1-\1,;""\1 Fﬂ

ENTERPRISE 3 %

[NTEGRATION %

PATTERNS

GREGOR Homnpr
Bossy WOOLF




Table of Content

TABLE OF CONTENT oottt ettt ettt sttt e e et b e e e st et e e s sa bt e e s atteeeesbeseessbteeesasbeeessbeseesbbasesssbenesastesessanens 2
FOREMWORD. ...ttt ettt ettt e e sttt e e sttt e e s eate e e e sabaeesaabeeeesaabaeeesabeeesaateesesabaeessabbesesastaeessanens 6
FOREMWORD ...ttt ettt et e et e e sttt e e sttt e e s eate e e e saba e e s abaeeesaabaeeesateeessateesesabaeesssbbesesasteeessanens 7
[ TN O O 8
WHO SHOULD READ THIS BOOK .....uvviiiiitiii e ceee ettt e eette e e ettea e s ettt e e s eatte e e s aaes e s sabeeesssbaesessaesessabaeesasbbeessantesessnrens 8
WWHAT YOU WILL LEARN ...ttt ittt ettt e eetee e ettt e e s ettt e e s eatte s e esbeeasssabeeesastaesessaesssssbasesassaesessaeaessasenesasbeeessaneeeessarens 9
WHAT THIS BOOK DOES NOT COVER .....uviiiiiieiee s ittiee ettt eeeteee e s st e e s atte s e seaaee s s sabeeessbaesesstesessnbenesssbbeessanaeesssnrens 9
HOW THIS BOOK IS ORGANIZED........cuviiiiitiie e ettt e eeateeessteeessettesessstesessabeeesasbesssssaessssssesessseesssasassssssenessssensesns 10
A CKNOWLEDGEMENTS ...uutttttetietiieitttreeeeesssaissseseseessaiistsssssessssiitssssessessiassssssessessiatsssssssesssmmssssesssesssmiissresseesennins 11
ABOUT THE COVER PICTURE .....veiiiti ittt ettt ettt e e e et e s e et e e s sab e e e e aabae s e sabaeeessabeeesanbeeeesnrenas 11
INTRODUGCTION. ...ttt ettt ettt s ettt e e sttt e e et et e e s aeeeeset bt e e saatesessabaeesastbesesabeteesssbaeesaatbesesaseeeessarenens 12
VWVHAT IS IMIESSAGING? ...ttt sttt e eete e ettt e e e ettt e e e et e e e st e e e e bt e e e ebaeeessabeeesasteesesabeeaessabeeeeasbessesaseneessbbenesasteseesnrens 13
WHAT IS AIMESSAGING SYSTEM? ...eeviiiiiteie e ittt e eettee s sttt e e e ett e e e eettee e s sabeeessstaesesbeeeessabesesasbessesbeeeesssbesesasbessesnrens 14
WWHY USE IMIESSAGING? .....vvieeiittieeeetee e eteee e s ettt e e eatee e e st e e s e bt e e e sbaeeessabeeesasseesesabeeeessabesesanbessesnbeneessbbenesasteesesnrens 15
CHALLENGES OF ASYNCHRONOUS IMESSAGING......ccciiitiiieiteeeesiteeessteesessseesessssesssssstessssssesessssesssssssesssssssssssnsens 18
THINKING ASYNCHRONOUSLY ....oiiiuttteetieesiiiittteeteesessiitssseessessiaisssssessesssmisssesssesssmiisssssseessssimsssssssesessinsssseseseennn 19
DISTRIBUTED APPLICATIONS VS, INTEGRATION ...eiiiiiiiittieeteeeiiiiittreeeeeesssiissrsseeessssssstssssessessssssssssessesssnsssssesesessn 19
COMMERCIAL IMESSAGING SYSTEMS ... .uvuiiiiittieeiitieeeeeitesesssttesesssbeessssteesesssessessssesessssaessasssesessssesesssssesssssssssssnsens 20
L I = V0], 22
DIAGRAM NOTATION ...uviiiiietieeeetiee e eettee e s et eeeestteeesesaeeessabeeesasteseaassesessabeeesassbeseaasessesssseeesassbesssasaesessnbenessseeseans 24
EXAMPLES AND INTERLUDES ....0uettieiiieitttteeteeesieittreeteeessasisssasssesssssastsssssssessissssssssssessimsssssssssesssassssesssesssnsssresees 25
ORGANIZATION OF THIS BOOK ...ttt ettt e ettt e e et e e ettt e e e bt e e s sab e e e e et be e s eateeessabeeesssbbesesasaeeeesnrees 26
GETTING STARTED ... utiiiietetieiteeeesetteeeeetessesaeeeesssbeeeaabeseesbaesesssbeeeeasbaeseabeeesssabeseeassbeseastesessabeeesasbbeseaaseessssnrens 27
SUPPORTING WEB SITE ... utiiiiitiie e ittt e e ettt e ettt e e s ette e e e ettt e e sbae s e s sabeeesesbaesesbeeeessabeeeeassbesessteeessnbenesasbbesesaseeeeesarens 29
S U Y Y 2 2T 29
1. SOLVING INTEGRATION PROBLEMS USING PATTERNS. ..o 31
THE NEED FOR INTEGRATION........ititttttttteettiiittreeeeesessiitssseeesessiaitssssessesssaisssesssesssamsstsssssessssimsssssseesessinsssssseseenn 31
INTEGRATION CHALLENGES. ... .tuiiiiitteeeiitteeeeeteeeesestesessasesesateesesasesesssbesesassessessaeessasbesssasseseessbesessassesssassessesnrees 32
HOW INTEGRATION PATTERNS CAN HELP ...ooc ittt ettt ettt e s et e s et s e s saveeassntbeesssaeaessnbeeesanbeeseanns 33
THE WIDE WORLD OF INTEGRATION ....0tteiitiittttetteeeesiitrsseeesessiaisssseessessiaisssssssesssamisssssssessssimssssseesessimssssseesesnn 34
0T 1S = O T U =TI 1 N TR 37
Y TN T = = A 39
A LOOSELY COUPLED INTEGRATION SOLUTION .....uvitiiiteieeitteeeeetteeesitteeessstesssseessssssessssssessesnsesssssssessssssessssnsens 42
WIDGET-GADGET CORP == AN EXAMPLE ...occiitiiieiittit e s iteee e sttt e e eettee e s stteeesastte s e sabteeessabeeesasbessesbenessssbesesassessesnnens 44
S U Y Y 2 2T 61
2. INTEGRATION STYLES ...ttt sttt e e e sttt e s s e e e s e b b e s s sbaa e s s sabeeessabaeessbtaeeesanens 63

www.EBooksWorld.ir



LR {0 n 10T ox 1 o] N U 63

APPLICATION INTEGRATION CRITERIA ... uttiiteeitieiteesteesteesteesteesstesssteessbeesstaeasbaeasteesnsesasseesnsesantaesnsesssessnsenans 63
APPLICATION INTEGRATION OPTIONS ...cutttiittieitteeisteessteeasteesuesssessssssasessssessssassssessssssnsessssssnsessnsessnsessssessssesans 64
L T I YN N ] = = PSPPSR 65
SHARED DATABASE ......tvieititeittieiteeeitttesteeestseasseeasteeaaseeestseaaseeesteeaaseeesteeaseeestseasee e beeeseeesbeeeseeesbeeeneeesteeenneeenres 68
REMOTE PROCEDURE INVOCATION ......uttiittieiieeesteesteesiteesteesssesasseesssssssseesssesansessssesssseesssessnsessssessnsessssessnsessnes 70
IMIESSAGING .....uveeittecttee sttt e sttt et e st e e bt e st e et e e ae e e te e e bee e te e e se e e ke e e ase e e Eeeeabee e teeeasee e taeenbee e teeenneeebeaanteeentaennneeans 72
. MESSAGING SYSTEMS ..ottt sttt a e s e e e aesaestestesneene e e eneeseenrenreaneas 75
NI 2T0] 0 ot [ N PSPPSRI 75
IMIESSAGE CHANNEL «..vteutvteitteeitttestte e sttt esteeestseasseeestseaaseeestseasseestseeseeesteeaasee e teeeasee e teeanseeeteeanseestenanteessaennnenans 76
IVIESSAGE ... . e e iuteeiitt e ittt ettt e st e st e st e ettt e st e ekt e aae e e tb e e asee e ket e be e e ke e e ae e e Ee e e Re e e Ee e e Re e Eee e bee e Eeeebee e teeebeeereeareeans 81
PIPES AND FILTERS .1eittttiteeiteeiieesieesteessteessteessteessteeastesasteessseeasteessseeasseeasseeanseessbeeanseessbeeanteeanbeeanbeeasbeesnnaennnes 84
Y Sy Y] = {0 TU 1 =1 PSSP 91
IMESSAGE TRANSLATOR ....eeitttetttestteestteesteeestseasseeestseeaseeestssassseestseassessssseaasessstesaasessssesansessssesansessssessnsessssessnsenans 96
VST Y] = =N 5 =T 1 N USSR 105
. MESSAGING CHANNELS ..ottt ettt sa e e et e e sbesneateeneensenaeneenreens 108
I 200] 0¥ o ] N SRR 108
POINT-TO-POINT CHANNEL ...ttt iuteeitteiieesteesteessteesteessteesteessseessteessbesasteessseeaaseessseessseessbesasseessseesnseesssesansessnnes 111
PUBLISH-SUBSCRIBE CHANNEL ....cuvttiteeittteiteessteesteesstessseesssesasseesssesssseessssssssessssessssessssesssessssessnsesssessnsesssnes 113
DATATYPE CHANNEL L..eittteitteeittte sttt e sttt estteestseessseestseeasaeestesassssestseaasseasteeasseeeteeasessseeanseesteeansessteeaseessensnsens 116
INVALID IMESSAGE CHANNEL ....ecutvieitteeitteeiteestteessteestueessteesssesassesssseessseesssessssessssessnssssnsessnsessnsessnsessnsessnsessnsens 119
DEAD LETTER CHANNEL ....utttittttiteeiteesieeateeasteeastesastaeassessteeassseatssassesassesansessstasansessssssansessssssansensssseensenensns 122
GUARANTEED DELIVERY ...utiitit ettt sttt e ettt et e et e st a et e et e aatee e be e esbe e e beeentee e teeantee e taeanneesteeenneeanteeanneeans 124
CHANNEL ADAPTER ..ttt ttt ettt ettt esteeasteeasteeasteaaasesasteeaasesateeasee s teeanseeasteeanseeesteeanseeesteeanseessteaanseessseennseeaseeansenans 128
Y=Y Y] [N =11 L = USSR 132
Y ESY Y] =i = T USSR 135
. MESSAGE CONSTRUCTION.....ctiteieieieiestese st stese e esaesaes e stesteste e asaeaesaesaessesaessessessaeseeseensesaessessenns 140
I 270] 0 ot o] N PSSP 140
COMMAND IMESSAGE .....eetiiitie ettt e itteastee s teeestee e teeastee s teeaabee e teeabee e beeansee e beeanseeasteeanbeeestaeanseesteeenseeanteeaseeans 141
DOCUMENT IMESSAGE ....vviiiutieitteeitee st e s tee st e s teeasta e e teeeste e e teeasbe e e teeaabee e beeense e e beeanbeeeateeenbee e teeenseeestneenneeeees 143
Y N YT ] =SSR 145
REQUEST-REPLY ....utteittttiteeitteestee st e ste e sttt e s ste e sttt e sate e st e e aate e sa b e e amee e st b e e aseeessbeeaseeessb e e aseeeat b e e aneeestbeenneeesteeenneeestes 147
RETURN ADDRESS ...ecuttiiuteeitttesteessteessteessteeasteessseeasseessseeasseessseeasseessseeasseessseeaseeessbeaaseeessseeaseeessbeenseeestneenseeestes 151
CORRELATION IDENTIFIER .vtttutttettteitteeteeesteeasuesestseessesassesassssassssassessssssassssssssansesssssssessssessnsesssssssnsessnsesansenans 154
Y ST Y] =T =0 1 =1 o1 =S USSR 159
MESSAGE EXPIRATION ... .utiiutieiutteiteesteesteessteessteesssee s teeasseesteeasseeateeassee e teeanseeesteeanseeenteeaseeesteeenseeestneenneeeses 164
LT 7 B [N 0] [0 ] USSR 167
. INTERLUDE: SIMPLE MESSAGING ......ccoeitiiiiiitiie sttt see et e e snae st te e sneesneeneeaeeanes 169
NI 270] 0 ot o] N SRR 169
JMS REQUEST/REPLY EXAMPLE ........cittiitietieitieiteeiteeiteestesaesaeestessbeebeesbesssestaestaesbeestesssesnsesasesseesseensesssesssessenss 171
NET REQUEST/REPLY EXAMPLE .....ueiitiiitiiieite it e eteeeteete et e ettesteesteesteestestesaeesaeesbeeabeenbeentesseestaestaesteesreesresnnes 182

www.EBooksWorld.ir



JIMS PUBLISH/SUBSCRIBE EXAMPLE .....vviiiiittiiesettt e s seeee e s ittt e s ettt s s saaatassstbesssassesessabesessssbesesassesesssbesessssbesesns 191

7. MESSAGE ROUTING ......oiit ittt sttt st s e sa ettt e st e neas e e e e e seestesteaneeneeneeneeneenrenes 208
N 270] 0 ot ] N PSSP 208
CONTENT-BASED ROUTER ......tttiitiis ittt ettt ettt ettt e st et e et e et e e nte e e teeeabee e taeessaeesteeeabeeestaeenneeesteeenneeese 211
Y Sy ] =i = = USSR 217
DN Y Lol T i = S SR 221
=T 1= = N I 13 USSR 226
T2 1= = PSPPSRSO 234
AAGGREGATOR ..11tteeittteittee sttt e sttee sttt e asteessueeasseessbeeaseee st b e e asaeeaabeeaseeeaRbeeaseee st e e eaeeenRbeeaRteeas b e e anteenebeeaneeennbeeanneennbe s 242
L] =0 T = L =1 SRS 255
COMPOSED IMESSAGE PROCESSOR.......ecitiiiiiieiteeeiteeasteeasteeasseeasteeassesastssansessssssassessssessssessssessssessssessnsessnsesansenans 265
SCATTER-GATHER ... ..eiittteitte ettt ettt e sttt asteeesteeastee e teeaasee s teeabee e teeaasee e teeansee e beeaaseeesteeanteeesteaanseeateeanseeanseeansenans 267
LU T T | RS SR 270
L0103 o R 1Y 1NN V] = 2 USSR 278
Yy e = = TR T 0 = USSR 286

8. MESSAGE TRANSFORMATION ... .ottt sttt ettt esa e te e saesaesneeneeseeneeneeseenees 291
I 200] 0¥ o ] N SRR 291
ENVELOPE WRAPPER .....ccuttiittttiteestteestee sttt e ssaeesateessteessbeeassaessseeaseeessbeeaseeessbeeasaeessbeeasee e st beeaneeestbeeaseeestneenneeeees 292
L0701 = N =N ol = = PSPPSRI 297
170N =1 N T = PSPPSRI 302
LTI O =0 =PSRRI 305
L0y N N 74 = USSR 310
167NN N[ (7Y I B 7. 1N 1Y, o] o =1 PSPPSRI 312

9. INTERLUDE: COMPOSED MESSAGING.......c.cciteiiiieeieiie st se ettt enae e sreessee e saesneesnees 317
N 270] 0 ot ] N PSSP 317
SYNCHRONOUS IMPLEMENTATION USING WEB SERVICES .....ccitiiiitiiiiiieeiteessteeesteeasieeentesssteessesssseesnsessnsessnsenans 324
ASYNCHRONOUS IMPLEMENTATION WITH MSMQ ......uiiiiiiiiiiiier ettt 353
ASYNCHRONOUS IMPLEMENTATION WITH TIBCO ACTIVEENTERPRISE ......cccoieiiieiieesiveesreesreesneesiveesneeseneas 397

10. MESSAGING ENDPOINTS ...ttt sttt sttt sa e e sa et et snesbesnaenaeaeneenrennens 415
I 270] 0 ot i o] N PSSP 415
VST e N el € 1 =Y\ USSR 418
IMESSAGING IMAPPER ...ttt itie ittt siee st e st e et e te e st e e s teeeate e e teeasbe e e te e e aae e e beeentee e beeanbee e beeenbeeesteeeneeestneenneeeees 426
TRANSACTIONAL CLIENT 1o ttttttteeitttesteesteesteestteessseessbeeasseessseeasseessbeeassaessseeassaessseeasseessbeeasseessbeeanseessseesnneensnes 431
POLLING CONSUMER ....tiiuteeittteiteesiteeateessteesaeessseessteessseeassaessseessseessseeasseessseeaseeessseeasseestseeasseessseeasseessneenseeesns 439
EVENT-DRIVEN CONSUMER......cutttitttitteitteiteessttesteessseessseessseeasseessseessseessseeasseessssesssesssssesssesssssesssesssnsesssesssns 442
COMPETING CONSUMERS ....eutttiteeetieeteeestteasteeastseassesasteeaasesasteeasesassssasesssteeasessssesassessssessnsesssssssnsessnsesansenans 446
MESSAGE DISPATCHER ....veiitieitiieiieeiteesiteeateessteeastes s taeasseeateeasbeeateeansee e beeansee e teeanbeeeateeenbeeesteeanseeestneenneeetes 451
SELECTIVE CONSUMER ....cutttittt ettt e stteateessteeastesasteeassesasteaaseesteaansesasteeasseesteeanseessteeansessstaeanseesseesnseessenansenans 457
DURABLE SUBSCRIBER ....vtiiutteittteiteessteesteessteeasteesssesassseassesssesassesasssansesssssansessssssansessssssansessssssansessssssenensssns 464
IDEMPOTENT RECEIVER ...ccuttteittee ittt e sttt e sttt e stee e st e stte e bt e e aataestbeessteestb e e aaae e st b e e asee e st b e e aseae st beeantaensbeeanteesnbeeaneeennneen 469
SERVICE ACTIVATOR ..ottt ettt e itteasteeasteeasteeastesaasesasteeaasesateaaaseeasteeaaseeesteeansee e beeanseessteaanteeestaeanseessteeanseeanseeansenans 472

www.EBooksWorld.ir



11. SYSTEM MANAGEMENT ..ottt 476

LR {0 ] 0 18T ox 1 o] N 476
(O0a] N L0 I =TSRRI 477
D] U = TR 481
MV IRE TAP ittt ettt ettt e e e e s et bttt e e e s s e b bt b et e s e e s s e s bt b et e s eessesabe b eeesaeesssaa b beeeeesesssaabbeaaeaseessabbbebeeeeeeias 482
Y [T T =l o 11y 0] =\ T 484
Y[y ] S ] ] =TT 487
Y N 2 210 ) 22U 489
TEST IMIESSAGE ...tvtiiieei e ittt e e e e e sttt e e e e e e s e bbbttt s e e s s e bbbt et e s e e s s e abe b et e s aessasabtbeeeseeesssan b beeeeasessssbbabaeesesssasbbabeeeeessas 498
(017N NN =TI U= 1T = = O STRR 500
12. INTERLUDE: SYSTEM MANAGEMENT EXAMPLE ..ot 504
LOAN BROKER SYSTEM IMANAGEMENT ...ccciitiittttiieeeesietttteeesesssassssteessesssasasbatssassssssssbssseesesssassrasesssesssessssssnnss 504
13. INTEGRATION PATTERNS IN PRACTICE ......c oottt 528
CASE STUDY: BOND TRADING SYSTEM ..uututiiiiiiiiiiiitiiieee et ieissttiessesssesassesssesssasssssasssesssesssssesssesssssssssssssesssssssses 528
ARCHITECTURE WITH PATTERNS ... tttitiiie i i iittttitt s e s s sttt et s e e st ettt aetsaessasabbbetssasssssabbeassesessssbbaaeeesesssasbbebesesessas 529
14. CONCLUDING REMARKS ... ittt ettt e e ettt e e s eat e e e et e e s sbae e e s sabeeessabeeessbaeeessares 548
EMERGING STANDARDS AND FUTURES IN ENTERPRISE INTEGRATION......ciitittriiiieeiieiitieiesesssesivsreessesssesassssenss 548
Sy =] I (O 1T AN = o 1 TS 569

www.EBooksWorld.ir



Foreword

by John Crupi

What do you do when a new technology arrives? You learn the technology. This is exactly what I
did. I studied J2EE (being from Sun Microsystems, it seemed to be the logical choice). Specifically,
I focused on the EJB technology by reading the specifications (since there were no books yet).
Learning the technology, however, is just the first step — the real goal is to learn how to effectively
apply the technology. The nice thing about platform technologies is that they constrain you to
performing certain tasks. But, as far as the technology is concerned, you can do whatever you
want and quite often get into trouble if you don’t do things appropriately.

One thing I've seen in the past 15 years is that there seem to be two areas that software
developers obsess over: programming and designing —or more specifically, programming and
designing effectively. There are great books out there that tell you the most efficient way to
program certain things in Java and C#, but far fewer tell you how to design effectively. That’s
where this book comes in. When Deepak Alur, Dan Malks, and I wrote Core J2EE Patterns, we
wanted to help J2EE developers “design” better code. The best decision we made was to use
patterns as the artifact of choice. As James Baty, a Sun Distinguished Engineer, puts it, “Patterns
seem to be the sweet spot of design.” I couldn’t agree more, and luckily for us, Gregor and Bobby

feel the same way.

This book focuses on a hot and growing topic: integration using messaging. Not only is
messaging key to integration, but it will most likely be the predominant focus in Web services for
years to come. There is so much noise today in the Web services world, it's a delicate and
complex endeavor just to identify the specifications and technologies to focus on. The goal
remains the same, however— software helps you solve a problem. Just as in the early days of
J2EE and .NET, there is not a lot of design help out there yet for Web services. Many people say
Web services is just a new and open way to solve our existing integration problems— and I agree.
But, that doesn’t mean we know how to design Web services. And that brings us to the gem of
this book. I believe this book has many of the patterns we need to design Web services and other
integration systems. Because the Web service specifications are still battling it out, it wouldn’t
have made sense for Bobby and Gregor to provide examples of many of the Web service
specifications. But, that's okay. The real payoff will result when the specifications become
standards and we use the patterns in this book to design for those solutions that are realized by
these standards. Then maybe we can realize our next integration goal of designing for

service-oriented architectures.
Read this book and keep it by your side. It will enhance your software career to no end.

John Crupi
Bethesda, MD
August 2003

www.EBooksWorld.ir



Foreword

by Martin Fowler

While I was working on my book Patterns of Enterprise Application Architecture, I was lucky to get
some in-depth review from Kyle Brown and Rachel Reinitz at some informal workshops at Kyle’s
office in Raleigh-Durham. During these sessions, we realized that a big gap in my work was

asynchronous messaging systems.

There are many gaps in my book, and I never intended it to be a complete collection of
patterns for enterprise development. But the gap on asynchronous messaging is particularly
important because we believe that asynchronous messaging will play an increasingly important
role in enterprise software development, particularly in integration. Integration is important
because applications cannot live isolated from each other. We need techniques that allow us to
take applications that were never designed to interoperate and break down the stovepipes so we

can gain a greater benefit than the individual applications can offer us.

Various technologies have been around that promise to solve the integration puzzle. We all
concluded that messaging is the technology that carries the greatest promise. The challenge we
faced was to convey how to do messaging effectively. The biggest challenge in this is that
messages are by their nature asynchronous, and there are significant differences in the design

approaches that you use in an asynchronous world.

I didn’t have space, energy, or frankly the knowledge to cover this topic properly in Patterns
of Enterprise Application Architecture. But we came up with a better solution to this gap: find
someone else who could. We hunted down Gregor and Bobby, and they took up the challenge.

The result is the book you're about to read.

I'm delighted with the job that they have done. If you've already worked with messaging
systems, this book will systematize much of the knowledge that you and others have already
learned the hard way. If you are about to work with messaging systems, this book will provide a
foundation that will be invaluable no matter which messaging technology you have to work
with.

Martin Fowler
Melrose, MA
August 2003

www.EBooksWorld.ir



Preface

This is a book about enterprise integration using messaging. It does not document any particular
technology or product. Rather, it is designed for developers and integrators using a variety of
messaging products and technologies, such as:

e Message-oriented middleware (MOM) and integration suites offered by vendors such as
the IBM (WebSphere MQ Family), Microsoft (BizTalk), TIBCO, WebMethods, SeeBeyond,
Vitria, and others

e Java Message Service (JMS) implementations incorporated into commercial and
open-source J2EE application servers as well as standalone products

e Microsoft’s Message Queuing (MSMQ), accessible through several API’s, including the
System.Messaging libraries in Microsoft NET

e Emerging Web services standards that support asynchronous Web services (for example,
WS-ReliableMessaging) and the associated API’s such as Sun’s Java API for XML
Messaging (JAXM) or Microsoft’s Web Services Extensions (WSE).

Enterprise integration goes beyond creating a single application with a distributed n-tier
architecture, which enables a single application to be distributed across several computers.
Whereas one tier in a distributed application cannot run by itself, integrated applications are
independent programs that can each run by itself, yet that function by coordinating with each
other in a loosely coupled way. Messaging enables data or commands to be sent across the
network using a “send and forget” approach where the caller sends the information and then
goes on to other work while the information is transmitted by the messaging system. Optionally,
the caller can later be notified of the result through a callback. Asynchronous calls and callbacks
can make a design more complex than a synchronous approach, but an asynchronous call can be
retried until it succeeds, which makes the communication much more reliable. Asynchronous
messaging also enables several other advantages such as throttling of requests and load

balancing.

Who Should Read This Book

This book is designed to help application developers and system integrators connect applications

using message-oriented middleware products:

e Application architects and developers who design and build complex enterprise
applications that need to integrate with other applications. We assume that you're
developing your applications using a modern enterprise application platform such as the
Java 2 Platform, Enterprise Edition (J2EE) or the Microsoft .NET framework. This book
will help you connect the application to a messaging layer and exchange information
with other applications. This book focuses on the integration of applications, not on

www.EBooksWorld.ir



building applications; for that, we refer you to Patterns of Enterprise Application
Architecture by Martin Fowler.

e Integration architects and developers who design and build integration solutions
connecting packaged or custom applications. Most readers in this group will have
experience with one of the many commercial integration tools like IBM WebSphere MQ,
TIBCO, WebMethods, SeeBeyond, Vitria, etc. Many of these tools incorporate the patterns
presented in this book. This book helps readers understand the underlying concepts and
make confident design decisions using a vendor-independent vocabulary.

e Enterprise Architects have to maintain the "big picture" view of the software and
hardware assets in an enterprise. This book presents a consistent language to describe
large-scale integration solutions that may span across many technologies or point
solutions. This language is also a key enabler for efficient communication between the
enterprise architect and the integration and application architects and developers.

What You Will Learn

This book does not attempt to make a business case for enterprise application integration; the
focus is on how to make it work. Readers of this book will learn how to integrate enterprise
applications by understanding;:

e The advantages and limitations of messaging as compared to other integration techniques

e How to determine the message channels your applications will need, how to control
whether multiple consumers can receive the same message, and how to handle invalid
messages

¢ When to send a message, what it should contain, and how to use special message
properties

e How to route a message to its ultimate destination even when the sender does not know
where that is

e How to convert messages when the sender and receiver do not agree on a common
format

e How to design the code that connects an application to the messaging system

e How to manage and monitor a messaging system once it’s in use as part of the enterprise

Even readers who are familiar with these practices will benefit from having them documented
and being able to use them to facilitate communication with their colleagues.

What This Book Does Not Cover

We believe that any book sporting the word "enterprise" in the title is likely to fall into one of
three categories. Either it attempts to cover the whole breadth of the subject matter and will be
forced to stop short of detailed guidance on how to implement actual solutions. Or, the book will
provide specific hands-on guidance on the development of actual solutions but is forced to
constrain the scope of the subject area it addresses. Lastly, books that attempt to do both are

www.EBooksWorld.ir



likely to never get finished or are published so late as to be irrelevant. We opted for the second
choice and hopefully created a book that helps people create better integration solutions even
though we had to limit the scope of the book. Topics that we would have loved to discuss but
had to exclude in order not to fall into the category three trap include security, complex data
mapping, workflow, rule engines, scalability and robustness, and distributed transaction
processing (XA, Tuxedo and the like). We chose asynchronous messaging as the emphasis for this
book because it is full of interesting design issues and trade-offs and provides a clean abstraction
from the many implementation provided by various integration vendors.

This book is also not a tutorial on a specific messaging or middleware technology. You will find
examples based on a number of different technologies in this book, such as JMS, MSMQ, TIBCO,
Microsoft BizTalk, XSL etc. We included these examples for illustrative purposes to show readers
how the pattern could be translated into an actual implementation. If you are interested in
learning more about any of these specific technologies, please refer to one of the books referenced
in the bibliography or one of the many on-line resources.

How This Book Is Organized

The core of the book contains 65 patterns that form a pattern language. Books such as Design
Patterns, Pattern Oriented Software Architecture, Core J2EE Patterns, and Patterns of Enterprise
Application Architecture have popularized the notion of using patterns to document
computer-programming techniques. The concept of patterns and pattern languages was
originally applied to city and building architecture by Christopher Alexander in his seminal
works A Pattern Language and A Timeless Way of Building. To help the reader design an integration
solution, each pattern represents a decision that the reader must make, explains the
considerations that affect the decision, and presents a well regarded solution to guide the
decision. A pattern language is a web of related patterns where each pattern leads to others,
guiding the reader through the decision making process. This approach is a powerful technique
for documenting an expert’s knowledge so that it can be readily understood and applied by
non-experts.

A pattern language teaches the reader how to solve a limitless variety of problems within a
bounded problem space. Because the overall problem that is being solved is different every time,
the path through the patterns and how they’re applied is also unique. In this way, this book was
written for anyone using any messaging or integration tools for any purpose, but can be applied
specifically for you and the specific application of messaging that you are facing.

Patterns describe commonly accepted solutions to recurring problems, so if you're an
experienced developer of message-oriented integration solutions, many of these patterns will
seem familiar to you. Yet even if you already recognize most of these patterns, there is still value
in reviewing this book. This book should validate your hard-earned understanding of how to use
messaging. It gives you a consolidated reference to help you pass your knowledge effectively to
less-experienced colleagues. It also documents details of the solutions and relationships between

www.EBooksWorld.ir



them that you may not have been aware of. Finally, the pattern names give you a common

vocabulary to efficiently discuss integration design alternatives with your peers.

Acknowledgements

Like most books, Enterprise Integration Patterns has been a long time in the making. The idea of
writing about message-based integration patterns dates back to the summer of 2001 when Martin
was working on Patterns of Enterprise Application Architecture. At that time, it struck Kyle that
while P of EAA talked a lot about how to create applications, it touches only briefly on how to
integrate them. This idea was the starting point for a series of meetings between Martin and Kyle
that also included Rachel Reinitz and John Crupi. Bobby joined these discussions in the fall of
2001, followed by Gregor in early 2002. The following summer the group submitted two papers
for review at the Pattern Languages of Programs (PLoP) conference, one authored jointly by
Bobby and Kyle and the other by Gregor. After the conference, Kyle and Martin refocused on
their own book projects while Gregor and Bobby merged their papers to form the basis for the
book. At the same time, the www.enterpriseintegrationpatterns.com site went live to allow

integration architects and developers around the world to participate in the rapid evolution of
the content. As they worked on the book, Gregor and Bobby invited contributors to help round
out the book’s content. About two years after Kyle's original idea, the final manuscript arrived at
the publisher.

This book would not have been possible without the help from a long list of contributors. Names
here...

About the Cover Picture

The common theme for books in the Martin Fowler Signature Series is a picture of a bridge. In
some sense we lucked out, because what theme would make a better match for a book on
integration? For Thousands of years, bridges have helped connect people from different shores,
mountains or sides of the road.

We selected a picture of the Taiko-bashi Bridge at the Sumiyoshi-taisha Shrine in Osaka, Japan
for its simple elegance and beauty. As a Shinto shrine dedicated to the guardian deity for sailors,
it was originally erected next to the water. Interestingly, land reclamation has pushed the water
away so that the shrine today stands almost three miles inland. Some 3 million people visit this

shrine at the beginning of a new year.

www.EBooksWorld.ir



Introduction

Interesting applications rarely live in isolation. Whether your sales application must interface
with your inventory application, your procurement application must connect to an auction site,
or your PDA’s PIM must synchronize with the corporate calendar server, it seems like any
application can be made better by integrating it with other applications.

All integration solutions have to deal with a few fundamental challenges:

e Networks are unreliable. Integration solutions have to transport data from one computer to
another across networks. Compared to a process running on a single computer,
distributed computing has to be prepared to deal with a much larger set of possible
problems. Often times, two systems to be integrated are separated by continents and data
between them has to travel through phone-lines, LAN segments, routers, switches, public
networks, and satellite links. Each of these steps can cause delays or interruptions.

e Networks are slow. Sending data across a network is multiple orders of magnitude slower
than making a local method call. Designing a widely distributed solution the same way
you would approach a single application could have disastrous performance
implications.

e Any two applications are different. Integration solutions need to transmit information
between systems that use different programming languages, operating platforms, and
data formats. An integration solution needs to be able to interface with all these different
technologies.

e Change is inevitable. Applications change over time. An integration solution has to keep
pace with changes in the applications it connects. Integration solutions can easily get
caught in an avalanche effect of changes - if one system changes, all other systems may
be affected. An integration solution needs to minimize the dependencies from one system
to another by using loose coupling between applications.

Over time, developers have overcome these challenges with four main approaches:

1. File Transfer — One application writes a file that another later reads. The applications
need to agree on the filename and location, the format of the file, the timing of when it
will be written and read, and who will delete the file.

2. Shared Database — Multiple applications share the same database schema, located in a
single physical database. Because there is no duplicate data storage, no data has to be
transferred from one application to the other.

3. Remote Procedure Invocation — One application exposes some of its functionality so that it

can be accessed remotely by other applications as a remote procedure. The
communication occurs real-time and synchronously.

4. Messaging — One applications publishes a message to a common message channel. Other
applications can read the message from the channel at a later time. The applications must

www.EBooksWorld.ir



agree on a channel as well as the format of the message. The communication is
asynchronous.

While all four approaches solve essentially the same problem, each style has its distinct
advantages and disadvantages. In fact, applications may integrate using multiple styles such that
each point of integration takes advantage of the style that suits it best.

What is Messaging?

This book is about how to use messaging to integrate applications. A simple way to understand
what messaging does is to consider the telephone system. A telephone call is a synchronous form
of communication. I can only communicate with the other party if the other party is available at
the time I place the call. Voice mail on the other hand, allows asynchronous communication. With
voice mail, when the receiver does not answer, the caller can leave him a message; later the
receiver (at his convenience) can listen to the messages queued in his mailbox. Voice mail enables
the caller to leave a message now so that the receiver can listen to it later, which is lot easier than
trying to get the caller and the receiver on the phone at the same time. Voice mail bundles (at
least part of) a phone call into a message and queues it for later consumption; this is essentially
how messaging works.

Messaging is a technology that enables high-speed, asynchronous, program-to-program
communication with reliable delivery. Programs communicate by sending packets of data called
messages to each other. Channels, also known as queues, are logical pathways that connect the
programs and convey messages. A channel behaves like a collection or array of messages, but one
that is magically shared across multiple computers and can be used concurrently by multiple
applications. A sender or producer is a program that sends a message by writing the message to a
channel. A receiver or consumer is a program that receives a message by reading (and deleting) it
from a channel.

The message itself is simply some sort of data structure —such as a string, a byte array, a record,
or an object. It can be interpreted simply as data, as the description of a command to be invoked
on the receiver, or as the description of an event that occurred in the sender. A message actually
contains two parts, a header and a body. The header contains meta-information about the
message —who sent it, where it’s going, etc.; this information is used by the messaging system
and is mostly (but not always) ignored by the applications using the messages. The body contains
the data being transmitted and is ignored by the messaging system. In conversation, when an
application developer who is using messaging talks about a message, he’s usually referring to the
data in the body of the message.

Asynchronous messaging architectures are powerful, but require us to rethink our development
approach. As compared to the other three integration approaches, relatively few developers have
had exposure to messaging and message systems. As a result, application developers in general
are not as familiar with the idioms and peculiarities of this communications platform.

www.EBooksWorld.ir



What is a Messaging System?

Messaging capabilities are typically provided by a separate software system called a messaging
system or message-oriented middleware (MOM). A messaging system manages messaging the way a
database system manages data persistence. Just as an administrator must populate the database
with the schema for an application’s data, an administrator must configure the messaging system
with the channels that define the paths of communication between the applications. The
messaging system then coordinates and manages the sending and receiving of messages. The
primary purpose of a database is to make sure each data record is safely persisted, and likewise
the main task of a messaging system is to move messages from the sender’s computer to the
receiver’s computer in a reliable fashion.

The reason a messaging system is needed to move messages from one computer to another is that
computers and the networks that connect them are inherently unreliable. Just because one
application is ready to send a communication does not mean that the other application is ready to
receive it. Even if both applications are ready, the network may not be working, or may fail to
transmit the data properly. A messaging system overcomes these limitations by repeatedly trying
to transmit the message until it succeeds. Under ideal circumstances, the message is transmitted
successfully on the first try, but circumstances are often not ideal.

In essence, a message is transmitted in five steps:

1. Create — The sender creates the message and populates it with data.
Send — The sender adds the message to a channel.

3. Deliver — The messaging system moves the message from the sender’s computer to the
receiver’s computer, making it available to the receiver.

4. Receive — The receiver reads the message from the channel.

5. Process — The receiver extracts the data from the message.

This diagram illustrates these five transmission steps, which computer performs each, and which
steps involve the messaging system:

www.EBooksWorld.ir



Sending Application Receiving Application

: 1. Create O O 5. Fme“: O Data

1 O Message wth data
2. Send Channel 4. Recens

) ﬁ Message slarage
— 3. Deliver

Computer 1 Computer 2

Message Transmission Step-by-step
This diagram also illustrates two important messaging concepts:

1. Send and forget — In step 2, the sending application sends the message to the message
channel. Once that send is complete, the sender can go on to other work while the
messaging system transmits the message in the background. The sender can be confident
that the receiver will eventually receive the message and does not have to wait until that
happens.

2. Store and forward — In step 2, when the sending application sends the message to the
message channel, the messaging system stores the message on the sender’s computer,
either in memory or on disk. In step 3, the messaging system delivers the message by
forwarding it from the sender’s computer to the receiver’s computer, and then stores the
message once again on the receiver’s computer. This store-and-forward process may be
repeated many times, as the message is moved from one computer to another, until it
reaches the receiver’s computer.

The create, send, receive, and process steps may seem like unnecessary overhead. Why not
simply deliver the data to the receiver? By wrapping the data as a message and storing it in the
messaging system, the applications delegate to the messaging system the responsibility of
delivering the data. Because the data is wrapped as an atomic message, delivery can be retried
until it succeeds and the receiver can be assured of reliably receiving exactly one copy of the data.

Why Use Messaging?

Now that we know what messaging is, we should ask: Why use messaging? As with any
sophisticated solution, there is no one simple answer. The quick answer is that messaging is more
immediate than File Transfer, better encapsulated than Shared Database, and more reliable than
Remote Procedure Invocation. However, that’s just the beginning of the advantages that can be

gained using messaging.

Specific benefits of messaging include:

www.EBooksWorld.ir



Remote Communication. Messaging enables separate applications to communicate and
transfer data. Two objects that reside in the same process can simply share the same data
in memory. Sending data to another computer is a lot more complicated and requires
data to be copied from one computer to another. This means that objects have to
"serializable", i.e. they can be converted into a simple byte stream that can be sent across
the network. If remote communication is not needed, messaging is not needed; a simpler
solution such as concurrent collections or shared memory is sufficient.

Platform/Language Integration.When connecting multiple computer systems via remote
communication, these systems likely use different languages, technologies and platforms,
perhaps because they were developed over time by independent teams. Integrating such
divergent applications can require a demilitarized zone of middleware to negotiate
between the applications, often using the lowest common denominator —such as flat data
files with obscure formats. In these circumstances, a messaging system can be a universal
translator between the applications that works with each one’s language and platform on
its own terms, yet allows them to all communicate through a common messaging
paradigm. This universal connectivity is the heart of the Message Bus pattern.
Asynchronous Communication. Messaging enables a send and forget approach to
communication. The sender does not have to wait for the receiver to receive and process
the message; it does not even have to wait for the messaging system to deliver the
message. The sender only needs to wait for the message to be sent, e.g. for the message to
successfully be stored in the channel by the messaging system. Once the message is
stored, the sender is then free to perform other work while the message is transmitted in
the background. The receiver may want to send an acknowledgement or result back to
the sender, which requires another message, whose delivery will need to be detected by a
callback mechanism on the sender.

Variable Timing. With synchronous communication, the caller must wait for the receiver to
finish processing the call before the caller can receive the result and continue. In this way,
the caller can only make calls as fast as the receiver can perform them. On the other hand,
asynchronous communication allows the sender to batch requests to the receiver at its
own pace, and for the receiver to consume the requests at its own different pace. This
allows both applications to run at maximum throughput and not waste time waiting on
each other (at least until the receiver runs out of messages to process).

Throttling. A problem with remote procedure calls is that too many of them on a single
receiver at the same time can overload the receiver. This can cause performance
degradation and even cause the receiver to crash. Asynchronous communication enables
the receiver to control the rate at which it consumes requests, so as not to become
overloaded by too many simultaneous requests. The adverse effect on callers caused by
this throttling is minimized because the communication is asynchronous, so the callers
are not blocked waiting on the receiver.

Reliable Communication. Messaging provides reliable delivery that a remote procedure call
(RPC) cannot. The reason messaging is more reliable than RPC is that messaging uses a
store and forward approach to transmitting messages. The data is packaged as messages,
which are atomic, independent units. When the sender sends a message, the messaging
system stores the message. It then delivers the message by forwarding it to the receiver’s

www.EBooksWorld.ir



computer, where it is stored again. Storing the message on the sender’s computer and the
receiver’s computer is assumed to be reliable. (To make it even more reliable, the
messages can be stored to disk instead of memory; see Guaranteed Delivery.) What is

unreliable is forwarding (moving) the message from the sender’s computer to the
receiver’s computer, because the receiver or the network may not be running properly.
The messaging system overcomes this by resending the message until it succeeds. This
automatic retry enables the messaging system to overcome problems with the network
such that the sender and receiver don’t have to worry about these details.

e Disconnected Operation. Some applications are specifically designed to run disconnected
from the network, yet to synchronize with servers when a network connection is
available. Such applications are deployed on platforms like laptop computers, PDA’s, and
automobile dashboards. Messaging is ideal for enabling these applications to
synchronize — data to be synchronized can be queued as it is created, waiting until the
application reconnects to the network.

e Mediation. The messaging system acts as a mediator —as in the Mediator pattern
[GoF] —between all of the programs that can send and receive messages. An application
can use it as a directory of other applications or services available to integrate with. If an
application becomes disconnected from the others, it need only reconnect to the
messaging system, not to all of the other messaging applications. The messaging system
can be used to provide a high number of distributed connections to a shared resource,
such as a database. The messaging system can employ redundant resources to provide
high-availability, balance load, reroute around failed network connections, and tune
performance and quality of service.

e Thread Management. Asynchronous communication means that one application does not
have to block while waiting for another application to perform a task, unless it wants to.
Rather than blocking to wait for a reply, the caller can use a callback that will alert the
caller when the reply arrives. (See the Request-Reply pattern.) A large number of blocked
threads, or threads blocked for a long time, can be problematic. Too many blocked
threads may leave the application with too few available threads to perform real work. If
an application with some dynamic number of blocked threads crashes, when the
application restarts and recovers its former state, re-establishing those threads will be
difficult. With callbacks, the only threads that block are a small, known number of
listeners waiting for replies. This leaves most threads available for other work and defines
a known number of listener threads that can easily be re-established after a crash.

So there are a number of different reasons an application or enterprise may benefit from
messaging. Some of these are technical details that application developers relate most readily to,
whereas others are strategic decisions that resonate best with enterprise architects. Which of these
reasons is most important depends on the current requirements of your particular applications.
They’re all good reasons to use messaging, so take advantage of whichever reasons provide the
most benefit to you.

www.EBooksWorld.ir



Challenges of Asynchronous Messaging

Asynchronous messaging is not the panacea of integration. It resolves many of the challenges of
integrating disparate systems in an elegant way but it also introduces new challenges. Some of
these challenges are inherent in the asynchronous model while other challenges vary with the

specific implementation of a messaging system.

e Complex programming model. Asynchronous messaging requires developers to work with
an event-driven programming model. Application logic can no longer be coded in a
single method that invokes other methods, but the logic is not split up into a number of
event handlers that respond to incoming messages. Such a system is more complex and
harder to develop and debug. For example, the equivalent of a simple method call can
require a request message and a request channel, a reply message and a reply channel, a
correlation identifier and an invalid message queue (as described in Request-Reply).

e Sequence issues. Message channels guarantee message delivery, but they do not guarantee
when the message will be delivered. This can cause messages that are sent in sequence to
get out of sequence. In situations where messages depend on each other special care has
to be taken to re-establish the message sequence.

e Synchronous scenarios. Not all applications can operate in a send and forget mode. If a user
is looking for airline tickets, he or she is going to want to see the ticket price right away,
not after some undetermined time. Therefore, many messaging systems need to bridge
the gap between synchronous and asynchronous solutions. (See the Request-Reply
pattern.)

e Performance. Messaging systems do add some overhead to communication. It takes effort
to make data into a message and send it, and to receive a message and process it. If you
have to transport a huge chunk of data, dividing it into a gazillion small pieces may not
be a smart idea. For example, if an integration solution needs to synchronize information
between two exiting systems, the first step is usually to replicate all relevant information
from one system to the other. For such a bulk data replication step, ETL (extract,
transform, and load) tools are much more efficient than messaging. Messaging is best
suited to keeping the systems in sync after the initial data replication.

e Limited platform support. Many proprietary messaging systems are not available on all
platforms. Often times it is easier to FTP a file to another platform than accessing it via a
messaging system.

e Vendor lock-in. Many messaging system implementations rely on proprietary protocols.
Even common messaging specifications such as JMS do not control the physical
implementation of the solution. As a result, different messaging systems usually do not
connect to one another. This can leave you with a whole new integration challenge:

integrating multiple integration solutions! (See the Messaging Bridge pattern.)

So asynchronous messaging does not solve all problems, and can even create some new ones.
Keep these consequences in mind when deciding which problems to solve using messaging.

www.EBooksWorld.ir



Thinking Asynchronously

Messaging is an asynchronous technology, which enables delivery to be retried until it succeeds.
In contrast, most applications use synchronous function calls; for example: a procedure calling a
sub-procedure, one method calling another method, or one procedure invoking another remotely
through a remote procedure call (RPC) (such as CORBA and DCOM). Synchronous calls imply
that the calling process is halted while the sub-process is executing a function. Even in an RPC
scenario, where the called sub-procedure executes in a different process, the caller blocks until
the sub-procedure returns control (and the results) to the caller. When using asynchronous
messaging, the caller uses a send and forget approach that allows it to continue to execute after it
sends the message. As a result, the calling procedure continues to run while the sub-procedure is

being invoked.

time time
- |
Process A blocked Process A |
call h 4 return message+
Process B Process B
synchronous Call Asynchronous Message

Synchronous and Asynchronous Call Semantics

Asynchronous communication has a number of implications. First, we no longer have a single
thread of execution. Multiple threads enable sub-procedures to run concurrently, which can
greatly improve performance and help ensure that some sub-processes are making progress even
while other sub-processes may be waiting for external results. However, concurrent threads can
also make debugging much more difficult. Second, results (if any) arrive via a callback. This
enables the caller to perform other tasks and be notified when the result is available, which can
improve performance. However, the caller has to be able to process the result even while it is in
the middle of other tasks, and it has to be able to use the result to remember the context in which
the call was made. Third, asynchronous sub-processes can execute in any order. Again, this
enables one sub-procedure to make progress even while another cannot. But it also means that
the subprocesses must be able to run independently in any order, and the caller must be able to
determine which result came from which sub-process and combine the results together. So
asynchronous communication has several advantages but requires rethinking how a procedure

uses its sub-procedures.

Distributed Applications vs. Integration

This book is about enterprise integration —how to integrate independent applications so that they
can work together. An enterprise application often incorporates an n-tier architecture (a more

www.EBooksWorld.ir



sophisticated version of a client/server architecture) enabling it to be distributed across several
computers. Even though this results in processes on different machines communicating with each

other, this is application distribution, not application integration.

Why is an n-tier architecture considered application distribution and not application integration?
First, the communicating parts are tightly coupled — they dependent directly on each other, so
that one tier cannot function without the others. Second, communication between tiers tends to
be synchronous. Third, an application (n-tier or atomic) tends to have human users that will only

accept rapid system response.

In contrast, integrated applications are independent applications that can each run by itself, but
coordinate with each other in a loosely coupled way. This enables each application to focus on
one comprehensive set of functionality and yet delegate to other applications for related
functionality. Integrated applications communicating asynchronously don’t have to wait for a
response; they can proceed without a response or perform other tasks concurrently until the
response is available. Integrated applications tend to have a broad time constraint, such that they
can work on other tasks until a result becomes available, and therefore are more patient than

most human users waiting real-time for a result.

Commercial Messaging Systems

The apparent benefits of integrating systems using an asynchronous messaging solution have
opened up a significant market for software vendors creating messaging middleware and
associated tools. We can roughly group the messaging vendors” products into the following four

categories:

1. Operating Systems. Messaging has become such a common need that vendors have started
to integrate the necessary software infrastructure into the operating system or database
platform. For example, the Microsoft Windows 2000 and Windows XP operating systems
include the Microsoft Message Queuing (MSMQ) service software. This service is
accessible through a number of API’s, including COM components and the
System.Messaging namespace, part of the Microsoft .NET platform. Similarly, Oracle
offers Oracle AQ as part of its database platform.

2. Application Servers. Sun Microsystems first incorporated the Java Messaging Service (JMS)
into version 1.2 of the J2EE specification. Since then, virtually all J2EE application servers
(such as IBM WebSphere, BEA WebLogic, etc.) provide an implementation for this
specification. Also, Sun delivers a JMS reference implementation with the J2EE JDK.

3. EAI Suites. Products from these vendors offer proprietary —but functionally rich —suites
that encompass messaging, business process automation, workflow, portals, and other
functions. Key players in this marketplace are IBM WebSphere MQ, Microsoft BizTalk,
TIBCO, WebMethods, SeeBeyond, Vitria, CrossWorlds, and others. Many of these
products include JMS as one of the many client API's they support, while other
vendors —such as SonicSoftware and Fiorano —focus primarily on implementing
JMS-compliant messaging infrastructures.

www.EBooksWorld.ir



4. Web Services Toolkits. Web services have garnered a lot of interest in the enterprise

integration communities. Standards bodies and consortia are actively working on

standardizing reliable message delivery over web services (i.e., WS-Reliability,

WS-ReliableMessaging, and ebMS). A growing number of vendors offer tools that

implement routing, transformation, and management of web services-based solutions.

The patterns in this book are vendor-independent and apply to most messaging solutions.

Unfortunately, each vendor tends to define their own terminology when describing messaging

solutions. In this book we have striven to choose pattern names that are technology- and

product-neutral, yet descriptive and easy to use conversationally.

Many messaging vendors have incorporated some of this book’s patterns as features of their

products, which simplifies applying the patterns and accelerates solution development. Readers

who are familiar with a particular vendor’s terminology will most likely recognize many of the

concepts in this book. To help these readers map the pattern language to the vendor-specific

terminology, the following tables map the most common pattern names to their corresponding

product feature names in some of the most widely-used messaging products.

Enterprise Integration ] ]

Java Message Service (JMS) |Microsoft MSMQ |WebSphere MQ
Patterns
Message Channel Destination MessageQueue Queue
Point-to-Point Channel Queue MessageQueue Queue
Publish-Subscribe Topi

opic --- ---
Channel P
Message Message Message Message
) MessageProducer,

Message Endpoint

MessageConsumer
Enterprise L.

. TIBCO WebMethods SeeBeyond Vitria
Integration Patterns
Message Channel Topic Intelligent Queue | Channel
Point-to-Point Distributed )
Intelligent Queue |Channel

Channel Queue
Publish-Subscribe Subiect Intelligent Q Pub/Sub

ubjec --- ntelligent Queue
Channel ) 8 Channel
Message Message Document Event Event

) Publisher, Publisher, Publisher, Publisher,
Message Endpoint ) ) ) )
Subscriber Subscriber Subscriber Subscriber

www.EBooksWorld.ir




Pattern Form

This book is structured as a set of patterns organized into a pattern language. Books such as
Design Patterns, Pattern Oriented Software Architecture, Core J2EE Patterns, and Patterns of Enterprise
Application Architecture have popularized the concept of using patterns to document
computer-programming techniques. Christopher Alexander pioneered the concept of patterns
and pattern languages in his books A Pattern Language and A Timeless Way of Building. Each
pattern represents a decision that the reader must make and the considerations that go into that
decision. A pattern language is a web of related patterns where each pattern leads to others,
guiding the reader through the decision making process. This approach is a powerful technique
for documenting an expert’s knowledge so that it can be readily understood and applied by

non-experts.

A pattern language teaches the reader how to solve a limitless variety of problems within a
bounded problem space. Because the overall problem that is being solved is different every time,
the path through the patterns and how they’re applied is also unique. In this way, this book was
written for anyone using any messaging tools for any application, but can be applied specifically
for you and the specific application of messaging that you are facing.

Just using the pattern form does not guarantee that a book contains a wealth of knowledge. It is
not just enough to simply say, “When you face this problem, apply this solution.” For a reader to
truly learn from a pattern, it has to document why the problem is difficult to solve, consider
possible solutions that in fact don’t work well, and explain why the solution offered is the best
available. Likewise, the patterns need to connect to each other so as to walk the reader from one
problem to the next. In this way, the pattern form can be used to teach the reader not just what
solutions to apply, but how to solve problems the author could not have predicted. These are
goals we strive to accomplish in this book.

Patterns should be prescriptive, meaning that they should tell you what to do. They don’t just
describe a problem, and they don’t just describe how to solve it, they tell you what to do to solve
it. Each pattern represents a decision the reader must make: “Should I use Messaging?” “Would a
Reply Message help me here?” The point of the patterns and the pattern language is to help the
reader make decisions that lead to a good solution for his specific problem, even if the authors
didn’t have that specific problem in mind, and even if the reader doesn’t have the knowledge and
experience to develop that solution on his own.

There is no one universal pattern form; different books use various structures. We used a style
that is fairly close to the Alexandrian form, which was first popularized for computer
programming in Smalltalk Best Practice Patterns by Kent Beck. We like the Alexandrian form
because it results in patterns that are more prose-like. As a result, even though each pattern
follows an identical, well-defined structure, the format avoids headings for each individual
sub-section, which disrupt the flow of the discussion. To improve navigability, the format uses
style elements such as bolding, indentation, and pictures to help the reader identify important
sections even at a quick glance.

www.EBooksWorld.ir



This pattern language uses the following pattern structure:

e  Name - This is an identifier for the pattern that indicates what the pattern does. We chose
names that can easily be used in a sentence that describes applying the pattern so that it is
easy to reference the pattern’s concept in a conversation between designers.

e Icon - Many patterns are associated with an icon in addition to the pattern name. Because
many architects are used to communicating visually by using diagrams, we wanted to
provide a visual language in addition to the verbal language. This visual language
underlines the composability of the patterns as multiple pattern icons can be combined to
describe the solution of a larger, more complex pattern.

e  Context - This explains what you might be working on that would make you likely to run
into the problem that this pattern solves. The context sets the stage for the problem and
often refers to other patterns you may have already applied.

e Problem - This explains the difficulty you are facing, expressed as a question you're
asking yourself, which this pattern solves. You should be able to read the problem
statement and quickly determine if this pattern is relevant to your work. We’ve formatted
the problem to be one sentence, bold and indented.

o Forces - The forces explore the constraints that make the problem difficult to solve. If it
were easy, you wouldn’t need a pattern. They often consider alternative solutions that
seem promising but don’t pan out, which helps show the value of the real solution.

e Solution - This is a template that explains what you should do to solve the problem. It is
not specific to your particular circumstances, but describes what to do in the variety of
circumstances represented by the problem. If you understand a pattern’s problem and
solution, you understand the pattern and don’t necessarily need to read the other sections.
We've formatted the solution to be one sentence, bold and indented.

e Sketch - One of the most appealing properties of the Alexandrian form is that each pattern
contains a sketch that illustrates the solution. In many cases, just by looking at the pattern
name and the sketch you can understand the essence of the pattern. We tried to maintain
this style by inserting a solution picture, or sketch, after the solution statement of each
pattern.

e Results - This part expands upon the solution to explain the details of how to apply the
solution and how it resolves the forces. It also addresses new challenges that may arise as
a result of applying this pattern.

e Next - This section lists other patterns to be considered after applying the current one.
Patterns don’t live in isolation; the application of one pattern usually leads you to new
problems that are solved by other patterns. This is what makes the collection a pattern
language and not just a pattern catalog.

e Sidebars - These sections discuss more detailed technical issues or variations of the
pattern. We set these sections visually apart from the remainder of the text so you can
easily skip them if they are not be relevant to your particular application of the pattern.

e Examples - A pattern usually includes one or more examples of the pattern being applied
or having been applied. An example may be as simple as naming a known use or as
detailed as a large segment of sample code. Given the large number of available
messaging technologies, we do not expect readers to be familiar with each technology

www.EBooksWorld.ir



used to implement an example. Therefore, we designed the patterns so that you can

safely skip the example without loosing any critical content of the pattern.

The beauty in describing solutions as patterns is that it not only teaches the reader how to solve
the specific problems discussed, but also how to create designs that solve problems the authors
were not even aware of. As a result, these patterns for messaging describe not only messaging
systems that exist today, but may also apply to new ones created well after this book is
published.

Diagram Notation

Integration solutions consist of many different pieces —applications, databases, endpoints,
channels, messages, routers, etc. If we want to describe an integration solution, we need to define
a notation that accommodates all these different components. To our knowledge, there is no
widely used, comprehensive notation that is geared towards the description of all aspects of an
integration solution. The Unified Modeling Language (UML) does a fine job of describing
object-oriented systems with class and interaction diagrams, but it does not contain semantics to
describe messaging solutions. The UML Profile for EAI [UMLEAI] enriches the semantics of
collaboration diagrams to describe message flows between components. This notation is very
useful as a precise visual description of a system that can serve as the basis for code generation as
part of a model-driven architecture (MDA). We decided not to adopt this notation for two
reasons. First, the UML Profile does not capture all the patterns described in our pattern
language. Second, we were not looking to create a precise visual specification, but images that
have a certain “sketch” quality to them. We wanted pictures that are able to convey the essence of
a pattern to the reader at a quick glance —very much like Alexander’s sketch. That's why we
decided to create our own ‘notation’. Luckily, unlike the more formal notation, ours does not
require you to read a large manual. A simple picture should suffice:

—
S

Message Channel Component

Visual Notation for Messaging Solutions

This simple picture shows a message being sent to a component over a channel. We use the word
component very loosely here —it can indicate an application that is being integrated, an
intermediary that transforms or routes the message between applications, or a specific part of an
application. Sometimes, we also depict a channel as a three-dimensional pipe if we want to
highlight the channel itself. Often times we are more interested in the components and draw the
channels as simple lines with arrow heads. The two notations are equivalent. We depict the
message as a small tree with a round root and nested, square elements. The tree elements can be
shaded or colored to highlight their usage in a particular pattern. Many messaging systems allow

www.EBooksWorld.ir



messages to contain tree-like data structures, for example XML documents. Also, depicting
messages in this way allows us to provide a quick visual description of transformation
patterns — it will be easy to show a pattern that adds, re-arranges or removes fields from the

message.

