
Become a Better Coder by
Learning How (Not) to Program
 ―
Karl Beecher

Bad
Programming
Practices 101

www.EBooksWorld.ir

Bad Programming
Practices 101

Become a Better Coder by Learning
How (Not) to Program

Karl Beecher

www.EBooksWorld.ir

Bad Programming Practices 101: Become a Better Coder by Learning How (Not)
to Program

ISBN-13 (pbk): 978-1-4842-3410-5 ISBN-13 (electronic): 978-1-4842-3411-2
https://doi.org/10.1007/978-1-4842-3411-2

Library of Congress Control Number: 2018933065

Copyright © 2018 by Karl Beecher

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Chaim Krause
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484234105. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Karl Beecher
Berlin, Germany

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3411-2

Dedicated to all the writers who show that serious and
fun are not mutually exclusive.

www.EBooksWorld.ir

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

Table of Contents

Chapter 1: Learning to Program ��� 1

Objectives ��� 1

Introduction ��� 1

Bad Ways to Learn Programming �� 1

Take a Pass on Practicing �� 1

Avoid Inspiration �� 2

Be a Script Kiddie �� 3

Do It Alone ��� 4

Bad Ways to Choose Your Tools ��� 4

Choose Inappropriately While a Beginner �� 5

Obsess Far Too Much over Your Choices ��� 6

Be a Fashion Victim ��� 7

Chapter 2: Layout and Structure ��� 9

Objectives ��� 9

Prerequisites ��� 9

Introduction ��� 9

Make Spacing Poor and Inconsistent �� 10

On the Level ��� 10

Spaced Out �� 13

Tabs and Spaces�� 14

www.EBooksWorld.ir

vi

Clutter the Code �� 15

Unused Stuff �� 16

Dead Stuff �� 16

Disabled Stuff �� 17

Write Bad Comments �� 18

No Comment! ��� 18

Code Parroting ��� 19

Out of Sync �� 21

Avoid Structured Programming ��� 22

Jump Around ��� 25

Routine Work ��� 26

Chapter 3: Variables ��� 31

Objectives ��� 31

Prerequisites ��� 31

Introduction ��� 31

Use Obscure Names—Thinking Up Meaningful Labels Isn’t Worth the Effort ���������������������������� 32

All Meaningless ��� 32

Vowel Movements ��� 34

Lazy Naming �� 35

Treat Variable Declaration Like a Waste of Time ��� 35

Be Confusing ��� 35

Be Contrarian ��� 36

Maximize the Scope of Variables �� 37

Broad Scopes �� 37

Going Global �� 40

Thoroughly Abuse the Type System �� 42

Turn Numbers into Secret Codes ��� 43

Strings Are Magic—They Can Pretend to Be Any Type �� 44

Mix Things Up �� 46

Table of ConTenTs

www.EBooksWorld.ir

vii

Null—The Harbinger of Doom ��� 47

Null Checks �� 47

Seeding Disaster ��� 48

Chapter 4: Conditionals �� 51

Objectives ��� 51

Prerequisites ��� 51

Introduction ��� 51

Forget the Alternatives �� 52

Or Else What? �� 52

The Normal and the Exceptional�� 54

Build a Ladder ��� 58

Abuse Expressions �� 60

Tortuous Expressions��� 60

Not Being Not Non-negative � � � Not ��� 63

Include Gaps and Overlaps ��� 65

Thumbs Down! �� 66

 Chapter 5: Loops �� 67

Objectives ��� 67

Prerequisites ��� 67

Introduction ��� 68

Choose the Wrong Type ��� 68

Collections ��� 68

Ranges ��� 70

Arbitrary Iterations �� 71

Have Fun with Infinite Loops ��� 74

Citing the Masters ��� 74

Taking Precautions �� 77

Table of ConTenTs

www.EBooksWorld.ir

viii

Make Inappropriate Exits �� 79

Break Out ��� 80

Make ’em Looooong and Complex �� 82

Long Loops �� 82

Complex Loops �� 84

Chapter 6: Subroutines ��� 87

Objectives ��� 87

Prerequisites ��� 87

Introduction ��� 87

Super-Size Your Subroutines��� 88

Thumbs Down! �� 89

Put Up Barriers to Understanding ��� 90

Bad Naming ��� 90

High Complexity ��� 91

Too Many Purposes ��� 94

(Ab)use Parameters �� 96

The More the Merrier ��� 97

Being Defensive ��� 98

Surreptitious Subroutines �� 100

Screw with Return Values ��� 101

Return of the Harbinger ��� 101

Fun with Output Parameters�� 102

Chapter 7: Error Handling ��� 107

Objectives ��� 107

Prerequisites ��� 107

Introduction ��� 107

Assume Everything Will Always Go Well�� 108

Don’t Check ��� 108

Don’t Assert ��� 109

Don’t Catch �� 112

Table of ConTenTs

www.EBooksWorld.ir

ix

Send Problems Down the Memory Hole ��� 113

Disappearing Exceptions ��� 113

Reporting Problems Is Doubleplusungood��� 114

Kick the Can Down the Road ��� 116

Using Error Codes �� 117

Baffle and Bamboozle�� 118

Make a Mess ��� 120

Cleaning Up and How Not to Do It ��� 121

Chapter 8: Modules��� 125

Objectives ��� 125

Prerequisites ��� 125

Introduction ��� 125

A Note on Terminology ��� 126

Make Importing Messy �� 126

Import All the Things! �� 127

Clutter and Mess ��� 128

Prevent Reuse ��� 130

Shopping-List Subroutines �� 130

Mono-focused Modules ��� 133

Create Strong Dependencies �� 135

Exposing Your Innards ��� 136

The Public Face of a Module ��� 140

Chapter 9: Classes and Objects �� 145

Objectives ��� 145

Prerequisites ��� 145

Introduction ��� 146

Have Questionable Motives for Creating Classes �� 146

Data Classes �� 146

God Classes ��� 148

Utility Classes �� 149

Table of ConTenTs

www.EBooksWorld.ir

x

Make Objects Inflexible ��� 150

Objects Obeying Orders ��� 150

Rigid Relationships �� 153

Avoid Polymorphism ��� 156

Thumbs Down! �� 158

Overuse and Abuse Inheritance �� 160

Going Deep �� 161

Quick and Dirty Reuse ��� 163

Chapter 10: Testing ��� 169

Objectives ��� 169

Prerequisites ��� 169

Introduction ��� 170

Be Protective of Your Code �� 170

Keeping It to Yourself ��� 171

Doing the Bare Minimum ��� 171

Thwarting Efforts ��� 176

Set Traps in Your Tests �� 177

Machine-specific Tests �� 178

Expansive Focus �� 180

Chaos ��� 183

Chapter 11: Debugging ��� 189

Objectives ��� 189

Prerequisites ��� 189

Introduction ��� 189

Investigate Unsystematically �� 190

Guesswork ��� 190

Biases �� 191

Chaos ��� 192

Table of ConTenTs

www.EBooksWorld.ir

xi

Make Debugging Hard �� 194

Always Keep Your Mouth Shut ��� 194

Keeping Records ��� 196

Avoid Proper Fixes �� 198

The Hit ’n’ Run Bug �� 198

Patch It Up ��� 199

 Bibliography ��� 203

 Glossary �� 209

 Index ��� 213

Table of ConTenTs

www.EBooksWorld.ir

xiii

About the Author

Karl Beecher lives a double life as a writer and software

specialist.

When being a writer, he focuses on science and

technology. He likes to take meaty, complex ideas and

present them in ways that are easy to understand.

As a software specialist, Karl has worked as a software

engineer, earned a PhD in computer science, and co-

founded a company specializing in management of large-

scale IT operations.

www.EBooksWorld.ir

xv

About the Technical Reviewer

Chaim Krause presently lives in Leavenworth, Kansas, where the U.S. Army employs

him as a simulation specialist. In his spare time, he likes to play PC games, and

occasionally he develops his own. He has recently taken up the sport of golf to spend

more time with his significant other, Ivana. Although he holds a BA in political science

from the University of Chicago, Chaim is an autodidact when it comes to computers,

programming, and electronics. He wrote his first computer game in BASIC on a Tandy

Model I Level I and stored the program on a cassette tape. Amateur radio introduced

him to electronics, while the Arduino and the Raspberry Pi provided a medium to

combine computing, programming, and electronics into one hobby.

www.EBooksWorld.ir

xvii

Acknowledgments

I’d like to thank my editors, Mark Powers and Steve Anglin, as well as all the others at

Apress who made this book both possible and a pleasure to produce.

And, as ever, thank you to my wife, Jennifer, for her love, support, and invaluable

feedback.

www.EBooksWorld.ir

xix

Introduction

So, you’re a programmer, or at least a programmer-in-training.

You want to improve your programming skills. You want to become more productive

as soon as possible.

You’ll be working with colleagues who want their project to be successful and their

code bug-free. They’ll examine the code you write and serve as gatekeepers, either

accepting or rejecting your contributions. Your colleagues want you to write code that’s

up to scratch.

The question is: how should you go about learning to do all this? One idea would

be to read up on what the best programming practices are and then apply them in your

work. However, the matter of how best to program is a touchy subject.

One of the easiest ways in the world to get an argument started is to ask a group

of coders about good practices. Like the old jibe about economists,1 if you ask three

programmers what the best practice is on a particular topic, you’ll get three different

answers (and a fair few raised voices). Typical questions might be:

• Should the use of goto be allowed?

• What’s the best policy for naming variables?

• What’s an acceptable level of complexity for a subroutine?

• What is the maximum size for a class?

• How much code should be covered by tests?

In a perfect world, we’d have easy answers to these questions, but a world that gives

us five Pirates of the Caribbean movies is far from perfect. The truth is that questions

like these often have complex answers that depend on multiple factors. In any situation,

there could be many acceptable solutions. A best practice rarely applies in all contexts.

This book helps you by taking a different approach.

1 It goes something like, “Ask a question of three different economists, and you’ll get four different
answers.”

www.EBooksWorld.ir

xx

In my experience, programmers tend to agree much more readily on matters of how

not to program. Ask them, for example:

• Should I write code with absolutely no comments?

• Should I prefer global variables over local variables?

• If a pointer might be null, should I avoid checking its value?

To these three questions, you’d find a much stronger agreement among the answers:

no, no, and f*** no!

Many bad programming practices exist, practices that make experienced coders

grow red-faced with anger or break out in sweaty, shivering fear. The truth is, you will

occasionally write code that causes reactions like this, particularly in the early stages of

your career. A key to accelerating your development as a programmer will be to learn

which practices are bad and then avoid them.

This book doesn’t focus on how you should program. After all, competing best

practices suit various projects differently. What’s more, the field of programming

develops constantly. New approaches are found, and existing techniques are improved

all the time. A list of good practices won’t remain current for very long.

Instead, this book advises you how not to program. It takes advantage of the fact that

oodles of code has been written in the preceding decades and a lot of things have already

been tried out. A combination of experience and research exists that shows which stuff

works badly and is generally to be avoided.

Avoiding the bad practices listed in this book will give you a head start in becoming

a better and more productive programmer. After that, you can go on to argue the issue of

good practice to your heart’s content.

 A Note on the Style
You might have already observed that the style of this book is rather tongue-in-cheek. It

gives advice as if the reader is seeking to become a failure: a programmer who ignores

the rules and follows the worst practices, a programmer whose contributions are

regularly rejected or (on the rare occasions they make it through review) create nasty

bugs in once-functioning software. I think this makes the book a fun and enjoyable read.

InTroduCTIon

www.EBooksWorld.ir

xxi

Occasionally, a reasonable voice interjects and explains why programmers view

a particular practice as bad. It might be because of a consensus among professional

programmers or because of some empirical research. In any case, that reasonable voice

appears in sections bearing the heading Thumbs Down!

 What I Mean by Programming
A bad way to begin learning how to program is to mistake what programming actually

means. Therefore, let me make clear what I’m using the term to mean.

After more than a decade working with software (and a misspent youth spent

learning to code), I view programming as problem-solving. Roughly speaking, a

programmer begins their work at some starting point, A, with a problem statement. The

programmer’s job is to chart a path to the goal point, B, which results in a software-based

system that solves the original problem acceptably.

The journey from A to B can be long and may include many complex steps along the

way. The nature of the work involved depends on how broadly you define programming.

For the purpose of this book, I’ll distinguish two types of programming:

• Programing in the narrow sense: By this, I refer to what many others

call coding. Problems in this sense are problems of missing or broken

software, and the solution is to write code that fixes them.

• Programming in the wider sense: A fuller appreciation of

programming acknowledges that coding is only part of the job. The

larger job is to provide a solution that is complete, high-quality,

and acceptable to the user.2 This is much more than coding. It

involves other activities, like requirements analysis, system design,

or acceptability testing. It also includes lots of communication and

collaboration, not just among the programming team but with the

users too. Naturally, this requires skills beyond writing good code.

This book focuses on programming in the narrow sense. That’s not because the

stuff involved in the wider sense is less important—far from it. I’ve chosen to keep the

focus narrow because of who the book is aimed at. The intended audience—students,

2 Sometimes called software engineering.

InTroduCTIon

www.EBooksWorld.ir

xxii

apprentices, junior developers—usually focuses on coding-related activities and should

master those before they shift their attention to the wider issues.

That said, bits of stuff from the wider sense get an occasional look-in throughout the

book. What’s more, one of the final chapters focuses on testing, a topic that moves the

discussion away from purely coding and toward coding a solution that’s acceptable to

the user.

Nevertheless, don’t mistake this book for one that deals in wider issues of software

engineering.

InTroduCTIon

www.EBooksWorld.ir

1
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_1

CHAPTER 1

Learning to Program
 Objectives
In this chapter, you’ll learn:

• How to mess up your approach to learning programming

• Poor ways to choose your tools

 Introduction
This chapter starts things off by discussing how to learn programming and gather your

tools in preparation for writing code.

Naturally, since you want to be a bad programmer, it tells you to make a mess of

these tasks.

 Bad Ways to Learn Programming
If you choose programming as your career, you’ll probably never stop learning. Software

is a fast- moving field. Radical new tools and advances come along more often than

Stephen King books.

This section will show how you can scramble around trying to learn programming

while taking in barely a thing.

 Take a Pass on Practicing
Your Spanish teacher always told you that you’d never learn the language by reading it

from a book. Practice, practice, practice, they told you. It’s the only way you’ll learn to

speak a foreign language.

www.EBooksWorld.ir

2

But everyone knows that programming languages and spoken languages are

different, right? Surely, just like math or science, you can learn programming by reading

it in a book (God knows there are enough programming books). After all, you didn’t

learn Newtonian mechanics by building a giant centrifuge—you learned formulas from a

textbook.

In short: read the programming manual but ignore the “Exercises” section.

 Thumbs Down!

Actually, it turns out that learning Spanish and learning a programming language are

somewhat similar, specifically in that book learning needs to be complemented by

practice.

Teachers and students alike testify that practical approaches to learning

programming—such as participating in quizzes, performing textbook exercises, or

doing coursework—are extremely helpful when learning (Lahtinen et al., 2005). Just like

foreign-language speakers, experienced programmers preach the same advice: if you

want to get good, then practice!

There’s just something about practical application that helps make what we learn

stick with us in the long term (Dunlosky, 2013). A book can tell you what a variable

is, a lecturer can show you how a for loop works, but to really come to grips with

programming, you need to write your own programs.

Benefits include the following:

• Long-term retention of knowledge is improved, making it less likely

you’ll forget stuff.

• You’ll habitually make fewer mistakes.

• An easier grasp of the underlying principles of programming is

achieved.

 Avoid Inspiration
In spite of the previous advice, you might find yourself wanting to practice your

programming skills. If you don’t have the self-control to resist these urges, then the

question arises: what form of practice should you choose?

Whatever you do, don’t waste any time being choosy or imaginative. Just grab the

first exercise you can find, preferably one that deals with a topic that doesn’t interest you.

Chapter 1 Learning to program

www.EBooksWorld.ir

3

I say this because when you start to think about what you’d like to build, there’s a risk

that you will become inspired, and inspired is a very dangerous state to be in for those

intent on doing badly. It’s all too easy to get swept up by enthusiasm.

 Thumbs Down!

Seymour Papert, a pioneer in both computer science and education, knew the power of

inspiration. One of the central principles he championed was “project before problem.”

This advocates letting your own interest direct your learning (Papert, 1996). Instead

of being given formal problems to solve by someone else, he recommended you look

inside yourself and come up with your own projects. Discover what interests you, what

you would enjoy creating, and what would delight you to see built, even if just for the

intrinsic pleasure of doing it. Working on something because it inspires you creatively is

a powerful impulse, one that can disguise the fact that you’re actually learning at all.

 Be a Script Kiddie
Assuming you have a practice problem to solve, the next step is to formulate a solution,

preferably a bad one.

Of course, you’re not going to actually think about the problem yourself. As

mentioned earlier, applying your knowledge risks increasing your retention and

improving your skills.

It’s far better to scour the web for snippets of code that solve the same problem. You

can simply copy and paste them blindly1 and claim that you’ve written a solution. You

might even succeed in convincing yourself that you really learned something.

1 The pejorative name for someone doing this copy-paste style of coding is script kiddie.

Chapter 1 Learning to program

www.EBooksWorld.ir

4

However, if you’re going to take this approach, then be careful. It’s not as poor a

practice as you might hope. In fact, many educators will encourage you to study good

examples written by others, as long as you put in the effort to understand what makes

them good. So, whatever you do, don’t accidentally learn how the copied solutions

actually function.

 Do It Alone
A good way to slow your growth as a programmer is to learn alone. If you collaborate

with other learners, you leave yourself open to the following risks:

• Exposing yourself to other ideas and perspectives that can improve

your own.

• Reinforcing your own understanding by explaining the material to

others.

• Increasing your understanding by having material explained in terms

you’re more likely to understand.

• Having a greater tendency to speak up and ask questions.

• Gaining a taste of what a real team project is actually like.

 Bad Ways to Choose Your Tools
Of lesser importance, but still worth consideration, is your choice of tools. This is

important whether you’re a beginner or a veteran programmer. There are many types of

tools, just a few examples of which are featured in Table 1-1.

Chapter 1 Learning to program

www.EBooksWorld.ir

5

 Choose Inappropriately While a Beginner
We all have different levels of understanding, and so different tools can serve each of us

better at any one time. As a beginner, you’re still learning a lot, and learning is a balance

between not being overwhelmed on the one hand and being challenged on the other.

Of course, there are obvious benefits to avoiding challenge: it’s a lot less effort, and

you don’t learn anything new. Therefore, you should ensure that the tools you choose

are overly simplistic for your current level and automate a lot of things you don’t

understand.

But, if you’re intent on sabotaging your own learning, there are also benefits to being

overwhelmed. Choosing a tool aimed at pros (like a heavy-duty IDE) might frustrate

you, but be assured that you’ll impress people who see you using it, and your learning

progress will be reduced to a crawl.

Table 1-1. Examples of Programming Tools

Type Purpose Examples

programming

language

Write instructions for a computer to execute Java, python, C++

iDe2 integrates many software development tools

(e.g., code editor, compiler, and debugger)

eclipse, intelliJ, BlueJ

Source-code

generator

automatically write programs, usually requiring

the programmer to fill in certain details

afterwards

a built-in feature of many iDes,

such as eclipse and intelliJ

gUi3 builder Build a graphical user interface via drag-and-

drop instead of writing source code

eclipse WindowBuilder, intelliJ

gUi Designer, Qt Creator

Version-control

system

manage the history of changes made to files in

a software project

git, Subversion, mercurial

Code review Submit code to be inspected and approved by

colleagues

gerrit, review Board

2 Integrated Development Environment
3 Graphical user interface

Chapter 1 Learning to program

www.EBooksWorld.ir

6

 Thumbs Down!

To get the balance right instead of wrong, choose tools appropriate to your abilities. If

you’re very early in your learning career, you might still struggle with basic concepts like

variables or loops, in which case a drag-and-drop environment or a visual programming

tool, like Stratch or Alice, might serve you better (Powers et al, 2006).

Once you’re accustomed to a tool, you can consider exploring something more

complex like Visual Basic, BlueJ, or even an IDE like IntelliJ if you’re ready for it. The

more complex tools tend to be more powerful.

A tool’s job is usually to make a task more convenient, often by automating some

things. Automation can be helpful in two scenarios:

• You don’t understand a task and rely on the tool to get the task done

at all.

• You do understand a task, but use the tool to get the task done

quicker.

Make sure you know which of these is the case for you. For example, a code

generator is all very well, but any good teacher will ask you if you understand the

generated code. If not, then how do you expect to change it later if it requires adaptation?

In which case, play around with the generated stuff to see how it works.

 Obsess Far Too Much over Your Choices
Do you have a 48-inch TV but feel sure that a 50-inch screen would really make all the

difference? Do you have an iPhone 7 but lie awake at night obsessing over the iPhone 8

and the colossal difference to your life that having one might make?

Then this piece of advice is for you: obsessing over the choice of tools as though they

make a huge difference is a great way to waste time and effort. For example:

• If your project must target Java version 7, then waste hours of

everyone’s time arguing in favor of Java 8 because its new Streams

API will somehow give you superpowers.

• If Git is your team’s version-control system, stamp your feet for days

on end and demand switching to Mercurial because it has magical

unicorns, or something.

Chapter 1 Learning to program

www.EBooksWorld.ir

7

 Thumbs Down!

The truth is that no single tool will give you an order-of-magnitude leap in productivity

or quality. There is no silver bullet in software development (Brooks, 1995).

If you put forward arguments like those just given, you’ll probably be outnumbered

by more reasonable colleagues who’ll tell you of the importance of compromising when

other factors conflict with personal preferences, or that a good programmer should feel

confident enough to produce good stuff using any decent tool.

 Be a Fashion Victim
Hype is the plague on the house of software.

—Robert L. Glass (2002)

Don’t let anyone tell you that programmers aren’t vulnerable to hype.

The history of software development is littered with examples. Tool B comes along

to challenge Tool A, which everyone currently uses. Tool B is 95 percent identical to Tool

A, but the “hypsters” claim that Tool B is the best thing since sliced bread, so the world

switches to Tool B at great cost. Next year (or should that be next season?), Tool C comes

along and slices bread in a slightly different way, causing everyone to wet their pants in

excitement all over again.

But, as the previous section explained, no single tool is going to cause huge

improvements in the quality of your work. Unless your existing tool is really old or sucky,

it’s unlikely to be worth the cost of making the change.

So, if you want a poor way to choose tools, heed the hype and follow the fashions. Try

to appeal to your colleagues to do the same. If you succeed, you’ll spend so much time

clamoring to keep up with the Joneses, there’ll be little time left for real work.

Chapter 1 Learning to program

www.EBooksWorld.ir

9
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_2

CHAPTER 2

Layout and Structure
 Objectives
In this chapter, you’ll learn:

• How to make your code difficult to read

• Why unstructured programming helps you write worse code than

structured programming does

• How to make a mess of documentation

 Prerequisites
Before reading this chapter, make sure you’re familiar with:

• Basic Java programming, including the following:

• Using methods and parameters

• if statements and basic looping

• Writing simple comments and JavaDoc

• Some form of source-code editor

• The difference between source code and binary code

 Introduction
The way you lay out your code has consequences for how understandable it is. This

applies both to purely stylistic factors (like where to place things) and to the code’s

executable structure (like whether or not you use subroutines). In both cases, we’ll see

how to make a mess of it and render the code incomprehensible.

www.EBooksWorld.ir

10

The information offered by the layout and structure can be augmented by code

comments. This chapter will also show you how to ensure your comments do more harm

than good.

 Make Spacing Poor and Inconsistent
Some of the most popular programming languages today are so-called free-form

languages.1 That is to say, the layout of the code makes no difference to the computer—

things like the spacing between words, the number of empty lines, and the indentation.

So long as your program contains no syntax errors, you can write executable code using

any physical layout you want.

Of course, your colleagues will not be so accommodating. They’ll expect you to

follow certain rules and conventions because code that is laid out badly is harder for

them to understand.

Here lies your first opportunity to cause chaos.

 On the Level
Let’s start with this example:

public class Main {

 public int number;

 public void assignIfPositive(int a) {

 if (a > 0) {

 System.out.println("a is positive");

 number = a;

 }

 }

}

What does the computer see? It sees that the class Main is declared first, meaning

it’s at the top level of the program. It also sees that the method assignIfPositive is

declared between Main’s opening and closing braces, which means that the method is

nested inside the class. This is all a matter of syntax, which is important to the computer.

1 Examples include Java, C/C++, JavaScript, and Ruby.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

11

This is important to the programmer too, but the code’s author adds additional

information that the computer doesn’t care about. The Main class is also considered to

be at the top level by the programmer because it’s declared on an unindented line. The

assignIfPositive method is indented one level to show it’s nested inside the Main class.

The programmer also sees that the statement if (a > 0) is indented further than the

declaration of assignIfPositive, which means it is a statement inside the method.

Of course, you don’t have to indent code like this. The computer would just as easily

accept the program if it looked like this:

public class Main {

public int number;

public void assignIfPositive(int a) {

if (a > 0) {

System.out.println("a is positive");

number = a;

}

}

}

Worrying about indentation is just creating unnecessary work for yourself. After all,

as soon as the code compiles, the work is done, right?

In fact, our first anti-rule helps guide us to this conclusion:2

Something that is not mandatory is never worth doing.

The computer would cheerfully compile this without complaint. So, why should a

human complain?

 Thumbs Down!

The reason your fellow programmers would complain about badly indented code is one

that echoes throughout this book: source code should be treated primarily as a means

for communicating with other people.

After all, the computer doesn’t really understand high-level programming languages

like Java or C++. It only understands the binary code that your programs get compiled

into. High-level languages are just inventions that make it more convenient for humans

to write and understand programs.

2 An anti-rule is a piece of general advice to help turn you into a bad programmer.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

12

Indentation makes the structure of programs more comprehensible (Van De

Vanter, 2002). It acts as a visual guide for code, enabling the reader to see at a glance the

individual pieces of the program and how they’re related.

It also aids in the search for bugs. Look at this slightly adapted version of the previous

code:

public class Main {

public int number;

public void assignIfPositive(int a) {

if (a > 0)

System.out.println("a is positive");

number = a;

}

}

See a problem? How about if I indent the code properly?

public class Main {

 public int number;

 public void assignIfPositive(int a) {

 if (a > 0)

 System.out.println("a is positive");

 number = a;

 }

}

Now the problem should be much easier to spot. In the adapted version, the if

statement has no braces, which makes it a single-line if statement.3 Therefore, the

assignment to number—which should only happen if a is positive—now happens

regardless of whether a is positive or not. This is not just a theoretical problem.

Misleading indentation correlates with bug-prone software (Miara, 1983) and has also

been the root cause of serious problems in real-world software (Wheeler, 2014).

Indentation is used in practically every modern software project on the planet. Your

colleagues will expect it. Even most source-code editors add indentation automatically.

3 With a single-line if statement, only the line immediately following the condition is considered
as being “inside” the if statement.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

13

 Spaced Out
If you want to mess up the spacing of your code, a preferable alternative to indentation

might be white space. This refers to the empty space between characters in source code.

It can mean the spaces between tokens4 or empty lines between blocks of code.

Like indentation, spacing makes no difference in free-form languages. The issue of

white space between tokens comes partly down to legibility. However, the rules around

white space tend to be looser. In code like this:

if(meal == "Breakfast" && hour >= 11){

 System.out.println("No breakfast after 11am.");

}

the condition in the if statement is pretty legible because a space exists between each

token, making them more distinct.

However, white space allows for quite a bit of variation. You’ll see differing styles

between projects and even between individual programmers. For example, one might

favor spaces between logical operators but not comparison operators:

if(meal=="Breakfast" && hour>=11)

Meanwhile, another might be very fond of spacing, going so far as to add spaces on

the inside of parentheses:

if (meal == "Breakfast" && hour >= 11)

In any case, spacing makes the whole thing easier to read.

Yuck! Why make things easy? Try this instead:

if(meal=="Breakfast"&&hour>=11)

That’s better. By removing all white space short of causing a compile error, all the

tokens become squashed together, making it harder to read justlikethewordsinthis

partofthesentence. (Van De Vanter, 2002). It may only make it slightly harder, but

remember: every little bit hinders.

4 A token is an individual element of program code, like a keyword, a variable, or an operator.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

14

 Tabs and Spaces
In your quest to cause chaos in your coding projects, you should bear in mind the idea

of variation. It might be surprising to learn that alternating between practices arbitrarily

can really mess things up.

A good example is the mixing up of tabs and spaces when adding white space.

Indented code can be pushed along a line either by a series of individual spaces or by a

tab character. One space pushes the line along by a single character, whereas the width

of a tab character can vary depending on the editor someone is using to view the code.

For example, one editor might set tab spacing to a value of 4, meaning it will push a line

indented by a tab character along four spaces. Another editor might have tab spacing set

to 2, so it will display tab-indented code by pushing it along two spaces.

Here comes the fun part: arbitrarily mixing up the use of tabs and spaces. In the

following example, I’ve marked where the lines were indented by tabs or by spaces.5

public void guessTheNumber(int guess) {

••••int a = 0;

••••while (a < 10) {

••••••••a = a + 1;

‣ ‣ if (a == guess)
‣ ‣ ‣ System.out.println("You guessed right!");
••••}

}

That’s how it would look in an editor with a tab width of 4 (which makes sense,

seeing as the space-indented lines have four leading spaces). Now, see the difference it

makes for someone whose editor has a tab width of 2:

public void guessTheNumber(int guess) {

 int a = 0;

 while (a < 10) {

 a = a + 1;

 if (a == guess)

 System.out.println("You guessed right!");

 }

}

5 Spaces are denoted by circles, tabs by arrowheads.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

15

The code is now potentially confusing. Your colleague may give the code only a

cursory glance and believe that the while loop and the if statement occupy the same

level of nesting. Or they may sense a problem, causing them to stop and expend effort

trying to understand it (before going on to hunt down the fiend responsible).

Either way, being inconsistent is another nice little method for sprinkling a bit of

chaos over your code. Another anti-rule for us note down is as follows:

Be inconsistent!

 Thumbs Down!

Professional programmers greatly value consistency. In fact, you’ll see that plenty of

coding handbooks and style guides recommend something like “the exact choice of

layout rules is less important than applying them consistently.”

A project’s coding standards tend to pick one option from several possibilities and

mandate it. For example, Rule 5 in the Java Coding Standards of the European Space

Agency says, “Do not use tab characters in implementation files, use plain spaces

instead” (ESA, 2004).

Modern editors and IDEs even come with built-in functionality for enforcing

spacing and indentation rules. These programs can format your code automatically,

structuring the code layout in specific ways. Some code-review tools can even be made

to automatically reject submissions that don’t adhere to standards.

 Clutter the Code
Perfection is achieved not when there is nothing more to add, but when
there is nothing left to take away.

—Antoine de Saint Exupéry (1939)

Programming is hard, even for experienced veterans. It requires the management of

great complexity and the ability to hold a lot of constantly changing information in one’s

head all at once.

Naturally, this requires a great deal of concentration. Anything that distracts or

confuses the programmer threatens to break that concentration, and a programmer

who cannot concentrate risks making mistakes. You could distract your colleagues while

they’re trying to work by playing loud music or by gently yet persistently prodding the

side of their head with a stick. But there’s no need to be so overt. The good news is that

you can actually distract them just by writing code!

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

16

Programmers like clean, uncluttered code. Cluttered code has a lot of extra crap

that doesn’t need to be there, which is very distracting to a programmer who is trying to

concentrate.

 Unused Stuff
Distract those reading your code by declaring things but then never using them. For

example, a reasonable person expects that a declared variable will be used at some

point, so seeing unreferenced variables trips them up. Consider this:

public double applySecretFormula(

 int a, int b, int c, int d) {

 return (a^2 / (b + 1)) * c;

}

The function references three variables (a, b, and c), but the list of parameters includes

a fourth: d. Now, anyone looking at this code is going to be stopped in their tracks. What’s

d doing there? Is it a mistake in the parameter list? Or is the secret formula incomplete? Or

did it used to include d in the past but now no longer uses it, meaning someone forgot to

remove it from the parameter list? The code doesn’t readily reveal the answer.

 Dead Stuff
Another form of clutter is unreachable code, also known as dead code. This is code that

is actually impossible to reach under any circumstances. Since it serves no purpose,

unreachable code merely wastes space, both in the computer’s memory and the reader’s

brain.

It can be recognized quite easily in some forms; for example:

public int applyDiscount(int quantity) {

 if (quantity > 10) {

 return price - 10;

 }

 else {

 return price;

 }

 System.out.println("Discount checked!");

}

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

17

In this case, there is no way to reach the println statement, because every possible

path through the method ends up at a return statement before the println can be

reached. But this would be an easy example to catch. Code-analysis tools could pick it

up, and, in the case of Java, the compiler would treat this as a compile-time error.

If you want to introduce unreachable code, you should do so in a much more subtle

and harder to detect fashion; for example:

public void doProcessRandomly() {

 double n = Math.random();

 if (n > 10) {

 // All code inside the if-block is dead

 }

}

Can you see the problem here? The compiler certainly can’t. As far as the compiler

is concerned, the built-in method Math.random returns a double value. However, what

the compiler doesn’t know and cannot work out is that Math.random is written in such a

way that it will only ever return a number between 0 and 1. No matter how many times

you run the code, n will never exceed 10, thus none of the code inside the if block is

reachable because n must exceed 10 before the code in the if block gets executed.

 Disabled Stuff
Being told to remove code from a program might make you nervous. You might have

grown attached to that bit of code. Or you might fear forgetting all about it after deletion.

What if it needs to be put back again in the future?

Can’t you just take it out, but at the same time leave it in?

Sure you can! Just turn the code into comments and hope that your project is not one

of those that prohibits this practice.

 Thumbs Down!

In all these cases, the advice from your colleagues will usually be the same: if it’s useless,

remove it. Any code that contributes nothing to the execution of a program is seen as

wasteful clutter or, even worse, a potential bug. Programs with unnecessary code in them

correlate with higher rates of defects (Card et al., 1986).

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

18

Don’t worry too much about accidentally deleting something that turns out to be useful.

You can always rescue it from a previous version stored in your version-control system.

You do use version control, don’t you?

 Write Bad Comments
Things like layout, spacing, and clutter contribute to the comprehensibility of your code.

They’re also fairly systematic, so much so that automated tools can enforce rules around

them.

Comments also affect how well your code can be understood. However, writing them

is a much more creative endeavor. Automated tools can’t write them for you or, more

important, tell you when they’re done badly.

This makes them potentially dangerous. Write them well, and the reader’s

understanding is improved. Write them badly, and the reader will be confused, misled,

and greatly annoyed.

I think you know where this is leading.

 No Comment!
The least labor-intensive way of writing bad comments is to not write them at all. As the

old anti-wisdom says,

If it was hard to write, then it should be hard to read.

If you want to make trouble, writing code without comments should be the first thing

to try. When you submit your code, leave out any explanation of how it works. You never

know—you might get away with it!

 Thumbs Down!

The point of a comment is to clarify the code. But if your code does something very

simple and obvious, a comment is probably unnecessary. Leaving out the comments on

a piece of code like this will be fine:

public void getWeight() {

 return weight;

}

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

19

After all, everyone knows what a getter method is.

However, code like the following is not at all obvious:6

for (i = 0; i < numbers.length; i++) {

 for (int j = 1; j < (numbers.length - i); j++) {

 if (numbers[j - 1] > numbers[j]) {

 Integer temp = numbers[j - 1];

 numbers[j - 1] = numbers[j];

 numbers[j] = temp;

 }

 }

}

In this case, comments would clarify its purpose greatly. If your code looks

complicated (and it should be, if you’re following the advice in this book!), you’re

unlikely to get away with leaving out the comments.

You can suck a lot of the fat out of the process of writing comments by using tools

to help you. For example, comment generators can read the code and set up some

skeletal comments for you. Your job is then to fine-tune what the generator produces.7

Another useful tool is a documentation generator. This extracts information from the

code—including but not limited to the comments—and uses it to generate documents

describing the code, typically in HTML or PDF format.8

 Code Parroting
So, your attempt to sneak through some commentless code failed? Never fear. There is

still plenty of scope to do it wrong.

The next worst thing to writing no comments is to simply write comments that parrot

the code. For example, if your colleagues respond to the preceding example with a

comment like “Needs more comments!” then fine—give ’em what they want.

6 For your interest, this piece of code implements a Bubble Sort.
7 An example of a comment generator is Atomineer (www.atomineerutils.com/).
8 Examples include Doxygen (doxygen.org) and Javadoc, which comes built into the Java
programming environment.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

http://www.atomineerutils.com/

20

Here are some comments explaining what’s happening inside the if block:

if (numbers[j - 1] > numbers[j]) {

 // numbers[j - 1] is assigned to temp

 Integer temp = numbers[j - 1];

 // numbers[j] is assigned to numbers[j - 1]

 numbers[j - 1] = numbers[j];

 // temp is assigned to numbers[j]

 numbers[j] = temp;

}

Do you see how wonderfully useless the comments are? Notice how they add no

semantic information to the code whatsoever? Comments like this reach an admirable

level of unhelpfulness.

 Thumbs Down!

