identifies its type. RStudio also provides "intellisense" for each function.

CHAPTER 2 INTRODUCTION TO R

Figure 2-2. Running a simple statement in R code

After running the typeof function (Figure 2-3), you will see the output in the console window. The type of variable X is double. There are different data types and structures in R, discussed later in this chapter.

CHAPTER 2 INTRODUCTION TO R

Figure 2-3. Running the type of function in RStudio to identify the type of variable

Installing Packages

To extend the capability of R, additional packages can be installed. Each package has different functions that provide more functionality in working with R.

The main command for installing packages is install.packages(). When you install R, a library folder will be created on your machine that contains some of the basic packages for working with R, such as "Base" packages. However, in Chapter 4, you will see how to use this command to add some packages for assisting with machine learning.

R Data Structure

Every programming language has a specific data structure. R has some predefined data structures that each serves a specific purpose. For performing machine learning in R, we normally use a data structure, such as a vector, list, data frame, factor, array, and matrix. Following, I will explain some of these briefly.

Vector—C()

A vector stores the order set of values. Each value belongs to the same data type. A vector can hold data types such as integers (numbers without decimals), doubles (numbers with decimals), characters (text data), and logical (TRUE or FALSE values). See Figure 2-4.

Integer Integer Integer Integer Integer Integer Integer Integer Integer Integer

Figure 2-4. Simple visualization of a vector

To create a vector data structure in R, we must use the function c(). To create a vector to store the name of a company employee, you would write the following code:

```
employee_name<-c("Jan","Jack","Mike")</pre>
```

The same would be done to store the employee's age and academic degree.

```
employee_age<-c(23,34,23)
employee_degree<-c("BS","MS","BS")</pre>
```

The resulting records for employee_name, employee_age, and employee_degree are as follows (Figure 2-5):

Figure 2-5. Employee records for name, age, and degree

Factor

Factors are a second data structure for a specific type of vector: categorical or ordinal values. For example, instead of storing the female and male types in a vector, a factor stores 1, 2, which takes less storage space. To define a factor, first we define a vector; the employee degree is a categorical variable. We use the common Factor() to convert a vector to a factor type, as follows:

```
employee_degreeFactor<-factor(c("BS","MS","BS"))
  the result of running the employee_degreefactor would be
employee_degreeFactor
[1] BS MS BS
Levels: BS MS</pre>
```

As you see in the preceding output, we have beside each employee's degree another parameter, named Level

Lists—list ()

List is another data structure that is similar to vector but can have a combination of data types (Figure 2-6). A vector has only one data type.

Figure 2-6. A simple visualization of list

Lists help us to combine data types. For creating a list in R, we use the list() command, as follows:

```
employee_list<-list(employee_name,employee_age,employee_degree)</pre>
```

As you can see in the preceding code, the list() function gets a vector data structure, to create a list.

The output of running the variable employee_list would be as follows:

```
[[1]]
[1] "Jan" "Jack" "Mike"
[[2]]
[1] 23 34 23
[[3]]
[1] "BS" "MS" "BS"
20
```

Data Frames—data.frame()

The primary data structure that we use for machine learning is the data frame. A data frame is very similar to a table structure in SQL Server and Power BI. It has columns and rows. The graphical representation of a data frame is shown in Figure 2-7.

Integer	String	Double	character	Logical
Integer	String	Double	character	Logical
Integer	String	Double	character	Logical
Integer	String	Double	character	Logical
Integer	String	Double	character	Logical

Figure 2-7. Simple visualization of a data frame structure

To define a frame, we use the data.frame syntax, as follows:

employee_DataFrame<-data.frame(employee_name,employee_age,employee_degree)</pre>

The result of running the variable employee_Dataframe is

employee_name employee_age employee_degree

1	Jan	23	BS
2	Jack	34	MS
3	Mike	23	BS

A data frame is like a table. We can access the cells, rows, and columns separately. For example, to retry a specific column in employee_Dataframe, such as an employee's age, we would use the following code:

employee_DataFrame\$employee_age

Another way to access a row or column is via index number. The space before the comma stands for all rows, while the number after the comma is for column numbers. For example, we can extract all the rows of the first column using the following code:

```
employee_DataFrame[,1]
[1] Jan Jack Mike
Levels: Jack Jan Mike
```

Similarly, to extract from all columns the data of a specific employee, we can leverage the following code:

employee_DataFrame[1,]
 employee_name employee_age employee_degree
1 Jan 23 BS

R for Statistical Analysis

R has been used widely for statistical analysis. It can be used for simple statistical analysis to complex statistical testing.

A simple statistical analysis would be to find the center of data. In R, there is a simple command for this, summary(), that provides a brief description of the data set.

Following is a data set of used cars (Figure 2-8):

А	В	С	D	E	F
year	model	price	mileage	color	transmission
2011	SEL	21992	7413	Yellow	AUTO
2011	SEL	20995	10926	Gray	AUTO
2011	SEL	19995	7351	Silver	AUTO
2011	SEL	17809	11613	Gray	AUTO
2012	SE	17500	8367	White	AUTO
2010	SEL	17495	25125	Silver	AUTO
2011	SEL	17000	27393	Blue	AUTO
2010	SEL	16995	21026	Silver	AUTO
2011	SES	16995	32655	Silver	AUTO
2010	SES	16995	36116	Silver	AUTO
2010	SES	16995	40539	Black	AUTO
2011	SES	16992	9199	Silver	AUTO
2011	SEL	16950	9388	Green	AUTO
2010	SES	16950	32058	Red	AUTO
2011	SE	16000	15367	White	AUTO
2011	SES	15999	16368	Blue	AUTO
2010	SEL	15999	19926	Silver	AUTO
2010	SES	15995	36049	Silver	AUTO
2011	SEL	15992	11662	Blue	AUTO
2011	SEL	15992	32069	Silver	AUTO
2010	SES	15988	16035	Silver	MANUAL
2010	SEL	15980	39943	White	AUTO
2011	SE	15899	36685	Silver	AUTO

Figure 2-8. Used car data set

As you can see in Figure 2-8, we have the price and mileage for each car. If we want to see the simple center measure of them, we can use the summary function.

```
summary(used cars)
```

After running the code in RStudio, we receive the following output (Figure 2-9):

price	mileage	color	transmission
Min. : 3800	Min. : 4867	Length:150	Length:150
1st Qu.:10995	1st Qu.: 27200	Class :character	Class :character
Median :13592	Median : 36385	Mode :character	Mode :character
Mean :12962	Mean : 44261		
3rd Qu.:14904	3rd Qu.: 55125		
Max. :21992	Max. :151479		
	price Min. : 3800 1st Qu.:10995 Median :13592 Mean :12962 3rd Qu.:14904 Max. :21992	price mileage Min. : 3800 Min. : 4867 1st Qu.:10995 1st Qu.: 27200 Median :13592 Median : 36385 Mean :12962 Mean : 44261 3rd Qu.:14904 3rd Qu.: 55125 Max. : 21992 Max. : 151479	price mileage color Min. : 4867 Length:150 1st Qu.:10995 1st Qu.: 27200 Class :character Median :13592 Median : 36385 Mode :character Mean :12962 Mean : 44261 3rd Qu.: 55125 Max. :21992 Max. :151479 151479

Figure 2-9. Output of running the summary function code in RStudio

For a numeric variable, such as price or mileage, we have five measures: minimum (Min.) and maximum (Max.), mean (average), median, and first and third quarter (1st Qu., 3rd Qu.).

R for Machine Learning

R contains many packages and functions that help data scientists to perform machine learning. With the R language, you are able to undertake predictive, descriptive, and prescriptive analysis. The following R packages from the KDnuggets web site (Table 2-1) are especially popular for machine learning [2].

Ranks	Package Name	Machine Learning
1	caret	Predictive analysis (classification and regression)
2	randomForest	Predictive analysis (classification and regression)
3	E1071	Descriptive analysis
4	rpart	Predictive analysis (classification and regression)
5	nnet	Predictive analysis (classification and regression)
6	arules	Descriptive analysis (data mining)
7	kernlab	Predictive analysis (classification and regression) and descriptive analysis

Table 2-1. R Packages for Machine Learning

There are many packages and functions for machine learning. In this book, I will show how we can use them inside Power BI.

R for Visualization

R can be used for visualization. Ggplot2 packages are a popular package that helps us to draw different charts. With R visual, you can draw static, dynamic, and 3D charts. In Chapter 6, I will discuss some of the ways to draw charts using R codes inside Power BI.

We want to implement visualization for the following principal purposes:

Comparison Composition Distribution Relationship [3]

The chart in Figure 2-10 shows the main goals of visualization.

Chart Suggestions—A Thought-Starter

Figure 2-10. Selecting the right chart for the purpose

Figure 2-10 illustrates that the main purposes of visualization can be categorized by four main aspects: the relationship, distribution, comparison, and composition. This chart is a map to find the best matches for visualization. Most of the available visualization tools are able to follow this chart. However, using R scripts extends these capabilities, to draw all different chart types we want.

Summary

This chapter provided an overview of what R is and how to install it. It also offered a brief introduction to available packages and different data structures in the R language. Finally, a brief discussion on how we can use R for visualization and machine learning was presented. The rest of this book presents a more in-depth explanation on how to draw charts with the help R scripts.

References

- [1] R Foundation, "What is R," www.r-project.org/about.html.
- [2] KDnuggets, "Top R packages for Machine Learning," www. kdnuggets.com/2017/02/top-r-packages-machine-learning. html, February 2017.
- [3] Abela, A. Chart Suggestions—A Thought-Starter, http:// extremepresentation.typepad.com/.shared/image.html?/ photos/uncategorized/choosing_a_good_chart.jpg, 2006.

CHAPTER 3

Introduction to Python

Python is one of the main languages used for performing machine learning. It is a multi-purpose language that has been leveraged for device programming, objectoriented programming, machine learning, and so forth. In this chapter, you will learn

Python IDE Install packages Python data structure Statistical analysis with Python Python for visualization Python for machine learning

However, the main aim of this chapter is to introduce R briefly.

Python IDE

According to the DataCamp web site (www.datacamp.com/community/tutorials/ data-science-python-ide), there are five top integrated development environments (IDEs) in which to write code. A brief description of each follows.

• **Spyder** is an environment (Figure 3-1) very similar to RStudio, so if you are switching from R to Python, it is a really good choice. It is supported in Windows and MacOS. Spyder can be downloaded from the Anaconda web site (www.anaconda.com/distribution/) as well.

CHAPTER 3 INTRODUCTION TO PYTHON

	U H HED
mp.ey 🖸	Q Source Canada · Object
r -*- coding: utf-# -*-	
ayder Editor	Usage
his is a temporary script file.	Here you can get help of any object by pressing CbrI+1 in first of R, either on the
rint("(mat")	Editar or the Console.
	Heip can also be shown automatically after writing a left parenthesis next to an object. You can also behavior in <i>Writekense</i> > Aley.
	New to Spyler? Read our <u>tatoold</u>
	Price sends Circle core is it Circle core is it Circle core is it Circle core is it Is (b): text Is (b): Is (b):
	<pre>In (10): runfile('C:/Users/loils/.spyder-py3/temp.py', wdir-'C:/Users/loils/.spyder-py3') Test</pre>

Figure 3-1. Spyder environment

• **Rodeo** is another Python IDE that is similar to RStudio. You can download it from (https://rodeo.yhat.com/). Rodeo has four main environments (Figure 3-2). There is one for writing code, a console for showing results, an area for installing packages, and another for showing plots.

Figure 3-2. Rodeo environment

- **PyCharm** is another IDE for writing Python codes. Current versions of Azure Machine Learning Workbench support this IDE (www.jetbrains.com/pycharm/).
- **Jupyter** is another IDE for writing Python code and can be accessed via a browser or desktop version.
- **Microsoft Visual Studio** is another IDE for writing Python. It is possible to edit Python code in Azure Machine Learning Workbench inside Microsoft Visual Studio. A detailed explanation of how to work with Azure Machine Learning and Visual Studio is provided in the following section.

Install Packages

To write Python codes inside Visual Studio, we must first install Visual Studio 2017 (https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio). From File, choose the New project option. Then select Python \succ Python Application \succ Put Location and click the OK button (Figure 3-3).

CHAPTER 3 INTRODUCTION TO PYTHON

New Project				7 ×
P Recent		.NET Framework 4.6.1 • Sort by: Defaul	t • # 🗄	Search (Ctrl+E)
 Installed 		From Existing Python code	Python	Type: Python
 Visual C++ Visual C# 		Python Application 2	Python	A project for creating a command-line application
Visual F#		Azure Cloud Service	Python	
SQL Server R		Web Project	Python	
 P. Azure Data Lak P. JavaScript 	*	Bottle Web Project	Python	
 Stream Analytic Python 		Django Web Project	Python	
Machine Le Web	ming	Flask Web Project	Python	
Other Project T	lypes	Flask/Jade Web Project	Python	
▶ Online		IronPython Application	Python	
		IronPython WPF Application	Python	1
Not finding what Open Visual	t you are looking for? I Studio Installer	IronPython Windows Forms Applica	ition Python	*
Name:	PythonApplication	2		
Location	c\users\leila\sourc	elvepos 3	•	Browse
Solution:	Create new solution	in in in its state of the state	•	
Solution name:	PythonApplication	2		Create directory for solution Create new Git repository
				4 OK Cancel

Figure 3-3. Creating a Python application in Visual Studio 2017

To extend the capability of Python programming, you must install some additional packages. Each package has different functions that offer us more functionality in working with Python. To install packages in Visual Studio, we must click View ➤ Other Windows ➤ Python Environment (Figure 3-4).

Figure 3-4. Python environment in Visual Studio 2017

In Python Environments, select Python version 3.6. In another tab, select Packages. In the search area, type the package name (Figure 3-5). For example, to install Pandas, click pip install pandas from PyPi.

CHAPTER 3 INTRODUCTION TO PYTHON

Figure 3-5. Installing packages in Python

After installing the package, you will see a message in the output. Figure 3-6 shows that the Panda package has been installed successfully.

CHAPTER 3 INTRODUCTION TO PYTHON

Figure 3-6. Installing packages output result

After installing the package, you will be able to check that it has been installed. In the interactive Python version 3.6, write the following codes, to check whether Pandas packages have been installed.

```
import pandas
print('pandas: {}'.format(pandas.__version__))
```

Now we must test the environment, to make sure that the packages have been installed successfully. You can run the code in a different environment. As you can see from Figure 3-7, it is possible to run the code in Anaconda 5.0.1, Python 3.6, and ProjectApplication 1.

100 %	
Anaconda 5.0.1 Interactive	+ ∓ ×
<pre>ID D 至 ↑ ↓ EnvironmeE_AnacondsSol • Mod kemain_ • C >>> import pand >>> print('pand pandas: 0.20.3 PythonApplication1 >>></pre>	Î
100 % • 6 Anaconda 5.0.1 Interactive Anaconda 5.0.1 Interactive Anaconda 5.0.1 Interactive)

Figure 3-7. Running Python code inside Visual Studio in different environments

Python for Statistical Summary

The first step in doing any machine learning or statistical analysis is to summarize the data set. We are going to look at the data set with regard to dimensions, statistical summary of columns, and peek at the data. We can access a data resource about cars from the following link: https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data.

We are going to load data directly from the web site, then assign a name to each column. Assigning a name to each column will help us to explore the data better. Then we will use the Panda package to load and read the data.

```
URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
auto-mpg.data"
names = ['MPG', 'Cyl', 'Disp', 'HorsePower', 'Weight','Acceleration','Model
Year','Origin','Car Name']
dataset = pandas.read_csv(URL, names=names)
```

Dimensions

To get the dimensions of the data, such as some rows and columns, we use the shape property, as follows:

print(dataset.shape)

result

(398, 9)

The preceding indicates that we have 398 rows and 9 columns. In addition, we can use the head property, to see the first 20 rows of data, as follows:

print(dataset.head(20)).

Statistical Distribution

To check the statistical summary of attributes, we can use the describe command, as follows:

```
print(dataset.describe())
```

Python for Visualization

Python allows users to create charts. It offers a variety of options for visualizing data. Matplotlib is the main package for visualization in Python. It is very powerful and can be used for complex charts. Matplot was the first visualization library, and other tools, such as Seaborn, ggplot, Bokeh, and so forth, have been built on top of it (see https://blog. modeanalytics.com/python-data-visualization-libraries/).

The ggplot2 package is also available in Python. ggplot2 is based on R's plotting system. It works based on layers.

Bokeh is another library similar to ggplot2, but it is native to Python. It helps developers to draw interactive and web-based charts.

Plotly is an online data visualization tool that is useful for creating interactive charts. Plotly can be used both in R and Python.

Python for Machine Learning

Python is a simple, elegant, and consistent language. It is more readable compared to R, for example.

Python is especially popular in applied data science. It has different packages for machine learning, such as NumPy, Pandas, Keras, TensorFlow, and so forth. However, it is a general-purpose language that can be used for data engineering, web site scraping, web application building, and so forth.

Summary

This chapter provided an overview of Python and related software and discussed how we can use it to perform machine learning.

CHAPTER 4

R Visualization in Power BI

Power BI is a self-service business intelligence (BI) software. This tool can be used for data visualization, data cleaning, modeling, analysis, and collaboration at enterprise scale. Many books and blogs have been published about how to use Power BI. In this chapter, I am going to show how we can leverage R to create better visualizations and get additional value from Power BI. In this chapter, I will explain how to set up R within Power BI, how to draw charts in Power BI using R scripts, how to set up the Power BI report environment, how to set up Power BI to write R code, and how to draw R charts in Power BI.

Power Bl

The Power BI report environment helps us to visualize data. According to Dr. Abela [1], there are four main purposes of data visualization, as follows and represented graphically in Figure 4-1:

- 1. Data comparison
- 2. Data relationship
- 3. Data composition
- 4. Data distribution

Chart Suggestions—A Thought-Starter

Figure 4-1. Data visualization diagram [1]

Power BI Desktop is a free application that you can download from https:// powerbi.microsoft.com/en-us/desktop/. The Power BI Visualizations panel supports most of the charts suggested in Figure 4-1. It is possible to extend the visualization capabilities, by importing custom visuals from the marketplace or other sources.

Power BI Desktop helps users to get data from different sources with the Get Data options (Figure 4-2). To learn more about Power BI, go to http://radacad.com/online-book-power-bi-from-rookie-to-rockstar.

📕 🕤 🥐 🔹 🛛 Untitled - Power BI Desktop			– 🗆 X
File Home View Modeling Help			Leila Etaati 🛛 🔿 🔞
Parle Copy Format Painter Cipboard External data	New New Ask A Shapes * From Fis Insert Custom vis	Termer Falsionships Calculations Share	
a		VISUALIZATIONS	FIELDS >
₩ -8		推建的管计量的 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	,⊅ Search
		The Values	
		Drag data fields here FILTERS	
		Page level filters	
		Drillthrough filters	
		Drag drillthrough fields here Report level filters	
		Drag data fields here	
Page 1 🕈			

Figure 4-2. Power BI Visualizations environment

Setting Up R in Power BI

To draw an R chart in Power BI, the first step is to install at least one R version or Microsoft R Open. Now we must specify what R version we are going to use. To do this, we click the File menu, then click Options and Settings, then Options. Under the Global option, click R Scripting, to specify the R version (Figure 4-3).

Figure 4-3. Setting up the R environment in Power BI

As mentioned in Chapter 3, R is based on packages. Whenever you use a specific package, you must install it on your machine first. (If you are using Power BI Desktop, most of the packages are already installed in the service.) You can install packages using an R IDE, e.g., R Studio. Then, in the Power BI R editor, you must refer to that package. Moreover, you ensure that you are using the right version of the R package that you already installed (Figure 4-4).

Figure 4-4. Specifying an R version and environment in Power BI

Writing R Code in Power BI

It is possible to write R code in Power BI's report area. To do that, we must import data into Power BI report.

A data set that includes car specifications, such as speed in town and along a highway, cylinders, and so forth, is available to download at https://forge.scilab.org/index.php/p/rdataset/source/tree/master/csv/ggplot2/mpg.csv. This data set is free and titled "mpg.csv." I am going to use this data set to show the speed of the car on the highway and the city, the number of cylinders the car has, its year of production, and type of drive (front wheel, rear wheel, and so on) in one picture. According to Figure 4-1, to show the comparison of the data among the different items, we must use a table chart. We are going to import data into Power BI Desktop via the Get Data option and import a CSV file (Figure 4-5).

Figure 4-5. Importing a CSV file into Power BI Desktop

After importing the data, you should be able to see it under Fields. Click the R and drag it into the whitespace area (Figure 4-6).

Figure 4-6. Putting R into a whitespace area

Expand the mpg data set (Figure 4-7) and choose cty (speed in the city), hwy (speed on the highway), and cyl (cylinder) options.

Figure 4-7. Selecting related data from the mpg file

The R scripts editor will be enabled. Under R script editor, you will see some R codes. The crosshatch (#) is a symbol for making comments in R and is not executed as script. Power BI automatically puts the selected fields in a variable named dataset, so all fields (cty, hwy, and cyl) will be stored in a data set variable equivalent to using the <- syntax. Also, Power BI automatically removes any duplicated rows. This is explained in the R script editor area (Figure 4-8).

Figure 4-8. Active Python environment in Visual Studio 2017

Next, we are going to put R codes for drawing a two-dimensional graph in Power BI. In Power BI, to use any R scripts, install the package in R, using the install. package() function. In our case, we must install ggplot2. We use the function library(ggplot2) to refer to this package. The first line of code in the R editor is library(ggplot2). This package contains some important functions for drawing charts.

To draw a chart, I first use the ggplot function, to configure a two-dimensional chart. The first argument is dataset, which holds our three fields. Then we have another function inside ggplot2, named aes, which identifies which file should be on the x or y axes. Finally, in the chart, I also want to indicate the number of the car's cylinders. This can be done by adding another layer in the aes function: Size. So, cars with more cylinders will have bigger dots (see Figure 4-9).


```
t←ggplot(dataset, aes(x=cty, y=hwy,size=cyl))
```

Figure 4-9. R script editor

However, the preceding figure shows the graph area without any specific charts. We need a scatter chart to indicate the city and highway speeds on x and y axes. ggplot2's geom_point function draws a scatter chart. This function has value of pch=21, which relates to the shape of the dot in the chart. For example, if I set this value as 20, it becomes a filled cycle; a value of 23 becomes a diamond shape. To run the code, click the run option (Figure 4-10).

Figure 4-10. How to run the R code

After clicking the run code option, the charts will be shown in R visual (Figure 4-11).

Figure 4-11. Drawing a chart using the ggplot function

In Figure 4-11, you can see that we have three different fields: highway and city speed, along the y and x axes, respectively. A car's cylinder variable is shown as a different cycle size. However, you might need a bigger cycle, to differentiate cars with 8 and 4 cylinders. We accommodate this need by adding another layer, by adding a function name, as follows:

```
scale_size_continuous(range=c(1,5))
```

Following, is the entire code:

```
t<-ggplot(dataset, aes(x=cty, y=hwy,size=cyl)) + geom_point(pch=23)+
scale_size_continuous(range=c(1,5))
in the scale_size_continues(range=c(1,5))</pre>
```

The difference between the lowest and highest value specified is 5. I can increase this difference by changing it from 5 to 10. The resulting scatter chart is shown in Figure 4-12.

Figure 4-12. Scatter chart showing speed in the city and on the highway, plus the number of cylinders

In the next example, I have changed the pch value to 24 and added another code inside the aes function name: fill=Red. This means that the chart will show solid red rectangles (Figure 4-13).

```
t<-ggplot(dataset, aes(x=cty, y=hwy,size=cyl,fill="Red")) +
geom_point(pch=24)+scale_size_continuous(range=c(1,5))</pre>
```


Figure 4-13. The final chart

By using the facet command in R, it is possible to show five different variables in just one chart. This helps us to have more dimension in our chart. For this we are going to show the year a car was produced and its type of drive. Therefore, we must change the code, as follows:

```
t← ggplot(dataset, aes(x=cty, y=hwy,color = factor(cyl))) +
geom_point(size=4)
```

By changing the aes function argument, we have replaced size argument with color. This indicates that I want to differentiate a car's cylinder values not just by cycle size, but that I am going to show them by allocating different colors to them. Hence, I change the aes function as in the preceding code snippet.

We must change the code, as follows:

```
library(ggplot2)
t<-ggplot(dataset, aes(x=cty, y=hwy,color = factor(cyl))) +
geom_point(size=4)
t<-t + facet_grid(year ~ drv)</pre>
```

Now, you can see the car's speed on the highway and in the city in y and x axes. Also, we have cylinders as a color and drive and year of production as a facet (Figure 4-14).

Figure 4-14. Drawing a table chart showing five variables in the same chart

R Features in Power BI

R script editor has some features that help us to better use Power BI Desktop, such as slice and dice and edit R code.

Slice and Dice

R visuals are interactive. It is possible to slice and dice them. We are going to use a slicer to slice the facet chart. We also are going to insert a year slicer in the report area, to filter the R visual (Figure 4-15).

Figure 4-15. Slicing and dicing the R visual

Edit R Code in RStudio

It is possible to open the code in RStudio with the data. There is also an option to run the R code in RStudio using the data we have (Figure 4-16).

	VISUALIZATIONS	>	FIELDS
	● 二 ● 二 ● 二 ● 2 ● 2 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1	M 	Search
			Z Column1 ✓ ∑ cty
	Values		<mark>√</mark> ∑ cyl
	dv.		_ ∑ displ
	hwy		
i i i i i i i i i i i i i i i i i i i	ql		<mark>⊻</mark> ∑ hwy
	year		manufacti
	drv		model
			trans
	FILTERS		V 2 year
	Visual level filters		
Run the R code inside Rstudio	cty (All)		
	cyl (All)		
R script editor 💿 🗘 🗸 🗸	drv (All)		
# Create dataframe # dataset <- data frame(ctv, hwy, cvl, year, dry)	t in external R IDE		
· outuset <- outus name(cy, my, cy, year, uv)	very (All)		
# Remove duplicated rows	Jean (ref)		
# dataset <- unique(dataset) library(ggplot2)	Page level filters		
ggplot(dataset,aes(x=dataset\$cty,y=dataset\$hwy,color=dataset\$cyl))+geom_point(pch=20)	Drao data fields here		
+facet_wrap(dataset\$year~dataset\$drv)	Online and Observ		
	Dhiithrough liiters		

Figure 4-16. Running the R code

After clicking the Run option, a page will be open in RStudio that contains the data related to the car. The imported data set contains all changes in data (Figure 4-17).

Cole de · De Coleman de La Coleman de La Coleman de Co	S New Trees
) wer classer classer classer classer classer classer) classer QZ+EL: 1 # input load. Please do not change # 2 dataset = read.csv('C:/Users/leila/	
<pre>3 # Original Script. Please update your 4 library(ggplot2)</pre>	Environment is empty -
5 ggplot(dataset,aes(x=dataset\$cty,y=da	taset to a provide section of the se
et The root 1	a true t
Microsoft R Open 3.3.3 The enhanced R distribution from Microsoft Microsoft packages Copyright (C) 2017 Mi	oft icros

Figure 4-17. Opening R code in RStudio

Custom Visuals

Using custom visuals is another way to extend the capability of visualization in Power BI. There are two ways to access custom visuals:

- 1. Use existing custom visuals available from the Office store
- 2. Create custom visuals

Custom Visuals in the Power BI Office Store

The Office store provides a variety of custom visuals to the Power BI user. To access them, you must first sign in to your work account (Figure 4-18).

	50.1					Visual	tools	Un	titled - Po	wer Bi Deskte	γp							- 0	×
File	Home	View	Modeling	He	np r	omat	Data / Dril											Leila Etaati	76
Pate #	Cut Copy Format Painter	Get Data •	Recent Sources •	Enter Data	Edit Queries	Refresh	New Page*	New Visual	Ask A Question	Text box	From	From File	Switch	Manager Relationships	New Measure	Publish	8	Leila Etaati leila@radacad.com	
Clip	pboard			External d	lata				Insert		Custom	visuals	Themes	Relationships	Calculations	Share	Power B	I service	
ы												`	ISUALIZ	ATIONS			Account Switch a	settings	>
_														the late in the	In the last last	In the last	_		_

Figure 4-18. Signing in to a Power BI account

Then, in the Power BI Visualizations panel, click the three dots and select the Import from store option (Figure 4-19).

Figure 4-19. Importing visuals from the Power BI store

Next, you will see a page with the title "Power BI Custom Visuals." There are many categories listed here, such as filters, KPIs, Maps, Advanced Analytics, Time, Gauges, Infographics, and Data Visualizations (Figure 4-20).

Figure 4-20. Power BI Custom Visuals pane

As mentioned, Power BI Custom Visuals includes an Advanced Analytics category. By clicking it, you will see such advanced analytics as time series, associative rules, clustering, and more. I am going to use one of these custom visuals to forecast milk production.

The first step is to import a milk data set into Power BI Desktop. The data has two columns: date of milk production and value of the milk (Figure 4-21).

Figure 4-21. Milk production data

We must now import custom visuals from Power BI Custom Visuals, to forecast milk production (Figure 4-22).

Search D		Sugges	sted for you ${\sim}$
Category All Editor's Picks	أفعي	Ultimate Variance This Chart is perfect to compare and visualize variances in Finance (actual vs Budget, Forecast) *****	Add
(Pls Maps Advanced Analytics	~~~	Time Series Forecasting Chart Using exponential smoothing model to predict future values based on previously observed values ★ the test	Add
ime iauges nfographics Data Visualizations	ATTENA	Forecasting with ARIMA Predict future values based on historical data using Autoregressive Integrated Moving Avg (ARIMA)	Add
		VitaraCharts - MicroChart Compact visual representation of key metrics in various formats in a grid layout	Add

Figure 4-22. Advanced Analytics time series custom visual

After importing Custom Visuals, you will see that it has been added to the standard visual panel (Figure 4-23).

Figure 4-23. Forecasting a custom visual

Having imported the forecasting custom visual, we must now choose the date and value for the data field.

This custom visual uses an Exponential Smoothing algorithm for forecasting milk production over the next ten months (Figure 4-24).

Figure 4-24. Forecasting milk production

The forecasting chart shows in yellow the actual data related to the production of milk in the previous months, and the forecasting for the later ten months is in red.

The algorithm behind the scenes is not accessible, and we are only able to change the parameters (Figure 4-25).

Figure 4-25. Forecast milk production for the next ten months

Custom visuals in Power BI extend the possibility of having different charts. However, the number of custom visuals created by the Microsoft team is limited. To extend visualization capabilities, there is a way to create custom visuals by using R scripts. In the next section, I will explain the process of creating custom visuals.

Creating Custom Visuals

Some of the main Power BI standard visuals in Power BI Desktop are widely used. However, as mentioned in the previous section, it is possible to extend these with custom visuals. To access the custom visuals, you must click Market Place in Power BI Desktop. There are two ways to create custom visuals using Java scripts or R codes.

I will explain briefly the process of creating custom visuals by using R codes.

- 1. The first step is to install NodeJS from https://nodejs.org/.
- 2. Next, install Power BI visuals tools using the command prompt (Figure 4-26):

```
npm install -g powerbi-visuals-tools
```

npm install -g powerbi-visuals-tools

0:\	Users	\leila\Documents>npm install -g powerbi-visuals-tools
ipm	WAININ	rengine powerbi-visuals-package-valuatorgi.e.e. wanted: {"node":">=4.2.4"} (current: {"node":"0.12.2","npm":"2.
7.4	"})	
npm	WARN	<pre>engine typescript@2.1.5: wanted: {"node":">=4.2.0"} (current: {"node":"0.12.2","npm":"2.7.4"})</pre>
npm	WARN	<pre>engine gulp-debug@3.1.0: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})</pre>
npm	WARN	engine eslint@3.19.0: wanted: {"node":">=4"} (current: {"node":"0.12.2", "npm":"2.7.4"})
npm	WARN	engine stringify-object@3.2.0: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})
npm	WARN	deprecated node-uuid@1.4.8: Use uuid module instead
npm	WARN	deprecated tough-cookie@2.2.2: ReDoS vulnerability parsing Set-Cookie https://nodesecurity.io/advisories/130
npm	WARN	deprecated minimatch@2.0.10: Please update to minimatch 3.0.2 or higher to avoid a RegExp DoS issue
npm	WARN	deprecated minimatch@0.2.14: Please update to minimatch 3.0.2 or higher to avoid a RegExp DoS issue
npm	WARN	deprecated graceful-fs@1.2.3: graceful-fs v3.0.0 and before will fail on node releases >= v7.0. Please update 1
þg	racefu	ul-fs@^4.0.0 as soon as possible. Use 'npm ls graceful-fs' to find it in the tree.
npm	WARN	engine babel-eslint@7.2.3: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})
npm	WARN	engine strip-bom@3.0.0: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})
npm	WARN	engine esprima@3.1.3: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})
npm	WARN	engine esprima@3.1.3: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})
npm	WARN	<pre>engine string-width@2.1.0: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})</pre>
npm	WARN	engine strip-ansi@4.0.0: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})
npm	WARN	<pre>engine is-fullwidth-code-point@2.0.0: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})</pre>
npm	WARN	<pre>engine request@2.81.0: wanted: {"node":">= 4"} (current: {"node":"0.12.2","npm":"2.7.4"})</pre>
npm	WARN	engine ansi-regex@3.0.0: wanted: {"node":">=4"} (current: {"node":"0.12.2","npm":"2.7.4"})
hpm	WARN	engine har-validator@4 2 1: wanted: {"node":">=4"} (current: {"node":"0 12.2" "nom":"2 7 4"})

Figure 4-26. Installing Power BI custom visuals via the command prompt

3. After installing the Power BI custom visuals, to ensure that they are properly installed, we must run the pbiviz command. After running this command, the information about Power BI Custom Visual Tool will be shown in the command prompt console (Figure 4-27).

	,			
oms/-	+osyhdł	nyso/		
ym/	1	+oshd	dhys+/	
ym/			/+oyhde	dhyo+/
ym/				/osyhdho
ym/				Sm+
ym/			yddy	om+
ym/		shho	/mmmm/	om+
1	oys/	+mmmm	/mmmm/	om+
oso	ommmh	+mmmm	/mmmm/	om+
ymmmy	smmmh	+mmmm	/mmmm/	om+
ymmmy	smmmh	+mmmm	/mmmm/	om+
ymmmy	smmmh	+mmmm	/mmmm/	Om+
+dmd+	smmh	+mmmm	/mmmm/	OT +
	/hmdo	+mmmm	/mmmm/	/so+//ym/
		/dmmb	/mmmm/	(acybby/

PowerBI Custom Visual Tool

Usage: pbiviz [options] [command]

```
Commands:
```

```
      new [name]
      Create a new visual

      info
      Display info about the current visual

      start
      Start the current visual into a pbiviz file

      package
      Package the current visual into a pbiviz file

      validate [path]
      Validate pbiviz file for submission

      update [version]
      Updates the api definitions and schemas in the current visual. Changes the version if specified

      help [cmd]
      display help for [cmd]

      Options:
      Description
```

```
-h, --help output usage information
-V, --version output the version number
--install-cert Install localhost certificate
```

```
C:\Users\leila\Documents>
```

Figure 4-27. Confirming Power BI custom visuals

4. Next, we must create an rhtml template. To create a template folder, we first must create an empty folder in the C drive. After creating a new folder with the name CustomVisual in the C folder, then, using the command prompt, we must change the directory to C:\ CustomVisual. From the command prompt, we run the following code:

pbiviz new sampleRHTMLVisual -t rhtml

By running the code, a folder with the name sampleRHTMLVisual will be created in CustomVisual folder. In this folder, there is an R file with the name script.r (Figure 4-28).

Figure 4-28. A sample folder for custom visuals

This is a folder that provides a template with which to create other R custom visuals. Check the file script. R inside the folder (Figure 4-29).

Figure 4-29. R codes inside the script file

Now, as you can see in the code in Figure 4-29, we require two libraries, Plotly and ggplot2, to draw a simple ggplot2 chart with Plotly.

Here, the data set has been hard-coded for iris, which is an open source data set in R. The plot gets the data from the iris data set and shows the petal and the length and species of the flower. Then we use the ggplotly function to show the data.

As a result, we have an R script. Now I first will create a package from this, then I will write my codes to create different charts. Hence, I return to the command prompt and type pbiviz package in the folder (Figure 4-30).

Figure 4-30. Creating a custom visual in the command prompt

5. Open the custom visual in the Power BI file. To do this, we must select the Import from file option in the Visualizations standard panel (Figure 4-31).

Figure 4-31. Importing a custom visual into Power BI

6. After choosing the Import from file option, we must browse the sampleRHTMLVisual folder and look for the dist folder. In this folder, there is a pbiviz file with the folder name. We must import this file into the Power BI Visualizations panel (Figure 4-32).

Figure 4-32. Imported custom visual

7. The last step is to drag and drop the custom visual into the Power BI report area (Figure 4-33). The visual is not related to the specific data.

Figure 4-33. Custom visual with R code

We can change the R code and create a custom visual with a different name and icon. In another example, I am going to create a table chart. (I already explained the R codes for this earlier in the chapter.)

First, we must return to the sampleRHTMLVisual folder we have from the sample Power BI package, then copy the folder, to create a new custom visual. We change the name of the folder to TableChart. There is a pbiviz file here that contains information about the name of the custom visual, the icon, and so forth. We must change the pbiviz.json files content.

- 1. Change the name of the custom visual to "TableChart."
- 2. Create an icon for a custom visual with the dimension 20×20 and put it into the assets folder.
- 3. Change the address of the icon in the JSON file (Figure 4-34).

```
Editing
1 . . .
      . . . 1 . . . 2 . . . 3 . . . 4 . . . 5 . . . 6 . . . 7 . . . 8 . . . 9 . . . 10. . . . 11. . . . 12. . . . 13. . . . 14.
                        TableChart
        "visual": {
          "name": "sampleRHTMLVisual",
          "displayName": "sampleRHTMLVisual", TableChart
TableChart "guid":
     "sampleRHTMLVisualFC0A875061A74051BC7B70D7B91B82F4",
          "visualClassName": "Visual",
          "version": "1.0.0",
          "description": "",
          "supportUrl": "",
          "gitHubUrl": ""
        },
        "apiVersion": "1.9.0",
        "author": {
          "name": "",
          "email": ""
                                    we need to createn incon and put it in the assets fodler
        },
        "assets": {
          "icon": ["assets/icon.png"
        },
        "externalJS": [
          "node modules/powerbi-visuals-utils-
     dataviewutils/lib/index.js"
       ],
        "style": "style/visual.less",
        "capabilities": "capabilities.json",
        "dependencies": "dependencies.json",
        "stringResources": []
     3
```

Figure 4-34. JSON file name must be changed

4. After changing the name and creating a new icon for the custom visual, we must save the JSON file and put the created icon in the assets folder.
CHAPTER 4 R VISUALIZATION IN POWER BI

5. Next, we must change the R scripts in the scripts. R file. In the actual code, section, replace the existing code with the following one.

```
if(ncol(Values)==5)
{
    names(Values)[1]<-paste("X")
    names(Values)[2]<-paste("Y")
    names(Values)[3]<-paste("Z")
    names(Values)[4]<-paste("W")
    names(Values)[5]<-paste("M")
    g=ggplot(Values,aes(x=X,y=Y,color=Z))+geom_jitter()+facet_
    grid( M ~ W,scales = "free")
  }
</pre>
```

- 6. Save the file.
- 7. We must now return to the command prompt environment and change the directory to the sampleRHTMLVisual folder, by typing pbiviz package (Figure 4-35).

Figure 4-35. pbiviz command in the command prompt

8. After running the code, we should be able to see a new pbiviz file with name TableChart in the dist folder (Figure 4-36).

Figure 4-36. Custom visual for a table chart

62

9. Finally, we must import the created custom visual into Power BI Desktop and pass the data fields to the visual.

As mentioned, we must change the code, as follows:

```
if(ncol(Values)==5)
{
    names(Values)[1]<-paste("X")
    names(Values)[2]<-paste("Y")
    names(Values)[3]<-paste("Z")
    names(Values)[4]<-paste("W")
    names(Values)[5]<-paste("M")
    g=ggplot(Values,aes(x=X,y=Y,color=Z))+geom_jitter()+facet_grid
    ( M ~ W,scales = "free")
}</pre>
```

The main data set is Values. The first item in the Values data set relates to the x axis, the second to the y axis, and so forth.

So, in Power BI Desktop, be careful about the axis you specify in the R code.

As you can see in Figure 4-37, the imported visual has a name and icon. In addition, in the data fields, we have Values as the main data set, and the sequence of the variable we put there is as in the code we specify for each of them. For example, the cty field will be located on the x axis, hwy on the y axis (the second value), and so on.

Figure 4-37. Custom visual with a specific R code, name, and icon

It is possible to change the Value fields to have separate x, y, legend, row, and column data fields. This can be done from capabilities.JSON. Additional information on how to change the data fields and how to add more settings is accessible via other Microsoft sources and the RADACAD web site.

Summary

This chapter explained how to set up Power BI Desktop to write R code. It also described how to draw a simple chart using R packages, such as ggplot2 and Plotly, inside Power BI. A very brief explanation of the available custom visuals for advanced analytics in Power BI was provided. Finally, the process of how we can create R custom visuals by writing R and JSON scripts was addressed briefly. In the next chapter, the main concepts for businesses to understand before initiating machine learning will be explained.

Reference

 Dr. Abela, The Extreme Presentation [™] Method: Extremely effective communication of complex information, "Choosing a Good Chart," http://extremepresentation.typepad.com/ blog/2006/09/choosing_a_good.html, September 6, 2006.

PART II

Machine Learning with R and Power BI

Today, there is huge interest in using machine learning in various industries. Consider Power BI as a collaborative, self-service tool that supports the entire value chain for descriptive analytics (data ingestion, transformation, modeling, and visualization). In addition to these functionalities, Power BI provides really good tools for performing advanced analytics and machine learning. Chapters 5–8 focus mainly on the principal machine learning cycle inside Power BI. In Chapter 5, concepts related to what business problem we are going to solve by leveraging machine learning will be discussed. Chapter 6 focuses on the possibility of data wrangling (data cleaning) inside Power BI. Chapters 7 and 8 focus on the machine learning algorithm for predictive and descriptive analysis.

CHAPTER 5

Business Understanding

Business understanding is the main and first step in undertaking machine learning in any platform or language. Not all business problems can be addressed by machine learning approaches. There are some basic categories into which machine learning falls, including supervised learning and unsupervised learning.

Supervised learning is when both the input and output variables are identified. Unsupervised learning is when there is only input data, without corresponding variables.

Another machine learning classification is made up of three major groups:

- Descriptive analysis
- Predictive analysis
- Prescriptive analysis

Descriptive analysis uses mainly unsupervised learning approaches for summarizing, classifying, and extracting rules to answer something that has happened. Predictive analysis is about machine learning approaches for forecasting based on past data. Finally, prescriptive analysis uses optimization and recommendation algorithms to maximize expected outcomes.

However, there are other analytics, such as diagnosis analytics, that also help to provide a better understanding of a business. According to Gartner [1], these four analytics approaches help decision makers in an organization to make better decisions.

Each of these approaches (Figure 5-1) provides some values for a company, and implementing them requires some level of skills. Descriptive analysis is the simplest approach. It does not demand a high level of skill and can be done with different tools. Diagnosis and discovery analysis provides more insight into data and requires more skill.

CHAPTER 5 BUSINESS UNDERSTANDING

Figure 5-1. Analysis and information [1]

As you can see in Figure 5-2, the next two analyses, predictive and prescriptive, provide more insight into data and a better understanding of what may happen in the future, in addition to offering some prescriptive advice. These analyses bring more value for a company than the other three, and they require a greater degree of skill.

Figure 5-2. Advanced analytics [1]

In this chapter, I will explain the main concepts of each type of analysis and what different approaches we can take with each.

Descriptive Analysis

Descriptive analysis is the main approach with which to understand data and existing patterns. Descriptive analysis can be used to understand the structure of data, existing rules, or patterns in data, and so forth. Descriptive analysis can be grouped into three main categories.

- Operational reports
- Statistical analysis
- Data mining approaches

Operation reports are mainly traditional reports focused on analysis of past data. These reports are used principally to judge the performance of companies. Figure 5-3 shows such a report, illustrating the average total hourly rate of labor in different industries and income groups.

Figure 5-3. Average total hourly report using Power BI

CHAPTER 5 BUSINESS UNDERSTANDING

This report provides a brief description of the hourly rate of workers in different industries. Other types of reports relate statistical facts about data.

Statistical analysis is another way of doing descriptive analysis, which gives us a better understanding of the statistical behavior of data. There are various kinds of statistical analysis, such as univariate analysis, in which each column of data is considered separately, such as a summary of data and data distribution (Figure 5-4). As you can see from the preceding figure, the average hourly rate of an employee is presented as a histogram, to show the distribution. In addition, we can see the minimum, maximum, and average distribution. The median of this data is plotted in a box or a table format. The box-plot chart shows that the data has been distributed smoothly at the median (the middle point), which is the same as the data average.

Figure 5-4. Statistical analysis—univariate analysis

Other forms of statistical analysis are concerned with the bivariate correlation and regression between two different data columns.

The other one is about finding the rules, natural cluster of data, and existing pattern, which can be done by data mining approaches (explained briefly in Chapter 8). In Chapter 8, I explain the code and concept of some algorithms aimed at descriptive analysis, such as clustering, market basket analysis, and decision trees.

Predictive Analysis

Another type of analysis related to machine learning is predictive analysis. Predictive analysis is about supervised learning, meaning that we want to learn from past data in order to predict future trends. Predictive analysis forecasts the future based on some

probability. There is no way to predict the future with 100% probability. Predictive analysis is based mainly on the probability of the statistics. We can classify predictive analysis into two main approaches:

- Regression
- Classification

Regression approaches predict a value, for example, sales for the next three months, or the number of web site followers over the next three years.

Classification analysis is concerned with making predictions about a group. Classification predicts which person or thing belongs to which category or categories. For example, in analyzing a customer churn problem, classification analysis can predict whether a new customer belongs to a group that he or she may leave or remain in.

For both regression and classification approaches, there are many associated algorithms to help us. In Chapter 7, some of these algorithms will been explored.

For regression analysis, there are several related algorithms, such as linear regression, logistic regression, polynomial regression, stepwise regression, ridge regression, lasso regression, and elastic net regression. In addition, there are some other techniques, such as neural network, decision tree, and more (Figure 5-5).

Figure 5-5. Regression analysis [2]

For classification analysis, there are also many related algorithms, including supportvector machine (SVM), decision tree, and k-nearest neighbors (KNN) (see Chapter 7). An example of classification analysis using Power BI is presented in Chapter 7.

CHAPTER 5 BUSINESS UNDERSTANDING

Time series forecasting is a subdomain of predictive analysis and has some similarity to regression algorithms. Time series analysis forecast values are based on time. Time series data may relate to trends and/or seasonality (Figure 5-6).

Figure 5-6. Time series forecasting of milk production

Prescriptive Analysis

Prescriptive analysis is about the recommendation system. A recommendation system predicts the rating or preference users express for an item. Recommendation systems can be categorized into two main classes:

 Content-based systems: These find similarities between items. Content-based recommendation systems analyze item descriptions and recommend those having greater similarity to a user's interests [3]. For example, if we want to recommend new movies to a customer, content-based filtering checks the similarity of the new movies offered with those the customer has already watched (Figure 5-7).

CHAPTER 5 BUSINESS UNDERSTANDING

Figure 5-7. Content-based filtering

• *Collaborative filtering*: This is used to recommend items, based on how similar users liked the items (Figure 5-8).