When we describe application designs —for example, messaging endpoints or examples written
in C# or Java—we do use standard UML class and sequence diagrams to depict the class
hierarchy and the interaction between objects. The UML notation is widely accepted as the
standard way of describing these types of solutions (if you need a refresher on UML, have a look
at [UMLY).

Examples and Interludes

We have tried to underline the broad applicability of the patterns by including implementation
examples using a variety of integration technologies. The potential downside of this approach is
that you may not be familiar with each technology that is being used in an example. That's why
we made sure that reading the examples is strictly optional — all relevant points are discussed in
the pattern description. Therefore, you can safely skip the examples without risk of losing out on
important detail. Also, where possible, we provided more than one implementation example

using different technologies.

When presenting example code we focused on readability over runnability. A code segment can
help remove any potential ambiguity left by the solution description and many application
developers and architects prefer looking at 30 lines of code as opposed to reading many
paragraphs of text. To support this intent we often only show the most relevant methods or
classes of a potentially larger solution. We also omitted most forms of error checking to highlight
the core function implemented by the code. Most code snippets do not contain in-line comments
as the code is explained in the paragraphs before and after the code segment.

Providing a meaningful example for a single integration pattern is challenging. Enterprise
integration solutions typically consist of a number of heterogeneous components, spread across
multiple systems. Likewise, most integration patterns do not operate in isolation but rely on
other patterns to form a meaningful solution. To highlight the collaboration between multiple
patterns we included more comprehensive examples as interludes at the end of the major
sections of the book. These solutions illustrate many of the trade-offs involved in designing a

more comprehensive messaging solution.

All code samples should be treated as illustrative tools only and not as a starting point for
development of an integration solution. For example, almost all examples lack any form of error

checking or concern for robustness, security, or scalability.

We tried as much as possible to base the examples on software platforms that are available free of
charge or as a trial version. In some cases, we used commercial platforms (such as TIBCO
ActiveEnterprise or Microsoft BizTalk) to illustrate the difference between developing a solution

www.EBooksWorld.ir



from scratch and using a commercial tool. We presented those example in such a way that they
are educational even if you do not have access to the required run-time platform. For many
examples, we use relatively bare-bones messaging frameworks such as JMS or MSMQ. This
allows us to be more explicit in the example and focus on the problem at hand instead of

distracting from it with all the features a more complex middleware toolset may provide.

The Java examples in this book are based on the JMS 1.1 specification, which is part of the J2EE
1.4 specification. By the time this book is published, most messaging and application server
vendors will support JMS 1.1. You can download Sun’s reference implementation of the J]MS
specification from Sun’s Web site: http:/ /java.sun.com/j2ee.

The Microsoft .NET examples are based on Version 1.1 of the .NET Framework and are written in
C#. You can download the .NET Framework SDK from Microsoft's Web site:

http:/ /msdn.microsoft.com/net.

Organization of this Book

The pattern language in this book, as with any pattern language, is a web of patterns referring to
each other. At the same time, some patterns are more fundamental than others, forming a
hierarchy of big-concept patterns that lead to finer-detailed patterns. The big-concept patterns
form the load-baring members of the pattern language. They are the main ones, what we term
root patterns, that provide the foundation of the language and support the other patterns.

This book groups patterns into chapters by level-of-abstraction and by topic area. The following
diagram shows the root patterns and their relationship to the chapters of the book.

Chapter 1.
Irtegration
Styles

Messaging

— i —
Chapter 2: Meszage Msdsags Pipes and Message Message Message
Messaging Channel Fiters Riouter Transiator Endpoint
Syateims ' ' \ \,

v v

E Y3 h 4 h J
Chapter 3 Chapter 4: Chapter 5 Chapler & Chapter 7. Chapter &:
Me=saging Message Message Message Messaging Systems
Channels Construction Routing rransformdionl Endpoints Mansgement

Relationship of Root Patterns and Chapters

The most fundamental pattern is Messaging; that’s what this whole book is about. It leads to the
six root patterns —which are in the Messaging Systems chapter —namely Message Channel, Message,

Pipes and Filters, Message Router, Message Translator, and Message Endpoint. In turn, each of these

www.EBooksWorld.ir



root patterns leads to its own chapter in the book (except Pipes and Filters, which is not specific to
messaging but is the basis of the routing and transformation patterns).

The pattern language is divided into eight chapters, which follow the hierarchy described above:

o Chapter 1: Integration Styles - This chapter reviews the different approaches available for
integrating applications, including Messaging.

o Chapter 2: Messaging Systems - This chapter reviews the six root messaging patterns,
giving an overview of the entire pattern language.

o Chapter 3: Messaging Channels - Applications communicate via channels. Channels define
the logical pathways a message can follow. This chapter shows how to determine what
channels your applications need.

o Chapter 4: Message Construction - Once you have message channels, you need messages to
send on them. This chapter explains the different ways messages can be used and how to
take advantage of their special properties.

o Chapter 5: Message Routing - As a messaging topography becomes more complex, senders
know less and less about who should receive their messages. Rather, they send the
messages to intermediate applications that send them to others until the messages finally
find their way to their final destination. This chapter teaches you the responsibilities of
these routing applications.

e Chapter 6: Message Transformation - Independently developed applications often don’t
agree on messages’ formats, on the form and meaning of supposedly unique identifiers,
and even the character encoding to be used. Therefore, intermediate components are
needed to convert messages from the form one application produced to that which other
applications will consume. This chapter shows how to design these transformer
applications.

o Chapter 7: Messaging Endpoints - Many applications were not designed to participate in a
messaging solution. As a result, they must be explicitly connected to the messaging
system. This section describes a messaging layer in the applications that is responsible for
sending and receiving the messages, making your application an endpoint for messages.

e Chapter 8: System Management - Once we have a messaging system in place to integrate
our applications, how do we make sure that it's running correctly and doing what we
want? This chapter explores how to test and monitor a running messaging system.

These eight chapters go together to teach you what you need to know about connecting
applications using messaging.

Getting Started

With any book that has a lot to teach, it’s hard to know where to start, both for the authors and
the readers. Reading all of the pages straight through assures covering the entire subject area, but
isn’t the quickest way to get to the issues that are of the most help. Starting with a pattern in the
middle of the language can be like starting to watch a movie that’s half over; you see what's
happening but don’t understand what it means.

www.EBooksWorld.ir



Luckily, the pattern language is formed around root patterns (as described earlier). These root
patterns collectively provide an overview of the pattern language, and individually provide
starting points for delving deep into the details of messaging. To get an overall survey of the
language without reviewing all of the patterns, start with reviewing the root patterns. To jump
into the middle of the language, jump in at a root pattern, a place where the language has
finished discussing one major topic and is now starting another.

Chapter 1: Integration Styles provides an overview of the four main application integration
techniques and settles on Messaging as being the best overall for many integration opportunities.
Read this chapter if you are unfamiliar with issues involved in application integration and the
pros and cons of the various approaches that are available. If you just want to know what'’s so
great about messaging, go straight to that pattern. If you're already convinced that messaging is
the way to go and want to get started with how to use messaging, you can skip the first chapter
completely.

Chapter 2: Messaging Systems contains all of this pattern language’s root patterns (except
Messaging, which is in the first chapter). For an overview of the pattern language, read (or at least
skim) all of the patterns in this chapter. To dive deep on a particular topic, read its root pattern,
then go to the patterns mentioned in its next section at the end of the pattern; those next patterns
will all be in a chapter named after the root pattern.

The root patterns in this language are:

e Messaging - This is the #1 root pattern for the entire book: What is messaging, what
problem does it solve, and how does it solve it?
e Message Channel - What is the structure in a messaging system that conveys messages

from the sender to the receiver? How do you know which ones your applications need?

e Message - How does information get communicated from a sender to a receiver?

e DPipes and Filters - How can intermediate steps be performed after a message is sent but
before it is received?

e Message Router - If the sender does not know ultimately where the message should go,
how can the messaging system get it there?

e Message Translator - If the sender and receiver do not agree on the message format, how

can they communicate?
e Message Endpoint - How do the applications that send and receive messages connect to

the messaging system?

After the first two chapters, different types of messaging developers may be most interested in
different chapters, based on the specifics of how each group uses messaging to perform

integration:
e System Administrators may be most interested in Chapter 3: Messaging Channels, the

guidelines for what channels to create, and Chapter 8: System Management, guidance on

how to maintain a running messaging system.

www.EBooksWorld.ir



e Application Developers should look at Chapter 7: Messaging Endpoints to learn how integrate
an application with a messaging system, and Chapter 4: Message Construction to learn what
messages to send when.

e System Integrators will gain the most from Chapter 5: Message Routing—how to direct
messages to the proper receivers —and Chapter 6: Message Transformation —how to convert

messages from the sender’s format to the receiver’s.

Keep in mind that when reading a pattern, if you're in a hurry, start by just reading the problem
and solution (the two sentences in bold). This will give you enough information to determine if
the pattern is of interest to you right now, and if you already know the pattern. If you do not
know the pattern and it sounds interesting, go ahead and read the other parts.

Also remember that this is a pattern language, so the patterns are not necessarily meant to be
read in the order they’re presented in the book. The book’s order teaches you about messaging by
considering all of the relevant topics in turn and discussing related issues together. To use the
patterns to solve a particular problem, start with an appropriate root pattern. Its context explains
what patterns need to be applied before this one, even if they’re not the ones immediately
preceding this one in the book. Likewise, the next section (the last paragraph of the pattern)
describes what patterns to consider applying after this one, even if they’re not the ones
immediately following this one in the book. Use the web of interconnected patterns, not the
linear list of book pages, to guide you through the material.

Supporting Web Site

Please look for companion information to this book plus related information on enterprise
integration at our Web site: www.enterpriseintegrationpatterns.com. You can also e-mail your

comments, suggestions and feedback to us at authors@enterpriseintegrationpatterns.com.

Summary

You should now have a good understanding of the following concepts which are fundamental to
the material in this book:

e What messaging is

e What a messaging system is

e Why to use messaging

e How asynchronous programming is different

e How application integration is different from application distribution
e What types of commercial products contain messaging systems

You should also have a feel for how this book is going to teach you how to use messaging;:

e The role patterns have in structuring the material

www.EBooksWorld.ir



e The meaning of the custom notation used in the diagrams
e The purpose and scope of the examples
e The organization of the material

e How to get started learning the material

Now that you understand the basic concepts and how the material will be presented, you are
now ready to start learning how to integrate applications using messaging.

www.EBooksWorld.ir



1. Solving Integration Problems using Patterns

This chapter illustrates how the patterns in this book can be used to solve a variety of integration
problems. In order to do so, we examine common integration scenarios and present a
comprehensive integration example. As we design the solution to this example, we will express
the solution using the patterns contained in this book. At the end of this chapter you will be
familiar with about two dozen integration patterns.

The Need for Integration

Enterprises are typically comprised of hundreds if not thousands of applications that are
custom-built, acquired from a third-party, part of a legacy system, or a combination thereof,
operating in multiple tiers of different operating system platforms. It is not uncommon to find an
enterprise that has 30 different Websites, three instances of SAP and countless departmental
solutions.

We may be tempted to ask: How do businesses allow themselves to get into such a mess?
Shouldn’t any CIO of such an enterprise spaghetti architecture be fired? Well, like in most cases
things happen for a reason.

First of all, writing business applications is hard. Creating a single, big application to run a
complete business is next to impossible. The ERP vendors have had some success at creating
larger-than-ever business applications. The reality, though, is that even the heavyweights like
SAP, Oracle, Peoplesoft and the like only perform a fraction of the business functions required in
a typical enterprise. We can see this easily by the fact that ERP systems are one of the most

popular integration points in today’s enterprises.

Second, spreading business functions across multiple applications provides the business with the
flexibility to select the “best” accounting package, the “best” customer relationship management
or the order processing system that best suits the business” needs. One-stop-shopping for
enterprise applications is usually not what IT organizations are interested in, nor is possible
given the number individual business requirements.

Vendors have learned to cater to this preference and offer focused applications around a specific
core function. However, the ever-present urge to add new functionality to existing software
packages has caused some functionality spillover amongst packaged business applications. For
example, many billing systems started to incorporate customer care and accounting functionality.
Likewise, the customer care software maker takes a stab at implementing simple billing functions
such as disputes or adjustments. Defining a clear functional separation between systems is hard:
is a customer disputing a bill considered a customer care or a billing function?

www.EBooksWorld.ir



Users such as customers, business partners and internal users do generally not think about
system boundaries when they interact with a business. They execute business functions,
regardless of the how many internal systems the business function cuts across. For example, a
customer may call to change his or her address and see whether the last payment was received.
In many enterprises, this simple request can span across the customer care and billing systems.
Likewise, a customer placing a new order may require the coordination of many systems. The
business needs to validate the customer ID, verify the customer’s good standing, check inventory,
fulfill the order, get a shipping quote, compute sales tax, send a bill, etc. This process can easily
span across five or six different systems. From the customer’s perspective, it is a single business
transaction.

In order to support common business processes and data sharing across applications, these
applications need to be integrated. Application integration needs to provide efficient, reliable and

secure data exchange between multiple enterprise applications.

Integration Challenges

Unfortunately, enterprise integration is no easy task. By definition, enterprise integration has to
deal with multiple applications running on multiple platforms in different locations, making the
term “simple integration” pretty much an oxymoron. Software vendors offer EAI suites that
provide cross-platform, cross-language integration as well as the ability to interface with many
popular packaged business applications. However, this technical infrastructure presents only a
small portion of the integration complexities. The true challenges of integration span far across
business and technical issues.

e Enterprise integration requires a significant shift in corporate politics. Business
applications generally focus on a specific functional area, such as Customer Relationship
Management (CRM), Billing, Finance, etc. This seems to be an extension of Conway's
famous law that postulates that "Organizations which design systems are constrained to
produce designs which are copies of the communication structures of these
organizations." As a result, many IT groups are organized in alignment with these
functional areas. Successful enterprise integration does not only need to establish
communication between multiple computer systems but also between business units and
IT departments -- in an integrated enterprise application groups no longer control a
specific application because each application is now part of an overall flow of integrated
applications and services.

e Because of their wide scope, integration efforts typically have far-reaching implications
on the business. Once the processing of the most critical business functions is
incorporated into an integration solution, the proper functioning of that solution becomes
vital to the business. A failing or misbehaving integration solution can cost a business
millions of Dollars in lost orders, misrouted payments and disgruntled customers.

e One important constraint of developing integration solutions is the limited amount of
control the integration developers typically have over the participating applications. In

most cases, the applications are “legacy” systems or packaged applications that cannot be

www.EBooksWorld.ir



changed just to be connected to an integration solution. This often leaves the integration
developers in a situation where they have to make up for deficiencies or idiosyncrasies
inside the applications or differences between the applications. Often it would be easier to
implement part of the solution inside the application “endpoints”, but for political or
technical reasons that option may not be available.

e Despite the wide-spread need for integration solutions, only few standards have
established themselves in this domain. The advent of XML, XSL and Web services
certainly mark the most significant advance of standards-based features in an integration
solution. However, the hype around Web services has also given grounds to new
fragmentation of the marketplace, resulting in a flurry of new “extensions” and
“interpretations” of the standards. This should remind us that the lack of interoperability
between “standards-compliant” products was one of the major stumbling blocks for
CORBA, which offered a sophisticated technical solution for system integration.

e Also, existing XML Web Services standards address only a fraction of the integration
challenges. For example, the frequent claim that XML is the ‘Lingua franca” of system
integration is somewhat misleading. Standardizing all data exchange to XML can be
likened to writing all documents using a common alphabet, such as the Roman alphabet.
Even though the alphabet is common, it is still being used to represent many languages
and dialects, which cannot be readily understood by all readers. The same is true in
enterprise integration. The existence of a common presentation (e.g. XML) does not imply
common semantics. The notion of “account” can have many different semantics,
connotations, constraints and assumptions in each participating system. Resolving
semantic differences between systems proves to be a particularly difficult and
time-consuming task because it involves significant business and technical decisions.

e While developing an EAI solution is challenging in itself, operating and maintaining such
a solution can be even more daunting. The mix of technologies and the distributed nature
of EAI solutions make deployment, monitoring, and trouble-shooting complex tasks that
require a combination of skill sets. In many cases, these skill sets do not exist within IT
operations or are spread across many different individuals.

Anyone who has been through an EAI deployment can attest to the fact that EAI solutions are a
critical component of today’s enterprise strategies, but make IT life harder, not easier. It's a long
way between the high-level vision of the integrated enterprise (defined by terms such as
“Straight-Through-Processing”, “T+1”, “ Agile Enterprise”) and the nuts-and-bolts
implementations (what parameters did System.Messaging.XmlMessageFormatter take again?).

How Integration Patterns Can Help

There are no simple answers for enterprise integration. In our opinion, anyone who claims that
integration is easy must be either incredibly smart (or at least a good bit smarter than the rest of
us), incredibly ignorant (OK, let’s say optimistic), or they have a financial interest in making you
believe that integration is easy.

www.EBooksWorld.ir



Even though integration is a broad and difficult topic, we can always observer some people who
are much better at it than others. What do these people know that others don’t? Since there is no
such thing as “Teach Yourself Integration in 21 Days” (this book sure ain't!) it is unlikely that
these people know all the answers to integration. However, these people have usually solved
enough integration problems that they can compare new problems to prior problems they have
solved. They know the “patterns” of problems and associated solutions. They learned these

patterns over time by trial-and-error or from other experienced integration architects.

The “patterns” are not copy-paste code samples or shrink-wrap components, but rather nuggets
of advice that describe solutions to frequently recurring problems. Used properly, the integration
patterns can help fill the wide gap between the high-level vision of integration and the actual

system implementation.

The Wide World of Integration

We intentionally left the definition of “integration” very broad. To us it means connecting
computer systems, companies or people. While this broad definition gives us the convenience of
sticking whatever we find interesting into this book, it is helpful to have a closer look at some of
the most common integration scenarios. Helping clients design and implement integration

solutions, we repeatedly came across the following six types of integration projects:

e Information Portals

e Data Replication

e Shared Business Functions

e Service-Oriented Architectures
e Distributed Business Processes

e Business-to-Business Integration

This list is by no means a complete taxonomy of all things integration but it does help to illustrate
the kind of solutions that integration architects build. Many integration projects consist of a
combination of multiple types of integration. For example, reference data replication is often
required in order to tie applications into a single distributed business process.

Information Portal

3

]

F

www.EBooksWorld.ir



Many business users have to access more than one system to answer a specific question or to
perform a single business function. For example, to verify the status of an order, a customer
service representative may have to access the order management system on the mainframe plus
log on to the system that manages orders placed over the Web. Information portals aggregate
information from multiple sources into a single display to avoid having the user access multiple
systems for information. Simple information portals divide the screen into multiple zones, each
of which displays information from a different system. More sophisticated systems provide
limited interaction between zones, for example when a user selects an item from a list in zone A,
zone B refreshes with detailed information about the selected item. Other portals provide even
more sophisticated user interaction and blur the line between a portal and an integrated
application.

Data Replication

Many business systems require access to the same data. For example, a customer’s address may
be used in the customer care system (when the customer calls to change it), the accounting
system (to compute sales tax), the shipping system (to label the shipment) and the billing system
(to send an invoice). Many of these systems are going to have their own data stores to store
customer related information. When a customer calls to change his or her address all these
systems need to change their copy of the customer’s address. This can be accomplished by
implementing an integration strategy based on data replication.

There are many different ways to implement data replication. For example, some database
vendors build replication functions into the database, we can export data into files and re-import
them into the other system, or we can use message-oriented middleware to transport data
records inside messages.

Shared Business Function

www.EBooksWorld.ir



In the same way that many business applications store redundant data, they also tend to
implement redundant functionality. Multiple systems may need to check whether a
social-security number is valid, whether the address matches the specified postal code or whether
a particular item is in stock. It makes business sense to expose these functions as a shared
business function that is implemented once and available as a service to other systems.

A shared business function can address some of the same needs as data replication. For example,
we could implement a business function called ‘Get Customer Address’ that could allow other
systems to request the customer’s address when it is needed rather than always storing a
redundant copy. The decision between these two approaches is driven by a number of criteria,
such as the amount of control we have over the systems (calling a shared function is usually more
intrusive than loading data into the database) or the rate of change (an address may be needed
frequently but change very infrequently).

Service-Oriented Architecture

Shared business functions are often referred to as services. A service is a well-defined function
that is universally available and responds to requests from “service consumers”. Once an
enterprise assembles a collection of useful services, managing the services becomes an important
function. First of all, applications need some form of service directory, a centralized list of all
available services. Second, each service needs to describe its interface in such a way that an
application can “negotiate” a communications contract with the service. These two functions,
service discovery and negotiation, are the key elements that make up a service-oriented
architecture.

Service-oriented architectures (SOAs) blur the line between integration and distributed
applications. A new application can be developed using existing, remote services that may be
provided by other applications. Therefore, calling a service may be considered integration
between the two applications. On the other hand a service-oriented architecture usually provides
tools that make calling an external service almost as simple as calling a local method
(performance considerations aside). Because all services are available in a consistent manner,
SOAs are sometimes referred to as “service bus architectures”.

Distributed Business Process

www.EBooksWorld.ir



.

One of the key drivers of integration is the fact that a single business transaction is often spread
across many different systems. A previous example showed us that a simple business function
such as “place order” can easily touch six or seven systems. In most cases, all relevant functions
are incorporated inside existing applications. What is missing is the coordination between the
applications. Therefore, we can add a business process management component that manages the
execution of a business function across multiple existing systems.

The boundaries between a service-oriented architecture and a distributed business can blur. For
example, you could expose all relevant business functions as service and then encode the
business process inside an application that accesses all services via an SOA.

Business-to-Business Integration

F 3
L AL 4

So far we have mainly considered the interaction between applications and business functions
inside an enterprise. In many cases, business functions may be available from outside suppliers

or business partners. For example, the shipping company may provide a service for customers to
compute shipping cost or track shipments. Or a business may use an outside provider to

compute sales tax rates. Likewise, integration frequently occurs between business partners. A
customer may contact a retailer to inquire on the price and the availability of an item. In response,
the retailer may ask the supplier for the status of an expected shipment that contains the
out-of-stock item.

Many of the above considerations apply equally to business-to-business integration. However,
communicating across the Internet or some other network usually raises new issues related to
transport protocols and security. Also, since many business partners may collaborate in an
electronic “conversation” standardized data formats are critically important.

Loose Coupling

One of the biggest buzz words in enterprise architecture and integration is the notion of loose
coupling. It is in fact such a popular term that Doug Kaye wrote a whole book titled after this
ubiquitous concept [Kaye]. The benefits of loose coupling have been know for quite some time

www.EBooksWorld.ir



now, but they have taken center stage more recently due to the surging popularity of Web

services architectures.

The core principle behind loose coupling is to reduce the assumptions two parties (components,
applications, services, programs, users) make about each other when they exchange information.
The more assumptions two parties make about each other and the common protocol, the more
efficient the communication can be, but the less tolerant the solution is of interruptions or
changes because the parties are tightly coupled to each other.

A great example of tight coupling is a local method invocation. Invoking a local method inside an
application is based on a lot of assumptions between the called and the calling routine. Both
methods have to run in the same process (e.g. a virtual machine) and be written in the same
language (or at least use a common intermediate language or byte code). The calling method has
to pass the exact number of expected parameters, each using the correct type. The call is
immediate, i.e. the called method starts processing immediately after the calling method makes
the call. Meanwhile, the calling method will only resume processing when the called method
completes (meaning the invocation is synchronous). Processing will automatically resume in the
calling method with the next statement after the method call. The communication between the
methods is immediate and instantaneous, so neither the caller nor the called method have to
worry about security in the form of eavesdropping 3rd parties. All these assumptions make it
very easy to write well structured applications that break functionality into individual methods
to be called by other methods. A large number of small method allow for flexibility and reuse.

Many integration approaches have aimed to make remote communications simple by packaging
a remote data exchange into the same semantics as a local method call. This strategy resulted in
the notion of a Remote Procedure Call (RPC) or Remote Method Invocation (RMI), supported by
many popular frameworks and platforms: CORBA (see[Zahavi]), Microsoft DCOM, .NET
Remoting, or Java RMI, and most recently, RPC-style Web services. The intended upside of this
approach is twofold. First, synchronous method-call semantics are very familiar to application
developers, so why not build on what we already know. Second, using the same syntax and
semantics for both local method calls and remote invocations would allow us to defer the
decision about what components should run locally and which ones run remotely until

deployment time, leaving the application developer with one less thing to worry about.

The challenge that all these approaches face lies in the fact that remote communication
invalidates many of the assumptions that a local method call is based on. As a result, abstracting
the remote communication into the simple semantics of a method call can be confusing and
misleading. Waldo et al. reminded us back in 1994 that "objects that interact in a distributed
system need to be dealt with in ways that are intrinsically different from objects that interact in a
single address space" [Waldo]. For example, if we call a remote service to perform a function for
us, do we really want to restrict ourselves to only those services that were built using the same
programming language as we do? A call across the network also tends to be multiple orders of
magnitude slower than a local call. Should the calling method really wait until the called method
completes? What if the network is interrupted and the called method is temporarily unreachable?
How long should we wait? How can we be sure we communicate with the intended party and

www.EBooksWorld.ir



not a 3rd party “spoofer”? How can we protect against eavesdropping? What if the method
signature (the list of expected parameters) of the called method changes? If the remote method is
maintained by a third party or a business partner we no longer have control over such changes.
Should we have our method invocation fail or should we attempt to find the best possible
mapping between the parameters and still make the call? It becomes quickly apparent that
remote integration brings up a lot of issues that a local method call never had to deal with.

In summary, trying to portray remote communication as a variant of a local method invocation is
asking for trouble. Such architectures typically result in brittle, hard to maintain and poorly
scalable solutions. Many Web services pioneers recently (re-)discovered this fact the hard way.

1 Minute EAI

To show the effects of tightly coupled dependencies and how to resolve them, let’s look at
different options of connecting two systems. Let’s assume we are building an on-line banking
system that allows customers to deposit money into their account from another bank. To perform
this function, the front-end Web application has to be integrated with the back-end financial
system that manages fund transfers.

The easiest way to connect the two systems is through the TCP/IP protocol. Every self-respecting
operating system or programming library created in the last 15 years is certain to include a
TCP/1IP stack. TCP/IP is the ubiquitous communications protocol that transports data between
the millions of computers connected to the Internet and local networks. Why not use the most
ubiquitous of all network protocols to communicate between two applications?

Let’s assume that the remote function that deposits money into a person’s account takes only the
person’s name and the Dollar amount as arguments. The following few lines of code then suffice
to call such a function over TCP/IP (we chose C#, but this code would look virtually identical in
Cor Java).

String hostName = "www.eailpatterns.com";
int port = 80;

IPHostEntry hostlnfo = Dns.GetHostByName(hostName);
IPAddress address = hostlnfo.AddressList[0];

IPEndPoint endpoint = new IPEndPoint(address, port);

Socket socket = new Socket(address.AddressFamily, SocketType.Stream, ProtocolType.Tcp);

socket.Connect(endpoint);

byte[] amount = BitConverter . GetBytes(1000);
byte[] name = Encoding.ASCII_GetBytes(''Joe");

www.EBooksWorld.ir



int bytesSent = socket.Send(amount);
bytesSent += socket._Send(name);

socket._Close();

This code opens a socket connection to the address www.eaipatterns.com and sends two data
items (the amount and the customer’s name) across the network. No expensive middleware is
required, no EAI tools, RPC toolkits, just 10 lines of code. When we run this code it tells us: “7
bytes sent”. Voila! How can integration be so difficult?

There are a couple of major problems with this integration attempt. One of the strengths of the
TCP/IP protocol is its wide support so that we can connect to pretty much any computer
connected to the network regardless of the operating system or programming language it uses.
However, the platform independence works only for very simple messages: byte streams. In
order to convert our data into a byte stream we used the BitConverter class. This class converts
any data type into a byte array, using the internal memory representation of the data type. The
catch is that the internal representation of an integer number varies with computer systems. For
example, .NET uses a 32 bit integer while other systems may use a 64 bit representation. Our
example transfers 4 bytes across the network to represent a 32 bit integer number. A system using
64 bits would be inclined to read 8 bytes off the network and would end up interpreting the
whole message (including the customer name) as a single number.

Also, some computer systems store their numbers in big-endian format while others store them
in little-endian format. A big-endian format stores numbers starting with the highest byte first
while little-endian systems store the lowest byte first. PCs operate on a little-endian scheme so

that the code passes the following 4 bytes across the network:

232 3 0 O

232 + 3 * 278 equals 1000. A system that uses big-endian numbers would consider this message to
mean 232% 224 + 3 * 2716 = 3,892,510,720. Joe will be a very rich man! So this approach works
only under the assumption that all connected computers represent numbers in the same internal

format.

The second problem with this simple approach is that we specify the location of the remote
machine (in our case www.eaipatterns.com). The Dynamic Naming Service (DNS) gives us one
level of indirection between the domain name and the IP address, but what if we want to move
the function to a different computer on a different domain? What if the machine fails and we
have to setup another machine? What if we want to send the information to more than one
machine? For each scenario we would have to change the code. If we use a lot of remote
functions this could become very tedious. So we should find a way to make our communication
independent from a specific machine on the network.

Our simple TCP/IP example also establishes temporal dependencies between the two machines.
TCP/IP is a connection-oriented protocol. Before any data can be transferred, a connection has to

www.EBooksWorld.ir



be established first. Establishing a TCP connection involves IP packets traveling back and forth
between sender and receiver. This requires that both machines and the network are all available
at the same time. If any of the three pieces is malfunctioning or not available due to high load, the
data cannot be sent.

Lastly, the simple communication also relies on a very strict data format. We are sending 4 bytes
of amount data and then a sequence of characters that define the customer’s account. If we want
to insert a third parameter, e.g. the name of the currency, we would have to modify both sender
and receiver to use the new data format.

connect
>
Web App e ack Financial
oo dlat oystem

WRI0OV4111 101

Tightly Coupled Interaction

In summary, our minimalist integration solution is fast and cheap, but it results in a very brittle
solution because the two participating parties make the following assumptions about each other:

e Platform Technology - internal representations of numbers and objects
e Location - hard-coded machine addresses

e Time - all components have to be available at the same time

e Data Format - the list of parameters and their types must match

As we stated in the beginning, coupling is a measure of how many assumptions parties make
about each other when they communicate. Our simple solution requires the parties to make a lot
of assumptions. Therefore, this solution is tightly coupled.

In order to make the solution more loosely coupled we can try to remove these dependencies one
by one. We should use a standard data format that is self-describing and platform independent,
such as XML. Instead of sending information directly to a specific machine we should send it to
an addressable “channel”. A channel is a logical address that both sender and receiver can agree
on the same channel without being aware of each other’s identity. Using channels resolves the
location-dependency, but still requires all components to be available at the same time if the
channel is implemented using a connection-oriented protocol.. In order to remove this temporal
dependency we can enhance the channel to queue up sent requests until the network and the
receiving system are ready. To support queuing of requests inside the channel, we need wrap
data into self-contained messages so that the channel knows how much data to buffer and deliver
at any one time. Lastly, the two systems still depend on a common data format. We can remove
this dependency by allowing for data format transformations inside the channel. If the format of
one system changes we only have to change the transformer and not the other participating
systems. This is particularly useful if many applications send data to the same channel.

www.EBooksWorld.ir



=deposits

Financial

U 2 oystem

Channel

Self-describing
document

Loosely Coupled Interaction

Mechanisms such as a common data format, queuing channels, and transformers help turn a
tightly coupled solution into a loosely coupled solution. The sender no longer has to depend on
the receiver's internal data format not its location. It does not even have to pay attention to
whether the other computer is ready to accept requests or not. Removing these dependencies
between the systems makes the overall solution more tolerant to change, the key benefit of loose
coupling. The main drawback of the loosely coupled approach is the additional complexity. This
is no longer a 10-lines-of-code solution! Therefore, we use a message-oriented middleware
infrastructure that provides these services for us. This infrastructure makes exchanging data in a
loosely coupled way almost as easy as the example we started with. The next section describes
the components that make up such a middleware solution.

Is loose coupling the panacea? Like everything else in enterprise architecture, there is no single
best answer. Loose coupling provides important benefits such as flexibility and scalability, but it
introduces a more complex programming model and can make designing, building and

debugging solutions more difficult.

A Loosely Coupled Integration Solution

In order to connect two systems via an integration solution, a number of things have to happen.
These things make up what we call middleware - the things that sit between applications.

Invariably, some data has to be transported from one application to the next. This data could be
an address record that needs to be replicated, a call to a remote service or a snippet of HTML
headed for a portal display. Regardless of the payload, this piece of data needs to be understood
by both ends and needs to be transported, usually across a network. Two elements provide this
basic function. We need a communications channel that can move information from one
application to the other. This channel could be a series of TCP/IP connections, a shared file, a
shared database or a floppy disk being carried from one computer to the next (the infamous
‘sneakernet’). Inside this channel we place a message - a snippet of data that has an agreed-upon
meaning to both applications that are to be integrated. This piece of data can be very small, such
as the phone number of a single customer that has changed, or very large, such as the complete

list of all customers and their associated addresses. We call this piece of data a message.

www.EBooksWorld.ir



Message . .
d Fouting Translation

Channel

Application | |- - = P Application

[

/

—
Endpoint l \
@ Systems Management

Now that we can send messages across channels we can establish a very basic form of integration.

Basic Elements of an Integration Solution

However, we promised that simple integration is an oxymoron, so let’s see what is missing. We
mentioned before that integration solutions often have limited control over the applications they
are integrating, such as the internal data formats used by the applications. For example, one data
format may store the customer name in two fields, called FIRST_NAME and LAST_NAME, while
the other system may use a single field called Customer_Name. Likewise, one system may
support multiple customer addresses while the other system only supports a single address.
Because the internal data format of an application can often not be changed the middleware
needs to provide some mechanism to convert one application’s data format in the other’s. We call

this step translation.

So far we can send data from one system to another and accommodate differences in data
formats. What happens if we integrate more than two systems? Where does the data have to be
moved? We could expect each application to specify the target system(s) for the data it is sending
over the channel. For example, if the customer address changes in the customer care system we
could make that system responsible for sending the data to all other systems that store copies of
the customer address. As the number of systems increases this becomes very tedious and
requires the sending system to have knowledge about all other systems. Every time a new system
is added, the customer care system would have to be adjusted to the new environment. Things
would be a lot easier of the middleware could take care of sending messages to the correct places.

This is the role of a routing component such as a message broker.

Integration solutions can quickly become complex because they deal with multiple applications,
data formats, channels, routing and transformation. All these elements may be spread across
multiple operating platforms and geographic locations. In order to have any idea what is going
on inside the system we need a systems management function. This subsystem monitors the flow of
data, makes sure that all applications and components are available and reports error conditions

to a central location.

Our integration solution is now almost complete. We can move data from one system from
another, accommodate differences in the data format, route the data to the required systems and
monitor the performance of the solution. So far we assumed that an application sends data as a

www.EBooksWorld.ir



message to the channel. However, most packaged and legacy applications and many custom
applications are not prepared to participate in an integration solution. We need a message
endpoint to connect the system explicitly to the integration solution. The endpoint can be a special

piece of code or a Channel Adapter provided by an integration software vendor.

Widget-Gadget Corp -- An Example

The best way to understand message-based integration solutions is by walking through a
concrete example. Let’s consider Widgets & Gadgets ‘R Us (WGRUS), an on-line retailer that
buys widgets and gadgets from manufacturers and resells them to customers.

Customers Suppliers
) Retailer # Widget Co
< # WERLIS

¥ Gadget Co
b L J
Shipping Co

WGRUS Ecosystem

For this example, we assume that the solution needs to support the following requirements.
Naturally, we simplified the requirements a bit for sake of brevity, but nevertheless these types of

requirements occur frequently in real businesses.

e Take Orders: Customers can place orders via Web, phone or fax

e Process Orders: Processing an order involves multiple steps, including verifying
inventory, shipping the goods and invoicing the customer

e Check Status: Customers can check the order status

e Change Address: Customers can use a Web front-end to change their billing and
shipping address

e New Catalog: The suppliers update their catalog periodically. WGRUS needs to update
its pricing and availability based in the new catalogs.

e Announcements: Customers can subscribe to selective announcements from WGRUS.

e Testing and Monitoring: The operations staff needs to be able to monitor all individual

components and the message flow between them.

We will tackle each of these requirements separately and describe the solution alternatives and

trade-offs using the pattern language introduced in this book.

Internal Systems

www.EBooksWorld.ir



Like in most integration scenarios, WGRUS is not a so-called “green field” implementation, but
rather the integration of an existing IT infrastructure comprised of a variety of packaged and
custom applications. The fact that we have to work with existing applications often makes
integration work challenging. In our example WGRUS runs the following systems (see picture).

Billiruy !
Accourting
Wiek I'F
" ace Shipping
Call Center iiclget
WGRUS Inwentory
Wicdoyet
Imboundd Fax Catalog
Gadget
Outhound Inventary
E-Mail
Gadget
Catalog

WGRUS IT Infrastructure

WGRUS has four different channels to interact with customers. Customers can visit the company
Web site, call the customer service representative at the call center or submit orders via fax.

Customers can also receive notifications via e-mail.

WGRUS' internal systems are comprised of the accounting system, which also includes billing
functions, the shipping system that computes shipping charges and interacts with the shipping
companies. For historic reasons, WGRUS has two inventory and catalog systems. WGRUS used
to sell only widgets but acquired another retailer that sells gadgets. WGRUS decided it will be
less expensive to operate parallel systems than trying to rewrite both systems into a single
system.

Taking Orders

The first function we want to implement is taking orders. Taking orders is a good thing because
they bring revenue. However, placing orders is currently a tedious manual process so that the
cost incurred with each order is high. In fact, on orders below $20 WGRUS hardly makes any
money because any potential profit is eaten up by labor cost processing the order.

The first step to streamlining order processing is to unify taking orders. A customer can place
orders over one of three channels: Web site, call center or fax. Unfortunately, each system is
based on a different technology and stores incoming orders in a different data format. The call
center system is a packaged application while the Web site is a custom J2EE application. The
inbound fax system requires manual data entry into a small Microsoft Access application. We
want to treat all orders equally, regardless of their source. For example, a customer should be
able to place an order via the call center and check the order status on the Web site.

Because placing an order is an asynchronous process that connects many systems, we decide to
implement a message-oriented middleware solution to streamline the order entry process.

www.EBooksWorld.ir



Because the packaged call center application was not developed with integration in mind, we
connect it to the messaging system using a Channel Adapter. A Channel Adapter is a component

that can attach to an application and publish messages to a Message Channel whenever an event

occurs inside the application. With some Channel Adapters, the application may not even be aware

of the presence of the adapter. For example, a database adapter may add triggers to specific
tables so that every time the application inserts a row of data a message is sent to the Message
Channel. Channel Adapters can also work in the opposite direction, consuming messages off a

Message Channel and triggering an action inside the application in response.

We use the same approach for the inbound fax application, connecting the Channel Adapter to the

application database. Because the Web application is custom-built we implement the Endpoint
code inside the application. We use a Messaging Gateway to isolate the application code from the
messaging-specific code.

Endpoint  pojrt-to- Point

Channel
~
Wb Interface D —>=}—> e

INEE _MEW_ORDEFR.
Gatesnay Message Translstor
Poirit-to- Poirt Point-to-Poirt
Channel Channel
e Mesy Order
-—H-. fezzage
S MEN_ORDER. MEWN_ORDER.
Channel Mezsage Translatar
Adapter
Inbound Fax
Point-to-Poirt
Channel
S =
.-K--.
FaR_MEN_CRDER.
Channel Message Translstor

Addapter

Taking Orders From Three Difrerent Channels

Because each system uses a different data format for the incoming orders we use three Message
Translators to convert the different data formats into a common New Order message that follows
a Canonical Data Model. A Canonical Data Model defines message formats that are independent

from any specific application so that all applications can communicate with each other in this
common format. If the internal format of an application changes, only the Message Translator

between the affected application and the coming Message Channel has to change while all other

applications and Message Translators remain unaffected. Using a Canonical Data Model means that

we deal with two types of messages: canonical (public) messages and application-specific
(private) messages. Application-specific messages should not be consumed by any other
component except the related application and the associated Message Translator. To reinforce this

policy we name application-specific Message Channels starting with the name of the application,

e.g. WEB_NEW_ORDER. Channels carrying canonical messages are named after the intent of the
message without any prefix, e.g. NEW_ORDER.

www.EBooksWorld.ir



We connect each Channel Adapter to the Message Translator via a Point-to-Point Channel because we

want to be sure that each order message is consumed only once. We could get away without
using a Message Translator for the Web Interface if we programmed the transformation logic into

the Gateway. However, hand-coding transformation functions can be tedious and error prone
and we prefer to use a consistent approach. The additional Message Translator also allows us to

shield the New Order flow from minor changes in the Web Interface data format. All Message
Translators publish to the same NEW_ORDER Point-to-Point Channel so that orders can be processed

off this channel without regard to the order’s origin.

The NEW_ORDER Message Channel is a so-called Datatype Channel because it carries messages of

only one type, i.e. new orders. This makes it easy for message consumers to know what type of
message to expect. The New Order message itself is designed as a Document Message. The intent

of the message is not to instruct the receiver to take a specific action, but rather to pass a
document to any interested recipient who is free to decide how to process document.

Processing Orders

Now that we have a consistent order message that is independent from the message source we
need to process orders. In order to fulfill an order we need to complete the following steps:

e \rify the customer’s credit standing. If the customer has outstanding bills, we want to reject the new order.
e \erify inventory. We can’t fulfill orders for items that are not in stock.
e |f the customer is in good standing and we have inventory we want to shop the goods and bill the customer.

We can express this sequence of events using a UML activity diagram. Activity diagrams have
relatively simple semantics and are a good tool to depict processes that include parallel activities.
Subsequent activities are connected by simple arrows. Parallel activities are connected by a thick
black bar representing fork and join actions. A fork action causes all connected activities to start
simultaneously while the join action only continues after all incoming activities have been
completed.

The activity diagram executes the “Check Inventory” task and the “Verify Customer Standing”
task in parallel. The join bar waits until both activities are completed before it allows the next
activity to start. The next activity verifies the results of both steps - do we have inventory and is
the customer in good standing? If both conditions are fulfilled, the process goes on to fulfill the
order. Otherwise, we transition to an exception handling activity. For example, we may call the
customer to remind them to pay the last invoice or send an e-mail letting him or her know that
the order will be delayed. Because this book focuses on the design aspects of message-oriented
integration rather than workflow modeling, we leave the details of the exception handling
process aside for now. For a very good discussion of workflow architecture and workflow
modeling we refer you to [Leyman] and [Sharp].

www.EBooksWorld.ir



ztart

Chedk
Inventory

Valdais
Customer
Standing

Activity Diagram for Order Processing

It turns out that the activities map relatively nicely to the systems in WGRUS' IT department. The

Accounting system verifies the customer’s credit standing, the inventory systems check the

inventory and the shipping system initiates the physical shipping of goods. The accounting

system also acts as the billing system and sends invoices. The order processing function is a

typical implementation of a distributed business process.

To convert the logical activity diagram into an integration design, we use a Publish-Subscribe

Channel to implement the fork action and an Aggregator to implement the join action. A

Publish-Subscribe Channel sends a message to all active consumers while an Aggregator receives

multiple incoming messages and combines them into a single outgoing message (see picture):

Publish-Subzcrib Billing Poirt-to-Point
Channel Accounting Channel
m]
E >0
MEIN _ORDER. vert
reventory
Mesry Order Aggregator
Message

Order Processing Implementation using Asynchronous Messaging

Contert-
Bazed
Router

Publizh-Subsacribe
Channel

WALIDATED _ORDER.

IMYALID_ORDEFR,

Shipping

Billirg f
Accounting

The Aggregator combines the results from both messages and passes the resulting message to a

Content-Based Router. A Content-Based-Router is a component that consumes a message and

publishes it unmodified to a choice of other channels based on rules coded inside the router. The

Content-Based-Router is equivalent to the branch in a UML activity diagram. In this case, if both

the inventory check and the credit check have been affirmative, the Content-Based Router forwards

www.EBooksWorld.ir




the message to the VALIDATED_ORDER channel. If the customer is not in good standing or we have
no inventory on hand, it forwards the message to the INVALID_ORDER process. The exception
process (not shown in the picture) listens to messages on this channel and notifies the customer
of the rejected order.

As we learned in the requirements section, WGRUS has two inventory systems, one for widgets
and one for gadgets. As a result, we have to route the request for inventory to the correct system.
Because we want to hide the peculiarities of the inventory systems from the other systems, we
insert a Content-Based Router that routes the message to the correct system based on the type of

item ordered (see picture). For example, all incoming messages with an item number starting
with “W” are routed to the widget inventory system and all orders with an item number starting
with ‘G’ are routed to the gadget inventory system.

Point-to-Point
Channel

Contert-Bazed
Publish-Subscribe  Router I},JEI INdr?tet
Channel rivertary

R _CHECH IR
|
Invertory

Translatar

MEN_CRDEFR.

[P GG _CHECK IR

M ALID_CRDER_ITEW

Routing the Inventory Request

Note that the intent of messages on the Point-to-Point Channels between the Content-Based Router

and the inventory systems is different from the previous channel. These channels contain
Command Messages, messages that instruct the system to execute the specified command, in this

case verifying the inventory of an item.

Because the widget inventory system and the gadget inventory system use different internal data
formats we again insert Message Translators to convert from the canonical New Order message

format into a system-specific format. Using Message Translators with each originating system

(Web Interface, call center, inbound fax) and each target system (widget inventory and gadget
inventory) allows us to decouple changes between the systems. For example, if we added another
way of placing orders (e.g. ordering by e-mail), none of the other systems would be affected. The
price we pay for this flexibility is the fact that we translate each message twice, once at the source
and once at the destination.

What happens if the order item starts neither with “W’ nor with ‘G”? The Content-Based Router
routes the message to the INVALID_ORDER channel so that the invalid order can be processed

accordingly, e.g. by notifying the customer. This channel is a typical example of an Invalid
Message Channel. This is example highlights the fact that the meaning of a message changes
depending what channel it is on. Both the NEW_ORDER channel and the INVALID_ORDER channel

transport the same type of message, but in one case a new order is being processed while in the
other case the order is deemed invalid.

www.EBooksWorld.ir



So far, we have assumed that each order can only contain a single item. This would be pretty
inconvenient for our customers because they would have to place a new order for each item. Also,
we would end up shipping multiple orders to the same customer and incur unnecessary shipping
costs. However, if we allow multiple items inside an order, which inventory system should verify
the inventory for this order? We could use a Publish-Subscribe Channel to send the order to each

inventory system to pick out the items that it can process. But what would then happen to invalid
items? How would we notice that neither inventory system processed the item? We want to

maintain the central control the Content-Based Router gives us, but we need to be able to route

each order item individually.

Therefore, we insert a Splitter, a component that breaks a single message into multiple individual
messages. In our case, the Splitter splits a single Order message into multiple Order Item message.
Each Order Item message can then be routed to the correct inventory system using a

Content-Based Router (see below).

MEWN _ORDEF. IMVEMTORY _STATLES
i Order Processing
a a
U"‘E Splitter Agoregator B +0

Contert-Based
Router

RN _CHECH_IRY

Wicget

Imvertary | |

Garget | ITEM_STATUS
Inventary

Tranzlataor

MEN_2RDER_JTEM

[P GG _CHECK IR

e AL ORDERITEM e

em Processing

Processing Order Items Individually

Naturally, when the inventory for all items has been verified, we need to recombine the messages
into a single message. We already learned that the component that can combine multiple
messages into a single message is the Aggregator. Using both a Splitter and an Aggregator, we can
logically separate the message flow for order items from that for orders.

When designing an Aggregator, we have to make three key decisions:

e Which messages belong together (“correlation”)?

e How do we determine that all messages are received (the “completeness condition”)?

e How do we combine the individual messages into one result message (the “aggregation
algorithm”)?

We can’t correlate order items by the customer ID because a customer may place multiple orders
in short succession. Therefore, we need a unique order ID for each order. We accomplish this by

www.EBooksWorld.ir



inserting a Content Enricherinto the Taking Orders solution (see picture). A Content Enricheris a

component that adds missing data items to an incoming message.

Endpaint — pirgto-Pairt

Channel
Wieh Interface D —»:}—r |}{

IEE_MEIN_ORDER,

Gatennay Message Translator i
Paint-to-Point Data Enricher

CC_MEIN_ORDER,

Channel Meszage Translatar Add Order ID
Adapter

Pairt-to- Point
Channel

Channel

Call Certer e Mewy Qrder

Message

L J

MEIN_ORDEF.

Irbound Fac

Poirt-to-Point
Channel

FAX_MEN_CORDER %

Channel Meszage Translator
Adapter

Taking Orders With Enricher

Now that we have an order ID to correlate order item messages, we need to define the
completeness condition and the aggregation algorithm. Because we route all messages including
invalid items to the Aggregator, the Aggregator can simply use the number of items in the order
(one of the fields in the order message) to count until all order items arrive. The aggregation

algorithm is similarly simple. The Aggregator concatenates all item messages back into a single
order message and publishes it to the VALIDATED_ORDER channel.

The combination of a Splitter, a Router and an Aggregator is fairly common. We refer to it as a
Composed Message Processor. To simplify the picture, we insert the symbol for a Composed Message
Processor into the original message flow diagram:

Publizh-Subacribe Shing
Publish-Subscrib Billing / Pairt-to- Paint Channel PRIg
ACoounting Channel
i Billing 1
OO ]
mposed Mezzage [m] VALIDATED_ORDER. Accounting
MEW_ORDEF. Processor
Anqoregator Contert-

ey Order Baszed I ALID_ORDER,
Mezsage Router

Check Imvertory

Revised Order Process Implementation

Checking Status

www.EBooksWorld.ir



Despite connecting the systems via messaging channels, fulfilling an order can take some amount
of time. For example, we may be out of a certain item and the inventory system may be holding
the inventory check message until new items arrive. This is one of the advantages of
asynchronous messaging: the communication is designed to happen at the pace of the
components. While the inventory system is “holding” the message, the accounting system can
still verify the customer’s credit standing. Once both steps are completed, the Aggregator

publishes the Validated Order message to initiate shipment and invoicing,.

A long-running business process also means that both customers and managers are likely to want
to know the status of a specific order. For example, if certain items are out of inventory, the
customer may decide to process just those items that are in stock. Or if the customer has not
received the goods it is useful if we can tell him or her that the goods are on their way (including
the shipping company’s tracking number) or that there is an internal delay in the warehouse.

Tracking the status of an order with the current design is not so easy. Related messages flow
through multiple systems. In order to ascertain the status of the order in the sequence of steps we
would have to know the “last” message related to this order. One of the advantages of a
Publish-Subscribe Channel is that we can add additional subscribers without disturbing the flow of

messages. We can use this property to listen in to new and validated orders and store them into a
Message Store. We could then query the Message Store database for the status (see picture):

Publizh-Subzacribe Shipping
Publizh-Subscribe | BIiNg £ Channel
Accourting O
Channel OO -
= WALIDATED_ORDER. ;:.E.!I.I;.nug n:in
MEW_ORDER ™ Aggregator Router 4

Meswy Order Check Inventary

Meszage
-E]

Adding a Message Store To Track Order Status

[ BLID O RDER.

In situations where we use a Point-Point-Channel, we cannot simply add a subscriber to the
channel because in a Point-to-Point Channel, each message can only be consumer by a single

subscriber. However, we can insert a Wire Tap, a simple component that consumes a message off
one channel and publishes it to two channels. We can then use the second channel to send
messages to the Message Store (see picture).

www.EBooksWorld.ir



Paint-to-Poirt Wire Tap Paint-to-Poirt
Channel Channel

e

Meszzage Store

Tracking Messages with a Wire Tap

Storing message data in a central database has another significant advantage. In the original
design each message had to carry all relevant data in order to continue processing the message
down the line. For example, the ‘Verify Customer Standing” may have to pass through all sorts of
customer data even though it may only require the customer ID. This additional data is necessary
so that the resulting message still contains all data from the original order message. Storing the
New Order message in a Message Store has the advantage that all subsequent components can
refer to the Message Store for important message data without all intermediate steps having to
carry the data along (we will later to this function as Claim Check - messages can “check” data for
later retrieval).

Now the Message Store is responsible for maintaining data related to the new message as well as
the progress of the message within the process. This data gives us enough information to use the
Message Store to determine the next required steps in the process rather than connecting
components with fixed Message Channels. For example, if the database contains reply messages

from both the inventory systems and the billing system, we can conclude that the order has been
validated and send a message to the Shipping and billing system. Instead of making this decision
in a separate Aggregator component, we can do it right in the Message Store. Effectively, we are
turning the Message Store into a Process Manager.

A Process Manager is a central component that manages the flow of messages through the system.

The Process Manager provides two main functions:

e Storing data between messages
e Keeping track of progress and determining the next step

www.EBooksWorld.ir



Proceszsz Manager

L

Billing ¥ ‘alidate Customer

—r=}—r Accourting Standing

MEW_ORDER T > =
O E =» 0O} Check Inventory

é > Shigping Zhip Goodsz
Billirg « )
Accaurting Inwaice Customer

Wiek Interface Oroder DB

Processing Orders With a Process Manager

This architecture turns the individual systems (e.g. the inventory systems) into Shared Services
that can be accessed by any process. This increases reuse and allows for rapid changes and
maintenance. The services themselves can still be composed out of multiple steps, wired together

via a message flow (for example, using a Composed Message Processor to check inventory status for

each order item), or orchestrated via a Process Manager.

The Process Manager itself uses a persistent store (typically files or a relational database) to store

data associated with each process instance. In order to allow the Web Interface to query the status
of an order we could send a message to the Process Manager or the order DB. However, checking

status is a synchronous process - the customer expects the response right away. Because the Web
Interface is a custom application, we decide to access the Order Database directly to query the
order status. This form of Shared Database is the simplest and most efficient approach and we are
always ensured that the Web Interface displays the most current status. The potential downside
of this approach is the fact that the Web Interface is tightly coupled to the database, a trade-off

that we are willing to take.

The new architecture exposes all services to a common services bus so that they can be invoked
from any other component. If we add facilities to lookup (“discover”) a service from a service
registry, we can turn the WGRUS IT infrastructure into a Service-Oriented Architecture. In order
to participate in a Service-Oriented Architecture, each service has to provide additional functions.
For example, each service has to expose an interface contract that describes the functions
provided by the service. Each request-reply service also needs to support the concept of a Return
Address. A Return Address allows the caller (the “service consumer”) to specify the channel where

the service should send the reply message. This is important to allow the service to be reused in

different contexts, each of which may require its own channel for reply messages.

One difficulty in enabling these service functions is that many legacy systems were not build
with features such as Return Address in mind. Therefore, we “wrap” access to the legacy system

with a Smart Proxy. This Smart Proxy enhances the basic system service with additional capability

www.EBooksWorld.ir



so that it can participate in a Service-Oriented Architecture. To do this, the Smart Proxy intercepts
both request and reply messages to and from the basic service (see picture).

smart Proxy
Feguest ZerviceReguest

-G — — G

Fegply1

¥

Requestar 1

1
™~ Accounting
1

G — ServiceReply System
Requestar 2 — )+
y =:] ¥ s
Feply2 Channel
Adclapter

Inserting a Smart Proxy to Turn a Legacy System Into a Shared Service

The Smart Proxy can store information from the request message (e.g. the Return Address specified
by the requestor) and use this information to process the reply message, (e.g. route it to the
correct reply channel). A Smart Proxy is also very useful to track quality of service (e.g. response

times) of an external service.
Change Address

WGRUS needs to deal with a number of addresses. For example, the invoice has to be sent to the
customer’s billing address while the goods are shipped to the shipping address. We want to
allow the customer to maintain all these addresses through the Web Interface to eliminate
unnecessary manual steps.

We can choose between two basic approaches to get the correct billing and shipping addresses to
the billing and shipping systems:

e Include address data with the New Order message
e Replicate address data to other systems

The first option has the advantage that we can use an existing integration channel to transport the
additional information. A potential downside is the additional data flowing across the
middleware infrastructure. We pass the address data along with every order even though the
address may change much less frequently.

Because the billing and shipping systems are packaged applications they were not designed with
integration in mind. As such, they are unlikely to be able to accept addresses with a new order
but rather use the address that is stored in their local database. In order to enable the systems to
update the address with the New Order message we need to execute two functions in the billing
system (and the shipping system): first, we need to update the address, and then we need to send
the bill (or ship the goods). Because the order of the two messages matters we insert a simple
Process Manager component that receives a New Order message (which includes the current

www.EBooksWorld.ir



shipping and billing address0 and publishes two separate messages to the billing (or shipping)
system (see diagram).

—
H I—> —»  Shipping
_h :
Encpoint byl ish-Subscribe }‘g
Channel Process
hanager )
Web Interface —b-:}—
]
WLLIDATED_OFRDER, ~ Billing 7
i E A-counting
)
* H
Process i E I
hanager )

Mezzage Channel
Tranzlator  Adapter

Including Address Data in the New Order Message

We update the address directly into the system database using a database Channel Adapter.

Sending the goods or producing an invoice has to invoke the applications’ business logic.
Therefore, we connect to the applications’ business tiers and invoke the correct API function

when a message is received.

We need to keep in mind that the Channel Adapters require messages to be formatted in the

proprietary formats used by the applications (using so-called private messages). Because the New
Order message arrives in the canonical message format we need to perform a translation between

the two formats. We could build the transformation into the Process Manager but we actually

prefer external Message Translators so that the logic inside the Process Manager is not affected by

the possibly complicated data format required by the applications.

The second option uses data replication to propagate address changes to all affected systems
independently of the New Order process. Whenever the address information changes in the Web
interface we propagate the changes to all interested systems using a Publish-Subscribe Channel.

The systems store the updated address internally and use it when an order message arrives. This
approach reduces message traffic (assuming customers change addresses less frequently than
they place orders). It can also reduce coupling between systems. Any system that uses an address
can subscribe to the ADDRESS_CHANGE channel without affecting any other systems. The potential
downside is that we have to build another interface function for the billing and shipping systems
to enable them to consume address change messages.

Because we are dealing with multiple types of addresses (shipping and billing addresses) we
need to make sure that only the right type of address is stored in each system. We need to avoid
sending an address change message to the shipping system if the address is a billing address. We
accomplish this by using Message Filters that only pass messages matching certain criteria (see
diagram).

www.EBooksWorld.ir



We also use Message Translators to translate the generic Address Change message into the specific
message format used by the applications. In this case we do not use a Message Translator for the

Web Interface because we define the Canonical Data Model as equal to the format of the Web

Interface application. This could limit out flexibility if we want to introduce other ways of

changing addresses in the future, but for now it is sufficient.

Shipping
| ~LY |- @m0
Endpoirt  pyjhizh-Subscribe SHIP_iDDRESS_CHAMGE
Channel Meszage Meszage
Filter Translator Channel —
Wigh Interface —>=}— Adapter | Billing [
ADDRESS_CHANGE AEcounting

- Y | @m0
BILL_ADDRESS_CHAMGE

Propagating Address Changes via a Separate Publish-Subscribe Channel

Both the shipping and the billing system store addresses in a relational database so that we use a
database Channel Adapter to update the data in each system.

How do we decide between the two options? In our situation the message traffic is not much of a
concern because we only process a few hundred orders a day, so either solution would work well.
The main decision driver is going to be the internal structure of the applications. We may not be
able to insert the addresses directly into the database, but rather through the applications’
business layer. In this case the applications may perform additional validation steps and record
the address change activity. The system may even be programmed to e-mail a confirmation
message to the customer every time the address changes. This would get very annoying if the
update the address with every order. Such a condition would favor propagating address changes

using dedicated messages that are sent only when the customer actually changes the address.