Good comments clarify the code and explain the meaning behind it. They add

information. The comments in the previous example didn’t do that. They simply stated

what each step did without giving any context.

Individual steps are typically not what the reader is concerned about (a programmer

knows an assignment when they see one). What normally troubles them is knowing what

groups of operations are doing and what goal they’re all working together to achieve.

Useful comments are ones explaining at this level (Shneidermann, 1979).

A more useful way to comment the previous example might be as follows:

// Compare the values of two consecutive numbers.

// Swap their positions in the numbers array if

// the earlier is greater than the latter.

if (numbers[j - 1] > numbers[j]) {

 Integer temp = numbers[j - 1];

 numbers[j - 1] = numbers[j];

 numbers[j] = temp;

}

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

21

So would a summary explanation of the whole routine:

// Sorts the values in the numbers array into

// ascending numerical order using a bubble

// sort algorithm.

for (int i = 0; i < numbers.length - 1; i++) {

 for (int j = 1; j < (numbers.length - i); j++) {

 // etc...

 Out of Sync
So, you tried to write commentless code, but they caught you. Then, you tried to be

facetious and add useless comments, but even that was rejected. Have they got you

pinned down now? Is there no other way to use comments badly?

Actually, there is something else, perhaps the most evil possibility of them all.

Think of it this way: a comment is supposed to explain a piece of code, but what if the

explanation in the comment doesn’t match the behavior of the code? This inconsistency

indicates one of two potential problems: 1) the code is incorrect, or 2) the comment is

incorrect (Tan, 2012).

This is a nicely messy situation to introduce; first, because you now have two

possible problems to consider (and don’t forget, both could be true!). And second,

because it would be easy to sneak the inconsistency into the codebase.

Look at this example:

/**

@param message The message to be displayed. If null,

 an empty message is displayed.

*/

public void displayMessage(String message)

{

 if (null == message) {

 message = ""

 }

 System.out.println(message);

}

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

22

Good so far. Now, let’s say the method functionality is changed at a later point,

specifically so that a null message parameter will no longer print an empty message.

However, the comment is left untouched.

/**

@param message The message to be displayed. If null,

 an empty message is displayed.

*/

public void displayMessage(String message)

{

 if (null == message) {

 return;

 }

 System.out.println(message);

}

Regrettably (for everyone else at least), it’s all too easy to miss that the comment

and the code now no longer match. In review, your colleague may well concentrate on

what has changed, but overlook what hasn’t changed. The displayMessage method now

no longer works with null values, but anyone relying on the comments when using the

method will be misled.

Even good programmers, who earnestly try to write programs well, can easily make

this kind of mistake.

 Avoid Structured Programming
Layout describes the appearance of your code, aspects of which make little or no

difference in the way a program is executed (use of tabs, placement of tokens, amount

of whitespace, and so on). Structure describes how the executable parts of your program

are arranged. Like the layout, you get to choose your program’s structure, and it can end

up clear or convoluted.

Before we get to the next lesson, a quick bit of history. In the elder days of

programming (1970s and earlier), many languages were unstructured. Controlling the

flow of execution through an unstructured program was achieved using very simple if

statements and unconditional jumps (a.k.a. goto statements). Individual statements

had labels or line numbers. A goto statement would immediately transfer control to the

referenced statement.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

23

If you ever read Choose Your Own Adventure books, they work along similar lines

(“If you stay to fight the goblin, go to page 231. If you decide to flee, go to page 193”).

For example, consider this program written in an old language called BASIC.9 It goes

through the numbers 1 to 10 and prints out whether each one is odd or even.10

10 let x = 1

20 if x > 10 then goto 90

30 if x mod 2 = 0 then goto 60

40 print x, " is odd"

50 goto 70

60 print x, " is even"

70 let x = x + 1

80 goto 20

90 print "Finished"

You can picture the flow of control through this program by drawing a simple

flow- control diagram, like in Figure 2-1.

9 Beginner’s All-Purpose Symbolic Instruction Code, a programming language invented in 1964
(Kemeny and Kurtz, 1964).

10 The mod operator is short for modulo. It calculates the remainder of a division. If dividing x by 2
results in a zero remainder, then x is an even number.

Figure 2-1. Flow of control through the example BASIC program

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

24

Sequence Decision Loop

Figure 2-2. Fundamental programming structures

In the diagram, each node represents a statement, and the arrows show the flow of

control between those statements. This is a very small program, but already the flow

of control is getting complicated. Its structure is ad-hoc, and there are lots of potential

pathways from the beginning to the end of the program.

Larger unstructured programs consisting of thousands of statements tended to have

so many goto statements that they became known as spaghetti code, since the lines on

their control-flow diagrams ended up resembling a hellish tangle of spaghetti strands.

Structured programming emerged in reaction to the unbridled use of goto

statements (Dijkstra, 1968). It argued that all programs could (and should) be written

using only a small set of standard structures, like sequences, decisions, and loops.

Those structures are modeled in Figure 2-2. An individual node in these diagrams

can represent not just individual instructions, but whole collections of statements

(i.e., blocks).

In a language like Java, these structures are available as things like if statements

and for loops. The earlier unstructured program could be rewritten without gotos in a

structured language like Java, as follows:

for (int x = 1; x <= 10; x++) {

 if (x % 2 == 0) {

 System.out.println(x + " is even");

 }

 else {

 System.out.println(x + " is odd");

 }

}

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

25

Its resulting flow-control diagram (Figure 2-3) is simpler because fewer independent

paths exist through the code.

 Jump Around
After this history lesson, you might be eyeing the goto statement keenly, your mouth

watering at the mess you could make with it. To hell with the structured stuff, you might

think.

But hold your horses! Unstructured programming has been largely banished from

the programming world. Structured programming has been entrenching itself since at

least the 1960s. Fighting against it is therefore going to be hard.

Under normal circumstances, my first piece of anti-advice would be to use

goto statements as much as you can. However, goto occupies a special place in the

programming hall of infamy, generally despised and regarded as a touchstone of bad

programming practice. Many coding standards forbid its use entirely (for example, see

National Weather Service, 2007; JPL, 2009) or strongly recommend against it.

Consequently, any attempt to use goto these days is likely to be crushed swiftly. In

fact, some of today’s most popular languages (like Java and Python) don’t even include a

goto statement, their designers having been mindful of its reputation. Even projects that

allow goto statements tend to use it only in strictly-defined scenarios (see for example,

kernel.org, 2017).

Figure 2-3. Control-flow diagram of the Java program

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

26

In this case, I will therefore make an exception and recommend that you don’t

bother trying to use goto instructions, because it’s probably a waste of your time.

Instead, I recommend you try to work within the bounds of structured programming and

abuse its fundamental structures. This book has whole chapters dedicated each of them.

To learn how to be dastardly with decisions, read Chapter 4. To see how you can make

your colleagues loopy with loops, read Chapter 5. Subroutines, which are also discussed

briefly in the next section, get a more complete treatment in Chapter 6.

 Routine Work
Another fundamental structure in structured programming is the subroutine. This is

a unit of code you can call on to perform a task. They are available in several forms,

including procedures, functions and—in the case of an object-oriented language like

Java—methods.

If you don’t organize your code into subroutines, then your program ends up as a

huge wall of text. This fits nicely with one of the anti-rules of programming:

In general, bigger is better.

“Bigger is better.” That feels so emotionally satisfying, there’s just no need to even

question it. Let’s see the earlier example of the bubble-sort code incorporated into a

larger program that dispenses with subroutines:

Integer[] numbers = new Integer[5];

Scanner keyboard = new Scanner(System.in);

System.out.print("Enter filename> ");

String filename = keyboard.nextLine();

filename = filename.concat(".txt");

File inputFile = new File(filename);

BufferedReader reader = new BufferedReader(new FileReader(inputFile));

String text = null;

int i = 0;

while ((text = reader.readLine()) != null && i < 5) {

 numbers[i] = Integer.parseInt(text);

 i++;

}

reader.close();

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

27

for (i = 0; i < numbers.length; i++) {

 for (int j = 1; j < (numbers.length - i); j++) {

 if (numbers[j - 1] > numbers[j]) {

 Integer temp = numbers[j - 1];

 numbers[j - 1] = numbers[j];

 numbers[j] = temp;

 }

 }

}

for (i = 0; i < numbers.length; i++) {

 System.out.println(numbers[i]);

}

This wall of text . . . pardon me . . . this piece of code carries out at least four extra tasks in

addition to sorting numbers.11 Understanding them requires a reader to go through the code

line by line. This imposes a burden on the reader that is unnecessarily time- consuming and

laborious if they’re not focusing on the details. And, being only about twenty lines long, this is

considered a very small program. The problem only intensifies with longer ones.

 Thumbs Down!

You can describe what a piece of code does at many levels.

At a lower level (closer to the details), you can describe what single statements do or

see how the state of individual variables gets changed.

At a higher level (further away from the details), you can describe the code in terms

of its purpose. The higher-level view describes code conceptually rather than in terms of

the nitty-gritty.

Consider the bubble-sort code. At the lower level, you can talk about how this code

maintains two indexes, i and j, each of which serves as a pointer to a specific value

in the array numbers. You can explain how one for loop iterates i over the complete

length of numbers one value at a time, etc. At a higher level, you can clump groups of

statements together and refer to them as a whole (without reference to variables and

if statements and loops and so on). Then, you could say that the code sorts an array of

integers into ascending numerical order by performing a bubble sort on them.

11 It also contains several bonus bad practices that you might recognize after reading subsequent
chapters.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

28

Programmers like to be able to move easily between high levels and low levels as

required. They might begin at the high level, considering only what a program is trying

to do without being distracted by lower-level details. Subsequently, they might need to

drill down to an interesting bit of the code to see how it works in lower-level detail (for

example, to look for a bug in the code or to optimize it).

Subroutines give programmers that flexibility. Failing to put your code into

subroutines grounds everyone at the lower level among the grubby, nitty-gritty details

and denies them the option of viewing things at higher levels.

Large, monolithic programs like the last example can be rewritten to use

subroutines. Rewriting the previous example would involve:

• Creating several new subroutines

• Moving the relevant portions of code into each subroutine

• Writing a chain of subroutine calls

Perhaps like this:

Integer[] numbers = new Integer[5];

String filename = askUserForFilename();

File inputFile = openFile(filename);

readNumbersIntoArray(inputFile, numbers);

bubbleSort(numbers);

outputNumbers(numbers);

// ...

public String askUserForFilename()

{

 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter filename> ");

 String filename = keyboard.nextLine();

 filename = filename.concat(".txt");

 return filename;

}

// etc.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

29

Now, it’s much easier to see at a glance what the program does.

Another important reason to use subroutines is to prevent the same code from being

written twice. Programmers particularly hate code duplication. To see why, imagine that

the last example were amended so that the code outputs the array of numbers twice:

once before sorting and once after.

• Without using subroutines, you’d have to write the code for

outputting the array contents again at an earlier stage in the code.

• With a subroutine, you’d need only add an extra call to the

outputNumbers method.

Of course, that doesn’t save a huge amount of extra effort, but that’s not where the

payoff comes. The payoff comes later when a change becomes necessary to the way the

array contents are output. If the code responsible is in a subroutine, you only need to

change it in one place. If, on the other hand, the code responsible is duplicated, you’d

have to update all those copies, ensuring that each change is done exactly the same and

that none of those copies is missed accidentally. You can well imagine this gets harder

the more the code is duplicated and the more those duplicates are spread out.

This is the motivation behind another anti-rule for the bad programmer:

Duplicate! Spread stuff around; don’t consolidate things.

Subroutines will be discussed in more detail in Chapter 6.

Chapter 2 Layout and StruCture

www.EBooksWorld.ir

31
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_3

CHAPTER 3

Variables
 Objectives
In this chapter, you’ll learn:

• The chaos that poorly named variables can induce

• How to do variable declaration in a confusing way

• Why being lax with the scope of variables causes problems

• How to abuse the type system of a language

• The power of null to cause trouble

 Prerequisites
Before reading this chapter, make sure you’re familiar with basic types, like integers,

strings, and collections.

 Introduction
Where would programmers be without variables? Without them, there would be no way

to record and keep track of information as a program goes about its business.

As variables are such a fundamental feature of programming, it should delight you to

know that there exist numerous easy ways to misuse them. This chapter will cover some

of the most notorious and readily visible bad practices.

www.EBooksWorld.ir

32

 Use Obscure Names—Thinking Up Meaningful
Labels Isn’t Worth the Effort

There are only Three hard problems in Computer Science: cache invalida-
tion, naming things, and off-by-one errors.

— Phil Karlton (Source: The Internets)

The preceding quote, one that’s widely appreciated among programmers, should fill

you with a wonderful feeling of foreboding. If software folk find it so hard to name things,

getting it wrong should be easy.

 All Meaningless
In most programming languages, variable names can typically reach whatever length the

programmer desires. But why waste your time typing long names into the editor?

Think about it: a variable called amount has six letters in its name. If you refer to that

variable twenty times throughout a program, that’s 120 keystrokes right there. However,

if you shorten the name instead to a, that’s five keystrokes saved every time, adding up to

a reduction of one hundred keystrokes.

Just think of what you could do with the time saved!

In fact, why risk incorporating even the merest hint of meaning in your variable

names? A colleague with their wits about them might guess that a means amount.

Instead, just use an arbitrary letter. You’ve got 25 others to choose from.

The beauty of this “strategy” is that it has no natural limit. Exhausted all 26 letters of

the alphabet? Just add a second character, yielding names like aa and x1.

 Thumbs Down!

In this day and age, when many IDEs provide auto-completion, there’s no excuse for

shortening variable names. Reviewers will complain that names should carry meaning so

that readers of your code don’t have to continually look up what a variable actually refers

to. Instead, with meaningful names, they can concentrate on what your code is doing.

Consider this example:

int a = 10000;

Map<String, Double> p = new HashMap<>();

Chapter 3 Variables

www.EBooksWorld.ir

33

for (int i = 0; i < 193; i++) {

 int q = getCountryPopulation(i);

 int b = getCountryArea(i);

 String n = getCountryName(i);

 if (q > a) {

 double r = q / b;

 p.put(n, r);

 }

}

This snippet of code calculates the population densities of countries greater than

10,000 square kilometers in size and puts those values into a map. It would be much

easier to understand with clearer variable names:

final int minimumArea = 10000;

Map<String, Double> populationDensities =

 new HashMap<>();

for (int i = 0; i < 193; i++) {

 int population = getCountryPopulation(i);

 int area = getCountryArea(i);

 String name = getCountryName(i);

 if (population > minimumArea) {

 double populationDensity = population / area;

 populationDensities.put(name,

 populationDensity);

 }

}

Your reviewer might make exceptions for some names in a few circumstances. For

example, index variables in short loops are usually allowed to be named something like

i or n. They’ll advise you to “be guided by your common sense” or something similarly

dangerous.

As a bonus practice, notice that the minimumArea variable has become a constant

instead of a variable (thanks to the final keyword). You’ll be encouraged to mark as

constant any values that shouldn’t change throughout the program so as to guard against

their being updated accidentally.

Chapter 3 Variables

www.EBooksWorld.ir

34

 Vowel Movements
Using one-letter variable names will likely result in your code’s being sent back fast with

a message like “use more descriptive names please!” But this doesn’t mean your quest to

use awful variable names ends here.

Another technique — one that allows you to both obfuscate names and get right up

the reviewer’s nose at the same time—is to remove all the non-leading vowels from a

name. See the wonderful effects in these examples:

• velocity becomes vlcty

• volume becomes vlm

• count becomes cnt

• price becomes prc

• quantity becomes qntty

• total becomes ttl

Notice how the shortened versions sort of, kind of look like the original names?

They bear enough resemblance to let you argue they’re meaningful, but they’re still

likely to cause the reviewer headaches from having to continually check and recheck

the meaning. The best thing about this technique is it allows you to be pedantic. The

reviewer wanted you to use longer names, and so you have!

 Thumbs Down!

Good programmers aren’t above using shortened names themselves. Certain style

guides will tell you things like:

• If you must abbreviate, limit it to local variables used in a single

context (GNU, 2016).

• Shorten words, don’t delete letters within a word (Google, 2017a).

• Use commonly-accepted abbreviations, like num or url, and use

them consistently; don’t switch between the full name and shortened

version throughout the code (Apple, 2013).

Chapter 3 Variables

www.EBooksWorld.ir

35

 Lazy Naming
Programmers are problem solvers. If naming variables is a hard problem, then the

solution is obvious: spend less effort on doing it. This way, you get lousy names and

have expended barely any effort in the process. Problem solved. But which labor-saving

techniques are available?

One of my favorites is to name a variable after its type. Just look how impressively

useless these names are:

String string;

int number;

boolean flag;

Now, imagine the reviewer looking at the names. “Number of what?” they scream.

Or, “Of course it’s a flag, it’s a Boolean, but what is it flagging?”

Ah, warms your heart, doesn’t it?

Another form of uselessness is ambiguity in names. There’s nothing more infuriating

than an integer variable called count (“A count of what?”) or a subroutine called

doProcess (“Aagggghhh!”).

 Treat Variable Declaration Like a Waste of Time
Statically typed languages like Java require you to declare variables before using them.

The whole business of declaring and initializing variables is typically governed by clear

rules in almost every coding standard and textbook.

But who’s got time for that? Here’s how to do declarations the quick and dirty way.

 Be Confusing
You might not have realized how much variable declarations can be fertile ground for

sowing confusion. After all, they seem so simple and innocent.

In fact, just doing something like declaring multiple variables on one line can cause

confusion. Check this out:

int scoreBob, scoreJohn = 10;

Chapter 3 Variables

www.EBooksWorld.ir

36

After executing this statement, both Bob and John got a score of 10, right? Wrong.

John got 10, because his variable was declared and initialized, but Bob’s variable was

only declared. An uninitialized int in Java means that variable has a value of 0. In this

case, poor old Bob ends up with no score.

 Thumbs Down!

You’ll find some anal-level attention to detail in some coding standards and textbooks

when it comes to variable declaration. For example, most of them don’t leave to chance

the question of whether declarations should be one-per-line or not (Long, 2013). The

answer, apparently, is almost always that they should.

int scoreBob = 10;

int scoreJohn = 10;

 Be Contrarian
Sometimes there’s no generally agreed-upon rule on an issue. One project likes method

A, another likes method B. This can cause a dilemma for a coding chaos monkey. How

do you break a rule when the rule varies?

Simple: Be contrarian. Check which rule your project prefers and do it differently.

Remember the earlier anti-rule: Be inconsistent.

Variable declarations are a good example of this. Standards differ on whether a

variable’s initialization and declaration should be done together and close to its first

use. Oracle’s Java code conventions, for example, advise that all declarations be done at

the beginning of a code block and that initializations be done later (Oracle, 1999). On

the other hand, Google’s Java guidelines require that declaration happens together with

initialization as close as possible to the variable’s first use (Google, 2017b).

Based on my personal experience, I’d say people generally prefer the latter approach,

and several prominent textbooks agree (for example, Martin, 2009; McConnell, 2004).

So, if your project prefers the latter approach too, then separate out your declarations

and initializations. Try putting the declaration of the variable near the top of a routine,

the initialization somewhere in the middle (preferably in among some lines of code that

don’t actually reference that variable), and finally tuck the first actual use of the variable

even further down.

Chapter 3 Variables

www.EBooksWorld.ir

37

Here’s what might go through the mind of someone reading code written like that:

• Upon first seeing the declaration (int foo) they’ll think, “OK, this

routine contains an integer called foo.”

• Then, as they read on, they’ll get caught up in other details.

• Later, they’ll encounter the initialization of foo. “Oh, this must be

where foo is used. I’d forgotten about that.”

• At this point, they’ll get distracted and frustrated, as no reference

to foo is actually made in the immediate vicinity. They might even

lose their grip on what the wider routine is really doing and get

delightfully pissed off.

 Maximize the Scope of Variables
The scope of a variable tells you which parts of a program have access to it. A narrow

scope means the variable can only be accessed by a small part of the code. A wide scope

means it can be accessed by most, if not all, of the program.

This section will help show you the wonderfully terrible consequences of giving your

variables as wide a scope as possible.

 Broad Scopes
For a long time now, programming literature has recommended narrowing the scope

of your variables as much as possible. But why cramp your own style? You never know

which parts of a program might need access to a variable in the future, so why not allow

a variable to be accessible by all parts?

Consider this example, a partial view of a class that draws basic shapes:

import com.acme.drawing.Renderer;

public class Shapes {

 public String color = "white";

 public Point center;

 public int radius;

Chapter 3 Variables

www.EBooksWorld.ir

38

 public void drawCircle() {

 Renderer.drawCircle(center, radius, color);

 }

}

The variables color, center, and radius are fields of the Shapes class, which means

they have a relatively wide scope. As soon as you create an instance of Shapes, they exist,

and all methods in Shapes can access them.

Here’s some code that uses Shapes to try to draw a pair of eyes with white corneas

and black pupils.

public void drawEyes() {

 Shapes shapes = new Shapes();

 // Draw left eye

 shapes.center = new Point(50, 50);

 shapes.radius = 20;

 shapes.drawCircle();

 // Draw left pupil

 shapes.color = "black";

 shapes.center = new Point(50, 50);

 shapes.radius = 10;

 shapes.drawCircle();

 // Draw right eye

 shapes.center = new Point(100, 50);

 shapes.radius = 20;

 shapes.drawCircle();

 // Draw right pupil

 shapes.color = "black";

 shapes.center = new Point(100, 50);

 shapes.radius = 10;

 shapes.drawCircle();

}

Chapter 3 Variables

www.EBooksWorld.ir

39

Looks good, right? Anyone looking at the code not too carefully would expect the

eyes to appear as they do in Figure 3-1. However, because the code actually smuggles in

a bug, the resulting image actually looks like Figure 3-2.

Figure 3-1. Big eyes

Figure 3-2. Bug eyes

 Thumbs Down!

The problem with the preceding example is that, after drawing the left pupil, the color

property remains black and isn’t changed back to white before the second eye is drawn.

This illustrates a central cause of headaches when using variables with excessive

scope: the need to carefully manage state. By expanding the scope of variables, you force

the programmer to juggle more details, increasing the chance that mistakes are made.

The Shapes example could be rewritten like this:

public class Shapes {

 public void drawCircle(Point center, int radius,

 String color) {

 Renderer.drawCircle(center, radius, color);

 }

}

Chapter 3 Variables

www.EBooksWorld.ir

40

Now that they’re method parameters, the scope of the three variables has been

reduced to a single method. Each variable is accessible only within the drawCircle

method. The method can be used like this:

Shapes shapes = new Shapes();

shapes.drawCircle(new Point(50, 50), 20, "white");

shapes.drawCircle(new Point(50, 50), 10, "black");

shapes.drawCircle(new Point(100, 50), 20, "white");

shapes.drawCircle(new Point(100, 50), 10, "black");

It’s now easier to use because you don’t have to worry about managing state when

calling the method. Everything drawCircle needs in order to do its job is created at the

beginning of the process and destroyed at the end of it. Some advantages of reducing

the scope:

• You need to do less work when calling drawCircle, such as setting up

state.

• You don’t have to worry about unanticipated side effects when

several methods share access to the same variable.

• You don’t need to know as much about how the Shapes class works

on the inside. You can just call its methods.

Your colleagues will prefer that you create a new variable with the narrowest scope

you can. You can always expand the scope later if it becomes necessary. It’s generally

takes less work to expand scope than to narrow it.

 Going Global
A global variable has the greatest scope of all. Such a variable is accessible by all parts

of a program. Global variables have achieved a level of infamy similar to that of the goto

statement (see Chapter 2), and some languages (Java included) don’t support them.

The main argument favoring global variables as a cause of pandemonium really just

extends the argument seen in the previous subsection: the management of a variable’s

state gets harder as it becomes accessible to more of your program. Global variables

take this problem to the max. Eventually, you’ll be overwhelmed with unmanageable

behavior and flurries of unanticipated side effects.

Chapter 3 Variables

www.EBooksWorld.ir

41

While Java doesn’t support global variables, you can pull a trick in Java that simulates

all the joys of a global variable. This piece of code creates a variable called scores that’s

accessible anywhere in your program:

class HighScores {

 public static int[] scores = new int[3];

}

It records the top three high scores achieved by players of a video game in the order

they were achieved. The game can also output a leaderboard:

class Game {

 public void showLeaderboard() {

 // Display scores in numerical order

 LeaderBoard table = new LeaderBoard();

 table.showScores();

 }

 public void showScoreHistory() {

 // Display scores in historical order

 HistoryBoard table = new HistoryBoard();

 table.showScores();

 }

}

Let’s say three players play and score 150, 120, and 240 (in that order). The next

player chooses to look at the history board (which calls the showScoreHistory method)

and sees this:

 1. 150

 2. 120

 3. 240

Then, the player chooses to look at the leaderboard (which calls the

showLeaderboard method) and, as expected, sees this:

 1. 240

 2. 150

 3. 120

Chapter 3 Variables

www.EBooksWorld.ir

42

But then the player chooses to look at the history board again, and something

strange happens. They see this:

 1. 240

 2. 150

 3. 120

What’s gone wrong? Let’s look inside the HistoryBoard class:

class HistoryBoard {

 public void showScores() {

 for (int i = 0; i < 3; i++) {

 System.out.println(HighScores.scores[i]);

 }

 }

}

Nothing surprising there. What about the LeaderBoard class?

class LeaderBoard {

 public void showScores() {

 Arrays.sort(HighScores.scores);

 for (int i = 0; i < 3; i++) {

 System.out.println(HighScores.scores[i]);

 }

 }

}

Ah-ha! The LeaderBoard sorts the scores array before displaying it. This has the

undesirable side effect of destroying the old ordering, which means the HistoryBoard no

longer works as expected thereafter.

 Thoroughly Abuse the Type System
Programming languages offer type systems as a means of program verification. Assigning

a type to a variable is one way to verify that your program uses that variable in a valid

way. The type system is your friend.

But then, who needs friends?

Chapter 3 Variables

www.EBooksWorld.ir

43

 Turn Numbers into Secret Codes
Numbers can be abused in a few interesting ways. Sensible people expect numbers to

represent some kind of quantity, but, let’s be honest, sensible people lack vision. In

computing, we can abuse numbers and put them to more “imaginative” uses.

For example, you could make numbers mean something other than their value,

turning them from things that measure quantity into your own secret codes. Take a look

at this example:

int status_code = connect_to_device();

switch (status_code) {

 case 0:

 display_info(info_messages[1]);

 break;

 case 1:

 reattempt();

 break;

 case 2:

 display_warning(warning_messages[3]);

 break;

}

The function connect_to_device attempts to connect to a hardware device and

afterward returns a status code. The rest of this program then decides what to do

depending on the value of the code. Since it goes without saying we’re not commenting

our code, this leaves the reviewers scratching their heads as to what exactly is supposed

to happen in each case.

As a bonus, this program also stores lists of messages in arrays, meaning they’re

accessible by an index number. This obscures which message is actually being referred to.

 Thumbs Down!

Although these days exceptions are generally recommended over error codes for

reporting problems (see Chapter 7), using status codes is still acceptable in certain

contexts. Even then, it’s considered helpful to make the meaning more plain to the reader.

Chapter 3 Variables

www.EBooksWorld.ir

44

For example, a language like Java provides enumerations. They’re still numbers

“behind the scenes,” but they allow you to use labels in place of codes. The status codes

could be replaced like so:

public enum DeviceStatus {

 SUCCESS = 0,

 WARNING_CONNECTION_SLOW,

 ERROR_NO_PINGBACK

}

DeviceStatus status = connect_to_device();

switch (status) {

case SUCCESS:

 display_info(info_messages[1]);

 break;

case ERROR_NO_PINGBACK:

 reattempt();

 break;

case WARNING_CONNECTION_SLOW:

 display_warning(warning_messages[3]);

 break;

}

Something similar can be done with the index numbers of the message collections.

Instead of reading info_messages[1], it’s more helpful to see something like info_

messages.CONNECTION_SUCCEEDED.

 Strings Are Magic—They Can Pretend to Be Any Type
Compared to most other types, strings place few limits on what they can store. Integer

types limit you to numbers only. Booleans limit you to only two values. But strings allow

you to store a practically unlimited array of characters. Why go to the bother of learning

all the restrictions of various other types when you can just put your information into

strings and do whatever you want with them?

Chapter 3 Variables

www.EBooksWorld.ir

45

For example, in a computer game, you might need to assign compass directions to

characters in the game.

if (key_pressed == "Up") {

 // Our character, Zilda, now faces north

 zilda.direction = "North";

}

This is a nicely subtle approach because it is both simple to use and simple to get

wrong. For instance, when our character uses the magical Rod of Sharathgar, he must be

facing north. Hence this test:

public boolean canUseRod() {

 if (zilda.direction == "north") {

 return true;

 }

 return false;

}

At first glance, this code might seem fine, but to Java “North” and “north” are

different values. Thus, this if statement will fail, even if Zilda is facing the right way, and

hence he’ll never be able to use his rod.

 Thumbs Down!

Strings are unrestrictive because they impose little meaning onto a value. A string is just

a collection of characters. The laid-back willingness of strings to store any information

you want, no questions asked, means that you don’t benefit from the careful validation a

type system offers.

For example, if you choose a string to represent directions, possible values include

not only “north,” “south,” “east,” and “west,” but also “NoRth,” “soiuth,” “eest,” or “cuckoo.”

If a string variable is supposed to hold numeric data, it won’t complain if you

accidentally assign to it “10O” instead of “100,” and you certainly won’t be able to do

arithmetic with it.

Do yourself a favor. Use appropriate types that match the meaning of your data.

Chapter 3 Variables

www.EBooksWorld.ir

46

 Mix Things Up
One advantage of collections is you can loop over their contents and apply the same

operations to each item. This, you may ask, is so simple that there’s no scope for mucking

it up, is there?

Oh, ye of little faith.

You can do something that on the surface sounds so simple but in actuality can lead

to verbose and brittle code if you do it the right (i.e., the wrong) way: include mixed types

in your collection.

Normally, your colleagues expect collections to contain items belonging to only one

type, so including objects of multiple types will be an unpleasant surprise for them. You

need a language that supports this, and many do these days. For example, an ArrayList

in Java can contain any type of object when you declare it as an ArrayList<Object>,

since all types inherit from Object.

The following code, which collects patient information into a list, demonstrates:

ArrayList<Object> patientInfos = getPatient();

String name = (String) patientInfos.get(0);

Date dob = (Date) patientInfos.get(1);

Integer weight = (Integer) patientInfos.get(2);

System.out.println("Name: " + patientInfos.get(0));

System.out.println("Date of birth: " +

 patientInfos.get(1));

System.out.println("Weight: " + patientInfos.get(2) +

 "kg");

This code expects that patient information lists only ever contain string objects in

position 0, date objects in position 1, and integer objects in position 2. If an object is not

of the expected type, the cast from Object fails, and a runtime error occurs. As a result,

an ArrayList—something that ought to be a flexible construct—is abused and turned

into a more brittle, record-style structure.

In this case, it’s fairly easy to make a mistake and put an object of the wrong type in

the wrong position. As an added bonus, it’s a mistake that compilers won’t ordinarily

pick up on. Objects occupying an incorrect space in the list will be revealed at runtime—

with a bit of luck, after the program has shipped.

Chapter 3 Variables

www.EBooksWorld.ir

47

 Thumbs Down!

An important skill to develop in programming is recognizing when the built-in types

become insufficient for your needs and you must create your own.

The preceding example is one of many different symptoms that can indicate a

program design is crying out for a new type. In this case, code that deals with several

values of different types naturally clumps together. Collectively, those values describe

a single entity: a patient. The example would therefore be improved by bringing those

three properties together into a dedicated structure. For example, in an object-oriented

program, you might create a PatientRecord type with methods like getName() and

getWeight().

 Null—The Harbinger of Doom
Null is marvellous. It’s something so dangerous and error-prone that even its own

inventor has practically disowned it.

I call it my billion-dollar mistake. . . . My goal was to ensure that all use of
references should be absolutely safe, with checking performed automati-
cally by the compiler. But I couldn't resist the temptation to put in a null
reference, simply because it was so easy to implement. This has led to innu-
merable errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years.

—Tony Hoare, 2009

While Tony Hoare may have lost his nerve as he grew older, you, on the other hand,

embrace chaos. Null makes a potent weapon, so you should stick it in your arsenal.

 Null Checks
Needless to say, don’t perform null checks.

CustomerAccount c = getNextCustomer();

System.out.println(c.getSurname());

This reasonable-looking code gets a CustomerAccount object and prints out the

customer’s surname. However, the author was lazy (always a good approach to bad

Chapter 3 Variables

www.EBooksWorld.ir

48

programming) and didn’t bother to check how the CustomerAccount class works. If they

had, they’d have discovered that the getSurname method returns null if the surname was

not assigned a value.

Therefore, this code is a NullPointerException just waiting to happen.

 Seeding Disaster
When you write your own subroutines, make sure you return nulls whenever you can,

especially in surprising ways.

• When you create a variable that will eventually be returned by a

subroutine, initialize it to null.

• When a subroutine needs to return an “empty” value, return null.

• Don’t, whatever you do, give any clues to users of the subroutine that

indicate it might return null. That only increases the risk that the user

will act on that knowledge to make their use of the subroutine more

robust (and robust is a dirty word in this book!).

 Thumbs Down!

The fight against null goes on. Not only are eagle-eyed reviewers on guard against its use

in program code, but also programming languages are adapting to reduce its potential to

cause damage.

Reviewers will watch out for certain problems in your code. If they’re careful enough,

they’ll catch your missing null checks. They might insist on rewriting the preceding

example like so:

CustomerAccount c = getNextCustomer();

if (c.getSurname() != null) {

 System.out.println(c.getSurname());

}

Of course, if you wrote the CustomerAccount class, they might go one better and

make you change its behavior so that its properties are initialized to non-null empty

values. For example, when an account has no surname, getSurname should return an

empty string. When an account has no credit cards, getCreditCards should return an

empty collection rather than null.

Chapter 3 Variables

www.EBooksWorld.ir

49

If a subroutine must return null, you’ll be told to make that potential very clear.

This can depend on the language used. For example, Java allows you to write JavaDoc

comments to describe what a method might return. Such a comment should include

potential null return:

/**

 * Looks up an account by the customer's surname.

 * @return The account object or null if the account

 * could not be located.

 */

public CustomerAccount getAccountBySurname(

 String surname) {

 // ...

}

Additionally, Java supports annotations like @NotNull that indicate things like whether

a variable can be null or whether a method is allowed to return null (Oracle, 2014). Tools

like compilers and IDEs can ensure that your code matches the behavior promised by

those annotations and report problematic code at compile-time accordingly.

Another weapon in the fight against null is the Optional type.1 It neatly encapsulates

the idea of a variable’s having the potential to contain no value (i.e., be equal to null) and

forces the programmer to consider what to do if that’s the case. It makes the handling

of potential missing values safer and easier than trying to remember to perform null

checks.

In the following example, getGradeForStudent returns the grade assigned to a

student taking an exam. However, it’s possible that the student hasn’t yet taken the exam,

in which case the grade would be missing. Therefore, getGradeForStudent returns an

Optional<Grade> object instead of a Grade object.

// maybeGrade may or may not contain a Grade

Optional<Grade> maybeGrade = getGradeForStudent(

 studentNumber);

// Call the Grade's toString method, or

// return "Unassigned" if the grade isn't present.

1 Similar constructs in other languages are called the Maybe type.

Chapter 3 Variables

www.EBooksWorld.ir

50

String grade = maybeGrade

 .map(Grade::toString)

 .orElse("Unassigned");

System.out.println(grade);

Since attempting to print a variable with a null value results in an error, the Optional

type can first try to get the string representation of the grade (by calling grade’s toString

method). If it finds the value is missing, it instead returns the value contained in the

orElse method.

Chapter 3 Variables

www.EBooksWorld.ir

51
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_4

CHAPTER 4

Conditionals
 Objectives
In this chapter, you’ll learn:

• How to make poorly structured and incomplete conditionals

• How to write gnarled and error-prone expressions

• What nesting is and how you can abuse it to write complicated code

 Prerequisites
Before reading this chapter, make sure you’re familiar with:

• For-each loops

• Basic String methods in Java, particularly equals, substring, length,

and charAt

• The basic idea behind reading files in Java

• Logical operators (&&, || and !)

 Introduction
Conditionals (like if statements and select statements) allow the computer to choose

automatically between different possibilities. They are fundamental to programming

and feature in just about every language you can think of. Hence, learning how to mess

up conditionals gives you anti-social skills transferrable to any project.

This chapter will demonstrate how misusing conditionals can lead a program to take

the wrong action or even fail to take any action at all when it should. You’ll also see how

to cover your tracks and conceal such bugs among sloppy and confusing code.

www.EBooksWorld.ir

52

 Forget the Alternatives
No one is so brave that he is not disturbed by something unexpected.

—Julius Caesar

A little psychology can go a long way in your pursuit of bad programming practices.

Taking advantage of the biases and blind spots in human thinking helps you write

problematic code without others noticing.

