
www.EBooksWorld.ir

ASP.NET Core 2 and Vue.js

Stuart Ratcliffe

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

ASP.NET Core 2 and Vue.js
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Siddharth Mandal
Content Development Editor: Aishwarya Gawankar
Technical Editor: Prajakta Mhatre
Copy Editor: Safis Editig
Project Coordinator: Sheejal Shah
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Coordinator: Arvindkumar Gupta

First published: July 2018

Production reference: 1270718

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-946-4

www.EBooksWorld.ir

I would like to dedicate this book to everyone who helped and supported me in writing this book:
to my partner, Laura, for her unconditional support and encouragement, especially when my

motivation was at its lowest; to my parents, Liz and Brian, for always being there when I
needed them; to my dogs, Jack and Miska, for putting up with a severe lack of daily walks while

this book was being written; to all the Packt editors and technical reviewers who made this
possible in the first place; and finally, to my late grandmother, May, who passed away just a

few short months before this book could be published.

www.EBooksWorld.ir

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

www.EBooksWorld.ir

Contributors

About the author
Stuart Ratcliffe is a professional software developer who lives and works in the East
Midlands, UK. He has held positions at some of the largest IT companies in the world,
working on high-profile projects for the UK government. Currently, he has been working
on track-and-trace systems for medical instruments that undergo sterilization. He holds a
Tech Lead position on the digital side of a healthcare company, building both web and
mobile applications to support the clinical side of the business. He is a full-stack .NET
developer who loves to learn new technologies.

www.EBooksWorld.ir

About the reviewer
Daniel Jim nez Garc a is a software developer with more than 12 years of experience. His
journey began with C# and VB6, continued with several iterations of Microsoft technologies
and web frameworks such as Backbone, and finished with Node, Vue, Docker, and
ASP.NET Core.

Nowadays, he is working as a tech lead for Oliver Wyman Labs, building web and mobile
applications, mentoring fellow team members, and driving their common stack, tools, and
architecture for web development.

Being a regular contributor to the DotNetCurry magazine, he has written 18 articles on a
range of topics including ASP.NET Core and Vue.js.

I would like to thank my friends and family for their support, love, and friendship,
especially my parents, who always encouraged and inspired me to become a better person.
Thanks to my colleagues for the hours of joy, frustration, debate, and learning, not always
about code or near a computer! Finally, my thanks to everyone who shared their knowledge
and passion, so others could learn and enjoy our profession, and be inspired.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

www.EBooksWorld.ir

Table of Contents
Preface 1

Chapter 1: Understanding the Fundamentals 10
Thinking in components 11

What is a component? 12
UI composition 14

Introduction to Vue 16
The Vue instance 16

Attaching to the DOM 16
Defining data properties 16
Rendering data into the DOM using expressions 17
Building component trees 18

Reactivity 19
Component behavior 19

State 20
Props 21
Methods 23
Computed properties 23
Watchers 25
Lifecycle hooks 26

Component presentation 28
Directives 28

Attribute binding with v-bind 29
Conditional display with v-show 31
Control flow with v-if and v-else 31
Rendering lists with v-for 33
Event handling with v-on 34
Form input binding with v-model 36

Parent-child component communication 37
ASP.NET Core – what's new? 39

Middleware pipeline 39
Application startup 41
DI is a first-class citizen 42

EF Core – what's new? 43
Configuring relationships 43
Global query filters 44
Compiled queries 45
In-memory provider for testing 45

Summary 47

Chapter 2: Setting Up the Development Environment 48

www.EBooksWorld.ir

Table of Contents

[ii]

Choosing a web browser 48
Installing frontend tools and dependencies 49

Installing Node and npm 49
Installing Vue 51
npm or Yarn? 51

Installing backend tools and dependencies 52
Installing ASP.NET Core 52
Installing PostgreSQL 53
Choosing and installing an IDE 54

Productivity tools 55
Installing VS Code extensions 55
Installing the Vue.js Chrome devtools extension 57
Installing a Terminal Emulator on Windows (optional) 57

Summary 57

Chapter 3: Getting Started with the Project 58
ASP.NET Core SPA templates versus CLI tools 59
An introduction to webpack 60

What is webpack? 60
How does it work? 60
Basic webpack configuration 61
Bundle splitting 62
Production bundles 63

Scaffolding a project with the dotnet CLI 63
Refactoring the frontend setup 64

Removing TypeScript 65
Replacing the default components 66

Refactoring the backend setup 68
Refactoring to a feature folder structure 70

Setting up the database 71
Creating a database context 71
Registering the database context for DI 73
Creating the database 74
Creating an initial migration 76
Creating and seeding the database on start-up 78

Testing the completed setup 80
Summary 83

Chapter 4: Building Our First Vue.js Components 84
Displaying a list of products 84
Conditional rendering 89
Component composition 91
Client-side routing 101
Fetching data from an API 108
Summary 114

www.EBooksWorld.ir

Table of Contents

[iii]

Chapter 5: Building a Product Catalog 115
Improving the existing UX 116

Choosing a UX framework 116
What is Bootstrap-Vue? 116
Installing additional required dependencies 118
Modifying the webpack configuration to support SASS 118
Updating the webpack vendor configuration 119
Rebuilding the vendor bundle 120
Adding application-wide layout elements 121
Adding application-wide styles 123
Styling the product list and product details components 123
Fetching data before navigation 127
Adding a page loading indicator 129
Adding a transition on page change 131

Extending the existing data model 133
Dropping the existing database 133
Adding new/updating existing entities 134
Updating the DbContext class 139
Creating a migration to reflect the model changes 139
Updating the application's seed data 140

Filtering on the server 143
Updating controller actions to support filtering 144
Testing our filtering logic 146

Filtering on the client 147
Installing additional dependencies 147

Installing Font Awesome 148
Installing additional npm packages 148

Building an accordion component 150
Defining the accordion template structure 150
Defining the accordion behavior 151
Styling the accordion component 153

Building the filters component 154
Scaffolding the filters component template 154
Adding a brand filter 155
Adding a price filter 156
Adding a screen size filter 157
Adding the remaining color, OS, and feature filters 158
Scaffolding the filters component behavior 159
Defining the filters component computed properties 160
Defining the filters component methods 161
Styling the filters component 167

Adding the filters component to the catalog page 167
Updating the catalog page template 167
Adding the catalog page filter behavior 168
Tidying up our existing components 172
Testing the completed filtering logic 174

Refactoring the filters component 175

www.EBooksWorld.ir

Table of Contents

[iv]

Highlighting duplication in our existing implementation 175
Extracting a common multi-select filter component 176
Extracting a common range filter component 180
Rendering the new multi-select and range filter components 182
Testing that everything still works 185

Client-side sorting 185
Building a sort component 186
Adding the sort component to the catalog page 188

Creating a search bar component 190
Triggering API requests using watchers 194
Debouncing API requests to limit how often they fire 195

Summary 196

Chapter 6: Building a Shopping Cart 198
Evaluating our options 198

Persisting to the database 199
Persisting to session state 199
Persisting to local storage 200

Finishing the product details page 200
Creating the gallery component 206
Adding variants to the product details component 211

Introduction to Vuex 213
What is Vuex? 214
How does Vuex work? 215

Mutations 216
Actions 216
Getters 216

Putting it all together 217
Installing and configuring Vuex 219
Adding products to the cart 221

Creating the mutations 221
Creating an action 223

Creating a shopping cart page 229
Creating a CartItem component 229
Displaying the list of cart items 232

Creating a currency filter 234
Removing products from the cart 236
Updating cart items 238
Adding a getter to display the cart total 240
Creating a cart summary component 241
Persisting the cart to local storage 244
Improving the UX with add to cart feedback 247
Summary 248

Chapter 7: User Registration and Authentication 249
Adding JWT authentication to the API 249

www.EBooksWorld.ir

Table of Contents

[v]

Why JWTs? 250
Configuring JWT authentication 251
Issuing JWTs 254
Adding user role support 258
Testing JWT authentication 260
User registration 264

Authentication and user registration in the client app 267
Vuex state properties for authentication 267
Vuex mutations for managing authentication state 268
Vuex authentication getters 269
Vuex login, register, and logout actions 270
Authentication modal component 272

Login form component 275
Register form component 278

Auth navigation item component 280
Wiring up the new components in App.vue 283

Protecting pages with navigation guards 284
Setting the authentication state on app startup 286
Summary 288

Chapter 8: Processing Payments 290
Why use Stripe? 290

Simple PCI compliance 291
Easy integration 291
Excellent dashboard 291

Getting started with Stripe and client-side validation 292
Registering for a Stripe account 292
Including the Stripe checkout JavaScript library 292
Installing VeeValidate for client-side validation 293

Building the checkout components 293
Building a cart summary component 295
Building a checkout form component 297

First look at client-side validation 298
Finishing the delivery address form fields 300
Capturing payment information 301
Initializing Stripe elements 302
Validating form input state 303
Verifying payment details with Stripe 305
Submitting the order to the API 306
Adding basic Bootstrap styling to Stripe elements 309

Building a checkout success component 309
Building a my account page 311

Building the OrderList component 313
Formatting dates with a reusable date filter 315
Linking to the my account page 316

Fixing the register form component 316

www.EBooksWorld.ir

Table of Contents

[vi]

Server-side payment processing 318
Adding orders to the data model 318
Owned entity types in EF Core 2.0 321

Why use owned entity types? 321
Defining an owned type 321
Configuring owned types 322

Creating the orders migration 323
Installing and configuring the Stripe.net NuGet package 323

Configuring Stripe 324
Processing orders and payments 325

Persisting the order object 326
Calculating the total order price 327
Processing the payment with Stripe 328

Adding an order list API endpoint 330
Summary 332

Chapter 9: Building an Admin Panel 334
Extending the authentication endpoint with user roles 335
Client-side role-based authorization 336

Adding role checks to client-side routes 337
Server-side role-based authorization 340
Hiding UI elements based on role 340
Building the admin panel components 342

Configuring nested route definitions 343
Refactoring components for reuse 345

Product list component 349
Creating a product form component 351
Creating an add variant modal component 362

Vue component inheritance 364
Defining a form input base component 366
Inheriting from a base component 368

Building custom input controls 372
Building a custom typeahead control 372
Building a multi-select control 378

Persisting new products to the database 384
Creating a slug generator 384
Creating the API endpoint 385

Remote validation with Vee-Validate 389
Making our app aware of the new custom validation rule 391
Creating the validation API endpoint 392

Tidying things up 392
Linking to the admin panel 393
Fixing a logout bug 394
Fixing a bug by selecting a product variant 394

Summary 400

www.EBooksWorld.ir

Table of Contents

[vii]

Chapter 10: Deployment 401
Registering for an Azure account 401
Setting up an Azure environment 403

Understanding Azure subscriptions and resources 404
Creating a subscription and resource group 405
Creating a database 406
Creating an app service 408
Configuring environment variables 413

Preparing the application for deployment 419
Configuring multiple database providers 419
Tweaking the post-publish build steps 421

Configuring Git deployments 423
Finalizing the apps configuration 426

Enabling logging in Azure 426
Forcing HTTPS connections only 430

Summary 431

Chapter 11: Authentication and Refresh Token Flow 432
Understanding refresh tokens 432

What are refresh tokens used for? 432
What are refresh tokens? 434
Why use refresh tokens? 434

Adding refresh token support to the backend 435
Extending the AppUser model 435
Generating refresh tokens 437
Refreshing JWT access tokens 438
Finishing up 440

Adding refresh token support to the frontend 441
Extracting router configuration into separate files 442

Refreshing access tokens with axios interceptors 446
Finishing up 450
Summary 452

Chapter 12: Server-Side Rendering 453
Why use SSR in the first place? 454

Search engine optimization 455
Performance 455

How does SSR work? 456
The easy way – Nuxt.js 457
Preparing the application for SSR 458

Installing npm packages required for SSR 458
Adding Vuex actions and mutations for all API requests 459

Defining additional Vuex actions 460
Defining the additional Vuex mutations 461
Defining the additional store state properties 462

www.EBooksWorld.ir

Table of Contents

[viii]

Updating existing pages to use Vuex 462
Refactoring the catalog page 463
Refactoring the product details page 465
Refactoring the account page 465
Refactoring the orders admin page 466
Refactoring the products admin page 466
Refactoring the create product admin page 467

Changing the way we persist user authentication state 468
Changing our approach of persisting state to local storage 468
Storing authentication state in cookies 470

Setting up and configuring SSR 471
Defining the shared boot logic 471
Defining the client-specific boot logic 474

Hydrating the client-side store 474
Loading shopping cart data from local storage 475
Pre-fetching component data 477
Remembering our promises 478

Defining the server-specific boot logic 479
Deleting the old boot file 481

Making webpack aware of the client/server boot files 481
Defining a shared webpack configuration object 481
Defining client- and server-specific webpack configuration objects 483

Updating the vendor webpack configuration to include SSR libraries 484
Enabling SSR 484
Conditionally rendering elements that rely on the browser 487

Fixing the range filter component 488
Fixing the checkout form component 489
Fixing page transition animations in the router 490
Fixing the store subscription to persist cart items to local storage 490

Testing our server-rendered application 491
Summary 493

Chapter 13: Continuous Integration and Continuous Deployment 494
CI/CD – why bother? 494

Continuous integration 495
Continuous deployment 495

Disabling Azure app service Git deployments 495
Getting started with VSTS 497

Creating a VSTS account 497
Setting up a team services project 498

Building a CI/CD pipeline 500
Setting up a VSTS build 500
Enabling CI 505
Setting up a VSTS release 505

Enabling CD 515
Summary 516

www.EBooksWorld.ir

Table of Contents

[ix]

Other Books You May Enjoy 517

Index 520

www.EBooksWorld.ir

Preface
These days, it is rare to see a standard web application with little to no client-side code
involved. Developers are usually burdened with writing masses and masses of JavaScript,
often using libraries such as jQuery, to create rich and responsive user interfaces. As an
application like this grows, it is incredibly easy for this client-side code to become unwieldy
and a nightmare to maintain. This style of web application also relies on the DOM to store
the application's current state, and we end up writing a lot of code to micromanage and
manipulate the DOM in order to correctly display that state.

Imagine a web application using nothing but jQuery on the client, where we have a single
piece of data that we need to display in multiple places within a UI. Now think about how
we'd need to go about changing that piece of data, and ensuring that the DOM represents
the correct value in every location where we are displaying it. Up to a handful of places is
perhaps not a big deal; we could write a bunch of similar lines of jQuery that manually go
and update each UI element currently displaying that piece of data, and just make sure we
don't forget any.

By now, you should be able to see the problem we're trying to solve. This way of
developing web applications is incredibly error-prone for anything but the most simple
user interfaces. However, this is 2018 and we aren't limited to writing our client
applications with jQuery any more. There are countless SPA frameworks dedicated to
building UIs for our web applications that automatically react to data changes and handle
the displaying of that data in the DOM for us. We no longer need to write countless lines of
code with a single purpose of changing the value of a DOM element.

We don't manipulate the DOM with these frameworks. Instead, we manipulate the data.
The DOM simply acts as a means of displaying that data to our users. Let's go back to the
preceding example, where we have a single piece of data being displayed in 10 different UI
elements. When that piece of data changes, instead of manually updating all 10 DOM
elements to reflect the change, we simply store it in a JavaScript object and update the value
whenever we like. The SPA framework then reacts to these changes, and handles all the
heavy lifting for us by updating any DOM element that cares about that piece of data; one
simple data change rather than 10 separate DOM manipulation calls.

www.EBooksWorld.ir

Preface

[2]

As with choosing a technology for the frontend of a modern web app, there are also plenty
of options when it comes to building a backend. Some of the most popular choices
currently include Node.js, PHP, Rails, Golang, and ASP.NET. Node.js is incredibly popular
for a number of reasons, most notably for being able to use JavaScript for the whole
application. The Laravel framework is arguably one of the only reasons PHP is still a viable
option, else it would likely be fading into the background the way Rails is. Golang is a
fairly new language that is getting some very good reviews, particularly in the performance
benefits it provides over Node. However, due to how new Golang is, there are far fewer
packages and frameworks to assist us in building more complex applications. ASP.NET is
older than both Node.js and Golang, and, as such, there is no such shortage of packages
and frameworks like there is with Go. In fact, the .NET framework has a lot of functionality
already built in where you'd normally be reaching for an external package in other
languages and frameworks. Even when you do need an external package, there is usually
one made by Microsoft themselves, which helps avoid a well-known issue with Node.js
applications referred to as "dependency hell". ASP.NET is also based around strongly-
typed compiled languages that can provide a number of performance and security benefits
over a weakly typed language, such as JavaScript.

ASP.NET has been around since January 2002 when version 1.0 of the .NET framework was
released as the successor to Microsoft Active Server Pages. Since then, there have been a
multitude of major versions released, the current being version 4.7 at the time of writing. In
2016, Microsoft changed their game entirely, with the release of ASP.NET Core. For the first
time in over 14 years, ASP.NET was made both open source and cross-platform in a
complete rewrite from the ground up. When version 1.0 of ASP.NET Core was released,
there was one potentially significant downside depending on the size and complexity of
your application. If you have a requirement to host on a platform other than Windows, you
can't target the full .NET framework. The issue with this was a potential lack of necessary
APIs that had not yet been ported over to the core CLR. However, version 2.0 has recently
been released, and with it comes a compatibility shim that enables .NET Core apps to
reference any .NET framework library.

If you've been avoiding the move to ASP.NET Core, then now is a great time to change that.
Version 2.0 has added a number of other improvements aside from backward compatibility
with .NET framework APIs and libraries: Simplified configuration setup, simplified NuGet
package references, and additional SPA project templates, to name but a few. One of
Microsoft's most well-known developers, Steve Sanderson (creator of the very popular
KnockoutJS framework), has made it his goal to make ASP.NET Core the best backend
choice for single-page applications. To achieve that goal; his team has implemented some
amazing features to seamlessly integrate frontend and backend builds using ASP.NET Core
middleware. These features, along with the latest improvements released in version 2.0,
really do make ASP.NET Core a fantastic choice for any web application.

www.EBooksWorld.ir

Preface

[3]

With so many SPA frameworks to choose from, why should we bother with Vue? Most
developers with any kind of interest in modern web application development have
probably heard of React and Angular, but far fewer will have heard of Vue. Initially created
by a single developer, Evan You, and currently developed by a relatively small
international team, you could be forgiven for ignoring it in favor of its main competition.
After all, React and Angular are developed by the tech giants that are Facebook and
Google, respectively.

However, after working at both Google and the Meteor Development Group, Evan You
knows a little something about SPA frameworks. Vue was created after both React and
AngularJS had some time to be battle tested by thousands of developers around the world.
In the eyes of its creators, Vue incorporates the best parts that either of these frameworks
had to offer, while also trying to avoid the pitfalls that caused common grievances
throughout the community. The result is a very lightweight and focused library dedicated
to building UIs only. However, the Vue team has always intended for this library to be
incrementally adoptable in any web project, and has provided several supporting libraries
that make Vue a fantastic choice for building fully fledged SPAs as well.

In my opinion, Vue is far simpler to learn than most of the alternatives, which makes it a
great choice for experienced backend .NET developers looking to branch out into the world
of frontend frameworks and modern SPAs. If you already know enough HTML and jQuery
to make a standard MVC application, then the template syntax used by Vue won't be much
of a problem, and a lot of the syntax can be directly compared to that of Razor. The barrier
to entry may be low, and the library itself may be incredibly lightweight, but Vue can be
every bit as powerful as any other SPA framework that exists today.

Who this book is for
This book is aimed at ASP.NET developers who are looking for an entry point in learning
how to build a modern client-side SPA with Vue.js, or those with a basic understanding of
Vue.js who are looking to build on their knowledge and apply it to a real-world
application. Knowledge of JavaScript is not necessary, but would be an advantage.

www.EBooksWorld.ir

Preface

[4]

What this book covers
, Understanding the Fundamentals, starts by looking at the fundamentals of Vue.js

to give readers a basic understanding of the techniques used to build the sample
applications later in the book. It discusses some of the benefits of Vue.js, as well as some of
the reasons why we'd bother to choose it for building our applications. Finally, it looks at
how ASP.NET Core / EF Core differ from their previous counterparts, focusing on the very
latest versions of the frameworks, and putting the emphasis on the newest features that you
may not know about yet.

, Setting Up the Development Environment, walks you through the process of
installing and configuring the tools that you'll need to build and run an ASP.NET Core and
Vue.js SPA. It takes the cross-platform nature of ASP.NET Core into consideration while
evaluating some of the options available to us when selecting a client-side package
manager, an IDE, and an RDBMS. Finally, it shows you how to install some productivity
tools that make our lives far easier while building Vue.js applications with Google Chrome.

, Getting Started with the Project, looks at the options available to you when
starting and scaffolding a brand new project with ASP.NET Core and Vue.js. It introduces
the basics of what webpack is and how it works, before scaffolding an application that will
form the foundations that will be built on for the rest of the book. Finally, it looks at how to
refactor the default application structure to meet your own needs and preferences.

, Building Our First Vue.js Components, jumps into building a basic product list
component, before composing a component structure based on the standard master-details
pattern to display more information about a selected product. It then introduces client-side
routing by refactoring the UI into separate pages for the product list and details
components, before replacing the hardcoded product data with dynamic data fetched from
the backend API.

, Building a Product Catalog, expands the existing components into a fully featured
product catalog, including filtering, sorting, and searching. It also improves the existing
look and feel of the application by introducing the Bootstrap CSS framework, as well as
adding animations and loading indicators in between page changes. The reader will learn
how to identify and extract duplication into common reusable components, as well as how
to import and render components from third-party libraries.

www.EBooksWorld.ir

Preface

[5]

, Building a Shopping Cart, starts by evaluating the options available to us for
persistent shopping cart items. It then introduces Vuex for centralizing client-side state and
enabling access to it from multiple components. Readers will then learn how to consume
Vuex state by building a shopping cart component, as well as a shopping cart summary
component to display it. They will also learn how to create custom Vue.js filters to reduce
duplication in presentation logic, as well as how to provide feedback to users by displaying
toast messages. Finally, we will see how to quickly and easily persist Vuex state to local
storage to make sure that it is available on subsequent visits to the application.

, User Registration and Authentication, looks at how to add access control using
JWT-based authentication. You will learn how to protect API routes using ASP.NET Core
middleware and action filters, as well as how to prevent access to client-side pages using
Vue.js router navigation guards. You will also extend the existing Vuex store to include
register and login functionality, as well as building the necessary components for
consuming it.

, Processing Payments, completes the user journey of the customer by
implementing a fully functioning checkout page, including payment processing with
Stripe. You will learn why Stripe is the perfect library for payment processing in any type
of e-commerce website, as well as how to integrate it into a Vue.js client application and
ASP.NET Core API. You will also learn how to add rich client-side validation to a custom
checkout form component, which provides immediate feedback to the user as they start
typing in each field.

, Building an Admin Panel, adds the ability to manage the existing product catalog,
and add new products to the database. Readers will learn how to reduce duplication by
extracting common functionality into a base component and then using component
inheritance to extend it. You will build a collection of reusable form input components and
then refactor the existing forms to make use of them.

, Deployment, completes the first iteration of the application by deploying it to a
production cloud environment. We start by registering for a Microsoft Azure account,
before learning how to set up and configure our environment to include an app and
database server. Readers will then learn how to prepare the application for deployment,
including the configuration of multiple database providers to support SQL servers in
production, and PostgreSQL in development. They will also learn how to enable logging
within Azure, as well as how to force HTTPS connections to increase the security of the
application. Finally, we will enable automated Git deployments to publish the application
on every push to a specific Git repository.

www.EBooksWorld.ir

Preface

[6]

, Authentication and Refresh Token Flow, builds on the existing authentication
mechanism by adding refresh token support. You will learn how and why this increases the
security of the application, as well as how to implement refresh token flow in an ASP.NET
Core API. You will then learn how to add a client-side API request interceptor to
automatically refresh users' access tokens as and when they expire, allowing them to
remain logged in permanently.

, Server-Side Rendering, begins by discussing some of the reasons why you
would want to initially render a client-side SPA on the server. It then provides a detailed
explanation of how to refactor the application to prepare it for SSR, before showing you
how to set up and configure SSR. Finally, it looks at some of the limitations of SSR and how
to fix them by conditionally rendering components that are not SSR-compatible, before
looking at how to test that everything is working as it should be.

, Continuous Integration and Continuous Deployment, introduces a far more robust
way of automating the application build and release pipeline using VSTS rather than the
existing Azure Git deployment feature. It discusses the reasons, why you would want to
use a CI/CD pipeline, and very briefly why VSTS is the perfect choice when building
ASP.NET Core applications hosted within Azure. It walks you through the process of
setting up a VSTS account, build and release, as well as enabling triggers to automatically
build and deploy the application on every push to the existing Git repository.

To get the most out of this book
It is assumed that you are already a reasonably competent ASP.NET web developer,
familiar with building MVC web applications. Although not required, you will appreciate
the benefits of Vue.js more if you are also familiar with incorporating a moderate amount of
jQuery, or vanilla JavaScript, into your MVC applications. It is also assumed that you are
familiar and comfortable with basic CSS and SCSS, with knowledge of the Bootstrap
framework being desirable. It is not required to have any pre-existing knowledge of .NET
Core or ASP.NET Core, but again, it would be beneficial to have explored ASP.NET Core
and how it differs from previous versions of the framework. Finally, it is assumed that you
are familiar with source control using Git, and will have access to a cloud-based Git
repository to use for deployment in , Deployment, and , Continuous
Integration and Continuous Deployment.

www.EBooksWorld.ir

Preface

[7]

All software requirements necessary for completing the sample application are introduced
as and when required, including links to instructions on how to install them on your native
OS. It is possible to build and run the sample application on any OS supported by ASP.NET
Core, including both Windows and macOS. However, the application has only been tested
by myself on a Windows machine, as it is assumed that this is what the vast majority of
readers will be using, based on the assumption that they are experienced ASP.NET
developers.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. In case there's an update to the

code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

www.EBooksWorld.ir

Preface

[8]

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In this case, we return a simple object with a single property."

A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

"bootstrap/dist/css/bootstrap.min.css",
 "bootstrap-vue",
 "nprogress/nprogress.css"

Any command-line input or output is written as follows:

webpack --config webpack.config.vendor.js

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To do so, click on the Resource groups link in the main menu on the left."

www.EBooksWorld.ir

Preface

[9]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

www.EBooksWorld.ir

11
Understanding the

Fundamentals
Many modern web applications are now built as client-rendered Single-Page Applications
(SPAs) rather than traditional server-rendered multipage applications. An SPA is a web
application that only contains a single physical HTML page. This single page then uses
JavaScript within a web browser to dynamically rewrite parts of the HTML, usually based
on JSON data that's retrieved from API calls to the server. By doing so, after the initial page
load, the application has no need to request full HTML pages from the server, which helps
make it as fast and responsive as a native desktop application.

When it comes to building SPAs in 2018, we are absolutely spoiled for choice in
frameworks and technologies that we could potentially use to help us build our apps.
Regardless of their chosen technology stack, most web developers will probably have
extensively used jQuery for their client-side JavaScript needs, and there is no reason why it
couldn't be used to build SPAs as well. However, there are far better frameworks that
are specifically designed to help us build modern SPAs.

Vue.js is a JavaScript framework for building the view layer of your applications. However,
it differs from other large frameworks because it's designed to be incrementally adoptable.
That is, with a single CDN script reference, you can plug Vue into a small portion of an
existing application in much the same way as you would with jQuery. On the other hand,
you could opt to use the modern tooling and supporting libraries in Vue's ecosystem to
build a fully-fledged SPA from scratch. Vue really is one of the most simple yet powerful
frameworks, with very little compromise in return.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[11]

ASP.NET Core is the latest version of Microsoft's ASP.NET web development framework. It
has been completely rewritten to be more lightweight and modular, as well as to offer
official cross-platform support for the first time. If you are reading this book, it is
reasonably safe to assume that you are most likely already an experienced ASP.NET
developer, with minimal experience of frontend frameworks and technologies. However, if
you already have a basic understanding of Vue.js, then you may be able to skip this
chapter, as it will be aimed primarily at those with no experience at all. Regardless of your
level of experience with Vue, if you are already familiar with ASP.NET Core, then at the
very least you can skip the ASP.NET Core sections near the end of this chapter. That being
said, I'll only be focusing on areas where ASP.NET Core differs from previous versions of
ASP.NET.

In summary, we'll cover the following topics:

What are components?
How do we compose a UI using components?
Client-side application state
Fundamental Vue concepts such as props, methods, computed properties, and
directives
What's new in ASP.NET Core?
What's new in EF Core?

Thinking in components
Building web applications using Vue or any other JavaScript SPA framework revolves
around the concept of breaking the UI down into the smallest possible chunks of
functionality. These chunks are referred to as components, and can be likened to Razor view
components, tag helpers, and partial views in ASP.NET Core MVC. However, in most
SPAs, you'll end up breaking the UI down into far more pieces than you would in a
traditional MVC application.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[12]

What is a component?
We can think of components as the building blocks of a UI. Each one is a self-contained
piece of functionality, usually combined with a host of other components in a tree-like
structure to form the UI of the entire web application. These components are also often
reusable, and can be simply dropped into any part of the application where required.

A component in Vue is made up of two fundamental parts: presentation and behavior. The
presentation part is simply the HTML template that is used to represent the data we are
trying to display in the UI. The behavior part is a JavaScript object containing only the data
relevant to that specific component, and any JavaScript functions necessary to manipulate
that data and interact with the browser. This interaction includes handling the events raised
by the browser, as well as refreshing certain portions of the UI depending on how the data
has actually changed. Vue is smart enough to only refresh the parts of the UI that need to
be, and doesn't bother refreshing the parts where the data hasn't changed.

In many SPA frameworks, this results in a single component being split into at least two,
potentially three, separate physical files; a HTML file for the template; a JavaScript file for
the data and behavioral functions; and an optional CSS file for styling the presentation of
the component. In Vue, we have the concept of a single file component. We can use a
custom file extension that allows us to combine these three aspects into a single file that
contains three root elements: , , and . In the following code snippet,
we can see an example of a single file component:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[13]

The presentation part of this component, that is, the and sections, are
incredibly simple. All we do is render a standard element with a class, and
set the font size, weight, and color of that specific class using CSS. Inside the element,
we're using Vue's standard handlebar syntax to dynamically render a variable. This
variable is declared within the behavior part of the component, which again means the

 section. Standard component data properties are declared inside a plain JavaScript
object, which must be returned from a function named . In this case, we return a
simple object with a single property, initialized with the

 value. This will subsequently be the text rendered inside the element of
.

Each component should adhere to the SOLID principles of software design, and as such
should only have a single responsibility. As soon as any single component starts to become
overly complicated and difficult to see at a glance what its purpose is, it's probably time to
refactor and extract a new component. Components are more often than not used in parent-
child relationships, and Vue provides mechanisms for allowing related components to
communicate with one another. Parents can pass data down into their children, and
children can notify their parents of changes to their data. These parent-child relationships
are the branches of our component tree, and there are many different ways that we could
choose to break a UI down into this structure.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[14]

UI composition
Let's look at an example that most web developers will be familiar with. Imagine a web
page with the Holy Grail layout that is Header, Footer, left and right sidebars, and Main
Content in the middle. When architecting this layout with components, the obvious
composition is to start by creating a component for each major section of this layout:

This is a good start, and in a typical MVC application, we might have done something
similar using layout and partial views. However, we already know that a component is the
smallest possible chunk of functionality that forms part of the UI. We need to break things
down further, and be far more granular with our component boundaries. How we do this
will obviously be highly dependent on the type of content we actually have contained
within these major page sections. Let's expand on the previous layout with some standard
UI features we'd expect in a typical e-commerce product listing page.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[15]

The header section would likely contain some kind of branding or Logo, along with a
Navigation menu of some sorts and potentially a Search bar. The left sidebar is a common
place to find any secondary navigation menus and some Filters to control which products
are visible. The main content section will contain our Product List, along with some UI
elements above to control the display order and maybe even switch between a grid and list
view; there would also usually be a standard Pagination control at the bottom of the page.
Finally, the right sidebar can hold a widget that displays a summary of the user's shopping
cart contents, a widget to display a set of featured or most popular products, and a
newsletter signup form. The following diagram shows how we could start composing this
UI into a component tree:

We could and probably would still break this down further as we were actually
building these components; it's almost impossible to get things right the first time round.
However, this is the beauty of component-based architectures. There is no right or wrong
way of composing a UI; we simply try it one way, and if it doesn't work, we refactor our
component tree until we find a way that does work!

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[16]

Introduction to Vue
Before we go much further, we really need to understand the basics of Vue, and how we go
about using it to define and display our application's data on a web page.

The Vue instance
Every Vue application must have at least one root Vue instance, which is created when we
pass an options object into the constructor. There are a number of properties
that we can define on this object, many of which are optional. These properties describe
what data the instance has access to, and what kind of actions and manipulations it can do
with that data.

Attaching to the DOM
Root Vue instances are attached directly to the DOM using the standard CSS selector
syntax. In the following example, we specify an property of on the object,
which instructs the instance to look for an element with an ID of app and attach to it:

This forms a relationship between the Vue instance and a specific portion of the DOM,
meaning we can start to display our dynamic data anywhere inside the specified element.
However, if we tried to display our data outside of it, it wouldn't work as Vue is not
managing the DOM at that level.

Defining data properties
In order to render data into the DOM, we first need to define the data we want to display.
Every Vue instance can define a object to hold as many data properties as we wish:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[17]

Rendering data into the DOM using expressions
To render our dynamic data properties into the DOM, Vue uses a very simple HTML
template syntax which is inspired by the very popular handlebars templating library. This
is why we refer to it as the handlebar syntax, which uses double curly braces, or mustaches,
to render data within HTML elements:

Anything placed within a pair of double curly braces is treated as an expression, which
means it will be interpreted using JavaScript. As such, we can reference the properties we
define in the object as we've done earlier, but can also make use of any standard
JavaScript concept. As an example, we could easily make use of the object for
rendering the current timestamp:

We can even use logical operators to perform math-based operations or concatenate strings:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[18]

Expressions allow us to perform any kind of operation on the properties defined on
the Vue instance, as well as built-in JavaScript objects and functions.

Building component trees
If you are only interested in plugging Vue into a handful of pages in a traditional MVC web
application, you would define as many root Vue instances as required, attaching each one
to a different DOM element. However, when building a full SPA with Vue, you would
instead define a single root Vue instance with a nested tree of components underneath it.
This single root Vue instance would then be responsible for attaching the entire application
to a single DOM element.

We've already discussed what components are at a very high level, but what exactly is a
component within the context of a Vue SPA? The answer is simply another Vue instance,
albeit this time not a root Vue instance. There are a few subtle differences between a root
Vue instance and a non-root Vue instance most notably that only the root Vue instances
define attributes. This is because nested Vue instances, or components in a component
tree, are simply rendered within their parent root Vue instances template. They do not need
to be told where to attach themselves.

The other main difference between a root Vue instance and a component Vue instance is
that the latter must define their property as a function rather than an object. We've
already seen an example of this when we first looked at the basic structure of a Vue
component, but to reiterate, it looked as follows:

data () {
 return {
 name: 'Hands on ASP.NET Core and Vue.js'
 }
 }

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[19]

Notice that the property is a function that returns an object this time. This is because
of the fact that every Vue component is a Vue instance. If we use a plain object rather
than a function returning an object, Vue cannot determine which component templates
need to be refreshed when that property changes. This is a big issue when we render the
same component multiple times when looping over lists of data, and then try and update a
single list item's data property.

Reactivity
Now that we've talked about the Vue instance, it's worth talking about reactivity. One of
Vue's core concepts is its reactivity system, which is also one of the main differences
between building applications with Vue and sticking with jQuery or even plain old
JavaScript. With jQuery or plain JavaScript, when a piece of data needs to change, we have
to manually ensure that any DOM element which references that data is updated to display
its new value. How big a job this is depends entirely on how big the application is, and how
well-written it is. However, it's an exceptionally error-prone way of working, regardless of
those factors.

In Vue, we bind the DOM to data properties defined in JavaScript, and then when those
data properties change, the DOM is automatically updated for us by the reactivity system.
The application quite literally becomes reactive to data changes, so it really doesn't matter
how big the application is since every DOM element that displays a specific piece of data
will automatically refresh when that value changes no more manual DOM updates!

Component behavior
We've now seen how to define a Vue component, as well as how to declare data properties
and render them into the DOM using component templates. However, this is just
scratching the surface of what we can do with Vue components. We've already discussed
how Vue components have two main aspects to them: presentation and behavior. Let's start
to look at what else we can do with the behavior side of a component, starting by
expanding on the function and talking about state.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[20]

State
When talking about the state of an application, what do we actually mean? As soon as we
introduce complex client-side logic to a web application, we also introduce multiple
meanings of the word state, or rather, we introduce an additional type of state to our
application. State can mean different things depending on the type of state we are
interested in.

Most backend .NET developers will probably understand state to be based on a snapshot of
the applications database at any point in time. In terms of our e-commerce example from
earlier, this would include the current list of products and categories that make up our
catalog; a list of users or customers who have registered for an account; and a list of orders
and associated order items. This form of state is based on the domain of the application,
and can be extended to include things that don't necessarily persist into the database, such
as authentication, validation, and business rules that control how the application behaves.

The type of state that we care about at the component level is known as UI state. Generally
speaking, UI state and domain state are separate things, but it isn't impossible for the two to
cross over. For example, keeping track of the current user isn't necessarily a UI concern, but
most SPAs will use some form of JWT authentication where the user's tokens, and as such
their authentication state, will be tracked by the SPA. Another example is where we display
paginated lists of data in an SPA keeping track of the currently displayed list items is a UI
concern, but we are still displaying a subset of the database-persisted items that belong to
the domain of the application.

Other examples of UI state include keeping track of the active menu item in a navigation
component; controlling the visibility of a modal window or custom drop-down menu;
keeping track of which panels are open/closed in an accordion; and showing and hiding
loading spinners during AJAX operations. These are fairly simple examples, and there are a
lot more complex things that we can do with client-side state such as transitions and
animations, but it's enough to demonstrate what we are talking about for now.

Each of our components are only responsible for their own subset of the application UI
state. For example, a component that contains the filters that we've applied to a product list
is only concerned with the selected values of those filter controls. It isn't and shouldn't
be concerned with which user is currently logged in, or how many items the user has
added to their shopping cart. This is all part of adhering to the single responsibility
principle, which makes our components much easier to debug and maintain.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[21]

Sooner or later, we're going to come across a situation where a single component is in
violation of the SRP, and we want to break that component down into a parent-child
relationship instead. A common pattern is where we have a list component as a parent that
contains a collection of list-item components as its children. The original component was
probably already fetching the data it displays, and it makes sense to leave that
responsibility up to the new parent list component; after all, the only alternative is to have
each list-item component fetch its own data, which would result in multiple trips to the
server instead of just one.

Props
We already know that components are self-contained, so how do the children get access to
the data they need to display if the parent owns and controls it? The simple answer to that
question is props. Props are a means of parent components passing data down into their
children. The child component must explicitly declare the names of the props it expects to
receive, and then these props can be referenced in much the same way that we do for any
other piece of data that the component owns.

The following code demonstrates how we declare and reference a prop within a child
component:

We can render this child component from within its parent component template as follows:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[22]

At this stage, it is important to understand that this method of sharing data between
components is strictly limited to one-way. It is impossible to send data back up the chain
from a child to a parent using props. We'll look at how to communicate in the opposite
direction later in this chapter.

The final point to mention about props is that Vue provides a means of validating the props
being passed to a component. We can perform basic type checking; control whether props
are required or optional; configure default values in the event that a prop is not provided;
and even write custom validator functions in much the same way as we would with client-
side validation libraries. The following code snippet shows an example of some of these
validation rules and how we describe them in the component definition:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[23]

Methods
If the data we are displaying within our components never changes, it's probably a sign
that we really don't need to be using an SPA framework such as Vue. We know that the
data in a component is used for things such as showing and hiding modal windows, so
how do we actually change the data so that the UI can become reactive? Vue components
can declare methods in order to manipulate their data. These methods are standard
JavaScript functions, and automatically have their function context (that is, the value of

) bound to the component instance so that they can access its data, props, and
computed properties. The following code shows how we can increment a simple counter
using a method on a Vue component. We can trigger this method by calling it from a UI
element event handler, which we'll look at later in this chapter:

Computed properties
As our applications grow in complexity, the chances are that sooner or later we'll need to
perform some logic on one or more of our component data items and display it in a
template. As a simple example, we may have data properties for a person's first and last
name, but we are regularly required to concatenate them and display their full name. We
could just use expressions inside the template as follows:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[24]

However, if we've duplicated this expression in multiple places throughout the template,
and we then decide to change the way we display the person's full name, we have multiple
places to find and update it. Even in a fairly small and simple example such as this one, this
doesn't sound like much fun, and certainly isn't very maintainable.

Alternatively; we could use a computed property to achieve the same result. If you've ever
used a computed column in SQL Server, then the concept will be familiar to you, and
computed properties in Vue components behave in much the same way. In the following
code snippet, we can see how we would declare a computed property in our
component declaration, and how we then render the value of that property into a template:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[25]

Although they are referred to and referenced in the same way as standard data properties,
they are actually functions. As with the component data object and methods, if Vue detects
that the returned value of a computed property has changed, it will automatically refresh
the UI to reflect those changes.

Watchers
Watch properties are similar in functionality to computed properties, and in most cases it is
actually unnecessary to use one. However, there is a limitation in that computed properties
are synchronous functions and always return a value that we can bind to. This makes them
impossible to use alongside asynchronous operations such as AJAX calls. So, what should
we do if we want to trigger an AJAX call to our API server and react to the data that is
returned?

Say we wanted to automatically display search results as a user enters their search term
into a text input. We could implement a simple event listener on the input and create a
method that is triggered on the keyup event, which performs an AJAX request with its
current value. This would work absolutely fine, and you may never need any more control
than this. However, this piece of functionality is completely coupled with the text input,
and as such our component will not react and refresh the UI if we change the data value of
the input directly.

Watch properties are a solution to this problem, as they provide a far more generic way of
reacting to data changes. In the following example, we are performing an AJAX request
that queries an API to perform some sort of search. We'll discuss what , ,
and mean shortly, but for now, just know that the text input has its value bound to
the property, and we display each search result in the array as a list item
element:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[26]

Note how we also have to declare a property of the same name. The watch
declaration instructs the component to quite literally watch the property, and run the
associated function each time it changes. The current value of the property is passed
to the function so that we can use it in any way that we please.

We also made use of this function to update a loading property to instruct the component
that the AJAX call is in progress; this property can now be used to show a loading spinner
in the UI each time the AJAX call is triggered. We could even extend this function to limit
how often the AJAX call can take place by using a debounce or throttle function. None of
this is possible with a computed property, and by using a watch property, it doesn't matter
whether we update the data through a UI control or manually in another component
method!

Lifecycle hooks
Every Vue component goes through a number of steps to initialize it when it's created.
Among other things, these steps are responsible for compiling and rendering the HTML
template, setting up the component's data so it becomes reactive, and mounting the
component into the DOM. In order to hook into this process, we're given a number of
lifecycle hooks that we can use to run our own application-specific initialization code at
each stage.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[27]

These lifecycle hooks are as follows, and named appropriately enough to make themselves
fairly self-explanatory:

 and run in a continuous loop for the duration of the component's
lifetime. Every time Vue detects a data change within the component, these steps are run
before and after the virtual DOM is re-rendered.

So, how do we actually make use of these function hooks? The following code shows an
example of how we declare the hooks we wish to use within a component definition:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[28]

We simply add a root-level function with its key matching the name of the lifecycle hook
we want to use. This is all very well and good, but if you've never used an SPA framework
such as Vue before, you're probably wondering why we'd ever want to bother doing this.
There are many reasons to use lifecycle hooks, the most common of which is probably to
fetch the data the component needs from an API somewhere. A good place to do this is in
the hook because we don't need access to the DOM, so there is no need to wait
until the mounted hook is run later. The other reason to use instead of is
because is the only hook that is run on both client- and server-rendered versions
of the component. We'll look at server-side rendering in one of the final chapters in this
book!

A few other examples include triggering animations as soon as the page is displayed, and
dirty checking a form to give the user a chance to complete it before navigating away. We
would need to use the and hooks for these actions, respectively.

So far, we've been focusing on the Vue instances and the different ways they help us
manage the data that our components are responsible for, but this is only half of the story.
We're yet to see how Vue can help us actually display that data. Let's start focusing on the

 section of our components!

Component presentation
We've now seen how a component can work with and manipulate the data of an
application, so let's move on to look at how to actually display that data in the
section of our components.

Directives
Out of the box, Vue provides a number of directives that help us display our data. A
directive is a special token that we attach to the HTML element markup in order to instruct
Vue to do something special with the DOM element that it renders. Let's look at a simple
example to make this a little easier to understand:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[29]

Here, we use the directive to bind the value of a standard HTML element to
the property of the component's object. In an MVC application, we can do
something similar with Razor syntax to bind DOM elements to properties on a view model.
We can also use Razor to do things like loop over a list and render the same output for each
item, and use conditional rendering and control flow to render different groups of elements
depending on runtime model conditions.

The default directives that Vue provides can do all if these things and more, all while using
a much cleaner and easier to read syntax!

Attribute binding with v-bind
We've already seen a simple example of , but there are many other uses for it. We
can use to turn any standard HTML attribute into a reactive version that we can
change the underlying data value of to cause the UI to refresh. For example, we can create a
very basic image carousel by using on the attribute of an HTML image tag, and
then rotate through an array of data values to cause the image to refresh:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[30]

Notice how we're using the mounted lifecycle hook that we talked about earlier, which is a
perfect example of triggering a UI transition/animation as the component is rendered and
displayed in the DOM.

One of the most common usages that we'll see throughout the rest of this book is class
bindings to change how an element is styled reactively. We can conditionally add or
remove classes based on the component's state, and change that state in response to user
interactions such as button clicks. Until now, we've been using the full
syntax, where the section after the is the specific HTML attribute you wish to data bind.
However, Vue also provides a shorthand syntax for a number of its directives. In the case of

, we can simply omit the part and use instead:

:class

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[31]

Notice how we shortened the directives syntax to rather than . This
is a very simple example that changes the color of a element. However, we could use
the same techniques to add colored borders and other indicators to show that a piece of the
UI has been selected by the user, or that a form element contains an error after
validation.

Conditional display with v-show
Rich UIs usually require us to conditionally show and hide elements based on variables and
user interactions. Vue gives us a couple of ways of achieving this with the and

 directives. We'll talk more about in the next section, but ultimately, both options
can be used for controlling the visibility of an element based on the component's state:

In the preceding example, we're using to control the visibility of a element
based on a simple Boolean property. This property is toggled by a simple method which is
invoked by a button click.

Control flow with v-if and v-else
 statements will need no introduction, as we often use them in both our backend

C# code and our frontend Razor views. Usage in Vue is no different; we just use and
 in place of the Razor syntax:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[32]

It is also possible to control multiple elements at once with a single statement to
prevent duplication. Once rendered, the following tag will not be included, as it
acts as an invisible wrapper:

As of version 2.1.0 of Vue, a directive has also been added, and it behaves
exactly as you'd expect:

As with a normal statement, it must follow a directive, and similarly the
 statement must follow either a or statement.

There's nothing stopping us from using a directive by itself, without any associated
 or directives, in which case it has a very similar behavior to . At

this point, you're probably wondering why we need both if they do the same thing. There is
one very big difference between and , and it's important to understand how
that difference should influence the decision on which to use in a given scenario.

 An element with a directive attached is always rendered into the DOM, and
visibility is controlled via the CSS property. On the other hand, elements
controlled by a directive are only rendered into the DOM if the conditional is truthy.
This means that visibility is controlled by removing the element from the DOM entirely.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[33]

So, which one do we use and why? Generally speaking, is more appropriate for use
cases where we know the conditional is going to change frequently. This is because the
overhead of toggling the element is much lower, as we have taken that performance hit by
always rendering the element, regardless of the conditional. If the condition is unlikely to
change at runtime, then we would prefer , as there is a chance that the elements won't
ever be rendered, saving us time upfront.

Rendering lists with v-for
Rendering lists of items is a very common requirement of most web applications, so Vue
has us covered on this one with the directive. Again, the syntax is very similar to
Razor, and we can assign an alias to the current item in the loop. We can then reference the
alias to give us access to any or all of its properties:

It is also possible to access the index of the item within the array by using an optional
second argument:

Although we've been using the standard syntax for example, it is also
possible to use rather than . This is closer to the standard JavaScript syntax, so feel
free to use this version if you feel more comfortable with it.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[34]

Event handling with v-on
Vue gives us a really easy way to attach event handlers to elements using the
directive. With standard HTML elements, we can listen for any native DOM event:

Here, we are listening for a native click event on a standard HTML button, and invoking
the method each time it is clicked. We are also listening for the form's

 event to be fired, and intercepting it with the method. You've
probably noticed that we already saw some button click examples earlier when looking at
some of the other directives in Vue. However, we didn't use the syntax like we did
here, and instead we used the shorthand notation. Here's the same example again using

 and instead:

When writing event handler functions in jQuery, we often find ourselves needing to
prevent the default event behavior or stopping the event from propagating up through the
DOM. In order to do this, we would normally receive the native DOM event as an
argument to the event handler function. This is also possible with Vue, as the native event
is passed to the handling function, by default, as the only argument:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[35]

If you've written a lot of jQuery in the past, then this will feel right at home for you.
However, it's not the only way to achieve the same result, and Vue gives us a much nicer
way through the use of modifiers:

It should be fairly self-explanatory as to what's happening here, but adding the
 modifier is a shorthand way of calling , and adding the

 modifier is a shorthand way of calling . There are a
number of other modifiers available to us, including but not limited to the following:

: This is used for listening to the native events on the component's root
element

: This is used for listening to specific keyboard key presses, for
example,

: This is also used for listening to specific keyboard key presses, for
example,

, , or : This is used for listening to specific mouse button
clicks

Notice how we also chained the prevent and stop modifiers in the preceding example. This
is perfectly valid in Vue.

Event handling in Vue is incredibly flexible and powerful. We can attach as many
directives as we wish, but we can also attach multiple handlers using a single directive by
making use of the object syntax:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[36]

Here, we are listening for both a and event on a single element. We can
add as many properties to this object as we wish, depending on how many events we need
to listen for.

Form input binding with v-model
 When rendering the form fields, it might seem obvious to make use of the
directive that we've already looked at. We've already seen that binding an element's

 property can be done as follows:

Upon rendering of the component, you'll find that the textbox is displayed seemingly
correctly with the property prefilled. However, if you tried to change the value of the
input by typing into the box, nothing would happen. This is because is a one-way
binding. It is not possible to update the backing property using , and as such, the
input will always display the initial value unless we change that value programmatically
via some kind of component method. Following on from the preceding example, this
would look like the following:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[37]

This is quite a lot of code for something as common, and simple, as binding a text input to a
 property. Luckily for us, Vue has a much nicer way to create a two-way binding, and

this is by using the directive. Under the hood, it does a very similar job to what
we've done earlier, but helps us keep our code much leaner and focused on more
complicated functionality. It can also be used on all form input elements and text area
elements, and automatically uses the correct way of updating the elements' values based on
their types:

By using rather than the combination of and , we completely negate
the need to create a component method just to update the property. The property is
updated automatically for us by the directive. As with the directive, there
are some modifiers that we can use to help us out in certain circumstances. These are as
follows:

: This is used to sync the and properties after a event
rather than an event

: This is used to automatically typecast the input value as a number
rather than a string

: This is used to automatically trim the leading and trailing whitespace
from the input value

Parent-child component communication
Earlier in this chapter, we looked at composing parent-child component relationships, and
without explicitly saying so, we also covered the basics of how two components in such a
relationship can communicate with one another.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[38]

Firstly, for a parent component to pass data down to its children, props can be used.
However, this is only suitable for a one-way flow of data from parent to child. If we need to
send data in the opposite direction, that is, from child to parent, we must use event
handling using the directive that we saw earlier. More specifically, we fire events
from the child component, and instruct the parent component to listen for those events
using the directive. Vue is smart enough to know that we are listening to an event on
a custom HTML element, and as such, it is capable of listening for custom events as well as
native DOM events:

In this example, we render a custom person element and listen for a custom
 event. In order to trigger this handler, the child component must manually emit

the event:

This completes our overview of Vue and the main features that we'll be using throughout
the rest of this book. Let's move on and take a whistle-stop tour of ASP.NET Core. Again, if
you're already familiar with ASP.NET Core or, more specifically, how it differs from
previous versions of ASP.NET, you can skip straight ahead to , Setting up the
Development Environment, where we'll get stuck straight into setting up our development
environment.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[39]

ASP.NET Core what's new?
ASP.NET Core is a complete rewrite of the ASP.NET framework, rather than a new version
built on top of the existing one. It is much smaller and more modular, and is the first
version of ASP.NET to have official cross-platform support. Covering everything that has
changed in ASP.NET Core would require a whole book in itself, so we'll focus on the main
parts that we need to know a little bit about to get us started.

Middleware pipeline
ASP.NET Core apps are built on the principle of a middleware pipeline. But what exactly
do we mean by this? Web applications are all about HTTP requests and responses; a
middleware pipeline is simply a set of instructions for how the application should handle
each HTTP request.

Ultimately, an ASP.NET Core middleware is just a function which is invoked as a result of
a HTTP request. If we need multiple middleware functions, they can be chained together in
a specific order to form a pipeline to process the request. After each function finishes
processing, they may decide that the request should be terminated. In this instance, it sends
a response back to the previous middleware, which in turn passes it back to the
middleware before that, and so on until it eventually ends up back with the client that
started the request. Alternatively, if everything is successful during processing, it can
simply pass the request on to the next piece of middleware defined in the chain. Each
middleware can essentially perform some kind of custom logic before the request, after the
request, or both. As an example, you could easily create a request timing middleware that
records a timestamp before and after every request, so that the total processing time of each
HTTP request can be logged somewhere.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[40]

The following diagram shows how this works in an ASP.NET Core web application:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[41]

ASP.NET Core provides a number of middleware components for us to optionally make
use of, and we'll see how we go about registering these with our application in the next
section. The only other thing to note is that the order that we register our middleware in is
extremely important. If one middleware depends on another one having processed the
request before it receives it, we need to make sure that the dependent middleware is
configured after the middleware it depends upon. Otherwise, our requests are likely to fail,
or at least display some very strange results depending on what the middleware are
designed to do.

Later in this book, we'll look at how we can build our own custom middleware and register
them with the pipeline.

Application startup
All ASP.NET Core applications must have a file that contains a class named

. There are two methods we need to be aware of, and these are and
.

 is a required method that is used to, as the name suggests, configure the
application, specifically by setting up the request pipeline, including any optional
middleware that we may need. The following sample shows how we would configure a
simple ASP.NET application that uses the , ,

, and middleware:

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[42]

 is optional, although I've yet to find an application that doesn't
implement it. It is used to configure the application's services and register them with the
built-in dependency injection (DI) container. Most non-trivial applications will need to
configure services such as Entity Framework (EF), ASP.NET Identity, RequestLocalization,
and MVC. The following code shows a sample configuration of these services:

You'll probably spend a fair bit of time in this class, tweaking configurations and such, so
let's look into these two sections in a little more detail.

DI is a first-class citizen
ASP.NET Core has been built from the ground up with DI in mind, and in fact DI is now a
pattern that is strongly encouraged for use in every application. As such, it is no longer
required to use an external library for DI, as there is a simple built-in container included out
of the box. On top of this, the vast majority of official supporting libraries are registered as
DI services when we install them, such as EF and ASP.NET Identity. That being said, the
built-in container is fairly limited in functionality, and for more advanced requirements,
Microsoft is still recommending that we bring in a more fully-featured container instead.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[43]

DI is not a technique that all ASP.NET developers will be familiar with if they've only ever
built fairly simple applications. As it's a core technique used in ASP.NET Core apps, if you
aren't particularly comfortable with it, then I strongly recommend you go and read up on it.
The Microsoft documentation for ASP.NET Core is a great place to start! We've already
seen how to configure some of the built-in framework services using the extension methods
provided by each package, but how do we register our own services? The answer is via a
set of extension methods that provide a way of registering dependencies with different
lifetimes:

The extension method is fairly self-explanatory, and is used
for registering services that have a single instance which is shared by all dependent classes.
The other two are slightly less obvious: is used for registering
dependencies that are scoped to the lifetime of a request, that is, they are created once per
request and each dependent class receives the same copy until the request terminates;

 is probably the most common, and simply means that each
service is instantiated every time it is requested.

This is pretty much the limit of what we can do with the built-in container, and as
previously mentioned, if you need any more complicated features, such as property
injection and/or convention-based registrations, you'll need to look at a more complete
container such as .

EF Core what's new?
These days, it is rare to see an ASP.NET application that doesn't make use of some kind of
ORM, and even rarer to see one that uses anything other than EF. There are certainly other
options, such as the much lighter Dapper and Marten, a library that takes the JSONB
capabilities of PostgreSQL and uses them to turn it into a full-featured NoSQL document
store. However, SQL Server is where most .NET developers' comfort lies, so we'll stick with
what we know for the examples in this book.

Configuring relationships
In older versions of EF, you could get away with leaving it to do its thing without manually
intervening with the way it builds out the relationships between tables in the database. It
could handle one-to-one, one-to-many, and many-to-many relationships out of the box,
meaning that unless you had a super complicated domain model, you didn't need to do
much to get a working database.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[44]

In EF Core, only one-to-one and one-to-many relationships can be inferred without manual
configuration. I don't see this as a huge problem, as it is only a few extra lines of code to tell
the fluent model builder how to configure many-to-many relationships:

Notice how we only have to instruct EF what to do with the join table. From these few lines
of code, it can now go away and build the database for us without any problems.

Global query filters
One of the features that other ORMs had that EF didn't was the concept of global query
filters. These queries are a means of telling EF to automatically apply a LINQ statement to
every query that's executed against the type of entity in the filter. A common use case for
this kind of query is when an application uses the concept of soft deletes. Rather than
actually deleting the data, it is marked with a Boolean flag instead.