In general we prefer well-defined, self-contained business actions such as “Change Address” and
“Place Order” because they give us more flexibility in orchestrating the businesses processes. It
all comes down to a question of granularity and the associated trade-offs. Fine-grained interfaces
can lead to sluggish systems due to an excessive number of remote calls being made or messages
being sent. For example, imagine an interface that exposes a separate method to change each
address field. This approach would be efficient if the communication happens inside a single
application - you only update those fields that changed. In an integration scenario sending six or
seven messages to update an address would be a significant overhead plus we would have to
deal with synchronizing the individual messages. Fine-grained interfaces also lead to tight
coupling. If we change the address format, we have to define new message formats and change
all other applications to send an additional message.

Coarse grained interfaces solve these issues. We send fewer messages and are therefore more
efficient and less tightly coupled. However, interfaces that are too coarse can limit our flexibility.

www.EBooksWorld.ir



If Send Invoice and Change Address are combined into one external function, will we never need
to change an address without sending a bill? So as always the best answer is the happy medium
and depends on the specific trade-offs at work in the real-life scenario.

New Catalog

In order for customers to place orders they need to see the currently offered items and their

prices on-line. WGRUS' catalog is driven by the offerings from the respective suppliers. However,
one of the services that WGRUS provides to its customers is allowing them to view widgets and
gadgets on the same site and to order both types of items in a single order. This function is an
example of an Information Portal scenario - we combine information from multiple sources into

a single view.

It turns out that both suppliers update their product catalog once every 3 months. Therefore, it
makes relatively little sense to create a real-time messaging infrastructure to propagate catalog
changes from the suppliers to WGRUS. Instead, we use File Transfer integration to move catalog
data from suppliers to WGRUS. The other advantage of using files is that they are easily and
efficiently transported across public networks using FTP or similar protocols. In comparison,

most asynchronous messaging infrastructures do not work well over the public Internet.

We still can use Translators and Adapters to transform the data to our internal catalog format.
However, these Translators process a whole catalog at once instead of one item at a time. This
approach is much more efficient if we are dealing with large amounts of data in the same format.

Web Interface

:I'_BE,_,-— Widget Co
— .
— Translator Catalog File
File
Aclapter —
:I'_EE — Gadget Co
e
Translstar Catalag File

Updating Catalog Data via File Transfer
Announcements

In order to improve business, we want to announce specials to our customers every once in a
while. In order to not annoy the customers, we allow the customer to only receive messages that
are of interest to them. We also want to target specific messages to a specific subset of customers.
For example, we may announce special deals only to preferred customers. When we need to send
information to multiple recipients, a Publish-Subscribe Channel immediately comes to mind.

However, a Publish-Subscribe Channel has some disadvantages. First, it allows any subscriber to

listen to the published messages without the publisher’s knowledge. For example, we would not
want smaller customers to receive special offers intended for high-volume customers. The second

www.EBooksWorld.ir



downside of Publish-Subscribe Channels is that they work efficiently only on local networks. If we
send data across wide-area networks the Publish-Subscribe Channel we have to send a separate

copy of the message to each recipient. If a recipient is not interested in the message we would

have incurred unnecessary network traffic.

Therefore, we should look for a solution that allows subscribers to issue their subscription
preferences and then send individual messages only to interested (and authorized) customers. In
order to perform this function we use a Dynamic Recipient List. A Dynamic Recipient List is the
combination of two Message Routing patterns. A Recipient List is a router that propagates a single
message to a set of recipients. The main difference between the Recipient List and a
Publish-Subscribe Channel is that the Recipient List addresses each recipient specifically and

therefore has tight control over who receives messages. A Dynamic Router is a router whose
routing algorithm can change based on control messages. These control messages can take the
form of subscription preferences issued by the subscribers. Combining these two patterns results

in a Dynamic Recipient List.

Channel

— @ A

Dwniamic Recipient List

Fecipient List

Input Channel Channel
—- G *é,:_ — @ B

Announcement

Channel

Crymamic ﬁ

e e—

Control Channel

Sending Announcements With a Dynamic Recipient List

If customers receive announcements via e-mail, the implementation of these patterns can use the
mailing lists features typically supplied by e-mail systems. Each recipient channel is then
identified by an e-mail address. Likewise, if customers prefer to receive announcements via a
Web services interface, each recipient channel is implemented by a SOAP request and the
channel address is the URI of the Web service. This example illustrates that the patterns we use to

describe the solution design are independent of a specific transport technology.
Testing and Monitoring

Monitoring the correct execution of messages is a critical operations and support function. The
Message Store can provide us with some important business metrics such as the average time to
fulfill an order. However, we may need for more detailed information for the successful
operation of an integration solution. Let’s assume we enhance our solution to access an external
credit agency to better assess our customer’s credit standing. Even if we show no outstanding
payments we may want to decline a customer’s order if the customer’s credit ranking is
particularly poor. This is especially useful for new customers. Because the service is provided by

www.EBooksWorld.ir



an outside provider we are being charged for its use. To verify the provider’s invoice we want to
track our actual usage and reconcile the two reports. We cannot simply go by the number of
orders because the business logic may not request an external credit check for long-standing
customers. Also, we have a Quality of Service (QoS) with the external provider. If the response

time exceeds a specified time, we do not have to pay for the request.

To make sure we are being billed correctly we want to track the number of requests we made and
the time it takes for the associated response to arrive. We have to be able to deal with two specific
situations. The external service can process more than one request at a time, so we need to be able
to match up request and reply messages. Second, since we treat the external service as a shared
service inside our enterprise we want to allow the service consumer to specify a Return Address,
the channel where the service should send the reply message. It could be difficult to match
request and reply messages if we don’t know which channel the reply message is on.

Once again the Smart Proxy is the answer. We insert the Smart Proxy between any service
consumer and the external service. We replace the Return Address specified by the service
consumer with a fixed reply channel. We store the original Return Address inside the Smart Proxy
so that it can forward the reply message to the channel specified by the consumer. The Smart
Proxy also measures the time elapsed between request and reply message from the external
service. The Smart Proxy publishes this data to the Control Bus. The Control Bus is connected to a

management console that collects metrics from many different components.

amart Proxy
Request ExtCreditRequest
Consumer 1 ; Credit
Fephy _ Service
Consumer 2 — L — L
) —

Feply2

ritral Bus

g )
Management
Console

Inserting a Smart Proxy to Track Response Times

We also want to make sure that the external credit service is working correctly. The Smart Proxy
can report cases where no reply message is received within a specified time-out period to the
management console. Much harder to detect are cases where the external service returns a reply
message but the results in the message are incorrect. For example is the external service
malfunctions and returns a credit score of zero for every customer we would end up denying
every order. There are two mechanisms that can help us protect against such a scenario. First, we
can periodically inject a Test Message into the request stream. This Test Message requests the score
for a specific person so that the result is known. We can then use a Test Data Verifier to not only

www.EBooksWorld.ir



check the fact that a reply was received but also the accuracy of the message content. Because the
Smart Proxy supports Reply Addresses the Test Data Generator can specify a special reply channel
to separate test replies from regular replies (see picture).

amart Proxy

Feguest ExtCredit Reguest
:I-—_“”S”m” — @ —— |- G——
i ExtCredit Repl service
i redit Reply :
Test Data Generator | g o 000 =}'— —\_ Frovider
I — —
—i

Test Data erifier ‘/

Manage ment
Console

TestReply
: Control Bus

Inserting Test Messages to Verify Accurate Results

Another effective strategy to detect malfunctioning services that return messages in a valid
format but with bad data is to take a statistical sample. For example, we may expect to decline an
average of less than one in 10 orders due to the customer’s poor standing. If we decline more
than 5 orders in a row this may be an indication that an external service or some business logic is
malfunctioning. The management console could e-mail the five orders to an administrator who

can then take a quick look at the data to verify whether the rejections were justified.

Summary

We have walked through a fairly extensive integration scenario using different integration
strategies such as File Transfer, Shared Database and asynchronous Messaging. We routed, split and

aggregated messages. We also added functions to monitor the correct operation of the solution.
While the requirements for this example were admittedly simplified the issues and design
trade-offs we had to consider are very real. The solution diagrams and descriptions highlight
how we can describe a solution in a vendor-and technology-neutral language that is much more
accurate than a high-level sequence diagram.

The integration scenario in this chapter focused primarly on how to connect existing applications.
For a detailed description on how to publish and consume messages from inside a custom
application see the examples in Chapter 6 and Chapter 9 (see Introduction to Simple Messaging

Examples and Introduction to Composed Messaging Examples)

The remainder of the book contains detailed descriptions and code examples for each of the
patterns that we used in our solution design. The patterns are categorized by their primary intent

www.EBooksWorld.ir



between base patterns, channel patterns, message patterns, routing patterns, transformation
patterns, endpoint patterns and system management patterns. This arrangement makes it easy to

read all patterns in sequence or look up individual patterns as a reference.

www.EBooksWorld.ir



2. Integration Styles

Introduction

Enterprise integration is the task of making separate applications work together to produce a
unified set of functionality. Some applications may be custom developed in-house while others
are bought from third-party vendors. The applications probably run on multiple computers,
which may represent multiple platforms, and may be geographically dispersed. Some of the
applications may be run outside of the enterprise by business partners or customers. Some
applications may need to be integrated even though they were not designed for integration and
cannot be changed. These issues and others like them are what make application integration
difficult. This chapter will explore the options available for application integration.

Application Integration Criteria

What makes for good application integration? If integration needs were always the same, there
would only be one integration style. Yet like any complex technological effort, application
integration involves a range of considerations and consequences that should be taken into

account for any integration opportunity.

The first criterion is application integration itself. If you can develop a single, stand-alone
application that doesn’t need to collaborate with any other applications, you can avoid the whole
integration issue entirely. Realistically, though, even a simple enterprise has multiple
applications, applications that need to work together to provide a unified experience for the

enterprise’s employees, partners, and customers.
The other main decision criteria are:

Application coupling — Even integrated applications should minimize their dependencies on
each other so that each can evolve without causing problems for the others. Tightly coupled
applications make numerous assumptions about how the other applications work; when the
applications change and break those assumptions, the integration breaks. The interface for
integrating applications should be specific enough to implement useful functionality, but general
enough to allow that implementation to change as needed.

Integration simplicity — When integrating an application into an enterprise, developers should
strive to minimize changing the application and minimize the amount of integration code needed.
Yet changes and new code will usually be necessary to provide good integration functionality,
and the approaches with the least impact on the application may not provide the best integration

into the enterprise.

www.EBooksWorld.ir



Integration technology — Different integration techniques require varying amounts of
specialized software and hardware. These special tools can be expensive, can lead to vendor
lock-in, and increase the burden on developers to understand how to use the tools to integrate

applications.

Data format — Integrated applications must agree on the format of the data they exchange, or
must have an intermediate traslator to unify applications that insist on different data formats. A
related issue is data format evolution and extensibility —how the format can change over time

and how that will affect the applications.

Data timeliness — Integration should minimize the length of time between when one application
decides to share some data and other applications have that data. Data should be exchanged
frequently in small chunks, rather than waiting to exchange a large set of unrelated items.
Applications should be informed as soon as shared data is ready for consumption. Latency in
data sharing has to be factored into the integration design; the longer sharing can take, the more
opportunity for shared data to become stale, and the more complex integration becomes.

Data or functionality — Integrated applications may not want to simply share data, they may
wish to share functionality such that each application can invoke the functionality in the others.
Invoking functionality remotely can be difficult to achieve, and even though it may seem the
same as invoking local functionality, it works quite differently, with significant consequences for

how well the integration works.

Asynchronicity — Computer processing is typically synchronous, such that a procedure waits
while its subprocedure executes. It's a given that the subprocedure is available when the
procedure wants to invoke it. However, a procedure may not want to wait for the subprocedure
to execute; it may want to invoke the subprocedure asynchronously, starting the subprocedure
but then letting it execute in the background. This is especially true of integrated applications,
where the remote application may not be running or the network may be unavailable —the
source application may wish to simply make shared data available or log a request for a
subprocedure call, but then go on to other work confident that the remote application will act

sometime later.
As you can see, there are several different criteria that must be considered when choosing and

designing an integration approach. The question then becomes: Which integration approaches
best address which of these criteria?

Application Integration Options

There’s more than one approach for integrating applications. Each approach addresses some of
the integration criteria better than others. The various approaches can be summed up in four

main integration styles:

www.EBooksWorld.ir



File Transfer — Have each application produce files of shared data for others to consume, and

consume files that others have produced.

Shared Database — Have the applications store the data they wish to share in a common

database.

Remote Procedure Invocation — Have each application expose some of its procedures so that

they can be invoked remotely, and have applications invoke those to run behavior and exchange
data.

Messaging — Have each application connect to a common messaging system, and exchange data
and invoke behavior using messages.

Each of the patterns has the same problem statement — the need to integrate applications —and
very similar contexts. What differentiates them is different forces searching for a more elegant
solution. Each pattern builds on the last, looking for a more sophisticated approach to address
the shortcomings of its predecessors. Thus the pattern order reflects an increasing order of
sophistication.

The trick is not to choose the one style to use always, but to choose the best style for a particular
integration opportunity. Each style has its advantages and disadvantages. Two applications may
integrate using multiple styles such that each point of integration takes advantage of the style
that suits it best. Likewise, an application may use different styles to integrate with different
applications, so as to choose the style that works best for the other application. Some integration
approaches can best be viewed as a hybrid of multiple styles. An integration product or EAI
middleware may employ a combination of styles, all of which are effectively hidden in the
product’s implementation.

The remainder of this book will expand on the Messaging pattern. We focus on messaging in part
because we believe it is often the best style for solving many integration opportunities. It is also
the least well understood of the integration styles and a technology ripe with patterns that
quickly explain how to make good use of it. Finally, messaging is the basis for many EAI
products, so explaining how to use messaging well also goes a long way in teaching you how to

use those products.

Familiarize yourself with these patterns to better understand the issues involved with application
integration, and to better understand how messaging fits into the mix.

File Transfer

(By Martin Fowler)

An enterprise has multiple applications that are being built independently, with different
languages and platforms.

www.EBooksWorld.ir



How can I integrate multiple applications so that they work together and can exchange
information?

In an ideal world, you might imagine an organization operating from a single cohesive piece of
software, designed from the beginning to work in a unified and coherent way. Of course even the
smallest operations don't work like that. Multiple pieces of software handle different aspects of
the enterprise. This is due to a host of reasons.

People buy packages that are developed by outside organizations
Different system are built at different times, leading to different technology choices

Different systems are built by different people, whose experience and preferences lead them to
different approaches to building applications

Getting an application out and delivering value is more important than ensuring that integration
is addressed, especially when that integration isn't adding any value to the application under
development.

As a result, any organization has to worry about sharing information between very divergent
applications. These can be written in different languages, based on different platforms, and with
some different assumptions about how the business operates.

Tying such applications together requires a lot of knowledge of understanding how to link
together applications on both a business level and a technical level. To have any chance of getting
your head around it, you must minimize what you need to know about how each application
works.

What is needed is a common data transfer mechanism that can be used by a variety of languages
and platforms, yet seems natural to each. It should require a minimal amount of specialized
hardware and software, making use of that the enterprise already has available.

Files are a universal storage mechanism, built in to any enterprise operating system, available
from any enterprise language. The simplest approach would be to somehow integrate the

applications using files.

Have each application produce files containing information that other applications need to
consume. Integrators take the responsibility of transforming files into different formats.
Produce the files at regular intervals according to the nature of the business.

Apphcation Application

A B

Shared
Drata

An important decision with files is what format to use. Very rarely will the output of one
application be exactly what's needed for another, so you'll have to do a fair bit of processing of
files along the way. Not just do all the applications that use a file have to read it, you also have to

www.EBooksWorld.ir



be able to use processing tools on it. As a result, standard file formats have grown up over time.
Mainframe systems commonly use data feeds based on the file system formats of COBOL. Unix
systems use text based files. The modern fashion is to use XML. An industry of readers, writers,
and transformation tools has built up around each of these formats.

Another issue with files is when to produce them and consume them. Since there's a certain
amount of effort required to produce and process a file, you usually don't want to work with
them too frequently. Typically you have some regular business cycle that drives the decision:
nightly, weekly, quarterly, etc. Applications get used to when a new file is available and
processes it at its time.

The great advantage of files is that integrators need no knowledge of the internals of an
application. The application team itself usually provides the file. The file's contents and format
are negotiated with integrators, although if a package is used there's often limited choices. The
integrators then deal with the transformations required for other applications, or they leave it up
the consuming applications to decide how they want to manipulate and read the file.

As a result the different applications are quite nicely decoupled from each other. Each application
can make internal changes freely without affecting other applications, providing they still
produce the same data in the files in the same format. The files effectively become the interface of
each application.

Part of what makes File Transfer simple is that no extra tools or integration packages are needed,
but that also means that developers have to do a lot of the work themselves. The applications
must agree on file naming conventions and the directories they appear in. The writer of a file
must implement a strategy to keep the filenames unique. The applications must agree on which
one will delete old files, and that application will have to know when a file is old and no longer
needed. The applications will need to implement a locking mechanism or follow a timing
convention to ensure that one application is not trying to read the file while another is still
writing it. If all of the applications do not have access to the same disk, then some application
must take responsibility for transferring the file from one disk to another.

One of the most obvious issues with File Transfer is that updates tend to occur infrequently, as a
result systems can get out of synchronization. A customer management system can process a
change of address and produce an extract file each night, but the billing system may send out the
bill to old address on the same day. Sometimes lack of synchronization isn't a big deal. People
often expect a certain lag in getting information around, even with computers. At other times the
result of using stale information is a disaster. When deciding on when to produce files, you have
to take the freshness needs of consumers into account.

In fact, the biggest problem with staleness is often on the software development staff themselves,
who often have to live with data that isn't quite right. This can lead to inconsistencies that are
difficult to resolve. If a customer changes his address on the same day with two different systems,
but one of them makes an error and gets the wrong street name, you'll have two inconsistent
addresses for a customer. You'll need some way to figure out how to resolve this. The longer the
period between file transfer, the more likely and more painful this problem will become.

www.EBooksWorld.ir



Of course, there's no reason that you can't produce files more frequently. Indeed you can think of
Messaging as File Transfer where you produce a file with every change in an application. The
problem then is managing all the files that get produced, ensuring they are all read and none get
lost. This goes beyond what file system based approaches can do, particularly since there are
expensive resource costs with processing a file, which get prohibitive if you want to produce lots
of files quickly. As a result, once you get to fine grained files like this, it's easier to think of them

as Messaging.

To make data available more quickly and enforce an agreed-upon set of data formats, use a Shared
Database. To integrate applications' functionality rather than their data, use Remote Procedure

Invocation. To enable frequent exchanges of small amounts of data, perhaps used to invoke remote
functionality, use Messaging.

Related patterns: Remote Procedure Invocation, Messaging, Shared Database

Shared Database

An enterprise has multiple applications that are being built independently, with different
languages and platforms. The enterprise needs information to be shared rapidly and consistently.

How can I integrate multiple applications so that they work together and can exchange

information?

File Transfer enables applications to share data, but can lack timeliness, yet timeliness of
integration is often a critical issue. If changes do not work their way quickly through a family of
applications, you are likely to do incorrect things due to the staleness of data. For modern
businesses, you want everyone to have the latest data as much as possible. Not just does this
reduce errors, it also increases people's trust in the data.

Rapid updates also allow inconsistencies to be handled better. The more frequently you
synchronize, the less likely you are to get inconsistencies and the less effort they are to deal with.
But however rapid the changes, there's still going to be problems. If an address is updated
inconsistently in rapid succession, how do I decide which one is the true address? I can take each
piece of data and say that one application is the master source for that data, but then I have to
remember who is the master for what data.

File Transfer also may not enforce data format sufficiently. Many of the problems in integration
come from incompatible ways of looking at the data. Often these represent subtle business issues
that can have a huge effect. A geological database may define an oil well as a single drilled hole,
which may or may not produce oil. A production database may define a well as multiple holes
covered by a single piece of equipment. These cases of semantic dissonance are much harder to deal
with than inconsistent data formats. (For a much deeper discussion of these issues, it's really
worth reading Data and Reality [Kent].)

www.EBooksWorld.ir



What is needed is a central, agreed-upon datastore that all of the applications share, so that any
of them have access to any of the shared data whenever they need it.

Integrate applications by having them store their data in a single Shared Database.

Application Application Application
A B c

] I [
\K\K\I!

Shared
Crata

If a family of integrated applications all rely on the same database, then you can be pretty sure
that they are always consistent all of the time. If you do get simultaneous updates to a single
piece of data from different sources, then you have transaction management systems that handle
that about as gracefully as it ever can be managed. Since the time between updates is so small,

any errors are much easier to find and fix.

Shared Database is made much easier by the widespread use of SQL-based relational databases.
Pretty much all application development platforms can work with SQL, often with quite
sophisticated tools. So you don't have to worry about multiple file formats. Since any application
pretty much has to use SQL anyway this avoid adding another technology for everyone to

master.

Since everyone is using the same database, this forces out problems in semantic dissonance.
Rather than leaving these problems to fester until they are difficult to solve with transforms, you
are forced to confront them and deal with them before the software goes live and you collect

large amounts of incompatible data.

One of the biggest difficulties with Shared Database is coming up with a suitable design for the
shared database. Coming up with a unified schema that can meet the needs of multiple
applications is a very difficult exercise, often resulting in a schema that application programmers
find difficult to work with.

If the technical difficulties of designing a unified schema aren't enough, there are also severe
political difficulties. If a critical application is likely to suffer delays in order to work with a
unified schema, then often there is irresistable pressure to separate. Human conflicts between

departments often exacerbate this problem.

Another, harder limit to Shared Database is external packages. Often they won't work with a
schema other than their own. Even if there is some room for adaptation, it's likely to be much
more limited than integrators would like. This problem also extends to integration after

www.EBooksWorld.ir



development. Even if you can organize all your applications, you still have an integration

problem should a merger of companies occur.

Multiple applications using a Shared Database to frequently read and modify the same data can
cause performance bottlenecks and even deadlocks as each application locks others out of the
data. When the applications are distributed across multiple computers, the database must be
distributed as well so that each application can access the database locally, which confuses the
issue of which computer the data should be stored on. A distributed database with locking

conflicts can easily become a performance nightmare.

To integrate applications' functionality rather than their data, use Remote Procedure Invocation. To

enable frequent exchanges of small amounts of data, using a format per datatype rather than one

universal schema, use Messaging.

Related patterns: Remote Procedure Invocation, File Transfer, Messaging

Remote Procedure Invocation

(By Martin Fowler)

An enterprise has multiple applications that are being built independently, with different
languages and platforms. The enterprise needs to share data and processes in a responsive way.

How can I integrate multiple applications so that they work together and can exchange

information?

File Transfer and Shared Database enable applications to share their data, which is an important part

of application integration, but just sharing data is often not enough. Often changes in data lead to
things that have to be done across different applications. Changing an address may be a simple
change in data, or it may trigger registration and legal processes to take into account different
rules in different legal jurisdictions. Having one application to invoke such processes in other
would require applications to know far too much about the internals of other applications.

This problem mirrors classic problems in application design. One of the most powerful
structuring mechanisms in application design is that of encapsulation--where modules hide their
data through a function call interface. In this way, they can intercept changes in data to carry out
the various actions they need to do when the data is changed. Shared Database provides a large,
unencapsulated data structure, which makes it much harder to do this. File Transfer allows an

application to react to changes as it processes the file, but the process is delayed.

The fact that Shared Database has unencapsulated data also makes it more difficult to maintain a
family of integrated applications. Many changes in any application can trigger a change in the
database, and database changes have a considerable ripple effect through every application. As a
result, systems that use Shared Database are often very reluctant to change the database, which

www.EBooksWorld.ir



means that the application development work is much less responsive to the changing needs of
the business.

What is needed is a mechanism for one application to invoke a function in another application,
passing the data that needs to be shared and invoking the function that tells the receiver
application how to process the data.

Develop each application as a large-scale object or component with encapsulated data. Provide
an interface to allow other applications to interact with the running application.

N ¢
Funciran ;

Application ? ' »{ % | | Application
F] e

A b result 1 B

_______ 1]
n
e =

Remote Procedure Invocation applies the principle of encapsulation to integrating applications. If an
application needs some information that is owned by another application, it asks that application
directly. If one application needs to modify the data of another, then it does so by making a call to
the other application. Each application can maintain the integrity of the data it owns.

Furthermore, each application can alter its internal data without having every other application
be affected.

There are a number of Remote Procedure Call (RPC) approaches: CORBA, COM, .NET Remoting,
Java RMI, etc. These vary as to how many systems support them and their ease of use. Often
these environments add additional capabilities, such as transactions.

For sheer ubiquity, the current fashionable favorite is Web Services using standards such as
SOAP and XML. A particularly valuable feature of web services is that they work easily with
HTTP, which is easy to get through firewalls.

The fact that there are methods that wrap the data make it easier to deal with semantic
dissonance. Applications can provide multiple interfaces to the same data, allowing some clients
to see one style and others another. Even updates can use multiple interfaces. This provides a lot
more ability to support multiple points of view than relational views. However, it is awkward for
integrators to add transformation components, so each application has to negotiate its interface
with its neighbors.

Since software developers are used to procedure calls, Remote Procedure Invocation fits in nicely with
what they are already used to. Actually, this is more of a disadvantage than it is an advantage.
There are big differences in performance and reliability between remote and local procedure calls.
If people don't understand these, then Remote Procedure Invocation can lead to slow and unreliable
systems (see [Waldo]).

www.EBooksWorld.ir



Although the encapsulation helps reduce the coupling of the applications, by eliminating a large
shared data structure, the applications are still fairly tightly coupled together. The remote calls
each system supports tends to tie the different systems into a growing knot. In particular,
sequencing--doing certain things in a particular order--can make it difficult to change systems
independently. Often these become problems because issues that aren't significant within a single
application become so when integrating applications. People often design the integration the way

they would design a single application, unaware that the rules change.

To enable frequent exchanges of small amounts of data, perhaps used to invoke remote
functionality, use Messaging.

Related patterns: File Transfer, Messaging, Shared Database

Messaging

An enterprise has multiple applications that are being built independently, with different
languages and platforms. The enterprise needs to share data and processes in a responsive way.

How can I integrate multiple applications so that they work together and can exchange

information?

File Transfer and Shared Database enable applications to share their data, but not their functionality.

Remote Procedure Invocation enables applications to share functionality, but tightly couples them in

the process. Often the challenge of integration is about making collaboration between separate
systems as timely as possible, without coupling systems together in such a way that makes them

unreliable, either in terms of application execution or application development.

File Transfer allows you keep the applications very well decoupled, but at the cost of timeliness.
Systems just can't keep up with each other. Collaborative behavior is way too slow. Shared
Database keeps data together in a responsive way, but at the cost of coupling everything to the
database. It also fails to handle collaborative behavior.

Faced with these problems, Remote Procedure Invocation seems an appealing choice. But extending a

model used for a single application to application integration runs into plenty of other
weaknesses. These weaknesses start with the essential problems of distributed development.
Despite the fact that remote procedure calls look like local calls, they don't act the same. Remote
calls are slower, and can fail. With multiple applications communicating across an enterprise, you
don't want one application's failure to bring down all of the other applications. Also, you don't
want to design a system assuming that calls are fast and you don't want each application
knowing details of other applications, even if it's only details about their interfaces.

What we need is something like File Transfer where lots of little data packets can be produced

quickly, transferred easily, and the receiver application is automatically notified when a new
packet is available for consumption. The transfer needs a retry mechanism to make sure it

www.EBooksWorld.ir



succeeds. The details of any disk structure or database for storing the data needs to be hidden
from the applications so that, unlike Shared Database, the storage schema and details can be easily
changed to reflect the changing needs of the enterprise. One application should be able to send a
packet of data to another application to invoke behavior in the other application, like Remote
Procedure Invocation, but without being prone to failure. The data transfer should be asynchronous

so that the sender does not need to wait on the receiver, especially when retry is necessary.

Use Messaging to transfer packets of data frequently, immediately, reliably, and asynchronously,

using customizable formats.

Application Application Application
A B C

| | |
Ewent \_ _f t\_h_f’ \_u_f

r

b MessageBus [

Asynchronous messaging is fundamentally a pragmatic reaction to the problems of distributed
systems. Sending a message does not require both systems to be up and ready at the same time.
Furthermore, thinking about the communication in an asynchronous manner forces developers to
recognize that working with a remote application is slower, which encourages design of
components with high cohesion (lots of work locally) and low adhesion (selective work

remotely).

Messaging systems also allow much of the decoupling you get when using File Transfer. Messages
can be transformed in transit without either the sender or receiver knowing about the
transformation. Indeed the decoupling allows integrators to broadcast messages to multiple
receivers, support choosing one of many potential receivers, and other topologies that allow
integration to be separated from the development of the applications. Since human issues tend to
separate application development from application integration, this approach works with human

nature rather than against it.

The transformation means that separate applications can have quite different conceptual models.
Of course this means that semantic dissonance will occur, but the messaging viewpoint is the
measure that Shared Database takes to avoid semantic dissonance are too complicated to work in

practice, and can't be done after the fact with packages or in enterprise merges.

By sending small messages frequently, you also allow applications to collaborate behaviorally as
well as share data. If a process needs to be launched once an insurance claim is received, it can be
done immediately as a message when a single claim comes in. Information can be requested and

a reply made rapidly. While such collaboration isn't going to be as fast as Remote Procedure

Invocation, the caller needn't stop while the message is being processed and the response returned.
And messaging isn't as slow as many people think -- many messaging solutions originated in the
financial services industry where thousands of stock quotes or trades have to pass through a

messaging system every second.

www.EBooksWorld.ir



This book is about Messaging, so you can therefore assume that we consider Messaging to be
generally the best approach to enterprise application integration. But you shouldn't assume that
we think it's free of problems.

The high frequency of messages in Messaging reduces many of the inconsistency problems that
bedevil File Transfer, but it doesn't entirely remove them. There is still going to be some lag
problems with systems not being updated quite simultaneously.

Asynchronous design is not the way most software people are taught, and as a result there's a
whole host of different rules and techniques in place. The messaging context makes this a bit
easier than programming in a asynchronous application environment like X windows, but

asynchrony still has a learning curve. Testing and debugging are also harder in this environment.

The ability to transform messages has the nice benefit of allowing applications to be much more
decoupled from each other than in Remote Procedure Invocation and File Transfer. But this

independence does mean that integrators are often left with writing a lot of messy glue code to fit
everything together.

Once you decide that you want to use Messaging for system integration, there are a number of new
issues to consider and practices you can employ. How do you transfer packets of data? A sender
sends data to a receiver by sending a Message via a Message Channel that connects the sender and

receiver. How do you know where to send the data? If the sender does not know where to
address the data to, it can send the data to a Message Router, which will direct the data to the
proper receiver. How do you know what data format to use? If the sender and receiver do not
agree on the data format, the sender can direct the data to a Message Translator that will convert the

data to the receiver's format and then forward the data to the receiver. If you're an application
developer, how do you connect your application to the messaging system? An application that
wishes to use messaging will implement Message Endpoints to perform the actual sending and
receiving,.

Related patterns: Remote Procedure Invocation, File Transfer, Message, Message Channel, Message Endpoint,

Message Router, Message Translator, Shared Database

www.EBooksWorld.ir



3. Messaging Systems

Introduction

In Introduction to Integration Styles, we discussed the various options for connecting applications

with one another, including Messaging. Messaging makes applications loosely coupled by
communicating asynchronously, which also makes the communication more reliable because the
two applications do not have to be running at the same time. Messaging makes the messaging
system responsible for transferring data from one application to another, so the applications can
focus on what data they need to share but not worry so much about how to share it.

Basic Messaging Concepts

Like most technologies, Messaging involves certain basic concepts. Once you understand these
concepts, you can make sense of the technology even before you understand all of the details

about how to use it. These basic messaging concepts are:

Channels — Messaging applications transmit data through a Message Channel, a virtual pipe that

connects a sender to a receiver. A newly installed messaging system doesn’t contain any channels;
you must determine how your applications need to communicate and then create the channels to

facilitate it.

Messages — A Message is an atomic packet of data that can be transmitted on a channel. Thus to
transmit data, an application must break the data into one or more packets, wrap each packet as a
message, and then send the message on a channel. Likewise, a receiver application receives a
message and must extract the data from the message to process it. The message system will try
repeatedly to deliver the message (e.g., transmit it from the sender to the receiver) until it

succeeds.

Multi-step delivery — In the simplest case, the message system delivers a message directly from
the sender’s computer to the receiver’s computer. However, actions often need to be performed
on the message after it is sent by its original sender but before it is received by its final receiver.
For example, the message may have to be validated or transformed because the receiver expects a
different message format than the sender. A Pipes and Filters architecture describes how multiple
processing steps can be chained together using channels.

Routing — In a large enterprise with numerous applications and channels to connect them, a
message may have to go through several channels to reach its final destination. The route a
message must follow may be so complex that the original sender does not know what channel
will get the message to the final receiver. Instead, the original sender sends the message to a
Message Router, an application component and filter in the pipes-and-filters architecture, which

www.EBooksWorld.ir



will determine how to navigate the channel topology and direct the message to the final receiver,

or at least to the next router.

Transformation — Various applications may not agree on the format for the same conceptual
data; the sender formats the message one way, yet the receiver expects it to be formatted another

way. To reconcile this, the message must go through an intermediate filter, a Message Translator,

that converts the message from one format to another.

Endpoints — An application does not have some built-in capability to interface with a messaging
system. Rather, it must contain a layer of code that knows both how the application works and
how the messaging system works, bridging the two so that they work together. This bridge code

is a set of coordinated Message Endpoints that enable the application to send and receive

messages.

Book Organization

The patterns in this chapter provide you with the basic vocabulary and understanding of how to
achieve enterprise integration using Messaging. All subsequent chapters build upon the base

patterns in this chapter.

Relationship of Root Patterns and Chapters

Chagter 1:
Integration Messaging
Slyles
— _Eﬁ'—ilq'l'ﬂ_re____
— - 2 ak > —>
Chapter 2 Meszans i Pipes and Mezzage Mezzanes Meszzage
Messaging Channel age Filters Router Translator Endlpoint
Systems X : \, : ., : . :

Chapter 3 Chapter 4, Chapler 5: Chapter & Chapter 7. Chapter B
Messaging Message Message Message Messaging Swstems
Charinels Corstruction Routing T rarst ormsti Endpoirts Mansgement

This chapter provides a broad overview of Messaging by introducing the main messaging topics.

For more details about one of these topics, skip ahead to the chapter that contains more patterns

which cover that topic in greater depth.

Message Channel

An enterprise has two separate applications that need to communicate, preferably by using
Messaging.

www.EBooksWorld.ir



How does one application communicate with another using messaging?

Once a group of applications have a messaging system available, it's tempting to think that any
application can communicate with any other application any time desired. Yet the messaging
system does not magically connect all of the applications.

Apphcaton hiessaging Application
System

Applications Magically Connected

Likewise, it's not like an application just randomly throws information out into the messaging
system while other applications just randomly grab whatever information they run across. (Even
if this would work, it'd be very inefficient.) Rather, the application sending out the information
knows what sort of information it is, and the applications that would like to receive information
aren't looking for just any information, but for particular sorts of information they can use.

So the messaging system isn't a big bucket that applications throw information into and pull
information out of. It's a set of connections that enable applications to communicate by
transmitting information in predetermined, predictable ways.

Connect the applications using a Message Channel, where one application writes information
to the channel and the other one reads that information from the channel.

Message
Channef -

sender higssaging Fecercer
Applicatian Syslem Application

When an application has information to communicate, it doesn't just fling the information into
the messaging system, it adds the information to a particular Message Channel. An application
receiving information doesn't just pick it up at random from the messaging system; it retrieves
the information from a particular Message Channel.

www.EBooksWorld.ir



The application adding info doesn't necessarily know what particular application will end up
retrieving the info, but it can be assured that whatever application retrieves the info, that
application will be interested in the info. This is because the messaging system has different
Message Channels for different types of information the applications want to communicate. When
an application sends information, it doesn't randomly add the info to any channel available; it
adds the info to a channel whose specific purpose is to communicate that sort of information.
Likewise, an application that wants to receive particular information doesn't pull info off some
random channel; it selects what channel to get information from based on what type of
information it wants.

Channels are logical addresses in the messaging system; how they're actually implemented
depends on the messaging system product and its implementation. Perhaps every Message
Endpoint has a direct connection to every other endpoint, or perhaps they're all connected
through a central hub. Perhaps several separate logical channels are configured as one physical
channel that nevertheless keeps straight which messages are intended for which destination. The
set of defined logical channels hides these configuration details from the applications.

A messaging system doesn't automatically come preconfigured with all of the message channels
the applications need to communicate. Rather, the developers designing the applications and the
communication between them have to decide what channels will be needed for the
communication. Then the system administrator who installs the messaging system software must
also configure it to set up the channels that the applications expect. While some messaging
system implementations support creating new channels while the applications are running, this
isn't very useful because other applications besides the one that creates the channel have to know
about the new channel so that they can start using it too. Thus the number and purpose of
channels available tend to be fixed at deployment time. (There are exceptions to this rule; see
Introduction to Messaging Channels.)

Something that often fools developers when they first get started with using a messaging system
is what exactly needs to be done to create a channel. A developer can write JMS code that
includes calling the method createQueue, or .NET code that includes new MessageQueue, but
neither of these bits of code actually allocates a new queue resource in the messaging system.
Rather, these pieces of code provide access to a resource that already exists in the messaging
system and was already created in the messaging system separately using its administration
tools.

Another issue to keep in mind when designing the channels for a messaging system: Channels
are cheap, but they're not free. Applications need multiple channels for transmitting different
types of information and transmitting the same information to lots of other applications. Each
channel requires memory to represent the messages; persistent channels require disk space as
well. Even if an enterprise system has unlimited memory and disk space, any messaging system
implementation usually has some hard or practical limit to how many channels it can service
consistently. So plan on creating new channels as your application needs them, but if it needs
thousands of channels, or needs to scale in ways that may require thousands of channels, you'll
need to choose a highly scalable messaging system implementation and test that scalability to

www.EBooksWorld.ir



make sure it meets your needs. Datatype Channel helps you determine when you need another

channel. Selective Consumer makes one physical channel act logically like multiple channels.

A Little Bit of Messaging Vocabulary

So what do we call the applications that communicate via a Message Channel? There are a number of terms out there that are
largely equivalent. The most generic terms are probably Sender and Receiver — an application sends a message to a Message
Channel to be received by another application. Another popular term is Producer and Consumer. Equally popular is Publisher and

Subscriber — they are more geared towards Publish-Subscribe Channels, but are often times used in generic form. Sometimes

we also say that an application listens on a channel that another application talks to. In the world of Web services, we generally
talk about a Requester and Provider. These terms usually imply that the requester sends a message to the provider and receives
a response back. In the old days we called these Client and Server — the terms are equivalent, but saying client and server is
less cool. Now it gets gets confusing: when dealing with Web services, sometimes the application that sends a message to the
provider is considered a Consumer of the service. We can think of it in such a way that consumer sends a message to the provider
and then consumes the response. Luckily, usage of the term in this way occurs only in RPC scenarios. An application that sends

or receives messages may be called a Client of the messaging system; a more specific term is Endpoint or Message Endpoint.

Channel Names

If channels are logical addresses, what do these addresses look like? Like in so many cases, the detailed answer depends on the
implementation of the messaging system. Nevertheless, in most cases channels are referenced by an alphanumeric name, such
as MyChannel. Many messaging systems support a hierarchical channel naming scheme, which enables you to organize channels

in a way that is similar to a file system with folders and subfolders. For example, MyCorp/Prod/OrderProcessing/NewOrders would

indicate a channel that is used in a production application at MyCorp and contains new orders.

There are two different kinds of message channels, Point-to-Point Channels and Publish-Subscribe

Channels. Mixing different data types on the same channel causes a lot of confusion; to avoid this
confusion, use separate Datatype Channels. Applications that use messaging often benefit from a

special channel for invalid messages, an Invalid Message Channel. Applications that wish to use

Messaging but do not have access to a messaging client can still connect to the messaging system
using Channel Adapters. A well designed set of channels forms a Message Bus that acts like a

messaging API for a whole group of applications.

Example: Stock Trading

When a stock trading application makes a trade, it puts the request on a Message Channel for trade
requests. Another application that processes trade requests will look for ones to process on that
same message channel. If the requesting application needs to request a stock quote, it will
probably use a different message channel, one designed for stock quotes, so that the quote
requests stay separate from the trade requests.

Example: J2EE JMS Reference Implementation

Let's look at how to create a Message Channel in JMS. The J2EE SDK ships with a reference
implementation of the J2EE services, including JMS. The reference server can be started with the

www.EBooksWorld.ir



Jj2ee command. Message channels have to be configured using the j2eeadmin tool. This tool can

configure both queues and topics:

J2eeadmin -addJmsDestination jms/mytopic topic
J2eeadmin -addJmsDestination jms/myqueue queue

Once the channels have been administered (created), they can then be accessed by JMS client
code:

Context jndiContext = new InitialContext();
Queue myQueue = (Queue) jndiContext.lookup(*'jms/myqueue’™);
Topic myTopic = (Topic) jndiContext.lookup(*jms/mytopic');

The JNDI lookup doesn't create the queue (or topic); it was already created by the j2eeadmin
command. The JNDI loookup simply creates a Queue instance in Java that models and provides
access to the queue structure in the messaging system.

Example: IBM WebSphere MQ

If your messaging system implementation is IBM's WebSphere MQ for Java, which implements
JMS, you'll use the WebSphere MQ JMS administration tool to create destinations. This will
create a queue named “myQueue”:

DEFINE Q(myQueue)

Once that queue exists in WebSphere MQ), an application can then access the queue.

WebSphere MQ, without the full WebSphere Application Server, does not include a JNDI
implementation, so we cannot use JNDI to lookup the queue as we did in the J2EE example.
Rather, we must access the queue via a JMS session, like this:

Session session = // create the session

Queue queue = session.createQueue('myQueue');

Example: Microsoft MSMQ

MSMQ provides a number of different ways to create a message channel, called a queue. You can
create a queue using the Microsoft Message Queue Explorer or the Computer Management
console (see picture). From here you can set queue properties or delete queues.

www.EBooksWorld.ir



R
J Action  Wiew |J e -P|| |@

Tree I Marne | Label | Messages |
b % WMI Contral ﬂ '@admin_queueﬂs privatedtadmin_queues 1]
% Services IEr|'u:|is_|:||_uauna:1; privatedimgis_queuet 1]
g Indexing Service 'EITIWUEUE EIP Queue 0
% Internet Information Services IEn-:nlzil:*;.-'_|:|un3ue$ privatedinotify_queued 1]
EIE' Message Queuing IEl:url:hE!r_|:||.||3l.||E!$ privatediorder_queued n

[ Outgoing Queues
@ Public Queues

-5 Private Queues

E||:| Syskem Queues

-5 Journal messages
EE1 Dead-letter messages

£ Transactional dead-lett

-

1| | »

Alternatively, you can create the queue using code:
using System._Messaging;
MessageQueue.Create("'MyQueue™);

Once the queue is created, an application can access it by creating a MessageQueue instance:

MessageQueue mg = new MessageQueue(*'MyQueue');

Related patterns: Channel Adapter, Datatype Channel, Invalid Message Channel, Message Bus, Message

Endpoint, Selective Consumer, Messaging, Introduction to Messaging Channels, Point-to-Point Channel,
Publish-Subscribe Channel

Message

An enterprise has two separate applications that are communicating via Messaging, using a
Message Channel that connects them.

How can two applications connected by a message channel exchange a piece of information?

A Message Channel can often be thought of as a pipe, a conduit from one application to another. It

might stand to reason then that data could be shoved in one end, like water, and it would come
flowing out the other end. But data isn't one continuous stream; it is units, such as records,

objects, database rows, and the like. So a channel must transmit units of data.

www.EBooksWorld.ir



What does it mean to "transmit" data? In a function call, the caller can pass a parameter by
reference by passing a pointer to the data's address in memory; this works because both the caller
and the function share the same memory heap. Similarly, two threads in the same process can

pass a record or object by passing a pointer, since they both share the same memory space.

Two separate processes passing a piece of data have more work to do. Since they each have their
own memory space, they have to copy the data from one memory space to the other. The data is
usually transmitted as a byte stream, the most basic form of data, which means that the first
process must marshal the data into byte form, copy it from the first process to the second one,
which will then unmarshal the data back into its original form, a copy of the original data in the
first process. Marshalling is how an RPC sends arguments to the remote process, and how the
process returns the result.

So messaging transmits discrete units of data, and does so by marshalling the data from the
sender and unmarshalling it in the receiver so that the receiver has its own local copy. What
would be helpful would be a simple way to wrap a unit of data such that it is appropriate to
transmit the data on a messaging channel.

Package the information into a Message, a data record that the messaging system can transmit

through a message channel.

sender Message Feceiver

Thus any data that is to be transmitted via a messaging system must be converted into one or
more messages that can be sent through messaging channels.

A message consists of two basic parts:

1. Header - Information used by the messaging system that describes the data being
transmitted, its origin, its destination, and so on.

2. Body - The data being transmitted; generally ignored by the messaging system and
simply transmitted as-is.

This concept is not unique to messaging. Both postal service mail and e-mail send data as discrete
mail messages. An Ethernet network transmits data as packets, as does the IP part of TCP/IP
such as the Internet. Streaming media on the Internet is actually a series of packets.

To the messaging system, all messages are the same: Some body of data to be transmitted as
described by the header. However, to the applications programmer, there are different types of
messages, i.e., different application styles of use. Use a Command Message to invoke a procedure

in another application. Use a Document Message to pass a set of data to another application. Use

www.EBooksWorld.ir



an Event Message to notify another application of a change in this application. If the other
application should send a reply back, use Request-Reply.

If an application wishes to send more information than one message can hold, break the data into
smaller parts and send the parts as a Message Sequence. If the data is only useful for a limited

amount of time, specify this use-by time as a Message Expiration. Since all the various senders and
receivers of messages must agree on the format of the data in the messages, specify the format as
a Canonical Data Model.

Example: JMS Message

In JMS, a message is represented by the type Message, which has several subtypes. In each
subtype, the header structure is the same; it's the body format that varies by type.

e TextMessage — The most common type of message. The body is a String, such as a text file or an XML
document. textMessage .getText() returns a String.

e BytesMessage — The simplest, most universal type of message. The body is a byte array.
bytesMessage - readBytes(byteArray) copies the contents into the specified byte array.

e ObjectMessage — The body is a single Java object, specifically one that implements
java.io.Serializable, which enables the object to be marshaled and unmarshaled.
objectMessage.getObject() returns the Serializable.

e StreamMessage — The body is a stream of Java primitives. The receiver uses methods like readBoolean(),
readChar (), and readDouble() to read the data from the message.

e MapMessage — The body acts like a java.uti I .Map, where the keys are Strings. The receiver uses
methods like getBoolean("'isEnabled’™) and getInt("'numberOfltems™) to read the data from the

message.

Example: .NET Message

In .NET, the Message class implements the message type. It has a property, Body, which contains
the contents of the message as an Object; BodyStream stores the contents as a Stream. Another
property, BodyType, is an int that specifies the type of data the body contains, such as a string, a

date, a currency, or a number.

Example: SOAP Message

In the SOAP protocol [SOAP 1.1], a SOAP message is an example of this Message pattern. A
SOAP message is an XML document that is an envelope (a root SOAP-ENV:Envelope element) that
contains an optional header (a SOAP-ENV:Header element) and required body (a SOAP-ENV:Body
element). This XML document is an atomic data record that can be transmitted (typically the
transmission protocol is HTTP) so it is a message.

www.EBooksWorld.ir



Here is an example of a SOAP message from the SOAP spec that shows an envelope containing a

header and a body:

<SOAP-ENV:Envelope
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=""http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Header>
<t:Transaction
xmIns:t="some-URI"
SOAP-ENV:mustUnderstand=""1"">
5
</t:Transaction>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<m:GetlLastTradePrice xmIns:m="Some-URI">
<symbo I >DEF</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP also demonstrates the recurssive nature of messages, because a SOAP message can be
transmitted via a messaging system, which means that a messaging system message (such as
Jjavax_jms.Message or System.Messaging.Message) contains the SOAP message (the XML
SOAP-ENV:Envelope document). In this scenario, the transport protocol isn't HTTP, it's the
messaging system (which in turn may be using HTTP or some other network protocol to transmit

the data, but the messaging system makes the transmission reliable).

Related patterns: Canonical Data Model, Command Message, Document Message, Event Message,

Message Channel, Message Expiration, Message Sequence, Messaging, Request-Reply

Pipes and Filters

In many enterprise integration scenarios, a single event triggers a sequence of processing steps,
each performing a specific function. For example, let's assume a new order arrives in our
enterprise in the form of a message. One requirement may be that the message is encrypted to
prevent eavesdroppers from spying on a customer's order. A second requirement is that the
messages contain authentication information in the form of a digital certificate to ensure that
orders are placed only by trusted customers. In addition, duplicate messages could be sent from
external parties (remember all the warnings on the popular shopping sites to click the 'Order
Now' button only once?). To avoid duplicate shipments and unhappy customers, we need to
eliminate duplicate messages before subsequent order processing steps are initiated. To meet
these requirements, we need to transform a stream of possibly duplicated, encrypted messages
containing extra authentication data into a stream of unique, simple plain-text order messages

without the extraneous data fields.

www.EBooksWorld.ir



How can we perform complex processing on a message while maintaining independence and
flexibility?

One possible solution would be to write a comprehensive 'incoming message massaging module'
that performs all the necessary functions. However, such an approach would be inflexible and
difficult to test. What if we need to add a step or remove one? For example, what if orders can be
placed by large customers who are on a private network and do not require encryption?

Implementing all functions inside a single component also reduces opportunities for reuse.
Creating smaller, well-defined components allows us to reuse them in other processes. For
example, order status messages may be encrypted but do not need to be de-duped because
duplicate status requests are generally not harmful. Separating the decryption function into a
separate modules allows us to reuse the decryption function for other messages.

Integration solutions are typically a collection of heterogeneous systems. As a result, different
processing steps may need to execute on different physical machines, for example because
individual processing steps can only execute on a specific systems. For example, it is possible that
the private key required to decrypt incoming messages is only available on a designated machine
and cannot be accessed from any other machine for security reasons. This means that the
decryption component has to execute on this designated machine while the other steps may
execute on other machines. Likewise, different processing steps may be implemented using
different programming languages or technologies that prevent them from running inside the
same process or even on the same computer.

Implementing each function in a separate component can still introduce dependencies between
components. For example, if the decryption component calls the authentication component with
the results of the decryption, we cannot use the decryption function without the authentication
function. We could resolve these dependencies if we could 'compose' existing components into a
sequence of processing steps in such a way that each component is independent from the other
components in the system. This would imply that components expose generic external interfaces
so that they are interchangeable.

If we use asynchronous messaging we should take advantage of the asynchronous aspects of
sending messages from one component to another. For example, a component can send a
message to another component for further processing without waiting for the results. Using this
technique, we could process multiple messages in parallel, on inside each component.

Use the Pipes and Filters architectural style to divide a larger processing task into a sequence
of smaller, independent processing steps (Filters) that are connected by channels (Pipes).

Pige: Pipe
De-Dup t@

Incoming Fitter Fitter Fitter ‘Clean’
Cirder Ciriler

Pipe Pigre

—#| [Decrypt Authenticate

www.EBooksWorld.ir



Each filter exposes a very simple interface: it receives messages on the inbound pipe, processes
the message, and publishes the results to the outbound pipe. The pipe connects one filter to the
next, sending output messages from one filter to the next. Because all component use the same
external interface they can be composed into different solutions by connecting the components to
different pipes. We can add new filters, omit existing ones or rearrange them into a new sequence
-- all without having to change the filters themselves. The connection between filter and pipe is
sometimes called port. In the basic form, each filter component has one input port and one output
port.

When applied to our example problem, the Pipes and Filters architecture results in three filters,
connected by two pipes (see picture). We need one additional pipe to send messages to the
decryption component and one to send the clear-text order messages from the de-duper to the
order management system. This makes for a total of four pipes.

Pipes and Filters describe a fundamental architectural style for messaging systems: individual
processing steps ("filters") are chained together through the messaging channels ("pipes"). Many
patterns in this and the following sections, e.g. routing and transformation patterns, are based on
this Pipes and Filters architectural style. This allows us to easily combine individual patterns into
larger solutions.

The Pipes and Filters style uses abstract pipes to decouple components from each other. The pipe
allows one component to send a message into the pipe so that it can be consumed later by
another process that is unknown to the component. The obvious implementation for such a pipe
is the Message Channel we just described at the beginning of this chapter. Most Message Channels

provide language, platform and location independence between the filters. This affords us the
flexibility to move a processing step to a different machine for dependency, maintenance or
performance reasons. However, a Message Channel provided by a messaging infrastructure can be

quite heavyweight if all components can in fact reside on the same machine. Using a simple
in-memory queue to implement the pipes would be much more efficient. Therefore, it is useful to
design the components so that they communicate with an abstract pipe interface. The
implementation of that interface can then be swapped out to use a Message Channel or an

alternative implementation such as an in-memory queue. The Messaging Gateway describes how
to design components for this flexibility.

One of the potential downsides of a Pipes and Filters architecture is the larger number of required
channels. First, channels may not be an unlimited resource as channels provide buffering and
other functions that consume memory and CPU cycles. Also, publishing a message to a channel
involves a certain amount of overhead because the data has to be translated from the
application-internal format into the messaging infrastructure's own format. At the receiving end
this process has to be reversed. If we are using a long chain of filters, we are paying for the gain
in flexibility with potentially lower performance due to repeated message data conversion.

The pure form of Pipes and Filters allows each filter to have only a single input port and a single

output port. When dealing with Messaging we can relax this property somewhat. A component
may consume messages off more than one channel and also output messages to more than one

www.EBooksWorld.ir



channel (for example, a Message Router). Likewise, multiple filter components can consume
messages off a single Message Channel. A Point-to-Point Channel ensures that only one filter

Component consumes each message.

Using Pipes and Filters also improves testability, an often overlooked benefit. We can test each
individual processing steps by passing a Test Message to the component and comparing the
results to the expected outcome. It is more efficient to test and debug each core function in
isolation because we can tailor the test mechanism to the specific function. For example, to test
the encryption / decryption function we can pass in a large number of messages containing
random data. After we encrypt and decrypt each message we compare it with the original. On
the other hand, to test authentication, we need to supply messages with specific authentication
codes that match known users in the system.

Pipeline Processing

Connecting components with asynchronous Message Channels allows each unit in the chain to

operate in its own thread or its own process. When a unit has completed processing one message
it can send the message to the output channel and immediately start processing another message.
It does not have to wait for the subsequent components to read and process the message. This
allows multiple messages to be processed concurrently as they pass through the individual stages.
For example, after the first message has been decrypted, it can be passed on to the authentication
component. At the same time, the next message can already be decrypted (see picture). We call
such a configuration a processing pipeline because messages flow through the filters like liquid
flows through a pipe. When compared to strictly sequential processing, a processing pipeline can
significantly increase system throughput.

Mg M=o 2 Msg 3
Sequential Decrypt | | Authent. | [ De-Dup Decrypt | [Authent. | | De-Dup Decrypt | | Authent. | | De-Dup
time
>
Decrypt | | Authent. | | De-Dup M=n 1
Pipeline Decrypt | | Authent. | | De-Dup Msg 2
Decrypt | | Authent. | | De-Dup Msn 3
time
>

Pipeline Processing with Pipes-and-Filters

www.EBooksWorld.ir



Parallel Processing

However, the overall system throughput is limited by the slowest process in the chain. To
improve throughput we can deploy multiple parallel instances of that process to improve
throughput. In this scenario, a Point-to-Point Channel with Competing Consumers is needed to

guarantee that each message on the channel is consumed by exactly one of N available processors.
This allows us to speed up the most time-intensive process and improve overall throughput.
However, this configuration can cause messages to be processed out of order. If the sequence of

messages is critical, we can only run one instance of each component or use a Resequencer.

* tentcate| 1 0e-0u |_. *

Incaming Clean
Onder Cider

For example, if we assume that decrypting a message is much slower than authenticating it, we
can use the above configuration (see picture), running three parallel instances of the decryption
component. Parallelizing filters works best if each filter is stateless, i.e. it returns to the previous
state after a message has been processed. This means that we cannot easily run multiple parallel
de-dup components because the component maintains a history of all messages that it already
received and is therefore not stateless.

History of Pipes-and-Filters

Pipes and Filters architectures are by no means a new concept. The simple elegance of this
architecture combined with the flexibility and high throughput makes it easy to understand the
popularity of Pipes and Filters architectures. The simple semantics also allow formal methods to
be used to describe the architecture.

Kahn described Kahn Process Networks in 1974 as a set of parallel processes that are connected
by unbounded FIFO (First-In, First-Out) channels [Kahn]. [Garlan] contains a good chapter on

different architectural styles, including Pipes and Filters. [Monroe] gives a detailed treatment of
the relationships between architectural styles and design patterns. [PLOPD1] contains Regine
Meunier's "The Pipes and Filters Architecture" which formed the basis for the Pipes and Filters
pattern included in [POSA]. Almost all integration-related implementations of Pipes and Filters
follow the 'Scenario IV' presented in [POSA], using active filters that pull, process and push
independently from and to queuing pipes. The pattern described by Buschmann assumes that
each element undergoes the same processing steps as it is passed from filter to filter. This is
generally not the case in an integration scenario. In many instances, messages have to be routed

www.EBooksWorld.ir



dynamically based on message content or external control. In fact, routing is such a common

occurrence in enterprise integration that it warrants its own patterns, the Message Router.

Pipes and Filters share some similarities with the concept of Communicating Sequential Processes
(CSPs). Introduced by Hoare in 1978 [CSP], CSPs provide a simple model to describe
synchronization problems that occur in parallel processing systems. The basic mechanism
underlying CSPs is the synchronization of two processes via input-output (I/O). I/O occurs
when process A indicates that it is ready to output to process B, and process B states that it is
ready to input from process A. If one of these happens without the other being true, the process is
put on a wait queue until the other process is ready. CSPs are different from integration solutions
in that they are not as loosely coupled, nor do the "pipes" provide any queuing mechanisms.
Nevertheless, we can benefit from the extensive treatment of CSPs in the academic world.

Vocabulary

When discussing Pipes and Filters architectures we need to be cautious with the term filter'. We later define two additional

patterns, the Message Filter and the Content Filter. While both of these are special cases of a generic filter, so are many other
patterns in this pattern language. In other words, a pattern does not have to involve a filtering function (e.g. eliminating fields
or messages) in order to be a filter in the sense of Pipes and Filters. We could have avoided this confusion be renaming the Pipes
and Filters architectural style. However, we felt that Pipes and Filters are such an important and widely discussed concept that
it would be even more confusing if we gave it a new name. We are trying to use the word 'filter' cautiously throughout these
patterns and try to make it clear whether we are talking about a generic filter a la Pipes and Filters or a Message Filter / Content
Filter to filter messages. In places where we felt that there is still room for confusion, we generally termed the generic filter as

‘component’ which is a generic enough (and often enough abused) term that should not get us into trouble.

Example: Simple Filter in C# and MSMQ

The following code snippet shows a generic base class for a filter with one input port and one
output port. The base implementation simply prints the body of the received message and sends
it to the output port. A more interesting filter would subclass the Processor class and override the
ProcessMessage method to perform additional actions on the message, e.g. transform the message
content or route it to different output channels.