Figure 5-8. Collaborative filtering [4]

Business Understanding

As mentioned, business understanding is about identifying in what categories we can fit the business problem. It is important that identifying our problem fit into a particular category, such as predictive, descriptive, or prescriptive analysis. Business understanding requires interaction with the business experts and the business stakeholders. Moreover, the business problem we are going to solve can affect the algorithm selection process, data collection, and data cleaning. Chapters 6–8 provide some examples of machine learning for different business problems.

Summary

This chapter provided a brief introduction to the different data analytics and machine learning approaches, including descriptive, predictive, and prescriptive analytics. Power BI is a comprehensive tool for data-driven analysis that provides an infrustructure for doing any advanced analytics. In the next chapter, I will discuss how to use R in Power BI for data wrangling.

References

- [1] Michael Corcoran, "The Five Types Of Analytics. Michael Corcoran Sr Vice President &CMO", https://docplayer.net/ 985643-The-five-types-of-analytics-michael-corcoran-srvice-president-cmo.html.
- [2] Brian Lee Yung Rowe, "R for Quants, Part II (A)," Cartesian Faith, https://cartesianfaith.com/2012/02/16/r-for-quants-partii-a/, February 2012.
- [3] Pazzani M. J., Billsus D. "Content-based Recommendation Systems." In *The Adaptive Web. Lecture Notes in Computer Science*, vol 4321. Berlin, Heidelberg: Springer, 2007. Available online at www.fxpal.com/publications/FXPAL-PR-06-383.pdf.
- [4] Manojit Nandi, "Recommender Systems through Collaborative Filtering," Domino, https://blog.dominodatalab.com/ recommender-systems-collaborative-filtering/, July 14, 2017.

CHAPTER 6

Data Wrangling for Predictive Analysis

In the machine learning process, after business understanding, the next step is collecting the right data, feature selection, and data wrangling. Data wrangling includes data cleaning, joining different data sources, quality control, data integration, data transformation, and data reduction processes (Figure 6-1).

Figure 6-1. Machine learning process

In this chapter, I am going to show you how to perform data cleaning inside the Power BI Desktop Query Editor. A brief introduction to Power Query Editor will be provided, including how to import data from different resources, how to do data cleaning with Power Query Editor, and how to write R scripts inside it.

Power Query Editor

Power Query Editor is a data transformation tool for Power BI. It is a comprehensive tool for getting data, data cleaning, data modeling, and writing M, R, or Python scripts. To access the Power Query Editor in Power BI, you must click the Edit Queries icon (Figure 6-2).

Figure 6-2. Access Power Query Editor

Power Query Editor has different options for data transformation. You can get data from such different resources as Excel, CSV, XML, JSON, Folder, SharePoint, SQL Server, SAP, MySQL, Oracle, Azure, Azure Blob, Azure SQL, Azure HDInsight, Google Analytics, Dynamics, Facebook, MailChimp, and more (Figure 6-3).

Figure 6-3. Data resources available in Power Query Editor

Power Query Editor has different components. The Home tab has a component for getting data from different resources, performing some simple data transformation, and an advanced editor for writing M language. Using Power Query, we are able to view in a small window the steps applied for data transformation (Figure 6-4).

1 United - Gar	ry faller	Line In	- (2						-	a ×
Cone A Apply * Secure * Secure * Diase * New Coney	Enter Data Data Source Data Sources	Manage Pasarseten * Pasarseten	Advanced Editor	Onese Renaes Calares - Colores - Aue	Galt Spit States	hole Number * 📑 Many Row as insaders * 🧮 Appe stars 🖬 Conti Co	Oueries • of Dueries • ore files status					
Queries [1]			X V 6	Table.TransformColumnTypes(#"Pronoted	Weaters",{{"ld", Inti4."	Type), ("diagnosis", t	pe text), ("radi	us_man", type number),	("texture_mean", type	næbir),	QUERY SETTINGS	
🖬 wiic,bc,data	3		1 87125802 6 2 8910251 8 3 885524 6 4 844277 8 5 845244 6 6 805334 6	dagaad) 2 1.2 milita_mass 2 13 22.3 28.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21	Erature_mean 12 12 peda 12.39 18.39 18.49 13.39 13.21 13.21 13.44	12 and 13 and 14 and	464.1 346.4 173.2 184.8 7711.8 400.7	0.5639 0.5639 0.5679 0.5677 0.5776 0.57569 0.67569 0.67569	6.06042 6.05042 6.1547 0.07504 6.1536 0.06554 0.07523	20172_0228 2 12 point 6.03987 8.05887 8.05885 8.05885 8.05885 8.05885 8.05885 8.05885	Merrer Menne Minne Minne Minne APPLIED STEPS Source	
			7 825292 8 8 87782 M 9 842981 8 10 8427 8 11 83481 M	12.51 13.82 10.02 12.09 20.39 22.25	23.97 23.77 39.29 34.96 21.34 21.34	N32 91.59 67.41 77.49 117.8 79.27	423.3 397.8 136.1 373.9 1375 440.3	0.0001 0.1329 0.09969 0.3055 0.3065	6.3623 6.3768 6.06578 6.3664 6.3664	0.1117 0.1558 0.02995 0.05887 0.2189 0.01889	Noncred Hasters	

Figure 6-4. Home tab in Power Query

Another component in Power Query is the Transformation tab. It provides some of the tools required for data transformation, such as changing date and time columns, statistic transformations, and so forth (Figure 6-5).

Figure 6-5. Power Query Transformation

In addition, there is a component named Run R scripts that allows users to write related R codes inside Power Query. In the next section, I am going to show you how we can do some data transformation with the aim of machine learning and data analysis, using Power Query.

Data Wrangling in Power Query

Before doing machine learning, we must go through two main processes: data preparation and data wrangling. Data preparation involves collecting data from resources, integrating it, and loading it into one resource, similar to the ETL (extract, transform, and load) process.

Data wrangling is loading the data and applying the data cleaning, formatting, and integration in the application layer.

The Python language includes some popular data wrangling processes, such as reshaping data, selecting data, and merging data.

Reshaping Data

One of the main approaches for reshaping data is pivoting. This involves converting column data to the column name, as illustrated in Figure 6-6.

Date	Туре	Value
2 nd March 2018	Α	12.36
3 rd March 2018	Α	23.69
2 nd March 2018	В	25.36
2 nd March 2018	С	17.28
3 rd March 2018	В	19.2
	1	

Туре	Α	В	С
Date			
2 nd March	12.36	NaN	17.28
3 rd March	23.69	19.2	NaN

Figure 6-6. Pivoting data

The related code to create data in Python (Figure 6-7) is

```
data=[["2nd March 2018","A",12.36], ["3rd March 2018","A",23.69],
["2nd March 2018","B",25.36], ["2nd March 2018","C",17.28],
["3rd March 2018","B",19.2]]
using package pandas
import pandas as pd
df=pd.DataFrame(data)
pivot table
df=pd.pivot_table(df,index=[df[0]],columns=df[1])
```

2 1 A B C 0 2nd March 2018 12.36 25.36 17.28 3rd March 2018 23.69 19.20 NaN >>>

Figure 6-7. Pivoting using Python code

In R, we can do this via the following code:

```
install.packages("tidyr")
date=c("2nd March 2018","2nd March 2018","2nd March 2018","2nd March 2018","2nd March 2018")
Type=c("A","A","B","C","B")
index=c(0,1,2,3,4)
Value=c(12.36,23.69,25.36,17.28,19.2)
df=data.frame(index,date,Type,Value)
library("tidyr")
spread(df,Type,Value)
and the result is the same (a bit different out put)
```

Now we are going to see how we can launch this process in Power Query without writing any code. To pivot data using Power Query, we must enter data, by using the Enter Data option (Figure 6-8).

Figure 6-8. Entering data manually

By clicking Enter Data, we are able to put data in Power Query manually (Figure 6-9).

Figure 6-9. Creating a data table

We have the same data as we have in Python (Figure 6-10).

Date	- A ^B _C Type	- 1.2 Value -		
2nd March 2018	A	12.36		
3rd March 2018	A	23.69		
2nd March 2018	в	25.36		
2nd March 2018	с	17.28		
3rd March 2018	8	19.2		

Figure 6-10. Data set in Power BI

Now we just click the Type column (Figure 6-11). Then we click Pivot Column under the Transform tab.

Ic Home	Transform Ad	id Column View	Help			
up Use First Row y as Headers • Tabl	Count Rows	Data Type: Text • Detect Data Type Rename	t 2 Replace Values ▼ Fill ▪ Pivot Column Any Column	Unpivot Columns • Move • Convert to List	Spit Column Format	Statistics Standard Scientific Toforn Number Column
			N 1 1			
ueries [1]			< × √ Jx	= Table.Transfe	ormColumnTypes(Source,{{"Date", "	type text), ("Type", type text),
Pivotexample			< × √ Jx ■- ∧ ⁰ c Date	 Table. Transfe Ac Type 	12 Value	type text), ("Type", type text),
Jeries [1] Pivotexample			 Jx A⁸_C Date 2nd March 2018 	Table.Transformer Active Active Active	12 Value 12.36	type text), ("Type", type text),
Pivotexample			 A⁶c Date 1 2nd March 2018 2 3rd March 2018 	* Table, Transfo * A Type 8 A A	12 Value 12.36 23.69	type text), ("Type", type text),
Pivotexample			 A[®]_C Date 1 2nd March 2018 2 3rd March 2018 3 2nd March 2018 	Table.Transformer A Type A A A B B	<pre>rmColumnTypes(Source, {{"Date", 12 Value 1 12.36 23.69 25.36</pre>	type text), ("Type", type text),
Pivotexample			 Jx A⁶_C Date 2nd March 2018 3rd March 2018 2nd March 2018 4nd March 2018 	Table.Transformer A Type A A B B B C	orr#Columitypes(Source, {{"Date", 12.36 23.69 25.36 17.28	<pre>type text), ("type", type text),</pre>

Figure 6-11. Click the Type column and pivot option

Next, we specify which column we are going to put a value and type to (Figure 6-12).

Any Column		lext Column	Number Coli	umn Date & Time Column	h Structured Column	Scripts
× v fx ·	Table.Tran	sformColumnTypes(Source,{{"Date	", type text}, {"Type", typ	e text}, {"Value", type number}})		
M. A ^B _C Date	Туре	✓ 1.2 Value				
1 2nd March 2018	A	12.36				
2 3rd March 2018	A	23.69				
3 2nd March 2018	в	25.36				
4 2nd March 2018	c	17.28				
5 3rd March 2018	В	19.2				
		Pivot Column Use the names in colum Values Column ③ Date Date Value Learn more about Pixet @	nn "Type" to create new column	15.	×	
				ok	Cancel	

Figure 6-12. Specifying type and values

The result of pivoting is shown in Figure 6-13.

	Any Column			Text Column			
ľ	$\times \checkmark f_x$	= Table.Pivot(#"Changed Type",	, List.Distinc	t(#"Changed Type"[Typ		
ſ	■ ₊ A ^B _C Date	▼ 1.2 A ▼	1.2 B 🛛 🔽 1.2	c 👻			
I	1 2nd March 2018	12.36	25.36	17.28			
L	2 3rd March 2018	null	19.2	null			
I	3 3rd March 2018	23.69	null	null			

Figure 6-13. Pivot table

There are other examples of reshaping, such as unpivoting, melting, and iteration, that all can be done in Power Query. In addition, the process of selecting and putting a condition to check data can be done quite easily in Power Query.

Selecting Data

For selecting a value with a condition in Python, we use the where function, as follows:

```
df.where(df[2]>17)
```

In the df data set, we are going to select values that are greater than 17 (Figure 6-14).

>>	<pre>>>> df.where(df[2]>17)</pre>											
			0	1	2							
0			NaN	NaN	NaN							
1	3rd	March	2018	А	23.69							
2	2nd	March	2018	В	25.36							
3	2nd	March	2018	C	17.28							
4	3rd	March	2018	В	19.20							

Figure 6-14. Selecting values using Python

In Power Query, you must click the column you are going to filter, then choose the filter option, number of filters, and Greater Than Or Equal To option (Figure 6-15).

Figure 6-15. Power Query select values

Then, in Power Query, simply filter the column to 17 (Figure 6-16).

Figure 6-16. Power Query filter value

Merging Data

Another popular form of data preparation is merging data, for example, joining two tables, possibly from different data sources. In Python, if we want to do this, there is a merge function that we can use to connect two different data sets. For example, consider the following data set:

```
data1=[["a",11],["b",1],["c",99]]
data2=[["a",20],["b",0],["d",21]]
data1=pd.DataFrame(data1)
data1.columns=["Type","Value"]
data2.columns=["Type","Value"]
data2=pd.DataFrame(data2)
merg=pd.merge(data1,data2,how='left',on="Type")
```

As you can see in the preceding code, we can specify the join type and join column. We can change the how attribute to left, right, inner, and outer (Figure 6-17).

>	>>> merg										
	Туре	Value_x	Value_y								
0	a	11	20.0								
1	b	1	0.0								
2	c	99	NaN								
>	>>										

Figure 6-17. Using Python to merge data

84

The same process can be performed in Power Query. I have created two different data sets, Data1 and Data2, in Power Query (Figure 6-18).

0.02	Home	Transform	Add Column	View H	elp				
Close & Apply * Close	New Source •	Recent Sources - Data	Data source settings Data Sources	Manage Parameters • Parameters	Refresh Preview - Manage - Query	Choose Remove Columns * Columns * Manage Columns	Keep Remove Rows * Rows * Reduce Rows Sort	Split Grou	Data Type: Toxt - Merge Cueres - 2 Data Type: Toxt - Merge Cueres - 2 Data Type: Toxt - 2 Merge This Guery with another approximation file. Combine
Querie	s [4]			<	$\times \sqrt{f_X}$ = Table.	TransformColumnType	s(Source,{{"Type", t	type text), ("	Value", Int64.Type}})
III Pivo	texample texample (1 a	21 11			
III Pivo						and the second se			

Figure 6-18. Creating a data set in Power Query

After creating a data set, you must click the Merge column, to merge Data1 with Data2 (Figure 6-18).

In the Merge window, we can specify which column we are going to merge, based on and what type of merge we are interested in (Figure 6-19).

	3-	
Select	a table and matching columns to create a merged table.	
Data1		Da
Turne	2 Jahren	
Type	11	
b	1	
c	99	
Data2		D
Avpe	Value	
-	20	
b	0	
d	21	
Join Ki	d	
Left C	uter (all from first, matching from second) 🔹	
Left C	uter (all from first, matching from second)	
Right	Duter (all from second, matching from first)	OK Cancel
Incer	only matching rough	
Left A	ti (rows only in first)	
Right	Anti (rows only in second)	

Figure 6-19. Merging data based on the Type column and Left Outer join

After merging, we must specify what columns we want to show to users (Figure 6-20).

Figure 6-20. Column selection

Then the output will be there, and we will be able to see the results (Figure 6-21).

×	√ fx	= Table.Exp	pandTableColumn(#"M	lerged Queri
	д ^В с Туре	✓ 1 ² ₃ Value	→ 1 ² 3 Data2.Value	~
1	а		11	20
2	b		1	0
3	c		99	null

Figure 6-21. Result of merging Data1 and Data2

These are some basic data transformations that you can do in Power Query. There are more complex processes that you can do using the Power Query menu or M or R languages.

Data Transformation Using R Scripts

Not all data transformation is possible or easy using existing menus in Power Query. To improve our ability to transform data, we can use R inside Power Query. There is a data set about breast cancer in women available from the Kaggle web site (https://www.kaggle.com/lbronchal/breast-cancer-dataset-analysis). This data set is made up of 569 rows and 32 columns. The first column is patient ID, and the second is the diagnosis. The rest of the columns relate to the cancer cell's specification.

Columns 2 to 32 have some numeric values that are not within the same range. For example, the "radius_mean" column has values from 6.9 to 22, while the "compactness_ mean" column has values from 0.019 to 0.34. There is another data preparation process, named normalization, to bring data into the same scale. This process is good for some algorithms, such as lKNN; however, it is not always recommended (see Figure 6-22).

iose & New Recent Enter Data source pply * Source * Source * Data settings F	Manage Refresh Parameters • Preview • 🛄 Manage •	Choose Remove Keep Remove Columns * Columns * Rows * Rows *	Column+ By	Replace Values	Combine Files			
Inter Query Data Sources	Parameters Query	Manage Columns Reduce Rows	201	lanstore:	Contrine			
ueries [5]	$\wedge \vee j_{\hat{x}}$ = table.	transvorecosumitypes (a promoted nea	cers , ((12 , Intes.))	pe), ('diagnosis', '	type text), (Pacius	(mean', type sumper),	(texture_mean , type)	under),
Pivotexample	Ha AZ diagnos	 12 radius_mean 12 tests 	re_mean • 12 perime	ter_mean • 12 area	• 12 snoo	threst mean * 12 comp	actress_mean * 12 conci	wity_mean • 12 point
Pvotexample (2)	01237800 U	64.74	14.07	10.07	446.4	0.0000	0.00004	0.000007
Deal	2 2700001 8	224	14.90	10.43	249.4	0.05688	0.1247	0.00387
	3 90320 6	11.04	10.00	10.52	3/3.2	0.1077	0.07004	0.00040
				14	201.0	a charter	0.2278	0.04623
wsc_bc_cata			10.04	74.5	455.7	0.07903	0.00504	0.00000
	200317	11.57	12.04	74.2	402.7	0.00340	0.07722	0103483
	NUMBER OF		20.99	14.54	100.0	o coves	0.0000	01112
	8 8/800 M.	22.82	4.0	91.50	297.4	0.3223	80/1.0	0.1228
	35,2969 E	20.49	11.00	77.41	172.0	010089	0.06578	0.00995
	1952/ E	11.06	19.00	72.49	010.9	A 1023	0.00057	0.05397
	9945 4	2058	12.00	137.8	1120	0.1085	0.1004	0.2188
	12 8/13/00 0	110	17.94	10.21	400.3	0.00004	0.000/2	0.00080
	13 9218455 E	23.24	20.74	83.58	376.9	0.088/5	0.1089	0 1089
	14 807810 8	23 05	19.51	82.63	3272	0.0808	0.03789	0.000092
	15 PILLING M	29.59	0	127.7	1191	0.3002	0.096/1	0.1633
	10 925277 8	14.59	22.68	98.59	8571	0.08473	0.155	0 1029
	17 AL/32/ 6	B74	11.90	362	/11/	0.02462	0.00462	0.07135
	18 #9511507 8	12.67	17.5	81.25	489.9	0.1028	0.07664	0.05195
	19 89263202 M	20.09	23.85	194.7	1247	0.109	0.1838	0.2283
	20 856/14 8	12.19	13.29	79.08	455.8	0.1066	0.09509	0.02855
	21 874373 6	11.71	17.19	74.66	420.3	0.09774	0.06343	0.03809
	Z2 919612 B	11.69	24.44	76.37	406.4	0.3258	0.1552	0.04515
	23 904971 B	10.94	18.59	70.39	370	0.1004	0.0746	0.04944
	24 866158 0	25.1	36.39	99.58	678.5	0.115	0.1807	0.1138
	25 864292 0	10.51	20.19	68.64	334.2	0.1122	0.1303	0.06476
	26 859988 M	25.8	15.79	90,43	584.1	0.1007	0.128	0.07789
	27 862009 B	25.45	28.5	85.6	\$55.1	0.1022	0.08165	0.03974
	23 852978 M	25.3	25,27	102.4	732.4	0.1082	0.1697	0 1683
	29 898145 8	9 606	16.84	61.64	280.5	0.0848.2	0.09228	0.08422
	30 9010877 B	23.4	16.95	85.48	552.4	0.07937	0.05656	0.02181
	31 891548 0	11.05	11.64	#2.71	\$30.6	0.06352	0.01735	0.004559
	32 868202 M	12.77	22.47	81.72	506.3	0.09055	0.05761	0.04711
	33 STITESTE M	27.6	25.88	119	987.5	0.09289	0.2004	0.2136
	34 905501 b	12.27	17.92	78.41	466.1	0.06685	0.06526	0.03211
	35 915940 8	24.58	21.66	94.29	658.8	0.09832	0.08928	0.08222
	36 3013394 B	23.66	15.15	88.27	580.6	0.08268	0.07548	0.04249
	37 #59575 M	28.94	21.81	123.6	1130	0.09009	0.1029	0.108
	33 859475 B	11.9	14.65	78.13	452.8	0.1152	0.1296	0.0571

Figure 6-22. Data set related to breast cancer in women

Normalization

Normalizing data means bringing it within a specific range, such as 0 to 1. I am going to use a formula for normalizing names, following a "MinMax" approach. In this example, I will bring the data from all the columns in the cancer data set into the range of 0 to 1, except the patient ID and diagnosis columns (which consist of text).

First, for each column, we must find the minimum and maximum value. For each value, we must calculate the formula, as follows:

Normalize value =
$$\left(\frac{\min(x) - x}{\max(x) - \min(x)}\right)$$

We can apply this transformation to data, using the R language in Power Query. In Power Query, there is an option for writing R code: Run R Script (Figure 6-23).

pivot Columns - ve - wert to List	Split Column - Format SPart	ge Columns XO act * ste * *	Standard Scientific	ponometry - unding + ormation - Date	Time Column Stru	Expand Aggregate Extract Valu	Run R es Script mn Scripts	0	
.TransformColu	mnTypes(#"Promoted Hea	ders",{{"id", Int64.	.Type), ("diagnosis",	type text), ("radi	us_mean", type num	ber), ("t	exture_mean", ty	pe number),	
is 12 g	adius mean 💌 12 texts	are mean 12 peri	imeter mean 12 are	na mena 12 sms	othness mean	compacto	ess mean - 12	concavity mean 12	points a
	12.52	12.59	78.85	464.1	0.1028		0.06981	0.03987	
	10.6	18.95	69.28	346.4	0.09688		0.1147	0.06387	
	11.04	16.83	70.92	373.2	0.1077		0.07804	0.03046	
	11.28	13.39	73	384.8	0.1164		0.1136	0.04635	
	15.19	15.21	97.65	711.8	0.07963		0.05934	0.03395	
						× I	0.07722	0.05485	
	Run R Script						0.1021	0.1112	
	Run R Script						0.1768	0.1558	
	Type or paste an R scri	pt in the editor below t		0.08578	0.02995				
	Carlos			0.09097	0.05397				
	Script				0.1544	0.2188			
	# 'dataset' holds t	ne input data for tr			0.06679	0.03885			
					0.1089	0.1085			
							0.03789	0.000692	
							0.09871	0.1655	
					0		0.133	0.1029	
							0.09462	0.07155	
							0.07554	0.03193	
							0.1838	0.2285	
	The Disease from the			210			0.09509	0.02855	
	The K nome directory is a	currently set to chprogra	m files microsofty openy	-3.4.0%			0.05141	0.03809	
	Go to Options and Settin	igs to change which insta	seation you want to run, ar	tor more configuration	in opeions.		0.1552	0.04515	
							0.0746	0.04944	
					OK Cancel		0.1807	0.1138	
							0.1303	0.06476	
	13.8	15.79	90.43	584.1	0.1007		0.128	0.07789	
	13.45	18.3	86.6	555.1	0.1022		0.08165	0.03974	
	15.3	25.27	102.4	732.4	0.1082		0.1597	0.1683	
	9.606	16.84	61.64	280.5	0.08481		0.09228	0.08422	
	13.4	16.95	85.48	552.4	0.07937		0.05696	0.02181	
	13.05	15.84	82.71	530.6	0.08352		0.03735	0.004559	

Figure 6-23. Running R scripts in Power Query

The Run R Script editor is not very advanced. The data you want to transform is stored under variable name dataset.

Hence, we are going to use the dataset variable and the formula for normalizing the data.

In R, I will write a function to put the MinMax formula there.

```
Normalize<- function (x)
{
   return ((x-min(x))/(max(x)-min(x)))
}</pre>
```

Then I must apply this function to the data set. For this, I must use another function in R, named lapply.

The lapply function gets the data set and the name of the normalized function. It then applies the function of the data set. In my example, you do not have to apply MinMax normalization on the first and second column, so you just use dataset[3:32] instead of dataset.

NormalizedData<-as.data.frame(lapply(dataset[3:32],Normalize))</pre>

As you can see in Figure 6-24, after writing the code, we need to press the OK button. Power Query will apply the normalization transformation to the data.

Figure 6-24. R Script editor

After running the codes, the result of the data transformation is shown in Figure 6-25. You can see the applied steps in Run R Script.

s mean 🔽 1.2 t	exture mean 12 12 pe	rimeter mean 🔽 1.2	area mean T 12 on	oothness mean 2 12 con	noactness mean * 12 of	ancawity mean 12	soints mean 🖬 1.2 s	vmmetry mean 💌 1/2	
0.252685882	0.090632398	0.242277659	0.155991516	0.452920466	0.154683782	0.09341512	0.18589662	0.454040404	PROPERTIES
0 171281178	0.112478864	0 176345394	0.085065748	0.599476593	0 292374701	0 149648547	0 151512127	0.435355555	Nome
0.192105637	0.240784579	0.187478405	0.097433722	0.49715527	0.179927612	0.071368322	0.123260437	0.53030303	wisc_bc_date
0.203464433	0 124450457	0.20185198	0.102354189	0.575697391	0.289000675	0.108598875	0.258569781	0.359090909	All Properties
0 38851815	0 118363205	0.372192661	0.241050445	0.243748307	0.153242132	0.079498594	0 152057654	0.333838384	
0.217189645	0.315522489	0.210144427	0.112916225	0.296379586	0.177412429	0.128514527	0.070974155	0.49040404	 APPLIED STEPS
0.214349946	0.480892797	0.212355746	0.11028532	0.960928049	0.253726765	0.26054358	0 204025845	0 165555556	Source
0.523205074	0.474805545	0.330208493	0 192704136	0.719238063	0.482853823	0.365042174	0.456063618	0.601515152	Promoted Headers
0.166075063	0.323977004	0.163222998	0.081696713	0.426649815	0.203668487	0.070173383	0.059691849	0.584343454	Changed Type
0.193052203	0.177544809	0.191417317	0.097730547	0.457434323	0.229587755	0.126452671	0.166053678	0.361616162	Run K Script 2
0.64409106	0.389922218	0.649644116	0.499045599	0.504378442	0.444819336	0.512652296	0.557157058	0.397979798	A "NormalizedData"
0.2493729	0.278322624	0.238269643	0.134379539	0.306129819	0.145420526	0.091025242	0.115854871	0.45959596	N
0.291495102	0.373013189	0.291548614	0.166871686	0.908025539	0.274584381	0.254217432	0.17445328	0.253535354	
0.287235553	0.324653365	0.268260659	0.162757158	0.252505191	0.056775658	0.001621368	0.020720736	0.383333333	
0.596762743	0.51707812	0.579849354	0.444326617	0.456531552	0.24332853	0.387769447	0.450447316	0.304545455	
0.36012126	0.439520223	0.363485592	0.2178579	0.289789654	0.348506227	0.241096532	0.185685885	0.198989899	
0.413128875	0.142712208	0.402252781	0.262226985	0.379073756	0.230783388	0.167174321	0.294880716	0.381818182	
0.269250793	0.255579067	0.258862553	0.246935323	0.452920466	0.175633397	0.074812559	0.10472167	0.326767677	
0.620426901	0.478525533	0.628221961	0.468080594	0.499854584	0.504324888	0.534920965	0.636182903	0.600505052	
0.246533201	0 121068651	0.243867044	0.132470838	0.487225783	0.252225017	0.066893258	0.143240557	0.414141414	
0.223815609	0.25295908	0.223461406	0.117412513	0.407240227	0.128918471	0.089245548	0 160984095	0.23030303	
0.222859043	0 498140007	0.225259935	0.111516437	0.64069594	0.416600209	0.205787254	0.225196807	0.540909091	
0 187372805	0.500504363	0 183815908	0.096076352	0.45125395	0.169376112	0.1158388	0.145725646	0.215252515	
0.584258602	0.225904653	0.38552968	0.2252386	0.56305859	0.494815259	0.266635426	0.42415507	0.475252525	
0 167021629	0.354415257	0 171722755	0.080890774	0.537780988	0.540224526	0.151733853	0.152485089	0.435353535	
0.52273179	0.205613798	0.322299772	0.185892895	0.433962264	0.333169744	0 182497657	0.25195837	0.504040404	
0.30615688	0.290497125	0.295833045	0.174591729	0.447503837	0.191000552	0.093111528	0.138170974	0.291919192	
0.393724265	0.526208995	0.40501693	0.249798515	0.501670127	0.451076008	0.394329897	0.434940358	0 437373737	
	A 84111188	A 1222444			A 224411412	A 14711944	A 11001000		1.00

Figure 6-25. Normalized data

Other Data Transformation

There are other ways to transform data with Power Query.

Change Data Type

To change the data type in Power Query, click the Data Type option and choose the right data type. Likewise, you can change the data type by clicking the icon beside each column (Figure 6-26).

Figure 6-26. Changing the data type

Group By

In Power Query, we can also group data by specific aggregation options. First, we must click the column we want to group data by. Then we click the Group By icon in the menu (Figure 6-27). In the Group By window, we choose the Group by option we want and the aggregation type, under Operation. Next, we choose Sum as the aggregation option.

Figure 6-27. Group by data with specific aggregation

Finally, the data will be grouped by type value (Figure 6-28).

Figure 6-28. The resulting aggregated data

Many other kinds of data transformation, such as splitting columns based on the delimitator, transposing rows, changing the data type, adding date or time columns, including some statistical computation, merging columns, and so forth, are possible. Under the Add Column tab, it is possible to add custom columns, create columns from examples, create functions, format data columns, add columns for date, month, days, time, among other things. In addition, it is possible to transform data using the M language, although this is beyond the scope of this book.

Summary

This chapter offered a brief introduction to how to use R inside Power Query Editor. It explained how we can use it to reshape data, select data, write a mathematical function using R codes and apply it to a data set, and so forth. There are other uses for R or Python inside Power Query Editor, such as using R for regular expressions or using R and Python for machine learning. In the next chapter, more examples of using R in Power Query Editor will be presented.

CHAPTER 7

Predictive Analysis in Power Query with R

In this chapter, the process of doing machine learning inside Power BI Query Editor by writing R code will be explained. The main aim here is to provide some examples of how we can use R codes for predictive analysis (classification and regression). The concepts and codes related to some of the algorithms will be provided. In addition, the process of automating predictions via parameters inside Power BI Query Editor also will be discussed.

Neural Networks

What we expect from a computer is that we provide some inputs and then receive outputs that match our needs. Scientists try to mimic the human brain by creating an intelligence machine—a machine that does the same reasoning as humans.

The most important element of the human brain is neurons. Human brains consist of 75 million neurons. Each neuron is connected to others via synapses. So what we have in a neural network are some nodes that are connected to one another. In the human body, if a neuron is triggered by some external element, it will pass the message from the receiver node to other nodes, via synapsis. (Figure 7-1).

Figure 7-1. Neural system

Neural networks mimic the same concepts as the human brain. One node gets some input from the environment, and the neural network model creates outputs that produce the result just as a computer system would (Figure 7-2).

Figure 7-2. Computer system architecture

In a neural network there is a

- Set of inputs nodes
- Set of output nodes
- Some processing in the middle, to achieve a good result
- A flow of information
- A connection between nodes

Some of the connections are more important than others, meaning that they have a greater impact on the results than others. In neural networks, we refer to this importance as the connections' *weights*.

Another analogy that better expresses the goal of a neural network is the descent after climbing a mountain. When we reach the summit and the weather is foggy, we are only able to see one meter ahead. We must decide which direction to choose with only one meter of visibility. We take a first step based on the location, again deciding which direction to follow and taking other steps. So, with each step we are evaluating the course and choosing the best way to come down from the mountain (Figure 7-3).

Figure 7-3. Neural network comparison with mountain climbing

Each decision can be viewed as a node that leads us to a better and faster resolution. In a neural network, there are some hidden nodes that perform the main task. They find the best value for the output while using a function called an activation function.

In this section, I am going to refer to an example from *Machine Learning with* R [1]. The example is about predicting the strength of concrete. The concrete has been used in many different structures, such as a bridge, apartment, roadways, and so on. For safety, the strength of the concrete is critical. The concrete's strength depends on the material used to create it, such as cement, slag, ash, water, and so forth. We have a data set of the ingredients of the concrete (Figure 7-4). You can download it from "Machine Learning with R datasets" [2].

CHAPTER 7 PREDICTIVE ANALYSIS IN POWER QUERY WITH R

A	В	С	D	E	F	G	н	1	J
cement	slag	ash	water	superplasti	coarseagg	fineagg	age	strength	
141.3	212	0	203.5	0	971.8	748.5	28	29.89	
168.9	42.2	124.3	158.3	10.8	1080.8	796.2	14	23.51	
250	0	95.7	187.4	5.5	956.9	861.2	28	29.22	
266	114	0	228	0	932	670	28	45.85	
154.8	183.4	0	193.3	9.1	1047.4	696.7	28	18.29	
255	0	0	192	0	889.8	945	90	21.86	
166.8	250.2	0	203.5	0	975.6	692.6	7	15.75	
251.4	0	118.3	188.5	6.4	1028.4	757.7	56	36.64	
296	0	0	192	0	1085	765	28	21.65	
155	184	143	194	9	880	699	28	28.99	
151.8	178.1	138.7	167.5	18.3	944	694.6	28	36.35	
173	116	0	192	0	946.8	856.8	3	6.94	
385	0	0	186	0	966	763	14	27.92	
237.5	237.5	0	228	0	932	594	7	26.26	
167	187	195	185	7	898	636	28	23.89	
213.8	98.1	24.5	181.7	6.7	1066	785.5	100	49.97	
237.5	237.5	0	228	0	932	594	28	30.08	
336	0	0	182	3	986	817	28	44.86	
190.7	0	125.4	162.1	7.8	1090	804	3	15.04	
312.7	0	0	178.1	8	999.7	822.2	28	25.1	
229.7	0	118.2	195.2	6.1	1028.1	757.6	3	13.36	
228	342.1	0	185.7	0	955.8	674.3	7	21.92	
236	157	0	192	0	972.6	749.1	7	20.42	
132	207	161	179	5	867	736	28	33.3	
331	0	0	192	0	1025	821	28	31.74	
310	143	0	168	10	914	804	28	45.3	
304	76	0	228	0	932	670	90	49.19	
425	106.3	0	153.5	16.5	852.1	887.1	91	65.2	
166.1	0	163.3	176.5	4.5	1058.6	780.1	28	21.54	
255	99	77	189	6	919	749	28	33.8	
339	0	0	197	0	968	781	28	32.04	
475	0	0	228	0	932	594	28	39.29	
145.7	172.6	0	181.9	3.4	985.8	816.8	28	23.74	
313	145	0	127	8	1000	822	28	44.52	
331	0	0	192	0	1025	821	90	37.91	
178	129.8	118.6	179.9	3.6	1007.3	746.8	28	39.16	
165	0	143.6	163.8	0	1005.6	900.9	14	16.88	
277.2	97.8	24.5	160.7	11.2	1061.7	782.5	14	47.71	
325	0	0	184	0	1063	783	7	17.54	

Figure 7-4. Concrete data set

A neural network can be used for predicting a value or class, or it can be used for predicting multiple things. In our example, we are going to predict a value, that is, the strength of concrete. First, we load the data in Power BI, and in Query Editor, we write some R codes. Then we must make some data transformations (Figure 7-5).

CHAPTER 7 PREDICTIVE ANALYSIS IN POWER QUERY WITH R

										- 0	~
 a₁ Replace Values ↓ Fill • Pivot Column Any Column 	Unpixet Columns Move * Convert to List	Split Column	Format States	Columns XO Statistics	Sandard Scientific Number Column	netry * 9 * Ion *	Date Time Dutation	E Lepand Aggregate Cetract Values Structured Column	R 5 Solut Solut Solut		~
. Conter	• 1.2 sing	· 12 at	· 12 water	- 1.2 super	alastic - 12 compage	-	L2 fineage - 1 ² 3 a	ge - 1.2 sta	ngth -	Query Settings	
4	242.8	112 0	0	208.5	0 2	971. 8	748.5	28	29.89		
2	268.9	22 3	124.3	158.3	30.8	2080.8	796.2	34	28.51		
3	250	0	95.7	187.4	5.5	956.9	861.2	28	29.22	Name	
4	266	114	0	228	0	932	670	28	45.85	concrete	
5	154.8 21	U.4	0	193.3	9.3	2047.4	696.7	28	18.29	All Properties	
6	235	0	0	197	0	889.8	945	90	21.86		
7	166.8 25	0.2	0	208.5	0	975.6	692.6	7	15.75	APPLIED STEPS	
	251.4	0	118.9	188.5	6.4	3028.4	757.7	56	36.64	Source	*
	296	0	0	192	0	1085	765	-28	21.65	Promoted Headers	•
10	133	194	143	194		880	699	28	28.99	A charged type	
11	131.8 1	81	138.7	167.3	14.3	944	894.6	28	36.33		
12	179	116	0	392	0	546.8	856.8	3	1.54		
13	345	0	0	386	0	966	763	24	27.92		
14	2013 2	7.5	0	228	0	992	554	2	26.26		
15	387	187	195	185	1	898	6.06	28	11.0		
10	211.0	4.1	24.5	181.7		2066	/10.3	100	49.97		
	20.5 2	2.3	0	228	0	994	594	28	10.04		
	100	0	- 135.4	182		1000	817		44.26		
19	190.7	0	125.4	162.1	7.8	1090	804		13.64		
20	110.7			178.1		1010.0	2224		225.1		
21	110		118.2	139.4		2028.3	121.0		11.56		
22	120	167	0	103		672.6	249.1		21.52		
24	112	377	141	178		867	714	28	11.1		
34	227			102		1025	821	20	11.74		
25	110	141		168	10	914	854	28	45.1		
27	204	26	0	228	0	982	670	80	49.19		
28	425	6.8	0	158.5	16.5	#52.1	847.1	81	65.2		
29	105.1	0	162.3	175.5	45	1058.6	788.1	28	21.54		
30	255		77	109		929	749	28	22.4		
31	339	0	0	297	0	968	781	28	32.04		
32	475	0	0	228	0	932	594	28	39.29		
33	145.7 1	2.6	0	181.9	3.4	585.8	826.8	28	23.74		
34	313	145	0	327	1	1000	822	28	44.52		
35	331	0	0	392	0	1025	821	80	37.91		
36	178 1.	9.8	118.6	179.9	3.6	1007.3	746.8	28	39.16		

Figure 7-5. Pivot using Python codes

As you can see in Figure 7-5, in the sections labeled 2, 3, and 4 (circled in red), data is not on the same scale. We must impose some data normalization before applying any machine learning. The process of data normalization is explained in Chapter 6. The same code is used to normalize the data here.

```
normalize <- function(x) {
    return((x - min(x)) / (max(x) - min(x)))
}
concrete_norm <- as.data.frame(lapply(dataset, normalize))</pre>
```

After data cleaning and data transformation, we must separate in the data set some parts for training and some for testing. This process helps the model to learn from data and to mimic the data behavior. Therefore, we must devote more than 70% of the data for training and the rest for testing. To avoid bias, we must shuffle the data. A sample function in R has been used to create random row numbers for the data set. In addition, 80% of the data has been put in the training data set and the rest reserved for testing. CHAPTER 7 PREDICTIVE ANALYSIS IN POWER QUERY WITH R

```
nrows<-nrow(dataset)
sampledata<-sample(nrows,0.8*nrows)
concrete_train <- concrete_norm[sampledata,]
concrete_test <- concrete_norm[-sampledata,]</pre>
```

There are many packages and algorithms for using neural network algorithms in R. One such package is neuralnet. This package contains a function for a neural network algorithm. To use this package, we must install it in RStudio, using install.packages() first. After installing the package, we only have to refer to the vis package library command.

library("neuralnet")

The next step is to create a training model using the training data set and identifying which column we are going to predict.

```
concrete_model <- neuralnet(strength ~ cement + slag
+ ash + water + superplastic + coarseagg + fineagg + age,
data = concrete_train)</pre>
```

Now that the model is created, we can test it for accuracy. We are going to run the model against the training data set for all eight attributes.

```
model_results <- compute(concrete_model, concrete_test[1:8])
predicted_strength <- model_results$net.result</pre>
```

And we must create an output data set to show to the user.

```
output<-dataset[-sampledata,]
output$Pred<-predicted_strength*100</pre>
```

The result will be stored in an output variable that is in a data frame structure. Another important consideration is that Power Query only recognizes the data. Frame format. So, other data structures, such as vectors, lists, and matrices cannot be shown in the Power Query editor (Figure 7-6).
ement	 1.2 stag 	1.2 ash	1.2 water	1.2 superplastic	 1.2 coarseage 	1.2 fineagg	✓ 1 ² 3 age	1.2 strength	~ 1.	2 Pred 💌
	154.8	183.4	0	193.3	9.1	1047.4	696.7	28	18.29	27.72153765
	251.4	0	118.3	188.5	6.4	1028.4	757.7	56	36.64	46.33856215
	155	184	143	194	9	880	699	28	28.99	37.80339285
	385	0	0	185	0	966	763	1-	27.92	32.93445653
	167	187	195	185	7	898	636	28	23.89	45.1083121
	336	0	0	182	3	986	817	28	44.85	35.74016136
	425	106.3	0	153.5	16.5	852.1	887.1	9:	65.2	65.47808572
	149	118	92	183	7	953	780	28	23.52	27.25473733
	193.5	290.2	0	185.7	0	998.2	704.3		17.2	32.05778092
	350	0	0	185	0	1050	770		20.28	23.50395154
	253.8	0	94.6	197.9	4.6	947	852.2		10.38	11.76371238
	350	0	0	203	0	974	775	56	29.98	46.4437251
	237	92	71	247	6	853	695	21	28.63	19.52511176
	342	38	0	228	0	932	670	90	50.46	57.07777956
	147.8	175.1	0	171.2	2.2	1000	828.5	21	26.92	27.99724088
	500	0	0	200	0	1125	613	14	36.94	47.90775181
	165	128.5	132.1	175.1	8.1	1005.8	745.5		19.42	22.78557423
	168.9	42.2	124.3	158.3	10.8	1080.8	796.2	5	39.15	48 44732013
	376	0	0	214.6	0	1003.5	762.4	100	43.06	61.13615136
	500	0	0	140	4	966	853	28	67.57	61.45283284
	212.5	0	100.4	159.3	8.7	1007.8	903.6	14	26.31	23.94058822
	362.6	189	0	164.9	11.6	944.7	755.8	3	35.3	54.04248928
	183.9	122.6	0	203.5	0	959.2	800	3	4.9	9.465452302
	352.6	189	0	164.9	11.6	944.7	755.8	28	71.3	60.55803153
	252	97	76	194	8	835	821	28	33.4	37.92413224
	158.6	148.9	116	175.1	15	953.3	719.7	28	27.68	40.65613084
	385	0	0	185	0	966	763	28	31.35	41.08998245
	250	0	95.7	191.8	5.3	948.9	857.2	56	39.64	43.147649
	446	24	79	162	11.6	967	712	56	61.07	63.95146281
	323.7	282.8	0	183.8	10.3	942.7	659.9	28	74.7	60.20275387
	181.4	0	167	169.6	7.6	1055.6	777.8	28	27.77	28.35875853
			-	1.111	-	220 11			10.00	

Figure 7-6. Prediction result

It is possible to see the neural network structure in the visualization area, to see the hidden node, layer, and so forth. Therefore, we must duplicate the data set for concrete in Power BI Report, using the R custom visual, as shown in Figure 7-7. Next, we must write the same codes for neural network prediction and add another line for plotting the model. Run the code, and you will see the neural network structure that has just appeared on the layer, and the error is 3.001.

```
normalize <- function(x) {
    return((x - min(x)) / (max(x) - min(x)))
}
concrete_norm <- as.data.frame(lapply(dataset, normalize))
summary(concrete_norm$strength)
concrete_train <- concrete_norm[1:773,]
concrete_test <- concrete_norm[774:1030,]
library("neuralnet")</pre>
```


Figure 7-7. Neural network model structure in Power BI Report

We can mitigate the error by changing the number of hidden nodes and layers.

Decision Trees

A decision tree is a common approach for doing machine learning. This tool can be used for prediction, descriptive analysis, and feature selection. A decision tree follows the way that we reach decisions. Imagine a job seeker who wants to decide among a number of different jobs. He or she has established some criteria for his/her selection, such as the following: What are the responsibilities? What is the annual salary or hourly rate? Finally, how many times a year is travel required? We can simulate the job seeker's decisionmaking process, as shown in Figure 7-8. The root of the tree is the main decision point, that is, saying yes or no to the job. Then the most important criterion is whether the job title matches the searcher's expertise. The second most important criterion is salary. Finally, if there is no leaf, the third criterion is to check the number of required travel days per year. The decision tree uses information gain theory to identify what is the main criteria are for tree branching. Details on how this works are available at http://radacad.com/decision-tree-conceps-part-1 [3].

Figure 7-8. Decision tree for job-seeking

There are different ways of using decision trees in Power BI. One approach involves Power BI custom visualization.

To access this, you first must sign in to a Power BI account (Figure 7-9).

Figure 7-9. Power BI account

We must retrieve the visual from the Visualization panel by clicking the three dots and then choosing the Import from store option (Figure 7-10).

Figure 7-10. Importing a Visual from the store

On the Power BI custom visual page, there are different categories of visuals, including Filters, KPIs, Maps, Advanced Analytics, and more (Figure 7-11).

Figure 7-11. Power BI custom visuals

You need only click the Advanced Analytics option and then select Decision Tree Chart (Figure 7-12). Click the Add button to add the chart to Power BI visualization.

Figure 7-12. Decision tree custom visual in the Power BI store

Note When you add this chart for the first time, you must be sure that you already have RStudio or any R version on your machine. Power BI will start to install some of the required packages, such as rpart into your local R version. Just allow Power BI install all the packages. In the next step, a new custom visual will appear in the Power BI Visualizations panel (Figure 7-13).

VISUAL	IZATIONS	>
E II		
🗠 🕍		
	▼ ● ■	Ē
🗠 💽	R R	
	<u>.</u>	
	Decision tr	e

Figure 7-13. Decision tree custom visual in the Visualizations panel

To test the custom visual, we must import some data into Power BI Desktop for predictive analysis. The data is a free data set about the *Titanic* disaster [4]. We must choose the fields for decision making. The main aim (target) is to predict whether people survived. To do that, first we have to choose a couple of columns that may affect passenger survival, such as age, gender, and passenger class. Next, put the Survived column as the target variable, in the related data field (Figure 7-14).

Figure 7-14. Power Query filter value

The next step is to remove the missing values ("blank") from the age column. Finally, the related decision tree chart appears in Power BI Report (Figure 7-14).

At the root of tree, there are four numbered tags. 0 stands for passengers who could not have survived. Also, these people are identified by a green tag. The "100%" means that all data is at the root. The "0.52" and "0.48" indicate that about 0.52 are men and 0.48 are women. In other words, the first attribute that the decision tree decided to analyze (based on entropy theory) is the gender of the passengers (Figure 7-15).

Figure 7-15. The root node in the decision tree

For the next level, on the left, the tag is in green, and it already branches to represent the male passengers. Based on that branch, we can summarize that most of the male passengers did not survive (0). However, as you can see in Figure 7-16, for women (the branch at the right side), the attribute that is going to be analyzed is passenger class.

Figure 7-16. The second Level of Tree Analysis

For men (root) older than seven years of age (second node), there is a 58% possibility that they will not survive (green tag and 0) (Figure 7-17).

