

1 PROJECT CONFIGURATION .. 1

1.1 Creating a New Project .. 1

1.2 launchSettings.json File Configuration ... 2

1.3 Program.cs Class Explanations ... 4

1.4 Extension Methods and CORS Configuration ... 7

1.5 IIS Configuration ... 9

1.6 Additional Code in the Program Class ... 11

1.7 Environment-Based Settings .. 12

1.8 ASP.NET Core Middleware .. 13

1.8.1 Creating a First Middleware Component ... 16

1.8.2 Working with the Use Method ... 18

1.8.3 Using the Map and MapWhen Methods .. 20

1.8.4 Using MapWhen Method .. 21

2 CONFIGURING A LOGGING SERVICE 23

2.1 Creating the Required Projects .. 23

2.2 Creating the ILoggerManager Interface and Installing NLog 24

2.3 Implementing the Interface and Nlog.Config File 26

2.4 Configuring Logger Service for Logging Messages 27

2.5 DI, IoC, and Logger Service Testing ... 29

3 ONION ARCHITECTURE IMPLEMENTATION 31

3.1 About Onion Architecture ... 32

3.1.1 Advantages of the Onion Architecture ... 33

3.1.2 Flow of Dependencies.. 33

3.2 Creating Models ... 34

3.3 Context Class and the Database Connection ... 36

3.4 Migration and Initial Data Seed .. 39

3.5 Repository Pattern Logic .. 42

3.6 Repository User Interfaces and Classes ... 44

3.7 Creating a Repository Manager .. 45

3.8 Adding a Service Layer ... 47

3.9 Registering RepositoryContext at a Runtime .. 50

4 HANDLING GET REQUESTS ... 52

4.1 Controllers and Routing in WEB API ... 52

4.2 Naming Our Resources ... 57

4.3 Getting All Companies From the Database ... 57

4.4 Testing the Result with Postman .. 61

4.5 DTO Classes vs. Entity Model Classes ... 62

4.6 Using AutoMapper in ASP.NET Core .. 65

5 GLOBAL ERROR HANDLING .. 70

5.1 Handling Errors Globally with the Built-In Middleware........................... 70

5.2 Program Class Modification .. 72

5.3 Testing the Result .. 73

6 GETTING ADDITIONAL RESOURCES 75

6.1 Getting a Single Resource From the Database .. 75

6.1.1 Handling Invalid Requests in a Service Layer ... 77

6.2 Parent/Child Relationships in Web API .. 80

6.3 Getting a Single Employee for Company ... 83

7 CONTENT NEGOTIATION .. 87

7.1 What Do We Get Out of the Box? .. 87

7.2 Changing the Default Configuration of Our Project 88

7.3 Testing Content Negotiation ... 89

7.4 Restricting Media Types ... 91

7.5 More About Formatters .. 92

7.6 Implementing a Custom Formatter .. 93

8 METHOD SAFETY AND METHOD IDEMPOTENCY 96

9 CREATING RESOURCES .. 98

9.1 Handling POST Requests .. 98

9.2 Code Explanation ... 101

9.2.1 Validation from the ApiController Attribute ... 102

9.3 Creating a Child Resource .. 105

9.4 Creating Children Resources Together with a Parent 108

9.5 Creating a Collection of Resources ... 109

9.6 Model Binding in API .. 115

10 WORKING WITH DELETE REQUESTS 119

10.1 Deleting a Parent Resource with its Children 121

11 WORKING WITH PUT REQUESTS 123

11.1 Updating Employee .. 123

11.1.1 About the Update Method from the RepositoryBase Class 127

11.2 Inserting Resources while Updating One ... 127

12 WORKING WITH PATCH REQUESTS 130

12.1 Applying PATCH to the Employee Entity ... 131

13 VALIDATION ... 138

13.1 ModelState, Rerun Validation, and Built-in Attributes 138

13.1.1 Rerun Validation ... 139

13.1.2 Built-in Attributes ... 140

13.2 Custom Attributes and IValidatableObject ... 141

13.3 Validation while Creating Resource .. 143

13.3.1 Validating Int Type ... 146

13.4 Validation for PUT Requests ... 147

13.5 Validation for PATCH Requests ... 149

14 ASYNCHRONOUS CODE .. 154

14.1 What is Asynchronous Programming? .. 154

14.2 Async, Await Keywords and Return Types .. 156

14.2.1 Return Types of the Asynchronous Methods ... 158

14.2.2 The IRepositoryBase Interface and the RepositoryBase Class Explanation 159

14.3 Modifying the ICompanyRepository Interface and the

CompanyRepository Class .. 159

14.4 IRepositoryManager and RepositoryManager Changes 160

14.5 Updating the Service layer ... 161

14.6 Controller Modification ... 163

14.7 Continuation in Asynchronous Programming 166

14.8 Common Pitfalls ... 167

15 ACTION FILTERS ... 169

15.1 Action Filters Implementation .. 169

15.2 The Scope of Action Filters ... 170

15.3 Order of Invocation .. 171

15.4 Improving the Code with Action Filters .. 173

15.5 Validation with Action Filters ... 173

15.6 Refactoring the Service Layer .. 176

16 PAGING ... 181

16.1 What is Paging? ... 181

16.2 Paging Implementation .. 182

16.3 Concrete Query .. 185

16.4 Improving the Solution .. 187

16.4.1 Additional Advice .. 190

17 FILTERING .. 192

17.1 What is Filtering? ... 192

17.2 How is Filtering Different from Searching? ... 193

17.3 How to Implement Filtering in ASP.NET Core Web API 194

17.4 Sending and Testing a Query .. 196

18 SEARCHING ... 199

18.1 What is Searching?... 199

18.2 Implementing Searching in Our Application ... 199

18.3 Testing Our Implementation .. 201

19 SORTING ... 204

19.1 What is Sorting? ... 204

19.2 How to Implement Sorting in ASP.NET Core Web API 206

19.3 Implementation – Step by Step .. 208

19.4 Testing Our Implementation .. 210

19.5 Improving the Sorting Functionality .. 211

20 DATA SHAPING ... 213

20.1 What is Data Shaping? ... 213

20.2 How to Implement Data Shaping ... 214

20.3 Step-by-Step Implementation .. 216

20.4 Resolving XML Serialization Problems .. 221

21 SUPPORTING HATEOAS ... 224

21.1 What is HATEOAS and Why is it so Important?..................................... 224

21.1.1 Typical Response with HATEOAS Implemented 225

21.1.2 What is a Link? ... 225

21.1.3 Pros/Cons of Implementing HATEOAS ... 226

21.2 Adding Links in the Project .. 227

21.3 Additional Project Changes .. 228

21.4 Adding Custom Media Types ... 230

21.4.1 Registering Custom Media Types .. 230

21.4.2 Implementing a Media Type Validation Filter .. 231

21.5 Implementing HATEOAS ... 233

22 WORKING WITH OPTIONS AND HEAD REQUESTS 241

22.1 OPTIONS HTTP Request ... 241

22.2 OPTIONS Implementation .. 241

22.3 Head HTTP Request .. 243

22.4 HEAD Implementation .. 243

23 ROOT DOCUMENT .. 245

23.1 Root Document Implementation .. 245

24 VERSIONING APIS .. 250

24.1 Required Package Installation and Configuration 250

24.2 Versioning Examples .. 251

24.2.1 Using Query String ... 253

24.2.2 Using URL Versioning .. 254

24.2.3 HTTP Header Versioning .. 255

24.2.4 Deprecating Versions .. 256

24.2.5 Using Conventions .. 257

25 CACHING ... 258

25.1 About Caching .. 258

25.1.1 Cache Types .. 258

25.1.2 Response Cache Attribute .. 259

25.2 Adding Cache Headers .. 259

25.3 Adding Cache-Store .. 261

25.4 Expiration Model .. 264

25.5 Validation Model... 266

25.6 Supporting Validation... 267

25.6.1 Configuration ... 268

25.7 Using ETag and Validation .. 270

26 RATE LIMITING AND THROTTLING 273

26.1 Implementing Rate Limiting ... 273

27 JWT, IDENTITY, AND REFRESH TOKEN 277

27.1 Implementing Identity in ASP.NET Core Project 277

27.2 Creating Tables and Inserting Roles ... 280

27.3 User Creation ... 281

27.4 Big Picture ... 287

27.5 About JWT .. 287

27.6 JWT Configuration .. 289

27.7 Protecting Endpoints .. 291

27.8 Implementing Authentication .. 292

27.9 Role-Based Authorization ... 297

28 REFRESH TOKEN .. 300

28.1 Why Do We Need a Refresh Token ... 302

28.2 Refresh Token Implementation .. 303

28.3 Token Controller Implementation .. 307

29 BINDING CONFIGURATION AND OPTIONS PATTERN 311

29.1 Binding Configuration .. 312

29.2 Options Pattern .. 314

29.2.1 Using IOptions ... 315

29.2.2 IOptionsSnapshot and IOptionsMonitor.. 317

30 DOCUMENTING API WITH SWAGGER 320

30.1 About Swagger ... 320

30.2 Swagger Integration Into Our Project .. 321

30.3 Adding Authorization Support .. 325

30.4 Extending Swagger Configuration .. 328

31 DEPLOYMENT TO IIS ... 332

31.1 Creating Publish Files ... 332

31.2 Windows Server Hosting Bundle .. 334

31.3 Installing IIS.. 335

31.4 Configuring Environment File ... 338

31.5 Testing Deployed Application ... 339

32 BONUS 1 - RESPONSE PERFORMANCE IMPROVEMENTS 343

32.1 Adding Response Classes to the Project ... 343

32.2 Service Layer Modification ... 345

32.3 Controller Modification ... 347

32.4 Testing the API Response Flow .. 349

33 BONUS 2 - INTRODUCTION TO CQRS AND MEDIATR WITH

ASP.NET CORE WEB API .. 352

33.1 About CQRS and Mediator Pattern .. 352

33.1.1 CQRS .. 352

33.1.2 Advantages and Disadvantages of CQRS ... 354

33.1.3 Mediator Pattern ... 355

33.2 How MediatR facilitates CQRS and Mediator Patterns 356

33.3 Adding Application Project and Initial Configuration 356