 Or Else What?
We’re all occasionally guilty of narrow thinking, considering only what we expect to be

the case and failing to consider other eventualities. It’s our own fault for being human. As

a result of this, programmers sometimes mistakenly assume that a program will always

execute as expected, or they take alternative outcomes for granted.

Unlike humans, computers don’t make assumptions about alternative outcomes.

They don’t have the common sense to infer, for example, that if a moving elevator isn’t

going up then it’s going down. This is why God gave us the else clause.

Of course, this means more work for you, having to plan out all the various

conditions governing your program’s execution and then explain in code how to deal

with them. If you don’t fancy all that work, then just don’t do it. As one anti-rule of

programming instructs you: Assume nothing can go wrong. Needless to say, avoiding the

inclusion of necessary else clauses is a good way to build a bug-ridden program.

Here are a couple of examples to illustrate it.

You’re asked to write a method that evaluates the scores from an exam attempt. It’s a

simple rule: if a subject scores more than 60 percent, they pass.

void calculateGrade(int score)

{

 if (score > 60) {

 grade = "Pass";

 }

}

Chapter 4 Conditionals

www.EBooksWorld.ir

53

It may be obvious to us that not passing a test with a binary outcome means to fail it,

but it’s not obvious to a computer. Using the preceding code to calculate a grade means

that everyone who scores above 60 percent is awarded a pass and everyone else gets

nothing. Literally nothing, not even a “Fail” grade!

Here’s another example. A file called listOfSpies.txt contains the names of secret

agents currently active in the field. Your code needs to output the names from that file.

File f = new File("listOfSpies.txt");

System.out.println("Reading listOfSpies.");

outputFileMetadata(f);

BufferedReader br = new BufferedReader(

 new FileReader(f));

String line = br.readLine();

while (line != null) {

 system.out.println(line);

 line = br.readLine();

}

This code will work under normal circumstances, but several assumptions are built

into it, such as that the file called listOfSpies.txt actually exists. It’s perfectly conceivable

the file has actually gone missing (if you’ve seen the Mission: Impossible films, you’ll know

this kind of thing happens all the time). This code fails to account for this eventuality.

 Thumbs Down!

You can usually fix such problems quite easily. For example, to ensure that failing

students are actually assigned a grade, the code should be:

void calculateGrade(int score)

{

 if (score > 60) {

 grade = "Pass";

 }

 else {

 grade = "Fail";

 }

}

Chapter 4 Conditionals

www.EBooksWorld.ir

54

To account for the list of spies going missing, the code could be improved like this:

File f = new File("listOfSpies.txt");

if (! f.exists()) {

 System.out.println("List of spies is missing!");

 setAlertLevel("Oh f**k!");

}

else {

 outputFileMetadata(f);

 System.out.println("Reading listOfSpies.");

 BufferedReader br = new BufferedReader(

 new FileReader(f));

 String line = br.readLine();

 while (line != null) {

 System.out.println(line);

 line = br.readLine();

 }

}

You might think this is all quite obvious advice and that professional programmers

would never make such mistakes . . . but you’d be mistaken. This kind of oversight

happens surprisingly often. In fact, one classic study found that 50–80 percent of

if statements in professionally written software under analysis should have had a

corresponding else clause (Elshoff, 1976).

Some programming manuals even recommend you consider adding else clauses to

if statements as a matter of habit, even if the else clause ends up empty, just to show

that you’ve considered the alternative (McConnell, 2004).1

 The Normal and the Exceptional
Here’s some more psychology knowledge to abuse. Humans have certain intuitive

preferences when considering normal cases and exceptional cases: they tend to prefer

considering the expected outcome first before considering any exceptions (Pane and

Myers, 2001).

1 Personally, I think sticking rigidly to such a rule is overkill, but it’s always worth at least
considering the else clause.

Chapter 4 Conditionals

www.EBooksWorld.ir

55

Reversing this wisdom—putting exceptional cases before normal cases—means your

code works counter to the reader’s expectation. The previous example that kept track

of spies is guilty of this, but it only scratched the surface of the mess-making potential.

Consider this extended version:

File f = new File("listOfSpies.txt");

if (! f.exists()) {

 System.out.println("List of spies is missing!");

 setAlertLevel("Oh f**k!");

}

else

{

 System.out.println("Reading listOfSpies.");

 if (! f.canRead()) {

 // Don't have permission to read it!

 System.out.println("Can't read file! Are you a foreign spy?");

 }

 else {

 outputFileMetadata(f);

 if (f.length() == 0) {

 // The file is empty!

 System.out.println("List is empty!");

 }

 else {

 BufferedReader br = new BufferedReader(

 new FileReader(f));

 String line = br.readLine();

 while (line != null) {

 outputAgent(line);

 line = br.readLine();

 }

 }

 }

}

The example is now a chain of decisions, each one dealing with a new exceptional

case.

Chapter 4 Conditionals

www.EBooksWorld.ir

56

Actually, it contains two counts of bad practice. Yes, it leads with the exceptional

cases, but also notice how the code from the normal case has now been broken up and

intermingled with the various exceptional cases? This prevents the reader from being

able to consider one case at a time. It forces them to shift constantly between normal

cases and exceptional cases as they try (and hopefully fail) to comprehend the code.

 Thumbs Down!

Code becomes more readable when it takes human habits into account. Various ways

exist to make code like this more readable.

For example, you could rewrite the chain of cases so that it respects human intuition

by leading with the normal case:

File f = new File("listOfSpies.txt");

if (f.exists()) {

 outputFileMetadata(f);

 if (f.canRead()) {

 System.out.println("Reading listOfSpies.");

 if (f.length() > 0) {

 BufferedReader br = new BufferedReader(

 new FileReader(f));

 String line = br.readLine();

 while (line != null) {

 System.out.println(line);

 line = br.readLine();

 }

 }

 // Before now, everything was normal

 // Afterward, everything is exceptional

 else {

 System.out.println("List of spies is empty!");

 }

 }

 else {

 System.out.println("Can't read file!");

 }

}

Chapter 4 Conditionals

www.EBooksWorld.ir

57

else {

 System.out.println("List of spies is missing!");

}

Not bad, but this approach is vulnerable to overly deep nesting as the number of

conditions grows.

Alternatively, you could use guard clauses. Doing this separates out all the

exceptional cases into a series of if statements—each of which checks whether

executing the normal case is impossible—and puts them at the beginning of the

subroutine.

File f = new File("listOfSpies.txt");

// Three guard clauses follow

if (! f.exists()) {

 System.out.println("List of spies is missing!");

 return;

}

if (! f.canRead()) {

 System.out.println("Can't read file!");

 return;

}

if (f.length() == 0) {

 System.out.println("List of spies is empty!");

 return;

}

// Business as usual

System.out.println("Reading listOfSpies.");

outputFileMetadata(f);

BufferedReader br = new BufferedReader(

 new FileReader(f));

String line = br.readLine();

while (line != null) {

 outputAgent(line);

 line = br.readLine();

}

Chapter 4 Conditionals

www.EBooksWorld.ir

58

Essentially, each guard clause is a precondition for deciding whether to proceed with

the subroutine or to bail out of business as usual because of a problem.

 Build a Ladder
Sometimes a routine involves choosing between lots of mutually exclusive alternatives.

The decision process might be described as follows: “If A is the case, then do this;

otherwise, if B is the case, do that; otherwise, if it’s C, do the other . . . etc., etc.”

By doing minimal planning, you can simply put the code into a structure that

matches the description without thinking it through any further. In this case, an if

ladder. For example:

if (item.getType().equals("scannable")) {

 price = item.scanBarcode();

}

else if (item.getType().equals("produce")) {

 price = item.weigh();

}

else if (item.getType.equals("reduced")) {

 price = item.keyInPrice();

}

// etc...

Reactively choosing an if ladder without serious thought means you’re protected

against choosing better alternatives.

 Thumbs Down!

Short if ladders rarely pose serious problems, but when they start growing really long,

that usually means you need to find a better design. It comes down partly to readability

(long ladders are not particularly nice to read), but also partly to complexity and design.

Figure 4-1 models the if ladder from the previous example using a flow-control

diagram (introduced in Chapter 2) so you can more clearly visualize its complexity.

Chapter 4 Conditionals

www.EBooksWorld.ir

59

An alternative structure in these situations could be the switch statement. This

signals more clearly to the reader the intent of choosing between multiple alternatives

and cuts down on code clutter.

switch (item.getType()) {

 case "scannable":

 price = item.scanBarcode();

 break;

 case "produce":

 price = item.weigh();

 break;

 case "reduced":

 price = item.keyInPrice();

 break;

 // etc.

}

The flow-control diagram of the switch statement shows how it is also simpler in

form than an if ladder (Figure 4-2).

type ==”scannable”

type ==“produce”

type ==“reduced”

T F

T F

T F

Figure 4-1. Flow-control diagram of an example if ladder

Chapter 4 Conditionals

www.EBooksWorld.ir

60

However, you should be cautious with switch statements. They vary in exact

behavior between programming languages. In fact, switch statements in some

languages (like Java and C/C++) can get quite messy if used poorly. For example, by

omitting the break statement at the end of each case, a switch statement becomes a

glorified goto statement.

When using an object-oriented language, you could also consider taking advantage

of polymorphism as a more effective alternative to both if ladders and switch

statements.2

 Abuse Expressions
In programming, an expression is a combination of values, variables, operators, or

function calls. It can be evaluated to return a computed value. For example, 1+3 is an

expression. So is x*2 or pi*getRadius()*getRadius().

Expressions are essential to making decisions, since a program has to evaluate them

when deciding what to do next.

 Tortuous Expressions
Expressions can become arbitrarily long and complex. A couple of anti-rules (In general,

the bigger the better and Complex is better than simple) tell us what to do with that

insight: make them long and complex. Only your imagination limits how tortuous you

can make an expression, so get dreaming.

2 Polymorphism will be covered in Chapter 9.

“scannable” “produce”
“reduced”

Figure 4-2. Flow-control diagram of a switch statement

Chapter 4 Conditionals

www.EBooksWorld.ir

61

You could, for example, make expressions cluttered (code clutter having been

discussed in Chapter 2). Adding extraneous, complicated, or unnecessary code can

overwhelm the reader and frustrate their attempts to understand it.

Take this example, which validates a SWIFT code3 by encoding the rules into an

expression:

// e.g., "DEUTDEF1XXX"

String code = getSwiftCode();

// L or T depending on live or test

String mode = getMode();

if (((code.length() == 8 || code.length() == 11)) && (code.substring(4,6).

equals("DE")) && ((mode + code.charAt(7)).equals("L1") || (mode + code.

charAt(7)).equals("L2"))) {

 // Code checks out

}

Do you find that hard to understand? Good—it’s supposed to be. And if anyone

complains, you can simply reply, “Validating SWIFT codes is complicated, so it’s a

complicated expression. What can I do about it?”

 Thumbs Down!

In fact, you can do things to make expressions more readable, even if they describe

complicated ideas. Indeed, you’ll be expected to when they get really messy. Some

reasons why the last expression is hard to read:

• Too much is packed onto a single line.

• An excessive number of parentheses add to the confusion.

• Subexpressions, which could be assigned to an intermediate value,

are instead repeatedly evaluated (e.g., mode + code.charAt(7)).

Here’s how we could remove those problems and make the expression easier to read.

First, those repeated subexpressions could be put into an intermediate value. In this

case, mode + code.charAt(7) becomes the variable tag.

3 A SWIFT code uniquely identifies organizations (e.g., financial institutions) in international
transactions.

Chapter 4 Conditionals

www.EBooksWorld.ir

62

String code = getSwiftCode();

String tag = getMode() + mode.charAt(7);

if (((code.length() == 8 || code.length() == 11)) && (code.substring(4,6).

equals("DE")) && ((tag).equals("L1") || (tag).equals("L2"))) {

 // ...

}

Then, we could separate out the individual rules and put each on its own line (as

recommended by CA-CST, 2015):

String code = getSwiftCode();

String tag = getMode() + mode.charAt(7);

if (((code.length() == 8 || code.length() == 11)) &&

 (code.substring(4,6).equals("DE")) &&

 ((tag).equals("L1") || (tag).equals("L2"))) {

 // ...

}

Next, individual rules could be moved into their own subroutines and be replaced

with method calls (as recommended by Martin, 2009):

String code = getSwitfCode();

String tag = getMode() + mode.charAt(7);

if (((validLength(code))) &&

 (validCountry(code) &&

 (validMode(code, tag)) {

 // ...

}

// ...

private boolean validLength(String code) {

 return code.length() == 8 || code.length() == 11

}

private boolean validCountry(String code) {

 return code.substring(4,6).equals("DE");

}

Chapter 4 Conditionals

www.EBooksWorld.ir

63

private boolean validMode(String code, String

 tag) {

 return tag.equals("L1") || tag.equals("L2");

}

This not only shortens the expression, but the function names also add relevant

semantic information. Also, the extraneous parentheses now look really obvious.

if (validLength(code) &&

 validCountry(code) &&

 validMode(code, tag))

These simple steps have gone a long way to improving the readability of the expression.

 Not Being Not Non-negative . . . Not
Sir Humphrey Appleby: We could not know that you would deny it in the
House.

James Hacker: Well, obviously I would if I didn't know and I were asked.

Appleby: We did not know that you would be asked when you didn't know.

Hacker: But I was bound to be asked when I didn't know if I didn't know.

Appleby: What?

—Yes, Minister, Series 1, Episode 3

Do you not think that not being non-negative is an ineffective way of not writing

confusing code? If you understand this question enough to have a response, then please

send an explanation to me, because I don’t understand it and I wrote the darned thing.

The fact is, humans tend to struggle with excessive negation. Here’s the good news: the

fun you can have sowing confusion with double, triple, and quadruple negatives in natural

language applies to programming languages too. Take this example of a main control loop

for a tic-tac-toe game.4 As long as the condition holds true, the game keeps going:

while (!(squaresUnavailable == 9 || !noLinesAchieved)) {

 // next turn...

}

4 A.K.A. Noughts and Crosses

Chapter 4 Conditionals

www.EBooksWorld.ir

64

The condition reads something like, “Loop while it is not the case that the number of

unavailable squares equals 9 nor is it not true that no lines have been achieved.”

It expresses the rules of the game correctly, but it sounds like something from the

mouth of Sir Humphrey Appleby. The variables are expressed negatively, one of them is

also directly negated, and the whole expression itself is then further negated. If you find

this all a bit tricky to process mentally, that’s just because you’re human. If you want to

confuse and frustrate you colleagues, then write expressions with excessive negativity

(assuming they’re human too).

 Thumbs Down!

Whether or not you’re a misanthrope in real life, you should dial down the negativity in

your expressions because humans deal better with positively phrased ones.

If you find that your excessively negative expressions cause people to perform

extreme mental contortions, you could consider rephrasing your expressions more

positively. One tool to help you is a rule in logic called De Morgan’s Law. It states that, in

a condition that contains two clauses (A and B), you can:

 1. Flip the negation of both clauses, then,

 2. switch the or relation to an and (or switch the and relation to an

or) and then negate the whole condition.

In purely logical terms:

not A or not B

is equivalent to saying

not (A and B).

It’s also true that

not A and not B

is the same as saying

not (A or B).

Applying De Morgan’s Law to the preceding example means we could express the

same rule differently and a bit more intuitively:

while (squaresUnavailable != 9 && noLinesAchieved)

Chapter 4 Conditionals

www.EBooksWorld.ir

65

We could also consider making the variables express information more positively too:

while (squaresAvailable > 0 && !linesAchieved)

 Include Gaps and Overlaps
Dealing with ranges provides fertile ground for errors. The ease with which we

unintentionally overlap ranges or overlook gaps in them can cause havoc. Let’s see how

we can harness that havoc.

As a demonstration, this section will revisit the earlier example of grading

examinations, but this time the examination has more nuanced scoring, awarding the

standard A to F grades as appropriate.

if (score < 40) { grade = "F"; }

else if (score > 40) { grade = "E"; }

else if (score > 50) { grade = "D"; }

else if (score > 60) { grade = "C"; }

else if (score > 70) { grade = "B"; }

else if (score > 80) { grade = "A"; }

Of course, we only want to make the code appear to be correct at a glance. This little

snippet actually contains some bugs.

First of all, it contains a gap in its matching. The cut-off points for each grade should

be obvious (more than 80 percent awards an A, above 70 percent bags a B and so on,

right down to a fail for less than 40 percent). Notice that all possible scores are accounted

for in this scheme . . . except for 40 percent. Anyone scoring exactly 40 percent will end

up with no grade at all.

The second bug takes advantage of the fact that programmers can sometimes neglect

to think of code as being executed step by step and instead see a chain of if statements

as something like a set of rules. This is an especially common oversight among beginners

(Pane and Myers, 2001).

Let’s run through a couple of test executions. Say someone scores 43.

• The first clause (if (score < 40)) fails.

• The second clause (else if (score > 40)) succeeds. The correct

grade, “E”, is granted. The rest of the if statement is ignored.

Chapter 4 Conditionals

www.EBooksWorld.ir

66

Now, say someone scores 58.

• The first clause (if (score < 40)) fails.

• The second clause (if (score > 40)) succeeds. The student is

awarded a grade “E,” and the rest of the if statement is ignored.

However, it matched prematurely. An “E” will be awarded, but we

know a score of 58 percent should yield a “D.”

 Thumbs Down!
The first error in the example arose because not all values in the possible range match

against an appropriate action. We’ll see a possible fix in a moment.

The second bug arose because the conditions for matching the score within a range

were not restrictive enough. Testing if the score is above 80 covers all scores between 80

and 100. Testing if the score is above 40 covers all scores between 40 and 100. There are

two ways you could arrange the conditions more appropriately:

 1. When you list the conditions to match against, start from the most

restrictive and proceed from there down to the least restrictive. Or,

 2. Express each condition with both a lower and an upper range

(e.g., if (score > 40 && score <= 50)).

Choosing the first approach, a new version of the snippet that fixes both bugs would

look like this.

if (score > 80) { grade = "A"; }

else if (score > 70) { grade = "B"; }

else if (score > 60) { grade = "C"; }

else if (score > 50) { grade = "D"; }

else if (score > 40) { grade = "E"; }

else if (score <= 40) { grade = "F"; }

// since any score not above 40 is a fail,

// the last line could also be:

// else { grade = "F"; }

This also fixes the first bug by changing the condition for grade “F” to score <= 40.

Now, no more gaps or overlaps exist.

Chapter 4 Conditionals

www.EBooksWorld.ir

67
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_5

CHAPTER 5

Loops
 Objectives
In this chapter, you’ll learn:

• How to match different types of loops to the wrong situations

• How to make your program prone to freezing by incorporating

infinite loops

• How to compromise the structuredness of loops

• Various ways to make loops excessively long and complex

 Prerequisites
Before reading this chapter, make sure you’re familiar with:

• Loops in Java:

• For loop

• Foreach loop

• While (or do while) loop

• The basic idea of collections (e.g., List, Set, Queue)

• Iterators

• Reading keyboard input using the Scanner class

www.EBooksWorld.ir

68

 Introduction
Like conditionals, loops are a fundamental control structure in programming. Also like

conditionals, they come in a variety of “flavors” to choose from. However, loops are

a more complex beast than conditionals are and, as such, have greater potential for

bringing turmoil and destruction to your programs.

This chapter will discuss some basic ways of tapping into this potential.

 Choose the Wrong Type
Most programming languages offer several variants of loops. They all do basically the

same thing—execute the same bunch of instructions repeatedly—so there’s nothing to

choose between them, right?

Wrong. Once you know which situation each variant is suited for, you can then use

each one inappropriately, which will increase both the chances of introducing bugs and

the annoyance levels of your colleagues. Which of these two outcomes gives you greater

pleasure remains your business.

 Collections
Some programming languages come with built-in support for collections,1 a term that

covers a range of different data structures that all work in different ways. Java has quite a

few of them, prominent examples including:

List<Grocery> shoppingList;

Set<Animal> pets;

Queue<Person> reallyLongLineAtTheSupermarket;

A lot of the time, you need to loop through a collection. So, out of all the options,

which is the best loop variant to use in each situation? If you believe each variant is

essentially the same, you could just as well throw a dart at a board to choose which one

to use.

Hey, what a great idea!

1 A collection is a data structure that brings together a list of related items under one name.

Chapter 5 Loops

www.EBooksWorld.ir

69

Let’s say your task is to print out the price of each grocery item in a shopping list.

Then, pick up the dart. Here goes . . .

Oh look, it chose a for loop (Figure 5-1). Here’s a for loop version of traversing a List:

for (int i = 0; i < shoppingList.size(); i++) {

 Grocery g = shoppingList.get(i);

 System.out.println(g.getPrice());

}

That works. So, for loops are good for collections, right?

 Thumbs Down!

This approach uses a loop counter, i, to keep track of the current position in the

collection. A couple of general problems exist with this approach.

First, not all collections can be accessed in this manner. A Set, for example, has no

ordering, unlike a List. That means items in a Set have no position and so can’t be

accessed directly; hence, a Set has no get method.

for (int i = 0; i < pets.size(); i++) {

 Pet p = // uh-oh, what now?

}

Figure 5-1. Loop-choosing dartboard

Chapter 5 Loops

www.EBooksWorld.ir

70

Second, using a for loop necessitates maintaining a loop counter (this chore

is usually referred to as housekeeping work). In the case of collections, it’s actually

unnecessary because foreach loops will take care of housekeeping work for you. They

will also give you access to individual elements in a collection extremely easily.

for (Pet p : pets) {

 p.feed();

}

Being relieved of housekeeping work removes the risk of your doing it incorrectly

and introducing a bug. In this case, the loop counter, i, must be initialized, tested, and

updated all in the correct manner. Doing any of them incorrectly risks the program’s

causing an error.2

 Ranges
Take your dart once more and throw it at the board before finding out what our next task

is. (Yes, that might be the wrong way around, but we are trying to make a mess here!)

This time, you hit the while loop.

OK, here’s the task: Find all the FizzBuzzes3 between 1 and 100. Normally, for a task

that requires you to iterate a fixed number of times—and possibly in steps not equal to

1—a for loop is recommended. First, look at the sensible version your colleagues would

probably prefer you wrote:

for (int i = 5; i <= 100; i += 5) {

 if (i % 3 == 0) {

 System.out.println(i);

 }

}

2 It’s a not uncommon mistake to use the wrong comparison in the test part of a for
loop. For example, ‘i <= pets.size()’ would cause the program to crash with an
IndexOutOfBoundsException.

3 A FizzBuzz is a number that is cleanly divisible by both 3 and 5. It’s a concept from the game for
children (and drunken adults) of the same name.

Chapter 5 Loops

www.EBooksWorld.ir

71

And here is the while loop version:

int i = 5;

while (i <= 100) {

 if (i % 3 == 0) {

 System.out.println(i);

 i += 5;

 }

}

I’m willing to bet that the deliberate mistake in the while-loop version passed a few

readers by. If you didn’t spot it, go back and look again. I’ll wait.

Did you see the problem? The part that increments the loop counter (i += 5) is in

the wrong place. It should be outside the if block. In its current position, i won’t ever be

incremented, and the program will enter an infinite loop.

 Thumbs Down!

It’s not that the while loop is a really poor choice in this case, it’s just that it exposes you

more readily to making a simple mistake—albeit one that kills the program dead.

In both the for-loop and while-loop versions, some housekeeping code was

necessary. However, whereas the for loop allows you to consolidate it all in one place

(which also makes the intention of the loop clearer), the while loop often requires you

to spread those steps around. This increases the chance that you put them in the wrong

place or even forget them entirely. In larger loops, it can also mean that the reader has to

go hunting through reams of instructions to find that housekeeping code.

 Arbitrary Iterations
The next task is to print out the contents of a file line by line. Only one type of loop

remains on our dartboard for this: the foreach loop.

Iterating over the lines of a file is an example of looping an arbitrary number of times

because you don’t know ahead of time how many loops need to be performed. At first

glance, a foreach loop might unfortunately seem like a good idea, since it traverses a

collection blindly from beginning to end.

Granted, you have to put that file into a collection (since foreach loops work only

with collections), but you can still make it work.

Chapter 5 Loops

www.EBooksWorld.ir

72

List<String> lines = Files.readAllLines(

 Paths.get(filename), StandardCharsets.UTF_8);

for (String line : lines) {

 // Do stuff with that line of the file

}

If you’re worried we’ve accidentally done something right, don’t panic: this approach

sneaks in a potential problem. The program stuffs the collection lines with the entire

contents of the file all at once. Hence, the whole file is read into memory. If the file

happens to be a rather large file, your program will suddenly become a memory hog. Or,

even better, it will crash because the file size exceeds the amount of memory available.

Another type of program that loops arbitrarily is one that presents an interactive

prompt to the user. An example of this is a text-based adventure game.4 Playing them

resembles something like this:

You are in a forest clearing. You see a mailbox here.

What now?> examine mailbox

It's closed.

What now?> open mailbox

You open the mailbox.

What now?> look in mialbox

I don't understand 'mialbox'.

What now?> obviously I meant mailbox

I don't understand 'obviously.'

What now?> open mailbox

A hairy, poisonous spider scuttles out of the mailbox and bites your hand.

You're dead. Your score was 0 out 500. Thanks for playing.

4 A.K.A. Interactive fiction. To find out more about these, you might have to ask your more
fossilized colleagues, who possibly played such games in their misspent youth.

Chapter 5 Loops

www.EBooksWorld.ir

73

Behind the scenes, the program works by repeatedly executing the following steps:

 1. Print “What now?> ”.

 2. Read user input from keyboard.

 3. Process user input.

 4. Output response to user.

 5. Go back to Step 1, unless the input was ‘quit’.

This approach is known as a REPL (read-eval-print loop). A foreach loop would

suit this approach particularly badly, since a program couldn’t read the entirety of the

user input into a collection in realtime because the user wouldn’t even entered have it yet!

 Thumbs Down!

Unlike iterating over collections and ranges, arbitrary looping doesn’t go from a defined

start point to a defined end point. Instead, it continues to execute steps until a loop exit

condition is met. In cases of arbitrary looping, a while loop is more appropriate because

it checks that condition at the start of each iteration.5

In the case of reading I/O, a while loop can process data incrementally, repeatedly

going to the I/O source and reading in just a chunk of the data until no more remains.

Consequently, the program doesn’t have to load all data into memory at once. In the

case of reading a file, a while loop can process it one line at a time.

BufferedReader fileReader = new BufferedReader(

 new FileReader(file));

String line = fileReader.readLine();

while (line != null) {

 // Do stuff with that line of the file.

 // ...

 // Get next line

 line = fileReader.readLine();

}

5 Or at the end, in the case of the do-while loop.

Chapter 5 Loops

www.EBooksWorld.ir

74

In the case of an REPL for an adventure game, the loop would look something like

this:

Scanner keyboard = new Scanner(System.in);

do {

 System.out.print("What now?> ");

 input = keyboard.next();

 String response = processInput(input);

 System.out.println(response);

} while (! input.equals("quit"));

 Have Fun with Infinite Loops
This must have happened to you before: one minute, you’re using an application. The

next, it freezes and becomes unresponsive. No matter how many times you click the

mouse or play a glissando on your keyboard, it refuses to come back.

Oh, how you wish you could write software as annoying as that.

But wait. You can! There’s a good chance that your “frozen” program was actually

stuck in an infinite loop, executing the same instructions over and over without making

any progress. It’s actually quite straightforward to trap a program in a loop—so easy,

even the pros do it accidentally from time to time.

 Citing the Masters
Here’s a fun fact: did you know there’s no general way to determine ahead of time

whether a loop will actually terminate? It’s one of the most famous discoveries from

computer science, made by no less a man than the “godfather” of computing, Alan

Turing, in 1937.

This means you have a powerful ally on your side if your colleagues suspect an

infinite loop lurks in your code. Any time they raise the possibility, you can just throw

the ball right back into your colleagues’ court. Cite Turing’s discovery and point out that

every loop is potentially an infinite loop, and it is impossible to prove otherwise.

Then, you can ask them why they’re picking on you and singling you out for no

reason.

Chapter 5 Loops

www.EBooksWorld.ir

75

 Thumbs Down!

Saying that no method exists for verifying loops in general doesn’t mean we can’t look

at specific loops and convince ourselves they might have the potential to become stuck.

The key is to verify the logical completeness of the loop (in other words, make sure all

possible states of the data and their consequences are considered).

For example, will this simple for loop ever get stuck?

for (int i = 1; i < 10; j++) {

 System.out.println("Step number " + i);

}

Yes, it will. We can easily convince ourselves the loop condition (i < 10), which

starts off true, never becomes false because its state doesn’t change at all (notice that

the increment changes a different variable, j, which has nothing to do with the loop’s

behavior).

What about the following loop, which prints out the leap years for the next fifty years.

Will it get stuck?

int i = 0;

int year = 2016;

while (i < 50) {

 if (isLeapYear(year + i)) {

 System.out.println(i + " is a leap year");

 }

 i++;

}

We can easily convince ourselves it won’t (assuming the isLeapYear subroutine

doesn’t itself contain an infinite loop). The loop is controlled by the value of i; so long

as it is below 50, the loop continues. Once the loop has started, the value of i (initially 0)

increases with every iteration of the loop, eventually equaling 50 and causing the loop to

terminate.

Altering the loop only slightly can turn it into an infinite loop:

int i = 0;

int year = 2016;

while (i < 50) {

Chapter 5 Loops

www.EBooksWorld.ir

76

 if (isLeapYear(year + i)) {

 System.out.println(i + " is a leap year");

 i++;

 }

}

In this case, i’s value may or may not change depending on the if statement. Let’s

consider the states of the data. Initially, i is 0 and year is 2016, isLeapYear will be true,

therefore i will be incremented. But when i is 1, the argument to isLeapYear will be

2017. This call will return false and so i’s value will remain 1. From then on, there are no

other ways to alter the values of year or i, thus the loop will never end.

Some loops are only potentially infinite loops. Under some conditions they loop

endlessly, under others they don’t. It can be hard to detect the conditions leading to

infinite loops, even for the pros. Here’s a real-world example6 from the code of the

Microsoft Zune media player (Long, 2013). It contains a loop that gets stuck only under

very specific conditions:

// This is the epoch year, in this case 1980

year = 1980;

public void convertDays(int days) {

 while (days > 365) {

 if (isLeapYear(year)) {

 if (days > 366) {

 days -= 366;

 year += 1;

 }

 }

 else {

 days -= 365;

 year += 1;

 }

 }

}

6 With some slight adaptations to make it more Java-like.

Chapter 5 Loops

www.EBooksWorld.ir

77

This method takes the days variable (which always contains the current number of

days since January 1, 1980) and computes the current year and day numbers. Most of

time, the code works fine.

But can you find where the code is logically incomplete? Since the execution of the

while loop depends on the value of days being continually decremented, is there a path

through the code where this doesn’t happen?

Yes: when isLeapYear returns true and days is not greater than 366.

Ask yourself what would happen—indeed, what did happen—to people trying to

listen to their Zune players on December 30, 2008? Or, to put it another way, on the 365th

day of the leap year 2008?

Answer: a lot of music lovers were angry because their media player had inexplicably

frozen.

 Taking Precautions
Now that you’ve seen how ignoring certain data states can cause endless looping, your

fiendish brain is probably learning from that and trying to work out how to apply that

knowledge in your programs without anyone else noticing.

One way to do this is to restrict the scope of a loop condition unnecessarily. Let’s

look again at our leap-year example. Notice that the while loop condition has been

altered from while (i < 50):

int i = 0;

int year = 2016;

while (i != 50) {

 if (isLeapYear(year + i)) {

 System.out.println(i + " is a leap year");

 }

 i++;

}

It’s a small change, easily missed, and it doesn’t introduce an infinite loop. However,

this new loop condition is less cautious than the old one, and it sows the seeds of a

potential infinite loop should further changes be made to the code in the future. For now

though, the code still works, and an infinite loop is sure to be avoided.

But read on to see the fruits of this seed you planted . . .

Chapter 5 Loops

www.EBooksWorld.ir

78

 Thumbs Down!

The original condition in our leap-year example (while (i < 50)) was stronger

since it took into account far more data states. Any value of i equal to or above 50 will

terminate the loop. However, while (i != 50) considers only one value as sufficient for

terminating a loop, making it a significantly weaker condition.

Picking a range of values as a loop terminator rather than a specific value is merely a

precaution, but a very useful one (Kernighan and Plauger, 1978). For example, someone

might subsequently optimize the loop, reasoning that leap years occur at least every four

years and so there’s no need to check the years in-between. Thus, the loop increment is

increased from 1 to 4:

int i = 0;

int year = 2016;

while (i != 50) {

 if (isLeapYear(year + i)) {

 System.out.println(i + " is a leap year");

 }

 i += 4;

}

However, i will now never become equal to 50. It will progress from 0 to 4 to 8,

and so on, up to 48 and then jump over 50 to 52. From there on, the loop will continue

endlessly. The original, stronger condition didn’t suffer from this problem because it

established a ceiling value, any value above which would terminate the loop.

Another precaution worth considering is a safety counter, which specifies an upper

limit on the number of iterations a loop may carry out. You can set the value of the safety

counter to an easily reachable yet nevertheless clearly excessive value. When the loop

goes beyond the chosen safety limit, that indicates it’s gone infinite, and so the loop is

immediately ended.

The following example shows a journey planner, which goes through all possible

routes from place A to place B until it finds one satisfying the user’s preferred maximum

duration.

Route suggestedRoute = null;

int counter = 0;

while (suggestedRoute == null) {

Chapter 5 Loops

www.EBooksWorld.ir

79

 Route possibleRoute = routeFinder.getNextRoute();

 if (possibleRoute.getDuration() < maxDuration) {

 suggestedRoute = possibleRoute;

 }

 counter++;

 if (counter > SAFETY_LIMIT) {

 System.err.println(

 "Exceeded limit searching for routes.");

 break;

 }

}

It contains some potential problems that might prevent the loop from exiting:

• The routeFinder.getNextRoute() method might keep returning the

same set of unacceptable routes over and over.

• If a sufficient number of intermediate locations exist between A and

B, combinatorial explosion means that the number of possible routes

can grow staggeringly large, big enough that the computer can be tied

up for years (literally!) searching through all the possibilities.7

A safety counter ensures that the computer gives up before it searches for too long. In

this example, the counter is checked by the final if statement.

 Make Inappropriate Exits
As Chapter 2 pointed out, the motivation behind structured loops is to avoid a chaotic

flow of control. That’s why loops are supposed to have single entry and exit points.

However, the designers of certain programming languages very kindly gave us ways

to circumvent these restrictions. They probably believed that programmers would use

them wisely and responsibly.

Excuse me while I break into evil laughter.

7 Technically, this wouldn’t be an infinite loop since the program would end eventually, but the
user is probably unwilling to wait a few thousand years for that.

Chapter 5 Loops

www.EBooksWorld.ir

80

 Break Out
Why is it, when you’re looking for something, it’s always in the last place
you look?

—Popular (and kinda dumb) phrase

“What if I need to bail out of a loop early?”

It’s a fair question, isn’t it? After all, you don’t need to keep searching for something

once you’ve found it.

The answer depends on who’s asking.

When a sensible programmer asks the question, they’re inquiring whether a sensible

method exists. Of course, when you ask the question, you want the easy way, one that

requires little thought, annoys your co-workers, and (fingers crossed) makes a program

susceptible to error.

So, the answer to your question is simple: just bail out wherever you like. In fact, go

crazy. Dump break or continue statements throughout a loop. Each one adds another

exit point to a loop and makes it less structured.

Look at this example, which loops through a collection of snacks looking for the first

acceptable one:

while (true) {

 // If it's chocolate, I want it!

 if (currentSnack.getType().equals("Chocolate")) {

 chosenSnack = currentSnack;

 break;

 }

 // Otherwise, I'll take a biscuit if it doesn't

 // contain gluten.

 else if (currentSnack.getType().equals("Biscuit")) {

 boolean containsGluten =

 allergiesInfo.hasGluten(currentSnack);

 if (!containsGluten) {

 chosenSnack = currentSnack;

 break;

 }

 }

Chapter 5 Loops

www.EBooksWorld.ir

81

 if (snackIterator.hasNext()) {

 // This didn't satisfy me, move to next one

 currentSnack = snackIterator.next();

 }

 else {

 // Didn't find any snacks at all!

 break;

 }

}

This loop shows how you can take a fairly simple task and make it overly complex.

The simple search loop has three different exit points and an if-else that could easily

grow into an if ladder8 as the array of snacks on offer grows.

 Thumbs Down!

Multiple exit points make a routine more complicated and force the reader to look

carefully inside a loop to understand how it is controlled. Things get particularly

complicated when you spread exit points around among various other pieces of code,

rendering them more easily missed.

The jury is out over the best way to handle situations like this. Some recommend

avoiding break statements in favor of setting a flag, which can then be checked as part of

a for loop (e.g., Mughal et al, 2007). Others claim that using a break statement is fine as a

last resort, and that all conditions leading up to an early exit should be consolidated into

one, clear position in the loop (e.g., McConnell, 2004).