The following image shows how we can register a global query filter on a DbContext entity
to only include records where the flag is set to :

We could also use these global filters in multitenant applications, where each tenant should
only be able to access the data associated with their tenancy. This is a much better solution
than relying on applying these filters manually on every query, which is exceedingly error-
prone, as it is too easy to forget.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[45]

Compiled queries
EF now supports the concept of explicitly compiled queries. These provide a number of
benefits, most notably by increasing the query's performance, but also making it easy to run
the same query in multiple places within the code.

The idea is pretty simple; if we have a query that is run many times within our application,
then we can instruct EF to compile it. It is compiled only once, but we can run it as many
times as we like, with different parameters each time. The following code shows an
example of how we can define a compiled query and then execute it:

In-memory provider for testing
It has always been exceptionally difficult to write tests around the code that was dependent
on an EF DbContext. To make testing easier, developers often resorted to implementing
different variations of the repository pattern so that the business layer could depend on a
repository interface instead. This had the desired effect of making testing easier, but the
general concept of a repository pattern over the top of EF was quite simply unnecessary, as
the DbContext is already an implementation of both the repository and unit of work
patterns.

EF Core has addressed this issue by providing us with an in-memory version that we can
use for our tests. It is now a fairly simple task to create an in-memory database and seed it
with test data before each test is run. This ensures that the database is in a known state for
each test, without the complexity of attempting to mock the DbContext!

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[46]

The following example shows how we can configure a test DbContext and fill it in with test
data:

We can then pass this DbContext to a dependent controller within the scope of our unit
tests:

The only thing to note when using the in-memory provider is that it isn't a full relational
database, and doesn't try to mimic one. I've noticed a few weird things when using it in my
applications, and found that using an in-memory SQLite provider to be far more stable and
predictable. There is plenty of documentation on both options on Microsoft's own ASP.NET
Core documentation pages.

www.EBooksWorld.ir

Understanding the Fundamentals Chapter 1

[47]

Summary
In this chapter, we looked at the basic concepts that we'll need to build an application with
Vue, as well as some of the most important changes to ASP.NET Core and EF Core. We also
saw how Vue has a very similar syntax to that of Razor, and covers many of the same use
cases where Razor and MVC views would be used in a traditional MVC-based application.

www.EBooksWorld.ir

22
Setting Up the Development

Environment
By this point, you should already be comfortable with the basics of Vue.js and ASP.NET
Core, or have read the previous chapter. Either way, we're not going to waste any more
time on theory! In my eyes, the best way to learn about a new programming language or a
framework is to get stuck in and build something.

Before we can do anything else, we need to install a few things that we'll need to build and
run the application, and also a few tools to make our lives easier. In summary, in this
chapter, we're going to cover the following:

Choosing and installing a browser
Installing frontend tools and dependencies, such as Node and npm
Evaluating and choosing a frontend package manager
Installing backend tools and dependencies, such as ASP.NET Core and
PostgreSQL
Choosing an IDE
Installing productivity tools to make our lives easier

Choosing a web browser
When building any web application, it is important to ensure that it is fully tested in all
browsers that you need to support. At the very least, this is usually the latest version of all
modern browsers. However, during the development phase, you'll most likely use a single
browser, so it is important to choose the best one for our needs.

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[49]

Google Chrome has been my choice of browser for many years now, but, more recently, it
has been truly cemented as the best tool for the job (in my opinion) due to a number of
extensions that we can install to help us while building the frontend of our application.
There will be more on this later!

To install Google Chrome, navigate to the following URL and follow the instructions
provided: .

As I'll only be using Chrome for the purposes of this book, it is the only browser that I can
safely say is supported by the sample application that we're going to build. That being said,
Vue is supported by all modern browsers, and we'll also be using Bootstrap for styling,
which is also supported by all modern browsers. This is where we really see the benefits of
using these kinds of frontend frameworks, as somebody else has already done most of the
hard work of ensuring cross-browser compatibility for us.

Installing frontend tools and dependencies
For any kind of modern frontend development, we're going to need Node and Node
Package Manager (npm) installed. Node itself is a runtime built on top of Chrome's V8
engine, enabling us to run JavaScript on the server side of our applications. So, why do we
need it if we're using ASP.NET Core?

Node and npm are both requirements of the tooling used to build and run medium-large
scale Vue applications. We'll also be using npm to install a lot of client-side packages that
we'll use within the application itself.

Installing Node and npm
Head on over to the following URL and download the Node.js installer (

). The website should be smart enough to detect your OS and provide the right
platform installer for you, which in my case is Windows (x64). You have two options to
choose from, the LTS version or the Current version. I'll be sticking with the LTS version,
which at the time of writing is version 8.9.3.

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[50]

To test that Node has been installed properly, open up the Command Prompt or
PowerShell if you are on Windows, or the Terminal if you are on Mac or Linux, and run the
following commands:

PS C:\Users\stuar> node -v
v8.9.3
PS C:\Users\stuar> npm -v
5.5.1

If you receive any output other than the version number you currently have installed, then
something has gone wrong. Check out the troubleshooting sections on the Node website,
and if all else fails, chances are Google will have the answer!

If all is well so far, we can make sure that we have the latest version of npm installed by
running the following command in our Terminal/Command Prompt of choice:

PS C:\Users\stuar> npm install -g npm
C:\Users\stuar\AppData\Roaming\npm\npm ->
C:\Users\stuar\AppData\Roaming\npm\node_modules\npm\bin\npm-cli.js
C:\Users\stuar\AppData\Roaming\npm\npx ->
C:\Users\stuar\AppData\Roaming\npm\node_modules\npm\bin\npx-cli.js
+ npm@5.6.0
added 27 packages, removed 11 packages and updated 38 packages in 15.399s

Yes, we're using npm to install/update itself, weird! If you're a Windows user building
standard ASP.NET MVC applications, then you may have rarely ever needed to leave the
comfort of Visual Studio. We're going to be using the command line a lot, so it's time to get
used to it!

When installing npm packages, the syntax is as follows:

npm install <package-name>

This will install the package locally, and store it in a folder, which the tool
will create if it doesn't already exist. However, when we updated npm before, we added the

 flag to the command. This installs packages globally on your machine. Global packages
are usually ones which offer command-line interfaces, or CLIs. npm is an example of a CLI,
as you can see by our previous usage of its command.

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[51]

Installing Vue
Now, technically there is no installation for Vue. In its simplest form, Vue is a single
JavaScript file that we can include in a web page as we would with any other file. However,
we're going to be using it to build a fully-fledged SPA. In this instance, there are a lot of
moving parts to configure, as we'll be building the application in a very modular fashion,
with several libraries involved and a complex code structure involving multiple files and
folders. We don't want to have to reference all of these files from the web pages manually,
as it would be a nightmare to ensure they are referenced in the correct order.

We also want to make use of modern JavaScript syntax, which web browsers cannot
understand; this means our files will need to be transpiled down into a format that they can
understand. We'll be using a technology called webpack to help us solve both of these
problems. webpack is a topic that needs a book of its own to understand, so we won't be
covering it in too much detail, but for now just know that it bundles all of our client-side
script files into a single file that we can include on our web page. It also handles
transpilation for us, so we don't need to worry about whether our users' web browsers are
modern enough to understand the latest syntax.

As we don't have anything else that we need to install from a Vue perspective, let's move
on to evaluating our options for managing our client-side packages.

npm or Yarn?
npm is a fantastic tool for managing JavaScript packages and dependencies, but it isn't our
only option. Facebook have built their own package manager called Yarn, which offers a
number of benefits over npm. If you're interested in what those benefits are, head over to
the website for more details at .

One of the main reasons why I chose to use Yarn was because it was so much faster than
npm. Later versions of npm have definitely closed that gap, but they are still missing some
of the other great features that Yarn offers, such as offline mode via local package caching.
Yarn makes package installations faster the second time around because it caches every
package it installs locally on your machine. The next time you install it, it doesn't need to
download it again this also means that you can work offline as long as you've installed
the packages you need before hand!

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[52]

I'll be using Yarn for the rest of this book, so let's get it installed! Head over to the following
URL, which again should detect your OS and show you the installers that are relevant for
your platform: .

Once installed, we can check that everything is OK again by running the following
command to detect which version is installed:

yarn --version

Be aware that if you're running PowerShell on Windows, this may well throw an error
stating that Yarn is not a recognized command. You're not alone in this, and it seems to be an
issue with the .msi installer at the time of writing this book. You can verify that Yarn was
indeed installed by switching to a standard Command Prompt instead.

In order to fix this issue on PowerShell, the only way I have found that works is to install
Yarn via npm. However, their website explicitly states that this is not the recommended
approach, and in fact, they strongly recommend against installing it via npm. We're going to
look at a nice Terminal Emulator for Windows later in this chapter, but if you really want to
use PowerShell, then run the following command:

npm install g yarn

Run the version detection command again; it will now work and in actual fact even if we
uninstall Yarn via npm, it continues to work:

npm uninstall g yarn

This is one of those things that I've yet to find an explanation for, but since the version
detection command gets it working, this will do just fine for now. The syntax for installing
packages with Yarn is slightly different to that of npm. Yarn uses the function rather
than , as follows:

yarn add <package-name>

This covers everything we need to install for the frontend of our application, so let's move
on to what we need for the backend.

Installing backend tools and dependencies
Getting things ready for the backend of our application is very simple. There are only two
things that we need to install: ASP.NET Core and PostgreSQL.

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[53]

Installing ASP.NET Core
To install ASP.NET Core, head over to the following URL, select your OS on the left-hand
side and follow the instructions: .

The preceding link will default to the Windows OS when you navigate to
it. Make sure you select your own OS before following the download links
and instructions.

As with everything else we've installed so far, a CLI tool is included, and as such, we can
verify that everything is installed correctly by running the following command in our
Terminal:

PS C:\Users\stuar> dotnet --version
2.1.3

If everything is OK, it should return the version number installed, which at the time of
writing this book is version 2.1.3.

Installing PostgreSQL
SQL Server is the standard database choice for most ASP.NET applications and is most
likely what the majority of readers are used to. However, seeing as ASP.NET Core is cross-
platform now, I don't want to introduce a barrier to those readers who may be running a
Mac or Linux machine. SQL Server can be run on Mac or Linux, but requires the use of
Docker, which adds a significant degree of complication that is beyond the scope of this
book.

PostgreSQL is a fantastic open source RDBMS that runs on any platform and is fully
compatible with ASP.NET Core, or more specifically, EF Core. During the development
phase of most applications, you are fairly unlikely to notice any difference to when you are
working with SQL Server, other than how you connect directly to the database and view
your data.

To make use of PostgreSQL over SQL Server, all that is required is a simple one-line
configuration change to instruct the application which provider we wish to use. Under the
hood, EF Core uses this provider in the migrations files it generates to decide how to
manage the creation of, and changes to our database. All of this is hidden from you as the
developer, but it is worth knowing the basics of what happens behind the scenes.

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[54]

To install Postgres, head to the following URL and download the binary packages for your
OS: .

As of the time of writing this book, version 10.1 has just been released, so that's the one I'm
installing. I've left all the default options checked, including the use of port 5432 and the
inclusion of pgAdmin4, which we can use later to browse the database.

This is all we need to build the backend of our application; the rest of the dependencies will
be installed as we go along via the NuGet package manager.

Choosing and installing an IDE
The obvious choice here is Visual Studio 2017. The community edition is free and offers all
of the functionality we're likely to need. However, although Visual Studio is now available
for Mac, I've not heard great things on how well it actually works. I don't own a Mac so I
can't validate this for myself, but the safer bet for being truly cross-platform is to go with
the much lighter weight VS Code.

VS Code is quickly becoming one of if not the most popular editor for frontend
developers on both Mac and Windows. It is perfect for building the Vue side of our
application, thanks to its excellent editing and debugging experience, but is also an
exceptionally capable alternative to full-fat Visual Studio for our ASP.NET Core and C#
backend. However, if you are on Windows, then you may still wish to use Visual Studio for
more complex scenarios.

Now, technically VS Code is not a full IDE; it's a text editor with some IDE-like
functionality baked in. For example, we can get IntelliSense, debugging, task running, and
version control all builtin and ready to go. This isn't to say that VS Code is a total
replacement for full-fat Visual Studio, or the two simply wouldn't need to co-exist. VS Code
gives us all the functionality we need, works on any OS, and happens to be much, much
faster than Visual Studio.

Let's get it installed. Head to the following URL and download the installer that's
appropriate for your platform: .

Yet again, we can ensure that VS Code was installed properly by running the following
command from your chosen command line or Terminal:

PS C:\Users\stuar> code -v
1.19.1
0759f77bb8d86658bc935a10a64f6182c5a1eeba
x64

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[55]

At the time of writing this book, the current version is 1.19.1, and Microsoft recently
released a 64-bit version, which is also confirmed by the preceding output.

Productivity tools
VS Code already provides a number of built-in functions for navigating our code and
performing basic refactoring. However, the one thing it can't do out of the box, which we'll
need, is understand Vue's single-file components. These are files with a extension,
and as we've already seen, it contains HTML, JavaScript, and CSS all in a single file. This
makes it difficult for text editors to know what type of file to treat them as, so we'll install a
VS Code extension to help out.

Installing VS Code extensions
There are a number of VS Code extensions that we could choose, but Vetur is by far the
most advanced. It provides some very useful features for building Vue applications, such as
syntax highlighting, error checking, IntelliSense, and code snippets. Vetur is also one of the
major positives of using VS Code over Visual Studio for Vue application development.

To install it, we need to open VS Code, navigate to the extensions panel from the menu on
the left, then search for :

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[56]

After clicking the Install button and waiting for a few moments, you should see a button to
reload the VS Code window. After doing so, the extension will be installed and ready to go.

While we're here, we might as well repeat these steps and install the C# extension in the
same way:

There are a few other VS Code extensions that we'll be using, and you can install them in
exactly the same way as we've just done for Vetur and C#. These are the following:

NuGet Package Manager
C# extensions
Prettier: A code formatter (optional)

www.EBooksWorld.ir

Setting Up the Development Environment Chapter 2

[57]

Prettier is an opinionated code formatter that automatically formats your code each time
you hit the save button in VS Code. It is entirely optional, but all of the examples within
this book have been formatted by Prettier to ensure they are consistent and legible.

Installing the Vue.js Chrome devtools extension
The Vue.js Chrome devtools extension is a plugin for Google Chrome that makes it much
easier for us to debug our applications. We'll see how we can make use of it in later
chapters, but for now, we just need to get it installed and ready to go. Navigate to the
following URL and hit the Add to Chrome button near the top: .

Installing a Terminal Emulator on Windows
(optional)
We've already seen that some frontend CLI tools don't work as well with PowerShell as
they do with Mac/Linux-based Terminals. Unfortunately, Windows just isn't quite as nice
to work with when it comes to developing applications using the command line. One thing
we can do to improve this is by installing a Terminal Emulator.

ConEmu is one such emulator that works very well. It provides some nice-to-have features,
such as tabbed windows, and usually does a good job of bringing Unix-based Terminal
commands to Windows, so we don't have to keep googling for the Windows equivalent.

If you want to give it a try, head over to the following URL to download and install
it: .

Summary
We now have a development environment set up that includes everything we'll need to
build and run both a frontend Vue.js application and a backend ASP.NET Core web API.
We made the decision to use VS Code for building the application due to its versatility,
speed, and the excellent Vue tooling available. Windows users have had the choice to stick
with the standard Windows Command Prompt/PowerShell, or install the ConEmu
Terminal Emulator.

www.EBooksWorld.ir

33
Getting Started with the Project

With our development environment set up and ready to go, it's time to start scaffolding the
skeleton of an application. In summary, the topics we are going to cover in this chapter are
as follows:

Evaluating our options for generating a project
A brief introduction to webpack
Scaffolding a project with the dotnet CLI
Refactoring the default template to meet our needs and preferences
Setting up the database
Testing the completed setup

Before we do anything else, we need to make a decision on how we want to generate the
barebones structure of our project. We have a number of options available to us, including
CLI tools from both Microsoft and Vue that have commands dedicated to generating
default project structures. On the one hand, we can use each CLI tool independently to
generate two separate applications, then try and modify the configuration of each in order
to integrate them into a single application. Alternatively, we can make use of a Microsoft
provided project template that already integrates an ASP.NET Core backend with a Vue
frontend.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[59]

ASP.NET Core SPA templates versus CLI
tools
Until very recently, this decision was very simple as the SPA templates included with
ASP.NET Core did not include a Vue frontend version. This forced our hand, and we had
to rely on setting up the backend and frontend of our applications manually, then work out
how to integrate them in a nice way. This was not an easy task, as the webpack
configurations generated by the Vue CLI are very complicated and opinionated about the
folder structure of our frontend code. Trying to tweak this configuration can cause a lot of
headaches.

However, Microsoft has now created a Vue-based template. That being said, unfortunately,
it is not quite as fully featured as its React or Angular counterparts. At the time of writing
this book, it is missing a few core features, such as server-side rendering (SSR) and client-
side state management. These features are both included in the React template or at least
the React and Redux template. SSR is pretty complicated to set up and configure for
ourselves, as you'll see later in this book, where we dedicate a full chapter to it.

This is not a deal breaker as, even with the Vue CLI-generated projects, we need to
configure SSR ourselves anyway, and state management is very easy to add ourselves. For
me, the biggest downside with the Microsoft template is the use of TypeScript. I'm by no
means averse to the use of TypeScript if that's what you prefer, but the way it's been used
in their template means that each component is broken down into three separate physical
files: an HTML template file, a TypeScript file for the component's logic, and a CSS file for
its styling. This means that we lose the benefits of Vue's single-file components (SFCs). We
are also forced into using the component decorator syntax and class-based API when
building our components, which is something that I personally am not a fan of.

It is still very early for official TypeScript support in Vue, and my experience with it so far
could only be classed as unstable at best. For example, when scaffolding a sample
application using the dotnet CLI template, I am unable to simply run the application
without finding at least seven or eight errors relating to TypeScript in the console. This,
along with the fact that there are currently far fewer blog posts or sample projects around
that make use of TypeScript, means I'll be avoiding it in this book.

Neither of our options are perfect, and require some level of manual intervention into how
they are configured. The amount of manual configuration changes needed to remove
TypeScript from the dotnet template is far less than trying to integrate two entirely separate
applications, so we'll go with that.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[60]

An introduction to webpack
So far, we have made quite a few references to webpack without going into any kind of
detail as to what it is and why we need to use it. As previously mentioned, we won't be
going into too much detail here, but we'll cover enough of the basics to point you in the
right direction when it comes to needing to branch away from the default configuration.

What is webpack?
Webpack is what we call a module bundler, and acts as the middleman between our client-
side source code and the JavaScript files that actually get run by the browser. Essentially,
webpack allows us to build the frontend of a large and complex application as we would
with a backend ASP.NET application using many different files and folders. If we think of
each file as a module, they can reference other modules using and
statements. webpack, then, quite literally bundles these modules together so we can
reference a single output file in our HTML, as we would with any other JavaScript file.

On top of this, webpack is clever enough to be able to understand all kinds of client-side
assets such as JavaScript, CSS, fonts, and images; they can all be imported into modules
before being output within a single JavaScript bundle file. Furthermore, webpack can also
take care of transpiling the latest ES6 JavaScript syntax down into a format that all browsers
can understand. This means we get the added benefit of being able to use ES6 syntax in our
Vue application, knowing that once our code hits the browser it will be perfectly
executable, even on browsers which do not yet support that syntax.

How does it work?
For webpack to work its magic, we must provide a configuration file which instructs it on
where to start bundling our code. This is known as the entry point. Webpack will then
traverse through our modules using the and statements that link them,
building up a dependency graph of the entire application. This graph is how it knows what
order to place our code in in the single output bundle file. The name and file location of the
output bundle are also configurable using the same configuration file.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[61]

In order to work with such a wide variety of asset types, webpack uses the concept of
loaders to evaluate and process our modules. For example, to process CSS modules, there is
a corresponding , which we must add to the configuration before webpack
will attempt to load CSS files. JavaScript files are handled by default without an explicit
loader, but in order to transpile ES6 syntax, there is a loader called , which
does need configuring. Vue files are particularly interesting because they use a custom file
extension, , and they can contain HTML, JavaScript, and CSS all within a single file.
There is no way webpack could know what to do with these files without a specific loader,
which is where the comes in.

Basic webpack configuration
Webpack is entirely reliant upon configuration, or more specifically, a

 file residing in the root directory of your application. To begin with,
webpack configuration seems incredibly simple and straightforward. Here's an example:

We simply point webpack at the file as the entry point and tell it to output
a file in the directory. If all we cared about were simple JavaScript files,
this would be fine. However, the amount of configuration increases drastically just by
configuring the Vue, CSS, and URL loaders:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[62]

Add on top of that things such as additional loaders, different settings for
production/development bundles, minification, and plugins for configuring bundle
splitting. You can probably already see where this is going. Webpack is capable of doing
some pretty amazing things, but to do so, the configuration can soon get wildly
complicated compared to the basic example we started with earlier.

Bundle splitting
One such configuration complication, which is worth doing, is to split your webpack
output into at least two bundles. One bundle will contain all third-party code that our own
application code depends upon, and the other will just contain our own application's code.
There are a few reasons we'd choose to do this, but the most prominent are as follows:

Faster development time bundling
Updates to the production application don't require clients to re-download the
third-party bundle if they already have it cached

Later in this chapter, we're going to see how a concept called Hot Module Replacement
works, but essentially every time we make a change to one of our files, webpack will re-
bundle the application for us. By using bundle splitting and moving all third-party libraries
into a separate vendor bundle, webpack will only bundle the code that's changed, which is
the much smaller application-specific bundle. This results in faster feedback when we make
changes, ultimately increasing our productivity.

Typically, the vendor bundle will have a much larger file size than that of our application
bundle. Once a client's web browser has downloaded both bundles when visiting our app
for the first time, as long as we've enabled caching, these files won't need to be downloaded
again on subsequent visits. However, when we inevitably release a new version of the app,
we can re-bundle the application-specific code, adding a new hash to the end of the
filename which forces the browser to download it again. As the vendor bundle has
remained unchanged, the browser will use the cached version, which saves downloading
the bigger file again.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[63]

To configure bundle splitting, we must provide a second configuration file in the same
location as the first, which instructs webpack on which modules it should split into the
vendor bundle. We'll see more on how this works later in this chapter.

Production bundles
It is very common to separate production bundles from development bundles. When we're
developing and debugging our application, in the event of an error, it is useful to know
exactly which file has thrown it. Remembering that the browser is only executing one or
two JavaScript files, how can we tell which of our many source files contained the code
causing the bug? The answer is a concept called source maps, whereby webpack maintains
references to the original source files so that the browser can tell us exactly which file is
throwing the error. However, this isn't something we'd want to be enabled once our
application is deployed into production, so we tend to have a production-specific bundle
which disables it.

In addition, it is standard practice to uglify (or minify) our code in production to make it
illegible to those who inspect it. We wouldn't want to do this in development or we'd find it
very difficult to debug, so this is yet another difference that we tend to make between
production and development bundles. There are often other differences between
production and development bundles, but in my experience, these two are the most
common and should be enough to demonstrate this concept. This is all we'll say about
webpack for now, as you'll see some more advanced usage throughout the rest of this book.
Let's move on to scaffolding our project.

Scaffolding a project with the dotnet CLI
As we've made the choice to be truly cross-platform, we can't use our typically familiar
Visual Studio project templates to scaffold the project. Instead, we'll be making use of the
dotnet CLI, which gives us exactly the same result anyway.

As the Vue template is a fairly new addition to the CLI, it's not actually installed with the
core CLI installer. So, the first step is to download and install it so that we can use it to
scaffold our application. Luckily for us, this is as easy as running a single Terminal
command:

dotnet new --install Microsoft.AspNetCore.SpaTemplates::*

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[64]

Now, navigate into an empty directory with a name matching your project, and run the
following command:

dotnet new vue

Note that this will not create a directory for you, and will name the application based on
the folder you are inside.

If you now open this directory with VS Code, you will see a very familiar project setup,
including the standard MVC application folder structure that includes controllers and
views; it also includes a folder that you won't be so familiar with, but we'll
come to that later.

When first opening a new project in VS Code, you will be prompted to
install missing required assets for building and debugging the application.
Click Yes!

As mentioned earlier, chances are if you try and run the project now, you'll be hit by a
number of TypeScript errors. As we won't be using TypeScript, we won't worry too much
about this now and crack on with refactoring the frontend setup to meet our preferences
and needs. Depending on whether newer versions of packages are released before you read
this book, you may get lucky and it will actually work.

Refactoring the frontend setup
All of our frontend Vue application's code is stored in the folder. Eventually,
this will include all of our application pages, components, client-side router setup, and
client-side state management. In order to remove our dependency on TypeScript, there are
a couple of things we need to do remove all references to anything TypeScript-related
from our package dependencies and configuration files, and remove or update the existing
components to plain old JavaScript components.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[65]

Removing TypeScript
We can start by opening up the file and removing the following lines:

This should leave the entire file looking as follows:

Next, we can delete the file entirely, and then make some changes to the
 file. This is quite tricky, as it's a fairly large and complicated file. The

first thing to do is remove the following line, from right near the top of the file:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[66]

Then, around the line 12 mark, there are two lines that look as follows:

As we're not using TypeScript, we don't need to support the extension, so we can
tweak these lines as follows:

Right beneath these two lines is a object section. Again, we can remove
anything related to TypeScript, leaving it looking as follows:

A few sections lower down is a array section, where we can remove the
 line from the top. This completes our changes to the webpack

configuration file, but as it's quite a fiddly process, if you have any problems, make sure to
check out the source code for this chapter, which contains the fully completed file.

Replacing the default components
If you open up the folder, you'll find five subfolders, each
containing a component generated by the template. These components are currently
making use of TypeScript and the class-based API with decorators, rather than true SFCs.
We could refactor these into standard JavaScript-based SFC's, but we'd be wasting our time
as we'll end up deleting these unnecessary components later anyway.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[67]

Delete everything within the directory, as well as the
 directory itself. To replace the components we just deleted, for now, we'll

create a simple component to act as the root level
component of our application. The contents will look as follows:

Finally, we need to rename the file to , and
change its contents to reflect the following:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[68]

For now, we've removed all client-side route definitions as we only have a single
component, but we've left the router setup intact to save us putting it back in again later.
Run the application now and navigate to . If you've got
everything configured correctly, we should finally have a running application with a very
simple home page:

If you add some additional markup to the template, you'll notice that the browser
updates and displays the new content immediately, without the need for a page refresh.
This is thanks to a technology called Hot Module Replacement, which is configured for us
using webpack-based middleware in ASP.NET Core.

This completes the changes we need to make to the frontend setup, so let's move on to the
backend.

Refactoring the backend setup
I'm a huge fan of the feature folder approach to structuring ASP.NET Core applications. As
you will probably already know, in the default application folder structure of a typical
MVC application, we have separate directories for controllers, models, and views. As our
application grows and we add more and more features, we spend a lot of time switching
between these folders in our IDE or editor. It can also become quite difficult to quickly find
the specific files we're looking for, particularly in the folder, as you'll usually have
a handful of different view models per database entity.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[69]

An alternative approach is to group these controllers, models, and views into a folder per
feature of the application. For example, the directory would contain
the , right alongside the views and view models that are necessary
to display and manage the database entity:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[70]

This creates a far more cohesive file structure, where all the files that you are likely to be
changing at once are located within the same directory of the project. In my opinion, this
makes us more productive, as we don't waste time switching from folder to folder hunting
for the files we need to modify. The preceding screenshot shows a feature folder in a Web
API project where we don't have any views or static assets such as CSS and JavaScript, but
the same concept applies in an MVC application. Place all the views, CSS, JavaScript,
images, and other things that belong to a feature within its feature folder. I hope you'll be
pleasantly surprised as to how much easier the project is to maintain just by making a
simple folder structure change.

Refactoring to a feature folder structure
There are a few steps that we need to take to achieve this desired outcome. The first thing to
do is rename the folder to , then move the file into
the directory. We can now delete the and
directories entirely, including the obsolete file that we're not
using. If you try and run your application now, you'll see an exception page because
ASP.NET can no longer find the index view that the controller is trying to render.

It doesn't matter where we put our controllers, as ASP.NET Core can locate them using the
 naming convention. However, if we change the default name

of the folder, we need to tell ASP.NET Core how to find them as by default, it only
knows to look for a folder named . There are two steps to do this, the first of which is
to create a class that instructs ASP.NET Core where we want to search for view files, which
I'll name :

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[71]

It doesn't matter where you put this file, but I like to put configuration files like this in a
folder called . Next, we need to register this class so that ASP.NET Core
knows about it and can start looking for our views in the correct location. Find the

 method in and modify it as follows:

Restarting the application now should have everything working properly again.

Setting up the database
If you're on Windows as I am, then your database server should already be up and running
as a Windows service that starts automatically when your machine boots up. If you're on
Mac/Linux, this may or may not be the case, so just ensure that the database server is
running the PostgreSQL website will have instructions on how to do this if necessary.

Creating a database context
EF Core will actually handle the creation of the database; we just need to tell it what kind of
RDBMS we're using, and provide a connection string for its location and authentication
credentials. Again, it doesn't really matter where we put the following files, but my
preference is a folder for anything to do with EF setup/configuration, entity
models, and seed data.

The first file we'll need to create is an EF database context class:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[72]

Notice how our context inherits from , rather than the base
 class. We're using the ASP.NET Core Identity class because it will help us with

user authentication and management later in this book. Here, we're instructing EF and
Identity that we'll be using classes called and for our application's users
and roles entities, respectively. We've also specified that we'll be using integers for the
primary keys of all ASP.NET Core Identity-generated database tables.

These classes don't exist yet, so let's create them so that we can check if the application still
builds. Again, my preference is to store my database entities in the
directory, but this is entirely up to you. The class is, at least for now, as follows:

Again, we're inheriting from an ASP.NET Core Identity class and instructing it to use an
integer for the primary key. This is all pretty standard setup for ASP.NET Core applications
that use EF Core and Identity Core, so I won't go into the details, but it's worth mentioning
that if we don't inherit from this class, our database context class will
complain.

The class also inherits from an Identity base class, and looks like this:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[73]

Our application should now build successfully, but we still have a way to go before we're
finished.

Registering the database context for DI
In order to make use of the database context class in our application, we need to register it
with the built-in DI container. To do this, we first need to install the

 and
 NuGet packages. You can do this using the

VS Code extension we installed earlier, using the dotnet CLI, or by manually adding them
to the projects file. We then need to drop back into the
method of the class, and modify it as follows:

The first section registers the database context with the DI container, while instructing it to
use PostgreSQL with the statement. We are also passing in a
reference to a connection string, which we'll create shortly.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[74]

The second section is preempting our use of ASP.NET Core Identity later in this book, and
instructing it to use the database context we've just created, along with the default EF stores
for Identity-related data.

We don't really need to worry about all this ASP.NET Core Identity setup
just yet, but it's easier to configure it now than to come back later and
make changes!

Creating the database
There are a few different ways that we can choose to actually create the database, but
regardless of which one we choose, we need to supply . We've already
told the DI container to use to look for a connection string named

, so let's create one. Open the file in the project
root, and modify it as follows:

Make sure you use the appropriate username and password for your local database server.
I'm keeping things simple and sticking with the defaults that the Windows installation
provides. We are now ready to create the database, but there is one more NuGet package
that we need to install. This is where it gets a little more complicated, as we can't rely on the
VS Code extension because it places it in the wrong place within the project file.

This isn't the most user-friendly or streamlined process, but for now it will have to do.
Open up the project file for your application and modify it as follows:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[75]

Notice that there is a difference between and
. If we use the VS Code extension to install packages, they all

end up as package references, but the
 package must be referenced as a CLI

tool reference.

Make sure that you trigger package restoration, then with these changes we now have
access to the CLI command, and can create our database by dropping into the
Terminal and running the following command:

dotnet ef database update

All being well, you should see some output that ends with a statement such as the
following:

No migrations were applied. The database is already up to date.
Done.

This is fine, as we have not yet told EF about any of our database tables, but if we open the
pgAdmin 4 application that gets installed as part of the PostgreSQL installation, we can
verify that the database has indeed been created:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[76]

Creating an initial migration
In order to have EF generate our tables for us, we need to create a migration. Migrations are
a way of keeping the database schema in sync with our C# application model. When we
make changes to the model, we have to add a migration. Migrations are run when we
instruct EF to update the database, where a history of previously run migrations is stored to
prevent running them more than once.

We can create an initial migration by running the following Terminal command:

dotnet ef migrations add Initial

If we go and look at our project in VS Code again, you'll notice a new folder in the project
root labelled . As these are database-related, my preference is to drag this
folder under the directory, and then any future migrations will automatically follow.
There should be three files generated, but the one we are interested in starts with a
timestamp and ends with . Its contents should look a little like this:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[77]

The code is quite readable, and it's easy to see what the generated SQL will do when it's run
against the database. I'd recommend having a good look at each migration file before you
run them, as it's much easier to remove one now than it is to remove it after it hits the
database. If there is anything wrong with it, it is better to make some changes and
regenerate it before applying it to the database.

With this in place, we can now run our command again, but this time we should
end up with a few more tables in our database:

dotnet ef database update

You can verify this using the pgAdmin application again.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[78]

Creating and seeding the database on start-up
We could rely on manually creating and updating the database as and when we need it, but
a better approach while we're in development is to have the application ensure that the
database is created on application startup.

You may not wish to use this approach for production applications, but
generally speaking, there is no issue with using this method in
development/testing environments!

We'll use the built-in method on the database context class, as well as create a
custom extension method to make sure it is populated with some seed data as it can make
our lives easier if and when we need to drop and recreate the database in the future. Create
the following class in the directory:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[79]

As this is a static class, we cannot instantiate it, and as such cannot make use of DI for the
dependencies that we need. In order to gain access to an instance of the class,
we need to tell the application to provide one at start up. Open up the class
again, and add the following statement to the bottom of the method:

Next, open up the file in the root directory, locate the method, and
modify it as follows:

Note that without registering our database context class with the DI
container earlier, it wouldn't be available to us in this way!

We can confirm that everything is now working by first dropping our current database
with the following Terminal command:

dotnet ef database drop

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[80]

And then we can run our application from the Debug tab of VS Code before checking
pgAdmin again to make sure that the database has been created.

We can also run the application as we do in Visual Studio, by pressing
F5. There is also a dotnet CLI command we can use: .

Testing the completed setup
Before we wrap up this chapter, let's quickly test that everything is configured correctly. A
feature we'll most likely need later on is a users feature, so let's create a

 file, and fill it in with the following contents:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[81]

This is all we need to test the completed setup, so run the application again now and
navigate to in your web browser. You should be
presented with a JSON array containing a single object representing the user we seeded in
the database earlier:

In order to have Chrome format all JSON responses like in the preceding
screenshot, install the JSONView extension!

So, what exactly are we validating here? For a start, the MVC middleware is registered and
working properly, or the browser wouldn't know what to do with the URL we supplied.
We also know that our DI container is functioning correctly and that our database context is
registered with it; otherwise, the users controller we just created would not have received
an instance in the constructor parameter we defined. Finally, we know that our database
context has successfully created and seeded our database, and is able to query it for data.

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[82]

To really finish off testing our application end-to-end, let's display some of this data in our
frontend app component. Open up and modify the

 section as follows:

Add a property to the object, and a component hook to fetch the data
from the API as follows:

www.EBooksWorld.ir

Getting Started with the Project Chapter 3

[83]

If the application isn't already running, start it up now! At the bottom of the homepage, you
should see the user that we seeded into the database earlier.

Summary
We've covered a lot of ground in this chapter, so let's have a quick recap.

Building SPA frontends is a complicated process with a lot of moving parts. Configuring
everything ourselves manually is not only a very tedious and error-prone process, but also
a very complicated one. In that sense, we evaluated our options for generating our project
using the dotnet and Vue CLI tools, electing to go with the newly released dotnet CLI
template with a Vue.js frontend.

We decided that using TypeScript with Vue was still a little too unstable, and as such
refactored the frontend to remove TypeScript and tweak the configuration to expect plain
old JavaScript instead. We also made some changes to the backend folder structure by
implementing a feature folder approach, rather than the stereotypical

/ / folders.

We set up a database and the associated EF Core configuration files to interact with it, and
instructed ASP.NET that we'll be using the Identity library for user accounts later in this
book. We looked at how to run commands to manipulate the database directly from the
command line, as well as how to have our application create and seed the database as part
of its startup process.

Finally, we tested the entire application by adding a feature to query the database for all
users, return them to the client, and display them in our client-side app component.

www.EBooksWorld.ir

44
Building Our First Vue.js

Components
With our project set up and ready to go, it's time to start writing some more involved client-
side code and build our first custom components. We'll start by creating a component to
display a static list of products, with the option of selecting a product to view its full details.
Then, we'll finish things off by creating some API endpoints to provide real data and hook
our components up to them.

In summary, we'll be covering the following topics:

Component composition
Rendering collections of data with the directive
Data binding with the directive
Event handling with the directive
Conditional rendering with the and directives
Client-side routing
Fetching data from an API

Displaying a list of products
As we'll be building a full e-commerce application, it makes sense to start things off with a
list of fictional products that we are going to sell. We'll keep things simple to start with and
keep this component contained within our home page before we introduce the additional
complexity of multiple pages.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[85]

When first starting out with Vue, it is very easy to just keep dropping all of our components
in the folder. However, it will soon get very difficult to find what
we're looking for once we have more than a handful of components to maintain. Instead, I
tend to group my components by page or feature, with a folder for each inside the

 directory. It doesn't really matter what we name these features, as long as it's
obvious to us which components belong to each one.

Create a file. The section
will eventually contain two sections, one for the list of products and one for showing the
full details of the currently selected product. However, the product list template should
currently look as follows:

The first thing to note here is that all Vue components must only contain one root element.
For most of our components, it is fairly safe to simply wrap everything in a tag as we
have done here. However, certain components intended to render specific tags, such as list
items or table rows, would be wrapped in a single or tag instead.

The next most important line is the following:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[86]

Here, we are using the directive to loop over a list called , and render the
contents of this element for each item in the list. Also notice how we use the shorthand
for the syntax to bind a property to the element. This property helps Vue
to manage the ordering of items in dynamic lists that may change at runtime. It isn't
required, and the component will work perfectly fine without it. However, it certainly can't
hurt to provide it, and it can seriously improve the performance of the application in
certain circumstances, so there really isn't a reason not to.

If you're using VS Code and you followed along in , Setting Up
the Development Environment, you'll have installed the Vetur extension, in
which case you'll notice that if you fail to provide a property, it will
underline this line of code in red until you add it!

The last thing to know about the property is that it has to be unique to the list item
being rendered, or it won't do much good in helping to track the items in the list. The ideal
value to use is some form of ID value if we are rendering items that are stored in a
database; we aren't pulling this data from the API yet, so we have no real ID values, but we
will be using a property as another unique identifier for a product so that we can use
nice friendly URLs for our pages later in this chapter.

The directive also binds a variable representing the list item to the context of the
element. In this case, we bound a variable called . We then made use of this
variable in a bunch of other elements as follows:

With the and elements, it is a simple case of data binding using string or text
interpolation. Any expression placed between a pair of double curly braces, including the
braces themselves, is replaced by the value of that expression. In this case, we simply bind
the , , and properties of the variable to the
associated HTML elements.

Where things get a little more complicated is with the element that we rendered:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[87]

Again, we used the shorthand to data bind the and attributes of the image.
This is a great example of where we take a standard HTML attribute and use Vue to
interpret it dynamically at runtime. If we hadn't included the colon before the attributes,
they would have been treated as normal, that is, as plain text. Instead, we are able to bind
the properties of our variable, which includes a URL to an image that can be used
as a thumbnail for the product.

Finally, on each of these elements we also attached a event handler using the
 shorthand syntax. This event handler is used to trigger a method, or function, that

we'll see contained in the section of the component shortly. As with data binding,
we have access to the variable declared in the loop, and can pass it as a parameter
of this method. This enables us to perform any logic or operations based on the specific
product that the user clicks on, such as adding a specific product to a shopping cart, or in
this instance selecting a product to view more information about it.

Let's have a look at the section of this component:

There are a few things going on in here, so let's go over this line by line.

First off, we have the declaration. In order to use this component
within another component or page of our app, we need to declare it as a child component,
and to do that we need to be able to import it. This line tells webpack that this is a module
that can now be imported and used within other modules, or components, in our case.
Without it, when we try and display this component within our main component,
it will not be able to find anything to import and display.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[88]

Next up, we have the declaration. This isn't a requirement, and the component would
work perfectly fine if we omitted it. However, there are a few benefits to being vigilant and
remembering to name each of our custom components. First of all, it makes debugging our
components much nicer when using the Chrome DevTools extension that we installed
earlier. We can inspect the application with the dev tools to see a nice component tree if
we don't name the component, then it shows up as , which makes
it difficult for us to tell what's what. Secondly, it allows a component to recursively invoke
itself from within its section. However, this isn't a particularly common
requirement apart from in tree-like structures.

The section is next, which as we already know must be a function that returns an
object. We have two simple properties in this component: a array that, as its
name suggests, is a collection of product objects; and a object, which
again is fairly self-explanatory and holds the product that the user selects to display further
details for. The only thing missing here is the actual product objects within the products
array, as the actual data isn't particularly important or interesting to read. Considering
these object definitions only differ very slightly in their property values, I chose to omit
them to save space. However, as an example, here is one of those objects:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[89]

The other five objects in the array are very similar; just make sure the property is
unique or the component won't render! Each of these properties are referenced on one
element or another in the section, but we can only see the full description on the
selected product.

We can scaffold out a UI with placeholder images from
 by passing the size of the image in the query string as we

did just now!

The final section is the object, which contains a single method for selecting a
product to view further details about it. We've already seen how this method is triggered
using events on each of the elements within the list item, passing the product
currently in the loop context to this method for processing. All it does is simply set the
product that's been clicked on as the within the function of the
component. As our component stands currently, triggering this method will have no
impact.

Conditional rendering
We need to modify the section to add a section that is only displayed once a
product is selected from the list:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[90]

With the addition of this element, the method now has a purpose. When the
component is first rendered, the property is initialized as which
evaluates to , and as such the section is not rendered. When the user clicks on an
element within the list, the method is fired with the selected product as an
argument. The method then assigns this product to the

 property, which is enough to cause the Vue reactivity system to
perform a UI refresh. Now that the property has a value, the

 directive on the element we just added evaluates to , and the product details
section is rendered, showing the product the user selected.

Once a product is selected, selecting a different product still causes the UI to refresh as the
reactivity system detects that the UI is bound to a property that has been changed; the
details of the newly selected product overwrites the previously selected one. Finally, it is
worth noting at this point that, as the state of this component is stored in memory in the
browser, performing a browser refresh will clear the selected product and the details
section will no longer be rendered.

The final section in the component declaration is the block. This isn't a book about
CSS, so we won't go over this in too much detail, but the styles for this component are as
follows:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[91]

What all these styles do is add a little padding to the entire page to bring the content in off
the sides of the screen; display the product list and details sections side by side with 50% of
the width of the page each; and display the product list items in a two-column grid. This
completes the definition of this component, but as yet we aren't actually displaying it
anywhere!

Component composition
The first thing to do is import this component into the

 file, and register it as a child component of our main
 component. Replace the entire block of the component with the following:

The first thing to note here is the line at the top of this block. If you're new to
frontend frameworks, this might not make a lot of sense to you. In the modern JavaScript
world, we break the application up into chunks, usually also splitting it into separate
physical files, which are known as modules. A module will export some piece of
functionality which can then be imported into another dependent module using a line of
code like this one. This can loosely be thought of as a statement in a C# application,
where the object or function exported from a module is its interface defining the
functionality that can be used from a dependent module.

Any parent component will have a number of these lines depending on how many child
components it needs to import in order to make use of them in its section. These
imported components are then registered as children of this parent component using a

 object. This is an object containing a collection of key/value pairs where the
key is the name we want to reference the child component by, and the value is the object we
imported from the child component definition we mentioned previously.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[92]

Generally speaking, the key and value of these properties will be the same as they are in the
preceding example. Therefore, as our application supports modern ES6 syntax, we can
shorten this property declaration as follows:

When this code is transpiled by webpack into standard syntax that the browser can
understand, this will be expanded into the full key/value pair we had earlier.

Another bit of syntax specific to ES6 is our actual line. This syntax is fairly simple:

 The part of this import line does not need to correspond to the name we
gave the component earlier, as we are not using named exports from the child component
definition. Instead, we are using , which means that there is only a
single export from the module, and as such we can use whatever name we wish when
importing, as there is only a single object or function to import anyway. For example, we
could use the following if we wanted:

The only difference would be when we have to render the child component within the
 section of the parent component. This is because the name we use while

importing the child component is used to determine the HTML element name we use to
render it. Regardless of whether we chose to use kebab case (), camel case
(), or pascal case () for the import name, we must use the
kebab case equivalent for the HTML element when we enter into the section. In
this instance, we used pascal case for our component import, and when
rendering this, we do so as follows:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[93]

On the other hand, if we had indeed named our component when
importing it, we would simply change the HTML element to the following:

As you can see, the only relevance the name we use to import a component has is when
rendering it in the section of the parent. In this instance, makes
more semantic sense, so that's what I've stuck with! At this point, you can run the
application and should be greeted with a product listing:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[94]

And when clicking any of the elements within a single product, that product should be
selected and displayed on the right:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[95]

A really useful way of generating placeholder text is by using VS Code
built-in snippets! In the section of a component, type
and press Enter this will generate 50 words of lorem placeholder text,
but can be adjusted to whatever length you need by changing the number

.

As it currently stands, our component isn't really just a list of products, as it
should be if we were sticking to SOLID principles. It is responsible for rendering the
product list as well as the details of a selected product. In a very simple example like this, it
isn't too much of an issue, as there is minimal HTML markup, JavaScript logic, and CSS
styling involved. However, in my experience, more often than not these kinds of
components will become more complicated, or certain parts of the UI will be moved or
copied to another page, which is made more difficult when everything is bundled up into a
single component.

Let's extract the selected product details section into its own component, and render it as a
child of our existing component. Create a

 file with a section as
follows:

If you're using VS Code and followed along from earlier in this book
when we installed the Vetur extension, you can quickly scaffold out an
empty component definition by creating a new empty file and then typing

 at the top and pressing Enter.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[96]

This is a direct copy and paste from the
 component, but with a few tweaks to

make it suitable to be its own component. Firstly, I removed the class and the
 directive from the enclosing tag; we no longer need these as

the component should not control when and if to display itself the parent component will
still control the visibility; and we have no CSS styles needing to make use of the old

 class. I also renamed all instances of to . We may use
this component in other places within our UI in the future, so a more generic name for the

 object that will be passed down via props made more sense for now.

The section of this component looks as follows:

There is nothing new here; we name the component as we usually do, then declare a single
prop for the product we want to display to be passed in. The only stipulation is that this
prop must be an object, and it is required if we fail to provide one, we'll see errors in the
browser console.

At this point, we are finished with the definition of this new details component. The only
CSS styles specific to the display of the details section in the parent component are that it
should only take up to 50% of the width of the screen. For this component to be truly
reusable across multiple UI locations, we probably don't want to let it make its own
decision about how much space it takes up. We'll leave that up to the parent components to
decide, which means we can leave all of the current CSS styles in place in the parent
list component.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[97]

In order to make use of this new component, we only have two very simple changes to
make in the file. First of all, we need to
import the new component and register it as a child:

We can then replace the following section of the template:

With the following:

There's a few things going on here that may not be immediately obvious, so let's quickly go
over what this line is doing.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[98]

We already know that after importing our new component, we can
render it using its kebab case equivalent name, which is what we've done here. However,
once Vue has finished rendering this component, what the browser receives in place of this
line is the full section of the product details component, in other words a
standard element. By adding a class to this line, Vue automatically adds that class to
the root element of the nested component, which means that we can write CSS styling in a
parent component that targets the root element of a child component. This is how we
control the width of the product details section of the UI, and don't need to move any styles
into the details component itself.

The line has remained the same, and as before, simply controls
the visibility of this component based on the user selecting a product in the list. The last
part is the most interesting we've used the shorthand directive syntax to bind an
attribute called to the property of the list components
object. Remembering back to when we created the product details component, we declared
a single prop, with a type of object and a required validation check. This is how
we pass that prop into the component using the directive with a reference
to an appropriate piece of data within the parent component.

Now, you might be wondering why this isn't throwing any errors in the browser console,
seeing as the prop in the details component is required, and the

 property that we bind onto that prop in the list component is initialized
as until a user clicks on a product. The simple answer is that we chose to use the

 directive rather than the directive to control the visibility of the details
component. We briefly touched on the differences in these directives back in

, Understanding the Fundamentals, but to reiterate, using means the section in question
will not be rendered at all until the conditional statement becomes true. This means that
until a user clicks on a product, and the property gets an object value
assigned to it, the details component isn't even rendered in order for it to validate that its
props have been passed in appropriately. This would not be the case with , as it
would be rendered from the start with its CSS visibility set to , and prop validation
would fail as the value from the property would be passed in.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[99]

If you haven't already, check back in the browser to check everything still works as
expected. There won't be any visible difference in how the app works after these changes,
but we can still validate that the change has definitely taken effect. As long as you are using
Chrome as your browser and have installed the Vue devtools extension as described back
in , Setting Up the Development Environment, you can press F12 to open the
Chrome developer tools window, then find the Vue tab at the far right of the tabs list across
the top. Once inside this tab, a number of useful panes of information are displayed for us
to validate what is going on under the hood of our running app. The default tab that's
currently open should be the Components tab, and on the left-hand side of the developer
tools window should be a GUI representation of our component tree, which looks
something like this:

This proves that our new <ProductDetails> component has indeed been set up properly
and is being used by the <ProductList> component! If you can only see the list component
with no nested details component, make sure you've clicked on a product in the list and
that the details component is visible.

On the right-hand side in the other half of the developer tools window should be another
pane showing some detailed information about the component currently selected in the tree
view that we've just seen. Make sure the <ProductDetails> component is highlighted in the
component tree, and you should see some information as follows:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[100]

This confirms that the product we selected in our list component is being passed down into
the details component.

We've only just scratched the surface of what the Chrome dev tools extension can do to
help us build and debug Vue applications, but you should already be able to see how much
we can benefit from making use of it.

We now have a much better separation of concerns between the components of our UI, but
it's not a very realistic example. In most online shops, there is a lot more functionality on a
product details page, such as drop-down menus for customizing any potential product
options, such as color or size; lists of related product suggestions based on previous user
activity; comparisons with other similar products; and customer-based frequently asked
question/answers and reviews. This amount of detail just wouldn't work with the master-
detail pattern that we're currently using, so let's refactor again to move the details
component onto a separate page, and have the user navigate to that page when clicking on
one of the elements in the product list.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[101]

Client-side routing
At this point, our single-page application is quite literally that a single page. This is where
things get a little more complicated, as we can't rely on the server for handling the routing
as we would with a standard ASP.NET MVC application. We need a way of routing to the
pages of our SPA on the client. Fortunately for us, Vue has an official client-side routing
library called Vue-Router, which is already installed and configured for us seeing as we
started out by using the Microsoft application template.

So, what exactly is a page in a Vue SPA? As with most questions that I've come across while
building Vue applications, there is a very simple answer; a page is nothing more than a
standard component! As such, when creating a page for our application, the process is
exactly the same as we've been following to create new components throughout this
chapter; the only exception is that we have some additional configuration to tell Vue-Router
how handle and navigate to it.

That being said, I do like to differentiate between page components and the UI components
that build up that page by creating a directory. We can then have
subfolders underneath the directory that correlate to the page
that will consume the files inside of it. For application-wide components that don't belong
to a specific page, I'll create a folder. There is absolutely
no reason why you have to follow this convention, as it's purely my personal preference.
However, I would always strongly advise against dropping all of your pages and UI
components straight into the folder as it soon gets very difficult
to locate what you're looking for when coming back to make changes later!

Let's start by creating the aforementioned directory, with two new
components inside it.

The first component is :

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[102]

The second component is :

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[103]

You may have noticed that, even though we're still using the existing and
 components, the folder structure they reside in has changed slightly. As

we now have our two pages, and , I've added a
 directory and moved the component

into it, as well as renaming the directory to
.

Now that we're no longer taking up 50% of the page with the product details component,
we can make use of that space with the product list component instead. There are a few
minor updates to make to the

 component, starting by
removing the product details element from the section. After doing so, the

 section should look as follows:

Next, we can update the section to remove the child component import and
declaration, as well as modify the method to navigate to our newly
created product page:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[104]

This is the first time we've seen any code specific to client-side routing with Vue-Router, so
this will probably look a little alien to you. As mentioned previously, Vue-Router is already
configured for us, which gives us access to the property in every component. One
of the methods on this property is the method, which takes the URL path to navigate
to as a parameter. We're yet to set up this route to actually go anywhere, but the general
idea is that we want nice, clean, "friendly" URLs based on the product name for SEO
purposes. As an example, the URL for the first product in the list would look like this:

.

The only other change in this component is to tweak the styling. As we no longer have the
details component on this page, we can remove the 50% width limitation on the product
list, and also display four products side by side rather than two. The updated style block
looks like this:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[105]

The changes we need to make to the
 component are even simpler; the only

thing we need to do is add a block to the bottom of the component with a little
padding to bring the content off the sides of the screen now that it's being displayed on its
own page:

To make these style changes take effect, I've added the class back on to the root
 element in the section as well.

As we now have and page components dedicated to displaying our
list of products and product details, respectively, we can no longer rely on the

 root component to be directly tied to the
 and components. We need a way of deciding which page

to display based on the route that has been matched by the router. Vue-Router contains a
custom component called that does just that. All we need to do is
render it in the block of our component:

Notice how we've also removed the import lines for the two previously rendered
components, as these are now imported and rendered within the page components we
created earlier. The component renders a matched component from the
route definitions we're about to define.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[106]

The final change we need to make is in the file. After the
 line, we need to add the following:

The most important part of this block is the array definition. This
array will eventually contain all of the route definitions for our application, much the same
way that we can configure server-side routes in the class of an ASP.NET Core
application. The array is a collection of objects, each having a minimum of a string

 that defines the browser URL to look for, and a object reference to one of
our app components. As with nested parent-child relationships, in order to reference the
page-level components of our app, we need to import them first before they can be used in
the route definitions.

The second entry in the array is for our product details page. As this page needs to
be able to individually display the details for every product in our system, it needs a way of
dynamically matching a unique product. As with ASP.NET MVC routes, we can define
dynamic route parameters. In Vue-Router, these are prefixed with a colon, for
example, . A slug is a URL segment that is unique to a specific product,
usually generated from the product name by replacing spaces and other special characters
with dashes instead.

This convention allows us to navigate to products with a friendly URL, such
as: , rather than using ID
parameters such as: . We'll use this parameter
later in this chapter to fetch a single product from our API.

The last entry in the array is a catch-all, or wildcard entry, that matches any URL
that's not already been matched by the previous definitions. Again, like with ASP.NET
MVC route definitions, the order that we define our Vue-Router routes in matters. If a URL
matches multiple routes, the first one found within the array will take precedence over any
others. By including a wildcard definition at the very end of the array, we ensure that any
request to a path on the domain of our application will at the very least end up being
redirected to our catalog page.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[107]

The complete should look like this:

At this point, we have finished refactoring, and the app should be working. If you left it
running while making these changes, you may need to force the browser to refresh as the
Hot Module Replacement plugin may not pick up on all the changes we've made. Notice
how the app will now redirect to the route by default, and clicking on an
element in the product list does a client-side redirect to a product listing URL based on the
name of the product you clicked on.

If you didn't notice that we were hardcoding the product being displayed on the product
page earlier, you'll have undoubtedly noticed now that it doesn't matter which product you
click on in the list; we always receive the same details when taken to the product page. This
is because we now have multiple pages to our application, but no way of sharing data
between them as we did when they were both rendered by the root app component. There
are ways that we could achieve this sharing of data if we wanted, but there's really no need
yet as, sooner or later, we need to hook the frontend components up to our API anyway.
This will solve our issue as each page can be in control of requesting only the data it needs
as we navigate between pages.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[108]

Fetching data from an API
We currently have no concept of a "product" on the server side of our application, so let's
remedy that by creating a product entity and migration to start off with. Create a

 class with the following contents:

The properties of this class match the properties that we've been rendering in our UI so far.
We've also added attributes on all but the property to ensure that the
database creates these columns with constraints. The property is required by
default as it is used as the primary key for the table.

Next, we need to make EF aware of the entity by updating our
 class:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[109]

We've added the line as well as
the method override at the bottom of the class. The

 declaration is what triggers EF to actually decide that we need a table to be created,
as well as giving us a property on the context to access our product-related database
queries. The overridden method is used to add a unique index on the

 property of our table, which can't be done using data annotations on the
class itself.

We don't yet have a UI for saving new products, so we need to seed the database with some
sample data to keep us going until that UI exists. Update the

 class to include the following static method:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[110]

Then, in the same class, update the method to call this newly created
method, as follows:

With these changes in place, we can now add a migration and run the application to apply
it to the database. Open your Terminal and run the following command:

dotnet ef migrations add ProductEntity

If you've followed along accurately, you shouldn't see any errors in the Terminal. However,
if you receive errors stating that the application build failed, make sure you've stopped the
app from running before trying to add the migration!

Running the application now should yield no visible changes to the application, which
should work exactly the same as it did before. However, if you check the database in
pgAdmin 4, there should be a newly created table containing our seed data.
Inspecting further should also show a unique index on the field.

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[111]

Now that we have some data to query, we can create a controller to query and return it to
our client app. Create a class with the following
contents:

There is nothing new going on here; it is very similar to the
 class that we created in the previous chapter. In terms

of our current UI data needs, we will need to add two endpoints to this controller: a first
HTTP get action to return a list of all of our products, and a second HTTP get action to
request a single product based on its property.

These two endpoints are defined as follows:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[112]

Rebuild and run the application again now and we should have two functioning API
endpoints to fetch our data from. You can test these by testing the following URLs in your
browser:

With these in place, we can update our page components to fetch their data from the server,
rather than hard coding it. The first thing we'll do is refactor our catalog page and product
list component to follow the same pattern we're using on the product page and details
component. The page component will be responsible for fetching its data on page load,
before passing it down into the product list component as props.