33.4 Requests with MediatR ... 359

33.5 Commands with MediatR .. 365

33.5.1 Update Command ... 367

33.5.2 Delete Command .. 369

33.6 MediatR Notifications ... 370

33.7 MediatR Behaviors ... 373

33.7.1 Adding Fluent Validation .. 374

33.7.2 Creating Decorators with MediatR PipelineBehavior 375

33.7.3 Validating null Object .. 379

1

Configuration in .NET Core is very different from what we’re used to in

.NET Framework projects. We don’t use the web.config file anymore, but

instead, use a built-in Configuration framework that comes out of the box

in .NET Core.

To be able to develop good applications, we need to understand how to

configure our application and its services first.

In this section, we’ll learn about configuration in the Program class and

set up our application. We will also learn how to register different services

and how to use extension methods to achieve this.

Of course, the first thing we need to do is to create a new project, so,

let’s dive right into it.

Let's open Visual Studio, we are going to use VS 2022, and create a new

ASP.NET Core Web API Application:

Now let’s choose a name and location for our project:

2

Next, we want to choose a .NET 6.0 from the dropdown list. Also, we

don’t want to enable OpenAPI support right now. We’ll do that later in the

book on our own. Now we can proceed by clicking the Create button and

the project will start initializing:

After the project has been created, we are going to modify the

launchSettings.json file, which can be found in the Properties section of

the Solution Explorer window.

3

This configuration determines the launch behavior of the ASP.NET Core

applications. As we can see, it contains both configurations to launch

settings for IIS and self-hosted applications (Kestrel).

For now, let’s change the launchBrowser property to false to prevent

the web browser from launching on application start.

{
{
 "$schema": "https://json.schemastore.org/launchsettings.json",
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:1629",
 "sslPort": 44370
 }
 },
 "profiles": {
 "CompanyEmployees": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": false,
 "launchUrl": "weatherforecast",
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": false,
 "launchUrl": "weatherforecast",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

This is convenient since we are developing a Web API project and we

don’t need a browser to check our API out. We will use Postman

(described later) for this purpose.

If you’ve checked Configure for HTTPS checkbox earlier in the setup

phase, you will end up with two URLs in the applicationUrl section — one

for HTTPS (localhost:5001), and one for HTTP (localhost:5000).

4

You’ll also notice the sslPort property which indicates that our

application, when running in IISExpress, will be configured for HTTPS

(port 44370), too.

There is one more useful property for developing applications locally and

that’s the launchUrl property. This property determines which URL will

the application navigate to initially. For launchUrl property to work, we

need to set the launchBrowser property to true. So, for example, if we

set the launchUrl property to weatherforecast, we will be redirected

to https://localhost:5001/weatherforecast when we launch our

application.

Program.cs is the entry point to our application and it looks like this:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllers();

var app = builder.Build();

// Configure the HTTP request pipeline.

app.UseHttpsRedirection();

app.UseAuthorization();

app.MapControllers();

app.Run();

Compared to the Program.cs class from .NET 5, there are some major

changes. Some of the most obvious are:

• Top-level statements

• Implicit using directives

NOTE: This HTTPS configuration is only valid in the local environment. You will

have to configure a valid certificate and HTTPS redirection once you deploy the

application.

5

• No Startup class (on the project level)

“Top-level statements” means the compiler generates the namespace,

class, and method elements for the main program in our application. We

can see that we don’t have the class block in the code nor the Main

method. All of that is generated for us by the compiler. Of course, we can

add other functions to the Program class and those will be created as the

local functions nested inside the generated Main method. Top-level

statements are meant to simplify the entry point to the application and

remove the extra “fluff” so we can focus on the important stuff instead.

“Implicit using directives” mean the compiler automatically adds a

different set of using directives based on a project type, so we don’t have

to do that manually. These using directives are stored in the

obj/Debug/net6.0 folder of our project under the name

CompanyEmployees.GlobalUsings.g.cs:

// <auto-generated/>
global using global::Microsoft.AspNetCore.Builder;
global using global::Microsoft.AspNetCore.Hosting;
global using global::Microsoft.AspNetCore.Http;
global using global::Microsoft.AspNetCore.Routing;
global using global::Microsoft.Extensions.Configuration;
global using global::Microsoft.Extensions.DependencyInjection;
global using global::Microsoft.Extensions.Hosting;
global using global::Microsoft.Extensions.Logging;
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Net.Http.Json;
global using global::System.Threading;

global using global::System.Threading.Tasks;

This means that we can use different classes from these namespaces in

our project without adding using directives explicitly in our project files.

Of course, if you don’t want this type of behavior, you can turn it off by

visiting the project file and disabling the ImplicitUsings tag:

<ImplicitUsings>disable</ImplicitUsings>

6

By default, this is enabled in the .csproj file, and we are going to keep it

like that.

Now, let’s take a look at the code inside the Program class.

With this line of code:

var builder = WebApplication.CreateBuilder(args);

The application creates a builder variable of the type

WebApplicationBuilder. The WebApplicationBuilder class is responsible

for four main things:

• Adding Configuration to the project by using the

builder.Configuration property

• Registering services in our app with the builder.Services

property

• Logging configuration with the builder.Logging property

• Other IHostBuilder and IWebHostBuilder configuration

Compared to .NET 5 where we had a static CreateDefaultBuilder

class, which returned the IHostBuilder type, now we have the static

CreateBuilder method, which returns WebApplicationBuilder type.

Of course, as we see it, we don’t have the Startup class with two familiar

methods: ConfigureServices and Configure. Now, all this is replaced

by the code inside the Program.cs file.

Since we don’t have the ConfigureServices method to configure our

services, we can do that right below the builder variable declaration. In

the new template, there’s even a comment section suggesting where we

should start with service registration. A service is a reusable part of the

code that adds some functionality to our application, but we’ll talk about

services more later on.

7

In .NET 5, we would use the Configure method to add different

middleware components to the application’s request pipeline. But since

we don’t have that method anymore, we can use the section below the

var app = builder.Build(); part to do that. Again, this is marked with the

comment section as well:

Since larger applications could potentially contain a lot of different

services, we can end up with a lot of clutter and unreadable code in the

Program class. To make it more readable for the next person and

ourselves, we can structure the code into logical blocks and separate

those blocks into extension methods.

An extension method is inherently a static method. What makes it

different from other static methods is that it accepts this as the first

parameter, and this represents the data type of the object which will be

using that extension method. We’ll see what that means in a moment.

An extension method must be defined inside a static class. This kind of

method extends the behavior of a type in .NET. Once we define an

NOTE: If you still want to create your application using the .NET 5 way, with

Program and Startup classes, you can do that, .NET 6 supports it as well. The

easiest way is to create a .NET 5 project, copy the Startup and Program classes

and paste it into the .NET 6 project.