Here’s an example following the former advice:

// Using a for loop means you don't need to do iterator

// housekeeping and consolidates all exits points

// into one places.

for (int i = 0;

 chosenSnack == null && i < snacks.size();

 i++) {

 currentSnack = snacks.get(i);

8 Chapter 4 discussed if ladders.

Chapter 5 Loops

www.EBooksWorld.ir

82

 // Remember! A break statement in a switch only jumps

 // out of the switch. It doesn't exit the loop!

 switch (currentSnack.getType()) {

 case "Chocolate":

 chosenSnack = currentSnack;

 break;

 case "Biscuit":

 if (allergiesInfo.hasGluten(currentSnack)) {

 chosenSnack = currentSnack;

 }

 break;

 }

}

 Make ’em Looooong and Complex
This book has already discussed the effects of size and complexity on your code. This

section will apply that discussion specifically to loops.

 Long Loops
Chapter 2 first mentioned the anti-rule “In general, the bigger the better” when pointing

out how making routines long can have negative effects on them. The good news is, this

applies to loops as well.

Like long subroutines, long loops force the reader to manage a lot of detail in their

fragile little brain all at once. Trying and failing to keep track of numerous details (whose

state continually changes) is how bugs often go overlooked. Writing long loops keeps

those details numerous.

But loops can derive another problem from growing long. A loop often requires some

housekeeping code that controls its execution, like loop-counter incrementations. As

the earlier section “Have Fun with Infinite Loops” explained, if this housekeeping code

mismanages the data controlling the loop, it can drive the program into an infinite loop.

By splitting the housekeeping code and spreading it around a long loop, you make it

harder to locate and keep track of that code, upping the chance that the reader will miss

a problem.

Chapter 5 Loops

www.EBooksWorld.ir

83

It’s a particularly nice touch if you write a loop too long to fit on screen. That means

the reader can’t view it all at once and can end up being further distracted by the

constant need to scroll and search.

 Thumbs Down!

There’s no rule regarding the maximum length of a loop, but some textbooks and coding

standards use the screen size as a rule of thumb. Most screens can fit roughly fifty

lines of code (notwithstanding some of the exotic sizes and configurations of monitors

nowadays), so it’s claimed a loop shouldn’t exceed that length (McConnell, 2004).

When a loop starts getting too long, you’ll be expected to take steps to curtail that

length. You could look at the design of the loop and see whether you are trying to pack

too much into it. Perhaps you could break the long loop into a series of shorter, clearer

loops.

Alternatively, you could apply the same advice from Chapter 2 regarding long

subroutines: break the contents up into chunks of code and move each into a separate

subroutine, replacing each chunk with a call to that new subroutine. Video games are a

good example of this. They typically have a central control loop that continually updates

every aspect of the game world. This loop executes as long as the game runs. For a large

game, you can imagine just how much stuff needs updating.

while (game.isRunning()) {

 // ...

 // Lots of code for checking user input

 // ...

 // Lots of code for updating position

 // of each object in the game world

 // ...

 // Lots of code for detecting

 // collisions between objects

 // ...

 // Lots of code for possibly creating

 // new objects

}

Chapter 5 Loops

www.EBooksWorld.ir

84

Instead of hundreds of lines of detailed code, the reader would be better off seeing a

series of calls, like this:

while (game.isRunning()) {

 getUserInput();

 updatePositions();

 detectCollisions();

 createNewObjects();

}

 Complex Loops
Research shows that loops don’t come naturally to humans (Pane and Myers, 2001).

That means, if you want to make loops complex and difficult to understand (as per the

anti-rule “Prefer complex over simple,”) you already have a head start. If you layer on

the complexity in a loop, you’re making a difficult spot in a program even harder to

understand. So, don’t miss a chance to really pack a loop full of complexity.

Things you can try include the following:

• Spreading the housekeeping code around the loop. Don’t bunch it all

in one place (as per the anti-rule, “Spread stuff around and duplicate,

don’t consolidate things.”).

• Include lots of break and continue statements. They increase

the number of possible pathways through the loop, adding to the

programmer’s mental load.

• Increase the level of nesting. Excessive nesting is particularly

problematic inside a loop.

 Thumbs Down!

This whole book contains advice for managing (as well as mismanaging) complexity.

Much of it applies equally to loops.

Chapter 5 Loops

www.EBooksWorld.ir

85

As for complexity particular to loops, a good start is to do the opposite of the anti-

advice above:

• Keep housekeeping code in one place.

• Ideally, a loop should have one exit point.

• Keep depth of nesting restricted. The recommended maximum is

around three or four levels (Yourdon, 1986).

Your colleagues will appreciate stuff like this.

Something else you might consider is ditching a loop altogether for a different

approach. Loops are a step-by-step, “one-object-at-a-time” approach. They’re often

imposed on us by programming languages, but studies show that they’re unintuitive and

tricky to handle, especially for less-experienced programmers (Pane and Myers, 2001).

One alternative is provided by the functional programming approach, which allows

collections of things to be dealt with without framing everything in terms of looping.

Such an approach describes what is done to all items collectively, rather than how things

are done to items individually (as loops do). In languages that support them, they can

often replace an equivalent loop with a simpler alternative.

For example, this snippet takes a set of numbers and filters out all the non-prime

ones using loops.

Iterator<Integer> numbersIterator =

 numbers.iterator();

Set<Integer> primeNumbers = new HashSet<>();

while (numbersIterator.hasNext()) {

 int n = numbersIterator.next();

 boolean isPrime = true;

 for (int i = 2; isPrime && i <= n / 2; i++) {

 if (n % i == 0) {

 isPrime = false;

 }

 }

 if (isPrime) {

 primeNumbers.add(n);

 }

}

Chapter 5 Loops

www.EBooksWorld.ir

86

However, you could replace this loop with a functional programming approach:

public boolean isPrime(int n)

{

 return IntStream.rangeClosed(2, n / 2)

 .noneMatch(i -> n % i == 0);

}

// ...

Set<Integer> primeNumbers = numbers.stream()

 .filter(n -> isPrime(n))

 .collect(Collectors.toSet());

While the syntax may take a little getting used to (admittedly, functional

programming looks prettier in many other languages), there’s no housekeeping code,

and it is conceptually easier to deal with. In this case, the isPrime function takes all

integers between 2 and
n

2
 inclusively and verifies none of them divide cleanly into n.

The set, primeNumbers, is created by filtering out everything in numbers that fails that test.

Chapter 5 Loops

www.EBooksWorld.ir

87
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_6

CHAPTER 6

Subroutines
 Objectives
In this chapter, you’ll learn:

• How subroutine size affects program comprehension

• About measures you can take to frustrate comprehension of

subroutines, specifically by

• naming them poorly;

• making them overly complex; and

• giving them too many purposes

• How inputs to and outputs from subroutines can be abused

 Prerequisites
It will help you if you’re already familiar with reference types and value types, as well as

evaluation strategies like call-by-value and call-by-reference.

 Introduction
It is a very foolish and bad habit [. . .] to start working at details before hav-
ing understood the problem as a whole.

—George Pólya (1973)

If you’re unfortunate enough to have received training in programming, you

probably learned about problem decomposition. That’s where, prior to coding, you

break a problem down hierarchically into smaller pieces (see Figure 6-1).

www.EBooksWorld.ir

88

Levels in the hierarchy end up corresponding to various parts of your program.

Things in the middle levels become the organizational parts of your program (like

modules, classes, or packages),1 while the lowest-level parts will describe the indivisible

units of functionality the program provides. These parts of the problem correspond to

subroutines in your program.

Subroutines are intended to help. You’re supposed to write subroutines that

correspond with those individual units of functionality. To that end, your subroutines are

expected to be logical, small, and simple.

But it’s not your raison d’être to help. By the time you get through with this

chapter, you’ll have learned instead how to make subroutines flabby, incoherent, and

frustratingly complex.

 Super-Size Your Subroutines
When Chapter 2 briefly introduced subroutines, it demonstrated the first example

of the anti-rule “In general, bigger is better.” It showed how monolithic programs tie

everyone to a low-level view of the code, preventing anyone from seeing the forest for

the trees. It also demonstrated how monoliths encourage something that really gets up

programmers’ noses: code duplication.

1 These will be described in later chapters.

Problem
statement

Module Module Module

Submodule

Subroutine Subroutine

Submodule

Figure 6-1. A model of problem decomposition

Chapter 6 SubroutineS

www.EBooksWorld.ir

89

Because of reasons like this, the taskmaster reviewing your code may well pressure

you into breaking a large program down into smaller subroutines. However, that doesn’t

mean you have to give up your predilection for enormous chunks of code. By investing

minimal effort into creating the subroutines, you can instead break up a very large

program into just a few still-rather-large subroutines.

Admittedly, this means you are replacing a monolithic piece of code with a

series of subroutine calls. This raises the chance of accidentally making it easier to

understand what the program is doing by allowing the reader to peruse the names of

the subroutines, so keep in mind the anti-rule, “Names are important—so make sure you

get them wrong.”2 Nevertheless, a few big subroutines can still provide a lot of trees to

obscure the view.

 Thumbs Down!
Experienced programmers object to large subroutines for many reasons. For example,

large subroutines tend to include many details, which require a lot of effort to

understand all at once. They also tend to perform more than one task, making them

harder to reuse.

Large subroutines can also be harder to maintain. Making a change to one part of

a subroutine risks causing knock-on effects to other parts of that subroutine, a risk that

increases the larger the subroutine grows. This results in “brittle” code blocks that are

resistant to change.

Also, the number of bugs in a subroutine tends to increase with size (Enders and

Rombach, 2003). However, keep in mind that size is only one indicator among several,

and it’s actually one of the weaker ones. Just writing smaller subroutines won’t guarantee

that you’ve made them less buggy, but it’s a good place to start, and a smaller subroutine

is cheaper to fix when it does go wrong (Selby and Basili, 1991).

Coming up with a concrete number for what constitutes “too large” is tricky. The

programming language used matters, empirical evidence is patchy, and the numbers

found in style guides and handbooks varies. At the lower end of the advice spectrum,

you find limits like 20 lines of code (Martin, 2009). At the other end, you’ll find people

urging you not to exceed 100 to 200 lines (McConnell, 2003), which in my own opinion is

already very large.

2 Also see the section “Make Them Hard to Understand” later in this chapter.

Chapter 6 SubroutineS

www.EBooksWorld.ir

90

 Put Up Barriers to Understanding
A program can be made more comprehensible overall by being restructured into a series

of smaller, easily understood subroutines. This section will discuss how to neutralize that

benefit by making the subroutines themselves incomprehensible.

 Bad Naming
Chapter 3 explained how naming a variable sensibly risks revealing that variable’s

purpose, which makes things far too easy for the reader. Other things besides variables

require naming, which is why we have the anti-rule “Names are important—so make sure

you get them wrong.”

Subroutines need names too, so you should reuse ideas from Chapter 3 regarding

poor naming (and, yes, I know “reuse” is a dirty word in this book, but reusing bad ideas

is okay by me). Names like f, blah, and procFshDBCnt2 are fine examples for shrouding

a subroutine’s purpose in secrecy, seeing as they either carry no meaning or verge on

being cipher text.

If your colleagues block such poor names and insist on better ones, you could try

names that are merely vague rather than incomprehensible. Labels like doProcess or

runComputation are wonderfully weak because they contain no specific information.

You can also get up to mischief by giving a subroutine a name that fails to fully

describe everything it does. By doing so, you can sneak unseen side effects past your

colleagues. For example, someone might use your subroutine named searchInFile,

which reports whether a string appears in a given file:

File myFile = new File(path);

if (searchInFile(myFile, "gold")) {

 // Do stuff if string found.

}

The programmer looking for “gold” didn’t look too deep into your subroutine.

However, they subsequently noticed something strange: the files they searched through

sometimes suddenly went missing. After a laborious debugging session, they finally took

a look at the searchInFile method:

boolean searchInFile(File f, String text) {

 BufferedReader br = new BufferedReader(

Chapter 6 SubroutineS

www.EBooksWorld.ir

91

 new FileReader(f));

 String line;

 while ((line = br.readLine()) != null) {

 if (line.contains(text)) {

 return true;

 }

 }

 f.delete();

 return false;

}

Woah there! The unsuspecting programmer has let themselves in for a world of

trouble, because your humble subroutine doesn’t only search for text in a file; it also

deletes the file if the search term wasn’t found. However, the subroutine’s name made no

mention of that.

 Thumbs Down!

Poor names in the codebase generally lead to development that is lengthier and more

problematic (Gorla et al., 1990). Colleagues will thank you for using subroutine names

that are clear and complete. A subroutine called, say, processNumbers is named poorly

because it’s too weak. A more explicative name would be calculateMedian.

 High Complexity
You can think of a subroutine as something that “stitches together” different blocks of

code. The result can be simple or complex depending on your stitching skills.

We’ve already met this idea of complexity. Earlier chapters showed us how to make

overly complex conditionals (Chapter 4) and write brain-bending loops (Chapter 5).

Thankfully, much of the same bad advice carries over to subroutines. This shouldn’t

be surprising since a subroutine typically contains a mixture of things like conditionals

and loops. That means, when you give a subroutine complex loops or conditionals, the

subroutine suffers in turn. Go back and read those earlier chapters if you want to retread

that ground.

Chapter 6 SubroutineS

www.EBooksWorld.ir

92

Every time you stitch an extra loop or another conditional into a subroutine, you add

more possible pathways through the subroutine, because constructs like if statements

and while loops include decision points (as Figure 2-2 showed). Every pathway is

another possibility you have to verify. Piling in more pathways increasingly burdens the

reader’s mental capacity and adds to the risk they overlook problems in your code.

This is why complexity serves as more fertile ground for growing problems than

does subroutine size alone. In fact, you can write relatively small subroutines that are

nevertheless overly complex. For example:

for (CustomerOrder order : orders) {

 vatRate = 0;

 if (order.isDomestic()) {

 vatRate += 0.15;

 } else {

 for (Country country : countries) {

 if (country.equals(order.getOrigin()) &&

 country.hasNoVatException()) {

 vatRate += country.getVatRate();

 }

 }

 }

 itemAmount = 0;

 for (Item item : order.getItems()) {

 if (item.isDiscounted()) {

 itemAmount += item.getPrice();

 }

 else {

 itemAmount += item.getDiscountedPrice();

 }

 }

 orderAmount = itemAmount * vatRate;

}

This subroutine is only about 15 lines long, but the number of decisions means

that it has 8 pathways through it. This number actually approaches the maximum level

recommended by some of those goodie-goodie authors of software best practices.

Chapter 6 SubroutineS

www.EBooksWorld.ir

93

 Thumbs Down!

You can code complexity using a number of means, but this book has so far focused on

a simple and readily accepted one: counting the number of possible pathways through a

piece of code. It actually has a name: cyclometric complexity (McCabe, 1976).

Calculating cyclometric complexity gives you an indication of how complex a

subroutine is. To do it, begin with the number 1 (every routine has at least one pathway).

From there, count each decision point in the routine. A decision point is either

• a conditional or looping construct that makes a comparison (denoted

by a keyword like if, while, for, case, etc.); or

• a binary operator in an expression (like && and ||).

An instance of each adds 1 to a subroutines’ cyclometric complexity. For example,

for (CustomerOrder order : orders)

adds 1, whereas

if (country.equals(order.getOrigin()) &&

 country.hasNoVatException())

adds 2, one each for the if and &&.

Your colleagues appreciate complexity’s being kept low because the more decision

points a subroutine contains, the more effort it takes to understand it and verify that

it works as intended. The recommended upper limit varies, but typical values hover

around 10 to 15 (McConnell, 2003; Watson and McCabe, 1996).

Some simple steps toward reducing a subroutine’s complexity include

• simplifying the expressions in decision points;

• eliminating duplicated code within a subroutine; and

• moving one complex part of the code into its own subroutine.3

3 That won’t reduce the overall complexity, but it will help the reader who is trying to understand
this particular bit of the program.

Chapter 6 SubroutineS

www.EBooksWorld.ir

94

The last example could be rewritten like this:

for (CustomerOrder order : orders) {

 vatRate = calculateTaxRate(order);

 itemAmount = calculateOrderTotal(order.items());

 orderAmount = itemAmount * vatRate;

}

Some of the code has been moved into subroutines. This reduces this subroutine’s

own complexity to 2. The subroutines it calls each have a complexity of 5 or less.

 Too Many Purposes
For surviving in the wild, which would you prefer: a single flimsy blade or a multi-

purpose Swiss Army knife? In a role-playing video game, what’s the better choice of

character: a weakling with one skill or a kick-ass warrior with all stats cranked up across

the board? Obviously, multi-talented wins every time.

Applying this same logic to subroutines leads us to conclude that the best

subroutines are multi-talented and carry out lots of diverse functions. The more things a

subroutine can do, the better, right?

So, let’s say your task is to write code for accepting a customer order. The program

needs to validate the order, print it to the screen, and store it in the database. In which

case, you should write a subroutine that does all those tasks.

void acceptOrder(CustomerOrder order) {

 // Validate it

 if (order.getName().length() == 0 &&

 order.getItemNumber() == 0) {

 // Put up error message

 }

 // Print it

 System.out.println("Order: " + order.getId());

 System.out.println("Name: " + order.getName());

 System.out.println("Items:");

 for (OrderItem item : order.getItems()) {

 System.out.println(" - " + item);

 }

Chapter 6 SubroutineS

www.EBooksWorld.ir

95

 // Save it

 DbConnection conn = openDbConnection();

 conn.saveOrder(order);

 conn.close();

}

Because it can do everything, acceptOrder is a Swiss Army knife, a multi-skilled

video-game character. That makes it better.

Right?

 Thumbs Down!

No. A subroutine should focus on a single task.

The main problem with acceptOrder stems from its being an “all or nothing”

subroutine. Your program can either validate, print, and save a customer’s order all

together or do none of those things. What if more granular control were needed? What

if the program sometimes needed to accept an order silently, without printing it to

the screen? What if it occasionally needed to validate and print an order, but store it

temporarily on disk instead of in the database? The current version of acceptOrder

doesn’t allow for any of that. This multi-purpose subroutine imposes a rigid order on

proceedings.

You have various options to handle this. Among the least acceptable approaches

would be to add tweaked copies of the original subroutine (e.g., acceptOrderSilently

and acceptOrderStoreToDisk). Expect this solution to be rejected for excessive code

duplication.

A more acceptable solution might be to keep acceptOrder multi-purpose, but add

parameters allowing the caller to control the behavior. For example:

void acceptOrder(CustomerOrder order,

 boolean printOrder) {

 // Validate it

 if (order.getName().length() > 0 &&

 order.getItemNumber() > 0) {

 // Put up error message

 }

Chapter 6 SubroutineS

www.EBooksWorld.ir

96

 // Print it

 if (printOrder) {

 System.out.println("Order: " + order.getId());

 // etc...

Better still would be to extract each individual task into its own subroutine:

boolean isValid(CustomerOrder order) {

 return order.getName().length() > 0 &&

 order.getItemNumber() > 0;

}

void printOrder(CustomerOrder order) {

 System.out.println("Order: " + order.getId());

 System.out.println("Name: " + order.getName());

 System.out.println("Items:");

 for (OrderItem item : order.getItems()) {

 System.out.println(" - " + item);

 }

}

void saveOrderToDb(CustomerOrder order) {

 DbConnection conn = openDbConnection();

 conn.saveOrder(order);

 conn.close();

}

That would give you the option of adding new use cases in the future by simply

combining the simpler subroutines in different ways as necessary.

If anything should be flexible and multi-purpose it should be the program, not

its individual subroutines. Think of the program as the Swiss Army knife and the

subroutines—each finely attuned for a single purpose—as the individual blades.

 (Ab)use Parameters
Subroutines need information to work with. The preferred way to supply it is via

parameters. But just because it’s preferable, that doesn’t mean it isn’t open to abuse.

Chapter 6 SubroutineS

www.EBooksWorld.ir

97

 The More the Merrier
If you have a procedure with ten parameters, you probably missed some.

—Alan Perlis (1982)

Concerning the number of parameters a subroutine should accept, other people on

your project probably toe the usual line, which advises keeping the number small—only

up to about two or three, in fact. Your colleagues will expect you to do the same and

might even point out a few examples like these:

boolean isOldEnough = isAdult(age);

String name = germanName.replace("ß", "ss");

They might also harp on about how keeping parameter lists small helps keep

subroutines small and focused and all that sort of thing. But such colleagues

misunderstand your mission. You don’t play by their rules. You play by anti-rules, ones

like “The bigger the better.” That’s why you prefer big parameter lists.

void processCustomer(String forename,

 int age, List<Order> orders,

 String phoneNumber, String surname,

 Date dateOfBirth, String mothersMaidenName,

 boolean marketingEmails)

Imagine, if you can bear it, being a colleague faced with this code and the questions

that would go through their mind. What on earth is this subroutine’s purpose?4 How

much work does it do if it requires all those parameters? Are they all strictly necessary?

And why are they in that order?

 Thumbs Down!

A couple of very common reasons for parameter lists’ growing too long are as follows:

 1. The subroutine is trying to do too much.

 2. Most or all of the parameters would make more sense being

unified into a new type.5

4 We’ve cunningly reused the bad naming strategy from the earlier section “Put Up Barriers to
Understanding.”

5 Chapter 9 will discuss custom types in more detail.

Chapter 6 SubroutineS

www.EBooksWorld.ir

98

Regarding the first reason, this chapter already discussed in an earlier section how to

handle subroutines’ doing too much (see “Put Up Barriers to Understanding”).

Regarding the second reason, let’s assume as an example that processCustomer has

just one task, say, adding a new customer to the system. Yes, that requires several pieces

of information, but see how much you can simplify the subroutine by gathering all those

pieces together into a single, new type:

// We created this new class...

class Customer {

 String forename;

 String surname;

 Date dateOfBirth;

 String mothersMaidenName;

 boolean sendMarketingEmails;

 List<Order> orders;

}

// ...

// ... and replaced all the old parameters.

void addNewCustomer(Customer newCustomer)

 Being Defensive
Defensive is not a word associated with winners. Winners never get defensive, as they

always prefer the offensive. That’s true of all the great names from history: Caesar,

Napoleon, Patton, Stone Cold Steve Austin. That’s why whenever anyone suggests

writing subroutines defensively, you should treat them like the loser they clearly are.

A subroutine written defensively takes precautions against potentially problematic

parameters. Look at this, for example:

void shoutMessage(String message) {

 // WINNERS SHOUT. To shout a message, turn the

 // whole thing to upper-case.

 System.out.println(message.toUpperCase());

}

Chapter 6 SubroutineS

www.EBooksWorld.ir

99

Your colleagues will urge caution against using the message parameter without

checking it. But losers are cautious. After all, did Caesar hesitate when the soothsayer

cautioned him to beware the Ides of March? No, he fearlessly marched into the

Senate without a bodyguard. (Admittedly, he then got stabbed to death, but that’s

beside the point.)

Instead, you should follow the anti-rule, “Assume nothing will go wrong.” Your

boldness will be rewarded. See what glory awaits you when the program is run:

Exception in thread "main" java.lang.NullPointerException

 at Main.shoutMessage(Main.java:16)

 at Main.main(Main.java:10)

Oh. Um . . . I guess shoutMessage was called with null as the parameter.

Which leads onto the next lesson: winners know exactly when to walk away

exclaiming, “Too bad, but it’s not my problem!”

 Thumbs Down!

A significant proportion of errors occur at the boundaries between subroutines (Basili

and Perricone, 1984). Invalid data’s crossing those boundaries can cause errors.

Therefore, parameters should always be checked before use.

Simple checking6 usually adds just a few extra lines of code. A safer version of

shoutMessage would look like this:

void shoutMessage(String message) {

 if (message != null) {

 System.out.println(message.toUpperCase());

 }

}

Examples of checking parameters include the following:

• Ensuring objects are non-null before trying to call their methods

• Verifying numerical values are within expected mathematical bounds

(e.g., divisors shouldn’t be zero, square roots shouldn’t be taken of a

negative number)

6 Chapter 7 will discuss more-sophisticated error-handling techniques.

Chapter 6 SubroutineS

www.EBooksWorld.ir

100

• Checking that specially formatted data conforms to the expected

format (e.g., dates, times, credit card numbers)

• Making sure files are open and readable before trying to access them

 Surreptitious Subroutines
People like surprises. That’s why it’s a good idea to make your programs do unexpected

things.

When it comes to parameters, a great way to cause surprise (not to mention

consternation) is to make your subroutines alter parameter values when that’s not

expected. A programmer faced with a method like this:

void addCustomerToList(Customer c,

 List<Customer> customers)

can reasonably expect that calling addCustomerToList will change the contents

of the customers argument. However, they would expect that same list to remain

unchanged after calling a method like this:

void outputList(List<Customer> customers)

Conscious of these sorts of expectations, you should learn to sneak surprising and

unwanted side effects into your subroutines. Here’s a small example.

A DisplayBoard is an announcement screen like you might find in a train station.

You can keep adding messages to the board until you run out of space (the board is

limited to a maximum of 280 characters). You can check that your message fits before

adding it, like this:

if (displayBoard.fits(message)) {

 displayBoard.add(message);

}

Here’s the first part of the DisplayBoard code, including only its data fields:

class DisplayBoard {

 // This is what gets displayed

 StringBuilder text;

 // etc.

Chapter 6 SubroutineS

www.EBooksWorld.ir

101

Here’s the add method:

 public void add(String message) {

 text.append(message);

 }

Nothing surprising there. Here’s the fits method:

 public boolean fits(String message) {

 return text.append(message).length() <= 280;

 }

Ah, here we have a problem—one which might well be overlooked in review.

The fits method doesn’t just perform a check (as expected); it also performs a

change. It doesn’t just simulate what the updated message’s length would be, it actually

adds the new message to the board then returns whether or not the whole text has a

length of less than or equal to 280 characters. Therefore, checking to see if a message fits

before adding it to the board results in its appearing on the board twice!

 Screw with Return Values
As well as accepting values, subroutines can also return them. As with parameters, there

are certain things your colleagues would prefer you not do.

Here are some of them.

 Return of the Harbinger
As Chapter 3 pointed out,7 null values can be dangerous, as they have the potential to kill

a program quicker than you can say “null pointer exception.” Chapter 3 gave an example

where return values from a subroutine were used without first verifying they were non-

null, thus planting seeds from which should eventually bloom an error.

Now that we’re addressing the other side of the boundary between caller and

receiver, we can revisit this case. Suffice it to say, you can also encourage bugs from the

receiver side, where the author decides what gets returned. Sure, you will have to return

a real object at some point, but many languages allow you to return from a subroutine

7 In the section “Null—The Harbinger of Doom.”

Chapter 6 SubroutineS

www.EBooksWorld.ir

102

at multiple points. Therefore, sprinkling around plenty of return null statements is a

good start. For example, a subroutine that returns a collection could return null if there’s

nothing to put into the collection, or a subroutine could return null if it encounters an

error.

In short: if in doubt, return null.

 Thumbs Down!

There’s sometimes a better alternative to returning nulls from a subroutine; for example:

• A subroutine that returns a collection could return an empty

collection instead of null.

• A subroutine that encounters a problem could (and should) throw an

exception.

• If you return a custom type, it sometimes makes sense to have the

idea of a default value for that type rather than null, similar to the

idea of an empty string or a default date.

Some languages have stronger null safety built-in. They force the programmer to

specify whether a variable is nullable and will refuse to even compile a program until

every reference to a nullable return value includes code handling a null return.

Java isn’t one of these languages. However, as Chapter 3 explained, it does provide

the Optional type, which makes it clear that an object may or may not be null and

forces the caller of the subroutine to take that into account. However, since the language

doesn’t force you to use it, the use of Optional is itself optional.

 Fun with Output Parameters
Subroutines that alter parameter values can make for some wonderful confusion. Take a

look at this example, a simple subroutine that moves a pair of x-y coordinates:

void move(int x, int xDistance,

 int y, int yDistance) {

 x = x + xDistance;

 y = y + yDistance;

}

Chapter 6 SubroutineS

www.EBooksWorld.ir

103

A typical call to move would look like this:

move(x, 10, y, -20);

Nothing surprising there. Compare it to another subroutine that keeps a history of all

the movements made:

void recordMovement(int x, List<Integer> xs,

 int y, List<Integer> ys) {

 xs.add(x);

 ys.add(y);

}

Again, pretty straightforward. So, think about what the output of this code would be:

int xPos = 5;

int yPos = 5;

List<Integer> xMoves = new ArrayList<>();

List<Integer> yMoves = new ArrayList<>();

System.out.println("X: " + xPos + ", Y: " + yPos);

move(xPos, 10, yPos, -20);

recordMovement(10, xMoves, -20, yMoves);

System.out.println("X-Movements: " + xMoves);

System.out.println("Y-Movements: " + yMoves);

System.out.println("X: " + xPos + ", Y: " + yPos);

What will the program output look like? What will appear in place of the following

question marks?

X: ?, Y: ?

X-Movements: ?

Y-Movements: ?

X: ?, Y: ?

Chapter 6 SubroutineS

www.EBooksWorld.ir

104

 Thumbs Down!

Here’s the correct answer.

X: 5, Y: 5

X-Movements: [10]

Y-Movements: [-20]

X: 5, Y: 5

Notice how the values of xPos and yPos didn’t change, but xMoves and yMoves did? If

you guessed differently, chances are Java’s evaluation strategy caught you out.

The evaluation strategy describes exactly what is sent to a subroutine when

arguments are passed in a call. Different languages use different strategies, so you must

learn which strategy your chosen language applies. Java always uses call-by-value,

which means the value of the argument (rather than the argument itself) is copied into

a new, local variable (i.e., the parameter). The original variable can’t be altered by the

subroutine. However, Java’s type system (which divides all types into primitive and

reference types) throws up some complications.

A primitive type (like int) stores the variable’s actual value. In the middle of calling

the move method, there are two variables, xPos and x, and x is local to move.

void move(int x, int xDistance,

 int y, int yDistance) {

 // x=5, y=5, xDistance=10, yDistance=-20

 x = x + xDistance;

 // At this point, x=15 and xPos=5

 y = y + yDistance;

}

That’s why executing the statement x = x + xDistance in the move method does

nothing to alter the original value of xPos. It only alters the local parameter. That’s why

xPos (and yPos) remained 5, even after the move method completed.

A reference type (like ArrayList) stores an object’s location in memory. Therefore,

passing a reference type to a method means that the object’s memory location is copied

to the corresponding parameter. That means the variable xMoves and the parameter xs

are two different labels but they point to the same single object.

Chapter 6 SubroutineS

www.EBooksWorld.ir

105

void recordMovement(int x, List<Integer> xs,

 int y, List<Integer> ys) {

 // x=10, xs=[], xMovements=[]

 xs.add(x);

 // At this point, xs=[10], xMovements=[10]

 ys.add(y);

}

Calling a mutator method on such a parameter sends a message to the original

object to change itself. That’s why, in our example, the changes made by executing

xs.add(x) remained visible after the move method completed.

In the example, the author intended to use output parameters, which are parameters

passed to subroutines simply to have their values altered.

• In the case of the recordMovements method, xMoves and yMoves were

output parameters.

• In the case of move, xPos and yPos were intended to be output

parameters, but Java’s evaluation strategy prevented that.

There’s nothing inherently wrong with using output parameters—they have their

place—but they’re often discouraged today as being confusing and awkward to use. Keep

in mind your colleagues’ desire for consistency throughout the codebase, and also that a

stronger preference for using immutable types8 is emerging these days, which disfavors

output parameters.

In short, my advice is this: if a subroutine must update a variable, prefer creating a

new value based on input parameters and return it, rather than using output parameters.

Make output parameters an exception when they can be justified.

8 The value of an immutable type can’t be altered once it’s been set.

Chapter 6 SubroutineS

www.EBooksWorld.ir

107
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_7

CHAPTER 7

Error Handling
 Objectives
In this chapter, you’ll learn:

• Typical error-handling techniques and how to ignore them

• How to suppress errors

• How to dodge responsibility for handling errors altogether

• How to make error-handling as messy an affair as possible

 Prerequisites
Before reading this chapter, it will help if you’re familiar with:

• Assertions

• Exceptions, including some of the most common exception types in

Java (e.g., NullPointerException, IOException)

• Stack traces

 Introduction
Any man can make mistakes, but only a fool persists in his error.

—Cicero

As if you couldn’t guess, making a mess of error-handling is a great way to cause

problems in a program. This chapter will discuss various ways of giving bugs the space

they need to flourish.

www.EBooksWorld.ir

108

 Assume Everything Will Always Go Well
Common advice from programming elders is to assume the worst when writing code.

“Things always threaten to go wrong,” the “wise” ones will say, “so program in a way that

anticipates errors at any moment.” Poor devils. They may be more experienced, but they’ve

allowed their experience to turn them into paranoiacs who live constantly in fear of bugs.

So much can go wrong during the execution of a program, the only teacher who has

sensible advice is the ostrich: when trouble brews, just stick your head in the sand and

ignore it. It’s the key to a happy life, if not to stable software.

 Don’t Check
Chapter 6 already talked about being cautious1 and how such behavior is for losers.

Checking inputs before you process them might seem innocuous, but it’s actually

the gateway to paranoia. Don’t do it. Otherwise, before you know it, you’ll be writing

documentation, adhering to standards, and using bug databases (ugh!). Once that

happens, no hope remains for you.

An example of defensive programming is verifying that an input has an expected

value before attempting to manipulate it, like this:

if (message != null) {

 System.out.println(message.toUpperCase());

}

Obviously, you should avoid this form, but you should also watch out for defensive

programming, which has other manifestations. Some programming constructs offer

methods for you to deal with unanticipated outcomes. For example, the switch

statement often has an optional default clause in many languages. The code in a

default block gets executed when the value of the tested expression matches none of

the case values.

String drinkOrder = getNextOrder();

// Maps drinks to prices (in cents)

Map<String, Integer> invoice = getCurrentInvoice();

1 See the subsection “Being Defensive.”

Chapter 7 error handling

www.EBooksWorld.ir

109

switch (drinkOrder) {

 case "Cappuccino":

 invoice.put(drinkOrder, 399);

 break;

 case "Latte":

 invoice.put(drinkOrder, 449);

 break;

 case "Mocha":

 invoice.put(drinkOrder, 499);

 break;

 default:

 System.out.println("Unknown drink: " +

 drinkOrder);

 break;

}

In this example, the program matches drinks to prices. If the program doesn’t

recognize a drink (an unlikely but nevertheless possible unanticipated outcome), it can’t

process the drink’s price, and the user needs alerting of that fact.

Thus, the default clause is a kind of catch-all for miscellaneous or unanticipated

outcomes. Suffice it to say, the default clause is a way to sneak in paranoid code that can

catch potential problems. Using it is another way those defensive coders try to get you.

 Don’t Assert
There’s actually no shortage of ways defensive programmers try to get to you. They offer

you tools and techniques like they’re candy, imploring you to “try it and see if you like it.”

Just say no. Otherwise, before you know it, you’ll be hooked.

A particularly powerful tool on offer is assertions, which many programming

languages have in some form. An assertion is a statement you can put into a program at a

specific point that tests whether a certain condition is true or not. If the condition is true,

Chapter 7 error handling

www.EBooksWorld.ir

110

no further action is taken, but if it’s not, the program typically terminates immediately.2

Here’s an example:

void getTemperatureInKelvin() {

 // Gets a reading in Celsius.

 double temperatureC = getReading();

 // Converts to degrees Kelvin

 temperatureK = temperatureC + 273.15;

 assert temperatureK >= 0 : "Invalid temperature!";

}

Since zero degrees Kelvin is absolute zero (and a lower temperature is a physical

impossibility), ending up with a negative value for the temperature in degrees Kelvin

means something has gone very wrong.

Pushers of assertions will sell them to you using seductive arguments. “Look,” they’ll

say, “see how useful they are . . .” Other arguments include:

• An easy way to verify your assumptions.

• So quick to write. Just a single line of code.

• You’re not forced to use them. In fact, assertions are turned off by

default. You have to activate them for assertions to have any effect.3

Naturally, the only acceptable way to use assertions (outside of avoiding them

entirely) is to misuse them.

One way to misuse them is to apply them as your exclusive means of error-handling.

This takes advantage of their simple binary nature. Either everything is hunky-dory (and

the program continues) or something is wrong, causing the program to crash in flames,

even if the error is only of the slightest severity. Also, since assertions are typically turned

off by default, error-checking done by assertions may as well not exist under normal

conditions.

2 In Java, this works by throwing an AssertionError object.
3 In Java, do this by running the program with the -ea argument.

Chapter 7 error handling

www.EBooksWorld.ir

111

Another way to misuse assertions is to execute state-changing operations inside the

assert statement. Look at this:

void haveBirthday() {

 // This method increases age by 1.

 assert (age++ > 0) : "Invalid age!";

}

This code increases age by 1, simulating a birthday. The actual functionality, age++

(which is the same as saying age = age + 1), is combined with the assertion. This

cleverly saves a line of code, but also makes sure that the program behaves correctly only

when assertions are turned on.

 Thumbs Down!

The standard use of assertions is to make clear your assumptions and catch any

impossible situations. (Less severe types of problems can be dealt with more subtly

using exception handling—see next section.) Assertions often take the form of

either a precondition (something that must be true before an operation can take

place) or a postcondition (which must be true after an operation takes place). The

getTemperatureInKelvin subroutine is an example of a postcondition because it verifies

that the calculation has produced a valid result.