Men (root) older than seven years old (second node) will not survive (green tag and 0), with the possibility of 53%. Also, males younger than seven will survive.

A decision tree inside Power Query can be used to do machine learning and show the result in Power BI Report (the same process that has been explained in the "Neural Networks" section).

In the next section, I am going to write R code for a decision tree inside Power Query and show how it is possible to pass parameters to it.

Automated Machine Learning Inside Power Query

In the previous section, I explained how decision trees can be used for prediction analysis. Now we are going to use it inside Power Query, for predictions without a specific chart.

First, we must click the Power Query Editor at the top of the page, to navigate to the Power Query environment. In Power Query, you must first download the data set for the *Titanic* from www.kaggle.com/c/titanic [4]. Then, click New Source, select the Text/CSV option to import the data set, and click OK (Figure 7-18).

File	Untitled - Query Edito Home Transform	r Add Colum,	titanic.cs	SV.								
- ×			File Origin			Delimiter Da	ata Type Det	ection				
=1		4	1252: Western	European (V	Vindows)	* Comma * 8	ased on first	200 rov	vs			C
Close &	New Recent Ente	r Data sour	Passengerid	Survived	Pclass	Name	Sex	Age	\$ib5p	Parch	Ticket	1
pply -	Source * Sources * Data	setting:	1	0	3	Braund, Mr. Owen Harris	male	22	1 9	t i	0 A/S 21171	-
Most C	ommon ery	Data Sour	2	1	1 2	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1 3	t i	0 PC 17599	
			3	1	3	Heikkinen, Miss. Laina	female	26		2	0 STON/02. 3101282	
XI	Excel		4	1	1 1	Futrelle, Mrs. Jacques Heath (Uly May Peel)	female	35	4	1	0 113803	
			5	0	3	Allen, Mr. William Henry	male	35			0 373450	
A		_	6	0	3	Moran, Mr. James	male	null			0 330877	
	SQL Server		7	6	1	McCarthy, Mr. Timothy J	male	54		2	0 17463	
			8	6	3	Palsson, Master. Gosta Leonard	male	2	1	F)	1 349909	
3	Analysis Constants		9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27		2	2 347742	
<u>.</u>	Analysis Services		10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	t I	0 237736	
			11	. 1	3	Sandstrom, Miss. Marguerite Rut	female	4	1		I PP 9549	
9	Text/CSV		12	1	1	Bonnell, Miss. Elizabeth	female	58		2	0 113783	
_E	ICAL) COV		13	6	3	Saundercock, Mr. William Henry	male	20		2	0 A/5.2151	
			14	6	3	Andersson, Mr. Anders Johan	male	39	1		5 347082	
xt/CSV			15		3	Vestrom, Miss. Hulda Amanda Adolfina	female	14			0 350406	
mport	data from a text or CSV file.		16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55		1	0 248705	
N	data from a text of est mer		17	6	3	Rice, Master. Eugène	male	2		I	1 382652	
2	OData feed		18	1	2	Williams, Mr. Charles Eugene	male	nuil		2	0 244373	
			19	6	3	Vander Planke, Mrs. Julius (Emelia Maria Vandemoor	tel female	31	1	t 1	0 345763	
			20	1	3	Masselmani, Mrs. Fatima	female	nuil		•	0 2649	
E.	Blank Query		2								>	
	More									(Can	icei

Figure 7-18. Importing the Titanic data set into Power Query

After importing the data set into Power Query, we must navigate to the Transform tab, then to Run R scripts. In the R editor, we will be able to write R codes. The first line of the code refers to a library named rpart. The rpart package first must be installed in your RStudio. Before installation, first make sure that you do not have it, by using the following command:

Library("rpart")

Otherwise, in RStudio, use the following code, to see what library is already installed on your machine.

```
packagematrix <- installed.packages();
NameOnly <- packagematrix[,1];
OutputDataSet <- as.data.frame(NameOnly);
OutputDataSet
```

First, we must ensure that rpart has been installed on our machine. Then we write the following code in the R editor (just as what we did earlier in this chapter for neural networks). We must now refer to the rpart library and divide the data either for training or testing.

```
library(rpart)
numrows<-nrow(dataset)
sampledata<-sample(numrows,0.8*numrows)
train<-dataset[sampledata,]
test<-dataset[-sampledata,]</pre>
```

Creating model is the next step. This pertains to the attributes we want to predict and create a model for, based on the training data set. In addition, we must have a formula for Survived ~. This indicates that we want to predict the survive column according to age, sex, and passenger class. The predict function will be used to predict the survival of the prediction analysis.

```
DT<-rpart(Survived~ Age+Pclass+Sex,data=train,method= ="class")
prediction<-predict (DT,test)
rpartresult<-data.frame(prediction,test)</pre>
```

So, the result of the prediction will be shown in Power Query, with the name rpartresult. The result will consist of two different additional columns. "X0" stands for the probability of passengers not surviving, and "x1" is the probability of passengers surviving. Now imagine that we want to use the rpart algorithm for classifying another data set, such as the cancer-related data discussed in Chapter 6. It is possible to parameterize the R code for passing the desired data set, prediction column, and so forth, to the R codes. To do this, we must duplicate the data set (Figure 7-19).

Table Any Column Queries [9] fx = #"Run R S -- 1.2 ×1 xo concrete 0.884393054 0.115606 concrete_test 0.73015873 0.269841 concrete_train 0.480392157 0.5196078 0.058823529 0.9411764 0.884393054 0 1156065 concrete (2) 0.380952381 0.6190476 E cars 0.480392157 0.5196078 # Attributes 0.375 0.6 # ALternative 0.884393064 0.1156069 1 titanic Сору 0.884393064 0.1156069 Paste 0.884393064 0.1156069 0.73015873 0.269841 × Delete 0.73015873 0.269841 🗐 Rename 0.380952381 0.6190476 Enable load ~ 0.058823529 0.9411764 ~ Include in report refresh 0.884393054 0.1156069 16 Duplicate 0.480392157 0.5196078 0.058823529 0 9411764 18 0.884393064 0.1156069 Move To Group 0.375 0.6 Move Up 0.884393064 0.1156069 Move Down 0.884393064 0.1156069 Create Function... 0.884393054 0.1156069 Convert To Parameter 0.884393054 0.1156065 Advanced Editor 0.884393054 0.1156065 0.884393064 0.1156065 26 Properties ... 0.1156069 0.884393064 28 0.058823529 0.9411764 0.058823529 0.9411764 30 0.884393064 0.1156065 0.058823529 0.9411764

CHAPTER 7 PREDICTIVE ANALYSIS IN POWER QUERY WITH R

Figure 7-19. Duplicating the Titanic data set

Now just right-click the new data set, to create a function out of it. There is a need to create a function from the new duplicated data set (Figure 7-20).

Queries [10] <	×	√ fx	= #"Run R Scrip
		1.2 X0 -	1.2 X1 - 12
	1	0.05839416	1 0.941605839
	2	0.79437229	4 0.205627706
concrete_train	3	0.05839416.	1 0.941605839
III output	4	0.44705882	4 0.552941176
concrete (2)	5	0.87.	5 0.125
🗱 cars	6	0.87	5 0.125
# Attributes	7	0.05839416	1 0.941605839
Al ternative	8	0.79437229	4 0.205627706
	9	0.79437229	4 0.205527705
	10	0.05839416	1 0.941605839
tita Copy	11	0.05839416	1 0.941605839
Paste detector	12	0.05839416	1 0.941605839
dataset	13	0.79437229	4 0.205627706
× Delete	14	0.79437229	4 0.205627706
🗐 Rename	15	0.44705882	4 0.552941176
Fnable load	16	0.79437229	4 0.205627706
Include in report refresh	17	0.79437229	4 0.205627706
Po. Durlinste	18	0.44705882	4 0.552941176
b Duplicate	19	0.79437229	4 0.205527705
Kererence	20	0.79437229	4 0.205627706
Move To Group	21	0.18181818	2 0.818181818
Move Up	22	0.79437229	4 0.205627706
Move Down	23	0.79437229	4 0.205627706
Create Function	24	0.88888888	9 0.111111111
Convert To Parameter	25	0.79437229	4 0.205627706
	26	0.79437229	4 0.205627706
Advanced Editor	27	0.79437229	4 0.205627706
Properties	28	0.05839415	0.941605839
	29	0.79437229	4 0.205627706
	30	0.79437229	4 0.205627706
	31	0.79437229	4 0.205627706
	32	0.79437229	4 0.205627706
	33	0.88888888	9 0.111111111
Create Function Enter a name for the new function. Function name Classification	_		X le
		OK	Cancel

Figure 7-20. Creating a function in Power Query

After creating a function, we must customize it, by passing parameters. To do this, we must navigate to Advanced Editor (Figure 7-21).

Figure 7-21. Advanced Editor in Power Query

In Advanced Editor, it is possible to see the steps previously applied to the Titanic data set in M language. As you can see in Figure 7-22, the source of the data set has been identified from my local machine.

Figure 7-22. Advanced Editor for writing in M language

The first three lines should be substituted with the followning one:

```
(#"Source Table" as table) as table=>
```

let

```
Source = #"Source Table",
```

In the first line, we define a variable named Source Table, and in the third line, we assign it to the Source variable. In the next step, we will remove some of the lines starting with Promoted Headers and Changed Type. These lines are solely for the specific data set (titanic) transformation. Now we have the following lines, for which we must still make some transformation:

```
(#"Source Table" as table) as table=>
let
    Source = #"Source Table",
    #"Run R Script" = R.Execute("# 'dataset' holds the input data for
    this script#(lf)library(rpart) #(lf)numrows<-nrow(dataset)#(lf)
    sampledata<-sample(numrows,0.8*numrows)#(lf)train<-
    dataset[sampledata,]#(lf)test<-dataset[-sampledata,]#(lf)DT<-
    rpart(Survived~ Age+Pclass+Sex,data=train,method=""class")#(lf)
    prediction<-predict (DT,test)#(lf)rpartresult<-data.frame(predictio
    n,test)",[dataset=#"Changed Type"]),
    rpartresult = #"Run R Script"{[Name="rpartresult"]}[Value]
    in
        rpartresult
</pre>
```

Source

As you can see in preceding code, we have a header line #"Run R Script" = that contains a function R.Execute. This function contains all the R codes that we wrote. In M language, the output of one function will be passed to the next one. The previous function is for changing type Changed Type, which we already deleted. Now we must change the code in Run R Script, as follows:

#"Run R Script" = R.Execute("# 'dataset' holds the input data for this script#(lf)library(rpart) #(lf)numrows<-nrow(dataset)#(lf)sampledata<sample(numrows,0.8*numrows)#(lf)train<-dataset[sampledata,]#(lf) test<-dataset[-sampledata,]#(lf)DT<-rpart(Survived~ Age+Pclass+Sex,data=train,method=""class"")#(lf)prediction<-predict (DT,test)#(lf)rpartresult<-data.frame(prediction,test)",[dataset=#"Changed Type"]), The Changed Type should be substituted with Source, as shown in the following code:

```
let
Source = #"Source Table",
    #"Run R Script" = R.Execute("# 'dataset' holds the input data for
    this script#(lf)library(rpart) #(lf)numrows<-nrow(dataset)#(lf)
    sampledata<-sample(numrows,0.8*numrows)#(lf)train<-
    dataset[sampledata,]#(lf)test<-dataset[-sampledata,]#(lf)DT<-
    rpart(Survived~ Age+Pclass+Sex,data=train,method=""class"")#(lf)
    prediction<-predict (DT,test)#(lf)rpartresult<-data.frame
    (prediction,test)",[dataset=Source]),
    rpartresult = #"Run R Script"{[Name="rpartresult"]}[Value]
in
    rpartresult
```

in

Source

We still must make some additional changes. These are to be applied to the Name column that we want to predict. Currently, it is "Survived~ Age+Pclass+Sex," but we want to substitute the Survived column with a parameter that the user provided. Also, rather than another column for input, we want to consider all the columns. As a result, we must change the code, as follows:

```
(#"Source Table" as table, #"Prediction Column"as text) as table=>
```

```
let
```

```
Source = #"Source Table",
#"Run R Script" = R.Execute("# 'dataset' holds the input data for
this script#(lf)library(rpart) #(lf)numrows<-nrow(dataset)#(lf)
sampledata<-sample(numrows,0.8*numrows)#(lf)train<-
dataset[sampledata,]#(lf)test<-dataset[-sampledata,]#(lf)DT<-rpart(
"&#"Prediction Column"&"~ .,data=train,method=""class"")#(lf)
prediction<-predict (DT,test)#(lf)rpartresult<-data.frame(predictio
n,test)",[dataset=Source]),
rpartresult = #"Run R Script"{[Name="rpartresult"]}[Value]
in
rpartresult
```

```
in
```

Source

We must refine the code a bit, by removing the last line in Source. So, the final code will be

```
(#"Source Table" as table,#"Prediction Column"as text) as table=>
let
Source = #"Source Table",
#"Run R Script" = R.Execute("# 'dataset' holds the input data for
this script#(lf)library(rpart) #(lf)numrows<-nrow(dataset)#(lf)
sampledata<-sample(numrows,0.8*numrows)#(lf)train<-
dataset[sampledata,]#(lf)test<-dataset[-sampledata,]#(lf)DT<-rpart(
    "&#"Prediction Column"&"~ .,data=train,method=""class"")#(lf)
prediction<-predict (DT,test)#(lf)rpartresult<-data.frame(predictio
    n,test)",[dataset=Source]),
rpartresult = #"Run R Script"{[Name="rpartresult"]}[Value]
in</pre>
```

rpartresult

After running the code, we will have a function with an input variable (Figure 7-23).

Figure 7-23. Creating a function for classification with two inputs

To test the function, we must create a data set to pass to the function. Import the new Titanic data set, then Ctrl+Click the four main columns: Survived, Pclass, Age, and Sex. Next, right-click and select the Remove Columns option (Figure 7-24).

File Home Transform Add Column View I	Help								
Close New Query Data Sources Parameters	Refrech Refrech Presserver	Choose Remove Calumns • Calumns • Rep Manage Columns Reduce	21 Image: Comparison of Comparis	ns • Standard Queries					
Queries [14] <	\times \checkmark $f_{\rm X}$ + Table.Tr	ransformColumnTypes(#*Proe	oted Hondors",{{"PossengerId", Int64.Type}, ["Sur	vived", Int64.Type},	(*Pc)	ass", Int64.Type}, ("Name", t	upe text], {"Sex", typ	e text}, 🗸	QUERY SETTINOS
• Castification [2]	II. 12j Fassengerid	kanived Polans	a ⁰ c Name	• 5ex • 12/4	DN 1	ala sitta e sia Pariti	AC TARE	12 Fare • 4	· PROPERTIES
III Marie (2)			a pround, ever marks	10.000	-		A/S 211/1	14	Name
he Constanting		4	a currings, which are preserve proger thayer)	remare	×	temove Columns	(C 1/30)	/1.200	Haric Ø
A Construction		1	2 Pentinen, Mos Lana	lenare		tempue Other Columns	310/02 3191282	7.92	
Curve Opened [12]			2 Public And Latitude Peaks (Lay May Peek)	nerae.	D -	Add Column From Examples	115805		
III concrete			a Man, the land		- 3	Remove Duplicates	179690	1.00	* APPLIED STIPS
tt concrete_test			a Moran, Mr. Janes	mart	. 0	lamove Errors	100077	1.01	Source
concrete_train			2 Including, NY, (Incomp)	June .	2. 1	Replace Values	1/402	21.867	Promoted Headers
III output			3 Parson, Wester, Gesta Leonard	mate	1	51	549909	22.07	X Changed Type
un sonarete (2)			a yourday part orda, is (Tritadeta Amerikaa Peut)	Terrare .	1.1		347744	11.111	
The second secon	10 10	1	2 Nation, Mrs. Nothings (Admin Admin)	female .		uninge type	237736	36.574	
			2 Sector Disk, Millar, Margueroe Kur.	PER-BA	- 2	Merge Columns	177 3040	20	
III Amoun			a ecreel, with theyber		2.	Srcup By	111741		
HE Alternative			a second to be an an array		5. 1	Inpluct Columns	W/3 #131		
III stanic	14 17		a Anderster, Nr. Andersteinen		1	Individ Other Columns	proved and	7.874	
Invoked Function	10 10		V TEDUT, MULTINE ATTEND ADDED	1000		Induct Only Selected Columns	10000	1.874	
🖽 wisc, bc, deta			2 Revert, Nrs. (Mary Diangcome)	Array .			248700		
Invoked function (2)		1	B with the Charles Entered	and a	_	Meye	34,453	2011	
			a weater, we unamp tagent	The second se			A 414743		
	17	*	The stands water out that the stand of stands and stands address at	-to-art		A	A SANCAR		

Figure 7-24. Selecting the columns

Finally, there is a data set with four columns now ready to pass to the function. In the function, for the first parameter, we must choose the Titanic data set, and for the second, the Prediction Column named Survived (Figure 7-25).

Figure 7-25. Invoking the function

Next, we may get a message for Edit Permission that is about providing permission to run external scripts on the query (Figure 7-26).

Table Partie Par	Juliúh View Heg Subúh View Heg Subúh View Heg Subúh Managet Managet Caluman Caluman Caluman Source Parameter Managet Managet Caluman Caluman Caluman Resulta Caluman Managet Caluman Caluman Resulta Caluman View Parameter Managet Caluman Caluman View Parameter Managet Caluman Caluman View Parameter Managet Caluman Sant Balancet Caluman Caluman View Parameter Managet Caluman Sant Parameter Parameter Managet Caluman Caluman Caluman Caluman Caluman Caluman Caluman Caluman Parameter Parameter Caluman Caluman Caluman Caluman Caluman Caluman Parameter Caluman Caluman Caluman Caluman Caluman Caluman Caluman <t< th=""><th></th></t<>	
Native D Do you appro- occurrences on Native queries rerun multiple unpredictable This native que values, but you dataset. R I dataset hol homrows <-m no ampledata <- trais-<-dataset D1 &-part(sup predictors) pratresult <-d	Actionation of the same native query? Your approval will also apply to any so the same native query in other documents. Inter same native query will change based on the parameters' Inter same native query will change based on the parameters' Inter same native query again. This query's parameters: Interse states for this script 1 Interse fate of this script 2 Interse fate of this script Interse fate of this script <	AirProject

Figure 7-26. Permission request

After accepting the permission, we can now see the result, as shown in Figure 7-27.

Quer	ries [12] <	$\times \checkmark f_x$	- Classification(#"titani	c (2)", "Survived	r")	
		. <u>. xo</u> ·	1.2 X1 • 123 Survived	* 123 Pelass	▼ A ⁰ _C Sex	• 1.2 Age
	Classification [2]	1 0.045112782	0.954887218	1	1 female	38
I	titanic (2)	2 0.65	0.35	0	3 male	2
		3 0.045112782	0.954887218	1	2 female	14
-	Other Queries [10]	4 0.433333333	0.566666657	0	3 female	14
I	concrete	5 0.848484848	0.151515152	1	2 male	Tun.
I	concrete test	6 0.433333333	0.566666657	1	3 female	nut .
	a concerto terio	7 0.94848484848	0.151515152	0	2 male	35
	H concrete and	8 0.848484848	0.151515152	1	1 male	28
H	1) ontbot	9 0.848484848	0 151515152	0	2 male	65
I	concrete (2)	10 0.848484848	0 151515152	0	1 male	28
Ħ	an	11 0.848484848	0.151515152	0	1 male	42
Ē	Attributes	12 0.4333333333	0.566666657	0	3 female	18
π	Alternative	13 0.045112782	0.954887218	2	2 female	22
	a blood	14 0.65	0.35	0	3 male	11
		15 0.848484848	0.151515152	0	2 male	45
E	Invoked Function	15 0.848484848	0.151515152	0	1 male	nut.
		17 0.848484848	0.151515152	1	3 male	
		18 0.045112782	0.954887218	1	2 female	22
		19 0.548434548	0.151515152	0	3 male	25
		20 0.848484848	0.151515152	1	3 male	29
		21 0.8484848484	0 151515152	0	3 male	100
		22 0.045112282	0.954887218	1	2 female	34
		23 0 84848484848	0 151515152	0	t male	e.d
		24 O MARABARA	0 151515152	0	1 male	21
		25 0 848484848	0.157515157	0	1 male	24
		25 0.81819191919	0.151515151	0	2 main	11
		20 0.848494848	0.1515151515	1	a main	
		27 0.545454545	0.151515154	1	a maie	
		28 0.545454545	0.151515152	0	3 maie	65
		23 0.540404048	0.151515152	0	2 maie	23
		33 0.545434548	0.151515152	0	1 male	24
		31 0.948484848	0.151515152	0	2 male	18
		32 0.858888889	0 11111111 0	0	3 female	45
		33 0.545434548	0.151515152	0	1 male	nut.
		34 0.848484848	0.151515152	0	3 male	Bun
		35 0.4333333333	0.566666667	0	3 female	Dun .
		35 0.848484848	0.151515152	1	1 male	45
		37 0.848484848	0.151515152	0	3 maie	40

Figure 7-27. Function result for Titanic data set

To test the function, I imported another data set [5] that was introduced in Chapter 6. It is a data set related to breast cancer patients. I want to predict patient diagnosis: will a patient's cancer become malignant "M" or benign "B." We follow the same process as before for this new data set. First, we import it, then we pass the name and column of the data set to the function (Figure 7-28).

Figure 7-28. Call classification function for the cancer data set

After invoking the function, the prediction result appears as a new query (Figure 7-29).

		12.0	2.11						
Classification [2]		TRAISE CONTENIEST	Possion a	• 12 redws_mean • 12 texts	arc_mean 12 perm	atter_mean = 12 are	1713	O 1077	0.07804
III titanic (2)		MANGES (1 919567115	ettians M	19.50	25	117.7	1101	0 1012	0.06471
	2		616277 8	1/ 50	22.68	66.20	4571	0.06472	0.00073
Other Queries [12]	4 0.95	CONTRIBUT	#9511502 B	11.67	17.5	\$1.25	489.9	0.1078	0.02664
III concerta	5 0.000	0.020507215	#\$263282 M	20.09	21.86	194.7	1347	0.108	0.1636
	6 0.955	ELERISE C. ONLETING?	\$19812 B	22.89	24.44	26.17	405.4	0.1236	0.1552
III covores ser	7 0.000	0402685 0 929597325	#52973 M	15.3	25.27	202.4	732.4	0.1082	0.1697
III concrete_train	3 0.055	1288155 C.041811847	858243 8	2.606	26.84	61.64	280.5	0.05481	0.09228
III output	9 0.5%	EIKE255 0.042821847	891548 8	21.05	25.84	82.72	550.6	0.06352	0.05755
iii concrete (2)	10 0.000	0402685 0.929597315	9113538 M	17.6	23.33	119	980.5	0.09289	0.2004
🔢 an	11 0.958	188253 0.042811847	\$15940 8	24.58	13.66	\$4.29	658.8	0.09832	0.08936
Attributes	12 0.060	0402685 0.939597325	887549 M	20.51	27.06	152.9	1288	1.0	0.2088
II Alternative	13 0.157	0.842105263	877159 M	18.08	21.84	117.4	1024	0.07371	0.08642
	14 0.060	0402685 0.939597315	878796 M	23.29	26.57	158.9	1585	0.1141	0.2084
and the second s	15 0.000	0402685 0.939597315	89122 M	29.4	18.15	127.2	1145	0.1037	0.1442
E Invokis Function	16 0.060	0402685 0.922597325	8712766 M	17.47	24.68	226.2	984.6	0.1049	0.1603
∰ wisc_bc_data	17 0.157	0.842105263	882094802 M	17.42	25.55	114.5	948	0.1006	0.1146
Involued Function (2)	18 0.000	0402685 0.929597935	8511133 M	25.34	24.26	202.5	204.4	0.1073	0.2135
	19 0.550	TIRAISS CONTRIINT	8813129 5	15.27	17.02	84.55	546.4	0.08445	0.04994
	20 0.000	0402685 0.999597325	874217 M	18.31	28.58	238.5	2043	0.08588	0.06468
	21 0.554	188155 C.042821847	#75099 8	9.72	28.22	60.73	288.1	0.0695	0.02344
	22 0.555	188153 0.041811647	884448 5	23.2	27.43	84.13	542.6	0.07215	0.04524
	23 0.558	8188153 0.041811847	\$25465 B	20.82	24.22	68.89	361.6	0 08192	0.06602
	24 0.955	FIRR255 0.042521847	865031 B	21.64	28.53	75.17	422.5	0.1142	0.1017
	25 0.000	0402685 0.939597325	903507 M	15.49	29.97	302.4	744.7	0.116	0.1562
	26 0.060	0402685 0.999597325	8811842 M	29.8	21.56	229.7	1290	0.09383	0.1306
	27 0.060	0402685 0.939597315	907914 M	14.9	22.53	302.1	685	0.09947	0.2225
	28 0.958	E188153 0.041811847	903483 B	8.794	26.84	55.27	224.8	0.1019	0.07428
			and a second sec		10.00				

Figure 7-29. Prediction result for cancer diagnosis data set

Summary

The main aim of this chapter was to show how we can perform machine learning inside the Power Query Editor using R codes. Two different algorithms were introduced: neural networks and decision trees. I discussed how you can set parameters for making machine learning much more flexible. In the next chapter, I will discuss descriptive analysis using Power BI.

References

- [1] Lantz, Brett. *Machine Learning with R*. Birmingham, UK: Packt Publishing, 2015.
- [2] Zach Stednick, "Machine Learning with R datasets," GitHub, https://github.com/stedy/Machine-Learning-with-Rdatasets.git, 2019.
- [3] Leila Etaati, "Decision Tree: Concepts—Part I," RADACAD, http://radacad.com/decision-tree-conceps-part-1, November 27, 2017.
- [4] Franck Sylla, "Titanic: Machine Learning from Disaster," Kaggle, www.kaggle.com/c/titanic, 2017.
- [5] Breast Cancer Wisconsin (Diagnostic) Data Set, Kaggle, www. kaggle.com/uciml/breast-cancer-wisconsin-data/downloads/ data.csv, September 25, 2016.

CHAPTER 8

Descriptive Analysis in Power Query with R

This chapter focuses on descriptive analysis in Power BI. A brief introduction explains how we can use descriptive analysis to help decision making. Next comes a brief introduction to clustering, how clustering is performed in Power BI Report, and how we can do clustering in Power Query Editor. Finally, I will cover how to do market basket analysis in Power BI.

K-Means Clustering

Cluster analysis is the task of grouping similar objects in a same group or cluster. The clustered objects have more similarity to each other than other objects. For example, we may be interested in grouping our customers, based on their purchase behavior or demographic information [1]. Or, to cite an example in science, we may want to cluster the number and severity of earthquakes that occurred in New Zealand over the past ten years. For a medical purpose, we may want to classify patients with cancer, based on their laboratory results.

In machine learning, there are many different algorithms to help us do clustering. Some of these algorithms are centroid-based, such as k-means, GMM, Fuzzy c-means, and so forth. The others are based on connectivity [2], such as hierarchical clustering. There are some algorithms that are density-based or based on probability, dimensionality reduction, and neural networks/deep learning.

In this chapter, I am going to show you how we use k-means algorithms for classifying data. There is a data set for household power consumption that is available for free from the UCI Machine Learning Repository [3]. The data set is about the consumption of electric power in one household over a period of almost four years. This data set has such attributes as date, time, global active minute active, and reactive power, average voltage, average current intensity, and watt hours for kitchen, dishwasher, oven, water heater, and so forth. You are going to see how we can naturally classify these data, using two different approaches in Power BI.

Clustering Custom Visuals

The first and easy way to cluster data is to use one of the custom visuals in the Power BI store: Clustering. To access it, you first must log in to a Power BI account. In the Visualizations panel, click the three dots, then choose the From Store option. Under Advanced Analytics, you will find the Clustering option for custom visuals (Figure 8-1).

Figure 8-1. Clustering custom visuals

Add the custom visual to the Power BI environment. If it is your first time adding a Power BI custom visual, some of packages, such as Plotly, XML, and such will be installed. Next, you must choose four different columns from the filed area. As you can see in Figure 8-2, some columns, such as Voltage, Global intensity (household global minute-averaged current intensity), Submetering 3 and 1 (watt-hour activity energy for kitchen, dishwasher, water heater, and so forth) have been selected.

Figure 8-2. Choosing columns for clustering

After choosing the parameters, you must set them up. Click the format icon, then scale data to normalize it. Apply PCA, if you want to choose the number of clusters you can specify, or leave it as the default (clusters will be chosen automatically).

As you can see in Figure 8-3, the result of the clustering is shown in a clustering diagram. K-means clustering found out about four main clusters. As you can see in the picture cluster 4 has more items, while cluster 1 has fewer items than other clusters. However, the limitation of this visualization is that we cannot see the numbers and are not able to compare each cluster according to its attributes.

Figure 8-3. Clustring parameters and results

In the next section, the process of performing clustering analysis inside Power Query will be shown, as well as how we can use Power BI visual to demonstrate the result.

Clustering in Power Query

As explained in previous chapters, it is possible to do machine learning inside Power Query, using R code. In this section, the process of clustering data using R code inside Power Query will be explained, and you will see how we can use a Power BI visualization to better describe the data grouped by the relevant clusters.

First, we must go to the Query Editor, then we have to duplicate the data set that we have, by right-clicking the data set and choosing the Duplicate option (shown in Figure 8-4).

Figure 8-4. Duplicating the household power consumption data set

After duplicating the data set, you will have a copy of the power consumption for household data that you must transform before applying the R code.

- 1. Remove the date and time columns. Click each column, then right-click and select Remove.
- Remove errors. You may have some errors, so you will have to set a rule for dealing with them, e.g., click the Remove rows and choose Remove Errors or Remove Blank Rows or Remove Missing Values (Figure 8-5).

Transform Add Column View	Help						
Cent Enter res* Data Query Data Source Paramet	Propert Refresh ers Preview Manage	ed Editor * Choose Remove Columns * Columns * Manage Columns	Keep Remove Raws Rows Rows Sort	t Group in • By Transform	Indo	int Set	Data Type: Decimal Nur Group By Ly, Replace Values Tanuform
	< × < .	fr = Table.TransformColu	mnTypes(#"Promoted Head	ers",{{"Date", type date},		ypa", ("Cata",	"T(r="))
r_consumption	Date .	Copy	hal_active_power = 1.2 G	lobal_reactive_power 12	12 Global_active_power 4 Remove Duplicates	• 12 Votap	23.34
er_consumption (2)	2 16	Remove	5.36	0.436	3 Renove all black rows from this	0.030	231.29
	3 16	Duplicate Column	5.374	0.498	5 3.00	0.528	233.54 233.68
	4 20 5 26	Add Column From Examples.	3.555	0.528	6 3.52 7 3.702	0.522 0.52	235.02 235.09
	6 26	Remove Duplicates Remove Errors	3.52	0.522	8 17	0.52	235.22
	7 16	Change Type	. 3.702	0.52	10 1442	0.51	211.86
	9 16	Transform Replace Values	3.668	0.52	12 5.412	0.47	232.29

Figure 8-5. Data cleaning

After data cleaning, you can run R scripts by clicking the Transform tab and selecting the Run R Script option. In R editor, first we must bring data in the same scale, using the normalization function in R, as follows:

```
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x))) }
NormalizedData <- as.data.frame(lapply(dataset, normalize))</pre>
```

The function kmeans clusters data using k-means clustering algorithms. This algorithm requires a data set and the number of clusters.

```
ClusterData<-kmeans(NormalizedData ,4)</pre>
```

After clustering the data, we must create an output data set. For this, we leverage the data.frame function, to create a data frame data set from the original data set and the number of clusters.

```
PowerConsumption<-data.frame(dataset,ClusterData$cluster)</pre>
```

After running the code, the data set now has original data, plus a new column that shows the cluster number. Moreover, we must add an index column to the current data set, to have a primary key for further analysis. To add a new column, click the Add Column tab in the top menu, then click Index Column, which starts from 0 by default, but you can change it to 1, by choosing another option.

As you can see in Figure 8-6, our data has now been prepared for visualization and further analysis. You now simply close and apply the changes.

H - Martes-Andrea										
a From Celaron Forcion Cennol I and Coloren I and I an	Marge Columns Statust Area * Strates Standard 5 Strates *	10 ² ¹ Transfer ² Ransfer center 1 Internation ¹ 1 Internat	Ene Dasier							
ries [2]	$ imes$ $arphi$ \bullet Table.Add	indexColumn(PowerConsumptio	e, "iscer", €, 1)						QUERY SETTINGS	
household power consumption	. athe power 12 Global a	reactive_power 💽 1.2 Voltage	 12 Global internit 	le 📑 1 ² 3 Sub mets	ering_1 = 1 ² 9 Sub_matering	.2 • 1 ² 1 Sub m	tering 3 🔄 🖓 Classicolatacia	eter • 12 index		
Annual and annual construction and	4216	0.414	234.84	18.4		4	17		A Name	
	2 5.38	0.436	233.63	23		1	.14	1	Prototal restored	arreture (2)
	3 3.374	6.694	213.29	22		2	17	,	3 Brandward Constant	
	4 5.367	0.502	233.74	11		1	97	1	Al Angedies	
	5 3.666	0.529	293.68	12.4	8	1	17	1	A APPLIED STEPS	
	6 8.52	0.522	295.02	15			17		1 10-00	
	7 8.702	0.12	295.08	15.8		1	17	1	4 Encoded listenses	
	8 3.7	0.52	295.22	15.4		1	17	1	7 Output Tree	
	 3.462 	0.31	233.39	25.8	0	2	17	3	A Removed Columns	
	10 3.662	0.31	233.06	15.4		- 2	36	3	2 Removed ferrors	
	11 4.442	0.498	292.06	25.6	1	1	17	3	30 Rate R Script	
	12 3.412	0.47	212.78	23.2	E	1	17	3	11 Penetorameter	
	13 3.226	0.479	212.19	22.4		1	38	3	12 X Added Index	•
	5.268	0.339	232.31	22.6		2	17	3	ш	
	15 4/94	6.422	235.24	37.6		1	17	3	34	
	10 3.287	0.282	237.34	14.2	#		.07	4	10	
	17 8.27	6.152	296.79	13.4			17	4	M	
	15 8.47	6.334	237.06	34.4			17	4	17	
	19 8,266		297.23	11.8	6	0	18		14	
	20 3 738		295.64	36.4			17	4		
	21 3.654		292.08	25.4	8	10	14	3	20	
	22 7.706		290.98	33.2			17	3	21	
	23 7.004		292,21	32.6	8	0	36	3	22	
	24 5.374		294.29	22			17	1	28	
	25 4.434		294.96	19.4			17	8	24	
	26 8.248		226.66	12.6	(E)		17	4	25	
	27 3.236		225.44	11.6			17	4	28	
	28 3.228		285.6	33.6			17	4	11	
	29 3.258		233.49	11.8			37	4	28	
	80. 8375		205.28	11.4			17	4		

Figure 8-6. Clustering data in Power Query

In the Visualizations panel, we are going to use some simple visualization to compare the clusters (Figure 8-7). The first chart shows the number of items in each cluster. We can see how many items each cluster has.

Figure 8-7. Number of items in each cluster

Also, you can use the Funnel chart option, to show the average of an attribute for a cluster (Figure 8-8).

Figure 8-8. Cluster comparison data

It is also possible to do a what-if analysis. For example, if the voltage changes from 244 to 254, we can check what clusters mainly have that range and which other attributes have that subset in common. As you can see in Figure 8-9, clusters 2 and 3 mainly cover the 244 to 254 voltage range.

Figure 8-9. What-if analysis of clustering results

Market Basket Analysis (Association Rules)

Another approach for descriptive analysis and data mining is market basket analysis, or association rules. Market Basket (association rules) analysis is used to find customer purchasing behavior by stores, to determine the related items that have been purchased together. This approach is not only used for optimizing product placement and marketing investments but also for determining rules in health care, government policies, events management, and so forth [5].

In this section, I will explain how market basket analysis can be used, how to write it in R, and how to come up with good rules.

What Is Market Basket Analysis?

This analysis examines customer purchasing behavior. For example, for a beauty supply store, this analysis might reveal some association related to how frequently customers purchase shampoo and conditioner together. From a marketing perspective, perhaps promoting shampoo will lead customers to buying conditioner as well. From a sales perspective, placing shampoo beside conditioner on a store shelf will encourage customers to purchase both [4].

As stated, "association rules" is another name for market basket analysis. Association rules take the form if X then Y. For example, 60% of those who buy life insurance may then buy health insurance. To cite another example, 80% of those who buy books online may then also buy music online. Also, 50% of those who have high blood pressure and are overweight may then have high cholesterol [3].

Other examples of association rules include searching for interesting and frequently occurring patterns of DNA and protein sequences in cancer data, finding patterns in purchases or medical claims that occur in combination with fraudulent credit card or insurance claims, and identifying combinations of behavior that precede customers dropping their cellular phone service or upgrading their cable television package. You can see that association rules are not just about shopping but also can be applied in health care, insurance, and other industries. The main mathematical calculation of this method is explained here: http://radacad.com/make-business-decisions-market-basket-analysis-part-1.

There are three main attributes for market basket analysis.

Support: The support of an item set or rule measures how frequently it occurs in the data.

Confidence: Confidence is about the probability of a rule. For example, if a customer has purchased a flower, what is the probability that they are going to purchase a get-well-soon card.

Lifts: Importance of the rules, that is, how much of the variance it explains

The first step in each analysis is to identify the main business problem. In this book, I have followed the examples provided in Lantz [6], which identify the most shopping list items that have been purchased together by customers. The second step is to import data into Power BI. You can download the data from GitHub [7]. This data set contains information about more than 9,000 customer transactions. For market basket analysis in R, we must install the arules package. In addition, we must install two other packages in RStudio related to arules: Matrix and Methods. To install these packages, you must have one R version in your machine, such as RStudio or Microsoft R Open. To install these packages, open R IDE, click New R Scripts, and type "Install.packages(<Package Name>)."

We follow the same procedure described in previous chapters for loading data and running the R scripts in Power Query (Figure 8-10).

Queries [3]	c 🔀 🗸 fr = table	.TransformColumityp	es(Source,((*Co)um	nd", type text), ("Colum	2", type text), {"Co	lumd", type (ext),	("Column4", type	e text}, ("Column5"	, type text), (v "*6mu[e3"]	QUERY SETTING
_	Columni	 A²c Column2 	• A Column3	· Ac Columni	• Vc Columns	• At Columni	· A ¹ E Column7	- A ¹ 2 Columnat	A: Column®	- AL Column10	
household_power_consumption	1 ctrus truit	sem-freihedbraat	margarine	ready sougs							* PROPERTIES
household_power_consumption (2)	2 treplex fruit	yeart	collee								Name
A graveries	5 article mile										groceries
	4 signat	yapat-	cream cheese	meet spreads							ALProperties
	5 other vegetables	whole milk	condensed milk	long life builery product							The second second
	6 unitale wills	hutter	went	*2*	abrasive cleaner.						* APPLIED STEPS
	7 ratubana										Source
	Cother vegetables	LHT-mik	mit/bure	bortled beer	liquor (appetter)						K Changed Type
	9 potted plants										
	10 whole mile	cereals.							× 1		
	11 tropical fruit.	other segetables	white bread	Run R Scrint							
	12 citrus fruit	tropical fruit	whole milk	Non K Script					mt.		
	13 best			Type or paste an R script i	in the editor below to p	enform transformation	and shaping steps		1 C C		
	14 Instituter	relutions	anda								
	15 chicken	tropical fruit.		sorpt					1		
	16 butter	niger	fruit/ungetable	* 'deteset' holds the	input data for this	scrapt					
	17 Stud/expatable juice										
	10 packaged fruit/vegetables										
	19 chocolate										
	20 specialty bar										
	21 other vegetables										
	22 Instantinik	pairty									
	23 at of an it.										
	An encoder House sector Annual House Ho	cream cheese	processed chee						1		
	25 tropical trut	reat wegstables	other wegetable	The Kilkome directory is carr	erty set to c (program to	estimated to obenity. 3	AIN		Res.	carety	
	26 bettied water	canned beer		Go to Options and Settings	to change which rists and	on you want to rar, and	sarmore consgaras	ion epelons.			
	27 yapat							and the second se			
	20 minute	relis/buns	soda					OK Carlor			
	29 other vepsiables										
	30 Innum lowed	soda	truit/vegetable p.c.	a canned beer	newspapers	shapping hags			175		
	31 yapet	beverages	Bottled water	specialty bar							
	32 hamiturger inset	other vegetables	rolly/burs	spices	bottled water	hypiere articles	napiline				
	33 root wegetables	other segetables	whole mile	biverages	inger						

Figure 8-10. Importing a data set into Power BI and Run R Script

You must then put the following code into the R scripts editor:

```
library(Matrix)
library(arules)
library(methods)
groceries <- read.transactions("[your local address]/groceries.csv",
sep = ",")
Temp<-apriori(groceries, parameter = list(support = 0.006, confidence =
0.25, minlen = 2))
output<-inspect(Temp[1:100])</pre>
```

In this code, the apriori function from arules is used.

The result of finding association rules in customer behavior is shown in Figure 8-11. The first column (lhs) lists the main item that people purchased; the third column (rhs) lists the items related to the lhs items. The support, confidence, and lift measures are shown in the fourth to sixth columns, respectively. A total 100 rules have been extracted. Finally, click Close and Apply at the top left side. Now we can create a visualization for showing an item and related items in Power BI.

Home Bandom AddColume View	melp.									
Line Factors Count Room Table	Replace Wiles * 195 Unpoint Column 781 * 🔮 Move * Peol Column 🖉 Convert to Uni Any Column	Split In Column	If Erest and Stores	Number Column	2 Ingonometry * 2 Recentley * 2 Information *	Dete Time Dustion	Constant Column Column Single			
** [3]	< × × / = ==	ten IL Scrips'{	(same="output"))[value]					~	QUERY SETTINGS	
entral annual come months.	a Ba	• A	• A ₂ du •	12 support 12	confidence 💌	2 M 12 m	unt 🔳			
	(potted parts)		[ahole milk]	0.006954082	2.4	1.56545963	68		A PROPERTIES	
upe terru countabou to	2 (pectix)	10	(abole milk)	0.006300663	0.405405405	1.58662447	60		Contraction of the local division of the loc	
	3 (herts)	-	(voot vegetablec)	0.00702576	0.43325	3.856477379	67		gracines	
	4 (herts)	-	(other segetables)	0.007727564	0.475	2.858973883	24		All.Properties	
	5 (herbs)	10	(ahole milk)	0.007727504	0.475	1.858983287	21		A APPRIED STUPS	
	6 (processed choose)	10	(Alter sloda)	0.00701576	0.423312883	1.656638054	12			
	2 (semi-finished trees)	1.0	(atole milk)	0.007237438	0.402258858	1.576456504	70		Source Characteria	
	8 (teorape)	10	(whole milk)	0.006812405	0.26172875	1.024275333	67		Changed Type	
	 (detargent) 	19	(other vegetables)	0.006405654	0.3333333888	1.723758539	0		N Tooland	
	10 (detargent)	10	(abole milk)	0.002947636	0.465608466	3.822228187			in order	
	11 (pickled vegetables)		(other wegetables)	0.006405694	0.357954545	2.849964769	0			
	12 (picted vegetative)	10	(abole milk)	0.007117438	0.397727279	1.556564333	20			
	13 (hoking powder)	10	(other vegetables)	0.007320293	0.413793208	2.138547322	72			
	14 (baking powder)		(ahole milk)	0.009252669	0.522988506	2.006793436	81			
	15 (fear)	-	(other segetables)	0.006304026	0.342573099	1.873834174	42			
	16 (Rear)	-	(abole milk)	0.008439248	0.485300227	1.899607422	10			
	17 (soft chesse)	-	(other wegetables)	0.007117438	0.416666667	2.1533392343	70			
	15 (sift chesse)	-	(alroly milk)	0.007324248	0.44047839	3.723489238	74			
	19 (specialty bar)	0	(anda)	6.007215135	0.26194052	3.519638087	21			
	20 (mint heverages)	-	(anda)	0.007320793	0.2580645356	1.479923003	72			
	21 (graped)		(propical fruit)	0.006300062	0.27272727279	2.59930248	40			
	22 (graped)	49	(other segatables)	0.003049324	0.404545455	2.090753634	87			
	23 (grapes)	0	(aducte milk)	0.007320793	0.32727272727	1.24043039	72			
	24 (rat food)	0	(input)	0.006202339	0.268375546	1.909477765	67			
	25 (cit food)	45	(other vegetables)	0.006307372	0.279475988	1.444375349	4			
	25 (at load)	10	(abole milk)	0.008845958	0.379912664	1.456844826	17			
	27 (somilate standar)		Infule mild	0.000032537	0.264234047	1.034041047	20			

Figure 8-11. Result of the market basket analysis

Now we can create a visualization for showing an item and related items in Power BI. We use a specific custom visualization, "Forced-Directed Graph," from the Power BI web site, to show the relationships between items. To get this visual, click Market Place at the top of the Visualizations tab, then search for "Forced-Directed Graph."

After importing the custom visual, the related columns should also be imported (Figure 8-12). For the source, we put lh. For the target, rhs should be used. For the weight, we use the lift attribute.

Figure 8-12. Importing the custom visual and related columns

Some of the visualization parameters, as shown in Figure 8-13, must be changed, to see the visualization better (Figure 8-14).

	VISUALIZATIONS	>	FIELDS
			,0 Search
🚍 🖂 🗤 🖥	■ 🖬 🖩 R 🚳 🔤 (t)	e 🔝	Groceries Column1 Confidence
			T. count
it. Condictione	87 €		V
Contraction (Second Second Sec		· -	
and the second s			T support
The busides			• E household_power_co
instell (at a second second	A Balakak	~ ~	+ 🔳 household_power_co
and the and provide the same of the same day	C Deta Horn	01 -	Custer Four
a production (and the second se	Fill		Custer One
a potest of	Text Size		Custer two
a frier be processed	Intersection	or 0-	E OusterData.cluste
a Preset		•	Clobal active pov
	Revert to default		Global intensity
	∧ Links		Indes
	Arrow	on	I Sub_metering_1
		~ ~	Sub_metering_2
			I Voltage
	Color By Vie	ght -	
	Thickness	on 🗕	
	Display Units	to •	
	Decimal Places	uto I	
	∽ Nodes		
kuluis Pase 2	✓ Sar		

Figure 8-13. Power Query filter value

Figure 8-14. Custom visual parameters setting

We need another custom visual, Chiclet Slicer, from the Power BI store. This custom visual is a specific slicer that can be used to slice and dice the charts with a specific image. As previously, click Market Place, then search for Chiclet Slicer. After importing the visual, choose the value rhs, copy the slicer, and set the value lhs (Figure 8-15).

	Power BI Custom	Visuals			108 ▼ 118 8
Alt by he and he	Add-ins may access personal and Search	document infor	mation. By using an add-in, you agree to its Permassions, License 1	lerms and Privacy Policy. gested for you 🐱	
(anape) (gaper)	Category All Editor's Picks Filtees	다 다 다 다	Chiclet Slicer Display image and/or text buttons that act as an incarvas filter on other visuals $\bullet \bullet \bullet \circ \circ$	Add	
in the second se	KPIs Maps Advanced Analytics Time		HierarchySlicer Create a hierarchy of different fields and use it as a slicer with Power BL ****	Add	
d'autor ni	Gauges Infographics Data Visualizations	XI ave	Smart Filter by OKViz Search to filter and see the list of current filters. ***	Add	
		Q	Text Filter Search across your dataset right from the dashboard	Add	

Figure 8-15. Importing Chiclet Slicer

You will see a report, as shown in Figure 8-16.