8

extension method, it can be chained multiple times on the same type of

object.

So, let’s start writing some code to see how it all adds up.

We are going to create a new folder Extensions in the project and create

a new class inside that folder named ServiceExtensions. The

ServiceExtensions class should be static.

public static class ServiceExtensions
{
}

Let’s start by implementing something we need for our project

immediately so we can see how extensions work.

The first thing we are going to do is to configure CORS in our application.

CORS (Cross-Origin Resource Sharing) is a mechanism to give or restrict

access rights to applications from different domains.

If we want to send requests from a different domain to our application,

configuring CORS is mandatory. So, to start, we’ll add a code that allows

all requests from all origins to be sent to our API:

public static void ConfigureCors(this IServiceCollection services) =>
 services.AddCors(options =>
 {
 options.AddPolicy("CorsPolicy", builder =>
 builder.AllowAnyOrigin()
 .AllowAnyMethod()
 .AllowAnyHeader());
 });

We are using basic CORS policy settings because allowing any origin,

method, and header is okay for now. But we should be more

restrictive with those settings in the production environment. More

precisely, as restrictive as possible.

Instead of the AllowAnyOrigin() method which allows requests from any

source, we can use the WithOrigins("https://example.com") which will

allow requests only from that concrete source. Also, instead of

9

AllowAnyMethod() that allows all HTTP methods, we can use

WithMethods("POST", "GET") that will allow only specific HTTP methods.

Furthermore, you can make the same changes for the AllowAnyHeader()

method by using, for example, the WithHeaders("accept", "content-

type") method to allow only specific headers.

ASP.NET Core applications are by default self-hosted, and if we want to

host our application on IIS, we need to configure an IIS integration which

will eventually help us with the deployment to IIS. To do that, we need to

add the following code to the ServiceExtensions class:

public static void ConfigureIISIntegration(this IServiceCollection services) =>
 services.Configure<IISOptions>(options =>
 {

 });

We do not initialize any of the properties inside the options because we

are fine with the default values for now. But if you need to fine-tune the

configuration right away, you might want to take a look at the possible

options:

Now, we mentioned extension methods are great for organizing your code

and extending functionalities. Let’s go back to our Program class and

modify it to support CORS and IIS integration now that we’ve written

10

extension methods for those functionalities. We are going to remove the

first comment and write our code over it:

using CompanyEmployees.Extensions;

var builder = WebApplication.CreateBuilder(args);

builder.Services.ConfigureCors();
builder.Services.ConfigureIISIntegration();

builder.Services.AddControllers();

var app = builder.Build();

And let's add a few mandatory methods to the second part of the Program

class (the one for the request pipeline configuration):

var app = builder.Build();

if (app.Environment.IsDevelopment())
 app.UseDeveloperExceptionPage();
else
 app.UseHsts();

app.UseHttpsRedirection();
app.UseStaticFiles();
app.UseForwardedHeaders(new ForwardedHeadersOptions
{
 ForwardedHeaders = ForwardedHeaders.All
});

app.UseCors("CorsPolicy");

app.UseAuthorization();

app.MapControllers();

app.Run();

We’ve added CORS and IIS configuration to the section where we need to

configure our services. Furthermore, CORS configuration has been added

to the application’s pipeline inside the second part of the Program class.

But as you can see, there are some additional methods unrelated to IIS

configuration. Let’s go through those and learn what they do.

• app.UseForwardedHeaders() will forward proxy headers to the

current request. This will help us during application deployment. Pay

attention that we require Microsoft.AspNetCore.HttpOverrides

using directive to introduce the ForwardedHeaders enumeration

11

• app.UseStaticFiles() enables using static files for the request. If

we don’t set a path to the static files directory, it will use a wwwroot

folder in our project by default.

• app.UseHsts() will add middleware for using HSTS, which adds the

Strict-Transport-Security header.

We have to pay attention to the AddControllers() method. This

method registers only the controllers in IServiceCollection and not

Views or Pages because they are not required in the Web API project

which we are building.

Right below the controller registration, we have this line of code:

var app = builder.Build();

With the Build method, we are creating the app variable of the type

WebApplication. This class (WebApplication) is very important since it

implements multiple interfaces like IHost that we can use to start and

stop the host, IApplicationBuilder that we use to build the

middleware pipeline (as you could’ve seen from our previous custom

code), and IEndpointRouteBuilder used to add endpoints in our app.

The UseHttpRedirection method is used to add the middleware for the

redirection from HTTP to HTTPS. Also, we can see the UseAuthorization

method that adds the authorization middleware to the specified

IApplicationBuilder to enable authorization capabilities.

Finally, we can see the MapControllers method that adds the endpoints

from controller actions to the IEndpointRouteBuilder and the Run

method that runs the application and block the calling thread until the

host shutdown.

12

Microsoft advises that the order of adding different middlewares to the

application builder is very important, and we are going to talk about that

in the middleware section of this book.

While we develop our application, we use the “development”

environment. But as soon as we publish our application, it goes to the

“production” environment. Development and production environments

should have different URLs, ports, connection strings, passwords, and

other sensitive information.

Therefore, we need to have a separate configuration for each

environment and that’s easy to accomplish by using .NET Core-provided

mechanisms.

As soon as we create a project, we are going to see the

appsettings.json file in the root, which is our main settings file, and

when we expand it we are going to see the

appsetings.Development.json file by default. These files are separate

on the file system, but Visual Studio makes it obvious that they are

connected somehow:

The apsettings.{EnvironmentSuffix}.json files are used to override the

main appsettings.json file. When we use a key-value pair from the

original file, we override it. We can also define environment-specific

values too.

For the production environment, we should add another

file: appsettings.Production.json:

13

The appsettings.Production.json file should contain the

configuration for the production environment.

To set which environment our application runs on, we need to set up the

ASPNETCORE_ENVIRONMENT environment variable. For example, to run

the application in production, we need to set it to the Production value on

the machine we do the deployment to.

We can set the variable through the command prompt by typing set

ASPNETCORE_ENVIRONMENT=Production in Windows or export

ASPNET_CORE_ENVIRONMENT=Production in Linux.

ASP.NET Core applications use the value of that environment variable to

decide which appsettings file to use accordingly. In this case, that will be

appsettings.Production.json.

If we take a look at our launchSettings.json file, we are going to see

that this variable is currently set to Development.

Now, let’s talk a bit more about the middleware in ASP.NET Core

applications.

As we already used some middleware code to modify the application’s

pipeline (CORS, Authorization...), and we are going to use the middleware

throughout the rest of the book, we should be more familiar with the

ASP.NET Core middleware.

ASP.NET Core middleware is a piece of code integrated inside the

application’s pipeline that we can use to handle requests and responses.

When we talk about the ASP.NET Core middleware, we can think of it as a

code section that executes with every request.

14

Usually, we have more than a single middleware component in our

application. Each component can:

• Pass the request to the next middleware component in the pipeline

and also

• It can execute some work before and after the next component in

the pipeline

To build a pipeline, we are using request delegates, which handle each

HTTP request. To configure request delegates, we use the Run, Map,

and Use extension methods. Inside the request pipeline, an application

executes each component in the same order they are placed in the code –

top to bottom:

Additionally, we can see that each component can execute custom logic

before using the next delegate to pass the execution to another

component. The last middleware component doesn’t call the next

delegate, which means that this component is short-circuiting the

pipeline. This is a terminal middleware because it stops further

middleware from processing the request. It executes the additional logic

and then returns the execution to the previous middleware components.

15

Before we start with examples, it is quite important to know about the

order in which we should register our middleware components. The order

is important for the security, performance, and functionality of our

applications:

16

As we can see, we should register the exception handler in the early stage

of the pipeline flow so it could catch all the exceptions that can happen in

the later stages of the pipeline. When we create a new ASP.NET Core app,

many of the middleware components are already registered in the order

from the diagram. We have to pay attention when registering additional

existing components or the custom ones to fit this recommendation.

For example, when adding CORS to the pipeline, the app in the

development environment will work just fine if you don’t add it in this

order. But we’ve received several questions from our readers stating that

they face the CORS problem once they deploy the app. But once we

suggested moving the CORS registration to the required place, the

problem disappeared.

Now, we can use some examples to see how we can manipulate the

application’s pipeline. For this section’s purpose, we are going to create a

separate application that will be dedicated only to this section of the book.

The later sections will continue from the previous project, that we’ve

already created.

1.8.1 Creating a First Middleware Component

Let’s start by creating a new ASP.NET Core Web API project, and name it

MiddlewareExample.