Assertions are typically turned on only during development and testing. They’re

rarely kept active once a program has been released. That’s why the haveBirthday

example is particularly problematic: there’s a chance that the code works fine

during development, but stops working as expected once the program has gone into

production.

Checking an assertion shouldn’t cause a change in state. A better way to write the

haveBirthday method would have been like this:

void haveBirthday() {

 age = age + 1;

 // Postcondition: Age must be greater than zero

 // after having a birthday.

 assert (age > 0) : "Invalid age!";

}

This way, haveBirthday functions whether assertions are active or not.

Chapter 7 error handling

www.EBooksWorld.ir

112

 Don’t Catch
This section began by recommending the ostrich strategy. Here’s where that approach

can really pay off.

Programming languages typically have features allowing you to specify what to do in

case of a problem. Many of today’s popular languages provide such a feature in the form

of exception handling. In Java, potentially problematic code is isolated in a try block,

and problems that arise are dealt with in the corresponding catch block.

The great thing about exceptions is that catching them is optional. And, as the first

anti-rule of programming says, “Something that is not mandatory is not worth doing.” So,

by ignoring the danger, you guarantee that any exception raised gets thrown back at the

calling code for someone else to worry about. With luck, that exception never gets caught

and causes the program to crash.

 Thumbs Down!

Ignoring exceptions is simply dangerous.

An exception tells you a piece of code is unable to do the job expected of it. This is

information you need to know because it gives you an opportunity to rescue the program

from failure. After all, if a program attempts to open a file using a user-provided name,

what’s the reasonable thing to do if the file can’t be found? Crash horribly? Or recognize

that a problem occurred and ask the user to input the name again?

Our example language, Java, takes things a little further than other languages by

distinguishing between checked and unchecked exceptions.4 Every exception in Java is

either one or the other:

• Unchecked exceptions are intended for serious programming errors

considered irrevocable (ESA, 2004). These can optionally be ignored.

• Checked exceptions are intended for problems that, while rare,

nevertheless can happen under normal operation (ESA, 2004). They

can’t be ignored, and they form part of a method’s signature.

For example, consider this method:

File getConfigFile() throws IOException

4 Admittedly, this feature is far from universally loved.

Chapter 7 error handling

www.EBooksWorld.ir

113

An IOException is a checked exception. Therefore, if you call this method you don’t

have the option of ignoring the potential exception. You must enclose the calling code in

an appropriate try block.

What to do inside a try block is discussed in the following section.

 Send Problems Down the Memory Hole
. . . he crumpled up the original message and any notes that he himself had
made, and dropped them into the memory hole to be devoured by the flames.

— George Orwell, Nineteen Eighty-Four (1949)

Ignoring potential problems may only get you so far. Eventually, your colleagues

may, shall we say, compel you to recognize that problems can occur in programs and that

you should take precautions to handle them. What then are your options?

You don’t want to do effective error-handling, obviously, so you should put

ineffective error-handling in place, treating exceptions as unworthy of attention,

inconvenient facts that—once identified—ought to be ignored, suppressed, and sent

down the memory hole.

 Disappearing Exceptions
The previous section advised you to ignore exceptions completely. However, finger- wagging

colleagues and overzealous programming languages can conspire to prevent you from

doing so. In the end, you might have no choice but to include an error-handling block.

Thankfully, there’s more than one way to ignore an exception. If you’re forced to

include a try block, then simply subvert the whole structure. Just because you catch

something doesn’t mean you have to do anything with it. Why not just silently drop it?

Look at this example. An application allows a user to set custom settings. It stores

that configuration in a file. Every time the application loads, it opens the file, reads the

contents, and customizes the environment according to the user’s settings.

// Gets the file location of the application's

// configuration information

File configFile = new File(configFileLocation);

Chapter 7 error handling

www.EBooksWorld.ir

114

try {

 parseConfigFile(configFile);

 // Code for adjusting app to config settings goes

 // here...

}

catch (FileNotFoundException e) {

 // Leave this empty. Do nothing.

}

Of course, things can go wrong; for instance, the configuration file could go missing.

In this case, the application would still function, but it would do so without the user’s

custom settings. The effect runs two-fold:

 1. The user sees their custom settings have gone missing, but for

no good reason. Nothing appeared to explain to them what

happened.

 2. By silently dropping the exception, you leave behind no clue to

help the programmer determine the problem in case the user

complains (as they are apt to do).

 Reporting Problems Is Doubleplusungood
A simple and unobtrusive way to deal with problems is to report them. But who wants to

be the bearer of bad news? Not you.

However, if your hand is forced and you’re compelled to add some kind of error

reporting, you can nevertheless report problems without the risk of being helpful.

You might be told to make the program write messages when something goes wrong.

So be it, but make sure you do so as invisibly as possible. For example, if your program

is a graphical application, report problems using the standard print statement (like

System.out.println) because those messages are sent to the console and will probably

go unseen.

Failing this, you might be forced to display prominent messages to the user when a

problem occurs. In this situation, it’s best to bamboozle the user with inappropriately

technical and complicated information. A message with jargon, error codes, and a stack

trace is a good candidate (see Figure 7-1).

Chapter 7 error handling

www.EBooksWorld.ir

115

Better the user is confused than informed.

 Thumbs Down!

When you report a problem, the location and content of the report depends on the

audience.

An error message for the user should take into account the user’s technical aptitude.

Unless you have a good reason to assume otherwise, you should imagine the user to be

a non-programmer. Stack traces and error codes won’t help them; you should explain

in clear, non-technical language what went wrong and what (if anything) can be done

about it. For example:

File configFile = new File(configFileLocation);

try {

 parseConfigFile(configFile);

}

catch (FileNotFoundException e) {

 // Give helpful, non-technical information to

 // the user in a dialog window.

Figure 7-1. An example of a bad error message

Chapter 7 error handling

www.EBooksWorld.ir

116

 Alert alert = new Alert(AlertType.ERROR);

 alert.setTitle("Configuration problem");

 alert.setHeaderText("Configuration information was lost or corrupted.");

 alert.setContentText("The application will continue to run with default

settings. Please contact your system administrator.");

 alert.show();

}

A message like that in Figure 7-2 will pop-up to the user.

Figure 7-2. An example of a more informative error message

Heavily technical information is useful, but only for the program’s author.

That information should be stored in the program’s log for later retrieval when the

programmer comes to diagnosing the problem. That means writing messages to a file,

not printing them to the console, where they go unrecorded and possibly even unseen.

Most programming languages provide their own standard logging functions for this.5

 Kick the Can Down the Road
Every problem eventually has to be dealt with by somebody. And preferably somebody

else. You can make sure of that by adopting a policy of passing problems onto other areas

of the program, ones that are the responsibility of other people.

5 Logging will be discussed in more detail in Chapter 10, “Debugging.”

Chapter 7 error handling

www.EBooksWorld.ir

117

In other words, kick the can down the road, preferably hard and in a way that’s likely

to hurt someone.

 Using Error Codes
So, all that previous, sensible advice about dealing with exceptions locally if possible

goes out the window. When a problem arises, your code is going to reflexively pass the

buck. The question then remains: in what manner should you pass it?

If you can, you should choose a method that’s as uninformative as possible so the

receiver of the buck learns little or nothing about the problem. You should also choose a

method that passes the buck along so quietly that it can easily be missed.

In most languages, error statuses and error codes can be misused to fit these

requirements nicely. We met error codes already in Chapter 3,6 which also pointed

out that exceptions are generally preferred over error codes. Naturally, that should be

enough to persuade you to prefer error codes. If you need more persuasion, consider

some of their delightful drawbacks:

• Returning an error code forces the caller to deal with an error in one

specific place: the place from which they called your subroutine.

• When new error codes are added, this can mean a program requires

recompilation and redeployment. For example, error codes in Java

are normally kept in an enum, which is used throughout the system.

The effects of updating this enum cascade to other classes in the

program far and wide.

As limiting as error codes can be, there’s an even more uninformative alternative:

the error flag. A subroutine with a Boolean return type (which holds false in the case that

something went wrong) is delightfully simple and wonderfully vague.

boolean succeeded = parseXmlFile(myXmlFile);

if (succeeded) {

 // Do normal business

}

else {

 errorPopup("Parse failed. Don't ask why, because I don't know.");

}

6 See the section, “Thoroughly Abuse the Type System.”

Chapter 7 error handling

www.EBooksWorld.ir

118

What went wrong in this case? Was the file missing? Did we have insufficient access?

Was the XML malformed? The caller simply doesn’t know, and so they’re prevented from

taking any informed action.

Perhaps the best problem you cause in either case—whether your subroutine returns

a code or a flag—is that the return values can be ignored, or even missed altogether (an

easy mistake to make).

 Thumbs Down!

Many textbooks and standards documents recommend exceptions over error codes

(ESA, 2004; Martin, 2009). Some sources even say you shouldn’t use error codes at all,

precisely because they can be ignored (Microsoft, 2017).

Whatever approach you choose, make sure you understand the key differences:

• When the caller ignores a subroutine’s error code, that code simply

“disappears.”

• When the caller ignores an exception, the exception persists, and it

propagates back down the call stack until caught. If it’s never caught,

the program crashes.

This is part of what makes exceptions more powerful than error codes. Ignoring

an exception might allow you to pass the problem along to be processed at a more

appropriate level, but ignoring it completely will not make it go away.

 Baffle and Bamboozle
If you lose the fight against exceptions, all is not lost. You could still use exceptions,

but in a way that neutralizes some of their advantages, specifically their capacity to be

informative. This can leave the caller baffled and bamboozled when they try to handle

the exception.

Exceptions allow you to attach additional information, like custom messages.

But—keeping in mind our anti-rule that “Anything that isn’t mandatory isn’t worth

doing”—why bother, especially if it’s not your code handling the problem. For example,

an IOException can be raised when having trouble using an I/O device, but I/O devices

are notoriously troublesome, and the root cause could be one of a thousand possible

problems.

throw new IOException();

Chapter 7 error handling

www.EBooksWorld.ir

119

Throwing an exception like this when, say, trying to use a network connection tells

the caller only that a problem occurred, but imagine being the poor sap who has to figure

out how to react. What exactly was the problem? Was the network unavailable? Was it

available but refused access? Was the URI not found?

Or how about this:

throw new IllegalArgumentException();

If your method accepts multiple arguments, then the caller can do little more than

guess which one was problematic.

When you think about it, you’re probably being too helpful when you use

specifically typed exceptions like NullPointerException, IOException, or

IllegalArgumentException. Besides which, choosing between all the different types

probably soaks up too much of your precious time. Instead, just use the root Exception

class for all problems. Quite the time-saver for you.

 Thumbs Down!

When an error occurs, the programmer needs to know key information in order to

diagnose it. You colleagues count on you to provide it. That comes partly from helpful

error messages.

void assignGrade(Student student, int score)

 throws IllegalArgumentException {

 if (score < 0 || score > 100)

 {

 throw new IllegalArgumentException(

 "Score (" + score +

 ") not in acceptable range (0 to 100).";

);

 }

 // etc...

Chapter 7 error handling

www.EBooksWorld.ir

120

It also comes from appropriately typed exceptions. For example, when trying to

access a resource over a network, it helps to throw a type that fits the situation rather

than just plain old Exception.

ServerResponse response = getNetworkResource(url);

if (response.getCode().equals("400")) {

 // Code 400 means URL was invalid.

 // Caller probably needs to stop and

 // inform the user.

 throw new URIException("Tried to access an" +

 " invalid URL: " + url);

}

if (response.getCode().equals("403")) {

 // Code 403 means access denied.

 // Caller might want to ask the user to

 // enter name and password and then try

 // again to connect.

 throw new AuthenticationException("Access to " +

 url + " denied.");

}

That way, the caller has the option to react in different ways to different problems.

Perhaps the most important thing to ask when handling an exception is: should

this code throw an exception at all? Most advice will tell you that if an exception can be

handled locally, then it should be. Do everything possible to avoid kicking the can down

the road.

 Make a Mess
Programs live in a world of their own: a sterile, mathematical world where everything

is clean and orderly. The real world, however, is messy and disordered. Errors and

exceptions result when these two worlds collide.

Which sounds like the perfect excuse for making error-handling a messy,

disordered business.

Chapter 7 error handling

www.EBooksWorld.ir

121

 Cleaning Up and How Not to Do It
Resources live in the real world. They include things like memory, files, networks, and

databases. They make computers useful, able to do things like communicate, store

information, and display things.

Now, it’s bad enough that resources cause complications even under normal

conditions. Being finite in nature, resources require careful management: memory space

can’t be exceeded, files shouldn’t be written to simultaneously, databases require users

to be authenticated.

But things can get really complicated when you account for the fact that things

can go wrong and you need to add error-handling into the mix. Files can disappear

unexpectedly, databases can refuse access, and networks have a habit of dying just when

you need them most. When things go wrong, your program’s careful management of

resources can get thrown out of whack.

Everyone on your project should watch resource-handling code carefully,

making sure that resources are properly cleaned up, even in the event of problems.

Everyone except you, that is. You’ll be taking advantage of the fact that proper resource

management is hard, enabling you to slip in a few easily missed bugs here and there.

Let’s take database connections as an example. A database typically runs as a separate

program to which your program must connect in order to access data. It can sustain only a

limited number of connections, so each connection must be closed after use.

DbConnection connection =

 database.getConnection(username, password);

ResultSet results = connection.runQuery(

 "SELECT * FROM User WHERE id = " + id);

connection.close();

If a connection is accidentally left open after use, it remains unavailable to everyone

else. Forgetting to include cleanup code (like the call to the close method) is easy

enough, but getting it wrong under normal conditions is fairly straightforward: either the

cleanup code is missing or not.

However, bringing error-handling into it only makes it more complicated and allows

you to be wrong in all sorts of other ways.

Chapter 7 error handling

www.EBooksWorld.ir

122

Accessing a database can go wrong in a number of ways. The connection could

be lost, the query could be invalid, authorization might fail, etc. Like a conscientious

programmer, you add exception-handling code for such cases:

try {

 DbConnection connection =

 database.getConnection(username, password);

 results = connection.runQuery(

 "SELECT * FROM User WHERE id = " + id);

 connection.close();

}

catch (ConnectionException e) {

 // Thrown if a connection fails

}

catch (QueryException e) {

 // Thrown if a query fails

}

// etc...

And in doing so, you add a bug to the code. Why? Because if an exception is thrown

before the connection.close() instruction is reached, the connection will remain open.

 Thumbs Down!

You must always clean up resources after use. Since things can go wrong before you get a

chance to clean up, use some kind of method that takes account of that.

In most exception-supporting languages, the try block includes a finally clause.

Code inside this block is run regardless of whether or not an exception occurred.7

try {

 DbConnection connection =

 database.getConnection(username, password);

 // do stuff with the connection...

}

7 The finally block will even execute if you include a return statement in the try block.

Chapter 7 error handling

www.EBooksWorld.ir

123

catch (ConnectionException e) {

 // Thrown if a connection fails

}

catch (QueryException e) {

 // Thrown if a query fails

}

finally {

 connection.close();

}

Even better, if your chosen language can automate the cleaning up of resources, then

you can use that. This way, you don’t need to remember to include the code yourself.

Since version 1.7, Java has included the try-with block for this purpose.

// DbConnection implements the java.io.AutoCloseable

// interface, so this connection will be automatically

// closed after this try-block exits.

try (DbConnection connection =

 database.getConnection(username, password)) {

 results = connection.runQuery(

 "SELECT * FROM User WHERE id = " + id);

}

catch (QueryException e) {

 // Thrown if a query fails

}

A try-with block differs from a try block by accepting a resource in parentheses

after the try keyword (in this example, the connection object). This gives responsibility

for closing the resource to the block.

Chapter 7 error handling

www.EBooksWorld.ir

125
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_8

CHAPTER 8

Modules
 Objectives
In this chapter, you’ll learn:

• How to make a mess of importing modules

• How to write modules that are hard to use and error-prone,

specifically modules

• that are inflexible, do too much, and fight against being reused;

and

• whose poor design make errors more likely and cause pain for

future maintainers.

 Prerequisites
Before reading this chapter, it will help if you’re familiar with the following:

• The basic idea of modules and how they can be used by each other

• Access modifiers in Java (private, public etc.)

• The concept of a software interface

 Introduction
Modules are supposed to help you in various ways.

For one thing, they’re supposed to help you better manage complexity as a software

program grows. Breaking a large program into small, clean pieces makes it easier to

focus on a specific part of the program.

www.EBooksWorld.ir

126

Modules should also make a project more flexible. When a program is made up of

independent components, the software becomes easier to grow, maintain, and reuse.

If reading about such benefits is starting to make you feel sick, don’t worry. This

chapter will show you how to write modules in a way that neuters their helpfulness.

 A Note on Terminology
The term module is a fairly flexible one in programming. In fact, it can mean different

things in different languages, sometimes having a very specific meaning.

While this book uses Java as a demonstration language, it doesn’t assume any

specific meaning of module.1 Rather, it uses the term in a general sense that can be

applied to any programming language. Thus, the principles described here could be

applied to such units as functions, methods, classes, or packages.

For the purposes of this book, we’ll understand a module to be a unit of code that

• is self-contained;

• is interchangeable, operating only via an interface that encapsulates

the module’s data; and

• focuses on a coherent, well-defined function.

 Make Importing Messy
You chose this book to learn how to do things badly. That says something about you.

For example, if you ever perform home improvement or a similar form of manual

labor (and I know that’s a big if), no doubt you’re the sort of utter hooligan who empties

out the entire contents of the toolbox onto the floor and then scrabbles around the pile

seeking the implement you need. No careful tool selection for you.

This section explores the programmatic equivalent of dumping your tools onto the floor.

1 Only recently did Java apply a definitive meaning to the term upon the release of its module
system with Java 9 (Oracle, 2017).

Chapter 8 Modules

www.EBooksWorld.ir

127

 Import All the Things!
In order to use a module in your code, you typically have to import it first. Some

languages allow you to choose only parts of a module to import. In these cases, the

typical advice tells you to import only the specific parts you need, like picking out the

one right tool from an immaculately kept toolbox.

import java.awt.Button

import java.awt.Canvas;

import java.awt.Paint;

// and so on and so on and so on...

But why bother? That just leads to more typing. Besides which, you might need

something else from the same module in the future. You could instead import a module’s

entire contents as a precaution against having to do more typing. Therefore, a wildcard

import makes things much easier for you.

// Import everything from the AWT root package.

import java.awt.*;

Who could possibly object to that?

 Thumbs Down!

A wildcard import is hardly the world’s worst programming practice. In fact, some of

your colleagues might wave it through without comment. But you should be aware that

some people may object to it.

One objection could be that importing everything from a module soaks up resources

unnecessarily if most of the imported stuff goes unused. However, this depends on the

language being used.2

A more general objection could be that a wildcard import can unwittingly set up

name clashes. For example, in the younger days of Java (around version 1.1) a typical

GUI program might have included the following imports:

import java.awt.*;

import java.util.*;

2 For example, I understand wildcard import has very little effect on performance in Java.

Chapter 8 Modules

www.EBooksWorld.ir

128

// Available meals

private List meals = new List();

meals.add("Egg and Mushrooms");

meals.add("Steak and Ale Pie");

meals.add("Omelette");

// etc.

In this case, a List could only refer to the GUI component3 that belonged to the

java.awt package. However, after later upgrading to Java 1.2, that same program code

would have suddenly thrown compile errors. This actually happened to many people.

Why? Because another List was introduced to the Java Standard Library in version 1.2,

namely the List interface. It was added to the java.util package, causing that reference

to List in the preceding code to became ambiguous. The compiler didn’t know whether

you meant a java.util.List or a java.awt.List.

For reasons like this, numerous style guides require that you use explicit import

statements instead of wildcards (for example, see ESA, 2004; Google, 2017b).

 Clutter and Mess
If you thought the preoccupation with wildcard imports was obsessive, wait until you

see this. If only for your own amusement, see what reactions you can provoke among

colleagues by adding import statements to your code in any arbitrary order.

import java.util.*;

import org.apache.commons.lang3.StringUtils;

import com.google.gson.stream.JsonReader;

import com.google.gson.Gson;

import java.io.*;

import java.awt.Event;

// etc.

3 Specifically, a collection of selectable text items.

Chapter 8 Modules

www.EBooksWorld.ir

129

 Thumbs Down!

Organizing imports mainly concerns readability. Style guides4 recommend it because

tidy and consistent import statements are more readable, and readability is a key factor

in keeping code bug-free.

Typical guidelines you’ll encounter include:

• Order imports alphabetically.

• In the case of hierarchical modules, group imports by top-level name.

For example, all com.* imports come first, then net.*, then org.*, etc.

• Separate groups of similarly named modules with an empty line.

• If applicable, import using the full, absolute path. Don’t use relative

paths.5

• Consider renaming modules with very long names.6

A better-organized example of import statements would look something like this:

import java.awt.Event;

import java.io.File;

import java.util.ArrayList;

import java.util.HashSet;

import com.google.gson.Gson;

import com.google.gson.stream.JsonReader;

import org.apache.commons.lang3.StringUtils;

4 For examples, see Google, 2017; Mozilla, 2017; Python, 2013.
5 This rule doesn’t apply in Java, which requires imports always to include the fully qualified
package name.

6 Again, this isn’t possible in Java, but a language like Python, for example, allows you to write
import statements like this: import really_longnamed_module as rlm.

Chapter 8 Modules

www.EBooksWorld.ir

130

 Prevent Reuse

Every program has (at least) two purposes: the one for which it was written,
and another for which it wasn’t.

—Alan Perlis (1982)

The software world raves about reuse. I’m sure you’ve already been implored by

colleagues and teachers to write modular code that can easily be reused by others. But

why should you allow freeloaders to make use of the code you bust your buns to write? If

your colleagues want code, let them write it for themselves.

This section describes how you can clamp down on freeloading and prevent reuse

on your project.

 Shopping-List Subroutines
Let’s start by looking at real-world examples of reusable modules to see what lessons we

can learn—so we can avoid them.

Among the classes that a Java programmer typically uses early on when learning is a

collection like the ArrayList, a class that was designed to be very reusable.7

For example, consider some of the methods that the ArrayList class provides:

• add: Appends the specified element to the end of a list

• clear: Removes all of the elements from a list

• isEmpty: Returns true if a list contains no elements

• size: Returns the number of elements in a list

• subList: Returns a view of the portion of this list between the

specified fromIndex, inclusive, and toIndex, exclusive

• toArray: Returns an array containing all of the elements in this list in

proper sequence (from first to last element)

7 Keep in mind that the concept of a class includes some properties missing from the more
general idea of a module (e.g., instantiation). However, we can still use things like classes and
subroutines to demonstrate modular programming practices.

Chapter 8 Modules

www.EBooksWorld.ir

131

Each method performs one specific task. If you want an ArrayList object to carry

out several tasks, you have to write a series of calls to several different methods.

However, as one anti-rule of programming tells us, “Write modules with multiple

purposes. Don’t let them focus on only one task.” Imagine how much harder it would be

to use the ArrayList if each method carried out not one but several tasks. For example:

• Instead of separate add and size methods, it had an

addAndReturnSize method. This would mean you could only obtain

the list’s current size by first adding an item to it.

• Instead of separate subList and toArray methods, it had only a

subListToArray method, meaning a sub-list could only be obtained

in the form of an array and not a list.

Smooshing together several tasks into one subroutine can make it very hard to reuse.

Doing them together might make sense for your particular use case, but it’s unlikely to

be useful to others. The less related those tasks are, the worse the problem gets.

public void doVariousUnrelatedStuff() {

 System.out.println(supplier.getName());

 int price = product.getPrice() -

 product.getReduction();

 updatePrice(product, price);

 if (date.getMonth() == "December") {

 sendChristmasLeaflet(customer);

 }

}

A subroutine like this, which throws together random tasks like a shopping list, has

little hope of being reused.

 Thumbs Down!

Shopping-list subroutines can come about when an author focuses too much on their

specific problem, thus combining several tasks in very specific ways. You create more

reusable code by breaking a module’s capabilities into individual, independent tasks and

providing a subroutine for each one. Your colleagues will be grateful.

Chapter 8 Modules

www.EBooksWorld.ir

132

That doesn’t mean you can’t provide your own more-complex methods in addition.

For example, you could start by writing a Product class (which represents something for

sale) with two methods:

• getPrice(): Returns the price of this product

• getReduction(): Returns the amount by which this product is

currently reduced (returns 0 if the product is not currently on offer)

Nevertheless, you could also provide a getDiscountedPrice method, which uses

your getPrice and getReduction methods together to calculate the discounted price of

the product.

return getPrice() - getReduction();

Ironically, hard-to-reuse methods can also come about when the author tries to

guess in what manner a module will be reused and writes subroutines that attempt to do

too much for the user. Trust your colleagues to combine those operations in whatever

way they need for their purposes.

Just so you know, the degree to which a module remains focused on a single task is

called cohesion and can be divided into several levels (Yourdon and Constantine, 1978).

Levels of cohesion in descending order of acceptability include:

• Functional: The module performs a single task.

• Sequential: Several different tasks are grouped together because the

output of one becomes the input of the next. For example, looking up

a person’s yearly income and then calculating which tax bracket they

fall into.

• Communicational: Several different tasks are grouped into one

module because they make use of the same data but are otherwise

unrelated.

• Temporal: Several different tasks are grouped together because

they’re performed at the same time.

• Procedural: Several unrelated tasks are grouped together because

they must be done in a specific order. For example, prompting the

user to login before opening a sensitive file.

Chapter 8 Modules

www.EBooksWorld.ir

133

• Logical: Several tasks are grouped together; they’re essentially

unrelated, although they do logically similar things. For example,

grouping together all the printing-related subroutines.

• Coincidental: The module groups together completely unrelated parts.

You should aim to write modules that are as cohesive as possible.

 Mono-focused Modules
To curb reuse, you should really cut down a module’s flexibility. A flexible module can

work with different types, so try to ensure that yours focuses on as narrow a range of

types as possible.

When working with primitive data types (i.e., built-in types like integers, floating-

point numbers, characters, etc.) choose only the most restrictive ones. For example,

when writing a subroutine that calculates the sum of an array of numbers, provide only

an integer version:

int sum(int[] nums) {

 // ...

That leaves people trying to sum real numbers in the lurch, since real numbers can’t be

represented by an int. Attempting to pass real values to sum would cause a compile error.8

It’s a similar story with custom types. For example, let’s say it’s your job to write a

module that handles the registration of vehicles with a vehicle-licensing agency. The

types in the system are already defined and modeled in Figure 8-1. The Vehicle type is a

superclass to the Car, Motorcycle, and Truck types.

8 This applies to statically typed languages like Java, where an object’s type is declared.

Figure 8-1. Class diagram of the vehicle-registration program

Chapter 8 Modules

www.EBooksWorld.ir

134

All vehicles have a registration number, so your first attempt at a registration

subroutine might look like this:

void register(Vehicle vehicle) {

 registrations.add(

 vehicle.getRegistrationNumber());

}

However, this misses an opportunity. A subroutine like this gives the module a

flexible interface because the Vehicle type is a parent to numerous child types (like Car,

Motorcycle, Truck, etc.). This means it will work with a variety of subtypes. One anti-

rule nicely sums up what you’re doing wrong (or rather, what you’re inadvertently doing

right): “Root yourself in specific, concrete details. Always stop yourself if you begin to think

in general terms, lest your code become generic and reusable.”

Just like reducing the scope of the sum method, you could restrict the focus of the

register method by allowing only a specific subtype as a parameter. Everything else can

remain as before:

public void register(Car vehicle) {

 registrations.add(

 vehicle.getRegistrationNumber());

}

Now, for no good reason other than it frustrates your colleagues, the register

method will only accept Car objects. Trying to pass other types like Truck or Motorcycle

will cause a compile error. To register other types of vehicles in the future, additional

work will need to be done.

 Thumbs Down!

By allowing a module to work with a wider variety of types, you make it more reusable.

Exactly how to do this depends on the language you use.

A statically typed language, like Java, requires you to declare a parameter’s type.

Thus, passing an object of the wrong type is caught at compile time. For primitive types,

you could—if your language allows it—overload a subroutine by providing several

versions, each with the same name but accepting differently typed parameters:

Chapter 8 Modules

www.EBooksWorld.ir

135

public double sum(double[] nums) { ... }

public int sum(int[] nums) { ... }

// etc.

For your own custom types, you could apply polymorphism, as the vehicle-

registration example did. Chapter 9 will discuss polymorphism in more detail.

In a dynamically typed language,9 where you aren’t required to declare a variable’s

type, you should make sure the object is accessed only via the interface of the more

generic type. For example, a register method in a dynamically typed language should

only access the vehicle parameter via the interface of the Vehicle type. It shouldn’t use

methods or fields belonging exclusively to a subclass like Car.

 Create Strong Dependencies

Programmers are most effective if shielded from, not exposed to, the innards
of modules not their own. I dismissed [this] concept as a “recipe for disaster”
. . . I was wrong.

—Fred Brooks (1995), discussing his reaction to information hiding

Modules in a program form connections with each other to get work done. For

example, they might communicate via calls to and from one another, or via shared

access to a common data set.

If you’re new to programming, you might assume that the more a module knows about

its collaborators the better. Even some of the most accomplished practitioners in software

engineering, like Fred Brooks, originally thought this. They subsequently changed their

minds after seeing the terrible trouble such an approach caused and recognizing that the

reverse was true: things work better when modules don’t expose their innards.

So, what happens if you purposefully avoid this revelation yourself and march on

with that original assumption? This section explains.

9 E.g., Python or Ruby.

Chapter 8 Modules

www.EBooksWorld.ir

136

 Exposing Your Innards
Strong is better than weak, right? Any programmer would surely prefer the term strong

be applied to an aspect of their program design. Similarly, tight is better than loose.

Nobody wants to be told they have a loose screw.

Applying this logic to program design leads one to conclude that modules are better

when they share strong, tight connections. Well, if that’s what you want, there’s no better

way to achieve it than to have modules expose their internals to each other.

The simplest means of exposing a module’s internals is to allow other modules to

access its local data. How you do that depends on the language you use. In Java, where

access to class members can be controlled, you can reveal a class’s fields to the wider

world by assigning them the access modifier public. This allows other classes to read

and update those public fields.

For an example, let’s go to the supermarket:

public class Shop {

 // Keeps track of next available ID

 public static int nextID = 1;

}

public class BakeryProduct {

 // Uniquely identifies this type of product

 public int id;

 public BakeryProduct() {

 id = Shop.nextID++; }

 }

}

public class DairyProduct {

 public int id;

 public DairyProduct() {

 id = Shop.nextID++;

 }

}

// Plus lots more types of products...

Chapter 8 Modules

www.EBooksWorld.ir

137

When a new product is added to the Shop’s line-up, the rule for creating a new

identifier for the product is simple: take the next available ID number by looking up the

nextID field in the Shop (and don’t forget to increment the count in the process!). It looks

simple, but the Shop class is very tightly connected to each of the different Product classes.

This doesn’t create immediate problems. The fun comes later because tight

connections between modules make the program wonderfully resistant to change.

For example, if the referenced field were to have its type altered, this would cause a

problem. All uses of the field would have to be updated (in this example, changing nextID

from long to int would mean the type of the id fields in each product would need altering

accordingly). This is a more obvious problem because it would result in a compile-time error.

However, tight connections can be much more insidious. If they cause runtime

errors, the compiler won’t find them, and they might go undiscovered until after the

program is released. For example, let’s say your colleague updates the program after you

and has to alter the way IDs are managed. Specifically, instead of assigning a product

one ID, each product gets allocated a block of 100 consecutive IDs, the latter 99 of which

get reserved for any later variants of that product.

That would mean, let’s say, the BakeryProduct would need changing like this:

public class Shop {

 public static int nextID = 1;

}

public class BakeryProduct {

 public int id;

 public BakeryProduct() {

 id = Shop.nextID;

 Shop.nextID += 100;

 }

}

Chapter 8 Modules

www.EBooksWorld.ir

138

Because you made the connection tight, you forced your colleague to have to keep

their wits about them. They mustn’t neglect to update the rules that increase the ID

number in all other product classes. If they fail to update all products in exactly the same

way, they will cause a mess:

• If they forget to update even a single product class, that forgotten

class will end up creating products that don’t obey the rule. No space

will be reserved for that product’s variants in the ID range.

• If the ordering of the two statements is reversed in at least one class

(i.e., 100 is added to Shop.nextID before assigning the value to id), the

program will create empty holes and overlaps in the range of ID values.

 Thumbs Down!

Modules have to communicate somehow if they’re going to work together, but

connections between modules aren’t just a binary matter of being connected or not.

These connections possess a strength that can vary, which is referred to as coupling

(Yourdon and Constantine, 1978).

It’s important to know this because inter-module couplings vary in strength. Put simply:

• A loose (or weak) coupling between modules means that changes in

one module have little effect on the other. Loosely coupled modules

are interchangeable, reusable, and easily testable.

• Tight (or strong) coupling between modules means that changes in

one module easily create ripple effects that have repercussions on the

other. Tightly coupled modules are hard to replace, difficult to reuse,

a nightmare to test, and prone to error (Basili et al., 1996; Briand and

Wüst, 2002). Your colleagues don’t like tight coupling.

You can find out more about the different levels of coupling in any good source on

software design. What follows is a brief summary.

At the looser/weaker end of coupling, you see levels like message coupling and data

coupling. Message coupling happens when objects pass messages to each other. Each

object encapsulates its own state and doesn’t allow other objects to access it. Similarly,

data coupling happens when modules share pieces of data with each other; for example,

by passing parameters in a function call. These levels of coupling are considered routine

and acceptable.

Chapter 8 Modules

www.EBooksWorld.ir

139

In the middle of the range, you come across control coupling, which happens when

one module passes data to another module with the intent of controlling its behavior.

For example, the following subroutine, lookupStudentsByNumber, accepts a “what-to-

do” flag (lookupGraduates) that tells it whether or not it should include students who

already graduated in the search.

/**

 * Build a list of Student profiles by looking

 * them up in the database by ID.

 *

 * @param studentIds

 * The list of ids

 * @param lookupGraduates

 * Whether to lookup graduated students (who are

 * stored in a different database) or not.

 * @return The list of students found

*/

public List<Students> lookupStudentsByNumber(

 List<StudentId> studentIds,

 boolean lookupGraduates) {

 // ...

This sort of coupling requires that the calling module knows at least some things

about how the other module functions. Control coupling is normally considered

acceptable, although typically with caveats such as:

• Documentation should make the nature of control clear.

• The controlling parameter should be a “what’s-going-on’” flag.10

At the tighter/stronger end of coupling, you find levels like common coupling or

content coupling. Common coupling (where modules communicate indirectly by sharing

the same data) will be seen later in this section.

An example of content coupling (where one module relies on the internal details

of another) was seen earlier between the Shop class and the various Product classes.

Such strong coupling is generally disapproved of, which is why many object-oriented

10 Such a flag describes the current situation rather than instruct the module what to do. This
allows the called module to make its own decisions in response.

Chapter 8 Modules

www.EBooksWorld.ir

140

languages (Java included) allow you to mark fields as private, thus hiding the

information from other modules. The usual advice is to mark every field as private, until

a very good reason arises that forces you to relax that restriction.

 The Public Face of a Module
Rather than making a module expose its innards, your colleagues prefer you to write

modules where internal information stays hidden. As usual with your colleagues’

demands, that means more work for you.

If modules aren’t permitted to communicate by fiddling with each other’s internals,

then each module has to have some means of receiving messages from others. This

means you have to construct an interface for each module. In this case, the term

interface refers to the public face a module presents to the world, the boundary past

which only specific forms of information may travel.

After reading the previous section on strong coupling, you should now appreciate that

loosely coupled interfaces are generally preferred. That means all information not explicitly

accessible via an interface remains hidden. Unlike you, your colleagues derive comfort

from knowing those hidden details can be altered without causing adverse ripple effects.

If you find your interface design is being carefully scrutinized to ensure coupling

remains loose, you might wonder whether you have any options left open to you for

causing trouble in this area.

Actually, there are a couple of remaining cards you might play.

First, you can work within the rules, but at the same time abuse them and take

them to extremes. For example, passing information via parameter lists in a subroutine

call (identified earlier as data coupling) is considered acceptable. However, applying

the anti-rule “In general, the bigger the better” means you should create modules with

lots of subroutines, each one accepting a huge list of parameters. Extreme size tends to

tighten even acceptable types of coupling, because a module with many subroutines or a

subroutine with a lot of parameters takes more work to connect it up with other modules.

Another option is to sneakily “go around” the interface without being caught. One

particularly sly way is to create a form of common coupling. In this case, modules A and

B don’t actually share a direct link (as they would in the case of, say, a subroutine call

from A to B). Instead, A and B both share access to the same object, C. This means A can

affect the behavior of B (or vice versa) by changing the value of C.