Figure 8-16. Market basket analysis report

By choosing an item, such as sliced cheese, with an rhs value in the slicer, a graph chart shows us the related items that people purchase most frequently with that item, such as sausage and yogurt.

Summary

This chapter gave a brief introduction to descriptive analytics. First, an explanation of the clustering was given. How to use k-mean clustering in Power BI visualization was then explained, as was the process of clustering in Power Query Editor. Finally, an explanation of market basket analysis was presented.

References

- [1] Ilknur Kaynar-Kabul, "Understanding data mining clustering methods," The SAS Data Science Blog, http://blogs.sas.com/ content/subconsciousmusings/2016/05/26/data-mining-clust ering/#prettyPhoto/0/, May 26, 2016.
- [2] Quora, "What are the best clustering algorithms used in machine learning?" www.quora.com/What-are-the-best-clustering-algorithms-used-in-machine-learning.
- [3] Georges Hebrail and Alice Berard, "Individual household electric power consumption Data Set," UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets/Individual+house hold+electric+power+consumption, August 30, 2012.
- [4] Leila Etaati, "Make Business Decisions: Market Basket Analysis Part 1," RADACAD, http://radacad.com/make-businessdecisions-market-basket-analysis-part-1, February 14, 2017.
- [5] Association Rules: http://www.ms.unimelb.edu.au/~odj/ Teaching/dm/1%20Association%20Rules%2008.pdf
- [6] Lantz, Brett. *Machine Learning with R*. Birmingham, UK: Packt Publishing, 2015.
- [7] Zach Sednick, "Machine Learning with R datasets," GitHub, https://github.com/stedy/Machine-Learning-with-Rdatasets/blob/master/groceries.csv, 2019.
PART III

Machine Learning SQL Server

CHAPTER 9

Using R with SQL Server 2016 and 2017

In 2016, Microsoft announced the possibility of writing R codes inside SQL Server Management Studio. To be able to write R code in SQL Server 2016, we must install R Services first. In 2017, the ability to write Python codes inside SQL Server 2017 was provided. A developer can write the R and Python codes inside SQL Server Management Studio, using Machine Learning Server and accessing the different R or Python packages. In 2017, instead of R services, we have machine learning services, which allow us to embed R or Python codes in SQL scripts. In this chapter, the process of how we can set up SQL Server Management Studio to write R or Python scripts is explained. A brief explanation of some essential packages is also provided. In addition, best practices for how we can create a model and reuse it for another data set are explained.

SQL Server 2016 and 2017

The first step in using R in SQL Server 2016 is to install SQL Server 2016 [1]. You can choose one of SQL Server's editions, such as free Enterprise, Standard, or Express editions. To install, you must have an Admin account.

 To start the setup wizard for SQL Server 2016, from the Installation tab, select New SQL Server stand-alone installation or add features to an existing installation (Figure 9-1).

CHAPTER 9 USING R WITH SQL SERVER 2016 AND 2017

Planning	New SQL Server stand-alone installation or add features to an existing installation
Installation	Launch a wizard to install SQL Server 2016 in a non-clustered environment or to add features to an existing SQL Server 2016 instance.
Maintenance	Install SQL Server Management Tools
Tools	Im 2 Launch a download page that provides a link to install SQL Server Management Studio, SQL Server command-line utilities (SQLCMD and BCP),
Resources	sige server Powershen provider, sige server Promer and Database running Advisor. An internet connection is required to install these tools.
Advanced	Install SQL Server Data Tools
Options	Launch a download page that provides a link to install SQL Server Data Tools (SSDT). SSDT provides Visual Studio integration including project system support for Azure SQL Database, the SQL Server Database Engine, Reporting Services, Analysis Services and Integration Services. An internet connection is required to install SSDT.
	Wew SQL Server failover cluster installation
	Launch a wizard to install a single-node SQL Server 2016 failover cluster.
	Add node to a SQL Server failover cluster
	Eaunch a wizard to add a node to an existing SQL Server 2016 failover cluster.
	Upgrade from a previous version of SQL Server
	Launch a wizard to upgrade a previous version of SQL Server to SQL Server 2016.
	Wew R Server (Standalone) installation
	Launch a wizard to install R Server (Standalone) on a Windows machine. This is typically used by data scientists as a standalone analysis server or as a SQL Server R Services client.
Microsoft' SOL Server' 2016	
inclusion side server core	

Figure 9-1. SQL Server installation

- 2. On the feature selection page, select R-Services (In-Database). As you can see in Figure 9-2, SQL Server Replication and R Services (In-Database) have been installed.
- 3. The final step is to consent to install Microsoft R Open. After installation is complete, you must restart your computer and run the SQL Server as Admin. For more information about the installation process, follow the Microsoft link on how to install R services in SQL Server 2016 [1].

www.EBooksWorld.ir

🐮 SQL Server 2016 Setup					8 <u>90</u>		×	
Feature Selection Select the Developer features t	to install.							
Global Rules	Features:		Feature des	cription:				
Product Updates Install Setup Files Install Rules Product Key	Instance Features Database Engine Services SQL Server Replication R Services (In-Databas	n ie)	The config feature of SQL Server side-by-sid	guration and op a SQL Server in r instances. SQI de on the same	peration of each in stance is isolated f Server instances computer.	stance from other can operate	< >	
License Terms	E Terms Data Quality Services			Prerequisites for selected features:				
Feature Selection Feature Rules Instance Configuration	PolyBase Query Service Analysis Services Reporting Services - Nation Shared Features	Already installed: - Windows PowerShell 3.0 or high- lative - Microsoft Visual Studio 2010 Red - Microsoft Visual Studio 2010 Red			3.0 or higher io 2010 Redistribut ework 4.6	tables	^ >	
Server Configuration Database Engine Configuration Consent to install Microsoft R Feature Configuration Rules	Control Control Standine) Report Standine) Benorting Services - Shan Data Quality Client	ePoint n for SharePoint Product:	Disk Space	Requirements 20 MB required	d, 335854 MB avail	able	• • • •	
Installation Progress Complete	Select All Unselect All							
	Instance root directory:	C:\Program Files\Microso	oft SQL Serve	r\			I.	
	Shared feature directory:	C:\Program Files\Microso	oft SQL Serve	r\				
	Shared feature directory (x86):	C:\Program Files (x86)\Mi	icrosoft SQL	Server\			1	
			1	< Back	Next >	Cancel		

Figure 9-2. SQL Server Feature Selection

The process of setting up the machine learning services in SQL Server 2017 is the same as for the 2016 version. The only difference is that in feature selection, we have access to both R and Python languages. Moreover, we have to consent to install Microsoft R services and Python (Figure 9-3).

CHAPTER 9 USING R WITH SQL SERVER 2016 AND 2017

Figure 9-3. Installing Machine Learning Services for SQL Server 2017

Machine Learning Services in SQL Server 2017 runs on-premises and in the cloud. This service includes a rich set of algorithms, such as RevoScaleR, Revoscalepy, and MicrosoftML. Moreover, it supports a variety of Microsoft custom R and Python packages. In this chapter, I will explain how we can facilitate writing R scripts in SQL Server 2016 and 2017 (they are the same). In addition, how to use R for doing machine learning, what RevoScaleR is, and how specific algorithms are going to be supported are also explained. Some features, such as how to use pre-trained models for visual analysis and sentiment analysis and how to deploy the solution as a web service will be covered as well.

Running R Scripts

After installing the R services in SQL Server (2016 or 2017), you must enable writing an external script inside SQL Server Management Studio via a specific stored procedure. First, make sure you have already downloaded and installed SQL Server Management Studio [2].

Run Management Studio as Run as Admin and click New Query, to open a query window and run the following code:

sp_configure

By running the preceding code, you will get a list of stored procedures for configuration options (Figure 9-4).

0 %					
	Results Di Messages				
	name	minimum	maximum	config_value	run_value
1	allow polybase export	0	1	0	0
2	allow updates	0	1	0	0
3	backup checksum default	0	1	0	0
4	backup compression default	0	1	0	0
5	cir enabled	0	1	0	0
6	contained database authentication	0	1	0	0
7	cross db ownership chaining	0	1	0	0
в	default language	0	9999	0	0
9	external scripts enabled	0	1	1	1
10	filestream access level	0	2	0	0
11	hadoop connectivity	0	7	7	7
12	max text repl size (B)	-1	2147483647	65536	65536
13	nested triggers	0	1	1	1
14	polybase network encryption	0	1	1	1
15	remote access	0	1	1	1
16	remote admin connections	0	1	0	0
17	remote data archive	0	1	0	0
18	remote login timeout (s)	0	2147483647	10	10
19	remote proc trans	0	1	0	0
20	remote query timeout (s)	0	2147483647	600	600
21	server trigger recursion	0	1	1	1
22	show advanced options	0	1	0	0
23	user options	0	32767	0	0

Figure 9-4. Configuration options available in SQL Server

In line 9, there is a stored configuration procedure named external scripts enabled, with four columns. This stored procedure enables us to write R codes. It has two main attributes: config_value and run_value. When you run the following code:

```
sp_configure 'external scripts enabled'.
```

the initial value for config and run is zero (Figure 9-5).

CHAPTER 9 USING R WITH SQL SERVER 2016 AND 2017

Figure 9-5. Running the external scripts store procedure

To run R code in SQL Server 2017/2016, we must change the run_value to 1.

Exec sp_configure 'external scripts enabled' ,1 Reconfigure with override

Now, if we run the code in Figure 9-5, we will get another result (Figure 9-6).

===	Results	B Messages				
	name		minimum	maximum	config_value	run_value
1	extern	al scripts enabled	0	1	1	1

Figure 9-6. Enabling the running of R scripts in SQL Server

It is possible that the run_value has not changed to 1, so you must restart SQL Server Management Studio.

After the run_value changes to 1, it is possible to check if R script has been enabled. We execute a stored procedure that has three main inputs:

@language gets the name of scripting language.

@script stores the related R scripts. In the following example, we assign the input variable to output one OutputDataSet<-InputDataSet'.

@input_data_1 stores the related data for consumption of R
scripts. In the following example, it is a very simple SQL Code:
select 1 as hello.

```
exec sp_execute_external_script @language =N'R',
@script=N'OutputDataSet<-InputDataSet',
@input_data_1 =N'select 1 as hello'
with result sets (([hello] int not null));
go
```

If you run the preceding code, you will see that the output is hello and the value is 1 (Figure 9-7). The output of a stored procedure can be identified by "with result sets." The column name to be shown in the output is hello, and the output value is an integer number (1), and it should not be null. As a result, we have [hello] int not null.

Figure 9-7. Enabling R scripts

Packages in R

It is possible to check the path for R-services. The code for getting the library path for R is

```
OutputDataSet <- data.frame(.libPaths())</pre>
```

To run the stored procedure, we set the language parameter to R.

```
@language = N'R'
```

The input R scripts is

```
@script = N'OutputDataSet <- data.frame(.libPaths());'.</pre>
```

So, the whole code would be

```
EXECUTE sp_execute_external_script @language = N'R'
, @script = N'OutputDataSet <- data.frame(.libPaths());'
WITH RESULT SETS (([DefaultLibraryName] VARCHAR(MAX) NOT NULL));
GO</pre>
```

After running the code, the library path of R will be shown in the output window (Figure 9-8).

Figure 9-8. R library path

You can check the installed packages in Machine Learning Services. The R code for checking the installed packages is

```
packagematrix <- installed.packages();
NameOnly <- packagematrix[,1];
OutputDataSet <- as.data.frame(NameOnly)</pre>
```

As we are not getting any input value from the user, we do not have any input for the stored procedure (Figure 9-9).

```
EXECUTE sp_execute_external_script @language=N'R'
,@script = N'str(OutputDataSet); packagematrix <- installed.packages();
NameOnly <- packagematrix[,1]; OutputDataSet <- as.data.frame(NameOnly);'
,@input_data_1 = N'SELECT 1 as col'
WITH RESULT SETS ((PackageName nvarchar(250) ))</pre>
```

After running the code, you can see the existing R packages in SQL Server.

As you can see in Figure 9-9, the list of R packages is shown. There is a variety of libraries available from Microsoft and some other open source or third-party packages. In the next section, I will explain two of them.

Figure 9-9. R Packages in SQL Server Machine Learning Services

RevoScaleR Package

RevoScaleR is a package created by Revolutionary Analytics (now owned by Microsoft), with the aim of importing, transforming, and analyzing data at scale. There are different categories of functions available from the data store, imports and save as, data transformation, draw some charts such as histogram, line, and so forth, descriptive analysis, predictive analysis, package management and so forth [3].

In this section, I will introduce some of the functions that you may use for machine learning purpose. The examples will be shown in SQL Server 2017.

rxLinMod

rxLinMode fits a linear model to data. In the following example, I will show you how to use this function to create a model for predicting the strength of concrete in relation to such input variables as the amount of water, cement, ash, and age. The rxLinMode function creates a model based on a formula and a training data set.

As you can see in following code, the first line is EXECUTE sp_execute_external_ script @language=N'R', which calls a stored procedure that allows the user to write an R script inside SQL Server. This stored procesure is responsible for using external scripts such as R or Python inside SQL Server Code. CHAPTER 9 USING R WITH SQL SERVER 2016 AND 2017

```
EXECUTE sp_execute_external_script @language=N'R'
,@script = N'require("RevoScaleR")
formula=strength~cement+ash+age+water
Model_1=rxLinMod(formula,data=inputDataSet)
Model=data.frame(payload = as.raw(serialize(Model_1, connection=NULL)))'
,@input_data_1 = N'Select strength,cement,ash,age,water from [dbo].
[concrete]; '
,@output_data_1_name = N'Model'
,@input_data_1_name = N'inputDataSet'
WITH RESULT SETS (([concreteModel] varbinary(max) NOT NULL ));
```

The second line in the code, contains the relevant R code stored in the "@script" parameter. The code refers to the RevoScaleR package by using the function require. There is no need to install this package, as it already exists in Machine Learning/R services. The second R code line is about creating a formula. Our mission is to predict the strength of concrete according to some other variables such as amounth of water, cement and so forth. The formula that allows us to do this is strength~cement+ash+age+ water, which stores the formula in a "formula" variable. The third line contains the rxLinMod function, which creates a linear model from the formula. Finally, the last line of the code stores the formula in an output variable named "Model".

@input_data_1 stores the data collected from the SQL database, using SQL query N'Select strength,cement,ash,age,water from [dbo].[concrete]. Finally, the output variable Model will store the linear model.

After creating the model, I want to store it, for predicting the new series of data. To store the model, the following code is used:

END

Next, we ,must insert the model into a table. The following code inserts the model into a LinearModel table.

148

```
Insert into [dbo].[LinearModel]
```

```
EXECUTE sp_execute_external_script @language=N'R'
```

,@script = N'require("RevoScaleR")

```
formula=strength~cement+ash+age+water
```

```
Model 1=rxLinMod(formula,data=inputDataSet)
```

```
Model=data.frame(payload = as.raw(serialize(Model_1, connection=NULL)))'
,@input_data_1 = N'Select strength,cement,ash,age,water from [dbo].
[concrete]; '
```

```
, @output data 1 name = N'Model'
```

```
,@input data 1 name = N'inputDataSet'
```

The model is already stored in the database. Now, in another stored procedure, we are going to use the model, to predict the data.

```
declare @rx model varbinary(max) = (select [Model] from [dbo].[LinearModel] );
   exec sp execute external script
                               @language = N'R'
                           , @script = N'
                           require("RevoScaleR");
                           cdr model<-unserialize(rx model);</pre>
                           predictions <- rxPredict(modelObject = cdr model,</pre>
                           data = PredictionData)
                           prediction <-as.data.frame(predictions);'</pre>
      , @input data 1 = N'Select strength, cement, ash, age, water from [dbo].
      [concrete]'
      , @input data 1 name = N'PredictionData'
      , @output data 1 name=N'prediction'
      , @params = N'@rx model varbinary(max)'
      , @rx model = @rx model
      with result sets (("prediction" float not null ));
```

There is another input for a stored procedure that is not just a data set. It contains input for models that we have already stored in a database.

By running the stored procedure, the following prediction results are shown (Figure 9-10).

Figure 9-10. Linear model for concrete strength prediction

There are other models for regression analysis. These include rxLogit, used for logistic regression; rxGlm, for generalizing the linear model to data; and others. In addition, for other types of analysis, such as group prediction (classification), there are such algorithms as rxDTree, rxBTree, rxDForest, and rxNaiveBayes [3].

Azure ML Package

Azure ML is another package to manage an experiment created in Azure ML Studio (see Chapter 12). This package has some popular functions and allows users to create a web service from R functions. This package also allows R users to explore the Azure ML data set, explore existing data sets, and so forth. Details of how to use this package are provided in Chapter 12, following an explanation of Azure Machine Learning Studio.

Creating R Visuals in SQL Server Reporting Services

It is possible to generate R charts in SQL Server and show the chart in SQL Server Reporting Services (SSRS). The first step is to install the required package into Machine Learning Services. To do this, we can use the install.packages() command in an external scripts stored procedure, as follows:

```
EXECUTE sp_execute_external_script @language=N'R'
,@script = N' install.packages("ggplot2");'
,@input_data_1 = N'SELECT 1 as col'
WITH RESULT SETS ((PackageName nvarchar(250) ))
```

The preceding code may work, but sometimes it doesn't, because of the administrator permission. You may receive a message such as the following warning in install.packages("arules"):

```
'lib = "C:/Program Files/Microsoft SQL Server/MSSQL14.ML2017/R_SERVICES/
library"' is not writable
Error in install.packages("ggplot2") : unable to install packages
Calls: source -> withVisible -> eval -> eval -> install.packages
```

To address this problem, we must run Rugi.exe as admin, to install the package. In addition, we must specify where to install the packages. As a result, the path of the Machine Learning Services for R in SQL Server is required. There is a function in R, .libPaths(), that shows the location of installed packages. So, we must run this code in SQL Server 2017, to find out the R library path.

```
EXECUTE sp_execute_external_script @language = N'R'
, @script = N'OutputDataSet <- data.frame(.libPaths());'
WITH RESULT SETS (([DefaultLibraryName] VARCHAR(MAX) NOT NULL));
GO</pre>
```

By running the code, the Machine Learning Services library path will be shown in SQL Server output windows (Figure 9-11).

Figure 9-11. The library path for Machine Learning Services

By installing ggplot2, there may be another message requesting installation of other packages. After installing the ggplot2 library, we can write R code to create a chart and store it in SQL Server. I am going to draw a chart using the following SQL codes:

```
exec sp_execute_external_script @language =N'R', @script=N'library("ggplot2")
fields<-inputDataSet fields<-na.omit(fields) image_file = tempfile();
jpeg(filename = image_file, width=1000, height=1000); print(ggplot
 (fields,aes(x=fields$TaxAmt,y=fields$TaxAmt))+geom_boxplot()+facet_
grid(fields$Color~.) ) dev.off(); OutputDataset <- data.frame(data=
readBin(file(image_file,"rb"),what=raw(),n=1e6)) ',@input_data_1 =N'select
Color,Size,class,TaxAmt,SalesAmount from [dbo].[FactInternetSales] FIS inner
join [dbo].[DimProduct] DP on FIS.ProductKey=dp.ProductKey' ,@input_data_1_
name = N'inputDataSet' ,@output_data_1_name = N'OutputDataset' WITH RESULT
SETS ((plot varbinary(max)));</pre>
```

R Code Section

```
library("ggplot2")
fields<-inputDataSet
fields<-na.omit(fields)
image_file = tempfile();
jpeg(filename = image_file, width=1000, height=1000);
print(ggplot(fields,aes(x=fields$TaxAmt,y=fields$TaxAmt))+geom_
boxplot()+facet_grid(fields$Color~.)
)
dev.off();
OutputDataset <- data.frame(data=readBin(file(image_
file,"rb"),what=raw(),n=1e6</pre>
```

Some brief explanation about the preceding code follows:

library("ggplot2"): refers to the package.

fields<-inputDataSet: gets the data.</pre>

```
image_file = tempfile();
```

jpeg(filename = image_file, width=500, height=500); creates the image file from the ggplot2 package.

```
ggplot(fields,aes(x=fields$TaxAmt,y=fields$TaxAmt))+geom_
boxplot()+facet_grid(fields$Color~.) refers to code that has been explained in
previous posts.
```

```
dev.off();
OutputDataset <- data.frame(data=readBin(file(image_file,"rb"),what=raw(),
n=1e6
```

This code creates a Var binary variable to convert the plot into a variable of binary type. The preceding code creates a table chart with a box plot.

The next step is to get the data from SQL Server.

Input Data

```
@input_data_1 =N'select Color,Size,class,TaxAmt,SalesAmount from [dbo].
[FactInternetSales] FIS inner join [dbo].[DimProduct] DP on FIS.
ProductKey=dp.ProductKey' ,@input_data_1_name = N'inputDataSet' ,@output_
data_1_name = N'OutputDataset'
```

The relevant data set, AdventureWorks, can be downloaded from www.microsoft. com/en-us/download/details.aspx?id=49502 [4].

Return Data

```
WITH RESULT SETS ((plot varbinary(max)));
```

Finally, we must return the plot, in the form of a binary variable. By running the code, we may get the result shown in Figure 9-12. CHAPTER 9 USING R WITH SQL SERVER 2016 AND 2017

```
@input_data_1 =N'select Color,Size,class,TaxAmt,SalesAmount
from [dbo].[FactInternetSales] FIS inner join
[dbo].[DimProduct] DP on FIS.ProductKey=dp.ProductKey'
,@input_data_1_name = N'inputDataSet'
,@output_data_1_name = N'OutputDataset'
WITH RESULT SETS ((plot varbinary(max)));
100 % ~4

    Results @ Messages

    Messages
```

Figure 9-12. Creating a binary value for the chart

Now we must store the data in a table. First, we create a table with the name ggplot inside SQL Server, using the following code:

```
IF NOT EXISTS (SELECT 1 FROM sys.objects WHERE object_id = OBJECT_
ID(N'[dbo].[ggplot]') AND [type] IN (N'U')) BEGIN alter TABLE [dbo].
[ggplot]( [plot] [varbinary](MAX) NULL ); END
```

Then we enter the plot into the table, by inserting the following command:

```
insert into [dbo].[ggplot] exec sp_execute_external_script @language =N'R',
@script=N'library("ggplot2") fields<-inputDataSet fields<-na.omit(fields)
image_file = tempfile(); jpeg(filename = image_file, width=1000,
height=1000); print(ggplot(fields,aes(x=fields$TaxAmt,y=fields$TaxAmt))
+geom_boxplot()+facet_grid(fields$Color~.) ) dev.off(); OutputDataset
<- data.frame(data=readBin(file(image_file,"rb"),what=raw(),n=1e6)) ',
@input_data_1 =N'select Color,Size,class,TaxAmt,SalesAmount from [dbo].
[FactInternetSales] FIS inner join [dbo].[DimProduct] DP on FIS.
ProductKey=dp.ProductKey' ,@input_data_1_name = N'inputDataSet' ,@output_
data_1_name = N'OutputDataset'
```

Now we have a chart that has been created and stored in our database.

Showing the Chart in SSRS

To show the chart in SQL Server data tools, we must create a new SSRS project (Figure 9-13).

CHAPTER 9 USING R WITH SQL SERVER 2016 AND 2017

Figure 9-13. Create a SSRS project in SQL Server data tools

Next, we follow the required steps for creating an SSRS report (Figure 9-14).

			Connection Properties	? ×
			Data source:	
			Microsoft SQL Server (SqlClient)	Change
			Server name:	
			DESKTOP-LU7P7AQ\ML2017 O Refresh	
			Log on to the server	
			Authentication: Windows Authentication	~
otsi SCTD	Resourcement Select the Data Source Balect data source For which to actain says for this report or scars, a ne	e zele sowal.	User name: Password:	
	O Shared delo sucher		Save my password	
	Rev data scance Norther Norther		Connect to a database	
	Nype Microsoft SQ, Server -		Select or enter a database name: Adventureworks.DW2016CTP3	×
	Connection taking:	0 fr.	O Attach a database file:	
rection	ficoeties ? X	Distantia.		Browse
a 65.0	×		Logical name:	
INCOC'T	SG Server (Selfclering Changes			
	Rafeet			
9~ 1	the cover			
Aveni	asier Window Automotion -	THE PLATE LINE		Advanced
20			Test Connection OK	Cancel

Figure 9-14. Creating an SSRS project with data tools

Then must create a query to get the plot from the ggplot table (Figure 9-15).

Design the Query Specify a query to execute to get the dats for the report.	Report Waars Design the Table Choose how to group the data in the table	. 2
Use a query builder to design your query. Query Builder,	Available fields:	Displayed Helds:
Query shring: solect * from ggalat	Corr.p.	
	Defailte	plot.
	- Remove	e Back Next Fight sci Circal
Help (Back Next > [Help])	Cancel	

Figure 9-15. Getting the data from the SQL Server table in SSRS

Next, we must insert an image into the report area and view the preview tabs (Figure 9-16) to check the charts.

Figure 9-16. Box plot chart in SSRS

Summary

This chapter gave a brief explanation of how to run R scripts in SQL Server 2016 and 2017. It outlined how to run the necessary code via external scripts and stored procedures. In addition, it discussed how with packages such as RevoScaleR and Azure ML, we can access additional machine learning and R services. Furthermore, the process of how we can perform predictive analytics was explained via an example. The next chapter offers an overview of how to do machine learning in Azure Databricks.

References

[1] Microsoft, "Install SQL Server 2016 R Services," SQL Docs, https://docs.microsoft.com/en-us/sql/advanced-analytics/ install/sql-r-services-windows-install, September 30, 2028.

CHAPTER 9 USING R WITH SQL SERVER 2016 AND 2017

- [2] Microsoft, "Download SQL Server Management Studio (SSMS)," Download SMSS, https://docs.microsoft.com/en-nz/sql/ ssms/download-sql-server-management-studio-ssms, March 28, 2019.
- [3] Microsoft, "RevoScaleR package," Docs, https://docs. microsoft.com/en-us/machine-learning-server/r-reference/ revoscaler/revoscaler, January 28, 2018.
- [4] Microsoft, "AdventureWorks Databases and Scripts for SQL Server 2016 CTP3," Download Center, www.microsoft.com/en-us/ download/details.aspx?id=49502, 2019.
- [5] Buck Woody, Danielle Dean, Debraj GuhaThakurta, Gagan Bansal, Matt Conners, Wee-Hyong Tok, *Data Science with Microsoft SQL Server 2016*, https://download.microsoft. com/download/C/7/4/C744F71B-BE31-4EE7-887A-FF525B026B3C/9781509304318_Data%20Science%20with%20 Microsoft%20SQL%20Server%202016_pdf.pdf, 2016.

CHAPTER 10

Azure Databricks

Databricks is an analytics service based on the Apache Spark open source project. Apache Spark is a batch processing and real time processing environment. Apache Spark is quite popular among data scientists because of its ability to analyze huge amounts of data, its streaming capabilities, graph computation, machine learning, and interactive queries engine. Spark provides in-memory cluster computing. One of the popular tools for big data analytics on Spark is Databricks. Databricks has been used for ingesting a significant amount of data, cleaning data, applying machine learning, and so forth. In February 2018, there was an integration between Microsoft Azure and Databricks that provides a better collaboration between data engineers, data scientists, and data analytics. This integration provides data science and data engineering teams with a fast, easy, and collaborative Spark-based platform in Azure [1]. Azure Databricks is a new platform for big data analytics and machine learning. The notebook in Azure Databricks enables data engineers, data scientists, and business analysts to collaborate using a single tool. This chapter gives an overview of what Azure Databricks is, the environment it inhabits, and its use in data science.

Databricks Environment

To create Azure Databricks in an Azure environment, log in to one of your Azure accounts. From there, create an Azure Databricks module (Figure 10-1).

159

Figure 10-1. Azure Databricks environment

After creating the Azure Databricks module, Azure will navigate to a new page. To access Azure Databricks, click Launch Workspace (Figure 10-2).

Figure 10-2. Launch Workspace

As you can see in Figure 10-3, the Azure Databricks environment has different components. The main components are Workspace and Clusters. The first step after launch is to create a cluster. Clusters in Databricks provide a unified platform for ETL (extract, transform, and load), stream analytics, and machine learning. Clusters are of two types: interactive and job. Notebook clusters are used to analyze data collaboratively. However, job clusters are used to run fast and robustly automated workloads, using APIs. Cluster pages may contain both cluster types. Each cluster can have different nodes. To start, you must create a cluster. Click the Create Cluster option (Figure 10-3).

Figure 10-3. Creating clusters in Databricks

On the Create Cluster page (Figure 10-4), enter the relevant information, such as cluster name, version (default), Python version, minimum and maximum workers, and so forth.

Create Cluster			
New Cluster Cancel	8 Workers: 28.0-112 Driver: 14.0 GB Mem	0 GB Memory, 8-32 lory, 4 Cores, 0.75 D	Cores, 1.5-6 DBU BU Cost \$0.40 per DBU @
Cluster Mode			
Serverless Pool (beta, R/Python/SQL) Standard	Learn more abo	ut Serverless Poo	ls ©
Cluster Name			
AzureDatabricks Book			
Databricks Runtime Version @			
4.0 (includes Apache Spark 2.3.0, Scala 2.11)			
Python Version Ø			
2 \$			
Driver Type			
Same as worker 14.0 GB Memory, 4 Cores, 0.75 DBU \$			
Worker Type	Min Workers	Max Workers	
Standard_DS3_v2 14.0 GB Memory. 4 Cores, 0.75 DBU \$	2	8	Enable autoscaling @
Auto Termination @			
Terminate after 120 minutes of inactivity			
Spark Tags Logging			
Spark Config @			
Enter your Spark configuration options here. Provide only one Example: spark speculation true spark kryo.registrator my. package.Mt/Registrator	key-value pair p	er line.	

Figure 10-4. Create Cluster page in Azure Databricks

As you can see in Figure 10-4, we a have driver node and a worker node. The worker node is for distributing your workload. The driver node is responsible for maintaining the SparkContext. It is possible to resize automatically and autoscale the size of the cluster. By enabling autoscale, the minimum and maximum number of workers can be limited during a cluster's lifetime.

To use Clusters, you should wait till State changes to Running (Figure 10-5). By creating an interactive cluster, you can create a notebook in which to write codes and from which to get results quickly.

+ Create Cluster							AL	Crowled by me	Q filter
Interactive Clusters									1 ctusters. 0 out of 20 primed
Name	State	Nodes	Driver	Worker	Runtime	Creator	8		Actions
Abereichatabelicks ibeek	Hunning	э	standard_033_v2	Wandard_053_v2	4.0 (includes Apache Sp.	fata atsati@prial.com	e		-
- Job Clusters									

Figure 10-5. Running Clusters

To create a notebook, click the Workspace option and create a new notebook (Figure 10-6).

Figure 10-6. Creating a notebook in Databricks

By creating a new notebook, you can specify which notebook belongs to which cluster and what the main language for the Notebook (Python, Scala, R, and SQL) is. In this example, the R language has been selected as the default. However, you can still write in the notebook in other languages, by writing: %scala, %python, %sql, or %r before the scripts (Figure 10-7).

Micros	soft Azure						
Acare Databacks Ions	Workspace P Documentation O Release Notes Training & Tutorials S Shared	*	NotebookBook (rywon) & Attached: AzwoDatabidis Book * Di File * Sei Ver 1 1	Create I	Notebook)	53
Worksoner Recent Data Auston Jost	¥ Users ♪ NotebookBook	-	partitudeser to run <u>approved</u>	Language Cluster	Register Scala Sol. R	Cancel Create	

Figure 10-7. Creating an R notebook in Databricks

By default, in the notebook, there is a place to write code. As you can see in Figure 10-8, there an editor with name Cmd1 as a node in which to write the codes and run them all. In our example, there is only one node, and the primary language in which to write the code is R. In addition, we use the existing data set in the gpplot2 package named mpg, by writing the following code:

library(ggplot2) display(mpg)

The display command shows the data set in Databricks. To run the code, click the arrow at the right side of the node and select Run Cell (Figure 10-8).

Figure 10-8. Writing an R notebook in Databricks

After running the code, the result will appear at the end of the cell in table style. As you can see in Figure 10-9, the initial result is shown as a table; however, it is possible to show the result in the same format as other charts.

1 library(ggplot2) 2 display(mpg)											pre la
+ (1) Spark Jobs											
manufacturer	∼ model	v displ	- year	∵ cyl	- trans	- drv	₩ cty	- hny	~ 8	~ closs	
aud	a4	1.0	1993	4	auto(5)	1	18	29	p	compact	
audi	a4	1.0	1999	4	manual(m5)	1	21	29	p	compact	
#25	4	2	2903	4	manual(m6)	r	20	31	p	compact	
eud	a4	2	2003	4	auto(av)	1	21	30	p	compect	
audi	a4	2.8	1999	6	auto(5)	1	16	26	P	compact	
aud	a4	2.6	1999	6	manual(m5)	ſ	18	26	P	compact	
audi	ad	3.1	2003	8	auto(av)	1	18	27	p	compact	
and	at qualito	1.8	1999	4	manual(m5)	4	18	26	p	compact	
Lave .			-005					10			
A * A											
General tank 2.11 carrande by 1	alls, startificaril.com at 18/00/2018 Tribula	At an Appredictule (ch	. Kenh								

Figure 10-9. Running the R

To show the chart, you must click the chart icon at the bottom of the cell (Figure 10-10).

Micro	osoft Azure	PORTAL isila.etaati@gmail.com
	DatabricksA/Book #0 & Antohed # AceroBatahos Bosk * @flie * Wiler Code * @Persistens @Run Al #Clau *	O ? d
The second secon	1 Uthrary(cgs1ct2) 2 display(opg) • (1) Spek Join 2 do	ж и (v = v)
	compact p sov, e měbice, r poky, r sobcompact p compact r Compact p sov, e měbice, r poky, r sobcompact p compact r Compact p sov, e měbice, r compact p c	

Figure 10-10. Show the chart in Databricks

You can change the item that you want to show in the chart, by clicking the Plot Options (Figure 10-11).

Micro	soft Azure				PORTAL Iella etazli@gmail.com
	DatabricksAlBook (#)				0 7 ▲
interests	Attached AzureDatabicks.Book • Billie • SelVers Cod	Customize Plot	ж	El El Schedule	Constens S Revision history
	1 (19rary(gg)(11)) 2 etsplay(ayg) 1 (1) Speak Join 1,000 000 00 00 00 00 00 00 00 0	Al fields: Keys: mandfalanter model dagi year of two dv Cy bay two bay two bay two two two two two two two two	1,000 1,000 1,000 400 0,000000		b+arv = k
	20 compet, p our, r 2 sealer, p enhau, r Tenner Les - Le espain - Le trait, etcartigant, ins it it Interfecture de rese Diffécture de rese gattable	Aggingation TU- TAVO Lan, LAX, COUNT	€ Gruppid G Stacked G 195% Barichant → Dhyley type Barichant → Cancel Apply		

Figure 10-11. Chart Option in Databricks

It is possible to create a new cell to write more codes in R or Scala. For our example, we must upload a data set named Titanic into Azure Databricks.

To import data, click the Data option at the left side of the window (Figure 10-12), Then click Add Data. This navigates to a new page (Figure 10-12). Then click Upload File. Just browse and upload the titanic file. If you need this file, you can access it from www.kaggle.com/c/titanic.

Figure 10-12. Importing data with the Data option

As you can see in the Figure 10-13, we must create a table with a user interface (UI) and choose the related cluster to be uploaded there.

Orente Maus Table		Create New Table
Create New Table Data source 0 Upload File DBFS Other Data Sources Upload to DBFS D		Anne Create New Table
		Detailoute 0 Union The DRES Other Data Services
		/FieStoreTaties/ (optional) Select
FileStore/tables/ (optional)	Select	Productore File 0
File O		Parameter dev
titanic.csv 61.2 KB Remove file	0	Process Galaxie
titanic.csv 51.2 KB Remove file	1 Salitanic esy	Provent Provide Provide Provid
titanic.csv 61.2 KB Remove file File uploaded to <i>/FileStorefable</i>	1 Soltanio osv	Procest Constant Table out out of Constant Calor Constant Constant Table out out of Constant Calor Constant Table out out of Constant Calor Constant Table out out of Constant Calor Constant Calor In Provident the Table Constant Calor In Provident the Table Constant Calor In Constant Calor
File Q Create Table with UI	Stitanic.osv eate Table in Notebook	Preserve Charter Charter <t< td=""></t<>
File Q 61.2 KB Remove file File upleaded to /FileStorentables Create Table with UII	Stitanic.csv este Table in Notebook	Prevent Control Control <td< td=""></td<>

Figure 10-13. Importing data into Azure Databricks

We now create a new workspace named

```
val titanic = spark.table("titanic")
display(titanic.select("*"))
```

To work with the Titanic data set, we only have to select the Survived, Sex, Age, and PClass columns (see Figure 10-14).

val specificColumnsDf = titanic.select("Survived", "Pclass", "Sex", "Age")
val renamedColumnsDF = specificColumnsDf.withColumnRenamed("Sex", "Gender")
display(renamedColumnsDF)

nachineiearning (Scala)			
🖞 Altached: 🖷 cluster 🕶 🖻 File 🕶 📓 View: Cod	e 🕶 🗟 Permissions 🐵 Run All 🥒 Clear 🕶		🖾 🛗 Schedule 🍬 Comm
<pre>int i val titanic = spark.table("titanic' 2 //display(titanic.select("*")) 3 val specificolumnsDf = specificolu 4 val renamedColumnsDf = specificolu 5 display(renamedColumnsDF)</pre>	") lect("Survived", "Pclass", "Sex", "Age") amsDf.withColumnRenated("Sex", "Gender")		
 (1) Spark Jobs (2) Stark Jobs (2) Stark: org apache spark sql DataFrame = [(2) specificColumnsDf: org apache spark sql (2) renamedColumnsDf: org apache spark sql 	Passengerid: string, Survived: string 10 more fields) staFrame = [Survived: string, Polass: string 2 more fields] DataFrame = [Survived: string, Polass: string 2 more fields]		
Survived	- Pclass	🤝 Gender	- Age
0	3	male	22
1	1	female	36
1	3	female	26
1	1	female	35
0	3	male	35
	3	male	null
0		insta	84
0	1	mele	04
0	1 3	male	2

Figure 10-14. Running the Scala language to get data from Azure Data Lake Store

Now, for the purpose of machine learning, we are going to predict if a new passenger of a specific age, gender, and passenger class will survive or not. For this, we must run the R codes to this data in another cell, to create a model and predict whether a passenger of a specific age, gender, and passenger class will survive. We must pass the data from Scala to R. To do this, we must create a temporary table to give the table to the R code, using the following code:

```
renamedColumnsDF.createOrReplaceTempView("TempTable")
```

We add a new cell by clicking the plus sign under the latest cell. In the new cell, we must write R codes. Therefore, we must mention the language by putting %r at the start of the code. Also, we are using some packages from SparkR, so we use the function SQL, to fetch data from the last Scala cell. Finally, we store the data with a dataset variable.

```
%r
library(SparkR)
sql("REFRESH TABLE TempTable")
df <- sql("SELECT * FROM TempTable")
dataset<-as.data.frame(df)
display(df)</pre>
```

In the same cell or the new one, you can write some code for machine learning. In our example, we are looking to check whether a passenger of a specific passenger class, age, and gender is going to survive. The *rpart* package can be used to create a decision tree. This package helps us to predict the probability of survival.

```
%r
library(SparkR)
sql("REFRESH TABLE TempTable")
df <- sql("SELECT * FROM TempTable")
dataset<-as.data.frame(df)
library(rpart)
DT<-rpart(Survived~.,data=dataset,method="class")
test<-dataset[,2:4]
Prediction<-predict(DT,test)
output<-data.frame(test,Prediction)
display(output)</pre>
```

By running the cell, the output will be displayed (Figure 10-15).

<pre>3 %r 2 \Usery(\parks) 2 \Usery(\parks) 3 %r 3 \userset 3 \use</pre>					
 (2) Spark Jobs Poloss 	Gandar	- 400	- YA	- X	
3	male	22	0.9061726395061729	0.05382716049382716	
1	female	38	0.052941176470588235	0.9470588235284117	
3	female	25	0.125	0.874999999999999	
1	female	35	0.052941176470568235	0.9470588235294117	
3	male	35	0.9061728395061729	0.09382716049382716	
3	mate	null	0.9051728395061729	0.09382716049382716	
1	male	54	0.8481012656227849	0.1518987341772152	
	male	2	0.9061728395061729	0.09382716049982716	
3					

Figure 10-15. Creating a new cell in Azure Databricks

It is possible to draw charts using such R packages as ggplot2 as well. For example, if we want to see the Pclass, age, and gender in a scatter chart with a specific legend, we can leverage the following code.

```
CHAPTER 10 AZURE DATABRICKS
```

```
%r
display(output)
library(ggplot2)
ggplot(output,aes(x=output$Age,y=output$Pclass,
color=output$Gender))+geom_jitter()
```

As you can see in Figure 10-16, a scatter chart with the legend output\$Gender will result.

Figure 10-16. Creatiing a new cell in Azure Databricks

Azure Databricks is not only for machine learning. It can also retrieve data from different resources on which to apply changes and then shows the result in some visualization tool, such as Power BI. In addition, it is possible to schedule the process (Figure 10-17).

Micro	soft Azure				PORTAL Iela.etaati@gmail.com
	DatabricksAlBook (n) A Attached A Approbations Book = 3 1 3 2 1 4 • A	Pfler Water Cole + a Presenter rale = 5 rale = 2 tout.	Create Schedule	6.030271664302716 6.0300271645302716 0.0300274645302716 0.0300274645302716 0.0300274645302716	o 7 L Connects Disvelop batery Schedule job Tws None 2
O Deserved Dese	Conseq too: 141 access + to int Conseq too: 141 access + to int 1 too 2 too 3 tooping (access) 4 tooping (access) 5 accessing (access) 5 accessing (access) 5 accessing (access) 5 accessing (access) 5 accessing (accessing	ister yr offer the second s	der))-geen_fitzer()		

Figure 10-17. Scheduling a process using Databricks

There are different ways to get data from SQL database, including such Azure services as Azure Blob, Data Lake Store, Azure Cosmos, among others [2].

Summary

This chapter provided a concise overview of how we can use Azure Databricks for machine learning. It discussed how we can use the Databricks environment for writing R and Scala scripts and how we can pass data from one cell in a Databricks environment to another. Finally, you saw how we are able to apply R codes to train a model and use it for predicting. The processes of how to import data and how to do machine learning was explained as well. The next chapter will provide an overview of how to do machine learning in Azure Data Lake.

References

- [1] Ali Ghodsi, "Introducing Azure Databricks," Databricks, https:// databricks.com/blog/2017/11/15/introducing-azuredatabricks.html, posted November15, 2017.
- [2] Azure Databricks, "Data Sources," https://docs. azuredatabricks.net/spark/latest/data-sources/index. html, 2019.

Machine Learning in Azure

www.EBooksWorld.ir

CHAPTER 11

R in Azure Data Lake

Azure Data Lake Store is one of the components in Microsoft Cloud that helps developers, data scientists, and analysts to store data of any size and shape. Azure Data Lake is optimized for processing large amounts of data. It provides parallel processing with optimum performance. In Azure Data Lake, we can create a hierarchical data folder structure. Because of these capabilities, Azure Data Lake makes it easy for data scientists to apply advanced analytics and machine learning modeling with high scalability costeffectiveness. Azure Data Lake Analytics includes U-SQL, which is a language like SQL that enables you to process unstructured data [1]. It is possible to perform machine learning inside Azure Data Lake and explore the Azure Data Lake from RStudio to create models inside the RStudio environment. Moreover, it is possible to get data from Azure Data Lake with Hive query and to use that data inside Azure Machine Learning. In this chapter, you will see how we can write and work with data, using U-SQL language with R in Azure Data Lake, and how we can import data from Azure Data Lake to RStudio or import data from RStudio into Azure Data Lake.

Azure Data Lake Environment

Azure Data Lake is one of the components of Microsoft Cloud with the aim of storing data. As you can see in Figure 11-1, the second component in Azure Portal is about storing data. Azure Data Lake Store can store data of any size or format (structured and unstructured). It is also used for doing analytics (third component). Azure Data Lake Analytics can be used for data analytics (using U-SQL) and machine learning.

175

Figure 11-1. Microsoft Cloud components

To access the Azure Data Lake Store and Data Lake Analytics, you must have an Azure account. You can create one, by accessing the following link: https://tsmatz.wordpress.com/2017/06/08/azure-data-lake-r-extension/. Sign in "Portal.Azure. com," then, click the Create a resource icon on the left side of the portal (Figure 11-2). By typing "data lake," two different components for Azure Data Lake will appear. To begin, we first are going to create Azure Data Lake Store.

Figure 11-2. Creating Azure Data Lake Store and Data Lake Analytics

By clicking the Create option, first you will have to provide some information, such as the name of the service, subscription, resource group, and the server location (Figure 11-3).

Figure 11-3. Creating Azure Data Lake Store

It takes a while to create components. As you can see in Figure 11-4, Azure Data Lake Store has been created. After the creation of Azure Data Lake store, we can upload new data there.

Figure 11-4. Creating Azure Data Lake Store

By clicking the Data Explorer option, you can view the data and structure. From here, as you can see in Figure 11-5, it is possible to upload data, create folders, define the access level, and so forth.

Figure 11-5. Data Explorer in Azure Data Lake Store

Currently, there is no data in Azure Data Lake Store. It is possible to import data from other Azure components to Data Lake Store. In this session, with the aim of machine learning, first we are going to create a sample of data via Azure Data Lake Analytics.

For this, we must create a Data Lake Analytics resource (Figure 11-6). We follow the same process as we did for Data Lake Store. However, we must specify what Data Lake Store we are going to use. Please note: You must always create Data Lake Store first, then Data Lake Analytics.

Figure 11-6. Creating the Azure Data Lake Analytics resource

After specifying the name, location, related Data Lake Store, subscriptions, and so forth, you must wait until the component is created and shown on the Azure Dashboard (Figure 11-7).

÷ → O @ A https://portalazure.com/*					□ ☆ ☆ & B
$_{2}$ see favourites here, select $ \approx $ then $ \pm $ and drag to the Favo	urites Bar folder. Or import from	another browser, import favourites			
Microsoft Azure			× 🗳 >	- 🏶 🙄 🛈 🕀	leila.etaati@gmail.com
+ Create a resource	hboard ∽ + №	w dashboard 🗍 Upload 👱 Download 🖉 Edit 🖒 Share		🗐 Delete	
i≡ All services			blobai	adkai	adkbook
	U Refresh	Azure getting started made easy!		DATA LAKE ANALYTICS Running	DATA LAKE STORE
🔟 Dashboard	Data Lake Store	on Azure in a few quick steps			
	Data Lake Store	Create DevOps Project	_	dbai SQL DATABASE	
Allesources	Storage account		Available		Running 🔂
🕅 Resource groups	SQL server			Nation and	
🔕 App Services	Data Lake Analytics	Quickstart tutorials	AIDataBricks WORKSPACE	Nociouna	
SOL databases	Azure Databricks Serv	12-12		SQL	
ch	Machine Learning Ex	Windows Virtual Machines P Provision Windows Server, SQL Server, SharePoint VMs		1	
SQL data warehouses chModelMgmt	Machine Learning Mo				
🥙 Azure Cosmos DB	Stream Analytics job	Linux Virtual Machines 12	-		

Figure 11-7. Created Data Lake Store on Azure Dashboard

Just click the created Azure Data Lake Analytics. Data Lake Analytics can be useful for developing and running massive parallel data and transforming and processing data in U-SQL, R, Python, and .NET. To start, we are going to import some sample data and codes. At the top of the page, click on the Sample scripts option (Figure 11-8).