In the launchSettings.json file, we are going to add some changes

regarding the launch profiles:

{
 "profiles": {
 "MiddlewareExample": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "launchUrl": "weatherforecast",
 "applicationUrl": "https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }

https://code-maze.com/enabling-cors-in-asp-net-core/

17

}

Now, inside the Program class, right below the UseAuthorization part, we

are going to use an anonymous method to create a first middleware

component:

app.UseAuthorization();

app.Run(async context =>
{
 await context.Response.WriteAsync("Hello from the middleware component.");
});

app.MapControllers();

We use the Run method, which adds a terminal component to the app

pipeline. We can see we are not using the next delegate because

the Run method is always terminal and terminates the pipeline. This

method accepts a single parameter of the RequestDelegate type. If we

inspect this delegate we are going to see that it accepts a single

HttpContext parameter:

namespace Microsoft.AspNetCore.Http
{
 public delegate Task RequestDelegate(HttpContext context);
}

So, we are using that context parameter to modify our requests and

responses inside the middleware component. In this specific example, we

are modifying the response by using the WriteAsync method. For this

method, we need Microsoft.AspNetCore.Http namespace.

Let’s start the app, and inspect the result:

There we go. We can see a result from our middleware.

18

1.8.2 Working with the Use Method

To chain multiple request delegates in our code, we can use

the Use method. This method accepts a Func delegate as a

parameter and returns a Task as a result:

public static IApplicationBuilder Use(this IApplicationBuilder app, Func<HttpContext,

Func<Task>, Task> middleware);

So, this means when we use it, we can make use of two

parameters, context and next:

app.UseAuthorization();

app.Use(async (context, next) =>
{
 Console.WriteLine($"Logic before executing the next delegate in the Use method");
 await next.Invoke();
 Console.WriteLine($"Logic after executing the next delegate in the Use method");
});
app.Run(async context =>
{
 Console.WriteLine($"Writing the response to the client in the Run method");
 await context.Response.WriteAsync("Hello from the middleware component.");
});

app.MapControllers();

As you can see, we add several logging messages to be sure what the

order of executions inside middleware components is. First, we write to a

console window, then we invoke the next delegate passing the execution

to another component in the pipeline. In the Run method, we write a

second message to the console window and write a response to the client.

After that, the execution is returned to the Use method and we write the

third message (the one below the next delegate invocation) to the console

window.

The Run method doesn’t accept the next delegate as a parameter, so

without it to send the execution to another component, this component

short-circuits the request pipeline.

Now, let’s start the app and inspect the result, which proves our

execution order:

19

Maybe you will see two sets of messages but don’t worry, that’s because

the browser sends two sets of requests, one for the /weatherforecast and

another for the favicon.ico. If you, for example, use Postman to test this,

you will see only one set of messages.

One more thing to mention. We shouldn’t call the next.Invoke after we

send the response to the client. This can cause exceptions if we try to set

the status code or modify the headers of the response.

For example:

app.Use(async (context, next) =>
{
 await context.Response.WriteAsync("Hello from the middleware component.");
 await next.Invoke();
 Console.WriteLine($"Logic after executing the next delegate in the Use method");
});
app.Run(async context =>
{
 Console.WriteLine($"Writing the response to the client in the Run method");
 context.Response.StatusCode = 200;
 await context.Response.WriteAsync("Hello from the middleware component.");
});

Here we write a response to the client and then call next.Invoke. Of

course, this passes the execution to the next component in the pipeline.

There, we try to set the status code of the response and write another

one. But let’s inspect the result:

We can see the error message, which is pretty self-explanatory.

20

1.8.3 Using the Map and MapWhen Methods

To branch the middleware pipeline, we can use both Map and MapWhen

methods. The Map method is an extension method that accepts a path

string as one of the parameters:

public static IApplicationBuilder Map(this IApplicationBuilder app, PathString

pathMatch, Action<IApplicationBuilder> configuration)

When we provide the pathMatch string, the Map method will compare it

to the start of the request path. If they match, the app will execute the

branch.

So, let’s see how we can use this method by modifying the Program class:

app.Use(async (context, next) =>
{
 Console.WriteLine($"Logic before executing the next delegate in the Use method");
 await next.Invoke();
 Console.WriteLine($"Logic after executing the next delegate in the Use method");
});
app.Map("/usingmapbranch", builder =>
{
 builder.Use(async (context, next) =>
 {
 Console.WriteLine("Map branch logic in the Use method before the next
delegate");
 await next.Invoke();
 Console.WriteLine("Map branch logic in the Use method after the next
delegate");
 });
 builder.Run(async context =>
 {
 Console.WriteLine($"Map branch response to the client in the Run method");
 await context.Response.WriteAsync("Hello from the map branch.");
 });
});
app.Run(async context =>
{
 Console.WriteLine($"Writing the response to the client in the Run method");
 await context.Response.WriteAsync("Hello from the middleware component.");
});

By using the Map method, we provide the path match, and then in the

delegate, we use our well-known Use and Run methods to execute

middleware components.

Now, if we start the app and navigate to /usingmapbranch, we are going

to see the response in the browser:

21

But also, if we inspect console logs, we are going to see our new

messages:

Here, we can see the messages from the Use method before the branch,

and the messages from the Use and Run methods inside the Map branch.

We are not seeing any message from the Run method outside the branch.

It is important to know that any middleware component that we add after

the Map method in the pipeline won’t be executed. This is true even if we

don’t use the Run middleware inside the branch.

1.8.4 Using MapWhen Method

If we inspect the MapWhen method, we are going to see that it accepts

two parameters:

public static IApplicationBuilder MapWhen(this IApplicationBuilder app,

Func<HttpContext, bool> predicate, Action<IApplicationBuilder> configuration)

This method uses the result of the given predicate to branch the request

pipeline.

So, let’s see it in action:

app.Map("/usingmapbranch", builder =>
{
 ...
});
app.MapWhen(context => context.Request.Query.ContainsKey("testquerystring"), builder
=>
{
 builder.Run(async context =>
 {
 await context.Response.WriteAsync("Hello from the MapWhen branch.");

22

 });
});
app.Run(async context =>
{
 ...
});

Here, if our request contains the provided query string, we execute the

Run method by writing the response to the client. So, as we said, based

on the predicate’s result the MapWhen method branch the request

pipeline.

Now, we can start the app and navigate

to https://localhost:5001?testquerystring=test:

And there we go. We can see our expected message. Of course, we can

chain multiple middleware components inside this method as well.

So, now we have a good understanding of using middleware and its order

of invocation in the ASP.NET Core application. This knowledge is going to

be very useful to us once we start working on a custom error handling

middleware (a few sections later).

In the next chapter, we’ll learn how to configure a Logger service because

it’s really important to have it configured as early in the project as

possible. We can close this app, and continue with the

CompanyEmployees app.

23

Why do logging messages matter so much during application

development? While our application is in the development stage, it's easy

to debug the code and find out what happened. But debugging in a

production environment is not that easy.

That's why log messages are a great way to find out what went wrong

and why and where the exceptions have been thrown in our code in the

production environment. Logging also helps us more easily follow the flow

of our application when we don’t have access to the debugger.

.NET Core has its implementation of the logging mechanism, but in all our

projects we prefer to create our custom logger service with the external

logger library NLog.

We are going to do that because having an abstraction will allow us to

have any logger behind our interface. This means that we can start with

NLog, and at some point, we can switch to any other logger and our

interface will still work because of our abstraction.

Let’s create two new projects. In the first one named Contracts, we are

going to keep our interfaces. We will use this project later on too, to

define our contracts for the whole application. The second one,

LoggerService, we are going to use to write our logger logic in.

To create a new project, right-click on the solution window, choose Add,

and then NewProject. Choose the Class Library (C#) project template:

24

Finally, name it Contracts, and choose the .NET 6.0 as a version. Do

the same thing for the second project and name it LoggerService. Now

that we have these projects in place, we need to reference them from our

main project.

To do that, navigate to the solution explorer. Then in the LoggerService

project, right-click on Dependencies and choose the Add Project

Reference option. Under Projects, click Solution and check the

Contracts project.

Now, in the main project right click on Dependencies and then click on

Add Project Reference. Check the LoggerService checkbox to

import it. Since we have referenced the Contracts project through the

LoggerService, it will be available in the main project too.

Our logger service will contain four methods for logging our messages:

• Info messages

• Debug messages

• Warning messages

• Error messages

To achieve this, we are going to create an interface

named ILoggerManager inside the Contracts project containing those

four method definitions.