Chapter 8 Modules

www.EBooksWorld.ir

141

To demonstrate this, let’s go to the moon. The following code is taken from a

program that controls a rocket, whose mission is to travel to the moon, dig up some

rocks, and return them to Earth. Data shared among various modules in the program is

stored in the DataStore object11:

public class DataStore {

 private static DataStore store = null;

 // Current weight of the ship

 private double weight;

 private DataStore() { }

 public static DataStore getShipData() {

 if (store == null) {

 store = new DataStore();

 }

 return store;

 }

 public double getWeight() { return weight; }

 public void setWeight(double weight) {

 this.weight = weight;

 }

}

Two classes involved in launching the rocket are the TrajectoryMapper and the

FuelCalculator, each of which are written by different programming teams. Both

depend on the rocket’s current weight, which is obtained by a WeighingMachine. The

TrajectoryMapper computes a trajectory for the rocket as follows:

public class TrajectoryMapper {

 public void calculateTrajectory() {

 DataStore store = DataStore.getShipData();

 double weight;

11 The DataStore is an example of a singleton (Gamma et al., 1995). It’s designed in such a way
that only one instance of a DataStore can be created. This same object is shared between every
class that accesses the DataStore, creating a kind of global variable.

Chapter 8 Modules

www.EBooksWorld.ir

142

 if (store.getWeight() == 0.0) {

 weight = WeighingMachine.getWeight();

 store.setWeight(weight);

 }

 // Code for computing trajectory

 // based on weight here...

 }

}

While the FuelCalculator computes fuel-consumption rates necessary to get the

rocket into space:

public class FuelCalculator {

 public void calculateFuelConsumption() {

 DataStore store = DataStore.getShipData();

 double weight;

 if (store.getWeight() == 0.0) {

 weight = WeighingMachine.getWeight();

 store.setWeight(weight);

 }

 // Code for calculating rocket

 // fuel consumptions here...

 }

}

Both classes first check whether the data store actually contains a weight

measurement yet. If not, the weight is zero, and so the object gets the current weight and

stores it in the DataStore.

All seems straightforward, right? However, the beautiful subtleties of indirect

coupling can be deceiving.

First, the DataStore is essentially a global variable (or global object). This means you

gain access to all the potential problems with global variables (discussed back in Chapter 3).

Chapter 8 Modules

www.EBooksWorld.ir

143

Second, the indirect, tight coupling makes the program sensitive to unintended side

effects when updating the code. For example, imagine that the weighing machine is

changed from one that reports weight in pounds to one that reports in kilograms. Since

all teams were measuring in pounds beforehand, the TrajectoryMapper team update

their code to convert this value into pounds before storing it, like this (changes to the

code are underlined):

if (store.getWeight() == 0) {

 weight = WeighingMachine.getWeight();

 // Convert kilograms to pounds by multiplying

 // by 2.2

 store.setWeight(weight * 2.2);

}

The team writing the FuelCalculator also learns of the new weighing machine.

However, they mistakenly assume that the DataStore now stores that weight in

kilograms also. But since their class uses pounds, they decide to convert the value to

pounds after looking it up in the DataStore. Hence, they make this change to their code:

if (store.getWeight() == 0.0) {

 weight = WeighingMachine.getWeight();

 store.setWeight(weight);

}

weight = weight * 2.2;

The result is that the weight used by the FuelCalculator is 4.4 times larger than

the actual value. The rocket will therefore use too much fuel during the launch and go

careering off into outer space never to be seen again.12

12 You might think this scenario a bit far-fetched; rocket engineers making such an elementary
mistake as to incorrectly convert between Imperial and SI units? But it’s actually inspired by the
true story of the Mars Climate Orbiter, lost in 1999 for very similar reasons.

Chapter 8 Modules

www.EBooksWorld.ir

144

 Thumbs Down!

There’s lots to say about writing good interfaces—too much for the space available

here. However, just to get you started, a few basic expectations of interfaces you’ll likely

encounter include:

• Smaller is generally better:

• A module should have a reasonable number of subroutines. As it

grows, it becomes unwieldy and more error-prone (Tang, 1999).

At this point, the module probably needs splitting to represent

several finer-grained concepts.

• Each subroutine should have a small number of parameters.13

• Each module should perform a single, well-defined task and cause

minimal side effects (ideally none).

• What goes on inside a module should be kept hidden from outsiders

so they’re protected from any internal changes. This is especially true

for volatile parts of a module.

• In the case of object-oriented programming languages, this

means giving class members the “strictest workable level of

privacy” (Bloch, 2008).

• When modules communicate, prefer explicit, loosely coupled means

like message-passing or subroutine calls (using parameters to pass

information).

• Interfaces should be carefully documented. This includes

descriptions of what task a module performs, what data it accepts

and returns, and any information that counters the user’s normal

expectations (e.g., potential exceptions or side effects when calling a

subroutine).

13 See Chapter 6 (section “Abuse Parameters”) for a discussion of this.

Chapter 8 Modules

www.EBooksWorld.ir

145
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_9

CHAPTER 9

Classes and Objects
 Objectives
In this chapter, you’ll learn:

• Some bad reasons to create classes

• How to make classes rigid and inflexible

• Lesser alternatives to polymorphism

• How to abuse inheritance in order to compromise your software

design

 Prerequisites
Before reading this chapter, make sure you’re familiar with:

• The basic ideas behind object-oriented programming, particularly:

• Instantiation and the difference between a class and an object

• Composition (i.e., one class containing a reference to another

class)

• Inheritance

• Static methods

• Interfaces in Java, and the interface keyword

www.EBooksWorld.ir

146

 Introduction
Like modular programming, object-oriented programming (OOP) attempts to mitigate

the problems of building software at large scale. While the two approaches share

common motivations and concerns—to the extent that much advice from modular

programming is applicable to OOP—the OOP paradigm nevertheless does things quite

differently. The chief difference is that the OOP approach yields programs made up of

multiple interacting objects. Each object is constructed from a blueprint (a class) and is

responsible for managing its own state and operations.

Object-oriented programming came to dominate software development in the

1990s. Its significance continues to this day, with the majority of contemporary, popular

languages supporting the OOP paradigm. Like a latter-day digital Trojan horse, it has

infiltrated projects far and wide. That means the nefarious lessons and nasty tricks this

chapter discusses are widely applicable in today’s software landscape.

 Have Questionable Motives for Creating Classes
A class should represent a well-defined abstraction, not just a bundle of
methods and variable definitions.

—Johnson and Foote, 1988

Before you even begin creating a new class, you’ll be faced with certain questions

that require careful answering: why am I creating this new class? What purpose does it

serve? What concept from my problem does it represent? And how can I ignore these

questions and do it all haphazardly instead?

The creation of a new class is a tricky thing because it’s a design issue. Few hard

rules govern exactly how and when a class should come into existence. That means

the practices described in this section aren’t bad in every situation. In fact, they might

occasionally be considered acceptable.

But don’t lose heart. If you follow the advice in this section repeatedly and without

thought, you’re bound to cause some pain eventually.

 Data Classes
When working in an object-oriented environment, the dreaded word responsibility crops

up a lot. Naturally, it sends shivers down your spine, but facing responsibility is kind of

unavoidable in OOP.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

147

Or is it?

OOP tries to make you design objects that are independent and responsible for

looking after themselves and making their own decisions. Not only can this be tricky to

do, but it would require you to break some of the key anti-rules of bad programming. Ask

yourself: how can you follow the anti-rule “Prefer monolithic over modular code” when

responsibility (and therefore your code) has to be distributed around multiple classes?

Happily, a way exists for you to design classes that are powerless and devoid of

responsibility. You can create a data class.

A data class is nothing more than a holder of data, a glorified record.1 Here’s an

example of a book modeled as a data class:

public class Book {

 private String author;

 private int numPages;

 private String isbn;

 public String getAuthor() { return author; }

 public void setAuthor(String author) {

 this.author = author;

 }

 public int getNumPages() { return numPages; }

 public void setNumPages(int numPages) {

 this.numPages = numPages;

 }

 public String getIsbn() { return isbn; }

 public void setIsbn(String isbn) {

 this.isbn = isbn;

 }

}

As you can see, a data class typically has little more than a collection of fields and

corresponding accessor methods. You can do little else with this Book than get and set its

properties.

1 A record is a simple data structure that groups together a collection of fields.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

148

Designing your classes as data classes is great because it saves you the effort of

having to do any proper design work.

 Thumbs Down!

When a data class appears, that raises the question, “Where is the code responsible for

manipulating its values?” That code must lie elsewhere.

For example, when using the Book class, the program needs to check certain values,

like ensuring numPages is not negative or validating the format of the ISBN. The natural

place for such code would probably be inside the Book class. Putting it outside the class

raises the likelihood that the same code is duplicated in several locations because those

checks are required in different places in the program.

As Martin Fowler writes, “Data classes are like children. They are okay as a starting

point, but to participate as a grownup object, they need to take some responsibility”

(Fowler, 1999).

For more on this, see the section “Make Objects Inflexible.”

 God Classes
It’s all well and good to follow the preceding advice and create mostly data classes, but

at some point you have to consider where the bulk of your program’s logic will actually

reside. It has to go somewhere, right?

Be mindful of a couple of anti-rules, particularly “In general, the bigger the better”

and, again, “Prefer monolithic code over modular code.” You can save yourself a lot of

design effort by simply stuffing the bulk of your logic into a tiny number of “mega”-

classes. Let those objects orchestrate everything. Put them at the center of the program,

ordering around all the other powerless objects.

Because this concentrates enormous power into their hands, such classes are usually

termed god classes. How can anyone argue against something with such an awesome

name?

 Thumbs Down!

God classes are actually quite easy to argue against, and your colleagues will probably

do so. In many cases, they’ll simply be referencing the same objections from earlier

chapters.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

149

Consider the consequences on coupling and cohesion. The same principles—prefer

loose coupling and high cohesion—also apply to OOP:

• An object that exerts heavy control on the behavior of so many others

tightens coupling.

• An object that manipulates a diverse array of objects possesses

many unrelated responsibilities, thus lowering its cohesion. The

consequences of both are discussed at length in Chapter 8.

God classes tend to create maintenance and testing headaches. Your colleagues

prefer a class to represent a single, distinct abstraction that focuses on one aspect of the

problem.

 Utility Classes
Another way you can dodge this object-oriented design malarkey is to bend your object-

oriented language into producing old-fashioned procedural code. In Java, you can do

this by designing classes as a set of static methods.

public class BookUtils {

 public static boolean validateIsbn(Book b) { }

 public static boolean validateNumPages(Book b) { }

 public static void regsiterBookInLibraryOfCongress(

 Book b) { }

 // etc...

}

By doing this, your new class becomes little more than a library of routines. No need

to worry about OOP principles and design. What a weight off your mind!

 Thumbs Down!

Personally, I wouldn’t say utility classes are inherently bad (plenty of perfectly good

projects have a utility class here and there). You should simply be aware that using them

means giving up certain features of object orientation. Your colleagues may be unwilling

to tolerate this in all cases, especially when a superior object-oriented solution exists.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

150

For example, a utility class can neither be instantiated nor extended by being sub-

typed (Bloch, 2008). However, a key OOP principle states that new behavior should be

added to a class by extending it rather than modifying it.2 Since sub-typing a utility class

is off the table, you can’t adhere to this principle in this case, because you can’t extend a

utility class.

 Make Objects Inflexible
OOP is often sold on its ability to produce flexible designs. Do things right and you can

produce classes that are more easily maintained and reused. Do things not-so-right and

the resulting inflexibility can cause programming nightmares.

 Objects Obeying Orders
OOP design claims objects should be independent and able to make their own decisions.

On the surface, this sounds great. A load of work off your hands, right?

But don’t forget that the job of making them independent falls to you. Instilling

independence and responsibility into objects is like imbuing your kids with the same

characteristics. It takes patience, hard work, and careful thought. Paradoxically, then,

you can give yourself an easier time (in the short term, at least) by being tyrannical with

your objects.

To put it another way, it’s easier to make your objects cross the road on command

than to teach them how to do it by themselves.

But decisions have to be made somewhere. Instead of dividing up decision-making

power between the objects in your program, you’ll have to concentrate that power

in a tiny handful of quasi-omnipotent objects who order all the others around. As a

consequence, most objects in your project will end up being treated like children.

To establish this domineering relationship, a decision-making class is composed of

references to numerous powerless classes. Then, all decisions that ought to be made by a

“child” should be encoded into the “parent” instead.

2 Known as the Open/Closed principle, meaning the class should be open for extension but closed
for modification.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

151

The following example depicts a tyrannical parent (StationManager, which

aspires to tightly control all aspects of running a train station) and one of its children

(TicketMachine, a ticket-vending machine).

class StationManager {

 // StationManager is composed of lots of other classes

 // (like HelpDesk, StationDisplay, SpeakerSystem

 // etc.) in addition to the TicketMachine

 TicketMachine machine = new TicketMachine();

 public void insertCoinToMachine(int coinValue) {

 machine.setCredit(coinValue);

 }

 public void buyTicket() {

 Ticket t = chooseTicket();

 if (t.getPrice() <= machine.getCredit()) {

 machine.deduct(t.getPrice());

 printTicket();

 }

 else {

 System.out.println("Not enough credit!");

 }

 }

}

class TicketMachine {

 int credit;

 public int getCredit() { return credit; }

 public void setCredit(int value) { credit = value; }

 public void deduct(int value) { credit -= value; }

}

The TicketMachine has been taught how to do almost nothing. The StationManager

keeps it on a very short leash, allowing it to do barely anything on its own initiative.

The TicketMachine lives its life following orders from the StationManager. This makes

designing the TicketMachine very simple for you.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

152

 Thumbs Down!

You might recognize that the two classes in the previous example, StationManager and

TicketMachine, are instances of a god class and a data class respectively.3 This should

immediately ring alarm bells.

It should also indicate where the design is lacking. OOP design recommends that

objects manage the concepts they were designed to represent. When deciding where

to put the code for a particular task, you should ask questions like, “Which object is

responsible for this?” or “Whose business should this be?”

In this case, the responsibility for processing a ticket sale belongs to the

TicketMachine. It’s really no business of any other class.

class TicketMachine {

 private int credit;

 public void insertCoin(int value) {

 credit += value;

 }

 public void buyTicket() {

 Ticket t = chooseTicket();

 if (t.getPrice() <= credit) {

 credit -= t.getPrice();

 printTicket();

 }

 else {

 displayMessage("Not enough credit!");

 }

 }

}

Giving a TicketMachine responsibility for its own business yields several benefits:

• It puts relevant functionality in its logical place, thus making it easier

to find.

3 See the earlier section, “Have Questionable Motives for Creating Classes.”

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

153

• It reduces the number of responsibilities of the controlling class

(in this case, StationManager). Like subroutines and modules,

classes ought to have a single responsibility.4

• Removing responsibilities from it reduces the size of the controlling

class, which is a good thing given that large classes tend to be more

error-prone (Basili et al., 1996; Gyimóthy et al., 2005).

• It enables classes like TicketMachine to do a better job of hiding their

implementation details behind an interface.

• Note that the newer version of TicketMachine no longer provides

methods in concrete terms of getting/setting internal fields (such

as credit); rather, its methods deal with more conceptual terms,

i.e., inserting coins and buying tickets.

 Rigid Relationships
An object-oriented programming course tells you many things, particularly about

design. It tells you objects collaborate in solving a problem, that they work together by

establishing relationships and passing messages to each other. You’ll be told objects

should be able to choose which other objects to collaborate with.

You, however, with your trust issues, prefer behaving like a tyrannical parent. No way

will your “children” be allowed to make decisions like that out of your sight. Decisions

concerning whom they can be “friends” with remain yours.

Doing this requires you to be the enforcer of strong, rigid relationships between

classes and is another great way to bake inflexibility into your program design. Check out

this snippet from a program that manages the feeding of pets:

class PetFeeder {

 public void giveFood(Dog d) {

 d.feed();

 }

}

4 This is called the Single Responsibility Principle (Martin, 2009).

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

154

class Dog {

 public void feed() {

 System.out.println("Wolfing down dog food");

 }

}

public static void main(String[] args) {

 PetFeeder feeder = new PetFeeder();

 Dog lassie = new Dog();

 feeder.giveFood(lassie);

}

Seems simple enough, but little would you suspect that this straightforward design

has a strong element of rigidity.

To expose it, let’s imagine your colleague subsequently comes along and, for some

inexplicable reason, has a pet cat. They wish to add their pet type to the system:

class Cat {

 public void feed() {

 System.out.println("Turning nose up at cat food");

 }

}

They also want the program feed their cat:

public static void main(String[] args) {

 PetFeeder feeder = new PetFeeder();

 Dog lassie = new Dog();

 feeder.giveFood(lassie);

 Cat felix = new Cat();

 feeder.giveFood(felix);

}

Of course, the laws of evolution conspire to prevent this from working:

error: incompatible types:Cat cannot be converted to Dog

 feeder.giveFood(felix);

 ^

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

155

That’s because you originally gave the PetFeeder the ability to feed only dogs. To

feed a cat, the PetFeeder requires an extra method be added to it:

class PetFeeder {

 public void giveFood(Dog d) {

 d.feed();

 }

 public void giveFood(Cat c) {

 c.feed();

 }

}

So, if your friend wants to feed their moggy, you force them to do extra work. That

serves them right for liking cats in the first place.

 Thumbs Down!

The problem doesn’t just lie with cats. Adding any new type of pet to the system, be it a

rabbit, a spider, or a lizard, requires the addition of new giveFood methods.

This means the PetFeeder has the potential to grow into a very large class full of

giveFood methods. Although each feed method would technically be doing something

different, the concept of giving food to a pet is the same in each case. In other words, the

same message is sent to each type of pet. This makes it a form of duplication, and don’t

forget that unnecessary duplication in software gets right up your colleagues’ noses.

The problem stems from the original decision to make the PetFeeder deal with

concrete classes5 like Dog. This is known as programming to an implementation. A key

design principle in OOP states you should instead prefer programming to an interface.

This means that classes should, where possible, make references to more abstract classes.

What would be a more abstract class in our example? Pet dogs, pet cats, pet mice . . .

they’re all pets, and every pet needs feeding.

interface Pet {

 void feed();

}

5 A concrete class is a class with no missing implementation details, unlike, say, an abstract class
or interface.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

156

Every pet gets fed, but each in a different way, so that detail is missing from the

interface. Concrete implementations of Pet fill in that detail, for example:

class Mouse implements Pet {

 public void feed() {

 System.out.println("Nibbling on cheese.");

 }

}

What’s the benefit of doing this? Well, for one thing, the duplication in PetFeeder

can be eliminated.

class PetFeeder {

 public void giveFood(Pet p) {

 p.feed();

 }

}

The revised version of PetFeeder is programmed to an interface rather than an

implementation. Instead of enforcing a rigid relationship between two concrete classes,

the PetFeeder can now deal with any class that implements the Pet interface (because

every Pet must have a feed method). Consequently, PetFeeder only needs a single

giveFood method to feed all pets.

 Avoid Polymorphism
No doubt all this talk of flexibility from the preceding section leaves you thoroughly

unimpressed. Flexibility is all very well for contortionists, but you don’t need it in your

life. It just makes work harder for you.

That idea from the previous section—that of providing a single interface for

communicating with numerous different types—actually has a name: polymorphism.

The OOP community is quite fond of it, so it can be hard to avoid.

Short of avoiding it entirely, you could at least do it in undesirable ways. This section

will demonstrate how.

A program sometimes has to make decisions based on which type it’s currently

dealing with, as with the previous example and its various types of pets who needed

feeding in different ways. The second version featuring the Pet interface (the one no

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

157

doubt preferred by your colleagues) was a polymorphic version. That’s because the Pet

type was an abstract interface that hid from the using type a variety of different concrete

implementations.

Since polymorphism is so lauded, you might suspect you have to choose between

doing it right or not doing it at all. However, you have another choice. You could use an

approach that appears as though you’re trying to build a flexible, polymorphic solution,

but actually engenders a degree of rigidity in the program. Look at this example code

from a supermarket checkout program, which gets the prices for a list of groceries.

ArrayList<Object> shoppingList = getShoppingList();

for (Object item : shoppingList) {

 int price = 0;

 if (item instanceof ScanItem) {

 // Scan the barcode and lookup the price

 price = item.lookupPrice();

 }

 else if (item instanceof ProduceItem) {

 // Produce is sold by weight

 price = item.getPriceByWeight();

 }

 else if (item instanceof ReducedItem) {

 // Reduced items require the human operator

 // to key in the price on the tag

 price = item.keyInPrice();

 }

 System.out.println(price)

}

A couple of design decisions make it inflexible, hopefully in ways that go unnoticed.

First, since groceries come in all different types, the containing list is declared as

containing Object types (the one type in Java that all other types derive from). After

all, you can’t be sure exactly which types are in the list, but you can at least be sure that

they’re Objects. Beyond that incidental detail, however, an Object shares no conceptual

relationship with the various grocery types, making it awkward to deal with the contents

of the list.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

158

Second, each type of grocery is priced in different ways, such as being scanned,

weighed, or keyed in manually. That’s why each type has different methods for obtaining

the price. By testing each grocery’s type, you make it appear to the observer like you’re

trying to take into account the problems of mixed types. However, that sneaks in some

nice, subtle problems at the same time:

• The if ladder in this code can potentially grow very long as you add

more types of groceries, and lengthy chains of if statements always

provide good fun.

• The moment you introduce a new type of grocery and neglect to

add an extra clause to the if ladder, the program ceases functioning

correctly because it doesn’t know how to handle the new type of

grocery. With luck, the code contains multiple if ladders, just like

this one testing groceries’ types. The more ladders there are, the more

likely that one or more of them go forgotten.

 Thumbs Down!
Don’t be surprised when extensive use of the instanceof keyword (or whatever

equivalent your language has for checking type equality) raises eyebrows among your

colleagues.

It would do so in this case because the checkout code, like the pet example before it,

is programmed to a concrete implementation. The instanceof keyword is being used to

see if an object is of a specific concrete type.

You’ll find your code more readily acceptable if it is instead programmed to an

abstract interface. But how can you do that when the program deals with a collection of

differently typed objects?

First, you can apply the lesson from the previous section and create an interface

for all those grocery types. The exact method for obtaining a price might vary, but that

doesn’t matter. We know one thing for sure: all groceries have a price.

interface Grocery {

 int getPrice();

}

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

159

Now, each concrete item can report a price via the same method. For example:

// A ProduceItem for example is a type of Grocery that

// gets a price by weighing the item.

public class ProduceItem implements Grocery

{

 // Cents per kilogram

 private int pricePerKg;

 public ProduceItem(int pricePerKg) {

 this.pricePerKg = pricePerKg;

 }

 public int getPrice() {

 // Ask the Scales class to weigh this item

 return Scales.getWeight(this) * pricePerKg;

 }

}

All these different types can go into the same shopping list thanks to the Liskov

Substitution Principle (Martin, 1996). This states that an object of a particular type

should be replaceable by any other object of the same type or its sub-type. That’s why

you might see code like this:

List<Integer> numbers = new ArrayList<Integer>();

The type on the left is abstract. The type on the right is a concrete class. You could,

for example, pass this variable to a subroutine like this:

// Returns sum of the nums.

Integer sum(List<Integer> nums) { // ...

You could subsequently change the instantiation of numbers to be a LinkedList

instead:

List<Integer> numbers = new LinkedList<Integer>();

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

160

But nothing else in the program would need to change, because a LinkedList is still

a List.6 Similarly, if you started with this:

Pet lassie = new Dog();

feeder.giveFood(lassie);

and you subsequently discovered you’d made a mistake and that Lassie was actually a

cat (nobody’s perfect), you could alter the code in just one place and the rest would

still work:

Pet lassie = new Cat();

feeder.giveFood(lassie);

Because of this principle, you can treat all the diverse types in a collection in a

uniform way:

List<Grocery> shoppingList = getShoppingList();

for (Grocery item : shoppingList) {

 int price = item.getPrice();

 System.out.println(price)

}

Now, everything in the list is a grocery. The loop doesn’t care what specific type, only

that each item will answer when it receives the message getPrice(). No matter how

many additional types of groceries you add, this loop can remain unchanged and still

total the price correctly.

 Overuse and Abuse Inheritance
When all you have is a hammer, every problem looks like a nail.

—Proverb

Inheritance is among the earliest of the neat tricks learned in a typical OOP course.

Like every neat trick you learn, inheritance should immediately become your figurative

“hammer,” the tool you have in hand now that every problem looks like a nail.

6 Because both ArrayList and LinkedList implement the List interface.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

161

 Going Deep
Inheritance may well have been sold to you as a means of extending classes. You take an

existing class and augment its features by inheriting from it and adding new members.

For example, let’s say you begin with a Car class, and then later you want to

model your new Land Rover. But that’s not just any old car. It’s a sexy four-wheel-

drive car whose awesomeness cannot be captured adequately by such a vanilla type

as Car. It deserves its own class. And so you extend the existing Car class and create a

FourWheelDriveCar class. Figure 9-1 depicts this.

class Car {

 // ...

}

class FourWheelDriveCar extends Car {

 // Activate 4-wheel-drive mode

 public void activate4WD() {

 // ...

 }

}

Once you see this problem as a nail, there’s no limit to how much you can use

inheritance as a hammer. For every additional feature you want to introduce, you can

simply extend the existing, less detailed class. Go crazy. Go deep.

Car

FourWheelDriveCar

Figure 9-1. One class inherits from another

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

162

Of course, this repeated extension results in a deep inheritance hierarchy

(see Figure 9-2), but who cares?

 Thumbs Down!

Actually, a deep inheritance hierarchy could well raise complaints. Going beyond a

certain depth can cause serious problems for testing and maintenance.

In terms of comprehension, it makes the job harder for the reader. It can be difficult

to see which methods or fields a deep class actually provides, because it has potentially

inherited dozens or even hundreds of them via its many superclasses. In a famous study

of OOP design practices (which examined real-world code examples), one inheritance

hierarchy reached eight levels deep. The class at this level had only four methods of its own,

but it supported 132 methods given to it by its ancestors (Chidamber and Kemerer, 1994).

Things get even harder to understand when you realize that some of those inherited

methods have surely been overridden by one or more of the classes in the middle of

the hierarchy. Determining which version of a method the deepest class provides then

becomes frustratingly difficult.

FourWheelDriveCar

FourWheelDriveDieselCar

MilitaryFourWheelDriveDieselCar

MilitaryFourWheelDriveDiesel
CarWithFreakingBellsOnlt

Car

Figure 9-2. A five-level-deep inheritance hierarchy

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

163

A deep inheritance hierarchy also has great potential for causing ripple effects.

Altering the behavior of a class at the higher levels can suddenly change that of its

descendants in unintended ways. That’s because inheriting from a concrete class

creates a tight coupling between parent and children, and—as Chapter 8 told you—tight

coupling encourages unintended knock-on effects. Doing this amidst a deep inheritance

hierarchy only intensifies the problem because the ripple effects travel far.

Several studies suggest that the deeper a class sits in an inheritance hierarchy,

the more error-prone and costly to maintain it is, especially when many methods are

involved (see, for example, Basili et al., 1996; Briand and Wüst, 2002; Prechelt et al., 2003).

Judging to what maximum depth an inheritance tree should be allowed to go is

still seemingly up for debate. You’ll see figures ranging from around three or four levels

(Microsoft, 2016) up to about ten (CA-CST-SII, 2015). In my own view, you should

strongly prefer the lower of those two suggestions.

 Quick and Dirty Reuse
If you want to reuse code (or, more likely, you’re forced into reusing it) and that code

lies in another class, why not use inheritance? It’s easy. Your class can just inherit from

the class containing the code to be reused, because inheritance automatically gives you

access to all the methods in the parent.

To demonstrate, here’s a little sample from a program that models animal behavior.

The program already includes a Bird class, which someone else is responsible for:

class Bird {

 boolean flying = false;

 public void fly() {

 flying = true;

 System.out.println("I'm flying!");

 }

}

Your job is to add another class modeling bats. Your new Bat class needs a fly

method, something the Bird class already contains. To make your job simpler, you can

make Bat inherit from Bird to gain access to the fly method:

class Bat extends Bird {

 public void squeak() {

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

164

 System.out.println("'Squeak, squeak!'");

 }

}

That works, right? Let’s see:

Bat batsy = new Bat();

batsy.squeak();

batsy.fly();

When you run the preceding code, everything works as expected:

'Squeak, squeak!'

I'm flying!

You added the required functionality, so, job done. But, like setting a trap, you’ve also

sown the seeds of a problem.

The coder responsible for the Bird class adds another behavior to it: laying eggs.

Their class now looks like this:

class Bird {

 boolean flying = false;

 int eggs;

 public void fly() {

 flying = true;

 System.out.println("I'm flying!");

 }

 public void layEggs(int n) {

 eggs += n;

 System.out.println("Laid " + eggs + " eggs");

 }

}

They’ve sprung the trap. Because your Bat class inherits everything in Bird, your

program now models bats as being capable of laying eggs!

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

165

 Thumbs Down!

Inheritance is one of the most commonly misused techniques in the OOP toolbox, and

misusing it often results in an inflexible, hard-to-maintain codebase. Consequently, you

should think carefully before deciding to use it.

Keep in mind that it creates a relationship between two classes, C and D, often called

an is-a relationship. That’s because when class D inherits from class C, you can say D

is a C. In the previous example, Bat inherits Bird just to reuse some code. This abuses

inheritance because that relationship doesn’t make semantic sense—a bat is not a bird,

and being able to fly doesn’t make it one.

OOP specialists recommend against using inheritance just for code reuse. The

consensus is that inheritance actually serves best as a means to capture variations

among some abstract concepts. We saw this earlier when we defined Dog and Cat as

more specific varieties of Pet, or ProduceItem and ScanItem as more specific varieties

of Grocery. However, the previous example defined a Bat as a variety of Bird, and that

makes no sense.

There’s a more suitable use of inheritance in this example. In order to capture the

variations, you have to first identify the abstract concepts. In this case, the program

models animal behavior, so the abstract concepts are the traits or behaviors shared by

many varieties of animal, like flying or egg laying. Just for starters, that would give us the

following abstractions:

interface Flyer {

 void fly();

}

interface EggLayer {

 void layEggs(int n);

}

And so:

• Because a bat can fly, the Bat class is a variety of Flyer.

• Because a bird can fly and lay eggs, the Bird class is a variety of both

Flyer and EggLayer.

class Bird implements Flyer, EggLayer {

 boolean flying = false;

 int eggs;

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

166

 public void fly() {

 flying = true;

 System.out.println("I'm flying!");

 }

 public void layEggs(int n) {

 eggs += n;

 System.out.println("Laid " + eggs + " eggs");

 }

}

class Bat implements Flyer {

 boolean flying = false;

 public void fly() {

 flying = true;

 System.out.println("I'm flying!");

 }

}

This might improve the use of inheritance, but it forces us to implement the fly

method multiple times. The original goal was to define the method once and reuse it.

This is where your choice of language matters. For example, you could turn Flyer into

some kind of partial class that contains an implementation of fly but isn’t meant to

be instantiated, only inherited. This corresponds to an abstract class in Java parlance.

However, Java doesn’t allow the multiple inheritance of classes as some languages do, so

an animal class wouldn’t be able to inherit multiple behaviors this way, as Bird should.

(If you use another language, you might be in a position to use techniques like

mixins or traits. However, we’ll remain focused on Java here.)

Since Java 8, a simple way to create a reusable fly method would be to use default

methods.7 This creates a single, default implementation of a method that all concrete

classes inherit when they implement an interface.

7 Ways also exist to do this without the use of inheritance; for example, by using certain design
patterns. However, since this section focuses on inheritance, I’ll stick with that.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

167

interface Flyer {

 void setFlying(boolean flying);

 default void fly() {

 setFlying(true);

 System.out.println("I'm flying!");

 }

}

class Bat implements Flyer {

 boolean flying = false;

 public void setFlying(boolean flying) {

 this.flying = flying;

 }

}

class Bird implements Flyer, EggLayer {

 boolean flying = false;

 public void setFlying(boolean flying) {

 this.flying = flying;

 }

 public void layEggs(int n) {

 eggs += n;

 System.out.println("Laid " + eggs + " eggs");

 }

}

This means the fly method is now available in both the Bird and Bat classes, it’s

defined in one place, and the inheritance hierarchy hasn’t been compromised to achieve

all that.

Chapter 9 Classes and ObjeCts

www.EBooksWorld.ir

169
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_10

CHAPTER 10

Testing
 Objectives
In this chapter, you’ll learn:

• How to protect your code from tests that threaten to reveal bugs, in

particular by

• retaining authorship of tests;

• doing the bare minimum necessary; and

• writing untestable programs.

• How to write tests that cause havoc for your colleagues, in particular by

• making a test’s success dependent on its environment;

• creating work for testers by unnecessarily widening the focus of a

test; and

• adding volatile, uncontrollable elements.

 Prerequisites
Before reading this chapter, it will help if you’re familiar with the following:

• The basic concepts of unit testing and integration testing

• How to write basic test cases using automated test frameworks

like JUnit

www.EBooksWorld.ir

170

 Introduction
Testing is a big part of the software-development process, so big that it’s broken up into

various stages, typically something like this:

• Unit testing: where individual pieces of the program are tested,

typically at the level of routines in a module

• Integration testing: where several modules are tested together

• System testing: where the system as a whole is executed by the team

to verify functionality

• Acceptance testing: where the system as a whole is executed by the

customer to ensure it meets expectations

These stages grow progressively more important and involve more people as you go

down the list. A low-level grunt like you has little hope of messing up testing during the

latter stages, since they’re often carried out collectively and under the watchful eyes of a

responsible senior team member.

However, you can exert influence during the earlier two stages—unit and integration

testing—where you have a chance of being left to your own devices. This chapter

therefore focuses on the earlier testing stages, where you test the individual units1 of code.

You know your own modules and subroutines well. You know where the bugs are

hiding, and you want them to stay there. Consequently, you must carry out testing

ineffectively so that the bugs are left well alone.

 Be Protective of Your Code
You should do what you can to keep prying eyes away from your code. If you allow others

to see it and test it, you risk all your lovely bugs being discovered. This section describes

how you can protect your code.

1 A unit is a small, testable part of a program, commonly at the level of an individual subroutine.

Chapter 10 testing

www.EBooksWorld.ir

171

 Keeping It to Yourself
It should go without saying that if you can avoid writing tests for your code, then for

heaven’s sake do so. However, the chances are good that you’ll find yourself on a project

whose leaders insist all program code be tested.

If this is the case, you should fight to be able write tests for your own code. Argue

that, since you’re the author of the code, you’re most familiar with it and therefore in the

best position to test it. If you allow your colleagues to test it instead, they won’t take care

with it, and anything that’s as fragile as your code will break pretty quickly.

 Thumbs Down!

That last sentence describes the whole point of appointing someone other than a unit’s

author to write tests for it.

As the proud author of a piece of code, you’re too likely to go easy on your precious

creation and really put it to the test. On the other hand, your colleague is positively

salivating at the prospect of putting your code through the ringer. The opportunity

to expose someone else’s problems is just too rewarding to resist, so they’ll naturally

throw everything they can at your code to make it crumble. It’s a good thing that they

do, because seeing how well the code stands up to pummelling is the best way to

demonstrate its quality.

In addition to their naked ambition, your colleague’s lack of knowledge about the

code is actually a benefit, not a drawback. You know how it’s supposed to work, so you’ll

probably (unconsciously) test it in that specific way. However, your colleague is more

likely to use the code in ways that are correct but unexpected; ways that you didn’t

anticipate and that might very well expose a bug.

 Doing the Bare Minimum
If you succeed in getting your way and are able to test your own code, then you can go

easy on it. You probably won’t get away with writing zero tests, but writing a bit of test

code that verifies little or nothing of the unit’s behavior might just be enough to sneak

past your team’s prying eyes.

In other words, hope that your test is seen to be written, but not written to be seen.

Chapter 10 testing

www.EBooksWorld.ir

172

If you want to be really brazen, write a test case like this:

public class MainTest {

 @Test

 public void testMyMethod() {

 assertTrue(true);

 }

}

A test that checks whether true is true will pass forever until the end of time.

Of course, even someone giving your test a cursory glance will notice what you’ve done,

so this approach is probably too risky.

Instead, you could test the absolute bare minimum. Remember that the point of

unit testing is to build confidence in the absence of errors by demonstrating the unit

withstands scrutiny from a comprehensive range of tests. So, a minimal range of tests

(preferably a single one) won’t elicit much confidence, but it might just fool others that

you’re testing earnestly.

For example, let’s say you’re testing a FizzBuzz routine.

String fizzBuzz(int n)

It calculates the correct response for a particular number, n, in a game of FizzBuzz.

In this game, players take turns counting up from one. However:

• Numbers cleanly divisible by three must be replaced by the word

“Fizz.”

• Numbers cleanly divisible by five must be replaced by the

word “Buzz”.

• Numbers cleanly divisible by both those numbers must be replaced

by the word “FizzBuzz.”

• All other numbers remain unchanged (although fizzBuzz returns

them as a string).

Since the fizzBuzz routine can respond in different ways under different conditions,

it requires several tests (at least one for each different response) to build confidence in its

stability.

Chapter 10 testing

www.EBooksWorld.ir

173

However, you’re not interested in building confidence in anything, so one test

will suffice:

public class FizzBuzzTest {

 @Test

 public void testFizzBuzz() {

 FizzBuzzGame game = new FizzBuzzGame();

 String response = game.fizzBuzz(4);

 assertEquals(response, "4");

 }

}

Whatever you do, don’t be tempted to build up a whole suite of test cases with lots of

different input data. You’ll only end up exposing problems in the program.