Microsoft Azure		$\mathcal P$ Search resources, services, and docs	× D, >_ 🕸 😳 🕐 🗟 leilaletaati@gmail.com 🔕
+ Create a resource	Home > adlabook adlabook Data Lake Analytics	Service solver	* ×
∃ All services		+ New job 🛛 Sample scripts 📄 Data explorer	👗 View all jobs 🔹 Add user wizerd 🔳 Delete 🔍 Go to job
- * FAVORITES	Overview	Essentials	•
Dashboard	Activity log	adiabook	All bours used Estimated and a
III All resources	Access control (IAM)	Mey 2018	
😰 Resource groups	Tags	Pricing tier info	0 050 0.00
🔕 App Services	X Diagnose and solve problems	lobe	Alle
🥫 SQL databases	SETTINGS	0 0 0 0	0 in use 32 available
📬 SQL data warehouses	C Firewall	Running Queued Pipelines Submitters	My usage: 0 Other usage: 0 32 total
🬌 Azure Cosmos DB	Data sources		
Virtual machines	iii Pricing tier	Jobs and AU-hours consumed	Filter by 7 days 1/05/2018-8/05/2018
A	Properties	Jobs	
	🔒 Locis	100	

Figure 11-8. Data Lake Analytics Sample scripts

In the Sample scripts page, there are two main sample data: Sample data missing and U-SQL Advanced Analytic.... We need the latter, to access the sample data and codes. The sample data will be stored in Data Lake Store (Figure 11-9).

Figure 11-9. Sample data in Data Lake Analytics

To write the U-SQL and import some sample data and codes, click the U-SQL Advanced Analytics option. Following, about 2.5GB will be downloaded into Azure Data Lake Store. After the download starts, you will see the process of enabling U-SQL and importing data on the Install U-SQL Extensions page. The installation process is shown as a pipeline, which may take about two minutes to run (Figure 11-10).

Figure 11-10. The process of installing the U-SQL extensions

Next, close the page and click adlsbook and then Data explorer, at the top of the page (Figure 11-11).

Figure 11-11. Imported data in Azure Data Lake Store

You can browse the Data Lake Store folders. Under adlsbook, among the folders listed, there are two named R and Python. Click the R folder, to see the combined data, U-SQL files, zip files, and so forth (Figure 11-12).

	O Search resources, services, and docs × 📭	>_ 😂 🙄 🛈	
Data explorer « 🖈 🗙 adlabook	adlsbook Data Lake Store		
 Storage accounts adlsbook (default) 	▼ Filter ☐ New folder	er 🗄 Folder properties	Delete folder 💍 Refresh
 catalog sustam 	adisbook usqlext samples R		
▼ □ usqlext	NAME	SIZE	LAST MODIFIED
 assembly samples 	base64enc.zip	38.2 KB	8/05/2018 3:25:09 PM
 cognition method 	dplyrWithDependencies.zip	22.7 MB	8/05/2018 3:25:11 PM
► TR	ExtR_DeployCustomRModule.usql	960 bytes	8/05/2018 3:25:07 PM
Catalog Adlabook	ExtR_InstallLibWithDependencies.usql	1.17 KB	8/05/2018 3:25:07 PM
	ExtR_PredictUsingLinearModel_RCommand.usql	981 bytes	8/05/2018 3:25:08 PM
	ExtR_PredictUsingLinearModel_RScript.usql	1.11 KB	8/05/2018 3:25:08 PM
	ExtR_PredictUsingLinearModelAsDM_RCommand.usql		8/05/2018 3:25:08 PM
	ExtR_PredictUsingLMRawStringCombiner.usql	1.53 KB	8/05/2018 3:25:07 PM
	ExtR_PredictUsingLMRawStringCombinerAsCM.usql	1.67 KB	8/05/2018 3:25:07 PM
	ExtR_PredictUsingLMRawStringReducer.usql	1.27 KB	8/05/2018 3:25:08 PM
	ExtR_RAndPython.usql	1.43 KB	8/05/2018 3:25:08 PM

Figure 11-12. Data Explorer—R and Python sample files

Click one of the U-SQL files in the R folder, such as ExtR_PredictUsingLinearModel_ RScript.usql. By clicking the files, you can see the related U-SQL files content in a separate page, as shown in Figure 11-13. As you can see in the figure, the U-SQL scripts are similar to the SQL language. It is possible to check the file format, download the codes, rename the files, revoke or grant access to files via Access, and so forth. In the next section, I will explain U-SQL language and how to write R codes or Python in it.

Figure 11-13. U-SQL files for predictive models in R scripts

Running R Scripts in U-SQL

To see how the U-SQL language works, click one of the code samples in the R folder. Then click ExtR_rxDTree.usql. In this example, we are going to predict a flower species, based on its sepal length. First, we must obtain the data from some resource. In the code, the data has been extracted from /usqlext/samples/R/iris.csv. The data set location is in Azure Data Lake Store in folder usqlext, samples, under the R codes. Copy the entire code and return to the Azure Data Lake Analytics main page and click New job, at the top of the page (Figure 11-14).

Figure 11-14. Copy the code and click New job

In the New job page, there is an editor that allows you to put the code there (Figure 11-15).

rosoft Azure		🖓 search resources, services, and docs 🛛 🗶 🖓 🙄 🕐 🛃 🖽 🖓 🖽 🖓 🖓
Treate a resource	* ×	New job
All services		🗈 Deta explorer 🔻 Open file 👱 Save as
AVORITES	*	Account *Job name AUs AUs Submitter Subm
Dashboard		1 Min 22 Max 6% More options
All resources		1 REFERENCE ASSEMBLY [ExtR];
Resource groups		2 3 DECLARE @IrisData string = @"/usqlext/samples/R/iris.csv";
App Services		<pre>4 DECLARE #OUTputFileModelSummary string = @ /my/R/Output/KXTreeIris.txt; 5</pre>
SQL databases	32 available	b // K script to run 7 // Put commas between commands if rReturnType:"charactermatrix", no commas otherwise 0.057486 @meResist = 0"
SQL data warehouses	32 total	<pre>9 require(RevoScaleR), 10 evt/reactorcies - Sepal conth data-locatione(Set)</pre>
Azure Cosmos DB	/05/2018-8/05/2018	11 "; 12
Virtual machines		13 @InputData =
.osd balancers		15 SepalWidth double, 16 Petalleneth double.
Storage accounts		17 PetalMidth double, 18 Species string
Virtual networks		19 FROM @IrisData 20 USING Extractors.Csv();
Azura Activa Directory		

Figure 11-15. Passing the U-SQL code from New job page in Azure Data Analytics

After inserting the code in the editor, at the top of the page, you can insert "MSBook" in the Job name box.

We can submit the code to run it, but we are going to change the code. In the following paragraphs, I will explain the code.

This code is a simple predictive analysis. There is a free data set named iris that is about the flower's specification. This data set has five columns: the species type and the sepal and petal length and width. Our analysis is going to predict the species of a flower based on its sepal length. The first step is to identify how to access the input data (iris data set). This data set has already been imported to the Data Lake Store under the R folder. To consume data in U-SQL scripts, we must store it in a variable.

```
DECLARE @IrisData string = @"/usqlext/samples/R/iris.csv";
```

In addition, we want to write back the result of the prediction in another location. So, in the path, we define a new path and store the output link in a separate variable, as follows:

```
DECLARE @OutputFileModelSummary string = @"/usqlext/MSBook/RXTreeIris.txt";
```

The next part, about the R scripts definition, uses the following code:

```
DECLARE @myRScript = @"
require(RevoScaleR),
rxDTree(Species ~ SepalLength, data=inputFromUSQL)
";
```

The @myRScript variable will store the related R code that we are going to run in the next step. The preceding code uses the RevoScaleR package in R. This package contains an rxDTree function that is a decision tree algorithm to predict the flower's species, based on the sepal length.

Now we are able to employ some U-SQL language, to extract the data from the input link into a variable named @InputData, using the following code:

```
@InputData =
    EXTRACT SepalLength double,
        SepalWidth double,
        PetalLength double,
        PetalWidth double,
        Species string
    FROM @IrisData
    USING Extractors.Csv();
```

The U-SQL code uses the Extractors.Csv() function to get the data from a CSV file. In the next step, we are going to run the code, using the Extension.R.Reducer() function.

```
@RScriptOutput = REDUCE @ExtendedData ON Par
PRODUCE Par, RowId int, ROutput string
READONLY Par
USING new Extension.R.Reducer(command:@myRScript,
rReturnType:"charactermatrix", stringsAsFactors:true);
```

OUTPUT @RScriptOutput TO @OutputFileModelSummary USING Outputters.Tsv();

Now you can submit the code, using the Submit button. After submitting the code, the MSBook job will run (Figure 11-16).

Microsoft Azure	\mathcal{P} Search resources, services, and docs	× 🗳 >_ 🐵	🙂 🕐 🕞 leila.etaa	ti@gmail.com
Hisme > adiabook > New Job > MS3coic + Greate a resource MSBcok Job cutatis				
: All services 👌 Refresh in 20 sec 🕨 Resubmit 🗗 R	euse script 🛛 🛇 Cancel job			
FAVORITES Status: Preparing	V Job graph Script Data AU analysis	Diagnostics	anoneme.	
Dashboord	Display Progress V	Pleybeck 🕨 🔘	0 0s	Zoom to fit 🛱
All resources Preparing Queued Running \$a N/A N/A	Done			
Resource groups Progress 0%				
App Services AUs 2 Consumed AU-hours 0				
SQL databases Estimated cost 20 USD 0.00				
SCL data warehouses				
Yype U-SQL Azure Cosmos DB Runtime version default	6	Job graph is not a	vailable	
Virtual machines Submitter leila.etaati@gmail.com Account adlabook	Graph data is not ready	y. The graph will be ready once th	e job finishes preparing.	
Load balancers Priority 1000				
Storage accounts Preparing 5s				
Virtual networks Queued N/A Running N/A				
Azure Active Directory Duration Ss				

Figure 11-16. Process of running the MSBook job

After running the code, you must check the output folder, to see if the model is stored there as a text file (Figure 11-17).

Figure 11-17. The output folder holding the decision tree model

The same process that we followed in Chapter 9 for machine learning, we can apply here. We can create a model and store it in Azure Data Lake Store as a text file. Then we can consume the model for another job to evaluate the model or use it to predict a new series of data. The created model in last phase can be consumed in another job.

Managing Folders via RStudio

It is possible to load the data from Azure Data Lake Store (ADLS) into RStudio for the purpose of machine learning. Moreover, we can manage ADLS from the RStudio environment, using R scripts. So, without accessing ADLS, we are able to manage the portal, bring data from ADLS to RStudio to practice machine learning. However, after we ensure that our codes are good enough, we can use U-SQL inside ADLS, to embed R codes in the ADLS environment (as mentioned in the preceding section). In this section, the process of accessing files from the RStudio environment will be explained.

From the last section, we have already created an ADLS. However, we must create a connection from Azure to an external application (in this case, RStudio). For this purpose, we must create an Azure Active Directory for service-to-service authentication.

Click Azure Active Directory, on the left side of the Azure portal page (Figure 11-18).

Figure 11-18. Azure Active Application in Azure

Next click App registrations and then New application registration (Figure 11-19).

Microsoft Azure		arsigma Search resources, services, and docs
•		
+ Create a resource	leilaetaatigmail (default director	y) - App registrations
i∃ All services		+ New application registration 🗄 Endpoin
	Overview	To view and manage your registrations for conv
🐴 SQL data warehouses 🦿	Quick start	Search by name or AppID My
🦉 Azure Cosmos DB		DISPLAY NAME
🧕 Virtual machines		
🔶 Load balancers	Groups	
Storage accounts	Enterprise applications	
Virtual networks	Devices	
Azure Active Directory	App registrations	
😁 Monitor	Application proxy	
Arbiror	Licenses	

Figure 11-19. Application Registration in Azure Active Directory

Now you need only provide some general information, such as name, application type, and sign-on URL.

The sign-on URL can be changed later, so for now, I have entered a random URL (the web site address http://radacad.com) (Figure 11-20).

Create	
Name 0	
RADLSBook	~
Application type 0	
Web app / API	~
Sign-on URL O	
http://radacad.com	~

Figure 11-20. Application registration in Azure Active Directory

After creation, the create application is not shown on the page, so you must click View all applications (Figure 11-21). This will refresh the page and show you the application registration list.

Figure 11-21. Application registration

Now you are able to see the application registration list on the page (Figure 11-22).

9 Search (Ctrl+/)	×	+ New	application registration	Endpoints	X Troubleshoot			
0 Overview		To view a	and manage your registrati	ons for converged	d applications, pleas	e visit the Microsoft Appli	cation Console.	
g [*] Quick start		Search	by name or AppID	All apps		~		
		DISPLA	YNAME			APPLICATION TYPE	APPLICATION ID	
MANAGE		58	sparkai			Web app / API	And the second second second	-
🛓 Users		RA	RADLSBook		-	Web app / API		
🝰 Groups			Charles and the		- L	Web upp / Art		_
Enterprise applications								
Devices								

Figure 11-22. Application ID from application registration

To access the ADLS, we require three different identifications, such as application ID (Client ID), Tenant ID, and Client Secret ID.

Client ID, which is the application ID, can be retrieved from App registrations (Figure 11-22). For a Tenant ID, you must return to Active Directory and click Properties, then copy the Directory ID as Tenant ID (Figure 11-23).

100	«	Home 🗲 leilaetaatigmail (default directory) - Properties
+	Create a resource	leilaetaatigmail (default directory) - Properties Azure Active Directory
:=	All services	
*	FAVORITES	Groups A Groups Country
-	SQL data warehouses	Enterprise applications Country or region
جي:	Azure Cosmos DB	Devices
Q	Virtual machines	Location App registrations Asia, United States, Europe datacenters
÷	Load balancers	Application proxy Notification language
=	Storage accounts	Licenses
\Leftrightarrow	Virtual networks	Azure AD Connect Yes No
٠	Azure Active Directory	Custom domain names Directory ID
۲	Monitor	Mobility (MDM and MAM)
4	Advisor	Password reset Iella.etaati@gmail.com
١	Security Center	Global privacy contact
0	Cost Management + B	User settings
2	Help + support	Privacy statement URL

Figure 11-23. Directory ID (Tenant ID)

The last token that we need to get from Azure is the Client Secret ID. To get the Secret ID, you must go to Azure Active Directory, then to App registrations, and choose the app you created. Now just click the created app (Figure 11-24).

Figure 11-24. Getting Client Secret ID from Azure Active Directory—Part 1

Now you must click RADLSBook, to go to the main page. In RADLSBook click Settings (Figure 11-25).

Figure 11-25. Getting Client Secret ID from Azure Active Directory—Part 2

On the Settings page, click the Key option. On the Key page, you will be able to create a password. We must create a new password. Click Key description and enter a name (Figure 11-26).

Settings	×	Keys	
P Filter settings		🕀 📷 🗙 Discard 🕈 Uplo	oad Public Key
GENERAL		Passwords	
Properties	>	DESCRIPTION EXI	PIRES VALUE
🗮 Reply URLs	>	D	1244
Swners	>	Key de ption Duration	Hidden Value will be displayed on save
API ACCESS			
🔏 Required permissions	>	Public Kevs	
📍 Keys 🚺	>	THUMBPRINT	START DA
TROUBLESHOOTING + SUPPORT		No results.	
	>		

Figure 11-26. Getting Client Secret ID from Azure Active Directory—Part 3

Next, you must specify the duration of the password. Finally, save the key, to be able to see the code. After you have saved the code, you will receive a message indicating that you have to copy the code, and if you leave the page, the code will become hidden. So, as soon as you create the code, you will have to copy it (Figure 11-27).

zure		오 🗘 >_ 錼 ⓒ ⑦ 🖓 📖	la.etaati@gmail.com
> leilaetaatigmail (default directory) - App r		SBook > Settings > Keys	
Settings	×	Keys	×
		Save X Discard A Successfully updated application RA	2:23 PM DLSBook keys
GENERAL		Copy the key value. You won't be able to retrieve after you leave	e this blade.
Properties	>	Passwords	
= Reply URLs	>	DESCRIPTION EXPIRES VAL	JE
🍰 Owners	>	Raccess 31/12/2299 Hidden	
API ACCESS		1 Rbook 2 31/12/2299	
🔏 Required permissions	>	Key description Duration Value will be displayed	on save
📍 Keys	>		
TROUBLESHOOTING + SUPPORT		Public Keys	

Figure 11-27. Getting Client Secret ID from Azure Active Directory-Part 4

Now you have the authentication tokens. The next step is to open RStudio, to write some R scripts to get the data from Azure Data Lake, upload data into Azure Data Lake, list the folder, and so forth. This can help to debug our R code easily first, then use the codes in U-SQL.

Open RStudio in your machine, then open an empty R script. To work with the data in Azure, we must install some library, as listed following:

```
install.packages("httr")
install.packages("jsonlite")
install.packages("curl")
```

After installing the libraries, to make sure they are already installed and check the package dependencies, write the following code:

```
library(httr)
library(jsonlite)
library(curl)
```

Now we must create some connection to Azure Active Directory via the following code:

h <- new_handle()</pre>

handle_setform(h,

```
"grant_type"="client_credentials",
"resource"="https://management.core.windows.net/",
"client_id"="<Your Client ID (Application ID) Figure 11-22>",
"client_secret"="<Client Secret Figure11-27>"
```

)

Then, to get the list folder you have in Azure Data Lake Store, use the following codes. You must use the Tenant ID (Figure 11-22) and your Azure Data Lake Store name (e.g., adlsbook).

```
req <- curl_fetch_memory("https://login.windows.net/<Tenant ID from
Figure 11-22>/oauth2/token", handle = h)
```

```
res <- fromJSON(rawToChar(req$content))
r <- httr::GET("https://<Your Azure Data Lake
Store>.azuredatalakestore.net/webhdfs/v1/?op=LISTSTATUS",
```

```
add_headers(Authorization = paste(res$token_type, res$access_token)))
```

Now we can browse the folders in the main Azure Data Lake Store, using the following code:

```
nlite::toJSON(jsonlite::fromJSON(content(r,"text")), pretty = TRUE)
```

Just make sure you do not have any typos and that you properly copied and pasted the codes. As shown in Figure 11-28, there are already three folders in adlsbook: catalog, system, and usqlext. The folders are shown in the R output console.

> jsonlite::toJSON(jsonlite::fromJSON(content(r,"text")), pretty = TRUE)			
{ "FileStatuses": { "fileStatuses": {			
"FileStatus": [{			
"length": 0, "pathSuffix": "catalog"			
"type": "DIRECTORY ,			
"accessTime": 1525744292725,			
"modificationTime": 1525744292763, "replication": 0.			
"permission": "771",			
"group": "			
},			
"length": 0,			
"pathSuffix": "system", "type": "DIRECTORY",			
"blocksize": 0,			
"modificationTime": 152574925510,			
"replication": 0, "permission": "770"			
"owner": ""			
group :			
{ "length": 0.			
Home) adirbook) Data evolutor) adirbook	1 () () () () () () () () () (
	Data auglerer	,	v
* ^	Jata explorer	· · · · · · · · · · · · · · · · · · ·	` * ^
		-	
plorer	🔻 🚺 adlsbook		
*	🕨 🚞 catalog		
	🕨 🛅 system	1	
	 system usqlext 		
Estimated cost to date 😝	 system usqlext 	J	
	 isystem isystem usqlext 	J	
Estimated cost to date 9 USD 0.14	 isystem isystem isystem 		
Estimated cost to date USD 0.14	 in system in usqlext 		
Estimated cost to date USD 0.14	system usqlext	J	
Estimated cost to date USD 0.14 Filter by: 30 daysv 14/04/2018-14/05/2018	system usqlext	J	
Estimated cost to date USD 0.14 Filter by: 30 days 14/04/2018-14/05/2018 Last updated 13/05/2018 12:00 AM (UTC)	system usqlext	J	

Figure 11-28. Folders listed in Azure Data Lake Store (adlsbook)

Figure 11-28 shows the list of folders, the directory type, the access time, created time, owner, and so forth.

To access the data, we must provide the path of the file that we want to access. For example, we want to get the data in *adlsbook*, from usqlext, samples, R, and iris.csv (Figure 11-29).

Home > adlsbook > Data explorer > adlsbook		
Data explorer	★ × adlsbc _{Data Lake}	0Ok Store
 adlsbook catalog system usqlext assembly MSbook MSBook samples cognition python 	Filter ExtF ExtF ExtF ExtF ExtF ExtF ExtF ExtF	New folder Tupload Aca R_RAndPython.usql R_rxDTree.usql R_rrainLinearModel.usql R_TrainLinearModelBinaryAsDF.usql R_TrainLinearModelCoefficientsAsDF.usql R_TrainLinearModelCoefficientsAsDF.usql R_TrainLinearModelCoefficientsAsDF_RCommons Cosv WithPartitionIds.csv ModelsRawStringIris.txt

Figure 11-29. The iris data in adlsbook

The path will be as follows: https://adlsbook.azuredatalakestore.net/webhdfs/ v1/usqlext/samples/R/iris.csv?op=OPEN&read=true

Note: The connection may get lost, so you must run the codes we used for creating a connection.

```
h <- new_handle()</pre>
```

```
handle_setform(h,
```

"grant_type"="client_credentials",

```
"resource"="https://management.core.windows.net/",
```

```
"client id"="<Your Client ID (Application ID) Figure 11-22>",
```

"client secret"="<Client Secret Figure11-27>"

)

```
req <- curl_fetch_memory("https://login.windows.net/<Tenant ID from
Figure 11-22>/oauth2/token", handle = h)
res <- fromJSON(rawToChar(req$content))</pre>
```

r <- httr::GET("https://adlsbook.azuredatalakestore.net/webhdfs/v1/usqlext/ samples/R/iris.csv?op=OPEN&read=true",

```
add_headers(Authorization = paste(res$token_
type,res$access_token)))
```

To access the data, you can easily download the following and access to data.

```
writeBin(content(r), "C:/pbi/iris.csv")
irisDownloaded <- read.csv("C:/pbi/iris.csv")
head(irisDownloaded)</pre>
```

It is also possible to upload data from RStudio to Azure Data Lake or create a folder. Go to https://blogs.msdn.microsoft.com/microsoftrservertigerteam/2017/03/14/ using-r-to-perform-filesystem-operations-on-azure-data-lake-store/ to see all the possibilities.

You can run the U-SQL inside Visual Studio as well. To do this, you must have Visual Studio 2015 or 2017 on your machine. There are lots of weblog posts on how to run the U-SQL language in Visual Studio [2].

Summary

This chapter explained how you can apply Azure Data Lake for practicing machine learning. You saw how we are able to run R codes inside Azure Data Lake Analytics and store the results inside it. In addition, a brief explanation was provided of how to access the Azure Data Lake Store data via R Studio, how to use the U-SQL language. How to run the U-SQL language inside Visual Studio is outside the scope of this book.

References

- [1] Mark Tab, et al., "Scalable Data Science with Azure Data Lake," Microsoft Azure, https://docs.microsoft.com/en-us/azure/ machine-learning/team-data-science-process/data-lakewalkthrough, November 12, 2017.
- [2] Saveen Reddy, et al., "Develop U-SQL scripts by using Data Lake Tools for Visual Studio," Microsoft Azure, https://docs. microsoft.com/en-us/azure/data-lake-analytics/data-lakeanalytics-data-lake-tools-get-started, August 12, 2018.

CHAPTER 12

Azure Machine Learning Studio

Azure Machine Learning (ML) Studio is a cloud machine learning platform. It features a drag-and-drop environment that is easy to use. It contains more than 20 predefined machine learning algorithms. With Azure ML Studio, it is possible to import data from different resources, devise machine learning experiments, and create a web service from the model. Moreover, it is possible to run the R or Python codes inside the Azure ML Studio environment. In this chapter, first I will explain the environment and how to formulate an experiment in it, how to create a simple machine learning model, how to test and evaluate the model, and how to import data from the local machine from other Azure components. Also, I will discuss the process of creating a web service from the model. The process of how to run R codes inside the Azure ML Studio will be explored. In addition, the process of exploring an Azure ML experiment in R Studio will be elaborated.

Azure Machine Learning Environment

To use Azure ML Studio, you must log in to https://studio.azureml.net/. To log in, you can use any account from Google, Yahoo, or a company account (Figure 12-1). There are two subscriptions for Azure ML; one is free, and the other is the standard version.

201

Figure 12-1. Machine Learning Studio login

After logging in to the portal, there is an empty environment. As you can see in Figure 12-2, on the left side of the screen, there are seven different options: Projects, Experiments, Web Services, Notebooks, Datasets, Trained Models, and Settings. Experiments is the main place to create the models. As you can see in the figure, Experiments is empty on first use.

	experiments						
		AUTHOR	STATUS	LAST EDITED	PROJECT	۵	
WEB SERVICES	No experiments found						0 items selected
NOTEBOOKS							
DATASETS							

Figure 12-2. Azure ML Studio environment

It is possible to have many different workspaces, combining free or standard subscriptions. As shown Figure 12-3, the user can switch between these environments.

Figure 12-3. Azure ML workspace

In the following sections, different components of Azure ML will be explained briefly.

Azure Machine Learning Experiment

An experiment is the primary vehicle for creating machine learning models. As you can see in Figure 12-3, we have two main experiments: My Experiments and Samples. My Experiments is a place to create new machine learning models and storage to save all user-created experiments. The Samples experiments contain predefined examples by Microsoft.

To create a new experiment, click Experiments on the left side of the screen, then click the New option at the bottom left of the page and then Blank Experiment (Figure 12-4).

Figure 12-4. Setting up an experiment

As you can see in Figure 12-4, the experiment is in a drag-and-drop environment. On the left side of the screen, there are components that help us create an ML model, such as Saved Datasets, Data Transformation, Machine Learning, and so forth.

To create an experiment, you must get data. There are two main ways to import data: importing data from the local machine (Figure 12-5) or using built-in data components. For our example, first I am going to import data from the local machine. The data set is the Titanic data set available at http://web.stanford.edu/class/archive/cs/cs109/ cs109.1166/stuff/titanic.csv [1]. To import data, we must click the Datasets option at the left side of the screen and then click the New option.

Figure 12-5. Importing data from a local machine

After importing the data set, we are able to create an experiment with the aim of predicting whether a passenger of a specific age, gender, and passenger class will survive. To create a new experiment, you must first click the Experiments option at the left side of the screen. Azure ML consists of different modules (nodes), with each activity shown as separate nodes. In the search area, type "Titanic." Then drag and drop the node into the white design surface area, as shown in Figure 12-6. As you can see in Figure 12-6, the Titanic data set has been shown as a separate node with only one output. To view the data set, you must right-click the output node and click the Visualize option. This allows you to see the data and some additional useful information, under such columns as PassengerID, Survived, Pclass, Name, and others.

Figure 12-6. Importing and visualizing data

Moreover, there is a small histogram chart under the name of each column that indicates the value frequency of each column (Figure 12-7). Also, by clicking each column, you can see a statistical summary on the right side of the page, as shown in Figure 12-7.

ows 391	columns 12										
	Passengerid	Survived	Pclass	Name	Sex	Age	SibSp	I^	> Statistics		
view as		Lт	$\mathbf{r}\mathbf{d}$		h.	Jh.	.	1	Mean	29.6991	
	1	0	3	Braund, Mr. Owen Harris	male	22	1	C	Median Min	28 0.42	
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	C	Standard Deviation Unique Values Missing Values	14.5265 88 177	
	3	1	3	Heikkinen, Miss. Laina	female	26	0	C	Feature Type	Numeric Feature	
	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	c	 Visualizations Age 		
	5	0	3	Allen, Mr. William Henry	male	35	0	c	Histogram		

Figure 12-7. Visualizing the data set

The next step is to clean the data. As you can see in Figure 12-7, for the age of people on the *Titanic*, 177 rows have a missing value. One of main activities before creating models is to remove or substitute the missing values. There is a module, Clean Missing Data, for this. Search for it and drag and drop it into the Experiments area. As you can see in Figure 12-8, this module has one input and two outputs. Connect the output from the Titanic data set to the input of the missing value module. Then specify how you want to solve the missing value problem, by clicking the Missing value module. There is a Properties page for this module, from which you can choose the column(s) you want to remove missing values from. Then specify the cleaning mode, such as substitute with a mean, median, or a custom value. It is possible to remove the entire missing data row or substitute it using a PCA algorithm [2]. As you can see in Figure 12-8, Age has been selected, and the Cleaning mode is Remove entire row.

	< dean missing A an missing Data Transformation Manipulation Clean Missing Data	Experiment created on 5/06/2018	in draft	Properties Project > • Clean Missing Data Columns to be cleaned Selected columns:
+	NEW		T T T T T T T T T T T T T T T T T T T	Quick Help ~ Specifies how to handle the values missing from a dataset (more help)

Figure 12-8. Removing a missing value from data

Another data transformation that we should perform is to remove columns that have no impact on the Survived column, such as PassengerID, Name, and so forth. The only columns that we need to run machine learning on are Age, Sex, Pclass, and Survived. There is another module, named Select Columns, in Dataset. Drag and drop this module into Experiments, then connect the first output of Clean Missing Data to the input of Select Columns in Dataset. Then, in the Properties panel, choose the desired columns (Figure 12-9). Now the main data cleaning and wrangling for this data set has been done. The next step is to choose the related algorithms.

The main purpose for machine learning here is to predict whether a new passenger will survive. According to the discussion in Chapter 4, we are predicting a class, not a continuous value. Predictive analytics using a classification approach can solve this problem. In Azure ML, there are about 25 main algorithms that have been grouped into four main scenarios: Anomaly detection, Classification, Clustering, and Regression. For our scenario, we must use classification algorithms. If you expand the classification algorithm list, there is another grouping based on the number of classes you are going to predict. If there is a two-class problem, you must use algorithms with Two-Class. The problem concerns predicting a situation in which people survived or not.

	C Select columns in dataset	Experiment created on 5/06/2018	In duit Properties Project > A Select Columns in Dataset Select columns Selected columns: Column names: AgeSexSurvived/Class Launch column selector 3
		[¤] ⊖ • • •	Quick Help V Selects columns to include or exclude from a dataset in an operation. Formerly known as Project Columns. (mane help)
+	NEW		AB EI Name Andrea

Figure 12-9. Selecting columns in a data set

As you can see in Figure 12-10, under Classification, we have nine different algorithms for predicting those who survived or did not. Each of these algorithms can be used in a different situation, with different data types. There is a cheat sheet for choosing the best algorithms provided by Microsoft [3]. For the *Titanic* problem, we don't have more than 100 columns, the data is not linear, and we need high accuracy and fast training. As a result, I am choosing the Two-Class Boosted Decision Tree algorithm. However, the best practice is to select different algorithms and then compare their accuracy.

Figure 12-10. Machine learning algorithms in Azure ML

Following the machine learning life cycle introduced in Chapter 4, we have to split the data, some for the purpose of training and the rest for testing. In Azure ML, there are three different modules that are used for splitting data, training models, and testing models: Split Data, Train Model, and Score Model. First, I drag and drop the Split Data (Figure 12-11). Split Data allows us to specify how much data should go into training and how much into testing. As you can see in Figure 12-11, the Split Data has been connected to the output of the Select Columns in Dataset. The split percentage has been set to 0.7 (30% for testing and 70% for training). One of the output nodes is for training, and the other is for testing.

Microsoft Azure Machine Learning Studie)	Acare Miccolana - 🕜 😾 😳 🧶
Constraints of the second seco	Experiment created on 5/06/2018	In data Properties Project Image: Series processing of the first expect dataset Series processing Example and rows in the first expect dataset Image: Series processing Series processing <t< th=""></t<>
		Ould Help Split the new of a stasser who two defined sets Inners help)

Figure 12-11. Split Data for machine learning purposes

We must drag and drop the relevant module for training and testing into Experiments. As you can see in Figure 12-12, the right output from the split module has been connected to Train Model, and the other output from the Split Data has been connected to Score Model. Moreover, under the Train Model properties, the Survived column has been selected.

Figure 12-12. Dragging and dropping the Train Model and Score Model into Experiments

Now we are able to run the code, to see the result of the prediction from the Score Model output. To run it, click the Run button at the bottom of the page. After running the experiments, we will be able to see the result of the test data prediction in the output of the Score Model module. Right-click the output and visualize the data (Figure 12-13).

			27752	_	_			
	Survived	Polass	Sex	Age	Secred	Labels 5	icored Probabilities	
м. ė	L i	$\mathbf{n}\mathbf{l}$	ь	JL.	1.5	1		
	0	3	male	22	0	C	1.052719	
	0	3	female	37	1	c	1.757387	
	0	3	female	48	0	C	.137790	
	1	3	male	32	0	C	.333367	
	1	1	female	38	1	c	.998253	
	0	2	male	57	0	C	0.005316	
	1	2	male	34	0	C	0.000623	
	1	3	male	31	0	c	.118754	
	1	3	female	24	1	0	.771294	
	0	3	male	28	0	C	0.018625	
	3.2	1	male	27	1	c	1.785489	
	0	3	male	14	0	c	0.061333	
	1	3	female	27	1	C	0.951729	
	0	2	male	36	0	c	881000.	
	1	3	male	0.42	1	¢	0.539078	
	1	1	female	36	1	C	.999897	
	0	1	male	46	0	0	0.036633	

Figure 12-13. The prediction result for Titanic example

It is possible to evaluate the model using Evaluate Model, to check the accuracy of the created model. In the next section, the process of creating an application programming interface (API) will be explained.

Creating a Web Service

The next step after evaluating the model is optionally to create an API so everyone is able to use the model by providing the data. To create the web service, you must run the experiment first, then click Setup Web Service (Predictive Web Service recommended). An input and output link for web services has been created, as you can see in Figure 12-14.

	My Datasets thank crow Samples Simples Trained Models Trained Models Data forms Coust provide Conversions Coust provide E	Daft toed at 122230 PM	STATUS COB LONGEN AND STATUS OF AND STATUS COMPANY STATUS COMPANY STATUS COMPANY STATUS COMPANY STATUS OF
0	Convert to SAV Convert to CSV Convert to Dataset Convert to SVMLight Convert to TSV		Chexitytion Chexity dealed dealiption for your experiment.
	Containput and Output Enter Data Manually Export Data Import Data	Wed too Wed	
	Load Trained Model Unpack Zipped Datasets Unpack Zipped Datasets Unpack Zipped Datasets Unpack Zipped Datasets Item	* 0* 0	🛛 Quidi Help
+	Apply Fiter		

Figure 12-14. Creating a web service from a machine learning model

Run the experiment again, then click Deploy Web Service at the bottom of the page. By deploying the web service, a new page will be shown. On this page, you can see details of the API, both for single processing and batch processing of data.

As you can see in Figure 12-15, there is an API key that you can share to allow others to use the ML model. Moreover, for API URLs, there are two main ways to use the API: a request and response approach and batch processing.

= N	licrosoft Azure Machine Learning St	udio		
₩ ₩ ₩	experiment created on 5, passour constraints General New Wat Service Department Pathol optimes Demarker New Service Devices New Service Devices	/06/2018 [predictive exp.]	8	
0	Default Entryoine Antikelle Nade	TEF	A715	LAST UPDATED
	Additional endpoints Number of additional endpoints overted for this web to Manage endpoints information	Test protes	(a) The 2013 of the log (g) term 2010 of methods. (b) The state we boost	6742018 13144 947
+	etw.		Diame Control	

Figure 12-15. Creating a web service for the Titanic problem
Click the Batch Execution option and navigate to the new page that contains the API information (Figure 12-16). As you can see in the figure, the web service URL is shown for request information.

Batch Execution [Predictive Exp.]	API Documentation for Experiment created or	n 5/06/2018
Updated: 06/05/2018 01:01		
No description provided for this web servi	ice.	
Previous version of this ABI Submit A Job Getting State Submit A Job Was App Template for BES All Snapper Document () Independ Mesagement Seager Floe Submit (but not start) a for Request	Batch Execution job	
Method Request URI	-	HTTP Version
	Requested Url	
POST aparter backmane	and on Append and Section 2.1	HTTP/1.1
Request Headers		
Request Header	Description	
Authorization:Bearer abc123	Required. Pass the API Key here. Obtain this key from the publisher of the API.	
Content-Length	Required. The length of the content body.	
Contact Transmolization from	Dona lend if the ensure haduli is seen in 10700 forms	

Figure 12-16. Web service information page

In addition, it is possible to embed the created model in other applications, such as web applications, reports, and so forth, leveraging any language, such as C#, Python, and R. On the web service information page, go to the Sample Code section. As you can see in Figure 12-17, there are sample codes in C#, Python, and R that enable users to embed the code into applications. However, you must change the input and output of the web service, so end users are able to provide proper information and get the related prediction. For example, in the web service created in Figure 12-15, the input for the service also gets the passenger ID, name, and other irrelevant data from users that we must refine in order to receive such information as age, gender, and passenger class. In another example, regarding output, a user may only be interested in obtaining the prediction and the probability, not all the other input columns.

Pclass	Numeric	
Sex	String	
Age	Numeric	
Scored Labels	Numeric	
Scored Probabilities	Numeric	
ample Code Cr Python R (static void Main(strin, (InvokeRequestRespon) static async Task Invol (using (var client (using (var client (Inputs - nn (ne	<pre>service().Wait(); RequestResponseService() new HttpClient()) - nex voictionarycstring, StringToble> () (vet1", cirigToble() 2</pre>	telect sample cod
)), GiobalPara	ColumNiames = new string[] ("PassengerId", "Survived", "Pilass", "Name", "Sex", "Age", "Sib5p", "Parch", ' Values = new string[,] (("0", "0", "0", "value", "value", "0", "0", "0", "value", "value", "value", "value" ters = new Dictionarycstring, strings() ("Ticket", "Fa "), { "0",
)); const string a client.Defaulti	Key = "mbc123"; // Replace this with the API key for the web service mustNewdors.duthorization = new AuthenticationMeaderValuef "Reares", aniKey);	

CHAPTER 12 AZURE MACHINE LEARNING STUDIO

Figure 12-17. Web service sample code

In the next step, I am going to refine the web service input and output, by adding Select Columns in Dataset modules for output, and change the select column for web service input (Figure 12-18).

Figure 12-18. Change input and output for web service

As you can see in Figure 12-18, for the web service input, we disconnect the link and connect it to the input of the Score Model, and in the Select Column in Dataset module (Figure 12-18, 3), only age, gender, and passenger class have been selected. Similarly, for the web service output, the Select Columns in Dataset module has been dragged and dropped to select only the Scored Label and Scored Probability. Next, we connect the web service output to the Select Columns in Dataset modules. Finally, we run the experiment and deploy it again. There is a message about overwriting the web service, which we must confirm. After deploying again, on the web service page, click the Test button (Figure 12-19, 1). After, we can test the API.

Figure 12-19. Testing the web service

As you can see in Figure 12-19, by entering three inputs, Age, Gender(Sex), and Passenger Class (Pclass), into API, the result of the machine learning will be shown for this specific row at the bottom of the page (Figure 12-20, 1).

CHAPTER 12 AZURE MACHINE LEARNING STUDIO

General New Web Services Experience #**	fine:		
Published experiment			
Vice snapshot Vice latest			
Description			
No description provided for this web service.			
AP Isy			
the thirt better of the state	parts into and a property data with the last		
Defect instead			
A71 HELP 54CE	1057	A155	LAST UPDATED
			1 4 1 4 1 4 1 4 1 4
ROPERSIONS	fest Test provice	2 0 frame. Str. 1 art later 10 Frank 2010 or marker wardshops	6/6/2018 94256
BATCH EXECUTION	Test amount	C taxe 30 Sociate workbook	6/6/2018 9/6256
Additional endpoints			
Number of additional endpoints created for this web	service: D		
Manage endpoints preview			

Figure 12-20. Result of the API and call to Excel

The next step allows us to analyze the API in Excel. We just have to navigate to Apps (Figure 12-20) and click Excel 2013 or Later (Figure 12-20, 2). After clicking the Excel icon, a message to Download the Sample Data appears. Save the Excel file and open it, then enable the Excel (Figure 12-21).

			Experim	nent created	on 5_06_201	8 (Predictive	Exp.]-06_06	2018 09,53	15.xise - Excel						ielia etaati 🖽 — 🗗 🗙
															A she
 ••• ••• ••• ••• ••• 	💽 Wrap Te	st Center •	General \$ • %	• • 0		ditional For natting • To	mat as Cale	mal	Bed Check Cell	Ge Da	od planatory	Neutral	·	Insert Delete	Format Clear · Solet + Solet + Geno
н	I.	1	к	ι	м	N	0	р	Q	R	s	т	U	v	Azure Machine Learning × web Services
															1 @ Experiment created on 5/06/2018 (Pred.
															+ Add Web Service

Figure 12-21. Enabling the Azure ML API in Excel 216

Next, a new window will appear. Use the sample data (Figure 12-22, 1), then, under the Input field, choose the input data range (Figure 12-22, 2). Then, under the Output field, write the output cell number (Figure 12-22, 3). Then click the Predict option.

U	v	- A	Azure Machine Learning	• ×
			Experiment created on 5/06/2018	[Predictive E.
			1. VIEW SCHEMA	
			2. PREDICT	
			v Input: input1	
			Type range or click button to select	16
		6	Ute sample data	
			V Output: output1	3
			Enter output cell (e.g. A20)	
			Predicting will override exising values. This can't be undone.	
		4	Predict 💌	Got It!
			3. ERRORS	
_		н. Н	Help 1	Waty Statement

Figure 12-22. Enabling the Azure ML API in Excel

By running the code and choosing the Auto Predict option, the result of the prediction will be shown in output cells (Figure 12-23).

Figure 12-23. API call in Excel

It is possible to add more input rows for more predictions.

R and Azure ML Studio

In Azure ML Studio, there are 25 algorithms. However, in some cases, users may want to use their own algorithms. It is possible to write R or Python code inside the Azure ML Studio. In this section, you will see how we can visualize the charts and see the output of the data there.

Create a new experiment in Azure ML Studio. Use the same data set (Titanic). Drag and drop "Titanic" into the Experiments area. Then, in the Search area, type "Execute R Scripts." Drag and drop the module into the Experiments area (Figure 12-24).

Figure 12-24. Executing R scripts in Azure ML

As you can see in Figure 12-24, there is an editor for writing R scripts. The Execute R Scripts module has three input nodes. The first two at the left are for data sets, and the last one is for zip files. By clicking this module, we can write the codes. As you can see in Figure 12-24, the input data from node 1 has been retrieved with the following code and stored in dataset1.

dataset1 <- maml.mapInputPort(1) # class: data.frame</pre>

In this example, the input node contains the Titanic data set (Figure 12-24). So, I will change the code, as follows:

Titanic<- maml.mapInputPort(1) # class: data.frame</pre>

In next step, we are going to create a box plot from the age of the *Titanic* passengers, using the following code:

```
boxplot(titanic$Age)
```

Next, we create a statistical summary of the data.

```
output<-data.frame(titanic$Age,titanic$Pclass,titanic$Sex)
summary(output)</pre>
```

Finally, we want to show only age, sex, and passenger class in the output node. The final code would look as in Figure 12-25.

Figure 12-25. R scripts in Azure ML Studio

Now we have to run the experiment. There are two output nodes for Execute R Script. The output node on the left side holds the output variable that has three main columns (Figure 12-26).

CHAPTER 12 AZURE MACHINE LEARNING STUDIO

Figure 12-26. First output of Execute R Scripts in Azure ML Studio

The other output contains some information about the R chart and the statistical summary of it. To view the output, right-click the right output node and visualize the node (Figure 12-27).

Figure 12-27. Second output of Execute R Scripts

It is possible to explore the Azure ML data sets and experiments from RStudio. Moreover, R users can write a function in RStudio and then create an API from it.

For this, first, you must install the Azure ML package in RStudio, using the following command:

```
install.package("AzureML")
```

The second step is to get some identifications keys from Azure ML Studio. Navigate to studio.azureml.net, in your Azure ML environment, click Settings, copy the Workspace ID (Figure 12-28), and store it in a variable in RStudio, as follows:

```
id<- "your workspace ID"</pre>
```

≡	Microsoft Azure	Machine Learning Studio	alastadi faa iliatayaa /	0
万	PROJECTS	settings		
Д	EXPERIMENTS	NAME AUTHORIZATION TOKENS	USERS DATA GATEWAYS	
	WEB SERVICES	WORKSPACE DESCRIPTION	Default workspace.	٦
200	NOTEBOOKS			
-	DATASETS			
Ŷ	TRAINED MODELS		Free Learn More	
٥	SETTINGS 1	WORKSPACE STORAGE	USED AVAILABLE	

Figure 12-28. Workspace ID from Azure ML environment

Navigate to another tab in the Settings menu and choose Authentication tokens. Copy the primary authentication token and allocate it to a variable in RStudio.

```
auth<-"your authorization token"
```

There is a workspace function in the Azure ML package that creates a reference to an Azure ML Studio workspace, by getting the authentication token and Workspace ID.

```
ws <- workspace( id , auth )</pre>
```

It is possible to receive an error for missing R tools software. Therefore, you must install the latest version of R tools from [4] and store it in the same root of the RStudio.

Finally, for exploring all the experiments in Azure ML, there is an experiments function that gets the ws object as input to connect to the Azure ML environment.

```
experiments(ws, filter = "all")
```

Using the experiments function allows you to filter which experiment from Azure ML you want to check the details of. You can set the filter values to all, samples, and my datasets. In this example, I set the filter to all. By applying the name function in RStudio to check the detail information, you can see the columns, such as the experiment's name, versions, owner, and so forth (Figure 12-29).

Figure 12-29. Exploring the attributes we are able to see from Azure ML Experiments

It is possible to upload a data set from RStudio into Azure ML with the upload. dataset command.

There is a data set in the ggplot2 package that I am going to upload to the Azure ML Studio.

```
library(ggplot2)
upload.dataset(mpg,ws,"mpg")
```

You must to provide the data set, workstation objects (ws), and a name with which you want to save the data set in the Azure ML environment. Now, if you explore the data sets in Azure ML, you will be able to see the newly uploaded data set there.

Summary

This chapter presented a brief introduction to Azure ML Studio. First, a simple machine learning model for predicting the survival of *Titanic* passengers was implemented. The next step was to create an API from the model, analyze it, and show the result in Excel. In addition, how to write R codes inside Azure ML using the Execute R Scripts module was explained. The chapter's final section explained how to explore Azure ML Studio via R code and upload data sets from RStudio into Azure ML datasets.

References

- Stanford University, "A Titanic Probability," Data set, http://web. stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/ titanic.csv, 2016.
- [2] Sebastian Raschka, "Implementing a Principal Component Analysis (PCA)," SebastianRaschka, https://sebastianraschka. com/Articles/2014_pca_step_by_step.html, April 13, 2014.
- [3] Xiao Zhang et al., "Machine learning algorithm cheat sheet for Azure Machine Learning Studio," Microsoft Azure, https:// docs.microsoft.com/en-us/azure/machine-learning/studio/ algorithm-cheat-sheet, March 3, 2019.
- [4] Brian Ripley, Duncan Murdoch et al., "Building R for Windows," CRAN—R Project, https://cran.r-project.org/bin/windows/ Rtools/.