25

So, let’s do that first by right-clicking on the Contracts project, choosing

the Add -> New Item menu, and then selecting the Interface option

where we have to specify the name ILoggerManager and click the Add

button. After the file creation, we can add the code:

public interface ILoggerManager
{
 void LogInfo(string message);
 void LogWarn(string message);
 void LogDebug(string message);
 void LogError(string message);
}

Before we implement this interface inside the LoggerService project, we

need to install the NLog library in our LoggerService project. NLog is a

logging platform for .NET which will help us create and log our messages.

We are going to show two different ways of adding the NLog library to our

project.

1. In the LoggerService project, right-click on the Dependencies and

choose Manage NuGet Packages. After the NuGet Package Manager

window appears, just follow these steps:

2. From the View menu, choose Other Windows and then click on the
Package Manager Console. After the console appears, type:
Install-Package NLog.Extensions.Logging -Version 1.7.4

After a couple of seconds, NLog is up and running in our application.

26

In the LoggerService project, we are going to create a new

class: LoggerManager. We can do that by repeating the same steps for

the interface creation just choosing the class option instead of an

interface. Now let’s have it implement the ILoggerManager interface we

previously defined:

public class LoggerManager : ILoggerManager
{
 private static ILogger logger = LogManager.GetCurrentClassLogger();

 public LoggerManager()
 {
 }

 public void LogDebug(string message) => logger.Debug(message);

 public void LogError(string message) => logger.Error(message);

 public void LogInfo(string message) => logger.Info(message);

 public void LogWarn(string message) => logger.Warn(message);
}

As you can see, our methods are just wrappers around NLog’s methods.

Both ILogger and LogManager are part of the NLog namespace. Now,

we need to configure it and inject it into the Program class in the section

related to the service configuration.

NLog needs to have information about where to put log files on the file

system, what the name of these files will be, and what is the minimum

level of logging that we want.

We are going to define all these constants in a text file in the main project

and name it nlog.config. So, let’s right-click on the main project,

choose Add -> New Item, and then search for the Text File. Select the

Text File, and add the name nlog.config.

<?xml version="1.0" encoding="utf-8" ?>
<nlog xmlns="http://www.nlog-project.org/schemas/NLog.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 autoReload="true"
 internalLogLevel="Trace"
 internalLogFile=".\internal_logs\internallog.txt">

27

 <targets>
 <target name="logfile" xsi:type="File"
 fileName=".\logs\${shortdate}_logfile.txt"
 layout="${longdate} ${level:uppercase=true} ${message}"/>
 </targets>

 <rules>
 <logger name="*" minlevel="Debug" writeTo="logfile" />
 </rules>
</nlog>

You can find the internal logs at the project root, and the logs folder in

the bin\debug folder of the main project once we start the app. Once the

application is published both folders will be created at the root of the

output folder which is what we want.

Setting up the configuration for a logger service is quite easy. First, we

need to update the Program class and include the path to the

configuration file for the NLog configuration:

using NLog;

var builder = WebApplication.CreateBuilder(args);

LogManager.LoadConfiguration(string.Concat(Directory.GetCurrentDirectory(),
"/nlog.config"));

builder.Services.ConfigureCors();
builder.Services.ConfigureIISIntegration();

We are using NLog’s LogManager static class with the

LoadConfiguration method to provide a path to the configuration file.

NOTE: : If you want to have more control over the log output, we suggest

renaming the current file to nlog.development.config and creating another

configuration file called nlog.production.config. Then you can do something like

this in the code: env.ConfigureNLog($"nlog.{env.EnvironmentName}.config");

to get the different configuration files for different environments. From our

experience production path is what matters, so this might be a bit redundant.

28

The next thing we need to do is to add the logger service inside the .NET

Core’s IOC container. There are three ways to do that:

• By calling the services.AddSingleton method, we can create a

service the first time we request it and then every subsequent

request will call the same instance of the service. This means that all

components share the same service every time they need it and the

same instance will be used for every method call.

• By calling the services.AddScoped method, we can create

a service once per request. That means whenever we send an HTTP

request to the application, a new instance of the service will be

created.

• By calling the services.AddTransient method, we can create a

service each time the application requests it. This means that if

multiple components need the service, it will be created again for

every single component request.

So, let’s add a new method in the ServiceExtensions class:

public static void ConfigureLoggerService(this IServiceCollection services) =>
 services.AddSingleton<ILoggerManager, LoggerManager>();

And after that, we need to modify the Program class to include our newly

created extension method:

builder.Services.ConfigureCors();
builder.Services.ConfigureIISIntegration();
builder.Services.ConfigureLoggerService();

builder.Services.AddControllers();

NOTE: : If VisualStudio asks you to install the NLog package in the main project,

don’t do it. Just remove the LoggerService reference from the main project and

add it again. We have already installed the required package in the

LoggerService project and the main project should be able to reference it as

well.

29

Every time we want to use a logger service, all we need to do is to inject

it into the constructor of the class that needs it. .NET Core will resolve

that service and the logging features will be available.

This type of injecting a class is called Dependency Injection and it is built

into .NET Core.

Let’s learn a bit more about it.

What is Dependency Injection (DI) exactly and what is IoC (Inversion of

Control)?

Dependency injection is a technique we use to achieve the decoupling of

objects and their dependencies. It means that rather than instantiating an

object explicitly in a class every time we need it, we can instantiate it

once and then send it to the class.

This is often done through a constructor. The specific approach we

utilize is also known as the Constructor Injection.

In a system that is designed around DI, you may find many classes

requesting their dependencies via their constructors. In this case, it is

helpful to have a class that manages and provides dependencies to

classes through the constructor.

These classes are referred to as containers or more specifically, Inversion

of Control containers. An IoC container is essentially a factory that is

responsible for providing instances of the types that are requested from

it.

To test our logger service, we are going to use the default

WeatherForecastController. You can find it in the main project in the

Controllers folder. It comes with the ASP.NET Core Web API template.

30

In the Solution Explorer, we are going to open the Controllers folder and

locate the WeatherForecastController class. Let’s modify it:

[Route("[controller]")]
[ApiController]
public class WeatherForecastController : ControllerBase
{
 private ILoggerManager _logger;

 public WeatherForecastController(ILoggerManager logger)
 {
 _logger = logger;
 }

 [HttpGet]
 public IEnumerable<string> Get()
 {
 _logger.LogInfo("Here is info message from our values controller.");
 _logger.LogDebug("Here is debug message from our values controller.");
 _logger.LogWarn("Here is warn message from our values controller.");
 _logger.LogError("Here is an error message from our values controller.");

 return new string[] { "value1", "value2" };
 }
}

Now let’s start the application and browse to

https://localhost:5001/weatherforecast.

As a result, you will see an array of two strings. Now go to the folder that

you have specified in the nlog.config file, and check out the result. You

should see two folders: the internal_logs folder and the logs folder.

Inside the logs folder, you should find a file with the following logs:

That’s all we need to do to configure our logger for now. We’ll add some

messages to our code along with the new features.

31

In this chapter, we are going to talk about the Onion architecture, its

layers, and the advantages of using it. We will learn how to create

different layers in our application to separate the different application

parts and improve the application's maintainability and testability.

That said, we are going to create a database model and transfer it to the

MSSQL database by using the code first approach. So, we are going to

learn how to create entities (model classes), how to work with the

DbContext class, and how to use migrations to transfer our created

database model to the real database. Of course, it is not enough to just

create a database model and transfer it to the database. We need to use

it as well, and for that, we will create a Repository pattern as a data

access layer.

With the Repository pattern, we create an abstraction layer between the

data access and the business logic layer of an application. By using it, we

are promoting a more loosely coupled approach to access our data in the

database.

Also, our code becomes cleaner, easier to maintain, and reusable. Data

access logic is stored in a separate class, or sets of classes called a

repository, with the responsibility of persisting the application’s business

model.

Additionally, we are going to create a Service layer to extract all the

business logic from our controllers, thus making the presentation layer

and the controllers clean and easy to maintain.

So, let’s start with the Onion architecture explanation.

32

The Onion architecture is a form of layered architecture and we can

visualize these layers as concentric circles. Hence the name Onion

architecture. The Onion architecture was first introduced by Jeffrey

Palermo, to overcome the issues of the traditional N-layered architecture

approach.