You notice that the Processor requires references to an input and output channel in order to be
instantiated. The class is not tied to specific channels nor any other filter. This allows us to
instantiate multiple filters and chain them together in arbitrary configurations.

using System;

using System.Messaging;

namespace PipesAndFilters

{

public class Processor

{

protected MessageQueue inputQueue;

www.EBooksWorld.ir



protected MessageQueue outputQueue;

public Processor (MessageQueue inputQueue, MessageQueue outputQueue)

{
this. inputQueue = inputQueue;

this.outputQueue = outputQueue;

public void Process()

{

inputQueue .ReceiveCompleted += new
ReceiveCompletedEventHandler (OnReceiveCompleted);

inputQueue .BeginReceive();

private void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs

asyncResult)

{

MessageQueue mg = (MessageQueue)source;

Message inputMessage = mq.EndReceive(asyncResult.AsyncResult);

inputMessage.Formatter = new System.Messaging.XmlMessageFormatter(new
String[] {"System.String,mscorlib"});

Message outputMessage = ProcessMessage(inputMessage);

outputQueue.Send(outputMessage) ;

mq.BeginReceive();

protected virtual Message ProcessMessage(Message m)

{

Console_WriteLine("'Received Message: " + m.Body);

return (m);

This implementation is a Event-Driven Consumer. The Process method registers for incoming

messages and instructs the messaging system to invoke the method 0nReceiveCompleted every
time a message arrives. This method extracts the message data from the incoming event object

and calls the virtual method ProcessMessage.

www.EBooksWorld.ir



This simple filter example is not transactional. If an error occurs while processing the message
(before it is sent to the output channel) the message is lost. This is generally not desirable in a

production environment. See Transactional Client for a solution to this problem.

Related patterns: Competing Consumers, Content Filter, Event-Driven Consumer, Message Filter,

Message Channel, Message Router, Messaging, Messaging Gateway, Point-to-Point Channel, Resequencer,

Test Message, Transactional Client

Message Router

Multiple processing steps in a Pipes and Filters chain are connected by Message Channels.

How can you decouple individual processing steps so that messages can be passed to different
filters depending on a set of conditions?

The Pipes and Filters architectural style connects filters directly to one another with fixed pipes.
This makes sense because many applications of the Pipes and Filters pattern (e.g., [POSA]) are
based on a large set of data items, each of which undergoes the same, sequential processing steps.
For example, a compiler will always execute the lexical analysis first, the syntactic analysis
second and the semantic analysis least. Message-based integration solutions, on the other hand,
deal with individual messages which are not necessarily associated with a single, larger data set.

As a result, individual messages are more likely to require a different series of processing steps.

A Message Channel decouples the sender and the receiver of a Message. This means that multiple

applications can publish Messages to a Message Channel. As a result, a message channel can

contain messages from different sources that may have to be treated differently based on the type
of the message or other criteria. You could create a separate Message Channel for each message

type (a concept explained in more detail later as a Datatype Channel) and connect each channel to

the required processing steps for that message type. However, this would require the message
originators to be aware of the selection criteria for different processing steps, so that they can
publish the message to the correct channel. It could also lead to an explosion of the number of

Message Channels. Also, the decision on which steps the message undergoes may not just depend

on the origin of the message. For example, we could imagine a situation where the destination of
a message changes by the number of messages that have passed through the channel so far. No
single originator would know this number and would therefore be unable to send the message to
the correct channel.

Message Channels provide a very basic form of routing capabilities. An application publishes a

Message to a Message Channel and has no further knowledge of that Message's destination.

Therefore, the path of the Message can change depending on which component subscribes to the
Message Channel. However, this type of 'routing' does not take into account the properties of

individual messages. Once a components subscribes to a Message Channel it will by default
consume all messages from that channel regardless of the individual messages' specific
properties. This behavior is similar to the use of the pipe symbol in Unix. It allows you to

www.EBooksWorld.ir



compose processes into a Pipes and Filters chain but for the lifetime of the chain all lines of text
undergo the same steps.

We could solve this problem by making the receiving component itself responsible for
determining whether it should process the message or not. This is problematic, though, because
once the message is consumed and the component determines that it does not want the message
it can't just put the message back on the channel for another component to check out. Some
messaging systems allow receivers to inspect message properties without removing the message
from the channel so that it can decide whether to consume the message or not. However, this is
not a general solution and will also tie the consuming component to a specific type of message
because the logic for message selection is now built right into the component. This would reduce
the potential for reuse of that component and eliminate the composability that is the key strength
of the Pipes and Filters model.

Many of these alternatives assume that we can modify the participating components. In most
integration solutions, however, the building blocks ('components') are large applications which in
most cases cannot be modified at all, for example because they are packaged applications or
legacy applications. This makes it uneconomical or even impossible to adjust the message
producing or consuming applications to the needs of the messaging system or other applications.

An advantage of the Pipes and Filters is the composability of the individual components. It allows
us to insert additional steps into the chain without having to change existing components. This
opens up the option of decoupling two filters by inserting another filter in between that
determines what step to execute next.

Insert a special filter, a Message Router, which consumes a Message from one Message Channel

and republishes it to a different Message Channel channel depending on a set of conditions.

outCiELE 1
InzLeue t@

t%——=a—»

out e e 2

|

Messzage
Fouter

The Message Router differs from the most basic notion of Pipes and Filters in that it connects to
multiple output channels. Thanks to the Pipes and Filters architecture the components
surrounding the Message Router are completely unaware of the existence of a Message Router. A
key property of the Message Router is that it does not modify the message contents. It only
concerns itself with the destination of the message.

The key benefit of using a Message Router is that the decision criteria for the destination of a
message are maintained in a single location. If new message types are defined, new processing
components are added, or the routing rules change, we need to change only the Message Router

www.EBooksWorld.ir



logic and all other components remain unaffected. Also, since all messages pass through a single
Message Router, incoming messages are guaranteed to be processed one-by-one in the correct

order.

While the intent of a Message Router is to decouple filters, using a Message Router can actually
cause the opposite effect. The Message Router needs to have knowledge of all possible message
destinations in order to send the message to the correct channel. In some situations, the list of
possible destinations may change frequently and turn the Message Router into a maintenance
bottleneck. In those cases, it would be better to let the individual recipients decide which
messages they are interested in. You can accomplish this by using a Publish-Subscribe Channel and

an array of Message Filters. We contrast these two alternatives by calling them predictive routing
and reactive filtering (for more detail see Message Filter).

Because a Message Router requires the insertion of an additional processing step it can degrade
performance. Many message-based systems have to decode the message from one channel before
it can be placed on another channel, which causes computational overhead if the message itself
does not really change. This overhead can turn a Message Router, into a performance bottleneck.
By using multiple routers in parallel or adding additional hardware, this effect can be minimized.
As a result, the message throughput (number of messages processed per time unit) may not be
impacted, but the latency (time for one message to travel through the system) will almost

certainly increase.

Deliberate use of Message Routers can turn the advantage of loose coupling into a disadvantage.
Loosely coupled systems can make it difficult to understand the "big picture" of the solution, i.e.
the overall flow of messages through the system. This is a common problem with messaging
solutions and the use of routers can exacerbate the problem. If everything is loosely coupled to
everything else it becomes impossible to understand which way messages actually flow. This can
complicate testing and debugging and maintenance. A number of tools can help alleviate this
problem. First, we can use the Message History to inspect messages at runtime and see which
components they traversed. Alternatively, we can compile a list of all channels that each
component in the system subscribes or publishes to. With this knowledge we can draw a graph of
all possible message flows across components. Many EAI packages maintain channel

subscription information in a central repository, making this type of static analysis easier.

Message Router Variants

A Message Router can use any number of criteria to determine the output channel for an incoming
message. The most trivial case is a fixed router. In this case, only a single input channel and a
single output channel are defined. The fixed router consumes one message off the input channel
and publishes it to the output channel. Why would we ever use such a brainless router? A fixed
router may be useful to intentionally decouple subsystems. Or we may be relaying messages
between multiple integration solutions. In most cases, a fixed router will be combined with a
Message Translator or a Channel Adapter to transform the message content or send the message

over a different channel type.

www.EBooksWorld.ir



Many Message Routers decide the message destination only on properties of the message itself, for
example the message type or the values of specific message fields. We call such a router a
Content-Based Router. This type of router is so common that the Content-Based Router pattern

describes it in more detail.

Other Message Routers decide the message's destination based on environment conditions. We call
these routers Context-Based Routers. Such routers are commonly used to perform load balancing,
test or failover functionality. For example, if a processing component fails, the Context-Based
Router can re-route message to another processing component and thus provide fail-over
capability. Other routers split messages evenly across multiple channels to achieve parallel
processing similar to a load balancer. A Message Channel already provides basic load balancing

capabilities without the use of a Message Router because multiple competing consumers can each
consume messages off the same channel as fast as they can. However, a Message Router can have
additional built-in intelligence to route the messages as opposed to a simple round-robin

implemented by the channel.

Many Message Routers are stateless, i.e. they only look at one message at a time to make the
routing decision. Other routers take the content of previous messages into account when making
a routing decision. For example, we can envision a router that eliminates duplicate messages by
keeping a list of all messages it already received. These routers are stateful.

Most Message Routers contain hard-coded logic for the routing decision. However, some variants
connect to a Control Bus so that the middleware solution can change the decision criteria without
having to make any code changes or interrupting the flow of messages. For example, the Control
Bus can propagate the value of a global variable to all Message Routers in the system. This can be
very useful for testing to allow the messaging system to switch from 'test' to "‘production’' mode.
The Dynamic Router configures itself dynamically based on control messages from each potential

recipient.

Chapter Introduction to Message Routing introduces further variants of the Message Router.

Example: Commercial EAI Tools

The notion of a Message Router is central to the concept of a Message Broker, implemented in
virtually all commercial EAI tools. These tools accept incoming messages, validate them,
transform them and route them to the correct destination. This architecture alleviates the
participating applications from having to be aware of other applications altogether because the
message broker brokers between the applications. This is a key function in EAI because most
applications to be connected are packaged or legacy applications and the integration has to
happen non-intrusively, i.e. without changing the application code. This requires the middleware
to incorporate all routing logic so the applications do not have to. The Message Broker is the

integration equivalent of a Mediator presented in [GoF].

www.EBooksWorld.ir



Example: Simple Router with C# and MSMQ

This code example demonstrates a very simple router that routes an incoming message to one of
two possible output channels.

class SimpleRouter

{
protected MessageQueue inQueue;
protected MessageQueue outQueuel;

protected MessageQueue outQueue2;

public SimpleRouter(MessageQueue inQueue, MessageQueue outQueuel, MessageQueue
outQueue?)

{
this.inQueue = inQueue;
this.outQueuel = outQueuel;
this.outQueue2 = outQueue2;
inQueue .ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);
inQueue.BeginReceive();
}

private void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

{

MessageQueue mg = (MessageQueue)source;

Message message = mq.EndReceive(asyncResult.AsyncResult);

it (IsConditionFulfilled())
outQueuel.Send(message);
else

outQueue2.Send(message) ;

mqg.BeginReceive();

protected bool toggle = false;

protected bool IsConditionFulfilled

{
toggle = !toggle;

return toggle;

www.EBooksWorld.ir



The code is relatively straightforward. The example implements an event-driven consumer of
messages using C# delegates. The constructor registers the method onMessage as the handler for
messages arriving on the inQueue. This causes the .NET framework to invoke the method
OnMessage for every message that arrives on the inQueue. OnMessage figures out where to route the
message by calling the method IsConditionFulfilled. In this trivial example
IsConditionFulfilled simply toggles between the two channels, dividing the messages evenly
between outQueuel and outQueue2. In order to keep the code to a minimum, this simple router is
not transactional, i.e. if the router crashes after it consumed a message from the input channel
and before it published it to the output channel, we would lose a message. Later chapters will
explain how to make endpoints transactional (see Transactional Client).

Related patterns: Channel Adapter, Content-Based Router, Control Bus, Datatype Channel, Dynamic

Router, Message Filter, Message, Message Channel, Message History, Introduction to Message Routing,

Message Translator, Pipes and Filters, Publish-Subscribe Channel, Transactional Client

Message Translator

The previous patterns describe how to construct messages and how to route them to the correct
destination. In many cases, enterprise integration solutions route messages between existing
applications such as legacy systems, packaged applications, homegrown custom applications, or
applications operated by external partners. Each of these applications is usually built around a
proprietary data model. Each application may have a slightly different notion of the Customer
entity , the attributes that define a Customer and which other entities a Customer is related to. For
example, the accounting system may be more interested in the customer's tax payer ID numbers
while the customer-relationship management (CRM) system stores phone numbers and
addresses. The application’s underlying data model usually drives the design of the physical
database schema, an interface file format or a programming interface (API) -- those entities that
an integration solution has to interface with. As a result, the applications expect to receive
messages that mimic the application's internal data format.

In addition to the proprietary data models and data formats incorporated in the various
applications, integration solutions often times interact with standardized data formats that seek
to be independent from specific applications. There are a number of consortia and standards
bodies that define these protocols, such as RosettaNet, eb XML, OAGIS and many other, industry
specific consortia. In many cases, the integration solution needs to be able to communicate with
external parties using the “official” data formats while the internal systems are based on
proprietary formats.

How can systems using different data formats communicate with each other using messaging?

We could avoid having to transform messages if we could modify all applications to use a
common data format. This turns out to be difficult for a number of reasons (see Shared Database).

First, changing an application’s data format is risky, difficult, and requires a lot of changes to
inherent business functionality. For most legacy applications, data format changes are simply not

www.EBooksWorld.ir



economically feasible. We may all remember the effort related to the Y2K retrofits where the

scope of the change was limited to the size of a single field!

Also, while we may get multiple applications to use the same data field names and maybe even
the same data types, the physical representation may still be quite different. One application may
use XML documents, while the other application uses COBOL copybooks.

Furthermore, if we adjust the data format of one application to match that of another application
we are tying the two applications more tightly to each other. One of the key architectural
principles in enterprise integration is loose coupling between applications (see Canonical Data
Model). Modifying one application to match another application's data format would violate this
principle because it makes two applications directly dependent on each other's internal
representation. This eliminates the possibility of replacing or changing one application without
affecting the other application, a scenario that is fairly common in enterprise integration.

We could incorporate the data format translation directly into the Message Endpoint. This way, all

applications would publish and consume messages in a common format as opposed to the
application internal data format. However, this approach requires access to the endpoint code,
which is usually not the case for packaged applications. In addition, hard-coding the format

translation to the endpoint would reduce the opportunities for code reuse.

Use a special filter, a Message Translator, between other filters or applications to translate one
data format into another.

Translator

— > - B

Incaming Message Translated Message

The Message Translator is the messaging equivalent of the Adapter pattern described in [GoF]. An
adapter converts the interface of a component into a another interface so it can be used in a
different context.

Levels of Transformation

Message translation may need to occur at a number of different levels. For example, data
elements may share the same name and data types, but may be used in different representations
(e.g. XML file vs. comma-separated values vs. fixed-length fields). Or, all data elements may be
represented in XML format, but use different tag names. To summarize the different kinds of
translation, we can divide it into multiple layers (loosely borrowing from the OSI Reference
Model model):

www.EBooksWorld.ir



Layer Deals With Transformation Needs (Example) | Tools / Techniques

Data Structures |Entities, associations, cardinality Condense many-to-many relationship |Structural ~ Mapping

(Application into aggregation. Patterns

Layer) Custom code

Data Types Field names, data types, value Convert zip code from numeric to EAI visual
domains, constraints, code values string. transformation editors

Concatenate first name and last name | XSL

fields to single name field. Database lookups
Replace US state name with two Custom code
character code.

Data Data formats (XML, name-value Parse data representation and render XML Parsers, EAI
Representation |pairs, fixed-length data fields etc.,|in a different format. Decrypt/ parser / renderer tools

EAI vendor formats) encrypt as necessary. Custom APIs
Character sets (ASCII, UniCode,
EBCDIC)
Encryption / compression

Transport Communications  Protocols: TCP/IP | Move data across protocols without Channel Adapter
sockets, http, SOAP, JMS, TIBCO |affecting message content. EAI adapters
Rendez\Vous

The Transport Layer at the bottom of the “stack” provides data transfer between the different
systems. It is responsible for complete and reliable data transfer across different network
segments and deals with lost data packets and other network errors. Some EAI vendors provide
their own transport protocols (e.g. TIBCO RendezVous) while other integration technologies
leverage TCP/IP protocols (e.g. SOAP). Translation between different transport layers can be
provided by the Channel Adapter pattern.

The Data Representation layer is also referred to as the “syntax layer”. This layer defines the
representation of data that is transported. This translation is necessary because the Transport
Layer can only transport character or byte streams. This means that complex data structures have
to be converted into a character string. Common formats include XML, fixed-length fields (e.g.
EDI records) or proprietary formats. In many cases, data is also compressed or encrypted, carries
check digits or digital certificates. In order to interface systems with different data
representations, data may have to be decrypted, uncompressed and parsed, then the new data
format rendered, and possibly compressed and encrypted as well.

The Data Types layer defines the application data types that the application (domain) model is
based on. Here we deal with decisions whether date fields are represented as strings or as native
date structures, whether dates carry a time-of-day component, which time zone they are based on,
etc. We may also consider whether the field Postal Code denotes only a US ZIP code or can contain
Canadian postal codes. In case of a US ZIP code, do we include a ZIP+4; is it mandatory? Is it
stored in one field or two? Many of these questions are usually addressed in so-called Data
Dictionaries. The issues related to Data Types go beyond whether a field is of type string or integer.

www.EBooksWorld.ir



Consider sales data that is organized by region. The application used by one department may
divide the country into 4 regions: Western, Central, Southern and Eastern, identified by the
letters 'W”,‘C’,’S” and ‘E’. Another department may differentiate the Pacific Region from the
Mountain Region and distinguishes the Northeast from the Southeast. Each region is identifies by
a unique two-digit number. What number does the letter ‘E” correspond to?

The Data Structures describes the data at the level of the application domain model. It is therefore
also referred to as the Application Layer. This layer defines the logical entities that the
application deals with, such as Customer, Address or Account. It also defines the relationships
between these entities: Can one customer have multiple accounts? Can a customer have multiple
addresses? Can customers share and address? Can multiple customers share an account? Is the
address part of the account or the customer? This is the domain of entity-relationship diagrams

and class diagrams.

Levels of Decoupling

Many of the design trade-offs in integration are driven by the need to decouple components or
applications. Decoupling is an essential tool to enable the management of change. Integration
typically connects existing applications and has to accommodate changes to these applications.
Message Channels decouple applications from having to know each other's location. A Message

Router can even decouple applications from having to agree on a common Message Router.
However, this form of decoupling only achieves limited independence between applications if
they depend on each other's data formats. A Message Translator can help remove this level of

dependency.

Chaining Transformations

Many business scenarios require transformations at more than one layer. For example, let's
assume an EDI 850 Purchase Order record represented as a fixed-format file has to be translated
to an XML document sent over http to the order management system which uses a different
definition of the Order object. The required transformation spans all four levels: the transport
changes from a file to HTTP, the data format changes from fixed-format to XML, data types and
data formats have to be converted to comply with the Order object defined by the order
management system. The beauty of a layered model is that we can treat one layer without regard
to the lower layers and therefore can choose to work at different levels of abstraction.

Correspondingly, we can talk about transformation at each layer of abstraction (see picture).

www.EBooksWorld.ir



Application A Application B

Data Structures I Data Structures I

v T

Data Types I Data Types I

Data Representation I Data Representation I
¥ d
Transpont : » Transport I

Chaining multiple Message Translator units using Pipes and Filters results in the following
architecture (see picture). Creating one Message Translator for each layer allows us to reuse these
components in other scenarios. For example, the Channel Adapter and the EDI-to-XML Message

Translator can be generic enough to deal with any incoming EDI document.

ECI Partner Crder Management
EDIBS0 |—» |—r bl B 1= ol | B e
Channel Adapter EDI-to- AL B50-ta-Purchaselrder

This approach also makes individual layers interchangeable. You could use the same structural
transformation mechanisms, but instead of converting the data representation into a fixed format
you could convert it into a comma-separated file by swapping out the data representation
transformation.

There are many specializations and variations of the Message Translator pattern. A Content
Enricher augments the information inside a message while the Content Filter removes information.
The Claim Check removes information but stores it for later retrieval. The Normalizer can convert a
number of different message formats into a consistent format. Lastly, the Canonical Data Model

shows how to leverage multiple Message Translators to achieve data format decoupling. Inside
each of those patterns, complex structural transformations can occur (e.g. mapping a
many-to-many relationship into a one-to-one relationship). The Messaging Bridge performs a

translation of the transport layer by connecting multiple messaging systems to each other.

Example: Structural Transformation with XSL

Transformation is such a common need that the W3C defined a standard language for the
transformation of XML documents, the Extensible Stylesheet Language (XSL). Part of XSL is the
XSL Transformation (XSLT) language, a rules-based language that translates one XML document
into a different format. Since this is a book on integration and not on XSLT, we just show a simple
example (for all the gory detail see the spec [XSLT 1.0] or to learn by reviewing code examples

www.EBooksWorld.ir



see [Tennison]). In order to keep things simple, we explain the required transformation by

showing example XML documents as opposed to XML schemas.

For example, let's assume we have an incoming XML document and need to pass it to the
accounting system. If both systems use XML, the Data Representation layer is identical and we
need to cover any differences in field names, data types and structure. Let's assume the incoming
document looks like this:

<data>
<customer>
<firstname>Joe</firstname>
<lastname>Doe</lastname>
<address type="primary'>
<ref 1d="55355"/>
</address>
<address type="secondary'>
<ref 1d="77889"/>
</address>
</customer>
<address 1d="55355">
<street>123 Main</street>
<city>San Francisco</city>
<state>CA</state>
<postalcode>94123</postalcode>
<country>USA</country>
<phone type="cell'>
<area>415</area>
<prefix>555</prefix>
<number>1234</number>
</phone>
<phone type="home">
<area>415</area>
<prefix>555</prefix>
<number>5678</number>
</phone>
</address>
<address 1d="77889">
<company>ThoughtWorks</company>
<street>410 Townsend</street>
<city>San Francisco</city>
<state>CA</state>
<postalcode>94107</postalcode>
<country>USA</country>
</address>
</data>

www.EBooksWorld.ir



This XML document contains customer data. Each customer can be associated with multiple
addresses, each of which can contain multiple phone numbers. The XML represents addresses as
independent entities so that multiple customers could share an address.

Let's assume the accounting system needs the following representation. If you think that the
German tag names are bit far fetched, keep in mind that one of the most popular pieces of
enterprise software is famous for its German field names!

<Kunde>
<Name>Joe Doe</Name>
<Adresse>
<Strasse>123 Main</Strasse>
<Ort>San Francisco</0rt>
<Telefon>415-555-1234</Telefon>
</Adresse>

</Kunde>

The resulting document has a much simpler structure. Tag names are different and some fields
are merged into a single field. Since there is room for only one address and phone numbers, we
need to pick one from the original document based on business rules. The following XSLT
program transforms the original document into the desired format. It does so by matching
elements of the incoming document and translating them into the desired document format.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:key name="addrlookup" match="/data/address" use="@id"/>
<xsl:template match="data'>
<xsl:apply-templates select="customer"/>
</xsl:template>
<xsl:template match="'customer'>
<Kunde>
<Name>
<xsl:value-of select="concat(firstname, " ", lastname)"/>
</Name>
<Adresse>
<xsl:variable name="id" select="_./address[@type="primary"]/ref/@id"/>
<xsl:call-template name="getaddr'>
<xsl:with-param name="addr" select="key("addrlookup®, $id)"/>
</xsl:call-template>
</Adresse>
</Kunde>
</xsl:template>
<xsl:template name="'getaddr'>
<xsl:param name="addr"/>

<Strasse>

www.EBooksWorld.ir



<xsl:value-of select="$addr/street"/>
</Strasse>
<0rt>
<xsl:value-of select="$addr/city"/>
</0rt>
<Telefon>
<xsl:choose>
<xsl:when test="$addr/phone[@type="cell"]">
<xsl:apply-templates select="$addr/phone[@type="cell"]"
mode="‘getphone"/>
</xsl :when>
<xsl:otherwise>
<xsl:apply-templates select="$addr/phone[@type="home"]"
mode="‘getphone"/>
</xsl:otherwise>
</xsl:choose>
</Telefon>
</xsl:template>
<xsl:template match="phone’" mode="getphone'>
<xsl:value-of select="concat(area, "-", prefix, -, number)"/>
</xsl:template>
<xsl:template match="*"/>

</xsl:stylesheet>

XSL is based on pattern matching and can be a bit hairy to read if you are used to procedural
programming like most of us. In a nutshell, the <xsl:template> are called whenever an element in
the incoming XML document matches the expression specified in the match attribute. For

example, the line

<xsl:template match="‘customer">

causes the subsequent lines to be executed for each <customer> element in the source document.
The next statements concatenate first and last name and output it inside the <Name> element.
Getting the address is a little trickier. The XSL code looks up the correct instance of the <address>
element and calls the "subroutine" getaddr. getaddr extracts the address and phone number from
the original <address> element. It uses the cell cell phone number if one is present and the home

phone number otherwise.

Example: Visual Transformation Tools

If you find XSL programming a bit cryptic, you are in good company. Therefore, most integration
vendors provide visual transformation editors that displays the structure of the two document
formats on the left-hand side and right-hand side of the screen, respectively. The users can then
drag and drop between the two sides to associate elements between the formats. This can be a lot

www.EBooksWorld.ir



simpler than coding XSL. Some vendors specialize entirely in transformation tools, for example
Contivo, Inc..

The following screen shots shows the Microsoft BizTalk Mapper editor that is integrated into
Visual Studio. The diagram shows the mapping between individual elements more clearly than

the XSL script. On the other hand, some of the details (e.g., how the address is chosen) are hidden
underneath the functoid icons.

#0MessageTranslatorBizTalk - Microsoft BizTalk Server 2004 [design] = E O] x|
File Edit Wiew Project Build Debug BizTalk Tools Window Help
== =] Development = | #4 startTime - BE T B .
Start Page | kundeSchema, xsd | Cuskormerschema. xsd | Cuskarmer.xml  Customer2Kunde.btm | 4k X
§ (=) <Schema> <Schemas Ii_,.|§|
- =] dats e T e R e — [ & o
Z B2 customer ————— it M arme @_}
& - ] —Adiesse &
—_— —Slhrasze &}
- — &
- - Telefon
_ 3 &

E--@ <Sequences

EH% address ———— \\
iy ] Wiy 2
}% street Il

- 1 * 1L
]l% Cit_lrl—

1_‘1 postalcode

{“_‘] coumtry

H--JE] {Sequencer b 30
E‘@ phnne =l o o

Tﬁ [type]——

{% prefix e
28 number

3

] 4] ] Page 1

| Ready | |

Creating Transformations the Drag-Drop Style

Being able to drag and drop transformations shortens the learning curve for developing a
Message Translator dramatically.As so often though, visual tools can also become a liability when

it comes to debugging or when you need to create complex solutions. Therefore, many tools let
you switch back and forth between XSL and the visual tool.

Related patterns: Canonical Data Model, Channel Adapter, Content Filter, Content Enricher, Message

Channel, Message Endpoint, Message Router, Message Translator, Messaging Bridge, Normalizer, Pipes
and Filters, Shared Database, Claim Check

www.EBooksWorld.ir



Message Endpoint

Applications are communicating by sending Messages to each other via Message Channels.

How does an application connect to a messaging channel to send and receive messages?

The application and the messaging system are two separate sets of software. The application
provides functionally for some type of user, whereas the messaging system manages messaging
channels for transmitting messages for communication. Even if the messaging system is
incorporated as a fundamental part of the application, it is still a separate, specialized provider of
functionality much like a database management system or a web server. Because the application

and the messaging system are separate, they must have a way to connect and work together.

Data
sender hessange Channel Feceiver
Apphcation Application

Applications disconnected from a message channel

A messaging system is a type of server, capable of taking requests and responding to them. Like
a database accepting and retrieving data, a messaging server accepts and delivers messages. A

messaging system is a messaging server.

A server needs clients, and an application that uses messaging is a client of the messaging server.
But applications do not necessarily know how to be messaging clients, any more than they know
how to be database clients. The messaging server, like a database server, has a client API that the
application can use to interact with the server. The API is not application-specific; it is
domain-specific, where messaging is the domain.

The application must contain a set of code that connects and unites the messaging domain with
the application to allow the application to perform messaging.

Connect an application to a messaging channel using a Message Endpoint, a client of the

messaging system that the application can then use to send or receive messages.

O A%

Data Data
Message Message
Endpoint hMessaye Channel Endpoint
Sender Feceiver
Application Application

www.EBooksWorld.ir



Message Endpoint code is custom to both the application and the messaging system’s client APL
The rest of the application knows little about message formats, messaging channels, or any of the
other details of communicating with other applications via messaging. It just knows that it has a
request or piece of data to send to another application, or is expecting those from another
application. It is the messaging endpoint code that takes that command or data, makes it into a
message, and sends it on a particular messaging channel. It is the endpoint that receives a
message, extracts the contents, and gives them to the application in a meaningful way.

The Message Endpoint encapsulates the messaging system from the rest of the application, and
customizes a general messaging API for a specific application and task. If an application using a
particular messaging API were to switch to another, developers would have to rewrite the
message endpoint code, but the rest of the application should remain the same. If a new version
of a messaging system changes the messaging API, this should only affect the message endpoint
code. If the application decides to communicate with others via some means other than
messaging, developers should ideally be able to rewrite the message endpoint code as something
else, but leave the rest of the application unchanged.

A Message Endpoint can be used to send messages or receive them, but one instance does not do
both. An endpoint is channel-specific, so a single application would use multiple endpoints to
interface with multiple channels. An application may use more than one endpoint to interface to
a single channel, usually to support multiple concurrent threads.

A Message Endpoint is a specialized Channel Adapter, one that has been custom developed for and

integrated into its application.

A Message Endpoint should be designed as a Messaging Gateway to encapsulate the messaging

code and hide the message system from the rest of the application. It can employ a Messaging
Mapper to transfer data between domain objects and messages. It can be structured as a Service
Activator to provide asynchronous message access to a synchronous service or function call. An
endpoint can explicitly control transactions with the messaging system as a Transactional Client.

Sending messages is pretty easy, so many endpoint patterns concern different approaches for
receiving messages. A message receiver can be a Polling Consumer or an Event-Driven Consumer.

Multiple consumers can receive messages from the same channel either as Competing Consumers

or via a Message Dispatcher. It can decide which messages to consume or ignore using a Selective

Consumer . It can use a Durable Subscriber to make sure a subscriber does not miss messages
published while the endpoint is disconnected. And the consumer can be an Idempotent Receiver

that correctly detects and handles duplicate messages.

Example: JMS Producer and Consumer

In JMS, the two main endpoint types are MessageProducer, for sending messages, and
MessageConsumer, for receiving messages. A Message Endpoint uses an instance of one of these
types to either send or receive messages to/from a particular channel.

www.EBooksWorld.ir



Example: .NET MessageQueue

In .NET, the main endpoint class is the same as the main Message Channel class, MessageQueue. A

Message Endpoint uses an instance of MessageQueue to send or receive messages to/from a

particular channel.

Related patterns: Channel Adapter, Competing Consumers, Durable Subscriber, Event-Driven
Consumer, Idempotent Receiver, Message, Message Channel, Message Dispatcher, Selective Consumetr,
Service Activator, Messaging Gateway, Messaging Mapper, Polling Consumer, Transactional Client

www.EBooksWorld.ir



4. Messaging Channels

Introduction

In Introduction to Messaging Systems, we discussed Message Channel. When two applications wish

to exchange data, they do so by sending the data through a channel that connects the two. The
application sending the data may not know which application will receive the data, but by
selecting a particular channel to send the data on, the sender knows that the receiver will be one
that is looking for that sort of data by looking for it on that channel. In this way, the applications

that produce shared data have a way to communicate with those that wish to consume it.

Message Channel Themes

Deciding to use a Message Channel is the simple part; if an application has data to transmit or data

it wishes to receive, it will have to use a channel. The challenge is knowing what channels your

applications will need and what to use them for.

Fixed set of channels — One theme in this chapter is that the set of Message Channels available to

an application tends to be static. When designing an application, a developer has to know where
to put what types of data to share that data with other applications, and likewise where to look
for what types of data coming from other applications. These paths of communication cannot be
dynamically created and discovered at runtime; they need to be agreed upon at design time so
that the application knows where its data is coming from and where the data is going to. (While
it is true that most channels must be staticly defined, there are exceptions to this theme, cases
where dynamic channels are practical and useful. One exception is the reply channel in
Request-Reply. The requestor can create or obtain a new channel the replier knows nothing about,
specify it as the Return Address of a request message, and then the replier can make use of it.
Another exception is messaging system implementations that support hierarchical channels. A
receiver can subscribe to a parent in the hierarchy, then a sender can publish to a new child
channel the receiver knows nothing about, and the subscriber will still receive the message. These
relatively unusual cases notwithstanding, channels are usually defined at deployment-time and

applications are designed around a known set of channels.)

Determining the set of channels — A related issue is: Who decides what Message Channels are

available, the messaging system or the applications? That is to say: Does the messaging system
define certain channels and require the applications to make due with those? Or do the
applications determine what channels they need and require the messaging system to provide
them? There is no simple answer; designing the needed set of channels is iterative. First the
applications determine the channels the messaging system will need to provide. Subsequent
applications will try to design their communication around the channels that are available, but
when this is not practical, they will require that additional channels be added. When a set of

www.EBooksWorld.ir



applications already use a certain set of channels, and new applications wish to join in, they too
will use the existing set of channels. When existing applications add new functionality, they may

require new channels.

Unidirectional channels — Another common source of confusion is whether a Message Channel is

unidirectional or bidirectional. Technically, it’s neither; a channel is more like a bucket that some
applications add data to and other applications take data from (albeit a bucket that is distributed
across multiple computers in some coordinated fashion). But because the data is in messages that
travel from one application to another, that gives the channel direction, making it unidirectional.
If a channel were bidirectional, that would mean that an application would both send messages
to and receive messages from the same channel, which —while technically possible —makes little
sense because the application would tend to keep consuming its own messages, the messages it’s
supposed to be sending to other applications. So for all practical purposes, channels are
unidirectional. As a consequence, for two applications to have a two-way conversation, they will
need two channels, one in each direction (see Request-Reply in the next chapter).

Message Channel Decisions

Now that we understand what Message Channels are, let’s consider the decisions involved in

using them:

One-to-one or one-to-many — When your application shares a piece of data, do you want to
share it with just one other application or with any other application that is interested? To send
the data to a single application, use a Point-to-Point Channel. This does not guarantee that every

piece of data sent on that channel will necessarily go to the same receiver, because the channel
might have multiple receivers; but it does ensure that any one piece of data will only be received
by one of the applications. If you want all of the receiver applications to be able to receive the
data, use a Publish-Subscribe Channel. When you send a piece of data this way, the channel

effectively copies the data for each of the receivers.

What type of data — Any data in any computer memory has to conform to some sort of type: a
known format or expected structure with an agreed upon meaning. Otherwise, all data would
just be a bunch of bytes and there would be no way to make any sense of it. Messaging systems
work much the same way; the message contents must conform to some type so that the receiver

understands the data’s structure. Datatype Channel is the principle that all of the data on a channel
has to be of the same type. This is the main reason why messaging systems need lots of channels;
if the data could be of any type, the messaging system would only need one channel (in each
direction) between any two applications.

Invalid and dead messages — The message system can ensure that a message is delivered
properly, but it cannot guarantee that the receiver will know what to do with it. The receiver has
expectations about the data’s type and meaning; when it receives a message that doesn’t meet
these expectations, there’s not much it can do. What it can do, though, is put the strange message
on a specially designated Invalid Message Channel, in hopes that some utility monitoring the

www.EBooksWorld.ir



channel will pick up the message and figure out what to do with it. Many messaging systems
have a similar built-in feature, a Dead Letter Channel for messages which are successfully sent but

ultimately cannot be successfully delivered. Again, hopefully some utility monitoring the channel
will know what to do with the messages that could not be delivered.

Crash proof — If the messaging system crashes or is shut down for maintence, what happens to
its messages? When it is back up and running, will its messages still be in its channels? By default,
no; channels store their messages in memory. However, Guaranteed Delivery makes channels

persistent so that their messages are stored on disk. This hurts performance but makes messaging
more reliable, even when the messaging system isn’t.

Non-messaging clients — What if an application cannot connect to a messaging system but still
wants to participate in messaging? Normally it would be out of luck; but if the messaging system
can connect to the application somehow — through its user interface, its business services AP, its
database, or through a network connection such as TCP/IP or HTTP — then a Channel Adapter on

the messaging system can be used to connect a channel (or set of channels) to the application
without having to modify the application and perhaps without having to have a messaging client
running on the same machine as the application. Sometimes the "non-messaging client" really is a
messaging client, just for a different messaging system. In that case, an application that is a client
on both messaging systems can build a Messaging Bridge between the two, effectively connecting

them into one composite messaging system.

Communications backbone — As more and more of an enterprise’s applications connect to the
messaging system and make their functionality available through messaging, the messaging
system becomes a centeralized point of one-stop-shopping for functionality in the enterprise. A
new application simply needs to know which channels to use to request functionality and which
others to listen on for the results. The messaging system itself essentially becomes a Message Bus,
a backbone providing access to all of the enterprise’s various and ever-changing applications and
functionality. You can achieve this integration nirvana more quickly and easily by specifically
designing for it from the beginning.

So as you can see, getting applications set up for Messaging involves more than just connecting
them to the messaging system so that they can send messages. The messages must have Message
Channels to transmit on. Slapping in some channels doesn’t get the job done either. They have to
be designed with a purpose, based on the data type being shared, the sort of application making
the data available, and the sort of application receiving the data. This chapter will explain the
decisions that go into designing these channels.

To help illustrate the patterns, each one has an example from a ficticious, simplified "stock
trading" domain. While none of these examples should be used as the basis for implementing a
real trading system, they do serve as quick and specific examples of how the patterns can be
used.

www.EBooksWorld.ir



Point-to-Point Channel

An application is using Messaging to make remote procedure calls (RPC’s) or transfer documents.

How can the caller be sure that exactly one receiver will receive the document or perform the
call?

One advantage of an RPC is that it's invoked on a single remote process, so either that receiver
performs the procedure or it does not (and an exception occurs). And since the receiver was only
called once, it only performs the procedure once. But with messaging, once a call is packaged as a
Message and placed on a Message Channel, potentially many receivers could see it on the channel

and decide to perform the procedure.

The messaging system could prevent more than one receiver from monitoring a single channel,
but this would unnecessarily limit callers that wish to transmit data to multiple receivers. All of
the receivers on a channel could coordinate to ensure that only one of them actually performs the
procedure, but that would be complex, create a lot of communications overhead, and generally
increase the coupling between otherwise independent receivers. Multiple receivers on a single
channel may be desirable so that multiple messages can be consumed concurrently, but any one
receiver should consume any single message.

Send the message on a Point-to-Point Channel, which ensures that only one receiver will

receive a particular message.

%% % == %%

ender Crder QOrder Order Foint-to-Poin Order Oider Order Feceaiver
#1 # #1 Channel #1 7 #1

A Point-to-Point Channel ensures that only one receiver consumes any given message. If the
channel has multiple receivers, only one of them can successfully consume a particular message.
If multiple receivers try to consume a single message, the channel ensures that only one of them
succeeds, so the receivers do not have to coordinate with each other. The channel can still have
multiple receivers to consume multiple messages concurrently, but only a single receiver

consumes any one message.

When a Point-to-Point Channel only has one consumer, the fact that a message only gets consumed
once is not surprising. When the channel has multiple consumers, then they become Competing
Consumers, and the channel ensures that only one of the consumers receives each message. The

effort to consume messages is highly scalable because that work can be load-balanced across

multiple consumers running in multiple applications on multiple computers.

www.EBooksWorld.ir



Whereas a Point-to-Point Channel sends a message to only one of the available receivers, to send a
message to all available receivers, use a Publish-Subscribe Channel. To implement RPC's using

messaging, use Request-Reply with a pair of Point-to-Point Channels. The call is a Command Message

whereas the reply is a Document Message.

Example: Stock Trading

In a stock trading system, the request to make a particular trade is a message that should be
consumed and performed by exactly one receiver, so the message should be placed on a
Point-to-Point Channel.

Example: JMS Queue

In JMS, a point-to-point channel implements the Queue interface. The sender uses a QueueSender to
send messages; each receiver uses its own QueueReceiver to receive messages. [[MS11, pp.75-78],

[Hapner, p.18]

An application uses a QueueSender to send a message like this:

Queue queue = // obtain the queue via JNDI

QueueConnectionFactory factory = // obtain the connection factory via JNDI
QueueConnection connection = factory.createQueueConnection();

QueueSession session = connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE) ;

QueueSender sender = session.createSender(queue);
Message message = session.createTextMessage(''The contents of the message.');
sender .send(message) ;

An application uses a QueueReceiver to receive a message like this:

Queue queue = // obtain the queue via JNDI

QueueConnectionFactory factory = // obtain the connection factory via JNDI
QueueConnection connection = factory.createQueueConnection();

QueueSession session = connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE) ;

QueueReceiver receiver = session.createReceiver(queue);

TextMessage message = (TextMessage) receiver.receive();

String contents = message.getText();
Note: JMS 1.1 unifies the client API’s for the point-to-point and publish/subscribe domains, so

the code shown here can be simplified to use Destination, ConnectionFactory, Connection,

Session, MessageProducer, and MessageConsumer, rather than their Queue-specific counterparts.

www.EBooksWorld.ir



Example: .NET MessageQueue

In .NET, the MessageQueue class implements a point-to-point channel. [SysMsg] MSMQ, which
implements .NET messaging, only supported point-to-point messaging prior to version 3.0, so
point-to-point is what .NET supports. Whereas JMS seperates the responsibilities of the
connection factory, connection, session, sender, and queue, a MessageQueue does it all.

Send a message on a MessageQueue like this:

MessageQueue queue = new MessageQueue('MyQueue'™);

queue.Send(*'The contents of the message.');

Receive a message on a MessageQueue like this:

MessageQueue queue = new MessageQueue('MyQueue');
Message message = queue.Receive();

String contents = (String) message.Body();

Related patterns: Command Message, Competing Consumers, Document Message, Message, Message

Channel, Messaging, Publish-Subscribe Channel, Request-Reply

Publish-Subscribe Channel

An application is using Messaging to announce events.
How can the sender broadcast an event to all interested receivers?

Luckily, there are well-established patterns for implementing broadcasting. The Observer pattern
[GoF] describes the need to decouple observers from their subject so that the subject can easily
provide event notification to all interested observers no matter how many observers there are
(even none). The Publisher-Subscriber pattern [POSA] expands upon Observer by adding the
notion of an event channel for communicating event notifications.

That’s the theory, but how does it work with messaging? The event can be packaged as a Message
so that messaging will reliably communicate the event to the observers (subscribers). Then the
event channel is a Message Channel. But how will a messaging channel properly communicate the

event to all of the subscribers?

Each subscriber needs to be notified of a particular event once, but should not be notified
repeatedly of the same event. The event cannot be considered consumed until all of the
subscribers have been notified. But once all of the subscribers have been notified, the event can be
considered consumed and should disappear from the channel. Yet having the subscribers
coordinate to determine when a message is consumed violates the decoupling of the Observer

www.EBooksWorld.ir



pattern. Concurrent consumers should not be considered to compete, but should be able to share

the event message.

Send the event on a Publish-Subscribe Channel, which delivers a copy of a particular event to

—%, —

Address Subzenber
Changed

each receiver.

— ¢, a9, —

Fublisher Address Address Subscriber
Changed Changed
e ! S
Publish-Subscribe Address Subscriber
Channel Changed

A Publish-Subscribe Channel works like this: It has one input channel that splits into multiple
output channels, one for each subscriber. When an event is published into the channel, the
Publish-Subscribe Channel delivers a copy of the message to each of the output channels. Each
output channel has only one subscriber, which is only allowed to consume a message once. In
this way, each subscriber only gets the message once and consumed copies disappear from their

channels.

A Publish-Subscribe Channel can be a useful debugging tool. Even though a message is destined to
only a single receiver, using a Publish-Subscribe Channel allows you to eavesdrop on a message
channel without disturbing the existing message flow. Monitoring all traffic on a channel can be
tremendously helpful when debugging messaging applications. It can also save you from
inserting a ton of print statements into each application that participates in the messaging
solution. Creating a program that listens for messages on all active channels and logs them to a
file can realize many of the same benefits that a Message Store brings.

The ability to eavesdrop on a Publish-Subscribe Channel can also turn into a disadvantage. If your
messaging solution transmits payroll data between the payroll system and the accounting system,
you may not want to allow anyone to write a simple program to listen to the message traffic.
Point-to-Point Channels alleviate the problem to some extent because the eavesdropper would

consume the messages and the situation would be detected very quickly. However, some
implementations of message queues implementing peek functions that let consumers look at
messages inside a queue without consuming any of the messages. As a result, subscribing to a

www.EBooksWorld.ir



Message Channel is an operation that should be restricted by security policies. Many (but not all)

commercial messaging implementations implement such restrictions. In addition, creating a

monitoring tool that logs active subscribers to Message Channels can be a useful systems

management tool.

For more details on how to implement Observer using messaging, see JMS Publish/Subscribe

Example.

Wildcard Subscribers

Many messaging systems allow subscribers to Publish-Subscribe Channels to specify special wild card characters. This is a
powerful technique to allow subscribers to subscribe to multiple channels at once. For example, if an application publishes
messages to the channels MyCorp/Prod/OrderProcessing/NewOrders and MyCorp/Prod/OrderProcessing/CancelledOrders an
application could subscribe to MyCorp/Prod/OrderProcessing/* and receive all messages related to order processing. Another
application could subscribe to MyCorp/Dev/** to receive all messages sent by all applications in the development environment.
Only subscribers are allowed to use wildcards, publishers are always required to publish a message to a specific channel. The

specific capabilities and syntax for wildcard subscribers vary between the different messaging vendors.

An Event Message is usually sent on a Publish-Subscribe Channel because multiple dependents are
often interested in an event. A subscriber can be durable or non-durable —see Durable Subscriber.

If notifications should be acknowledged by the subscribers, use Request-Reply, where the
notification is the request and the acknowledgement is the reply.

Example: Stock Trading

In a stock trading system, many systems may need to be notified of the completion of a trade, so
make them all subscribers of a Publish-Subscribe Channel that publishes trade completions.

Example: JMS Topic

In JMS, a Publish-Subscribe Channel implements the Topic interface. The sender uses a
TopicPublisher to send messages; each receiver uses its own TopicSubscriber to receive messages.
[IMS11, pp.79-85], [Hapner, p.18]

An application uses a TopicPublisher to send a message like this:

Topic topic = // obtain the topic via JNDI

TopicConnectionFactory factory = // obtain the connection factory via JNDI
TopicConnection connection = factory.createTopicConnection();

TopicSession session = connection.createTopicSession(true, Session.AUTO_ACKNOWLEDGE) ;

TopicPublisher publisher = session.createPublisher(topic);

Message message = session.createTextMessage(''The contents of the message.');

www.EBooksWorld.ir



publisher._publish(message);

An application uses a TopicSubscriber to receive a message like this:

Topic topic = // obtain the topic via JNDI

TopicConnectionFactory factory = // obtain the connection factory via JNDI
TopicConnection connection = factory.createTopicConnection();

TopicSession session = connection.createTopicSession(true, Session.AUTO_ACKNOWLEDGE) ;

TopicSubscriber subscriber = session.createSubscriber(topic);

TextMessage message = (TextMessage) subscriber.receive();

String contents = message.getText();

Note: JMS 1.1 unifies the client API’s for the point-to-point and publish/subscribe domains, so
the code shown here can be simplified to use Destination, ConnectionFactory, Connection,

Session, MessageProducer, and MessageConsumer, rather than their Topic-specific counterparts.

Example: MSMQ One-to-Many Messaging

A new feature in MSMQ 3.0 [MSMOQO1] is a one-to-many messaging model, which has two different
approaches:

1. Real-Time Messaging Multicast — This most closely matches publish-subscribe, but its implementation is
entirely dependent on IP multicasting via the Pragmatic General Multicast (PGM) protocol.

2. Distribution Lists and Multiple-Element Format Names — A Distribution List enables the sender to
explicitly send a message to a list of receivers (but this violates the spirit of the Observer pattern). A
Multiple-Element Format Name is a symbolic channel specifier that dynamically maps to multiple real channels,
which is more the spirit of the publish-subscribe pattern but still forces the sender to choose between real and
not-so-real channels.

The .NET CLR does not provide direct support for using the one-to-many messaging model.
However, this functionality can be accessed through the COM interface [MDMSG], which can be
embedded in .NET code.

Related patterns: Durable Subscriber, Event Message, Message, Message Channel, Message Store,
Messaging, IMS Publish/Subscribe Example, Point-to-Point Channel, Request-Reply

Datatype Channel

An application is using Messaging to transfer different types of data, such as different types of
documents.

How can the application send a data item such that the receiver will know how to process it?

www.EBooksWorld.ir



All messages are just instances of the same message type, as defined by the messaging system,
and the contents of any message are ultimately just a byte array. While this simple structure--a
bundle of bytes--is specific enough for a messaging system to be able to transmit a message, it is
not specific enough for a receiver to be able to process a message’s contents.

A receiver must know the message content’s data structure and data format. The structure could
be character array, byte array, serialized object, XML document, etc. The format could be the
record structure of the bytes or characters, the class of the serialized object, the DTD of the XML
document, etc. All of this knowledge is loosely referred to as the message’s type, meaning the
structure and format of the message’s contents.

The receiver must know what type of messages it’s receiving, or it doesn’t know how to process
them. For example, a sender may wish to send different objects such as purchase orders, price
quotes, and queries. Yet a receiver will probably take different steps to process each of those, so it
has to know which is which. If the sender simply sends all of these to the receiver via a message
channel, the receiver will not know how to process each one.

R L

Sender Chuery Price  Purchase Channel Receiver
Quote Order

Mixed Data Types

The sender knows what message type it's sending, so how can this be communicated to the
receiver? The sender could put a flag in the message’s header (see Format Indicator), but then the

receiver will need a case statement. The sender could wrap the data in a Command Message with a

different command for each type of data, but that presumes to tell the receiver what to do with
the data when all that the message is trying to do is transmit the data to the receiver.

A similar problem that is completely separate from messaging occurs using non-array collections:
collections can be heterogeneous (each item can be of any object type), but as a practical matter
collections need to be homogeneous (each item should be of the same object type, meaning that
they all implement the same abstract class or interface). Homogeneous collections are much more
useful because an iterator on the collection knows what type each item will be and can
manipulate each item using the methods that type understands.

The same principle applies to messaging because in this context, a channel is like a collection and
a receiver is like an iterator. Although a particular channel doesn’t require that all of its messages
be of the same type, they ought to be so that a receiver on that channel knows what type of
message it’s receiving.

Use a separate Datatype Channel for each data type, so that all data on a particular channel is
of the same type.

www.EBooksWorld.ir



1@ E—
Cluery
Cluery Channe|
t@ —
Frice
Frice Cluate Cluole
Channel
Furchasze
FPurchase Order Cirder
Channel i
Sender Recemwer

By using a separate Datatype Channel for each type of data, all of the messages on a given channel
will contain the same type of data. The sender, knowing what type the data is, will need to select
the appropriate channel to send it on. The receiver, knowing what channel the data was received
on, will know what its type is.

As discussed in Message Channel, channels are cheap but not free. An application may need to

transmit many different data types, too many to create a separate Datatype Channel for each. In
this case, multiple data types can share a single channel by using a different Selective Consumer for

each type. This makes a single channel act like multiple data type channels. Whereas Datatype
Channel explains why all messages on a channel must be of the same format, Canonical Data Model

explains how all messages on all channels in an enterprise should follow a unified data model.

A Message Dispatcher, besides providing concurrent message consumption, can be used to process
a generic set of messages in type-specific ways. Each message must specify its type; the
dispatcher detects the message's type and dispatches it to a type-specific performer for
processing. The messages on the channel are still all of the same type, but that type is the more
general one that the dispatcher supports, not the more specific ones that the various performers
require.

Example: Stock Trading

In a stock trading system, if the format of a quote request is different from that of a trade request,
the system should use a separate Datatype Channel for communicating each kind of request.
Likewise, a change-of-address announcement may have a different format from a
change-of-portfolio-manager announcement, so each kind of announcement should have its own
Datatype Channel.

www.EBooksWorld.ir



Example: Purchasing System

Reconsidering our earlier example, since the sender wants to send three different types of data
(purchase orders, price quotes, and queries), it should use three different channels. When sending
an item, the sender must select the appropriate Datatype Channel for that item. When receiving an
item, the receiver knows the item’s type because of which datatype channel it received the item
on.

Related patterns: Canonical Data Model, Command Message, Format Indicator, Message Channel,

Message Dispatcher, Selective Consumer, Messaging

Invalid Message Channel

An application is using Messaging to receive Messages.
How can a messaging receiver gracefully handle receiving a message that makes no sense?

In theory, everything on a Message Channel is just a message and message receivers just process

messages. However, to process a message, a receiver must be able to interpret its data and
understand its meaning. This is not always possible: the message body may cause parsing errors,
lexical errors, or validation errors. The message header may be missing needed properties, or the
property values may not make sense. A sender might put a perfectly good message on the wrong
channel, transmitting it to the wrong receiver. A malicious sender could purposely send an
incorrect message just to mess-up the receiver. A receiver may not be able to process all messages
it receives, so it needs to have some other way to handle messages it does not consider valid.

A Message Channel is a Datatype Channel, where each of the messages on the channel is supposed

to be of the proper datatype for that channel. If a sender puts a message on the channel that is not
of the proper datatype, the messaging system will transmit the message successfully, but the
receiver will not recognize the message and will not know how to process it.

An example of a message with an improper datatype or format is a byte message on a channel
that is supposed to contain text messages. Another example is a message whose format is not
correct, such as an XML document that is not well-formed, or that is not valid for the
agreed-upon DTD or schema. There's nothing wrong with these messages, as far as the
messaging system is concerned, but the receiver will not be able to process them, so they are
invalid.

Messages that do not contain the header field values that the receiver expects are also invalid. If a
message is supposed to have header properties such as a Correlation Identifier, Message Sequence

identifiers, a Return Address, etc., but the message is missing the properties, then the messaging
system will deliver the message properly but the receiver will not be able to process it
successfully.

www.EBooksWorld.ir



Sender Irewalid Channel Feceiver
hessage

Invalid Message

When the receiver discovers that the message it's trying to process is not valid, what should it do
with the message? It could put the message back on the channel, but then the message will just be
re-consumed by the same receiver or another like it. Meanwhile, invalid messages that are being
ignored will clutter the channel and hurt performance. The receiver could consume the invalid
message and throw it away, but that would tend to hide messaging problems that need to be
detected. What the system needs is a way to clean improper messages out of channels and put
them somewhere out of the way, yet in a place where these invalid messages can be detected to
diagnose problems with the messaging system.

The receiver should move the improper message to an Invalid Message Channel, a special
channel for messages that could not be processed by their receivers.

-0 % Yy {8, b Y -

Sender Messages Channegl Receiver Invalid Irvealid
Message  Message
Chanrnel

When designing a messaging system for applications to use, the administrator will need to define
one or more Invalid Message Channels for the applications to use.

The Invalid Message Channel will not be used for normal, successful communication, so its being
cluttered with improper messages will not cause a problem. An error handler that wants to
diagnose improper messages can use a receiver on the invalid channel to detect messages as they
become available.

A Invalid Message Channel is like an error log for messaging. When something goes wrong in an
application, it's a good idea to log the error. When something goes wrong processing a message,
it's a good idea to put the message on the channel for invalid messages. If it won't be obvious to
anyone browsing the channel why this message is invalid, the application should also log an
error with more details.

Keep in mind that a message is neither inherently valid or invalid--it is the receiver's context and
expectations that make this determination. A message that may be valid for one receiver may be
invalid for another receiver; two such receivers should not share the same channel. A message
that is valid for one receiver on a channel should be valid for all other receivers on that channel;

www.EBooksWorld.ir



likewise, if one receiver considers a message invalid, all other receivers should as well. It is the
sender's responsibility to make sure that a message it sends on a channel will be considered valid
by the channel's receivers; otherwise, the receivers will ignore the sender's messages by rerouting
them to the Invalid Message Channel.

A similar but separate problem is when a message is structured properly, but its contents are
semantically incorrect. For example, a Command Message may instruct the receiver to delete a

database record that does not exist. This is not a messaging error, but an application error. As
such, while it may be tempting to move the message to the Invalid Message Channel, there is
nothing wrong with the message, so treating it as invalid is misleading. Rather, an error like this
should be handled as an invalid application request, not an invalid message.

This differentiation between message-processing errors and application errors becomes simpler
and clearer when the receiver is implemented as a Service Activator or Messaging Gateway. These

patterns separate message-processing code from the rest of the application. If an error occurs
while processing the message, the message is invalid and should be moved to the Invalid Message
Channel. If it occurs while the application processes the data from the message, that is an
application error that has nothing to do with messaging.

An Invalid Message Channel whose contents are ignored is about as useful as an error log that is
ignored. Messages on the Invalid Message Channel indicate application integration problems, so
those messages should not be ignored; rather, they should be analyzed to determine what went
wrong so that the problem can be fixed. Ideally, this would be an automated process that
consumed invalid messages, determined their cuause, and fixed the underlying problems.
However, the cause is often a coding or configuration error which requires a developer or system
analyst to evaluate and repair. At the very least, applications which use messaging and Invalid
Message Channels should have a process that monitors the Invalid Message Channel and alerts

system administrators whenever the channel contains messages.

A similar concept implemented by many messaging systems is a Dead Letter Channel. Whereas an
Invalid Message Channel is for messages that can be delivered and received but not processed, a
Dead Letter Channel is for messages that the messaging system cannot deliver properly.

Example: Stock Trading

In a stock trading system, an application for executing trade requests might receive a request for
a current price quote, or a trade request that does not specify what security to buy or how many
shares, or a trade request that does not specify who to send the trade confirmation to. In any of
these cases, the application has received an invalid message--one that does not meet the
minimum requirements necessary for the application to be able to process the trade request. Once
the application determines the message to be invalid, it should resend the message onto the
Invalid Message Channel. The various applications that send trade requests may wish to monitor
the Invalid Message Channel to determine if their requests are being discarded.

www.EBooksWorld.ir



Example: JMS Specification

In JMS, the specification suggests that if a MessageListener gets a message it cannot process, a
well-behaved listener should divert the message “to some form of application-specific
“unprocessable message” destination.” [[MS11, p.69] This unprocessable message destination is an
Invalid Message Channel.

Example: Simple Messaging

JMS Request/Reply Example and .NET Request/Reply Example show an example of how to

implement receivers that reroute messages they cannot process to an Invalid Message Channel.

Related patterns: Command Message, Correlation Identifier, Datatype Channel, Dead Letter Channel,

Message, Message Channel, Message Sequence, Messaging, Service Activator, Messaging Gateway, [MS
Reguest/Reply Example, NET Request/Reply Example, Return Address

Dead Letter Channel

An enterprise is using Messaging to integrate applications.
What will the messaging system do with a message it cannot deliver?

If a receiver receives a message it cannot process, it should move the invalid message to an Invalid
Message Channel. But what if the messaging system cannot deliver the message to the receiver in

the first place?

There are a number of reasons the messaging system may not be able to deliver a message. The
messaging system may not have the message’s channel configured properly. The message’s
channel may be deleted after the message is sent but before it can be delivered or while it is
waiting to be received. The message may expire before it can be delivered (see Message Expiration).

A message without an explicit expiration may nevertheless timeout if it cannot be delivered for a

very long time. A message with a Selective Consumer that everyone ignores will never be read and
may eventually die. A message could have something wrong with its header that prevents it

from being delivered successfully.