CHAPTER 13

Machine Learning in Azure Stream Analytics

Azure Stream Analytics is an event-processing engine that allows users to analyze high volumes of data streaming from devices, sensors, and applications. Azure Stream Analytics can be used for Internet of Things (IoT) real-time analytics, remote monitoring and data inventory controls. However, Azure Stream Analytics is another component in Azure on which we could run machine learning. It is possible to use a machine learning model API created in Azure ML Studio inside Azure Stream Analytics for applying machine learning to streaming data from sensors, applications, and live databases. In this chapter, I will explain how to use machine learning inside Azure Stream Analytics. First, a general introduction to Azure Stream Analytics is given, then, a simple example of an Azure ML Studio API that is going to be applied to the stream data is presented.

Azure Stream Analytics Environment

Azure Stream Analytics is an event-processing component in the Azure environment. To create Azure Stream Analytics, you must log in to an Azure account and create a Stream Analytics job (Figure 13-1).

225

Figure 13-1. Creating an Azure Stream Analytics job in an Azure environment

After creating a Stream Analytics job in Azure, you must set up some predefined parameters, such as the job name, subscription, resource group, and so forth (Figure 13-2).

Figure 13-2. Stream Analytics job initialization

Stream Analytics is like a service bus inside Azure, able to fetch data from some components and apply some analytics on received data and pass it to other components. As a result, the Stream Analytics environment contains three main components: Inputs, Outputs, and Query. Stream Analytics is able to fetch data from just three main components: Event Hub, IoT Hub, and Blob storage. These three components are used mainly for collecting data from external sensors, applications, and live APIs. Stream Analytics can pass data to some other Azure components, such as Blob storage, Azure SQL database, Power BI, and so forth (Figure 13-3).

Figure 13-3. Stream Analytics Outputs

Finally, the last important component is Query Editor, which helps users to apply some analytics on received data before sending them to output (Figure 13-4).

Microsoft Azure			D Sea	ch resources, services, and docs	×¢	. * * 0 5	Islaetaati@gmail.com
II Home > chrainanayticcei							
+ Streamanalyocsmi Science Analytics.job							· · · · · ·
P Search (Chil+/)	≪ ▶ Start III Stop 🖄 Delete						
* Overview	Created						
Activity log	Resource group (change) ContanaMVP			Sond Feedback UserVicice			
Access control (AM)	Graated Discriment			Tuesday, 3 July 2018 11:25:07 AM			
🖉 🥐 Tagi	Australia Southeast Subscription (Aused)			* Last output			
X Diagnose and solve problems	Microsoft Azure Sponoschip Subscription D			• Hosting environment			
SETTINGS	Self-CTS 107 Here: 206 APTON-0127			Cloud A			
Locis	Inputs	0	utry				Edit query
O FOR TOPOLOGY	0	£	1 SELECT				
E Inputs	Empty		3 INTO 4 [YourOutputA]	iəs]			
Functions	0.000		5 FROM 6 [YourEnputAld	at]			
<> Query	0	3					
D Guepus	Enpty						
CONTINUE							
C Scale		_					
P Locale	1000						100
D Event ordering	Monitoring		*	Resource utilization			*
On Error policy				100%			
Compatibility level	- 40			90%			
anew.	10			20%			

Figure 13-4. Stream Analytics main components (Inputs, Outputs, and Query)

The language used in Stream Analytics is the Stream Analytics Query Language, which is very to the SQL scripting language.

Case Study

For our case study, I will show how to get data from an application via Event Hub, then pass the collected data into Stream Analytics, apply machine learning and then show the live result in Power BI Services.

The process is explained in Figure 13-5. As you can see in the figure, there is an application that sends live data to Event Hub. Stream Analytics receives the live data, applies an Azure ML API model on the received data, and then sends it to Power BI. In Power BI Report, the end user can see the live data in addition to the result of the machine learning that was applied to it.

Figure 13-5. Case study for fetching data, applying machine learning, and then showing the result in Power BI

Event Hub

The first step is to create an Event Hub service in the cloud. To create an Event Hub service, follow the same procedures for creating Stream Analytics. Create a new service and provide the relevant information (Figure 13-6).

Figure 13-6. Creating an Event Hub in Azure

With an Event Hub service, you can add a new Event Hub to your service (Figure 13-7).

Microsoft Azure	🔎 Search resources, services, and docs 🛛 🗙 🗘 😧 🕐 🕼 😢	taati@gmail.com
+ Executive Hubs Namespace		*
Search (Ctrl+/) «	Event Hub Delete	
* 🗵 Overview		Click for additional
🛄 🔐 Access control (IAM)	Nonlinear Contents Processes Processes	metrics
🗰 🛷 Tags	Requests Messages Throughput	
Diagnose and solve problems	108	
S Events	90 80	
SETTINGS	70	
a 😚 Shared access policies	10 40	
🧭 🕑 Scale	20	
🤨 Geo-Recovery	30 10	
Virtual networks and IP filters	0 4:15 PM 4:30 PM 4:75 PM 5 PM	-
Locks	INCOMING REQUESTS. SUCCESSFUL REQUES. SERVICE/REGISES, P. USER (REGISE, PR., THEOTILD REQUEST., BOOKSTREAMANULY)L, BOOKSTREAMANULY)L, BOOKSTREAMANULY)L, BOOKSTREAMANULY)L,	
Automation script	IV I I I	
ENTITIES	P Search to filter dams.	*
Event Hubs	NAME STATUS MESSAGE RETENTION PARTITION COUNT]
MONITORING ~	eventhubmi C Active 1 2	

Figure 13-7. Creating a new Event Hub

Application

The second step is to create an application that generates some sample data. The application is a sample .NET framework application that auto-generates some random data. (The application has been included in the book materials for Chapter 13.) Open the folder containing the application (Figure 13-8).

Figure 13-8. Application creating random live number

As I mentioned earlier in this chapter, I'll be using a .NET C# console application to pass the data to Event Hub. This application has been created by Reza Rad [1]. In his blog post, in the "Push Data Application" section, Rad explains the process of creating this application step by step.

However, for the application that has been included in the related materials for this chapter, you must open it with Visual Studio, then open the Solution Explorer, go to References, right-click and select Manage NuGet Packages. Next, click Browse, select WindowsAzure.ServiceBus, and install it (Figure 13-9).

Figure 13-9. Install Azure Service Bus in Visual Studio

After installing Azure Service Bus, you must set up the configuration. Click App. config, then in the code for the key section (Figure 13-10), change the end point URL name and keys (from the created Stream Analytics in the next section).

Figure 13-10. Setting up the configuration

Finally, you must enter the name of your Event Hub in the main code section under the program (Figure 13-11).

Figure 13-11. Changing the Event Hub name in the code

Now the code is ready. Before running the code, you must set up the Stream Analytics.

Azure Stream Analytics

The first step is to create a Stream Analytics job in Azure (Figure 13-12).

Figure 13-12. Creating a new Stream Analytics job in Azure

After creating Stream Analytics, you must set up the Inputs, Outputs, and Query. As mentioned, Stream Analytics is able to retrieve data from other Azure components. As you can see in Figure 13-13, Stream Analytics can get data from the three main Azure components and then pass stream data to other resources, such as Power BI, SQL Database, and so forth. The transformation query leverages an SQL-like query language that is used to filter, sort, aggregate, and join streaming data over a period [2].

,O Search (Ctrl+/)	«	+ Add stream input	+ Add reference in	put
Overview	^	Event Hub		SOURCE TYPE
Activity log		loT Hub		
Access control (IAM)		Blob storage		
🧳 Tags				
X Diagnose and solve problems				

Figure 13-13. Inputting data for Stream Analytics

In our case study, we are going to get data from the Event Hub, apply machine learning to it, and then pass it to Power BI, to see the live data with applied analytics.

To create input, click the Inputs option on the main Stream Analytics page (Figure 13-14).

+		et /				
Lera	•	x1.040 PM	1000			
-						
Micros	oft Azure			D Second recourses services and door	× ()	හි 🖸 🗿 🔂 lala.etaati@gmail.com
	Harre & stressards			· · · · · · · · · · · · · · · · · · ·		
+ []	Incuts					EVENE HUD New Pays
' L	a de de co					
=	+ Add stream inpu	Add reference input				light dias
						azureni 🗸
*	NAME		SOURCE TYPE	SOURCE		O Provide Event Hub settings manually
	Employ					Select Event Hub from your subscriptions
_	an page					
						Subscription Minusett Excer Conservable
-						
						* Event Hub namesbace O
۲						booksbeamanalyticsml 🗸
						* Event Hub name Ø
						Create new Use existing
						eventhubmi v
						* Event Hub policy name O
						RoetManageSharedAccessKey
•						Event Plub poscy key
-						Event Hub consumer group 0
⇔						
						* Event serielization format O
•						ISON 🗸
						Includes D
						UTF-8
٠						Second Contraction (Contraction)
						Event compression type O
						none
•						
						52.0
						Save
2					_	

Figure 13-14. Creating Input for Azure Stream Analytics

After creating input for Stream Analytics, we must create output, following the same process for input (Figure 13-15).

Figure 13-15. Creating output for Power BI in Stream Analytics

After creating Stream Analytics input and output and before creating the query, we must set up some keys and names in the .NET code. Click the Stream Analytics components, then Shared access policies. Click RootManageSharedAccessKey, then copy the Primary Key (Figure 13-16).

Figure 13-16. Key for shared access

Copy the data and then paste it in the main code section shown in Figure 13-11.

Azure ML

In Azure ML Studio, I have created a simple model for grouping data. The main aim of this model is to fetch data from the application, then group it into four main groups. Next, I create an API, so that Stream Analytics is able to pass data to it and get the group number and the real value. Import the sample data that the application is going to generate (Figure 13-17). The sample data has been included in the book materials for Chapter 13. Then drag and drop the Select Columns in Dataset component to the selected value column. Finally, leverage another component named Group Data into Bins.

GroupData	
	data.csv
	Select Columns in Dataset
	Group Data into Bins

Figure 13-17. Azure ML model

Take the following steps, to generate an API for this model.

- 1. Run the model using the Run option at the bottom of the page.
- 2. Click Setup Page, to create input and output for the API (Figure 13-18).
- 3. Then, run the model again and click Deploy Web Service.

After creating a web service, a new page will be shown. On the new page, in the middle of the page, the API key for the web service appears.

GroupData		Dut
	Web service input	
	data.csv	
	Select Columns in Dataset	
	Group Data into Bins	
	Web service output	

Figure 13-18. Azure ML web service creation

To connect from Stream Analytics to the Azure ML API, we must click APPs (at the bottom of the page), then click Excel 2010 or an earlier workbook (Figure 13-19). A new Excel workbook will be downloaded. Open the Excel file, then, at the top of the page, you will see the web service URL and access key.

= 10	icrosoft Azure Machine Learning Studio			Azure MI con
页	groupdata			
π	DASHEDARD CONFIGURATION			
	General New Web Services Experience proving			
	Published experiment			
	View snapshot View latest			
	Description			
2	No description provided for this web service.			
	API key			
	Y45cl3ktl.Ns1hn+VoWQjaTGeG7830xU/dopkfGISS+IQKRTDnHTCs	TKcTJDKwN1zqAez:8m9vMl2Df+U1gpHQ==		
	Default Endpoint			
	AM HELP PAGE	161	A995	LAST UPDATED
		and the second sec		
	REQUEST/RESPONSE	Test Test	C Excel 2013 or later C Docel 2010 or earlier workbook	7/9/2018 11:25:20 AM
	REQUEST/RESPONSE BATCH DECUTION	Test Brester	① Ducel 2013 or is br I ① Ducel 2010 or earlier workbook ① Ducel 2017 or later workbook ① Ducel 2013 or later workbook ①	7/9/2018 11:25:20 AM 7/9/2018 11:25:20 AM
	REGULST/RESPONSE BATCH DXECUTION Additional endpoints	Test proving	0) beer 2013 or is in 0 beer 2018 accentise wardbook 0) beer 2013 or is in nontbook	7/9/2010 11:25:20 AM
	ROUISTIRESPONSE BATCH DECUTION Additional endpoints Number additional endpoints enabled for this web service: 0 Manage additional endpoints	Test produce (192)	₫ j ben 2013 or lier i ₫ j ben 2013 stander waktook ₫ j ben 2013 or laar sektook	7/9/0216 11/2300 AM
	ROUISTIRESPONSE BATCH DECOTION Additional endpoints Number ef additional endpoints created for this web service: 0 Manage endpoints	Test texture	₫ j ben 2013 or lør i ₫ j ben 2013 sender wektook ₫ j ben 2013 or lør nørkboek	7/8/2010 11:23/20 AM
	ROUISTREPOISE SATOLOECHON Additional endpoints Number of additional endpoints created for this web service: 0 Manage endpoints ######	Test motion	€] Door 2013 or left in (€) Door 2013 or ender workbook €] Door 2013 or left renkbook	7,962010 11 2520 AM
	ROUISTREPOISE BATOLOCUTION Additional endpoints Number of additional endpoints created for this web service: 0 Manage endpoints. Immen	Test motion	() Doel 2013 of left (이 Doel 2013 and ender workbook	7/96216112520 AM
	ROUESTREEPOISE BATOLIDECUTION Additional endpoints Number of additional endpoints created for this web service: 0 Manage endpoints services	Test meson	(c) Doer 2013 or left 1 (c) Doel 2013 or under workbook (c) Doer 2013 or left notificek	7/96216112520 AM
	ROUESTREPOISE BATOLIDECHTON Additional endpoints Number of additional endpoints created for this web service; 0 Manage endpoints. Preserv	Test meson	(c) Doer 2013 or tell (c) Doel 2013 or under workbook (c) Doer 2013 or tell restlibeek	7,962010 11.2520 AM
	ROUESTREPOISE BATOLIDECUTION Additional endpoints Number of additional endpoints created for this web service: 0 Manage endpoints Prefer	Test margin	(c) Doer 2013 or tell (c) Doel 2013 or and for another southook (c) Doer 2013 or tell an index and block	7,962010 11.2520 AM

Figure 13-19. Azure ML web service creation

Copy the code for the web service URL and the access key (Figure 13-20).

월 5 년 · CospOte 07,0,2012 23,23,13 dive. Proved Vied - Soul	leta ataan 🗉 🥌
FROTECTED VBW Be carried—lives from the internet can contain viruues. Unlives you need to edd, it is safer to stay in Protected Vave. Chable Edd reg	
AS - T × J fr INSTRUCTIONS	
A B C D E F G H J K L M O P Q S T U V 2 VIII S 2004 CUIL 1	X Y Z AA

Figure 13-20. Access key and URL in Excel file

Now that we have the keys and URL, we must set up a function in Stream Analytics, to access the created model in Azure ML Studio.

Stream Analytics Function

At this stage, we have created an Event Hub application to generate a random number, Stream Analytics, and an Azure ML model and API to group the streamed data.

In this section, we must create a function inside Stream Analytics to call the created API in Azure ML. Click Azure Stream Analytics job, then click Functions (Figure 13-21).

Figure 13-21. Creating a function in Azure Stream Analytics

On the Functions page, select the subscription name, the key, and URL extracted from the Excel file (Figure 13-22).

E.	DEFAULT DIRECTORY	- V
MLS	Inclion details irreamAnalytics	^
	Successful connection test 10:33 AM Connection to function 'MLStreamAnalytics' succeeded.	4
FUN	ICTION SIGNATURE StreamAnalytics (value BIGINT) RETURNS RECORD	
* F	unction alias	
N	ILStreamAnalytics	
Sub	scription ubscription information not needed	
* 11	RI	
h	ttps://ussouthcentral.services.azureml.net/workspaces/dcedc:	
Key		

Figure 13-22. Creating a function

On theStream Analytics main page, we must add some code in Query Editor, to call the function. Click Edit Query, then in the editor, paste the following code:

```
WITH MLStreamAnalytics AS (
SELECT value, MLStreamAnalytics(value) as result
FROM azureml
)
```

```
SELECT
value, result.[value_quantized]
INTO
MLoutput
FROM
MLStreamAnalytics
```

The first part of the code is for calling the function and getting the result from it. As you can see in Figure 13-23, the first part of the code is about creating a temporary table to call the MLStreamAnalytics(value). The next step is about getting the data from the Event Hub component (from Azure ML).

The second part of the code gets the data from a function in Azure Stream Analytics and passes the data to the Power BI component (MLoutput).

Figure 13-23. Edit Query in Stream Analytics

Live Analytics on Stream Data

The last step is to run the code. First, we must run the Stream Analytics job by clicking the Start key (Figure 13-24).

Micr	osoft Azure			$\mathcal P$ Search resources, services, and docs $ imes$	Ç P
20					
+	streamanalyticsml				
:=	D Search (Ctrl+/)	« 🕨 Start 🖩 Stop 📋 Delete			
-*-		1 Stopped			
	Overview	Resource group (change) CortanaMVP		Send feedback UserVoice	
	Activity log	Status		Created	
	Access control (IAM)	Stopped		Tuesday, 3 July 2018 11:25:07 AM	
	Ø Tans	Australia Southeast		Thursday, 5 July 2018 10:55:08 AM	
		Subscription (change) Microsoft Anura Spencerchin		Last output Thursday, 5 July 2018 11:04:26 AM	
۲	X Diagnose and solve problems	Subscription ID		Hosting environment	
	SETTINGS	0e662378-7d3f-4bb3-854d-66f506e12125		Cloud R	
-	Locks	Inputs		Query	
-		1	÷	1NLStreamAnalytics (value BIGINT) RETURNS RECORD	
	JOS TOPOLOGY	azureml		2 WITH MLStreamAnalytics AS (3 SELECT value, M StreamAnalytics(value) as result	
	🗉 Inputs			4 FROM azurenl	
	Functions	and the second se		5)	
	C) Quary	Outputs	-	7	
-		1	·	8 SELECT	
69	Outputs	MLoutput		10 INTO	
	CONTRACTOR			11 MLoutput	
•				13 MLStreamAnalytics	
0	🗹 Scale				
	🌻 Locale				
	Event ordering	Monitoring		* Resource utilization	
	€ Error policy	100		100%	

Figure 13-24. Running the Stream Analytics job

After running the Streaming Analytics job, open your Power BI service from powerbi.microsoft.com. As you can see in Figure 13-25, a streamed data set has been created in Power BI. To work with it, click the report icon and create an empty report.

=	Power BI	🙆 му	Verkspace				© ¢ ± ?
=							+
×	Favorites	>	Q. Search content				
۲	Recent	>	Dashboards Reports Workbooks Datasets				Showing 30 item(s) Name
₽	Арря		NAME	ACTIONS	LAST REFRESH	NEXT REFRESH	APLACCESS
R ^R	Shared with me			# 0 B <	4/08/2017 10:43:11 AM	N/A	12
	Workspaces	>		4004			
8	My Workspace	~		and O La the m	13/04/2017 10357 PM	N/A	
			H frage	at O 🗔 🗠 …	10/04/2017 12:00:50 PM	N/A	***
			B MtOutput	at O / 🖹 …	3/07/2018 12:18:16 PM	N/A	Hybrid
			0	at O D +2	26/07/2017 10:20:56 AM	N/A	
				at O ⊡ << …	4/05/2018 2:12:58 PfA	N/A	
			0	at O 13 <<	21/04/2017 2:51:12 PM	N/A	
				at O ⊡ ≪ …	26/07/2017 10:44:11 AM	N/A	*
			H PowerBlandR	at O 🛛 < …	22/01/2018 10:29:42 PM	N/A	
			8 powerbifacet	alt O [] =\$	3/07/2017 1-51-23 PM	N/A	
7	Get Data		B PowerBilloT	# © Ø 🗊 …	28/03/2017 5:09:55 PM	N/A	Hybrid

Figure 13-25. Creating a streamed data set in Power BI

On the report page, a new Power BI report is shown, with a data set that has two fields: Value and Value_quantized (Figure 13-26).

POWER BI 🛞 My Werkspace > MLCoutput			🗸 🤗 🌣 ± ? 👄 🌒
Tie v View v Resting view		😼 Lipiore v 🔄 Text box 🧟 Shapes v 🕮 Suttons v 🙆 Visual interaction	rs 🗸 🖒 Refera 🗂 Duplicate this page 🗟 Save 🗠
🛱 Favorites >		VISUALIZATIONS	FIELDS
 ★ Favoritet > Roccet > Appn Ap^A Shared with me Ap^A Shared with me Workspace > My Warkspace > Workspace > Werkspace 	520 Count of table	VEGULUEZTONS ■	FIELDS
1.000			
Page1 +			

Figure 13-26. Power BI report with Stream Analytics

We must now run the code in the .NET application and add the report to the new workspace. After running the code and checking the workspace, you can see the live data coming from the application and the streamed data in Power BI, in addition to the group name and number that each value has been allocated using the Azure ML model (Figure 13-27).

Figure 13-27. Streamed live data in Power BI

Summary

This chapter offered an overview of Azure Stream Analytics and a brief explanation of its different components. A use case demonstrated how Stream Analytics can be leveraged for live analytics, using the Azure ML model and API. A sample application to generate a random number was created, then how to use Event Hub, Stream Analytics, Azure ML, and Power BI together to show a streamed live data analysis was reviewed.

References

- [1] Reza Rad, "Stream Analytics and Power BI Join Forces to Realtime Dashboard," RADACAD, http://radacad.com/streamanalytics-and-power-bi-join-forces-to-real-timedashboard, September 12, 2016.
- [2] David Peter Hansen et al., "Install SQL Server 2016 R Services," Microsoft, SQL Docs, https://docs.microsoft.com/en-us/ sql/advanced-analytics/install/sql-r-services-windowsinstall, September 30, 2018.

CHAPTER 14

Azure Machine Learning (ML) Workbench

Azure ML Workbench is another tool introduced by Microsoft in 2017. Azure Machine Learning services (preview) integrate end-to-end data science with advanced analytics tools. They help professional data scientists prepare data, develop experiments, and deploy models at cloud scale [1]. First in this chapter, a brief introduction into Azure ML Workbench is provided, then a comparison between Azure ML Studio and Azure ML Workbench is made. The process of installing Azure ML Workbench will be presented next. After, loading, preparing, and visualizing the data will be discussed.

Azure ML Workbench

Azure ML Workbench is an integrated, end-to-end data science and advanced analytics solution. It is a tool for preparing data, developing models and experiments, and, finally, deployment at the cloud scale. Azure ML Workbench is a new version of Azure ML that has some differences from Azure ML Studio. In Table 14-1, I have summarized the principal differences between Azure ML Workbench and Azure ML Studio

247

	Azure ML Workbench	Azure ML Studio
Users perspective	It is suitable for professional data scientists.	It is a great tool for users who are not experts in machine learning.
Deployment	It is possible to deploy the model in cloud, manage the models, and track their deployment.	The deployment of models in Azure ML Studio is via API creation.
Development language	The only development language is Python.	Model can be developed using R or Python code, in addition to using some existing models and transformation components.
Accessibility	On-premises platform	Cloud-based platform

Table 14-1. Azure ML Workbench vs Azure ML Studio

The five main components of Azure Machine Learning are

- Azure Machine Learning Workbench
- Azure Machine Learning Experimentation Service
- Azure Machine Learning Model Management Service
- Microsoft Machine Learning Libraries for Apache Spark (MMLSpark library)
- Visual Studio Code Tools for AI

Azure ML Workbench is a desktop application that is a command-line tool. It supports Windows and MacOS. With it, it is possible to manage machine learning solutions.

Azure ML Workbench Installation

The first step in installing Azure ML Workbench is to create service accounts for Azure Machine Learning services [2]. Log in to the Azure Portal (portal.azure.com) and select Machine Learning Experimentation (Figure 14-1).

CHAPTER 14 AZURE MACHINE LEARNING (ML) WORKBENCH

Figure 14-1. Creating the Azure ML model experimentation

Next, we must set up the parameters, as shown in Figure 14-2.
Resource group	
Create new O Use existing	
AzureMLworkbench	~
Location	
Australia East	\sim
Number of seats. First two are free.	
2	~
Storage account 0	
Create new O Use existing	
azuremlwrkbenchstorage	~
* Workspace for Experimentation accoun	t O
LeilaWorkspace	~
* Assign owner for the workspace Leila Etaati	>
Create Model Management account Account name	0
azureMLwrkBenchModelMgmt	~
* Model Management pricing tier 0 DevTest	>
Pin to dashboard Validating	

Figure 14-2. Setting up parameters for Azure ML model experimentation

It is possible to download Azure ML Workbench from the overview page. As shown in Figure 14-3, I created Machine Learning Model Management.

Figure 14-3. Azure ML model and experiment management

Download Azure ML Workbench from the Azure portal. The initial installation process may take a few minutes.

Azure ML Workbench Environment

After installing Azure ML Workbench, open it. As you can see in Figure 14-4, at the start, no projects are listed in Azure ML Workbench.

ile Edit Helo PROJECTS orkbench (previe Azure Machine earnin A Get Started What is Azure ML? Azure Machine Learning is an integrated, end-to-end data science and advanced analytics solution. It enables data scientists to prepare data, develop experiments and deploy models at cloud scale. **Data Preparation** Data Preparation Data Preparation provides a set of tools for efficiently exploring, understanding, and fixing problems in Data Preparation provides a set of tools for efficiently exploring, understanding, and fixing problems in data. It allows you to consume data in many forms and transform that data into cleansed data that is better suited for downstream usage. Experimentation 0 Experimentation service allows data scientists to execute their experiments locally, in Docker containers, or in Spark clusters through simple configuration. It manages run history, provides version control, and enables sharing and collaboration. Model Management Model Management Model management enables data scientists to manage and deploy machine-learning workflows and models as containerised web services, it provides flexibility for on-prom. IoT edge, as well as Coud-based deployment. It also enables model versioning, telemetry tracking and more. Q 0 Featured Video

CHAPTER 14 AZURE MACHINE LEARNING (ML) WORKBENCH

Figure 14-4. Azure ML model main page

To start to work with the Azure ML Workbench, there are some sample projects to help users learn more about it. To begin, you must create an empty workspace. To create a new workspace, click the plus sign (+), then click New Workspace (Figure 14-5).

Figure 14-5. Creating a new Azure workspace

As you can see in Figure 14-6, to create a new workspace, we must provide some details about the workspace, such as a name and description.

Figure 14-6. Providing details about the new Azure workspace

Create a new project under the new workspace. Under the last text box, Search Project Templates, search for Iris Classification (Figure 14-7).

Project name *	
irisclassification	
Project directory *	
C:\weblog\AZUREML	Browse
Project description	
Visualstudio.com GIT Repository URLO	
Selected workspace	
LeilaWorkspace	•
iris	۹
Classifying Iris	

Figure 14-7. Iris Classification project

Create the iris classification project. After creating the project, the project environment will be shown. There are five main tabs (Figure 14-8). In the next section, each of these components will be explained.

∆ an	ureMLwrkBench - Azure Machine Learning Workbench (Preview)	– 🗆 ×
File E	ar Help ◎ Project Dashboard × irisclassification	«.
	LOCATION C:(weblog)/AZUREMLUrisclassification	Created on 16/07/2018, 17:22:09
1	😢 local 🔹 🗋 score py 🔹 Arguments: Arguments	► Run
	Getting Started	
	Welcome to your new Azure Machine Learning Project. For more information go to http://aka.ms/AzureMLGettingStarted Configure your favorite IDE and open this project using the File menu. Add and prepare data sources using the Data tab. Add and explore notebooks using the Notebook tab. Explore past runs and access project outputs using the Run History tab.	
Q		
0		
0		

Figure 14-8. Iris project in Azure ML Workbench

Azure ML Workbench Import Data

The first step is to import the data into Azure ML Workbench. Click the Data option. There are two main sections there. Data Sources stores the original data source. The Data Preparations option stores the prepared and cleaned data. To import Data into Azure ML Studio, you must click the plus sign (+) at the top of the page (Figure 14-9).

Figure 14-9. Importing data

Click Add Data Source, which has four main options to import the data (Figure 14-10):

- Text Files
- Parquet
- Excel Files
- Database

🕹 soureMoveld	ench - Azure Machine Learning Workbench (Pr	eview)				- U
File Edit Help						
\times init						
û ≥=	Add Data Source	_		ta come from? ta come from? tarcuet Excel Files (*alk, Database *also) Database		
	1. Data Store	Where does the Specify the data store when	data come fr the data comes from.	om?		
Э		Text Files (*.csv, *.json, *.tst,)	Parquet	Excel Files (*.xls, *.xlsx)	Database	
		P27-2-6, 353-3-6, 252-2745			cel Files (*sk, iss) Database	
						tabase
					Kies (*.x)s. Database	
٩		Previous Finis	n			
0						

Figure 14-10. Add Data Source option

In this example, the iris data (text file) will be imported from the local PC into the Azure ML Workbench environment. Choose the Text file and import the data into Azure ML Workbench (you can download the iris data set file from www.kaggle.com/uciml/iris).

As you can see in Figure 14-11, the iris data set has been imported. The data set in Data Source section stores the raw data. It also shows how many rows have been missed, how many are valid, and so forth.

	 LeilaWorkspace iris	ŵ P	roject Dashboard	() iris	× e& iris			
	Search Data 2 +	Va d	Metrics d Prepa 150 Missing 1 tr Column1	ren 0				
	🖌 Data Sources (1)		# Column1	# Column2	# Column3	# Column4	abc Column5	
ł	a iris	1	5.1	3.5	1.4	0.2	Iris-setosa	
	Data Preparations (1)	2	4.9	3	1.4	0.2	Iris-setosa	
	alla iris	3	4.7	3.2	1.3	0.2	Iris-setosa	
		4	4.6	3.1	1.5	0.2	Iris-setosa	
		5	5	3.6	1.4	0.2	Iris-setosa	
		6	5.4	3.9	1.7	0.4	Iris-setosa	
		7	4.6	3.4	1.4	0.3	Iris-setosa	
		8	5	3.4	1.5	0.2	iris-setosa	
		9	4.4	2.9	1.4	0.2	Iris-setosa	
		10	4.9	3.1	1.5	0.1	Iris-setosa	
		77	5.4	3.7	1.5	0.2	Iris-setosa	
		12	4.8	3.4	1.6	0.2	Iris-setosa	
		13	4.8	3	1.4	0.1	Iris-setosa	
		14	4.3	3	1.1	0.1	Iris-setosa	
		15	5.8	4	1.2	0.2	Iris-setosa	
		16	5.7	4.4	1.5	0.4	Iris-setosa	
		17	5.4	3.9	1.3	0.4	Iris-setosa	
		18	5.1	3.5	1.4	0.3	Iris-setosa	
		19	5.7	3.8	1.7	0.3	Iris-setosa	
		20	5.1	3.8	1.5	0.3	Iris-setosa	
		21	5.4	3.4	1.7	0.2	Iris-setosa	
		22	5.1	3.7	1.5	0.4	Iris-setosa	

Figure 14-11. Importing data into Azure ML Workbench

To prepare the data, click the Prepare option at the top of the window and assign a proper name to the new data set. Then, in the Data Preparations section, a new data will be shown (Figure 14-12).

La azure	MLwrkBench - Azure Machine Learnin	g Workbend	h (Preview)					
\times	BookAnalytics	 Proje iris 	ct Dashboard	et iris ×				
ଜ	Search Data C +	Colun Rows	nns: 5 150					
8	▲ Data Sources (1)	LOW	# Sepal L	Derive Column by Example		# Petal Width	abc Species	-
~	🗟 iris	5		Split Column by Example	4	0.2	Iris-setosa	
Ш	 Data Preparations (1) 	2		Duplicate Column	4	0.2	Iris-setosa	
5	di iris	з		Replace NA Values	В	0.2	Iris-setosa	
0	eMUurkBench - Azure Machine Learnin dit Dataflows Transforms Inspector BookAnalytics iris Search Data ◯ + △ Data Sources (1)	4		Replace Missing Values	5	0.2	Iris-setosa	
		5		Replace Errors	4	0.2	Iris-setosa	1
		6		Adjust Precision	7	0.4	Iris-setosa	1
	dit Dataflows Transforms Inspectors View BookAnalytics iris Search Data Data Sources (1) i inis Data Preparations (1) data iris Data Preparations (2) data Preparations	7		Rename Column	4	0.3	Iris-setosa	
		bics in the second seco	5	0.2	Iris-setosa			
		9		Keep Columns	4	0.2	Iris-setosa	
		10		Convert Field Type to String	5	0.1	Iris-setosa	
		11		Convert Unix Timestamp to Da	teTime 5	0.2	Iris-setosa	
		12		Filter Column	5	0.2	Iris-setosa	
		13		Remain Dualitation	4	0.1	Iris-setosa	
		74		Sort	,	0.1	Iris-setosa	
		15			2	0.2	Iris-setosa	
		16		Add Column (Script)	5	0.4	Iris-setosa	
		17		Column Statistics	8	0.4	Iris-setosa	
		18		Histogram		0.3	Iris-setosa	
		19		Box Plot	Ļ	0.3	Iris-setosa	1
		20		Scatter Plot	5	0.3	Iris-setosa	
		21		Мар	-	0.2	Iris-setosa	
		22	5	1 3.7	1.5	0.4	Iris-setosa	
		23	4	6 3.6	1	0.2	Iris-setosa	
		24	5	1 33	17	0.5	Iris-setosa	-
0		25	4	8 3.4	10	0.2	Iris-setosa	
ĥ		26		5 3	16	0.2	Iris-setosa	
\odot		27		5 34	1.0	0.2	Iris-setosa	
-		28	5	2 35	1.5	0.4	Iris-setosa	

Figure 14-12. Preparing the data

Right-click the first column. There are some options for data cleaning, such as Replace NA Values, Replace Missing Values, and so forth. Rename the columns to Sepal Length, Sepal Width, Petal Length, and Petal Width. It is possible to create a chart, to get a better understanding of the data. As you can see in Figure 14-13, at the bottom of the right-click menu, there are some chart options, such as Column Statistics, Histogram, Value Counts, and so forth.

For our example, we can see the distribution of data by choosing a histogram chart.

<	 BookAnalytics iris	 Project D iris 	ashboard 🚓 iris 🗙			
ĥ	Search Data 2 +	Columns:	5			
3	▲ Data Sources (1)	FON #	Sepal		# Petal Width	abc Species
'n	li iris	1	Split Column by Example	1.4	0.2	Iris-setosa
1	Data Preparations (1)	2	Duplicate Column	1.4	0.2	Iris-setosa
)	din ins	3	Replace NA Values	1.3	0.2	Iris-setosa
		4	Replace Missing Values	1.5	0.2	Iris-setosa
]		5	Replace Errors	1.4	0.2	Iris-setosa
	6	Adjust Precision	1.7	0.4	Iris-setosa	
	7	Rename Column	1.4	0.3	Iris-setosa	
	8	Remove Columns	1.5	0.2	Iris-setosa	
		9	Keep Columns	1.4	0.2	Iris-setosa
		10	Convert Field Type to String	1.5	0.1	Iris-setosa
		11	Convert Unix Timestamp to DateTime	1.5	0.2	Iris-setosa
		12	Filter Column	1.6	0.2	Iris-setosa
		13	Pamaua Dunlicatar	1.4	0.1	Iris-setosa
		14	Sort	1.1	0.1	Iris-setosa
		15	Add Caluma Review	1.2	0.2	Iris-setosa
		16	Add Column (Script)	1.5	0.4	Iris-setosa
		17	Column Statistics	1.3	0.4	Iris-setosa
		18	Histogram Value Counts	1.4	0.3	Iris-setosa
1		♥ INSPEC Histogr 30 - 20 - 10 - 0 -	TORS am: Sep		ØX	2

Figure 14-13. Histogram chart of iris sepal length

This editor provides a means for data scientists to better analyze the data and gain a better understanding of the data specifications, such as distribution, outliers, and so forth. Azure Machine Learning Workbench supports interactive data science experimentation through its integration with Jupyter Notebook. After importing and cleaning the data, you must run and train the models. As you can see in Figure 14-14, there is a notebook editor for running the code and testing the models. Click the Notebook option at the left side of

the window. A notebook will appear there. (In Chapter 19, a brief introduction to Jupyter Notebooks is presented.)

Figure 14-14. Jupyter Notebook in Azure ML Workbench

There is an option named Run at the left side of the window. It shows the history of the running model. At the start, there is no run history.

The related files for the iris project have been loaded in the last option on the left side of the window. As you can see in Figure 14-15, all the files related to Iris classification are located there.

Lazure	MLwrkBench - Azure Machine Learnir	ig Workbench (Preview)
	BookAnalytics iris	□ run.py □ iris_spark.py × □ LICENSE ⑳ local ▼ □ iris_spark. ▼ Arguments: Arguments: ▲rguments:
	Search Files C + Search Files C + aml_config Gos	<pre>30 data.show(10) 31 32 # vectorize all numerical columns into a single feature column 33 feature_cols = data.columns[:-1] 44 assembler = pyspark.ml.feature.VectorAssembler(inputCols=feature_cols, outputCol='features') 55 data = assembler.transform(data) 66 data = data.select(['features', 'class']) 99 label_indexer = pyspark.ml.feature.StringIndexer(inputCol='class', outputCol='label').fit(data) 40 data = label_indexer.transform(data) 41 42 # only select the features and label column 43 data = data.select(['features', 'label']) 44 print("Reading for machine learning") 45 data.show(10) 46 47 # change regularization rate and you will likely get a different accuracy. 48 reg = 0.01 97 # load regularization rate from argument if present 50 if len(sys.argv) > 1: 51 reg = float(sys.argv[]) 53 # log regularization rate 54 rum_logger.log("Regularization Rate", reg) 55 # log regularization rate 55 # log regu</pre>
ф ©		<pre>55 56 # use Logistic Regression to train on the training set 57 train, test = data.randomSplit([0.70, 0.30]) 50 lr = pyspark.ml.classification.LogisticRegression(regParam=reg) 59 model = lr.fit(train) 60 61 # predict on the test set 62 prediction = model.transform(test) 63 print("Prediction") 64 prediction.show(10) 65 66 # evaluate the accuracy of the model using the test set 67 evaluator = pyspark.ml.evaluation.MulticlassificationEvaluator(metricName='accuracy') 68 accuracy = evaluator.evaluate(prediction) 69 70 print() 71 print('####################################</pre>

Figure 14-15. Iris files

As you can see in Figure 14-15, all files related to the iris project are listed. One of the files is iris_sklearn.py. This file contains models and data for Iris classification. It is possible to run the code locally on Docker (Figure 14-16).

Figure 14-16. Running the Python code

Click the Run option and run the model. After running the model, click Run, at the right side of the window. You will be able to see details of the run, including status, run start time, duration, accuracy, and so forth (Figure 14-17).

t fala Bashinatrina	Diriusiaanpy Siriusiaanpy x		Jobs
iris	+ Run Liter 🖃 Compare 🛞 Restare		infa aklaare, py (2)
teachtics C	+ 🔳 Run Properties	C Outputs	Completed Today at 11 00 AM
>] con	Status Completed	in Distance	
D HEAV	Start Time Jul 10, 2010, 11,05:45 AM Duration 15a	G D metrop	
8 montane	Targré lecal	🗤 🗅 modelpid	
D Allayola C encloseentay	Run kd ins_1551060744897		
 B incloser, sheed, i B incloser, p B incloser, p 	AL. Ran Namber 2 Script Kame int_sklearn py		
D stot, anaphoay	Arguments		
i restand	Git Commit Hash =d54/27532547d=55471836=8c14(+0.7+15		
PI ARPY	Accuracy 0.6792452530158679		
C stars weby	Regularization Rata 0.01		
	∠ Metrics		
	Precision Recall	Thresholds	
		•	
	··· / ·· /	· · · 3	
	11 mm	~	
		ೆದೆ ನಗು ಮುಂದು ವಿ	
	∠ Visualizations		

Figure 14-17. Iris run details

The details of running the Python code have been shown in Figure 14-16. The evaluation result for Iris classification is shown in Figure 14-18.

Figure 14-18. Iris classification result

Summary

This chapter presented a brief introduction to the Azure ML Workbench environment, including an explanation of how to install it and access the environment. In the next chapter, you will see how to import data from an SQL Server database and then load it to Azure ML Workbench and how to run it in Spark on Docker.

References

- Josée Martens et al., "What happened to Azure Machine Learning Workbench?" Microsoft Azure, https://docs.microsoft. com/en-nz/azure/machine-learning/service/quickstartinstallation, January 8, 2019.
- [2] Gary Ericson et al., "What is Azure Machine Learning service?" Microsoft Azure, https://docs.microsoft.com/en-us/azure/ machine-learning/service/overview-what-is-azure-ml, December 3, 2018.
- [3] UCI Machine Learning, "Iris Species," Kaggle, www.kaggle.com/ uciml/iris, updated 2016.

CHAPTER 15

Machine Learning on HDInsight

In this chapter, an overview of how to use HDInsight for the purpose of machine learning will be presented. HDInsight is based on Apache Spark and used for in-memory cluster processing. Processing data in-memory is much faster than disk-based computing. Spark also supports the Scala language, which supports distributed data sets. Creating a cluster in Spark is very fast, and it is able to use Jupyter Notebook, which makes data processing and visualization easier. Spark clusters can also be integrated with Azure Event Hub and Kafka. Moreover, it is possible to set up Azure Machine Learning (ML) services to run distributed R computations. In the next section, the process of setting up Spark in HDInsight will be discussed.

HDInsight Overview

HDInsight is an open source analytics and cloud-based service. Integration with Azure HDInsight is easy, fast, and cost-effective for processing massive amounts of data. There are many different use-case scenarios for HDInsight, such as ETL (extract, transform, and load), data warehousing, machine learning, Internet of things (IoT), and so forth.

The main benefit of using HDInsight for machine learning is access to a memorybased processing framework. HDInsight helps developers to process and analyze big data and develop solutions, using some great and open source frameworks, such as Hadoop, Spark, Hive, LLAP, Kafka, Storm, and Microsoft Machine Learning Server [1].

Setting Up Clusters in HDInsight

The first step is to set up HDInsight in Azure. Log in to your Azure account and create an HDInsight component in Azure (Figure 15-1). As you can see in Figure 15-1, there are different modules for HDInsight, such as HDInsight Spark Monitoring and HDInsight InteractiveQuery Monitoring. Among those modules, select the HDInsight Analytics option.

Microsoft Azure 🔗	Search resources,	services, and docs	>_	Ð	¢,	-	?	٢	leila.etaati@grr DEFAULT D
>> Home > New >	Marketplace > Ev	erything							
+ olace	× \$	Everything							
i≡ ★List 💿	^	Y Filter							
		∠ hdinsight							
=		Partile							
g 🐨		Resolts							
0		NAME			PUBLIS	HER		23	CATEGORY
	_	HDInsight			Micros	soft			Analytics
······································	-	HFactory Tools (for HDInsight)			Ubeek	0			Compute
	_	HDInsight Spark Monitoring			Micros	soft			Management Tools
*	- 1	BDInsight InteractiveQuery Monitoring			Micros	soft			Management Tools
	_	HDInsight Storm Monitoring			Micros	soft			Management Tools

Figure 15-1. Setting up HDInsight in Azure

When you create HDInsight, you must follow some steps for setting up the cluster and identifying the size. The first step is to set a name for the cluster, set the subscription, and choose the cluster type (Figure 15-2). Different cluster types are available, including Spark, Hadoop, Kafka, ML Services, and more.

	X	Basics ×	Cluster configuration	
	100	busics	cluster comgaration	
tom felse sottlege	-	* Cluster name	1 Learn about HDInsight and cluster versions. →	
com (size, secongs	abbal	hdinsight 🚺 🗸		
		.azurehdinsight.net	Cluster configuration	
	>	* Subscription	* Cluster type	
basic settings		Microsoft Azure Sponsorship 📀 💙	Linux Windows	~
e settings onfigurations	>	Cluster type Configure required settings Configure required settings Cluster login username Cluster login password	Hadoop HBIse Storm ML Services (R Server) Katka Interactive Query	
ter may take up to to create.	20	Secure Shell (SSH) username Sshuser Use same password as cluster login		

Figure 15-2. Creating HDInsight in Azure

The next step is to identify the size and check the summary (Figure 15-3) of the cluster.

HDInsight by Microsoft	×	Cluster summary		×
Quick create Custom (size, settings,	apps)	Azure Storage account Additional Storage accounts Metastores	hdinsightbook2018 (new) 	
Basics Configure basic settings	~	Applications (optional) (Edit)		
		Applications (optional)		
2 Storage Set storage settings	~	Cluster size (Edit)		
2 Summary	>	Nodes	Head (2 x D12 v2), Worker (4 x D4 v2), Zookeeper (3 x A2 MLServices (1 x D4 v2)	
 Confirm configurations 		Advanced settings (Edit)		
		Script actions		
This cluster may take up to 2 minutes to create.	20		8.29 NZD NZD/HOUR (ESTIMATED)	
		10 NODES	S (2 Head + 4 Worker + 3 Zookeeper + 1 MLServices) 54 CORES	
			ML Services 9.3 (HDI 3.6) hdinsightbook2018 (Australia Southeast)	

Figure 15-3. Setting up HDInsight

CHAPTER 15 MACHINE LEARNING ON HDINSIGHT

Creation of HDInsight may take some time. After creating an HDInsight component, on the main page, in the Overview section, select Cluster dashboards (Figure 15-4).

Home > hdinsightbookai			
hdinsightbookai			
,O Search (Ctrl+/)	« .	→ Move 🗴 Delete 💍 Refresh	
🔅 Overview	A P	esource group (change) ookHDInsight	Learn more Documentation
Activity log	s	tatus	Cluster type, HDI version
Access control (IAM)		unning	Spark 2.3 (HDI 3.6)
Tags	Ē	ast US 2	https://hdinsightbookAl.azurehdinsig
X Diagnose and solve problem:	S	ubscription (change) /icrosoft Azure Sponsorship	Getting started Quickstart
📣 Quick start	s	ubscription ID	
M Tools	т	ags (change)	
Settings	0	lick here to add tags	
Cluster size			8
Uuota limits			
↑ SSH + Cluster login		Cluster management interfaces	
Data Lake Storage Gen1		Ambari home Ambari views	
Storage accounts		Zeppelin notebook	
P1		Spark history server	

Figure 15-4. HDInsight environment

Next, select Jupyter Notebook. On the new page, choose the New option (Figure 15-5).

Files Running Clusters		
Select items to perform actions on them.	Upload New -	-
• *	Text File	
PySpark	Folder	
C Scala	- Common	
	Create a new notebook with PySpark	
	PySpark	
	PySpark3	

Figure 15-5. Jupyter Notebook environment

As you can see in Figure 15-5, there are environment options, such as PySpark, PySpark3, and Spark. You can write the Python code in all of them.

After creating the new page for Spark, you must log in with the username and password that you provided for creating the HDInsight component. The Jupyter environment is like a notebook and, so, like the Azure Databricks environment. As you can see in Figure 15-6, it is possible to write the code there and run the whole cell to see the result.