There are multiple ways that we can split the onion, but we are going to

choose the following approach where we are going to split the

architecture into 4 layers:

• Domain Layer

• Service Layer

• Infrastructure Layer

• Presentation Layer

Conceptually, we can consider that the Infrastructure and Presentation

layers are on the same level of the hierarchy.

Now, let us go ahead and look at each layer with more detail to see why

we are introducing it and what we are going to create inside of that layer:

We can see all the different layers that we are going to build in our

project.

33

3.1.1 Advantages of the Onion Architecture

Let us take a look at what are the advantages of Onion architecture, and

why we would want to implement it in our projects.

All of the layers interact with each other strictly through the interfaces

defined in the layers below. The flow of dependencies is towards the core

of the Onion. We will explain why this is important in the next section.

Using dependency inversion throughout the project, depending on

abstractions (interfaces) and not the implementations, allows us to switch

out the implementation at runtime transparently. We are depending on

abstractions at compile-time, which gives us strict contracts to work with,

and we are being provided with the implementation at runtime.

Testability is very high with the Onion architecture because everything

depends on abstractions. The abstractions can be easily mocked with a

mocking library such as Moq. We can write business logic without concern

about any of the implementation details. If we need anything from an

external system or service, we can just create an interface for it and

consume it. We do not have to worry about how it will be implemented.

The higher layers of the Onion will take care of implementing that

interface transparently.

3.1.2 Flow of Dependencies

The main idea behind the Onion architecture is the flow of dependencies,

or rather how the layers interact with each other. The deeper the layer

resides inside the Onion, the fewer dependencies it has.

The Domain layer does not have any direct dependencies on the outside

layers. It is isolated, in a way, from the outside world. The outer layers

are all allowed to reference the layers that are directly below them in the

hierarchy.

We can conclude that all the dependencies in the Onion architecture flow

inwards. But we should ask ourselves, why is this important?

34

The flow of dependencies dictates what a certain layer in the Onion

architecture can do. Because it depends on the layers below it in the

hierarchy, it can only call the methods that are exposed by the lower

layers.

We can use lower layers of the Onion architecture to define contracts or

interfaces. The outer layers of the architecture implement these

interfaces. This means that in the Domain layer, we are not concerning

ourselves with infrastructure details such as the database or external

services.

Using this approach, we can encapsulate all of the rich business logic in

the Domain and Service layers without ever having to know any

implementation details. In the Service layer, we are going to depend only

on the interfaces that are defined by the layer below, which is the Domain

layer.

So, after all the theory, we can continue with our project implementation.

Let’s start with the models and the Entities project.

Using the example from the second chapter of this book, we are going to

extract a new Class Library project named Entities.

Inside it, we are going to create a folder named Models, which will

contain all the model classes (entities). Entities represent classes that

Entity Framework Core uses to map our database model with the tables

from the database. The properties from entity classes will be mapped to

the database columns.

So, in the Models folder we are going to create two classes and modify

them:

public class Company
{
 [Column("CompanyId")]

35

 public Guid Id { get; set; }

 [Required(ErrorMessage = "Company name is a required field.")]
 [MaxLength(60, ErrorMessage = "Maximum length for the Name is 60 characters.")]
 public string? Name { get; set; }

 [Required(ErrorMessage = "Company address is a required field.")]
 [MaxLength(60, ErrorMessage = "Maximum length for the Address is 60 characters")]
 public string? Address { get; set; }

 public string? Country { get; set; }

 public ICollection<Employee>? Employees { get; set; }
}

public class Employee
{
 [Column("EmployeeId")]
 public Guid Id { get; set; }

 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string? Name { get; set; }

 [Required(ErrorMessage = "Age is a required field.")]
 public int Age { get; set; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 public string? Position { get; set; }

 [ForeignKey(nameof(Company))]
 public Guid CompanyId { get; set; }
 public Company? Company { get; set; }
}

We have created two classes: the Company and Employee. Those classes

contain the properties which Entity Framework Core is going to map to

the columns in our tables in the database. But not all the properties will

be mapped as columns. The last property of the Company class

(Employees) and the last property of the Employee class (Company) are

navigational properties; these properties serve the purpose of defining the

relationship between our models.

We can see several attributes in our entities. The [Column] attribute will

specify that the Id property is going to be mapped with a different name

in the database. The [Required] and [MaxLength] properties are here

36

for validation purposes. The first one declares the property as mandatory

and the second one defines its maximum length.

Once we transfer our database model to the real database, we are going

to see how all these validation attributes and navigational properties

affect the column definitions.

Before we start with the context class creation, we have to create another

.NET Class Library and name it Repository. We are going to use this

project for the database context and repository implementation.

Now, let's create the context class, which will be a middleware component

for communication with the database. It must inherit from the Entity

Framework Core’s DbContext class and it consists of DbSet properties,

which EF Core is going to use for the communication with the database.

Because we are working with the DBContext class, we need to install the

Microsoft.EntityFrameworkCore package in the Repository project.

Also, we are going to reference the Entities project from the

Repository project:

Then, let’s navigate to the root of the Repository project and create the

RepositoryContext class:

public class RepositoryContext : DbContext
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

37

 public DbSet<Company>? Companies { get; set; }
 public DbSet<Employee>? Employees { get; set; }
}

After the class modification, let’s open the appsettings.json file, in the

main project, and add the connection string named sqlconnection:

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "ConnectionStrings": {
 "sqlConnection": "server=.; database=CompanyEmployee; Integrated Security=true"
 },
 "AllowedHosts": "*"
}

It is quite important to have the JSON object with the

ConnectionStrings name in our appsettings.json file, and soon you

will see why.

But first, we have to add the Repository project’s reference into the main

project.

Then, let’s create a new ContextFactory folder in the main project

and inside it a new RepositoryContextFactory class. Since our

RepositoryContext class is in a Repository project and not in the

main one, this class will help our application create a derived DbContext

instance during the design time which will help us with our migrations:

public class RepositoryContextFactory : IDesignTimeDbContextFactory<RepositoryContext>
{
 public RepositoryContext CreateDbContext(string[] args)
 {
 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .Build();

 var builder = new DbContextOptionsBuilder<RepositoryContext>()

 .UseSqlServer(configuration.GetConnectionString("sqlConnection"));

 return new RepositoryContext(builder.Options);
 }
}

38

We are using the IDesignTimeDbContextFactory<out TContext>

interface that allows design-time services to discover implementations of

this interface. Of course, the TContext parameter is our

RepositoryContext class.

For this, we need to add two using directives:

using Microsoft.EntityFrameworkCore.Design;
using Repository;

Then, we have to implement this interface with the CreateDbContext

method. Inside it, we create the configuration variable of the

IConfigurationRoot type and specify the appsettings file, we want to

use. With its help, we can use the GetConnectionString method to

access the connection string from the appsettings.json file. Moreover,

to be able to use the UseSqlServer method, we need to install the

Microsoft.EntityFrameworkCore.SqlServer package in the main

project and add one more using directive:

using Microsoft.EntityFrameworkCore;

If we navigate to the GetConnectionString method definition, we will

see that it is an extension method that uses the ConnectionStrings

name from the appsettings.json file to fetch the connection string by

the provided key:

Finally, in the CreateDbContext method, we return a new instance of

our RepositoryContext class with provided options.

39

Migration is a standard process of creating and updating the database

from our application. Since we are finished with the database model

creation, we can transfer that model to the real database. But we need to

modify our CreateDbContext method first:

var builder = new DbContextOptionsBuilder<RepositoryContext>()
 .UseSqlServer(configuration.GetConnectionString("sqlConnection"),
 b => b.MigrationsAssembly("CompanyEmployees"));

We have to make this change because migration assembly is not in our

main project, but in the Repository project. So, we’ve just changed the

project for the migration assembly.