 Thumbs Down!

Thoroughly testing a unit of code requires a good amount of forethought.

That’s because exhaustive testing is rarely a realistic possibility. Even something as

simple as square(n)—a subroutine that returns n multiplied by itself—would require

many millions of executions for each possible value of n to show empirically that it

works for all possible values. Something only slightly more complicated, like max(a, b),

which returns the highest value from two numbers, a and b, would require a prohibitive

number of tests thanks to combinatorial explosion.

Therefore, you have to be more methodical and design a relatively small set of tests

that maximizes testing potential. One approach is a useful black-box technique2 called

equivalence partitioning. When applying this method, you examine the inputs to a unit

and divide all possible values into groups based on the expected behavior they elicit.

These groups are called equivalence classes. The inputs in each group elicit different

outputs, but all values in a single group are assumed to elicit the same sort of behavior.

Instead of testing all values, we choose one value from each equivalence class to be

a representative of all values of their class. It is assumed that only one value from each

class is required to expose any potential errors.

2 Black-box testing assumes you’re unaware of the unit’s inner workings. Applicable when you’re
not the unit’s author or for designing test cases before a unit’s implementation exists.

Chapter 10 testing

www.EBooksWorld.ir

174

In the fizzBuzz subroutine example, the equivalence classes of the input, n, include

the following:

• Normal acceptable numbers (e.g., 8): All acceptable numbers not

divisible by 3 or 5. The method should return the same number we

give it. If this number works, it implies all other numbers in this class

also work.

• Fizzes (e.g., 3): All numbers divisible by three. Method should

return “Fizz.”

• Buzzes (e.g., 10): All numbers divisible by five. Method should

return “Buzz.”

• FizzBuzzes (e.g., 30): All numbers divisible by both three and five.

Method should return “FizzBuzz.”

And, because one piece of testing wisdom warns us that “bugs lurk in corners and

congregate around boundaries” (Bezier, 1990):

• Acceptable boundary (e.g., 1): This should work.

• Unacceptable boundary (e.g., 0): This should be rejected.

Those equivalence classes are represented in Figure 10-1.

Figure 10-1. Equivalence classes of inputs to FizzBuzz represented pictorially

Chapter 10 testing

www.EBooksWorld.ir

175

With just a bit of planning, we’ve come up with seven tests that cover all different

situations. When all tests pass, it establishes a good level of confidence in the subroutine.

Many testing frameworks also make it easy to apply code-coverage reporting. This

is a white-box technique3 that shows which lines of code are executed during tests and

which are not. The idea is that you can be more confident that executed lines don’t

contain bugs.

Code-coverage reports normally give results as the percentage of a unit’s lines

executed during a test. Generally, a unit subjected to high coverage probably has fewer

bugs in it than a unit with low coverage. Let’s use the FizzBuzz subroutine again as an

example and imagine that the equivalence classes identified were turned into tests and

executed. A coverage report might look like this:

 public String fizzBuzz(int n) {

> String output = "";

> if (n < 1) {

> return "Error: number must be positive";

> }

> if (n % 3 == 0) {

> output += "Fizz";

> }

> if (n % 5 == 0) {

> output += "Buzz";

> }

> return output.isEmpty() ? Integer.toString(n) : output;

 }

Lines prefixed with a '>' symbol show which lines were executed during tests. As

you can see, the equivalence classes identified cover lines of code inside the method.

3 White-box testing assumes you’re aware of the unit’s inner workings.

Chapter 10 testing

www.EBooksWorld.ir

176

 Thwarting Efforts
You might find that policy prevents you from testing your own precious code. Thus, your

callous colleagues will rip your baby from your arms and toss it uncaringly at someone

else for examination.

In such circumstances, it might seem all is lost. The colleague testing your code is

unlikely to go easy on it, as you would, so it’s only a matter of time before your colleague

roots out all the bugs. But actually, you can prepare for such outcomes before the

testing phase. Specifically, you should try to make the code hard to test, dooming your

colleagues’ efforts to failure.

Earlier chapters in this book have already given you some tips that, among other

things, make testing harder. Here’s a summary of the important ones:

• Give the code poor layout. This makes white-box testing harder

because poorly laid out code is difficult to understand.

• Don’t document your code. This makes it hard to determine what

each unit is supposed to do and come up with suitable tests for it.

• Use global variables. These are frustrating during tests because the

tester cannot focus solely on the unit in question.

• Write highly complex units. Complex code has numerous possible

pathways through it, meaning the tester has to write lots of test cases.

• As a follow-on from this, include complex expressions in your

conditions. Not only are they hard to understand, but compound

expressions also increase the number of tests required.

• Prefer large, monolithic routines. Don’t break them into small,

focused subroutines. Large subroutines require more effort to

understand before being tested.

• Give subroutines a large number of parameters. Such subroutines

require more effort to test.

• Provide missing or poorly written error information. This makes it

hard for a tester to reconstruct events from a failed test.

Chapter 10 testing

www.EBooksWorld.ir

177

• Ensure your modules have lots of dependencies. When testing a

module, its dependencies require setting up too. The more it has, the

more setup work for the tester.

• Tightly couple your modules. This frustrates testers’ efforts at

focusing on a single unit because the behavior of the other unit(s)

impacts that of the unit under test.

• Create deep inheritance hierarchies. Testing a class located deep in

the hierarchy requires a lot of setup work. Plus, hidden relationships

and method overrides make it hard to understand a class’s expected

behavior.

Apply these practices as much as you can to give the testers hell.

 Thumbs Down!

Earlier chapters examine all the practices cited here. They explain both why the practices

are considered bad as well as more acceptable alternatives. Choosing a better alternative

practice usually improves the testability of the unit.

 Set Traps in Your Tests
Unit tests are supposed to live forever. Once written, they stay in the codebase, acting

as vigilant verifiers of functionality and guardians against regression. After a test is

incorporated into the codebase, it might seem that your opportunity to cause havoc with

that test has passed.

Actually, it hasn’t.

Imagine writing a unit test akin to a ticking time bomb. It initially passes and gets

accepted into the codebase, but it’s a trap, ready to catch an unfortunate colleague who

strays too close.

It’s possible to write such tests, ones that can easily break at an unknown future

date for no readily apparent reason and that cause colleagues to curse your name after

they’ve ventured into the rabbit hole of your test code.

Chapter 10 testing

www.EBooksWorld.ir

178

 Machine-specific Tests
“Well, it works on my machine.”

There’s a special place in hell reserved for people who use this phrase. Here’s how to

book your place.

It’s not uncommon to find that a program works correctly on one machine but fails

on another. Of course, other programmers try their best to avoid this outcome. You,

however, actively seek it.

One common reason for this discrepancy is that the program references some kind

of external resource whose nature differs between machines. You can use this fact to

write temperamental tests, ones that initially work for you but then later break down

when someone else runs them.

For example, when tests refer to resources residing on your machine (but not

necessarily on others), they will work for you but fail when your colleagues run them

on their own machines. The following script tests a simple food-menu program. The

program reads the names of menu items in from a text file:

public class Menu {

 private List<String> items = new ArrayList<>();

 public void loadMenu(String path) throws IOException {

 Path menuFile = Paths.get(path);

 BufferedReader reader =

 Files.newBufferedReader(menuFile,

 StandardCharsets.UTF_8);

 String line;

 while ((line = reader.readLine()) != null) {

 addItem(line);

 }

 }

 public void addItem(String s) {

 items.add(s);

 }

 public int getMenuSize() {

 return items.size();

 }

}

Chapter 10 testing

www.EBooksWorld.ir

179

All fine, but your test script verifies the loadMenu method like this:

@Test

public void testLoadMenu() {

 Menu m = new Menu();

 // A file with 8 menu items.

 m.loadMenu(

 "c:\\Users\\asmith\\MenuApp\\data\\menuData.txt");

 assertEquals(m.getMenuSize(), 8);

}

That hard-coded file path points to the personal home folder on your own machine

. . . a location that exists nowhere else, meaning that the test passes for you, but fails on

another machine.

Admittedly, hard-coded file paths might go wrong a little too quickly and be caught

by your colleagues too easily, but other more subtle techniques exist. For example,

altering the previous test to use environment variables4 can make it look as though

you’re writing a machine-independent test:

@Test

public void testLoadMenu() {

 Menu m = new Menu();

 String path = System.getenv("CD") +

 "\\data\\menuData.txt";

 m.loadMenu(path);

 assertEquals(m.getMenuSize(), 8);

}

The CD value is available on Microsoft Windows machines and holds the location

of the Current Directory in which the program is being run. That means the tests should

now work on any machine, so long as it’s a Windows machine. Other platforms, like

Linux or OS X don’t support the CD environment variable (the equivalent is typically

called PWD5 in those cases). So, as soon as a Linux-loving or Apple-adulating colleague

comes along, their attempts to run the test result in surprising failure.

4 Named values stored by the operating system that are available to running processes.
5 Which stands for Present Working Directory.

Chapter 10 testing

www.EBooksWorld.ir

180

 Thumbs Down!

Unless you want to really annoy your colleagues, every aspect about the program you’re

testing should be reproducible on any machine. That includes both the program and

anything external on which the program depends. External resources vary depending on

the environment, so they need careful control.

The previous example demonstrated file paths. When your program uses files, you

need to control for the variability of a file system. Remember, you can’t always make

assumptions about the following:

• The location of the program on the file system (the user might have

installed it anywhere)

• Which platform the program is installed on (e.g., Windows or Linux),

and thus which kind of file system you’re dealing with

For reasons like these, you should refer to files using platform-independent means6

and consider using relative paths.

If your tests use environment variables, then your test-execution scripts should

include setup of those variables prior to execution.

Another common problem is external dependencies, such as third-party libraries.

Just because you have the required library on your machine, doesn’t necessarily mean

that everybody else does. If an external dependency is required to run your tests, then

obtaining that dependency should be a quick and painless (and preferably automatic)

process. Remember that identifying an external dependency can require several pieces

of information, like a name and a version number. Otherwise, if you reference only the

name and use features exclusive to version 3 of FooLibrary, your colleague who only has

version 2 installed will encounter problems.

 Expansive Focus
When a failure occurs in the test suite, one of your colleagues will be assigned the job of

debugging the cause. Your colleagues no doubt insist debugging is a good thing. So, why

not make a thoughtful gesture and create more debugging work for them, since they love

it so much?

6 For example, in Java, instead of new Path("path/to/file.txt") use Paths.get("path", "to",
"file.txt").

Chapter 10 testing

www.EBooksWorld.ir

181

You can do this by expanding the scope of your unit tests beyond the behavior of the

unit in question. When you involve several additional program units in a test, it can be

broken by a problem in any of those extra units. That means the person debugging the

failure must search more places for the problem.

For example, dispatching an online order from a customer typically involves several

stages. This sample of code shows a dispatch process from a program:

public class Order {

 public void dispatch()

 {

 OrderChecker checker = new OrderChecker();

 BankConnection bank = new BankConnection();

 // Only dispatch if a) the order is valid and

 // b) the funds have been received for this order.

 if (checker.validate(this) &&

 bank.fundsReceived(this.orderNumber))

 {

 // code for dispatching order

 }

 }

}

class OrderChecker {

 boolean validate(Order order) { ... }

 // etc...

}

class BankConnection {

 boolean fundsReceived(String orderNumber) { ... }

 // etc...

}

Observing that a test of the Order.dispatch fails is usually taken to mean an error

occurred in the Order class. However, the dispatch method depends on the methods

from other classes. A test for the Order.dispatch method also covers the behavior of

the OrderChecker.validate and BankConnection.fundsReceived methods. This test

Chapter 10 testing

www.EBooksWorld.ir

182

method can be made to fail by bugs in OrderChecker or BankConnection also, giving

your colleagues more code to debug.

 Thumbs Down!

When writing a test, you need to be clear at which level the test focuses.

It’s a perfectly valid and useful thing to test several collaborating units together, as in

the previous example. These are examples of integration tests. Such tests verify that the

various modules of your program function together as expected, because faults can arise

when otherwise correct units are “wired” together.

However, a unit test focuses on a single unit in isolation to make sure that it works

correctly before you broaden your testing scope. That way, when a bug appears in a unit, you

don’t have to pick apart the various collaborating modules in order to find where the bug is.

A failure in the OrderTest class should imply that a bug has appeared in the Order class only.

That raises the question: how can you test a subroutine that includes calls to other

modules? The answer is to take the other classes out of the equation. We can do this in

two steps.

First, we adjust the program code. By instantiating the OrderChecker and

BankConnection objects itself, the dispatch method has taken on additional

responsibility and more tightly coupled itself to those other classes. Let’s instead turn

those objects into method parameters7:

public void dispatch(OrderChecker checker,

 BankConnection bank) {

 if (checker.validate(this) &&

 bank.fundsReceived(this.orderNumber))

 {

 // code for dispatching order

 }

}

Second, we adjust the test code. Instead of creating real instances of OrderChecker

and BankConnection, we mock them. That doesn’t mean make fun of them; rather,

it means we create dummy versions of them that behave in a fixed manner that you

7 An alternative to using method parameters here would be to use something called dependency
injection. I won’t discuss it here though, so look it up yourself.

Chapter 10 testing

www.EBooksWorld.ir

183

dictate. Mocking frameworks are available in many languages, and they work something

like this:

@Test

public void testDispatch() {

 // Create empty, 'pretend' versions of the two

 // classes.

 OrderChecker checker = MockFramework

 .createMock(OrderChecker.class);

 BankConnection bank = MockFramework

 .createMock(BankConnection.class);

 // Tell the dummy OrderChecker to return true

 // whenever the validate method is called.

 MockFramework

 .when(checker.validate())

 .thenReturn(true);

 // Tell the dummy BankConnection to return true

 // whenever the fundsReceived method is called.

 MockFramework

 .when(bank.fundsReceived())

 .thenReturn(true);

 Order testOrder = createNewOrder();

 testOrder.dispatch(checker, bank);

 assertTrue(order.isDispatched());

}

Now that the behavior of the other classes is taken out of consideration, this test

depends solely on the Order class’s behavior.

 Chaos
Programming is all about control. It’s like playing with the biggest, most complex train

set imaginable, and so it requires the most careful coordination among all elements.

Every event should trigger on schedule and every object should be in its required state

from moment to moment. Making a program predictable makes it testable.

Chapter 10 testing

www.EBooksWorld.ir

184

Reducing predictability therefore makes code less testable. To reduce the

predictability of your program, you can introduce non-determinism into the mix.

A non- deterministic routine is one whose output can vary given the same inputs. While

you can control the production of the output, you can’t control what that output is.

A good example of this is randomness. You can generate a random number

whenever you wish, but the result is, by definition, beyond your control. This

compromises the testability of code that depends on randomness.

For example, you can’t test a specific value:

@Test

public void testDiceThrow() {

 int result = DiceThrow.getNextThrow();

 // Roughly 5 out of 6 times, this test would fail.

 assertTrue(result == 2);

}

But you can test that a valid result is returned:

@Test

public void testDiceThrow() {

 int result = DiceThrow.getNextThrow();

 assertTrue(result <= 6);

}

You can take advantage of this imprecision to smuggle in a problem or two. One way

to do it could be to sneak a bug into the program code:

public class DiceThrow {

 public static int getNextThrow() {

 Random rand = new Random();

 return rand.nextInt(6);

 }

}

Java’s Random.nextInt(n) method returns a random number between 0 inclusively

and n exclusively. This means our getNextThrow method will only ever return numbers

between 0 and 5. However, our reasonable-looking test is actually flawed because it will

never expose that problem.

Chapter 10 testing

www.EBooksWorld.ir

185

You could also have a bit of fun by smuggling an extra problem into the test code by

adjusting the assertion slightly:

@Test

public void testDiceThrow() {

 int result = DiceThrow.getNextThrow();

 assertTrue(result >= 1 && result <= 6);

}

Now, the test will occasionally fail (roughly 17 percent of the time, on those

occasions when getNextThrow returns 0), causing confusion all round as different

people on your team get different test results from test run to test run.

It’s not only randomness that results in volatility. Time can also be problematic. Let’s

say you have some kind of sales program with a happy-hour feature (products sold at a

certain time are subject to a discount):

public class Product {

 private int price;

 public Product(int price) {

 this.price = price;

 }

 public int getPrice() {

 LocalDateTime now = LocalDateTime.now();

 // Sales between midnight and 1am are half off

 if (now.getHour() >= 0 && now.getHour() < 1) {

 return price / 2;

 }

 return price;

 }

}

Chapter 10 testing

www.EBooksWorld.ir

186

And you test the product like this:

@Test

public void testGetPrice() {

 // Create a product priced at $10.00

 Product p = new Product(1000);

 int price = p.getPrice();

 assertTrue(Integer.toString(price), price == 1000);

}

Most of the time, this test will pass. But anyone who’s burning the midnight oil might

think they’re dreaming when tests suddenly start failing around the stroke of midnight.

Even better, many projects institute automatic nightly builds that compile the code

and run all the tests around midnight. This means your teammates will turn up for work

the next day to find reports of a failing test that ran overnight.8 However, when they run

the tests themselves, they’ll discover that everything in the test suite passes fine.

Even betterer, if the build takes a long time (more than an hour), testGetPrice

might sometimes be run during happy hour and sometimes outside of it, resulting in a

phantom bug that appears on one night and disappears the next.

 Thumbs Down!

It’s considered very bad form for test suites to flip randomly between passing and failing.

You should isolate the volatile parts of a test and bring them under your control.

That might mean altering the program code itself. The Product.getPrice example

is a good instance of this. Its design could be improved to make it more testable,

specifically by making the current time a parameter to the method:

public int getPrice(LocalDateTime now) {

 // Sales between midnight and 1am are half off

 if (now.getHour() >= 0 && now.getHour() < 1) {

 return price / 2;

 }

 return price;

}

8 The testGetPrice method fails around midnight because the price expected by the test is not
what getPrice returns at this time.

Chapter 10 testing

www.EBooksWorld.ir

187

This way, you can create LocalDateTime objects set to a time of your own choosing:

@Test

public void testGetPriceAtMidnight() {

 Product p = new Product(1000);

 // 10 Jan 2017, 00:00

 LocalDateTime midnight = LocalDateTime.of(

 2017, Month.JANUARY, 10, 00, 00);

 int price = p.getPrice(midnight);

 assertTrue(Integer.toString(price), price == 500);

}

External dependencies with a mind of their own (like I/O or network connections)

can also be problematic. If your program code makes use of one during a test, its

volatility can also affect the result. For example, the sales program might consult a

networked server to ensure each product’s price is up-to-date:

public class Product {

 private int price;

 public void checkPrice(Server priceServer) {

 QueryResponse response =

 priceServer.getPrice(p);

 if (response.getPrice() != this.price) {

 System.out.println("Updating price.");

 this.price = response.getPrice();

 }

 }

 // etc...

}

The aim of testing the Product.checkPrice method would be to ensure that the

price is adjusted correctly if necessary, but the price server’s availability becomes an

unwanted factor in the test. For instance, if the server is unavailable at the moment of

testing, the test will fail.

Chapter 10 testing

www.EBooksWorld.ir

188

In a case like this, you could apply the same solution from the previous section:

object mocking. In the real sales program, an actual Server object represents a

connection to a real networked machine and can be large and complex. During a test,

a mocked Server object needs only be a pretend server, programmed to provide a fixed

response that you dictate.

@Test

public void testCheckPrice() {

 Product p = new Product(1000);

 // priceServer is an empty, 'pretend' Server

 Server priceServer =

 MockFramework.createMock(Server.class);

 // Tell priceServer to return 900 whenever

 // getPrice method is called

 MockFramework

 .when(priceServer.getPrice())

 .thenReturn(900);

 p.checkPrice(priceServer);

 assertEquals(product.getPrice(), 900);

}

Again, this brings a volatile part of the test under your control.

Chapter 10 testing

www.EBooksWorld.ir

189
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2_11

CHAPTER 11

Debugging
 Objectives
In this chapter, you’ll learn:

• How to carry out debugging as an incompetently led investigation,

specifically by:

• Making wild guesses

• Favoring your own pet theories

• Refusing to be methodical

• How to frustrate debugging by writing code that leaves no clues

behind

• How to avoid carrying out proper fixes on faulty code

 Prerequisites
Before reading this chapter, make sure you’re familiar with debuggers and their basic

facilities, like stepping through code and inspecting variables.

 Introduction
You can’t win them all. Not every bug you create will escape the attention of your

conscientious colleagues. When this happens, they will drag you back to the IDE and

force debugging upon you.

It’s not all sad news, however. Just like other areas of programming, debugging can

be approached in a number of different ways, some good, some bad. You may sometimes

have to debug, but you don’t have to do it well.

www.EBooksWorld.ir

190

 Investigate Unsystematically
Debugging bears an uncanny resemblance to detective work, except the crime is that

someone wrote a bug. No one knows the exact circumstances, so it’s necessary to

investigate and find out precisely what happened, as well as where and when.

Naturally, you’d prefer not to investigate. If you’ve been following the advice in

this book, the chances are good that you’re the culprit. Still, it would raise too much

suspicion if you didn’t at least appear to investigate. And how often does the criminal get

to investigate his own crime?

The world’s most celebrated detective, Sherlock Holmes, left behind a collection of

great advice in his stories. Thanks to its logical and methodical nature, his crime-fighting

guidance also applies very well to bug-hunting. But you won’t be emulating Holmes.

That would be far too successful a strategy. Instead, take inspiration from those other

characters, the bumbling bobbies of Scotland Yard, whom the Great Detective often

bewilders and antagonizes.

In other words, don’t be like Holmes; be like Inspector Lestrade.

 Guesswork
I never guess. It is a shocking habit, — destructive to the logical faculty.

—The Sign of Four

Real-world programs are often large beasts, thousands of lines long, sometimes

millions. You surely have no hope of finding that needle of a bug inside such a haystack

of code. But you have to look somewhere, so you might as well guess.

Do the equivalent of banging a faulty machine with a wrench. Pick some random

spots in the code and play about with them to see what happens: throw in some print

statements to see if they’re triggered unexpectedly, then tweak a few lines of code to see

whether that gets rid of the problem.

If you’re unlucky, you’ll stumble upon the bug eventually. However, if you’re lucky,

you’ll run out of time and be left with a trampled codebase full of print statements and

hastily tweaked code.

Chapter 11 Debugging

www.EBooksWorld.ir

191

 Thumbs Down!

The first step in an investigation is to search for clues. You should then use these to form

a hypothesis, which is a sort of guess. However, a hypothesis distinguishes itself from

mere guesswork in several respects. In particular, a hypothesis:

 1. Is testable and therefore falsifiable

 2. Is based on observations as opposed to being plucked out of the air

 3. Should fit with existing knowledge

 4. Shouldn’t require making lots of assumptions and therefore tends

to be simple1

A programmer who’s debugging acts akin to a detective, albeit a detective who

can travel in time. By running the program and triggering the error, you can re-run

what happened at the “scene of the crime” repeatedly until you determine the steps

that caused the error. In this sense, debugging more strongly resembles a scientific

investigation rather than a criminal one.

Like a scientist, you’re trying to link a cause (the mistake in the code) with an effect

(the error). After repeated executions, you might establish that the error only seems to

occur when you, for example, load a file whose name contains whitespace, or when you

submit a form without first selecting one of gender radio buttons.

Once you can reliably reproduce the error at will, you can proceed to the next stage,

which is to find precisely what’s causing things to going wrong.

 Biases
It is a capital mistake to theorize before one has data. Insensibly one begins
to twist facts to suit theories, instead of theories to suit facts.

—A Scandal in Bohemia

You should identify yourself strongly with every belief you hold. Attach your pride to

them. The stronger you identify yourself with a belief, the truer it will be. You’ll know that

this identification is strong enough when you feel personal offense as soon as anyone

expresses opposition to your beliefs.

1 This is based on the principle of Occam’s Razor.

Chapter 11 Debugging

www.EBooksWorld.ir

192

It’s good to bring this attitude specifically to debugging. Upon discovery of an error,

you should rush to a conclusion (preferably one that is exotic and complicated) and

adopt that as your pet theory. From there on in, you should start searching only for

evidence that confirms your theory.

Defend your belief as though your ego depended on it. If new facts begin to make

your theory look tenuous, try to twist and reinterpret the facts until they accommodate it

better. If you discover facts that rule out your theory entirely, just ignore them.

 Thumbs Down!

An ego is a dangerous thing to possess during an investigation.

True, Sherlock Holmes displayed some breathtaking egotism himself, but he

attached his ego to the successful resolution of cases, not to the explanations themselves.

Holmes’s mind worked ruthlessly through dozens of theories during an investigation:

forming them, comparing each to the known facts, and discarding it the moment it

contradicted reality.

You, too, should be ruthless with every hypothesis you form. When beginning to

debug, you have only partial information, so your hypothesis will be tentative. Later, as

you gather more information, your initial hypothesis may not fit with those new facts. At

this point, you have two options:

 1. Adjust the hypothesis to explain the additional facts (making sure

it still fits the existing ones).

 2. Discard the hypothesis if a fact rules it out entirely, and form a

new hypothesis.

Neither choice means any reason to be ashamed. Even experienced, professional

programmers rarely see their earliest theory survive investigation unscathed.

 Chaos
. . . when you have excluded the impossible, whatever remains, however
improbable, must be the truth.

—The Beryl Coronet

When you’re hunting a bug, it can happen that your actions cause the error during

one execution, but seemingly don’t cause that error during another identical execution.

Chapter 11 Debugging

www.EBooksWorld.ir

193

What’s happening? Well, obviously . . . um . . . bugs move around! So cunning must

they be, these critters clearly know you’re searching for them, so they hop around your

program from module to module, trying to evade you.

If we believe that bugs are mobile, the nature of debugging changes. You can say

goodbye to an orderly, methodical investigation. Instead, it becomes a fevered chase.

You can jump from place to place in search of the problem. You can eschew looking for

any patterns at all. You can even change the code in several places at once in an effort to

attack the bug from multiple sides.

 Thumbs Down!

Bugs don’t move around, despite occasional appearances to the contrary. A bug is not a

conscious creature; it’s a mistake in the code. It no more moves around a program than a

plot hole moves around the pages of a novel.

That means you can (and should) be methodical in finding the source of an error.

There are numerous debugging tips and strategies you can follow, but this section

introduces a few of the most pertinent.

First, you should be aware of certain well-established patterns that suggest likely

hiding places for bugs. For example:

• Complex code tends to harbor more bugs than simple code (this was

discussed in several earlier chapters).

• Volatile code (i.e., code that gets changed often) tends to harbor more

bugs than stable code.

• Newer code tends to harbor more bugs than older code because the

older stuff has been used and tested more.

Being conscious of these patterns gives you reasons to prioritize certain areas of the

program above others when looking for sources of errors.

In addition, you can take advantage the classic strategy “divide and conquer,” which

advocates breaking up a target into pieces and dealing with each one separately. When

debugging, your target is the codebase, and dealing with a piece means eliminating it

as a potential source of error. You can start with a wide scope, then repeatedly eliminate

parts of the program chunk by chunk until the scope is narrowed right down to the

defective lines of code.

Chapter 11 Debugging

www.EBooksWorld.ir

194

For example, if you observe that a variable has an incorrect value at a certain point

during execution, then

• this point becomes the latter boundary of suspicious code, since the

variable took on its value at this point at the latest; and

• the initialization of the variable become the earliest boundary.

All code executed between these boundaries falls under suspicion. You can then

inspect the value at some midway point, which eliminates from suspicion all code

executed before that point (if the value is still correct) or after that point (if the value is

already incorrect). After adjusting the boundaries accordingly, you now have an area of

code roughly half the size, from which you can then choose another midway point and

repeat the process.

Finally, it can help during debugging to tweak a little bit of code here and there.

(“Does it still fail if I change it to this value?”) If you choose to do that, stick to changing

one thing at a time, even if you have several ideas you want to try. This is a lesson any

scientist could teach you. The scientist conducting an experiment, searching for the

cause of a specific effect, varies the independent variable (i.e., the input) to see its effect

on the dependent variable (i.e., the observed output). If they tweak several inputs all at

once and observe an effect, how do they know which of the inputs was truly the cause?

The same logic applies to debugging.

 Make Debugging Hard
Good criminals cover their tracks and make detection of their crimes hard. The great

ones make it hard to determine a crime was even committed at all.

You’re not a criminal, but you could learn a thing or two from talented lawbreakers.

Take some inspiration from them and make it harder for your fellow programmers to

track down your bugs.

 Always Keep Your Mouth Shut
If a program messes up, the last thing it should do is admit to the user that the fault lies

with the program. However, if you ensure that a program fouls up without warning or

explanation, you might succeed in surreptitiously convincing the user it was all their

fault.

Chapter 11 Debugging

www.EBooksWorld.ir

195

Think about it: if a program helpfully explains a problem, the user will know that the

program did something wrong. But if it unexpectedly dies in the middle of a session for

no discernible reason, the clueless user is more likely to sit there, wide-eyed, exclaiming,

“What did I do wrong?” Did you see the subtle shift in blame, there?

Besides, what good can arise from listening to the nonsensical ramblings of a faulty

program? Anything it says is probably meaningless, right?

 Thumbs Down!

When a program fails, that usually means it tried to execute an invalid instruction. That

doesn’t mean the computer suddenly lost its mind and that nothing it reports can be trusted.

You should be honest and upfront about failure. As soon as an error threatens to

derail the program in some way, inform the user. As Chapter 7 explained,2 this should be

a message that assumes no technical skill on their part but is nevertheless helpful and

informative.

Furthermore, you should provide information about the failure for the program’s

author too. That can include:

• A stack trace, which is very helpful for telling you

• in which subroutine (and maybe at which specific instruction)

the program failed, which hints at the location of the bug; and

• which series of subroutine calls had been executed at the point of

failure, which can help reconstruct the series of events leading to

the failure.

• The generated error message, such as the contents of

Exception.getMessage() in Java programs.

• Important values like

• program version;

• date and time; and

• any relevant variables or other objects at the time of failure.

The technical stuff will have to be kept aside for the programmer to look at later.

More on that in the following subsection.

2 See the section “Send Problems Down the Memory Hole.”

Chapter 11 Debugging

www.EBooksWorld.ir

196

 Keeping Records
If your colleagues insist on the program reporting error data, then all this debugging

information has to be conveyed somehow. The question is: how?

Obviously, you should just use a normal print statement. What could be simpler for

you? All you have to do is add them to your code at the points where significant events

should be reported. But there are other advantages to using print statements that

should suit your malevolent outlook on life.

For one thing, debugging information presented using print statements is always

switched on. For text-based programs, that adds additional noise to the output, which

distracts and frustrates the user (which is always a good thing to do). If your colleagues

want to remove that noise, they’ll have to slog through all the code, finding and removing

your offending print statements.

Alternatively, if your program is GUI-based, then the debug output will be invisible

to the user. In fact, it will be invisible to just about everybody, including the programmer,

who would desperately want to see it in the event of an error. However, since ordinary

print output doesn’t get recorded anywhere, that precious debug information vanishes

long before news of a bug reaches the programmer.

 Thumbs Down!

Nobody is going to object to your adding print statements temporarily to your own

copy of the code. What you get up to in your own repository is your own business. But

once you finally commit your changes to the canonical version of the program, any

“temporary” print statements must come out.

An alternative means to outputting debug information is logging. Most programming

languages provide built-in means to do this nowadays, and it can safely be put into the

production version of a program. For example, here’s a simple way to set up logging in a

Java class:

import java.util.logging.Logger;

public class Main {

 private final Logger log =

 Logger.getLogger(Main.class.getName());

Chapter 11 Debugging

www.EBooksWorld.ir

197

 public void makeRequest(Network network) {

 log.info("Making request to remote server: " +

 network.getServerName());

 if (network.getStatus() ==

 NetStat.UNAVAILABLE) {

 log.warning("Network is unavailable.");

 }

 // etc...

 }

}

This makes the class Main available for logging. By making calls to the Logger object,

you can record a log message. They look something like this:

Oct 21, 2015 4:26:35 PM Main makeRequest

INFO: Making request to remote server: ulysses

Oct 21, 2015 4:26:37 PM Main makeRequest

WARNING: Network is unavailable.

Logs give you much greater control over your debug output than print statements

do. A key feature is the ability to direct log information to a variety of different

destinations. A Java logger outputs to the console by default, but you could also make it

record the message to a file:

public class Main {

 private static final Logger log =

 Logger.getLogger(Main.class.getName());

 private Handler fileHandler = null;

 public Main() {

 fileHandler = new FileHandler("log.txt");

 log.addHandler(fileHandler);

 }

 public void makeRequest() {

 // This method remains unchanged...

Chapter 11 Debugging

www.EBooksWorld.ir

198

Another feature is log levels. These allow you to assign each log message a severity.

You could then instruct the program to output only the messages of a certain minimum

severity or above, or direct messages of a different severity to different log files. Typical

levels in ascending order of severity include the following:

• Debug/Trace: Intended for messages that are useful when you’re

debugging and want to carefully trace what happened (e.g., outputting

an object’s value or indicating that a method just began executing)

• Info: For messages describing notable events (e.g., new customer

added to the system, incoming network request)

• Warn: For unexpected events that, while they don’t prevent the

program from running, might indicate problems (e.g., low memory,

logon failed)

• Error: For messages describing occasions when the program couldn’t

function properly (e.g., tried to update a record in the database but

failed)

• Fatal: For events that cause the application to fail (e.g., out of memory)

 Avoid Proper Fixes
The aim of debugging is ultimately to find and repair the bug. But there’s more than one

way this story can end . . .

 The Hit ’n’ Run Bug
Software in execution is chaotic, complex stuff, what with all those millions of bits

flipping values billions of times per second in perfect synchronicity. It’s a wonder

programs ever function correctly at all. So, why should anyone be surprised that, in

among the chaos, a hit ’n’ run bug occurs now and again. Most experienced software

developers know what I mean by this.

The story usually goes like this: One day, you encounter a weird error during an

execution of the program. Dutifully, you try to reproduce the bug, running the program

once more and performing the same steps again only to find that everything worked

Chapter 11 Debugging

www.EBooksWorld.ir

199

fine the second time. Even after several more executions, the error can’t be coaxed into

reappearing.

Other programmers might let something like this worry them, but not you. You know

that random problems like this are bound to occur now and again, given how thoroughly

complex software is. The bug responsible probably disappeared immediately anyway

and so isn’t worth worrying about.

 Thumbs Down!

I’m sorry to be a bore, but if an error occurred in your program and the code hasn’t been

altered since, the bug responsible is most definitely still there. You might have been

unable to reproduce the problem so far, but that only means you haven’t determined the

exact conditions that trigger it.

It may be true that the bug caused only a slight problem,3 and so fixing it isn’t an

urgent matter—that’s a different discussion—but you can’t say that the bug no longer

exists. At the very least, the error needs recording in your project’s bug database.

You do have one of those . . . don’t you?

 Patch It Up
Unfortunately, things may reach the point where a fix for a bug is demanded. However,

you don’t necessarily have to give in and repair things just yet. You might have done

your best so far to thwart debugging efforts—such as by sabotaging the investigation

and writing hard-to-debug code—but you still have another trick up your sleeve to help

preserve the bug—a technique that makes it only appear as though you fixed something.

We have the medical profession to thank for it.

Some doctors make an effort to heal ailments. Others are happy to merely treat the

symptoms, leaving the underlying problem untouched. You can learn from this latter

group of medics, because you can view fixing bugs in similar terms. Take this code, for

example, which calculates student grades from their scores:

// Grade is between A and F inclusively

String grade = calculateGrade(student.getTestScore());

System.out.println(grade);

3 Or, to put it more technically, the error had a low severity.

Chapter 11 Debugging

www.EBooksWorld.ir

200

It contains a problem: the variable grade occasionally ends up with the value null.

That should never happen, and the job of fixing the problem falls to you. As a minimal

effort, you look at the list of scores and find which ones cause calculateGrade to return

null.

45 —> "E"

67 —> "C"

68 —> "C"

81 —> "A"

40 —> null

73 —> "B"

The only problem you identify is that scores of exactly 40 return null when they

should equate to a grade “F.”

So, the calculateGrade subroutine seems to contain an underlying problem. A

symptom of this is that your calling code prints out an incorrect value whenever the

score is 40. You now have a choice. Do you fix the symptom or the underlying problem?

Fixing the underlying problem involves a lot of work: diving into the calculateGrade

routine, analyzing the code, forming a hypothesis to explain the bug, coming up with

ways to test that hypothesis, perhaps writing some new tests to make sure the bug was

fixed.

On the other hand, fixing the symptom is comparatively easy:

// Grade is between A and F inclusively

String grade;

if (student.getTestScore() == 40) {

 grade = "F";

}

else {

 grade = calculateGrade(student.getTestScore());

}

System.out.println(grade);

When you run the program again, all scores in the test data now result in the correct

grade. Like any remedy that treats only a symptom, the problem is fixed superficially.

If you find words like “easy” and “superficial” very appealing, as I’m sure you do, you

should favor the symptom-based approach to healing.

Chapter 11 Debugging

www.EBooksWorld.ir

201

 Thumbs Down!