Once the messaging system determines that it cannot deliver a message, it has to do something
with the message. It could just leave the message wherever it is, cluttering up the system. It could
try to deliver the message back to the sender, but the sender is not a receiver and cannot detect
deliveries. It could just delete the message and hope no one misses it, but this may well cause a
problem for the sender that has successfully sent the message and expects it to be delivered (and

received and processed).

www.EBooksWorld.ir



When a messaging system determines that it cannot or should not deliver a message, it may
elect to move the message to a Dead Letter Channel.

Deafivary Fails

-0 =X

Sender Message Channel Intended
Receivar

Reroute Delivery -~ - -
— —-

Dead Oead Letter
Message Channel

The specific way a Dead Letter Channel works depends on the specific messaging system'’s
implementation, if it provides one at all. The channel may be called a “dead message queue”
[Monson-Haefel, p.125] or “dead letter queue.” [MQSeries], [Dickman, pp.28-29] Typically, each

machine the messaging system is installed on has its own local Dead Letter Channel so that
whatever machine a message dies on, it can be moved from one local queue to another without
any networking uncertainties. This also records what machine the message died on. When the
messaging system moves the message, it may also record the original channel the message was

supposed to be delivered on.

The difference between a dead message and an invalid one is that the messaging system cannot
successfully deliver what it then deems a dead message, whereas an invalid message is properly
delivered but cannot be processed by the receiver. Determining if a message should be moved to
the Dead Letter Channel is an evaluation of the message’s header performed by the messaging
system; whereas the receiver moves a message to an Invalid Message Channel because of the

message’s body or particular header fields the receiver is interested in. To the receiver,
determination and handling of dead messages seems automatic, whereas the receiver must
handle invalid messages itself. A developer using a messaging system is stuck with whatever
dead message handling the messaging system provides, but can design his own invalid message
handling, including handling for seemingly dead messages that the messaging system doesn’t
handle.

Example: Stock Trading

In a stock trading system, an application that wishes to perform a trade can send a trade request.
To make sure that the trade is received in a reasonable amount of time (less than five minutes,
perhaps), the requestor sets the request's Message Expiration to five minutes. If the messaging

system cannot deliver the request in that amount of time, or if the trading application does not

www.EBooksWorld.ir



receive the message (e.g., read it off of the channel) in time, then the messaging system will take
the message off of the trade request channel and put the message on the Dead Letter Channel. The
trading system may wish to monitor the system's Dead Letter Channels to determine if it is missing
trades.

Related patterns: [nvalid Message Channel, Message Expiration, Selective Consumer, Messaging

Guaranteed Delivery

An enterprise is using Messaging to integrate applications.

How can the sender make sure that a message will be delivered, even if the messaging system
fails?

One of the main advantages of asynchronous messaging over RPC is that the sender, the receiver,
and network connecting the two don’t all have to be working at the same time. If the network is
not available, the messaging system has to store the message until the network becomes available.
If the receiver is unavailable, the messaging system has to store the message and retry delivery
until the receiver becomes available. This is the store and forward process that messaging is based
on. So where should the message be stored before it is forwarded?

By default, the messaging system stores the message in memory until it can successfully forward
the message to the next storage point. This works as long as the messaging system is running
reliably, but if the messaging system crashes (for example, because one of its computers loses
power or the messaging process aborts unexpectedly), all of the messages stored in memory are
lost.

Most applications have to deal with similar problems. All data that is stored in memory is lost if
the application crashes. To prevent this, applications use files and databases to persist data to
disk so that it survives system crashes.

Messaging systems need a similar way to persist messages more permanently so that no message
gets lost even if the system crashes.

Use Guaranteed Delivery to make messages persistent so that they are not lost even if the
messaging system crashes.

www.EBooksWorld.ir



b J

t Y

Sender Receiver

Disk Disk

Computer 1 Cormpuler 2

With Guaranteed Delivery, the messaging system uses a built-in data store to persist messages.
Each computer the messaging system is installed on has its own data store so that the messages
can be stored locally. When the sender sends a message, the send operation does not complete
successfully until the message is safely stored in the sender’s data store. Subsequently, the
message is not deleted from one data store until it is successfully forwarded to and stored in the
next data store. In this way, once the sender successfully sends the message, it is always stored on
disk on at least one computer until is successfully delivered to and acknowledged by the receiver.

Persistence increases reliability, but at the expense of performance. Thus if it's OK to loose
messages when the messaging system crashes or is shut down, avoid using Guaranteed Delivery so
that messages will move through the messaging system faster.

Also consider that Guaranteed Delivery can consume a large amount of disk space in high-traffic
scenarios. If a producer generates hundreds or thousands of messages per second, then a network
outage that lasts multiple hours could use up a huge amount of disk space. Because the network
is unavailable, the messages have to be stored on the producing computer’s local disk drive
which may not be designed to hold this much data. For these reasons, some messaging systems
allow you to configure a retry timeout parameter that specifies how long messages are buffered
inside the messaging system. In some high-traffic applications (e.g., streaming stock quotes to
terminals), this timeout may have to be set to a short time span, for example a few minutes.
Luckily, in many of these applications, messages are used as Event Messages and can safely be
discarded after a short amount of time elapses (see Message Expiration).

It can also be useful to turn off Guaranteed Delivery during testing and debugging. This makes it
easy to purge all message channels by stopping and restarting the messaging server. Messages
that are still queued up can make it very tedious to debug even simple messaging programs. For
example, you may have a sender and a receiver connected by a Point-to-Point Channel. If a

message is still stored on the channel, the receiver will process that message before any new
message that the sender produces. This is a common debugging pitfall in asynchronous,
guaranteed messaging. Many commercial messaging implementations also allow you to purge
queues individually to allow a fresh restart during testing.

How guaranteed is guaranteed messaging?

It is important to keep in mind that reliability in computer systems tends to be measured in the "number of 9s", e.g. 99.9%. This

www.EBooksWorld.ir



tells us that something is rarely 100% reliable, with the cost already increasing exponentially to move from 99.9% to 99.99%.
The same caveats apply to Guaranteed Delivery. There is always going to be a scenario where a message can get lost. For
example, if the disk that stores the persisted messages fails, messages may get lost. You can make your disk storage more
reliable by using redundant disk storage to reduce the likelihood of failure. This will possibly add another ‘9’ to the reliability
rating, but likely not make it a true 100%. Also, if the networks is unavailable for a long time, the messages that have to be
stored may fill up the computer’s disk, resulting in lost messages. In summary, Guaranteed Delivery is designed to make the
message delivery resilient against expected outages, such as machine failures or network failures, but it is usually not 100%

bullet-proof.

With .NET’s MSMQ implementation, for a channel to be persistent, it must declared transactional,
which means senders usually have to be Transactional Clients. In JMS, with Publish-Subscribe

Channel, Guaranteed Delivery only assures that the messages will be delivered to the active
subscribers. To assure that a subscriber receives messages even when it’s inactive, the subscriber
will need a Durable Subscriber.

Example: Stock Trading

In a stock trading system, trade requests and trade confirmations should probably be sent with
Guaranteed Delivery, to help ensure that none are lost. Likewise, change-of-address
announcements should probably be sent with Guaranteed Delivery. On the other hand, price
updates probably do not require Guaranteed Delivery; loosing some of them is not significant, and
their frequency makes the overhead of Guaranteed Delivery prohibitive.

In Durable Subscriber, the stock trading example says that some price-change subscribers may

wish to be durable. If so, then perhaps the price-change channel should guarantee delivery as
well. Yet other subscribers may not need to be durable nor want to suffer the overhead of
Guaranteed Delivery. How can these different needs be met? The system may wish to implement
two price-change channels, one with Guaranteed Delivery and another without. Only subscribers
that require all updates should subscribe to the persistent channel, and their subscriptions should
be durable. The publisher may wish to publish updates less frequently on the persistent channel
because of its increased overhead.

Example: JMS Persistent Messages

In JMS, message persistence can be set on a per-message basis. In other words, some messages on
a particular channel may be persistent while others might not be. [[MS11, pp.71-72], [Hapner,

pp.58-59]

When a JMS sender wants to make a message persistent, it uses its MessageProducer to set the
message’s IMSDel iveryMode to PERSISTENT. The sender can set persistency on a per-message basis
like this:

Session session = // obtain the session

www.EBooksWorld.ir



Destination destination = // obtain the destination
Message message = // create the message
MessageProducer producer = session.createProducer(destination);
producer .send(
message,
Javax. jms._DeliveryMode.PERSISTENT,
Javax. jms._Message.DEFAULT_PRIORITY,
Javax. jms_Message.DEFAULT_TIME_TO_LIVE);

If the application wants to make all of the messages persistent, it can set that as the default for the

message producer:

producer.setDel iveryMode(javax. jms.DeliveryMode .PERSISTENT);

(And, in fact, the default delivery mode for a message producer is persistent). Now, messages
sent by this producer are automatically persistent, so they can simply be sent:

producer.send(message) ;

Meanwhile, messages sent by other message producers on the same channel may be persistent,

depending on how those producers configure their messages.

Example: IBM WebSphere MQ

In WebSphere MQ, Guaranteed Delivery can be set on a per-channel basis or a per-message basis.
If the channel is not persistent, the messages cannot be persistent. If the channel is persistent, the
channel can be configured such that all messages sent on that channel are automatically
persistent, or such that an individual message can be sent persistently or non-persistently.

A channel is configured to be persistent (or not) when it is created in the messaging system. For
example, the channel can be configured so that all of its messages will be persistent:

DEFINE Q(myQueue) PER(PERS)

Or, the channel can be configured so that the message sender can specify with each message
whether the message is persistent or transient:

DEFINE Q(myQueue) PER(APP)

If the channel is set to allow the sender to specify persistency, then a JMS MessageProducer can set
that delivery-mode property as described earlier. If the channel is set to make all messages
persistent, then the delivery-mode settings specified by the MessageProducer are ignored. [WSMQ,

pp.45-56]

www.EBooksWorld.ir



Example: .NET Persistent Messages

With .NET, persistent messages are created by making a MessageQueue transactional:

MessageQueue .Create("'MyQueue™, true);

All messages sent on this queue will automatically be persistent. [Dickman, p.257]

Related patterns: Durable Subscriber, Event Message, Message Expiration, Messaging, Point-to-Point

Channel, Publish-Subscribe Channel, Transactional Client

Channel Adapter

Many enterprises use Messaging to integrate multiple, disparate applications.

How can you connect an application to the messaging system so that it can send and receive
messages?

Most applications were not designed to work with a messaging infrastructure. There are a
number of reasons for this. Many applications were developed as self-contained, stand-alone
solutions but contain data or functionality that can be leveraged by other systems. For example,
many mainframe applications were designed as a one-in-all application that does not need to
interface with other applications.

Many message-oriented middleware systems expose proprietary API's so that an application
developer or vendor would have to provide multiple implementations of a messaging interface
for the application.

If applications need to exchange data with other applications, they often are designed to use
more generic interface mechanisms such as file exchange or database tables. Reading and writing
files is a basic operating system function and does not depend on vendor-specific API's. Likewise,
most business applications already persists data into a database, so little extra effort is required to
store data destined for other systems in a database table. Or an application can expose internal
functions in a generic API that can be used by any other integration strategy, including
messaging.

Other applications may be capable of communicating via a simple protocols like HTTP or
TCP/IP. However, these protocols do not provide the same reliability as a Message Channel and

the data format used by the application is usually specific to the application and not compatible

with a common messaging solution.

In the case of custom applications, we could add code inside the application to send and receive
messages. However, this can introduce additional complexity into the application and we need to
be careful not to introduce any undesired side-effects when making these changes. Also, this

www.EBooksWorld.ir



approach requires developers who are skilled with both the application logic and the messaging
APIL If we deal with a packaged application that we purchased from a third-party software
vendor, we may not even have the option of changing the application code.

Use a Channel Adapter that can access the application's API or data and publish messages on a
channel based on this data, and that likewise can receive messages and invoke functionality
inside the application.

Application HEg —

Channel Meszage Message
Adapter Channel

The adapter acts as a messaging client to the messaging system and invokes applications
functions via an application-supplied interface. This way, any application can connect to the
messaging system and be integrated with other applications as long as it has a proper Channel
Adapter.

The Channel Adapter can connect to different layers of the application's architecture, depending on
that architecture and the data the messaging system needs to access.

User

I
Interface |:|

Y

¥

e > R
Logic

Y

Channel
Adapter

Database

A Channel Adapter Connecting to Different Layers of an Application

e User Interface Adapter. Sometimes disparagingly called "screen scraping,” these types of adapters can be
very effective in many situations. For example, an application may be implemented on a platform that is not
supported by the messaging system. Or, the owner of the application may have little interest in supporting the
integration. This eliminates the option of running the Channel Adapter on the application platform. However,
the user interface is usually available from other machines and platforms (e.g. 3270 terminals). Also, the
surge of Web-based thin-client architectures has caused a certain revival of user interface integration.
HTML-based user interfaces make it very easy to make an HTTP request and parse out the results. Another
advantage of user-interface integration is that no direct access to the application internals is needed. In some

www.EBooksWorld.ir



cases, it may not be desirable or possible to expose internal functions of a system to the integration solution.
Using a user-interface adapter, other applications have the exact same access to the application as a regular
user. The downside of user interface adapters is the potential brittleness and low speed of the solution. The
application has to parse "user" input and render a screen in response, just so that the Channel Adapter can
parse the screen back into raw data. This process involves many unnecessary steps and can be slow. Also,
user interfaces tend to change more frequently than the core application logic. Every time the user interface
changes, the Channel Adapter is likely to have to be changed as well.

e Business Logic Adapter. Most business applications expose their core functions as an API. This interface
may be a set of component (e.g. EJB's, COM objects, CORBA components) or a direct programming API
(e.g., a C++, C#, or Java library). Since the software vendor (or developer) exposes these API's expressly for
access by other applications, they tend to be more stable than the user interface. In most cases, accessing the
API is also more efficient. In general, if the application exposes a well-defined API, this type of Channel
Adapter is likely to be the best approach.

e Database Adapter. Most business applications persist their data inside a relational database. Since the
information is already in the database, Channel Adapter can extract information directly from the database
without the application ever noticing, which is very non-intrusive. The Channel Adapter can even add a
trigger to the relevant tables and send messages every time the data in these tables changes. This type of
Channel Adapter can also be very efficient and is quite universal, aided by the fact that only two or three
database vendors dominate the market for relational databases. This allows us to connect to many
applications with a relatively generic adapter. The downside of a database adapter is that we are poking
around deep in the internals of an application. This may not be as risky if we simply read data, but making
updates directly to the database can be very dangerous. Also, many application vendors consider the database
schema "unpublished,” meaning that they reserve the right to change it at will, which can make a database
adapter solution brittle.

An important limitation of Channel Adapters is that they can convert messages into application
functions, but require message formatting that closely resembles the implementation of the
components being adapted. For example, a database adapter typically requires the message field
names of incoming messages to be the same as the names of tables and fields in the application
database. This kind of message format is driven entirely by the internal structure of the
application and is not a good message format to use when integration with other applications.
Therefore, most Channel Adapters require the combination with a Message Translator to convert the

application-specific message into a message format that complies with the Canonical Data Model.

Channel Adapters can often times run on a different computer than the application or the database
itself. The Channel Adapter can the connect to the application logic or the database via protocols
such as HTTP or ODBC. While this setup allows us to avoid installing additional software on the
application or database serer, these protocols do not provide the same quality-of-service that a
messaging channel provides, such as guaranteed delivery.

Some Channel Adapters may be unidirectional. For example, if a Channel Adapter connects to an
application via HTTP, it may only be able to consume messages and invoke functions on the
application, but it may not be able to detect changes in the application data.

www.EBooksWorld.ir



An interesting variation of the Channel Adapter is the Metadata Adapter, sometimes called
Design-Time Adapter. This type of data does not invoke application functions, but extracts
metadata, data that describes the internal data formats of the application. This metadata can then
be used to configure Message Translators or to detect changes in the application data formats (see

Introduction to Message Transformation). Many application interfaces support the extraction of

metadata. For example, most commercial databases provide a system tables that contain a
description of the application tables. Likewise, most component frameworks (e.g. J2EE, .NET)
provide special "reflection" functions that allow a component to enumerate methods provided by
another component.

A special form of the Channel Adapter is the Messaging Bridge. The Messaging Bridge connects the
messaging system to another messaging system as opposed to a specific application. Typically, a
Channel Adapter is implemented as a Transactional Client to ensure that each piece of work the

adapter does succeeds in both the messaging system and the other system being adapted.

Example: Stock Trading

A stock trading system may wish to keep a log of all of a stock's prices in a database table. The
messaging system may include a relational database adapter that logs each message from a
channel to a specified table and schema. This channel-to-RDBMS adapter is a Channel Adapter.
The system may also be able to recieve external quote requests from the Internet (TCP/IP or
HTTP) and send them on its internal quote-request channel with the internal quote requests. This
Internet-to-channel adapter is a Channel Adapter.

Example: Commercial EAIl Tools

Commercial EAI vendors provide a collection of Channel Adapters as part of their offerings.
Having adapters to all major application packages available simplifies development of an
integration solution greatly. Most vendors also provide more generic database adapters as well as
software development kits (SDK's) to develop custom adapters.

Example: Legacy Platform Adapters

A number of vendors provide adapters from common messaging system to legacy systems
executing on platforms such as as UNIX, MVS, OS/2, AS/400, Unisys, and VMS. Most of these
adapters are specific to a certain messaging system. For example, Envoy Technologies' EnvoyMQ
is a Channel Adapter that connects many legacy platforms with MSMQ. It consists of a client
component that runs on the legacy computer and a server component that runs on a Windows
computer with MSMQ.

www.EBooksWorld.ir



Example: Web Services Adapters

Many messaging systems provide Channel Adapters to convert SOAP messages between HTTP
transport and the messaging system. This way, SOAP messages can be transmitted over an
intranet using the messaging system, and over the global Internet (and through firewalls) using
HTTP. One example is the Web Services Gateway for IBM's WebSphere Application Server.

Related patterns: Canonical Data Model, Message Channel, Introduction to Message Transformation,

Message Translator, Messaging, Messaging Bridge, Transactional Client

Messaging Bridge

An enterprise is using Messaging to enable applications to communicate. However, the enterprise
uses more than one messaging system, which confuses the issue of which messaging system an
application should connect to.

How can multiple messaging systems be connected so that messages available on one are also
available on the others?

A common problem is an enterprise that uses more than one messaging system. This can occurr
because of a merger or aquisition between two different companies that have standardized
around different messaging products. Sometimes a single enterprise that uses one messaging
system to integrate their mainframe/legacy systems chooses another for their J2EE or .NET web
application servers, and then needs to integrate the two messaging systems. Another common
occurrance is an application that participates as part of multiple enterprises, such as a B2B client
that wants to be a bidder in multiple auctioning systems; if the various auction clusters use
different messaging systems, the bidder applications within an enterprise may wish to
consolodate the messages from several external messaging systems onto a single internal
messaging system. Another example: An extremely large enterprise with a huge number of
Message Channels and Message Endpoints may require more than one instance of the messaging

system, which means those instances must be connected somehow.

If the messages on one system are of no interest to the applications using the other messaging
system, then the systems can remain completely separate. But because the applications are part of
the same enterprise, often some applications using one messaging system will be interested in
messages being transmitted on another messaging system.

A common misconception is that a standardized messaging API such as JMS solves this problem;
it does not. JMS makes two complient messaging systems look the same to a client application,
but it does nothing to make the two messaging systems work with each other. For the messaging
systems to work together, they need to be interoperable, meaning that they use the same message
format and transmit a message from one message store to the next in the same way. Messaging

www.EBooksWorld.ir



systems from two different vendors are rarely interoperable; a message store from one vendor
can only work with other message stores from the same vendor.

Each application in the enterprise could choose to implement a client for each messaging system
in the enterprise, but that would increase complexity and duplication in the messaging layer.
This redundency would become especially apparent if the enterprise added yet another
messaging system and all of the applications had to be modified. On the other hand, each
application could choose to only interface with one messaging system and ignore data on the
other messaging systems. This would make the application simpler but could cause it to ignore a
great deal of enterprise data.

What is needed is a way for messages on one messaging system that are of interest to
applications on another messaging system to be made available on the second messaging system

as well.

Use a Messaging Bridge, a connection between messaging systems, to replicate messages
between systems.

* mﬁi

:. -

L 4
v

L 4
L 4

hessaging tezzaging essaging
system 1 Endge Syslem 2

Typically, there is no practical way to connect two complete messaging systems, so instead we
connect individual, corresponding channels between the messaging systems. The Messaging
Bridge is a set of Channel Adapters, where the non-messaging client is a actually another

messaging system, and where each pair of adapters connects a pair of corresponding channels.
The bridge acts as map from one set of channels to the other, and also transforms the message
format of one system to the other. The connected channels may be used to transmit messages
between traditional clients of the messaging system, or strictly for messages intended for other
messaging systems.

You may need to implement the Messaging Bridge for your enterprise yourself. The bridge is a
specialized Message Endpoint application that is a client of both messaging systems. When a

message is delivered on a channel of interest in one messaging system, the bridge consumes the
message and sends another with the same contents on the corresponding channel in the other
messaging system.

Many messaging system vendors have product extensions for bridging to messaging systems
from other vendors. Thus you may be able to buy a solution rather than build it yourself.

If the other "messaging system" is really a simpler protocol, such as HTTP, apply the Channel
Adapter pattern.

www.EBooksWorld.ir



Messaging Bridge is necessary because different messaging system implementations have their
own proprietary approaches for how to represent messages and how to forward them from one
store to the next. Web services may be standardizing this, such that two messaging system
installs, even from different vendors, may be able to act as one by transferring messaging using
web services standards. See the discussion of WS-Reliability and WS-ReliableMessaging in
Emerqing Standards and Futures in Enterprise Integration.

Example: Stock Trading

A brokerage house may have one messaging system that the applications in its various offices
use to communicate. A bank may have a different messaging system that the applications in its
various branches use to communicate. If the brokerage and the bank decide to merge into a single
company that offers bank accounts and investment services, which messaging system should the
combined company use? Rather than redesigning half of the company's applications to use the
new messaging system, the company can use a Messaging Bridge to connect the two messaging
systems. This way, for example, a banking application and a brokerage application can
coordinate to transfer money between a savings account and a securities trading account.

Example: MSMQ Bridges

MSMQ defines an architecture based on connector servers that enables connector applications to
send and receive messages using other (non-MSMQ) messaging systems. An MSMQ application

using a connector server can perform the same opperations on channels from other messaging

systems that it can perform on MSMQ channels. [Dickman, pp.42-45]

Microsoft's Host Integration Server product contains an MSMQ-MQSeries Bridge service that
makes the two messaging systems work together. It lets MSMQ applications send messages via
MQSeries channels and vise versa, making the two messaging systems act as one.

Envoy Tecnologies, licenser of the MSMQ-MQSeries Bridge, also has a related product called
Envoy Connect. It connects MSMQ and BizTalk servers with messaging servers running on
non-Windows platforms, especially the J2EE platform, coordinating J2EE and .NET messaging

within an enterprise.

Example: SonicMQ Bridges

Sonic Software's SonicMQ has SonicMQ Bridge products that support IBM MQSeries, TIBCO
TIB/Rendezvous, and JMS. This enables messages on Sonic channels to be transmitted on other

messaging systems' channels as well.

Related patterns: Channel Adapter, Emerging Standards and Futures in Enterprise Integration,

Message Channel, Message Endpoint, Messaging

www.EBooksWorld.ir



Message Bus

An enterprise contains several existing systems that must be able to share data and operate in a
unified manner in response to a set of common business requests.

What is an architecture that enables separate applications to work together, but in a decoupled
fashion such that applications can be easily added or removed without affecting the others?

An enterprise often contains a variety of applications that operate independently, yet need to
work together in a unified manner. Enterprise Application Integration (EAI) describes a solution
to this problem but doesn’t describe how to accomplish it.

For example, consider an insurance company that sells different kinds of insurance products (life,
health, auto, home, etc.). As a result of corporate mergers, and of the varying winds of change in
IT development, the enterprise consists of a number of separate applications for managing the
company’s various products. An insurance agent trying to sell a customer several different types
of policies must log into a separate system for each policy, wasting effort and increasing the
opportunity for mistakes.

Life Insurance System
(Mainframe COBOL IMS)

Health Insurance System

/ (Client-Server C++)

(Mainframe COBOL CICS)

Insurance
Agent

Homeowners Insurance System

(J2EE)

Insurance Company EAI Scenario

The agent needs a single, unified application for selling customers a portfolio of policies. Other
types of insurance company employees, such as claims adjusters and customer service
representatives, need their own applications for working with the insurance products, but also
want their applications to present a unified view. The individual product applications need to be
able to work together, perhaps to offer a discount will purchasing more than one policy, and
perhaps to process a claim that is covered by more than one policy.

The IT department could rewrite the product applications to all use the same technology and
work together, but the amount of time and money to replace systems that already work (even
though they don’t work together) is prohibitive. IT could create a unified application for the
agents, but this application needs to connect to the systems that actually manage the policies.

www.EBooksWorld.ir



Rather than unifying the systems, this new application creates one more system that doesn’t

integrate with the others.

The agent application could integrate with all of these other systems, but that would make it
much more complex. The complexity would be duplicated in the applications for claims adjusters
and customer service representatives. Furthermore, these unified user applications would not
help the product applications integrate with each other.

Even if all of these applications could be made to work together, any change to the enterprise’s
configuration could make it all stop working. Not all applications will be available all of the time,
yet the ones that are running need to be able to continue with minimal impact from those that are
not running. Over time, applications will need to be added to and removed from the enterprise,

with minimal impact on the other applications.

What is needed is an integration architecture that enables the product applications to coordinate
in a loosely coupled way, and for user applications to be able to integrate with them.

Structure the connecting middleware between these applications as a Message Bus that

enables them to work together using messaging.

F
w

Application

Apphcation —

Message Application
Bus

A Message Bus is a combination of a common data model, a common command set, and a
messaging infrastructure to allow different systems to communicate through a shared set of
interfaces. This is analogous to a communications bus in a computer system, which serves as the
focal point for communication between the CPU, main memory, and peripherals. Just as in the

hardware analogy, there are a number of pieces that come together to form the message bus:

e Common communication infrastructure — Just as the physical pins and wires of a PCI
bus provide a common, well-known physical infrastructure for a PC, a common
infrastructure must serve the same purpose in a message bus. Typically, a messaging
system is chosen to serve as the physical communications infrastructure, providing a
cross-platform, cross-language universal adapter between the applications. The
infrastructure may include Message Router capabilities to facilitate the correct routing of
messages from system to system. Another common option is to use Publish-Subscribe

Channels to facilitate sending messages to all receivers.

www.EBooksWorld.ir



e Adapters — The different systems must find a way to interface with the message bus.
Most commonly, this is done with commercial or custom Channel Adapters and Service

Activators that can handle things like invoking CICS transactions with the proper
parameters, or representing the general data structures flowing on the bus in the specific
and particular way they should be represented inside each system. This also requires a
Canonical Data Model that all systems can agree on.

e Common Command Structure — Just like PC architectures have a common set of
commands to represent the different operations possible on the physical bus (read bytes
from an address, write bytes to an address), there needs to be common commands that
are understood by all the participants in the Message Bus. Command Message illustrates

how this feature works. Another common implementation for this is the Datatype Channel,

where a Message Router makes an explicit decision as to how to route particular messages
(like Purchase Orders) to particular endpoints. It is at the end that the analogy breaks
down, since the level of the messages carried on the bus are much more fine-grained than

the “read/write” kinds of messages carried on a physical bus.

In our EAI example, a Message Bus could serve as a universal connector between the various
insurance systems, and as a universal interface for client applications that wish to connect to the

insurance systems.

| Life Insurance System
Insurance {Mainframe COBOL IMS)
—_—* Agent . ¥
Application || Health Insurance System
(IClient-Server C++)
Insurance
Agent
| Auto Insurance System
Insurance (Mainframe COBOL CICS)
=+ Customer |[* >
Application Home owners Insurance System
Insurance (J2EE)
Customer
Message
Bus

Insurance Company Message Bus

Here we have a two GUI’s that only know about the Message Bus— they are entirely unaware of
the complexities of idiosyncrasies of the underlying systems. The bus is responsible for routing
Command Messages to the proper underlying systems. In some cases, the best way to handle the

command messages is to build an adapter to the system that interprets the command and then
communicates with the system in a way it understands (invoking a CICS transaction, for instance,
or calling a C++ API). In other cases, it may be possible to build the command-processing logic

directly into the existing system as an additional way to invoke current logic.

Once the Message Bus has been developed for the agent GU]I, it is easy to reuse for other GUIs
such as those for claims processors, customer service representatives, and a web interface for

www.EBooksWorld.ir



customer to browse their own accounts. The features and security control of these GUI

applications differ, but their need to work with the backend applications is the same.

A Message Bus forms a simple, useful service-oriented architecture for an enterprise. Each service
has at least one request channel that accepts requests of an agreed-upon format, and probably a
corresponsing reply channel that supports a specified reply format. Any participant application
can make use of these services by making requests and waiting for replies. The request channels,
in effect, act as a directory of the services available.

A Message Bus requires that all of the applications using the bus use the same Canonical Data
Model. Applications adding messages to the bus may need to depend on Message Routers to route
the messages to the appropriate final destinations. Applications not designed to interface with a
messaging system may require Channel Adapters and Service Activators.

Example: Stock Trading

A stock trading system may wish to offer a unified suite of services including stock trades, bond
auctions, price quotes, portfolio management, etc. This may require several separate back-end
systems that have to coordinate with each other. To unify the services for a front-end customer
GUI, the system could employ an intermediate application that offered all of these services and
delegated their performane to the back-end systems. The back-end systems could even
coordinate through this intermediary application. However, the intermediary application would
tend to become a bottleneck and a single point of failure.

Rather than an intermediary application, a better approach might be a Message Bus with channels
for requesting various services and getting their responses. This bus could also enable to
back-end systems to coordinate with each other. A front-end system could simply connect to the
bus and use it to invoke services. The bus could relatively easily be distributed across multiple
computers to provide load distribution and fault tolerance.

Once the Message Bus is in place, connecting front-end GUI's would be relatively easy; they each
just need to send and receive messages from the proper channels. One GUI might enable a retail
broker to manage his customers’ portfolios. Another web-based GUI could enable any customer
with a web browser to manage his own portfolio. Another non-GUI front-end might support
personal finance programs like Intuit’s Quicken and Microsoft’s Money, enabling customers
using those programs to download trades and current prices. Once the Message Bus is in place,

developing new user applications is much simpler.

Likewise, the trading system may want to take advantage of new back-end applications such as
switching one trading application for another or spreading price quote requests across multiple
applications. Implementing a change like this is a simple as adding and removing applications
from the Message Bus. Once the new applications are in place, none of the other applications have
to change; they just keep sending messages on the bus’ channels as usual.

www.EBooksWorld.ir



Related patterns: Canonical Data Model, Channel Adapter, Command Message, Datatype Channel,

Message Router, Service Activator, Publish-Subscribe Channel

www.EBooksWorld.ir



5. Message Construction

Introduction

In Introduction to Messaging Systems, we discussed Message. When two applications wish to exchange a piece of data,

they do so by wrapping it in a message. Whereas a Message Channel cannot transmit raw data per se, it can transmit
the data wrapped in a message.

Deciding to create a Message and send it raises several other issues:

Message intent — Messages are ultimately just bundles of data, but the sender can have different

intentions for what it expects the receiver to do with the message. It can send a Command Message,
specifying a function or method on the receiver that the sender wishes to invoke. The sender is
telling the receiver what code to run. It can send a Document Message, enabling the sender to

transmit one of its data structures to the receiver. The sender is passing the data to the receiver,
but not specifying what the receiver should necessarily do with it. Or it can send an Event
Message, notifying the receiver of a change in the sender. The sender is not telling the receiver

how to react, just providing notification.

Returning a response — When an application sends a message, it often expects a response
confirming that the message has been processed and providing the result. This is a Request-Reply
scenario. The request is usually a Command Message, and the reply is a Document Message

containing a result value or an exception. The requestor should specify a Return Address in the
request to tell the replier what channel to use to transmit the reply. The requestor may have

multiple requests in process, so the reply should contain a Correlation Identifier that specifies
which request this reply corresponds to. [[MS11, pp.27-28]

There are two common Reguest-Reply scenarios worth noting that both involve a Command
Message request and a corresponding Document Message reply. In the first scenario, Messaging RPC,

the requestor not only wants to invoke a function on the replier, but also wants the return value
from the function. This is how applications perform an RPC (Remote Procedure Call) using
Messaging. In the other scenario, Messaging Query, the requestor is performing a query that the
replier will execute and return the results in the reply. This is how applications use messaging to

perform a query remotely.

Huge amounts of data — Sometimes applications want to transfer a really large data structure,
one that may not fit comfortably in a single message. In this case, break the data into more
managable chunks and send them as a Message Sequence. The chunks have to be sent as a

sequence, and not just a bunch of messages, so that the receiver can reconstruct the original data

structure.

www.EBooksWorld.ir



Slow messages — A concern with messaging is that the sender often does not know how long it
will take for the receiver to receive the message. Yet the message contents may be time-sensitive,
such that if the message isn’t received by a deadline, it should just be ignored and discarded. In
this situation, the sender can use Message Expiration to specify an expiration date. If the

messaging system cannot deliver a message by its expiration, it should discard the message. If a
receiver gets a message after its expiration, it should discard the message.

So it’s not enough to decide to use a Message; anytime data needs to be transferred, it will be done through a message.
This chapter will explain the other decisions that go into making messages work.

Command Message

An application needs to invoke functionality provided by other applications. It would typically
use Remote Procedure Invocation, but would like to take advantage of the benefits of using

Messaging.

How can messaging be used to invoke a procedure in another application?

The advantage of Remote Procedure Invocation is that it’s synchronous, so the call is performed

immediately while the caller’s thread blocks. But that’s also a disadvantage. If the call cannot be
made right now —either because the network is down or because the remote process isn’t
running and listening — then the call doesn’t work. If the call were asynchronous, it could keep
trying until the procedure in the remote application is successfully invoked.

Messaging is asynchronous. If the procedure were somehow invoked by a Message, the procedure
would not even have to be remotely accessible, it could just be a local procedure invoked within
its own process. So the question is how to make a procedure call into a message.

Luckily, there’s a well-established pattern for how to encapsulate a request as an object. The
Command pattern [GoF] shows how to turn a request into an object that can be stored and
passed around. If this object were a message, then it could be stored in and passed around

through a Message Channel. Likewise, the command’s state (if any) can be stored in the message’s
state.

Use a Command Message to reliably invoke a procedure in another application.

@ % — @

Sender Carmmand Receiver
Message

@ = qetLastTradePrnce"DIS"),

www.EBooksWorld.ir



There is no specific message type for commands; a Command Message is simply a regular message
that happens to contain a command. In JMS, the command message could be any type of message;
examples include an ObjectMessage containing a Serializable command object, a TextMessage
containing the command in XML form, etc. In .NET, a command message is a Message with a
command stored in it. A Simple Object Access Protocol (SOAP) request is a command message.

Command Messages are usually sent on a Point-to-Point Channel so that each command will only be

consumed and invoked once.

Example: SOAP and WSDL

With the SOAP protocol [SOAP 1.1] and WSDL service description [WSDL 1.1], when using
RPC-style SOAP messages, the request message is an example of this Command Message pattern.
With this usage, the SOAP message body (an XML document) contains the name of the method
to invoke in the receiver and the parameter values to pass into the method. This method name
must be the same as one of the message names defined in the receiver's WSDL.

This example from the SOAP spec invokes the receiver's GetLastTradePrice method with a single
parameter called symbol:

<SOAP-ENV:Envelope
xmIns :SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/*
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/ >
<SOAP-ENV:Body>
<m:GetLastTradePrice xmIns:m="Some-URI">
<symbol>DIS</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In a SOAP command, one might expect the method name to be the value of some standard
<method> element; actually, the method name is the name of the method element, prefixed by the
m namespace. Having a separate XML element type for each method makes validating the XML
data much more precise, because the method element type can specify the parameters' names,
types, and order.

Related patterns: Remote Procedure Invocation, Message, Message Channel, Messaging, Point-to-Point

Channel

www.EBooksWorld.ir



Document Message

An application would like to transfer data to another application. It could do so using File
Transfer or Shared Database, but those approaches have shortcomings. The transfer might work

better using Messaging.
How can messaging be used to transfer data between applications?
This is a classic problem in distributed processing: One process has data another one needs.

File Transfer is easy to use, but doesn’t coordinate applications very well. A file written by one
application may sit unused for quite a while before another another application reads it. If several
applications are supposed to read it, it'll be unclear who should take responsibilty for deleting it.

Shared Database requires adding new schema to the database to accomdate the data, or
force-fitting the data into the existing schema. Once the data is in the database, there’s the risk
that other applications which should not have access to the data now do. Triggering the receiver
of the data to now come read it can be difficult, and coordinating multiple readers confuses who
should delete the data.

Remote Procedure Invocation can be used to send the data, but then the caller is also telling the

receiver —via the procedure being invoked —what to do with the data. Likewise, a Command
Message would transfer the data, but would be overly specific about what the receiver should do
with the data.

Yet we do want to use Messaging to transfer the data. Messaging is more reliable than an RPC. A
Point-to-Point Channel can be used to make sure that only one receiver gets the data (no

duplication), or a Publish-Subscribe Channel can be used to make sure that any receiver who wants

the data gets a copy of it. So the trick is to take advantage of Messaging without making the
Message too much like an RPC.

Use a Document Message to reliably transfer a data structure between applications.

B [~ % — @

Sender Document Receiver
Message

@ = aPurchaseder

Whereas a Command Message tells the receiver to invoke certain behavior, a Document Message just

passes data and lets the receiver decide what, if anything, to do with the data. The data is a single
unit of data, a single object or data structure which may decompose into smaller units.

www.EBooksWorld.ir



Document Messages can seem very much like Event Messages; the main difference is a matter of
timing and content. The important part of a Document Message is its content, the document.
Successfully transferring the document is important; the timing of when it is sent and received is

less important. Guaranteed Delivery may be a consideration; Message Expiration probably is not.

A Document Message can be any kind of message in the messaging system. In JMS, the document
message may be an ObjectMessage containing a Serializable data object for the document, or it
may be a TextMessage containing the data in XML form. In .NET, a document message is a
Message with the data stored in it. A Simple Object Access Protocol (SOAP) reply message is a
document message.

Document Messages are usually sent using a Point-to-Point Channel to move the document from

one process to another without duplicating it. Messaging can be used to implement simple
workflow by passing a document to an application that modifies the document and then passes it
to another application. In some cases, a document message can be broadcast via a
Publish-Subscribe Channel, but this creates multiple copies of the document. Either the copies need

to be read-only, or if the receivers change the copies, there will be multiple copies of the
document in the system that contain different data. In Request-Reply, the reply is usually a
Document Message where the result value is the document.

Example: Java and XML

The following example (drawn from the example XML schema in [Graham02]) shows how a
simple purchase order can be represented as XML and sent as a message using JMS.

Session session = // Obtain the session
Destination dest = // Obtain the destination
MessageProducer sender = session.createProducer(dest);
String purchaseOrder =
<po 1d=\"48881\" submitted=\"2002-04-23\"">
<shipTo>
<company>Chocohol ics</company>
<street>2112 North Street</street>
<city>Cary</city>
<state>NC</state>
<postalCode>27522</postalCode>
</shipTo>
<order>
<item sku=\"22211\" quantity=\"40\"">
<description>Bunny, Dark Chocolate,
Large</description>
</item>
</order>

</po>"';

www.EBooksWorld.ir



TextMessage message = session.createTextMessage();
message.setText(purchaseOrder);

sender.send(message) ;

Example: SOAP and WSDL

With the SOAP protocol [SOAP 1.1] and WSDL service description [WSDL 1.1], when using
document-style SOAP messages, the SOAP message is an example of this pattern. The SOAP
message body is an XML document (or some kind of data structure that has been converted into
an XML document), and the SOAP message transmits that document from the sender (e.g., client)
to the receiver (e.g., server).

When using RPC-style SOAP messages, the response message is an example of this pattern. With
this usage, the SOAP message body (an XML document) contains the return value from the
method that was invoked.

This example from the SOAP spec returns the answer from invoking the GetLastTradePrice
method:

<SOAP-ENV:Envelope
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV : Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">
<Price>34_5</Price>
</m:GetLastTradePriceResponse>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Related patterns: Command Message, Remote Procedure Invocation, Event Message, File Transfer,

Guaranteed Delivery, Message, Message Expiration, Messaging, Point-to-Point Channel,
Publish-Subscribe Channel, Request-Reply, Shared Database

Event Message

Several applications would like to use event-notification to coordinate their actions, and would like to use Messaging
to communicate those events.

How can messaging be used to transmit events from one application to another?

Sometimes an event occurs in one object that another object needs to know about. The classic example is a model that
changes its state and must notify its views so that they can redraw themselves. Such change notification can also be

www.EBooksWorld.ir



useful in distributed systems. For example, in a B2B system, one business may need to notify others of price changes
or a whole new product catalog.

A process can use Remote Procedure Invocation to notify other applications of change events, but that requires that the
receiver accept the event immediately, even if it doesn’t want events right now. RPC also requires that the announcing
process know every listener process and invoke an RPC on each listener.

The Observer pattern [GoF] describes how to design a subject that announces events and observers that consume
events. A subject notifies an observer of an event by calling the observer’s Update () method. Update() can be

implemented as an RPC, but that would have all of RPC’s shortcomings.

It would be better to send the event notification asynchronously, as a Message. This way, the subject can send the
notification when it’s ready and each observer can receive the notification if and when it’s ready.

Use an Event Message for reliable, asynchronous event notification between applications.

L 4

(€]

Chserver

(E

L J

8 %

Subject Event Oh=ervar
hMeszags

¥

|E| = aPnceChanige dEvent Observar

When a subject has an event to announce, it will create an event object, wrap it in a message, and send it on a channel.
The observer will receive the event message, get the event, and process it. Messaging does not change the event
notification, just makes sure that the notification gets to the observer.

A Event Message can be any kind of message in the messaging system. In Java, an event can be an object or data such
as an XML document. Thus they can be transmitted through JMS as an ObjectMessage, TextMessage, etc. In .NET,

an event message is a Message with the event stored in it.

The difference between an Event Message and a Document Message is a matter of timing and content. An event’s

contents is typically less important. Many events are empty; their mere occurrance tells the observer to react. An
event’s timing is very important; the subject should issue an event as soon as a change occurs, and the observer should
process it quickly while it’s still relevant. Guaranteed Delivery is usually not very helpful with events because they’re

frequent and need to be delivered quickly. Message Expiration can be very helpful to make sure that an event is

processed quickly or not at all.

www.EBooksWorld.ir



Our B2B example could use Event Messages, Document Messages, or a combination of the two. If a message says that

the price for computer disk drives has changed, that’s an event. If the message provided information about the disk
drive, including its new price, that’s a document being sent as an event. Another message that announces the new
catalog and its URL is an event, whereas a similar message that actually contains the new catalog is an event that
contains a document.

Which is better? The Observer pattern describes this as a trade-off between a push model and a pull model. The push
model sends information about the change as part of the update, whereas the pull model sends minimal information
and observers that want more information request it by sending GetState() to the subject. The two models relate to

messaging like this:

Push model — The message is a combined document/event message; the message’s delivery announces that the state
has occurred and the message’s contents are the new state. This is more efficient if all observers want these details, but
otherwise can be the worst of both worlds: A large message that is sent frequently and often ignored by many
observers.

Pull model — There are three messages:

e Update — An Event Message that notifies the observer of the event.
e  State Request — A Command Message an interested observer uses to request details from the subject.

e State Reply — A Document Message the subject uses to send the details to the observer.

The advantage of the pull model is that the update messages are small, only interested observers request details, and
potentially each interested observer can request the details it specifically is interested in. The disadvantage is the
channels needed and traffic caused by three messages instead of one.

For more details on how to implement Observer using messaging, see JMS Publish/Subscribe Example.

There is usually no reason to limit an event message to a single receiver via a Point-to-Point Channel; the message is

usually broadcast via a Publish-Subscribe Channel so that all interested processes receive notification. Whereas a

Document Message needs to be consumed so that the document is not lost, a receiver of Event Messages can often

ignore the messages when it’s too busy to process them, so the subscribers can often be non-durable (not Durable
Subscribers). Event Message is a key part of implementing the Observer pattern using messaging.

Related patterns: Command Message, Document Message, Durable Subscriber, Remote Procedure Invocation,

Guaranteed Delivery, Message, Message Expiration, Messaging, JMS Publish/Subscribe Example, Point-to-Point
Channel, Publish-Subscribe Channel

Request-Reply

When two applications communicate via Messaging, the communication is one-way. The

applications may want a two-way conversation.

When an application sends a message, how can it get a response from the receiver?

www.EBooksWorld.ir



Messaging provides one-way communication between applications. Messages travel on a Message
Channel in one direction, from the sender to the receiver. This asynchrnous transmission makes
the delivery more reliable and decouples the sender from the receiver.

The problem is that communication between components often needs to be two-way. When a
program calls a function, it receives a return value. When it executes a query, it receives query
results. When one component notifies another of a change, it may want to receive an
acknowledgement.

How can messaging be two-way?

Perhaps a sender and receiver could share a message simultaneously. Then each application
could add information to the message for the other to consume. But that is not how messaging
works. A message is first sent, then received, such that the sender and receiver cannot both access
the message at the same time.

Perhaps the sender could keep a reference to the message. Then, once the receiver placed its
response into the message, the sender could pull the message back. This may work for notes

clipped to a clothesline, but it is not how a Message Channel works. A channel transmits messages
in one direction.

What is needed is a two-way message on a two-way channel.

Send a pair of Request-Reply messages, each on its own channel.

— t@—rE}—*
Request Request
Channel

—a— P —
Reply Reply
Fequestor Channel Replier

Request-Reply has two participants:

1. Requestor — Sends a request message and waits for a reply message.
2. Replier — Receives the request message and responds with a reply message.

The request channel can be a Point-to-Point Channel or a Publish-Subscribe Channel. The difference

is whether the request should be broadcast to all interested parties or should only be processed
by a single consumer. The reply channel, on the other hand, is almost always point-to-point,
because it usually makes no sense to broadcast replies-they should only be returned to the
requestor.

www.EBooksWorld.ir



When a caller performs a Remote Procedure Invocation, the caller's thread must block while it waits

for the response. With Request-Reply, the requestor has two approaches for receiving the reply:

1. Synchronous Block — A single thread in the caller sends the request message, blocks (as a Polling Consumer)
to wait for the reply message, then processes the reply. This is simple to implement, but if the requestor
crashes, it will have difficulty re-establishing the blocked thread. The request thread awaiting the response
implies that there is only one outstanding request, or that the reply channel for this request is private for this
thread.

2. Asynchronous Callback — One thread in the caller sends the request message and sets up a callback for the
reply. A separate thread listens for reply messages. When a reply message arrives, the reply thread invokes
the appropriate callback, which re-establishes the caller's context and processes the reply. This approach
enables multiple outstanding requests to share a single reply channel, and a single reply thread to process
replies for multiple request threads. If the requestor crashes, it can recover by simply restarting the reply
thread. An added complexity, however, is the callback mechanism that must re-establish the caller's context.

By itself, two applications sending requests and replies to each other are not very helpful. What is

interesting is what the two messages represent.

1. Messaging RPC - This is how to implement Remote Procedure Invocation using messaging. The

request is a Command Message that describes the function the replier should invoke. The reply is a

Document Message that contains the function's return value or exception.

2. Messaging Query — This is how to perform a remote query using messaging. The request is a
Command Message containing the query, and the reply is the results of the query, perhaps a Message

Sequence.
3. Notify/Acknowledge — This provides for event notfication with acknowledgement using messaging.

The request is an Event Message that provides notification and the reply is a Document Message

acknowledging the notification. The acknowledgement may itself be another request, one seeking
details about the event.

The request is like a method call. As such, the reply is one of three possibilities:

1. Void - Simply notifies the caller that the method has finished so that the caller can proceed.

2. Result value — A single object that is the method's return value.

3. Exception — A single exception object indicating that the method aborted before completing
successfully, and indicating why.

The request should contain a Return Address to tell the replier where to send the reply. The reply

should contain a Correlation Identifier that specifies which request this reply is for.

Example: SOAP 1.1 Messages

SOAP messages come in Request-Reply pairs. A SOAP request message indicates a service the
sender wishes to invoke on the receiver, whereas a SOAP response message contains the result of

www.EBooksWorld.ir



the service invocation. The response message either contains a result value or a fault-the SOAP
equivalent of an exception. [SOAP 1.1]

Example: SOAP 1.2 Response Message Exchange Pattern

Whereas SOAP 1.1 has response messages and they are loosely described, SOAP 1.2 introduces
an explicit Request-Response Message Exchange Pattern. [SOAP 1.2 Part 2] This patterns

describes a separate, potentially asynchronous response to a SOAP request.

Example: JMS Requestor Objects

JMS includes a couple of features that can be used to implement Request-Reply.

A TemporaryQueue is a Queue that can be created programatically and that only lasts as long as the
Connection used to create it. Only MessageConsumers created by the same connection can read
from the queue, so effectively it is private to the connection. [[MS11, pp.61-62]

How are MessageProducers going to know about this newly created, private queue? A requestor
will create a temporary queue and specify it in the reply-to property of a request message. (See
Return Address.) A well-behaved replier will send the reply back on the specified queue, one that
the replier wouldn't even know about if it weren't a property of the request message. This is a
simple approach the requestor can use to make sure that the replies always come back to it.

The downside with temporary queues is that when their Connection closes, the queue and any
messages in it are deleted. Likewise, temporary queues cannot provide Guaranteed Delivery; if the

messaging system crashes, then the connection is lost, so the queue and its messages are lost.

JMS also provides QueueRequestor, a simple class for sending requests and receiving replies. A
requestor contains a QueueSender for sending requests and a QueueReceiver for receiving replies.
Each requestor creates its own temporary queue for receiving replies and specifies that in the
request's reply-to property. [[MS11, p.78] A requestor makes sending a request and receiving a
reply very simple:

QueueConnection connection = // obtain the connection

Queue requestQueue = // obtain the queue

Message request = // create the request message

QueueSession session = connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE) ;
QueueRequestor requestor = new QueueRequestor(session, requestQueue );

Message reply = requestor.request(request);

One method-request-sends the request message and blocks until it receives the reply message.

www.EBooksWorld.ir



TemporaryQueue, used by QueueRequestor, is a Point-to-Point Channel. Its Publish-Subscribe Channel
equivalents are TemporaryTopic and TopicRequestor.

Related patterns: Command Message, Correlation Identifier, Document Message, Remote Procedure

Invocation, Event Message, Guaranteed Delivery, Message, Message Channel, Message Sequence,

Messaging, Point-to-Point Channel, Polling Consumer, Publish-Subscribe Channel, Return Address

Return Address

My application is using Messaging to perform a Request-Reply.

How does a replier know where to send the reply?

Messages are often thought of as completely independent, such that any sender sends a message
on any channel whenever it likes. However, messages are often associated, such as Request-Reply
pairs, two messages which appear independent but where the reply message has a one-to-one
correspondence with the request message that caused it. Thus the replier that processes the
request message cannot simply send the reply message on any channel it wishes, it must send it
on the channel the requestor expects the reply on.

Each receiver could automatically know which channel to send replies on, but hard coding such
assumptions makes the software less flexible and more difficult to maintain. Furthermore, a
single replier could be processing calls from several different requestors, so the reply channel is
not the same for every message; it depends on what requestor sent the request message.

Fenquest
Requestor 1 }—— 1@ tﬂ Channel Replier
7 P
Regueslz ???
Reply
Requestor 2 Channel 1

H

Channel 2

Uncertain Where to Send Replies

A requestor potentially may not want a reply sent back to itself. Rather, it may have an associated
callback processor to process replies, and the callback processor may monitor a different channel
than the requestor does (or the requestor may not monitor any channels at all). The requestor
could have multiple callback processors such that replies for different requests from the same
requestor should be sent to different processors.

www.EBooksWorld.ir



The reply channel will not necessarily transmit replies back to the requestor; it will transmit them
to whomever the requestor wants to process the replies, because it’s listening to the channel the
requestor specified. So knowing what requestor sent a request or what channel it was sent on
does not necessarily tell the replier what channel to send the reply on. Even if it did, the replier
would still have to infer which reply channel to use for a particular requestor or request channel.
It's easier for the request to explicitly specify which reply channel to use.

What is needed is a way for the requestor to tell the replier where and how to send back a reply.

The request message should contain a Return Address that indicates where to send the reply
message.

Reply Reply
Chanmel 1 Channel 2

Reouest
Chanrel -
Requestor 1 i - anre ~—rm
' g R
“ P
Reguesis o
— () —— E p —
Regly
Freply
Requestor 2 Channgl
*—t® —ee k. e

Ry
Channel 2 Fephy

This way, the replier does not need to know where to send the reply, it can just ask the request. If
different messages to the same replier require replies to different places, the replier knows where
to send the reply for each request. This encapsulates the knowledge of what channels to use for
requests and replies within the requestor so those decisions do not have to be hard coded within
the replier. A Return Address is put in the header of a message because it’s not part of the data
being transmitted.

A message’s Return Address is analogous to the reply-to field in an e-mail message. The “reply-to”
e-mail address is usually the same as the “from” address, but the sender can set it to a different
address to receive replies in a different account than the one used to send the original message.

When the reply is sent back the channel indicated by the Return Address, it may also need a
Correlation Identifier. The Return Address tells the receiver what channel to put the reply message
on; the correlation identifier tells the sender which request a reply is for.

www.EBooksWorld.ir



Example: JMS Reply-To Property

JMS messages have a predefined property for Return Addresses, IMSReplyTo. Its type is a
Destination (a Topic or Queue), rather than just a string for the destination name, which ensures
that the destination (e.g., Message Channel) really exists, at least when the request is sent. [[MS11,
p.33], [Monson-Haefel, pp.192-193]

A sender that wishes to specify a reply channel that is a queue would do so like this:

Queue requestQueue = // Specify the request destination
Queue replyQueue = // Specify the reply destination
Message requestMessage = // Create the request message
requestMessage.setIMSReplyTo(replyQueue);
MessageProducer requestSender =
session.createProducer(requestQueue);

requestSender.send(requestMessage) ;

Then the receiver would send the reply message like this:

Queue requestQueue = // Specify the request destination

MessageConsumer requestReceiver =
session.createConsumer(requestQueue);

Message requestMessage = requestReceiver.receive();

Message replyMessage = // Create the reply message

Destination replyQueue = requestMessage.getJMSReplyTo();

MessageProducer replySender = session.createProducer(replyQueue);

replySender.send(replyMessage) ;

Example: .NET Response-Queue Property

NET messages also have a predefined property for Return Addresses, ResponseQueue. Its type is a
MessageQueue, the queue that the application should send a response message to. [SysMsg],
[Dickman, p.122]

Example: Web Services Request/Response

SOAP 1.2 incorporates the Request-Response Message Exchange Pattern [SOAP 1.2 Part 2], but
the address to send the reply to is unspecified and therefore implied. This SOAP pattern will

need to support an optional Return Address to truely make SOAP messages asynchronous and

delink the responder from the requestor.

www.EBooksWorld.ir



The emerging WS-Addressing standard helps address this issue by specifying how to identify a
web service endpoint and what XML elements to use. Such an address can be used in a SOAP
message to specify a Return Address. See the discussion of WS-Addressing in Emerging Standards

and Futures in Enterprise Integration.

Related patterns: Correlation Identifier, Emerging Standards and Futures in Enterprise Integration,

Message Channel, Messaging, Request-Reply

Correlation Identifier

My application is using Messaging to perform a Request-Reply and has received a reply message.
How does a requestor that has received a reply know which request this is the reply for?

When one process invokes another via Remote Procedure Invocation, the call is synchronous, so

there is no confusion about which call produced a given result. But Messaging is asynchronous, so
from the caller’s point of view, it makes the call, then sometime later a result appears. The caller
may not even remember making the request, or may have made so many requests that it no
longer knows which one this is the result for. With confusion like this, when the caller finally gets
the result, it may not know what to do with it, which defeats the purpose of making the call in

the first place.

229 Requests

LI eoe
Fequestar Feplies Repler

Cannot Match Reply to Request

There are a couple of approaches the caller can use to avoid this confusion. It can make just one
call at a time, waiting for a reply before sending another request, so there is at most one
outstanding request at any given time. This will greatly slow processing throughput, however.
The call could assume that it'll receive replies in the same order it sent requests, but messaging
does not guarantee what order messages are delivered in and all requests may not take the same
amount of time to process, so the caller’s assumption would be faulty. The caller could design its
requests such that they do not need replies, but this constraint would make messaging useless for

many purposes.

What the caller needs is for the reply message to have a pointer or reference to the request
message, but messages do not exist in a stable memory space such that they can be referenced by

www.EBooksWorld.ir



variables. However, a message could have some sort of foreign key, a unique identifier like the
key for a row in a relational database table. Such a unique identifier could be used to identify the
message from other messages, clients that use the message, etc.

Each reply message should contain a Correlation Identifier, a unique identifier that indicates
which request message this reply is for.

Golrreiauon Message 10
i »*Jz
i ..... . Requests
1l |, —
= \
Hequestar Replies ~.\\ Heplier

Cﬁrreiation i

There are six parts to Correlation Identifier:

1. Requestor — An application that performs a business task by sending a request and
waiting for a reply.

2. Replier — Another application that receives the request, fulfills it, then sends the reply. It

gets the request ID from the request and stores it as the correlation ID in the reply.

Request — A Message sent from the requestor to the replier containing a request ID.

Reply — A Message sent from the replier to the requestor containing a correlation ID.

Request ID — A token in the request that uniquely identifies the request.

SANNCLEE SIS

Correlation ID — A token in the reply that has the same value as the request ID in the
request.

This is how a Correlation Identifier works: When the requestor creates a request message, it assigns
the request a request ID —an identifier that is different from those for all other currently
outstanding requests (e.g., requests that do not yet have replies). When the replier processes the
request, it saves the request ID and adds that ID to the reply as a correlation ID. When the
requestor processes the reply, it uses the correlation ID to know which request the reply is for.
This is called a correlation identifier because of the way the caller uses the identifier to correlate
(e.g., match; show the relationship) each reply to the request that caused it.

As is often the case with messaging, the requestor and replier must agree on several details. They
must agree on the name and type of the request ID property, and they must agree on the name
and type of the correlation ID property. Likewise, the request and reply message formats must
define those properties or allow them to be added as custom properties. For example, if the
requestor stores the request ID in a first-level XML element named request_id and the value is an

www.EBooksWorld.ir



integer, the replier has to know this so that it can find the request ID value and process it
properly. The request ID value and correlation ID value are usually of the same type; if not, the
requestor has to know how the replier will convert the request ID to the reply ID.

This pattern is a simpler, messaging-specific version of the Asynchronous Completion Token
pattern. [POSA2] The requestor is the Initiator, the replier is the Service, the consumer in the
requestor that processes the reply is the Completion Handler, and the Correlation Identifier that
consumer uses to match the reply to the request is the Asynchronous Completion Token.

A correlation ID (and also the request ID) is usually put in the header of a message rather than
the body. The ID is not part of the command or data the requestor is trying to communicate to the
replier. In fact, the replier does not really use the ID at all; it just saves the ID from the request
and adds it to the reply for the requestor’s benefit. Since the message body is the content being
transmitted between the two systems, and the ID is not part of that, the ID goes in the header.

The gist of the pattern is that the reply message contains a token (the correlation ID) that
identifies the corresponding request (via its request ID). There are several different approaches
for achieving this.