Before we execute our migration commands, we have to install an

additional ef core library: Microsoft.EntityFrameworkCore.Tools

Now, let’s open the Package Manager Console window and create our first

migration: PM> Add-Migration DatabaseCreation

With this command, we are creating migration files and we can find them

in the Migrations folder in our main project:

With those files in place, we can apply migration: PM> Update-Database

40

Excellent. We can inspect our database now:

Once we have the database and tables created, we should populate them

with some initial data. To do that, we are going to create another folder in

the Repository project called Configuration and add the

CompanyConfiguration class:

public class CompanyConfiguration : IEntityTypeConfiguration<Company>
{
 public void Configure(EntityTypeBuilder<Company> builder)
 {
 builder.HasData
 (
 new Company
 {
 Id = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870"),
 Name = "IT_Solutions Ltd",
 Address = "583 Wall Dr. Gwynn Oak, MD 21207",
 Country = "USA"
 },
 new Company
 {
 Id = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3"),
 Name = "Admin_Solutions Ltd",
 Address = "312 Forest Avenue, BF 923",
 Country = "USA"
 }
);
 }
 }

41

Let’s do the same thing for the EmployeeConfiguration class:

public class EmployeeConfiguration : IEntityTypeConfiguration<Employee>
{
 public void Configure(EntityTypeBuilder<Employee> builder)
 {
 builder.HasData
 (
 new Employee
 {
 Id = new Guid("80abbca8-664d-4b20-b5de-024705497d4a"),
 Name = "Sam Raiden",
 Age = 26,
 Position = "Software developer",
 CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")
 },
 new Employee
 {
 Id = new Guid("86dba8c0-d178-41e7-938c-ed49778fb52a"),
 Name = "Jana McLeaf",
 Age = 30,
 Position = "Software developer",
 CompanyId = new Guid("c9d4c053-49b6-410c-bc78-2d54a9991870")
 },
 new Employee
 {
 Id = new Guid("021ca3c1-0deb-4afd-ae94-2159a8479811"),
 Name = "Kane Miller",
 Age = 35,
 Position = "Administrator",
 CompanyId = new Guid("3d490a70-94ce-4d15-9494-5248280c2ce3")
 }
);
 }
}

To invoke this configuration, we have to change the RepositoryContext

class:

public class RepositoryContext: DbContext
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 }

 public DbSet<Company> Companies { get; set; }
 public DbSet<Employee> Employees { get; set; }
}

42

Now, we can create and apply another migration to seed these data to the

database:

PM> Add-Migration InitialData

PM> Update-Database

This will transfer all the data from our configuration files to the respective

tables.

After establishing a connection to the database and creating one, it's time

to create a generic repository that will provide us with the CRUD methods.

As a result, all the methods can be called upon any repository class in our

project.

Furthermore, creating the generic repository and repository classes that

use that generic repository is not going to be the final step. We will go

a step further and create a wrapper class around repository classes and

inject it as a service in a dependency injection container.

Consequently, we will be able to instantiate this class once and then call

any repository class we need inside any of our controllers.

The advantages of this approach will become clearer once we use it in the

project.

That said, let’s start by creating an interface for the repository inside the

Contracts project:

public interface IRepositoryBase<T>
{
 IQueryable<T> FindAll(bool trackChanges);
 IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
 bool trackChanges);
 void Create(T entity);
 void Update(T entity);
 void Delete(T entity);
}

43

Right after the interface creation, we are going to reference Contracts

inside the Repository project. Also, in the Repository project, we are

going to create an abstract class RepositoryBase — which is going to

implement the IRepositoryBase interface:

public abstract class RepositoryBase<T> : IRepositoryBase<T> where T : class
{
 protected RepositoryContext RepositoryContext;

 public RepositoryBase(RepositoryContext repositoryContext)
 => RepositoryContext = repositoryContext;

 public IQueryable<T> FindAll(bool trackChanges) =>
 !trackChanges ?
 RepositoryContext.Set<T>()
 .AsNoTracking() :
 RepositoryContext.Set<T>();

 public IQueryable<T> FindByCondition(Expression<Func<T, bool>> expression,
 bool trackChanges) =>
 !trackChanges ?
 RepositoryContext.Set<T>()
 .Where(expression)
 .AsNoTracking() :
 RepositoryContext.Set<T>()
 .Where(expression);

 public void Create(T entity) => RepositoryContext.Set<T>().Add(entity);

 public void Update(T entity) => RepositoryContext.Set<T>().Update(entity);

 public void Delete(T entity) => RepositoryContext.Set<T>().Remove(entity);
}

This abstract class as well as the IRepositoryBase interface work with

the generic type T. This type T gives even more reusability to the

RepositoryBase class. That means we don’t have to specify the exact

model (class) right now for the RepositoryBase to work with. We can do

that later on.

Moreover, we can see the trackChanges parameter. We are going to use

it to improve our read-only query performance. When it’s set to false, we

attach the AsNoTracking method to our query to inform EF Core that it

doesn’t need to track changes for the required entities. This greatly

improves the speed of a query.

44

Now that we have the RepositoryBase class, let’s create the user

classes that will inherit this abstract class.

By inheriting from the RepositoryBase class, they will have access to all

the methods from it. Furthermore, every user class will have its interface

for additional model-specific methods.

This way, we are separating the logic that is common for all our

repository user classes and also specific for every user class itself.

Let’s create the interfaces in the Contracts project for the Company and

Employee classes:

namespace Contracts
{
 public interface ICompanyRepository
 {
 }
}

namespace Contracts
{
 public interface IEmployeeRepository
 {
 }
}

After this, we can create repository user classes in the Repository

project.

The first thing we are going to do is to create the CompanyRepository

class:

public class CompanyRepository : RepositoryBase<Company>, ICompanyRepository
{
 public CompanyRepository(RepositoryContext repositoryContext)
 : base(repositoryContext)
 {
 }
}

And then, the EmployeeRepository class:

public class EmployeeRepository : RepositoryBase<Employee>, IEmployeeRepository

45

{
 public EmployeeRepository(RepositoryContext repositoryContext)
 : base(repositoryContext)
 {
 }
}

After these steps, we are finished creating the repository and repository-

user classes. But there are still more things to do.

It is quite common for the API to return a response that consists of data

from multiple resources; for example, all the companies and just some

employees older than 30. In such a case, we would have to instantiate

both of our repository classes and fetch data from their resources.

Maybe it’s not a problem when we have only two classes, but what if we

need the combined logic of five or even more different classes? It would

just be too complicated to pull that off.

With that in mind, we are going to create a repository manager class,

which will create instances of repository user classes for us and then

register them inside the dependency injection container. After that, we

can inject it inside our services with constructor injection (supported by

ASP.NET Core). With the repository manager class in place, we may call

any repository user class we need.

But we are also missing one important part. We have the Create,

Update, and Delete methods in the RepositoryBase class, but they

won’t make any change in the database until we call the SaveChanges

method. Our repository manager class will handle that as well.

That said, let’s get to it and create a new interface in

the Contract project:

public interface IRepositoryManager
{
 ICompanyRepository Company { get; }
 IEmployeeRepository Employee { get; }

46

 void Save();
}

And add a new class to the Repository project:

public sealed class RepositoryManager : IRepositoryManager
{
 private readonly RepositoryContext _repositoryContext;
 private readonly Lazy<ICompanyRepository> _companyRepository;
 private readonly Lazy<IEmployeeRepository> _employeeRepository;

 public RepositoryManager(RepositoryContext repositoryContext)
 {
 _repositoryContext = repositoryContext;
 _companyRepository = new Lazy<ICompanyRepository>(() => new
CompanyRepository(repositoryContext));
 _employeeRepository = new Lazy<IEmployeeRepository>(() => new
EmployeeRepository(repositoryContext));
 }

 public ICompanyRepository Company => _companyRepository.Value;
 public IEmployeeRepository Employee => _employeeRepository.Value;

 public void Save() => _repositoryContext.SaveChanges();
}

As you can see, we are creating properties that will expose the concrete

repositories and also we have the Save() method to be used after all the

modifications are finished on a certain object. This is a good practice

because now we can, for example, add two companies, modify two

employees, and delete one company — all in one action — and then just

call the Save method once. All the changes will be applied or if something

fails, all the changes will be reverted:

_repository.Company.Create(company);
_repository.Company.Create(anotherCompany);
_repository.Employee.Update(employee);
_repository.Employee.Update(anotherEmployee);
_repository.Company.Delete(oldCompany);

_repository.Save();

The interesting part with the RepositoryManager implementation is that

we are leveraging the power of the Lazy class to ensure the lazy

initialization of our repositories. This means that our repository instances

are only going to be created when we access them for the first time, and

not before that.

47

After these changes, we need to register our manager class in the main

project. So, let’s first modify the ServiceExtensions class by adding

this code:

public static void ConfigureRepositoryManager(this IServiceCollection services) =>
 services.AddScoped<IRepositoryManager, RepositoryManager>();

And in the Program class above the AddController() method, we have

to add this code:

builder.Services.ConfigureRepositoryManager();

Excellent.

As soon as we add some methods to the specific repository classes, and

add our service layer, we are going to be able to test this logic.

So, we did an excellent job here. The repository layer is prepared and

ready to be used to fetch data from the database.