Figure 15-6. Jupyter Notebook environment

It is also possible to fetch the data from other Azure components, such as Azure Data Lake Store Gen1 (Figure 15-7). To do this, you must run the following code (in Databricks, you run the same code).

```
spark.conf.set("dfs.adls.oauth2.access.token.provider.type",
 "ClientCredential")
 spark.conf.set("dfs.adls.oauth2.client.id", "a1824181-e20c-4952-894f-
 6f53670672dd")
 spark.conf.set("dfs.adls.oauth2.credential", "iRzOkcyahiomc5AKobyVxFdDVF/
 mEbS3mqN1moehGOw=")
 spark.conf.set("dfs.adls.oauth2.refresh.url", "https://login.
 microsoftonline.com/Ob414bdb-2159-4b16-ad13-b2d54a1781da/oauth2/token")
 val df=spark.read.option("header", "true").csv("adl://adlsbook.
 azuredatalakestore.net/titanic.csv")
 val specificColumnsDf = df.select("Survived", "Pclass", "Sex", "Age")
 val renamedColumnsDF = specificColumnsDf.withColumnRenamed("Sex", "Gender")
 renamedColumnsDF.createOrReplaceTempView("some_name")
 renamedColumnsDF.show()
```

CHAPTER 15 MACHINE LEARNING ON HDINSIGHT

ile Edit	View	Insert	Ce	II K	ernel \	Vidgets	Help			🖋 Spark C
+ %	@	↑ ↓	M	C	Code	~		CellToolbar		
	spark. spark. spark. val df val sp val re //val rename	conf.se conf.se =spark. ecificC namedCo d=dataf	et("df et("df read. column olumns framew	<pre>s.adls s.adls s.adls option sDf = DF = s riter(reate0 how()</pre>	.oauth2. .oauth2. .oauth2. ("header df.selec pecificCo renamedCo rReplace	client.ic credenti refresh. ", "true t("Survi olumnsDf olumnsDF TempView	d", "a al", ' url", ').csv ved", .with() ("some	<pre>a1824181-e20c-495 iRzOkcyahiomcSAK "https:/login.m /("adl://adlsbook "Pclass", "Sex", ColumnRenamed("Se e_name")</pre>	2-894f-6f53670672c byVxFdDVF/mEb53mc Lcrosoftonline.com azuredatalakestor "Age") (", "Gender")	d") NImoehG0w=") /0b414bdb-2159-4b16-ad1 e.net/titanic.csv")
	rename	dColumn	ISUF . S							
	<	dColumn	+-	+	+		_			>
	<pre>rename <</pre>	ved Pcl	ass G	ender	+ Age +				_	>

Figure 15-7. Getting the data from Azure Data Lake Store Gen1

It is also possible to perform machine learning in Jupyter Notebook with Spark. For an example, follow the tutorial available at https://docs.microsoft.com/en-us/azure/ hdinsight/spark/apache-spark-ipython-notebook-machine-learning.

Summary

This chapter presented an overview of HDInsight and how to set it up. How to use HDInsight for different purposes was explained briefly, as well as how to set up HDInsight inside the Azure environment and how to access Jupyter Notebook for the purpose of writing codes in a PySpark, Spark, or PySpark3 environment. An example of how to connect to Azure Data Lake Store Gen1 to fetch the data was shown.

Reference

 Microsoft Azure, "Azure HDInsight Documentation," https://docs.microsoft.com/en-us/azure/hdinsight/, 2019.

CHAPTER 16

Data Science Virtual Machine and Al Frameworks

Data Science Virtual Machine (DSVM) is a virtual machine on the Azure cloud that is customized for doing data science. DSVM has some pre-configured and preinstallation tools that help users build artificial intelligence (AI) applications. DSVM assists data science teams to access a consistent setup. In this chapter, a brief introduction to DSVM and how to install it is provided, in addition to an overview of the tools installed.

Data Science Virtual Machine Overview

Data Science Virtual Machine is a preinstalled and pre-configured tool capable of promoting collaboration among data science teams. Installing a set of required tools in the cloud reduces the need for maintaining the software and the cost and time required.

DSVM can help trainers and educators to teach data science with a consistent setup. Having a pre-built setup environment is good for short-term training. DSVM can be useful for learning and comparing different machine learning tools, such as Microsoft ML Server, SQL Server, Visual Studio, Jupyter, deep learning tools, and so forth. DSVM has many different data science and deep learning tools, including the following:

- Microsoft R Open with popular packages preinstalled
- Microsoft ML Server (R, Python) Developer
- Microsoft Office Pro-Plus

273

- Anaconda Python 2.7, 3.5
- Relational Database
- Database Tools
- Jupyter Notebook Server with R, Python, Julia, PySpark, Sparkmagic, and SparkR
- Development tools, such as Visual Studio 2017, RStudio Desktop and Server, PyCharm Community, and so forth.
- Power BI Desktop
- Data Movement and Management tools, such as Azure Storage Explorer and Microsoft Data Management Gateway
- Machine Learning tools, such as Azure Machine Learning, Weka, Rattle, and H2O
- Deep learning tools, such as Microsoft Cognitive Toolkit, TensorFlow, and Keras
- Big data platforms, such as Spark and Hadoop [1]

Setting Up the Data Science Virtual Machine

To set up the DSVM, first you must log in to the Azure portal. Choose the AI—Machine Learning, then click Data Science Virtual Machine—Windows 2016 (Figure 16-1).

Figure 16-1. Data Science Virtual Machine setup

The next step is to set the size and choose the proper setup. For the purpose of data science, the virtual machine CPU should have more than four cores and 14GB or more of RAM [2] (Figure 16-2). There is a star beside the required service (as shown in Figure 16-2).

Micr	rosoft Az	UTe	tes, services, o	nd does	>	67 (P	⊚ ?	😄 lei	la.etaati@gmail ptrautronu	
*	Hom	e > New > Create virtual n	nachine > Cl	noose a size						
+	Create	virtual machine	×	Choose	a size	lectures				
=				Search			Compute type			Disk type
*-	1	Basics	~				Current gene	retion		 Premiur
		Cone	_	RECOMME	sku na	TYPE	COMPUTE	VCPUS	T GB RAM	DATA DIS
	2	Size Choose virtual machine size	•		F45_v2	Standard	Compute optim	4	0	8
۲			2	*	ES3_v2	Standard	General purpos	4	14	16
	3	Settings Configure optional features	>		C\$12_v2	Standard	Memory optimi	4	28	16
-					12513 4 92	Standard	Memory optimi	4	56	32
<i></i>	4	Summary	>		DS14-4_v2	Standard	Memory optimi	4	112	64
-		Ceta science vintual mechine	***		P/s	Standard	Compute optim	1	0	16
-					B 8ms	Standard	General purpos	8	32	16
$\langle \cdots \rangle$					PA	C	Concerd annex	•	**	12
٠				1 Loading	pricingClick he	re to open pri	cing calculator			
۲										
٠				Select						
۲								_		

Figure 16-2. Choosing the Data Science Virtual Machine size

The next step is to configure the setting, to identify locations and names. Finally, in the last step, the summary of the DSVM will be shown. Deploying the DSVM will take about five minutes to create the service (Figure 16-3). After creating the resource, click Go to Resource.

Figure 16-3. DSVM creation

An overview of the DSVM will be shown to the end user (Figure 16-4). As you can see in the figure, there is an overview of the location of the DSVM, the size of the virtual machine, and so forth.

Figure 16-4. DSVM overview

To connect to the DSVM, click the Connect option at the top of the window. The related Remote Desktop Protocol (RDP) will be downloaded from Azure (Figure 16-5).

Figure 16-5. Downloading the RDP

After downloading the RDP file, open the virtual machine and check the environment (Figure 16-6).

Figure 16-6. DSVM environment

In the DSVM, Visual Studio with R and Python tools has been preinstalled (RTVS and PTVS). As you can see in Figure 16-7, you can check for recent updates via Visual Studio [2].

Hab	Start Juge, Warman Yong Hale Addee Addee and Part Edit View Project Delay Yang Sul Table and Projects. En Formann and Updates.	der Inte Allen Allen Ange Weite Hop - Bitten, - Mig		
Open Genote frem venet verble octobaliset in aven server specification. Genote frem Metter project Metter project temptate Part project temptate Part project temptate Part project temptate Part project temptate	Control Solution. Solution. Solution. Solution. Solution. Solution.	Construction of the second secon	Open Defension and an offension and the sphere regist Developed the formation Comparison of the sphere regist Comparison of the sphere Comparison of the sphere Comparison of the sphere Developed the sphere Developed the sphere Developed the sphere Developed the sphere	
	More Open General from senter service solution control solutions on spece General from senter services General register/solution Open from General register solution For project Faces register solution Control Solutions Por Faces register solution Control Solutions C	Main Parkan Sector Sect	May	Ney Ney Ney Ney Ney Ney Ney Ney

Figure 16-7. R and Python tools in Visual Studio 2017

RStudio has been installed in DSVM. You must install all required packages in RStudio, and all users are able to access these packages (Figure 16-8).

Figure 16-8. RStudio in DSVM

Case Study

You can run different machine learning scenarios. In this session, a machine learning scenario on Jupyter Notebook in DSVM will be explained. To access Jupyter Notebook, click the shortcut in the DSVM desktop. Then, in the Jupyter, write the code and run it (Figure 16-9). In the example, I've run the code as follows:

library(data.table)

```
ad <- fread("http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv")</pre>
```

The data set is about the cost of advertising on television and radio and in newspapers and how much sales are generated.

Figure 16-9. Running R code in Jupyter Notebook

In the next step, we are going to predict sales based on variables such as number of people impacted by television, radio, and newspapers. Create a model for predicting the number of sales based on the number of advertisements on television, radio, and in newspapers, using linear regression. Use the following code to create a model (Figure 16-10):

```
linearReg<-lm(sales~TV+radio+newspaper,data=ad)
linearReg
summary(linearReg)</pre>
```


Figure 16-10. Creating a model in Jupyter Notebook

Next, we must create a function that gets the new data from the user and applies the linear regression to it. First, we must create a function for that.

```
newdata<-adv[1:5,]
library(AzureML)
predictfunction <-function(newdata)
{predict(linearReg,newdata)} [2]</pre>
```

This function predicts the amount of sales, based on the amount of advertisements on television and radio and in newspapers. The preceding function predicts the new set of data, based on the created model in the preceding codes. Now, for the next step, we must get some identification from WorkSpace and AuthenticationID from the Azure ML Studio environment. To fetch the data, log in to Azure ML Studio, then click Setting, to get information, such as Workspace ID (Figure 16-11).

Figure 16-11. Fetching Workspace ID from Azure ML Studio

The other information that we need is the Authentication Token, from Primary Authorization Token (Figure 16-12).

Figure 16-12. Fetch Authentication Key from Azure ML Studio

Copy these keys and put the identification in the following codes. The Workspace function is an Azure ML function that creates a connection between the R language and Azure ML Studio.

```
workspace_id<-"Workspace ID"
Authenticationid<-"Authentication Token"
ws<-workspace(workspace_id,Authenticationid)
newdata<-adv[2:5,]</pre>
```

The next step is to call another function, publishWebservice, to generate a web service in Azure ML from the created function.

```
data.frame(actual=newdata$sales,prediction=predictfunction(newdata))
ep<-publishWebService(ws=ws,fun=predictfunction,name="SalesPredictionAdvert
isement",inputSchema=newdata)</pre>
```

Run the whole code in the Jupyter environment (Figure 16-13).

Figure 16-13. Publish the R ML Code into Azure ML Webservice

After running the code, check the web service in Azure ML Studio, to see the API created in Azure ML Studio (Figure 16-14).

Figure 16-14. Web service created in Azure ML

Test the API by clicking the Test button (Figure 16-15).

salespre	edictiona	dvertisement	
DASHBOARD	CONFIGURATION		
GJTDIDvzz60t	tBbb96o68FOrIXEG	0aJX169DFuD5a9YPT1Bmdg	
GJTDIDvzz60t	tBbb96o68FOrIXEG	0aJX169DFuD5a9YPT1Bmdg APPS	LAST UPDATED
GJTDIDvzz60t	tBbb96o68FOrIXEG E TEST	SOAJX169DFuD5a9YPT18mdg APPS Est Test preview	LAST UPDATED U

Figure 16-15. Testing the web service in Azure ML Studio

Summary

In this chapter, a brief introduction to DSVM was presented. The process of how to set up DSVM and how to set the related parameters was explained. In addition, a brief introduction to what applications have been preinstalled was provided. Finally, a scenario for machine learning in Jupyter Notebook and then deployed to Azure ML Studio was presented.

References

- [1] Gopi Kumar et al., "Introduction to Azure Data Science Virtual Machine for Linux and Windows," Microsoft Azure, https:// docs.microsoft.com/en-us/azure/machine-learning/datascience-virtual-machine/overview, October 26, 2017.
- [2] Gopi Kumar et al., "Samples on Data Science Virtual Machines," Microsoft Azure, https://docs.microsoft.com/en-us/azure/ machine-learning/data-science-virtual-machine/dsvmsamples-and-walkthroughs, September 23, 2018.

CHAPTER 17

Deep Learning Tools with Cognitive Toolkit (CNTK)

Microsoft Cognitive Toolkit (CNTK) is an open source deep learning tool [1]. In this chapter, an introduction to neural network and deep learning will be provided first. Next, an introduction to what CNTK is and how it is accessed and installed will be provided. Finally, a basic case study using CNTK to solve a simple problem will be elaborated.

Neural Network Concepts

What we expect from a computer is to receive outputs that match our needs, based on our inputs. Scientists attempt to mimic the human brain through intelligent machines. A machine, of course, does reason the same as a human. The principal element of the human brain is neurons. Human brains consist of 75 million neurons. Each neuron is connected to others via a synapse (Figure 17-1). The neural network consists of nodes that are connected to one another. In the human body, if a neuron is triggered by some external trigger, such as high temperature, it will pass the message from the receiver node to other nodes, via synapsis [2].

287

Figure 17-1. Neural network synapsis^[2]

Neural networks mimic the same concepts as those in the human brain. One node receives input from the user, then the neural network model creates output that produces a result similar to that of a computer system. A neural network has

- A set of input nodes
- A set of output nodes
- Some processing between, to achieve a good result
- A flow of information
- A connection between nodes

To better understand the process, imagine that we are at the summit of a mountain and want to descend from it. The weather is foggy. Under this condition, we able to see only one meter ahead. As a result, we decide to descend only the one meter that is visible. We take a first step based on our current location, then we decide which direction to pursue. We repeat the process until we reach the point where we cannot go on. If that point is the destination, the process is complete, if not, we must go back and try other directions. As a result, for each step, we evaluate the way and choose the best course, until we have descended the mountain.

In a neural network, we undergo the same process. We have input nodes, some hidden nodes (the means to reach the output), and output nodes. Each hidden node has an activation function that processes the input or the resulting output from other hidden nodes (Figure 17-2).

Figure 17-2. A simple neural network

To better understand the concept and how it works, let's imagine we want to classify a customer based on whether he or she will shift his or her support to another company. The problem is illustrated in Figure 17-3. As you can see in the figure, there are two groups of people (customers). One is represented by blue dots and the other by green ones. The principal aim is to group people based on one of the colors.

Figure 17-3. Classification using 2x + y = 2

As you can see in the figure, we can partially isolate (classify) blue and green dots with a line.

The relevant equation that has been used is $\frac{1}{3}x + y = 2$. This equation is not able to classify the dots completely, so we must try another. The following equation is x = 4. As you can see in Figure 17-4, the new equation still does not result in a complete or accurate classification.

Figure 17-4. Classification attempted with x = 4

Both formulae are not good at classifying the data. However, if we apply the first function, then the second, we can classify the dots relatively well.

As you can see in Figure 17-5, we achieved a better result than before.

Figure 17-5. Classifying the data

So, if we want to illustrate this process as a neural network structure, we will have something similar to what is shown in Figure 17-6.

Figure 17-6. Data Science Virtual Machine (DSVM) environment

The hidden layer (green nodes) can have different functions that help to classify the data (Figure 17-7). These are called activation functions.

Figure 17-7. Activation functions

There are different topologies for neural networks, such as one output (Figure 17-8) or many outputs.

Figure 17-8. Neural network with one output

A neural network can also have multiple layers and multiple outputs (Figure 17-9). A neural network with multiple layers reflects what is known as *deep learning* [2].

Figure 17-9. Neural network with multiple outputs and multiple hidden layers

There are different types of neural networks, such as feed forward deep neural networks (DNN) and convolutional neural networks (CNN), among others.

Microsoft Cognitive Service Toolkit

CNTK is an easy-to-use toolkit to solve problems without much anxiety. This toolkit can handle a large amount of data and is easily extensible. CNTK is a fully open source product. It allows processing over multiple GPUs (graphics processing units). This toolkit has been used in many Microsoft products, such as Cognitive Service, Cortana, Bing search, Skype, Skype Translator, and others. According to many users' experiences, CTNK is fast, and using associated Python language APIs is very intuitive.

CNTK Setup

There are different ways to install CNTK [3]. CNTK supports 64-bit Windows and Linux operating systems. To install CNTK for Python on Windows, you first must open the command prompt and run as an administrator. In the command prompt, insert the following code:

```
pip install cntk
```

After installing the CNTK, the required packages will be installed, and the CNTK version will be appear (Figure 17-10).

Figure 17-10. Installing the CNTK

After installation, you can check the CNTK version via the following code:

```
python -c "import cntk; print(cntk.__version__)"
```

You can access a few examples and tutorials by installing some samples. First, you must go to the C folder and run the following code:

```
python -m cntk.sample_installer
```

Then check the following folder for some samples and tutorials (Figure 17-11):

C:\Windows\System32\CNTK-Samples-2-6

Quick accord	[Name	Date modified	Туре	Size
Quick access		Examples	25/09/2018 11:46	File folder	
Desktop	я	Manual	25/09/2018 11:46	File folder	
Downloads	A	PretrainedModels	25/09/2018 11:46	File folder	
Documents	A	Tutorials	25/09/2018 11:46	File folder	
Pictures	*	C LICENSE.md	25/09/2018 11:46	MD File	
books	*	requirements.bd	25/09/2018 11:46	Text Document	

Figure 17-11. CNTK samples

Under the Sample folder, you will find Examples, Manual, and so forth.

After installing the CNTK, in the Python environment, you will be able to access the CNTK library, by using the following code in the Python environment:

import cntk

Another way of using CNTK is through the Azure environment. Likewise, CNTK is preinstalled in DSVM, so you can use it directly. In the next section, I will provide an example from www.cntk.ai/pythondocs/CNTK_101_LogisticRegression.html [4] on how to work with CNTK for classification.

Case Study

To proceed with our case study, first you must set up the DSVM, as explained in Chapter 16, then start the virtual machine (Figure 17-12).

Figure 17-12. Starting the DSVM

Next, open the DSVM, by downloading the RDF file (Figure 17-13), and open the virtual machine.

Figure 17-13. DSVM file and activation

After opening the DSVM, open Jupyter Notebook in the taskbar, which will navigate to a web-based Jupyter Notebook web site (Figure 17-14).

Figure 17-14. Jupyter Notebook in DSVM

In the Jupyter Notebook environment, choose Python [conda env:Anaconda] (Figure 17-15).

Files Running Clusters Conda	0
elect items to perform actions on them.	Upload New - S
0 - 1	Notebook. Id
Contacts	Juna 0.6.2 ML Server Python 20
C Desktop	MLO16N 30
Cocuments	Python 3 Spark - local
Compleads	2 Python [conda env:Anaconda]
E Favorites	Python [conda env.python2] Python [conda root] 30
	Python [default] 30
Co Music	R 30
	Other: 10
C Pictures	Text File
C PycharmProjects	Terminal 20
Saved Games	2 days ago
	2 days ago
	2 days ago

Figure 17-15. Jupyter Notebook

In the next step, we are going to run an example from www.cntk.ai/pythondocs/ CNTK_101_LogisticRegression.html [4]. In this example, the aim is to predict whether a cancer patient is likely to have a benign (blue) or malignant (red) tumor, based on the age of the patient and the cancer cell size. As a result, we have two inputs and two outputs for our neural network (Figure 17-16).

Figure 17-16. Neural Network Structure

The first step is to import an appropriate library for showing the result (print_function), array computation (numpy), and CNTK (cntk), and for the file name and file paths and directories (sys and os).

```
from __future__ import print_function
import numpy as np
import sys
import os
```

```
import cntk as C
import cntk.tests.test_utils
cntk.tests.test_utils.set_device_from_pytest_env() # (only needed for our
build system)
C.cntk_py.set_fixed_random_seed(1) # fix the random seed so that LR
examples are repeatable [4]
```

Now we must get the data. First, we have to identify the number of inputs and outputs, using the following code:

```
input_dim = 2
num_output_classes = 2
```

Then we create a function to generate some random data. The function gets the sample size and the number of inputs and outputs (see the following codes related to www.cntk.ai/pythondocs/CNTK_101_LogisticRegression.html [4]).

```
np.random.seed(0)
```

```
# Helper function to generate a random data sample
def generate_random_data_sample(sample_size, feature_dim, num_classes):
    # Create synthetic data using NumPy.
    Y = np.random.randint(size=(sample_size, 1), low=0, high=num_classes)
    # Make sure that the data is separable
    X = (np.random.randn(sample_size, feature_dim)+3) * (Y+1)
    # Specify the data type to match the input variable used later in the
    tutorial
    # (default type is double)
    X = X.astype(np.float32)
    # convert class 0 into the vector "1 0 0",
    # class 1 into the vector "0 1 0", ...
    class_ind = [Y==class_number for class_number in range(num_classes)]
    Y = np.asarray(np.hstack(class_ind), dtype=np.float32)
    return X, Y
```

Then we call the function, using the following code:

```
mysamplesize = 32
features, labels = generate_random_data_sample(mysamplesize, input_dim,
num_output_classes)
```

You can plot the input data, using the matplotlib library in Python.

```
import matplotlib.pyplot as plt
%matplotlib inline
# let 0 represent malignant/red and 1 represent benign/blue
colors = ['r' if label == 0 else 'b' for label in labels[:,0]]
plt.scatter(features[:,0], features[:,1], c=colors)
plt.xlabel("Age (scaled)")
plt.ylabel("Tumor size (in cm)")
plt.show()
```

After running the code, you will get a two-dimensional representation of the data (Figure 17-17).

Figure 17-17. The actual data represented

The next step is to create a neural network model. To create the model, first we must identify the input variable and assign it to the feature variable, specifying the data type.

```
feature = C.input_variable(input_dim, np.float32)
```

The next step is to set up the network. We are going to use logistic regression as an activation (formula) to classify the data (Figures 17-5 and 17-4). To do that, we must define a function that identifies the layers of the neural network structure. As was shown in Figure 17-4 and the discussion related to it, we require an equation for classifying the data.

The formal parameters can be as follows:

$$z = \sum_{i=1}^{n} w\mathbf{i} * \mathbf{X}\mathbf{i} + \mathbf{b} = \mathbf{w}.\mathbf{x} + \mathbf{b}$$

300

or

Z=W*X+b

The equation used is the same as was illustrated in Figure 17-3: 2x+y=2.

```
mydict = {}
def linear_layer(input_var, output_dim):
    input_dim = input_var.shape[0]
    weight_param = C.parameter(shape=(input_dim, output_dim))
    bias_param = C.parameter(shape=(output_dim))
    mydict['w'], mydict['b'] = weight_param, bias_param
    return C.times(input_var, weight_param) + bias_param
```

So, the output would be as follows:

```
output_dim = num_output_classes
z = linear_layer(feature, output_dim)
```

The next step after creating the network structure is to train the data, based on the data behavior and the probabilities, so as to be as close as possible to the observed data. There is a concept named *Entropy* [5] to train the data, an example of which follows:

```
label = C.input_variable(num_output_classes, np.float32)
loss = C.cross entropy with softmax(z, label)
```

After creating the model, we must evaluate it via the following code:

```
eval_error = C.classification_error(z, label)
```

For additional examples, check the relevant samples and resources from the Microsoft web site.

Summary

The aim of this chapter was to introduce neural networks and associated deep learning concepts. How to set up CNTK and how to run it in a DSVM was then discussed. Some elaboration of concepts related to neural networks, their structure, and so forth, was provided. Next, how to set up CNTK in Windows for the Python language was covered. Finally, a very brief explanation on how to use the CNTK library for prediction was given.

References

- Microsoft Teams, "The Microsoft Cognitive Toolkit", https://docs.microsoft.com/en-us/cognitive-toolkit/
- [2] https://www.amazon.com/Machine-Learning-R-Brett-Lantz/ dp/1782162143
- [3] Chris Basoglu et al., "Setup [sic] CNTK on your machine," https://docs.microsoft.com/en-us/cognitive-toolkit/ setup-cntk-on-your-machine, March 6, 2018.
- [4] Python API for CNTK, "CNTK 101: Logistic Regression and ML Primer," www.cntk.ai/pythondocs/CNTK_101_ LogisticRegression.html, 2017.
- [5] Python API for CNTK, "cntk.ops package," https://cntk.ai/ pythondocs/cntk.ops.html#cntk.ops.cross_entropy_with_ softmax, 2017.

PART V

Data Science Virtual Machine

CHAPTER 18

Cognitive Services Toolkit

Microsoft Cognitive Services are collections of APIs and services that help developers create smarter applications and reports. By using Cognitive Services, developers can add such intelligent features as face recognition, emotion recognition, text analytics, and so forth, to their applications. This chapter first presents an overview of Cognitive Services and then explains how to use them for text analytics in Power BI Report. Finally, how to use Cognitive Services in a Windows application is explored briefly.

Overview of Cognitive Services

There are different Cognitive Services that you can use by receiving a web service URL and a key. To check out the available services, you must navigate to the Cognitive Services web site [1]. As you can see in Figure 18-1, there are five main categories for solving business problems: Vision, Knowledge, Language, Speech, and Search.

305

Figure 18-1. Main Cognitive Services categories

As you can see in Figure 18-2, there are five different APIs for business language problems. Text Analytics is one of the most popular features for language detection, identifying main keywords in text, topic extraction, and checking how much text is positive or negative in context (sentiment analysis).

Figure 18-2. Language category in Cognitive Services

The other services in the Language category are about translating a text, identifying the primary intent, and objectives in conversations and texts.

These features can be combined. For example, it is possible to integrate the Language Understanding service with the Speech service, for instant speech-to-intent processing, and, with a Bot application (Chapter 19), to develop a more sophisticated application.

In this chapter, you will see how you can perform text analytics for the purpose of detecting main keywords in customer feedback, how much of the feedback is positive, detecting the language in Power BI, by using Text Analytics services.

First, we must set up the environment in which to use Cognitive Services. To use Cognitive Services, you can sign up for a free trial. The trial services are free for seven days and do not require a credit card. The other way to access Cognitive Services is to use a free Azure account for a month, which provides a \$280 credit on Azure, and all data and customization will be saved. The final approach is to use an existing Azure account (Figure 18-3).

Figure 18-3. Different Cognitive Services accounts

To set up Cognitive Services in Azure, you must log in to your Azure account and search for the services you want. After logging in to the Azure portal, you must create a Text Analytics service. To create a Text Analytics service, you must create a new service in Azure, by clicking the top left of the page. In the New page, the main service categories will be shown (Figure 18-4). AI + Machine Learning is one of the main services in Azure. Click it to see the available options. As you can see in Figure 18-4, Computer Vision, Face (recognition), Text Analytics, Language Understanding, Translator Speech, Bing Search, and Azure Search are among the main topics under AI + Machine Learning.

Figure 18-4. Different Cognitive Services features

Text Analytics Services

Not all collected data is about numbers and structured data. To gain a more holistic perspective about a customer, products, and so forth, collecting and analyzing the text can be used, to enhance company performance. Text Analytics is the process of converting unstructured text data into meaningful data, to understand customer needs and feedback [2].

In this section, a case study will be presented that explains the process of using the Text Analytics API in Power BI and is applied to customer feedback.

The first step is to set up a Text Analytics service in the Azure portal (Figure 18-5).

Figure 18-5. Setting Up Text Analytics in the Azure portal

There are different pricing tiers for this service. The first is a free tier that allows users to apply the Text Analytics service on 5K rows of data a month (Figure 18-6).

Figure 18-6. Pricing tiers for Text Analytics

After creating the Text Analytics service, we get the API URL and key access from the created service. Figure 18-7 shows how to access the URL and the access key in the Text Analytics service.

Home > booktestanalysis					
Cognitive Services					
P Search (Ctvl+/)	« 🔅 Unavailable setting 📓 Delete				
Oveniew	Essentials				
Activity log	Resource group (change) ContamaMVP			ADI type Text Analytics	
Access control (IAM)	Status Active			Pricing tier 2	
🖉 Tags	Location Australia East			https://australiaeast.api.cognitive.microsoft.com/t	ext/analytics/v2.0
X Diagnose and solve problems	Microsoft Azure Sponsorship			Show access keys	
RESOURCE MANAGEMENT		1018		-	
📍 Keys	Monitoring				
🗠 Quick start	Total Transactions	1.1.1.1.1	Latency	Total Calls and Total	
C Pricing Ser					
Billing By Subscription					
11 Properties					
Locks					
Automation script					
MONITORING					
iffi Metrics					
U Alerta (classic)					
SUPPORT + TROUBLESHOOTING					

Figure 18-7. Accessing the URL and key

After creating the service from the Azure portal, we must call it inside the Power BI Desktop and apply it on the available data there.

Data Set

Fabrikam is a mock production company. It has received e-mails from customers regarding shipping, tech support, and other concerns. The business intelligence (BI) manager wants to perform some analytics on the e-mail the company is receiving from customers, to better understand the main points of customers' e-mails and to determine whether they are satisfied with the company's services. You can download the data set from https://github.com/Kaiqb/KaiqbRepo0731190208/blob/master/CognitiveServices/TextAnalytics/FabrikamComments.csv [3].

The first step is to open Power BI Desktop and load the data set, as a Text/CSV file, into Power BI (Figure 18-8).

Figure 18-8. Getting a CSV file from Power BI

Then, instead of loading the data, click the Edit option to navigate to the Power Query environment for data transformation (Figure 18-9). As you can see in Figure 18-9, an overview of the data set is shown. There are about 20 rows of data about customer e-mails, names and IDs, e-mail subjects, and comments.

le Cr	igin		Deli	miter		Data Type Det			
1252: Western European (Windows) *		* Co	mma		Based on first	Da Da			
id inreplyto name t 1982 - Doroka Cris		userid	emailoddress	datetime	topic	ic subject			
		Borold Cric-	derk	dem@ceample.com 3.04.03		and the state of t	invallelenr packaging	- to dered shace	
1105	0	Jake Bering	jakeb	jake bering@example.com	9:37:00 AA	f fulfilment	Wrong Items again	Can't believe y	
1104	0	Ann Huron	annh	ahuron@example.com	10:11:00 AA	f praise	Pantastict	Wow! I had N	
1105	2103	David Columbia	davido	davidc78@example.com	10:15:00 AN	f fulfilment	Re: Wrong Items again	Jake, I've had	
1106	0	Maria Michigan	mariam	maria@example.com	10:44:00 AN	f other	Photo on framistan brochure	That hand mo	
1107	0	Juan Brazos	juanm	juan1@example.com	11:01:00 AA	f techsupport	Bag of Holding	I put my wedd	
1208	2105	Jake Bering	jaket	jake.bering@example.com	12:23:00 PM	f fulfilment	Re: Wrong Items again	David, sorry, P	
1109	0	Susan Colorado	susanc	suecci@example.com	1:15:00 PA	f techsupport	Problems with retro-encabulator	HI folks. Accord	
1110	2108	Ron Puget	ronp	ronnyp@example.com	1:57:00 PA	f fulfilment	Re: Wrong items again	Jake, it's prob	
1111	2106	Elena Pecos	elenab	pecos@example.com	2:14:00 PM	f other	Re: Photo on framistan brochure	Maria, I'm pre	
1112	2107	Darius Willamette	cariuper	go-dawgs@example.com	3:03:00 PM	f techsupport	Re: Bag of Holding	Juan, are you :	
1115	1109	Fabrikam Support	fsupport	support@fabrikam.com	3:16:00 PN	f techsupport	Re: Problems with retro-encabulator	Susan, the hyd	
1114	2109	Roy Ontario	royo	roy_it@example.com	3:29:00 PM	f techsupport	Re: Problems with retro-encabulator	Have you tries	
1125	2220	Jake Bering	jaketi	jake.bering@example.com	3:33:00 PM	f fulfilment	Re: Wrong items again	Ron, you're qu	
1116	2114	Susan Colorado	susanc	sueccl@example.com	3:57:00 PN	f techsupport	Re: Problems with retro-encabulator	Roy, thanks for	
1117	2103	Fabrikam Sales	fsales	sales@fabrikam.com	4:04:00 PM	f fulfilment	Re: Wrong items again	Jake, I'm very	
1118	0	Wen Nagara	wenn	wen@example.com	4:19:00 PM	f productinfo	When are the new models coming out?	I am in need o	
1119	2109	Susan Colorado	susanc	sueccl@example.com	4:47:00 PM	f techsupport	Re: Problems with retro-encebulator	Thanks. One o	
1120	2117	Jake Bering	jakeb	jake.bering@example.com	5:12:00 PM	f fulfilment	Re: Wrong items again	That's all well	
1121	0	Riya Champlain	riyac	riya@example.com	6:49:00 PM	f suggestion	Gizmo colors	Hi, have you e	
1121	0	Riya Champlain	riyac	riya@example.com	6:49:00 Ph	f suggestion	Gitmo colors	Hi, have you	

Figure 18-9. Editing data in Power Query

First, we are going to combine the Subject and Comment columns in Power Query, using Merge Columns under the Add Column tab. The general procedure is shown in Figure 18-10.

Column From Custom Examples - Column	nroke Custon Function General	Conditional Column iii Index Column ~ Conditionate Column	Format From Text	Statistics Stand	10 ² Rounding - fard Scientific From Rumber	Dute Time Duration				
Queries [1]	< ×	√ f _E = Table.T	ransformColumnTypes(#"Pr	onoted Headers	*,(["id", Int64.Type], ["in	replyto", Int64.Type), ("nem	e", type text), ("userid", typ	e text), ("enailaddres	us", type text), ("døtetime", type time),	×
A	an 💷 🔀	id - 1²3 innephyto	· A ⁸ c Ballic	A ^R C userid	• A ^{li} c emailadoress • (🕑 detetime 💌 🔩 topic	· subject	· Contract (2 P3	spansore .
A Provincianis dependent	1 I I I I I I I I I I I I I I I I I I I	1102	Ø Donald Erie	derie	don Perample.com	9:04:00 AM shipping	Inputficient packaging	I ordered three widget	Is last week and just received them. I am VERY di	1
	2	1108	Ø Jake Bering	jakeo	jake bering@example.com	\$:37:00 AM fulfilment	Wrong icems again	Can't believe you fools	shipped are the wrong items AGAIN. If you wer	
	3	1104	Ø Ann Huren	annh	ahuron@example.com	10:11:00 AM proise	Fertestici	Wow! I had NO IDEA to	hat reciprocating garomoles of such high quality	1
	4	1105	1103 David Columbia	davidc	davidc78@example.com	10:15:00 AM fultiment	Re: Wrong items again	Jake, I've had similar p	robiems tracking down another source of thinga	
	5	1105	Ø Maria Michigan	mariam	maria@example.com	10:44:00 AM other	Photo on framistan brochure	That hand model need	is a manicure, stati	5
	6	2207	Ø Juan Braces	juanm	juan1@example.com	11:01:00 AM techoupport	Bag of Holding	I put my wedding ring	in a Bag of Holding I purchased from you guys (f	1.
	1	1108	1105 Jake Bering	jakeo	jake bering@example.com	12:25:00 PM fulliment	Re: Wrong items again	David, sorry, it's whato	mamacalits i'm looking for. I should have been	8
	8	1109	Ø Susan Colorado	susanc	suecol@example.com	1.15.00 PM techsupport	Problems with retro-encabulator	Hi falks. According to y	our encelor/etor brochure, the hydrocoptic mar	1
	9	1110	1108 Ron Puget	ronp	ronnyp@example.com	1:57:00 FM fulfilment	Re: Wrong items again	Jake, it's probably non-	e of my business, but you will probably get a bet	1
	10	1111	1106 Elena Pecos	elenab				3	C folks at Fabrikam use photos of actual custo	1
	11	1112	1107 Darius Willamette	datiutre	Merge Colur	nns			a Bag of Transmuting? They look very simila	1
	12	1115	1109 Pabrikam Support	fsupport					rzievanes MUST be fitted properly to the a	
	13	1114	1109 Roy Onterio	royo	Choose how to merge	the selected columns.			T and back on again? The encebulator runs	3.
	14	1115	1110 Jake Bering	jakeb	Separator				s none of your business! The terms I used ar	4
	15	1115	1114 Susan Colorado	SUSANC	Space	· ()			tion. It did help a little, but did not entirely e	5
	16	1117	1103 Fabrikam Sales	fsales	New column name (opti	iona()			whe had this problem for so long. Our syste	2
	17	1118	Ø Wen Niagara	wenn	Merged	1000 B			ickeys in the near future. If I remember corr	2
	18	1119	1109 Susan Colorado	susanc					varies was installed backward, so it's my faul	
	19	1120	1117 Jake Baring	jakob				-	ME, and I do appreciate it, but what about	1
	20	1121	Ø Riya Champiain	riyac			5	OK Cancel	ed making gizmos in colors other than chart	\$

Figure 18-10. Merging Subject and Comment columns

After creating a new column, we must rename it to Customer Feedback.

Create a Text Analytics Function

It is possible to create a function in Power Query that applies Text Analytics to a specific column in Power Query. To create a function, we must click the whitespace in a query, at the left side of the main page, and choose the Blank Query option (Figure 18-11).

Figure 18-11. Creating a blank query

Rename the created query Sentiment Analytics. The next step is to convert the blank query to a function. To do that, we must access the M Query behind the created query, by clicking on the Home tab, then Advanced Editor (Figure 18-12). Here there is an editor that we are going to use to write some M scripts and change the query to a function.

Alt a Serve Resteril Erezy Dets Sources Parameters	Description Approximation Approximat	
Daverias (2) < N V Jr Raham-Conversity Spannens Analytics U	Associations Snetiment Analytics	- 0
	M Query for Sentiment Analysics	
	V for systemetry hour beau designed.	

Figure 18-12. Power BI Query Editor

The next step is to add the following code:

<pre>(text) => let</pre>	
apikey	= " <api key="">",</api>
endpoint	<pre>= "https://<location azure="" of="" your="">.api.cognitive. microsoft.com/text/analytics/v2.0/sentiment",</location></pre>
jsontext	<pre>= Text.FromBinary(Json.FromValue(Text.Start(Text.</pre>
	Trim(text), 5000))),
jsonbody	= "{ documents: [{ language: ""en"", id: ""0"", text: " &
	jsontext & " }] }",
bytesbody	<pre>= Text.ToBinary(jsonbody),</pre>
headers	<pre>= [#"Ocp-Apim-Subscription-Key" = apikey],</pre>
bytesresp	<pre>= Web.Contents(endpoint, [Headers=headers, Content=bytesbody]),</pre>
jsonresp	<pre>= Json.Document(bytesresp),</pre>
sentiment	<pre>= jsonresp[documents]{0}[score]</pre>
in sentiment	

As you can see in the preceding code, the first line is about the function input which is text. In line 2, the API key collected from Azure Service must be pasted here. In line 3, the required URL for connecting to the API must be provided. As you can see at the end of the URL, the service that we are going to use from Cognitive Services is shown. In this

example, we are using sentiment analysis. Lines 4 to 11 indicate the required code for connecting to Cognitive Services and getting the result in JSON format. The last line is the result column that shows the sentiment score for each comment.

Now, replace the preceding code with the previous one and click OK. The blank query will change to a function type, and a page with a text box will appear. You can test it by writing a sentence, such as "the weather is so nice today," and click the Invoke button, to see the result.

As you can see in Figure 18-13, the result of sentiment analysis is 0.92.

Figure 18-13. Text Analytics function test in Power Query

The output of the sentiment analysis is a number from 0 to 1. A number closer to 1 means that the comment is positive, one closer to 0 means the feedback is negative.

For a final step, we can apply the function to the customer feedback (Comments) column. Click the Fabrikam data set, the Add Column tab, and then Invoke Custom Function. On a new page, choose an appropriate name for the new column, then choose the function in the drop-down. From the last drop-down item, choose the column you want to apply the function to (Figure 18-14).

Column From Custom Invol Examples - Column Fr	ke Custom anction General	Conditional Column	Format Format Format	XO Statistics Stand	and Scientific	Date Time D From Date & T	Uration Ime		
Oueries [3] < III Fabrican Commerts 1 ² Socience Madyloc 1 ² Invoked Function	Image: Constraint of the second sec	fx = Teble.4 1002 1202 1003 1202 1004 1202 1005 1202 1006 1200 1007 1200 1008 1210 1109 1212 1110 1212 1112 1212 1115 1214 1115 1215 1116 1217 1118 1219	enaecColums (4*Inserted Ochana Erie Ochana Erie Ochana Erie Ochana Erie Ochana Erie Ochana Erie Ochana Erie Ochana Erie Ostan Colorado Ostan Colorado Ostan Colorado Ostan Colorado Ostan Pecos 1205 Erie Pecos 1206 Erien Pecos 1206 Perio Pecos 1207 Ortario 1210 State Bring 1210 Jake Bring 1210	erged Column ⁴ A [®] uverid dane jakeb annh davide mariam jakab susanc susanc fuuport royo jakeb susanc fakes vesanc fakes	Clifferged*, "Customer Peed dongesample.com ahuron@example.com ahuron@example.com jaks.berin@example.com jaks.berin@example.com	Back*?)) 3 deteiner <i>Schoo Dan</i> <i>Schoo </i>	Arc topic shipping fulfilment praise tutiliment other techsupport nutliment techsupport file for each ro	Ale solders Insufficient passaging Monog items again Fencarici Fencarici Fencarici Fencarici Fondo on frantistan trochure Bag of huding Ek Wong items again Problems with retro-encebulator ww.	■ A ² comment I proteed three wingest last week and µµ. Carb believe sub foot shipped me the wingest last week and µµ. Wow'l had NO IDEA that reciprocesting gials, I've had similar probeines tracking. That had nool dends and an edge of helding. I had how you do shipped held had a mean edge of helding. I found and a set of helding ing ing in a fage of helding the problem tracking ing ing in a fage of helding the problem tracking the problem. We will be the problem tracking the problem. We will be the problem tracking the problem tr
	19 20	1120	J117 Jake Bering O Riya Champlain	jakeb riyoc	Customer Fee	lback	6	0	r Mill, and I do od making giv OK Cancer

Figure 18-14. Invoke a custom function for sentiment analysis

A new column will be shown at the end of the data set overview that shows the numeric result for sentiment analysis. As you can see in Figure 18-15, the number varies from 0 to 1. You can click the Home tab and Close and Apply to see the result in Power BI Desktop.

		*	WOERT SETTINGS	~
¥	A ⁸ C Customer Feedback	ABC 123 Snetiment Analytics		
3	Insufficient packaging I ordered three widgets last week and just recei	0.056319892	A PROPERTIES	
10	Wrong items again Can't believe you fools shipped me the wrong item	0.041889191	Name	
2	Fantastic! Wow! I had NO IDEA that reciprocating garombles of such hi	0.905505776	FabrikamComments	
0	Re: Wrong items again Jake, I've had similar problems tracking down a	0.105862992	All Properties	
1	Photo on framistan brochure That hand model needs a manicure, stat!	0.5		
8	Bag of Holding I put my wedding ring in a Bag of Holding I purchased fr	0.5	APPLIED STEPS	
2	Re: Wrong items again David, sorry, it's whatchamacallits I'm looking f	0.032305463	Source	*
7	Problems with retro-encabulator HI folks. According to your encabulat	0.072436422	Promoted Headers	*
2	Re: Wrong items again Jake, it's probably none of my business, but yo	0.247994214	Changed Type	
11	Re: Photo on framistan brochure Maria, I'm pretty sure the folks at Fa	0.907930135	Inserted Merged Column	*
11	Re: Bag of Holding Juan, are you sure it's not a Bag of Transmuting? Th	0.5	Renamed Columns	
7	Re: Problems with retro-encabulator Susan, the hydrocoptic marzleva	0.205291271	A Invoked Custom Function	*
5	Re: Problems with retro-encabulator Have you tried turning it off and	0.5		
12	Re: Wrong items again Ron, you're quite right: it is none of your busin	0.067249209		
15	Re: Problems with retro-encabulator Roy, thanks for the suggestion. It	0.906037033		
4	Re: Wrong items again Jake, I'm very sorry that you've had this proble	0.234212965		
2	When are the new models coming out? I am in need of some doohicke	0.875414729		
0	Re: Problems with retro-encabulator Thanks. One of the marzelvanes	0.752383828		
3	Re: Wrong items again That's all well and good for ME, and I do apprec	0.231669605		
19	Gizmo colors Hi, have you ever considered making gizmos in colors oth	0.928943157		

Figure 18-15. Sentiment analysis result in Power BI Desktop

COGNITIVE SERVICES TOOLKIT CHAPTER 18

The process of using the other features, such as language detection and key phrase extraction, is the same. Only the URL end point will change slightly. For language detection, the end point URL will change as follows:

```
endpoint
            = "https://<Location of Your Azure>.api.cognitive.
              microsoft.com/text/analytics/v2.0/languages",
```

For key phrase extraction, the end point URL would be

```
endpoint
            = "https://<Location of You Azure>.api.cognitive.microsoft.com/
              text/analytics/v2.0/keyPhrases"
```

In addition, the last line of code will change to show a different variable. For language detection, this would be as follows:

```
= jsonresp[documents]{0}[detectedLanguages]{0}[name]
language
```

in language

For the key phrase, it would be as follows:

keyphrases	<pre>= Text.Lower(Text.Combine(jsonresp[documents]{0}</pre>
	[keyPhrases], ", "))

```
in keyphrases
```

The preceding example was about using Cognitive Services in Power BI. In the next section, I will show you how to use the Face (that is, face recognition) service in a Windows application.

Intelligence Application, Face Recognition Services

Another feature in Cognitive Services is the Face (facial recognition) API. This API performs face detection from an image, in addition to emotion detection and finding similar facial features of faces from two images.

It is possible to try the Face API before using it in an application. To see a demo, navigate to the Cognitive Services web site, then to the Vision category (Figure 18-16). Under the Vision category, click the Emotion recognition in images demo. To test the API, browse to a picture and then submit it. After uploading the image, click the Submit button.

- Whicros	oft Azure									910 📞	Search \mathbf{Q}	My account
Overview 🗸	Solutions	$\underline{Products} \underline{ } $	Documentation	Pricing	Training	Marketplace \vee	Partners 🗸	Support \vee	Blog M	More 🗸		
			()	ision	Speech	Language	Know	wledge	Search			
		Learn h videos.	how Vision makes . Try any service fr	it possible ree—and q	e for apps a quickly buik	nd services to acc a computer vision	urately iden -enabled ap	tify and ana ps and servi	lyze conter ces with th	nt within te followi	images and ing	
		capabi	lities.					_				_
	Comp	uter Vision	lities.				e	Face				
\odot	Compo Try for fi	uter Vision	intres.				U	Face Try for fre	e Learn n	nore		
•	Compu Try for fi Image cl	capaon uter Vision ree Learn mo lassification	irties.				U	Face Try for fre Face dete	e Learn n ction in im	nore rages D	emo	
•	Compu Try for fi Image cl Scene ar	capaon uter Vision ree Learn mo lassification nd activity reco	re ognition in image	s Demo			U	Face Try for fre Face dete Person Id	e Learn n ction in im entificatior	nore lages D n in imag	emo (es	
•	Compu Try for fi Image cl Scene ar Celebrity	capabil uter Vision ree Learn mo lassification nd activity reco y and landmar	re ognition in image k recognition in ir	s Demo mages De	emo		U	Face Try for fre Face dete Person Id Emotion s	e Learn n ction in im entificatior ecognitior	nore rages D n in imag	emo jes jes Demo	

Figure 18-16. Cognitive Service Face Recognition

As you can see in Figure 18-17, after uploading the image, the API shows the emotion, such as anger, contempt, disgust, fear, happiness, neutral, sadness, and surprise, indicated by a number between 0 to 1. As you can see in Figure 18-17, the only measure that has a higher number is for happiness, and the person in the picture is smiling.