The simplest approach is for each request to contain a unique ID, such as a message ID, and for
the response's correlation ID to be the request's unique ID. This relates the reply to its
corresponding request. However, when the requestor is trying to process the reply, knowing the
request message often isn't very interesting. What the requestor really wants is a reminder of
what business task caused it to send the request in the first place, so that the requestor can
complete the businees task using the data in the reply.

The business task, such as needing to execute a stock trade or ship a purchase order, probably has
its own unique business object identifier (such as an order ID), so that business task’s unique ID
can be used as the request-reply correlation ID. Then when the requestor gets the reply and its
correlation ID, it can bypass the request message and go straight to the business object whose
task caused the request in the first place. In this case, rather than use the messages’ built-in
request message ID and reply correlation ID properties, the requestor and replier should use a
custom business object ID property in the request and the reply that identifies the business object
whose task this request-reply message pair is performing.

A compromise approach is for the requestor to keep a map of request ID's and business object
ID's. This is especially useful when the requestor wants to keep the object ID's private, or when
the requestor has no control over the replier's implementation and can only depend on the replier
copying the request's message ID into the reply's correlation ID. In this case, when the requestor
gets the reply, it looks up the correlation ID in the map to get the business object ID, then uses
that to resume performing the business task using the reply data.

Messages have separate message ID and correlation ID properties so that request-reply message
pairs can be chained. This occurs when a request causes a reply, and the reply is in turn another
request that causes another reply, and so on. A message's message ID uniquely identifies the

www.EBooksWorld.ir



request it represents; if the message also has a correlation ID, then the message is also a reply for
another request message, as identified by the correlation ID.

4 Request ™ 4 Reply 1 N . Reply 2 N 4 Reply 3 ™
e zzage | 123 (_\_ e zzage 1D 234 4_\_ Mezsage I 45 (_\_ Meszage 1D 456
Zorrelation 10 il Cozrelstion 10 123 Correlstion [0 X34 Correlstion |0 345

\_ messEne hody __,J . e ssane body W, \_ e ssane hody W, \_ e ssage hody __,J

Request-Reply Chaining

Chaining is only useful if an application wants to retrace the path of messages from the latest
reply back to the original request. Often all the application wants to know is the original request,
regardless of how many reply-steps occurred in between. In this situation, once a message has a
non-null correlation ID, it is a reply and all subsequent replies caused by it should also use the

same correlation ID.

Correlation Identifier is a simple version of an Asynchronous Completion Token [POSA2], where
the token is simply a primitive value. Both help a caller to process the responses generated by

asynchronous requests.

While a Correlation Identifier is used to match a reply with its request, the request may also have a
Return Address that states what channel to put the reply on. Whereas a correlation identifier is

used to match a reply message with its request, a Message Sequence’s identifiers are used to
specify a message’s position within a series of messages from the same sender.

Example: JMS Correlation-1D Property

JMS messages have a predefined property for correlation identifiers, JusCorrelationlD, which is
typically used in conjunction with another predefined property, JuSMessagelD. [[MS11, p.32],
[Monson-Haefel, pp.194-195] A reply message’s correlation ID is set from the request’s message
ID like this:

Message requestMessage = // Get the request message
Message replyMessage = // Create the reply message
String requestlD = requestMessage.getJMSMessagelD();
replyMessage.setJMSCorrelationlD(requestiD);

Example: .NET Correlation-1d Property

Each Message in .NET has a Correlationld property, a string in an acknowledgement message
that is usually set to the 1d of the original message. MessageQueue also has a special peek and
receive methods, PeekByCorrelationld(string) and ReceiveByCorrelationld(string), for peeking

www.EBooksWorld.ir



at and consuming the message on the queue (if any) with the specified correlation ID. (See
Selective Consumer [SysMsg], [Dickman, pp.147-149]

Example: Web Services Request/Response

Web services standards, as of SOAP 1.1 [SOAP 1.1], do not provide very good support for
asynchronous messaging, but SOAP 1.2 starts to plan for it. SOAP 1.2 incorporates the
Request-Response Message Exchange Pattern [SOAP 1.2 Part 2], a basic part of asynchronous

SOAP messaging. However, the request/response pattern does not mandate support for
"multiple ongoing requests," so it does not define a standard Correlation Identifier field, even an
optional one.

As a practical matter, service requestors often do require multiple outstanding requests. "Web
Services Architecture Usage Scenarios" [WSAUS] discusses several different asynchronous web
services scenarios. Four of them — Request/Response, Remote Procedure Call (where the
transport protocol does not support [synchronous] request/response directly), Multiple
Asynchronous Responses, and Asynchronous Messaging — use message-id and response-to fields
in the SOAP header to correlate a response to its request. This is the request/response example:

Example: SOAP request message containing a message identifier

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/06/soap-envelope’>
<env:Header>
<n:MsgHeader xmlns:n="http://example.org/requestresponse’ >
<n:Messageld>uuid:09233523-345b-4351-b623-5dsF35s9s5d6</n:Messageld>
</n:MsgHeader>
</env:Header>
<env:Body>
</env:Body>

</env:Envelope>

Example: SOAP response message containing correlation to original request

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/06/soap-envelope'>
<env:Header>
<n:MsgHeader xmlns:n="http://example.org/requestresponse'>
<n:Messageld>uuid:09233523-567b-2891-b623-9dke28yod7m9</n:Messageld>
<n:ResponseTo>uuid:09233523-345b-4351-b623-5dsF35sgs5d6</n:ResponseTo>
</n:MsgHeader>
</env:Header>

<env:Body>

www.EBooksWorld.ir



</env:Body>

</env:Envelope>

Like the JMS and .NET examples, in this SOAP example, the request message contains a unique
message identifier, and the response message contains a response to (e.g., a correlation ID) field
whose value is the message identifier of the request message.

Related patterns: Remote Procedure Invocation, Message, Selective Consumer, Message Sequence,

Messaging, Request-Reply, Return Address

Message Sequence

My application needs to send a huge amount of data to another process, more than may fit in a
single message. Or my application has made a request whose reply contains too much data for a
single message.

How can messaging transmit an arbitrarily large amount of data?

It's nice to think that messages can be arbitrarily large, but there are practical limits to how much
data a single message can hold. Some messaging implementations place an absolute limit on how
big a message can be. Other implementations allow messages to get quite big, but large messages
nevertheless hurt performance. Even if the messaging implementation allows large messages, the
message producer or consumer may place a limit on the amount of data it can process at once.
For example, many COBOL- and mainframe-based systems will only consume or produce data in
32 Kb chunks.

So how do you get around this? One approach is to limit your application to never need more
data that what the messaging layer can handle. This is an arbitrary limit, though, which can
prevent your application from producing the desired functionality. If the large amount of data is
the result of a request, the caller could issue multiple requests, one for each result chunk, but that
assumes the caller even knows how many result chunks will be needed. The receiver could listen
for data chunks until there are not anymore (but how does it know there are not anymore?), then
try to figure out how to reassemble the chunks into the original, large piece of data, but that
would be error-prone.

Inspiration comes from the way a mail order company sometimes ships an order in multiple
boxes. If there are three boxes, the shipper will mark them as “1 of 3,” “2 of 3,” and “3 of 3” so
that the receiver will know which ones he’s received and whether he has all of them. The trick is
to apply the same technique to messaging.

Whenever a large set of data may need to be broken into message-size chunks, send the data as
a Message Sequence and mark each message with sequence identification fields.

www.EBooksWorld.ir



fﬁwm 13'I rﬁequa'-ca 1“'I [ Sequence 1
Position 1 Position 2 Position "
Sequence A i
# Size n Size n Size n
\_message body J \ message bady message body
The three Message Sequence identification fields are:
1. Sequence identifier — Distinguishes this cluster of messages from others.
2. Position identifier — Uniquely identifies and sequentially orders each message in a sequence.
3. Size or End indicator — Specifies the number of messages in the cluster, or marks the last message in the

cluster (whose position identifier then specifies the size of the cluster).

The sequences are typically designed such that each message in a sequence indicates the total size
of the sequence, e.g. the number of messages in that sequence. As an alternative, you can design

the sequences such that each message indicates whether it is the last message in that sequence.

I”Saquanca 73 ’fSaquanca 73 ’fSaquanca 73 m
Sequence Posttion 1] Posttion 1 Posttion 2 Paostion  n-1
# Endd F || end F End FI*® ® e T
\_messagebody J N\ messagebody [\ message body J | message body

Message Sequence with End Indicator

Let’s say a set of data needs to be sent as a cluster of three messages. The sequence identifier of
the three-message cluster will be some unique ID. The position identifier for each message will be
different —either 1, 2, or 3 (assuming that numbering starts from 1, not 0). If the sender knows the
total number of messages from the start, the sequence size for each message is 3. If the sender
does not know the total number of messages until it runs out of data to send (e.g., the sender is
streaming the data), each message except the last will have a “sequence end” flag that is false;
when the sender is ready to send the final message in the sequence, it will set that message’s
sequence end flag is true. Either way, the position identifiers and sequence size/end indicator
will give the receiver enough information to reassemble the parts back into the whole, even if the
parts are not received in sequential order.

If the receiver expects a Message Sequence, then every message sent to it should be sent as part of a
sequence, even if it is only a sequence of one. Otherwise, when a single-part message is sent
without the sequence identification fields, the receiver may become confused by the missing

fields and may conclude that the message is invalid (see Invalid Message Channel).

If a receiver gets some of the messages in a sequence but never does get all of them, it should
reroute the ones it did receive to the Invalid Message Channel.

www.EBooksWorld.ir



An application may wish to use a Transactional Client for sending and receiving sequences. The
sender can send all of the messages in a sequence using a single transaction. This way, none of
the messages will be delivered until all of them have been sent. Likewise, a receiver may wish to
use a single transaction to receive the messages so that it does not truly consume any of the
messages until it receives all of them. If any of the messages in the sequence are missing, the
receiver can choose to rollback the transaction so that the messages can be consumed later. In
many messaging system implementations, if a sequence of messages are sent in one transaction,
they will be received in the order they are sent, which simplifies the receiver's job of putting the
data back together.

When the Message Sequence is the reply message in a Request-Reply, the sequence identifier and the
Correlation Identifier are usually the same thing. They would be separate if the application sending

the request expected multiple responses to the same request and one or more of the responses
could be in multiple parts. When only one response is expected, then uniquely identifying the
response and its sequence is permissible, but redundant.

Message Sequence tends not to be compatible with Competing Consumers nor Message Dispatcher. If

different consumers/ performers receive different messages in a sequence, none of the receivers
will be able to reassemble the original data without exchanging message contents with each other.
Thus a message sequence should be transmitted either via a Message Channel with a single

consumer.

An alternative to Message Sequence is to use a Claim Check. Rather than transmitting a large
document between two applications, if the applications both have access to a common database
or file system, store the document and just transmit the receipt in a single message.

Example: Large Document Transfer

Imagine a sender needs to send an extremely large document to a receiver, so large that it will not
fit within a single message, or is impractical to send all at once. Then break the large document
into parts, each of which can be sent as a message. Each message needs to indicate its position in
the sequence and indicate how many messages total to expect.

For example, the maximum size of an MSMQ message is 4 MB. [Dickman, pp.169-172] discusses
how to send a multipart message sequence in MSMQ.

Example: Multi-l1tem Query

Consider a query that requests a list of all books by a certain author. Because this could be a very
large list, the messaging design might choose to return each match as a separate message. Then
each message needs to indicate the query this reply is for, the message’s position in the sequence,
and how many messages total to expect.

www.EBooksWorld.ir



Example: Distributed Query

Consider a query that is performed in parts by multiple receivers. If the parts have some order to
them, this will need to be indicated in the reply messages so that the complete reply can be
assembled properly. Each receiver will need to know its position in the overall order and will
need to indicate that position is the reply's message sequence.

Example: JMS and .NET

Neither JMS nor .NET have built-in properties for supporting message sequences. Therefore,
messaging application must implement their own sequence fields. In JMS, an application can
define its own properties in the header, so that is an option. .NET does not provide
application-defined properties in the header. The fields could also be defined in the message
body. Keep in mind that if a receiver of the sequence needs to filter for messages based on their
sequence, such filtering is much simpler to do if the field is stored in the header rather than the
body.

Example: Web Services Architecture Usage Scenarios

Web services standards currently do not provide very good support for asynchronous messaging,
but the W3C has started to think about how it could. "Web Services Architecture Usage

Scenarios" [WSAUS] discusses several different asynchronous web services scenarios. One of
them — Multiple Asynchronous Responses — use message-id and response-to fields in the SOAP
header to correlate a responses to their request, and sequence-number and total-in-sequence

fields in the body to sequentially identify the responses. This is the multiple responses example:

Example: SOAP request message containing a message identifier

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/06/soap-envelope'>
<env:Header>
<n:MsgHeader xmlns:n="http://example.org/requestresponse'>
<n:Messageld>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</n:Messageld>
</n:MsgHeader>
</env:Header>
<env:Body>
</env:Body>

</env:Envelope>

Example: First SOAP response message containing sequencing and correlation to original request

www.EBooksWorld.ir



<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/06/soap-envelope'>
<env:Header>
<n:MsgHeader xmlns:n="http://example.org/requestresponse' >
<I-- Messageld will be unique for each response message -->
<I-- ResponseTo will be constant for each response message In the sequence-->
<n:Messageld>uuid:09233523-567b-2891-b623-9dke28yod7m9</n:Message ld>
<n:ResponseTo>uuid:09233523-345b-4351-b623-5dsF355gs5d6</n:ResponseTo>
</n:MsgHeader>
<s:Sequence xmlns:s="http://example.org/sequence’>
<s:SequenceNumber>1</s:SequenceNumber>
<s:Total InSequence>5</s:Total InSequence>
</s:Sequence>
</env:Header>
<env:Body>
</env:Body>

</env:Envelope>

Example: Final SOAP response message containing sequencing and correlation to original
request

<?xml version="1.0" ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2002/06/soap-envelope’>
<env:Header>
<n:MsgHeader xmlns:n="http://example.org/requestresponse’ >
<I-- Messageld will be unique for each response message -->
<I-- ResponseTo will be constant for each response message iIn the sequence-->
<n:Messageld>uuid:40195729-sj20-ps03-1092-p20dj28rk104</n:Messageld>
<n:ResponseTo>uuid:09233523-345b-4351-b623-5dsf35s59gs5d6</n:ResponseTo>
</n:MsgHeader>
<s:Sequence xmlns:s="http://example.org/sequence’>
<s:SequenceNumber>5</s:SequenceNumber>
<s:Total InSequence>5</s:Total InSequence>
</s:Sequence>
</env:Header>
<env:Body>
</env:Body>

</env:Envelope>
The message-id in the header is used as the sequence identifier in the responses. The

sequence-number and total-in-sequence in each response are a position identifier and side

indicator, respectively.

www.EBooksWorld.ir



Related patterns: Competing Consumers, Correlation Identifier, Invalid Message Channel, Message

Channel, Message Dispatcher, Request-Reply, Claim Check, Transactional Client

Message Expiration

My application is using Messaging. If a Message’s data or request is not received by a certain time,

it is useless and should be ignored.

How can a sender indicate when a message should be considered stale and thus shouldn’t be

processed?

Messaging practically guarantees that the Message will eventually be delivered to the receiver.
What it cannot guarantee is how long the delivery may take. For example, if the network
connecting the sender and receiver is down for a week, then it could take a week to deliver a
message. Messaging is highly reliable, even when the participants (sender, network, and receiver)
are not, but messages can take a very long time to transmit in unreliable circumstances. (For more

details, see Guaranteed Delivery.)

Often, a message’s contents have a practical limit for how long they’re useful. A caller issuing a
stock quote request probably looses interest if it does not receive an answer within a minute or so.
That means the request should not take more than a minute to transmit, but also that the answer
had better transmit back very quickly. A stock quote reply more than a minute or two old is
probably too old and therefore unreliable.

Once the sender sends a message and does not get a reply, it has no way to cancel or recall the
message. Likewise, a receiver could check when a message was sent and reject the message if it’s
too old, but different senders under different circumstances may have different ideas about how

long is too long, so how does the receiver know which messages to reject?
What is needed is a way for the sender to specify the message’s lifetime.

Set the Message Expiration to specify a time limit how long the message is viable.

www.EBooksWorld.ir



Wessage Defivery

Expuration @ - Tirees COwut

— o —amm— )

Sender Message Channel Intended
Raecerver

Opbiona!l .. ..
Reroute s —

Expired Dead Letter
hWessage Channel

Once the time for which a message is viable passes, and the message still has not been consumed,
then the message will expire. The messaging system’s consumers will ignore an expired message;
they treat the message as if it where never sent in the first place. Most messaging system
implementations reroute expired messages to the Dead Letter Channel, while others simply

discard expired messages; this may be configurable.

A Message Expiration is like the expiration date on a carton of milk —after that date, you're not
supposed to drink the milk. If the expiration date passes while the milk is on the grocery store
shelf, the grocer is supposed to pull the milk off the shelf and not sell it. If you end up with a
carton on milk that expires, you're supposed to pour it out. Likewise, when a message expires,
the messaging system should no longer deliver it. If a receiver nevertheless receives a message
but cannot process it before the expiration, the receiver should throw away the message.

A Message Expiration is a timestamp (date and time) that specifies how long the message will live
or when it will expire. The setting can be specified in relative or absolute terms. An absolute
setting specifies a date and time when the message will expire. A relative setting specifies how
long the message should live before it expires; the messaging system will use the time when the
message is sent to convert the relative setting into an absolute one. The messaging system is
responsible for adjusting the timestamp for receivers in different timezones from the sender, for
adjustments in daylight savings times, and any other issues that can keep two different clocks
from agreeing on what time it is.

The message expiration property has a related property, sent time, which specifies when the
message was sent. A message’s absolute expiration timestamp must be later than its sent
timestamp (or else the message will expire immediately). To avoid this problem, senders usually
specify expiration times relatively, in which case the messaging system calculates the expiration
timestamp by adding the relative timeout to the sent timestamp (expiration time = sent time +
time to live).

www.EBooksWorld.ir



When a message expires, the messaging system may simply discard it or may move it to a Dead
Letter Channel. A receiver that finds itself in possession of an expired message should move it to
the Invalid Message Channel. With a Publish-Subscribe Channel, each subscriber gets its own copy of

the message; some copies of a message may reach their subscribers successfully while other
copies of the same message expire before their subscribers consume them. When using
Request-Reply, a reply message with an expiration may not work well —if the reply expires, the
sender of the request will never know whether the request was ever received in the first place. If
reply expirations are used, the request sender has to be designed to handle the case where
expected replies are never received.

Example: JMS Time-To-Live Parameter

Message expiration is what the JMS spec calls “message time-to-live.” [[MS11, p.71], [Hapner,

pp.59-60] JMS messages have a predefined property for message expiration, JMSExpiration, but a
sender should not set it via Message . setIMSExpiration(long) because the JMS provider will
override that setting when the message is sent. Rather, the sender should use its MessageProducer
(QueueSender or TopicPublisher) to set the timeout for all messages it sends; the method for this
setting is MessageProducer.setTimeToLive(long). A sender can also set the time-to-live on an
individual message using the MessageProducer.send(Message message, int deliveryMode, int
priority, long timeToLive) method, where the forth parameter is the time-to-live in milliseconds.
Time-to-live is a relative setting specifying how long after the message is sent it should expire.

Example: .NET Time-To-Be-Received and

Time-To-Reach-Queue Property

A NET Message has two properties for specifying expiration: TimeToBeReceived and
TimeToReachQueue. The reach queue setting specifies how long the message has to reach its
destination queue, after which the message might sit in the queue indefinitely. The be received
setting specifies how long the message has to be consumed by a receiver, which limits the total
time for transmitting the message to its destination queue plus the amount of time the message
can spend sitting on the destination queue. TimeToBeReceived is equivalent to JMS’s

JMSExpiration property. Both time settings have a value of type System.TimeSpan, a length of time.
[SysMsg], [Dickman, pp.56-58]

Related patterns: Dead Letter Channel, Guaranteed Delivery, Invalid Message Channel, Message,

Messaging, Publish-Subscribe Channel, Request-Reply

www.EBooksWorld.ir



Format Indicator

Several applications are communicating via Messages that follow an agreed upon data format,
perhaps an enterprise-wide Canonical Data Model. However, that format may need to change over

time.
How can a message’s data format be designed to allow for possible future changes?

Even when you design a data format that works for all participating applications, future
requirements may change. New applications may be added that have new format requirements,
new data may need to be added to the messages, or developers may find better ways to structure
the same data. Whatever the case, designing a single enterprise data model is difficult enough;

designing one that will never need to change in the future is darn near impossible.

When an enterprise’s data format changes, there would be no problem if all of the applications
change with it. If every application stopped using the old format and started using the new
format, and all did so at exactly the same time, then conversion would be simple. The problem is
that some applications will be converted before others, while some less-used applications may
never be converted at all. Even if all applications could be converted at the same time, all
messages would have to be consumed so that all channels are empty before the conversion could

occur.

Realistically, applications are going to have to be able to support the old format and the new
format simultaneously. To do this, applications will need to be able to tell which messages follow
the old format and which use the new.

One solution might be to use a separate set of channels for the messages with the new format.
That, however, would lead to a huge number of channels, duplication of design, and
configuration complexity as each application has to be configured for an ever-expanding
assortment of channels.

A Dbetter solution is for the messages with the new format to share the same channels the
old-format messages have already been using. This means that receivers will need a way to
differentiate messages from the same channel that have different formats. The message must
specify what format it is using. Each message needs a simple way to indicate its format.

Design a data format that includes a Format Indicator, so that the message specifies what

format it is using.

The format indicator enables the sender to tell the receiver the format of the message. This way, a
receiver expecting several possible formats knows which one a message is using and therefore

how to interpret the message’s contents.

There are three main alternatives for implementing a format indicator:

www.EBooksWorld.ir



1. Version Number - A number or string that that uniquely identifies the format. Both the
sender and receiver must agree on which format is designated by a particular indicator.

2. Foreign Key - A unique ID —such as a filename, a database row key, a home primary key,
or an Internet URL — that specifies a format document. The sender and receiver must
agree on the mapping of keys to documents, and the format of the schema document.

3. Format Document - A schema that describes the data format. The schema document does
not have to be retrieved via a foreign key or inferred from a version number, it is
embedded in the message. The sender and the receiver must agree on the format of the
schema.

A version number or foreign key can be stored in a header field that the senders and receivers
agree upon. Receivers that are not interested in the format version can ignore the field. A format
document may be too long or complex to store in a header field, in which case the message body
will need to have a format that contains two parts, the schema and the data.

Example: XML

XML documents have examples of all three approaches. One example is an XML declaration, like
this:

<?xml version="1.0"?>

Here, 1.0 is a version number that indicates the document’s conformance to that version of the
XML specification. Another example is the document type declaration, which can take two forms.
It can be an external ID containing a system identifier like this:

<IDOCTYPE greeting SYSTEM "hello.dtd">

The system identifier, hello.dtd, is a foreign key that indicates the file containing the DTD
document that describes this XML document’s format. The declaration can also be included
locally, like this:

<IDOCTYPE greeting [
<IELEMENT greeting (#PCDATA)>

1>

The markup declaration, [<!ELEMENT greeting (#PCDATA)>], is a format document, an embedded
schema document that describes the XML's format. [ XML 1.0]

Related patterns: Canonical Data Model, Message

www.EBooksWorld.ir



6. Interlude: Simple Messaging

Introduction

So far, we've introduced a lot of patterns. We’ve seen the basic Messaging Components, such as
Message Channel, Message, and Message Endpoint. We've also seen detailed patterns for Messaging

Channels and for Message Construction.

So how do all of these patterns fit together? How does a developer integrate applications using
these patterns? What does the code look like, and how does it work?

This is the chapter where we really get to see the code. We have two examples:
° Request/Reply — Demonstrates (in Java and .NET/C#) how to use messaging to send a request message and
respond with a reply message.

° Publish/Subscribe — Explores how to use a JMS Topic to implement the Observer pattern.

These two simple examples should get you started on how add messaging to your own

applications.

Request/Reply Example

This is a simple but powerful example, transmitting a request and transmitting back a reply. It

consists of two main classes:

e Requestor — The object that sends the request message and expects to receive the reply message.
e Replier — The object that receives the request message and sends a reply message in response.

These two simple classes sending simple messages illustrate a number of the patterns:

e  Message Channel and Point-to-Point Channel — One channel for transmitting the requests, another

for transmitting the replies.
e Document Message — The default type of message, used as both the request and the reply.

e  Request-Reply — A pair of messages sent over a pair of channels, allowing the two applications to
have a two-way conversation.

e  Return Address — The channel to send the response on.

e  Correlation Identifier — The ID of the request that caused this response.

e Datatype Channel — All of the messages on each channel should be of the same type.
e Invalid Message Channel — What happens to messages that aren’t of the right type.

www.EBooksWorld.ir



The example code also demostrates a couple of patterns from the Messaging Endpoints chapter
later in the book:

e  Polling Consumer — How the requestor consumes reply messages.
e  Event-Driven Consumer — How the replier consumes request messages.

While this book is technology-, product-, and language-neutral, code cannot be. So we've
choosen two messaging programming platforms to implement this example:

e The JMSAPI in Java J2EE
e  The MSMQ API in Microsoft .NET using C#

The same request/reply example is implemented in both platforms. So choose your favorite
platform as an example of how messaging works. If you'd like to see how messaging works on
the other platform, even if you don’t know how to write code for that platform, you should be
able to figure out how that code works by comparing it to the code in the language you already
know.

Publish/Subscribe Example

This example explores how to implement the Observer pattern using a Publish-Subscribe Channel.

It considers distribution and threading issues and discusses how messaging greatly simplifies
these issues. The example shows how to implement both the push and pull models of notification
and compares the consequences of each. It also explores how to design an adaquate set of

channels needed for a complex enterprise with numerous subjects notifing numerous observers.

The discussion and sample code will illustrate several patterns:

° Publish-Subscribe Channel — The channel that provides publish/subscribe notification.

° Event Message — The message type used to send notifications.

° Request-Reply — The technique used as part of the pull model for an observer to request state from the
subject.

° Command Message — The message type used by an observer to request state from the subject.

° Document Message — The message type used by a subject to send its state to an observer.

° Return Address — Tells the subject how to send the state to the observer.

° Datatype Channel — The main guideline for whether two unrelated subjects can use the same channel to

update the same group of observers.

The example code also demostrates a couple of patterns from the Messaging Endpoints chapter
later in the book:

e Messaging Gateway — How the subject and observer encapsulate the messaging code so that they are not
messaging-specific.

e Event-Driven Consumer — How the observers consume notification messages.

www.EBooksWorld.ir



e Durable Subscriber — An observer that does not want to miss notifications, even if the observer is
temporarily disconnected when the notification is sent.

This example is implemented in Java using JMS because JMS supports Publish-Subscribe Channel

as an explicit feature of the API through its Topic interface. .NET does not provide a similar level
of support for using the publish/subscribe semantics in MSMQ); when it does, the techniques in
the JMS example should be readily applicable to .NET programs as well.

JMS Request/Reply Example

This is a simple example of how to use messaging, implemented in JMS [[MS]. It shows how to
implement Request-Reply, where a requestor application sends a request, a replier application
receives the request and returns a reply, and the requestor receives the reply. It also shows how
an invalid message will be rerouted to a special channel.

- _RequestQueue[

Requestor Replier

< |._ReplyQueue [ -

Components of the Request/Reply Example

This example was developed using JMS 1.1 and run using the J2EE 1.4 reference implementation.

Request/Reply Example

This example consists of two main classes:

1. Requestor — A Message Endpoint that sends a request message and waits to receive a reply message as a
response.
2. Replier — A Message Endpoint that waits to receive the request message; when it does, it responds by

sending the reply message.

The Requestor and the Replier will each run in a separate Java virtual machine (JVM), which is
what makes the communication distributed.

This example assumes that the messaging system has these three queues defined:

1. jms/RequestQueue — The Queue the Requestor uses to send the request message to the Replier.

2. jms/ReplyQueue — The Queue the Replier uses to send the reply message to the Requestor.

3. jms/InvalidMessages — The Queue that the Requestor and Replier move a message to when they receive a
message that they cannot interpret.

www.EBooksWorld.ir



Here's how the example works. When the Requestor is started in a command-line window, it
starts and prints output like this:

Sent request
Time: 1048261736520 ms
Message ID: ID:_XYZ123 1048261766139 6.2.1.1
Correl. ID: null
Reply to: com.sun.jms.Queue: jms/ReplyQueue
Contents: Hello world.

What this shows is that the Requestor has sent a request message. Notice that this works even
though the Replier isn't even running and therefore cannot receive the request.

When the Replier is started in another command-line window, it starts and prints output like
this:

Received request
Time: 1048261766790 ms
Message ID: ID:_XYZ123 1048261766139 6.2.1.1
Correl. ID: null
Reply to: com.sun.jms.Queue: jms/ReplyQueue
Contents: Hello world.

Sent reply
Time: 1048261766850 ms
Message ID: ID:_XYZ123 1048261758148 5.2.1.1
Correl. ID: ID:_XYZ123 1048261766139 6.2.1.1
Reply to: null
Contents: Hello world.

This shows that the Replier received the request message and sent a reply message.

There are several items in this output that are interesting to notice. First, notice the request send
and received timestamps; the request was received after it was sent (30270 ms later). Second,
notice that the message ID is the same in both cases, because it's the same message. Third, notice
that the contents, "Hello world," are the same, which is very good because this is the data being
transmitted and it has got to be the same on both sides. (The request in this example is pretty

lame. It is basically a Document Message; a real request would usually be a Command Message.)

Forth, the queue named "jms/ReplyQueue" has been specified in the request message as the
destination for the reply message (an example of the Return Address pattern).

Next, let's compare the output from receiving the request to that for sending the reply. First,
notice the reply was not sent until after the request was received (60 ms after). Second, the
message ID for the reply is different from that for the request; this is because the request and
reply messages are different, separate messages. Third, the contents of the request have been
extracted and added to the reply. Forth, the reply-to destination is unspecified because no reply is

www.EBooksWorld.ir



expected (the reply does not use the Return Address pattern). Fifth, the reply's correlation ID is the
same as the request's message ID (the reply does use the Correlation Identifier pattern).

Finally, back in the first window, the requester received the reply:

Received reply
Time: 1048261737060 ms
Message ID: ID:_XYZ123 1048261758148 5.2.1.1
Correl. ID: ID:_XYZ123 1048261766139 6.2.1.1
Reply to: null

Contents: Hello world.

This output contains several items of interest. The reply was received after it was sent (30210 ms).
The message ID of the reply was the same when it was received as it was when it was sent, which
proves that it is indeed the same message. The message contents received are the same as those
sent. And the correlation ID tells the requestor which request this reply is for (the Correlation

Identifier pattern).

Notice too that the requestor is designed to simply send a request, receive a reply, and exit. So
having received the reply, the requestor is no longer running. The replier, on the other hand,
doesn't know when it might receive a request, so it never stops running. To stop it, we go to its
command shell window and press the return key, which causes the replier program to exit.

So this is the request/reply example. A request was prepared and sent by the requestor. The
replier received the request and sent a reply. Then the requestor received the reply to its original
request.

Request/Reply Code

First, let's take a look at how the Requestor is implemented:

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;
public class Requestor {

private Session session;

www.EBooksWorld.ir



private Destination replyQueue;
private MessageProducer requestProducer;
private MessageConsumer replyConsumer;

private MessageProducer invalidProducer;

protected Requestor() {
super(Q);

public static Requestor newRequestor(Connection connection, String
requestQueueName,
String replyQueueName, String invalidQueueName)

throws JMSException, NamingException {

Requestor requestor = new Requestor();
requestor.initialize(connection, requestQueueName, replyQueueName,
inval idQueueName) ;

return requestor;

protected void initialize(Connection connection, String requestQueueName,
String replyQueueName, String invalidQueueName)

throws NamingException, JMSException {

session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;

Destination requestQueue =

JndiUtil _.getDestination(requestQueueName) ;
replyQueue = JndiUtil_getDestination(replyQueueName);
Destination invalidQueue =

JndiUtil _.getDestination(inval idQueueName) ;

requestProducer = session.createProducer(requestQueue);
replyConsumer = session.createConsumer(replyQueue);

invalidProducer = session.createProducer(invalidQueue);

public void send() throws JMSException {
TextMessage requestMessage = session.createTextMessage();
requestMessage.setText("*Hello world."");
requestMessage.setIMSReplyTo(replyQueue);
requestProducer .send(requestMessage) ;

System.out._printIn(’'Sent request™);

www.EBooksWorld.ir



System.out._printIn(""\tTime:
ms™);

System.out._printIn(""\tMessage ID: " +
requestMessage.getJMSMessagelD());

System.out._printin("\tCorrel. ID: " +
requestMessage.getIMSCorrelationID());

System.out._printIn('"\tReply to: " +
requestMessage.getIMSReplyTo());

System.out._printin("\tContents: + requestMessage.getText());

public void receiveSync() throws JMSException {
Message msg = replyConsumer.receive();
if (msg instanceof TextMessage) {
TextMessage replyMessage = (TextMessage) msg;
System.out._printIn(‘'Received reply ");
System.out._printin("\tTime: "o+

System.currentTimeMillis() + ms');

System.out._printIn('"\tMessage ID: " +
replyMessage .getJMSMessagelD());

System.out._printIn('"\tCorrel. ID: " +
replyMessage .getJMSCorrelationID());

System.out._printin(""\tReply to: " +
replyMessage.getJMSReplyTo());

System.out._printin('"\tContents: " +
replyMessage.getText());

} else {

System.out._printIn(’'Invalid message detected');

System.out._printin("\tType: "o+
msg.getClass() -.getName());

System.out._printin("\tTime: "o+

System.currentTimeMillis() + ms');
System.out._printIn('"\tMessage ID: " +
msg.getIMSMessagelD());
System.out._printIn('"\tCorrel. ID: " +

msg.getIMSCorrelationID());

+ System.currentTimeMillis(Q +

System.out._printIn(""\tReply to: " + msg.getIMSReplyTo());

msg.-setIMSCorrelationlD(msg.-getJMSMessagelD());

inval idProducer.send(msg) ;
System.out._printIn(’'Sent to invalid message queue');

System.out._printin("\tType: "o+
msg.getClass() .getName());

www.EBooksWorld.ir



System.out._printin("\tTime: "o+
System.currentTimeMillis() + " ms'");

System.out._printIn('"\tMessage ID: " +
msg.getIMSMessagelD());

System.out._printin('"\tCorrel. ID: " +
msg.getIMSCorrelationID());

System.out._printIn(""\tReply to: " + msg.getIMSReplyTo());

An application that wants to send requests and recieve replies could use a requestor to do so. The
application provides its requestor a Connection to the messaging system. It also specifies the JNDI
names of three queues: the request queue, the reply queue, and the invalid message queue. This
is the information the requestor needs to initialize itself.

In initialize, the requestor uses the Connection and queue names to connect to the messaging

system.

e It uses the Connection to create a Session. An application only needs one connection to a
messaging system, but each component in the application that wishes to be able to send
and receive messages independently needs its own session. Two threads cannot share a
single session; they should each use a different session so that the sessions will work
properly.

e It uses the queue names to look up the queues, which are Destinations. The names are
JNDI identifiers; JndiUtil performs the JNDI lookups.

e It creates a MessageProducer for sending messages on the request queue, a
MessageConsumer for receiving messages from the reply queue, and another producer

for moving messages to the invalid message queue.

One thing that the requestor needs to be able to do is send request messages. For that, it
implements the send() method.

e It creates a TextMessage and sets its contents to "Hello world."

e It sets the message's reply-to property to be the reply queue. This is a Return Address that
will tell the replier how to send back the reply.

e It uses the requestProducer to send the message. The producer is connected to the request
queue, so that's the queue the message is sent on.

e It then prints out the details of the message it just sent. This is done after the message is
sent because the message ID is set by the messaging system and is not set until the
message is actually sent.

The other thing the requestor needs to be able to do is receive reply messages. It implements the

receiveSync() method for this purpose.

www.EBooksWorld.ir



e It uses its replyConsumer to receive the reply. The consumer is connected to the reply
queue, so it will receive messages from there. It uses the receive() method to get the
message, which synchronously blocks until a message is delivered to the queue and is
read from the queue, so the requestor is a Polling Consumer. Because this receive is

synchronous, the requestor's method is called receiveSync().

e The message should be a TextMessage. If so, the requestor gets the message's contents
and prints out the message's details.

e If the message is not a TextMessage, then the message cannot be processed. Rather than
just discarding the message, the requestor resends it to the invalid message queue.
Resending the message will change its message ID, so before resending it, the requestor
stores its original message ID in its correlation ID (see Correlation Identifier).

In this way, a requestor does everything necessary to send a request, receive a reply, and route
the reply to a special queue if the message does not make any sense.

Next, let's take a look at how the Replier is implemented:

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.MessageProducer;
import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;
public class Replier implements MessagelListener {

private Session session;

private MessageProducer invalidProducer;

protected Replier() {
super();

public static Replier newReplier(Connection connection, String
requestQueueName, String invalidQueueName)

throws JMSException, NamingException {
Replier replier = new Replier();

replier.initialize(connection, requestQueueName, invalidQueueName);

return replier;

www.EBooksWorld.ir



protected void initialize(Connection connection, String requestQueueName,
String inval idQueueName)

throws NamingException, JMSException {

session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;
Destination requestQueue =

JndiUtil _.getDestination(requestQueueName) ;

Destination invalidQueue

JndiUtil _.getDestination(inval idQueueName) ;

MessageConsumer requestConsumer =
session.createConsumer (requestQueue);
MessageListener listener = this;

requestConsumer .setMessageListener(listener);

invalidProducer = session.createProducer(invalidQueue);

public void onMessage(Message message) {
try {
if ((message instanceof TextMessage) &&
(message -getJIMSReplyTo() !'= null)) {

TextMessage requestMessage = (TextMessage) message;

System.out._printIn(*’'Received request™);
System.out._printIn(C"\tTime: "o+

System.currentTimeMillis() + ms');
System.out._printIn(C"\tMessage ID: " +

requestMessage.getJIMSMessagelD());

System.out._printIn(C"\tCorrel. ID: " +
requestMessage.getJIMSCorrelationID());

System.out._printIn(C"\tReply to: " +
requestMessage.getIMSReplyTo());

System.out._printIn(’"\tContents: " +

requestMessage.getText());

String contents = requestMessage.getText();
Destination replyDestination =

message -getJMSReplyTo();
MessageProducer replyProducer =

session.createProducer(replyDestination);

www.EBooksWorld.ir



TextMessage replyMessage =
session.createTextMessage();

replyMessage.setText(contents);

replyMessage .setJMSCorrelationlD(requestMessage.getJMSMessagelD());

replyProducer._send(replyMessage);

System.out._printIn(*'Sent reply™);
System.out._printIn(C"\tTime: "o+

System.currentTimeMillis() + ms');
System.out._printIn(C"\tMessage ID: " +
replyMessage .getJMSMessagelD());
System.out._printIn(C"\tCorrel. ID: " +

replyMessage .getJMSCorrelationID());

System.out._printIn(C'\tReply to: " +
replyMessage.getJMSReplyTo());

System.out._printIn(’"\tContents: " +
replyMessage.getText());

} else {

System.out._printIn('Invalid message detected™);

System.out._printin("\tType: "o+
message.getClass() -.getName());

System.out._printIn(C"\tTime: "o+
System.currentTimeMillis() + " ms'");

System.out._printIn(C"\tMessage ID: " +
message .getJMSMessagelD());

System.out._printIn(""\tCorrel. ID: " +
message .getJMSCorrelationID());

System.out._printIn(C"\tReply to: " +
message -getIMSReplyTo());

message.setJMSCorrelationlD(message.getIJMSMessagelD());

invalidProducer.send(message);

System.out._printIn(*'Sent to invalid message queue');

System.out._printin("\tType: "o+
message.getClass() -getName());

System.out._printIn(C"\tTime: "o+
System.currentTimeMillis() + " ms'");

System.out._printIn(""\tMessage ID: " +
message .getJMSMessagelD());

System.out._printIn(""\tCorrel. ID: " +
message .getJMSCorrelationID());

www.EBooksWorld.ir



System.out.printin(’"\tReply to: " +
message .getJMSReplyTo());
}
} catch (IMSException e) {
e.printStackTrace();

Replier is what an application might use to receive a request and send a reply. The application
provides its requestor a Connection to the messaging system, as well as the JNDI names of the
request and invalid message queues. (It does not need to specify the name of the reply queue
because, as we'll see, that will be provided by the message's Return Address.) This is the
information the requestor needs to initialize itself.

The replier's initialize code is pretty similar to the requestor's, but there are a couple of
differences:

e One difference is that the replier does not look up the reply queue and create a producer
for it. This is because the replier does not assume it will always send replies on that queue;
rather, as we'll see it will let the request message tell it what queue to send the reply
message on.

e Another difference is that replier is an Event-Driven Consumer, so it implements

MessageListener. When a message is delivered to the request queue, the messaging

system will automatically call the replier's onMessage method.

Once the replier has initialized itself to be a listener on the request queue, there's not much for it
to do but wait for messages. Unlike the requestor, which has to explicitedly poll the reply queue
for messages, the replier is event-driven and so does nothing until the messaging system calls its
onMessage method with a new message. The message will be from the request queue because
initialize created the consumer on the request queue. Once onMessage receives a new message,
it processes the message like this:

e Like with the requestor processing a reply message, the request message is supposed to
be a TextMessage. It is also supposed to specify the queue to send the reply on. If the
message does not meet these requirements, the replier will move the message to the
invalid message queue (same as the requestor).

e If the message meets the requirements: Here is where the replier implements its part of
the Return Address pattern. Remember that the requestor set the request message's
reply-to property to specify the reply queue. The replier now gets that property's value
and uses it to create a MessageProducer on the proper queue. The important part here is
that the replier is not hard-coded to use a particular reply queue; it uses whatever reply
queue each particular request message specifies.

www.EBooksWorld.ir



e The replier then creates the reply message. In doing so, it implements the Correlation
Identifier pattern by setting the relpy message's correlation-id property to the same value
as the request message's message-id property.

e The replier then sends out the reply message and displays its details.

Thus a replier does everything necessary to receive a message (presumably a request) and send a
reply.

Invalid Message Example

While we're at it, let's look at an example of the Invalid Message Channel pattern. Remember, one

of the queues we need is one named "jms/InvalidMessages." This exists so that if a JMS client (a

Message Endpoint) receives a message it cannot process, it can move the strange message to a

special channel.

To demonstrate invalid message handling, we have designed an InvalidMessenger class. This
object is specifically designed to send a message on the request channel whose format is incorrect.
Like any channel, the request channel is a Datatype Channel, in that the request receivers expect

the requests to be of a certain format. The invalid messenger simply sends a message of a
different format; when the replier receives the message, it does not recognize the message's
format, and so moves the message to the invalid message queue.

We'll run the Replier in one window and the Invalid Messenger in another window. When the

invalid messenger sends its message, it displays output like this:

Sent invalid message
Type: com.sun.jms.ObjectMessagelmpl
Time: 1048288516959 ms
Message ID: ID:_XYZ123 1048288516639 7.2.1.1
Correl. ID: null

Reply to: com.sun.jms.Queue: jms/ReplyQueue

This shows that the message is an instance of ObjectMessage (Whereas the replier is expecting a
TextMessage). The Replier recieves the invalid message and resends it to the invalid message
queue:

Invalid message detected
Type: com.sun. jms.ObjectMessagelmpl
Time: 1048288517049 ms
Message ID: ID:_XYZ123 1048288516639 7.2.1.1
Correl. ID: null
Reply to: com.sun.jms.Queue: jms/ReplyQueue
Sent to invalid message queue

Type: com.sun. jms.ObjectMessagelmpl

www.EBooksWorld.ir



Time: 1048288517140 ms
Message ID: ID:_XYZ123_1048287020267_6.2.1.2
Correl. ID: 1D:_XYZ123 1048288516639 7.2.1.1

Reply to: com.sun.jms.Queue: jms/ReplyQueue

One insight worth noting is that when the message is moved to the invalid message queue, it is
actually being resent, so it gets a new message ID. Because of this, we apply the Correlation
Identifier pattern; once the replier determines the message to be invalid, it copies the message's
main ID to its correlation ID so as to preserve a record of the message's original ID.

The code that handles this invalid-message processing is in the Replier class shown earlier, in the

onMessage method. Requestor.receiveSync() contains similar invalid-message processing code.

Conclusions

We've seen how to implement two classes, Requestor and Replier (Message Endpoints), that

exchange a request and reply Messages using Request-Reply. The request message uses a Return
Address to specify what queue to send the reply on. The reply messages uses a Correlation
Identifier to specify which request this is a reply for. The Requestor implements a Polling Consumer

to receive replies, whereas the Replier implements an Event-Driven Consumer to receive requests.

The request and reply queues are Datatype Channels; when a consumer receives a message that is

not of the right type, it reroutes the message to the Invalid Message Channel.

.NET Request/Reply Example

This is a simple example of how to use messaging, implemented in .NET [SysMsg] and C#. It
shows how to implement Request-Reply, where a requestor application sends a request, a replier
application receives the request and returns a reply, and the requestor receives the reply. It also
shows how an invalid message will be rerouted to a special channel.

- _RequestQueue[

Requestor Replier

< |._ReplyQueue [ -

Components of the Request/Reply Example

This example was developed using the Microsoft NET Framework SDK and run on a Windows
XP computer with MSMQ [MSMQO01] installed.

www.EBooksWorld.ir



Request/Reply Example

This example consists of two main classes:

1. Requestor — A Message Endpoint that sends a request message and waits to receive a reply message as a
response.
2. Replier — A Message Endpoint that waits to receive the request message; when it does, it responds by

sending the reply message.

The Requestor and the Replier will each run as a separate .NET program, which is what makes

the communication distributed.
This example assumes that the messaging system has these three queues defined:

1. \private$\RequestQueue — The MessageQueue the Requestor uses to send the request message to the
Replier.

2. \private$\ReplyQueue — The MessageQueue the Replier uses to send the reply message to the Requestor.

3. \private$\InvalidQueue — The MessageQueue that the Requestor and Replier move a message to when
they receive a message that they cannot interpret.

Here's how the example works. When the Requestor is started in a command-line window, it

starts and prints output like this:

Sent request

Time: 09:11:09.165342
Message 1D: 8b0fc389-f21f-423b-9eaa-c3a881a34808\149
Correl. ID:

Reply to: .\private$\ReplyQueue
Contents: Hello world.

What this shows is that the Requestor has sent a request message. Notice that this works even
though the Replier isn't even running and therefore cannot receive the request.

When the Replier is started in another command-line window, it starts and prints output like
this:

Received request
Time: 09:11:09.375644
Message 1D: 8b0fc389-f21f-423b-9eaa-c3a881a34808\149
Correl. ID: <n/a>
Reply to: FORMATNAME:DIRECT=0S:XYZ123\private$\ReplyQueue
Contents: Hello world.

Sent reply
Time: 09:11:09.956480

www.EBooksWorld.ir



Message ID: 8b0fc389-121f-423b-9eaa-c3a881a34808\150
Correl. ID: 8b0fc389-121f-423b-9eaa-c3a881a34808\149
Reply to: <n/a>

Contents: Hello world.

This shows that the Replier received the request message and sent a reply message.

There are several items in this output that are interesting to notice. First, notice the request send
and received timestamps; the request was received after it was sent (210302 ms later). Second,
notice that the message ID is the same in both cases, because it's the same message. Third, notice
that the contents, "Hello world," are the same, which is very good because this is the data being
transmitted and it has got to be the same on both sides. (The request in this example is pretty
lame. It is basically a Document Message; a real request would usually be a Command Message.)

Forth, the queue named "jms/ReplyQueue" has been specified in the request message as the
destination for the reply message (an example of the Refurn Address pattern).

Next, let's compare the output from receiving the request to that for sending the reply. First,
notice the reply was not sent until after the request was received (580836 ms after). Second, the
message ID for the reply is different from that for the request; this is because the request and
reply messages are different, separate messages. Third, the contents of the request have been
extracted and added to the reply. Forth, the reply-to destination is unspecified because no reply is
expected (the reply does not use the Return Address pattern). Fifth, the reply's correlation ID is the
same as the request's message ID (the reply does use the Correlation Identifier pattern).

Finally, back in the first window, the requester received the reply:

Received reply
Time: 09:11:10.156467
Message ID: 8b0fc389-121f-423b-9eaa-c3a881a34808\150
Correl. ID: 8b0fc389-121F-423b-9eaa-c3a881a34808\149
Reply to: <n/a>

Contents: Hello world.

This output contains several items of interest. The reply was received after it was sent (199987
ms). The message ID of the reply was the same when it was received as it was when it was sent,
which proves that it is indeed the same message. The message contents received are the same as
those sent. And the correlation ID tells the requestor which request this reply is for (the
Correlation Identifier pattern).

Notice too that the requestor is designed to simply send a request, receive a reply, and exit. So
having received the reply, the requestor is no longer running. The replier, on the other hand,
doesn't know when it might receive a request, so it never stops running. To stop it, we go to its
command shell window and press the return key, which causes the replier program to exit.

www.EBooksWorld.ir



So this is the request/reply example. A request was prepared and sent by the requestor. The

replier received the request and sent a reply. Then the requestor received the reply to its original
request.

Request/Reply Code

First, let's take a look at how the Requestor is implemented:

using System;

using System.Messaging;

public class Requestor
{
private MessageQueue requestQueue;

private MessageQueue replyQueue;

public Requestor(String requestQueueName, String replyQueueName)
{
requestQueue = new MessageQueue(requestQueueName);

replyQueue = new MessageQueue(replyQueueName);

replyQueue_MessageReadPropertyFilter.SetAll();

((XmlMessageFormatter)replyQueue.Formatter) .TargetTypeNames = new
string[]{"System.String,mscorlib"};

}

public void Send()

{
Message requestMessage = new Message();
requestMessage.Body = ""Hello world.";
requestMessage.ResponseQueue = replyQueue;

requestQueue.Send(requestMessage) ;

Console_WriteLine(''Sent request');
Console_WriteLine('"\tTime: {0},
DateTime_Now.ToString(""HH:mm:ss.FFFFFf"));
Console_WriteLine('"\tMessage ID: {0}, requestMessage.ld);
Console_WriteLine(""\tCorrel. ID: {0}",
requestMessage.Correlationld);
Console_WriteLine(""\tReply to: {0}",
requestMessage .ResponseQueue.Path);
Console_WriteLine('"\tContents: {0}",
requestMessage.Body.-ToString());
}

www.EBooksWorld.ir



public void ReceiveSync()

{

Message replyMessage = replyQueue.Receive();

Console_WriteLine(""Received reply');
Console_WriteLine('"\tTime: {0},
DateTime_Now.ToString(""HH:mm:ss.FFFFFf"));
Console_WriteLine('"\tMessage ID: {0}, replyMessage.ld);
Console_WriteLine("'\tCorrel. ID: {0}, replyMessage.Correlationld);
Console_WriteLine(""\tReply to: {0}, "<n/a>");
Console_WriteLine('"\tContents: {0}",
replyMessage .Body.ToString());

}

An application that wants to send requests and recieve replies could use a requestor to do so. The
application specifies the pathnames of two queues: the request queue and the reply queue. This is
the information the requestor needs to initialize itself.

In the Requestor constructor, the requestor uses the queue names to connect to the messaging

system.

e It uses the queue names to look up the queues, which are MessageQueues. The names are
pathnames to MSMQ resources.

e It sets the reply queue's property filter so that when a message is read from the queue, all
of the message's properties will be read as well. It also sets the queue's formatter to be an

XmlMessageFormatter so that the message contents will be interpreted as strings.

One thing that the requestor needs to be able to do is send request messages. For that, it
implements the Send() method.

e It creates a Message and sets its contents to "Hello world."

e It sets the message's ResponseQueue property to be the reply queue. This is a Return
Address that will tell the replier how to send back the reply.

e It then sends the message to the queue.

e It then prints out the details of the message it just sent. This is done after the message is
sent because the message ID is set by the messaging system and is not set until the

message is actually sent.

The other thing the requestor needs to be able to do is receive reply messages. It implements the
ReceiveSync() method for this purpose.

e It runs the queue's Receive() method to get the message, which synchronously blocks
until a message is delivered to the queue and is read from the queue, so the requestor is a

www.EBooksWorld.ir



Polling Consumer. Because this receive is synchronous, the requestor's method is called
ReceiveSync().

e The requestor gets the message's contents and prints out the message's details.
In this way, a requestor does everything necessary to send a request and receive a reply.

Next, let's take a look at how the Replier is implemented:

using System;

using System.Messaging;
class Replier {
private MessageQueue invalidQueue;

public Replier(String requestQueueName, String invalidQueueName)
{
MessageQueue requestQueue = new MessageQueue(requestQueueName);

invalidQueue = new MessageQueue(invalidQueueName);

requestQueue .MessageReadPropertyFilter._SetAll1();

((XmlMessageFormatter)requestQueue.Formatter) ._TargetTypeNames = new
string[]{"System._String,mscorlib"};

requestQueue .ReceiveCompleted += new
ReceiveCompletedEventHandler (OnReceiveCompleted);

requestQueue .BeginReceive();

public void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs
asyncResult)
{
MessageQueue requestQueue = (MessageQueue)source;
Message requestMessage =

requestQueue .EndReceive(asyncResult_AsyncResult);

try

{
Console_WriteLine("'Received request™);
Console_WriteLine('"\tTime: {0},

DateTime.Now.ToString(""HH:mm:ss._fFFffff"));
Console_WriteLine('"\tMessage ID: {0}, requestMessage.ld);
Console_WriteLine('\tCorrel. 1D: {0}, "<n/a>");

Console_WriteLine("\tReply to: {0}",
requestMessage .ResponseQueue.Path);

www.EBooksWorld.ir



Console._WriteLine('"\tContents: {0}",
requestMessage.Body.ToString());

string contents = requestMessage.Body.ToString();

MessageQueue replyQueue = requestMessage.ResponseQueue;

Message replyMessage = new Message();
replyMessage.Body = contents;
replyMessage.Correlationld = requestMessage.ld;

replyQueue.Send(replyMessage);

Console_WriteLine(Sent reply™);
Console_WriteLine('"\tTime: {0},
DateTime_Now.ToString(""HH:mm:ss.FFFFFf"));

Console._WriteLine(""\tMessage ID: {0}", replyMessage.ld);

Console_WriteLine("\tCorrel. ID: {O}",
replyMessage.Correlationld);
Console_WriteLine(""\tReply to: {0}, "<n/a>");
Console._WriteLine('"\tContents: {0}",
replyMessage.Body.ToString());
}
catch ( Exception ) {
Console._WriteLine("Invalid message detected™);
Console_WriteLine(""\tType: {0},
requestMessage.BodyType);
Console_WriteLine('"\tTime: {0},
DateTime_Now.ToString(""HH:mm:ss.FFFFFf"));
Console._WriteLine(""\tMessage ID: {0}", requestMessage
Console_WriteLine("\tCorrel. ID: {0}, "<n/a>");
Console_WriteLine(""\tReply to: {0}, "<n/a>");

requestMessage.Correlationld = requestMessage.ld;
inval idQueue.Send(requestMessage) ;

Console_WriteLine("Sent to invalid message queue');
Console_WriteLine(""\tType: {0},
requestMessage.BodyType);
Console_WriteLine("\tTime: {0},
DateTime_Now.ToString(""HH:mm:ss.FFFFFf"));

Console_WriteLine(""\tMessage ID: {0}", requestMessage

Console_WriteLine("\tCorrel. ID: {O}",
requestMessage.Correlationld);

Console_WriteLine("\tReply to: {0}",
requestMessage .ResponseQueue.Path);

www.EBooksWorld.ir

_1d)

_1d)



requestQueue .BeginReceive();

Replier is what an application might use to receive a request and send a reply. The application
specifies the pathnames of the request and invalid message queues. (It does not need to specify
the name of the reply queue because, as we'll see, that will be provided by the message's Return
Address.) This is the information the requestor needs to initialize itself.

The Replier constructor is pretty similar to the requestor's, but there are a couple of differences:

e One difference is that the replier does not look up the reply queue. This is because the
replier does not assume it will always send replies on that queue; rather, as we'll see it
will let the request message tell it what queue to send the reply message on.

e Another difference is that replier is an Event-Driven Consumer, so it sets up a

ReceiveCompletedEventHandler. When a message is delivered to the request queue, the
messaging system will automatically call the specified method, OnReceiveCompleted.

Once the replier has initialized itself to be a listener on the request queue, there's not much for it
to do but wait for messages. Unlike the requestor, which has to explicitedly poll the reply queue
for messages, the replier is event-driven and so does nothing until the messaging system calls its
OnReceiveCompleted method with a new message. The message will be from the request queue
because the constructor created the event handler on the request queue. Once OnReceiveCompleted
is called, this is what it does to get the new message and processes it:

e The source is a MessageQueue, the request queue.

e The message itself is obtained by running the queue's EndReceive method. The replier
then prints out the details about the message.

e Then the replier implements its part of the Return Address pattern. Remember that the
requestor set the request message's response-queue property to specify the reply queue.
The replier now gets that property's value and uses it reference the proper
MessageQueue. The important part here is that the replier is not hard-coded to use a
particular reply queue; it uses whatever reply queue each particular request message
specifies.

e The replier then creates the reply message. In doing so, it implements the Correlation
Identifier pattern by setting the relpy message's correlation-id property to the same value
as the request message's message-id property.

e The replier then sends out the reply message and displays its details.

e If the message can be received but not successfully processed, and an Exception is thrown,
the replier resends the message to the invalid message queue. In the process, it sets the
new message's correlation id to the original message's message id.

e Once the replier has finished processing the message, it runs BeginReceive to start
listening for the next message.

www.EBooksWorld.ir



Thus a replier does everything necessary to receive a message (presumably a request) and send a
reply. If it cannot reply to a message, it routes the message to the invalid message queue.

Invalid Message Example

While we're at it, let's look at an example of the Invalid Message Channel pattern. Remember, one
of the queues we need is one named "private$\ InvalidMessages." This exists so that if an MSMQ

client (a Message Endpoint) receives a message it cannot process, it can move the strange message

to a special channel.

To demonstrate invalid message handling, we have designed an InvalidMessenger class. This
object is specifically designed to send a message on the request channel whose format is incorrect.
Like any channel, the request channel is a Datatype Channel, in that the request receivers expect

the requests to be of a certain format. The invalid messenger simply sends a message of a
different format; when the replier receives the message, it does not recognize the message's
format, and so moves the message to the invalid message queue.

We'll run the Replier in one window and the Invalid Messenger in another window. When the

invalid messenger sends its message, it displays output like this:

Sent request
Type: 768
Time: 09:39:44_.223729
Message ID: 8b0fc389-121f-423b-9eaa-c3a881a34808\168
Correl. ID: 00000000-0000-0000-0000-000000000000\0
Reply to: .\private$\ReplyQueue

Type 768 means that the format of the message contents is binary (whereas the replier is
expecting the contents to be text/ XML). The Replier recieves the invalid message and resends it
to the invalid message queue:

Invalid message detected
Type: 768
Time: 09:39:44.233744
Message I1D: 8b0fc389-121f-423b-9eaa-c3a881a34808\168
Correl. ID: <n/a>
Reply to: <n/a>
Sent to invalid message queue
Type: 768
Time: 09:39:44.233744
Message 1D: 8b0fc389-f21f-423b-9eaa-c3a881a34808\169
Correl. 1D: 8b0fc389-f21f-423b-9eaa-c3a881a34808\168
Reply to: FORMATNAME:DIRECT=0S:XYZ123\private$\ReplyQueue

www.EBooksWorld.ir



One insight worth noting is that when the message is moved to the invalid message queue, it is
actually being resent, so it gets a new message ID. Because of this, we apply the Correlation
Identifier pattern; once the replier determines the message to be invalid, it copies the message's
main ID to its correlation ID so as to preserve a record of the message's original ID.