In the file, remove the
 function entirely, and replace it with the following declaration:

Next, we need to actually provide this product array from the
 component. First of all, we need to update the

 HTML element in the section to bind a prop:

Next, in the section, we need to add a object that contains a array
matching this prop reference:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[113]

And finally, we need to add a life cycle hook to query our API and populate the
 array:

Here, we use the API to perform a HTTP GET request to the endpoint we just
created, parse the response as JSON, then bind our array to the JSON
array.

Finally, we need to make a similar change in the
 component. In the object, clear out the hardcoded

product object and replace it with :

Then, add a life cycle hook in this component as well, performing a similar HTTP
GET request, albeit to fetch a single product rather than a list:

www.EBooksWorld.ir

Building Our First Vue.js Components Chapter 4

[114]

We've already seen how the route definition that renders this page has a dynamic route
parameter called . In this hook, we access this parameter from the built-in

 object, then use it to form the URL that we query for the product we're trying to
view. When using Vue-Router, all components have access to the object by default.

With these changes in place, our application should be fully functioning. Clicking on a
product now not only takes us to a separate product details page, but also loads the
appropriate product details from the API and renders it dynamically based on the
parameter in the URL.

Summary
We've covered a lot of ground in this chapter, so let's quickly recap what we've achieved.
We started out with a very simple component for displaying a static list of hard coded
products. We then added an implementation of the master-detail pattern to allow the user
to select a product to view additional details.

We looked at when and why to refactor our component structure, and how we can
compose a UI of parent-child component relationships by breaking out a product details
component. We then took this a step further by moving the product details component into
its own separate page, and introducing a multipage setup using client-side routing with
Vue-Router.

Finally, we created a table in our database, seeded it with sample data, and built
two API endpoints to serve the data required by our UI to replace the static hard coded
data we had been using. Thinking back to the earlier chapter on fundamentals of Vue.js, we
have already covered a lot of topics outlined in that chapter. We've covered component
composition, parent-child relationships, the object/function, props, prop validation,
life cycle hooks, the / / directives, and fetching data from an API.

There's still a long way to go, and our app is anything but "pretty," so in the next chapter,
we'll carry on building out a functioning catalog and make things look a little nicer at the
same time!

www.EBooksWorld.ir

55
Building a Product Catalog

In the last chapter, we got off to a good start with building our very first custom Vue.js
components. We covered a lot of the fundamentals that we'll be using throughout the rest
of this book, such as data-binding, looping over, and rendering lists of data; conditional
rendering, component composition with props and event handlers; client-side routing
between multiple pages, and fetching data from our server-side API. These are the kinds of
things that will become the bread and butter of building applications with Vue.js, so it was
important to make sure we understand them before moving forward.

In this chapter, we are going to build on what we already have and start to transform it into
a proper e-commerce application. We'll begin by improving the overall look and feel using
Bootstrap, as well as adding transitions and loading indicators on page changes to improve
the User Experience (UX). We'll then move on to flesh out the existing product list to
become a fully featured catalog with filtering and sorting. We're going to cover a lot of
ground, including topics such as the following:

Styling with Bootstrap and SASS
Pre-fetching data with Vue-Router
Transitions, animations, and loading indicators
Manipulating the URL query object to store user selections
Triggering API calls when the URL query object changes
Server-side filtering
Client-side sorting
Searching for text using the operator
Triggering search API requests in real time using watchers
Limiting expensive operations with debounce functions

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[116]

Improving the existing UX
As we move into building a real-world application, it's time to start making things look a
little nicer by introducing some CSS styling. However, this isn't a book about CSS or web
design, so we'll rely on the very popular Bootstrap CSS framework to handle 99% of our
styling needs.

Choosing a UX framework
Back in , Setting Up the Development Environment, we removed the default
Bootstrap installation included with the project template, and you may now be wondering
why. We removed the default installation for three reasons:

It had a dependency on jQuery, which in my opinion shouldn't be necessary
when creating SPAs with a modern frontend framework such as Vue
It was referencing Bootstrap 3, which at the time of writing has just been replaced
by Bootstrap 4, which we'll be using instead
Rather than reference Bootstrap directly, we're going to be using a Bootstrap-
based Vue component library called Bootstrap-Vue

There is nothing wrong with jQuery, and I use it a lot in projects that don't utilize a
frontend SPA framework, but it simply isn't necessary when we are using one. For SPA
projects, my personal preference is to make use of a CSS-only framework such as Bulma
(), or to remove the jQuery dependency from Bootstrap and add the
interactivity using Vue components. This can be pretty time-consuming, but luckily for us
the creators of Bootstrap-Vue have already done it for us, which is why we'll use it for this
project.

What is Bootstrap-Vue?
Bootstrap-Vue is a component library based entirely on the hugely popular Bootstrap
frontend CSS framework. It provides a number of Vue.js components that ultimately render
Bootstrap HTML markup decorated with the correct classes to be styled by the Bootstrap
CSS files. However, they also add the necessary JavaScript behavior without taking a
dependency on jQuery.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[117]

Rendering Bootstrap-Vue components is often far more simple and concise than rendering
the full Bootstrap syntax for a given component. It is easy to determine the components we
use from the Bootstrap-Vue library, because they all come prefixed with a . For example,
to render a modal component, we'd use the following syntax:

b-modal

b-modal

Bootstrap-Vue includes the unmodified original CSS files from Bootstrap itself, so if needs
be we can even fall back to using standard Bootstrap HTML markup instead, which will
still be styled appropriately as long as we include the correct classes:

We can already see how much easier it is to render a Bootstrap-Vue component than it is to
render all the HTML markup required by Bootstrap itself. However, we still have the
flexibility of falling back to this markup if we need it, which we'll demonstrate in a later
chapter.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[118]

Installing additional required dependencies
First things first, we need to install a handful of npm modules that we'll be making use of to
improve the UX of our app. Open a Terminal and run the following two commands:

yarn add node-sass sass-loader dev

yarn add bootstrap-vue nprogress

The first line is necessary for adding the and modules to
the section of the file. Out of the box, the project
template we are using does not support SASS for our styles. We won't be writing all that
much custom styling, but what we do write will use SASS due to the added benefits it
provides over plain old CSS. These two modules are required to instruct webpack how to
handle the style blocks of our components when we start making use of SASS.

The second line is adding the and libraries to our project.
We've already covered what is and why we're using it, but NProgress
may not be quite so obvious. It's a fairly simple library for adding progress indicators to our
app, which we'll use for adding a loading animation on page changes while data fetching is
in progress.

Modifying the webpack configuration to support
SASS
With these dependencies installed, we need to update our webpack configuration to make
use of them. Open up the file and find the section, which
currently looks like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[119]

This section needs to be updated to look like this:

options: {
 loaders: {
 scss: "vue-style-loader!css-loader!sass-loader",
 sass: "vue-style-loader!css-loader!sass-loader?
 indentedSyntax"
 }
 }

Apart from expanding these lines to make them more readable, the only changes are to the
first object in the array section. Specifically, we've added the object, which
utilizes the that we installed earlier. We can now specify a attribute on
the style blocks of our components in order to write our styles in SASS instead of CSS; we'll
see how to do that shortly.

Updating the webpack vendor configuration
One of the perks of using the Microsoft project template is that it splits the webpack
configuration, and therefore our JavaScript bundle, into two parts. One of these parts is for
third-party code and one is for our own custom code. This provides a huge benefit to the
speed at which our custom code is processed and bundled by webpack, because it doesn't
need to process 3rd party code such as the Vue and VueRouter libraries, or any other 3rd

party libraries such as those we've just installed. If it did, our on-the-fly code changes
would take a lot longer to be pushed to the browser by the HMR plugin.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[120]

Open up the file, find the array, and update it as
follows:

"bootstrap/dist/css/bootstrap.min.css",
 "bootstrap-vue",
 "nprogress/nprogress.css"

We're simply adding the Bootstrap, Bootstrap-Vue, and NProgress libraries to our vendor
bundle.

The next thing we need to do is to register the Bootstrap-Vue plugin in our app entry point,
the file, like so:

import BootstrapVue from "bootstrap-vue";

Vue.use(BootstrapVue);

With this done, all of the components included in the Bootstrap-Vue library are now
globally accessible to any of our custom components, without the need to import them
specifically as we've seen with our parent-child relationships so far.

Rebuilding the vendor bundle
We're now finished with the changes to our app's overall configuration, and usually we
would simply need to restart the application for those changes to take effect. However, due
to an issue with the project template we're using, the vendor bundle does not automatically
rebuild itself when we restart the application. We have to explicitly instruct it to do so, by
running the following command in a Terminal window:

webpack --config webpack.config.vendor.js

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[121]

In order for this command to work, you need webpack installed globally on your machine.
You can install it by running the following command:

npm install -g webpack

However, rather than relying on all of your developers having webpack installed globally,
we can add an npm script that makes use of the local copy of webpack installed along with
the other project dependencies, which is stored inside the directory. Open
the file, and add a block like so:

We can now simply run from a Terminal, and both of our webpack bundles
will be processed and rebuilt; better still, we don't need to remember to install webpack
globally before doing so.

If you haven't already, run the command, and your vendor bundle will
now contain all of the scripts and style sheets needed for the new libraries we've just added
to our project.

Adding application-wide layout elements
We're now ready to start adding some global components and styles to our application.
We'll start by adding a Bootstrap navbar to all of our pages, which we can easily do by
adding to the file. You can think of this file like the

 file from the server side of our application, which contains all of the
global HTML markup included on every page of an MVC application.

Open the file and update the template section to look
like this:

<div class="app">
 <b-navbar toggleable="md" type="dark" variant="dark">
 <b-container>
 <b-navbar-toggle target="nav_collapse"></b-navbar-toggle>
 <b-navbar-brand to="/">PhoneShop</b-navbar-brand>
 <b-collapse is-nav id="nav_collapse">
 <b-navbar-nav>
 <b-nav-item to="/products">Products</b-nav-item>
 </b-navbar-nav>
 </b-collapse>

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[122]

 </b-container>
 </b-navbar>

</div>

As we now have more than one element being rendered in this template, we've had to add
a wrapper element. We've then made use of the Bootstrap-
Vue library by using a number of its components, namely the component and its
related sub-components. If you're at all familiar with Bootstrap, it should be fairly easy to
see what each of these components is doing. Essentially, each one is like rendering a

 element with appropriate class attributes to apply Bootstrap styling.

All we really need to know about these components is that they're used to display a list of
menu items in a responsive way. We constrain the navbar contents to a fixed width with
the component, and the menu items are hidden on small screen sizes until
the component is clicked to have them animate into view. You can try
this now by running the application, then reducing the width of your browser and seeing
how the navbar responds to the reduced width.

If this component was likely to get much bigger, it would be a good idea
to extract the navigation menu part of this template into a separate
Navbar component. You can try this for yourself now as a learning
exercise!

One of the most important lines is the component line. Under the hood, this
component renders a standard HTML tag, so it would be easy to use a attribute to
instruct the browser where to navigate to when the link is clicked. However, although it is
perfectly OK to use a attribute instead of the attribute that we've used here, doing
so would cause a full page load when loading the next page. Instead, if we're navigating to
an internal page, we can use the attribute, which will utilize Vue-Router and client-side
navigation. The next page will then be rendered by the client, which will be much faster
than a full round trip to the server.

Finally, the existing component that was previously the only element in this
template is now rendered beneath our navbar. As such, the navbar will be displayed on
every page of our application, without needing to explicitly include it in each page's
template.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[123]

Adding application-wide styles
The file is also the recommended place to put our
global styles, either directly in the section, or imported from an external style sheet.
Styles that are only applicable in a single component should be included in said
component's section, and set as to prevent them affecting any other
components we'll see how to do that shortly.

Open up the file and add a style section at the bottom
like so:

As we're using Bootstrap, there are already a load of base styles applied by default, so for
now all we need to do is force the and elements to stretch to the full height of
the screen. We can then force our root element, and each

 element, to also stretch to 100% height. Normally this
wouldn't be necessary, but we'll see why we need these styles shortly.

Styling the product list and product details
components
As we did with the navbar, we're going to make use of some of the components from the
Bootstrap-Vue library. Open up the

 file and modify the
 section:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[124]

Again, the names of these components should be fairly familiar if you've used Bootstrap
before, and as such it will be fairly easy to work out what's going on. However, if you aren't
familiar with Bootstrap, please do check the documentation for the Bootstrap-Vue library
which provides a full description of each component:

.

We're also making heavy use of Bootstrap utility classes to add spacing between elements.
Specifically the and classes, which add margin to the top and bottom of the
associated element respectively. These classes can take a numeric modifier between and
to control how much margin is applied, for example, and .

The only functional change that's been made to this component is the name of the function
called when the user clicks the product name or image. As we are no longer selecting a
product, I renamed the function instead:

Finally, replace the entire section with the following:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[125]

As previously mentioned, we will be writing as little custom CSS as possible, and relying
heavily on Bootstrap to make things look nice. That being said, it is important to
understand how scoped component styles work, and how you can utilize SASS in your own
projects.

We already did all of the setup required to make use of SASS, which means the only thing
we need to do at the component level is add the attribute. We can then make
full use of SASS, including nested selectors as we have here, as well as variables, mixins,
and other SASS goodies. Note how we also added the attribute to this style block.
By scoping the styles in this way, they will only apply to the HTML markup in the

 section of this component. You can try this out now by hovering your mouse
over a product image in the catalog page, then clicking on a product and hovering over the
image on the product details page. The cursor should not indicate that the image is
clickable on the product details page, but it should on the catalog page.

Adding the attribute may require a full page refresh before
the styles take effect properly!

Next, open the file and update the
 section like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[126]

Nothing new here except the class, which, as you might expect, works very similarly
to the class, except it applies padding instead of margin. There are no component-
specific styles needed for this component, so you can delete the section entirely.

This completes the layout and style updates, so feel free to run the application now and see
how it looks, which should be something like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[127]

Fetching data before navigation
As it stands, both of our pages are configured to fetch the data they require after navigating
to the page, by triggering the API calls in the lifecycle hook of the page-level
component. While working locally, it is very hard to notice the side effects to this setup,
because the API calls complete so quickly that we can barely tell that the page wasn't
rendered instantly. However, when accessing the application over the internet, the network
latency will be far more apparent, and you will notice a brief time when the page is first
displayed where there is a blank screen while the API call is still in progress.

We can combat this and improve the UX of our application in one of two ways: we can
continue to fetch page data after navigation, but display some kind of loading indicator
while the API call is in progress; or we can configure the component to fetch its data before
navigation, so that the page will not change until the API call completes. Either way, there
is still a need for displaying progress indicators, as even if we fetch data before navigation
there will be a brief period where the API call is in progress and nothing appears to be
happening.

We've already seen how to fetch data after navigation, so let's now update both of our page
components to fetch their data before navigation so you have a comparison. Open up

 and remove the life cycle hook function
entirely. In its place, we need to add the following:

This is the first time we've seen this method, as it isn't a standard life cycle hook. We gain
access to this hook by using , and, as the name of the function suggests, it will
run before we try to navigate to this component. We also have access to three arguments: a

 object that models the route that we are navigating to; a object that models the
route we are navigating from; and a callback function that we can invoke to allow the
navigation to complete.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[128]

In this instance, we perform an API call to fetch our list of products from the server like we
did in the hook before, but this time we call the function after the API call
is complete. We also pass it a lambda function to invoke once the page has been loaded. At
this point, navigation hasn't happened yet, so we can't simply assign the products we
receive from the server straight onto the component's products array. Instead, we instruct

, in this case, to call a function on the component, passing it the list
of products we just received from the API. This function does not exist yet, so let's add it by
creating a object like so:

The last change we need to make in this page component is to update the section
to look like the following:

<div class="page">

</div>

The only thing we've done is wrap the component with a element that
has a class of . This class picks up the global styles we applied earlier to force the page
to fill 100% of the browser's height.

This is everything we need to change on this page, but we need to make similar changes to
the file. Update its section like so:

<div class="page">

</div>

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[129]

Then, add a object to the section like so:

Finally, replace the life cycle hook with the following
 hook:

The only difference here is that we make use of the object argument, extracting the
 parameter from its object. This is similar to how we extracted the slug

parameter from the object before, as both objects represent the query
string parameters on the current route.

Start the application up again now and everything should still be working as before, except
that the very slight API call delay occurs before the page changes rather than after.

Adding a page loading indicator
As we already discussed, the delay while the API calls are in progress will be far more
noticeable when our app is live on the internet. We need to provide some feedback to
assure our users that something is happening, and the page they are expecting to view is
loading this is where the library we installed earlier comes into play.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[130]

There are two ways that we could achieve the desired result. Firstly, on each page on which
we wish to show a loading indicator, we could utilize the same hook
that we've just been using to start the loading animation, then utilize the function call
to stop the animation after navigation completes. This would look something like this:

NProgress.start();

NProgress.done();

This would work perfectly fine, and achieve the desired result in a fairly clean way.
However, we would potentially need to repeat this code in quite a few places, depending
on how many pages we have in our application. It would be much better if we could
achieve the desired result without so much repetition by adhering to DRY principles.

Fortunately, we can intercept all route changes and display the loading animation very
easily using global route hooks. To do so, we need to open up and
make a few modifications. Firstly, we need to import the library like so:

import NProgress from "nprogress";

Next, instead of initializing the object inline like we do here:

router: new VueRouter({ mode: "history", routes: routes }),

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[131]

We need to initialize it separately so that we can add our navigation hooks to it before we
attach it to the root component Vue instance:

const router = new VueRouter({ mode: "history", routes: routes });

router.beforeEach((to, from, next) => {
 NProgress.start();
 next();
});

router.afterEach((to, from) => {
 NProgress.done();
});

router: router,

The hook is used to call the NProgress function before
every page change, and similarly the hook is used to call the

 function. That's all there is to it, and we now have a subtle loading bar and spinner
displayed across the top of the page while navigation is in progress. Because we set our
page data to be loaded before the page changes, this animation will occur for the full
duration of the API request and subsequent page render.

Adding a transition on page change
The final step in updating the UX of our existing application is to add a transition on page
change. Thankfully, Vue makes this task incredibly easy, and we can achieve what we want
with just a few lines of HTML and CSS.

Open up the file, find the component
in the section, and wrap it in a component like this:

<transition name="fade" mode="out-in">

</transition>

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[132]

This component is a built-in Vue component that, as its name suggests,
provides a way of transitioning elements as they are hidden and displayed again. There are
a number of ways we can control the type of transition that occurs, including a
comprehensive set of functions that we can hook into (we'll see how to do this later).
However, for now, we'll keep things simple and use CSS class-based transitions. Add the
following CSS styles to the style section:

The names of these classes must match the names we used in the
preceding component. As we set a attribute on the transition
element, we had to use as the first part of each of the preceding CSS classes. The
second part of these class names, for example, , ties in with the hooks that
fire at different stages of the transition.

In this instance, by setting the opacity to zero for and , we
are telling the transition component that, before the child component is rendered, and at the
end of its life when it is being hidden again, it has an opacity of zero. The default opacity
value is one, which will be used while the component is shown, and the transition property
in and will be added while the component
is being displayed and hidden, respectively.

The only other thing to note on the component is the attribute that we
set to . If we omit this attribute, the page being hidden will fade out smoothly, but
the new page that loads will simply appear without the fade. By adding this attribute, we
ensure that the old page fades out, and the new page fades in.

Finally, this is where the 100% height CSS classes we added earlier take effect. If the page
being transitioned out does not fill the full height of the screen, the new page appears at the
bottom of the screen briefly before being displayed properly. By forcing all pages to fill the
height of the screen, we no longer get this problem we just need to remember to add the

 class to each root page-level component.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[133]

Extending the existing data model
Our database model is currently extremely basic. Before we can implement a fully
functioning catalog, we need to extend it considerably to store more information about our
products. In our fictional phone shop, this includes things such as screen size, battery life,
brand, operating system, features, colors, and storage options.

Dropping the existing database
As we're going to be adding quite a few new required fields to the entity, unless
we specify default values for these properties, the changes will fail when they hit our
existing database. At this point in the development cycle, there is absolutely no harm in
dropping and recreating the database as often as is required until we get the structure
exactly how we want it. This wouldn't be the case if our application was already live, as we
would want to ensure that any changes we make can be successfully applied to an existing
database.

Before doing anything else, open a Terminal and run the following command:

dotnet ef database drop

After a few seconds, you should see a console message asking if you really do wish to
delete the database, which you can confirm by pressing Y followed by Enter. Just be aware
that the webpack middleware will be the last thing to run, so it's easy to miss this message
as it won't be the last thing printed to the console. On my machine, it looks like this:

Are you sure you want to drop the database 'ecommerce' on server
'tcp://localhost:5432'? (y/N)
infowebpack built 71bacf76d35cf420b3c3 in 1417ms
: Microsoft.AspNetCore.NodeServices[0]
 webpack built 71bacf76d35cf420b3c3 in 1417ms

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[134]

Adding new/updating existing entities
In order to store these things, we need a number of new entities, which will have the
following relationships in the database:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[135]

The first of these new entities is the entity, which looks like this:

These entities are very simple and self-explanatory, and, seeing as we have a lot to cover in
this chapter, we'll scoot over these pretty quickly. The next one we need is a entity:

At this point, you'll notice we're referencing an entity that does not yet exist. Don't worry,
just don't try to build the app until we're finished with the remaining entities. Next up, we
have the entity:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[136]

We need to store a collection of images that we can display in a gallery, so we'll need an
 entity:

We also need an entity to store the operating system of our phones:

We will need somewhere to store the different storage capacity options of our phones,
which we'll use a entity for:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[137]

This completes the additional entities we need, but we still need a way of linking up these
options with the products they relate to, so let's start with a table:

This is a standard join table between the and entities to create a many-
to-many relationship. We need a similar, albeit more complicated, join table between a

 and a unique combination of and . We'll call this table our
 table:

This is a pretty standard data model for an e-commerce application, where a product may
have a number of configurable options that may alter the base cost of the product. Each
unique combination of options is stored as a with an associated cost, and
when a user places an order, we link the order to the specific variant they selected.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[138]

The final change we need to make to our entities is to tie all this together by updating the
root entity to link to all of these new entities. Update it like so:

[Required]
 public decimal ScreenSize { get; set; }
 [Required]
 public decimal TalkTime { get; set; }
 [Required]
 public decimal StandbyTime { get; set; }

[Required]
 public int BrandId { get; set; }
 [Required]
 public int OSId { get; set; }

public List<Image> Images { get; set; }
 public Brand Brand { get; set; }
 public OS OS { get; set; }
 public List<ProductFeature> ProductFeatures { get; set; } =
 new List<ProductFeature>();
 public List<ProductVariant> ProductVariants { get; set; } =
 new List<ProductVariant>();

We've added a number of EF navigational properties for the new entities we just created,
and also added a few extra decimal fields for the screen size, talk time, and standby time of
the handsets.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[139]

Updating the DbContext class
We now need to update our context to make EF aware of the changes we've made so that
we can reflect them in the database. Open up the class and
update the list of properties like so:

Next, we need to instruct EF on how to configure our many-to-many relationships by
adding to our overridden method:

modelBuilder.Entity<ProductFeature>()
 .HasKey(x => new { x.ProductId, x.FeatureId });

 modelBuilder.Entity<ProductVariant>()
 .HasKey(x => new { x.ProductId, x.ColourId, x.StorageId });

Creating a migration to reflect the model changes
With these changes in place, we're now in a position to create a migration to apply these
changes to the database. As we did before, open up a Terminal window and run the
following command:

dotnet ef migrations add Catalogue

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[140]

If all is well, the migration should be created successfully and two new files will have been
created in the directory. As usual, it's highly recommended to give
them a brief glance over to make sure everything looks OK. Now, the next time we run the
application, this migration will be run automatically, but if you'd rather be explicit and run
it yourself, then execute the following command in your Terminal:

dotnet ef database update

You can then browse the new database structure using pgAdmin4 if you're interested.

pgAdmin4 was installed along with PostgreSQL back in ,
Setting Up the Development Environment. As we've done before, you can use
it to browse your local databases and check the structure/data in much the
same way as you would with SQL Server Management Studio if that's
what you're used to.

Updating the application's seed data
We still don't have a UI or API endpoints to create this data, so we need to extend our seed
methods to create some sample data that we can consume from the frontend. In the

 class, we'll need two new methods that we'll call from
the method. The first will be called ,
and looks like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[141]

As these seed methods are pretty long and fairly uninteresting, I've omitted all but an
example of how to seed the data we need. You can download the source code for this
chapter, which contains the entire methods, but I've basically just made up a load of fake
company and product names.

The next new method is the method:

The method has remained unchanged in structure, but we do need to update
the data we're seeding on each product object to include the additional fields we added
earlier. I won't show every product that we're seeding as they are all much the same.
However, as an example, we need to add the , , and

 decimal fields:

We then need and objects, as well as a list of objects, which we will
display in our new gallery component on the product details page:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[142]

Next is a list of product feature objects:

The final thing we need is a list of product variant objects:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[143]

Again, all I've done is make up a number of fake product names and a bunch of different
variants with different prices, as well as added a local URL to a selection of images that I
downloaded from a free stock image website. You can grab these from the source code for
this chapter, or simply download your own images and modify the URLs as necessary.

In order to make these image URLs work, I created a directory
and dropped all of the product images in there. In a real application, I'd most likely make
use of some kind of cloud file storage such as Microsoft Azure or Amazon S3, but that is
beyond the scope of this book.

At this point, our data changes are complete, and, if you haven't already, you can run the
application again now and you will be greeted with exactly the same application as before,
but with our newly updated seed data.

Filtering on the server
As it stands, we have no way of filtering our list of products, which will soon become a
problem when we have more than a handful of them. Users of our shop will expect to be
able to filter down the list to help them find exactly what they are looking for, without
scrolling through pages and pages of results.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[144]

With the data model we just set up, we can filter the list by brand, price, screen size,
capacity, color, operating system, and feature. We have a few changes to make to achieve
this as our API does not yet support filtering on the product list query, and we have no
filter components in our client app. We'll start by making the changes we need to the API.

Updating controller actions to support filtering
The first thing we need to do is update our products controller action to support some
optional filter parameters. Open up , locate the

 action, and change its method signature to the following:

Here, we are specifying that the client needs to send string values for the brand, capacity,
colors, and features filters. Multiple selections can be concatenated with some kind of
delimiter value, which we will see in a moment. In addition to these, we are accepting
optional min/max price integers, as well as optional min/max screen size integers. If no
values are provided for any of these filters, they will be ignored and we simply return all
products.

With these parameters in place, we need to do some processing of the strings. We'll say that
multiple filter items will be concatenated with a character, meaning we'll need to use the
built-in C# method to turn the string parameters into lists:

First, we check if the string is null or empty, and if it is, we create a new empty list of string
objects. Alternatively, if the string is passed a value, we call the method followed by
the method to return a new list of the individual filter items from the client.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[145]

Finally, we can update the database query to take these filters into consideration:

Note how I've chained multiple LINQ clauses in this query. This is an entirely
personal preference, but I prefer to chain multiple clauses rather than use a whole
load of logical operators within a single clause. I find it much easier to read, but feel
free to change this if you don't.

Essentially, I've added a single clause per filter parameter being passed into the
controller action. On each clause, if no value is passed to that particular filter, the first half
of the logical OR operator will return , and so the filter will have no effect on the
resultant list of products. If a value is passed, we use it to return only those products that
match based on the specific properties being filtered against.

For example, look at the following clause:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[146]

This will limit the query results to those products whose associated brand name is
contained within the list of brands passed to the controller action.

The final thing to note here is that we are no longer returning domain model entities
directly to the client. Doing so is generally a bad idea and is frowned upon, so, instead,
we'll use a LINQ call to project each returned product to an associated

, which contains only the data we need to display in our catalog
list page. This new view model class lives in the folder and looks like
this:

In a real application, we'd normally take our best practices to another level by removing
this kind of logic from the controller entirely, and maybe even throw in a tool such as
AutoMapper to make our lives a little easier when mapping domain models to view
models in this way. However, to keep things simple and concise, I'm sticking to raw EF
queries directly in controller actions for now.

My personal favorite approach to structuring .NET Core applications is
using the excellent library to separate data access into distinct
commands and queries. It also provides very useful ways of handling cross-
cutting concerns such as error handling and logging.

Testing our filtering logic
This is all we need to do on the server side to handle filtering in our product catalog. You
can test this out by using your browser to navigate to URLs such
as , followed
by to see how the list
of products returned changes based on the query string filters.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[147]

Filtering on the client
This is where things get a little trickier. We need to come up with a simple but powerful UI
that provides suitable filter controls for each of our server-side filter parameters. Most of
these are lists of string values concatenated with the pipe character, for which we can
simply display a list or grid containing the available options that the users can click on to
select. However, we also have a couple of numeric filters accepting a min/max value for
each. It would be nice to include some kind of slider control for these range-based inputs.
Finally, we need a way of clearing the selected filters.

The following screenshot is what we are aiming to build:

Each filter will be in an accordion section so that the user can collapse them to save space,
and the results panel should update in real time as they change their filters.

Installing additional dependencies
In order to build this UI, we'll need a few additional libraries installed and/or configured.
First up, we can see that we need some icons for the reset button and the filter accordions;
we'll make use of Font Awesome for these as it's so easy to install and use, and has become
the standard for web icons.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[148]

Installing Font Awesome
We have a few options here. First and foremost, we should head over to the Font Awesome
website at and check out their Get Started page. The
recommended way of using Font Awesome via a CDN just happens to be the easiest, which
is why we'll stick with it for the purposes of this book.

Installing Font Awesome using the CDN is as easy as opening up the
 file and adding the following element at the

very bottom of the section:

Now, if we follow the instructions on the Font Awesome website, they tell us to add a script
reference to a JavaScript file rather than this CSS file. This is what I initially did until I
noticed a strange bug whereby icons being conditionally rendered using the directive
didn't work properly. The resolution I found was to use a CSS file reference instead, which
is why we've ignored the installation instructions here.

If you're interested, there are other Vue-specific ways of installing Font Awesome, which
you can find on their website under the Advanced Options section of the Get Started page.
Specifically, they have a couple of npm packages that we could have installed and made
use of, but we'd need to make a few more changes than our one simple change so far.

Installing additional npm packages
With Font Awesome installed, we can look at our next requirement: accordions and sliders.
Building a custom slider component would be fairly involved, and just not worth the effort
when there are pre-built components on npm that we can leverage instead. However, it is
pretty simple to build our own accordions, and this will also leave us with full control over
how they are displayed.

For basic animation, we could make use of CSS transitions, but sooner or later we'll hit the
limits of what we can easily do with CSS. Instead, we'll install the library
which provides accelerated JavaScript animations, and is much more powerful than CSS
alone. In addition to this, we'll install the library which, as the
name suggests, provides us with a ready-made slider component.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[149]

Open a Terminal in the project root directory and run the following commands:

yarn add velocity-animate

yarn add vue-slider-component

While we're here, we're going to change the library that we use for making API requests.
The reason will become more apparent later, but essentially, there are some annoying
limitations with . We are going to replace it with a library called

, which is an alternative HTTP client that works both in the browser and on the
server.

Run the following commands in your Terminal:

yarn remove isomorphic-fetch

yarn add axios

There is just one last change we need to make to completely replace
with , so open up the file, locate the array
within the object, and replace the line with . The
completed array should then look like this:

"axios",

Recalling the last time we changed this file, we need to force a webpack rebuild before
these changes take effect, so run the following command in your Terminal:

yarn webpack

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[150]

Building an accordion component
We now have everything we need to start making our filter components. We already
stipulated that each filter component will be rendered as a collapsible accordion, but, with
each filter having different contents, how do we achieve what we want without replicating
the accordion logic for each filter? We need to build a reusable accordion component with
enough flexibility to change what content we display in the collapsible sections. Luckily for
us, Vue provides slots for doing just that.

Defining the accordion template structure
First of all, create a new component file in the

 directory, which I've named
. The section of this component looks like this:

The root element we're using for this component is the element from
the library, and is used for rendering nicely formatted lists. We then have
two elements: one for the header of the accordion, and one for the body.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[151]

On the header, we're using the directive to bind a dynamic class based
on a data property, also called . We also include an event handler to toggle the

 property when the user clicks on the header section of the accordion. As they click,
the event handler fires and toggles the property, which in turn toggles the class
on the header. We'll see why this is important shortly. The last thing to note in the header
section is the element that we're using. This is how we make use of the Font Awesome
icons that we installed earlier. We can place an element anywhere in our application, and
provide appropriate class names to tell Font Awesome which icon we actually want to
display. In this case, we're using the class to render a down arrow.

As this is an accordion, we know that the body section will not always be visible. As such,
we use the directive to control the visibility of it, based on the data property that
we've already discussed. This is all we need to do to get a basic accordion working, but it
won't be the nicest UX without a nice transition to make it less jarring when toggled. To
achieve this, we're wrapping the body section with a component, just like we
saw around the component earlier in this chapter. However, rather than
passing a prop to the transition component like we did before, we're attaching

 and event handlers, which will trigger a pair of JavaScript hooks instead.
This is because we want to make use of Velocity for JavaScript-based animation, rather than
the CSS animation we used before.

Finally, we're making use of the component in both the header and body sections of
this template. This is how we create a placeholder, as it were, so that, when we call this
component from a parent, we can insert different content into each accordion that we
render. As we have multiple slots, we need to be able to differentiate between them and
specify which slot we want to place our content into. To do so, we simply add a prop
to each slot.

Defining the accordion behavior
The section of our accordion component looks like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[152]

This may look a little complicated at first, but when we break it down, it's really quite
simple.

We start by importing the Velocity library that we installed earlier, and providing it with an
alias of . We then have our standard object declaration that
we've seen so many times before, containing a function and a

 object also just like we've seen many times before.

The data function is very simple, and only returns an object containing the property
that we saw being toggled and used to bind classes in the preceding template section. The

 object is a little more complicated, but essentially just contains the two JavaScript
animation hooks that we referenced in the transition component in the template. The

 method will be called as the accordion is opened, and its body section will
become visible; similarly, the method will be called as the accordion is closed.
Each method receives an argument, which is a reference to the element that is being
transitioned, as well as a argument which is a callback function we need to invoke at
the end of the animation. If you've ever used jQuery animate before, the syntax
will look very familiar to you. We call the function and pass an element
reference, the name of the animation we want to apply, and an object containing any
options we want to apply to the animation. In this case, we use either the or

 animation, and specify a duration value and an easing value, and pass the
function to be invoked as the animation completes.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[153]

Styling the accordion component
Our accordion component is now functionally complete, but there are just a few simple
styles that we need to apply to get it looking the way we want it to. The block for
this component looks like this:

There is nothing overly complicated going on here, but it's worth noting the
 style near the middle. Remember how we dynamically apply the class to

the accordion header depending on whether it's open or closed? We hook into that dynamic
class here and rotate the Font Awesome icon 180 degrees to become an up arrow. Just
above this line, there is also a style this makes the icon rotation a nice
smooth animation rather than being just an instant flicker between states.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[154]

Building the filters component
With a functioning accordion, we can now build the actual filters component that will make
use of it. There will be a lot going on here, so we'll need to break things down to make sure
we can see what's going on. As a reminder, the section on the left of the following
screenshot shows the filters component we are about to build:

Scaffolding the filters component template
Create a file and add a barebones

 section as follows:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[155]

We start with a small title and a reset button we'll look at the method later, but
note how we're making use of the Font Awesome library again by including the icon
within the reset button. Apart from this, it's a fairly simple template so far.

Where it will get complicated is within the element, which is another
custom element from the library. This should now make things clearer as
to why we used the element as the root-level element for the
accordion component. Now, we have a number of accordions to insert, but as they're not all
exactly the same, we'll go over them one by one.

Adding a brand filter
The first accordion we need is the brands filter:

As our custom component made use of slots, we can insert content
between its opening and closing HTML tags. Furthermore, we added two different slots:
one for the header and one for the body. In order to specify which slot we're targeting, we
include the prop on any standard or custom HTML element within the template.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[156]

We're starting off by simply inserting a element into the slot in order to
provide the text that displays as the title of the accordion panel. Next, we're inserting a
bootstrap element into the slot, including a number of columns for each of the
available brands that the user can filter by. We start the list of brands off with a hardcoded

 filter item, with a dynamic class binding based on whether or not we've
selected any brands to filter on. We're also attaching a click handler to this item to call into a

 method, which we'll see later on. We then use the directive to loop
over the property, rendering the same HTML markup as we used for the
preceding item. However, this time, we base the class binding on whether or
not our list of selected brands contains the specific brand being rendered. The click handler
also calls a different method called , which we will use later to add or remove
the brand depending on whether it has already been selected or not.

This is probably the most complex template code we've seen so far, so it is definitely worth
taking the time to understand what is going on here before moving on. That being said,
until we see what the section looks like, it probably won't make complete sense.

Adding a price filter
The next accordion we need is the price filter:

Thankfully, it is a lot easier to see what's going on straight away. We start the same way we
did with the brands accordion: by inserting a element into the slot. The

 slot in this instance is a lot simpler, and only contains a single element, which we
use to wrap an instance of the component that we installed earlier in this
chapter. The slider component can optionally take many more props than we are using
here, which makes it incredibly versatile. For our needs, though, this is all we need.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[157]

We're binding the value of the slider to a property from our component state, and
the , , and values to arbitrary values that make sense for the price of a
phone. The prop is used to specify the template of the labels at each end of the
slider. As we are working with currency, we simply prefix the value passed with a
 symbol.

For the purposes of this demonstration, I am not including any kind of
localization of things such as currencies and date formats. For production
apps that may be used in multiple locales, it is worth looking into a
localization npm package such as or .

The event handler is used to call our method as the user
interacts with the slider and changes its value. Now, if we omit the prop, the

 event handler would fire each time the slider detects the value changing, even
if the user hasn't let go of their mouse to signify the final position of their choice. By setting

 to , we're instructing the slider to wait until the mouse click is released before
firing the event, and thus preventing more API calls than we need to make.

Adding a screen size filter
The next filter in the list is the screen size filter:

This is almost identical to the price filter, so we won't dwell on it for long, but just note the
slightly different prop, as well as triggering a different method in the

 event handler.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[158]

Adding the remaining color, OS, and feature filters
The next three filters, for color, operating system, and feature, are also almost identical to
each other, along with the brand filter that we defined in the preceding section. The color
filter looks like this:

The operating system filter looks like this:

And, finally, the feature filter looks like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[159]

The only differences in these filters are the data properties being looped over, the methods
being called by the event handlers, and the properties being used for class binding. If you
can understand one of them, you can understand all of them, so we won't say any more
about these.

Scaffolding the filters component behavior
The block of this template is equally long and complex, so we'll go over it in
sections again! As an overview, this is what it looks like:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[160]

First, we need to import the necessary child components that we'll make use of, including
our own component as well as the component that we
installed from npm earlier. Then, we will declare a standard component definition named

, register the child components we just imported, and specify a required
 prop of type . This filters object prop will contain the collections of filters

that we've been looping over in the preceding template sections, and we'll pass it in from
the parent component after we retrieve the filter options from an API call later in this
chapter.

Defining the filters component computed properties
The computed properties section will be where we store the selected filter items the user
clicks on, as well as the current values of the price and screen size sliders. However, as we'll
see in a moment, it is a little more complicated than that, as we'll also be keeping these
values in sync with the browser URL query string.

Update the computed section to look like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[161]

If you haven't done much JavaScript before, this syntax may look a little strange, but in
actual fact it maps pretty closely back to a similar concept in C#. For each of our filters,
we're returning either a string or an array, based on query parameters from the current
page route. If no query parameter is found matching that name, we default to either an
empty string or a specific integer value. In essence, this:

Is very similar to writing this in C#:

We already saw that our filters API endpoint is expecting a single string value per filter,
which is why we default to empty strings rather than empty arrays. Also, seeing as these
are computed properties, if we update the query parameters at any point, Vue will detect
the change in these computed properties and trigger a UI refresh wherever necessary.

This is all very well and good, but couldn't we make this a lot simpler and just store the
users filter selections in standard component state using arrays? In short, we definitely
could, and this is a perfectly acceptable approach for a lot of online shops that I've visited in
the past. However, if we rely on local component state to store the user's selections, they
will be lost if and when they force the browser to refresh the page. There are a few different
ways that we can combat this, including pushing the selections into the browser's local
storage, then retrieving them if they exist on page load, and pushing the selections to the
URL query string. There are definitely pros and cons to each solution, but the deciding
factor for me is that, if we make use of the query parameters, our users can share their
search results with others by copying the URL.

Defining the filters component methods
So, we can populate our component state from the URL, but as it stands we can't update it.
We're missing the section of the component that will fill in that gap. To get us
started, add the following section:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[162]

Recall the top of the template for this component; we have the reset button, which has a
click event handler invoking a method. This is all we need to do to clear all the filters
and have the list reset. Our computed properties that contain the selected filter items are
directly tied to the query parameters in the URL. By pushing an empty object
without specifying a new URL, will overwrite the query parameters with this
empty object. All of our computed properties will then update and the UI will refresh back
to the default state.

For each filter, we need two methods to manipulate the URL and refresh the filter results.
We need a method that takes a filter item and pushes it to the URL if it hasn't already been
selected, or removes it if it has, and a method that removes all selected items for this filter.
The following methods show how we do this for the brands filter:

Again, there's quite a lot going on here, so we'll go through it line by line, starting with the
 method.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[163]

First, we check if we've actually selected any brands or not. If we have, we use the
 function to clone the object into a new local method

variable, then delete the property from it before pushing the newly updated
object into the query string like we did in the preceding method. If we haven't
selected any brands, we do nothing. But why do we need to bother cloning the query object
rather than modifying it directly? The answer isn't entirely obvious, but essentially it just
boils down to how the reactivity system works in Vue. If we were to try and modify the
query object directly, and then push it back into , the component would not
detect the change, and as such we would see no change in the UI. By taking a clone of the
query object and pushing that back into vue-router, there is no dispute that we've changed
something, and the reactivity system kicks in as we'd expect it to.

Moving on to the method, we can see that it takes a parameter which
is the specific filter item the user just clicked on. We start by taking a similar approach as
before and taking a clone of the object. Now, we know that any selected
brands will have been concatenated into a single string, so we call the function on
the property, but default to an empty array if it doesn't exist. We can now check to
see if the parameter already exists in the array we just created, and either remove it
or add it, depending on the outcome. To remove it, we first need to find its index within the
array, then call the method to remove it based on that index. To add it, all we need
to do is call the method and pass it as a parameter. Next, we do another check to see if
we still have any items in the array before deciding what to do next. If we do still have
some selected brands, we concatenate them back together using the method, passing
the character as the delimiter to use, before overwriting the property on our clone
of the query object. Alternatively, if we no longer have any brands selected, we simply
delete the property from the object. Finally, we push the final version of the
cloned object back into the current URL using vue-router.

The methods for updating the slider-based numeric values are much simpler. The
 method looks like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[164]

The slider in the filter component emits an array containing the current min and max
values selected by the user. This array is what is passed to the method as the

 parameter, as shown in the preceding code. As before, we clone the current
 object before setting the and properties based on the

two elements in the array, then push the new object onto the current URL.

The method looks almost identical:

There is nothing new here, so we'll move on to the remaining filter methods, and in actual
fact there is nothing new in any of them. The rest are almost identical to the
preceding and methods, starting with the

 and methods:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[165]

Next up are the and methods:

The following are the and methods:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[166]

And, finally, the following are the and methods:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[167]

Styling the filters component
With these methods in place, our block is complete. To finish this component off,
we have some basic styles to complement the default Bootstrap styling:

Adding the filters component to the catalog page
We now have the capability of pushing our filter selections into the URL query string, and
reacting to the changes to highlight the selected items using CSS. However, we're not
actually displaying our filter component anywhere, let alone using the selected filters in an
API call to the server. To tie everything together, we need to make some changes in the

 file.

Updating the catalog page template
We need to start by updating the section to look like this:

<b-container fluid class="page">
<b-row>

 <b-col cols="3">
 <filters :filters="filters" />
 </b-col>

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[168]

 <b-col cols="9">

</b-col>
 </b-row>

</b-container>

Instead of a standard element, we're now wrapping this template in a bootstrap
container which will make use of the full width of the screen. We then define a row with
two columns: one for our new filters component, which is allocated a quarter of the screen
width, and one for the existing product list component, which is allocated the other three
quarters. We already know that the filters component has a required prop, so we
are passing in an object that we will see defined in a moment.

Adding the catalog page filter behavior
In the section, we first need to import both and our newly created filters
component:

Next, we update the object to register the filters component so that we can
make use of it:

Filters,

We then need to update the object returned from the function to include the
 object that we are passing into the filters component:

filters: {
 brands: [],
 capacity: [],
 colours: [],
 os: [],
 features: []
 }

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[169]

Then we update the method to set this property following a successful API call:

, filters

this.filters = filters;

Finally, we need to update the hook, as well as add an additional
 hook. We are currently still using , and need to

replace it with . We also need to perform an additional API call to fetch the filter
items we are passing into the method. The updated hook
looks like this:

This is where we see the benefits of using over . When we have
multiple API calls to make at once, like we do here, we can make use of the

 function to kick off multiple requests at once. Furthermore, this still returns a
single JavaScript promise, which will not resolve until all of the API requests have
completed. If you aren't familiar with JavaScript promises, this simply means that the
preceding function will not be called until both API calls have returned. When
they do, we must make use of the function to process the results of both
API calls simultaneously. If we had a third or fourth API call to make, the function
here would receive an additional parameter for each of them, too. In this instance, we just
have the two: a parameter containing the response from the products request,
and a parameter containing the response from the filters request. We pass the

 property from each of these parameters into our method, which binds the
data onto the component state to be rendered into the UI.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[170]

Axios.all is very similar to using Promise.all, except the version is
cross-browser compatible out of the box, without the need for a polyfill in
older browsers such as IE11.

The final thing to note in this hook is the way we pass the current query parameters into the
URL for the products API request. With the function, we can pass an
optional second argument, which must be an object. One of the properties this object can
contain is the property, which is yet another object that represents the query string
parameters we want to pass to the request. Because of this property, it is a simple
case of assigning the object, which contains all of the selected filter items that
we've been pushing onto the URL from the filters component. This means that, when we
select a couple of brands in the brands filter, we end up with a URL that looks like

.

If we then open up Chrome DevTools, flip over to the network tab, and refresh the page,
we can see that an API call is triggered with the following
URL: .

The and libraries work perfectly with one another to quickly and easily
map object-based representations of query string parameters onto the URLs of API requests
and client-side routing requests alike. If we were still using , we'd have
to manually build up the query string instead.

The final piece to put in place is the new hook, which will look like
this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[171]

This is pretty similar to the preceding hook, except we only have a
single API request to trigger, so there is no need to use the or

 functions. This hook will get fired every time we make a change to the
URL for this page. In other words, every time the user interacts with our filter components,
or clicks the reset button, we push a new query object to the URL, which will cause this
function to be invoked. Therefore, we can use this function to make a new API request for a
list of products that match the current filter selections. As soon as we hit the

 line, Vue detects the change and propagates it down
through our component tree, refreshing the UI and displaying the new list or products as it
goes.

Currently, our API call to the route will fail, as we have not yet created the
controller that will serve it. To fix this, add a new
file, add a property as we've done before,
and add the following action method:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[172]

Nothing too complicated here; we simply query the database for all of the filter options we
need to allow our customers to select from, then combine them into a single view model,
which we return in an result. This view model belongs in
the file, and looks like this:

Tidying up our existing components
We are very nearly ready to boot the application and test that everything is working as
expected, but we just have a few more very minor changes to make. First of all, we need to
utilize on the API call, then make some very
subtle changes to a couple of component templates now that we're using a full-width
container on the catalog page.

Open up and make the following changes:

Add an import line for at the top of the section:1.

 Update the hook as follows:2.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[173]

Add a directive to the product details component declaration in the3.
 section:

Step 3 isn't crucial, but it does prevent some warnings being thrown in the browser console.
Next, open up and update the
template section to look like this:

Prices from

All we've done is remove the title and container, then add a prefix to the
price, seeing as we now have different prices based on which variant is selected.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[174]

Finally, open up and remove the
 component from the section. After doing so, it should look like

this:

We no longer need an app-wide container, seeing as we are specifying the container width
on a page-by-page basis. For example, the catalog page is using 100% of the available screen
width, whereas the product page is constrained to a maximum width.

Testing the completed filtering logic
We have now finished making all of the changes necessary for catalog filtering, so, if you
haven't done so already, start up the application and give everything a test to make sure it's
working. Select a few filters and watch the products list update, then refresh the browser
and make sure the same results are displayed after the refresh. You can even try selecting a
product to go to its details page, then hit the back button in the browser, and you will see
your previous filters still intact. Finally, hit the reset button and make sure that the URL is
cleared of all filters, and that the product list returns to displaying all products.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[175]

Refactoring the filters component
So, at this point, we have a perfectly acceptable solution for filtering our products,
including persisting user selections across page refreshes and supporting the sharing of
URLs among our customers. However, as it stands, the filters component is very large and
responsible for handling every filter that we provide. There is also a vast amount of code
duplication, or at the very least, code that is incredibly similar aside from naming
conventions or object properties it relies on. Recall the first chapter, when we talked about
UI composition; this is a fairly normal situation to be in, as it is no easy task to plan out a
perfect component tree before writing any code. We can certainly make our current
solution a lot cleaner and more maintainable if we take the time to refactor it, so let's see
what we can do.

Highlighting duplication in our existing implementation
Glancing over the current file, most
of our filters are based on the concept of selecting multiple values from a list. In the
template section, we have quite a lot of repetition where we loop over different lists of filter
items and render near enough the same HTML for each. As an example, in the brands filter
accordion, we have this:

brands clearBrands

brands

brands filterBrand(item)

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[176]

Then, slightly lower down, in the colors filter accordion, we have this:

colours
clearColours

.colours
colours

filterColour(item)

The only differences between these two template sections is the filters property we loop
over for the items, the property we check for class binding, and the names of the methods
we call to manipulate the query object. It would be much nicer if we could have something
like this instead:

We can then reuse this element elsewhere in this component, passing different filter items
depending on which filter accordion we are in.

Extracting a common multi-select filter component
The first step in refactoring to extract a new component is to scaffold a new empty
component. Create a

 file and give it a
 section that looks like this:

selected clear

items

 selected
filter(item)

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[177]

Note how similar this is to both of the template sections we just evaluated previously. All
we've done is take a direct copy of that HTML, then tweaked some of the naming
conventions to make them more generic. After all, this is going to be a reusable component
rather than one specific to a type of filter, so there is no point in having variables with
names such as or . Instead, we simply have for the list we want to
loop over, and for the computed property that maps to the URL query
parameters containing our selected options.

Next, we need to add a block to define the logic of the component:

Based on the existing filters component, we know that each of our filters relies on a
computed property and a couple of methods to manipulate the query object, so we've
stubbed out those sections here ready for our generic implementations. We also know we'll
need to pass in some data via props, so we've added that section ready as well.

Let's start with the computed section, whereby in this case I've copied the
 computed property directly from the filters component:

Again, this is no good in a generic reusable component, as we are accessing a specific
property from the query object. We need a way of accessing a different property depending
on which filter is being rendered, which of course is another use case for props. But how do
we access a JavaScript object property when we don't know what it's called until runtime?
It's actually pretty easy:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[178]

Accessing JavaScript object properties based on their name can also be done using a similar
syntax to accessing a specific index in an array is the same as

. This enables us to pass a string directly in here to access a
different property based on a string prop from the calling component. The updated
computed property looks like this:

We're now expecting a prop, and we've renamed the computed property to
make it generic. Next, we need our two methods for manipulating the query object, starting
with a generic method:

clear
selected

query[this.queryKey]

Again, I copied and pasted one of the methods from the filters component, then
generalized it by changing the name, accessing the new property, and making
use of the prop to determine which key to delete from the object. We can
do a very similar thing with the method:

filter(item)

query[this.queryKey]
 query[this.queryKey]

query[this.queryKey]

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[179]

query[this.queryKey]

Nothing new here, really; we've made the method name and argument name more generic,
and made use of the prop again to decide which object properties to
manipulate. The last piece to add is the section, which looks like this:

We're declaring two required props, the string prop which we've already seen
used, but also the array which we're now looping over to render the filter items our
users can select from. Finally, we can add the following block to complete this
component:

This is taken directly from the filters component, from which we will delete these styles
later as they are no longer relevant.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[180]

Extracting a common range filter component
This generic component will now work for all of the multi-select filters, drastically reducing
how much code we need in the filters component. However, we still have some duplication
in the numeric slider-based filters, so let's fix that up first. Create a

 file with a section
that looks like this:

min
max

interval || 1

filter

Essentially, this is another direct copy from the filters component, but we are now basing
the props that we pass down into the slider component on the props that we receive into
this component. The only exception is the prop, where we default to if no
value is passed to this optional prop.

The section looks like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[181]

We start by importing the component, and then scaffold another standard
component definition including the slider as a child component. We need quite a few props
on this component, but most of them simply map directly to the props required by the
slider:

The only exceptions are and . You can probably already guess
what these are for, but, like we did earlier, we're just passing in the query object keys we
want to manipulate inside this component. The difference is that we need two of them, as
this is a range slider with two values to push to the URL.

Like we did previously, I've generalized the name of the computed property:

value

query[this.minQueryKey]
query[this.maxQueryKey]

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[182]

I've also generalized the name of the method and its arguments:

filter(values)

query[this.minQueryKey]
query[this.maxQueryKey]

To finish this component, add the following block at the bottom:

And there we have it: a generic range filter component that can replace the remainder of the
duplicated code inside the filters component.

Rendering the new multi-select and range filter
components
The final step is to now update the

 file to make use of these two new
components, and remove any obsolete code.

In the section, we need to make a few changes, starting by updating the
 filter accordion section to look like this:

<multi-select-filter slot="body" query-key="brands"
:items="filters.brands" />

Then, update the filter accordion to look like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[183]

<range-filter slot="body"
 :min=0
 :max=1000
 :interval=50
 formatter=" {value}"
 min-query-key="minPrice"
 max-query-key="maxPrice"
 />

And, similarly, the filter accordion should look like this:

<range-filter slot="body"
 :min=0
 :max=7
 formatter="{value} in"
 min-query-key="minScreen"
 max-query-key="maxScreen"
 />

Finally, update the , , , and filter accordions
to look like this:

<multi-select-filter slot="body" query-key="capacity"
:items="filters.storage" />

<multi-select-filter slot="body" query-key="colours"
:items="filters.colours" />

<multi-select-filter slot="body" query-key="os"
 :items="filters.os" />

<multi-select-filter slot="body" query-key="features"
:items="filters.features" />

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[184]

Don't run the application just yet, as we still need to import these new components into the
 block, as well as remove a whole load of obsolete methods and computed

properties. Take a look at how long the section is currently, because it's about to be
reduced to this:

import MultiSelectFilter from "./MultiSelectFilter.vue";
import RangeFilter from "./RangeFilter.vue";

MultiSelectFilter,
 RangeFilter

We no longer need to import or declare the component as a child, because the
new component now takes that responsibility. Instead, we import the two
new components we just created and declare them inside the block. We've
then removed the computed section entirely, and trimmed the methods section right down
to a single method. Finally, we can remove the block entirely, as those styles
now belong in their respective child style block.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[185]

Testing that everything still works
At this point, our refactoring is complete, and if you start the app again now, it should be
fully functioning as before. However, if you open your browser devtools, you'll likely see a
Vue warning about a required prop being undefined. This is because there is a very brief
time after our page-level API call returns where the filters property still has its default
empty array values, which are being passed down into one of the new components we just
created. To prevent this warning, open up the file
and modify the section as follows:

v-if="filters.brands.length"

All we've done is add a directive on the filters component, instructing it not to display
until we have some items in filters object brands array.

And there we have it: fully functioning catalog filters using nice, clean, reusable
components to minimize how much duplication we have.

Client-side sorting
Most product catalogs won't just contain ways of filtering their product list, but also ways
of sorting it as well. Luckily for us, the sorting side is a lot simpler than the filtering side.
We're going to add a very simple sort component that follows the same theme of pushing
the user's selected value into the URL object. We'll then make sure our product list
abides by the selected sort property and direction using computed properties.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[186]

Building a sort component
Start by creating a file, and add
a section with the following content:

It should be fairly easy to work out what we're doing here, but essentially we're just
displaying a label and a drop-down element side by side. As this is a custom drop-down
component rather than a standard select box, we're binding the property to a value
from an array named . We're also looping over that same array to render out the
drop-down items, and attaching a click handler to fire a method based on the item
being selected.

Scaffold out a standard component definition and add the following function:

The only local component state we need here is the list of items to choose from, which we're
keeping simple and only allowing price and name sorting in both ascending and
descending directions.

As previously mentioned, we're going to be pushing the selected sort index into the URL
 object so that we can maintain the selection after a page change, so add a

 object like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[187]

Now, we could push some kind of string value to make it more obvious what it is at a
glance, but, for the purposes of this demo application, we'll keep it simple and just use the
numeric index of the selected array item instead. Finally, add a object with a
single method like so:

This is incredibly similar to the filter logic we've already seen, so we don't need to say too
much. The argument to this method is the numeric index of the array item the user
just selected. All we do is either push it to the current URL object using the same
clone technique we've seen before, or, if the index is the first item in the array, we remove
the property altogether, as the default sort values will take effect if we don't provide
one.

To complete this component, add the following block:

This is a very simple style just to align the label with the middle of the drop-down box next
to it.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[188]

Adding the sort component to the catalog page
With the sorting component in place, we need to add it to the catalog page to make use of
it. Open up the file and insert the following HTML
elements into the section just above where we're already rendering the product
list component:

Next, in the block, we need to add an import statement at the top to import our
new component:

Next, we add the component declaration to the object:

ProductSort,

We now need to create two computed properties: one for listening to the property on
the URL object, and one to filter the product list based on that property. Add
the following object to your component:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[189]

The first of these computed properties is very simple, and exactly like those we've seen
before which look for a specific property in the URL object, but have a default value
if it does not exist. However, the property is a little more involved. We're
defining a statement based on the previously discussed computed property,
then, depending on the value, we use a standard JavaScript function to sort
the products array and return a new version of it. The default option in this
statement corresponds to the sort value, and has the following
logic:

The JavaScript function receives two arguments representing the two
objects that are about to be compared. In this case, we simply compare the price values, but
we could make this comparison based on any of the properties on our

.