Fixing the symptom is not automatically a bad thing. Occasionally, it’s your only option;

for example, if you’re using a third-party library for which you don’t have the source

code. However, failing to even try to fix the underlying problem when you do have the

opportunity is poor practice.

Focusing on the symptom means the underlying problem remains. In the previous

example, we may have patched up one call to the problematic subroutine, but what if

another call to the subroutine gets added later? Naturally, the bug will resurface.

What’s more, failing to look into calculateGrade means you can’t be sure of

understanding the actual problem. In the previous example, a single hypothesis

was formed that happened to fit with one of the observed facts, but it was not then

investigated further. If you had examined that subroutine, you might have seen the

problem in more detail:

public String calculateGrade(int score) {

 String grade = null;

 if (score > 80) { grade = "A"; }

 else if (score > 70) { grade = "B"; }

 else if (score > 60) { grade = "C"; }

 else if (score > 50) { grade = "D"; }

 else if (score > 40) { grade = "E"; }

 else if (score < 40) { grade = "E"; }

 return grade;

}

None of the clauses in the if statement account for scores of 40, so calculateGrade

returns null in this case.

However, the code also contains another mistake: the last clause in the if statement

returns a grade of “E” instead of “F.” Since none of the original test data contained any

values lower than 40, this specific bug wasn’t exposed; thus, your fix of the symptom

doesn’t take it into account.

A proper analysis of the code would have led to a genuine resolution of the bug by

altering the last clause to this:

 else if (score <= 40) { grade = "F"; }

Chapter 11 Debugging

www.EBooksWorld.ir

203
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2

 Bibliography

Apple. 2013. Code Naming Basics. Accessed 07 Sep 2017, https://developer.apple.

com/library/content/documentation/Cocoa/Conceptual/CodingGuidelines/

Articles/NamingBasics.html.

Basili, V.R., and B.T. Perricone. 1984. “Software Errors and Complexity: An Empirical

Investigation,” Communications of the ACM, 27(1): 42-52.

Basili, V.R., L. Briand, and W.L. Melo. 1996. “A Validation of Object-oriented Design

Metrics as Quality Indicators,” IEEE Transactions on Software Engineering,

October, 22(10), 751–761.

Bezier, B. 1990. Software Testing Techniques. Van Nostrand Reinhold, New York.

Bloch, J. 2008. Effective Java: Programming Language Guide, Second Edition. Prentice

Hall PTR, Upper Saddle River, NJ, USA.

Briand, L.C., and J. Wüst. 2002. “Empirical Studies of Quality Models in Object- oriented

Systems,” Advances in Computers, 56: 97-166.

Brooks, F.P. 1995. The Mythical Man-Month. Addison-Wesley, Boston, MA, USA.

CA/CST/Systems Integration & Innovation Division (CA-CST-SII). 2015. C Coding

Standards. Available at: https://github.com/CA-CST-SII/Software-Standards/

wiki/C---Coding-Standards. Last updated: 11 Feb 2015.

Card, David N., Victor E. Church, and William W. Agresti. “An Empirical Study of

Software Design Practices,” IEEE Transactions on Software Engineering, 2(1986):

264-271.

Chidamber, S.R., and C.F. Kemerer. 1994. “A Metrics Suite for Object-oriented Design,”

IEEE Transactions on Software Engineering, 20(6): 476-493.

Cypher, A., Dontcheva, M., Lau, T., and Nichols, J. 2010. No code required: giving users

tools to transform the web. Morgan Kaufmann.

Dunlosky, J., K.A. Rawson, E.J. Marsh, M.J. Nathan, and D.T. Willingham. 2013.

“Improving Students’ Learning with Effective Learning Techniques: Promising

Directions from Cognitive and Educational Psychology,” Psychological Science in the

Public Interest, 14(1): 4-58.

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3411-2
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingBasics.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingBasics.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingBasics.html
https://github.com/CA-CST-SII/Software-Standards/wiki/C---Coding-Standards
https://github.com/CA-CST-SII/Software-Standards/wiki/C---Coding-Standards

204

Dijkstra, E.W. 1968. “Letters to the Editor: Go To Statement Considered Harmful,”

Communications of the ACM, 11(3): 147-148.

Elshoff, J.L. 1976. “An Analysis of Some Commercial PL/I Programs,” IEEE Transactions

on Software Engineering, (2): 113-120.

Endres, A., and D. Rombach. 2003. A Handbook of Software and Systems Engineering:

Empirical Observations. Laws and Theories. Addison-Wesley, Harlow, England; New York.

ESA Board for Software Standardisation and Control. 2004. Java Coding Standards.

Technical report.

Fowler, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional, Boston, MA, USA.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, USA.

Glass, R.L. 2002. Facts and Fallacies of Software Engineering. Addison-Wesley

Professional, Boston, MA, USA.

Google. 2017a. Google C++ Style Guide. Accessed 07 Sep 2017, https://google.github.

io/styleguide/cppguide.html.

-----. 2017b. Google Java Style Guide. Accessed 07 Sep 2017, https://google.github.

io/styleguide/javaguide.html.

Gorla, N., A.C. Benander, and B.A. Benander, B.A. 1990. “Debugging Effort Estimation

Using Software Metrics,” IEEE Transactions on Software Engineering, 16(2): 223-231.

GNU. 2016. GNU Coding Standards. Web page. Accessed 07 Sep 2017, https://www.gnu.

org/prep/standards/standards.html.

Gyimothy, T., R. Ferenc, and I. Siket. 2005. “Empirical Validation of Object-oriented

Metrics on Open Source Software for Fault Prediction,” IEEE Transactions on Software

Engineering, 31(10): 897-910.

Hoare, T. 2009. Null References: The Billion Dollar Mistake. Accessed 07 Sep 2017,

https://qconlondon.com/london-2009/qconlondon.com/london-2009/index.html.

Johnson, R.E., and B. Foote. 1988. “Designing Reusable Classes,” Journal of Object-

oriented Programming, 1(2): 22-35.

JPL, 2009. JPL Institutional Coding Standard for the C Programming Language. California

Institute of Technology. Technical report.

Kappelman, L.A., R. McKeeman, and L. Zhang. 2006. “Early Warning Signs of IT Project

Failure: The Dominant Dozen,” Information systems management, 23(4): 31-36.

Kemeny, J.G., and T.E. Kurtz. 1964. BASIC Instruction Manual. Dartmouth College:

Hanover, NH.

BiBliography

www.EBooksWorld.ir

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
https://www.gnu.org/prep/standards/standards.html
https://www.gnu.org/prep/standards/standards.html
https://qconlondon.com/london-2009/qconlondon.com/london-2009/index.html

205

Kernel.org, 2017. Kernel Coding Style. Available from: http://lxr.linux.no/

linux+v4.10.1/Documentation/process/coding-style.rst.

Kernighan, B.W., and P.J. Plauger. 1978. The Elements of Programming Style. McGraw-Hill,

New York, NY, USA.

Keil, M., P.E. Cule, K. Lyytinen, and R.C. Schmidt. 1998. “A framework for identifying

software project risks,” Communications of the ACM, 41(11): 76-83.

Lahtinen, E., K. Ala-Mutka, and H.M. Järvinen. 2005, June. “A Study of the Difficulties of

Novice Programmers,” ACIM SIGCSE Bulletin 37(3): 14-18. ACM.

Lind, R.K., and K. Vairavan. 1989. “An Experimental Investigation of Software Metrics

and Their Relationship to Software Development Effort,” IEEE Transactions on

Software Engineering, 15(5): 649-653.

Long, F., D. Mohindra, R.C. Seacord, D.F. Sutherland, and D. Svoboda, D. 2013. Java

Coding Guidelines: 75 Recommendations for Reliable and Secure Programs.

Addison- Wesley.

Martin, R.C. 1996. “The Liskov Substitution Principle,” C++ Report, 8(3): 14.

------. 2009. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice-Hall,

Upper Saddle River, NJ, USA.

McCabe, T.J. 1976. “A Complexity Measure,” IEEE Transactions on software Engineering,

(4): 308-320.

McConnell, S. 2004. Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA.

Miara, R.J., J.A. Musselman, J.A. Navarro, and B. Shneiderman. 1983. “Program

Indentation and Comprehensibility,” Communications of the ACM, 26(11): 861-867.

Microsoft. 2016. CA1501: Avoid Excessive Inheritance. Accessed 07 Nov 2017.

https://docs.microsoft.com/en-us/visualstudio/code-quality/

ca1501-avoid- excessive-inheritance.

-----. 2017. Best Practices for Exceptions. Accessed 06 Oct 2017. https://docs.micro-

soft.com/en-us/dotnet/standard/exceptions/best-practices-for- exceptions.

Mozilla. 2017. Coding Style. Accessed 11 Oct 2017. https://developer.mozilla.org/

en-US/docs/Mozilla/Developer_guide/Coding_Style.

Mughal, K.A., T. Hamre, and R.W. Rasmussen. 2007. Java Actually: A First Course in

Programming. Cengage Learning EMEA, London.

National Weather Service, Office of Hydrologic Development. 2007. General Software

Development Standards and Guidelines Version 3.5. Technical report, 2007.

BiBliography

www.EBooksWorld.ir

http://lxr.linux.no/linux+v4.10.1/Documentation/process/coding-style.rst
http://lxr.linux.no/linux+v4.10.1/Documentation/process/coding-style.rst
https://docs.microsoft.com/en-us/visualstudio/code-quality/ca1501-avoid-excessive-inheritance
https://docs.microsoft.com/en-us/visualstudio/code-quality/ca1501-avoid-excessive-inheritance
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style

206

Oracle. 1999. Code Conventions for the Java Programming Language. Accessed

07 Sep 2017, http://www.oracle.com/technetwork/articles/javase/

codeconvtoc-136057.html.

-----. 2014. Java 8’s New Type Annotations. Accessed 07 Sep 2017, https://blogs.

oracle.com/java-platform-group/java-8s-new-type-annotations.

-----. 2017. Project Jigsaw. Accessed 17 Nov 2017, http://openjdk.java.net/projects/

jigsaw.

Orwell, G. 1949. Nineteen Eighty-Four. Penguin Books, London.

Pane, J.F., and B.A. Myers. 2001. “Studying the Language and Structure in Non-

programmers’ Solutions to Programming Problems,” International Journal of Human-

Computer Studies, 54(2): 237-264.

Papert, S. 1996. “An Exploration in the Space of Mathematics Educations,” International

Journal of Computers for Mathematical Learning, 1(1): 95-123.

Pennington, N. 1987. Stimulus structures and mental representations in expert compre-

hension of computer programs. Cognitive psychology, 19(3): 295-341.

Perlis, A.J. 1982. “Epigrams on Programming,” SIgPLAN Notices, 17(9): 7-13.

Powers, K., P. Gross, S. Cooper, M. McNally, K.J. Goldman, V. Proulx, and M. Carlisle.

2006, March. “Tools for Teaching Introductory Programming: What Works?” ACM

SIGCSE Bulletin 38(1): 560-561. ACM.

Pólya, G. 1973. How to Solve It (Second Edition). Princeton, NJ: Princeton University

Press.

Prechelt, L., B. Unger, M. Philippsen, and W. Tichy. 2003. “A Controlled Experiment on

Inheritance Depth as a Cost Factor for Code Maintenance,” Journal of Systems and

Software, 65(2): 115-126.

Python. 2013. PEP 8—Style Guide for Python Code. Accessed 11 Oct 2017, https://www.

python.org/dev/peps/pep-0008.

de Saint-Exupéry, A., and R. Williamson, R. 1939. Wind, Sand, and Stars. Penguin, London.

Selby, R.W., and V.R. Basili. 1991. “Analyzing Error-prone System Structure,” IEEE

Transactions on Software Engineering, 17(2): 141-152.

Shneiderman, B., and R. Mayer. 1979. “Syntactic/semantic Interactions in Programmer

Behavior: A Model and Experimental Results,” International Journal of Parallel

Programming, 8(3): 219-238.

Tan, S.H., D. Marinov, L. Tan, and G.T. Leavens. 2012, April. @ tcomment: Testing javadoc

comments to detect comment-code inconsistencies. In Software Testing, Verification and

Validation (ICST), 2012 IEEE Fifth International Conference on (pp. 260- 269). IEEE.

BiBliography

www.EBooksWorld.ir

http://www.oracle.com/technetwork/articles/javase/codeconvtoc-136057.html
http://www.oracle.com/technetwork/articles/javase/codeconvtoc-136057.html
https://blogs.oracle.com/java-platform-group/java-8s-new-type-annotations
https://blogs.oracle.com/java-platform-group/java-8s-new-type-annotations
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

207

Tang, M.H., M.H. Kao, and M.H. Chen. 1999. An Empirical Study on Object-oriented

Metrics. In Software Metrics Symposium, 1999. Proceedings. Sixth International

(pp. 242- 249). IEEE.

Turing, A.M. 1937. “On computable numbers, with an application to the

Entscheidungsproblem,” Proceedings of the London Mathematical Society, 2(1):

230-265.

Van De Vanter, M.L. 2002. “The Documentary Structure of Source Code,” Information

and Software Technology, 44(13): 767-782.

Watson, A.H., and T.J. McCabe. 1996. Structured Testing: A Testing Methodology Using the

Cyclomatic Complexity Metric. NIST Special Publication 500-235.

Wheeler, D., 2014. The Apple goto Fail Vulnerability: Lessons Learned. Available at

https://www.dwheeler.com/essays/apple-goto-fail.html. Published 23 Nov.

Yourdon, E., and L. Constantine. 1978. Structured Design: Fundamentals Discipline of

Computer Programs and System Design. Yourdon Press, Upper Saddle River, NJ.

Yourdon, E. 1986. Managing the Structured Techniques. Prentice-Hall, Upper Saddle

River, NJ.

BiBliography

www.EBooksWorld.ir

https://www.dwheeler.com/essays/apple-goto-fail.html

209
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2

 Glossary

Abstract class: A class with at least one abstract method (i.e., a method declared without

an implementation).

Application programming interface (API): Set of standardized methods of for building an

application.

Argument (a.k.a. actual parameter): Data item supplied to a subroutine as part of a call.

Black-box testing: Testing technique that assumes the internal details of a unit are

hidden.

Block: Group of program statements treated as a single unit.

Bug: Mistake in program code that causes errors.

Class: Template specifying the methods and properties for a group of similar objects.

Collection: Data structure that stores other objects.

Composition: Means of combining simple objects into more complex ones.

Conditional: Programming construct allowing the programmer to choose between

actions based on the result of a Boolean condition.

Constructor: Special method of a class called whenever a new object of that class is

instantiated.

Declaration: Construct that specifies the properties of something in a program, such as a

variable or a subroutine.

Dependency: Relationship that includes one object using another.

Design pattern: Reusable solution form to a commonly occurring problem in software

design.

Dialog: Window that appears in a GUI program when information about a choice is

required or when options have to be selected.

Encapsulation: Restriction of access to technical details of a module behind an interface.

Enumeration: Defined collection of values.

Error: Fault in a running program that causes the program to produce erroneous results

or to cease functioning.

Exception: Anomalous event encountered in a running program requiring special

handling.

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3411-2

210

Expression: Combination of values, variables, operators, and subroutine calls that is

evaluated to produce a result.

Field: Individual piece of data belonging to a larger object.

Functional programming: Programming paradigm emphasizing the evaluation of

mathematical-style functions and avoiding mutable state.

Goto: Unconditional jump to another point in the program.

Guard clause: Boolean expression used to evaluate whether execution of a subroutine

should continue.

Graphical user interface (GUI): Means of interacting with a program emphasizing use of

windows, icons, and a mouse pointer.

Integrated development environment (IDE): Program that performs the various stages of

software design and implementation in a single integrated system.

If ladder: If statement made up of a series of if-else clauses.

Inheritance: Means by which the properties and methods from a parent class are made

available to the inheriting class.

Initialization: Process of assigning a first value to a variable.

Instantiation: Process of creating a new object.

Input/Output (I/O): Communication between a program and the outside world.

Member: Variable (data member) or subroutine (member function) associated with

an object.

Mock object: Dummy object that mimics a real object in a controlled way.

Mod (modulo operator): Operation that returns the remainder of a division.

Mutable object: Object whose value can be changed after creation (in contrast to an

immutable object).

Nesting: Organizing code into layers so that constructs are contained within other

constructs.

Non-deterministic: Able to produce different results on each execution.

Object: Group of data and associated program routines used within an object- oriented

program.

Parameter: Local variable that takes on the value passed via an argument in a

subroutine call.

Polymorphism: Provision of a single interface for communicating with many different

types.

Primitive type: Basic, built-in type provided by a programming language; often

value types.

Glossary

www.EBooksWorld.ir

211

Query: Request for information made to a database or other information system.

Reference type: Type of variable that stores a location in the memory allocated to it.

That location refers to the place where the variable’s actual value is stored.

Regression: Appearance of a bug that was absent in a previous version of the program.

Resource: Entity of limited availability (e.g., memory, disk, network).

Scope: Range of statements for which a variable is valid.

Side effect: Observable effect of calling a subroutine outside of its usual return value.

Stack trace: List of unfinished method calls made from the program’s start to the point

where a problem was encountered.

Subroutine: Sequence of program instructions that perform a specific task, packaged

as a unit.

Type: Classification of data that makes explicit how the data may be used.

Unit test: Code fragment that verifies the functionality of a unit of code.

Uniform Resource Identifier/Locator (URI/URL): String used to identify a resource on a

network.

Value type: Type of variable that stores its value directly in the memory allocated to it.

White-box testing: Testing technique that assumes the internal details of a unit are visible.

Wildcard: Symbol used in commands or search instructions to stand for a range of

objects or characters.

Glossary

www.EBooksWorld.ir

213
© Karl Beecher 2018
K. Beecher, Bad Programming Practices 101, https://doi.org/10.1007/978-1-4842-3411-2

Index

A
Abstract class, 155, 166
Access modifier, 136
Application programming

interface (API), 6, 209
Argument, 40, 100, 104,

110, 119, 209
ArrayList<Object>, 46
Assertion, 109–111, 185

B
Black-box testing, 173, 209
Bug(s)

chaos, 193
code-coverage, 175
error handling, 107, 121
execution of program, 17
eyes, 39
hypothesis, 200
if statements, 65
loop counter, 70
OrderChecker/BankConnection, 182
print statements, 190
responsible, 199
testing, 171

C
Call-by-value, 104
Checked exceptions, 112

Classes
data, 142, 146, 148
deep inheritance hierarchies, 177
concrete, 155–156, 159, 163, 166
CustomerAccount, 48
error codes, 117
equivalence, 173–175
exception, 119
god classes, 148–149
Java, 196
HistoryBoard, 42
launching rocket, 141
LeaderBoard, 42
Main, 10, 11, 197
members, 136, 144
Order, 181–183
partial view of, 37
Product, 132, 137–139
Scanner, 67
scores, 41
Shapes, 38, 40
Shop, 139
strategy, 193
subroutines, 88, 98, 100
testing, 178, 181, 184, 187
utility, 149–150
vehicle-registration program, 133

Cluttered code
dead stuff, 16–17
disabled stuff, 17
unused stuff, 16

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-3411-2

214

Code block, 36, 89, 91
Code-coverage, 175
Code duplication, 29, 88, 95
Code generator, 6
Code parroting, 19, 21
Code-review tools, 15
Coding standards, 15, 25, 36, 83
Cohesion, 132, 149
Collections, 209

ArrayList, 130
characters, 45
debugging, 190
different typed objects, 158, 160
fields, 147
iteration, 73
loops (see Loops)
null, 48
returns, 102
statements, 24

Comments
bad comments

code parroting, 19, 21
No Comment!, 18
out of sync, 21–22

disabled stuff, 17
modules, 127

Complexity
and design, 58
high, sub routines, 91–93
modules, 125
programming, 15
and size, 82

Concrete class, 155–156, 159, 163, 166
Conditionals

anti-social skills, 51
assumptions, 52–53
calculate grade, students, 53
calculating cyclometric complexity, 93

complex, 91
execution, 52
expression (see Expression)
gaps and overlaps, 65–66
human fault, 52
if ladder, 58–60
listOfSpies.txt, 53, 54
normal and exceptional

guard clause, 57, 58
human intuition, 56
if statements, 57
mess-making potential, 55
notice, 56
track of spies, 55

preceding code, 53
prerequisites, 51
problematic code, 52
subject scores, 52

Coupling, 97, 138–140, 142, 149, 163
Cyclometric complexity, 93

D
Database(s), 94–95, 108, 121, 198–199
Data class, 146–148, 152
Dead code, 16
Debugging

avoid proper fixes, 198
biases, 191–192
Chaos, 192–194
Hit ‘n’ Run Bug, 198
hypothesis, 191
patch it up, 199–201
records, 196–198

Declaration, 209
assignIfPositive, 11
variable (see Variables)

Defensive programming, 98–99, 108

Index

www.EBooksWorld.ir

215

De Morgan’s Law, 10, 64–65
Dependency, 180
displayMessage method, 22
Divide and conquer, 193

E
Encapsulation, 49, 138, 209
Enumeration, 209
Environment variable, 6, 179–180
Equivalence partitioning, 173
Error

bug, 209
code (see Error code)
compile-time, 17, 137
debugging, 196
Exception.getMessage()

method, 195
flag (see Error flag)
handling (see Error handling)
inheritance hierarchy, 163
message (see Error message)
null value, 50
risks, program, 70
unit test, 172
white space, 13

Error code, 43, 114–115, 117–118
Error flag, 117
Error handling

assertions, 109, 111
bugs, 107, 121
checked exception, 112
databases, 121
defensive programming, 108
error codes, 117–118
error message, 115–116
memory, 113

stack trace, 114
unchecked exception, 112

Error message, 115–116, 119, 195
Exception, 209

error handling, 111–114, 118–119
output parameters, 105
potential, 144
NullPointerException, 48, 101–102,

117–120, 122
variables, 43
variable names, 33

Expression, 210
complex, 176
computed value, 60
error handling, 108
not being non-negative, 63–65
subroutines’ cyclometric

complexity, 93
tortuous

anti-rules, 60
expected, 61
individual rules, 62
mode + code.charAt(7), 61
repeated subexpressions, 61
semantic information, 63
SWIFT code, 61

F
File

configuration, 114
databases, 121
hard-coded, 179
implementation, 15
Java, 51
Java logger, 197
listOfSpies.txt, 53

Index

www.EBooksWorld.ir

216

searchInFile method, 90
software project, 5

for loop
break statement, 81
collections, 69
loop counter, 70
loop version of traversing, 69
programming, 2, 24
ranges, 70
simple, 75
and while-loop versions, 71

Free-form languages, 10
Functional programming, 85–86, 210

G
getDiscountedPrice method, 132
Global variable(s), 40–41, 142, 176
God class, 148–149, 152
goto statement, 22, 24, 40, 60, 210
Graphical user interface (GUI), 210
Guard clause, 57, 58, 210

H
Hard-to-reuse methods, 132
Housekeeping code, 71, 82, 84, 85

I
if statement

calculateGrade, 201
chain of, 65, 158
condition, 13
exceptional cases, 57
final, safety counter, 79
and for loops, 24

simple, 22
single-line, 12
value, 76
and while loops, 92

Immutable type, 105
Indentation, 10–13, 15
Infinite loops

citing masters
altering, 75
conditions, 76
determination, 74
if statement, 76
isLeapYear returns, 77
leap years, 75
logical completeness, 75
potential, 76, 77
verifying loops, 75

“frozen” program, 74
long loops, 82
precautions, 77–79
ranges, 71

Information hiding, 135, 140
Inheritance, 210

classes, 161
fly method, 167
OOP, 162
overuse and abuse, 160
tool, 160

Initialization, 36, 37, 194, 210
Input/Output (I/O), 73, 118, 187, 210
Instantiation, 145, 150, 159, 182, 210
Integrated development environment

(IDE), 5–6, 15, 32, 49, 210
Integration test, 169, 170, 182
Interface

API, 6
concrete classes, 166
design, 140

File (cont.)

Index

www.EBooksWorld.ir

217

encapsulation, 126
expectations, 144
flexible, 134
graphical user, 5
generic type, 135
java.util package, 128
List, 128
OOP, 155
PetFeeder, 156
register method, 135
software, 125
term, 140
TicketMachine

classes, 153
user, 5
vehicle type, 134, 135

Iterations, arbitrary, 71–73
Iterator, 27, 67, 85

J, K
JavaDoc, 49
JUnit, 169

L
Lazy naming, 35
Learning program

benefits, 2
inspiration, 3
languages, 2
learners risks, 4
for loop, 2
participating, 2
practical application, 2
script kiddie, 3–4
self-control, 2

tools (see Tools)
Local variable, 34, 104
Log file, 116, 197–198
Logging, 116, 196–197
Log level, 198
Loop exit point, 79–81, 85
Loops

brain-bending, 91
break out, 80–82
chaotic flow of control, 79
complex, 84–86
conditionals, 68
construct, 93
fundamental control structure, 68
infinite (see Infinite loops)
and if statement, 15
long, 82–83
wrong type (see Wrong type, loops)

M
Memory, 16, 72, 104, 113, 121, 198
Message-passing, 138, 144, 153
Mock, 182, 188, 210
Module import, 127–129
Modules

clutter and mess, 128–129
dependencies, 135
exposing, innards, 136–140
mono-focused

modules, 133–134
prevent reuse, 130
principles, 126
public face, 140–144
shopping-list subroutines, 130–133
wildcard import, 127–128

Mutable object, 210

Index

www.EBooksWorld.ir

218

N
Negation, 63, 64
Nesting, 10, 15, 57, 84, 210
Network, 119–121, 187–188, 198
Non-determinism, 184, 210
Null

checks, 47–48
CustomerAccount class, 48
error-prone, 47
getGradeForStudent returns, 49
message parameter, 22
@NotNull, 49
optional type, 49
power of, 31
program code, 48
reference, 47
return, 49, 102, 200, 201
seeding disaster, 48–50
shoutMessage, 99

values, 22, 101
Null checks, 47–49
NullPointerException, 48, 99, 101, 107, 119

O
Object-oriented programming (OOP), 146
Objects

ArrayList, 131
ArrayList<Object>, 46
DataStore, 142
decision-making class, 150
grade object, 49
integer objects, 46
LocalDateTime, 187
logger, 197
message-passing, 138
multiple types, 46
optional type, 102

OrderChecker and BankConnection, 182
overuse and abuse

inheritance, 160–161, 163
parameter, 105
polymorphism, 156, 158, 160
quasi-omnipotent objects, 150
quick and dirty reuse, 163, 165–167
reference type, 104
rigid relationships, 153, 155–156
server, 188
simple, 209
StationManager, 151
string objects, 46
TicketMachine, 152

Optional type, 49–50, 102
Output parameters, 102–105

P, Q
Parameters, 210

coupling, 140
drawCircle method, 40
objects, 182
output, 102–103
null, 99
null message, 22
register method, 134
subroutines, 100, 176
xPos and yPos, 104

Polymorphism, 60, 135, 156–158, 160, 210
Primitive types, 104, 133, 134, 210
Print statements, 114, 190, 196–197

R
Ranges

control coupling, 139
data, 68

Index

www.EBooksWorld.ir

219

errors, 65
for loop, 70
housekeeping code, 71
infinite loop, 71
while loop, 70–71

Read-eval-print loop (REPL), 73
Reference type, 104, 211
Register method, 135
Regression, 177
REPL, see Read-eval-print loop (REPL)
Resource, 211

cause complications, 121
clean up, 122, 123
external, 178, 180
module, 127
network, 120
requirement, 121
resource-handling code, 121

Reuse
abstract class, 166
code, 165
concrete classes, 166
flexible module, 133
fly method, 166
hard-to-reuse methods, 132
OOP, 150, 165
prevent, 130–131
quick and dirty, 163–164
subroutines, 89, 90

S
Safety counter, 78–79
Scope, 134, 181–182, 193, 211
Scope of variables

accessible, 40
broad scopes

advantages, 40

code, pair of eyes, 38–39
drawCircle method, 40
fields, shapes class, 38
shapes, 39

narrow, 37
Script kiddie, 3–4
searchInFile method, 90
Seeding disaster, 48
Side effects, 40, 90, 100, 143–144, 211
Spacing

assignIfPositive, 10
consistently, 15
high-level programming languages, 11
if statement, 12
indentation, 12
level, 10–12
spaced out, 13
surreptitious subroutines, 100
tabs and spaces, 14–15
white space, 13

Stack trace, 107, 114–115, 195, 211
State

changes, 82
encaptsulation, 138
haveBirthday method, 111
loop, 75
management, 40
variable’s, 40

State management, 40
Static methods, 145, 149
Status codes, 43–44
Structured programming

BASIC program, 23
bubble-sort code, 27
fundamental programming

structures, 24
goto statements, 24, 25

Index

www.EBooksWorld.ir

220

for Java program, 25
subroutine, 26–27, 29

Style guides, 15, 34, 89, 128–129
Subtypes, modules, 134

T
Tabs and spaces, 14–15
Test frameworks, 169, 175
Testing

bare minimum, 171–175
chaos, 183–184, 186–188
expansive focus, 180–183
integration testing, 170
machine-specific tests, 178–180
software-development process, 170
Thwarting efforts, 176–177

Test suite, 180, 186
Tools

assertion, 109
automated, 18
code-review, 15, 17
compilers and IDEs, 49
De Morgan’s Law, 64
modules, 126, 127
process of writing comments, 19
programming

automation, 6
choosing, 4, 5
differences, 6
features, 4–5
IDE, 5
order-of-magnitude leap, 7
software development, 7
types, 5
visual programming tool, 6

and techniques, 109

toolbox, 126, 127, 165
Try block, 112, 113, 122, 123
Types, 211

boolean, 117
exceptions, 120
interface, 156
Liskov Substitution Principle, 159
optional, 102
primitive data, 133
reference, 104

Type system, 31, 42, 45, 104, 117

U
Unchecked exceptions, 112
Uniform Resource Identifier/Locator

(URI/URL), 34, 119, 120, 211
Unit test, 169, 170, 172, 177, 181, 182, 211
Unreachable code, see Dead code
Utility class, 149–150

V
Value type, 211
Variable names

amount, 32
clearer, 33
coding, 32
exceptions, 33
IDEs, 32
lazy naming, 35
length, 32
minimumArea, 33
strategy, 32
vowel movements, 34

Variables
confusion, 35–36
contrarian, 36
declaring and initializing, 35

Structured programming (cont.)

Index

www.EBooksWorld.ir

221

names (see Varibale names)
null (see Null)
scope (see Scope of variables)
type system (see Variable type system)

Variable type system
mixed, 46
object-oriented program, 47
patient information, 46
program design, 47
strings, 44–45
turn numbers into

secret codes, 43
Version-control system, 6, 18
Vowel movements, 34

W, X, Y, Z
While loop, 15, 67, 70–71, 73, 77, 92
White-box testing, 175, 176, 211
White space, 13, 14, 191
Wrong type, loops

arbitrary iterations, 71, 73–74
collections

different data structures, 68
for loop, 69, 70
loop-choosing dartboard, 69
ordering, 69
tracking, 69

ranges (see Ranges)

Index

www.EBooksWorld.ir

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Learning to Program
	Objectives
	Introduction
	Bad Ways to Learn Programming
	Take a Pass on Practicing
	Thumbs Down!

	Avoid Inspiration
	Thumbs Down!

	Be a Script Kiddie
	Do It Alone

	Bad Ways to Choose Your Tools
	Choose Inappropriately While a Beginner
	Thumbs Down!

	Obsess Far Too Much over Your Choices
	Thumbs Down!

	Be a Fashion Victim

	Chapter 2: Layout and Structure
	Objectives
	Prerequisites
	Introduction
	Make Spacing Poor and Inconsistent
	On the Level
	Thumbs Down!

	Spaced Out
	Tabs and Spaces
	Thumbs Down!

	Clutter the Code
	Unused Stuff
	Dead Stuff
	Disabled Stuff
	Thumbs Down!

	Write Bad Comments
	No Comment!
	Thumbs Down!

	Code Parroting
	Thumbs Down!

	Out of Sync

	Avoid Structured Programming
	Jump Around
	Routine Work
	Thumbs Down!

	Chapter 3: Variables
	Objectives
	Prerequisites
	Introduction
	Use Obscure Names—Thinking Up Meaningful Labels Isn’t Worth the Effort
	All Meaningless
	Thumbs Down!

	Vowel Movements
	Thumbs Down!

	Lazy Naming

	Treat Variable Declaration Like a Waste of Time
	Be Confusing
	Thumbs Down!

	Be Contrarian

	Maximize the Scope of Variables
	Broad Scopes
	Thumbs Down!

	Going Global

	Thoroughly Abuse the Type System
	Turn Numbers into Secret Codes
	Thumbs Down!

	Strings Are Magic—They Can Pretend to Be Any Type
	Thumbs Down!

	Mix Things Up
	Thumbs Down!

	Null—The Harbinger of Doom
	Null Checks
	Seeding Disaster
	Thumbs Down!

	Chapter 4: Conditionals
	Objectives
	Prerequisites
	Introduction
	Forget the Alternatives
	Or Else What?
	Thumbs Down!

	The Normal and the Exceptional
	Thumbs Down!

	Build a Ladder
	Thumbs Down!

	Abuse Expressions
	Tortuous Expressions
	Thumbs Down!

	Not Being Not Non-negative . . . Not
	Thumbs Down!

	Include Gaps and Overlaps
	Thumbs Down!

	Chapter 5: Loops
	Objectives
	Prerequisites
	Introduction
	Choose the Wrong Type
	Collections
	Thumbs Down!

	Ranges
	Thumbs Down!

	Arbitrary Iterations
	Thumbs Down!

	Have Fun with Infinite Loops
	Citing the Masters
	Thumbs Down!

	Taking Precautions
	Thumbs Down!

	Make Inappropriate Exits
	Break Out
	Thumbs Down!

	Make'em Looooong and Complex
	Long Loops
	Thumbs Down!

	Complex Loops
	Thumbs Down!

	Chapter 6: Subroutines
	Objectives
	Prerequisites
	Introduction
	Super-Size Your Subroutines
	Thumbs Down!

	Put Up Barriers to Understanding
	Bad Naming
	Thumbs Down!

	High Complexity
	Thumbs Down!

	Too Many Purposes
	Thumbs Down!

	(Ab)use Parameters
	The More the Merrier
	Thumbs Down!

	Being Defensive
	Thumbs Down!

	Surreptitious Subroutines

	Screw with Return Values
	Return of the Harbinger
	Thumbs Down!

	Fun with Output Parameters
	Thumbs Down!

	Chapter 7: Error Handling
	Objectives
	Prerequisites
	Introduction
	Assume Everything Will Always Go Well
	Don’t Check
	Don’t Assert
	Thumbs Down!

	Don’t Catch
	Thumbs Down!

	Send Problems Down the Memory Hole
	Disappearing Exceptions
	Reporting Problems Is Doubleplusungood
	Thumbs Down!

	Kick the Can Down the Road
	Using Error Codes
	Thumbs Down!

	Baffle and Bamboozle
	Thumbs Down!

	Make a Mess
	Cleaning Up and How Not to Do It
	Thumbs Down!

	Chapter 8: Modules
	Objectives
	Prerequisites
	Introduction
	A Note on Terminology

	Make Importing Messy
	Import All the Things!
	Thumbs Down!

	Clutter and Mess
	Thumbs Down!

	Prevent Reuse
	Shopping-List Subroutines
	Thumbs Down!

	Mono-focused Modules
	Thumbs Down!

	Create Strong Dependencies
	Exposing Your Innards
	Thumbs Down!

	The Public Face of a Module
	Thumbs Down!

	Chapter 9: Classes and Objects
	Objectives
	Prerequisites
	Introduction
	Have Questionable Motives for Creating Classes
	Data Classes
	Thumbs Down!

	God Classes
	Thumbs Down!

	Utility Classes
	Thumbs Down!

	Make Objects Inflexible
	Objects Obeying Orders
	Thumbs Down!

	Rigid Relationships
	Thumbs Down!

	Avoid Polymorphism
	Thumbs Down!

	Overuse and Abuse Inheritance
	Going Deep
	Thumbs Down!

	Quick and Dirty Reuse
	Thumbs Down!

	Chapter 10: Testing
	Objectives
	Prerequisites
	Introduction
	Be Protective of Your Code
	Keeping It to Yourself
	Thumbs Down!

	Doing the Bare Minimum
	Thumbs Down!

	Thwarting Efforts
	Thumbs Down!

	Set Traps in Your Tests
	Machine-specific Tests
	Thumbs Down!

	Expansive Focus
	Thumbs Down!

	Chaos
	Thumbs Down!

	Chapter 11: Debugging
	Objectives
	Prerequisites
	Introduction
	Investigate Unsystematically
	Guesswork
	Thumbs Down!

	Biases
	Thumbs Down!

	Chaos
	Thumbs Down!

	Make Debugging Hard
	Always Keep Your Mouth Shut
	Thumbs Down!

	Keeping Records
	Thumbs Down!

	Avoid Proper Fixes
	The Hit'n’ Run Bug
	Thumbs Down!

	Patch It Up
	Thumbs Down!

	Bibliography
	Glossary
	Index