The code that handles this invalid-message processing is in the Replier class shown earlier, in the
OnReceiveCompleted method.

Conclusions

We've seen how to implement two classes, Requestor and Replier (Message Endpoints), that

exchange a request and reply Messages using Request-Reply. The request message uses a Return
Address to specify what queue to send the reply on. The reply messages uses a Correlation
Identifier to specify which request this is a reply for. The Requestor implements a Polling Consumer

to receive replies, whereas the Replier implements an Event-Driven Consumer to receive requests.

The request and reply queues are Datatype Channels; when a consumer receives a message that is

not of the right type, it reroutes the message to the Invalid Message Channel.

JMS Publish/Subscribe Example

This is a simple example that shows the power of publish/subscribe messaging, and explores the
alternative designs available. It shows how multiple subscriber applications can all be informed
of a single event by publishing the event just once, and considers alternative stratagies for how to
communicate details of that event to the subscribers.

= Subscriber
Publisher I » Subscriber
# Subscriber

Topic

Publish/Subscribe using a JMS Topic

To understand how helpful a simple Publish-Subscribe Channel really is, we first need to consider

what it is like to implement the Observer pattern in a distributed fashion, amongst multiple
applications. Before we get to that, let's review the basics of Observer.

The Observer Pattern

The Observer pattern [GoF] documents a design through which an object can notify its
dependents of a change, while keeping that object decoupled from its dependents so that the

www.EBooksWorld.ir



object works just fine no matter how many dependents it has, even none at all. Its participants are
a Subject — the object announcing changes in its state —and Observers —objects interested in
receiving notification of changes in the Subject. When a subject's state changes, it sends itself
Notify(), whose implementation knows the list of observers and sends Update() to each of them.
Some observers may not be interested in this state change, but those who are can find out what
the new state is by sending GetState() to the subject. The subject must also implement
Attach(Observer) and Detach(Observer) methods that the observers use to register interest.

Observer provides two ways to get the new state from the subject to the observer: the push model
and the pull model. With the push model, the Update call to each observer contains the new state as
a parameter. Thus interested observers can avoid having to call GetState(), but effort is wasted
passing data to uninterested observers. The opposite approach is the pull model, where the subject
sends basic notification and each observer requests the new state from the subject. Thus each
observer can request the exact details it wants, even none at all, but the subject often has to serve
multiple requests for the same data. The push model requires a single, one-way
communication — the Subject pushes the data to an Observer as part of the update. The pull
model requires three one-way communications — the Subject notifies an Observer, the Observer
requests the current state from the Subject, and the Subject sends the current state to the Observer.
As we'll see, the number of one-way communications affects both the design-time complexity
and the runtime performance of the notification.

The easiest way to implement a Subject's Notify() method is with a single thread, but that can
have undesirable performance implications. A single thread will update each observer
one-at-a-time, in sequence; so those at the end of a long list of observers may need to wait a long
time for updates. And a subject spending a long time updating all of its observers isn't
accomplishing anything else. Even worse, an observer may well use its update thread to recact to
the update, querying the subject for state and processing the new data; such observer work in the

update thread makes the update process take even longer.

Thus the more sophisticated way to implement a Subject's Notify() method is to run each
Update() call in its own thread. Then all observers can be updated concurrently, and whatever
work each may do in its update thread does not delay the other observers or the subject. The
downside is that implementing multithreading and handling thread-management issues is more

complex.

Distributed Observer

The Observer pattern tends to assume that the Subject and its Observers all run in the same
application. The pattern's design supports distribution, where the Observers run in a seperate
memory space from the Subject and perhaps from each other, but the distribution takes work.
The Update() and GetState() methods, as well as the Attach and Detach methods, must be made

remotely accessible (see Remote Procedure Invocation). Because the Subject must be able to call each
Observer and vise versa, each object must be running in some type of ORB environment that
allows the objects it contains to be invoked remotely. And because the update details and state

www.EBooksWorld.ir



data will be passed between memory spaces, the applications must be able to serialize (e.g.,
marshall) the objects they are passing.

Thus implementing Observer in a distributed environment can get rather complex. Not only is a
multi-threaded Observer somewhat difficult to implement, but then making methods remotely
accessible —and invoking them remotely —adds more difficulty. The can be a lot of work just to
notify some dependents of state changes.

Another problem is that a Remote Procedure Invocation only works when the source of the call, the

target, and the network connecting them are all working properly. If a Subject announces a
change and a remote Observer is not ready to process the notification or is disconnected from the
network, the Observer looses the notification. While the Observer may work fine without the
notification in some cases, in other cases the lost notification may cause the Observer to become
out of sync with the Subject — the whole problem the Observer pattern is designed to prevent.

Distribution also favors the push model over the pull model. As discussed earlier, push requires
a single one-way communication whereas pull requires three. When the distribution is
implemented via RPC's (remote procedure calls), push requires one call (Update()) whereas pull
requires at least two calls (Update() and GetState()). RPC's have more overhead than
non-distributed method invocations, so the extra calls required by the push approach can quickly
hurt performance.

Publish-Subscribe

A Publish-Subscribe Channel implements the Observer pattern, making the pattern much easier to

use amongst distributed applications. The pattern is implemented in three steps:

1. The messaging system administrator creates a Publish-Subscribe Channel. (This will be

represented in Java applications as a JMS Topic.)

2. The application acting as the Subject creates a TopicPublisher (a type of MessageProducer)
to send messages on the channel.

3. Each of the applications acting as an Observer (e.g., a dependent) creates a
TopicSubscriber (a type of MessageConsumer) to receive messages on the channel. (This
is analogous to calling the Attach(Observer) method in the Observer pattern.)

This establishes a connection between the subject and the observers through the channel. Now,
whenever the subject has a change to announce, it does so by sending a message. The channel
will ensure that each of the observers receives a copy of this message.

Here is a simple example of the code needed to announce the change:

import javax.jms.Connection;
import javax.jms.ConnectionFactory;

import javax.jms.Destination;

www.EBooksWorld.ir



import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class SubjectGateway {

public static final String UPDATE_TOPIC_NAME = "jms/Update’;
private Connection connection;
private Session session;

private MessageProducer updateProducer;

protected SubjectGateway() {
super(Q);

public static SubjectGateway newGateway() throws JMSException, NamingException

SubjectGateway gateway = new SubjectGateway();
gateway.initialize();

return gateway;

protected void initialize() throws JMSException, NamingException {
ConnectionFactory connectionFactory =
JndiUti Il _.getQueueConnectionFactory();
connection = connectionFactory.createConnection();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;
Destination updateTopic =
JndiUtil _getDestination(UPDATE_TOPIC_NAME);

updateProducer = session.createProducer(updateTopic);

connection.start();

public void notify(String state) throws JMSException {

TextMessage message = session.createTextMessage(state);

updateProducer .send(message) ;

public void release() throws JMSException {
if (connection != null) {

connection.stop();

www.EBooksWorld.ir



connection.close();

SubjectGateway is a Messaging Gateway between the Subject (not shown) and the messaging

system. The subject creates the gateway and then uses it to broadcast notifications. Essentially,
the subject's Notify() method is implemented to call SubjectGateway.notify(String). The
gateway then announces the change by sending a message on the update channel.

And here is an example of the code needed to receive the change notification:

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;
public class ObserverGateway implements MessagelListener {

public static final String UPDATE_TOPIC_NAME = "jms/Update’;
private Observer observer;
private Connection connection;

private MessageConsumer updateConsumer;

protected ObserverGateway() {
super();

public static ObserverGateway newGateway(Observer observer)
throws JMSException, NamingException {
ObserverGateway gateway = new ObserverGateway();
gateway.initialize(observer);

return gateway;

protected void initialize(Observer observer) throws JMSException,
NamingException {

this.observer = observer;

www.EBooksWorld.ir



ConnectionFactory connectionFactory =
JndiUti Il _.getQueueConnectionFactory();
connection = connectionFactory.createConnection();
Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE) ;
Destination updateTopic =
JndiUtil _getDestination(UPDATE_TOPIC_NAME);
updateConsumer = session.createConsumer(updateTopic);

updateConsumer .setMessagelListener(this);

public void onMessage(Message message) {

try {

TextMessage textMsg = (TextMessage) message; // assume cast
always works

String newState = textMsg.getText();
update(newState);

} catch (IMSException e) {
e.printStackTrace();

public void attach() throws JMSException {

connection.start();

public void detach() throws JMSException {
if (connection != null) {
connection.stop();

connection.close();

private void update(String newState) throws JMSException {

observer .update(newState) ;

ObserverGateway is another Messaging Gateway, this time between the Observer (not shown) and

the messaging system. The observer creates the gateway, then uses attach() to start the
Connection (which is analogous to calling the Attach(Observer) method in the Observer pattern).

The gateway is an Event-Driven Consumer, so it implements the MessageListener interface, which
requires the onMessage method. In this way, when an update is received, the gateway processes

www.EBooksWorld.ir



the message to get the new state, and calls is own update(String) method which calls the

corresponding message in the observer.

These two classes implement the push model version of Observer. With the notification message
sent by SubjectGateway.notify(String), the existance of the message tells the Observer that a
change has occurred, but it is the contents of the message that tell the Observer what the Subject's
new state is. The new state is being pushed from the Subject to the Observer. As we'll see later,
there's another way to implement all this using the pull model.

Comparisons

For distributed notification between applications, the Publish-Subscribe (e.g., messaging)
approach has several advantages over the traditional, synchronous (e.g., RPC) approach of

implementing Observer:

Simplifies Notification — The Subject's implementation of Notify() becomes incredibly
simple; the code just has to send a message on a channel. Likewise, Observer.Update()
just has to receive a message.

e Simplifies Attach/Detach — Rather than attach to and detach from the Subject, an
Observer needs to subscribe to and unsubscribe from the channel. The Subject does not
need to implement Attach(Observer) or Detach(Observer) (although the Observer may
implement these methods to encapsulate the subscribe and unsubscribe behavior).

e Simplifies Concurrent Threading — The Subject only needs one thread to update all
Observers concurrently — the channel delivers the notification message to the Observers
concurrently —and each Observer handles the update in its own thread. This simplifies
the Subject's implementation, and because each Observer uses its own thread, what one
does in its update thread does not affect the others.

e Simplifies Remote Access — Niether the Subject nor the Observers have to implement
any remote methods, nor do they need to run in an ORB. They just need to access the
messaging system and it handles the distribution.

e Increases Reliability — Because the channel uses messaging, notifications will be queued

until the Observer can process them, which also enables the Observer to throttle the

notifications. If an Observer wants to receive notifications that are sent while that

Observer is disconnected, it should make itself a Durable Subscriber.

One issue that the Publish-Subscribe approach does not change is serialization. Whether
Observer is implemented through RPC or messaging, state data is being distributed from the
Subject's memory space to each Observer's memory space, so the data has to be serialized (e.g.,
marshalled). This behavior has to be implemented for either approach.

If the Publish-Subscribe approach has a downside, it's that the approach requires messaging,
which means that the Subject and Observer applications must have access to a shared messaging
system and must be implemented as clients of that messaging system. Still, making applications

into messaging clients is no more difficult, and probably easier, than using the RPC approach.

www.EBooksWorld.ir



Push and Pull Models

Another potential downside of the Publish-Subscribe approach is that the pull model is more
complex than the push model. As discussed earlier, the pull model requires more discussion back
and forth than the push model. When the discussion is amongst distributed applications, the

extra communication can significantly hurt performance.

The communication is more complex with messaging than with RPC. In both cases, Update() is a
one-way communication, either an RPC that returns void or a single Event Message from the
Subject to the Observer. The tricker part is when an Observer needs to query the Subject's state;
GetState() is a two-way communication, either a single RPC that requests the state and returns it,
or a Request-Reply —a pair of messages where a Command Message requests the state and a

separate Document Message returns it.

What makes Request-Reply more difficult is not just that it requires a pair of messages, but that it
requires a pair of channels to transmit those messages. One channel, the get-state-request channel,
goes from an Observer to the Subject; an Observer sends the state request on that channel. The
other channel, the get-state-reply channel, goes from the Subject back to the Observer; the Subject
sends the state reply on that channel. All of the Observers can share the same request channel,

but they will probably each need their own reply channel. Each Observer needs to receive not just
any response, but the particular response for its specific request, and the easiest way to ensure
this is for each Observer to have its own reply channel. (An alternative is to use a single reply
channel and use Correlation Identifiers to figure out which reply goes to which observer, but a

separate channel per observer is a lot easier to implement.)

Update »
" » Subscriber
i . e
Publisher | st
Srave Renty | #{ Subscriber

Publish/Subscribe using the Pull Model

A reply channel for each Observer can lead to an explosion of channels. Such a large number of
channels may be managable, but the messaging system administrator does not know how many
static channels to create when the number of Observers needing to use these channels changes
dynamicly at runtime. Even if there are enough channels for all of the Observers, how does each
Observer know which channel to use?

JMS has a feature, TemporaryQueue, specifically for this purpose. [Hapner, p.60] (Also see the
discussion in Request-Reply.) An Observer can create a temporary queue, just for its own use,
specify that as the Return Address in its request, and wait for the reply on that queue. Creating
new queues frequently can be inefficient, depending on your messaging system's implementation,

www.EBooksWorld.ir



and temporary queues cannot be persistent (for use with Guaranteed Delivery). However, if you

don't want to use the push model, you can implement the pull model using temporary queues.
These two classes show how to implement the gateways using the pull model.

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.MessageProducer;
import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;
public class PullSubjectGateway {

public static final String UPDATE_TOPIC_NAME = *"jms/Update’;
private PullSubject subject;

private Connection connection;

private Session session;

private MessageProducer updateProducer;

protected PullSubjectGateway() {
super(Q);

public static PullSubjectGateway newGateway(PullSubject subject)
throws JMSException, NamingException {
PullSubjectGateway gateway = new PullSubjectGateway();
gateway.initialize(subject);

return gateway;

protected void initialize(PullSubject subject) throws JMSException,
NamingException {

this.subject = subject;

ConnectionFactory connectionFactory =
JndiUti Il .getQueueConnectionFactory();
connection = connectionFactory.createConnection();

session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;

www.EBooksWorld.ir



Destination updateTopic =
JndiUtil _getDestination(UPDATE_TOPIC_NAME);

updateProducer = session.createProducer(updateTopic);

new Thread(new GetStateReplier()).start();

connection.start();

public void notifyNoState() throws JMSException {
TextMessage message = session.createTextMessage();

updateProducer .send(message) ;

public void release() throws JMSException {
if (connection != null) {
connection.stop();

connection.close();

private class GetStateReplier implements Runnable, MessagelListener {

public static final String GET_STATE_QUEUE_NAME = "jms/GetState';
private Session session;

private MessageConsumer requestConsumer;

public void run() {
try {
session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE) ;
Destination getStateQueue =
JndiUtil _getDestination(GET_STATE_QUEUE_NAME);
requestConsumer =
session.createConsumer(getStateQueue);
requestConsumer .setMessageListener(this);
} catch (Exception e) {
e_printStackTrace();

public void onMessage(Message message) {

try {
Destination replyQueue = message.getJMSReplyTo();

www.EBooksWorld.ir



MessageProducer replyProducer =

session.createProducer(replyQueue);

Message replyMessage =
session.createTextMessage(subject._getState());
replyProducer._send(replyMessage);
} catch (JIMSException e) {
e_printStackTrace();

PullSubjectGateway is very similar to SubjectGateway. The pull version now has a reference to its
subject so that the gateway can query the subject for its state when requested by an observer.
notify(String) has now become notifyNoState(), because the pull model simply sends out
notification without including any state (and because Java already uses the method name
notifyQ)).

The big addition for the pull model is GetStateReplier, an inner class that implements Runnable
so that it can run in its own thread. It is also a MessageL istener, which makes it an Event-Driven
Consumer. Its onMessage method reads requests from the GetState queue and sends replies
containing the subject's state to the queue specified by the request. In this way, when an observer
makes a GetState() request, the gateway sends a reply (see Request-Reply).

import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.Queue;

import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueRequestor;
import javax.jms.QueueSession;
import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.NamingException;

public class PullObserverGateway implements MessagelListener {
public static final String UPDATE_TOPIC_NAME = "jms/Update’;
public static final String GET_STATE_QUEUE_NAME = "jms/GetState';

private PullObserver observer;

private QueueConnection connection;

www.EBooksWorld.ir



private QueueSession session;
private MessageConsumer updateConsumer;

private QueueRequestor getStateRequestor;

protected PullObserverGateway() {
super(Q);

public static PullObserverGateway newGateway(PullObserver observer)
throws JMSException, NamingException {
PullObserverGateway gateway = new PullObserverGateway();
gateway.initialize(observer);

return gateway;

protected void initialize(PullObserver observer) throws JMSException,
NamingException {

this.observer = observer;

QueueConnectionFactory connectionFactory =
JndiUti Il _.getQueueConnectionFactory();
connection = connectionFactory.createQueueConnection();
session = connection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE) ;
Destination updateTopic =
JndiUtil _getDestination(UPDATE_TOPIC_NAME);
updateConsumer = session.createConsumer(updateTopic);

updateConsumer .setMessagelListener(this);

Queue getStateQueue = (Queue)
JndiUtil _getDestination(GET_STATE_QUEUE_NAME) ;

getStateRequestor = new QueueRequestor(session, getStateQueue);

public void onMessage(Message message) {
try {
// message®s contents are empty
updateNoState();
} catch (IMSException e) {
e.printStackTrace();

www.EBooksWorld.ir



public void attach() throws JMSException {

connection.start();

public void detach() throws JMSException {
if (connection != null) {
connection.stop();

connection.close();

private void updateNoState() throws JMSException {
TextMessage getStateRequestMessage = session.createTextMessage();
Message getStateReplyMessage =
getStateRequestor.request(getStateRequestMessage);
TextMessage textMsg = (TextMessage) getStateReplyMessage; // assume
cast always works
String newState = textMsg.getText();

observer .update(newState) ;

Again, PullI0bserverGateway is similar to ObserverGateway, but with some more code to
implement the pull model. In initialize, it not only sets up updateConsumer to listen for updates,
but also sets up getStateRequestor to send GetState() requests. (getStateRequestor is a
QueueRequestor; see Request-Reply.) In the pull version, the gateway's onMessage code ignores the
message's contents because the message is empty. The message's existance tells the observer that
the subject has changed, but does not tell the observer what the subject's new state is. So all there
is to do is call updateNoState() (named similarly to notifyNoState()).

The difference for the Observer between the push and pull models becomes apparent in the
implementation of updateNoState() vs. update(String). Whereas the push version gets the new
state as a parameter and just has to update the observer, the pull version must go get the new
state before it can update the observer. To get the new state, it uses the getStateRequestor to send
a request and get the reply. The reply contains the subject's new state, which the gateway uses to
update the observer. (Note that in this simple implementation, the gateway is single-threaded, so
while it is sending the get-state request and waiting for the reply, it is not processing any more
updates. Thus if the request or reply messages take a really long time to transmit, the gateway
will be stuck waiting and any more updates that occur will simply queue up.)

So as you can see, the pull model is more complex than the push model. It requires more
channels (including a temporary one for every observer), it requires more messages (three
messages per update per interested observer instead of one message for all observers), the subject
and observer classes require more code to manage the additional messaging, and the objects at
runtime require more threads to execute the additional messaging. If all of this is acceptable in

www.EBooksWorld.ir



your application, then the pull model is a viable approach. However, if in doubt, you should
probably start with the push model because it is simpler.

Channel Design

So far, we've considered one Subject with one piece of state notifying its Observers. Using the
push model, this requires one Publish-Subscribe Channel for communicating changes in the

Subject's state to the Observers.

Real enterprise applications are much more complex. An application can contain lots of Subjects
that need to announce changes. Each Subject often contains several different pieces of state, called
aspects, that can change independently. A single Observer might be interested in several different
aspects in several different Subjects, where the Subjects are not only multiple instances of the
same class, but may well be instances of different classes.

So update semantics in sophsticated applications can quickly become complex. The Observer
pattern address this as implementation issues like "Observing more than one subject" and
"Specifying modifications of interest explicitly." Also, the SASE (Self-Addresses Stamped
Envelope) pattern describes a combination of the Observer and Command patterns whereby an

observer specifies the command a subject should send it when a certain change occurs. [Alpert,
pp.312-314]

Without getting too deep into the issues of making sure observers only receive the updates they
need, let's consider the implications for messaging, namely: How many channels will we need?

Let's first consider a simple case. An enterprise may have several different applications
responsible for storing a customer's contact information, such as a mailing address. When a
customer's address is updated in one of these applications, the application should notify other
applications that may need this new information as well. Meanwhile, there may be several
applications that need to know when an address changes, so they would like to register to receive
notification.

This is a simple problem to solve. All that is needed is a single Publish-Subscribe Channel for

announcing address changes. Each application that can change an address then also has the
responsibility to announce that change by publishing a message on the channel. Each application

that wishes to receive notification subscribes to the channel. A particular change message might
look like this:

<AddressChange customer_id="12345">
<OldAddress>
<Street>123 Wall Street</Street>
<City>New York</City>
<State>NY</State>
<Zip>10005</Zip>

www.EBooksWorld.ir



</0ldAddress>

<NewAddress>
<Street>321 Sunset Blvd</Street>
<City>Los Angeles</City>
<State>CA</State>
<Zip>90012</Zip>

</NewAddress>

</AddressChange>

Now let's consider another problem. The enterprise may also have applications that need to
announce when they are out of a product, and others that need to receive these notifications so
that they can reorder the product. This is just a different example of the last problem, and is
solved the same way by using a Publish-Subscribe Channel to make out-of-product announcements.

One of these messages might look like this:

<OutOfProduct>
<ProductlD>12345</ProductiD>
<StorelD>67890</StorelD>
<QuantityRequested>100</QuantityRequested>
</OutOfProduct>

But this leads us to wonder: Can we use the same channel for customer address changes and for
out-of-product announcements? Probably not. First, Datatype Channel tells us that all of the

messages on a channel must be of the same type, which in this case means that they must all
conform to the same XML schema. <AddressChange> is obviously a very different element type
from <oOutOfProduct>, so they should not be sent on the same channel. Perhaps the data formats
could be reworked so that both message types fit the same schema and receivers could tell which
messages were for addresses and which were for products. But then the problem is that the
applications interested in address changes are probablty not the same ones interested in product
updates, so if the messages use the same channel, an application will frequently receive
notifications it's not interested in. Thus is makes sense to have two separate address change and

product update channels.

Now consider a third case where a customer's credit rating could change. The message might
look like this:

<CreditRatingChange customer_id="12345">
<OldRating>AAA</OldRating>
<NewRating>BBB</NewRating>

</CreditRatingChange>

Like the case with product notifications, it might be tempting to solve the problem with a new
credit-rating-changed channel (in addition to the address-changed and out-of-product channels).
This would keep the credit rating changes separate from the address changes, and would allow

dependents to only register for the type of changes they're interested in.

www.EBooksWorld.ir



The problem with this approach is that it can lead to a channel explosion. Consider all the pieces
of data that may be known about a customer: name; contacts (address, phone number, e-mail) for
mailing, shipping, and billing; credit rating; service level; standard discount; etc. Each time any
one of these aspects changes, other applications may need to know about it. Creating a channel
for each can lead to lots of channels.

Large numbers of channels may tax the messaging system. Numerous channels with little traffic
on each can waste resources and make load difficult to distribute. Or, numerous channels with
lots of little messages can add to messaging overhead. Dependents can become confused as to
which of a large number of channels to subscribe to. Multiple channels require multiple senders
and receivers, perhaps leading to lots of threads checking lots of channels that are usually empty.
So creating yet more channels may not be such a good idea.

What may work better is to send both the address-changed and credit-rating-changed messages
on the same channel, since they both concern changes to the customer and an application
interested in one kind of change may be interested in the others as well. Yet a separate
out-of-product channel is still a good idea since applications interested in customers may not be
interested in products and vise versa.

The address-changed and credit-rating-changed messages have different formats, yet Datatype
Channel tells us that to be on the same channel, the messages must have the same format. With
XML, this means that all of the messages must have the same root element type, but perhaps can
have different optional nested elements. So unified customer-changed messages might look like
this:

<CustomerChange customer_id="12345">

<AddressChange>
<OldAddress>
<Street>123 Wall Street</Street>
<City>New York</City>
<State>NY</State>
<Zip>10005</Zip>
</0ldAddress>
<NewAddress>
<Street>321 Sunset Blvd</Street>
<City>Los Angeles</City>
<State>CA</State>
<Zip>90012</Zip>
</NewAddress>
</AddressChange>
</CustomerChange>

<CustomerChange customer_id="12345">
<CreditRatingChange>
<OldRating>AAA</OldRating>
<NewRating>BBB</NewRating>

www.EBooksWorld.ir



</CreditRatingChange>
</CustomerChange>

There may still be the problem that shipping applications interested in address changes are not
interested in credit rating changes, and billing applications are interested in the opposite. These

applications can use Selective Consumers to get only the messages of interest. If selective

consumers prove to be complicated and a messaging system can easily support more channels,
then perhaps separate channels would be better after all.

As with may issues in enterprise architecture and design, there are no simple answers and lots of
tradeoffs. With Publish-Subscribe Channel (as with any message channel), the goal is to help ensure

that the observers only receive the notifications they need, without an explosion of separate
channels and without taxing the typical observer with lots of threads running lots of consumers

monitoring lots of channels.

Conclusions

This chapter shows that Publish-Subscribe Channels are an implementation of the Observer pattern

that make the pattern much easier to use in distributed environments. When a channel is used,
Subject._Notify() and Observer.Update() become much simpler because all they have to do is
send and receive messages. The messaging system takes care of distribution and concurrency
while making the remote notification more reliable. The push model is simpler and often more
efficient than the pull model, especially for distributed notification, especially with messaging;
yet the pull model can also be implemented using messaging. In complex applications where lots
of data can change, it may be tempting to create a channel for every different thing that can
change, but it's often more practical to use the same channel to trasmit similar notifications going
to the same observers. Even if your applications don't need messaging for anything else, if they
need to notify each other of changes, it may well be worth using Messaging just so you can take
advantage of Publish-Subscribe Channels.

www.EBooksWorld.ir



7. Message Routing

Introduction

In the Chapter 2, we discussed how a Message Router can be used to decouple a message source
from the ultimate destination of the message. This chapter elaborates on specific types of Message
Routers to explain how to provide routing and brokering ability to an integration solution. Most
patterns are refinements of the Message Router pattern while others combine multiple Message
Routers to solve more complex problems. Therefore, we can categorize the Message Routing

patterns into the following groups:

. Simple Routers are variants of the Message Router and route messages from one inbound
channel to one or more outbound channels.

. Composed Routers combine multiple simple routers to create more complex message
flows.

. Architectural Patterns describe architectural styles based on Message Routers.

Simple Routers

The Content-Based Router inspects the content of a message and routes it to another channel based

on the content of the message. Using such a router enables the message producer to send
messages to a single channel and leave it to the Content-Based Router to inspect messages and

route them to the proper destination. This alleviates the sending application from this task and

avoids coupling the message producer to specific destination channels.

A Message Filter is a special form of a Content-Based Router. It examines the message content and

passes the message to another channel if the message content matches certain criteria. Otherwise,
it discards the message. Message Filters can be used with Publish-Subscribe Channel to route a

message to all possible recipients and allow the recipients to filter out irrelevant messages. A
Message Filter performs a function that is very similar to that of a Selective Consumer with the key

difference being that a Message Filter is part of the messaging system, routing qualifying messages
to another channel, whereas a Selective Consumer is built into a Message Endpoint.

A Content-Based Router and a Message Filter can actually solve a similar problem. A Content-Based

Router routes a message to the correct destination based on the criteria encoded in the
Content-Based Router. Equivalent behavior can be achieved by using a Publish-Subscribe Channel

and an array of Message Filters, one for each potential recipient. Each Message Filter eliminates the
messages that to not match the criteria for the specific destination. The Content-Based Router

routes predictively to a single channel and therefore has total control, but is also dependent on
the list of all possible destination channels. The Message Filter array filters reactively, spreading
the routing logic across many Message Filters but avoiding a single component that is dependent

www.EBooksWorld.ir



on all possible destinations. The trade-off between these solutions is described in more detail in
the Message Filter pattern.

A basic Message Router uses fixed rules to determine the destination of an incoming message.
Where we need more flexibility, a Dynamic Router can be very useful. This router allows the
routing logic to be modified by sending control messages to a designated control port. The
dynamic nature of the Dynamic Router can be combined with most forms of the Message Router.

Chapter 3 introduced the concept of a Point-to-Point Channel and a Publish-Subscribe Channel.

Sometimes, you need to send a message to more than one recipient, but want to maintain control
over the recipients. The Recipient List allows you do just that. In essence, a Recipient List is a

Content-Based Router that can route a single message to more than one destination channel.

Some messages contain lists of individual items. How do you process these items individually?
Use a Splitter to split the large message into individual messages. Each message can then be
routed further and processed individually.

However, you may need to recombine the messages that the Splitter created back into a single
message. This is one of the functions an Aggregator performs. An Aggregator can receive a stream
of messages, identify related messages and combine them into a single message. Unlike the other
routing patterns, the Aggregator is a stateful Message Router because it has to store messages
internally until specific conditions are fulfilled. This mean that an Aggregator can consume a
number of messages before it publishes a message.

Because we use messaging to connect applications or components running on multiple
computers, multiple messages can be processed in parallel. For example, more than one process
may consume messages off a single channel. One of these processes may execute faster than
another, causing messages to be processed out of order. However, some components depend on
the correct sequence of individual messages, for example ledger-based systems. The Resequencer
puts out-of-sequence messages back into sequence. The Resequencer is also a stateful Message
Router because it may need to store a number of messages internally until the message arrives
that completes the sequence. Unlike the Aggregator, though, the Resequencer ultimately publishes

the same number of messages it consumed.

The following table summarizes the properties of the Message Router variants (we did not include
the Dynamic Router as a separate alternative because any router can be implemented as a dynamic

variant):
Number of Msgs |[Number  of  Msgs
Pattern . Stateful? |Comment
Consumed Published
Content-Based 1 1 No
Router (mostly)
. No
Message Filter 1 Oorl
(mostly)

www.EBooksWorld.ir



Recipient List 1 multiple (incl. 0) No

Splitter 1 multiple No
Aggregator multiple 1 Yes

] . Publishes same number it
Resequencer multiple multiple Yes

consumes.

Composed Routers

A key advantage of the Pipes and Filters architecture is the fact that we can compose multiple
filters into a larger solution. Composed Message Processor or an Scatter-Gather combine multiple

Message Router variants to create more comprehensive solutions. Both patterns allow us to
retrieve information from multiple sources and recombine it into a single message. While the
Composed Message Processor maintains control over the possible sources the Scatter-Gather uses a

Publish-Subscribe Channel so that any interested component can participate in the process.

Both the Composed Message Processor and the Scatter-Gather route a single message to a number of
participants concurrently and reassemble the replies into a single message. We can say that these
patterns manage the parallel routing of a message. Two more patterns manage the sequential
routing of a message, i.e. routing a message through a sequence of individual steps. If we want to
control the path of a message from a central point we can use a Routing Slip to specify the path
the message should take. This pattern works just like the routing slip attached to office
documents to pass them sequentially by a number of recipients. Alternatively, we can use a
Process Manager which gives us more flexibility but requires the message to return to a central

component after each function.

Architectural Patterns

Message Routers enable us to architect an integration solution using a central Message Broker. As
opposed to the different message routing design patterns, this pattern describes a hub-and-spoke
architectural style.

The Right Router for the Right Purpose

This chapter contains 10 patterns. How can we make it easy to find the right pattern for the right
purpose? The following decision chart helps you find the right pattern for the right purpose by
matter of simple yes/no decisions. For example, if you are looking for a simple routing pattern
that consumes one message at a time but publishes multiple messages in sequential order, you
should use a Splitter. The diagram also helps illustrate how closely the individual patterns are
related. For example, a Routing Slip and a Process Manager solve similar problems while a Message

Filter does something rather different.

www.EBooksWorld.ir



Egncthy Ore

Content-Based Router

Sirdgle msg out
Zeroor Orie Miessage Filter
Frocess onemsg al a

time (stateles s) Paralzl

{FM S8

Recipient List

Sequental Sphtter

Sl Less msgs out
Procezz muttiple [=f Ju]
tegator

megs 8 8 tne (et o Adgre

Saing nurmer 5000 Fesequencer
ol msgs ol
o o
Spit Message opo a#0 | Compos. Msg Processor

Compased Paralle|

o
Broadcist Message e®0 | Scatter-Gather

Predeteqmined, Lingar

cooo Routing Ship
Sequential

Process Manager

Lty Path

LA

Content-Based Router

Assume that we are building an order processing system. When an incoming order is received,
we first validate the order and then verify that the ordered item is available in the warehouse.
This function is performed by the inventory system. This sequence of processing steps is a perfect
candidate for the Pipes and Filters style. We create two filters, one for the validation step and one
for the inventory system, and route the incoming messages through both filters. However, in
many enterprise integration scenarios more than one inventory system exists with each system
being able to handle only specific items.

How do we handle a situation where the implementation of a single logical function (e.g.,
inventory check) is spread across multiple physical systems?

Integration solutions connect existing applications so that they work together. Because many of
these applications were developed without integration in mind, integration solutions rarely find
an ideal scenario where a business function is well encapsulated inside a single system. For
example, acquisitions or business partnerships often result in multiple systems performing the
same business function. Also, many businesses that act as aggregators or resellers typically
interface with multiple systems that perform the same functions (e.g. check inventory, place
order etc). To make matters more complicated, these systems may be operated within the
company or may be under the control of business partners or affiliates. For example, large
e-tailers like Amazon allow you to order anything from books to chain saws and clothing.
Depending on the type of item, the order may be processed by a different "behind-the-scenes"
merchant's order processing systems.

www.EBooksWorld.ir



Let us assume that the company is selling widgets and gadgets and has two inventory systems,
one for widgets and one for gadgets. Let's also assume that each item is identified by a unique
item number. When the company receives an order, it needs to decide which inventory system to
pass the order to based on the type of item ordered. We could create separate channels for
incoming orders based on the type of item ordered. However, this would require the customers
to know our internal system architecture when in fact they may not even be aware that we
distinguish between widgets and gadgets. Therefore, we should hide the fact that the
implementation of the business function is spread across multiple systems from the remainder of
the integration solution, including customers. Therefore, we need to expect messages for different

items arriving on the same channel.

We could forward the order to all inventory systems (using a Publish-Subscribe Channel), and let

each system decide whether it can handle the order. This approach makes the addition of new
inventory systems easy because we do not have to change any of the existing components when a
new inventory system comes on-line. However, this approach assumes distributed coordination
across multiple systems. What happens if the order cannot be processed by any system? Or if
more than one system can process the order? Will the customer receive duplicate shipments?
Also, in many cases an inventory system will treat an order for an item that it cannot handle as an
error. If this is the case, each order would cause errors in all inventory systems but one. It would
be hard to distinguish these errors from 'real' errors such as an invalid order.

An alternative approach would be to use the item number as a channel address. Each item would
have its dedicated channel and the customers could simply put publish the order to the channel
associated with the item's number without having to know about any internal distinctions
between widgets and gadgets. The inventory systems could listen on all the channels for those
items that it can process. This approach leverages the channel addressability to route messages to
the correct inventory system. However, a large number of items could quickly lead to an
explosion of the number of channels, burdening the system with run-time and management

overhead. Creating new channels for each item that is offered would quickly result in chaos.

We should also try to minimize message traffic. For example we could route the order message
through one inventory system after the other. The first system that can accept the order consumes
the message and processes the order. If it cannot process the order it passes the order message to
the next system. This approach eliminates the danger of orders being accepted by multiple
systems simultaneously. Also, we know that the order was not processed by any system if the
last system passes it back. The solution does require, however, that the systems know enough
about each other in order to pass the message from one system to the next. This approach is
similar to the Chain of Responsibility pattern described in [GoF]. However, in the world of
message-based integration passing messages through a chain of systems could mean significant
overhead. Also, this approach would require collaboration of the individual systems, which may
not be feasible if some systems are maintained by external business partners and are therefore not
under our control.

www.EBooksWorld.ir



In summary, we need a solution that encapsulates the fact that the business function is split
across systems, is efficient in its usage of message channels and message traffic, and ensures that

the order is handled by exactly one inventory system.

Use a Content-Based Router to route each message to the correct recipient based on message

content.
— » Widget
Inventory
t@ — | —
—
Gadgel
Mews Order »
Router O ¢ ¢ Inventory

The Content-Based Router examines the message content and routes the message onto a different
channel based on data contained in the message. The routing can be based on a number of criteria
such as existence of fields, specific field values etc. When implementing a Content-Based Router,
special caution should be taken to make the routing function easy to maintain as the router can
become a point of frequent maintenance. In more sophisticated integration scenarios, the
Content-Based Router can take on the form of a configurable rules engine that computes the

destination channel based on a set of configurable rules.

Reducing Dependencies

Content-Based Router is a frequently used form of the more generic Message Router. It uses
predictive routing, i.e. it incorporates knowledge of the capabilities of all other systems. This makes
for efficient routing because each outgoing message is sent directly to the correct system. The
downside is that the Content-Based Router has to have knowledge of all possible recipients and
their capabilities. As recipients are added, removed or changed, the Content-Based Router has to be
changed every time. This can become a maintenance nightmare.

We can avoid the dependency of the Content-Based Router on the individual recipients if the
recipients assume more control over the routing process. These options can be summarized as
reactive filtering because they allow each participant to filter relevant messages as they come by.
The distribution of routing control eliminates the need for a Content-Based Router but the solution
is generally less efficient. These solutions and associated trade-offs are described in more detail in
the Message Filter and Routing Slip.

The Dynamic Router describes a compromise between the Content-Based Router and the reactive
filtering approach by having each recipient inform the Content-Based Router of its capabilities. The
Content-Based Router maintains a list of each recipient's capabilities and routes incoming messages
accordingly. The price we pay for this flexibility is the complexity of the solution and the
difficulty of debugging such a system when compared to a simple Content-Based Router.

www.EBooksWorld.ir



Example: Content-Based Router Router with C# and MSMQ

This code example demonstrates a very simple Content-Based Router that routes messages based

on the first character in the message body. If the body text starts with 'W', the router routes the

message to the widgetQueue, if it starts with 'G', it goes to the gadgetQueue. If it is neither, the

router sends it to the dunnoQueue. This queue is actually an example of a Invalid Message Channel.

This router is stateless, i.e. it does not "remember" any previous messages when making the

routing decision.

class ContentBasedRouter

{

protected MessageQueue inQueue;

protected MessageQueue widgetQueue;

protected MessageQueue gadgetQueue;

protected MessageQueue dunnoQueue;

public ContentBasedRouter(MessageQueue inQueue, MessageQueue widgetQueue,

MessageQueue gadgetQueue, MessageQueue dunnoQueue)

{

this.inQueue = inQueue;
this.widgetQueue = widgetQueue;
this.gadgetQueue = gadgetQueue;

this.dunnoQueue = dunnoQueue;

inQueue .ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

inQueue.BeginReceive();

private void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

{

MessageQueue mg = (MessageQueue)source;

mqg.Formatter = new System.Messaging.XmlMessageFormatter(new String[]

{"System.String,mscorlib”});

Message message = mq.EndReceive(asyncResult.AsyncResult);

ifT (IsWidgetMessage(message))
widgetQueue.Send(message) ;
else ifT (IsGadgetMessage(message))
gadgetQueue.Send(message) ;
else
dunnoQueue.Send(message) ;

mqg.BeginReceive();

www.EBooksWorld.ir



protected bool IsWidgetMessage (Message message)
{

String text = (String)message.Body;

return (text._StartsWith("w™));

protected bool IsGadgetMessage (Message message)
{

String text = (String)message.Body;

return (text._StartsWith(G™));

The example uses an event-driven message consumer by registering the method onMessage as the
handler for messages arriving on the inQueue. This causes the .NET framework to invoke the
method OnMessage for every message that arrives on the inQueue. The message queue Formatter
property tells the framework what type of message we expect. In our example, we only deal with
simple string messages. OnMessage figures out where to route the message and tells .NET that it is
ready for the next message by calling the BeginReceive method on the queue. In order to keep the
code to a minimum, this simple router is not transactional, i.e. if the router crashes after it
consumed a message from the input channel and before it published it to the output channel, we
would lose a message. Later chapters will explain how to make endpoints transactional (see
Transactional Client).

Example: TIBCO MessageBroker

Message routing is such a common need that most EAI tool suites provide built-in tools to
simplify the construction of the routing logic. For example, in the C# example we had to code the
logic to read a message off the incoming queue, deserialize it, analyze it and republish it to the
correct outgoing channel. In many EAI tools this type of logic can be implemented with simple
drag-and-drop operations instead of writing code. The only code to write is the actual decision
logic for the Content-Based Router.

One such EAI tool that implements message routing is the TIBCO ActiveEnterprise suite. The
suite includes TIB/MessageBroker which is designed to create simple message flows that include
transformation and routing. The widget router that routes incoming messages based on the first
letter of the item number looks like this when implemented in TIB/MessageBroker:

www.EBooksWorld.ir



We can read the message flow from left to right. The component on the left (represented by a
triangle pointing to the right) is the subscriber component that consumes messages off the
channel router. in. The channel name is specified in a properties box not shown in this picture.
The message content is directed to the message publisher (represented by the triangle on the
right side of the screen) The direct line from the Data output of the subscriber to the Message input
of the publisher represents the fact that a Content-Based Router does not modify the message. In
order to determine the correct output channel, the function ComputeSubject (in the middle)
analyzes the message content. The function uses a so-called dictionary (labeled as 'Map' in the
picture) as a translation table between message contents and the destination channel name. The
dictionary is configured with the following values:

Item Code |Channel Name

G gadget

w widget

The ComputeSubject functions uses the first letter of the incoming message's order item number to
look up the destination channel from the dictionary. To form the complete name of the output
channel, it appends the dictionary result to the string "router.out", to form a channel name like
"router.out.widget". The result of this computation is passed to the publisher component on the
right to be used as the name of the channel. As a result, any order item whose item number starts
with a 'G' is routed to the channel router.out.gadget, whereas any item whose item number
starts with a 'W' is routed to the channel router.out.widget.

The TIBCO implementation of the ComputeSubject function looks like this:

concat("'router.out.",DGet(map,Upper(Left(Orderltem. ItemNumber,1))))

The function extracts the first letter of the order number (using the Left function) and converts it
to uppercase (using the Upper function ). The function uses the result as the key to the dictionary
to retrieve the name of the outgoing channel (using the DGet function).

This example demonstrates the strengths of commercial EAI tools. Instead of a few dozen lines of
code we only need to code a single function to implement the widget router. Plus, we get features
like transactionality, thread management, systems management etc. for free. But this example
also highlights the difficulties of presenting a solution created with Ul tools. We had to relegate

www.EBooksWorld.ir



to screen shots to describe the solution. Many important settings are hidden in property fields
that are not shown on the screen. This can make it difficult to document a solution built using Ul
tools.

Related patterns: Dynamic Router, Message Filter, Invalid Message Channel, Message Router, Pipes

and Filters, Publish-Subscribe Channel, Routing Slip, Transactional Client

Message Filter

Continuing with the order processing example, let's assume that company management
publishes price changes and promotions to large customers. Whenever a price for an item
changes, we send a message notifying the customer. We do the same if we are running a special
promotion, e.g. all widgets are 10% off in the month of November. Some customers may be
interested in receiving price updates or promotions only related to specific items. If I purchase
primarily gadgets, I may not be interested in knowing whether widgets are on sale or not.

How can a component avoid receiving uninteresting messages?

The most basic way for a component to receive only relevant messages is to subscribe only to
those channels that carry relevant messages. This options leverages the inherent routing abilities

of Publish-Subscribe Channels. A component receives only those messages that travel through
channels to which the component subscribes. For example, we could create one channel for
widget updates and another one for gadget updates. Customers would then be free to 'subscribe'
to one or the other channel or both. This has the advantage that new subscribers can join in
without requiring any changes to the system. However, subscription to Publish-Subscribe Channel

is generally limited to a simple binary condition: if a component subscribes to a channel, it
receives all messages on that channel. The only way to achieve finer granularity it to create more
channels. If we are dealing with a combination of multiple parameters, the number of channels
can quickly explode. For example, if we want to allow consumers to receive all messages that
announce all price cuts of widgets or gadgets by more than 5%, 10% or 15%, we already need 6 (2
item types multiplied by 3 threshold values) channels. This approach would ultimately become
difficult to manage and will consume significant resources due to the large number of allocated
channels. So we need to look for a solution that allows for more flexibility than channel
subscription.

We also need a solution than can accommodate frequent change. For example, me could modify a
Content-Based Router to route the message to more than one destination (a concept described in

the Recipient List). This predictive router sends only relevant messages to each recipient so that
the recipient does not have to take any extra steps. However, now we burden the message
originator with maintaining the preferences for each and every subscriber. If the list of recipients
or their preferences change quickly this solution would prove to be a maintenance nightmare.

We could simply broadcast the changes to all components and expect each component to filter
out the undesirable messages. However, this approach assumes that we have control over the

www.EBooksWorld.ir



actual component. In many integration scenarios this is not the case because we deal with
packaged applications, legacy applications or applications that not under the control of our
organization. Also, incorporating filtering logic inside the component makes the component
dependent on a specific type of message. For example, if a customer uses a generic price watch
component he or she may want to use it for both widgets and gadgets, but with different criteria.

Use a special kind of Message Router, a Message Filter, to eliminate undesired messages from
a channel based on a set of criteria.

o % e Y B

YWidget  Gadget Widget Widget widget
Gilate Quote  Quote Cllate Ciote

hessage
Filter

The Message Filter has only a single output channel. If the message content matches the criteria
specified by the Message Filter, the message is routed to the output channel. If the message
content does not match the criteria, the message is discarded.

In our example we would define a single Publish-Subscribe Channel that each customer is free to

listen on. The customer can then use a Message Filter to eliminate messages based on criteria of his
or her choosing, such as the type of item or the magnitude of the price change.

The Message Filter can be portrayed as a special case of a Content-Based Router that routes the

message either to the output channel or the null channel, a channel that discards any message
published to it. Such a channel would be similar to /dev/null present in many operating systems
or the Null Object .

Stateless vs. Stateful Message Filters

The widget and gadget example described a stateless Message Filter, i.e., the Message Filter
inspects a single message and decides whether to pass it on or not based solely on information
contained in that message. Therefore, the Message Filter does not need to maintain state across
messages and is considered stateless. Stateless components have the advantage that they allow us
run multiple instances of the component in parallel to speed up processing. However, a Message
Filter does not have to be stateless. For example, there are situations where the Message Filter
needs to keep track of the message history. A common example is the use of a Message Filter to
eliminate duplicate messages. Assuming that each message has a unique message identifier, the
Message Filter would store the identifiers of past messages to that it can recognize a duplicate
message by comparing each message's identifier with the list of stored identifiers.

www.EBooksWorld.ir



Filtering Functions Built Into Messaging Systems

Some messaging systems incorporate aspects of a Message Filter inside the messaging
infrastructure. For example, some publish-subscribe systems allow you to define a hierarchical
structure for Publish-Subscribe Channels (many publish-subscribe systems including most JMS

implementations allow this). For example, one can publish promotions to the channel
'wgco.update.promotion.widget'. A subscriber can then use wildcards to subscribe to a specific
subset of messages, e.g. if a subscriber listens to the topic 'wgco.update.*.widget' he would
receive all updates (promotions and price changes) related to widgets. Another subscriber may
listen to 'wgco.update.promotion.*', which would deliver all promotions related to widgets and
gadgets, but no price changes. The channel hierarchy lets us refine the semantics of a channel by
appending qualifying parameters, so that instead of a customer subscribing to all updates,
customers can filter messages by specifying additional criteria as part of the channel name.
However, the flexibility provided by the hierarchical channel naming is still limited when
compared to a Message Filter. For example, a Message Filter could decide to only pass on 'price
change' message only if the price changed by more than 11.5%, something that would be hard to
express by means of channel names.

Other messaging systems provide API support for Selective Consumers inside the receiving

application. Message Selectors are expressions that evaluate header or property elements inside
an incoming message before the application gets to see the message. If the condition does not
evaluate to true the message is ignored and not passed on to the application logic. A message
selector acts as a Message Filter that is built into the application. While the use of a message
selector still requires you to modify the application (something that is often not possible in EAI),
the execution of the selection rules is built into the messaging infrastructure. One important

difference between a Message Filter and a Selective Consumer is that a consumer using a Selective
Consumer does not consume messages that do not match the specified criteria. On the other hand,
a Message Filter removes all messages from the input channel, publishing only those to the output
channel that match the specified criteria.

One advantage of registering the filter expression with the messaging infrastructure is the fact
that the infrastructure is able make smart internal routing decisions based on the filter criteria.
Let's assume that the message receiver sits on a different network segment from the message
originator (or even across the Internet). It would be rather wasteful to route the message all the
way to the Message Filter just to find out that we want to discard the message. On the other hand,
we want to use a Message Filter mechanism so that the recipients have control over the message
routing instead of a central Message Router. If the Message Filter is part of the API that the
messaging infrastructure provides to the message subscriber, the infrastructure is free to
propagate the filter expression closer to the source. This will maintain the original intent of
keeping control with the message subscriber, but allows the messaging infrastructure to avoid
unnecessary network traffic. This behavior resembles that of a dynamic Recipient List.

www.EBooksWorld.ir



Using Message Filters to Implement Routing Fucntionality

We can use use a broadcast channel that routes a message to a set of Message Filters who eliminate

unwanted messages to implement functionality equivalent to that of a Content-Based Router. The

following diagrams illustrate the two options:

Content-Based ., WWidgets
Router - %
t@ — ﬁ
—
. Sadgets
Widget .
Quote &

Option 1: Using a Content-Based Router

In this simple example, we have 2 receivers: receiver Gadget is only interested in gadget messages
while receiver widget is only interested in widget messages. The Content-Based Router evaluates

each message's content and routes it predictively to the appropriate receiver.

Widget Filter

Broadcast W t% Widgets
— > _ —- — -
7

=
t% t% Gadyets
Widget I —_— W
Quote =

Gadget Filter

Option 2: Using a broadcast channel and a set of Message Filters

The second option broadcasts the message to a Publish-Subscribe Channel. Each recipient is
equipped with a Message Filter to eliminate unwanted messages. For example, the Widget receiver

employs a widget filter that lets only widget messages pass.

The following table characterizes some of the differences between the solutions:

Content-Based Router Pub-Sub Channel with Message Filter
Exactly one consumer receives each message. More than one consumer can consume a message.
Central control and maintenance -- predictive routing. Distributed control and maintenance -- reactive filtering.

Router needs to know about participants. Router may need [No knowledge of participants required. Adding or
to be updated if participants are added or removed. removing participants is easy.

www.EBooksWorld.ir



. ) Often used for event notifications / informational
Often used for business transactions, e.g. orders.
messages.

Generally more efficient with queue-based channels. Generally more efficient with publish-subscribe channels.

How do we decide between the two options? In some cases, the decision is driven by the
required functionality, e.g. if we need the ability for multiple recipients to process the same
message, we need to use a Pub-Sub Channel with Message Filters. In most cases though, we
decide by which party has control over (and needs to maintain) the routing decision. Do we want
to keep central control or farm it out to the recipients? If message contain sensitive data that is
only to be seen by certain recipients we need to use a Content-Based Router -- we would not want

to trust the other recipients to filter out messages. For example, let's assume we offer special
discounts to out premium customers we would not send those to our non-premium customers

and expect them to ignore these special offers.

Network traffic considerations can drive the decision as well. If we have an efficient way to
broadcast information (e.g. using IP multicast on an internal network), using filters can be very
efficient and avoids the potential bottleneck of a single router. However, if this information is
routed over the Internet, we are limited to point-to-point connections. In this case a router is
much more efficient as it avoids sending individual messages to all participants. If we want to
pass control to the recipients but need to use a router for reasons of network efficiency we can
employ a dynamic Recipient List. This Recipient List allows recipients to express their preferences
and stores them in a database or a rule base. When a message arrives the Recipient List forwards
the message to all interested recipients whose criteria match the message.

Related patterns: Content-Based Router, Message Router, Selective Consumer, Publish-Subscribe

Channel, Recipient List

Dynamic Router

You are using a Message Router to route messages between multiple destinations.

How can you avoid the dependency of the router on all possible destinations while

maintaining its efficiency?

A Message Router is very efficient because it can route a message directly to the correct destination.
Other solutions to message routing, especially reactive filtering solutions (see Message Filter and
Routing Slip) are less efficient because they use a trial-and error approach: they route each
message to the first possible destination. If that destination is the correct one, it accepts the
message, otherwise the message is passed to the second possible destination and so on.

Distributed routing solutions also suffer from the risk that there are multiple recipients of a
message or none at all. Both situations can go undetected unless we use a central routing element.

www.EBooksWorld.ir



In order to achieve this accuracy, the Message Router has to incorporate knowledge about each
destination and the rules for routing messages to the destination. This can turn the Message Router

into a maintenance burden if the list of possible destinations changes frequently.

Use a Dynamic Router, a Router that can self-configure based on special configuration
messages from participating destinations.

Dynamic Router Output Channel

—G— A
Message Router

Input Channel Cutput Channel
Yy~ = e e

—

Cutput Channel

ﬁ —@—| C

Dynamic%ule Baze =j‘7

Contral Channel

Besides the usual input and output channels the Dynamic Router uses an additional control channel.
During system start-up, each potential recipient sends a special message to the Dynamic Router on
this control channel, announcing its presence and listing the conditions under which it can

handle a message. The Dynamic Router stores the 'preferences' for each participant in a rule base.
When a message arrives, the Dynamic Router evaluates all rules and routes the message to the
recipient whose rules are fulfilled. This allows for efficient, predictive routing without the

maintenance dependency of the Dynamic Router on each potential recipient.

In the most basic scenario each participant announces its existence and routing preferences to the
Dynamic Router on start-up time. This requires each participant to be aware of the control queue
used by the Dynamic Router. It also requires the Dynamic Router to store the rules in a persistent
way. Otherwise, if the Dynamic Router fails and has to restart it would not be able to recover the
routing rules. Alternatively, the Dynamic Router could send a broadcast message to all possible
participants to trigger them to reply with the control message. This configuration is more robust
but requires the use of an additional Publish-Subscribe Channel.

It might make sense to enhance the control channel to allow participants to send both 'subscribe'
and 'unsubscribe' messages to the Dynamic Router. This would allow recipients to add or remove
themselves from the routing scheme during runtime.

Because the recipients are independent from each other, the Dynamic Router has to deal rules
conflicts, i.e. multiple recipients announcing interest in the same type of message. The Dynamic

Router can employ a number of different strategies to resolve such conflicts:

www.EBooksWorld.ir



. Ignore control messages that conflict with existing messages. This option assures that the
routing rules are free of conflict. However, the state of the routing table may depend on the
sequence in which the potential recipients start up. If all recipients start up at the same time,
this may lead to unpredictable behavior because all recipients would announce their
preferences at the same time to the control queue.

. Send the message to the first recipient whose criteria match. This option allows the
routing table to contain conflicts, but resolves them as messages come in.

. Send the message to all recipients whose criteria match. This option is tolerant of conflicts
but turns the Dynamic Router into a Recipient List. generally, the behavior of a Content-Based
Router implies that is publishes one output message for each input message. This strategy
violates that rule.

The main liability of the Dynamic Router is the complexity of the solution and the difficulty of
debugging a dynamically configured system.

A Dynamic Router is another example where message-based middleware performs similar
functions to lower level IP networking. A Dynamic Router works very similar to the dynamic
routing tables used in IP routing to route IP packets between networks. The protocol used by the
recipients to configure the Dynamic Router is analogous to the IP Routing Information Protocol
(RIP -- for more information see [Stevens]).

A common use of the Dynamic Router is dynamic service discovery in service-oriented
architectures. If a client application wants to access a service it sends a message containing the
name of the service to the Dynamic Router. The Dynamic Router maintains a service directory, a list
of all services with their name and the channel they listen on. The Dynamic Router matches the
name of the requested service to the service directory and routes the message to the correct
channel. This setup allows services to be provided by more than one provider. The client
application can continue to send command messages to a single channel without having to worry

about the nature or location of the specified service provider.

[POSA] describes the Client-Dispatcher-Server pattern as a way for a client to request a specific
service without knowing the physical location of the service provider. The dispatcher uses a list
of registered services to establish a connection between the client and the physical server
implementing the requested service. The Dynamic Router is different from the Dispatcher in that it
can be more intelligent than a simple table lookup.

Example: Dynamic Router using C# and MSMQ

This example builds on the example presented in the Content-Based Router and enhances it to act

as a Dynamic Router. The new component listens on two channels, the inQueue and the
controlQueue. The control queue can receive messages of the format "X:QueueName", causing the
Dynamic Router to route all messages whose body text begins with the letter X to the queue

QueueName.

www.EBooksWorld.ir



class DynamicRouter

{
protected MessageQueue inQueue;
protected MessageQueue controlQueue;

protected MessageQueue dunnoQueue;

protected IDictionary routingTable = (IDictionary)(new Hashtable());

public DynamicRouter(MessageQueue inQueue, MessageQueue controlQueue, MessageQueue
dunnoQueue)
{
this.inQueue = inQueue;
this.controlQueue = controlQueue;

this.dunnoQueue = dunnoQueue;

inQueue .ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

inQueue.BeginReceive();

controlQueue _ReceiveCompleted += new
ReceiveCompletedEventHandler (OnControlMessage);

controlQueue _BeginReceive();

protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

{
MessageQueue mg = (MessageQueue)source;
mg.Formatter = new System._Messaging.XmlMessageFormatter(new String[]
{"'System_String,mscorlib"});

Message message = mq-EndReceive(asyncResult._AsyncResult);

String key = ((String)message.Body).Substring(0, 1);

if (routingTable.Contains(key))

{
MessageQueue destination = (MessageQueue)routingTable[key];
destination.Send(message);

}

else

dunnoQueue.Send(message) ;

mq.BeginReceive();

// control message format is X:QueueName as a single string

www.EBooksWorld.ir



protected void OnControlMessage(Object source, ReceiveCompletedEventArgs
asyncResult)
{
MessageQueue mg = (MessageQueue)source;
mg.Formatter = new System.Messaging.XmlMessageFormatter(new String[]
{"'System_String,mscorlib”});

Message message = mq-EndReceive(asyncResult._AsyncResult);

String text = ((String)message.Body);
String [] split = (text_Split(new char[] {": "}, 2));
if (split.Length == 2)

{
String key = split[0];
String queueName = split[1];
MessageQueue queue = FindQueue(queueName);
routingTable_Add(key, queue);
}
else
{
dunnoQueue . Send(message) ;
}

mq.BeginReceive();

protected MessageQueue FindQueue(string queueName)

{
if ('MessageQueue _Exists(queueName))
{
return MessageQueue.Create(queueName);
}
else
return new MessageQueue(queueName) ;
}

This example uses a very simple conflict resolution mechanism -- last one wins. If two recipients
express interest in receiving messages that start with the letter 'X', only the second recipient will
receive the message because the hashmap stores only one queue for each key value. Also note
that the dunnoQueue can now receive two types of messages: incoming messages that have no
matching routing rules or control messages that do not match the required format.

Related patterns: Content-Based Router, Message Filter, Message Router, Publish-Subscribe Channel,

Recipient List, Routing Slip

www.EBooksWorld.ir



Recipient List

A Content-Based Router allows us to route a message to the correct system based on message

content. This process is transparent to the original sender in the sense that the originator simply
sends the message to a channel, where the router picks it up and takes care of everything.