To finish wiring things up, we need to bind the product list component onto this newly
computed property rather than the original products array:

sortedProducts

After doing so, the final section will look like this:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[190]

Run the application again now and check that everything is all working as expected.

Creating a search bar component
To finish off our product catalog, we're going to add a basic search bar to give our users
even more control over the product list they're browsing. Let's start by creating a new
component named in the

 directory. The section for this component
is very simple:

All we're rendering is a text input field, with a few standard attributes such as a
placeholder of . However, usually, we would use the directive on text
inputs, so why are we binding the of the text input here instead? In order to
transport whatever the user types into this search box to the server for processing, we'll
need to push the value into the URL object again. As such, we'll also want the search
box value to persist if the user refreshes the page or navigates away to a product details
page and back again. If we were to use a standard local component state variable and the

 directive, we would not be able to achieve this goal without persisting to the
browser's local storage. Instead, we bind the initial value of the text input to a property
called , which, as we'll see shortly is a computed property that is bound to a URL
query object property. We then attach the event handler to the input, which calls a
method called we'll see what this does in a moment. Finally, we also attach a
second event handler, which fires on the event of the Enter keyboard key, and calls a

 method.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[191]

The block of this component looks like this:

We're defining a local component state variable called and initializing it with an
empty string, as well as the computed property which should look pretty familiar to
you by now. The method is the one which is fired every time the input changes
value, and receives the new value as an argument which we simply assign to our local

 variable. Finally, when the user hits the Enter key, the method is invoked.
Here, we do our usual trick of cloning the current URL query object before either pushing
our search query onto it, or removing it if the text input is currently empty.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[192]

There are no styles for this component, so all we need to do now is import it and render it
into the file. Look at the section and find
the part that looks like this:

Now, update it to look like this:

mt-4 flex
<search-bar class="search" />

It is important to note the class changes on the wrapping element around the search
bar and sort components. In a moment, we're going to add some CSS styles that display
these components nicely side by side, with the search bar expanding to fill any remaining
space.

In the section, import the new component and register it in the
 object:

SearchBar,

Finally, add the following flexbox-based CSS styles to position things nicely:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[193]

At this point, you can run the application, type something in the search bar, and press the
Enter key. Note how the URL changes, and if you refresh the page, the search bar will
populate from your previously entered value in the query object. Similarly, if you hit the

 button, the search bar will be cleared. This is great, but as yet we aren't honoring the
search query in our API calls on the server. Open the

 file and update the action declaration to
include an additional string parameter:

string q,

Next, create a new string variable at the top of the method, above the existing filter
variables:

We'll see what this is for in a moment, but the important part is the new null-conditional
check, which prevents this line throwing an error if we don't provide a search term. Finally,
add an additional LINQ clause to the top of the products query:

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[194]

Here, we check if the search query is empty, and if it is then we ignore the rest of this
expression and move on. If it isn't empty, we use the variable we just created as an
argument to the method. As the name suggests, this is one of the
new features added in EF Core 2.0 and it allows us to use native SQL statements
directly in our data access code. In a native SQL query, we can use characters either
before, after, or before and after a piece of text to see if a column starts with, ends with, or
contains the text we are looking for. This concept is exactly the same in the

 method, which is why we've declared our search query variable in
the way that we have:

All we want to know is if either the product name, short or long description, brand name,
operating system name, or any of its feature names contain the text that the user has
searched for.

If you rerun the application now, everything should be working. Filtering, sorting, and
searching should all be controlled via the URL object.

Triggering API requests using watchers
The last thing we are going to do with our product catalog is configure the search bar to
react to the user's input in real time, without waiting for them to press the Enter key. To
achieve this, we only need to make a couple of quick and simple changes, but it provides a
nice UX for our users. Open the

 file that we just created. The first
thing we need to do is change the event handler on the input to an event
handler instead:

@input

The event handler only fires as the user navigates away from the input, or when
they hit the Enter key while it's focused. Either way, we need our method to be
fired as soon as the user enters some text into the box so that we have access to that text
straight away. The event handler fulfills this need as it fires on every keypress.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[195]

The only other change we need to add is a object at the bottom of the component:

Recall , Understanding the Fundamentals, any function defined inside the
 object uses the function name as a convention for the property it is watching for

changes on. In this instance, with a function named , we are watching the data
property, which now gets updated immediately after a user enters a value in the search
box. We already have the method defined, which takes the search value and
pushes it to the URL query object, which in turn fires the API request to the server.
Therefore, all we need to do when the search box value changes is to call the
method and leave it to do its thing.

Debouncing API requests to limit how often they
fire
As you can probably imagine already, with the current implementation, we are going to be
making a vast amount of requests to the server, seeing as every key press invokes the
search method. A better approach would be to the requests to limit how often
they actually fire. To do so, we'll install an npm package called lodash, which is a
JavaScript utility library that provides some incredibly useful functions to save us the time
of writing them ourselves.

Open a Terminal and run the following command:

yarn add lodash

Next, still in the search bar component, import at the top of the block:

Then, finally, update the existing method to look like this:

_.debounce(function() {

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[196]

}, 500)

This may look a little strange at first, but all we've done is wrap our existing function with
the function from lodash, specifying a delay of 500 milliseconds. Now, when the
user first types something into the search box, there will be a delay of half a second before
the API request triggers, and, if they keep typing beyond that period, the API request will
only ever fire twice every second at most.

Summary
This has been by far the longest and most complex chapter yet, and we've covered an awful
lot of ground. Let's have a quick recap before moving on to building a shopping cart.

We started out by installing and configuring some additional dependencies in order to add
some styles to the existing application. We also looked at the difference between fetching
data before and after navigation occurs, before refactoring our current pages to pre-fetch
their data. To round off the UX improvements, we added a page-level loading indicator
between page changes, as well as a nice fade transition to make things smoother.

We then dropped back to the server side of the application and extended our existing data
model to include a number of additional entities and model properties to support our
needs of filtering and sorting the product list. We also created a whole load of fake product
seed data to start us off.

Sticking to the server side initially, we added support for filtering the product list based on
a number of different product attributes such as brand, color, and price. Moving over to the
client side, we built a custom accordion component to house our individual filters, before
creating the actual filters themselves along with all of the logic that goes with them. We
talked about the different ways we could store the selected filter items, but settled on
pushing everything into the URL object for the benefits it provides of state
persistence and accessibility for our users wanting to share their search results with others.
We saw a lot of duplication with our initial approach, so we looked at how we could
refactor and extract common functionality into new and reusable components, drastically
reducing the complexity and the amount of code in some of our existing components.

www.EBooksWorld.ir

Building a Product Catalog Chapter 5

[197]

Next, we added simple sort and search bar components to finish off the standard
functionality that we would expect from most e-commerce product catalogs. We carried on
the existing trend and made the decision to push the sort field and search query text into
the URL query object as well, meaning the entire catalog state can be reset with the click of
a single button.

Finally, we added a Vue function to configure our search bar to respond to the user's
input in real time, triggering API requests on every keypress. We decided that this wasn't
the best approach, and installed the utility library so that we could make use of its

 function in order to limit the API requests to one every half a second.

In the next chapter, we'll spend some time finishing off the product details page with an
image gallery and variant selection drop-down menus. This will prepare us to move on to
the main focus of the chapter building out a fully featured shopping cart for our users to
begin the process of placing an order.

www.EBooksWorld.ir

66
Building a Shopping Cart

With the product catalog complete, it's time to build a shopping cart so that our customers
can store the products they intend to purchase. There are a number of ways we can decide
to implement a shopping cart, so we'll start by evaluating these options before we start
building one. In summary, the topics we'll cover in this chapter are as follows:

Installing and configuring Vuex for client-side state management
Vuex actions, mutations, and getters
Binding component state to a centralized Vuex store
Creating custom filters
Persisting state to local storage
Providing feedback with toast messages

Evaluating our options
Before we can start building a shopping cart, we need to decide how we're going to do it.
We have a number of options available to us, each with their own respective pros and cons.
We need a way of storing selected products somewhere until the user is ready to complete
their purchase and we can persist their order in the database. Without including any
additional technologies in our stack, we have three main options to choose from one of
which is client-side only, and the other two require API calls to the server.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[199]

Persisting to the database
Persisting to the database is probably the most obvious option, but is also the most
complicated. On the face of it all, what we need to do is add a couple of new tables for
shopping carts and associated cart items, and provide the API endpoints necessary to store
and retrieve the data in those tables. However, generally speaking, most e-commerce
websites do not force users to create an account before adding items to their cart, and as
such, how do we identify which cart in the database we want to retrieve for a specific user?

This is by no means an insurmountable problem, but it does require adding additional
complexity to our application, and so we should try and avoid it unless there is a significant
benefit to going down this route. The solution would be to provide unauthenticated users
with an anonymous user ID, most likely a GUID to ensure uniqueness, and link the
shopping cart to that ID. We'd then need to return this ID to the client so that it can use it
later to identify the shopping cart that belongs to the user who stored it. We could either
use a cookie or local storage to store this ID, but as it stands we're not using cookies for any
other purpose, so it would make more sense to use local storage instead.

The main benefit of storing shopping cart data in the database is for reporting purposes. If
we only store cart data on the client side of our application, we have no knowledge of it and
as such cannot report on it. If this is an important factor for your application, then it is
certainly worth exploring this approach in more detail for your own use case. However, for
the sample application in this book, we have no requirement for reporting, and as such the
overhead of managing anonymous user IDs and making additional API requests is not
worth it.

Persisting to session state
The next approach we could follow still requires a round trip to the server, but does not
require any changes to our current database structure. Rather than pushing shopping carts
into database tables, we could store them in session state instead. This approach does
reduce the complexity of the previous option, as we have no need to try and provide IDs
for unauthenticated users. Session state is automatically associated with a cookie, which
gets stored on the user's computer by the web browser.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[200]

However, this approach forces us to introduce session state and cookies to our application,
which breaks the stateless nature of our current API setup. The configuration involved with
setting up session state is also more tricky than you would expect. You are likely to find
problems with AJAX requests having different session ID values for subsequent requests,
meaning previously stored session data is lost. Combine this with the overhead of needing
to perform API requests to store and retrieve shopping cart data, and this approach simply
isn't worth the additional complexity and setup time. Session state is also time limited,
meaning it will only exist for a short period of time usually around 30 minutes or so. It
would be pretty frustrating for our customers to spend hours browsing our catalog and
filling their shopping cart, only to have their items discarded because their session timed
out before they could finish the checkout process.

Persisting to local storage
Finally, we could avoid involving the server at all and simply persist shopping cart data
into local storage within the user's browser. This approach is by far the simplest to
implement, and only has a couple of minor downsides. Firstly, users are able to clear their
browser cache, which could potentially delete their cart data from local storage depending
on the settings they choose. However, the same issue applies to both of the previously
discussed options, which use either cookies or local storage for one reason or another.
Secondly, we cannot report on the shopping cart data unless users actually proceed to the
checkout and place an order. As reporting is not a concern for this application, we'll keep
things simple and make use of local storage.

Finishing the product details page
Before we can let users add products to their shopping carts, we have some work to do to
finish off the product details page. For a start, we have an button, which
doesn't do anything, and we have no way of determining which product variant to add to
the cart even when it does.

Our products also have an array of associated images, which we aren't doing anything
with, so let's start off by displaying those on the page before creating a basic image gallery
component. The first step is to modify the existing controller action to return a view model
for the same reasons as with the product list action. This means we'll need the following
new class in the folder:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[201]

As you may have spotted already, this class depends on another new
class, , which belongs in the same folder:

We'll see why we need this additional view model shortly. With these in place, we can
update the query in the action of the

 controller:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[202]

With this in place, we can now make some changes to the section of the
 component. First of all, we need a way

of returning to the list of products so that it doesn't reset any filters we may have applied.
Navigating using the browser's button does exactly this, but there's also a

 link in the navbar, which will reset the filters if it's used. To encourage our users
not to use the link from this page, we'll add the following button as the first element within
the existing element (above the existing element):

This is a simple use of the component from Bootstrap-Vue, with an
 event handler attached, which prevents the default action and instead

invokes the method, which we'll define in just a moment. The only other thing to note
is another use of the Font Awesome icons library, specifically the icon.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[203]

Next, we're going to replace the existing element with a element and two
nested elements:

Inside the first column, we're going to display the product images in a grid layout, where
the first image fills the full width of this column, and the remaining images are displayed
underneath it in rows of three:

We start off with another element, then loop over all of the images in the
 array and render a element for each one. Rather than specifying a

static value for the prop, we use the directive to specify a width of 12
columns if this is the first image in the array, and a width of four columns for the rest. It is
then a simple case of rendering a standard element and binding the attribute to the
image URL in the array, as well as attaching an event handler to invoke an

 method, which we'll define later.

The second column holds the remainder of the content from the element we're
replacing, with the exception of some minor formatting changes and the addition of a list of
the features this product has:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[204]

In order to make sure everything lines up properly, we need to wrap the final
 heading and paragraph in another and element:

Finally, we know that we want to include some sort of image gallery, which will display
our product images at full size, so we'll add the following element to the
bottom of the section, right before the closing tag:

The gallery component does not yet exist, and as such we'll need to create it and reference it
before we can run the application. However, when building a component-based UI in Vue,
sometimes it helps to define the "interface" of new components before actually creating
them. In other words, we mock out how we expect to consume the component from a
parent, as we've just done here.

We know we only want to display this component after a user clicks on one of the images,
so we conditionally display it based on an property that we're yet to define. We also
know we'll need to close the gallery at some point, so we're binding an event
handler, which will set the same property back to . A gallery is not much use
without a list of images to display, so we're binding an prop to the

 array, as well as an prop to the index of the array we
wish to display when the gallery opens. Finally, we wrap this component in a
component to make it fade nicely in and out as we toggle the property.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[205]

In the section, we need to define the methods and data properties we've just made
use of in the template. Let's start with the function, which looks like this:

The property, which toggles the rendering of the gallery, is initially set to and
we default the array to display . Next, we need the object with the
following two functions defined:

The method simply invokes the function on the object, instructing it
to navigate backwards by one step. We can pass any number to this function, either
positive or negative, to move backwards and forwards through the browser's URL history.
For example, if we were to pass instead of , we would navigate two steps backwards,
whereas passing would navigate two steps forwards.

The method receives the index of the array the user just clicked on
and sets it to the property, which will be passed into the gallery component via
props. It also sets the property to in order to actually display the gallery.

To finish our changes on this component, we just need to add a simple section in
order to make it obvious to our users that the images are clickable, by giving them a pointer
when they hover over them:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[206]

Creating the gallery component
Now that we know how the gallery component will be consumed, we can start to build it.
Create a new component and add a

 section like this:

First, we declare a wrapping element, which we will style with CSS to cover the entire
screen with a semi-transparent black background. We're also attaching an event
handler to this element to invoke a method that is yet to be defined. This will
ultimately enable our users to close the gallery by clicking anywhere other than the image
on display and the two buttons that will rotate between the images in the gallery.

Next, we render a element, which contains a Font Awesome
 icon to act as the button to go to the previous image in the gallery. Due to an issue

where events do not get fired from the element directly, the element is only
necessary so that we can attach a event handler to it to invoke the
method, which we'll define shortly.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[207]

The main element inside the gallery component is a element with a class of ,
which we'll use to horizontally and vertically center the nested element on any screen
size. We will also attach a event handler to invoke the method, which
is still to be defined. We're also using the directive to bind the , , and
attributes to the URL of the image at the currently displayed of the array. We need
the attribute so that when we change the active gallery image, Vue can detect that the
element inside the wrapping component has changed, and the associated
fade animation is applied.

Finally, we have another element housing a Font Awesome icon. However, this time
it is the icon that will invoke the method, rather than
the method as in the previous icon. Notice how on both of these left and right icons,
and on the main element itself, we use the modifier on the

 event handler declarations. We need this modifier to stop the event from
propagating up to the parent element, which also has a
event handler that is used to close the gallery. Without it, even though the image would
change as we want it to, the click would also cause the parent event handler to fire and call
the method, which is not what we want to happen.

Moving on to the section of the component, start by defining a standard
component definition with , , and sections, as well as a life
cycle hook. The object contains the two items we defined earlier when looking at
how we'd render this component, and ultimately looks like this:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[208]

The function is very simple, and the returned object only has a single property,
which is used to instruct the gallery as to which image in the array to display:

The lifecycle hook is used to copy the prop value onto the local
data property in order to display a specific image as the gallery is opened, as well as invoke
the method to add a global event listener:

As we're adding a global event listener here, we need to make sure that we remove it again
to avoid memory leaks. To do so, we'll use another life cycle hook, which is fired as the
component is removed from the DOM. The life cycle hook needs to look
like this:

And finally, the object contains the , , , and methods,
which we've already attached to event handlers at one point or another:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[209]

The method is what we invoke from the global event listener that we registered as
soon as the gallery is displayed, and is used to enable our users to move between images or
close the gallery altogether using their keyboards. We use the property in
a statement to detect the Escape, left, and right arrow key presses, and invoke the

, , and methods, respectively. This is all very well and good, but why can't
we use the directive as we've done before for attaching event listeners?

The event is not one that is usually fired from the HTML elements we're using in
this component, the and elements. As such, we don't actually have anything to add
the directive to. There are ways to trick them into firing the event, such as
adding a property. However, this still wouldn't work as the event wouldn't fire
until the element in question had received focus from the browser. The only way to
guarantee the element would get that focus is to make use of the life cycle hook to
force it as soon as the component is rendered. This is a lot of unnecessary hacking around,
so instead, we'll simply attach and remove a global event listener, as we've done here.

The method compares the current value with the length of the array
and either increments the value to move to the next image, or resets it back to if there are
no more images to display. These changes to the property cause the image
attribute binding value to change, which in turn changes the image currently displayed in
the gallery. The method is identical to the method, but in reverse.

The method is used to emit the custom event we are listening for in the
parent component in order to hide the gallery.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[210]

To complete the gallery component, we need to add a fair few CSS styles to get things
displaying nicely. Add a section with the following styles:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[211]

Again, this isn't a book about CSS so I won't go into detail here, and most of these are fairly
self-explanatory. However, a nice way of vertically aligning content is with the following
three lines of CSS, which I've used a few times before:

This essentially positions the top of the element in question to 50% of the screen height
away from the top of the screen, then uses the property to shift the whole
element up by 50% of its height perfect vertical alignment in three lines of CSS!

With this, our new gallery component is complete. The last thing we need to do is go back
into the file and import it at the top of
the section:

Then, we need to add a object to declare it for use:

And we are done. Restart the application now and click through in to the details page for
any of the products to see the gallery in action.

Adding variants to the product details component
Before we can allow users to add products to their shopping cart, we need a way of telling
which variant they are interested in buying. The actual price of a product is dictated by the
combination of the color and storage capacity options, so we need to add these options to
the product details component.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[212]

We only have a couple of easy changes to make, so open up the
 file and let's get started. In the

 section, right beneath the heading in the element, we need to add
the following:

All we're doing here is rendering two standard Bootstrap form groups with a label and
 element in each. As part of our product details query on the server side, we're

already returning a list of objects for both the available colors and
capacity options. As such, we can bind the prop of each
component to these lists, and the properties from our model are already compatible with
what the component expects. However, in each case, we need to provide a
property to bind the selected value of the dropdown to. In this case, we need to add the

 and properties to our local component state:

These won't do much good with as their value, so we'll default each one to the first
item in their respective options list using a life cycle hook:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[213]

The variant dropdowns will now be working just fine, but changing the values will have no
effect on anything at all. To change this, we're going to add a property, which
tracks which variant from the array matches the selected values. We
can then use this property to show a dynamic price based on the selected
options, as well as determine which variant to push to the shopping cart when the user
clicks the button. This property looks like this:

We simply invoke the function using fat arrow syntax to look for and return a
variant where the property matches our selected color value and the
property matches our selected capacity value. With this property in place, we
can now make use of it in the section by displaying the variant price, rather than
the minimum price from the object that we've been using so far:

I also added the element to make it stand out a little more, but this is all that's required,
and we are now ready to add products to a shopping cart.

Introduction to Vuex
We talked about state back in , Understanding the Fundamentals, and until now
we've only had the need for local component state, which we sometimes pass to related
components via props. However, with the introduction of our shopping cart feature, we
will need to display the same state in multiple components that have no direct relationship
with one another. Think about almost any e-commerce website you've ever purchased
something from; typically, you'll have a dedicated page for your shopping cart items, as
well as some kind of cart summary widget, which will be displayed in the sidebar of every
page. These two locations have no direct connection to one another without traversing all
the way up the component tree to the very top, to the root level component.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[214]

Do we really need to store our shopping cart state in the component, then pass it all the
way down to those components that care about it using props? Think about how tedious
this would be, and how much of a maintenance nightmare it would be each time we
refactor the component tree. We'd need to make sure that we add the same props and event
handlers to every component to ensure we don't break the chain. This is where Vuex comes
in.

What is Vuex?
According to the official Vuex documentation (), "Vuex is a state
management pattern + library for Vue.js applications. It serves as a centralized store for all the
components in an application, with rules ensuring that the state can only be mutated in a predictable
fashion."

As with all of the official Vue.js documentation, this is already a great explanation of what
Vuex is, but let's break it down to make sure it makes perfect sense, as follows:

Vuex is a centralized store: This means that we have one central place to put
state, and every component in the application has direct access to it if they need
it. There's no need to pass it around using props, and no need to attach event
handlers to listen to changes on it. We can bind data directly to the store, and
every time the underlying state changes, the UI will be kept in sync just as if the
state were local to the component.
It has rules that ensure that state changes, or mutations, are predictable: This
means that we should always know exactly how and why a change in state
occurred. Vuex enforces the concept of a one-way flow of data, where the only
way of manipulating the state of the store is using a mutation. These mutations
are tracked using the official devtools extension that we installed earlier, so we
can always tell how and why the data is changing.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[215]

How does Vuex work?
Vuex contains four main concepts: actions, mutations, state, and getters. We've already
discussed state at length, but actions, mutations, and getters will all be new concepts to
you. We'll come back to getters shortly, but along with state and components, which we
already know about, actions and mutations feed directly into the one-way data flow
paradigm that we touched on earlier. Take a look at the following diagram:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[216]

Actions are functions that can be dispatched from our existing components, which
then commit mutations. Mutations are also functions, but have the sole purpose of mutating
the state, and are the only way of doing so. When the state changes, any component that is
bound to the store will be rendered again, which completes the cycle of data flow.

At first glance, it may seem unnecessary to have both actions and mutations. However,
there is a very big difference between the two, which gives both a very specific purpose
within the application.

Mutations
A mutation is like an event, whereby we define a handler function to perform state
modifications when we receive a specific type of mutation. They should not contain any
kind of logic or update more than a single piece of state to ensure there is no ambiguity in
our history of state changes. Mutation handler functions are the only way to manipulate
state in Vuex, and the only way to invoke these handler functions is to commit a mutation
of the appropriate type they cannot be invoked directly. Mutations are also always run
synchronously, so cannot contain any kind of asynchronous operation, such as API calls.

Actions
Actions can contain asynchronous operations, making them the perfect place for interacting
with our backend API if we need them to. They can also contain logic to decide which
mutations, if any, they need to commit. You can think of actions as functions that can
orchestrate multiple mutations in a single operation. This will make more sense when we
look at an example shortly!

Getters
Getters are like computed properties for store state, and can be used at times when we need
to derive state based on the state within the store. This helps eliminate duplication, where
the same derived state is needed in multiple components. As an example, we might have an
array of shopping cart items, each with their own price and quantity values. To work out
the total shopping cart cost, we need to iterate over each cart item and multiply the price by
the quantity, the sum of which gives us the total cost. Rather than store this value in the
state and recalculate it each time the cart items change, we can define a getter function that
computes it for us. We can then data bind onto this function, and it will behave exactly like
a standard component-level computed property, whereby the UI will update every time
Vue detects a change to the computed value of the function.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[217]

Putting it all together
Let's look at an example to help explain the concepts we've been talking about so far. To
define a Vuex store, it is a simple case of calling the constructor function, and
passing an object with the , , , and that you wish to
define:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[218]

In this example, we define a simple store that is keeping track of a single state property: an
array of items. If we think about how we'd expect a shopping cart to work, when we
click the Add to cart button on a product details page, one of two things should happen. If
we have already added this product to our cart, it should increment the quantity of that cart
item rather than add a duplicate entry. Otherwise, it should simply add the product to the
cart. From this, we can determine that we need two mutations, which we've defined in the
preceding store. The mutation simply pushes the product in question
to the array, and the mutation finds the existing
product in the cart based on its property, then increments its value.

We know that mutations can't contain any logic, which is why we can't have a single
mutation that decides whether to push the product to the array or increment its quantity if
it already exists. This is where the action comes in, which we use to perform the
required logic and decide which mutation to commit. We first check to see whether any of
the existing cart items match the product in question and commit
the mutation if they do. Otherwise, we
commit instead. Finally, we define a single getter
function, which computes the total cost of the cart items using a reducer function.

In the preceding store initialization, we also set the property to
. With strict mode on, if we try to mutate the store state outside of a

mutation, an error will be thrown. However, don't leave this on in
production as the performance hit can be quite high!

With a store this small, we could easily leave its definition in a single file to keep things
simple. However, as we start to add additional actions, mutations, and getters, this single
file can rapidly increase in size and become difficult to manage. A better idea is to break the
actions, mutations, and getters out into their own separate files, and then import them back
into the main store file to add them to the definition. This is what we'll do when we build
the real store for our sample application shortly.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[219]

Installing and configuring Vuex
As Vuex is an official companion library made by the Vue team, it is very quick and easy to
install and configure. We need to install a single npm package, then create a handful of new
files, most of which will be empty until we add our store functionality. Start by running the
following command in your Terminal:

yarn add vuex

Then, as this is another third-party library, we need to add it to the array in the
 file:

 "vuex",

And because we've made another change to this file, we need to run the following
command from the Terminal again:

yarn webpack

With Vuex installed, we now need to configure our application to use it. Create a new
 folder in the directory, and add a file to

it. At the top of this file, add the following three lines:

The function is how we install plugins that extend the default functionality of the
 instance. Vuex is one of these plugins, so by adding the preceding code, we have done

all we need to do to install it in our application. This only works because of how the Node
module system treats the statements in our files. After an npm module is imported
for the first time, every other statement receives the same copy of that module. You
can think of this like registering singletons with a .NET DI framework. This means that the

 instance that we receive in this file is the same instance that we initialized after
importing it into our application entry point, that is, .

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[220]

Next, we need three more new files in the directory for defining the
actions, mutations, and getters of our Vuex store. We need to create the following empty
files:

We can now import these files from the file as we discussed earlier, right
beneath the line where we installed Vuex previously:

This looks a little different to our previous statements, so what exactly is going on
here? When we start adding our individual actions, mutations, and getters to these files,
each one will be an individually exported function. This means that each of these files will
have multiple statements, and as such we need to import multiple exports from a
single file. We can do this using the wildcard character as we've done here, then provide
an alias for the imported items using the keyword. We can now use these aliased
imports in the object we export from this file:

Here, we initialize a new Vuex store object, passing it the references to our actions,
mutations, and getters. We could make things simpler and define these functions directly
within this file, but sooner or later we'll have a lot of functions in one place, which become
hard to manage and maintain. It is a much better idea to separate the different aspects of
the store into separate files. We also set the property to , which will cause our
store to raise console errors if we try to change its state outside of any mutations we define.
Finally, we add a object, which is where we actually store any centralized state that
we can't or don't want to store in local component state. In this instance, we are defining
a array where we will push the items the user wants to add to their shopping cart.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[221]

The last thing we need to do is import this object in our entry point file, then register
it with our application's instance. Open the file and add the
following statement somewhere near the top where we imported and

:

Finally, update the instance initialization at the bottom of the file to include this
object:

This completes our Vuex installation and configuration.

Adding products to the cart
The first piece of functionality our cart needs is to allow users to add their chosen product
variants to it. Thinking about how this will be invoked from the UI, there are two things
that could happen when a user clicks the Add to cart button from the product details page.
First, if the chosen product variant does not yet exist in the cart, a new cart item is pushed
to the array; second, if there is already a matching variant in the cart, we need to increment
its quantity.

Creating the mutations
Now, we could create a single mutation that contains the logic required to work out
whether the selected product variant already exists in the cart or not, then either push a
new item or update an existing one as necessary. However, mutations should be very small
and focused functions that only update a single piece of state. They certainly shouldn't
contain any logic. Mutations are tracked by the Vue devtools extension so that we can see
which mutations were fired. However, if those mutations have different outcomes
depending on some business logic, we have no record of that outcome and as such lose all
the benefits of tracking the mutations in the first place.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[222]

Based on this knowledge, there are two mutations we need to create:
 and . These are very simple and need to be

added to the file:

Both of these functions receive a property as their first argument. All mutations in
Vuex are passed this same object as their first argument to provide access to so that
it can be mutated. The second argument to any mutation function is always the object that
we pass to it when invoking it from an action or directly from a component. In the

 mutation, we simply add an additional property with a
value of to the object that we receive as an argument, then push it straight into
the array in the store.

The mutation is far more complicated. We start by cloning the
cart item we wish to update using the passed in array and the
function before we increment its property. We then need to explicitly modify
the array in such a way that Vue can tell we've changed it. This is why we make use
of the function again, as we know from prior experience that it will be
detected and propagated down to our components. If we didn't clone the original object
before passing it to the function, it still wouldn't be enough to trigger a UI update.

At this point, we still have the problem of two mutations to fire and a single
 button to trigger them. We have no logic to decide which mutation to fire when the

button is clicked; this is where actions come into play.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[223]

Creating an action
Vuex actions are where we should place any logic or asynchronous operations, such as API
requests, that don't belong in mutations. As such, they are perfect for enforcing the business
rules of our application, such as whether to add a new cart item or update the quantity of
an existing item. In the file, add the following exported
function:

Actions always receive a object as their first argument. The object
provides an API similar to the object itself, so we can access the property
or mutations using and , respectively.
Alternatively, we can use ES6's argument destructuring to extract only the parts of the

 object we wish to use. This is what we've done here using the
 syntax. The second argument is an optional object parameter that we can pass when

dispatching the action from our component(s), which in this case is the product variant the
user wants to add to their cart.

We start by checking to see whether the product variant already exists, based on the ID
values that make up its composite key in our database, and then commit a mutation
depending on that outcome. If the product already exists, we commit the

 mutation, or alternatively the mutation if
it does not.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[224]

The only thing left to do is to actually dispatch this action from our product details page.
Open up the file, then add the
following function to the object in the section:

By installing Vuex earlier, we are now given access to the property on the
instance, and therefore to each component's context. We can use this property to
access the function as we have here, passing the name of the action we want to
dispatch, as well as the optional object parameter that we discussed earlier. In this case, we
pass the computed property.

The final step is to invoke this method from the button in the
section:

We can now add products to our cart, and if the selected product already exists, then its
quantity is incremented instead. However, as we don't yet have a shopping cart page to
display these cart items, the only way we can verify that everything is working correctly is
by using the Chrome devtools extension that we installed way back in , Setting
Up the Development Environment.

One thing to note here is that when we make changes to the files in the directory, the
webpack HMR functionality will not work. As such, in order to see our changes to these
files, we must force a full browser refresh before they'll take effect. If you haven't already,
make sure you are viewing the application in Chrome; press F12 to open the developer
tools page and then perform a full browser refresh. Next, navigate to the Vue tab in the
developer tools window, then locate the Switch to Vuex button inside it. If you're not sure
where to find it, it's shown in the following screenshots.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[225]

The following screenshot shows what the Vuex page of the devtools extension looks like
before we add any products to our cart:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[226]

After finding a product we wish to buy and clicking the Add to cart button for that
product, we get a single cart item with a quantity value of 1. We can also see that an
addProductToCart mutation is listed:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[227]

If we then click the Add to cart button again for the same product variant, instead of the
addProductToCart mutation that we saw before, we get an updateProductQuantity
mutation added to the list. In the state section, we can also see that we still only have one
cart item in the array, and that item now has a quantity value of 2:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[228]

Finally, if we change one of the variant dropdowns on the details page and click the Add to
cart button again, a new cart item is pushed to the array. We can see this is the case as
another addProductToCart mutation was fired, and our object now contains two
items in the array:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[229]

Creating a shopping cart page
Now that we have the ability to add products to a shopping cart, we need a page for
viewing what we've added before deciding whether to proceed to the checkout or not.
Create an empty component called in the directory, then
open the file and import it along with the other page components:

In the same file, we'll also need to add a route definition to the array:

And finally, we'll need a link to this new page from our navbar that's defined in the
 file. Find the existing element and add

the following additional right-aligned element directly preceding it:

Before we build the page itself, we're going to build a
 component instead. If we think about

what functions we're going to want for the cart page, they include updating and deleting
individual cart items. These functions could reside in the cart page itself, and take a
reference to the specific cart item we want to update or delete, but we can also simplify that
logic by extracting a component, which is only responsible for displaying a
single cart item record. If the and functions reside in this nested

 component, they can only update or delete an individual item, and as such the
logic is simpler. We also gain the other standard benefits of child components, such as
reducing the amount of code in a single file and making sure each component only has a
single responsibility.

Creating a CartItem component
Create the component and add a

 section that looks like this:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[230]

There is nothing new here, and the majority of this HTML is only necessary to get things
presented and arranged nicely. We'll use a standard HTML element for our
shopping cart when we create the parent component, so for each individual cart item, we're
using a element as its root. We're defining five columns within this table row: one for the
product name, one for the price, one for the quantity, one for the calculated subtotal, and
one for any actions that can be performed on this row.

The product name column is the most complicated, but only because we're nesting a
Bootstrap grid row with two columns to position the product thumbnail side by side with
its name, selected color, and capacity options. For the price, we just render the raw value
prefixed with a sign as we did in the product details component, and for the quantity,
we're using a simple HTML number input. For the calculated subtotal, we're keeping things
simple for now and rather than using a computed property, we're just using a string
interpolation expression. Finally, in the actions column, we have a single button, which will
eventually be used to remove the item from the cart.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[231]

The section for this component is incredibly simple, and only defines a single
prop to represent the cart item being displayed:

And finally, the section is mainly used for specifying the minimum widths of each
column:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[232]

This is all we need for the component, so let's finish off the shopping cart page
itself.

Displaying the list of cart items
Back in the file, we need to add a section that
renders a HTML element and loops over the items in our cart to render an instance
of the component that we just created. Modify the section like this:

As with our other pages, we will start with a element with a class of to
make sure transitions to and from this page display correctly. After the element, we use
the and directives to conditionally display either a element or a
element, depending on whether a property called has any array elements or
not. If it does, we display a Bootstrap responsive table to hold our cart items, and if not, we
just display a message to state that there are no items in the user's cart.

Inside the element, we'll need a section with column headers matching those
we defined in the component earlier:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[233]

We'll also need a element to loop over the property that we're about to define:

As we have no single unique value for a cart item due to the composite key that identifies a
product variant, we're using the index of the array as the prop for each cart
item. We then use the directive to pass the item reference down into the cart item
component to be displayed.

Finally, we need a section to display the total of the items in the cart, as well as two
buttons for returning to the catalog or proceeding to the checkout:

The section for this page component is relatively simple, but does involve fetching
data from our centralized Vuex store, which we've never done before:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[234]

We start by importing and declaring the component in the object.
We then have the computed property, which we already know needs to hold our list
of cart items from the store, and this is where we deviate from any computed property that
we've seen before. As we now have access to the property in the component's
context, we can directly access the state of our store. In this instance, we simply return the

 array. Finally, in the object, we have a single function to go back a page in
our router history when the user clicks on the Continue shopping button.

Our shopping cart page is now complete. Restart the application now and add a few
different product variants to your cart, then follow the Cart link on the right of your navbar
to see what the shopping cart looks like.

Creating a currency filter
At this point, we have multiple places within our UI where we want to display a price.
Currently, we're simply printing the raw string value of the number representing that price
and prefixing it with the character. Apart from repeating the logic of prefixing the value
with a currency character, there is another limitation here in that unless the number already
has decimal places, that is, it's a decimal rather than an integer, the value we render won't
have decimal places either. When we see prices, we expect to not only see the currency of
that price, but also the value after the decimal place, even if it's zero. For example, if the
price of a phone is 99 GBP, we'd expect to see this rendered like this: .

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[235]

We could repeat this rendering logic everywhere that we display a price, but we already
have three or four occurrences already, and that number is only ever going to increase.
Instead, we should try and find some reusable way of defining this logic so that we can use
it anywhere we need to. The answer to how we do this in Vue is filters. A filter is a simple
function that takes an arbitrary list of arguments, does some processing on those
arguments, and returns a value. The returned value is what ends up being rendered in the
UI of the application.

Let's create a simple currency filter to demonstrate how this works. Create a new
folder in the directory and add an file to it. Within this file, we can
add as many filter functions as we like, exporting each one individually like we did with
the actions and mutations of our Vuex store. The function looks like this:

This function takes a single argument, passes it through the function to
ensure we're working with a float value with decimal places, then chains the
function on the end to limit the number of those decimal places to two. Finally, we return
this newly parsed value as a string with the prefix.

We're hard-coding a currency prefix again here, but just remember that in
a real application you may need to localize this prefix if you support users
from multiple locales.

We now need to register this filter function with our global instance so that we can
make use of it anywhere in our application, without needing to manually import it into
every file. Open up the file and add the following code right below
the line where we install :

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[236]

We will import the function using named imports, then register it with the
instance as a filter using the function. This is all we need to do. Now, we have
access to this filter in all of our components, but how do we use it? To demonstrate, in the

 component, we have a line that looks like
this:

We can use the currency filter by removing the character, and use the filter syntax, which
uses the pipe character and looks like this:

In our case, the updated item price rendering looks like this:

A little lower down in the same template, we have a slightly more complex expression:

This is no problem, and our currency filter can be used here as well:

Essentially, this filter can now be used anywhere that we're rendering a price in a template
string expression. There are a few more places to make this change, which I won't go into
detail about here as it's exactly the same process, but these files are:

Removing products from the cart
We already have the UI elements we need to trigger the removal of products from the cart,
so all we need to do now is create the necessary mutation and action in our store and wire
everything up. In the file, add the following exported
function:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[237]

This mutation is a simple case of calling the function and passing it the
 argument as the position to start deleting from, and instructing it to only delete a

single item by passing as the second parameter. Again, by modifying the array
using the function, Vue can detect the change and react to it. This causes any
components that are observing this array to update and refresh their UI automatically, the
same way they do if a local component's state changes.

The associated action for this mutation is quite simple, and simply finds the of the
item we wish to remove, then commits the mutation and passes it as an argument:

This action may seem fairly pointless as we could have found the array index within the
mutation itself. In that instance, we could actually just commit the mutation directly from a
component as well, which ultimately makes the action unnecessary. The idea behind Vuex
is that components dispatch actions, and actions commit mutations, which update the state
in the store. However, there is a difference of opinion among Vue developers that I've
spoken to around whether actions are 100% necessary if they don't add any kind of value.

If we aren't performing any kind of asynchronous operation or committing multiple
mutations based on some kind of business logic, my opinion is that there is no harm in
committing mutations directly from our components, and this is exactly what I do in a lot
of cases. However, it is important to avoid the temptation of putting any kind of logic, or
starting to update multiple pieces of state, in your mutations. For this reason, we will make
sure to always use actions for the purposes of this sample application.

The final step in wiring up the remove from cart functionality is to dispatch this action in our
 component. In the section,

locate the final element in the row and update the element inside to include
an event handler, like this:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[238]

Finally, in the section, add a object that includes the following function:

Refresh the application and test out the remove from cart functionality by adding a couple of
items to you cart, then clicking the trash icon on one of the rows to ensure that the correct
item is deleted. You can also verify that the correct mutations were fired as we did before,
using the Chrome devtools extension.

Updating cart items
The last function we need to perform with our cart items is manually updating the item
quantity. As we've just done with removing cart items, we'll need a mutation and an action,
and we'll have to perform some minor updates on the component to wire
everything up.

In the file, add the following new mutation:

This mutation is another fairly complicated one due to how the reactivity system in Vue
works, but it is virtually identical to the mutation we saw
earlier, so I won't explain it again this time around. I'm conscious that I've made the same
statement about the reactivity system a few times now, and it may be coming across as
though I'm suggesting there are some fundamental flaws with it. However, this isn't the
case, as the reason why the reactivity system has to work the way it does is down to
limitations in JavaScript itself, rather than with the Vue or Vuex libraries.

The only thing to note is that instead of an explicitly named argument such as ,
like we've seen before, we're receiving an object called . We're using an object here
because we can only pass a single user-defined argument to a mutation, and we need
multiple pieces of data. On this object, we're expecting another integer property called

, which represents the array index of the item we wish to update, and
another property specifying the quantity to set.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[239]

In the file, add the following new action:

We use the object to find the array index of the cart item we wish to
update, then interrogate the property to decide which mutation to
commit. If the quantity is more than zero, we commit the mutation we just created, passing
the object after assigning the property we just found. However, if the user
has entered zero or less into the field, we commit the
mutation instead, passing just the index of the item we wish to remove.

Open and find the
element that we're using for the quantity number input. Modify it and add a
event handler like so:

Finally, in the object, add the following new function:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[240]

All we need to do here is create a new object, including the properties and values
we're expecting in the action and the mutation we just created, then pass this new object as
the argument to the call. The only other thing to note is that we need to parse the

 value passed in to ensure it goes through the pipeline as an integer rather than a
string.

Refresh the application and make sure everything is still working. You should be able to
change the quantity value either by typing a new value in and tabbing away from the field,
or clicking the buttons inside the field to increase or decrease its value. Either way, the
subtotal will update to represent the new value based on the quantity entered.

Adding a getter to display the cart total
The final change we need to make to the shopping cart itself is to display the calculated
grand total at the bottom. As it stands, we have no means of calculating it, so we're just
displaying a hardcoded value instead. To fix this, we'll add a Vuex getter to our
store, which will calculate the total in a reusable function that we can use anywhere in our
application.

Getters have a similar use case as computed properties: creating derived state for specific
display purposes. In this case, the grand total of the shopping cart is the sum of a specific
calculation on each cart item. We could store the grand total as a property, but we'd
then have the overhead of remembering to keep it up to date after any mutation has run
that could alter that value. Instead, we derive the value from the cart items, and as they
change, the getter will update automatically.

In the file, add the following exported function:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[241]

As we did with our actions and mutations, we export each getter function individually, and
each one receives the store object as its first argument. There are multiple ways of
calculating this value, but the most concise is probably to use the function,
as we have here. However, if this function is new to you, it may look incredibly strange at
first. The function executes another function against each element in the array,
accumulating the result and passing it to the next iteration. In our getter, we define a

 function, which takes two arguments: and . As the
names would suggest, the argument tracks the accumulated value and

 represents the array item currently being processed. The actual function is
simple: take the accumulated value and add the cart item subtotal (price * quantity) to it. To
make use of this function, we must pass it to the function as we have here,
which causes each element of the array to be reduced in turn, each down to a single value.
As our cart may be empty, we have to provide the optional second argument, which is the
starting value to use.

 To make use of this getter from our cart page, we need to make two very simple changes.
We'll add a computed property, which retrieves the value from the getter, then bind the UI
to that computed property. Open the file and add the
following computed property:

Finally, find the line in the section and change it to an expression
that makes use of the currency filter we made earlier:

Refresh the application now and test that everything works as expected. The total at the
bottom of the cart should update whenever you update an item's quantity or remove an
item from the cart.

Creating a cart summary component
To further demonstrate the benefits of centralized store state and getters, we're going to add
a cart summary component that displays in a popup when a user hovers over the cart link
in the navbar. We'll add another getter that calculates the total number of items in the cart,
then use it along with the one we already have inside the popover to show how useful it is
to have reusable calculated properties like this.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[242]

Add the following exported function to the file:

This is very similar to the previous getter we created, so it should look fairly familiar, but
ultimately we're doing the equivalent of a calculation on a LINQ collection in C#. The
total number of items in the cart is equal to the sum of the cart item values.

Next, create a new empty component called in the
 directory. The section of this component looks

like this:

 As we'll be replacing the navbar link to the cart page with this component, we're using a
 element as the root element, with the same prop of the cart page's relative

URL. To make things look a little nicer, I've added a Font Awesome shopping cart icon
before the link text, as well as a variable displayed in brackets at the end. Note that I
also added an attribute, which we'll use as the target of the popover component we're
about to add.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[243]

 has a built-in popover component called , which we're using
here. We're passing a prop equal to the attribute of above it, and
passing as the prop to cause the popover to display when the link is
hovered over. Inside the popover, we can render whatever content we wish, and could
even render a reduced-size table of cart items like the one on the cart page itself. However,
to keep things simple for the sake of this demonstration, all we're rendering is the item
count and total cost of the items in our cart.

The section of this component is very simple, and only contains two computed
properties that map to the store getters we defined earlier:

Rather than creating a computed property each time we wish to data bind
to a Vuex getter or state property, we could utilize some helper functions
that come baked into Vuex itself. If you're interested, look up the

 and functions to see how they work. However,
we won't be using them in the interests of keeping things simple!

The last step is to make use of this new component in the
 file by replacing this line:

With this line:

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[244]

Then, import and declare the new component for use in the section:

That's all there is to it. By abstracting certain pieces of functionality away into a centralized
store, we can reuse them across any component in the entire application with very little
effort or complexity involved. If we were to carry on using props to pass data down from
parent components to their children, we'd have to declare all of our shared application state
in the root component and pass it down through the tree of components as far as
it needs to go. Each time we add new components to the tree, we'd need to remember to
pass those props on again, which is very repetitive and error-prone. By centralizing shared
application state, we alleviate these issues.

Now, test the application again to make sure everything is still working, and remember that
as we've made changes to the file, a full browser refresh
is required before the changes will take effect. Add some products to your cart, then hover
over the cart link to see the summary component we just created.

Persisting the cart to local storage
As you will have noticed already, every time we refresh the browser, our shopping cart's
contents are lost. Both component- and application-level state are only stored in memory,
apart from the catalog filter selections, which we pushed into the browser URL. As such, as
soon as the browser is refreshed, that memory is cleared and we lose the state of our
shopping cart.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[245]

There are a number of ways that we could solve this problem, including persisting the state
into the browser's local storage, or pushing the state up to our API and persisting it in the
database. Both of these options are completely acceptable and widely used approaches, but
they also have their own pros and cons. Persisting to local storage in the browser is simple
and effective, but if the user clears their browser cache, then they will still lose their cart
items. On the other hand, persisting to the database via the API is permanent, and unless
they explicitly clear their cart, then its contents are safe from browser memory loss.
However, it is a far more complicated approach, as unless we enforce user registration and
authentication before adding items to a shopping cart, we have to put additional measures
in place to allow anonymous user access so that we can identify which cart belongs to
which user session.

Generally speaking, it is normally acceptable to allow the shopping cart's contents to be
wiped if a user explicitly clears their browser cache, so this usually isn't a reason to avoid
using local storage. One of the main benefits of persisting a shopping cart into the database
is for reporting purposes. Companies will find information about how many carts actually
result in a completed sale highly valuable, and this information is only available if the cart
is stored on the server side of the application. For this reason, and to keep things simple,
we'll be persisting the cart items to local storage for this demo application.

If you prefer to store the cart in the database, you can write ASP.NET Core
middleware that attaches a GUID to unauthenticated response headers in
order to identify an anonymous user. Link the cart to this GUID in the
database, then transfer it to a real user account when they register!

You might think this is going to be a fairly tricky process of extending every mutation to
also persist the changes into local storage. However, thanks to the use of Vuex, we only
have three simple changes to make. First, open the file, and
right before the export line at the bottom, we need to add the following:

As the function name suggests, we are subscribing to any changes in
the store and firing a callback that uses the function to persist the
entire object. Note that the browser's local storage is only capable of storing
key/value pairs, where the values are strings. In order to store a complex object like our

 object, we have to convert it to a JSON string by using the
function.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[246]

Next, we need an additional mutation, which will check whether we have anything stored
in local storage, and initialize our state with it if we do. Add the following exported
function to the file:

If we find a key named in local storage, we use the function that
we've used so many times before to copy the values from the local storage onto the
object from our Vuex store. As we had to convert this object to a string on the way into the
local storage, here we have to do the opposite and call to convert it back into
an object. Note that we must use the function here or the application will
not react to the state change.

Finally, in the file, we need to add a
life cycle hook to commit this new mutation:

Notice how we haven't bothered to define an action this time, as like we previously
discussed, there really is no need for such a simple mutation.

Refresh the application again now and the next time you add products to your cart and
refresh the browser, they should remain in your cart. You can also verify that the mutation
is firing by checking the devtools extension, like we did earlier.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[247]

Improving the UX with add to cart feedback
Our cart is now fully functional, and as such we could leave it as is. However, when
clicking the Add to cart button, there is no feedback as to whether or not something
happened. Some online shops take you to the shopping cart page as and when you add a
product to your cart, and if that's your preferred approach, then it should be a fairly simple
change for you to add a page change as part of the button click handler. However, to
demonstrate a different approach, we'll use a library called to provide instant
feedback to the user that something positive happened.

This section is completely optional, and will have no negative effects on
the rest of the application if you choose to skip it for any reason!

First, we need to download a new npm module. The original library has a
dependency on jQuery, so instead we'll use another open source alternative that is built
specifically for use with Vue instead. Open Terminal and run the following command:

yarn add @deveodk/vue-toastr

Next, in the file, we need to install and configure this module like we
did before with other Vue plugins. At the top of the file with the rest of the
statements, add the following two lines:

Then, after the line, add the following:

This is similar to what we've done before, but this particular installation has an optional
second argument where we can override some default settings. In this case, we just specify
that the toast dialogs should appear at the top-right of the screen by default.

www.EBooksWorld.ir

Building a Shopping Cart Chapter 6

[248]

Finally, in the file, locate the
 function in the object of the section, and right after

committing the mutation, add the following line:

Refresh the page and add another product to your cart to check that the toast messages
appear as expected.

The last thing I'm going to do is remove the Add to cart button from the catalog list page, as
it currently doesn't do anything and there is no way for our users to specify a product
variant until they enter the details page anyway. For reference, this is in the
section of the file.

Summary
It was another long and fairly complicated feature to implement in this chapter, so let's take
a minute to review what we've achieved. We started out by looking at our options for
persistent shopping cart data, both on the client side and server side, before settling on
using the local storage feature of the web browser.

We then prepared our product details page by creating a custom image gallery component
and adding drop-down lists to provide our users with a way of specifying which variant of
the product they wish to purchase. We then installed and configured Vuex for centralized
client-side state management, before adding the selection of actions, mutations, and getters
required to provide the basic functionality of a shopping cart.

We also added a new shopping cart page to our application and looked at how we can fetch
data from the Vuex store inside our components. We also built a cart summary component
to show how easily we can reuse store logic from anywhere in our application. We saw
how custom filters can reduce duplication by building a currency filter, and how easy it is
to add toast notifications to improve the UX of the application.

Finally, with just a few lines of code, we saw how we can persist the entire centralized state
of the application into local storage, and retrieve it again each time the application loads or
the browser refreshes.

www.EBooksWorld.ir

77
User Registration and

Authentication
We now have a functional product catalog that our users can browse, as well as a shopping
cart that they can utilize to store their chosen products before making a purchase. However,
before we allow them to proceed to the checkout page and place their orders, we need to
make sure they have a user account to link the order to in the database. In this chapter,
we're going to add authentication and user registration to the app, by making use of the
latest features of ASP.NET Core 2.0 to issue and validate JWT tokens.

In this chapter, we're going to look at the following topics:

Configuring JWT authentication in ASP.NET Core 2.0
Issuing and validating JWTs
Persisting authentication state with Vuex and local storage
Configuring global HTTP headers with
Creating login/register UI components

We have a fair bit of ground to cover, so let's dive right in.

Adding JWT authentication to the API
In previous versions of ASP.NET Core, configuring authentication was far more
cumbersome and not particularly intuitive. However, with the 2.0 release, Microsoft did a
lot of work to refactor how authentication works in ASP.NET Core, and it's now a very
simple process to add it to an ASP.NET Core web app.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[250]

Why JWTs?
For standard server-side web applications built with MVC, we'd most likely use cookies
rather than JWTs, which is the default option if we don't specify one. However, as we're
building a stateless web API with an SPA frontend, it makes much more sense to use JWTs
in order to maintain the stateless nature of the application.

In traditional MVC applications, when a user logs in, a session is created on the server and
a cookie is returned to the user's browser, which identifies that session on subsequent
HTTP requests. This is a stateful authentication mechanism that doesn't really fit in with
modern applications that use JavaScript SPA frameworks for the UI. The sample
application we're building throughout this book is based on the simple approach of hosting
both frontend and backend on a single web server, accessed via a single domain. However,
it is fairly common with modern applications to use multiple web servers to completely
separate the frontend from the backend, and access each from different domains or
subdomains. For example, we could host the frontend of our e-commerce application at

, and the backend at . With
cookie-based authentication, this isn't necessarily possible, depending on the configuration
of the server and the way it sets cookies. It certainly isn't at all possible if we want to use an
entirely different domain, or allow access to our API for other applications or services on
different domains.

In comparison, when a user logs in to an application using JWT authentication, no server-
side session is required. All the server needs to do is generate a JWT and return it to the
client. It doesn't matter what type of client it is, such as web applications versus mobile
applications; as long as the JWT is included with any HTTP request to the API, it can be
verified and used to authenticate the user. We also lose the restriction on how we host our
applications and the domains we use, and we can easily allow access to external
applications or services.

There are a number of other benefits to using JWTs, such as scalability and performance,
but these are beyond the scope of this book. Generally speaking, it is safe to say that any
application that makes use of a JavaScript SPA framework with a backing API is far better
suited to using JWTs rather than cookies.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[251]

Configuring JWT authentication
Now that we know why we're using JWTs, we need to make a few configuration changes to
enable authentication and specify the mechanism we wish to use. We'll start by opening the

 file, and finding the following piece of code within it:

Directly beneath this section, add the following:

If we were using cookie-based authentication, we wouldn't need this code at all, but since
we're using JWTs, we need to override the default authentication mechanism by specifying
the JWT bearer authentication scheme as the default challenge and authentication schemes.
With this in place, we need to finish off the configuration by chaining on the following code
directly:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[252]

Most of these options are fairly self-explanatory, and Microsoft's own documentation is
pretty good for setting up authentication, so we won't dwell too long on this. Essentially,
we are just defining what the standard JWT claim values should be set to, such as the
and claims, as well as overriding some of the defaults, such as disabling the HTTPS
requirement. As previously discussed, our sample app is running from a single domain
URL, so the issuer and audience values will be the same, but we could just as easily have
different URLs for these values. We also make sure that the JWT middleware will validate
the issuer, audience, and signing key in order to ensure that the JWTs haven't been
tampered with in any way, or been issued from a different application.

Quite a few of these settings are making use of the object of the class, but
the properties we're trying to access don't actually exist yet, so let's add those in next. Open
up the file, and, just before the closing curly brace at the bottom of the
file, add the following JSON key/value pair:

The value is used here as the issuer signing key, and can be any string you like.
However, if malicious users were to find out what this key was, they could forge tokens
that would give them authenticated access to the system. Therefore, it is recommended to
make this value fairly random and hard to guess, and some suggestions even go as far as to
recommend changing it on a fairly frequent basis. At the very least, it should be stored in a
secure fashion on any production environment we'll see how to do this in a later chapter
where we'll use environment variables to override it in production.

We've already discussed the and values, but to reiterate, this is
how we ensure that only tokens that were issued from our trusted domain are valid, as well
as ensuring that client requests originate from the domain URL we set for the audience
claim.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[253]

Finally, we set the expiration window of our JWTs to 30 days. You can obviously set this to
whatever you like, depending on your preferences, but it's worth noting that, once a JWT
has been issued, it cannot be invalidated. The longer the expiration, the bigger the risk if a
malicious user gained access to a JWT that didn't belong to them, as they have a much
longer period of time they can access the system for. The simple way of reducing that risk is
to go the opposite way and reduce the length of the expiration period, but the trade-off is
that users then have to log in more frequently.

A better, albeit more complicated, approach is to introduce an additional token called
a refresh token, which as its name suggests is used to refresh an access token. The idea is
that access tokens (what we're using currently) should have a short expiration value,
usually measured in minutes, and once it expires, we use the refresh token to get a new
one. Refresh tokens can have much longer expiration values, because they are stored in the
database, and as such can be invalidated at will. We then have more control and can
minimize the window in which a compromised access token can be used to access the
system. We'll look at this in more detail in a later chapter when we introduce refresh tokens
to make our API far more secure.

With these settings in place, the last step is to actually make use of the JWT bearer
middleware by adding it to our middleware pipeline. Back in the file, locate
the method and add the following line:

app.UseAuthentication();

Remember that ordering matters when configuring the middleware pipeline, so make sure
you add it before adding the MVC middleware. At this point, we have everything we need
to start preventing unauthenticated access to specific endpoints within our API, but we
can't test it properly until we're also able to actually issue a JWT to use on authenticated
endpoints.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[254]

Issuing JWTs
Ultimately, we need an endpoint for new users to register, as well as an endpoint for
existing users to authenticate and retrieve a JWT in return. We already added a test user
into the database as part of our seed data, so we can jump right into issuing JWTs to make
sure our authentication configuration is working properly. Under the directory,
create a new folder called , and then add a file with the
following contents:

All we've done so far is to declare the dependencies we'll need, namely the ASP.NET
Identity and classes for loading users from the
database and validating the supplied password, as well as an instance of the

 interface, which we'll use for reading the app settings we need to create a
JWT if authentication is successful. These classes are all available using the built-in DI
container so we simply declare them as parameters to the controllers constructor.

Directly beneath this constructor, we'll add the one and only action method that we need
on this controller, which will respond to a request containing the email address
and password of the user attempting to log in, and return a JWT if successful. This action
method looks like this:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[255]

Web app security best practices suggest that, regardless of what the actual error is, if
authentication fails, we should always return a standard error message to tell the user their
email or password was incorrect. Therefore, we start this action method off by defining this
error message variable before checking whether the model state is valid or not, and
returning the error if validation fails. Next, we use the class to look for a
user in the database based on the supplied email address, returning our generic error
message if we fail to find one. If a user is found, we have two different checks to make: we
first check if the user is locked out, which occurs when they enter the wrong password five
times in a row; and we use the class to validate the supplied
password. If either check fails, we return the same generic error message in a
response. Finally, if all is well, we call a method, which we're yet to
define, returning the generated token model within an response.