Figure 18-17. Image emotion detection demo

We are going to create a Windows application that is able to detect the image using the Face API in Cognitive Services.

The process of creating the Face API is like that for Text Analytics. First, we must log in to the Azure portal, then search for the Face API under *AI* + *Machine Learning* (Figure 18-18).

Micro	osoft Azure		, <i>P</i> Search resources, servie	ces, and docs	×	Q
<mark>-</mark>	Homa > New > Marketplace > Everything Marketplace	Everything			* 🗆	×
:=	My Saved List 🤍	Y Filter				
-*-	Everything	,O face 2			×	
	Compute	Results				^
	Networking	NAME	PUBLISHER	CATEGORY		L
	Storage	Face 👩	Microsoft	Al - Machine Learning	Ø	L
0	Web	VU Face Rescon	VULLC	Compute		L
	Mobile	VU Face Recom - BYOL	WILC	Comoute		L
4	Containers	MX Public Store Edition Server (without SOL)	NDL Software	Compute		
	Databases	MY Dublic Store Edition Secure (with COL)	NDI Software	Compute		
	Analytics	International Sector (Mill Sec.)	Hor Solumie	Compare		

Figure 18-18. Face recognition feature in Azure

After creating the service, click the Key tab at the left side of the page and grab the key (Figure 18-19).

Figure 18-19. Collecting the Face API key

We are going to create a Windows application that employs face recognition [4]. To write the code, you must first download one of the free versions of Visual Studio 2015 or 2017 [5]. Then you must create a Windows application (Figure 18-20). For this case study, I am using Visual Studio 2015.

Figure 18-20. Create a Windows Application

The next step is to install the Microsoft Azure Cognitive Service Face API in a Windows application. To install it, we must navigate to the Tools tab, then navigate to NuGet Package Manager, and choose the Package Manager Console. Next, we must type in the following code in the console editor (Figure 18-21).

Install-Package Microsoft.Azure.CognitiveServices.Vision.Face -Version
2.0.0-preview

Figure 18-21. Installing the Face API in Windows

Then we must create the interface for the application. We have to add a button to the screen. To do that, we change the code. Right-click the MainWindow.xaml page, choose View Designer, and change the code to the following (Figure 18-22):

Figure 18-22. Changing the code

<Window x:Class="FaceTutorial.MainWindow" xmlns="http://schemas.microsoft. com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft. com/winfx/2006/xaml" Title="MainWindow" Height="700" Width="960"> <Grid x:Name="BackPanel"> <Image x:Name="FacePhoto" Stretch="Uniform" Margin="0,0,0,50" MouseMove="FacePhoto_MouseMove" /> <DockPanel DockPanel. Dock="Bottom"> <Button x:Name="BrowseButton" Width="72" Height="20" VerticalAlignment="Bottom" HorizontalAlignment="Left" Content="Browse..." Click="BrowseButton_Click" /> <StatusBar VerticalAlignment="Bottom"> <StatusBarItem> <TextBlock Name="faceDescriptionStatusBar" /> </StatusBarItem> </StatusBar> </DockPanel> </Grid> </Window>

After changing the code, the visualization will change. We must change the C# code to access the Face API. First, a reference to Azure Cognitive Services for FACE API has to be added.

```
using Microsoft.Azure.CognitiveServices.Vision.Face;
using Microsoft.Azure.CognitiveServices.Vision.Face.Models;
```

To change the code, click MainWindows.xaml.cs, then add the preceding code to the reference part (Figure 18-23).

Figure 18-23. Add Libraray for Face Recognition

We must now change the code, as follows:

```
namespace FaceTutorial
{
   public partial class MainWindow : Window
   {
       private const string subscriptionKey = "<SubscriptionKey>";
       private const string baseUri =
            "https://<Local>.api.cognitive.microsoft.com/face/v1.0";
       private readonly IFaceClient faceClient = new FaceClient(
            new ApiKeyServiceClientCredentials(subscriptionKey),
            new System.Net.Http.DelegatingHandler[] { });
       IList<DetectedFace> faceList; // The list of detected faces.
       String[] faceDescriptions; // The list of descriptions for the
                                           detected faces.
       double resizeFactor;
                                        // The resize factor for the
                                           displayed image.
```
```
public MainWindow()
ł
    InitializeComponent();
    if (Uri.IsWellFormedUriString(baseUri, UriKind.Absolute))
    {
        faceClient.BaseUri = new Uri(baseUri);
    }
    else
    {
        MessageBox.Show(baseUri,
            "Invalid URI", MessageBoxButton.OK, MessageBoxImage.
            Error);
        Environment.Exit(0);
    }
}
// Displays the image and calls UploadAndDetectFaces.
private async void BrowseButton Click(object sender, RoutedEventArgs e)
{
    // Get the image file to scan from the user.
    var openDlg = new Microsoft.Win32.OpenFileDialog();
   openDlg.Filter = "JPEG Image(*.jpg)|*.jpg";
    bool? result = openDlg.ShowDialog(this);
    // Return if canceled.
    if (!(bool)result)
    {
        return;
    }
    // Display the image file.
    string filePath = openDlg.FileName;
    Uri fileUri = new Uri(filePath);
    BitmapImage bitmapSource = new BitmapImage();
    bitmapSource.BeginInit();
    bitmapSource.CacheOption = BitmapCacheOption.None;
    bitmapSource.UriSource = fileUri;
```

```
CHAPTER 18 COGNITIVE SERVICES TOOLKIT

bitmapSource.EndInit();

FacePhoto.Source = bitmapSource;

}

// Displays the face description when the mouse is over a face

rectangle.

private void FacePhoto_MouseMove(object sender, MouseEventArgs e)

{

}

}
```

We must now change the subscription key and the location of the API. To detect and upload the image, we write a function, as follows:

```
private async Task<IList<DetectedFace>> UploadAndDetectFaces(string
imageFilePath)
{
```

```
// The list of Face attributes to return.
IList<FaceAttributeType> faceAttributes =
    new FaceAttributeType[]
    {
        FaceAttributeType.Gender, FaceAttributeType.Age,
        FaceAttributeType.Smile, FaceAttributeType.Emotion,
        FaceAttributeType.Glasses, FaceAttributeType.Hair
    };
// Call the Face API.
try
{
    using (Stream imageFileStream = File.OpenRead(imageFilePath))
    {
        // The second argument specifies to return the faceId, while
        // the third argument specifies not to return face landmarks.
        IList<DetectedFace> faceList =
            await faceClient.Face.DetectWithStreamAsync(
                imageFileStream, true, false, faceAttributes);
```

```
return faceList;
        }
    }
    // Catch and display Face API errors.
    catch (APIErrorException f)
    {
        MessageBox.Show(f.Message);
        return new List<DetectedFace>();
    }
    // Catch and display all other errors.
    catch (Exception e)
    {
        MessageBox.Show(e.Message, "Error");
        return new List<DetectedFace>();
    }
}
```

We can draw a rectangle around the face of each person in the picture. In the BrowseButton function, write the following code:

```
Title = "Detecting...";
faceList = await UploadAndDetectFaces(filePath);
Title = String.Format(
    "Detection Finished. {0} face(s) detected", faceList.Count);
if (faceList.Count > 0)
{
    // Prepare to draw rectangles around the faces.
    DrawingVisual visual = new DrawingVisual();
    DrawingContext drawingContext = visual.RenderOpen();
    drawingContext.DrawImage(bitmapSource,
        new Rect(0, 0, bitmapSource.Width, bitmapSource.Height));
    double dpi = bitmapSource.DpiX;
    resizeFactor = (dpi > 0) ? 96 / dpi : 1;
    faceDescriptions = new String[faceList.Count];
```

```
CHAPTER 18 COGNITIVE SERVICES TOOLKIT
    for (int i = 0; i < faceList.Count; ++i)</pre>
    {
        DetectedFace face = faceList[i];
        // Draw a rectangle on the face.
        drawingContext.DrawRectangle(
            Brushes.Transparent,
            new Pen(Brushes.Red, 2),
            new Rect(
                face.FaceRectangle.Left * resizeFactor,
                face.FaceRectangle.Top * resizeFactor,
                face.FaceRectangle.Width * resizeFactor,
                face.FaceRectangle.Height * resizeFactor
                )
        );
        // Store the face description.
        faceDescriptions[i] = FaceDescription(face);
    }
    drawingContext.Close();
    // Display the image with the rectangle around the face.
    RenderTargetBitmap faceWithRectBitmap = new RenderTargetBitmap(
        (int)(bitmapSource.PixelWidth * resizeFactor),
        (int)(bitmapSource.PixelHeight * resizeFactor),
        96,
        96,
        PixelFormats.Pbgra32);
    faceWithRectBitmap.Render(visual);
    FacePhoto.Source = faceWithRectBitmap;
    // Set the status bar text.
    faceDescriptionStatusBar.Text =
        "Place the mouse pointer over a face to see the face description.";
}
```

The description of the face must be shown at the bottom of the image. By using the following function, you can show the face description, such as by different emotions, at the bottom of the page.

```
private string FaceDescription(DetectedFace face)
{
    StringBuilder sb = new StringBuilder();
    sb.Append("Face: ");
    // Add the gender, age, and smile.
    sb.Append(face.FaceAttributes.Gender);
    sb.Append(", ");
    sb.Append(face.FaceAttributes.Age);
   sb.Append(", ");
   sb.Append(String.Format("smile {0:F1}%, ", face.FaceAttributes.Smile * 100));
    // Add the emotions. Display all emotions over 10%.
   sb.Append("Emotion: ");
    Emotion emotionScores = face.FaceAttributes.Emotion;
    if (emotionScores.Anger >= 0.1f)
        sb.Append(String.Format("anger {0:F1}%, ", emotionScores.Anger * 100));
    if (emotionScores.Contempt >= 0.1f)
        sb.Append(String.Format("contempt {0:F1}%, ", emotionScores.
        Contempt * 100));
    if (emotionScores.Disgust >= 0.1f)
        sb.Append(String.Format("disgust {0:F1}%, ", emotionScores.Disgust * 100));
    if (emotionScores.Fear >= 0.1f)
        sb.Append(String.Format("fear {0:F1}%, ", emotionScores.Fear * 100));
    if (emotionScores.Happiness >= 0.1f)
        sb.Append(String.Format("happiness {0:F1}%, ", emotionScores.
        Happiness * 100));
    if (emotionScores.Neutral >= 0.1f)
        sb.Append(String.Format("neutral {0:F1}%, ", emotionScores.Neutral * 100));
    if (emotionScores.Sadness >= 0.1f)
        sb.Append(String.Format("sadness {0:F1}%, ", emotionScores.Sadness * 100));
    if (emotionScores.Surprise >= 0.1f)
        sb.Append(String.Format("surprise {0:F1}%, ", emotionScores.
        Surprise * 100));
    // Add glasses.
    sb.Append(face.FaceAttributes.Glasses);
    sb.Append(", ");
```

CHAPTER 18 COGNITIVE SERVICES TOOLKIT

```
// Add hair.
sb.Append("Hair: ");
// Display baldness confidence if over 1%.
if (face.FaceAttributes.Hair.Bald >= 0.01f)
    sb.Append(String.Format("bald {0:F1}% ", face.FaceAttributes.Hair.
    Bald * 100));
// Display all hair color attributes over 10%.
IList<HairColor> hairColors = face.FaceAttributes.Hair.HairColor;
foreach (HairColor hairColor in hairColors)
{
    if (hairColor.Confidence >= 0.1f)
    {
        sb.Append(hairColor.Color.ToString());
        sb.Append(String.Format(" {0:F1}% ", hairColor.Confidence * 100));
    }
}
// Return the built string.
return sb.ToString();
```

The last code is about showing the description of the face when hovering a mouse over the picture.

```
private void FacePhoto_MouseMove(object sender, MouseEventArgs e)
{
    // If the REST call has not completed, return.
    if (faceList == null)
        return;
    // Find the mouse position relative to the image.
    Point mouseXY = e.GetPosition(FacePhoto);
    ImageSource imageSource = FacePhoto.Source;
    BitmapSource bitmapSource = (BitmapSource)imageSource;
    // Scale adjustment between the actual size and displayed size.
    var scale = FacePhoto.ActualWidth / (bitmapSource.PixelWidth /
    resizeFactor);
```

}

```
// Check if this mouse position is over a face rectangle.
bool mouseOverFace = false;
for (int i = 0; i < faceList.Count; ++i)</pre>
{
    FaceRectangle fr = faceList[i].FaceRectangle;
    double left = fr.Left * scale;
    double top = fr.Top * scale;
    double width = fr.Width * scale;
    double height = fr.Height * scale;
    // Display the face description if the mouse is over this face
       rectangle.
    if (mouseXY.X >= left && mouseXY.X <= left + width &&
        mouseXY.Y >= top && mouseXY.Y <= top + height)</pre>
    {
        faceDescriptionStatusBar.Text = faceDescriptions[i];
        mouseOverFace = true;
        break;
    }
}
// String to display when the mouse is not over a face rectangle.
if (!mouseOverFace)
    faceDescriptionStatusBar.Text =
        "Place the mouse pointer over a face to see the face description.";
```

If you ensure that all libraries and reference work are in order, you will gain proper access to the Azure Cognitive Service Library inside the .NET application.

}

Now you must run the code, by clicking the Start button, then click the Browse button and import a picture, to see the description of the image at the bottom of the page (Figure 18-24). As you can see, the software provides a description, such as my age, emotion, hair color, and so forth.

CHAPTER 18 COGNITIVE SERVICES TOOLKIT

Figure 18-24. Face emotion detection

Summary

This chapter presented a brief introduction to the easy-to-use AI tools available in Microsoft Cognitive Services. A brief description of Cognitive Services and how they can be accessed was provided. Then how to use Cognitive Services Text Analytics API in some other Microsoft tools, such as Power BI, was explained. Next, the process of using Cognitive APIs in a Windows application was discussed, and all related codes were shown. In the next chapter, Bot Framework, another tool for creating smart applications, will be explored.

References

- [1] Microsoft Azure, "Cognitive Services," https://azure.microsoft. com/en-us/services/cognitive-services/, 2019.
- [2] PAT Research, "What is Text Analytics," www. predictiveanalyticstoday.com/text-analytics/.

- [3] Kamran Iqbal, Fabrikam data set, GitHub, https://github.com/ Kaiqb/KaiqbRepo0731190208/blob/master/CognitiveServices/ TextAnalytics/FabrikamComments.csv, September 6, 2017.
- [4] Patrick Farley et al., "Tutorial: Create a WPF app to display face data in an image," Microsoft Azure, https://docs.microsoft. com/en-us/azure/cognitive-services/face/tutorials/ faceapiincsharptutorial, February 5, 2019.
- [5] Microsoft Visual Studio, "Visual Studio 2019," Downloads https://visualstudio.microsoft.com/downloads/, 2019.

CHAPTER 19

Bot Framework

A bot is an application that is able to interact with users conversationally [1]. It can be a very simple application that supports dialog and basic questions, or it can be sophisticated, capable of understanding language. In Microsoft Azure, it is possible to create a bot in C# or Node.js. You can create a bot using .NET SDK [2] and test it via such tools as Emulator [3]. In addition, some bot components help you to add more features [4]. In this chapter, a very simple bot using an Azure component will be presented. First, how to create a bot service in Azure will be shown, then how to create a simple bot for questions and answers will be presented, as well as a more complex one.

Bot Creation in Azure

Log in to your Azure account and create a new service name: Web App Bot (Figure 19-1). On creating a new Bot service, you must provide some information, such as a bot name, subscription, resource group, location, and so forth. One of the main fields that you have to choose at the start is Bot template. The default option is Basic (C#). In our scenario, we are going to change the default option to Form, which helps us to create a bot application to guide end users.

335

Figure 19-1. Web App Bot service in Azure

As you can see in Figure 19-2, the Form option should be selected.

Figure 19-2. Bot Framework for questions and answers

After completing the bot application, the resulting services have three main categories: Bot Management, App Service Setting, and Support and Troubleshooting. First, check the output of the created bot. Go to Bot Management ➤ Test in Web Chat.

To see the default result of Bot Framework, click Test in Web Chat and write Hi. The result will be shown as "Welcome to the simple sandwich order bot!" Then list the sandwich option (Figure 19-3).

Figure 19-3. Bot Framework test

Under the Bot management section, the first option is Build, which provides all the source code for creating a bot framework. The first option is Open Online Code Editor. Using this option, developers are able to see code in the online code editor.

As you can see in Figure 19-4, under Online code editor, the code behind the bot is shown.

Figure 19-4. Build section of Bot Framework

To see the code, click Open online code editor. The code for the Web App bot framework will be shown (Figure 19-5). As you can see in Figure 19-5, under the Model folder, in the Sandwiches file, the list of the dialog that users may ask is shown.

In addition in Figure 19-5, each of the questions and possibilities has been represented following an *enumeration* data structure. Each enumeration defines different questions that may occur in a dialog with end users. You can change online the questions and types of offerings in code. For example, you can change the Sandwiches option to Chicken, Ham, Lamb, Pork, or Veggie.

Figure 19-5. Online editor for dialog bot framework

Changes to the file will be saved. You must build and compile them in a .NET application. To build the file, click Open Console and type "build.cmd" (Figure 19-6).

Figure 19-6. Building the Bot online editor

Now we have to test and check the changes in Test in Web Chat. Type "Hi" for the first time, after building the framework. As you can see in Figure 19-7, the first option regarding the sandwich type has been changed.

Figure 19-7. The result of changes in the bot framework

Now, when you choose the Ham option, the next sandwich option will be shown, which is a question about selecting the sandwich length. It is possible to embed the code in a channel, such as Facebook, Telegram, Skype, and so forth (Figure 19-8).

Microsoft Azure P Search resources, services, and de	a	>_ ₽	Q @ ?	😳 leila.etaati@gmail.com
Home > webappbotbook - Channels webappbotbook - Channels webappbotbook - Channels				
	Connect to	channel	S	
 Tags Bot management 	Web Chat	Issues (2)	**	Edit 🖉
Build Image: Test in Web Chat				Get bot embed codes
Analytics Channels Settings	Add a featured channel			7
Speech priming O Bot Service pricing Ann Sandon Sertions	0	1 # S	3	
Application Settings S All App service settings	More channels	0	Facebook Messenge	
Support + troubleshooting	GroupMe	kak	Kik	

Figure 19-8. Channels in chatbot

Click Channels and note the different ways to embed the bot in different channels. One of the ways is embed the bot in a web application is to use Get Bot Embed Codes. If you want to embed the code in an HTML page, you must copy the embed code and replace the secret code with the secret key shown in the windows above (Figure 19-9).

Micro	soft Azure 🖉 Search resources, servi	ces, and docs	> 16 0 @ ?	C leila.etaati@gmail.com
»	Home > webappbotbook - Channels			
+	webappbotbook - Chani	nels		>
:≡ - ★ -	,O Search (Ctrl+,/) «			
	Overview			
	Activity log			
	Access control (IAM)			
۲	I Tags	+ Add new site	Default Site 0	🗆 Disable 🗊
-	Bot management	Default Site	(Count laure	
-	wild		Secret keys	2
2	Test in Web Chat		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	XXXX
	Analytics			
٠	Channels		Show Regenerate	
=	@ Settings		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	XXXX
<>	y Speech priming			
•	Bot Service pricing		Show Regenerate	
9	App Service Settings		Embed code	0
<u> </u>	Application Settings		<iframe< td=""><td></td></iframe<>	
	All App service settings		src='https://webchat.botframework.com/em	bed/webappbotbook?
0 3	Support + troubleshooting		SayOUR_SECRET_HERE'>	
	New support request		Сору	
		Done		

Figure 19-9. Embed code in Channel

Now you have a code, as follows, using Secret keys.

```
<iframe src='https://webchat.botframework.com/embed/webappbotbook?s=YOUR_
SECRET HERE'></iframe>
```

Now you can embed the code in any web site. In the following section I will show how to create a question-and-answer chatbot and embed it in another web site.

Question-and-Answer Chatbot

A question-and-answer (QnA) chatbot can be used for any web site, to guide users. The procedure for creating a chatbot is the same as that followed in the previous section. First, we create a Web App Bot service and choose the Question and Answer bot template (Figure 19-10).

Figure 19-10. Web App Bot for QnA chatbot

By creating the QnA chatbot, as shown in Figure 19-10, we must test itin Test in Web Chat. By testing the chatbot, you will receive an error message (Figure 19-11) asking you to set up some parameters, such as QnAKnowledgebaseId, QnAAuthKey, and QnAEndpointHostName.

Microsof	t Azure P Search re	sources, servic	es, and does	>_ ·	Ģ	Ω	۲	? ©	leila.etaati@gmail.com
- 20	Home > webappqnabook -	Test in Web O	That						
+	webappqnaboo	k - Test ir	n Web Chat						×
:=	,₽ Search (Ctrl+/)	ď	Test						🔘 Start over
	Overview								
	Activity log								
	🚔 Access control (IAM)								
	🖉 Tags								
	lot management								
9	Build								
2	Test in Web Chat								
	Analytics								
۰.	Channels								
-	Settings								
Θ	b Speech priming								
٠	Bot Service pricing								
۲	App Service Settings								
1	Application Settings								
	3 All App service settings								hi >
š.	Support + troubleshooting								You
	New support request		Please set QnAKnowledgel Settings. Learn how to get	baseld, QnAAuthk them at https://a	(ey and ka.ms/q	OnAEnd	lpointHos tup.	tName (if a	pplicable) in App
			webapponabook at 10:51:35 AM						
			Type your message						Q

Figure 19-11. Testing a web QnA chatbot

To set up these parameters, we must create a QnA Maker service in Azure. In your Azure account, set up the QnA Maker service (Figure 19-12).

>	Home > New > On	A Maker		-
	QnA Maker	#		×
	Microsoft's QnAMaker simple question and ar ingests FAQ URLs, strue answer pairs from the o	is a Cognitive Service tool that uses your existing content to build and swere bot that responds to users in a natural, conversational way. On A chured documents, and product manuals, extracts all possible question content.	train a Maker and	
	A common challenge for management from the who may not be techni experience.	or most informational Bot scenarios is to separate out the content Bot design and development, as content owners are usually domain ex ical. QnAMaker addresses this by enabling a no-code QnA managemen	perts t	
	QnA Maker allows you your knowledge base a a familiar chat interface from users over time a	to edit, remove, or add QnA pairs with an easy-to-use interface, then p is an API endpoint for a bot service. It's simple to text and train the bot e, and the active learning feature automatically learns questions variatio in adds them to nour knowledne has as. Its the OnA Maker endonint to	ublish using ms	
	seamlessly integrate wi interpret and answer u	ith other APIs like Language Understanding service and Speech APIs to ser questions in different ways.		
	seamlessly integrate wi interpret and answer u Save for later	ith other APIs like Language Understanding service and Speech APIs to ser questions in different ways.		
	seamlessly integrate wi interpret and answer u Save for later PUBLISHER	ith other APIs like Language Understanding service and Speech APIs to ser questions in different ways. 		
	seamlessly integrate wi interpret and answer u Save for later PUBLISHER	ith other APIs like Language Understanding service and Speech APIs to ser questions in different ways.		
	seamlessly integrate wi integret and answer u Save for later PUBLISHER	ith other APIs like Language Understanding service and Speech APIs to ser questions in different ways. 		
	seamlessly integrate wi integret and answer u Save for later PUBLISHER	ith other APIs like Language Understanding service and Speech APIs to ser questions in different ways. 		
	seamlessly integrate wi interpret and answer u Save for later PUBLISHER Create	ith other APIs like Language Understanding service and Speech APIs to ser questions in different ways.		

Figure 19-12. QnA Maker

After creating QnA Maker in Azure, you must set up a knowledge database [5]. Using your Azure account, log in to the qnmaker.ai web site (Figure 19-13).

Figure 19-13. QnA Maker web site

Click the Create a Knowledge Base at the top of the page (Figure 19-13). The first step is to create a QnA service (as = in the last section). The second step is to connect the knowledge service to the QnA component in Azure. The third step is to choose the related Azure Directory ID, Azure Subscription Name, and Azure QnA Service. Then you must choose a name for the knowledge base (Figure 19-14).

STEP 2	
Connect your QnA service to your KB. After you create an Azure QnA service, refresh this page and then select your Azure service using the options I	below.
* Microsoft Azure Directory ID	
leilaetaatigmail (Default Directory)	~
* Azure subscription name	
Microsoft Azure Sponsorship	~
* Azure QnA service	
QnAleilabookAl	Ý
STEP 3	
Name your KB.	
The knowledge base name is for your reference and you can change it at anytime.	
* Name	
Conference Knowledge Base	×

Figure 19-14. Connecting the knowledge base (KB) with Azure

Next, we have to upload some knowledge base as a URL or in a file format (.et, .pdf, .doc, .docx, .xlsx). The file contains some frequently asked questions (FAQ). I have created a word file that contains some FAQs for a conference (Figure 19-15).

Figure 19-15. FAQs

Now you must upload the file to the web site and create the knowledge base (Figure 19-16).

Figure 19-16. Creating a knowledge base

After creating the knowledge base, you can extend the knowledge base questions, by clicking Add QnA Pair (Figure 19-17). In addition, it is possible to add more questions and more answers.

Maker My knowledge bases Create a knowledge b	base Documen	tation Feedbac			Leila
erence Knowledge Base Edited •	EDIT	PUBLISH	SETTINGS	Save and train	← Te
Knowledge base					
Search the knowledge base	×		1	+ Add QnA pair	۲
Question		Answer			
Original source: Editorial					
how to get there? × +		using car or train	n		Ð
Original source: knowledgebase.docx					
Where is the conference? \times +		It is happening i	n Auckland		Ê
What is the date of conference? \times $+$		It is happening i	n February		Đ
Is there any parking? $ imes+$		There is some lin	mited parking spot		Û
Is it a free conference? × +		No, it is a paid o	one		Ê
		Chicken Lamb	Venie and East		Ĥ

Figure 19-17. Adding a QnA pair

348

After uploading and adding the question, you must "Save and train" the knowledge base. After training the model, click Test. Type "Conference," and the knowledge base returns the result (Figure 19-18).

QnA Maker Myknowledge bases Create a knowled	dge base Docum	entation Feedback		Lola
Conference Knowledge Base	EDIT	PUBLISH	SETTINGS Save and train	→ Test
Knowledge base			Test	() Start over
Search the knowledge base		×	conference	Inspect You
Question		Answer	It is happening in Auckland	4
Criginal source: Editorial how to get train? × +		using car or train		
Original source: knowledgebase.docs Where is the contensor? X +		It is happening in Au	ck/ar	
What is the date of conference? X +		It is happening in Fel	briu ar	
Is there any parking? \times +		There is some limited	á par	
Is it a free conference? × +		No, it is a paid one		
When we had back anticest . W +		Chicken Lamb Veoir	e and	

Figure 19-18. Testing the knowledge base

After testing the knowledge base, we must publish it. After publishing the knowledge base, an HTTP request will build. The created request contains all the required information, such as the knowledge base ID, end point link, and authentication key (Figure 19-19).

Figure 19-19. Creating an HTTP request

These parameters can be viewed in Figure 19-11. In webappqnabook (Figure 19-20), click Application Settings and fill the parameters with HTTP Request parameters (Figure 19-20).

Microsoft Azure , Search resources, s	vervices, and docs	© 0 ⊗	? ©
Home > webappqnabook - Applicati	on Settings		
+ webappqnabook - Ap	plication Settings		
,○ Search (Ctrl+/)	≪ 🖪 Save 🗙 Discard		
Overview	BotOpenIdMet		
Activity log	BotStateEndp		
🕥 📫 Access control (IAM)	MicrosoftAppld 1615d616-213d-4c4b-989f-5fc410		
🔇 🧳 Tags	MicrosoftApp WnwOc+1FKF5DztP		
Bot management	QnAAuthKey		
📬 🐻 Build	QnAEndpoint		2
🬌 📑 Test in Web Chat	QnAKnowledg		-
Analytics	UseTableStora true		
🔶 💼 Channels	WEBSITE_NOD 6.9.1		
C Settings	+ Add new setting		
🐡 👃 Speech priming			
Bot Service pricing	Connection strings		
App Service Settings	CO VALUE TYPE	SLOT SETTI	NG
Application Settings	(no connection strings to d	lisplay)	
All App service settings	+ Add new connection string		
Support + troubleshooting			
New support request	Default documents		

Figure 19-20. Application Setting Parameters

350

Now we have to test the chatbot. Click Test in Web Chat and type "Conference." The output will be displayed in the test window (Figure 19-21).

Microsoft Azure	P Search resources, service	ces, and docs	>_	5 7	¢.		leila.etaati@gmail.com berauat bisectory
>> Home >	webappgnabook - Test in Web	Chat					
+	ebappqnabook - Test i	n Web Chat					
₽ Seco	rch (Chil+,)	Test					O Start or
Cver	view						
III 🖬 Activ	ity log						
😭 🎿 Acce	ss control (IAM)						
🔕 🥒 Taga							
Bot mana	gement						
📬 🔤 Build	i						
💐 📗 Test i	in Web Chat						
🛄 🔛 Anal)	Viks						
🔶 💼 Chan	inels						
📃 🔘 settir	ngs						
😔 👃 Spee	ch priming						
Ø Bots	Service pricing						12 mm
App Servi	ice Settings						conference
# 4pp5	ication Settings						You
🎈 🔕 All A	pp service settings	It is happening in Auckland					
Support 4	+ troubleshooting	webappgrabook at 12.47.48 PM					
New	support request	Type your message		0			

Figure 19-21. Testing the chatbot

You can embed the questions and answers on any page and channel. In this example, this chatbot has been embedded in the conference web site, to guide users. To embed the chatbot in the web site, we must get the embed code. To get the embed code, follow the same procedure related to Figure 19-9.

Next, copy the code and put it in the web page (Figure 19-22).

<iframe src='https://webchat.botframework.com/embed/webappqnabook?s=YOUR_ SECRET HERE'></iframe>

	***	A • Z •	Font Name	Size = =	Paragraph	n Style	Apply CS	sc 2		
rame width	-"100%" height="400	px" src="https:	//webchat.botframe	work.com/embed/question	ella? 🕕					
Rahoniza	toon stude="text alien-	laft: calar: #20	2220- lattar cancing	>	trancoaronti"s Our	nen conforme	corright or	בובאר אומת מ	hin for nurchaco	I Each
-										
-	-									
-	-									
-	and the second of						-			
in Sector										
	text-align: left; color:	#666a73; letter	-spacing: 0.5px; ba	ckground-color: transparent	">					
Jan style=	rgin: Opx; padding: 10	px Opx Opx; tex	t-align: left; color: 4	666a73; letter-spacing: 0.5	px; background-color	: transparent;	<pre>><span pre="" sty<=""></pre>	fe="padding	-top: 0px;"> <st< td=""><td>"<pre>rong>"</pre></td></st<>	" <pre>rong>"</pre>
style="ma										
style="ma Design	HTML P	Weiver								

Figure 19-22. Copying the embed code in a web page

Test the code, and you will see the chatbot on the web page (Figure 19-23).

	🖉 🔹 "Gotham SSr 🛛	4 🖹 🚔 3	Normal	App	iy css c 👲 🔹	
Chat						
	^					
	~					
Fype your message	\triangleright					
2						
tio pre-confermi						
the pro-conference in						

Figure 19-23. Chatbot embedde in the web page

Summary

In this chapter, the general procedures for creating a chatbot were explained.

References

- [1] Kamran Iqbal et al., "About Azure Bot Service," Microsoft Azure, https://docs.microsoft.com/en-us/azure/bot-service/ bot-service-overview-introduction?view=azure-botservice-3.0, April 17, 2019.
- [2] Bot Builder, https://marketplace.visualstudio.com/ items?itemName=SkillBotBuilder.SkillBotBuilder.
- [3] Tony Anziano, "Bot Framework-Emulator," GitHub, https:// github.com/Microsoft/BotFramework-Emulator/releases, 2019.
- [4] Microsoft Visual Studio, Downloads, https://visualstudio. microsoft.com/downloads/, 2019.
- [5] Microsoft QnA Maker, www.qnamaker.ai/, 2019.

CHAPTER 20

Overview of Microsoft Machine Learning Tools

The last 19 chapters were an overview of how you can undertake machine learning with different Microsoft products. First, an introduction to machine learning approaches, such as descriptive, predictive, and prescriptive analytics, was provided. The R language, as one of the principal languages for machine learning was then discussed. Following was a brief explanation of how to do machine learning using such tools as Power BI, Azure ML Studio, SQL Server, and others.

This chapter offers a summary of machine learning technologies and best practices when using particular approaches.

Overview of Microsoft Machine Learning Technologies

Artificial intelligence (AI), and specifically machine learning, can bring lots of benefits to businesses. Many have been using Microsoft data platform tools for years. Microsoft employed machine learning to create such products such as Xbox, Bing Search, and others. However, from 2014, Microsoft began to provide a facility for power users and end users to embed machine learning in their reports and software.

Previous chapters categorized the relevant Microsoft tools, based on the way machine learning is used. In this chapter, technologies are categorized according to the following:

- The need to write R or Python code
- Cloud or on-premises computing

355

The first classification is based on the degree to which these tools are easy to use and accurate.

We can classify the associated products into two main groups:

- *Pre-built AI*: Microsoft machine learning tools that do not require that you write any R or Python code to generate a machine learning scenario.
- *Custom AI*: Microsoft machine learning tools that require you to know how to write R or Python code

The first group is easy to use, and you need only follow the instructions provided. The main benefit of using pre-built AI tools is that there is no need to know the machine learning concepts, or at least by knowing some, most anyone is able to create an AI application. Pre-built AI tools can address general problems and issues, but for some business problems, other categories of tools (e.g., for writing R or Python code) are more efficient. In this book, the Cognitive Services (Chapter 18) and Bot Framework (Chapter 19) are the tools that you can embed in Power BI, Windows, or other web applications without writing any R or Python code. As mentioned in the relevant chapters, there is no direct way to access the code behind pre-built custom AI tools, so there is no way to alter that code and change the algorithms.

In contrast, to use Custom AI tools requires knowing how to code and how to write code for the purpose of machine learning. However, for some tools, such as Azure ML Studio, it is possible to conduct machine learning without writing R or Python code, although at least some understanding of how machine learning works is necessary. Some Custom AI tools address writing R or Python code inside other Microsoft tools, such as R or Python in

- Power BI (Chapters 6, 7, and 8)
- SQL Server 2016 for R Services and SQL Server 2017 for Machine Learning (ML) Services (Chapter 9)
- Azure Data Lake Analytics (Chapter 11)
- Azure Databricks (Chapter 10)
- Azure HDInsight (Chapter 15)
- .NET applications (Chapter 13)
- And others

For Azure machine learning tools, it is possible to write R or Python code as well. In addition, the drag-and-drop environment is quite easy to use.

The second classification is about cloud vs. on-premises AI tools. Many companies still prefer to keep their tools on-site, while some others prefer to move all their business products to the cloud. Between the two, some companies have both cloud and on-premises tools.

If the main strategy of a company is to keep everything on-premises, using Power BI or SQL Server for writing R or Python can be more suitable. However, if the preference is to do machine learning in the cloud, the Azure ML Studio (Chapter 12), for writing R or Python on Databricks, and Azure Data Analytics can be most helpful.

The third categories of tools address solutions to business problems. The nature of a problem and the scenario that we want to enrich with AI also matter when selecting specific tools, for example

- Applying machine learning on Internet of things (IoT) use case scenarios
- Using Text Analytics, speech, images, and so forth, for analysis
- Applying machine learning to an ETL (extract, transform, load) project
- Fast tracking a prototype for a client with Azure Machine Studio

IoT Scenario

Analyzing real-time data is a need that has been addressed by such Microsoft tools as Event Hub, Stream Analytics (Chapter 13), Databricks (Chapter 10), and others. With Power BI, it is possible to create a live stream report based on the real data that flows from sensors, applications, and so forth.

For most of this scenario, there is a need to identify anomalies in the data or classify prospective data into different groups. By using Azure Machine Learning with Stream Analytics or Databricks, we can apply machine learning to IoT scenarios.

Image, Text, and Voice Analytics

There are different tools for image, text, and voice analytics in the Microsoft stack. Cognitive Services (Chapter 18) is one of the popular tools for text, voice, and image analytics that provides APIs to use in other applications.

However, it is also possible to do image processing and voice recognition using the CNTK platform, which is covered in Chapter 17. These Microsoft packages and libraries provide facilities for developers to employ for performing machine learning with a deep learning approach.

Machine Learning on ETL

Another possible requirement is to apply machine learning to data that has been loaded and transformed with the aim of visualization and creating reports. There is always a need to apply some descriptive or predictive analytics on data before showing it to the final users. As a result, those who use Power BI self-service BI can leverage the machine learning, using R and Python scripts to make reports more insightful. Another approach is to use R or Python in SQL Server 2016 or 2017. In addition, if the data is on the cloud, it is possible to use Databricks for ETL and machine learning at the same time.

Machine Learning Prototype

For companies that want to use machine learning on their data for the first time, Azure Machine Learning Studio is a great tool that demonstrates the real process of machine learning, from collecting data to training and testing models. Moreover, managers and stakeholders are able to fast track the machine learning process and see how it can be used as an API in other applications or a simple Excel file.

To sum up, tool selection for machine learning depends on the architecture being used, how much effort is willing to be expended on programming, and what scenario is to be put in place. Tools related to the first requirement are based on pre-built AI and custom AI. Those for the second depend on the current architecture in place, whether on-premises or cloud-based. Finally, the last requirement to consider relates to appropriate tools for a specific scenario that is to be implemented, such as for IoT, ETL, or prototype creation.

Index

Α

Activation functions, 95, 291, 292 Apache Spark, 159, 267 Application programming interface (API), 11, 211 Artificial intelligence (AI), 3, 273, 355 Automated machine learning advanced editor, 111 association rules, 130 attributes, 130 cancer data set call classification function, 118 prediction result, 118 Changed Type, 113 Chiclet slicer, 134 creating function, Power Query, 110 customer purchasing behavior, 129 data set, transformation, 112 duplicate data set, 109 final code, 114 importing data set, 131 parameters setting, 133 permission request, 116 Power Query Editor, 106 Power Query filter value, 133 prediction analysis, 108 report, 134 result analysis, 132 rpart library, 107

R scripts editor, 131 RStudio, 107 run R Script, 112 selecting columns, 115 titanic data set. 107 **Azure Databricks** chart option, 165, 166 cluster page, 161, 162 environment module, 159, 160 import data, 166, 167 launch workspace, 161 new cell creation, 169, 170 R notebook creation, 163, 164 run code. 165 Scala language, 167, 168 scheduling a process, 171 Azure Data Lake Analytics sample scripts, 180, 181 create resource, 176, 177 creating Analytics resource, 179, 180 Data Explorer option, 178 definition, 175 Microsoft Cloud components, 176 R scripts in U-SQL language, 184–188 into RStudio Active Directory, create connection, 194, 195 Azure Active Directory, application registration, 190 Azure Active Directory, create, 188

© Leila Etaati 2019 L. Etaati, *Machine Learning with Microsoft Technologies*, https://doi.org/10.1007/978-1-4842-3658-1

INDEX

Azure Data Lake (cont.) Azure Active Directory, Directory ID (Tenant ID), 191 Azure Active Directory, getting client Secret ID, 192, 194 iris data in adlsbook, 196-198 U-SOL, 182, 183 Azure Data Lake Analytics, 175 Azure Data Lake Store (ADLS), see Azure Data Lake **Azure Machine Learning** (AML), 9, 238-240 API model, 229 package, 150 Azure ML Studio creating web service API in Excel, 216, 217 information page, 213 input and output, 214 sample code, 214 testing, 215 Titanic problem, 212 environment, 201-203 executing R scripts, 218-222 experiment algorithms, 209 Clean Missing Data, 207 creating, 203 importing data, 204 score model output, 211 setting up, 204 Split Data, 210 visualizing data set, 206 features, 201 Azure ML workbench vs. Azure ML Studio, 248 components, 248 creating workspace, 252, 253

definition, 247 importing data iris classification result, 264 iris data (text file), 257, 259, 260, 262, 264 Jupyter Notebook, 261 options, 256 installation, 248-250 iris classification project, 254, 255 model main page, 252 Azure SQL database, 227 Azure storage explorer, 274 **Azure Stream Analytics** Analytics job, 234-237 application, 231-234 Azure ML access keys and URL, 240 model. 239 web service creation, 239, 240 components, 228 create function, 241-243 creation, 225, 226 definition, 225 Event Hub service, 229-231 initialization, 226, 227 live data in Power BI, 243-245 outputs, 228 setting up configuration, 233 shared access policies, 237, 238 Visual studio, 233

B

Blob storage, 227 Bot creation, Azure Build section, 338, 339 channel, 341, 343 Form option, 335

INDEX

.NET application, 340 online code editor, 339, 340 test changes, 341 Web App Bot, 335, 336 Web Chat, 337, 338 Business intelligence (BI), 9, 37, 312 Business problem, 73 analysis and information, 68 machine learning (*see* Machine learning (ML))

С

Cluster analysis, 121 Clustering custom visuals, 122-124 k-means, 121, 122 Power Query, 124 comparison data, 128 data cleaning, 125 funnel chart option, 128 household power consumption data set, 125 visualizations panel, 127 Cognitive services, 358 Azure accounts, 307, 308 categories, 305, 306 features. 309 language category, 307 Collaborative filtering, 73 Content-based systems, 72 Custom visuals, Power BI command prompt creation, 59 JSON file, 61 pbiviz command, 62 in power BI, 56, 57 account sign in, 51 analytics time series, 53

forecasting, 53–55 import data, 52 import visuals, 51, 52 RADACAD web site, 64 R code, 60 script file, 58

D

Data acquisition, 7 Databricks environment, Azure, see Azure **Databricks** Data mining approaches, 70 Data Science Virtual Machine (DSVM), 12, 291 creation. 276 environment, 278 Jupyter Notebook authentication key, Azure ML studio. 283 fetching workspace ID, 282 model creation. 281 R code. 280 **R ML Code** publish, 284 web service, 284, 285 overview, 273, 274 R and python tools, 279 RDP file, 278 RStudio, 279 set up, 275 size, 276 Dataset variable, 88 Data transformation, Power Query change data type, 90 group by, 91, 92 using R scripts, 86, 87 Data warehousing, 267

INDEX

Data wrangling ETL, 78 merging, 84-86 reshaping, 78–83 selecting, 83, 84 Decision-making process, 4 Decision tree analysis, 105, 106 custom visuals, Power BI, 102, 103 Power BI account, 101 power query filter value, 104 predictive analysis, 104 root node, 105 tree branching, 101 visualization panel, 102 Deep learning, 292 Deployment, 7 Descriptive analysis data mining approaches, 70 operation reports, 69 statistical analysis, 70 Discrete class label, 6 Drag-and-drop environment, 9, 201, 357

Ε

Emulator, 335 Event Hub, 227, 229–231, 357 Extract, transform, and load (ETL), 78, 161, 267

F, G

Face recognition API key, 320 Azure, 319, 320 BrowseButton function, 327 code, change, 322–324 face description, 328, 330 face emotion, 331, 332 image emotion, 319 installing Face API, 321, 322 vision category, 318, 319 Windows application, 320, 321 Forced-directed graph, 132

Η

HDInsight cloud-based service, 267 cluster Azure Data Lake Store Gen1, 271, 272 creation, 269 environment, 270 Jupyter Notebook, 270, 271 set up, 268, 269

I, J

Integrated development environments (IDEs), 15, 27 Internet of things (IoT), 225, 227, 357

Κ

Key performance indicators (KPIs), 4, 52, 102 K-nearest neighbors (KNN), 71, 87

L

lapply function, 88, 89
Μ

Machine learning (ML) AI, 3, 4 approaches supervised learning, 6 unsupervised learning, 6 descriptive analysis, 69, 70 languages and platforms, 9-12 life cycle, 7–9 predictive analysis, 70-72 prescriptive analysis, 5, 72, 73 Matplotlib, 35, 299 merge function, 84 Microsoft Cognitive Toolkit (CNTK), 274, 358 case study actual data, 300 DSVM, 295 Jupyter Notebook, 297 random data, 298 definition, 293 neural networks activation functions, 292 classifying data, 290 deep learning, 292 DSVM environment, 291 model, 288 synapsis, 287 topologies, 292 setup, 293, 295, 296 Microsoft machine learning custom AI tools, 356 data platform tools, 355 ETL, 358 IOT, 357 pre-built AI tools, 356 prototype, 358 voice analytics, 358

N, **O**

Neural networks, 288 computer system architecture, 94 concrete data set, 96 package library command, 98 machine learning with R, 95 mountain climbing, comparison, 95 normalization, 97 output data set, 98 Power BI report, 100 prediction result, 99 Python codes, pivot, 97 structure, 99 training data set, 97 Normalization MinMax approach, 87 normalized data, 90 R scripts, 88 NuGet packages, 232, 321

Ρ

Packages, R installation, 18 machine learning, 23, 24 Power BI, 227, 229 data visualization, 38, 39 R code CSV file, import, 41 ggplot function, 46 mpg data set, 42 Python environment, 43 scatter chart result, 46–48 script editor, 44, 45 whitespace area, 42 setting up R, 39–41

INDEX

Power Query Editor, 10 data resources, 77 data transformation, 76 home tab, 77 power BI, 76 R scripts, 78 Power query filter value, 84, 104, 133 Predictive analysis, 67, 70-72 classification analysis, 71, 72 regression analysis, 71 time series forecasting, 72 Prescriptive analysis, 5, 67, 72, 73 PyCharm, 29, 274 Python dimensions, 34 IDE, 27, 29 machine learning, 35 package installation, 29-31, 33, 34 statistical distribution. 35 visualization, 35

Q

Query Editor, 228 Question-and-answer (QnA) chatbot embed code, 351, 352 FAQs, 347 HTTP request, 349 knowledge database, 346, 347 Maker service, 345 QnA Pair, 348 qnmaker.ai web site, 346 testing, 344, 345, 351 Web App Bot service, 343, 344

R

RADACAD web site, 64 R, data structure data frames, 21, 22 lists, 20 vector—C(), 19-20 Regression approach, 6, 71 Remote Desktop Protocol (RDP), 277, 278 **Reshaping data** data table, creation, 81 entering data manually, 80 pivoting data, 79, 80 pivot table, 82 specifying type/values, 82 type column pivot option, 81 RevoScaleR package, 142, 147 Rodeo, 28, 29 rpart package, 23, 107, 169 R scripts configuration options, 143 creating visuals chart in SSRS, 154-157 input data, 153 library path, 152 R code section, 153 return data, 153, 154 SSRS, 151 packages, 146 Azure ML, 150 RevoScaleR, 147 rxLinMode, 147, 149, 150 run, **144** in SQL Server 2016, 139 in SQL Server 2017, 140, 142

RStudio, installation, 15–18 R visualization custom visuals (*see* Custom visuals, Power BI) features RStudio, 49, 50 slice and dice, 49 power BI, 37 rxLinMode package, 147–150

S

Slice and dice, 49 Spyder, 27 SQL scripting language, 229 SQL server, 139–142 SQL server reporting services (SSRS), 151, 154 Statistical analysis, R, 22, 23 Supervised learning, 6, 67 Support-vector machine (SVM), 71

Т

Team data science process (TDSP), 7 Text analytics create function blank query, 314 Power BI Query Editor, 314–316 sentiment analysis, 316, 317 data set, 312, 313 pricing tiers, 310, 311 set up, 310 URL and key, 311

U

UCI machine learning repository, 121 User interface (UI), 167

V, W, X, Y, Z

Visualization, R, 24, 25