In some cases, though, we may want to specify one or more recipients for the message. A
common analogy are the recipient lists implemented in most e-mail systems. For each e-mail
message, the sender can specify a list of recipients. The mail system then ensures transport of the
message content to each recipient. An example from the domain of enterprise integration would
be a situation where a function can be performed by one or more providers. For example, we
may have a contract with multiple credit agencies to assess the credit worthiness of our
customers. When a small order comes in we may simply route the credit request message to one
credit agency. If a customer places a large order, we may want to route the credit request
message to multiple agencies and compare the results before making a decision. In this case, the
list of recipients depends on the dollar value of the order.

In another situation, we may want to route an order message to a select list of suppliers to obtain
a quote for the requested item. Rather than sending the request to all vendors, we may want to
control which vendors receive the request, possibly based on user preferences

How do we route a message to a list of dynamically specified recipients?

Because this problem is an extension to the problem that a Content-Based Router solves, some of

the same forces and alternatives described in that pattern come into play here as well.

Most messaging systems provide Publish-Subscribe Channels, which send a copy of a published
messages to each recipient who subscribes to the channel. The set of recipients is based on
subscription to the specific channel or subject. However, the list of active subscribers to a channel
is somewhat static and cannot change on a message-by-message basis.

Because subscription to a Publish-Subscribe Channels is binary (you are either subscribed to all
messages on the channel or none), each potential recipient would have to filter messages
incoming messages based on message content, most likely using a Message Filter or Selective

Consumer. This distributes the logic over who receives the message to the individual subscribers.
Going down this route we could maintain a central point of maintenance for the list of recipients
by attaching a list of intended recipients to the message. When the message is broadcast to all
possible recipients, each recipient would then look in the recipient list associated with the
message. If the recipient is not part of the recipient list, it will discard the message. The problem
with either approach its inefficiency by requiring each potential recipient to process every
message just to possibly discard it. The configuration also relies on a certain 'honor' system on
part of the recipients as we cannot really prevent a recipient from processing the message. This is
definitely not desirable in situations where we forward a request for quote to a select subset of
suppliers and expect others to ignore the message they are receiving.

www.EBooksWorld.ir



We could also require the message originator to publish the message individually to each desired
recipient. In that case, though we would place the burden of delivery to all recipients on the
message originator. If we originator is a packaged application, this is generally not an option.
Also, it would embed decision logic inside the application which would couple the application
more tightly to the integration infrastructure. In many cases, the applications that are being
integrated are unaware of the fact that they even participate in an integration solution, so
expecting the application to contain message routing logic is not realistic.

Define a channel for each recipient. Then use a Recipient List to inspect an incoming message,
determine the list of desired recipients, and forward the message to all channels associated
with the recipients in the list.

Fecipient Channel

.
., — a——

=
. 9, e

=<

Recipient List

L

The logic embedded in a Recipient List can be pictured as two separate parts even though the
implementation is often coupled together. The first part computes a list of recipients. The second
part simply traverses the list and sends a copy of the received message to each recipient. Just like
a Content-Based Router, the Recipient List usually does not modify the message contents.

&
O ] S ZIEEﬁ c
E

Compute Distributor
A Recipient List Can Compute the Recipients (left) or Have Another Component Provide A List (right)

¥

L 2
T

k.

Recipients

D

The recipient list can be derived from a number of sources. The creation of the list can be external
to the Recipient List so that the message originator or another component attaches the list to the
incoming message. The Recipient List only has to iterate through this ready-made list. In this
situation, the Recipient List usually removes the recipient list from the message to reduce the size
of the outgoing messages and prevent individual recipient from seeing who else is on the list.
Providing the list with the incoming message makes sense if the destinations of each message are
based on user selection.

www.EBooksWorld.ir



In most cases, the Recipient List computes the list of recipients cased on the content of the message
and a set of rules embedded in the Recipient List. The rules may be hard-coded or configurable
(see below).

The Recipient List is subject to the same considerations regarding coupling as discussed under the
Message Router, pattern. Routing messages predictively to individual recipients can lead to tighter
coupling between components because a central has to have knowledge of a series of other
components.

In order for the Recipient List to control flow of information we need to make sure that recipients
cannot subscribe directly to the input channel into the Recipient List, bypassing any control the
Recipient List exercises.

Robustness

The Recipient List component is responsible for sending the incoming message to each recipient
specified in the recipient list. A robust implementation of the Recipient List must be able to
process the incoming message but only 'consume' it after all outbound messages have been
successfully sent. As such, the Recipient List component has to ensure that the complete
operation is atomic. If the Recipient List fails, it needs to be restartable. This can be accomplished
in multiple ways:

° Single transaction - The Recipient List can use transactional channels and places the message on the
outbound channels as part of a single transaction. It does not commit the messages until all messages are placed
on the channels. This guarantees that either all or no messages are sent.

° Persistent recipient list - The Recipient List can "remember" which messages it already sent so that on failure
and restart can send messages to the remaining recipients. The recipient list could be stored on disk or a database
so that it survives a crash of the Recipient List component.

° Idempotent receivers Alternatively, the Recipient List could simply resend all messages on restart. This
options requires all potential recipients to be idempotent (see ldempotent Receiver). Idempotent functions are

those that do not change the state of the system if they are applied to themselves, i.e. the state of the component is
not affected if the same message is processed twice. Messages can be inherently idempotent (e.g. the messages
"All Widgets on Sale until May 30" or "get me a Quote for XYZ widgets" are unlikely to do harm if they are
received twice) or the receiving component can be made idempotent by inserting a special Message Filter that
eliminates duplicate messages. Idempotence is very handy because it allows us to simply resend messages when
we are in doubt whether the recipient has received it. The TCP/IP protocol uses a similar mechanism to ensure
reliable message delivery without unnecessary overhead (see [Stevens]).

Dynamic Recipient List

Even though the intent of the Recipient List is to maintain control, it can be useful to let the
recipients themselves configure the rule set stored in the Recipient List, for example if recipients
want to subscribe to specific messages based on rules that can not easily be represented in form

www.EBooksWorld.ir



of publish-subscribe channel topics. We mentioned these types of subscription rules under the
Message Filter Pattern, for example "accept the message if the price is less than $48.31". To
minimize network traffic we would still want to send the messages only to interested parties as
opposed to broadcasting it and letting each recipient decide whether to process the message or
not. To implement this functionality, recipients can send their subscription preferences to the
Recipient List via a special control channel. The Recipient List stores the preferences in a rules base
and uses it to compile the recipient list for each message. This approach gives the subscribers
control over the message filtering but leverages the efficiency of the Recipient List to distribute the
messages. This solution combines the properties of a Dynamic Router with a Recipient List to create
a Dynamic Recipient List (see picture).

hessage Bus

T

Control Bus

Recipient List

A Dynamic Recipient List Is Configured by the Recipients via a Control Channel

This approach would work well for the 'price update' example discussed in the Message Filter
pattern. Since it assigns control to the individual recipients it is not suitable for the bidder

example mentioned at the beginning of this pattern, though.

Network (In)Efficiencies

Whether it is more efficient to send one message to all all possible recipients who then filter the
message or to send individual messages to each recipient depends very much on the
implementation of the messaging infrastructure. Generally, we can assume that the more
recipients a message has, the more network traffic it causes. However, there are exceptions. Some
publish-subscribe messaging systems are based on IP Multicast functionality and can route
messages to multiple recipients with a single network transmission (requiring retransmission
only for lost messages). IP Multicast takes advantage of Ethernet's bus architecture. When an IP
packet is sent across the network, all network adapters (NIC) on the same Ethernet segment
receive the packet. Normally, the NIC verifies the intended recipient of the packet and ignores it
if the packet is not addressed to the IP address the NIC is associated with. Multicast routing
allows all receivers that are part of a specified multicast group to read the packet of the bus. This
results in a single packet being able to be received by multiple NIC's who then pass the data to
the respective application associated with the network connection. This approach can be very
efficient on local networks due to the Ethernet bus architecture. It does not work across the
Internet where point-to-point TCP/IP connections are required. In general, we can say that the

www.EBooksWorld.ir



further apart the recipients are, the more efficient it is to use a Recipient List vs. a Publish-Subscribe

Channel.

Whether a broadcast is more efficient depends not only on the network infrastructure, but also on
the proportion between the number of recipients that are supposed to process the message over
all recipients. If on average, most recipients are in the recipient list, it may be more efficient to
simply broadcast the message and have the (few) non-participants filter the message out. If
however, on average only a small portion of all possible recipients are interested in a particular
message, the Recipient List is almost guaranteed to be more efficient.

Recipent List vs. Pub-Sub and Filters

A number of times we have contrasted implementing the same functionality using predictive
routing with a Recipient List or using reactive filtering using a Publish-Subscribe Channel and an

array of Message Filters. Some of the decision criteria equal those of the the comparison between
the Content-Based Router and the Message Filter array. However, in case of a Recipient List, the

message can travel to multiple recipients, making the "filter" option more attractive.

Mezzage Fiters
ﬁ o

E i I Pukbr-Zub Channel
Recipient Lizt
M

Recipient List vs. MessageFilter Array

BBEE
BIR|E1S

The following table compares the two solutions:

Content-Based Router Publish-Subscribe Channel with Recipient List

Central control and maintenance -- predictive routing. Distributed control and maintenance -- reactive filtering.

Router needs to know about participants. Router may need o . .
. o No knowledge of participants required. Adding or
to be updated if participants are added or removed (unless . . .
) . i removing participants is easy.
using dynamic router, but at expense of losing control).

Often used for business transactions, e.g. request for Often used for event notifications / informational
quote. messages.

Generally more efficient if limited to queue-based Can be more efficient with publish-subscribe channels
channels. (depends on infrastructure).

www.EBooksWorld.ir



If we send a message to multiple recipients we may need to reconcile the results later. For
example, if we send a request for a credit score to multiple credit agencies we should wait until
all results come back so that we can compare the results and choose the best alternative . With
other less critical functions we may just take the first available response to optimize message
throughput. These types of strategies are typically implemented inside an Aggregator.
Scatter-Gather describes situations where we start with a single message, send it to multiple

recipients and re-combine the responses into a single message.

A dynamic Recipient List can be used to implement a Publish-Subscribe Channel if a messaging

system provides only Point-to-Point Channels but no Publish-Subscribe Channel. The Recipient List

would keep a list of all Point-to-Point Channels that are subscribed to the 'topic', represented by

this specific instance of the Recipient List. This solution can also be useful if we need to apply
special criteria to allow a recipient to subscribe to a source of data. The Recipient List could easily
implement logic that controls access to the source data as long as the messaging system can
ensure that the recipients don't have direct access to the input channel into the Recipient List.

Example: Loan Broker

The composed messaging example in the interlude at the end of this chapter (see Introduction to

Composed Messaging Examples) uses a Recipient List to route a loan quote request only to qualified

banks. The interlude shows implementations of the Recipient List in Java, C# and TIBCO.

Example: Dynamic Recipient List in C# and MSMQ

This example builds on the Dynamic Router example to turn it into a dynamic Recipient List. The
code structure is very similar. The DynamicRecipientList listens on two input queues, one for
incoming messages (inQueue) and a control queue (controlQueue) where recipients can hand in
their subscription preferences. Messages on the control queue have to be formatted as a string
consisting of two parts separated by a colon (':'). The first part is a list of characters that indicate
the subscription preference of the recipient. The recipient expresses that it wants to receive all
messages starting with one of the specified letters. The second part of the control message
specifies the name of the queue that the recipient listens on. For example, the control message
"W:WidgetQueue" tells the DynamicRecipientList to route all incoming messages that begin with
"W" to the queue WidgetQueue. Likewise, the message "WQ:WidgetGadgetQueue" instructs the
DynamicRecipientList to route messages that start with either "W" or "G" to the queue

DynamicRecipientList.

class DynamicRecipientList

{

protected MessageQueue inQueue;

protected MessageQueue controlQueue;

protected IDictionary routingTable = (IDictionary)(new Hashtable());

www.EBooksWorld.ir



public DynamicRecipientList(MessageQueue inQueue, MessageQueue controlQueue)
{
this.inQueue = inQueue;

this.controlQueue = controlQueue;

inQueue .ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);
inQueue.BeginReceive();

controlQueue _.ReceiveCompleted += new
ReceiveCompletedEventHandler (OnControlMessage) ;

controlQueue _BeginReceive();

protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)
{
MessageQueue mg = (MessageQueue)source;

mg.Formatter = new System_Messaging.XmlMessageFormatter(new String[]
{"'System_String,mscorlib”});

Message message = mq-EndReceive(asyncResult._AsyncResult);

if (((String)message.Body).Length > 0)
{
char key = ((String)message.Body)[0];

ArrayList destinations = (ArrayList)routingTable[key];
foreach (MessageQueue destination in destinations)

{

destination.Send(message);

Console_WriteLine('sending message ' + message.Body + " to " +
destination.Path);

b
}

mq.BeginReceive();

// control message format is XYZ:QueueName as a single string

protected void OnControlMessage(Object source, ReceiveCompletedEventArgs
asyncResult)

{
MessageQueue mg = (MessageQueue)source;

mg.Formatter = new System._Messaging.XmlMessageFormatter(new String[]
{"'System_String,mscorlib"});

www.EBooksWorld.ir



Message message = mq-EndReceive(asyncResult._AsyncResult);

String text = ((String)message.Body);
String [] split = (text_Split(new char[] {": "}, 2));
if (split.Length == 2)

{
char[] keys = split[0]-ToCharArray(Q);
String queueName = split[1];
MessageQueue queue = FindQueue(queueName);
foreach (char c in keys)
{
if (IroutingTable.Contains(c))
{
routingTable_Add(c, new ArrayList());
}
((ArrayList)(routingTable[c])) -Add(queue);
Console_WriteLine('Subscribed queue " + queueName + " for message " + c);
}
}

mq.BeginReceive();

protected MessageQueue FindQueue(string queueName)

{
if ('MessageQueue _Exists(queueName))
{
return MessageQueue.Create(queueName);
}
else
return new MessageQueue(queueName) ;
}

The DynamicRecipientList uses a bit more clever (read complicated) way to store the recipient's
preferences. To optimize processing of incoming messages, the DynamicRecipientList maintains a
Hashtable keyed by the first letter of incoming messages. Unlike the Dynamic Router example, the
Hashtable contains not a single destination, but an Arraylist of all subscribed destinations. When
the DynamicRecipientList receives a message it locates the correct destination list from the
Hashtable and then iterates over the list to send one message to each destination.

This example does not use a dunnoChannel (see Content-Based Router or Dynamic Router ) for

incoming messages that do not match any criteria. Typically, a Recipient List does not consider it

an error of there are zero recipients for a message.

www.EBooksWorld.ir



This implementation does not allow recipients to unsubscribe. It also does not detect duplicate
subscription. For example, if a recipient subscribes twice for the same message type it will receive
duplicate messages. This is different from the typical publish-subscribe semantics where a
specific recipient can subscribe to one channel only once.The DynamicRecipientListcould easily
be changed to disallow duplicate subscriptions if that is desired.

Related patterns: Aggregator, Scatter-Gather, Introduction to Composed Messaging Examples,

Content-Based Router, Dynamic Router, Message Filter, Idempotent Receiver, Message Router, Selective

Consumer, Point-to-Point Channel, Publish-Subscribe Channel

Splitter

Many messages passing through an integration solution consist of multiple elements. For
example, an order placed by a customer consists of more than just a single line item. As outlined
in the description of the Content-Based Router, each line item may need to be handled by a

different inventory system. Thus, we need to find an approach to process a complete order, but
treat each order item contained in the order individually.

How can we process a message if it contains multiple elements, each of which may have to be
processed in a different way?

The solution to this routing problem should be generic enough so that it can deal with varying
numbers and types of elements. For example, an order can contain any number of items, so we
would not want to create a solution that assumes a fixed number of items. Nor would we want to
make too many assumptions about what type of items the message contains. For example, if the
Widget & Gadget company starts selling books tomorrow, we want to minimize the impact on
the overall solution.

We also want to maintain control over the order items and avoid duplicated or lost processing.
For example, we could send the complete order to each order management system using a
Publish-Subscribe Channel and let it pick out the items that it can handle. This approach has the

same disadvantages described in the Content-Based Router. It would be very difficult to avoid

missing or duplicate shipment of individual items.

The solution should also be efficient in its usage of network resources. Sending the complete
order message to each system that may only process a portion of the order can cause additional
message traffic, especially as the number of destinations increases.

To avoid sending the complete message multiple times we could split the original message into
as many messages as there are inventory systems. Each message would then contain only the line
items that can be handled by the specific system. This approach is similar to a Content-Based
Router except we are splitting the message and the routing the individual messages. This
approach would be efficient but ties the solution to knowledge about the specific item types and
associated destinations. What if we want to change the routing rules? We would now have to

www.EBooksWorld.ir



change this more complex "itemrouter" component. We use the Pipes and Filters architectural to
break out processing into well-defined, composable components as opposed to lumping multiple
functions together, so we should be able to take advantage of this architecture here as well.

Use a Splitter to break out the composite message into a series of individual messages, each

containing data related to one item.

I ] I

. . Drder Crder Crder
Mew Cirder Splitter Itert 1 ltern 2 ltem 3

use a Splitter that consumes one message containing a list of repeating elements, each of which
can be processed individually. The Splitter publishes a one message for each single element (or a

subset of elements) from the original message.

In many cases, we want to repeat some common elements in each resulting message. These extra
elements are required to make the resulting child message self-contained and therefore enables
state-less processing of the child message. It also allows reconciliation of associated child
messages later on. For example, each order item message should contain a copy of the order
number so we can properly associate the order item back to the order and all associated entities

such as the customer placing the order (see picture).

Orcler Mumber =

Crder fems List

temd =

Crder hMessage

Iterating Splitters

As mentioned earlier, many enterprise integration systems store message data in a tree structure.
The beauty of a tree structure is that it is recursive. Each child node underneath a node is the root
of another subtree. This allows us to extract pieces of a message tree and process them further as
a message tree on their own. If we use message trees , the Splitter can be easily be configured to
iterate through all children under a specified node and send one message for each child node.

Such a Splitter implementation would be completely generic because it does not make any

www.EBooksWorld.ir



assumptions about the number and type of child elements. Many commercial EAI tools provide
this type of functionality under the term Iterator or Sequencer. Since we are trying to avoid vendor
vocabulary to reduce potential for confusion, we call this style of Splitter an Iterating Splitter.

Static Splitters

Using a Splitter is not limited to repeating elements, though. A large message may be split into
individual messages to simplify processing. For example, a number of B2B information exchange
standards specify very comprehensive message formats. These huge messages are often a result
of design-by-committee and large portions of the messages may rarely be used. In many
instances it is helpful to split these mega-messages into individual messages, each centered
around a specific portion of the large message. This makes subsequent transformations much
easier to develop and can also save network bandwidth since we can route smaller messages to
those components that deal only with a portion of the mega-message. The resulting messages are
often published to different channels rather than the same channel because they represent
messages of different sub-types. In this scenario, the number of resulting messages is generally
fixed whereas in the more general Splitter assumes a variable number of items. To distinguish this
style of Splitter we call it Static Splitter. A Static Splitter is functionally equivalent to using a
broadcast channel followed by a set of Content Filters.

Composite
Meac-age >
Fﬂtermg
—EI oplitter
= —»
—

Ordered or Unordered Child Messages

In some cases it is useful to equip child messages with sequence numbers to improve massage
traceability and simplify the task of an Aggregator. Also, it is a good idea to equip each message
with a reference to the original (combined) message so that processing results from the individual
messages can be correlated back to the original message. This reference functions as a Correlation

Identifier.

If message envelopes are used (see Envelope Wrapper), each new message should be supplied with

its own message envelope to make it compliant with the messaging infrastructure. For example,
if the infrastructure requires a message to carry a timestamp in the message header, we would
propagate the timestamp of the original message to each message's header.

www.EBooksWorld.ir



Example: Splitting an XML Order Document in C#

Many messaging systems use XML messages. For example, let's assume an incoming order look

as follows:

<order>
<date>7/18/2002</date>
<ordernumber>3825968</ordernumber>
<customer>
<id>12345</id>
<name>Joe Doe</name>
</customer>
<orderitems>
<item>
<quantity>3.0</quantity>
<itemno>W1234</itemno>
<description>A Widget</description>
</item>
<item>
<quantity>2.0</quantity>
<itemno>G2345</itemno>
<description>A Gadget</description>
</item>
</orderitems>

</order>

We want the Splitter to split the order into individual order items. For the example document the

Splitter should generate the following two messages:

<orderitem>
<date>7/18/2002</date>
<ordernumber>3825968</ordernumber>
<customerid>12345</customerid>
<quantity>3.0</quantity>
<itemno>W1234</itemno>
<description>A Widget</description>

</orderitem>

<orderitem>
<date>7/18/2002</date>
<ordernumber>3825968</ordernumber>
<customerid>12345</customerid>
<quantity>2.0</quantity>
<itemno>G2345</itemno>
<description>A Gadget</description>

www.EBooksWorld.ir



</orderitem>

Each orderitem message is being enriched with the order date, the order number, and the

customer ID. The inclusion of the customer ID and the order date make the message

self-contained and keeps the message consumer from having to store context across individual

messages. This is important if the messages are to be processed by stateless servers. The addition

of the ordernumber field is necessary for later re-aggregation of the items (see Aggregator. In this

example we assume that the specific order of items is not relevant for completion of the order, so

we did not have to include an item number.

Let's see what the Splitter code looks like in C#.

class XMLSplitter

{

protected MessageQueue inQueue;

protected MessageQueue outQueue;

public XMLSplitter(MessageQueue inQueue, MessageQueue outQueue)

{

this.inQueue = inQueue;

this.outQueue = outQueue;

inQueue .ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);

inQueue.BeginReceive();

outQueue.Formatter = new ActiveXMessageFormatter();

protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

{

MessageQueue mg = (MessageQueue)source;
mg.Formatter = new ActiveXMessageFormatter();

Message message = mq-EndReceive(asyncResult._AsyncResult);

XmIDocument doc = new XmlIDocument();

doc.LoadXml ((String)message.Body) ;

XmINodeList nodeList;

XmIElement root = doc.DocumentElement;

XmINode date = root.SelectSingleNode(*'date™);

XmINode ordernumber = root.SelectSingleNode(*'ordernumber™);
XmINode id = root.SelectSingleNode(‘'customer/id™);
XmIElement customerid = doc.CreateElement(‘'customerid™);

customerid. InnerText = id.InnerXml;

www.EBooksWorld.ir



nodeList = root.SelectNodes(*'/order/orderitems/item');

foreach (XmINode item in nodelList)

{

XmIDocument orderltemDoc = new XmlDocument();
orderltemDoc.LoadXml (*'<orderitem/>");

XmIElement orderltem = orderltemDoc.DocumentElement;

orderltem._AppendChild(orderltemDoc. ImportNode(date, true));
orderltem._AppendChild(orderltemDoc. ImportNode(ordernumber, true));
orderltem._AppendChi ld(orderltemDoc. ImportNode(customerid, true));

for (int i=0; i < item.ChildNodes.Count; i++)

{
orderltem._AppendChild(orderltemDoc. ImportNode(item.ChildNodes[i],

true));

outQueue.Send(orderltem._OuterXml);

mq.BeginReceive();

Most of the code centers around the XML processing. The XMLSplitter uses the same
Event-Driven Consumer structure as the other routing examples. Each incoming message invokes

the method OnMessage. Onmessage converts the message body into an XML document for
manipulation. First, we extract the relevant values from the order document. Then, we iterate
over each <item> child element. We do this by specifying the XPath expression
/order/orderitems/item. A simple XPath expression is very similar to a file path -- it descends
down the document tree, matching the element names specified in the path. For each <item> we
assemble a new XML document, copying the fields carried over from the order and the item's
child nodes.

Example: Splitting an XML Order Document in C# and XSL

Instead of manipulating XML nodes and elements manually, we can also create an XSL document
to transform the incoming XML into the desired format and then create output messages from
the transformed XML document. That is more maintainable when the document format is likely
to change. All we have to do is change the XSL transformation without any changes to the C#
code.

www.EBooksWorld.ir



The new code uses the Transform method provided by the XsITransform class to convert the input
document into an intermediate document format. The intermediate document format has one
child element orderitem for each resulting message. The code simply traverses all child elements
and publishes one message for each element.

class XSLSplitter
{

protected MessageQueue inQueue;
protected MessageQueue outQueue;

protected String styleSheet = "__\\..\\Order20rderltem.xsl";
protected XslTransform xslt;

public XSLSplitter(MessageQueue inQueue, MessageQueue outQueue)

{
this.inQueue = inQueue;
this.outQueue = outQueue;

xslt = new XslTransform(Q);
xslt.Load(styleSheet, null);

outQueue.Formatter = new ActiveXMessageFormatter();

inQueue .ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);
inQueue.BeginReceive();

protected void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)

{
MessageQueue mg = (MessageQueue)source;
mqg.Formatter = new ActiveXMessageFormatter();

Message message = mq.EndReceive(asyncResult._AsyncResult);
try
{
XPathDocument doc = new XPathDocument(new
StringReader ((String)message.Body));

XmlReader reader = xslt.Transform(doc, null, new XmlUrlIResolver());

XmlDocument allltems = new XmlDocument();
allltems.Load(reader);

XmINodeList nodeList =

allltems.DocumentElement.GetElementsByTagName("'orderitem');

www.EBooksWorld.ir



foreach (XmINode orderltem in nodelList)

{

outQueue.Send(orderltem._OuterXml);

}
catch (Exception e) { Console.WriteLine(e.-ToString()):; }

mq.BeginReceive();

We read the XSL document from a separate file to make it easier to edit and test. Also, it allows
us to change the behavior of the Splitter without recompiling the code.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding=""UTF-8" indent="yes"/>

<xsl:template match="/order'>
<orderitems>
<xsl:apply-templates select="orderitems/item"/>
</orderitems>

</xsl:template>

<xsl:template match=""item">
<orderitem>
<date>
<xsl:value-of select="parent::node()/parent::node()/date"/>
</date>
<ordernumber>
<xsl:value-of select="parent::node()/parent: :node()/ordernumber*/>
</ordernumber>
<customerid>
<xsl:value-of select="parent::node()/parent: :node()/customer/id"/>
</customerid>
<xsl:apply-templates select=""*"/>
</orderitem>

</xsl:template>

<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates select="@* | node()"/>
</xsl:copy>

</xsl:template>

www.EBooksWorld.ir



</xsl:stylesheet>

XSL is a declarative language, so it is not easy to make sense of unless you have written a fair bit
of XSL yourself (or read a good XSL book like [Tennison]). This XSL transform looks for any
occurrence of the order element (there is one in our document). Once it finds this element it
creates a new root element for the output document (all XML documents have to have a single
root element) and goes on to process all item elements inside the orderitems element of the input
document. The XSL specifies a new 'template' for each item that is found. This template copies
the date, ordernumber and customerid from order element (which is the item's parent's parent)
and then appends any element from the item. The resulting document has one orderitem element
for each item element in the input document. This make it easy for the C# code to iterate over the
elements and publish them as messages

We were curious as how to the two implementations would perform. We decided to run a real
quick, non-scientific performance test. We simply piped 5000 order messages into the input
Queue, started the Splitter and measured the time it took for 10,000 item messages to arrive on the
output queue. We executed this all inside a single program on one machine using local message
queues. We measured 7 seconds for the XMLSplitter that uses the DOM to extract elements and
5.3 seconds for the XSL-based Splitter. To establish a baseline, a dummy processor that consumes
one message of the input queue and publishes the same message twice on the output queue took
just under 2 seconds for 5000 messages. This time includes the dummy processor consuming
5,000 messages and publishing 10,000, and the test harness consuming the 10,000 messages the
processor published. So it looks like the XSL manipulation is a little more efficient than moving
elements around 'by hand' (if we subtract the baseline, the XSL is about 35% faster). We are sure
that either program could be tuned for maximum performance, but it was interesting to see them
execute side-by-side.

Related patterns: Aggregator, Content-Based Router, Content Filter, Correlation Identifier, Envelope

Wrapper, Event-Driven Consumer, Pives and Filters, Publish-Subscribe Channel

Aggregator

A Splitter is useful to break out a single message into a sequence of sub-messages that can be
processed individually. Likewise, a Recipient List or a Publish-Subscribe Channel is useful to

forward a request message to multiple recipients in parallel in order to get multiple responses to
choose from. In most of these scenarios, the further processing depends on successful processing
of the sub-messages. For example, we want to select the best bid from a number of vendor
responses or we want to bill the client for an order after all items have been pulled from the
warehouse.

How do we combine the results of individual, but related messages so that they can be
processed as a whole?

www.EBooksWorld.ir



The asynchronous nature of a messaging system makes collecting information across multiple
messages challenging. How many messages are there? If we broadcast a message to a broadcast
channel, we may not know how many recipients listened to that channel and therefore cannot

know how many responses to expect.

Even if we use a Splitter, the response messages may not arrive in the same sequence they were
created in. As individual messages can be routed through different network paths, the messaging
infrastructure can usually guarantee the delivery of each message, but may not be able to
guarantee the order in which the individual messages are delivered. In addition, the individual
messages may be processed by different parties with different processing speeds. As a result,
response messages may be delivered out of order (see the Resequencer for a more detailed
description of this problem).

In addition, most messaging infrastructures operate in a "guaranteed, ultimately" delivery mode.
That means, that messages are guaranteed to be delivered to the intended recipient, but there are
no guarantees as to when the message will be delivered. How long should we wait for a message?
If we wait too long, we may delay subsequent processing. If we decide to move ahead without

the missing message, we have to find a way to work with incomplete information. Even so, what
should we do when the missing message (or messages) finally arrives? In some cases we may be
able to process the message separately, but in general other cases that may lead to duplicate
processing. On the other hand, if we ignore the late-comer messages, we permanently lose the

information content contained in these messages.

All these issues can complicate the combined processing of multiple, but related messages. It
would be much easier to implement the business logic if a separate component could take care of
these complexities and pass a single message to the subsequent processing business that depends

on the presence of all individual sub-messages.

Use a stateful filter, an Aggregator, to collect and store individual messages until a complete
set of related messages has been received. Then, the Aggregator publishes a single message
distilled from the individual messages.

% % %]

Inventary  Inventory  Inverary
ltern 1 ltern 2 ltern 3 Agoregataor Inventory
Order

The Aggregator is a special Filter that receives a stream of messages and identifies messages that
are correlated. Once a complete set of messages has been received (more on how to decide when
a set is 'complete' below), the Aggregator collects information from each correlated message and

publishes a single, aggregated message to the output channel for further processing.

www.EBooksWorld.ir



Unlike most of the previous routing patterns, the Aggregator is a stateful component. Simple
routing patterns like the Content-Based Router are often stateless, which means the component

processes incoming messages one-by-one and does not have to keep any information between
messages. After processing a message, the component is in the same state as it was before the
message arrived. Therefore, we call such a component stateless. The Aggregator cannot be
stateless since it needs to store each incoming message until all the messages that belong together
have been received. Then, it needs to distill the information associated with each message into the
aggregate message. The Aggregator does not necessarily have to store each incoming message in
its entirety. For example, if we are processing incoming auction bids, we may only need to keep
the highest bid and the associated bidder ID without having to keep the history of all individual
bid messages. Still, the Aggregator has to store information across messages and is therefore
stateful.

When designing an Aggregator, we need to specify the following items:

. Correlation - which incoming messages belong together?

. Completeness Condition - when are we ready to publish the result message?

. Aggregation Algorithm - how do we combine the received messages into a single result
message?

Correlation is typically achieved by either the type of the incoming messages or an explicit
Correlation Identifier. Common choices for the completeness condition and aggregation algorithm

are described below.

Implementation Details

Due to the event-driven nature of a messaging system, the Aggregator may receive related
messages at any time and in any order. To associate messages, the Aggregator maintains a list of
active aggregates, i.e. aggregates for which the Aggregator has received some messages already.
When the Aggregator receives a new message, it needs to check whether the message is part of an
already existing aggregate. If no aggregate related to this message exists, the Aggregator assumes
that this is the first message of a a set and creates a new aggregate. It then adds the message to
the new aggregate. If an aggregate already exists, the Aggregator simply adds the message to the
aggregate. After adding the message, the Aggregator evaluates the completeness condition for the
aggregate (described in more detail below). If the condition evaluates to true, a new aggregate
message is formed from the aggregate and published to the output channel. If the completeness
condition evaluates to false, no message is published and the Aggregator keeps the aggregate
active for additional messages to arrive. The following diagram illustrates this strategy. In this
simple scenario, we assume an aggregate to be complete whenever it contains at least three

messages.

www.EBooksWorld.ir



B

.‘_

v v

Correlatmn D
Incaming 100 101} 100]
Messages ~—Message 1D
1
|

100 |1 )2 100 (1] 2 1001112 (4
Angregates
NERE | [101]3
Fublished
Messages m

This strategy creates a new aggregate whenever it receives a message that cannot be associated to
an existing aggregate. Therefore, the Aggregator does not need prior knowledge of the aggregates
that is may produce. Accordingly, we call this variant a Self-starting Aggregator.

Depending on the aggregation strategy the Aggregator may have to deal with the situation that an
incoming message belongs to an aggregate that has already been closed out, i.e. after the
aggregate message has been published. In order to avoid starting a new aggregate, the Aggregator
needs to keep a list of aggregates that have been closed out. We need to provide a mechanism to
purge this list periodically so that it does not grow indefinitely. This assumes that we can make
some basic assumptions about the time frame in which related messages will arrive. Since we do
not need to store the complete aggregate, but just the fact that it has been closed, we can store the
list of closed aggregates quite efficiently and build a sufficient safety margin into the purge

algorithm. We can also use Message Expiration to ignore messages that have been delayed for an

inordinate amount of time.

In order to increase the robustness of the overall solution we can also allow the Aggregator to
listen on a specific control channel which allows the manual purging of all active aggregates or a
specific one. This feature can be useful if we want to recover from an error condition without
having to restart the Aggregator component. Along the same lines, allowing the Aggregator to
publish a list of active aggregates to a special channel upon request can be a very useful
debugging feature. Both functions are excellent examples of the kind of features typically

incorporated into a Control Bus.

Aggregation Strategies

There are a number of strategies for aggregator completeness conditions. The available strategies
primarily depend on whether we know how many messages to expect or not. The Aggregator
could know the number of sub-messages to expect because it received a copy of the original
composite message or because each individual message contains the total count (as described in

www.EBooksWorld.ir



the Splitter example). Depending on how much the Aggregator knows about the message stream,

the most common strategies are as follows:

"Wait for All" Wait until all responses are received. This scenario is most likely in the
order example we discussed earlier. An incomplete order may not be meaningful. So if
not all items are received within a certain time-out period an error condition should be
raised by the Aggregator. This approach may give us the best basis for decision-making,
but may also be the slowest and most brittle (plus we need to know how many messages
to expect). A single missing or delayed message will prevent further processing of the
whole aggregate. Resolving such error conditions can be a complicated matter in
loosely-coupled asynchronous systems because the asynchronous flow of messages
makes it hard to reliably detect error conditions (how long should we wait before a
message is "missing'?). One way to deal with missing messages is to re-request the
message. However, this approach requires the Aggregator to know the source of the
message, which may introduce additional dependencies between the Aggregator and
other components.

"Time Out" Wait for a specified length of time for responses and then make a decision by
evaluating those responses received within that time limit. If no responses are received,
the system may report an exception or retry. This heuristic is useful if incoming responses
are scored and only the message (or a small number of messages) with the highest score
is used. This approach is common in "bidding" scenarios.

"First Best" Wait only until the first (fastest) response is received and ignore all other
responses. This approach is the fastest, but ignores a lot of information. It may be
practical in a bidding or quoting scenario where response time is critical.

"Time Out with Override" Wait for a specified amount of time or until a message with a
preset minimum score has been received. In this scenario, we are willing to abort early if
we find a very favorable response; otherwise, we keep on going until time is up. If no
clear winner was found at that point, rank ordering among all the messages received so
far occurs.

"External Event" Sometimes the aggregation is concluded by the arrival of an external
business event. For example, in the financial industry, the end of the trading day may
signal the end of an aggregation of incoming price quotes. Using a fixed timer for such an
event reduces flexibility because it does not other variability. Also, a designated business
even in form of an Event Message allows for central control of the system. The Aggregator
can listen for the Event Message on a special control channel or receive a specially
formatted message that indicates the end of the aggregation.

Closely tied to the selection of a completeness condition is the selection of the aggregation

algorithm. The following strategies are common to condense multiple messages into a single

message:

Select the "best" answer. This approach assumes that there is a single best answer, e.g.
the lowest bid for an identical item. This makes it possible for the Aggregator to make the
decision and only pass the "best" message on. However, in real life, selection criteria are

www.EBooksWorld.ir



rarely this simple. For example, the "best" bid for an item may depend on time of delivery,
the number of available items, whether the vendor is on the preferred vendor list etc.

e Condense data. An Aggregator can be used to reduce message traffic from a high-traffic
source. In these cases it may make sense to compute an average of individual messages or
add numeric fields from each message into a single message. This works best if each
message represents a numeric value, for example, the number of orders received.

e Collect data for later evaluation. it is not always possible to for an Aggregator to make the
decision of how to select the best answer. In those cases it makes still sense to use an
Aggregator to collect the individual messages and combine them into a single message.
This message may simply be a compilation of the individual's messages data. The

aggregation decision may be made later by a separate component or a human being.

In many instances, the aggregation strategy is driven by parameters. For example, a strategy that
waits for a specified amount of time can be configured with the maximum wait time. Likewise, if
the strategy is to wait until an offer exceeds a specific threshold we will most likely let the
Aggregator know in advance what the desired threshold is. If these parameters are configurable at
run-time, an Aggregator may feature an additional input that can receive control messages such as
these parameter settings. The control messages may also contain information such as the number
of correlated messages to expect, which can help the Aggregator implement more effective
completion conditions. In such a scenario, the Aggregator does not simply start a new aggregate
when the first message arrives, but rather receives up-front information related to an expected
series of messages. This information can be a copy of the original request message (e.g., an
Scatter-Gather message), augmented by any necessary parameter information. The Aggregator then
allocates a new aggregate and stores the parameter information with the aggregate (see figure).
When the individual messages come in, they are associated with the corresponding aggregate.
We call this variation an Initialized Aggregator as opposed to the Self-starting Aggregator. This
configuration is obviously only possible if we have access to the originating message, which may
not always be the case.

Spltter f Recipent Lis f Broadeast

h j
Initialize
O
] R A A

Afgreator Individual Messages =ubsystemn

Cnginal Message

Aggregate Message

Aggregators are useful in many applications. The Aggregator is often coupled with a Splitter or a
Recipient List to form a composite pattern. See Composed Message Processor and Scatter-Gather for a

more detailed description of these composite patterns.

www.EBooksWorld.ir



Example: Loan Broker

The composed messaging example in the interlude at the end of this chapter (see Introduction to
Composed Messaging Examples) uses an Aggregator to select the best loan quote from the loan quote

messages returned by the banks. The loan broker example uses an initialized Aggregator -- the
Recipient List informs the Aggregator of the number of quote messages to expect. The interlude
shows implementations of the Aggregator in Java, C# and TIBCO.

Example: Aggregator as Missing Message Detector

Joe Walnes showed me a creative use of an Aggregator. His system sends a message through a
sequence of components, which are unfortunately quite unreliable. Even using Guaranteed
Delivery will not correct this problem because typically the systems themselves fail after the
consumed a message. Because the applications are not Transactional Clients, the

message-in-progress is lost. To help remedying this situation, Joe routes an incoming through
two parallel paths -- once through the required, but unreliable components and once around the
components using Guaranteed Delivery. An Aggregator recombines the messages from the two

paths (see picture).
Lnreliable Components

tg_—’—}

Guaranteed Channel

L |

O
O—0O —
O

Aggregator

An Aggregator with Time-out Detects Missing Messages

The Aggregator uses a "Time Out with Override" completeness condition, which means that the
Aggregator completes if either the time-out is reached or the two associated message have been
received. The aggregation algorithm depends on which condition is fulfilled first. If two
messages are received, the processed message is passed on without modification. If the time-out
event occurs, we know that one of the components failed and "ate" the message. As a result, we
instruct the Aggregator to publish an error message that alerts the operators that one of the
components has failed. Unfortunately, the components have to be restarted manually, but a more
sophisticated configuration could likely restart the component and re-send any lost messages.

Example: Aggregator in JMS

This example show the implementation of an Aggregator using the Java Messaging Service (JMS)
API. The Aggregator receives bid messages on one channel, aggregates all related bids and

www.EBooksWorld.ir



publishes a message with the lowest bid to another channel. Bids are correlated through an

Auction ID property that acts as a Correlation Identifier for the messages. The aggregation strategy

is to receive a minimum of 3 bids. The Aggregator is self-starting and does not require external

initialization.

Auction Result

Bid flessages

W% 5 %

Auctionld=123

Aggreqgator BucBonld=123 BucBonld=123 BucBonld=123
Vendor=lldget: Rz | Vendor=LoGost Leader | Vendor=10G & Co
Price = 165 Price = 156 Price = 163

The Aggregator Example Selects the Lowest Bid

The solution consists of the following main classes:

Aggregator - contains logic to receive messages, aggregate them and send result
messages. Interfaces with aggregates via the Aggregate interface.
AuctionAggregate - implements the Aggregate interface. This class acts as an
Adapter (see [GoF]) between the Aggregate interface and the Auction class. This
setup allows the Auction class to be free of references to the J]MS APL

Auction - a collection of related bids that have been received. The Auction class
implements the aggregation strategy, e.g. finding the lowest bid and
determining when the aggregate is complete.

Bid - is a convenience class that holds the data items associated with a bid. We
convert incoming message data into a bid object so that we can access the bid
data through a strongly-typed interface, making the the Auction logic
completely independent from the J]MS APL

www.EBooksWorld.ir



Aggregator Aggregate
x
ung " | addl essage(;
onld ez=age(} i=Complete}
getRezulti ezzage(;
| I i)
I [ I S S S S S s - 4 I
I I i
I I
: : AuctionAggregate = Auction
W
addi es=age(} addBid(}
JH5 = — — — — isComplete; i=C omplete(;
getResult ezsagel; getBestB i}
ﬁ*
Bid
Itemld
YendorMame
Price

The code of the solution is the Aggregator class. This class requires two JMS destinations, an input
destination and an output destination. Destination is the JMS abstraction for a queue or a topic
(Publish-Subscribe Channel). This abstraction allows us to write JMS code independent from the

type of channel. This feature can be very useful for testing and debugging. For example, during
testing we may use publish-subscribe topics so that we can easily "listen in" on the message
traffic. In production may want to switch to queues.

public class Aggregator implements MessagelListener

{
static final String PROP_CORRID = "AuctionlID";

Map activeAggregates = new HashMap():;

Destination inputDest = null;
Destination outputDest = null;

Session session = null;

MessageConsumer in = null;

MessageProducer out = null;

public Aggregator (Destination inputDest, Destination outputDest, Session session)

{
this.inputDest = inputDest;
this.outputDest = outputDest;

this.session = session;

www.EBooksWorld.ir



public void run(Q)

{
try {
in = session.createConsumer(inputDest);
out = session.createProducer(outputDest);
in.setMessagelListener(this);
} catch (Exception e) {
System.out._printIn("’Exception occurred: " + e.toString());
}
}

public void onMessage(Message msg)
{
try {
String correlationlD = msg.getStringProperty(PROP_CORRID);
Aggregate aggregate = (Aggregate)activeAggregates.get(correlationiD);
if (aggregate == null) {
aggregate = new AuctionAggregate(session);
activeAggregates.put(correlationlD, aggregate);
}
//--- ignore message if aggregate is already closed
if (laggregate.isComplete()) {
aggregate .addMessage(msg) ;
if (aggregate.isComplete()) {
MapMessage result = (MapMessage)aggregate.getResultMessage();
out_send(result);

}
} catch (JOMSException e) {

System.out._printIn("’Exception occurred: " + e.toString());

The Aggregator is a Event-Driven Consumer and implements the MessageListener interface which

requires it to expose the onMessage method. Setting the current instance of the Aggregator as the
message listener for the MessageConsumer causes JMS to invoke the method onMesssage every time
a new message is received on the destination specified by the MessageConsumer. For each
incoming message the Aggregator extracts the correlation ID (stored as a message property) and
checks whether an active aggregate exists for this correlation ID. If no aggregate is found, the
Aggregator instantiates a new AuctionAggregate. The Aggregatorthen checks whether the
aggregate is still active (i.e. not complete). If the aggregate is no longer active, it discard the
incoming message. If the aggregate is active, it adds the message to the aggregate and tests

www.EBooksWorld.ir



whether the termination condition has been fulfilled. If so, it gets the best bid entry and publishes
it.

The Aggregator code is very generic and depends on this specific example application only in two
lines of code. First, it assumes that the correlation ID is stored in the message property AuctioniD.
Second, it creates an instance of the class AuctionAggregate. We could avoid this reference if we
used a factory that returns an object of type Aggregate and internally creates an instance of type
AuctionAggregate. Since this is a book on enterprise integration and not on object-oriented design,
we kept things simple and let this dependency pass.

The AuctionAggregate class needs to implement the Aggregate interface. The interface is rather
simple, specifying only three methods. One to add a new message (addMessage), one to determine
whether the aggregate is complete (isComplete) and one to get the best result (getBestMessage).

public interface Aggregate {
public void addMessage(Message message);
public boolean isComplete();

public Message getResultMessage();

Instead of implementing the aggregation strategy inside the AuctionAggreagte class, we decided
to create a separate class Auction that implements the aggregation strategy but is not dependent
on the J]MS API:

public class Auction

{
ArrayList bids = new ArrayList();

public void addBid(Bid bid)

{
bids.add(bid);

System.out.printin(bids.size() + " Bids in auction.');

public boolean isComplete()

{
return (bids.size() >= 3);

public Bid getBestBid()

{
Bid bestBid = null;

Iterator iter = bids.iterator();
ifT (iter_hasNext())

www.EBooksWorld.ir



bestBid = (Bid) iter.next();
while (iter._hasNext()) {
Bid b = (Bid) iter_next();
if (b.getPrice() < bestBid.getPrice()) {
bestBid = b;

}

return bestBid;

The Auction is actually quite simple. It provides three methods similar to the Aggregate interface,
but the method signatures differ in that they use the strongly typed Bid class instead of the
Message class. For this example, the aggregation strategy is very simple, simply waiting until
three bids have been received. However, by separating the aggregation strategy from the Auction
class and the JMS APl is is easy to enhance the Auction class to incorporate more sophisticated
logic.

The AuctionAggregate class acts as an Adapter between the Aggregate interface and the Auction
class. An adapter is a class that converts the interface of a class into another interface.

public class AuctionAggregate implements Aggregate {
static String PROP_AUCTIONID = "AuctionlID";
static String ITEMID = "ltemID";
static String VENDOR = "Vendor™;
static String PRICE = "Price";

private Session session;

private Auction auction;

public AuctionAggregate(Session session)
{
this.session = session;

auction = new Auction();

public void addMessage(Message message) {
Bid bid = null;
if (message instanceof MapMessage) {
try {

MapMessage mapmsg = (MapMessage)message;
String auctionlD = mapmsg.getStringProperty(PROP_AUCTIONID);
String itemlD = mapmsg.getString(ITEMID);
String vendor = mapmsg.getString(VENDOR);
double price = mapmsg.getDouble(PRICE);

www.EBooksWorld.ir



bid = new Bid(auctionlD, itemlD, vendor, price);
auction.addBid(bid);

} catch (JOMSException e) {
System.out._printin(e.getMessage());

public boolean isComplete()
{

return auction.isComplete();

public Message getResultMessage() {

Bid bid = auction.getBestBid();

try {
MapMessage msg = session.createMapMessage();
msg.setStringProperty(PROP_AUCTIONID, bid.getCorrelationID());
msg.setString(ITEMID, bid.getltemID());
msg.setString(VENDOR, bid.getVendorName()):
msg.setDouble(PRICE, bid.getPrice());
return msg;

} catch (JOMSException e) {
System.out._printIn(*’Could not create message: " + e.getMessage());

return null;

The following sequence diagram summarizes the interaction between the classes:

www.EBooksWorld.ir



] SAuction
JMS ‘Aggregator Aggregate

onlMessage |

getiggregate
-

addMessage

|

| |

| |

| |
--L wCreates |
[

isC let
isComplete T

getRe suItMessagEI
-
getBestBid

I
r

>
ianmpIeteJ
|

>

|

|4 send [ T

This simple example assumes that Auction IDs are universally unique. This allows us to not
worry about cleaning up the open auction list -- we just let it grow. In a real-life application we
would need to decide when to purge old auction records to avoid memory leaks.

Because this code only references JMS destinations we can run it with wither topics or queues. In
a production environment, this application may be more likely to employ a Point-to-Point Channel

(equivalent to a JMS queue) because there should only be a single recipient for a bid, the
Aggregator. As described in Publish-Subscribe Channel, topics can simplify testing and debugging.

It is very easy to add an additional listener to a topic without affecting the flow of messages.
Many times when I debug a messaging application, I run a separate 'listener' window that tracks
all messages. Many JMS implementations allow you to use wildcards in topic names so that a
listener can simply subscribe to all topics by specifying a topic name of *'. It is very handy to
have a simple listener tool that displays all messages traveling on a topic and also logs the
messages into a file for later analysis.

Related patterns: Scatter-Gather, Introduction to Composed Messaging Examples, Content-Based

Router, Control Bus, Correlation Identifier, Composed Message Processor, Event-Driven Consumer, Event

Message, Guaranteed Delivery, Message Expiration, Point-to-Point Channel, Publish-Subscribe Channel,

Recipient List, Resequencer, Splitter, Transactional Client

Resequencer

A Message Router can route messages from one channel to different channels based on message
content or other criteria. Because individual messages may follow different routes, some
messages are likely to pass through the processing steps sooner than others, resulting in the
messages getting out of order. However, some subsequent processing steps do require

in-sequence processing of messages, for example to maintain referential integrity.

www.EBooksWorld.ir



How can we get a stream of related but out-of-sequence messages back into the correct order?

The obvious solution to the out-of-sequence problem is to keep messages in sequence in the first
place. Keeping things in order is in fact easier than getting them back in order. That's why many
university libraries like to prevent readers from putting books back into the (ordered) bookshelf.
By controlling the insert process, correct order is (almost) guaranteed at any point in time. But
keeping things in sequence when dealing with an asynchronous messaging solution can be about
as difficult as convincing a teenager that keeping their room in order is actually the more efficient
approach.

One common way things get out of sequence is the fact that different messages may take
different processing paths. Let's look at a simple example. Let's assume we are dealing with a
numbered sequence of messages. If all even numbered messages have to undergo a special
transformation whereas all odd numbered messages can be passed right through, then odd
numbered messages will appear on the resulting channel while the even ones queue up at the
transformation. If the transformation is quite slow, all odd messages may appear on the output
channel before a single even message makes it, bringing the sequence completely out of order
(see picture).

Sl
Transfarmation

Coe E.‘E.* [3<]]
A A agd e e A

To avoid getting the messages out of order, we could introduce a loop-back (acknowledgment)

mechanism that makes sure that only one message at a time passes through the system. The next
message will not be sent until the last one is done processing. This conservative approach will
resolve the issue, but has two significant drawbacks. First, it can slow the system significantly. If
we have a large number of parallel processing units, we would severely underutilize the
processing power. In many instances, the reason for parallel processing is that we need to
increase performance, so throttling traffic to one message at a time would complete erase the
purpose of the solution. The second issue is that this approach requires us to have control over
messages being sent into the processing units. However, often we find ourselves at the receiving

end of an out-of-sequence message stream without having control over the message origin.

An Aggregator can receive a stream of messages, identify related messages and aggregate them
into a single message based on a number of strategies. During this process, the Aggregator also
needs to be able to deal with the fact that individual messages can arrive at any time and in any
order. The Aggregator solves this problem by storing messages until all related messages arrive
before it publishes a result message.

Use a stateful filter, a Resequencer, to collect and re-order messages so that they can be
published to the output channel in a specified order.

www.EBooksWorld.ir



Hezequencer

The Resequencer can receive a stream of messages that may not arrive in order. The Resequencer
contains in internal buffer to store out-of-sequence messages until a complete sequence is
obtained. The in-sequence messages are then published to the output channel. It is important that
the output channel is order-preserving so messages are guaranteed to arrive in order at the next
component. Like most other routers, a Resequencer usually does not modify the message contents.

Sequence Numbers

For the Resequencer to function, each message has to have a unique Sequence Number (see

Message Sequence). This sequence number is different from a Message Identifier or Correlation
Identifier. A Message Identifier is a special attribute that uniquely identifies each message.
However, in most cases Message Identifiers are not comparable, they are basically random values
and often times not even numeric. Even if they happen to numerical values it is generally a bad
idea to overload the Sequence Number semantics over an existing Message Identifier element.
Correlation Identifiers are designed to match incoming messages to original outbound requests.
The only requirement for Correlation Identifiers is uniqueness, they do not to have to be numeric
or in sequence. So if we need to preserve the order of a series of messages we should define a
separate field to track the Sequence Number. Typically, this field can be part of the Message
Header.

Generating Sequence Numbers can be more time-consuming than generating unique identifiers.
Often times unique identifiers can be generated in a distributed fashion by combining unique
location information (e.g., the MAC address of the network interface card) and current time. Most
GUID (Globally Unique Identifier) algorithms work this way. To generate in-sequence numbers
we generally need a single counter that assigns numbers across the system. In most cases, it is not
sufficient for the numbers to be simply in ascending order, but they need to be consecutive as
well. Otherwise it will be difficult to identify missing messages. If we are not careful, this
Sequence Number generator could easily become a bottleneck for the message flow. If the
individual messages are the result of using a Splitter it is best to incorporate the numbering right
into the Splitter. The Identify Field pattern in [EAA] contains a useful discussion on how to
generate keys and sequence numbers.

Internal Operation

Sequence Numbers ensure that the Resequencer can detect messages arriving out of sequence. But
what should the Resequencer do when a out-of-sequence message arrives? An out-of-sequence

www.EBooksWorld.ir



message implies that a message with a higher sequence number arrives before a message with a
lower sequence number. The Resequencer has to store the message with the higher sequence
number until it receives all the "missing" messages with lower sequence numbers. Meanwhile, it
may receive other out-of-sequence messages as well, which have to be stored as well. Once the
buffer contains a consecutive sequence of messages, the Resequencer sends this sequence to the
output channel and then removes the sent messages from the buffer (see picture).

e % e |ty R

L1 LA LA (sl ZA st

gend &
: Wutgaing
i Messages

In this simple example, the Resequencer receives messages with the sequence numbers 1, 3,5 ,2.

We assume that the sequence starts with 1, so the first message can be sent right away and
removed from the buffer. The next message has the sequence number 3, so we are missing
message 2. Therefore, we store message 3 until we have a proper sequence of messages. We do
the same with the next message, which has a sequence number of 5. Once message 2 comes in,
the buffer contains a proper sequence of the messages 2 and 3. Therefore, the Resequencer
publishes these messages and removes them from the buffer. Message 5 remains in the buffer
until the remaining "gap" in the sequence is closed.

Avoiding Buffer Overrun

How big should the buffer be? If we are dealing with a long stream of messages the buffer can get
rather large. Worse yet, let's assume we have a configuration with multiple processing units each
of which deals with a specific message type. If one processing unit fails, we will get a long stream
of out-of-sequence messages. A buffer-overrun is almost certain. In some cases we can use the
message queue to absorb the pending messages. This works only if the messaging infrastructure
allows us to read messages from the queue based on selection criteria as opposed to always
reading the oldest message first. That way we can poll the queue and see whether the first
'missing' message has come in yet without consuming all the messages in between. At some point,
though, even the storage allocated to the message queue will fill up.

One robust way to avoid buffer overruns is to throttle the message producer by using active
acknowledgement (see picture).

www.EBooksWorld.ir



Acknowdedge

ta %t L1 % %%

Son Buffer &

Flow Control

Send Buffer
& Thrattle

L

Processors

As we discussed above, sending only a single message at a time is very inefficient. So we need to
be a little smarter than that. One way we can be more efficient is for the Resequencer to tell the
producer how many slots it has available in its buffer. The message throttle can then fire off that
many messages since even if they get completely out of order the Resequencer will be able to hold
all of them in the buffer and re-sequence them. This approach presents a good compromise
between efficiency and buffer requirements. However, it does require that we have access to the
original in-sequence message stream in order to insert the send buffer and throttle.

This approach is very similar to the way the TCP/IP network protocol works. One of the key
features of the TCP protocol is to ensure in-sequence delivery of packets over the network. In
reality, each packet may be routed through a different network path so that out-of-sequence
packets occur quite frequently. The receiver maintains a circular buffer that is used as a sliding
window. Receiver and sender negotiate on the number of packets to send before each
acknowledgement. Because the sender waits for an acknowledgment from the receiver, a fast
sender cannot outpace the receiver or cause the buffer to overflow. Specific rules also prevent the
so-called Silly Window Syndrome where sender and receiver could fall into a very inefficient
one-packet-at-a-time mode.

Another solution to the buffer overrun problem is to compute stand-in messages for the missing
message. This works if the recipient is tolerant towards "good enough" message data and does
not require precise data for each message or if speed is more important than accuracy. For
example, in voice over IP transmissions implement filling in a blank packet results in a better

user experience than issuing a re-request for a lost packet.

Most of us application developers take reliable network communication for granted. When
designing messaging solutions, it is actually helpful to look into some of the internals of TCP
because at its core, IP traffic is asynchronous and unreliable and has to deal with many of the
same issues enterprise integration solutions do. For a thorough treatment of IP protocols see
[Stevens] and [Wright].

Example: Resequencer in Microsoft .NET with MSMQ

To demonstrate the function of a Resequencer in a real-life scenario, we use the following setup:

www.EBooksWorld.ir



DelayProcessor

—| 0.3 sec —

inQueue outQueue sequencelueue
o> om0 |@ERD| 07 |9 om |G| v

MQSend Resequencer MQSequenceReceive

- 1.3 sec —

Resequencer Test Configuration

The test setup consists of four main components, each implemented as a C# class. The
components communicate via MSMQ message queues, provided by the Message queuing service
that is part of Windows 2000 and Windows XP.

. MQSend acts as the Test Message generator. The message body contains a simple text
string. MQSend equips each message with a sequence number inside the AppSpecific
property of each message. The sequence starts with 1 and the number of messages can be
passed in from the command line. MQSend publishes the messages to the private queue
inQueue.

. DelayProcessor reads messages off the inQueue. The only 'processing' consists of a timed
delay before the identical message is republished to the outQueue. We use three
DelayProcessors in parallel to simulate a load balanced processing unit. The processors act as
Competing Consumers, so that each message is consumed by exactly one processor. All

processors publish messages to the outQueue. Because of the different processing speed,
messages on the outQueue are out of sequence.

. The Resequencer buffers incoming out-of-sequence messages and republishes them in
sequence to the sequenceQueue.

. MQSequenceReceive reads messages off the sequenceQueue and verifies that the
sequence numbers in the AppSpecific property are in ascending order.

If we fire up all components, we see debug output similar to the following picture. From the size
of the processor output windows we can see the different speeds at which the processors are
working. As expected, the messages arriving at the Resequencer are not in sequence (in this run,
the messages arrived as 3,4, 1, 5,7, 2 ...). We can see from the Resequencer output how the
Resequencer buffers the incoming messages if a message is missing. As soon as the missing

message arrives, the Resequencer publishes the now completed sequence.

www.EBooksWorld.ir



DelayProcessor

Processing messages from Re:equem:er
ingueue to outdueus

Delay: 0.3 seconds

Processing messages from

Received Message: message 3 outdueus to s