Before we look at the method, you may have noticed the
 class we're expecting as a parameter to this action method. This view

model class looks like this:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[256]

The method we're using to create the JWT after a successful login attempt
also belongs in the class and looks like this:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[257]

We start by creating a new list of objects containing the standard claims that are
expected in most JWT authentication implementations. We use the
property for the claim, and a GUID value for the claim, which is used as a unique
identifier for the token itself. We also use the and
properties for the and claims, respectively.

Next, we retrieve a list of roles the user belongs to using the class, then
loop over these, and add them to the list of claims we just created. We're not yet using roles
in our app, but we will be soon, so we'll cover more on roles shortly.

The next few lines are used to create an instance of the class, which
is required to generate a JWT. First up, we create an instance of the

 class using the signing key from the configuration that we
discussed earlier, by converting it to a array using the

 static class. We then pass this object into the constructor of the
 class, specifying the

algorithm as the signature algorithm to apply.

The last piece of information we need to generate a JWT is the expiry date of the token. We
determine this date by using the configuration setting that we defined
earlier, adding the variable amount of days to the current timestamp. With this in place, we
create an instance of the class, passing in the and

 configuration settings as discussed earlier, as well as the list of claims, expiry
date, and signing credentials we just defined. Finally, we return an instance of a

 class, which we are about to define, using the
 method to write the

object we just created to a string. We also add the expiry date to this view model to make it
easier for the client application to determine if a token is expired without needing to
perform a HTTP request to the server. We could decode the token on the client and take the
expiry from there, but this method is far simpler for now, and there are no downsides to
doing it this way either.

The class we just used is another simple class, and looks like this:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[258]

You'll notice that we've used the attribute to override the JSON serializer
settings for these properties. If you've ever used OAuth or Open ID Connect before, you'll
probably have noticed that they tend to use the underscore naming convention for
variables, rather than camel case as we do with JSON generated by C# and .NET. In this
instance, we're simply demonstrating how to override the default generated JSON property
names should you wish to follow the OAuth naming conventions feel free to omit these if
you prefer, but remember to change the frontend appropriately as well.

Adding user role support
Before we can properly test our JWT setup, we need to introduce user roles into our system.
Any roles a user is assigned to are included in the claims that we bake into the JWT itself, so
we need to add a role to the test user we seeded earlier in order to properly test that our
JWTs contain all the information we expect them to.

The first step is to modify our seed data to include the roles we'll need, which will simply
be and . Open up the file, and right at
the top, add the following new property:

We then need to create a new static method to check if the roles we want already exist, and
create them if they don't:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[259]

This method now needs invoking from the method as we've done before,
so update this as follows:

 AddRoles(context);

Make sure this is invoked before the method, as we're about to update this to
add our existing user to the admin role. This will obviously fail if the roles haven't been
added before the method is invoked. The updated method looks like
this:

var admin = UserManager.FindByEmailAsync("stu@ratcliffe.io")
 .GetAwaiter().GetResult();

 if (UserManager.IsInRoleAsync(admin,
 "Admin").GetAwaiter().GetResult() == false)
 {
 UserManager.AddToRoleAsync(admin, "Admin");
 }

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[260]

As our database and test user already exist, the first statement here will not run.
Therefore, we need to find the user by email address, and then add it to the admin role if it
doesn't already belong to it. Seeing as we're not yet production-ready, we could easily drop
the entire database and modify the original statement to also add the new user to the
admin role at the point it's originally created. This would keep things simple and make
most of the code we just added unnecessary. However, if our application was already in
production with a live database, we wouldn't be able to do this, so it's worth thinking about
how to make these kinds of changes when the database can't be dropped.

Finally, as we now have a dependency on the class, we need to provide
an instance as we did with the class before. In the
method of the class, find the following line:

And change it to the following:

As we now have two dependencies to provide, we only build the service provider once and
reuse it for both dependencies.

Testing JWT authentication
Our JWT authentication setup and configuration is complete, so let's give our API
endpoints a quick test and make sure everything is working properly. Currently, none of
our controllers require authentication, so let's add an attribute to the

 file and use it for testing our setup again.
Modify the controller declaration as follows:

[Authorize]

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[261]

If we restart the application now, we can test that this is having the desired effect using
Postman again. Performing a HTTP GET request to yields
the following 401 HTTP response code:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[262]

Now we'll try an invalid request to our token endpoint to make sure it doesn't return a JWT
if we get the password wrong:

Next, a valid request to the same endpoint to retrieve a JWT using a valid email/password
combination based on the details we used in the seed data:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[263]

If we then copy the contents of the returned property, we can paste it into
the JWT checker at to check that the contents are as we expect them to be:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[264]

All looking good so far, so let's now attach this token to the header of the
previously failing GET request to and see if we can
now retrieve our list:

And there we have it; JWT authentication is up and running.

User registration
Being able to authenticate is all very well and good, but so far the only user account we
have to authenticate is the admin account we seeded for ourselves. Let's change this by
creating an API endpoint for our customers to register for new user accounts.

Create a new directory and add a standard controller class like so:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[265]

Within this controller, we need a single action method for registering new users:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[266]

There's nothing particularly new going on here. We use methods from the
 class that we've used before to search for existing users by email address,

and we do a number of validation checks along the way. The difference here from the token
controller we just saw is that we actually return specific error messages depending on
what's gone wrong. The only other thing to note is that we're setting the

 property to for all new users. In a real application, I'd
always enable email verification, and leave this property set to its default value, but
to keep things simple we won't be going down that route here.

The class that we receive as a parameter looks like this:

You can test this API endpoint in much the same way as we did with the previous one. Try
sending requests with missing parameters, invalid data types, and finally with valid data to
ensure everything is working correctly.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[267]

Authentication and user registration in the
client app
We now have fully functional API endpoints to enable users to register for an account, and
then authenticate themselves using their email address and password. However, this is
only half of the problem, as we still need to build a UI to perform these actions. We'll start
by extending the Vuex store that we built in the last chapter to include the actions,
mutations, and getters necessary to perform the API calls to the server, and store the
authentication status of our users.

Vuex state properties for authentication
The first step is very simple we need a few additional properties added to the
object within our Vuex store. Open up the file and modify
the object as follows:

 auth: null,
 showAuthModal: false,
 loading: false,

Starting at the top, we're going to use the property to store a simple object that will
contain the JWT access token and expiry date properties that we return from the login
action of our API. As its name suggests, the property has a Boolean value
to control the display of a modal component that we're going to use for housing the login
and register forms. Finally, we'll use the Boolean value to track when an API
request is in progress so we can do things like disabling buttons, or showing loading icons.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[268]

Vuex mutations for managing authentication
state
The next thing we need is a set of Vuex mutations for manipulating the properties
we just created. All of the following mutation functions belong in the

 file.

The first two mutations we need are for setting the visibility of the modal we'll be building
later:

Next, we need a set of mutations to track and store the status and outcome of a login API
request:

This is a common pattern in Vuex when performing API requests. Before performing the
AJAX call, it's common to commit a mutation to signify the start of the request, which in
this case sets the property to . Then, depending on whether the API request
returns a success or failure result, we commit a success/error mutation to signify the end of
the request. In this case, if the API call is successful, we simply assign the response object to
the property, and then set the property to . If the request fails, all we
do is set the property to .

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[269]

We'll also need a similar set of mutations to track the user registration API request:

It may seem like overkill to use three mutations here rather than two, seeing as both the
 and mutations are identical. However, in a more

complicated application, it is common to perform some additional state changes in each
one, and it's also more explicit when we check the mutation history using the Vue devtools
in Chrome.

Finally, we need a single mutation to commit when the user logs out, in order to clear the
 object:

Vuex authentication getters
We only need a single Vuex getter to determine if the current user is authenticated or not.
Open up the file and add the following exported
function:

In order to tell if a user is authenticated, we first need to check that the property is not
null, and that it has an property set. Finally, we check that the

 property is a valid date in the future. If any of these checks
fail, either the user is unauthenticated, or their access token has expired.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[270]

Vuex login, register, and logout actions
The final step in extending our Vuex store is to add the login and register actions that
actually coordinate the API requests to the server, as well as committing the relevant
mutations. These belong in the file, and the first of these
is the login action:

This action returns a promise, so that, when we dispatch it from a component, we can wait
for it to resolve before performing any additional component-level operations. We start by
committing the mutation that we talked about earlier, before performing an
HTTP POST request to the token controller using . requests also return
promises, so we can wait for them to resolve successfully using a block.

In the success block in this case, we retrieve the from the response and
attach it to the authorization header in the property.
From this point on, all HTTP requests performed using will have the bearer token
set so that the request can be authenticated by our server-side API. After this, we commit
the and mutations, passing the object that we
retrieved from the response as the payload for the former. We finish the success block by
calling the function of the returned promise, passing it the entire object
for maximum flexibility.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[271]

In order to handle request failures, we can use a block, which will be
triggered by the function of the promise returned by the request. In this
instance, we commit the mutation, the authorization header from
future requests, and then call our own method of the promise being
returned by the action. The user registration action is very similar, albeit slightly simpler:

As with the login action, we return a promise, which we either resolve or reject based on
the response of an API call performed using . We commit the
mutation before triggering the API call, the mutation if it succeeds, and
the mutation if it fails.

The final action we need is the logout action, which in comparison to the previous two is
incredibly simple:

All we need to do is commit the mutation in order to clear the authentication state,
and then the authorization header from the default configuration used by
any subsequent HTTP requests. This completes our Vuex store changes, so we are ready to
start building out the components we need to trigger these actions.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[272]

Authentication modal component
As previously discussed, rather than building out full login and register pages, including
the configuration that goes with them, we're going to put our login and register
forms into separate tabs within a modal. As this component doesn't really belong to any
single page, it doesn't belong in any of our sub-directories beneath

 either. Instead, create a directory
to hold all of our app-level components, and then create an component
file inside. The section for this component looks like this:

The root-level element here is the modal component from the library. To
control visibility of this component, it expects a Boolean property to be bound to the

 directive, so we're stating here that we'll need some kind of property with a
Boolean value. We're also passing a number of Boolean props to this component, such as

 and . All we're doing here is preventing the default
Bootstrap modal header/footer sections from appearing, and preventing the modal from
being closed if the user presses the Escape key or clicks away from the modal itself. We need
full control over the closing of this modal so we can decide what to do based on the
authentication status of the user.

Inside the modal component, we're nesting two more components from :
the and components. The tabs component optionally accepts an integer
value for the directive, which we can use to programmatically switch tabs we'll
need to do this after a user successfully registers and needs to log in. This doesn't prevent
the user from manually switching tabs by clicking the headers; it just gives us extra
flexibility.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[273]

We then render two components, one for the login form and one for the register
form, each of which is rendered as a custom component that we're yet to define. By default,
the login tab is active when the modal is first displayed. The component takes
a prop, which we'll use to show a success message to notify the user that their
registration was successful. We also listen for a event and invoke a method,
which we'll define in a moment. The component emits a event,
which we'll listen for and programmatically switch to the login tab, and a event that
will also trigger the method.

The section of this component is a little more complicated, so we'll go over it in
sections. We start by importing the login and register form components:

These don't actually exist yet, so don't worry if you start seeing errors in your Terminal or
browser console. Next, we need to do our standard practice of exporting a default object
which will be our component definition:

All we've done so far is give the component a name, and declare the two custom
components we just imported as child components of this one. We still need to add a fair
few pieces of behavior though, starting with the property, which controls the
visibility of this modal. We'll use the following prop declaration for this:

We also need an data property for controlling the active tab, and a
 Boolean property, which we pass down into the component to

show a success message after a user registers for an account:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[274]

And, finally, we need the and methods to manipulate these data
properties:

The method is fairly self-explanatory. Remembering that this gets called after a
new user successfully registers for an account, we set the property to
and the property to in order to switch tabs back to the login tab. The user will then
be presented with a successful registration confirmation message and asked to log in to
continue.

The method is a little more complicated, but this is actually very similar to the code
we've seen before, when building out the product catalog. We start by committing the

 mutation to close the modal, and then use the function to
clone the current query string object representation. We then delete the property
if it exists, before pushing the modified object back onto the query string, as we've
done before. This won't make much sense yet, but, as we'll be preventing navigation to
protected routes if the user isn't authenticated, we'll use the query string to track the URL to
redirect to, just like we would with a full fat login page implementation. However, unlike
with a full page for logging in, where the user would navigate back to their previous page if
they didn't want to complete the login process, we need to manually delete the redirect
parameter from the query string if they close out of the modal rather than proceeding to log
in.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[275]

Login form component
The component also lives under the
directory, and has the following section:

We start by rendering a form where we prevent the default action, choosing to
invoke a method instead. We then render two (initially hidden) alert boxes, one for
displaying an error message if the form submission fails, and one that shows the
successfully registered message if the prop is set to . The error alert is
configured as dismissible, which allows us to click a Close icon to hide the alert once we've
seen it. As it's hidden, it emits a event, which we use to clear the
property. Both of these alert boxes have their visibility controlled by a prop, which in
the instance of the error alert only resolves to if the property is anything other
than , and for the alert resolves to if the prop is and
the property is .

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[276]

The rest of this form is very simple, consisting of three Bootstrap form groups for the email
address input, password input, and action buttons, respectively. The text and password
inputs use the Bootstrap-Vue's component, using the
directive to bind the values to appropriate data properties, as well as automatically
trimming any additional whitespace entered by mistake. Both of the action buttons have
their prop bound to a local property, which we'll bind up to our Vuex
store state shortly.

Again, the section for this component is more complicated, so we'll go over it one
piece at a time:

As always, we've started with a default component export, specifying the component name
and the props that we expect to be passed in. In this case, it's the single prop
that controls the alert box visibility, as discussed previously. The local component state that
we require includes the and properties that we bind to the form inputs, as
well as an property for any validation errors:

We're also binding the state of the action buttons to a property, which
we need to fetch from our Vuex store, so we'll use a property for this:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[277]

We need two functions in the object of this component, the first of which is the
 function, which performs the main action of the entire component:

We start by constructing a object consisting of the and
properties, which we need on the API action method to authenticate the user. We then
dispatch the Vuex action that we defined earlier, passing it the object we
just created. This is where we see the benefit of returning a promise from Vuex actions, as
we can now wait for it to complete before doing different operations, depending on
whether it succeeded or failed. If the action succeeds, the block will be run, where
we clear out the user input fields and error property, and then redirect to the URL in the
query string if one exists. If the action fails, the block is run, where we simply
assign the error data from the server to the local property.

The second function we need is the function, which gets called when the user exits
the form rather than submitting it:

All we need to do here is emit the event and let the parent component
handle the logic.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[278]

Register form component
The component lives in the same directory, is very similar to the login
form component we just discussed, and, as such, does not need much explanation. The

 section looks like this:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[279]

As with the login form, we start with an alert box that will display if the form submission
fails in order to feed back to the user what the validation errors were. At first glance, it
looks like we're looping over an array of errors inside this alert box, but we're actually
looping over the keys of an object. The value that corresponds to those keys is an array of
error messages, so, in order to keep things simple, we just display the first message in the
array. This error message structure is the default for ASP.NET Core MVC validation, which
is why we need to handle things in this way. The rest of this template is much the same as
the login form: a group of Bootstrap form input elements, and a pair of action buttons to
submit the form or cancel and close the modal.

The bulk of the section of this component is also very similar to the login form
component we just looked at:

Where things get slightly different is in the main function within the
object:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[280]

As we did with the login method, we construct a object to match the parameters
we need for the user registration API action method, and pass it to a Vuex call.
The block is also very similar in that it clears out the local state properties, but
also emits the event so the parent component can switch tabs to the login form.
The main difference is in the block. As we've kept our API very simple, it can return
either a single string value as the error message, or an object with a collection of arrays of
error messages.

As such, we first determine if the response is a string or not, and then make sure the
structure we assign to the local property is the same so that the UI displays the
correct data. If the response is a single string value, we create an anonymous object with a
single key, where the value is an array containing the single error message returned
in the property.

As with the login form component, we also need a method to emit the event:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[281]

Auth navigation item component
Our component is now complete, but we have no way of opening it to test it
out. We're going to build a simple component that will reside in the navigation menu, and
either display a login/register link, or a drop-down menu with account-specific links,
depending on the authentication status of the user.

Create a file, and give it a
section that looks like this:

Note how we actually have two root-level elements in this template. Recall
, Understanding the Fundamentals, where we looked at the fundamentals of Vue; we can

only have a single root element in a component's section. The trick here is that
we're using the and directives on these elements, meaning only one will ever
be rendered, which meets the requirements of the Vue template engine.

If the user is authenticated, we display a drop-down item, where the toggle button is a
Font Awesome user icon, and if not, it simply contains a single logout link. If the user is not
yet logged in, we display the login/register link, which we'll use to display the modal
component we just created.

The section for this component looks like this:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[282]

Most of this is fairly standard stuff by this point, so should be fairly self-explanatory. We
have the computed property, which hooks directly into the Vuex getter
of the same name, and determines whether to show the login/register link or the user
account drop-down menu in the preceding template. We also have the
computed property, which simply concatenates the logged-in user's first and last names to
display in the navbar at the top of the page. We then specify two methods, one for each of
the links we could be displaying, depending on authentication status.

The method quite simply commits the mutation, which we defined
earlier, to control the visibility of the login modal we just created. The method is a
little more complex, and may not look particularly familiar yet. As we've done before, we
dispatch a Vuex action, which we're expecting to return a promise (which it does) as we
chain on a block to process the successful response. We don't have to have a
corresponding block unless we need to handle the error, so in this case we're
keeping things simple. We also have no use for whatever parameter is passed to the

 block, so we use a pair of empty parentheses for the first part of the fat arrow
syntax callback function that we declare like this:

.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[283]

The next part is where we've changed things quite a bit by checking the
 property. We'll see how to do this in a moment, but

for now, you just need to know that we can assign any arbitrary values we'd like to the
 property of a VueRouter's object. In this case, if a particular route requires

authentication, we set the meta property to . Now that we can tell if
the page the user is currently on is locked down to authenticated users, we can decide
whether or not to redirect them back to the home page after they've logged out.

Wiring up the new components in App.vue
With these two new components in place, we need to wire them up so that they're actually
displayed and can be interacted with. We have a few changes to make in the

 file, starting by importing our new components at the
top of the section:

Then we declare them as child components:

 AuthNavItem,
 AuthModal,

Finally, in the section, we need to render the new components in the appropriate
locations. Start by finding the element, and, directly beneath it, add
the following:

Then, at the bottom of the template, before the final closing tag, add the following:

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[284]

This is enough to get us started with testing our UI changes. If you refresh the page now,
you should see the login/register link in the upper-right corner of the screen. Try logging in
with the credentials we used earlier, and make sure that, once you have logged in, the UI
refreshes to show the drop-down menu item with a nested logout link. Similarly, try
logging out and make sure that the UI refreshes back to showing the login/register
link. You can also try registering for a new user account and make sure the login page is
displayed with the appropriate success message if registration was successful.

Protecting pages with navigation guards
At this point, we can open the login modal manually, but we don't yet have any protected
routes to prevent access until the user has logged in. Let's remedy this by creating an empty
checkout page ready for the next chapter, when we start processing payments. Create a

 component with a barebones section as
follows:

Next, open up and, right beneath the other page component imports,
add the following:

Finally, in the same file, change the array to include a route definition for this new
checkout page:

 { path: "/checkout", component: Checkout, meta:
 { requiresAuth: true } },

As promised earlier, this is where/how we add meta properties to definitions. We'll
see how to actually prevent unauthorized access to this in just a moment, but with this
convention all we need to do to prevent unauthorized access is to add the
meta property to a definition like this.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[285]

A little further down in this same file, we have a function hook
configured to start the page transition loading animation. We can hook into this same
function to check the meta properties of the page being requested, and ensure that the user
is authenticated if it's a page that requires it. Change this function to look like this:

This might look pretty scary at first, but if we step through it, it should be fairly easy to
grasp what's going on here. As previously discussed, in this hook we receive a
parameter, which corresponds to the route we're about to change to, and a parameter
for the current route we're navigating away from. What we've not talked about previously
is that there could be multiple routes matched by the path we push to the router, and these
are all available in the array. As such, we first use the built-in

 function to check if some of those matched routes have the
meta property set to . The syntax of this function probably looks pretty familiar, as it's
similar to the LINQ function in C#, which performs the same action.

Once this first line makes sense, the rest of the function should as well. If none of the
matched routes require authentication, or the user is already authenticated, we allow the
navigation to continue by calling the parameter function. Otherwise, we display the
login modal by committing the mutation. Finally, we override the default
call to by instructing it to navigate to a route with the current URL path, as well as
setting the query parameter to the path of the route we were trying to access.
This parameter is what we then use after a successful login to decide where to
send the user.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[286]

To test that everything is working correctly, open up the
file, locate the checkout button markup in the section, and modify it to include a

 handler like so:

@click="checkout"

Then, add the following function to the object in the section:

Refresh the application again now. Ensure you are logged out and have at least one product
added to your shopping cart, then navigate to the shopping cart page and click on the
checkout button to make sure you are forced to log in.

Setting the authentication state on app
startup
At this point, you might think we are done. However, if you try refreshing the browser
after navigating to the checkout page, you'll probably notice some unexpected behavior, as
you'll be asked to log in again. There is also another far less obvious issue in that, after
refreshing the page, the default headers will be cleared, including the bearer token
we attached to the authorization header. Currently, the only way this header is set is after a
successful login request not something that the user should have to do after every page
refresh. This also means that any future API requests would fail if those endpoints required
authentication.

To fix the configuration issue, we need to check if the user is authenticated at the
earliest point of the app startup, and set the authorization header if they are. This fix will
also lead us onto the right path for solving the authentication state issue as well the
problem we're seeing is due to the current place that we're initializing our Vuex store if it
already exists in local storage.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[287]

We can fix both of these issues in one go by adding the following block of code in the
appropriate location of the file. Find the existing array, and
then add the following code directly above it:

As we'll be setting the default headers here, we first need to import itself. We
then check local storage for any initial state that we configured to be persisted on every
change to the store itself. If it exists, we commit the mutation that sets this
state. We can then use the getter to check if the user is already
authenticated, and if they are, we attach the access token in much the same way as we do
after a successful login attempt.

You might be thinking that this code looks incredibly similar to what we originally put
inside the mutation itself, minus the configuration part, and you'd be
right. However, we're not currently committing this mutation until the
lifecycle hook of our main component. The issue is that the navigation guard we
set up on our routes has already run before this hook does, so it thinks we're not
authenticated when we actually are, and, as such, we get directed to the login modal when
we shouldn't. By committing this mutation before the router navigation guard is even
declared, we ensure that our store is initialized before the router decides if we're
authenticated or not.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[288]

The mutation itself can now be simplified as well. It currently checks local storage for our
initial state, and only performs an action if it finds it. Mutations shouldn't contain any logic,
so if we check our mutation history it should be explicitly obvious what changes have been
made. In this case, even though the mutation is always fired, it doesn't necessarily make a
change to the state. We're now checking local storage for initial state outside of the
mutation, and only commit it if we find it, so the mutation itself can be simplified to the
following:

And, seeing as we're now committing it from the file, we no longer
need the hook in , and as such it can be
deleted.

This concludes our authentication and user registration feature, so make sure to give the
application a good test to make sure everything is working properly. Refreshing the
application should also no longer leave you as an unauthenticated user if you've previously
logged in.

Summary
Authentication is one area of building modern web applications that is made considerably
more complicated by the separation of server-side API and client side SPA frontends. It's no
longer a fairly simple case of using a cookie-based approach where the browser will
automatically attach the appropriate cookies to every HTTP request by default. However,
more and more applications are being developed in conjunction with other external
applications and services, so moving down the route of token-based authentication using
JWTs adds a great deal of flexibility to make the additional complications more beneficial to
us.

In this chapter, we started out by looking at what's involved with setting up and
configuring JWT-based authentication in an ASP.NET Core web application. We also added
the necessary API endpoints for issuing JWTs when users successfully log in, as well as one
for users to register for a new account. We then moved on to the client-side of the
application and expanded our existing Vuex store to include the necessary actions,
mutations, and getters necessary to consume these API endpoints and store the returned
JWT in the user's browser for authenticating future requests.

www.EBooksWorld.ir

User Registration and Authentication Chapter 7

[289]

We then built a custom authentication modal component that contains the HTML login and
user registration forms that our users need to interact with the API. For now, we are leaving
form validation to the server side of the application only, so we looked at a simple way of
displaying server-side validation errors in our client-side components. We also built a
second custom component for displaying either a login or logout link in the navbar,
depending on the authentication state of the user.

We added an empty checkout page in preparation for the following chapter on payment
processing, and locked it down to access by authenticated users only using VueRouter
navigation guards and route meta properties. We also configured our application's router
to trigger the login modal if an unauthenticated user attempts to access a protected
page. Finally, we configured our app startup process to check if the user has already
retrieved a valid access token before attempting to process a page request, so that they
don't get forced to log in again every time they do a full browser refresh.

With authentication in place, we're now in a position to allow our users to start placing
their orders and processing their payments. In the next chapter, we'll look at how to process
payments using the brilliant Stripe payment service, which helps us to remain PCI-
compliant with an incredibly simple-to-use library.

www.EBooksWorld.ir

88
Processing Payments

With our shopping cart and user registration/authentication features complete, we are now
in a position to allow our users to complete their purchases and start processing their
payment information using Stripe.

In this chapter, we're going to look at the following topics:

Building a checkout form using Stripe elements
Client-side form validation using
Storing orders in the database
Processing payments with Stripe's .NET client library
Building a my account page with a list of previously placed orders

Let's start by discussing the reasons for using Stripe to process our payments.

Why use Stripe?
Payment processing, or more specifically the handling of payment card data, is a very
sensitive part of building an online shop of any kind. There are a lot of hoops to jump
through to make sure you are PCI DSS compliant if you process payment card data on your
own servers. However, luckily for us we don't need to, as we can make use of the Stripe
online payment service to process that data on our behalf.

www.EBooksWorld.ir

Processing Payments Chapter 8

[291]

Simple PCI compliance
By using Stripe, we make PCI compliance infinitely simpler, because our user's payment
card data is sent to Stripe servers for processing rather than ours. Getting your head around
how this works takes a little thought, but it is actually a pretty simple concept. Payment
card details are first posted off to Stripe servers where they validate them and get pre-
approval for the amount you wish to charge them. If all is successful, a token is returned,
which can then be posted to our own server along with the rest of the order information,
such as products, quantities, and delivery information. As part of our order creation
process, we can call back the Stripe API and pass in the token we just received from the
client in order to trigger the actual payment.

This begs the question, why don't we just charge the card on the first trip to the Stripe API
instead of fetching a token? The answer is simply that the charge amount sent to Stripe from
the client cannot be trusted due to the fact that it was calculated on the client side and could
have been tampered with. Instead, we can recalculate the amount on our server to ensure
its correctness, and then send this value to Stripe for the actual payment amount.

Easy integration
PayPal is another very popular option for payment processing in online shops, and seeing
as it's used so widely, you'd expect it to be fairly simple to set up and use. However, I've
not found this to be the case when compared to how simply we can integrate Stripe into
our apps. On top of this, unlike with PayPal, we don't need to redirect our users to an
external website, or display a checkout form in a new modal window. With Stripe, we can
build our checkout flow entirely within the boundaries of our own app domain; no
redirects or modal windows required.

Excellent dashboard
The Stripe API is fully featured and incredibly easy to use, and as such you can easily create
pages in your app for all of your payment-related data, such as customers, charges, and
refunds. However, the dashboard they provide is so good that there really is no need to if
you don't explicitly have the requirement to do so. All the data you need is easily
accessible, and the interface is very intuitive, making recurring payment management and
issuing refunds an absolute breeze.

www.EBooksWorld.ir

Processing Payments Chapter 8

[292]

Getting started with Stripe and client-side
validation
Before we go any further, there are a few things that we need to do. We need to sign up for
an account on the Stripe website and install a couple of third-party dependencies that we'll
be using along the way as we build out the client-side payment processing feature.

Registering for a Stripe account
This one's easy. Head over to and click on the big green Create
account button on their landing page. It's a simple signup form, so it doesn't really require
any explanation.

Once you've registered and logged in, you'll be greeted with the Stripe dashboard where
you'll have access to the Developers menu on the left-hand side, which contains an API
Keys section beneath it. In here, you'll find both your public and secret Stripe API keys for
testing. You'll need both eventually, but the public key belongs in your JavaScript code for
the first part of the payment process, and the secret key belongs safely in the server-side C#
code for the second part.

Including the Stripe checkout JavaScript library
Unlike most client-side JavaScript packages, Stripe specifically recommends loading their
library from their CDN. As they're the experts, we'll happily take their advice and add it to
our file. It belongs at the bottom of the tag like
so:

 <script src="https://js.stripe.com/v3/"></script>

www.EBooksWorld.ir

Processing Payments Chapter 8

[293]

Installing VeeValidate for client-side validation
Finally, we need to install the npm package for performing client-side
validation in our Vue components. Open up a Terminal in the root of your project and run
the following command:

yarn add vee-validate

Next, we have a couple of changes to make to the file. At the top,
beneath our list of statements, add the following:

Then, just below the rest of the statements, add the following:

This installs for use in every one of our components, but we'll come back to
this and discuss it in more detail later on in the next section.

Building the checkout components
Enough theory! Let's start building our client-side checkout components to complete the
checkout process of our phone shop. We'll start by making the modifications we need for
the containing checkout page, which we'll use to control the display of the new child
components we're about to create. Open up the file,
then modify the section as follows:

 <checkout-success v-if="success" :order="order" />
 <b-row v-else>
 <b-col cols="4" order="2">
 <cart-summary />
 </b-col>
 <b-col cols="8">
 <checkout-form @success="onSuccess" />
 </b-col>
 </b-row>

www.EBooksWorld.ir

Processing Payments Chapter 8

[294]

At this point, everything we just added should be fairly self-explanatory. We're simply
rendering three custom components (that we're yet to define), two of which are laid out in
columns using layout components. We are also using the and

 directives to show either the component, or the
 and components side by side. To finish things

off, we add a event handler on the checkout form component, and bind an
 prop to the component.

The section for this component does not yet exist, but needs to look like this:

www.EBooksWorld.ir

Processing Payments Chapter 8

[295]

Again, nothing particularly new here, but we start by importing the three new components
we need before registering them with a standard component definition, just like we've done
before. The local component state we need for this component includes a boolean
property to control which components to display, and an property that will
represent the successfully placed order object after a successful checkout request. Finally,
we need a single method that is invoked when the checkout form component
emits the event. All we do is set the property to in order to hide
the checkout form and cart summary components, and show the success component, then
set the property to the object associated with that same event. As the checkout form
will be quite long, we can also scroll back to the top of the page using

.

Building a cart summary component
We already created a cart summary component, which we're using in the navbar of every
page. However, in the context of the checkout page, we need a more detailed view of the
cart's contents. There is no issue with having multiple components with the same name, as
long as they reside in different directories, so we can specify exactly which one to import.
As such, create a file with a

 section as follows:

www.EBooksWorld.ir

Processing Payments Chapter 8

[296]

There is quite a lot of markup here, but it looks far more complicated than it actually is due
to the number of Bootstrap classes we need to apply to lay things out nicely. In fact, this is
simply a slightly modified version of one of the official Bootstrap checkout page examples,
which you can find here: .

We will display a title that includes a Bootstrap badge containing the item count of the
user's cart, then use a Bootstrap list group to loop over the items in the cart, and display
some minimal information about each one. The last item in the list is the calculated total of
the cart. The final thing to note is that we're making use of the filter that we
created in the previous chapter. This just goes to show how useful Vue filters can be for
following DRY principles and only writing this kind of presentation logic once before using
it everywhere in our app.

The section for this component is pretty simple:

All we need are three computed properties to read the , , and
properties from our central store, which we've already made use of in the preceding
template.

www.EBooksWorld.ir

Processing Payments Chapter 8

[297]

Building a checkout form component
As we saw from the checkout page template, side by side with the cart summary we just
created sits the checkout form. The section for this component is fairly long as
there are quite a few fields for us to render. We'll go over it in sections, but first we need to
create the file. As the name of
the component suggests, it needs to contain our HTML element, so let's start with
that:

We prevent the default form action as we've done before, choosing to call a
method instead, which we will define shortly. Delivery information is pretty important
when selling physical products online, so we start by collecting the name of the customer
we're delivering to:

www.EBooksWorld.ir

Processing Payments Chapter 8

[298]

When you read through this snippet, you'll notice we're only rendering two form fields, so
it may look like a lot of markup for something so simple. However, there's quite a lot going
on here that we've not seen before. Aside from Bootstrap grid components to lay these
fields out in two columns, most of the preceding markup is validation-related.

First look at client-side validation
So far, we've only dealt with two simple forms login and user registration both of which
had their validation requirements handled entirely on the server. This isn't exactly making
the most of a client-side UI framework such as Vue, so, seeing as this form is far more
substantial, we'll add rich client-side validation using .

We've made use of the component from before, but this
time we've added a couple of extra directives:

The directive is what we've used before to add two-way data binding to a local
 property, but what we've not seen before are the and

directives. These are both part of the library.

Let's start with the directive, seeing as the directive is entirely
optional. We can use the directive to instruct on how to
validate each individual form input. In this case, we use

 to specify that this field is required, and has a minimum
length of three characters. Each validation rule is delimited by a pipe character, and there
are no limits as to how many rules can be applied to each field. There is a very
comprehensive list of rules that we can use, and these are very similar to those builtin to the
.NET framework via the namespace. The
full list can be found at

.

www.EBooksWorld.ir

Processing Payments Chapter 8

[299]

As with validation in .NET, a set of sensible default validation messages come baked into
the library; these will be used unless you explicitly specify a custom
message. The only issue with these messages is that they use the property name
without any kind of modification. For example, in the preceding form field, we are
validating the property, and as such the default validation message will be
something along the lines of . This isn't ideal, but
we can work around this by using the directive, like we did earlier. By
using , the error message is changed to

.

Finally, we also made use of the prop of the component. We haven't
used this prop before either, but it's simply used to set specific CSS classes to differentiate
between different input states, for example, success and error. We're binding it to the result
of a method that we'll define shortly, which takes the name of the form input to work out
the state. Here, we are using due to our usage of the

 directive, but, had we not overridden the name of the field, we'd need to use
 instead.

After each input field, we've used another component from that we've not
used before the component:

Here, we use the property, which is automatically added to the component by the
 library. More specifically, we use to find

the first error message if it exists for the field. Again, as we used the
 directive to override the default property name, we use rather than

. As we only show a single error message at a time, the order that we declare the
validation rules in the directive matters. As we specified the required rule
before the minimum length rule, the required field error message is displayed until at least
one character is entered into the textbox. At this point, the minimum length rule kicks in
until at least three characters are entered. Finally, once more than three characters have
been entered, there are no error messages remaining and, as such, the field turns green to
indicate its valid state.

The markup for the field is almost identical, aside from the property name
differences, so we won't spend any more time explaining it.

www.EBooksWorld.ir

Processing Payments Chapter 8

[300]

Finishing the delivery address form fields
Directly beneath the closing tag, we need a very similar form field rendering for
the first line of the customer's delivery address:

No need to explain any of this as it's exactly the same as the previous two fields, so we'll
move straight on to the second line of the customer's delivery address:

The field is optional, so there is no associated error component. Next up, we
have the field:

This is followed by the field:

www.EBooksWorld.ir

Processing Payments Chapter 8

[301]

Finally we have the field:

Capturing payment information
The next field on our form isn't necessarily required, but it helps identify our customers in
the Stripe dashboard when we're reviewing the list of payments we've received. The

 field is almost identical to those mentioned previously:

We could have assumed that the name of the purchaser is the same name that's entered as
part of the delivery address, but that isn't always the case, so we've included this field to
cover more bases. We'll send the value entered into this field to the Stripe API, which will
embed it in the token we get back so it's included with the payment information when we
submit it from the server.

The final field we need on the checkout form is the most important field the card details
field:

www.EBooksWorld.ir

Processing Payments Chapter 8

[302]

This is quite different from the previous fields we've defined. For a start, we don't use the
 component as we've done for the others. Instead, we simply render an

empty element. This is because
we're going to configure the Stripe elements library to mount one of their custom credit
card elements into this we'll see how to do this in the next subsection.

To finish the section of this component, the last thing we need is the
button to actually complete the checkout form:

The only thing of note here is that we bind the prop of the button to a
property in our component, and we conditionally display a Font Awesome loading spinner
based on the same property.

Initializing Stripe elements
We have the containing element that we wish to mount the credit card input to, but
we've not yet done anything with it. We'll use a couple of life cycle hooks to set up and tear
down the credit card input add a section to the checkout form component with
the following contents:

www.EBooksWorld.ir

Processing Payments Chapter 8

[303]

We start by initializing some global variables outside of the component definition, the first
of which is an instance of the object, which takes our public API key as an
argument. You'll need to copy your own public key in here, which as we've already seen is
available from the Developers | API Keys section of the Stripe dashboard. From this object,
we can create an instance of the object using the function.
We can also create an empty variable, as well as a object, which we'll use to
override the default styles applied to the credit card's input.

Inside the component definition, we define the and life cycle
hooks. The hook is used to call the function, passing in

 as the first argument to make sure we're creating a credit card input. As the second
argument, we pass a new object with a property, which references the object
we just declared. The output from this function is assigned to the empty variable,
before we call the function in order to mount the element into the DOM. To
do so, we have to pass a reference to the element we wish to mount to, which in this case is
the empty element that we rendered in the preceding template. Because we gave this
element a prop, we can access the reference to it using .
The hook is more simple, and is only used to call the
function to make sure that, the next time we reach the checkout page, we get a fresh credit
card input created. We also retrieve the logged-in user's first and last names from our Vuex
store to pre-fill the appropriate fields on the form.

Validating form input state
The local component state we need includes a property for each form field, as well as
the property that we use to track when an API request is in progress to disable the

 button:

www.EBooksWorld.ir

Processing Payments Chapter 8

[304]

 will automatically validate our form fields as their values change based on
the rules we applied using the directive. As errors are found, they will be
picked up by our validation messages in the template and displayed automatically.
However, we've also bound the prop of each input to a method that determines that
state based on whether there are any errors or not. This method looks like this:

There are three potential values that we are interested in passing as the prop to a
 component. If the input is in an error state, we need to pass ; if it is in a

valid state, we need to pass ; and if it's in a neutral or untouched state, we need to pass
. Bearing this in mind, the preceding method takes the name of a field based on the

 directive we've been using, and then does a number of checks to determine
which of the three states to apply.

If the property from contains any errors for this field, our decision is
easy and we simply return to set the input as invalid and give it a red border.
However, if there are no errors for this field, our checks become slightly more complicated.
We need a way of determining if the field is dirty or not that is, whether it has been
interacted with by our users. We can do this using another property called

. This keeps track of all the fields that have validation rules applied, and also sets a
 boolean property as soon as a user focuses on the input. This means that, to

determine whether to set the input state as valid or not, we can check whether the field we
are interested in is dirty or not. If it is, we return to set the input as valid and apply a
green border. Otherwise, we return as the field has not yet been touched, so we leave
it with the default border color.

www.EBooksWorld.ir

Processing Payments Chapter 8

[305]

At this point, our validation will be firing in real time as our users enter data into the form
fields, and they will be presented with immediate feedback as to whether or not their input
is valid. However, we still need to prevent the form from submitting if there are any errors,
which we will do now as we define the method that we fire as the form is
submitted. Add the following function to the object we just defined:

When we installed earlier, the object was added to every
component within the application. As such, we can use it to force the validation of all input
fields in the component using the function, which returns a promise. When
that promise resolves, we get a Boolean result that we can check to see if the form was valid
or not. In this case, we set the property to if it is, as we'll be performing an
API request that we want to provide feedback to the user on. We don't need to do anything
if the form is invalid, as all of the errors that have occurred will already be on display to the
user due to the real-time feedback that we get out of the box with .

Verifying payment details with Stripe
After we've checked that the form is valid, we can submit the details to Stripe's API and
validate the card details. As previously discussed, if they are valid, we'll receive a token in
return that we can process from our own server-side API later. Immediately after we set the

 property to , add the following code:

 const details = {
 name: this.nameOnCard
 };

 stripe.createToken(card, details).then(result => {
 if (result.error) {
 this.loading = false;
 } else {
 //...submit order here

www.EBooksWorld.ir

Processing Payments Chapter 8

[306]

 }
 }

We start by creating a new object with a single property to which we assign
the value from the form field. We then call the
function, passing the object that we initialized earlier, along with the object
that we just created. The second argument is optional, but by passing these additional
details, they show up in the Stripe dashboard, making it easier to identify which customer
the payment belongs to.

The function returns a promise, so we wait for it to resolve by chaining a call
to , before determining if the card details were valid or not by interrogating the

 property. If it evaluates as a truthy value, the card details were invalid, so
we stop the loading animation by setting the property back to . The Stripe
elements card component will already be highlighting the details in red to signify an error,
so there is nothing more we need to do. Otherwise, if the property is not a
truthy value, we are ready to submit the order details to our API for processing.

Submitting the order to the API
At this point, we've successfully performed our own client-side validation of the checkout
form, and validated the payment card details with the Stripe API. Therefore, we are ready
to submit the order to our API for processing. The first thing we need to do is construct an
object to represent the order using a mixture of data from the local checkout form
component state, and the cart items array from the global store. Add the following object
declaration:

const order = {
 stripeToken: result.token.id,
 firstName: this.firstName,
 lastName: this.lastName,
 address1: this.address,
 address2: this.address2,
 townCity: this.townCity,
 county: this.county,
 postcode: this.postcode,
 items: this.$store.state.cart.map(item => {

www.EBooksWorld.ir

Processing Payments Chapter 8

[307]

 return {
 productId: item.productId,
 colourId: item.colourId,
 storageId: item.storageId,
 quantity: item.quantity
 };
 })
 };

Most of the properties on this object are self-explanatory, as we're just mapping the
local form data that we're collecting for the delivery address of the customer. The

 property is pretty important as, without this, we can't actually trigger the
payment when we receive the order on the server. We get it by accessing the

 property, which in this instance is the only piece of information we're
interested in from Stripe's response. It could be argued that it's worth sending the full
response object back to the server so that we can persist it in our database if we ever need
additional information, but, to keep things simple, for now, we're only interested in the
token.

As the name suggests, the array contains the items the user has placed in their
shopping cart. We loop over these using the built-in function, where we can
use a lambda expression as the argument to access the properties of each object
within the array. The only properties we need are those required to identify the specific
product variant being ordered, namely the , , and
properties, as well as the they wish to order. As such, we return a new object
containing these properties, which ultimately results in a new array of objects containing
only the properties we care about on the server. This is a common pattern in JavaScript that
can be likened to performing a LINQ operation on a C# collection in order to
project it to a different data structure. This is exactly what we've been doing with our EF
database operations when we project our entity models to view models.

With our object constructed and ready to go, the last piece of the puzzle is to
actually send this off to our API for processing. Directly beneath the object
declaration, add the following API call:

www.EBooksWorld.ir

Processing Payments Chapter 8

[308]

As always, we're making use of Axios to perform the API request, but this time we're doing
it directly from a component method rather than using a Vuex action. There is nothing
wrong with this approach, as the Vuex store is intended for global application state and
functionality that is reused in multiple components. We don't need to reuse the state or
methods in this component anywhere else in the application, so there is no need to add the
additional overhead of writing Vuex actions and mutations. However, it can also be argued
that we should be consistent and perform all API requests in the same fashion, that is, using
Vuex actions. This also means we'd be using mutations as well, and as such we'd be able to
use the Chrome devtools to see the history of everything that's happened. I don't feel
particularly strongly either way so I'm happy to keep things simple, but if you'd rather use
Vuex, then feel free to take the time to refactor things at this point.

After posting the object to the endpoint, we wait for the promise to
resolve, then, as long as it was successful, we have a number of things to do. First of all, we
commit the mutation (which we're yet to define), which as the name
suggests will empty the user's shopping cart. We then emit a custom event,
passing the server's property as its argument recall that we listen for this
event in the parent component to hide the checkout form and display a success message
containing the order number. Finally, we stop the loading animation by setting the

 property to . The mutation belongs in the
 file and looks like this:

If the API call fails, we handle the failure by chaining the block to the request. Even
though we've done some client-side form validation, we should always be validating on the
server as well. We've already seen how to handle server-side validation errors so we're
leaving it out here, but it's worth noting that if this were a real app, we'd need to handle
any server-side validation errors at this point too. All we do for now is log the response to
the console so that we can see it easily, and then stop the loading animation, just like we
did in the success block.

www.EBooksWorld.ir

Processing Payments Chapter 8

[309]

Adding basic Bootstrap styling to Stripe elements
The very last thing we need to do with this component is override the styles of the Stripe
card element so that it fits in with the styling of our other form fields. We've already fixed
the height of the textbox, but if we focus it, we don't get the same outline as we do with the
rest. Add the following section to fix this:

Building a checkout success component
The last component we need is a checkout success component to notify the user that their
order has been placed, and provide them with the order number. We've already wired up
the logic in the parent checkout page component to display this component after a
successful API request has been made to place an order. Create the

 file, and add a
section as follows:

www.EBooksWorld.ir

Processing Payments Chapter 8

[310]

All we're displaying here is a standard Bootstrap alert box, but even though the order has
been placed, the payment could still have failed. As such, we bind the prop of the
alert to a computed property, which will change the style of the box depending on
the result. If the payment was successful, we display a success alert, which has a green
background and border, and if the payment failed, we display a warning alert, which has a
pale yellow background and border.

The rest of the template is simple we have a heading to confirm the order was placed, as
well as some text containing the new order number which we get from an object
which we will receive as a prop. As well as the order number, this object also contains the
payment status of the order, which we then use to conditionally display a message stating
that the order will not be shipped until payment has been taken. Finally, we display a link
to an account page, which we'll build later to include a list of all the orders we have placed.
The component that we're using here ultimately renders a standard tag
with the appropriate attribute. As such, it might make far more sense for us to use
standard HTML elements wherever possible. However, seeing as we're using HTML5
history mode for client-side routing, we should always use the component
instead, as it intercepts the click event on the element in order to prevent full page
refreshes.

The section for this component looks like this:

www.EBooksWorld.ir

Processing Payments Chapter 8

[311]

This is another standard component definition with a single prop and
computed property. We've already talked about these so we won't dwell on them for too
long, but to reiterate, the prop is the response we receive from the server after
successfully placing an order. We use the property from this object to
decide which to use for the alert box, giving success if payment was successful,
and a warning if not.

Building a my account page
Now that we're allowing our users to place orders, we should really give them a page to
view all of their previously placed orders as well. You'd normally find this information
somewhere within a section of most online shops, so we'll build a my account
page here as well. The following section belongs in a new

 file:

Nothing special here, just the heading and a new component,
which we'll define shortly. Note that we're binding an prop to a component
property of the same name, which will eventually be populated with the list of orders that
we'll retrieve from our backend API.

The section for this page component is a little more involved, so we'll build it up in
stages. Start by adding the following standard component definition:

www.EBooksWorld.ir

Processing Payments Chapter 8

[312]

We know that we'll be making an API call to fetch our list of orders, so we'll start by
importing the object. We also know that we've included the component
element in the preceding section, so we will also import the
component (again, that we're yet to define), and then register it as a child in the

 object of our default export. Next, we'll define the properties that we
need for this component:

As this is a simple component, we just need the single property, which will hold
our list of orders from the server, which we then pass down into the order list component
via props. As we've done with our previous page-level components, which require data
from the server, we're going to add the following method:

Finally, we need the following hook to trigger our API request and
call the method when it resolves:

Before we can use this page, we need to register it with our router configuration in the
 file. Find the section where we import our list of page components

and add the following line:

import Account from "./pages/Account.vue";

www.EBooksWorld.ir

Processing Payments Chapter 8

[313]

Next, find the array and add the following line:

 { path: "/account", component: Account, meta:
 { requiresAuth: true } },

Remember that ordering matters here, so make sure that this line sits above the catch-all
wildcard route.

Building the OrderList component
The only component we need for our basic section is the order list component,
which we're trying to render from the main page. Create a

 file, and then add the following
 section:

www.EBooksWorld.ir

Processing Payments Chapter 8

[314]

This might look quite long, but all it is is a simple element containing a heading and a
table. The section of the table contains the only really interesting things that we need
to look at, so we'll ignore the rest, as it's just standard HTML. We start by using the
and directives on two table rows to display one or the other, depending on whether
the user has placed any orders yet or not. If they have, we loop over the array, and
for each one, we render a table row containing a number of columns describing the order. If
they haven't, we just display a single table row with one column, which spans the full
width of the table and contains a simple message to show that there are no orders to
display.

In the row that we repeat for each of the user's orders, notice how we're making use of the
 filter that we created earlier for the order total column. You may have also

noticed that we're using a new filter that we've not seen before. We'll come back and
see what this looks like shortly, but for now, let's look at the very simple section of
this component:

All we need to do is define the prop, which we specify is of type array and is not
required for the case where a user has not yet placed any orders.

www.EBooksWorld.ir

Processing Payments Chapter 8

[315]

Formatting dates with a reusable date filter
It is very common in web applications to need to display dates in a user-friendly format.
We could format the dates on the server side of our application using the C#
overloads where we can specify the exact format we want. However, formatting data for
display purposes is really a concern for the client-side applications that are consuming
REST APIs. It would be very difficult for an API to start catering to all of the needs of any
client application consuming it, so it is best to leave this type of logic for the clients to
provide themselves. You could also be consuming an external API that you have no control
over, so it is worth knowing how to handle this use case in JavaScript anyway.

In this sample application, our requirement is extremely simple, as all we want to do is
display dates in the format. The following filter function, which belongs in the

 file, will do just that:

Unfortunately, this isn't anywhere near as simple as doing the same thing in C#, but at least
this logic is now reusable across the whole of our application. Fundamentally, what we're
doing here is extracting the day, month, and year parts of the date in order to put them
back together in the right order.

We start by passing the argument value into the constructor of JavaScript's built-in
object in order to make sure we are definitely dealing with a valid date, and to enable us to
use some of the functions defined on that object. Next, we extract the day and month
values, using the and functions, which JavaScript gives us on
objects. However, if the day or month is less than 10, these functions will return a single-
digit value. When displaying dates, we expect that both the day and month values are
always two digits long, that is, they get prefixed with a zero if they only have a single digit.
As such, we start by checking if these values are less than 10, and prefix the value with a
zero if they are. For the year, all we need to do is call the function, which
returns the four-digit value that we expect. Finally, we build our date string back up in the
correct order, delimiting each part with a character.

www.EBooksWorld.ir

Processing Payments Chapter 8

[316]

We still need to register this filter for use in our application, so open up the
 file and find and modify the following section where we configured

our filter, as follows:

, date

Vue.filter("date", date);

Linking to the my account page
At this point, our my account page is complete, but the only link to it is only visible after a
user successfully places an order. Let's add a link to it in the navbar so that our users can
access it whenever they like. Open up the

 file, and then add the following
:

 <b-dropdown-item to="/account">
 <i class="fas fa-user"></i>
 My Account
 </b-dropdown-item>

Fixing the register form component
Now that we've installed globally in our application, all of our components
have an property by default. This has now broken the user registration form
component, as we defined a local state property called , which now conflicts with
the version. There are some open pull requests with the library creators on
GitHub to prevent this kind of property declaration on components where we don't
actually need validation. However, for now, we just need to deal with this by changing our
property names.

www.EBooksWorld.ir

Processing Payments Chapter 8

[317]

Start by opening up the file, and then
modify the element at the top of the tag in the section as follows:

regErrors
regErrors

regErrors

Next, in the function of the section, make the following changes:

 regErrors

In the method, we have a couple of changes to make, starting by making the
following changes after dispatching the action:

regErrors

Next are the following changes in the corresponding block of the same
call:

regErrors

regErrors

www.EBooksWorld.ir

Processing Payments Chapter 8

[318]

Finally, we need to make the following changes to the method:

regErrors

This completes the changes we need to make to fix this component, as well as completing
all of our client-side changes for processing payments, so let's move on to the backend.

Server-side payment processing
As part of our server-side payment processing, we're going to actually persist the user's
orders into the database, and to do that we need to make some changes to our data model.
We have a couple of new entities to create, and a few minor tweaks for our existing ones.
We'll also be looking at some of the new features introduced in EF Core 2.0 such as owned
entity types.

Adding orders to the data model
The first and most obvious new entity we need is the entity. Create a new

 file with the following contents:

www.EBooksWorld.ir

Processing Payments Chapter 8

[319]

As with our other entities, we have an integer primary key named ; in this case, we also
need to link each order with a single user. As such, we have an integer foreign key named

, which will be wired up automatically by the default EF conventions. In addition to
knowing which user the order belongs to, we also need to know the date the order was
placed, so we also include a DateTime property.

Next up, we have a list of objects, which are navigation properties for a one-to-
many relationship, which we'll set up when we create the entity shortly. We
then have the property, which we will soon define as an owned entity
type more on this later. The property is an which, as the name
suggests, is used to model the payment status of the order. Finally, we have the
property, which is the navigation property that pairs with the foreign key that we
discussed earlier.

The entity belongs in a new file, and looks
like this:

Again, as usual, we have the primary key property, but this time we will include an
 foreign key property to associate each order item with the order it belongs to. We

then have the , , and properties, which together form
another foreign key to the specific product variant that was ordered. Even though this is a
composite key, EF is still capable of determining the relationship by convention without
any kind of manual configuration on our part. We then have the property, which
tells us how many of this product variant was ordered, enabling us to calculate the order
total based on the price of the variant multiplied by the quantity. We'll need to be able to
perform this calculation on the server side in order to verify the order total that we send to
Stripe for processing. Finally, we have the navigation property, which
ties in with the composite foreign key before it.

www.EBooksWorld.ir

Processing Payments Chapter 8

[320]

The enum that we used on the entity is another new file that we
need to create in the directory. It looks like this:

Nothing to explain here really, as this is just a standard C# enum class. By default, we set all
new orders to use the value, but we will update this to either or
depending on the response from Stripe when we charge the customer later on.

We've already defined all the data properties we need for EF to infer the foreign key
between orders and users. However, we have currently only defined the appropriate
navigation properties to a single user from each order, and not the list of orders that belong
to each user. Open up the file and add the following
navigation property to resolve this:

 public List<Order> Orders { get; set; } = new List<Order>();

By defaulting this property to a new empty list of objects, we avoid the potential null
reference exceptions that would occur if we tried to perform any LINQ operations on this
property before the user has actually placed any orders.

www.EBooksWorld.ir

Processing Payments Chapter 8

[321]

Owned entity types in EF Core 2.0
The last new entity that we need is the entity, which, as previously discussed, will
be configured as an owned entity type. These have been newly added in the latest version
of EF Core, which at the time of writing is version 2.0, and can be compared with the
similar concept of complex types in older versions of EF.

Why use owned entity types?
Owned types enable us to model complex types such as addresses that can be reused in as
many different owning parent types as we need, including multiple references to the same
owned type from a single parent.

For example, in the context of most online shops, users will have both delivery and billing
addresses. Each of these complex types will likely have the exact same fields, so we can
save duplication by defining an type and referencing it twice for billing and
delivery variants.

By default, owned types are stored as additional fields in the same table as their parent
type. As an example, we could have an owned type with and

 fields. If we then referenced this type from a parent entity with a property
named , we'd see these properties in the parent database table named

 and . However, if you'd prefer,
you can manually override the default in order to use a feature called table splitting, which
splits the owned type into its own database table instead.

Defining an owned type
Owned type classes are almost identical to normal entity classes. Following on from the
preceding examples, and recalling the entity that we defined earlier, we need a new

 entity file, which looks like this:

www.EBooksWorld.ir

Processing Payments Chapter 8

[322]

Based on this class, the only clue that this isn't a standard entity is the lack of the
primary key property. Owned types do not need primary keys, as they are given a shadow
property as their primary key, which is assigned the same value as the primary key of their
parent entity. Owned types are only ever accessible as navigation properties of the entities
that own them, so there is never any confusion as to which entity they belong to. They are
also included by default in every EF query for the parent entity, without the need for
eagerly loading the navigation property.

Configuring owned types
At the time of writing, a new version of EF Core has been released that gives us additional
options in configuring owned types. As of EF Core 2.1, the class was
added, meaning that we can now decorate the class with it in order to declare it as
an owned type. However, my personal preference is to stick with the original method of
explicit configuration by overriding the method of our class
as we have for our existing entity-related configurations. Open up the

 class and update our override as
follows:

 modelBuilder.Entity<Order>()

www.EBooksWorld.ir

Processing Payments Chapter 8

[323]

 .OwnsOne(x => x.DeliveryAddress);

If you'd rather use the method instead, feel free to make sure you're
running EF Core 2.1 and add the attribute to the class instead, as this really is a
matter of personal preference. However, it is worth noting that owned entity types are
never inferred by default, and must be configured in one way or the other.

While we're in this file, we might as well add the following orders table declaration to the
bottom of the current list of values:

Creating the orders migration
As with any change to our entity data model, we need to add a migration before the
changes will be persisted to the database. Open a Terminal at the root of the project and run
the following command:

dotnet ef migrations add Orders

Again, as with any migration, it is worth giving the generated migrations file a check to
make sure everything looks OK, as it's easier to remove a migration before it reaches the
database than it is to roll back and remove it afterwards.

Installing and configuring the Stripe.net NuGet
package
At this point, we're ready to add a controller and action method to receive orders and
subsequently process the payment information of the user placing that order. Before we get
that far, though, we need to install the NuGet package. Open the Add
Package window of the NuGet package manager VSCode extension and type

 into the search bar. Make sure it is that you install and not just
. At the time of writing, the latest version is 15.3.1.

www.EBooksWorld.ir

Processing Payments Chapter 8

[324]

Configuring Stripe
If you followed along from the first section of this chapter, you should have already
registered for an account on the Stripe website, but if not, you'll need to go back and do that
now. If you have, we're going to need your Stripe secret key from the API Keys section
under the Developers option in the left-hand menu of the Stripe dashboard. See the
following screenshot to find what you're looking for:

Next, open up the file and locate the method. At the very bottom,
below the line, add the following:

StripeConfiguration.SetApiKey("YOUR_STRIPE_SECRET_KEY_HERE");

You'll need to add the appropriate Stripe import statement to the top of the file, and replace
the placeholder string with your own secret key from the Stripe dashboard.

www.EBooksWorld.ir

Processing Payments Chapter 8

[325]

Processing orders and payments
We're finally ready to actually receive an order, persist it to the database, and process the
user's payment for that order. To do so, we'll create a new controller in the

 file. The initial content for this controller contains a
single action method, which looks like this:

This is a standard controller definition that will be very familiar to you, so we won't dwell
on it for too long. The only things worth mentioning are that every action will require
authentication, so we decorate the controller itself with the attribute, and that
we're prefixing each action with using the attribute as well. Finally,
we're expecting an instance of the class to be supplied using
constructor injection from the built-in DI framework.

For now, the only action method we need is the action, where we expect to bind an
instance of the as yet undefined class. We'll come back to it
later, but for now just know that it contains the same properties that we added to the
object that we're sending from the component on the client side. Finally, as
with most action methods, we're failing early if there are any validation errors.

www.EBooksWorld.ir

Processing Payments Chapter 8

[326]

Persisting the order object
The first thing we need to do to complete the action method is to persist the user's
order into the database. The following code needs to be added immediately below the

 check:

We start by retrieving the currently logged-in user based on their username, which we find
on the property. By using the LINQ
method, we decide to throw an exception if either zero or more than one user matches the
query we supplied. This is something that should never happen, or the user wouldn't have
been able to log in in the first place, so I'm happy to let an exception be thrown. Normally,
we'd be logging these types of exceptions so that we can handle them appropriately.

Next, we will build up the object from the properties on the view model that we
receive as a parameter to the action method. Most of this is plain object mapping, but for
the order items, we use a LINQ statement to project the list of items from the view
model into a new list of objects that we can store in the database. This is very
similar to how we project entity models into view models when querying the database.

www.EBooksWorld.ir

Processing Payments Chapter 8

[327]

Finally, we add the object to the collection in our database context, then save
changes to ensure that the order is persisted regardless of anything else that happens in the
rest of the action method. The next and final thing we'll do is process the user's payment,
but regardless of the outcome to that action, we want to make sure that the order is
persisted so that we have a record of it should the user want to retry their payment at a
later date. Remember that the property of this order will default to

, so if anything goes wrong with the payment code, we'll still know not to process
the order until the payment status changes.

Calculating the total order price
Before we charge the payment to the customer, we need to calculate the total order price.
We've already talked about this but, to reiterate, the calculation we did earlier cannot be
trusted as it was done on the client side of our application. Client-side code is inherently
vulnerable to malicious users, seeing as they have full access to it if they know how.
Therefore, we didn't even bother to send the order total as part of the form submission, as
we'll be calculating it again now that we're safely on the server side of the application.

Directly after saving the order to the database, add the following:

Since we called , the property was generated for us so that
we can now use it in this query. We find the single order in the database that matches the
order ID that was just created, then use a LINQ statement to return an integer
value that is calculated as the sum of the product variant price multiplied by the quantity of
each order item. When sending this price to Stripe for charging the user, we need to send it
as a whole number in pence (GBP), if you're in the UK like me. As such, I've multiplied the
total by 100 to get the price in pence rather than pounds. Stripe supports multiple
currencies, so if you're not in the UK, then do check their documentation for how to use
your own national currency.

www.EBooksWorld.ir

Processing Payments Chapter 8

[328]

Processing the payment with Stripe
With the order total calculated, we can send the details to Stripe to confirm the payment.
Add the following code to the same action method:

We start by creating a new instance of the class before invoking its
 method. Stripe refers to payments as charges, so when we create a charge,

we are committing the payment to Stripe for processing, and the user's card details that we
validated earlier will be charged for the total we provide. The method takes
an instance of the class, which models the details that we
need to create a charge with Stripe.

The property of this class is the that we just calculated, again
remembering that it must be in pence rather than pounds. The property can
be anything you like, but it is worth setting this to something that makes it immediately
obvious what the payment was for if you intend to use the Stripe dashboard regularly.
We've discussed currency already, but you'll need to set the property depending
on where you live. In this case, it's . The property
is what Stripe will use to identify the card details to use for the payment, and must be set to
the token that we received from our client-side Stripe API call.

www.EBooksWorld.ir

Processing Payments Chapter 8

[329]

In this case, we receive that token on the property, which is what we
assign. As a quick recap, when we submitted the payment card details to Stripe from the
client side of our app, the card details were verified and stored on Stripe's servers, ready to
be charged when we were ready to do so. The token we received in return is now used to
identify those card details to be used with this payment request.

After calling the method, we receive an instance of the class
in return, which contains a property to work out if the payment was
successful or not. If it was successful, we change the payment status of the order to ,
and to if it wasn't. We can then call again to persist this
change into the database. As previously mentioned, we're keeping things simple here and
choosing not to persist any of the Stripe charge response details, as all of this information is
readily available on the Stripe dashboard. However, if you'd prefer, you could extend your
data model further in order to store the full response if you really wanted to.

Finally, we return an instance of our own , which
consists of the order ID and payment status values, which we then use in the client-side

 component that we created earlier.

In the preceding code, we used a number of view models that we haven't created yet, so
let's start by creating the file, which
looks like this:

www.EBooksWorld.ir

Processing Payments Chapter 8

[330]

The associated file, which looks like this:

Finally, we'll create the file,
which looks like this:

This now completes everything we need for placing orders and processing payments. The
last API we need to provide for our client-side functionality is the list of orders our users
will see on their my account page.

Adding an order list API endpoint
We have one last action method to add, which, thankfully, is a very simple one. If you've
closed it, open the file up again, and add the
following action method beneath the one we already defined:

www.EBooksWorld.ir

Processing Payments Chapter 8

[331]

We simply query the database for all orders where the associated user's property
matches the username of the currently logged in user, then project them to a new list of

 objects. Again, we'll create this in a moment, but it just contains the
properties that we display in the table of orders on the my account page of our UI. The
and properties are very simple, but the rest are not so obvious. The property
is the total count of items ordered, so we use the LINQ operator on the field
of all the items in the order. This totals all of the item quantities and gives us the total
number of phones for each individual order. The field is essentially the same
calculation that we did before sending the payment off to Stripe for processing. However,
this time, we don't multiply by 100 at the end as we want to display this total in pounds
and pence, rather than just pence.

The field is the most interesting, because it requires a bit of hacking to get
the string representation of the enum when querying directly from the database. Normally,
we could have just done to get the string value that we
want, but in this case, it always returns the numeric value instead. Presumably, this is
because enums are stored as numeric values in the database when using them with EF
models, and this operation by default will run at the database level. Therefore, by
calling at this point, we'd just be calling it on a numeric
SQL value rather than a C# enum. To fix this, we have to use the static
method, passing it the type of the enum we want to evaluate, and the value we want the
name string for. This will force the query to hit the database first, before returning back to
our C# code to evaluate this expression in order to return the data we want, but there isn't
really a much nicer way of doing this with enums.

www.EBooksWorld.ir

Processing Payments Chapter 8

[332]

At the time of writing, EF Core 2.1 has been released, which includes
value converters that enable us to store enum string representations
within the database!

The view model we need for the preceding action method is the
 class, which looks like this:

And, with this, we have finished our server-side API changes that are required for the
client-side features we added earlier.

Summary
We've covered a lot of ground in this chapter. We started off by looking at the reasons why
we'd use Stripe for payment processing over competitors such as PayPal. We then
proceeded to build a number of new client-side UI components for collecting the
information we need in order to handle order processing on the server, as well as to keep
our users informed of their order state. We also included rich client-side validation for the
first time, using the popular package.

We looked at how Stripe processes payments and how we remain PCI-compliant by not
storing any sensitive payment card information on our own servers. Instead, we send these
to Stripe's API to deal with, meaning that we can deal with simple tokens to pass between
our client and server in order to trigger the final payment from the safety of our server-side
C# code.

www.EBooksWorld.ir

Processing Payments Chapter 8

[333]

We then moved on to the server side of our application and extended the data model so
that we can store orders in the database. We also added a new controller for handling new
orders, as well as listing all of the orders a user has placed. We looked at how to trigger
payments from the server using our client-generated Stripe token, and how to tell if the
payment was successful or not.

It's been another long chapter, but we really have only scratched the surface of what we can
do with the combination of Stripe, Vue, and ASP.NET Core. In the next chapter, we're
going to build an admin panel so that you can actually get your new products into the
database without manually seeding them, as we've done so far.

www.EBooksWorld.ir

99
Building an Admin Panel

From the perspective of a customer, our online shop is now feature complete. They can
browse our product catalog with the added abilities of sorting, filtering, and searching to
help them find what they are looking for. They can then add their chosen products to their
shopping cart before proceeding through the checkout process to pay for their order using
the Stripe payment service. Finally, they can visit their account page to view a list of all of
their previously placed orders.

However, right now, all of our products are hardcoded to be seeded manually into the
database when the application starts. It's not ideal to need to deploy a new version of the
application every time we need to add a new product, so in this chapter we're going to
build a very basic admin panel where only those users with the Admin role can add new
products to the catalog at any time.

The topics we're going to cover in this chapter include the following:

Role-based access on both the client and server
Reducing duplication using Vue component inheritance
Building a custom type ahead component
Building a custom multi-select component
Vee-Validate remote validation
Nested Vue-Router route definitions

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[335]

Extending the authentication endpoint with
user roles
The current implementation of our authentication API endpoint already adds the users'
roles to the JWT token in the form of claims. This is all we needed to do in order to support
role-based authorization on the server side of the application, as ASP.NET Identity
automatically decodes the JWT for us so that the claims we added are available on the

 claims principle object.

However, on the client side of our application, those claims are still encoded into the JWT
and we cannot access them without decoding it. This isn't a huge issue, and we could
certainly bring in a new npm package that would be able to decode a JWT for us, but we
don't really need to. Instead, what we'll do is return the list of roles a user is assigned to as
part of the view model we send back to the client when they first authenticate. We can then
store these roles in the Vuex store state of our application so that we have access to them
from any client-side component. This is by far the simplest approach, with no real
downside. The only thing to note is that we must always remember that client-side code is
inherently insecure. As such, we still need to ensure that any API endpoint that serves role-
specific data is also locked down using role-based authorization on the server, just in case a
malicious user is able to bypass our page-level access restrictions on the client.

Start by opening up the file, then change
the statement at the bottom of the method as follows:

,

 Roles = roles

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[336]

We already created the variable to encode them into the JWT as claims, so it's just a
simple matter of returning the raw list as part of the we return to the
client. Speaking of which, the updated version of said view model looks like this:

 public IEnumerable<string> Roles { get; set; }

That's all there is to it. After a user successfully authenticates, we've already configured our
Vuex mutation in such a way that the full object response from the API call is persisted into
the global application state. This means that the property we just added will now
also be available to us on the client, as part of the object.

Client-side role-based authorization
Now that we have access to the set of roles the current user belongs to, we can start
preventing them from accessing certain pages of the application, depending on which roles
they are assigned to. To make this process easier, we'll add the following Vuex getter
function to the file:

As the name suggests, this getter function determines whether the current user is in a
specific role, which we pass in as an argument. This is quite different to the getter functions
we've defined before, as in addition to the parameter we also make use of the
optional parameter that we also have access to if we need it. On top of this, we
then use fat arrow syntax to declare the argument, which represents the value we
pass in to the function to check for.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[337]

The function body itself is more straightforward. In order to determine whether a user is in
a specific role, we first need to check whether the user has even logged in yet. The
parameter gives us access to all of the other functions we've defined, including the

 function, which we use to check whether the user is logged in or not. If
they are, we proceed to check the property to see whether the role we
pass in exists within it or not, by checking whether its index is greater than . If both of
these checks resolve to , then the user is in the role we received as the function
argument; if they don't both resolve to , they aren't.

Adding role checks to client-side routes
Now that we have an easy way of determining whether the current user is in a specific role
or not, we need to extend our route guard functionality to include role checking as well as
authentication status. To make sure only logged in users are allowed to proceed the
checkout, we added a property to the checkout page route definition, as well as a
router hook that checks whether the user is authenticated before allowing them to access
the page. We need to extend this functionality to support an additional property,
which we can use to specify which user role is required to access a specific page.

Let's start by modifying the router's hook to check for a property
on the route we're trying to navigate to, and if it finds one, ensure that the current user is in
the correct role using the Vuex getter we just defined. Open up the
file and locate the hook that we defined earlier. Start by making the
following amendments:

 if (
 to.matched.some(
 route => route.meta.role && store.getters.isInRole(route.meta.role)
)
) {
 next();
 } else if (!to.matched.some(route => route.meta.role)) {
 next();
 } else {
 next({ path: "/" });
 }

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[338]

This looks fairly involved at first glance, but if we break it down, it's actually pretty simple.
Notice that the code we've added is wrapped inside an block that's already checked
whether the route we're trying to navigate to requires authentication. Following that, we've
also verified that the user is authenticated by triggering the login modal if they haven't. So,
now that we know the user is authenticated, we can check to see whether the route we're
trying to access has a role restriction. We can do this with three separate checks to decide
what to do:

: The route has the property set, and the user is in the role1.
specified by its value; we allow them to proceed by invoking the callback
directly.

: The route does not have the property set; we also allow2.
them to proceed by invoking the callback directly.

: The user does not have access to this route, so we redirect them to the3.
home page by invoking the callback and overloading it with a different

 property.

At this point, it might seem as though we are done. However, so far we've only added role
checking to routes that require authentication. It may not be immediately obvious that we
also need to perform the same checks on routes that don't necessarily require
authentication. As an example, think about the shopping cart page of our app; you don't
have to be authenticated to add products to your cart or access the shopping cart page to
view them, but we may not want admin users placing orders. As such, we can allow them
to add products to their cart before they authenticate, but once they log in, we prevent them
from accessing the shopping cart page, so they can't proceed with the order.

In order to fix this, we need to make some similar changes in the block from the
preceding code example (there's a comment to make it more obvious!). These changes look
like this:

 if (
 to.matched.some(
 route =>
 route.meta.role &&
 (!store.getters.isAuthenticated ||
 store.getters.isInRole(route.meta.role))
)

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[339]

) {
 next();
 } else {
 if (to.matched.some(route => route.meta.role)) {
 next({ path: "/" });
 }

 }

Again, this looks more complex than it actually is. This time, we only have two checks to
make:

 the route has the property set, and either the user has not yet1.
authenticated or they are in the role defined as the value of the
property, we allow them to proceed by invoking the callback directly.

, we check the route has the property set, and if so2.
overload the callback with a different value because the user cannot
access this route. Otherwise, we simply invoke the callback directly because
the user can proceed.

To test out these changes, we need to actually go ahead and add the property
to a few of our existing route definitions. Slightly further up in the
file, locate the array and modify it as follows:

, meta: { role: "Customer" }

, role: "Customer"

, role: "Customer"

If you re-run the application again now, then log in as our existing admin user account, you
should be prevented from accessing either the Cart, Checkout, or My Account pages.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[340]

Server-side role-based authorization
Remembering that we can't trust client-side authorization checks alone, the final change we
need to make to prevent admin users placing orders is to protect the API endpoint that
stores the order and processes the payment information. Open up the

 file and amend it as follows:

, Authorize(Roles = "Customer")

That's all there is to it. In this instance, we only allow the single role to place
orders, but if we had multiple roles, then we could pass a comma-separated list of roles
here instead.

Hiding UI elements based on role
So, we're now preventing admin users from placing orders by locking down the API
endpoint to customer users only; we are also preventing admin users from accessing the
shopping cart, checkout, and my account pages, seeing as they are no use to a user who
can't place orders. However, the links to those pages are still visible, and this isn't a good
user experience, so let's go ahead and hide the links that admin users shouldn't be able to
see.

The first thing we're going to do is hide the cart summary widget in the main navbar. Open
up the , then make the following amendments to
the section:

 v-if="isCustomer"

Very simply, we conditionally render the cart summary component based on some kind of
 property, which we're yet to define. This property will be defined as a new

computed property, and looks like this:

 isCustomer() {

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[341]

 return (
 this.$store.getters.isInRole("Customer") ||
 !this.$store.getters.isAuthenticated
);
 }

Again, we make use of the getter function we defined earlier, but in this
instance, it isn't enough to simply check whether the user is in the role. We still
need to show the cart summary widget to users who have not yet authenticated. As such,
we assume that the current user is a customer if they belong to the role or they
are not yet logged in. This takes care of the only link to the shopping cart page, and
subsequently the only link to the checkout page, seeing as it's situated on the shopping cart
page itself.

Next, we need to hide the link to the my account page in the dropdown that appears after a
user has logged in. Open up the file,
and make the following changes to the section:

 v-if="isCustomer"

As we did before, we conditionally display this drop-down item based on an
property, which we'll now define as another computed property:

 isCustomer() {
 return this.$store.getters.isInRole("Customer");
 }

In this instance, we only need to check whether the user belongs to the role, as
this component is only ever visible after a user has already logged in. Re-running the
application again now should show that when logged in as an admin user, you no longer
see links to the pages we prevented access to.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[342]

Building the admin panel components
The admin panel section of our app is going to be a little different to what we've done so
far, whereby we have a distinct page of the application for each feature. Instead, we're
going to define a single entry point route definition, which contains a collection of nested
routes for each section of the admin panel.

This should make more sense when we take a look at the section of a new page-
level component that we need to make. It belongs in the

 file and looks like this:

Essentially, all we're doing here is rendering two standard columns using the Bootstrap
grid system. The first of these columns contains a Bootstrap list group control, which we're
using as a type of subnavigation menu, and the second (wider) column contains a

 component. You may be wondering how this can possibly work, seeing
as we're already rendering this page level component into a similar
component in the root level component. The answer is simply that Vue and Vue-
Router support nested routes in much the same way that ASP.NET supports nested master
or layout pages.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[343]

We'll look at the route definitions in a moment, but essentially what we are doing here is
defining another (nested) layout component specific to the admin panel. The subnavigation
menu in the first column will be displayed on any child route of the URL, and the

 component in the second column will be used to display the nested page
component. If you look closer at the list group in the first column, you'll notice we've
defined links to both the and URLs these are the two
main pages we'll be creating to form the admin panel.

Configuring nested route definitions
So, we've seen how to render child route level components in the section of a
parent component, but how do we configure this parent-child relationship with Vue-
Router? As with most things in the Vue ecosystem, it's actually incredibly easy. Open up
the file, as we have a few changes to make here. Firstly, find our
existing list of page level component imports, and add the following additional imports, as
shown in the following code snippet:

Don't worry if you start seeing errors at this point, as only one of these components actually
exists we'll create the others shortly. Next, find the existing array and modify it as
follows:

 {
 path: "/admin",
 component: AdminIndex,
 meta: { requiresAuth: true, role: "Admin" },

redirect: "/admin/orders",
 children: [
 {
 path: "orders",
 component: AdminOrders
 },
 {
 path: "products",
 component: AdminProducts
 },
 {

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[344]

 path: "products/create",
 component: AdminCreateProduct
 }
]
 },

All we have to do is declare a array property containing a list of nested route
definitions that belong to the parent route. In this case, we define a root level route,
which renders the component we just created but automatically redirects to the

 route by default. It has three child routes declared in its array,
one of which is the route we just discussed. The next is a

 route, which will display our existing list of products. Finally, we have
the route, which will display a form for creating new
products. Now, there is no limit to how many levels deep you can nest route definitions.
We could easily have declared the last route as a child of the route, but
to keep things simple, we've left it at a single level of nesting.

There are a few caveats to be aware of when declaring child route definitions, the first of
which is that the value we assign is appended to that of the parent route. In this case,
the parent route path is , and the first child route path is . When accessing
the nested orders page, we must use the full URL. With this knowledge,
you'd expect that child route definitions would also inherit the property of their
parent as well. Unfortunately, this isn't the case, so if you wanted to be completely explicit
and ensure that each child route of the admin panel requires authentication, you'd need to
duplicate the property on each one. However, it isn't necessary as long as we put
some thought into how our role checking route guard works which we already have! As a
reminder, we do things like this:

The key thing to note here is that the property from the route is an array of
route definitions that match the URL we're trying to access. This means that if we try to
navigate to the URL, we'd get both the and route
definitions in the array. Then, because we use the native JavaScript

 function, we're looking to see whether any of the matched routes require
authentication. In our case, it means we don't need to duplicate the property, as
navigating to any child route will result in the parent being checked for authentication
restrictions.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[345]

Refactoring components for reuse
The first page in our admin panel is the orders page, where we need to display a list of all
orders placed by our customers. This sounds incredibly similar to the order list component
that we built for displaying the customer-specific list of orders on the my account page.
Rather than repeat ourselves, we can make some minor tweaks to the existing component
so that it can be used in both contexts.

From the perspective of a customer, it's already doing what it needs to do, as the orders it
displays are passed in via props, and are limited to only those orders placed by the
currently logged in customer. From the perspective of an admin, we can display the orders
for all customers by simply passing in a different list of orders. However, it would be good
to quickly see which customer each order belongs to. We can add an additional column for
this, but that column doesn't make sense in the context of a customer as they can only see
their own orders anyway. We already have a simple way of determining whether a user is
in a specific role, so we can conditionally display this column based on the users' role.

The first thing we're going to do is move the component out of the
 folder and into the new

 folder, seeing as we're now using it from multiple
pages. Next, in the section, we need to modify the section of the orders
table as follows:

 <th v-if="isAdmin">Customer</th>

As discussed, we conditionally display an additional table header based on an
computed property that we'll define shortly. We need to make a couple of very similar
changes to the section of the same order's element:

 <td v-if="isAdmin">{{ order.customer }}</td>

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[346]

 <td v-if="isAdmin" colspan="6">There are no orders to display.</td>
v-else

Again, we conditionally display the customer column based on the computed
property. We've also used the and directives on a pair of elements to
change the text we use if there are no orders to display, again based on whether or not the
user belongs to the admin role. As you've probably already guessed, the
computed property is very similar to the computed property we used earlier:

This completes the changes we need to make to the component itself, but now that we've
moved it to a different folder, we need to update the my account page to import it from the
shared folder instead. Open up the file and make the
following minor change:

shared

We can now create the file, which is the next of
our nested page components that will reuse the same component that
we've just refactored. The section for this new page component looks like this:

This is so simple that it needs no explanation, so we'll move straight on to the associated
 section. This is a bit more involved, so like we did previously, we'll build it up in

stages. The base component definition looks like this:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[347]

We will start by importing , as we know we'll need to fetch the order list from the
API, and then we'll import the component that we just refactored and
moved into the shared components folder. Finally, we will export a default component
definition object with the name and a declaration object to include the

 component we just imported.

The requirement of this component is very simple, as all we need is an
property to store the orders that we pass down as a prop to the order list component:

As with our other page level components, we need a method for assigning the
data that we fetch from the API to our object:

And finally, we need a hook to fetch the data we need from the API,
before calling the method we just defined:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[348]

Notice how we fetch the orders list from the endpoint. This is the same
endpoint we use for the order list on the my account page, which currently only returns the
orders placed by the user who calls it. As such, we'll need to tweak this to return all
customers orders if that user belongs to the admin role. We also need to add a
new property to the model we return to cater for the additional needs of the
order list component in the context of an admin user. The updated action method on
the file looks like this:

User.IsInRole("Admin") ||

 Customer = x.User.FullName,

We've updated the LINQ statement in the preceding query to first check whether the
current user belongs to the admin role. If they do, the statement will terminate early and
simply return all orders in the database. If they don't, it will continue to work as it did
before, by only returning the orders that belong to the logged in user. As mentioned
previously, we've also added the property to the model we return, which now
looks like this:

 public string Customer { get; set; }

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[349]

Product list component
The order list is only the first part of our admin panel, and by far the simplest. The main
feature we're ultimately aiming for here is a form component for creating new products.
However, before we get that far, we need to display the existing list of products. We've
already added the route definition for this component, as well as a link to it from the parent
component.

Create a new file, and start it off with the
following section:

Nothing particularly special here, just the page title and a button, floated to the left and
right, respectively, followed by an empty table element which will hold our list of products.
This button will eventually link to the Create Product page, but until we define that
component, it won't work. The missing section of the products table looks like this:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[350]

Again, there's nothing new here; the template markup of this component is virtually the
same as the order list component, so we won't dwell on it any more. The section for
this component is also very similar to the Order List page, so much so that it would be a
good test for you to try and complete it before reading the following code sample.

Done? Now, compare it with the following:

As a quick recap:

We import for fetching data from our API1.
We export a default component object2.
We name the component 3.
We define a data object that contains a single property for storing the4.
data returned from the API

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[351]

We define a single method for assigning the data returned from the API5.
to the property of the component's data object
We define a hook to trigger the API call before invoking the6.

 method

Creating a product form component
The last page of our admin panel is the Create Product page, which on the face of it should
be fairly simple as it's just a standard form that posts some data back to our API. However,
when adding a new product, we have fairly complex requirements whereby we need to
select a value from a variable length list of options potentially more than we'd want to
add to a standard HTML element. We also need to support the addition of a
variable-length list of complex product variant objects.

Create a new file, with an initial
 section that looks like this:

The full template section of this component is going to be pretty long due to the amount of
fields we have to render, so we're going to build it up in stages. What we've added in the
preceding code snippet should be fairly self-explanatory, but so far we have:

A title and link back to the product list page, floated to the left and right,
respectively

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[352]

An empty form shell with an event handler preventing the default
action and invoking a method instead
A custom component, which is yet to be defined, but
will ultimately show a modal window containing a secondary form for adding a
product variant

Before we begin filling in the missing form fields, cast your mind back to the previous
chapter where we built out the checkout form component. We had a fair amount of
duplication in the way we rendered each form field, which looked something like this:

That's a fair amount of HTML markup for a single form field, especially considering most
of it does not change much, aside from the label text and the data property we bind to the
input. Even if we were to render a element rather than a text input, we'd still need
the wrapping component, the element, and the

 component for displaying validation errors. The other issue here is
that we used a component level method called for working out whether the input
should be highlighted as valid/invalid, or left in its default state. Now that as we're
declaring form fields in a different component, we'd likely need to duplicate that method to
use here, which is certainly not very DRY.

 It would be much cleaner if we could do something more like this instead:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[353]

Much more concise and easy to read! In fact, the only reason this isn't a single line of code is
to make it more legible on narrower screen widths. For now, let's assume that this is exactly
how we can render each of the form fields of the Create Product form, as we'll come back
and define this component shortly. Back in the section of the

 file, start adding the following form
fields between the empty form element tags:

Each of these components expects a number of props to control the differences in the
content that they render. The prop specifies the text in the label element, the
prop specifies the name of the field in the context of client-side validation, the prop
controls the visibility and text of the validation error displayed if we pass a value, and we
then use and as we would with any other native input element. In
addition to this, the last component renders a text area rather than an input, and as such it
has an additional prop to specify the number of rows to display.

Next, add the following markup directly after the previous components:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[354]

Here, we're rendering three of our new components side-by-side using a
standard Bootstrap grid. You may have noticed that on each of these three components
we've specified the prop, which we're using here to override the default input type of

 to instead. We've also used an prop, which may not make much
sense just yet. If you're familiar with Bootstrap at all, you'll know that they have styles for
creating input groups. These are custom elements of sorts, where things like text or buttons
can be displayed either before or after an input element, in a way that it looks as though it's
part of the input itself. This is exactly what we want to do here, so we're assuming we'll
have some props to enable us to specify the data to either append or prepend.

After these three inputs, we'll need the following:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[355]

This is where things get a little more interesting, as instead of or
 components, where it's pretty easy to guess what will ultimately be

displayed, we're using another custom component instead. The brand and
operating system fields are the first in which we need to allow a selection from an unknown
amount of potential options. Right now, our lists of brands and operating systems are fairly
small, but as the product catalogue grows in size, so too could these lists of options. As
such, rather than displaying them in a standard HTML element where they cannot
be searched or filtered on, we'll create a custom typeahead component. This will give us the
added flexibility that we can allow brands or operating systems that don't yet exist to be
entered, at which point we can enter a new value into the database rather than linking the
product to an existing one.

The only new prop on the component is the prop. To make sure
this component is completely reusable, it won't be in charge of managing its own list of
options, so we'll need to pass them down into the component from the parent using the

 prop instead.

Next up, we have the product features field:

Every product can have multiple features associated with it. We're not allowing new
features to be added in order to keep things simple, but we still need a way of selecting
multiple values for the same field. We could have rendered a standard checkbox list, but
with rich SPA frameworks such as Vue, we can do much better. Here, we're using yet
another custom component, which has an almost identical interface to
that of the component we just saw.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[356]

We've now defined all of the standard inputs we need on this form, so all that's left is
defining a way of adding multiple product variants. Displaying the variants that we've
already added is easy, as it's a perfect fit for a standard HTML element:

We start with a title and a button for toggling a modal, which we'll use to add new variants
to the following table. In this case, the button makes use of the directive to
specify the ID of the modal component we wish to toggle when the button is clicked in
this case, it's the modal we already rendered directly beneath the form we are currently
filling out. Next, we render a simple HTML table to display the color, capacity, and price
values of each variant we add by looping over the items in the array
and rendering a table row for each. If there are no items in that array, we display a single
row with appropriate text to notify the user.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[357]

The only thing to note is that as we've done before, we must wrap the first element here
in a tag. When using the and directives, if you wish to control the
visibility of multiple elements with the same condition, you can wrap them in a template to
avoid duplicating the statement. In this case, we are only writing that statement once
anyway, as we only declare a single table row, which may or may not be rendered multiple
times. However, in this case, we still need to include the wrapping template element, or the
conditionals simply don't work due to the way Vue processes them.

The last piece of this form includes a validation message for the product variants property,
and the form submit button:

But why are we suddenly back to including explicit error messages rather than using the
Vee-Validate computed property as we've done so far? With standard inputs such
as text, number, and selections, Vee-Validate can handle their validation needs out of the
box, without much work from us. However, we've not actually been using standard inputs
in this form, as we've been using our own custom inputs instead (even though we're yet to
see what they look like). We'll cover more of this later, but for now you just need to know
that when building your own custom input components in Vue, if we want them to behave
like an input, and therefore be validated like an input, we have to build them in a specific
way. This is what we will be doing for our custom , ,

, and components, and ultimately we could also do it for the
product variants as well.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[358]

We could have abstracted the table of product variants, along with the modal to add new
ones, into another custom component that we could build to behave like an input.
However, it does add additional complexity, so it is always worth weighing up the pros
and cons of making the effort to do so. It's also worth seeing what the alternative approach
is, so we can see clearly what the benefits of our current set of custom inputs truly are.
Think about how many form inputs we've needed to render on this form, and how many
individual error properties we'd need to create and track. We could do what Vee-Validate
does and have a single collection, but we'd still need to manually validate each
input and decide when and if an error is pushed into that collection. That being said, if this
were the only custom input you needed to build, it may not be worth it to save the effort of
tracking a single validation error.

The section for this component is now complete, so add a section with
the following initial contents:

As usual, we start by importing for our API calls, as well as each of the new
components we've discussed while defining the template of the component. We then export
a default component object named , specifying each of the imported
components as children using the object.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[359]

The requirements of this component are fairly simple:

We have a object with empty properties for each of the fields we need to send off
to our API to create a new product. Then, we have empty , , , ,
and arrays for storing the options we're passing down into our custom typeahead
and multi-select components. Finally, we have the property, which as we
already discussed will track the error state of the array.

Ultimately, there will be three methods that we need, the first of which is the
method, which looks like this:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[360]

As with our other page level components, we use this method as a way of assigning the
data returned from an API call in a hook. Next, we have a
method, which we'll use to save the product data by calling an API endpoint:

save() {
 if (this.product.variants.length <= 0) {
 this.variantsError = "You must add at least one product variant.";
 } else {
 this.variantsError = null;
 }

 this.$validator.validateAll().then(result => {
 if (result && !this.variantsError) {
 axios
 .post("/api/products", this.product)
 .then(response => {
 this.$router.push("/admin/products");
 })
 .catch(error => {
 //handle server side validation
 console.log(error.data);
 });
 }
 });
 }

As we're not using Vee-Validate to validate the array, we start by
ensuring there is at least one item in the array. If not, we set an appropriate error message
against the property. Next, we validate the rest of our data properties
using the function, wait for it to resolve, then check the

 property.

If the property is true and the property does not have a value, we
can proceed to make our API call since the form is in a valid state. Otherwise, we do
nothing, as our errors are already visible to the user so they know what they need to fix. To
save the product to the database, we HTTP the object to the

 endpoint. If the request is successful, we simply redirect back to the
products list page. If it fails, all we do is log the result to the console for debugging
purposes in order to keep things simple. Again, in a real application, this is where we'd
handle server-side validation.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[361]

The last method we need on this component is the method:

addVariant(variant) {
 this.product.variants.push(variant);
 }

This is the method we invoke when our custom component
emits the event, and we use it to push the new object into the

 array.

To finish off the section for this component, we need the following
 hook:

Nothing to explain here as we've used a similar hook on most of our page level
components. The only thing to note is that we're reusing the API endpoint
that we defined way back in , Building a Product Catalog it already has all the
data we need, and nothing else that we don't, so we might as well make the most of it.

To finish this component entirely, we need the following simple section in order to
make our product variants error match the default Bootstrap styling for error messages:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[362]

Creating an add variant modal component
In the previous component, we rendered a custom component,
which we are still to define. Create a

 file and give it the following
 section:

Most of this will look very familiar by now, as we are simply rendering a group of our new
custom input components inside a component. The only things to note are
that for the first time we use the prop of our component, we
assign a of modal to the component, and we listen for the event of
the component in order to invoke the method, which we'll look at
shortly.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[363]

The section for this component is also fairly simple. The main component
definition looks like this:

We need to make use of our custom form input and typeahead components, so we start by
importing those and then export another default component object. This time, it is named

, and optionally has two props: a array and a
array. These are the predefined options that we can pick from when adding a new product
variant, but they aren't required as we can still add a new value for each of these if there
aren't any to begin with.

In addition to the preceding components and props definitions, we need the following
 function:

This should be fairly self-explanatory, as each product variant has individual ,
, and properties.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[364]

Finally, we need the following method:

As with our other form-based components, we start by validating the inputs using
. If all is well, we construct a object, which represents

the product variant we need to pass back up to the parent form so that it can be added to
the list of product variants. In order to achieve that, we emit a event, passing the

 object as an argument. Once this is done, we can close the modal using the
property we assigned earlier by calling the function. Finally, we can
clean up by resetting the values of the , , and properties.

Vue component inheritance
Our page is now complete, but the vast majority of its complexity
has been abstracted away into a set of reusable custom input components. We are still to
define these, but they include , , ,
and . As a quick recap, the idea here is to reduce duplication. When
rendering a single form field with Bootstrap styling, we tend to have multiple nested

 elements with different classes, a label, an input of some kind, and a validation
message. We also need some logic in order to work out which class to apply to the input to
give immediate feedback as to whether the input is valid or not this would also be
duplicated, at least at the containing component level.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[365]

As an example, without our custom components, if we were to render a text input field,
we'd need the following markup:

First name
 <b-form-input v-model="firstName" data-vv-name="first name" v-
 validate="'required|min:3'" :state="state('first name')" />

first name

The bold highlighted sections are really the only bits of that markup that change depending
on the specific form field in question. The text obviously needs to change, as does
the name of the property in the context of anything to do with validation. Also, the input
element itself can change. For example, we could swap out the
component for a instead, or even one of our custom
or components.

So, how do we go about creating a component to encapsulate this duplicated functionality,
while still being flexible enough to handle different types of input, all while still playing
nicely with Vee-Validate? The obvious option is to take a single custom component that
takes a prop, then render a collection of different inputs, each using a directive
to control visibility based on the type passed in. Something like this:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[366]

However, the problem we'd face here is that the more input types we need to support, the
bigger the template section will get. Aside from readability, if you are interested in SOLID
principles, you'll also notice that it would violate the open/closed principle. We'd need to
modify this component every time we hit an input type that we haven't yet catered for.

Instead, a better approach would be to use inheritance. Just like in C#, Vue components can
extend, or inherit from, another component. Now, there are some gotchas that we need to
be aware of, the biggest of which is that only the behavior of a component can be
inherited that is, the section. The section cannot be inherited with our
current HTML only templates; we'd need to bring in some kind of rendering engine such as
Jade or Pug, and use partials to achieve a similar goal. However, we still have a fairly clean
option of declaring the base component as a child of the inheriting component, and using
slots to render child-specific content within the parent template. This will make more sense
if we look at an example.

Defining a form input base component
Bearing everything we've already discussed in mind, let's go ahead and define a base
component for all of our form input elements. Create a

 file with the following
section:

So far, this is very simple. We render a standard element with a Bootstrap-specific class
of , containing an optional element, and a single where we can
insert input-specific markup in any parent components. This way, if a consuming
component does not pass in a label prop, the label simply does not get rendered.

The section is a little more interesting:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[367]

Remembering that the properties and methods that we define here can be inherited, we
declare a selection of props that are not directly used within this component. In fact, the
only one that is is the prop. So, knowing that we'll be using this component as a base
for our other input components, we declare the , , , and props, as
well as a computed property.

Regardless of the type of input we are trying to render, we must give it a name so that it
can be validated by Vee-Validate hence the prop. Also, validation will be done by
the parent form component, which means any errors will be placed in the
computed property of that component. Remember that, by default, Vee-Validate injects this
property into every component we create, meaning the errors we'd see in this component
are different to those of the parent. Therefore, we must rely on the parent to pass any error
message that we need to display down within the prop. This is absolutely fine, as in
order to make it as reusable as possible, it probably shouldn't be responsible for its own
validation anyway. The prop should be self-explanatory: we'll be using it to bind the
value of the input! When building custom input components, if we want to make use of the

 and directives from consuming components, there are two rules to
abide by. First, the child component must declare a prop, and second, it should emit
an event when the underlying value actually changes. More on this later.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[368]

The computed property is how we determine whether the input is in an
untouched, valid, or invalid state. We're returning an object so that we can do something
like on one of our inheriting input controls. Every input in a
Bootstrap-styled application has a class of , so we always set that class by
giving it a value of . However, the and classes may look a
little strange to you if you are not familiar with JavaScript. By putting double exclamation
marks in front of a statement, it coerces that statement into a Boolean. For example, if we
write , it treats the string value of the property as a Boolean. As such,
if we provide a value in the prop, then this statement will return . On the other
hand, if we provide a value but change the statement to , then it will return

. Basically, if we don't provide an prop, and the prop has something in
it, the input is valid. If we do provide an prop, then the input is invalid.

Inheriting from a base component
Now that we have our base component in place, let's look at how to make use of it. We'll
start with the most commonly used component, which belongs in the

 folder. Start by giving it the following
section:

// inheriting component content will go here...

This is our workaround for the fact that templates aren't inherited by subcomponents that
extend a base component. Instead, we declare the base component as a child of the
subcomponent, then render it as part of the template, as we've done here. This only works
because we included a component as part of the base component's own
section, which we can now use to inject subcomponent-specific markup. In this case, this
markup looks like this:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[369]

From our add product form component template, we know that this component needs to
support Bootstrap input groups. As such, we start by rendering a element with the

 class, followed by an optional with the class.
We only display this element if the consuming component passes in the prop.

Next, we have the most important part, the actual element itself. We use the
directive to bind the , , and properties based on the component's props
that we're going to inherit from the base input component. We also bind the property,
but this time to a local prop, which doesn't belong to the base because it is specific to
this component. Remembering that if we want this component to behave like a standard
input, we need to emit an event when the value changes. This is exactly what we do
here, but we take it a few steps further by directly emitting the , , and
events also. Aside from enabling us to listen for these events like we would with a standard
input and triggering our own actions on them, we need to emit the and events
so that Vee-Validate can provide real-time feedback as we progress through the form. It
does this by automatically validating a field when it detects that the user has entered and
subsequently moved away from it, by listening to the and events.

We follow the input with another optional append element, which again is only
displayed if we pass in the prop. Finally, we render another element to
conditionally display an error message if we pass one in using the prop. Most, if not
all of our custom input components will have an error message like this, but unfortunately
due to the way Bootstrap works, we cannot move this to the base component template. This
is because it won't receive proper styling unless it is rendered in exactly the right location
for Bootstraps, CSS selectors. In this case, it is rendered inside the input group element, and
will not work properly if we were to move it outside instead. Unfortunately, this
duplication is unavoidable, so we just have to live with it!

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[370]

We're using standard HTML with Bootstrap classes rather than Bootstrap-
Vue components here due to a bug in Bootstrap-Vue where the CSS
styling breaks when using input groups!

The section for this component looks like this:

Seeing as we're extending the base form component, we will start by importing it. Next, we
will export a default component object where we also declare the base form component as a
child, so that we can render it in the preceding section. All we need to do to
actually inherit from the base component is use the property, passing in the
imported base component object. Finally, we declare any subcomponent-specific props that
don't already exist on the base component. In this case, these are the , , and

 props.

In addition to the component, we also need a
component, which lives in the same folder. This
component is so similar to the last that we're not going to discuss it, and you could actually
have a go at creating it yourself before reading any further.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[371]

Once you've done this, compare it with the following section:

And also compare it with this section:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[372]

Building custom input controls
So far, our input components are fairly simple wrappers around standard HTML input
elements in order to reduce duplication. However, we are yet to define the
and components, which need to go beyond the standard functionality
of a HTML input element.

Now, there are plenty of third-party components that would do the job we want without us
going to the extent of building them ourselves. However, it isn't always appropriate to use
someone else's component if it doesn't quite look or behave the way we want. It's also quite
easy and fun to build our own, and definitely something worth learning for times when
you can't find a ready-rolled component to do the job you want.

Building a custom typeahead control
Create a file and then start off the

 section with the following:

As we did with our other input components, we're going to inherit from the base form
component, so we'll start by rendering it here and placing our subcomponent content
within it. Next, we need a standard HTML input where the user will begin typing their
value:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[373]

Again, as we did with the form input component, we bind the , , and
properties to the values of the associated props that we're inheriting from the base
component. However, in addition to this, we're also giving this input a of . We'll
see why when we get to the section shortly.

In this case, we do something slightly different with regards to event handling. For starters,
we're listening for additional events on the , , and keys. Also, rather
than simply emitting the event directly so that it bubbles up to the consuming component,
we invoke component methods instead. This is because we need more control in this
component, as we'll need to perform some logic before we eventually emit these events like
we did before.

Directly beneath the element, we need the following:

No explanation needed here as it's exactly the same as we've done in the previous form
input components. Finally, we need some kind of UI element for displaying the list of
suggestions that we'll show as the user starts typing in the input:

The Bootstrap list group element is ideal for this scenario, so that's what we're using here.
We conditionally render it based on some kind of property on the component, and
give it a class of so that we can specifically target it with some CSS styles
later on.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[374]

There's no point in a list group without a nested collection of list group items, so we'll loop
over an array of (another component property of some kind), rendering a

 component for each one. As we've done before, we bind the
property to the unique array of the item, and the property to an inline
expression that checks whether the array is equal to a component property called

. More on this shortly, but for now just know that the property is a
numeric value used to track which suggested item the user has currently selected if
navigating with the keyboard. We will also prevent the default behavior,
choosing instead to invoke a method, passing in the item's array array as an
argument. Finally, inside each list group item, we display the suggestion text so that the
user knows what they are selecting from.

The section for this component is pretty complex in comparison to what we've seen
so far, so we're going to build it up in stages. Start with the following:

None of this should need any explanation by now, as we're simply defining another custom
input component that inherits from the base input component. As it's a typeahead control,
we'll need to display suggestions based on what the user has typed, and those suggestions
will be computed from a list of items passed in via a required prop of type .

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[375]

The data requirements of the component are fairly simple:

As we discussed previously, as we're supporting keyboard navigation in order to highlight
a suggestion before selecting it, we need the property to track the index of the
currently highlighted suggestion. We also need a property to keep track of
whether or not the user currently has their cursor inside the input we'll see why when we
look at the properties object:

The property is a subset of the full collection. We display them in the
suggestions box so that the user can select one to automatically complete the rest of the
input value. We only suggest the item if it contains the value the user has begun to type
into the input box, making sure the search is case-insensitive by converting both sides of
the comparison to lowercase.

The property determines whether or not the suggestions box should be visible or not.
The rule is quite simple: the user must have entered at least a single character into the
input, the input must be focused, and none of the items in the prop should have
their text value equal to the current of the input. As soon as they either navigate
away from the input, make a selection from the suggestions box, or type a complete value
that matches one of the predefined items, the suggestions box is hidden.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[376]

We need quite a few methods on this component, so we'll add them one at a time so that we
can cover each one individually. The first is the method:

Rather than directly emit the event inline as we've done before, this time we invoke
this method every time the element emits a native event. After emitting the
event so that it bubbles up to the consumer, we do another case-insensitive search of the

 array to see whether what the user typed matches any of the items in the array. If it
does, we emit another event, this time passing the matched array item. This might
seem slightly pointless unless you're a little OCD like I am, but if I have a brand named
Brand and a user types into the input, I would rather have be displayed in the
input.

Next, we need the method:

This method is invoked when a user clicks on one of the suggested items in the suggestions
box. We receive the selected of the array as an argument so that we can
emit an event with the selected value to notify the consumer that a selection has
been made. We then need to force the component to focus back on the element using

, seeing as a click made outside of the input will have
caused it to emit a event. This enables the user to immediately carry on typing should
they wish to, or at the very least tab into the next input quickly and easily.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[377]

The next method we need is the method:

This method is invoked when the user hits the Enter key on their keyboard. The idea is that
once they begin typing and the suggestions box is displayed, they can use the arrow keys to
highlight a suggestion, then hit Enter to actually make the selection. As such, in this
method, we ultimately emit the event and pass the currently selected suggestion as
an argument. We do this by accessing a specific item of the array, using the

 value as the array index to access. However, before we do any of this, we need to
make sure the user has actually highlighted a suggestion by validating that the
property has a value greater than or equal to zero.

Next, we need the and methods to handle the arrow key presses:

The currently selected suggestion is highlighted based on the property being
compared with the index of the array when its items are rendered into the
template section. As such, in order to change the currently selected (and highlighted) item,
all we need to do is change the property. This is exactly what the and
methods do; they decrement the current property if its value is greater than or equal to
zero, and increment it if its value will not exceed the number of items in the array.

Finally, we need the and methods:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[378]

Other than emitting the appropriate native events, the only other thing these methods do is
keep the property in sync with whether or not the user is currently focused on
this component.

To finish off this component, add the following section:

We want the suggestions box to be displayed over the top of any content, directly beneath
the typeahead components, so we use relative and absolute positioning to achieve what we
want. Again, this isn't a book on CSS, so I'm not going to explain any further than that. The
only other thing we've done is give the suggestions box a slight drop shadow to make it
stand out from any input elements that it may display.

With this, our typeahead component is complete. In summary, we pass in a list of items
that will be used for the autocomplete functionality, and as the user begins typing, we filter
those items based on the current value of user input and display the suggestions in a box
beneath the input. To select a suggestion, the user can click on it with a mouse, touchpad,
or touchscreen, or they can use the arrow keys on their keyboard before pressing the Enter
key to select the highlighted item. If the value they are looking for does not exist, they can
still enter whatever they like and we'll handle the creation of new items in the API when we
get there.

Building a multi-select control
The typeahead control we've just built is used for most of the complex fields on the create
product form, but for the features of that product, we've used a multi-select control instead.
We won't be supporting the addition of new features on the fly, so the user will only be able
to select from the preexisting list.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[379]

Create an empty file, and then start
the section off with the following:

Again, this should look pretty familiar by now, but in summary, we are:

Rendering a element with a class of inside the slot of1.
a component
Rendering a standard HTML input with a of 2.
Binding the property to a computed value3.
Binding the and properties based on the props we'll inherit from the4.
base form component
Handling the , , and events with component methods rather5.
than default behavior

Next, as with all of our custom form components, we need an optional validation feedback
 element:

And just like with our typeahead component previously we need a Bootstrap list group to
display the items the user can select from:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[380]

This time, we loop over the prop directly, as there is no filtering to be done. We also
display a Bootstrap formatted checkbox instead of a plain text value so that we can show
which items have already been selected. We do this by binding the property of the
checkbox to an component method, passing in the item in question so that it
can be calculated.

Notice how we're actually disabling each checkbox by passing in an empty prop.
As with the typeahead control, a event in the items box causes the input element to
emit a event. This then hides the items, as we only want them to appear when the
user is focused on the control. We combat this by disabling the checkbox, then adding a

 event handler to the containing list group item element, preventing the default
behavior and invoking our component method. In this method, we can force the
focus back onto the input element, preventing the items box from disappearing each time
the user selects one.

The section for this component is another reasonably complex one, so we'll build it
up in stages again. Start with the following:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[381]

In summary, we are:

Importing the component1.
Exporting a default component object2.
Naming it 3.
Extending the component4.
Declaring the component as a child5.
Defining a required prop of type 6.

Next, we need to define the requirements of the component, which in this case are
incredibly simple:

The only data we need to track is the property, which controls whether or not we
display the items box. We also need a single computed property:

Since the prop we pass in to this component is an array of selected items, we cannot
simply bind the property of the input directly to it. Instead, we concatenate the
selected values into a single text value by joining them with a comma delimiter. This is then
the property that we bind the input value to.

We'll need a number of components methods, starting with the method:

To determine whether an item is already checked or not, we can use the native JavaScript
 function on the prop, comparing each item with the argument

we've passed in.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[382]

Next, we need the and methods:

These are fairly self-explanatory, but aside from emitting the native events to enable
validation from the consuming parent component, we toggle the property so that the
items box is displayed while the user has focus in the component's element.

We then need the method:

No logic required here at all, as the only thing we need to do is prevent all key presses
inside the input. This isn't a text box the user should be able to type in, as the value we
display inside it is computed from the selections they make from the available items.

Finally, we need the method:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[383]

This method is fired each time a user clicks on one of the list group item rows in the items
box, regardless of whether the item has already been checked or not. Bearing that in mind,
we need to be able to both push new selections to the array, or remove a selection if
it already exists. That being said, we also already know that we cannot directly mutate the

 prop, or Vue will start throwing errors and/or warnings to the browser console.
Instead, we create a method level variable, using to clone the

 array on to it. We can then use this variable to see whether the
argument already exists within it by using the function.

If the item already exists, that is, the index of the item within the array is greater than ,
we remove it using the function, passing the index of the array to start
removing from and the number of positions to remove. If it doesn't already exist, we simply
push it to the array. With the array now up to date with the state of which items
are currently checked, we can notify the parent component that the value has changed by
emitting an event, passing the newly updated value as an argument like we did
previously. Finally, to prevent the items box disappearing due to a event outside of
the element, we focus back on to it using the we added to the input in the
template.

To finish off the component, we need a bit of styling to get things displayed the way we
want. Add the following section:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[384]

Persisting new products to the database
At this point, our client-side changes for the admin panel are near enough complete, and if
you run the application now, you should be able to browse to the admin panel, view a list
of orders and existing products, and fill in the create product form to see our custom input
controls in action. However, if you try to save a product that passes client-side validation,
nothing will happen as the API endpoint we told it to send to does not yet exist. We'll fix
that now.

Creating a slug generator
In order to support SEO-friendly URLs in our product catalogue, we rely on identifying
specific products by their URL property. For example, when accessing a page with a
relative path of , the slug that we extract is

. This is what we pass back to our API endpoint to fetch the specific products
details. So far, these properties have been hardcoded into our seed data method, so how do
we slugify a product name so that it becomes URL-friendly?

We could look for a NuGet package to do the job for us, but it seems a little overkill to bring
in a third-party dependency for something so minor. Instead, we'll create our own string
extension helper method to convert a normal string into a URL-friendly slug. Create a new

 file, and then add the following static class
definition:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[385]

I must admit that I didn't write this code myself, but rather found it online at the personal
blog of a developer named Adam Hathcock (

).

The comments are pretty clear, but essentially what we're doing here is sanitizing the string
to remove any unwanted characters, then replacing the spaces with hyphens to form a
URL-friendly version.

Creating the API endpoint
We can now add an additional API endpoint to the
file. The controller action definition looks like this:

This endpoint will only accept HTTP POST requests from authenticated users who belong
to the role. Remembering that our custom typeahead control allows users to enter
any arbitrary string value, we first need to check whether what they entered for the brand
and operating system already exist in the database or not. We do this as follows:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[386]

The typeahead control also automatically matches the case of an existing item, so when we
do a string comparison here, we don't need to worry about the casing of either side. If
either the or variables are null, we create new entities, which we'll attach to a new

 instance next:

Most of the properties of this object are simply copied directly from the view model we
received as a parameter to the action method. However, notice that for the property,
we invoke our newly created string extension on the
property. This will take care of making the product name URL-friendly for us, by doing
things such as replacing spaces and a few other special characters with dashes, then
converting the final string to lowercase. We're also keeping this endpoint simple by hard-
coding the product images to those that we've already stored in the

 folder.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[387]

Next, let's look at how to add the list of features the user selected from our custom multi-
select control:

At this point, we know that any value we receive as part of the list must
already exist in the database, so we use LINQ's method, which will throw an
exception if it can't find a match. It is then a simple case of adding a new
entity to the list, linking it back to the entity we just queried the database for.

We need to do a similar process with the product variants, but this time there is a little
more logic to perform:

As we did with the brand and operating system properties, we start by checking whether
the and properties of each product variant already exist in the database or
not. If they do, we link to the existing entities, and if they don't, we create new ones. It is
then a simple case of pushing a new entity into the

 list.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[388]

Finally, we need to complete the method with the following:

We will add the newly created object to the database, save our changes, then
return a 200 OK HTTP response code.

The class that we receive from the request body belongs in the
same folder, and looks like this:

And the class that it depends on looks like this:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[389]

Remote validation with Vee-Validate
At this point, we can now actually complete the create product form and submit it back to
our API to persist a new product into the database. However, if you've remembered that
we originally put a unique index on the column of the table, you'll know
that it would be very easy for the API call to fail if we send a duplicate product name. You
may also have spotted that right at the top of the create product form, we rendered the
following input element:

uniqueProductName

Notice the validation rule. This is obviously not a default rule built
into Vee-Validate, as how can they possibly know whether our product name is unique or
not? This is a rule that we need to instruct Vee-Validate on how to enforce, and seeing as
we've not done this yet, you'll see errors popping up in your browser console.

To remedy this, we're going to extend the object that Vee-Validate injects into
our components. We could have done this as part of the create product form component,
but it's not very SOLID to do so. Instead, create an empty

 file, and then add the following code into it:

As we'll need to hit an API endpoint in order to determine whether a user-entered product
name has already been taken or not, we start by importing axios. We also need to import
the object from Vee-Validate so that we can extend it to include our custom
validation rule.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[390]

We then need to define a function that takes a single value parameter and determines
whether that value is valid or not. In this case, we define an function, which
we'll complete in just a minute. With this in place, we can invoke the
function in order to add our own rule to be used on our components. The first argument
this function expects is the string name of the rule, which will be used in the
directive of an input control, as we did here:

uniqueProductName

The second argument is an object that needs to contain a function and a
 function. The validate function is used to validate the input, and in our case

we simply assign the function we scaffolded out earlier. The
function always receives three arguments: , , and . The one we're
interested in here is the argument as it contains the returned result from the

 function. We're expecting this result to contain a property, which will
contain the appropriate error message if validation fails.

The full function needs to look like this:

Vee-Validate validator functions are asynchronous, so we must return a promise from this
function. We then start by constructing a object with a single property to
which we assign the that we are validating. We can then use to hit the

 endpoint, passing the object as its argument.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[391]

When the API call completes, we're expecting to receive a simple / response as
to whether the payload was valid or not. If we receive , the payload was valid and we
resolve the promise with an object where its property is also . If we receive

 from the API, the payload was invalid and we resolve the promise with an object
where its property is also , but this time including a object. This is the
object that gets passed as the third argument to the function we discussed a
moment ago. As such, we define a property with the error string we want to be
displayed in the UI if validation fails.

Making our app aware of the new custom
validation rule
Our validation rule is now complete, but as yet our components cannot use it as our app
isn't aware of the new file. To fix this, we simply need to import the new helper file in an
appropriate location within the file:

//plugins
import "./helpers/validation";

Ordering matters here, so make sure that this new import statement is placed before we call
.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[392]

Creating the validation API endpoint
The last step is to actually create the API endpoint that's going to validate the product name
for us. Open up the file and add the following new

 method to the bottom:

As with our other admin panel API endpoints, we only allow authenticated users who
belong to the role, and we listen on the URL. The
method body is very simple: we declare a Boolean variable and then check whether
all of the products in the database have different names to the one we're validating. Finally,
we return a 200 OK response with the Boolean value as the response body, just as
we expect in our client-side validator function.

The class we expect to receive from the request body looks
like this:

Tidying things up
Fundamentally, our admin panel is now complete, but there are a few things we need to do
in order to just clean things up a little and fix a few minor bugs that have crept in as we've
changed things.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[393]

Linking to the admin panel
For starters, the only way of accessing the admin panel is to manually enter as the
relative URL path in your browser. Some sites prefer this as an approach, so it's not obvious
that such an area of the app even exists, unless you know it's there. However, if this isn't
the case, then we need to add a link to it from our main menu but only displayed if
the current user belongs to the role.

Open up the file and make the following amendment
to the section:

 <b-nav-item v-if="isAdmin" to="/admin">Admin</b-nav-item>

We'll also need an additional computed property to satisfy the directive we just
added:

 isAdmin() {
 return this.$store.getters.isInRole("Admin");
 },

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[394]

Fixing a logout bug
Now that we have nested route definitions, if we log out while viewing one of those nested
pages, for example, the create product page, we won't be redirected back to the app home
page. This is because our current method looks like this:

this.$route.meta.requiresAuth

We are only checking whether the current route has the meta property set
to , rather than any route in its parent-child hierarchy. To resolve this, open up the

 file and make the following
modifications:

.matched.some(route => route.meta.requiresAuth)

Now, the check will traverse up the route definition tree to see whether the current route or
any of its ancestors require authentication.

Fixing a bug by selecting a product variant
This one is slightly more involved than the rest. Before we added the ability to create new
products, we were assuming that every combination of color and capacity would have a
corresponding variant. For example, if we have a phone with two color options and two
storage options, we would have four product variants in total. However, when building out
the UI to add these on the fly, it became apparent that this isn't the case, as we may not
want to sell every combination. In fact, the way our UI works means we only add the
specific combinations we want.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[395]

For example, suppose we add three product variants to a new product, each of which has a
different value for color and storage than the others. We'd have three distinct color values
to choose from, and three distinct storage values to choose from. With our current logic,
we'd expect nine different product variants, covering every combination of those values.
However, we only actually have three variants because that's all we added in the UI. When
a customer navigates to a product details page, they will have the ability to specify a
combination of color and capacity that may not actually exist!

The fix this, we have a number of changes to make. Starting with the server-side changes,
we need to modify the action method in the
file:

//Colours = ...,
 //Storage = ...,

 .OrderBy(v => v.Colour.Name)
 .ThenBy(v => v.Storage.Capacity)

We need to remove the and properties, as we'll compute the valid
values for these on the client side instead. We then added some statements to
make sure the product variants list is in the right order by the time it hits the client.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[396]

As we've removed the and properties from the controller, they are also
no longer needed in the corresponding either:

//public IEnumerable<SelectListItem> Colours { get; set; }
 //public IEnumerable<SelectListItem> Storage { get; set; }

Finally, we have a number of changes to make in the
 component. Start by making the

following changes to the section:

colours

storage

Rather than binding the props of the two select boxes to the lists we used to have
on the model returned from the API, we instead bind to a pair of properties. To do
this, we'll be making use of some of the utility functions in the library, which we've
already installed. In the section, we need to make sure we import it for use:

import _ from "lodash";

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[397]

We also need to modify the life cycle hook so that it invokes some methods that
we'll be defining shortly:

 this.computeColours();
 this.computeStorage();
 this.computeProductVariant();

The method will extract the distinct values from the array of
product variants, and then set the currently selected value to the first item in the
computed array. The method will do a similar job for the storage
options, basing them on product variants where the color matches the selected
value that we just set. The method will work out which variant
to track based on the currently selected and values.

We're going to be moving a number of our properties that are currently computed so that
they become plain old data properties instead. Make the following changes to the
function:

 colours: [],

 storage: [],

 variant: null

We no longer have any properties, so the computed object can be removed
entirely.

We're also going to add a pair of functions to keep the select boxes in sync with the
available variant options, and update the variant property to the correct variant based
on the current state of those select boxes:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[398]

We will start by watching the property, and we'll invoke the and
 methods every time its value changes. Next, we'll watch the

 value, but this time the only thing we need to do is invoke the
 method when it changes.

The new method looks like this:

We use the function from lodash to ensure we only get distinct items in the array
based on a property named . This property comes from the function,
which we use on the product variants array, where we return a new array of objects that
contain and properties. These are what we need to pass into the select box for
it to be able to bind the options properly.

The method looks like this:

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[399]

This method is slightly simpler, as we filter the product variants array for only those
variants whose color matches the color we've selected in the first select box. We then take
that filtered array of variants and run the same function as we did for ,
returning a new array of objects containing and properties that can be bound
to a select box.

Finally, the method looks like this:

This is taken directly from the old computed property, so it should not need any
explanation.

Our changes are now complete, so if you run the application again, it should work exactly
as it did before, but it will now handle product variants properly, regardless of the
combinations we defined when creating the product. This is all very well and good, but
why is our implementation so much more complicated now?

The problem is that now that we have the capacity select box items entirely dependent on
the selected value of the color select box, the storage items can change. With our previous
method of using computed properties for everything, when the color select box changed its
value, both the and computed properties tried to update themselves
simultaneously. This meant there was a very brief split second where the
computed, may not actually find a matching variant, unless we force it to wait until the UI
finish refreshing before doing its calculation. This is what we've done by using watchers
and methods instead, and we no longer get any console errors while we wait for everything
to sync up.

www.EBooksWorld.ir

Building an Admin Panel Chapter 9

[400]

Summary
We've covered a lot again in this chapter, some of which was considerably more
complicated than previous chapters. However, we are now entirely feature complete!

We started by adding role-based authorization to both our server-side and client-side code.
This included adding more advanced route guards to our client-side route definitions, then
hiding a number of UI elements if the user wasn't in an appropriate role to view them.

We then started to build out the UI components that were necessary for our admin panel,
which for the first time required us to configure nested route definitions. We refactored the
order list component to be usable both in the customer's my account page and in our new
admin panel. We then built a product list component and created a product form
component. While doing so, we discussed the amount of code duplication we currently
had, and decided to build a number of custom input components designed to make our
lives easier and reduce that duplication.

To implement our custom input components, we needed to look at Vue component
inheritance so that we could abstract common properties and template sections into a base
form input component. We then inherited from this component by building custom input,
text area, typeahead, and multi-select components.

We finished off the Create Product page by adding an API endpoint for persisting the new
products into the database, then added remote validation to ensure only unique product
names were sent to the API for processing. Finally, we spent some time tidying up by
making a few minor enhancements and bug fixes for issues that cropped up after the
changes we've made in this chapter. We also fundamentally changed the way we handle
product variants, based on the way we add them in the first place and the fact we don't
always sell every combination of colour/capacity for a given phone.

This chapter has completed the base feature set of our application. In the next few chapters,
we'll be looking at deploying the application into a cloud environment, followed by some
advanced topics to build on what we've already learned and built.

www.EBooksWorld.ir

110
Deployment

With the application now feature-complete, we are ready to deploy to a production cloud
environment. When deciding which environment to use, we have plenty to choose from,
including Microsoft Azure, Google Cloud Platform, and Amazon AWS, to name but a few
of the most common options. We'll be making use of Microsoft Azure, since when building
ASP.NET applications it makes a lot of sense to stick with Microsoft when choosing a
hosting platform. We can also get an application such as proof-of-concept apps up and
running quickly and easily, at a low cost.

In this chapter, we will cover the following topics:

Registering for an Azure portal account
Setting up an Azure database/app service
Configuring Azure environment variables and connection strings
Preparing an application for deployment
Setting up simple Git deployments in Azure
Enabling logging in Azure
Forcing HTTPS connections

Registering for an Azure account
The first thing we'll need to do is head over to and register for
an account. Most people already have a Microsoft account for one reason or another, but if
you don't, you can sign up for a new one.

www.EBooksWorld.ir

Deployment Chapter 10

[402]

Once you've either signed in or created a new Microsoft account and signed in, you'll be
presented with the Azure portal signup screen:

Every Azure portal user must go through phone and credit card verification before they're
allowed access, but don't worry too much as the only thing that will cost you money is the
SQL Server database. This is around 4 GBP a month at the time of writing, but for the first
month, everything is free, as you get 150 in credits for signing up.

The registration process is very simple, so it doesn't need any further explanation. Once
you've finished registering, you should be presented with a screen that looks something

www.EBooksWorld.ir

Deployment Chapter 10

[403]

like this:

At this point, we are ready to start setting up our production environment.

Setting up an Azure environment
Before we start creating any databases or web app services, we need to create a
subscription, followed by a resource group. But what exactly are these things and why do
we need them?

www.EBooksWorld.ir

Deployment Chapter 10

[404]

Understanding Azure subscriptions and
resources
The first thing we need to create, and as such understand, is a subscription. Every Azure
user must have at least one subscription, as every resource we create must be associated
with a single parent subscription. This is all very well and good, but what actually is a
resource within the context of Azure? The answer is essentially any manageable item or
service that we can provision. Examples include databases, web apps, virtual machines,
and storage accounts.

So, we now know that subscriptions are containers for Azure resources, but they also have
two other main purposes: they allow us to control user access to the groups of resources
that they own, and they allow us to pay for those resources via a single monthly invoice
due to the fact that we get billed for the entire subscription. This is good for any
application, but even more so for more complex apps that may utilize the standard web
app service and database resources, but also require other resources, such as file storage
and push notifications. Rather than having to pay individually for those resources, you pay
one monthly bill for everything.

The next thing we need to create is a resource group, which as the name suggests is a
logical group of resources. Why do we need a resource group if we already group resources
under a subscription, I hear you ask. Again, there are two main purposes that resource
groups aim to fulfill. Firstly, you may not want all of your subscription users to have full
access to every resource they contain. Instead, you can utilize a second level of user access
management at the resource group level rather than the subscription level. Secondly, they
allow us to perform actions, for example resource deletion, on multiple resources at a time
by specifying a resource group instead of a single resource.

There are many different ways that you can utilize subscriptions and resource groups
depending on the size and structure of your organization. Hosting companies are now
branching away from offering physical (or even virtualized) servers, instead choosing to
offer managed cloud hosting using services such as Azure. They will often go as far as
consulting on the best ways of architecting applications within Azure, including
partitioning using vLANs on top of resource groups. This might be something to consider if
you are a large organization with serious complexity involved with the hosting of your
applications, or you simply don't have time to manage your environments yourself.
However, for the sake of our sample application, we'll be keeping things simple with a
single subscription and resource group to store everything else that we'll need.

www.EBooksWorld.ir

Deployment Chapter 10

[405]

Creating a subscription and resource group
Creating a subscription is incredibly easy, as there is a link to do so on the very first screen
you see after creating a portal account (see the previous screenshot). Even better is that this
first subscription is entirely free for the first month, as long as you don't go over 150 worth
of free credits. At the end of that month, you have to opt in to a pay as-you-go subscription,
meaning you won't get a nasty bill after the first 30 days unless you've made an explicit
choice to continue your service this isn't one of those free trials that automatically bill you
after the first month if you forget to cancel!

Once you've followed the instructions to create your first subscription, we need to make a
resource group to hold our database and web app resources. To do so, click on the
Resource groups link in the main menu on the left, and then click the Add button at the top
of the screen. You'll be presented with a simple form on the screen that looks like this:

www.EBooksWorld.ir

Deployment Chapter 10

[406]

What you call it and which location you choose for it is entirely up to you. I named mine
, and used the UK South data center as the location, seeing as I am based in the

UK and we're building an online phone shop. With this done, we are ready to start creating
our actual resources.

Creating a database
It makes sense to start off with the database, seeing as we'll need the connection string later,
when it comes to setting up the web app. There's a couple of parts to this, as in addition to
the database itself, we also need to configure the server that will host it. Both are done at
the same time, as when creating a new database you can either choose to create a new
server or pick an existing one. As this is our first database, it will be the former on this
occasion.

Again, in the main menu on the left, click on the SQL databases link followed by the
Add link at the top of the page that follows. Most of the fields are fairly self-explanatory,
and by the time you get to the Server section, it should look something like this:

www.EBooksWorld.ir

Deployment Chapter 10

[407]

I chose to name the database , left the default subscription selection as my Free
Trial, and selected the phoneshop resource group we just created by checking the Use
existing radio button. We want the database to be completely empty, so we choose the
Blank database option for its source. Then, we come to the Server section, where our only
option is to choose to create a new server seeing as no other servers were found. This opens
a secondary form where I named the server , entered my preferred server
admin login credentials, and again chose UK South as the data center location.

Having completed the database server form and hitting the Select button at the bottom, we
can finish off the main form for creating the database:

www.EBooksWorld.ir

Deployment Chapter 10

[408]

We don't wish to use SQL elastic pool, so I've left this as the default Not now option.
Finally, I've specified Basic, 2 GB as the pricing tier for this database. It's worth noting at
this point that we don't pay for the database server itself; instead, we must pay for each
individual database that's hosted on it. Additional databases mean additional cost. Once you've
finished this form, hit the Create button to finalize this. This could take a couple of minutes
to complete, so just wait until it's done before we move on to the web app itself.

Creating an app service
An app service is a self-contained environment for deploying a single web or mobile app
within Azure. They support a number of different application frameworks such as
ASP.NET, Java, Node.js, and PHP all without the need for us to configure any kind of
server infrastructure ourselves. All we need to do is spin one up, then deploy our
application to it, and Azure will handle the rest for us. However, if you have more
advanced needs, then we have a few different ways of overriding the default configuration,
including the use of environment variables and the file.

As with creating the database there are actually two parts to the creation of our first app
service. This is because app services must always belong to another resource called an app
service plan, which again we can choose to create at the same time as creating the app
service itself. However, unlike with databases and database servers, it's the app service
plan that is charged for and, as such, determines the pricing tier of our web app service.
Speaking of which, there are a number of different pricing tiers available for app service
plans, starting with the Free tier, which is what we'll be using for our sample application.
The monthly cost of each tier above the free one is calculated by how much you actually
use. This isn't an easy cost to estimate, although there are pricing calculators on the Azure
website that aim to help you. My recommendation would be to make use of the 150 free
credit for your first 30 days and see how much of that gets used up by one of your existing
applications.

Aside from an increase in price, you also gain additional functionality and available
resource limits as you go up the pricing tiers. For example, in the free tier we only get 1 GB
of disk space, cannot use a custom domain name, and have no option for autoscaling.
However, moving up to the Standard tier (the recommended minimum for production
apps), we get 50 GB of disk space, custom domains are supported, and we can even set up
autoscaling. This means that if we have huge spikes in activity, the application is far less
likely to fall over, as Azure will automatically scale up the amount of available resources to
deal with the additional requests. On top of this, on a standard tier service plan, we can
actually host up to 10 app services, that is, 10 different web applications for the price of one.
To really get the best value from Azure App Services, you need to stack up multiple
applications under a single service plan.

www.EBooksWorld.ir

Deployment Chapter 10

[409]

To create our app service/plan, click on the App Services link in the main menu on the left,
then click the Add button at the top of the screen that follows. You'll be presented with a
whole host of different applications you can create, but we just need the first option: Web
App. On the screen that follows, hit the Create button at the bottom, and you'll be
presented with the following form to complete:

As with our other resources, I've chosen to name the App Service , left the
subscription as the default Free Trial option, and chosen to use my existing
phoneshop resource group. I've left the OS as the default Windows option; note how the
App Service plan/Location field has already been filled in for us. By default, Azure will
choose to create a new App Service plan for you with a generic name using the S1 pricing
tier that's located in the Central US data center. It is very easy to skip over this field, seeing
as it has been pre-completed, and then end up with a higher pricing tier than you'd like,
and a database/web app running on different continents. I've certainly done this before, and
then spent a good few hours trying to work out why there was around a 500 ms latency on
every database call within my application.

www.EBooksWorld.ir

Deployment Chapter 10

[410]

Rather than take the default option, we're going to hit the Create new button to specify our
own service plan details:

I've chosen to name it again, but selected the UK South data center and the F1
Free pricing tier. Once you've configured your own service plan, hit the OK button at the
bottom, which should then leave you with just the Application Insights field to finalize our
app service:

www.EBooksWorld.ir

Deployment Chapter 10

[411]

I'm not going to bother using application insights on my application, but feel free to turn it
on if you wish. At this point, we can hit the Create button at the bottom to finalize the
creation of our app service. As with the database, this can take a couple of minutes to
complete, so just wait for the notification bar to let you know it's finished.

The notification bar is accessible by clicking the bell icon at the top of all
Azure portal screens!

www.EBooksWorld.ir

Deployment Chapter 10

[412]

Once the app service finishes deploying, we will have created everything we need to host
our e-commerce application in the cloud. To see all the resources we have created and to
make sure everything is up and running, click on the All resources link in the main menu.
You should be greeted with a screen that looks like this:

Double-check you have the same four resource types deployed: SQL server, App Service
plan, App Service, and SQL database. Also ensure that they are all located in the same
data center location of your choice.

www.EBooksWorld.ir

Deployment Chapter 10

[413]

Configuring environment variables
At the very least, most web applications will need the database connection string to be set
as an environment variable. If you've used ASP.NET Core before, you'll know that it is
incredibly easy to include environment-specific configuration settings using the

 and files. However, I
wouldn't recommend storing sensitive variables such as connection strings and third-party
API credentials in these configuration files. Instead, we can add them as environment
variables directly within Azure, keeping them well away from source control and the eyes
of developers who perhaps shouldn't have access to these settings.

First, we need to find out what our Azure connection string actually is. To do so is very
easy, and from the all resources page that you should still be viewing, click on the SQL
database name to go to the resource details page for our Azure database. This should look
something like the following:

www.EBooksWorld.ir

Deployment Chapter 10

[414]

You'll notice that a secondary menu has now appeared on the left, with a whole host of
different items to explore if you are interested. This is where you'll find any kind of
configuration that you might want to do, such as geo-replication and syncing with other
databases. The one we are interested in here is the Connection strings option, but you can
also click on the Show database connection strings link toward the top of the main
window. Either of these links should take you to the following screen:

There are a number of tabs showing connection strings in different formats that are
dependent on the application framework in use, but the one we want is the default
ADO.NET option. Click the Copy button to the right of the box to copy this connection
string to your clipboard.

www.EBooksWorld.ir

Deployment Chapter 10

[415]

We now need somewhere to add this as an environment variable on our app service. Click
on the App Services link in the main menu, then on the name of the app service we created
earlier. You'll be presented with a similar screen to the one we just saw for the database:

www.EBooksWorld.ir

Deployment Chapter 10

[416]

Again, there is a whole host of options in the secondary menu for configuring the app
service. We don't have time to discuss many of them, but most are pretty self-explanatory if
you want to have a play around. What we need is the Application settings option, which
will take you to a screen like this:

www.EBooksWorld.ir

Deployment Chapter 10

[417]

Note that, to find the Application settings and Connection strings sections, you need to
scroll down quite a way. Here, I've already added a connection string by clicking on the
Add new connection string link. If you're using the same setting names, as I've done in
the file, you need to ensure you call this connection string
DefaultConnection. Before you paste in the value, you'll also need to replace
the {your_username} and {your_password} sections, using the access credentials you
configured when setting up the SQL server earlier.

So, how does this work if we've already got a connection string defined in the
 file? If you open up the file, you'll see a section at the

bottom that looks like this:

When we call the method, a number of things happen.
First, the file is loaded in order to provide the application with our
default set of application settings. Next, the file
is loaded based on the specific environment we're running under, which loads the
environment-specific settings of our application. If any of these settings already exist, that
is, they also appear in the root file, the environment-specific settings
will always take precedence. Finally, there is a call to

, which does a similar job to adding an
environment-specific config file. Any environment variables configured on the server will
be added to the application's configuration, and environment variables whose name
matches a key within the settings files will again take precedence over them. To put it
simply, environment variables will always be used over their counterparts in

 files.

www.EBooksWorld.ir

Deployment Chapter 10

[418]

At this point, most simple applications can be deployed, and would probably work just
fine. However, in our case, we have a few additional environment variables to configure:

By default, Azure app services are set to use Node version 6.9.1. However, for our
application to work, you need to raise this version to , just like I've done, by changing
the value of the WEBSITE_NODE_DEFAULT_VERSION application setting. I've also
added a second setting named ASPNETCORE_ENVIRONMENT with a value of

. I'm not going to explain this one as I'm assuming most of you are already
familiar with ASP.NET Core environments.

Back in , User Registration and Authentication, we talked about
overriding the app setting in production. The Application
settings section is where you can do so if you wish.

www.EBooksWorld.ir

Deployment Chapter 10

[419]

Make sure you hit the Save button at the top of the page. Our app service and all its
required environment variables have been fully configured. However, before we can
actually deploy the application, we have some preparation work to do.

Preparing the application for deployment
We're currently using PostgreSQL as our local development database, and although you
can set up a Postgres database in Azure, it is far more expensive than running with SQL
Server instead. This is why we chose to create a SQL Server and associated database when
setting up the environment earlier. However, we now need to configure our application to
work with multiple database providers, depending on the environment we are running in.
We're also going to tweak the post-publish build steps that came preconfigured with the
project template we started from. There are a couple of potential issues that can crop up
when using Git to deploy to Azure, so we'll aim to combat them in advance to avoid
headaches later on.

Configuring multiple database providers
Working with two different providers based on the environment we're running in might
seem like a strange way of doing things. However, it is actually more common than you
might think. Many development teams like to run their apps locally with open source
database providers such as Postgres or SQLite, but make use of Microsoft SQL Server in
their production environments.

We have a couple of changes to make so that we can add in support for SQL Server, starting
with how we register the class with the built-in DI container. Open up the

 file, and make the following modifications right at the top:

, IHostingEnvironment env

 _env = env;

private IHostingEnvironment _env { get; }

www.EBooksWorld.ir

Deployment Chapter 10

[420]

Next, at the very top of the method, make the following changes:

 if (_env.EnvironmentName == EnvironmentName.Development)
 {

 }
 else
 {
 services.AddDbContext<EcommerceContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString
 ("DefaultConnection")));
 }

Finally, we need to manually tweak the migration files to instruct them on how to set up
our table identity columns in SQL Server. As an example, the creation script for the

 table in the migration file currently looks like this:

.Annotation("Npgsql:

Note the line in addition to this, we need to chain on a
similar statement that specifies the SQL Server-specific evaluation strategy for identity
columns. The updated version looks like this:

www.EBooksWorld.ir

Deployment Chapter 10

[421]

 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),

We won't cover everything here, but you'll need to make the same change in every
migration file that has a table creation step like the preceding one. This currently includes
the , , , and migration files.

Tweaking the post-publish build steps
If you're entirely new to modern frontend development frameworks, you may be
wondering why we keep referring to "building" our frontend code. These days, client-side
applications are composed of many different JavaScript files, or more specifically modules.
These modules are loosely connected using and statements, as we've seen
while building out our sample e-commerce application.

While in development, we use middleware in our ASP.NET application to dynamically
build the JavaScript for us, and update those built files as and when we make changes to
them. However, in production, we have no need for the bundled JavaScript files to be
updated until we do another deployment. As such, as part of the deployment, we want all
of our client-side JavaScript to be built into static files, which will be served from the

 directory just like any other.

We've also been using certain pieces of syntax that are not yet understood by all web
browsers. We can solve this issue by transpiling our modern JavaScript code down into an
older version that browsers can understand, similarly to how we compile C# into a form
that underlying servers can understand. This process of bundling files together and
transpiling them into a common format is what we mean when we refer to the building of a
Vue.js client application.

As part of the .NET project template we used to scaffold the application back in
, Getting Started with the Project, we already have a post-publish task set up that builds our

client-side JavaScript bundles and places them within the folder. This task is at the
bottom of the file, and looks like this:

www.EBooksWorld.ir

Deployment Chapter 10

[422]

However, when it comes to running this script inside Azure, it is common to see an npm
error thrown to do with our SCSS compilation. The crux of this error is that, for whatever
reason, npm believes that our Node and/or npm versions have changed since we ran the

 command. This simply isn't the case, and there are plenty of other people in
similar positions who are posting GitHub issues all over the internet. Thankfully, it is a
simple one-line fix:

 <Exec Command="npm rebuild node-sass"/>

The error itself suggests we run the command to try to resolve
the issue, which is exactly what we've done by adding the additional statement
here.

www.EBooksWorld.ir

Deployment Chapter 10

[423]

Configuring Git deployments
Configuring Git deployments in Azure is an absolute breeze as long as you are using one of
the main source control providers such as GitHub, Bitbucket, or VSTS. Back inside the
Azure portal, navigate to the App Services page, then click on the name of the app service
we created earlier. From the details page that follows, we need to click on the Deployment
options link from the secondary menu on the left. The screen that follows should look like
this:

www.EBooksWorld.ir

Deployment Chapter 10

[424]

After clicking on the Configure required settings button, you will be presented with a
number of source control options to choose from. Connecting to these is very simple, and
the wizard will guide you through the process very quickly. As an example, I am using
Bitbucket, so after selecting the appropriate option, I am presented with the following
screen to finalize my deployment options:

You must first complete the Authorization section, which will ask you to authenticate with
the provider you've chosen, then grant access for Azure to connect to your repositories.
Next, you can select a specific project from within your source control account, followed by
the branch you wish to deploy from. Optionally, you can also configure performance tests
to run after every successful deployment, but to keep things quick and simple, here, I am
choosing not to configure them. After hitting the OK button, Azure will automatically run
the first deployment for you based on the latest version of your code on the branch you
specified. As such, make sure the changes we've just made to prepare the application for
deployment are committed and pushed to your repository, or the deployment will likely
fail.

www.EBooksWorld.ir

Deployment Chapter 10

[425]

Click on Deployment options again and you should see that the application is currently
being deployed. The most recent Git commit message will be shown alongside a spinner to
indicate that the deployment is still in progress. After a few minutes, if all is well, the
deployment will succeed and you should see a screen like this:

Occasionally, you may see deployments fail due to the following npm
error: . This does happen from time to time, and
the solution is to go to your app service details page and completely stop
it and then start it again using the buttons at the top of the
Overview section.

www.EBooksWorld.ir

Deployment Chapter 10

[426]

With the application deployed, you can now check it out by browsing to the Azure URL for
your app service, which is based on its name like so: . In
my case, I can head to to see my application up and
running. From now on, every to the remote repository will trigger a newly
automated deployment to the environment we just set up and configured.

Finalizing the apps configuration
Our app is now deployed, but there are a couple of further enhancements we can make if
we wish. First of all, it is incredibly hard to debug live issues without some kind of logging
enabled, and second of all, most applications these days should be running on
HTTPS especially those with payment processing, such as ours. In this section, we'll take
a look at how to enable logging within Azure, and then how to make the most of the free
SSL certificate we have access to while using an Azure website's subdomain as we are
doing now.

Enabling logging in Azure
Enabling logging in Azure is probably the most difficult aspect of configuring an app
service. While viewing the app service details page, you can scroll right down on the
secondary menu to find the Diagnostics logs section, where you can configure all kinds of
logging options. However, what we'd be interested in is the Application Logging
(Filesystem) option, but if you hover over the more information icon, you'll notice that it
only remains enabled for 12 hours before being automatically disabled again. This is
because this feature is intended for use with the live log stream functionality, which can be
accessed from the Log stream secondary menu item. This won't help us with historic log
messages, as you need to be watching the log stream in real time to get any benefit from it.

www.EBooksWorld.ir

Deployment Chapter 10

[427]

Instead, we're going to access the filesystem of our app service directly, and enable the
standard out log file in the file. To do so, find the Advanced Tools secondary
menu item, then click the Go link in the screen that follows. A new browser tab should
open, which looks like this:

www.EBooksWorld.ir

Deployment Chapter 10

[428]

From the main menu at the top of the page, select Debug console followed by CMD, which
should present you with the following screen:

www.EBooksWorld.ir

Deployment Chapter 10

[429]

From here, we have full access to the console of our app service, as well as the preceding
GUI to browse the filesystem. We need to navigate to the directory, which
will display all of the files that we deployed using Git to the app service earlier:

The one we're interested in should be right at the bottom of the list, named .
Click on the pencil icon to the left to edit this file, after which the contents should look like
this:

true

www.EBooksWorld.ir

Deployment Chapter 10

[430]

The only thing we've changed here is to set the setting to . Once
you've made this change, hit the Save button at the top of the screen to commit the changes.
From now on, any unhandled exceptions from our application will be logged to a file in the

 directory, which you can find by following the same steps as earlier, but
changing the directory you navigate to.

Forcing HTTPS connections only
Forcing HTTPS on Azure App Services could not be easier. While viewing the details page
for your app service resource, click on the Custom domains secondary menu item, then
simply select On, which is next to the HTTPS Only option. After doing so, the page should
look like this:

www.EBooksWorld.ir

Deployment Chapter 10

[431]

Summary
Azure may not be the cheapest option when deploying small personal projects to the cloud,
but for businesses with many different applications, it's highly competitive in comparison
with the other major cloud hosting providers. We've only scratched the surface of what you
can do with the Azure portal, so I strongly encourage you to make the most of the free 30-
day trial and make use of as many different resources as you can.

We started out by getting to grips with the concepts of Azure subscriptions, resources, and
resource groups. Once familiar with those, we started to deploy the resources we needed
for our application, including a single resource group, a database server, a SQL database,
an app service plan, and an app service. We then made some changes to the application
itself in order to prepare it for deployment into Azure. The main change we needed to
make was to enable support for multiple database providers so that we could utilize a full-
blown SQL server in our production environment, while remaining cross-platform-
compliant in development.

We then configured our application to deploy automatically from every to a
source control provider of our choice. Finally, we added some additional configuration to
enable logging, and forced the use of HTTPS on our newly deployed application.

In the next few chapters, we're going to cover some more advanced topics such as refresh
token authentication flows, server-side rendering, and Continuous Integration and
deployment using VSTS.

www.EBooksWorld.ir

111
Authentication and Refresh

Token Flow
In the last chapter, we looked at how to set up a production-ready Azure environment and
configured our application so that we can deploy it automatically using Git deployments.
As the application is now feature-complete and deployed to our chosen hosting
environment, it's time to start building on some of our existing features using some more
advanced concepts. In this chapter, we're going to extend our current authentication
mechanism to include refresh tokens as well as the access tokens we're already using. In
summary, we'll cover the following topics in this chapter:

Refresh tokens: What are they and why would we use them?
Adding refresh token support to the backend
Handling refresh token flow on the frontend using axios interceptors

Understanding refresh tokens
Before we can implement them, we need to understand what refresh tokens are used for,
what they actually are, and why we would want to use them on top of our current JSON
Web Token (JWT)-based access tokens.

What are refresh tokens used for?
Let's start by understanding the basics of what we're actually going to use refresh tokens
for, before diving into the nitty gritty of what they are actually composed of. As the name
implies, a refresh token is used for refreshing an existing token or more specifically,
refreshing an existing access token.

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[433]

Refresh tokens are used to obtain a new access token as and when your existing access
token expires. What's more, this doesn't require any input from the user; it is all done
silently in the background without them even knowing. Essentially, this enables users to
remain logged in indefinitely. At this point, you might be wondering about the security
aspect of this, but don't worry, we're actually increasing the security of our application!
More on that later in this chapter.

So, how does this actually work? When an access token expires, we return a 401 HTTP
status code to signify that the user is no longer authenticated. With some modifications to
our frontend application code, we can listen for this status code on every API request we
make, and attempt to refresh the token if we catch one. If the refresh succeeds, we can retry
the original request and carry on as if nothing happened, but if it fails, we simply redirect
the user to the login page so that they can authenticate fully again.

The following diagram shows a simple refresh token flow between a Client SPA and a
Server API:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[434]

What are refresh tokens?
Plainly and simply, a refresh token is an arbitrary string of text that we assign to each user
within the database as and when they authenticate successfully. The contents of this string
of text do not really matter, as long it is a unique value; when we try and refresh the user's
access token, we need to be able to uniquely identify them based on their refresh token.

So, why do we bother if the contents of the string don't matter, seeing as we already have a
unique identifier in the form of the user's database ID value? There are two aspects to this
question: firstly, why don't the contents of the string matter; and secondly, why can't we
use their database ID as the refresh token if it already uniquely identifies them?

Starting with the latter, we can't use their database ID value because that value should
never change once initially created. Every time a user authenticates or refreshes their
existing access token, a new refresh token is generated and stored in the database. By
changing the refresh token so often, it makes it far less likely that malicious users who have
somehow gained access to another user's refresh token can use it to obtain an access token.

So, now that we know we can't use their existing ID, and must use a new unique string
value, why does it not matter what the content is? The answer is simple: the refresh token is
not trying to fully describe the user it's been assigned to this is the job of an access token,
which has a whole bunch of claims encoded within it. The refresh token simply needs to be
able to uniquely identify which user in the database is trying to refresh their existing access
token. The obvious choices for globally unique strings are GUIDs, but to make it slightly
shorter and more readable, we'll be converting a GUID to a Base64-encoded string instead.

If you aren't familiar with the term GUID, it stands for Globally Unique
Identifier, and describes a value that is virtually guaranteed to be unique,
even across multiple databases and/or application boundaries.

Why use refresh tokens?
So, why would we actually bother using refresh tokens? After all, our access tokens are
already configured to be valid for 30 days from the point of login, which is quite a long
time anyway.

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[435]

The main answer to this question is to increase the security of our application. Once a JWT
access token has been generated, it is 100% valid until it expires based on the expiration
date we set for it when we created it. There is absolutely nothing that we can do to prevent
it from being used to successfully authenticate a user. This is because JWT-based
authentication does not consult with the database when an existing access token is passed
to an API request; everything the server needs to know about a user to authorize them is
encoded into the token itself. The problem, then, is that the longer an access token is valid
for, the more time a malicious user has to make use of that access token if they manage to
get hold of it.

On the other hand, refresh tokens are stored in the database, and as such the database must
be queried in order for a refresh token to be validated. If we remove the refresh token from
the database, a subsequent API request to refresh the user's access token would then fail.
This means that they can have a much longer expiration due to the fact that we have a way
of invalidating them if we suspect a malicious user has gained access to the tokens of one of
our customers.

 Refresh tokens allow us to have very short access token expiration dates set, usually
measured in minutes rather than days. This minimizes the window that access tokens can
be abused for if they are compromised, while still leaving users logged in for longer periods
due to the ability to refresh the token until we manually invalidate their refresh token as
well.

Adding refresh token support to the
backend
We've covered enough theory for now, so let's crack on and see how refresh tokens actually
work. We can't do anything on the frontend of the app until the backend supports refresh
tokens, so that's where we're going to start.

Extending the AppUser model
First up, we need a place to store the refresh token as and when we generate it. As
previously discussed, this token is unique to each user, so it belongs in our

 entity model:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[436]

 public string RefreshToken { get; set; }

With this property in place, we also need to make sure it is unique. As this requires an
index to be placed on the database field, it also serves the purpose of speeding up the query
of finding a user based on their refresh token something we'll be doing quite frequently.
Open up the file, locate the overridden
method, and update it as follows:

 modelBuilder.Entity<AppUser>()
 .HasIndex(x => x.RefreshToken)
 .IsUnique();

And finally, we can create a migration to update our database accordingly. Open a
Terminal at the root of your project and run the following:

dotnet ef migrations add RefreshTokens

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[437]

Generating refresh tokens
Now that we have a place to store the refresh token, we actually need to generate one. We
already have the ideal place to do so, which is in the method of the

 class:

 var refreshToken =
 Convert.ToBase64String(Guid.NewGuid().ToByteArray());

 user.RefreshToken = refreshToken;
 await _userManager.UpdateAsync(user);

 RefreshToken = refreshToken,

Now, every time a user authenticates using their email and password, a new refresh token
will be generated, stored in the database, and returned, along with their access token. You'll
probably have noticed that the property doesn't actually exist on the

 class, so let's add it now:

 [JsonProperty("refresh_token")]
 public string RefreshToken { get; set; }

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[438]

Refreshing JWT access tokens
All that's left now is to provide a means for the client-side application to actually refresh an
access token when it expires. We can do so by adding a simple controller action to the

 class:

By now, this should be fairly self-explanatory, so in summary what we are doing here is the
following:

Defining a HTTP POST action listening on the route1.
Returning a plain result if validation fails2.
Querying the database for the single user whose matches that of3.
the model being posted from the client
Returning a plain result if no matching user is found4.
Generating new access/refresh tokens using the existing method5.
Returning the token model within an result6.

Notice how we've not bothered to supply any kind of error information with the
 results being returned here. As previously discussed, our client-side app will

use this endpoint without the end user ever knowing about it. As such, we don't really need
to supply any kind of error information, unless you wish to for debugging purposes.

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[439]

The class that we're accepting on this action method needs to
look like this:

If you hadn't already noticed, we're also accessing the directly using an
property that does not yet exist. We need to add the additional dependency to the top of
this controller like so:

 private readonly EcommerceContext _db;

 EcommerceContext db,

 _db = db;

With that, we have everything we need to issue and validate refresh tokens from our
server-side API.

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[440]

Finishing up
When we first implemented authentication back in , User Registration and
Authentication, we were returning the expiry date of the access token so that the client could
use it to determine whether the token was still valid without needing to make an API call.
However, now that our refresh token functionality will automatically retrieve new access
tokens for us, we no longer care about the access token's expiry date. As such, we can
remove it from the model that's returned to the client.

Start by opening the file and
removing the lines highlighted in the following code snippet:

//[JsonProperty("access_token_expiration")]
 //public DateTime AccessTokenExpiration { get; set; }

Next, at the bottom of the method of the
 class, modify the returned object by

removing the access token's expiry field:

//AccessTokenExpiration = expires,

Finally, we're currently taking a numeric value from the file and using
it as the number of days an access token is valid for. We now want this to be the number of
minutes it is valid for instead. In the same controller, find the following line in the

 method and change it like so:

Mins

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[441]

We now also need to rename this setting within the file itself:

Mins 15

This completes our entire server-side changes. Let's see what's involved on the client side.

Adding refresh token support to the
frontend
We have now discussed the basic flow of how refresh tokens work, as well as
implementing a means of performing that flow by adding an additional API endpoint to
our server. All that remains is deciding how we actually modify the frontend of the
application to automatically handle our refresh token flow without letting the user know
what's happening.

We know that we need to watch every API call for a 401 HTTP status code response and
attempt to obtain a new access token by hitting the refresh token API endpoint. We also
know that we don't want to be doing this manually on every API request in the system, as it
would be completely impractical to try and maintain them if the logic ever changed. We
need a way of defining this logic in a single place and have it automatically work any time
we add new API requests in the future.

Luckily, all of these requirements are handled very easily by using an axios interceptor
function. Axios interceptor functions quite literally intercept our API requests and/or
responses and provide a means for us to run our custom logic on every request in the
system with ease. We can define such a function to look for a 401 response status code on
every API call, check whether we have a refresh token available, and use it to make a
follow-up API call to the refresh token endpoint if we do. This will start to make a lot more
sense when we look at the code later!

The only problem is that the only place we can really put this function right now is in the
 file, which is already getting pretty bloated. The bulk of this file is

currently router-specific code, which we can certainly extract into separate files in order to
thin it down a bit. The other benefit this will give us is that we'll be able to import the

 object into other files so that we can make use of it; this is exactly what we need for
our refresh token handling.

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[442]

Extracting router configuration into separate files
Start by creating a new directory, which will ultimately contain two
files: and . Starting with , we need to extract our page
component import statements out of and drop them at the top of this
new file:

Next, we can extract the array from as well:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[443]

Finally, we simply need to export the array so it can be imported by the main
router definition file:

The main router definition will now belong in the file, and
again we can start by extracting some of the statements that used to reside in

:

Note that the import line needs to remain in both the
and files, but and can be removed from the
boot file. We can then import the array from the other file we just created, as well
as import the object. Again, the object needs to remain in both files. Finally,
we've extracted the line, which can now be removed from the boot
file.

Next, we can extract the actual object declaration from the boot file:

This is followed by the hook:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[444]

After that, here is the hook:

Finally, we need to export the object so that it can be imported elsewhere:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[445]

Just to make sure everything is still looking OK in the file, the
 statements at the top should currently look like this:

import router from "./router";

Note that we needed to import the object from our newly created
directory. Next, the Vue plugin installation section should look like this:

This is followed by our store initialization from the section:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[446]

And finally, we have our Vue instantiation:

Refreshing access tokens with axios
interceptors
Axios interceptor functions can be thought of like action filters or middleware in ASP.NET
MVC. They are invoked on every single request that we make using , and we can
hook into the request both before it has run and after. This makes them ideal for our refresh
token requirements, as we can check every response that we get back from an API request
and perform some custom logic if we detect an authentication failure.

In this case, we'll be looking for 401 response status codes, checking whether we have a
refresh token to use, and then attempting to obtain a new access token using the new API
endpoint we created earlier on. If we get one, we re-trigger the original request that failed,
and the user is none the wiser that any of this has happened, unless they're watching the
network tab in their browser devtools.

This will make more sense when we get our interceptor in place, so let's create a new
 file and start by importing the modules we'll

need, like so:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[447]

We obviously need axios, seeing as this is an axios interceptor function, but we'll also need
a reference to our and objects so that we can persist the new access token to
the store, or redirect to the home page if the refresh token fails. Next, we need to define the
interceptor function itself, which currently has the body of the function omitted for brevity:

As we are only interested in checking the response of an axios call, we use
. However, if we wanted to perform some logic before an

API request, we could just as easily have used as well.
For example, we could have defined an axios interceptor function that applies our access
token to the request if it exists in local storage, rather than our current implementation of
adding it to the default headers.

The function that we invoke in the preceding code takes two optional arguments, both
of which are callback functions. The first is a function to invoke if the response returns a
successful HTTP response code, and the second is a function to invoke if an error code is
returned. All we care about are 401 (Unauthorized) codes, so we can pass as
our success code callback function. All of our logic belongs inside the error code callback
function, which receives a parameter that we've aptly named containing the details
of the request and why it failed.

The first thing we need to do inside this function is get hold of the original request that just
failed so that we can retry it if we successfully manage to refresh the access token:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[448]

We can obtain the object model of the original request from the variable,
which in this case we reference using a new variable. Next, we check
whether the response code returned was equal to 401, that the request was not a retry, and
that we have a refresh token in our store state. If any of these checks fail, we don't do
anything other than reject the promise, as this isn't a response that we care about
intercepting with this function.

All axios interceptor functions return promises by default.

However, if all of these checks pass, we drop down inside the block, where we start
doing the following:

At this point, we can mark our object as a retry by setting the
property to . We then construct a object, which is what we'll be sending to
the API in order to attempt an access token refresh. The API request itself is next, which
looks like this:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[449]

We perform a HTTP POST request, passing the object that we just created, then
checking the response and performing some logic depending on whether it succeeded or
failed. If we successfully managed to refresh the access token, we drop into the block
and do the following:

Create a new variable referencing the property1.
Set the global default authorization header based on the2.

 property
Set the authorization header in the same way3.
Commit the mutation in order to persist the new tokens to the4.
store
Retry the original request using 5.

You may be wondering why we need to set the authorization header on both the global
axios defaults and the object. Unfortunately, the
object would have contained the expired access token taken from the global defaults
at the point the request was originally sent. Even by overriding the defaults at this point,
the object will remain unchanged, as when we call

, it quite literally sends the request as is, with no modifications
from the global defaults.

If we fail to refresh the access token, we then drop down inside the block and do the
following:

Commit the mutation to clear the state from the store1.
Redirect to the home page using the object we imported earlier2.
Delete the default axios authorization header3.
Reject the promise returned from the interceptor function4.

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[450]

At this point, it should make more sense as to why our router configuration refactoring was
worthwhile. As we need access to the object here, the only place it was available
was in the file, or any of our Vue components due to the fact that the
router is injected into them all using the property. This function doesn't belong in
either of those places, so it makes sense to extract the router config into a file that we could
export it from, meaning we could then import it in files such as this one.

Our interceptor function is now complete, but we still need to import it into our entry boot
file or it will never be invoked. Open up the file and add the
following import line:

import "./helpers/interceptors";

Our interceptor function will now be globally used by all requests, meaning our
refresh token handling is now complete. However, we have one final change to make to
ensure things work as we expect.

Finishing up
If you remember, at the end of our server-side changes, we removed the access token
expiration date from the response returned from a successful authentication request. We
don't care about when the token expires anymore, as our refresh token interceptor will
handle our need to obtain a new access token every 15 minutes anyway. As such, we can
modify our authenticated getter function to omit the expiry date check. Open up the

 file and modify the function like so:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[451]

We can now test that everything is working properly by monitoring the Network tab
within Chrome's DevTools. Rather than waiting 15 minutes for your access token to expire,
you can change the expiration in the file to a much shorter interval.
You'll then need to log in, navigate to a page that requires authentication, wait for the
access token to expire, and hit the refresh button. You should see output similar to the
following:

www.EBooksWorld.ir

Authentication and Refresh Token Flow Chapter 11

[452]

Summary
The refresh token flow is a great way of increasing the security of a JWT-based
authentication system, and is heavily used in OAuth2 and Open ID Connect-based
applications. We've seen how easy it was to implement on the server, and just one
additional file was needed on the client to tie everything together. The benefits of using
refresh tokens certainly outweigh the very minor overhead of the time taken to implement
them.

In the next chapter, we're going to look at another more advanced concept in Vue in order
to enhance the SEO of our application: server-side rendering (SSR).

www.EBooksWorld.ir

112
Server-Side Rendering

In the last chapter, we increased the security of our application by implementing a more
advanced refresh token authentication flow. This enabled us to minimize the amount of
time an access token is valid for, and as such vulnerable for, without compromising on the
length of time a user can remain logged in for.

The next, more advanced, topic on our feature list is Server-Side Rendering (SSR). This is
by far one of the most complex features to properly set up and configure in a Vue.js
application, particularly when you have password-protected sections as we do. In
summary, in this chapter, we're going to look at the following topics:

Why use SSR in the first place?
The easy way: Nuxt.js
Additional npm packages required for SSR
More advanced webpack configuration
How to boot a Vue.js application on both the client and server
How to pre-fetch component data on the server
How to access protected API routes from the server
How to conditionally hide specific components on the server
How to validate that SSR is working

Before we can do anything else, we have a few npm packages to install and some fairly
major code refactors to perform before we can render our application on the server.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[454]

Why use SSR in the first place?
When SPA frameworks such as Vue, React, and Angular came about, one of the benefits of
using them was to move the task of rendering your application away from the server and
into the client. This meant that servers were only required to render a minimal HTML file
consisting of some kind of root element that the application would be mounted into, and
the asset references of the JavaScript and CSS files needed by the application. For example,
if we run the application now and look at its source using a web browser, this is all we
receive from the server:

Notice the only elements rendered within the tags are our element and
JavaScript references. Once the JavaScript assets are loaded, they then render the
application and mount it into the DOM using the root element that we rendered as a
placeholder. So, why are we now suddenly making the decision to move that concern back
to the server? We're not going to go into a lot of detail, but it's worth at least exploring the
fundamentals of why SSR is important.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[455]

Search engine optimization
The first and foremost benefit is Search Engine Optimization (SEO) purposes. SEO is the
process of optimizing a web application in order to promote it as far up the rankings of
search engines as possible. SEO is important in a lot of web applications, but in an e-
commerce application, it is particularly important for new customers to be able to find our
shop when they search for the items they wish to buy.

If we render our application on the server, it is guaranteed to be treated by the search
engine crawlers in exactly the same way as any other standard HTML web page, with
absolutely no negative impact on its rankings. However, although there is an argument that
most search engines now support the crawling of JavaScript, generally speaking, I don't
believe it is 100% reliable. It is more than possible that our search engine rankings can in
fact be seriously impacted by not rendering on the server, ultimately decreasing our sales
potential and profitability.

Performance
The other main benefit to SSR is performance, or at least perceived performance. But what
exactly does that mean? SPA frameworks make web applications much more interactive
with rich client-side UIs and animations. However, they also drastically increase the
amount of JavaScript that needs to be downloaded when a user visits your web page. If we
only render the application on the client, unless we specifically cater for it, the user will be
greeted with a blank white screen until the JavaScript has been loaded and kicks in to
render the application.

On a modern PC and browser combination, this happens so fast that it's barely noticeable.
However, we still need to think about those on older machines, or slower connections such
as unreliable mobile data connections. The delay will be far more noticeable and may even
deter users from sticking around to wait. But, this doesn't actually answer the question of
what we mean by perceived performance.

When we render the application on the server, the browser is sent the full HTML of the
specific page they requested. This means that they potentially see a fully-rendered web
page far sooner than if we were to render the same page on the client instead. However,
even though the page looks to be fully rendered, it won't be interactive until all of the
JavaScript has been loaded and initialized. Unfortunately, SSR isn't a silver bullet that
solves all of our problems in that respect! The concept of perceived performance is that
users are almost tricked into believing that the website is loading faster than it actually is,
because they see something in their browser sooner, even if they can't actually click around
the app for another few milliseconds.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[456]

How does SSR work?
SSR adds a lot of complexity to our application. As it stands, with our application being
rendered on the client, all the server does on the initial web request is render an empty
HTML shell containing script references to our application's JavaScript files. Once the
browser renders this empty shell, it starts to download the script files and executes them
when they finish. At this point, our Vue application will be initialized, and will start to
trigger the API requests that are necessary to fetch the data required to render the full
HTML and CSS of the application. Once the application finishes rendering, it is
immediately ready for the user to start interacting with it. This means that the application is
both viewable and interactable at the exact same time, right at the end of the application
startup cycle.

In comparison, when we start using SSR, the initial request to the server results in a fully
rendered HTML page being returned and rendered by the browser. To do so, the server
must initialize our Vue application, including the triggering of any API requests necessary
to populate the store and complete the initial render. Once the browser receives this HTML
and renders it, the application is viewable by the user. However, the browser still needs to
download the application script references and initialize the Vue application again on the
client. This means that although the application is viewable much sooner in the startup
process, there is a slight delay before the client initializes the application and it becomes
interactable.

On the face of it, this process doesn't seem too scary, but there are a number of
complications that this brings about. We'll cover these in much more detail as we start to
implement SSR, but in summary, they include the following:

API requests performed during a server render may well require authentication,
and as such need access to the user's JWT token. This is currently an issue due to
the fact that the token is stored in local storage, which isn't accessible on the
server.
As the Vue application is initialized first on the server and then again on the
client, we don't want the API requests performed during the server render to be
duplicated by the client's initialization.
Data fetched during the initial server render is lost after the server finishes
processing the request, meaning that our store will be empty on the client unless
we hydrate it from the copy we created during the server render.
Not all of our client-side components and libraries can be initialized or rendered
on the server; for example, any code that relies on the or APIs
must be ignored during the initial server render.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[457]

In essence, the way we initialize the application is very different depending on whether we
are rendering on the client or the server, and we have to provide very strict instructions as
to how we want the application to boot on each.

The easy way Nuxt.js
Nuxt.js is a framework built on top of Vue.js, aimed specifically at the use case of building
universal or server-rendered web applications. It makes it incredibly easy too, as it does a
fantastic job of abstracting away the infrastructure code necessary to render on both the
client and server. It leaves us to focus purely on building our application UI, and even
provides a number of additional features that really help us do that. Things such as, but not
limited to, additional component hooks for fetching asynchronous data, middleware, and
shared component layouts are all included on top of the default functionality we get with
plain Vue.js.

However, there is one downside, and unfortunately for us it's a major one. Nuxt.js has a
dependency on being hosted directly within a Node.js server. It can't be directly linked
with an ASP.NET Core web application as we've done with our client-side application so
far, even through the use of the JavaScriptServices middleware. That being said, there is a
valid argument that large applications should have their frontends and backends
developed and deployed completely independently of one another anyway. I've certainly
built applications where I hosted a Nuxt.js frontend application in a Docker container
running a Node.js server on Linux, as well as a completely separate ASP.NET Core web
API hosted in a Docker container running either Linux or Windows.

This client/server separation has a number of pros and cons, but the most prominent of
each are probably flexibility and complexity, respectively. We increase the complexity of
our hosting environment and deployment pipeline, but gain the benefit of increased
flexibility in how we can scale the frontend and backend independently, based on the
specific needs of the application. On top of this, if you have separate frontend and backend
development teams, then splitting your application like this can also be a benefit to you by
helping those teams work completely independently from one another if that's how you
prefer to work, of course.

I would strongly recommend looking into Nuxt.js and whether splitting the frontend and
backend of your application could work for you or your organization, especially if you'll be
implementing SSR at any point. However, we won't be going down this route, and instead
we'll be looking at what's involved with implementing SSR ourselves. I also think it's
important to understand how SSR works under the hood, and just how much effort is
involved with implementing it. This way, you fully appreciate what you're gaining by
using a framework such as Nuxt.js for future projects!

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[458]

Preparing the application for SSR
Aside from the additional npm packages we need, we also need to make some fundamental
changes to the way we're fetching the data for each page, as well as the way we're storing
the user's access token once authenticated. SSR is made far easier if we make use of Vuex
for all of our app's data requirements. We're already using Vuex for things like shopping
cart data and authentication state, but we've not used it for our product catalog, user
account, or admin panel sections. We'll need to refactor these areas to make use of Vuex
before we can even think about enabling SSR for the entire application.

The reason Vuex makes things easier is that even though the application will originally be
rendered on the server, there is still the process of initializing the app on the client side as
well. After the initial server render, the client needs to take control of any future page
renders until the point that we hit the server again. To do so, it needs to be made aware of
any application state that was handled by the server and hydrate the client-side state to
match. This prevents the client side needing to duplicate the API calls that already took
place on the server. As our application state is centralized in one place with Vuex, this
client-side hydration is made far easier than if we leave state scattered among the different
pages of our application.

Aside from the use of Vuex, we also need to refactor the way we store the user's
authentication state. Currently, we persist the entire Vuex store to the browser's local
storage, including the object containing their tokens. However, for the password-
protected sections of our app, in order to enable SSR, we'll need access to these tokens for
making the API calls necessary to pre-fetch the data on the server. While the app is
rendering on the server, it has no access to the browser's local storage, meaning that it will
proceed as if the user is unauthenticated and simply kick them back out to the login modal
on the home page. To resolve this, we'll need to persist the access tokens into a storage
mechanism that is available on both the client and server and cookies are the perfect
solution.

Installing npm packages required for SSR
There are quite a few additional npm packages to install, so open up your Terminal at the
root of your project and run the following commands:

yarn add aspnet-prerendering
yarn add vue-server-renderer
yarn add webpack-merge
yarn add vuex-router-sync
yarn add vue-no-ssr
yarn add js-cookie

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[459]

Alternatively, you could install all of these in one command like so:

yarn add aspnet-prerendering vue-server-renderer webpack-merge
vuex-router-sync vue-no-ssr js-cookie

The first three of these packages are all required whenever we wish to render a Vue.js
application on the server with ASP.NET Core. The package is one
that the ASP.NET Core NuGet package needs to
perform SSR on any client-side, framework-based project, including Vue, as well as both
React and Angular. The package is specific to Vue.js, and is
responsible for actually generating the HTML of our application on the server. Finally,

 is used to literally merge multiple webpack configurations into one. This
makes it easier for us to define different configurations for each environment, client, and
server, and then merge them into one.

The other three packages defined here are included as part of the refactoring we're going to
need to do, and are there to make our lives much easier in the process. The

 package, once configured, will automatically persist the values of the currently active
 route into our Vuex store. We'll need this when we move the product catalog

data into the store, as the API calls we make require parameters from the query string. The
 package is a simple helper component that prevents certain portions of our

app from attempting to render on the server. Some custom UI components, which rely on
the or browser-only objects, will cause errors if we try and render them
on the server. As such, we'll simply prevent them from rendering until we reach the client.
Finally, the package gives us a super simple API for getting and setting
browser cookie values perfect for when we move the authentication tokens out of local
storage.

Adding Vuex actions and mutations for all API
requests
We currently have a number of pages/components that fetch their own data directly using
Axios. As previously discussed, we need to refactor these to use our Vuex store instead.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[460]

Defining additional Vuex actions
To start with, we need a set of new Vuex actions, which all belong in the

 file. The first of these is responsible for retrieving the list
of products from our API:

We use axios to perform a HTTP GET request to the endpoint. This action
will be used by both the product catalog page and the admin panel. In the case of the
catalog, we need to pass the parameters to the API to perform our server-side
filtering of results. To do so, we've defined a parameter for this action, which we
assign to the object in the axios call. Once the API call resolves, we simply commit
the mutation.

The next action we need is the action, which looks like this:

This is virtually identical to the previous one, save for the change of API endpoint and
mutation that we commit. As such, we won't discuss it again and move straight on to the
next action:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[461]

Again, this is almost identical, but the one thing to notice is the parameter, which we
expect so that we can identify a single product in the subsequent API call. The final action
we need is the action:

Defining the additional Vuex mutations
The next thing we'll need is a matching set of mutations to actually set the store data when
the actions we've just defined are invoked. These belong in the

 file, and look like this:

These are incredibly simple and shouldn't need any explanation at this point, as we simply
take the associated parameter and assign it to the store's object.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[462]

Defining the additional store state properties
For the mutations we've just defined to work, we'll need a number of additional properties
on our Vuex object. Actually, to be completely accurate, we technically don't need to
add these properties, but best practices recommend that we do in order to be explicit in
what we expect our store to keep track of. Open up the file
and add the following properties:

,
 products: [],
 filters: [],
 product: null,
 orders: []

Updating existing pages to use Vuex
Now that we have a set of Vuex actions and mutations for retrieving and storing all of our
page-level data, we need to update our components to use them. We are currently making
use of the hook to trigger the API requests necessary to fetch the data
for each page. However, if you read the official documentation on SSR with Vue (

), the recommended approach is to define a custom function on
any component that has data requirements which must be fulfilled before it can be fully
rendered. That way, we can configure the initial server render of the application to wait for
all functions to complete before completing and returning the resulting HTML
to the browser. We can also modify the client-side routing logic of the application to look
for these functions and wait for them to complete before allowing the page to
change, in much the same way as the hook works currently.

The biggest change we need to make is in the page,
so that's where we'll start.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[463]

Refactoring the catalog page
In the section, we first need to delete the function and object
entirely. The products and filters that we used to store locally in this component have now
been moved to the store. Next, in the object, we also need to delete the

 computed property. We now need to make a change to the existing
computed property, as well as add a new computed property. These changes look
like this:

 return this.$store.getters.sortedProducts;

 filters() {
 return this.$store.state.filters;
 }

Now that the array is in the store, we can also move the sorting logic there as
well, which makes this component far simpler. We don't need to do any processing on the

 property, so we simply extract the raw value straight from the object. The
 getter is not yet defined, but belongs in the

 file and looks like this:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[464]

This is largely a case of cutting and pasting the old logic straight from the component, but
we have had to change things ever so slightly. For starters, we now decide which sorting
rule to use by evaluating the value if it exists, or defaulting to
zero if it doesn't. Next, in each of the switch cases, we also call on the
array to ensure that our sorting is performed on a new copy of the array rather than the
original. If we omit this, then we'd be greeted by a host of console warning messages
stating that we shouldn't be directly mutating the state outside of our mutations. Aside
from these changes, the rest of the logic is exactly the same as before, so no more needs to
be said at this point.

Back in the catalog page component, we now need to update our data fetching logic to
trigger the new Vuex actions we created earlier, rather than perform the API calls directly
within the component as we're doing currently. The hook that we
currently have can be deleted entirely, and then replaced with the following custom
component method:

Note that this belongs at the same level as the hook it replaces, and does not belong inside
the object. As previously discussed, this function is not a standard function that
Vue knows what to do with, but we'll see how to invoke it shortly. At this point, it is worth
noting that we must return a promise from this function if we want to wait for it to
complete before allowing the page to change or the initial server render to complete. In this
case, we use the function, which accepts an array of functions and returns a
single promise to represent them all. Here, we dispatch both the and

 actions that we created earlier, passing the current object to
the former. Finally, the hook also needs to be updated to dispatch
one of these actions as well:

 this.$store.dispatch("fetchProducts", to.query).then(() => {

 });

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[465]

We simply dispatch the action again, wait for it to resolve, then allow the
router to finish navigation by invoking the callback as we did before. Now that we've
finished these changes to the catalog page, we can quickly perform the same refactoring
process on the other pages as well. However, these changes will be very much the same as
we've just done, so we'll skim over them pretty quickly.

Refactoring the product details page
Open up the file, locate the section, then
remove the function and object entirely. In their place, add the following

 object:

Next, replace the hook with the following function:

Refactoring the account page
Open up the file, locate the section, then
remove the function and object entirely. In their place, add the
following object:

Next, replace the hook with the following function:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[466]

Refactoring the orders admin page
Open up the file, locate the section, then
remove the function and object entirely. In their place, add the
following object:

Next, replace the hook with the following function:

Refactoring the products admin page
Open up the file, locate the section,
then remove the function and object entirely. In their place, add the
following object:

Next, replace the hook with the following function:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[467]

Refactoring the create product admin page
Open up the file, locate the
section, then remove the following properties from the object returned from the
function:

Note that this time we cannot delete the function entirely, as there are other
properties that we still need in this component. We can't delete the object entirely
either, but we can delete just the function as it's no longer required. Next, add the
following object:

Finally, replace the hook with the following function:

This completes the changes we need to make in the way we fetch our page-level data.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[468]

Changing the way we persist user authentication
state
As previously discussed, when we enable SSR, any initial API calls made during a page
load will be triggered from the server, rather than the client as they are now. We're
currently storing user access tokens in the browser's local storage, which isn't available
during a server render, so we need to move them to a cookie instead. On top of this, we've
actually kept things simple by keeping the full state object synced in local storage, rather
than just the small bits we need. However, now that we've moved all of our app's data
requirements into the global store, we don't want to keep persisting it all. If we left things
as they are now, the entire store would be persisted to local storage and then copied back
into the store once the application initializes on the client. This means that any store data
we fetch on the server will be overwritten by the copy persisted in local storage, which is
not at all what we want to happen! As such, we're only going to persist the shopping cart
data into local storage, and the authentication-related data into a cookie. The rest will be
stored in-memory only.

Changing our approach of persisting state to local
storage
The first thing we need to do is alter the call that we make in the

 file. It now needs to look like this:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[469]

Remember that this function will be invoked each time a mutation is committed to the
store. We no longer wish to subscribe to every mutation as we did before, so here we start
by defining an array of mutation names that we actually do care about listening for. This
list contains the name of any mutation that manipulates the array in any way.
We then check to see whether the mutation that is currently being handled is present in our
list, and if it is, we persist the current value of the array into local storage.

Now that we've handled the persistence of cart items, we also need to change how we read
this data when the app starts up. Open up the file and locate the
following section:

This section needs to be replaced entirely with the following, much simpler, alternative:

As we're now only storing the cart items, we changed the local storage key to , so this
is now what we use when checking whether the user has already added anything to their
cart in a previous browsing session. If they have, we commit the mutation,
which will ultimately replace the mutation that we used to commit before.
This does not yet exist, so open up the file, delete the

 mutation declaration, and replace it with the following:

This takes care of persisting cart data between sessions, but user authentication state will
now be lost each time the user refreshes a page or closes their browser.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[470]

Storing authentication state in cookies
There are a few ways we could go about doing this, one of which is to do what we've done
with the cart data and subscribe to the mutations that manipulate the object in the

 state. However, to demonstrate the other obvious choice, we're going to modify the
Vuex actions for logging in/out instead. Open up the file,
then right at the top, add the following line to import the library that we
installed earlier:

With this in place, we can scroll down a bit and look for the action. We need to set a
cookie if the request succeeds, or remove the cookie if it fails. The updated action
looks like this:

 Cookie.set("AUTH", JSON.stringify(auth));

 Cookie.remove("AUTH");

It's incredibly simple, thanks to the library. Similarly, we'll need to modify the
 action to remove the cookie as well:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[471]

 Cookie.remove("AUTH");

Setting up and configuring SSR
We've finished all of the refactoring that we needed to do in order to prepare the
application to be rendered on the server. We now need to look at how we configure our
application to be booted on both the client and the server, as we already determined that
we need to be very specific about what happens when and where. This also includes
enhancing our existing webpack configuration so that it too understands how our
application needs to work on both the client and server.

Let's start with how we actually boot our application. Currently, we have a single
 file, which handles this task for us nicely as we only ever boot the

application on the client. However, we now need to split this file into three separate parts:
, , and . As you've probably already guessed,

and are used to instruct Vue how our application should be booted on the
client and server, respectively. To save on duplication, we also specify , which will
contain any functionality that should be shared between both client and server files. This
can be likened to acting as a base class, and and acting as
subclasses in C#.

Defining the shared boot logic
Start by creating a new file, then adding the following
statements at the top to get things started:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[472]

The vast majority of these can be copied and pasted directly from the old
 file, but just be sure not to miss the few additions that we've added

here. In fact, the majority of all three of the new files we're creating at the minute can be
copied and pasted from our old boot file.

Remember that this is the shared boot file, and as such anything we import here will be
imported on both client and server renders. If any of the files or third-party libraries that
we import here are not compatible with SSR, this can completely prevent the app from
loading as it will fail to render on the server. As an example, if we were to import the

 library either here or in the file, the app would fail to
load due to the dependency Velocity has on the and APIs, which are not
available on the server.

Next, we need to copy across a few lines to install the plugin, as well as
register our two custom filters, and :

Remember that everything we're adding to this file are pieces that we need when rendering
on both the client and the server. If we didn't include these statements, our app would fail
to render completely. The next thing we need is brand new in this file, as we're about to
make use of the package that we installed earlier:

Under the hood, this method invocation is configuring a number of mutations, which will
automatically add the object to our store state, then keep it up to date whenever the
current route changes. We've already made use of this object in some of our
refactoring of API requests into Vuex actions/mutations.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[473]

Until this point, we've managed to avoid the need for any kind of environment-specific
configuration variables within the client-side Vue portion of our app. However, now that
we're looking to enable SSR, will be unable to determine the base URL path of our
API requests when rendering on the server. This isn't an issue when rendering on the client
because it has access to the object, which is enough to determine the URL that the
app is currently running on. As such, from now on, we'll need to explicitly set the base URL
of our requests. To do so, add the following statement just below the preceding
method invocation:

We interrogate the environment variable to determine whether we're running in
production or not. If we are, we set the base URL to our Azure environment URL make
sure to swap this out for your own URL and if not, we default back to our localhost URL
that we've been using while developing the app. With this configuration in place, we can
make an API request to a path such as this:

When we do so, Axios will automatically prefix this with our base URL, like this:

This then means that when rendering on the server, our API calls will still succeed, as they
have been doing in the browser so far. Next up, we can now check whether the current user
is already authenticated or not by checking for the cookie we set in our Vuex actions
earlier:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[474]

Again, you won't yet find this code anywhere else so make sure to copy it down carefully.
It's also important that we check the user's authentication state in this file, or we'll find that
any conditional checks that we do in router hooks or component templates will fail to
detect that the user has authenticated when the app is initially rendered. This will make
more sense when we add the next part:

As we check the authentication state before initializing our root instance, we ensure that
the store holds accurate data for the first render of the application. Finally, we can export
the objects we'll need to import in the client- and server-specific boot files:

Defining the client-specific boot logic
We can now build on our base file by defining our client-specific boot file. Create a
new file, then add the following statements at the top:

Notice how most of these statements are importing presentation-only components, such as
CSS style sheets and libraries, for client-side-only features, such as toast notifications. The
server will only be responsible for rendering the HTML markup of our application, not
making it fully interactive for the user. Applying any CSS styles and fully initializing the
application so it becomes interactable is still the job of the browser, which means we only
need to import these files in our client-side boot file.

We can now install the and libraries as we've done before:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[475]

Hydrating the client-side store
Next, we have another new piece of functionality that you won't have seen before:

As this file will not be run until we hit the user's browser, we have access to the
object, and here we check to see whether a property called has been
set on it. If it has, we call the function and pass it as an argument to
completely replace our client-side store state with the value of this object. This process is
known as hydrating the client-side store from the store we created while server rendering.
Again, the server is only responsible for rendering static HTML, just like any typical server-
side development framework such as ASP.NET MVC or Ruby on Rails. The application
does not become fully interactive until all of our client-side JavaScript has been loaded and
initialized. That being said, our Vuex actions are still run on the server in order to pre-fetch
any data required to actually render the HTML; this means that we must have had an
active Vuex store on the server. Rather than trigger those API requests again when we hit
the server, instead we simply hydrate the client-side store with any data that we already
fetched on the server.

Loading shopping cart data from local storage
The only data in our application that the server will never have any knowledge of is the
shopping cart items we're currently storing in the browser's local storage. Remembering
that this file is for client-specific boot logic, it's the ideal place to query for existing cart
items and commit them to the store if we find any:

This is exactly the same as how we retrieved the cart items in the old boot file, so we won't
go into any more detail than that, especially as the final section in this file is far more
involved.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[476]

We now need to configure the client-side router to scan through the components that are
about to be rendered on the next page, and look for any that define the function
that we talked about earlier. If we find any, we need to wait for the promises they return to
resolve before allowing the navigation to continue. This is far more complicated than when
we were using the hook previously, but it does allow us to reuse the
same data fetching logic on both the client and server, seeing as the
hook is not available during server renders.

The official SSR documentation already has a recommended approach to achieve what we
want, so I'll be following their direction with the following:

This is almost a direct copy of the methods suggested by the documentation, and it already
does a fantastic job of explaining how this works, so I strongly suggest you check it out by
going here: .

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[477]

Pre-fetching component data
Essentially, what we are doing here is implementing another hook, which runs
before the page transition has resolved and creates a list of components that we haven't
already rendered:

If we don't find any components that we actually care about fetching data for, we simply
return early:

However, if we do have some components that we care about, we make use of
the function again to make sure that the hook doesn't finish running until all
components' data has been loaded:

We loop over all of the components in the array using the standard JavaScript
 function, before checking whether each component has defined an

method. If they have, we invoke it and pass in the and parameters. As a
reminder, this is to fulfill the needs of the methods we defined on components
such as this one:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[478]

Finally, once all component data requirements have been fulfilled, we mount our app onto
the DOM:

Remembering our promises
At this point, I need to stress how important it is to always remember the statement
when dealing with promises in JavaScript. The whole point of the pretty complicated code
we've just talked about is to enable us to wait for our API calls to complete before moving
on to the next page or completing a server render of the application. We do that using the
following code that we just discussed:

Promise

 return

then
 next

Again, we're using the function to wait for all of the component
methods that we find by using the statement as we invoke them. If we omit the

 statement, the function will still be invoked, but we simply won't wait
for it to finish before moving on with the callback.

This rule applies all the way down the chain if the logic you use within an
function contains any further asynchronous function calls. Take the following, for example:

 return

The function is asynchronous, so again if we omitted the
statement here, the function would not wait for the dispatch call to complete
before notifying its caller that it has completed its processing. This would yet again mean
the page navigation would complete before the API call had the chance to return any data.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[479]

Defining the server-specific boot logic
With our shared and client-specific boot logic in place, the last piece of the puzzle is
defining how our app boots on the server. Create another new file,
then add the following statements at the top:

Next, we need to export a default function, which expects a parameter and
returns a promise:

We'll see where the context parameter originates from in a moment, but for now you just
need to know that it contains all of the information we'll need to render the app, and is
somewhat similar to the object in an ASP.NET request. It includes things like
the URL being accessed and any cookies that were passed up as part of the original HTTP
request.

Inside this function, we first need to check for the cookie:

As we aren't inside the browser at this point, the library we used before will not
work. Instead, we can access the request cookies using the property,
which contains an array of key/value pairs. More specifically, we'll use the
function to look for a cookie where the key is equal to . If we find one, we'll do exactly
the same as we've done before by committing the mutation, then setting the
default authorization header for any future HTTP requests.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[480]

Next, we need to push the URL path being rendered into our object:

Finally, we need to pre-fetch the data needed by any of the components matched by that
URL in a similar way to what we did in the client boot file. We do this by looking for

 functions again and waiting for them to resolve before allowing the render to
complete. If we allow the render to complete before we finish fetching the required data,
the HTML returned to the client would not contain anything that relies on that data. For
fairly obvious reasons, this would potentially make SSR a completely pointless feature.

Again, the official SSR documentation already suggests the ideal way of doing this, so I'll be
taking their lead and using the code they provide as a base:

This is a direct copy of the sample code for server-side data fetching, which you can find
here: .

It is strongly recommended to have a read through this, as it already explains these
concepts incredibly well. However, in summary, what we're doing here is very similar to
what we did on the client. If any components are matched to the currently rendered URL,
we loop over each one and look for an function. If we find any, we invoke them
all under the umbrella of a single call, ensuring that we don't finish the
render until all data has been fetched. Once this singular promise is resolved, we set the

 property to the current value within the object, then resolve
the top-level promise, which wraps the whole hook.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[481]

This really does now show why the approach is worthwhile. It serves both the
purpose of waiting for server-side data fetching for SSR and client-side data fetching
between page changes.

Deleting the old boot file
At this point, we've finished with our new boot file structure, and as such we can delete the
original file entirely. This will then introduce a new problem, in that
our current webpack configuration is looking for that specific file. Let's fix that now.

Making webpack aware of the client/server boot
files
With our updated boot files ready to go, we need to modify our existing webpack
configuration to make it aware of those new files. We're going to go through a similar
process, albeit much shorter, to split the webpack configuration into a shared client/server-
specific object.

Defining a shared webpack configuration object
Luckily for us, the necessary changes here are minimal. Our existing configuration object
will, save for a minor tweak, become the shared configuration object that we'll later merge
with the client- and server-specific objects. Open up the file, then add
the following additional property near the top of the file:

const merge = require("webpack-merge");

Next, around the line 10 mark, you should have a single statement, which returns
an array like this:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[482]

Rather than returning the array here, we're going to define a function that returns a
 object instead:

const sharedConfig = () => ({

Also notice that we've removed the property. Now that we're rendering on both the
client and server, we'll need to specify environment-specific properties instead. The
only other change we need to make to this shared configuration object is to remove one of
the plugins we've been using up until this point. If you look a little further down in this file,
you'll see a array like this:

 // new webpack.DllReferencePlugin({
 // context: __dirname,
 // manifest: require("./wwwroot/dist/vendor-
 // manifest.json")
 // })

For some reason, when we leave this in place, our application fails
to render on the server. However, by removing it, all we are doing is disabling the webpack
bundle-splitting feature, which separates the vendor bundle from our application bundle.
The application will work perfectly without it, albeit with slightly slower reload times
when running in development.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[483]

This seems to be an issue with webpack itself, or at least with , and
despite having several issues open on GitHub, I've so far failed to work out a resolution. As
soon as I do, I'll ensure that the sample code is updated to reflect the change.

Defining client- and server-specific webpack
configuration objects
With the shared configuration function in place, we can now use the
library we imported earlier to create both client- and server-specific objects. Directly
beneath the function, add the following:

Both of these objects are merged with the object using the function from
. Also, in both cases, we needed to specify the property to instruct

webpack where to start loading and bundling our files from, as well as the
property to determine where to place the bundle file after it's finished processing it. You'll
notice that we point the entry properties at the and

 files we just created, and output them both to the
folder. The only other thing we needed to add to the server-specific configuration was that
we're targeting Node.js rather than the browser, and our property
should be .

With these in place, we simply need to return a new array containing both configuration
objects:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[484]

Updating the vendor webpack configuration to
include SSR libraries
Before we're done with webpack configuration, we have one very small change to make in
the file. Open it up and add the following additional library
to the array:

,
 "aspnet-prerendering"

This is the npm module that ASP.NET Core uses under the hood to render SPAs on the
server. As always, now that we've modified this file, we need to regenerate our vendor
bundle using the following Terminal command:

yarn webpack

Enabling SSR
We finally have all of the configuration files in place that we'll need in order to render our
app on the server. We now need a file that will be invoked directly from our MVC view and
will be responsible for actually rendering the application for us. Create a new

 file, then start it off with the following:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[485]

The important part here is how we physically read the
file, then create a bundle renderer using the contents of it. The file is the
product of our server-side webpack configuration, bundling our application based on the
contents of the file we defined earlier. The bundle renderer we create from this
file is ultimately what renders the application as a string so that we can render it into the
DOM.

Next, we need the following:

Here, we make use of the npm module to create a server renderer.
This acts as the interface between the ASP.NET HTTP request and our server-side
rendering functionality. The argument is used to pass HTTP parameters from the
original ASP.NET request down into the promise function within. Using these, we can
create the object that we expect within the file:

 cookies: params.data.cookies

Most examples you'll find on documentation sites do not include the original HTTP request
cookies as we've done here. In our case, these are crucial for us to be able to use the user's
access token to perform any API requests.

Finally, we use the bundle renderer we created earlier to render the app as a string:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[486]

The function we're using here accepts two parameters: the
object we wish to pass to the server boot file and a callback function to invoke once the
rendering has finished. This callback function has its own two parameters: an property,
which will be null if everything was OK, and the HTML string that's been generated. In this
case, if we find that the property has a value assigned to it, we know that the request
failed, so we reject the promise being returned from the preceding

 call. If there is no value in the property, we resolve the
promise and pass an object with the string that was just generated. We also take the

 object, which has just been processed by the server, and assign its value to
an property that will be used to hydrate the application once it
reaches the client. Because we attached the and properties to
the object, they will be automatically assigned to the object once we hit
the browser.

The last step is to make our MVC view aware of this file using an ASP.NET Core taghelper,
which comes pre-installed with the NuGet package. Open up the

 view and modify the component's
element as follows:

 asp-prerender-module="ClientApp/renderOnServer"
 asp-prerender-data="new { cookies =
 ViewContext.HttpContext.Request.Cookies }"

We use the taghelper to point to the file
we just created. As previously mentioned, we're completely reliant on the HTTP request
cookies being sent to this file as well, which is why we also use the
taghelper to pass in a object, which we retrieve from the

 parameter.

And with that, we have successfully set up and configured SSR in our application.
However, due to some of the functionality we have in our components, if we try to run the
app now, it would fail to render on the server. We'll fix that in the final section.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[487]

Conditionally rendering elements that rely
on the browser
Some of our components are entirely reliant on being used in the browser due to their
coupling with the , , or APIs. If we don't prevent these
components from rendering on the server, we'll get all kinds of errors that aren't
particularly easy to debug.

As an example, at the top of the section in the
 component, we are

importing the library that we're using for animations:

Velocity is one of those libraries that cannot run outside of the browser, and simply
importing it like this is enough to cause our SSR to fail. This is a particularly tricky
situation, as using the syntax as we are means that any import lines have to be at
the root level of the tag. That is, we can't simply do this:

Even if we could, we'd still get errors because the object wouldn't even exist on
the server, and we expect it to exist further down in the same file. This is how we actually
fix it:

We start by declaring an empty variable, then determining whether we are
rendering on the client based on whether the object is or not. If it isn't,
we are on the client and can safely use the syntax to load rather than
the syntax. If the object is undefined, we still need to assign a value to the

 variable, so we use a simple function that always returns a promise which
resolves. The real function also returns a promise, so we need to mimic that
behavior.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[488]

Including the example we just looked at, there are a handful of different places that we'll
need to make a similar change to. Unfortunately, none of these are exactly the same, so each
needs a fairly specific fix to be applied.

Fixing the range filter component
In the file, we'll be using the
third-party component. This is another example of a component that isn't
compatible with SSR, so we'll need to hide it while rendering on the server. In the

 section, make the following changes:

<no-ssr>

</no-ssr>

All we've done is wrap the component with another third-party component
that we installed earlier the component. As the name implies, it prevents its
contents from being rendered on the server. However, we can't stop here as we're still
importing the component in the section. As with the preceding

 example, simply importing this component is enough to prevent the app
rendering on the server.

At the top of the section, make the following changes:

import noSsr from "vue-no-ssr";

let vueSlider = {};
if (typeof window !== "undefined") {
 vueSlider = require("vue-slider-component");
}

,

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[489]

 noSsr

We first need to import the component, then do a similar browser check to the one
we did in the example. We declare a variable with the default value
of an empty object, then override it with the actual object by loading it using
the syntax, as long as we're in the browser (that is, the object is not

). Finally, we add the component to the list of child components.

Fixing the checkout form component
In the component, we use the

 library to initialize the credit card input field. cannot be used on the server,
so we'll need to prevent this initialization from happening until we hit the browser.

In the section, we simply need to move the initialization logic into the life
cycle hook like so:

let card = null;

 let stripe = Stripe(`pk_test_NNMExLrT99IPhWHmPdu3xuXo`),
 elements = stripe.elements(),
 style = {
 base: {
 lineHeight: "24px"
 }
 };

The hook is not invoked at all during a server render, so this is enough to fix our
issues in this component.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[490]

Fixing page transition animations in the router
In the file, we configured a hook to trigger a
transition animation on every page change. To do so, we use the library, which
is yet another one that isn't compatible with SSR. This time, the fix is incredibly simple, as
we simply don't bother starting the animation if we're on the server:

 if (typeof window !== "undefined") {

 }

Fixing the store subscription to persist cart items
to local storage
In the file, we have a subscription that runs on every
mutation and persists the user's shopping cart contents if the mutation manipulated them.
However, during SSR, we have no access to local storage, so again we need to prevent this
code from running if we are on the server:

if (typeof window !== "undefined") {

}

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[491]

Testing our server-rendered application
At the beginning of this chapter, we looked at the page source of our existing client-
rendered application. To test that our SSR implementation is working, all we need to do is
check the page source again. Running the application and viewing the page source in
Chrome now yields this:

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[492]

Notice that the placeholder root element is still empty, but immediately after it a new
 tag has been rendered with a call to set the property. On top of this,

if you scroll right to the bottom of the server-rendered HTML string, you'll find
 being set to an object that represents the version of our

Vuex store that was initialized during the server render:

This value is what we use to hydrate the client-side store when our scripts are loaded and
take over any further rendering of the application.

www.EBooksWorld.ir

Server-Side Rendering Chapter 12

[493]

Summary
SSR is a complicated feature to properly utilize, and seeing as there are definite drawbacks
to doing so, it should always be evaluated to determine whether it's really necessary. We
started out by looking at a few of the reasons to implement SSR, and hopefully after
finishing this chapter, you'll also understand some of the drawbacks. As we've seen
towards the end, there are a lot of hoops to jump through depending on what kind of
functionality your app has and how many third-party libraries you use. As such,
implementing SSR should never be a decision that's taken lightly.

We then started preparing our application for SSR by refactoring some of our existing
implementation details to make our lives easier when rendering on the server. We then
started adding the additional configuration files we needed, such as client- and server-
specific boot files and webpack configurations. This then enabled us to tie things together
by looking at how to actually trigger a server render using ASP.NET Core taghelpers and a
custom JavaScript module, which is invoked by the middleware.

Finally, we fixed a number of issues that resulted from rendering our application on the
server. Specifically, we needed to conditionally render certain parts of the UI, depending on
whether we were in the browser or not, due to tight coupling to browser-based APIs such
as , , and .

The next chapter is the final one, where we'll be looking at building on our existing
deployment pipeline and adding continuous integration and deployment functionality
using Visual Studio Team Services (VSTS).

www.EBooksWorld.ir

113
Continuous Integration and

Continuous Deployment
In the previous chapter, we implemented one of the more complicated features of building
a modern SPA frontend: server-side rendering. We had to make quite a lot of changes to the
application to prepare it for SSR, as well as fix a number of bugs that cropped up when
attempting to render browser-reliant components on the server. However, the application
itself is now as feature-complete as it's going to be for the purposes of this book.

In this final chapter, we're going to improve our current deployment mechanism by
implementing a Continuous Integration (CI) and Continuous Deployment (CD) pipeline
using Visual Studio Team Services (VSTS). VSTS isn't the only option available to us, as
there are many different ways that we can build a CI/CD pipeline, but as we're hosting
within Azure, it makes a lot of sense to stick with a Microsoft ecosystem due to how
seamlessly they work together.

In summary, in this chapter, we're going to cover the following topics:

CI/CD: Why bother?
Disabling Azure app service Git deployments
Getting started with VSTS
Setting up a CI build
Setting up a CD release

CI/CD why bother?
Before we go much further, we need to be clear that CI and CD are entirely separate
concepts, and it is perfectly acceptable to do CI without doing CD. However, it is not
possible to do CD without CI! So, aside from giving us more control than our current
approach, why should we bother?

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[495]

Continuous integration
We may not have any automated tests in our application currently, but they are a
fundamental part of ensuring success in most production-grade applications. CI not only
gives us peace of mind that the application still builds after every code push, but also that it
still works. Automated tests are always run as part of the CI process, giving us immediate
feedback if something breaks after we push any changes to source control.

We also ensure that the application builds on a completely separate environment to that of
the developers who built it. It works on my machine is a common phrase in many dev teams,
which becomes completely irrelevant if something goes wrong on a properly configured
and reliable build server.

Continuous deployment
CD is one way of removing human error from the list of possible problems that can occur
when deploying an application to production. A well-tested deployment pipeline is far
more reliable than a human, who may forget to perform a crucial step of the process.

We often deploy far more frequently when using a CI/CD pipeline as well, meaning new
versions are much smaller, and as such there is less chance of bugs creeping into the live
environment. However, if the worst does happen and we need to roll back to a previous
release, the smaller size benefits us here as well, as there is less to do to get back to the last
known working version.

Disabling Azure app service Git
deployments
Back in , Deployment, we configured the application to deploy on every push to
the master branch using the built-in Azure app service Git deployment feature. However,
using this method, we get very limited control over the deployment process, and it is not
uncommon to get some pretty strange errors preventing the application from deploying
until you simply retry at a later time. As we'll be moving the responsibility for deploying
the application over to VSTS, we need to disable the Azure Git deployment feature.

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[496]

Log in to the Azure portal, then navigate to your web app service that we created earlier. In
the secondary navigation menu on the left, head to the Deployment options page, then hit
the Disconnect button at the top of the page that loads. You may need to wait a couple of
minutes for the notification to confirm that the deployment has been disconnected, but once
this is done, if you refresh the page, it should look like this:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[497]

Getting started with VSTS
If you've already got a VSTS account and have configured a project to use for source control
purposes, feel free to skip this section and move on to the next one, where we'll be
configuring the CI/CD pipeline. If not, continue on to see how you can get started with a
new VSTS account and project.

Creating a VSTS account
First things first, you'll need to sign up for a VSTS account if you don't already have one.
Head over to the following URL in your browser, then hit the Get started for free button to
begin the account registration process: .

Once you finish the registration process, you'll be able to access your account dashboard
using a custom URL based on the username you provided when you signed up. For
example, mine is the following: .

And when you first visit the page, you should see something like this:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[498]

Setting up a team services project
With your account all set up, the next step is to create a project. A project in VSTS can be
used to manage your application's life cycle all the way from planning through to
deployment. You can manage backlogs of work items and bugs using a rich Kanban board-
style UI, house your application source code using Git repositories, and create CI/CD
pipelines using the concepts of builds and releases.

When it comes to the latter, which after all is what we are most interested in for the
purposes of this chapter, we aren't restricted to using VSTS to house our source code. My
code is currently stored in a Bitbucket account, but VSTS can use OAuth to connect to many
different cloud-based Git repositories to fetch your code and build/release it. However, if
you're looking for a place to store your code in private repositories, VSTS is a great option
due to the fact that you get unlimited private repositories for up to five users far more
generous than many other providers!

After creating your account and landing on the screen displayed earlier, you should see a
Projects menu item, which will take you to a page that looks like this:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[499]

Note that if you are using an existing VSTS account and already have a
project created, you'll see your list of projects instead. There should be a
button to create a new project if this is the case.

We can use this form to create an appropriately named project for our application; in my
case, I chose to name it . You can enter whatever you like for the description,
but as it isn't mandatory, I left mine blank. If you followed along in Chapter 10, Deployment,
it is safe to assume that you already have your code stored in some kind of Git repository.
Therefore, leaving the Version control option as Git should be fairly self-explanatory. We
won't be discussing work item processing, so you can also leave that as the
default Agile option.

After completing this form, you should be greeted with the default project dashboard
screen, which looks something like this:

From here, you can manage everything there is to manage about your new project, but for
now all we are interested in is getting started with our CI/CD pipeline.

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[500]

Building a CI/CD pipeline
With our VSTS project set up and ready to go, we can finally start building our CI/CD
pipeline, starting with a VSTS build.

Setting up a VSTS build
From the preceding project dashboard page, on the right-hand side, there is a Set up
Build link next to the Build and Release heading. Clicking on this link will take you to a
page that looks like this:

If you're using VSTS for source control, then selecting your code repository is as simple as
specifying the team project, repository, and default branch you wish to build from. In this
case, a default PhoneShop repository and master branch was created for me when I set up
the team project earlier. However, in my case, I need to select the Bitbucket Cloud option,
followed by the Authorize using OAuth button to connect to my Bitbucket account. At this
point, you'll need to select your own source control provider, then follow the instructions to
allow VSTS to connect to it so that it can access your source code.

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[501]

Make sure your browser has popup blocking disabled for the VSTS
website. When connecting to other source control providers using OAuth,
VSTS will try and open the login pages in a new window.

After authorizing access to your source control provider, you can then select the Git
repository and branch you wish to build:

Upon clicking the Continue button, you'll be taken to a screen to select a build template.
You can either scroll down the list to look for the ASP.NET Core option, or alternatively
search for it as I've done here:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[502]

The one we're interested in is the first option displayed here, not the (.NET
Framework) version. Upon selecting it, you'll be presented with the following build
definition screen where we can make any necessary modifications to the default template:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[503]

By default, the build is configured to Get sources, that is, to download our source code
from Git and then run the .NET Restore, Build, Test, and Publish commands in that order.
If any of these steps fail, the whole build will fail. Finally, if the build succeeds, the Publish
Artifact step uploads a ZIP file containing our packaged application so that it can be used
in a release that we'll configure shortly.

The way we're building our frontend Vue code is already part of the .NET Publish
command, so we actually don't need to modify this default template at all. The only thing
we could do if we wanted is remove the Test step, as we haven't written any tests.
However, the build won't fail if we don't, as it just won't find any tests to run. Therefore, it's
worth leaving it in place in case we were to add some tests in the future.

You can customize this build process to do pretty much anything you can think of with
regards to building and packaging an application. For example, if we weren't already
building our client-side application as part of the .NET command, we could
configure the build step here instead. To do so, we could add a couple of npm commands
to run as part of this build process:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[504]

However, in our case, this is completely unnecessary so we'll just leave the template in its
default state. We can now test our build by clicking the Save & queue button at the top of
the page. In the modal window that follows, leave the default values for all fields and hit
the Save & queue button at the bottom to kick off our first build. You'll see a pale green
banner displayed at the top of the page to confirm that the build was triggered, including a
link to click on, which will take you to the build page itself. From here, you can monitor the
progress of the build, which usually takes around 5 minutes to complete depending on how
many npm and NuGet packages need to be downloaded.

When the build finishes, you should see a screen that looks something like this:

You'll also receive an email to notify you whether or not the build succeeds, meaning you
don't need to sit and watch every time you push new changes to your repository.

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[505]

Enabling CI
At this point, our build is set up and tested so we know that it works, but as it stands we
need to manually trigger builds as and when they are required. If we want to automate
these builds to run on every push to the master branch, we need to enable CI.

From the preceding build page, click the Edit build definition link to be taken back to the
page where we had the option of modifying the default template. From here, click on the
Triggers link at the top of the page, which will present you with the following screen,
where you can enable CI:

After checking the Enable continuous integration checkbox, you can save the build by
hovering over the Save & queue menu item, then clicking the Save option. Now, every
time we push new changes to the master branch, our build will run automatically.

Setting up a VSTS release
With our CI build in place, we can now create a VSTS release to actually deploy the
packaged application to our Azure app service. We can do so by following the Releases
link at the top of the screen, which will bring you to the following page:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[506]

We don't have any releases yet, so let's go ahead and click the New definition button to
create one. As with the build definition, you'll be presented with a list of templates to
choose from:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[507]

Rather than start with a predefined template, this time we'll use the Empty pipeline link at
the top and create our own from scratch. By building our own, you'll see just how easy it is,
even without the nice-to-have templates that Microsoft provide for us out of the box.

If you'd rather use a template, the Azure App Service Deployment
template will work fine after you configure it to point at your own
environment!

After selecting the template, we then need to give the environment we're releasing to a
name. I've entered for mine:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[508]

Once you've given the environment a name, close the popup as we now need to add an
artifact for VSTS to actually release for us. An artifact is a packaged application that we
need to push to our Azure app service, which in our case is the ZIP file that we ended up
with at the end of our CI build. We can do so by clicking on the Add artifact section to the
left of the Pipeline tab. Another modal will open from the right-hand side, which looks like
this:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[509]

We need to leave the source type as the default Build option, then specify the build that we
wish to use in the Source drop-down menu. In my case, I left the default build name of
PhoneShop-ASP.NET Core-CI, but if you renamed yours, it will display your specific
build name here instead. After selecting the source, the Default version dropdown should
auto populate to Latest, which is what we want. Click the Add button at the bottom to
complete the artifact selection form.

The next step is to tell the release definition what we actually want it to do with the build
artifact. Click on the Tasks tab and you'll see the following screen:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[510]

We need to add a task that pushes the build artifact to our Azure app service. This is where
it really pays to use VSTS for our CI/CD pipeline, as it provides default tasks for doing just
that. Click the + symbol to the right of the Agent phase box, and you'll see the following
screen with a whole host of available tasks to choose from:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[511]

Under the Deploy tab, you should be able to find a task named Azure App Service
Deploy. Click the Add button next to it to add the task to the release:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[512]

Notice that as soon as you add it, you'll see a red exclamation warning that states some
settings need attention. We need to set the Azure subscription and specific app service we
want to deploy to, which we can do by clicking on the new Azure App Service Deploy
task:

At the time of writing this book, the Version dropdown had a 4.*
(preview) option available. It is advisable to stick to the latest non-preview
version to avoid issues.

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[513]

As long as you used the same Microsoft account for both your Azure and VSTS accounts,
you should see your Azure subscription in the associated dropdown. Once selected, click
the Authorize button to allow VSTS to access the subscription by creating a service
endpoint for you. After doing so, you should be able to select your app service as well:

Everything else can remain as is, with the default options selected. However, unless you
wish to leave the default New Release Definition name, you can change it using the pencil
icon that appears when you hover near the name at the very top of the screen. Whether you
change the name or not, you must remember to hit the Save button at the top to ensure the
release definition is saved successfully.

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[514]

VSTS releases are much more robust than Azure Git deployments, but
occasionally you'll still see the ERROR_FILE_IN_USE message on a failed
deployment. Usually, this is resolved by manually kicking off the release
again, but on rare occasions you may need to restart your App Service
from the Azure portal.

If you manually trigger a release at this point, if all goes well, you'll see a screen that looks
something like this once it completes:

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[515]

Enabling CD
Similar to when we initially created the build definition, as it stands, the release will only
run when we trigger it manually. This may be what you want, depending on the
preferences of you or your business, but if you'd rather have your releases triggered
automatically after every successful build, then we need to enable CD.

To do so, head back to the Pipeline tab of our release definition, where you'll see a
lightning bolt button in the Artifacts section. This will open another modal from the right
of the screen, where you can set the Continuous deployment trigger:

Flip the switch here to Enabled, then remember to hit the Save button again to ensure that
these changes are persisted. Now, every push to our master Git branch will trigger a new
build, which if successful will in turn trigger a release to our production Azure
environment.

www.EBooksWorld.ir

Continuous Integration and Continuous Deployment Chapter 13

[516]

Summary
In this chapter, we've created a much more robust deployment mechanism by building a
CI/CD pipeline in VSTS. We started by disabling our original Git deployment mechanism
in Azure itself, before creating a VSTS build to replace it. We saw that we have much more
control over how our application is published if we need it, but also how simple it is to
create a build if your requirements are fairly simple, like ours are.

We then enabled CI so that every push to the master Git branch of our source control
repository triggers a new build in VSTS. Next, we created a release definition to connect to
our Azure subscription and push the build artifact to our production environment app
service.

We saw how easy it is to integrate VSTS releases with Azure app services, due to the built-
in tasks that Microsoft provide. Finally, we optionally enabled CD so that every time a new
build is completed successful, our application is automatically released for us.

www.EBooksWorld.ir

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

.NET Core 2.0 By Example
Rishabh Verma, Neha Shrivastava

ISBN: 978-1-78839-509-0

Build cross-platform applications with ASP.NET Core 2.0 and its tools
Integrate, host, and deploy web apps with the cloud (Microsoft Azure)
Leverage the ncurses native library to extend console capabilities in .NET Core
on Linux and interop with native coden .NET Core on Linux and learn how to
interop with existing native code
Reuse existing .NET Framework and Mono assemblies from .NET Core 2.0
applications
Develop real-time web applications using ASP.NET Core

www.EBooksWorld.ir

Other Books You May Enjoy

[518]

ASP.NET Core 2 and Angular 5
Valerio De Sanctis

ISBN: 978-1-78829-360-0

Use ASP.NET Core to its full extent to create a versatile backend layer based on
RESTful APIs
Consume backend APIs with the brand new Angular 5 HttpClient and use RxJS
Observers to feed the frontend UI asynchronously
Implement an authentication and authorization layer using ASP.NET Identity to
support user login with integrated and third-party OAuth 2 providers
Configure a web application in order to accept user-defined data and persist it
into the database using server-side APIs
Secure your application against threats and vulnerabilities in a time efficient way

www.EBooksWorld.ir

Other Books You May Enjoy

[519]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

www.EBooksWorld.ir

Index

A
access tokens
 refreshing, with axios interceptor , ,
 removing
accordion component
 accordion behavior, defining
 building
 styling
account page
 building
 dates, formatting with reusable date filter
 linking
 OrderList component, building
actions
admin panel components
 add variant modal component, creating ,

,
 building ,
 nested route definitions, configuring ,
 product form component, creating , ,

, , , , ,
 product list component ,
 refactoring, for re-use , ,
admin panel
 accessing
 bug, fixing by product variant selection , ,

 logout bug, fixing
API requests
 debouncing
API
 data, fetching ,
app service plan
 about
 creating , ,
app service

 creating
application
 preparing, for deployment
apps configuration
 finalizing
argument destructuring
ASP.NET Core
 about
 application startup ,
 dependency injection (DI) ,
 features
 installing
 middleware pipeline ,
 reference
authentication endpoint
 extending, with user roles ,
axios interceptor
 used, for refreshing access tokens , ,

Azure account
 registering for ,
Azure app service Git deployments
 disabling
Azure App Services
 HTTPS, forcing on
Azure environment
 setting up
Azure portal
 reference
Azure resources
Azure subscriptions
 about
 creating
Azure
 database, creating ,
 environment variables, configuring , ,

, ,

www.EBooksWorld.ir

[521]

 logging, enabling ,
 resource group, creating

B
backend dependencies
 installing
backend setup, Vue application
 feature folder structure, refactoring to
 refactoring
backend tools
 ASP.NET Core, installing
 IDE, installing
 IDE, selecting
 installing
 PostgreSQL, installing
Bootstrap , ,
Bootstrap-Vue ,
browser reliant elements
 checkout form component, fixing
 page transition animations, fixing in router
 range filter component, fixing
 rendering
 store subscription, fixing to persist cart items to

local storage
Bulma
 reference

C
cart summary component
 building
catalog page
 components, tidying
 filter behavior, adding ,
 filtering logic, testing
 filters component, adding to
 template, updating
checkout components
 building
 cart summary component, building
 checkout form component, building
 checkout success component, building
checkout form component
 basic Bootstrap styling, adding to Stripe

elements
 building

 client-side validation
 delivery address form fields, finishing
 form input state, validating
 order, submitting to API
 payment details, verifying with Stripe
 payment information, capturing
 Stripe elements
CI/CD pipeline
 building
 CI, enabling
 VSTS build setup , , ,
 VSTS release build
 VSTS release setup , , , , ,

CLI tools
 versus SPA templates
client app
 auth navigation item component ,
 authentication
 authentication modal component ,
 login form component ,
 register form component , ,
 user registration
 Vuex authentication getters
 Vuex login
 Vuex logout actions
 Vuex mutations, for managing authentication

state
 Vuex register
 Vuex state properties, for authentication
client-side role-based authorization ,
client-side routes
 role checks, adding , ,
client-side routing , , ,
client-side sorting
 about
 sort component, adding to catalog page ,

 sort component, building ,
client-side validation
client-specific boot logic, SSR
 client-side store, hydrating
 component data, pre-fetching
 defining
 promises, dealing with

www.EBooksWorld.ir

[522]

 shopping cart data, loading from local storage

client
 accordion component, building
 filtering
 filters component, adding to catalog page
 filters component, building
 filters component, refactoring
 libraries, installing
component behavior
 about
 computed properties ,
 lifecycle hooks ,
 methods
 props ,
 state ,
 watchers ,
component composition , , , ,
component presentation
 about
 directives
 parent-child component, communication
components
 about , ,
 accordion template structure, defining
 UI, composing ,
conditional rendering ,
ConEmu
 about
 reference
continuous deployment
 about
 enabling
continuous integration
currency filter
 creating , ,
custom input controls
 building
custom type ahead control
 building , , , ,

D
data model
 applications seed data, updating , ,
 database, dropping

 DbContext class, updating
 extending
 migration, creating to reflect model changes
 new entities, adding , ,
 updated entities, adding , ,
data
 fetching, from API , ,
database
 context, creating
 context, registering for DI
 creating ,
 creating, on application startup ,
 initial migration, creating ,
 seeding, on application startup ,
 setting up
DbContext
dependency injection (DI)
deployment
 application, preparing for
directives
 about
 attribute, binding with v-bind ,
 conditional display, with v-show
 control flow, with v-if and v-else
 event handling, with v-on ,
 form input binding, with v-model ,
 lists, rendering with v-for
dotnet CLI
 project, scaffolding

E
EF Core
 about
 compiled queries
 global query filters
 in-memory provider, for testing ,
 relationships, configuring
Entity Framework (EF)

F
filters component
 adding, to catalog page
 behavior, scaffolding
 brand filter, adding
 building

www.EBooksWorld.ir

[523]

 color filters, adding
 common multi-select filter component, extracting

,
 common range filter component, extracting ,

 computed properties, defining
 duplication, highlighting
 feature filters, adding
 methods, defining ,
 multi-select components, rendering
 OS filters, adding
 price filter, adding
 range filter components, rendering
 refactoring
 screen size filter, adding
 styling
 template, scaffolding
 testing
Font Awesome
frontend dependencies
 installing
frontend setup, Vue application
 default components, replacing ,
 refactoring
 TypeScript, removing
frontend tools
 installing
 Node Package Manager (npm), installing ,
 Node, installing ,
 npm, versus Yarn
 Vue, installing

G
getters
Git deployments
 configuring , ,
Google Chrome
 reference

H
Hot Module Replacement
HTTPS
 forcing, on Azure App Services
hydrating

I
IDE
 installing
 selecting
interceptor function

J
JavaScriptServices middleware
JSON Web Token (JWT)
JWT authentication
 adding, to API
 configuring ,
 issuing , ,
 testing , ,
 user registration ,
 user role support, adding ,
 using

L
libraries
 Font Awesome, installing
 installing
 npm packages, installing
lifecycle hooks ,
lodash
logging
 enabling, in Azure ,

M
multi-select control
 building , ,
multiple database providers
 configuring
mutation

N
Navbar component
Node Package Manager (npm)
 installing ,
 versus Yarn
Node
 installing ,
 reference
npm packages

www.EBooksWorld.ir

[524]

 installing, for SSR
NProgress
Nuxt.js

O
order list API endpoint
 adding
orders and payments
 order object, persisting
 payment, processing with Stripe
 processing
 total order price, calculating
owned entity types
 about
 configuring
 defining
 in EF Core 2.0
 need for

P
page, Vuex
 account page, refactoring
 catalog page, refactoring ,
 create product admin page, refactoring
 orders admin page, refactoring
 product details page, refactoring
 products admin page, refactoring
 updating
parent-child component
 communication
post-publish build steps
 tweaking
PostgreSQL
 installing
 reference
product details component
 variant, adding
 variants, adding ,
product details page
 finishing , , , ,
 gallery component, creating , , , ,

productivity tools
 about
 Terminal Emulator, installing on Windows

 VS Code extensions, installing , ,
 Vue.js Chrome devtools extension, installing
products list
 displaying , ,
products, adding to cart
 about
 actions, creating , , ,
 mutations, creating ,
products, persisting to database
 about
 API endpoint, creating , ,
 slug generator, creating
products
 removing, from cart , ,
props ,

R
refresh tokens
 about
 adding, to backend
 adding, to frontend
 AppUser model, extending
 finishing up
 generating
 JWT access tokens, refreshing
 need for
 router configuration, extracting into files ,

,
register form component
 fixing
remote validation, with Vee-Validate
 about
 app, making aware of custom validation rule
 validation API endpoint, creating
role checks
 adding, to client-side routes , ,

S
search bar component
 API requests triggering, watchers used
 creating , ,
server-rendered application
 testing ,
server-side payment processing
 about

www.EBooksWorld.ir

[525]

 orders and payments, processing
 orders migration, creating
 orders, adding to data model
 owned entity types, in EF Core 2.0
 Stripe.net NuGet package, configuring
 Stripe.net NuGet package, installing
server-side rendering (SSR)
Server-Side Rendering (SSR)
 about
 application, preparing
 client-specific boot logic, defining
 configuring
 enabling , ,
 existing pages, updating for Vuex
 functions
 mutations, adding for API requests
 need for
 npm packages, installing
 performance
 search engine optimization (SEO)
 server-specific boot logic, defining , ,

 setting up
 shared boot logic, defining , ,
 user authentication state, persisting
 Vuex actions, adding
 webpack, configuring for client/server boot files

server-side role-based authorization
server-specific boot logic, SSR
 defining
 deleting
server
 controller actions, updating
 filtering
 filtering logic, testing
shadow property
shopping cart page
 cart summary component, creating , ,

 CartItem component, creating ,
 creating
 list of cart items, displaying ,
 UX, improving with add to cart feedback ,

shopping cart

 building, options
 getter, adding to display cart total ,
 items, updating ,
 persisting to database approach
 persisting to local storage
 persisting to session state approach
 persisting, to local storage , ,
 products, removing from , ,
single-file components (SFCs) ,
Single-Page Application (SPA)
source maps
SPA templates
 versus CLI tools
Stripe.net NuGet package
 configuring ,
 installing
Stripe
 account, registering
 dashboard
 initiating
 integration
 JavaScript library
 PCI compliance
 using
 VeeValidate npm package, installing for client-

side validation

T
table splitting
taghelper
Terminal Emulator
 installing, on Windows

U
UI elements
 hiding, based on role ,
UI state
UI
 composing, with components ,
user authentication state, SSR
 persisting
 persisting, to local state
 persisting, to local storage
 storing, in cookies
User Experience (UX)

www.EBooksWorld.ir

[526]

 about
 application wide layout elements, adding
 application wide styles, adding
 Bootstrap-Vue
 data, fetching ,
 framework, selecting
 improving
 npm modules, installing
 page loading indicator, adding
 product details components, styling ,
 product list, styling ,
 transition, adding on page change
 vendor bundle, building
 webpack configuration, modifying to SASS
 webpack vendor configuration, updating
user roles
 authentication endpoint, extending with ,

V
Vee-Validate
 remote validation
Vetur
VS Code extensions
 installing ,
VS Code
 about
 reference
VSTS account
 creating
VSTS
 about
 team services project setup ,
Vue component inheritance
 about ,
 form input base component, defining ,
 inheritance, from base component
Vue instance
 about
 attaching, to DOM
 component trees, building ,
 data properties, defining
 data, rendering into DOM with expressions ,

Vue.js Chrome devtools extension
 installing

Vue.js
 about
 basics
 reactivity
 Vue instance
Vue
 installing
Vuex actions, SSR
 defining
Vuex documentation
 reference
Vuex mutations, SSR
 defining
 store state properties, defining
Vuex state properties
 for authentication
Vuex store
 defining ,
Vuex
 about
 actions
 configuring ,
 features
 getters
 installing ,
 mutations
 working

W
watchers ,
web browser
 selecting
webpack, SSR
 client- and server-specific webpack configuration

objects, defining
 configuring, for client/server boot files
 shared webpack configuration object, defining

 vendor webpack configuration, updating for SSR
libraries

webpack
 about ,
 bundle, splitting
 configuration ,
 production bundles

www.EBooksWorld.ir

 working
Windows
 Terminal Emulator, installing

Y

Yarn
 installing
 reference
 versus Node Package Manager (npm)

www.EBooksWorld.ir

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Understanding the Fundamentals
	Thinking in components
	What is a component?
	UI composition

	Introduction to Vue
	The Vue instance
	Attaching to the DOM
	Defining data properties
	Rendering data into the DOM using expressions
	Building component trees

	Reactivity

	Component behavior
	State
	Props
	Methods
	Computed properties
	Watchers
	Lifecycle hooks

	Component presentation
	Directives
	Attribute binding with v-bind
	Conditional display with v-show
	Control flow with v-if and v-else
	Rendering lists with v-for
	Event handling with v-on
	Form input binding with v-model

	Parent-child component communication

	ASP.NET Core – what's new?
	Middleware pipeline
	Application startup
	DI is a first-class citizen

	EF Core – what's new?
	Configuring relationships
	Global query filters
	Compiled queries
	In-memory provider for testing

	Summary

	Chapter 2: Setting Up the Development Environment
	Choosing a web browser
	Installing frontend tools and dependencies
	Installing Node and npm
	Installing Vue
	npm or Yarn?

	Installing backend tools and dependencies
	Installing ASP.NET Core
	Installing PostgreSQL
	Choosing and installing an IDE

	Productivity tools
	Installing VS Code extensions
	Installing the Vue.js Chrome devtools extension
	Installing a Terminal Emulator on Windows (optional)

	Summary

	Chapter 3: Getting Started with the Project
	ASP.NET Core SPA templates versus CLI tools
	An introduction to webpack
	What is webpack?
	How does it work?
	Basic webpack configuration
	Bundle splitting
	Production bundles

	Scaffolding a project with the dotnet CLI
	Refactoring the frontend setup
	Removing TypeScript
	Replacing the default components

	Refactoring the backend setup
	Refactoring to a feature folder structure

	Setting up the database
	Creating a database context
	Registering the database context for DI
	Creating the database
	Creating an initial migration
	Creating and seeding the database on start-up

	Testing the completed setup
	Summary

	Chapter 4: Building Our First Vue.js Components
	Displaying a list of products
	Conditional rendering
	Component composition
	Client-side routing
	Fetching data from an API
	Summary

	Chapter 5: Building a Product Catalog
	Improving the existing UX
	Choosing a UX framework
	What is Bootstrap-Vue?
	Installing additional required dependencies
	Modifying the webpack configuration to support SASS
	Updating the webpack vendor configuration
	Rebuilding the vendor bundle
	Adding application-wide layout elements
	Adding application-wide styles
	Styling the product list and product details components
	Fetching data before navigation
	Adding a page loading indicator
	Adding a transition on page change

	Extending the existing data model
	Dropping the existing database
	Adding new/updating existing entities
	Updating the DbContext class
	Creating a migration to reflect the model changes
	Updating the application's seed data

	Filtering on the server
	Updating controller actions to support filtering
	Testing our filtering logic

	Filtering on the client
	Installing additional dependencies
	Installing Font Awesome
	Installing additional npm packages

	Building an accordion component
	Defining the accordion template structure
	Defining the accordion behavior
	Styling the accordion component

	Building the filters component
	Scaffolding the filters component template
	Adding a brand filter
	Adding a price filter
	Adding a screen size filter
	Adding the remaining color, OS, and feature filters
	Scaffolding the filters component behavior
	Defining the filters component computed properties
	Defining the filters component methods
	Styling the filters component

	Adding the filters component to the catalog page
	Updating the catalog page template
	Adding the catalog page filter behavior
	Tidying up our existing components
	Testing the completed filtering logic

	Refactoring the filters component
	Highlighting duplication in our existing implementation
	Extracting a common multi-select filter component
	Extracting a common range filter component
	Rendering the new multi-select and range filter components
	Testing that everything still works

	Client-side sorting
	Building a sort component
	Adding the sort component to the catalog page

	Creating a search bar component
	Triggering API requests using watchers
	Debouncing API requests to limit how often they fire

	Summary

	Chapter 6: Building a Shopping Cart
	Evaluating our options
	Persisting to the database
	Persisting to session state
	Persisting to local storage

	Finishing the product details page
	Creating the gallery component
	Adding variants to the product details component

	Introduction to Vuex
	What is Vuex?
	How does Vuex work?
	Mutations
	Actions
	Getters

	Putting it all together

	Installing and configuring Vuex
	Adding products to the cart
	Creating the mutations
	Creating an action

	Creating a shopping cart page
	Creating a CartItem component
	Displaying the list of cart items

	Creating a currency filter
	Removing products from the cart
	Updating cart items
	Adding a getter to display the cart total
	Creating a cart summary component
	Persisting the cart to local storage
	Improving the UX with add to cart feedback
	Summary

	Chapter 7: User Registration and Authentication
	Adding JWT authentication to the API
	Why JWTs?
	Configuring JWT authentication
	Issuing JWTs
	Adding user role support
	Testing JWT authentication
	User registration

	Authentication and user registration in the client app
	Vuex state properties for authentication
	Vuex mutations for managing authentication state
	Vuex authentication getters
	Vuex login, register, and logout actions
	Authentication modal component
	Login form component
	Register form component

	Auth navigation item component
	Wiring up the new components in App.vue

	Protecting pages with navigation guards
	Setting the authentication state on app startup
	Summary

	Chapter 8: Processing Payments
	Why use Stripe?
	Simple PCI compliance
	Easy integration
	Excellent dashboard

	Getting started with Stripe and client-side validation
	Registering for a Stripe account
	Including the Stripe checkout JavaScript library
	Installing VeeValidate for client-side validation

	Building the checkout components
	Building a cart summary component
	Building a checkout form component
	First look at client-side validation
	Finishing the delivery address form fields
	Capturing payment information
	Initializing Stripe elements
	Validating form input state
	Verifying payment details with Stripe
	Submitting the order to the API
	Adding basic Bootstrap styling to Stripe elements

	Building a checkout success component

	Building a my account page
	Building the OrderList component
	Formatting dates with a reusable date filter
	Linking to the my account page

	Fixing the register form component
	Server-side payment processing
	Adding orders to the data model
	Owned entity types in EF Core 2.0
	Why use owned entity types?
	Defining an owned type
	Configuring owned types

	Creating the orders migration
	Installing and configuring the Stripe.net NuGet package
	Configuring Stripe

	Processing orders and payments
	Persisting the order object
	Calculating the total order price
	Processing the payment with Stripe

	Adding an order list API endpoint
	Summary

	Chapter 9: Building an Admin Panel
	Extending the authentication endpoint with user roles
	Client-side role-based authorization
	Adding role checks to client-side routes

	Server-side role-based authorization
	Hiding UI elements based on role
	Building the admin panel components
	Configuring nested route definitions
	Refactoring components for reuse
	Product list component

	Creating a product form component
	Creating an add variant modal component

	Vue component inheritance
	Defining a form input base component
	Inheriting from a base component

	Building custom input controls
	Building a custom typeahead control
	Building a multi-select control

	Persisting new products to the database
	Creating a slug generator
	Creating the API endpoint

	Remote validation with Vee-Validate
	Making our app aware of the new custom validation rule
	Creating the validation API endpoint

	Tidying things up
	Linking to the admin panel
	Fixing a logout bug
	Fixing a bug by selecting a product variant

	Summary

	Chapter 10: Deployment
	Registering for an Azure account
	Setting up an Azure environment
	Understanding Azure subscriptions and resources
	Creating a subscription and resource group
	Creating a database
	Creating an app service
	Configuring environment variables

	Preparing the application for deployment
	Configuring multiple database providers
	Tweaking the post-publish build steps

	Configuring Git deployments
	Finalizing the apps configuration
	Enabling logging in Azure
	Forcing HTTPS connections only

	Summary

	Chapter 11: Authentication and Refresh Token Flow
	Understanding refresh tokens
	What are refresh tokens used for?
	What are refresh tokens?
	Why use refresh tokens?

	Adding refresh token support to the backend
	Extending the AppUser model
	Generating refresh tokens
	Refreshing JWT access tokens
	Finishing up

	Adding refresh token support to the frontend
	Extracting router configuration into separate files

	Refreshing access tokens with axios interceptors
	Finishing up
	Summary

	Chapter 12: Server-Side Rendering
	Why use SSR in the first place?
	Search engine optimization
	Performance

	How does SSR work?
	The easy way – Nuxt.js
	Preparing the application for SSR
	Installing npm packages required for SSR
	Adding Vuex actions and mutations for all API requests
	Defining additional Vuex actions
	Defining the additional Vuex mutations
	Defining the additional store state properties

	Updating existing pages to use Vuex
	Refactoring the catalog page
	Refactoring the product details page
	Refactoring the account page
	Refactoring the orders admin page
	Refactoring the products admin page
	Refactoring the create product admin page

	Changing the way we persist user authentication state
	Changing our approach of persisting state to local storage
	Storing authentication state in cookies

	Setting up and configuring SSR
	Defining the shared boot logic
	Defining the client-specific boot logic
	Hydrating the client-side store
	Loading shopping cart data from local storage
	Pre-fetching component data
	Remembering our promises

	Defining the server-specific boot logic
	Deleting the old boot file

	Making webpack aware of the client/server boot files
	Defining a shared webpack configuration object
	Defining client- and server-specific webpack configuration objects

	Updating the vendor webpack configuration to include SSR libraries

	Enabling SSR
	Conditionally rendering elements that rely on the browser
	Fixing the range filter component
	Fixing the checkout form component
	Fixing page transition animations in the router
	Fixing the store subscription to persist cart items to local storage

	Testing our server-rendered application
	Summary

	Chapter 13: Continuous Integration and Continuous Deployment
	CI/CD – why bother?
	Continuous integration
	Continuous deployment

	Disabling Azure app service Git deployments
	Getting started with VSTS
	Creating a VSTS account
	Setting up a team services project

	Building a CI/CD pipeline
	Setting up a VSTS build
	Enabling CI
	Setting up a VSTS release

	Enabling CD
	Summary

	Other Books You May Enjoy
	Index