Now, we can continue towards creating a service layer in our application.

The Service layer sits right above the Domain layer (the Contracts project

is the part of the Domain layer), which means that it has a reference to

the Domain layer. The Service layer will be split into two

projects, Service.Contracts and Service.

So, let’s start with the Service.Contracts project creation (.NET Core

Class Library) where we will hold the definitions for the service interfaces

that are going to encapsulate the main business logic. In the next section,

we are going to create a presentation layer and then, we will see the full

use of this project.

Once the project is created, we are going to add three interfaces inside it.

ICompanyService:

public interface ICompanyService

48

{
}

IEmployeeService:

public interface IEmployeeService
{
}

And IServiceManager:

public interface IServiceManager
{
 ICompanyService CompanyService { get; }
 IEmployeeService EmployeeService { get; }
}

As you can see, we are following the same pattern as with the repository

contracts implementation.

Now, we can create another project, name it Service, and reference the

Service.Contracts and Contracts projects inside it:

After that, we are going to create classes that will inherit from the

interfaces that reside in the Service.Contracts project.

So, let’s start with the CompanyService class:

using Contracts;
using Service.Contracts;

namespace Service
{
 internal sealed class CompanyService : ICompanyService
 {
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;

 public CompanyService(IRepositoryManager repository, ILoggerManager
logger)

49

 {
 _repository = repository;
 _logger = logger;
 }
 }
}

As you can see, our class inherits from the ICompanyService interface,

and we are injecting the IRepositoryManager and ILoggerManager

interfaces. We are going to use IRepositoryManager to access the

repository methods from each user repository class (CompanyRepository

or EmployeeRepository), and ILoggerManager to access the logging

methods we’ve created in the second section of this book.

To continue, let’s create a new EmployeeService class:

using Contracts;
using Service.Contracts;

namespace Service
{
 internal sealed class EmployeeService : IEmployeeService
 {
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;

 public EmployeeService(IRepositoryManager repository, ILoggerManager
logger)
 {
 _repository = repository;
 _logger = logger;
 }
 }
}

Finally, we are going to create the ServiceManager class:

public sealed class ServiceManager : IServiceManager
{
 private readonly Lazy<ICompanyService> _companyService;
 private readonly Lazy<IEmployeeService> _employeeService;

 public ServiceManager(IRepositoryManager repositoryManager, ILoggerManager
logger)
 {
 _companyService = new Lazy<ICompanyService>(() => new
CompanyService(repositoryManager, logger));
 _employeeService = new Lazy<IEmployeeService>(() => new
EmployeeService(repositoryManager, logger));
 }

 public ICompanyService CompanyService => _companyService.Value;
 public IEmployeeService EmployeeService => _employeeService.Value;

50

}

Here, as we did with the RepositoryManager class, we are utilizing the

Lazy class to ensure the lazy initialization of our services.

Now, with all these in place, we have to add the reference from the

Service project inside the main project. Since Service is already

referencing Service.Contracts, our main project will have the same

reference as well.

Now, we have to modify the ServiceExtensions class:

public static void ConfigureServiceManager(this IServiceCollection services) =>
 services.AddScoped<IServiceManager, ServiceManager>();

And we have to add using directives:

using Service;
using Service.Contracts;

Then, all we have to do is to modify the Program class to call this

extension method:

builder.Services.ConfigureRepositoryManager();
builder.Services.ConfigureServiceManager();

With the RepositoryContextFactory class, which implements the

IDesignTimeDbContextFactory interface, we have registered our

RepositoryContext class at design time. This helps us find the

RepositoryContext class in another project while executing migrations.

But, as you could see, we have the RepositoryManager service

registration, which happens at runtime, and during that registration, we

must have RepositoryContext registered as well in the runtime, so we

could inject it into other services (like RepositoryManager service). This

might be a bit confusing, so let’s see what that means for us.

Let’s modify the ServiceExtensions class:

51

public static void ConfigureSqlContext(this IServiceCollection services,
IConfiguration configuration) =>
 services.AddDbContext<RepositoryContext>(opts =>
 opts.UseSqlServer(configuration.GetConnectionString("sqlConnection")));

We are not specifying the MigrationAssembly inside the UseSqlServer

method. We don’t need it in this case.

As the final step, we have to call this method in the Program class:

builder.Services.ConfigureSqlContext(builder.Configuration);

With this, we have completed our implementation, and our service layer is

ready to be used in our next chapter where we are going to learn about

handling GET requests in ASP.NET Core Web API.

One additional thing. From .NET 6 RC2, there is a shortcut method

AddSqlServer, which can be used like this:

public static void ConfigureSqlContext(this IServiceCollection services,
IConfiguration configuration) =>
 services.AddSqlServer<RepositoryContext>((configuration.GetConnectionString("sq

lConnection")));

This method replaces both AddDbContext and UseSqlServer methods

and allows an easier configuration. But it doesn’t provide all of the

features the AddDbContext method provides. So for more advanced

options, it is recommended to use AddDbContext. We will use it

throughout the rest of the project.

52

We’re all set to add some business logic to our application. But before we

do that, let’s talk a bit about controller classes and routing because they

play an important part while working with HTTP requests.

Controllers should only be responsible for handling requests, model

validation, and returning responses to the frontend or some HTTP client.

Keeping business logic away from controllers is a good way to keep them

lightweight, and our code more readable and maintainable.

If you want to create the controller in the main project, you would right-

click on the Controllers folder and then Add=>Controller. Then from the

menu, you would choose API Controller Class and give it a name:

But, that’s not the thing we are going to do. We don’t want to create our

controllers in the main project.

What we are going to do instead is create a presentation layer in our

application.

53

The purpose of the presentation layer is to provide the entry point to our

system so that consumers can interact with the data. We can implement

this layer in many ways, for example creating a REST API, gRPC, etc.

However, we are going to do something different from what you are

normally used to when creating Web APIs. By convention, controllers are

defined in the Controllers folder inside the main project.

Why is this a problem?

Because ASP.NET Core uses Dependency Injection everywhere, we need

to have a reference to all of the projects in the solution from the main

project. This allows us to configure our services inside the Program class.

While this is exactly what we want to do, it introduces a big design flaw.

What’s preventing our controllers from injecting anything they want inside

the constructor?

So how can we impose some more strict rules about what controllers can

do?

Do you remember how we split the Service layer into

the Service.Contracts and Service projects? That was one piece of the

puzzle.

Another part of the puzzle is the creation of a new class library project,

CompanyEmployees.Presentation.

Inside that new project, we are going to install

Microsoft.AspNetCore.Mvc.Core package so it has access to the

ControllerBase class for our future controllers. Additionally, let’s create

a single class inside the Presentation project:

public static class AssemblyReference
{}

It's an empty static class that we are going to use for the assembly

reference inside the main project, you will see that in a minute.

54

The one more thing, we have to do is to reference the

Service.Contracts project inside the Presentation project.

Now, we are going to delete the Controllers folder and the

WeatherForecast.cs file from the main project because we are not

going to need them anymore.

Next, we have to reference the Presentation project inside the main one.

As you can see, our presentation layer depends only on the service

contracts, thus imposing more strict rules on our controllers.

Then, we have to modify the Program.cs file:

builder.Services.AddControllers()
 .AddApplicationPart(typeof(CompanyEmployees.Presentation.AssemblyReference).Ass

embly);

Without this code, our API wouldn’t work, and wouldn’t know where to

route incoming requests. But now, our app will find all of the controllers

inside of the Presentation project and configure them with the

framework. They are going to be treated the same as if they were defined

conventionally.

But, we don’t have our controllers yet. So, let’s navigate to the

Presentation project, create a new folder named Controllers, and

then a new class named CompaniesController. Since this is a class

library project, we don’t have an option to create a controller as we had in

the main project. Therefore, we have to create a regular class and then

modify it:

using Microsoft.AspNetCore.Mvc;

namespace CompanyEmployees.Presentation.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class CompaniesController : ControllerBase
 {
 }
}

55

We’ve created this controller in the same way the main project would.

Every web API controller class inherits from

the ControllerBase abstract class, which provides all necessary

behavior for the derived class.

Also, above the controller class we can see this part of the code:

[Route("api/[controller]")]

This attribute represents routing and we are going to talk more about

routing inside Web APIs.

Web API routing routes incoming HTTP requests to the particular action

method inside the Web API controller. As soon as we send our HTTP

request, the MVC framework parses that request and tries to match it to

an action in the controller.

There are two ways to implement routing in the project:

• Convention-based routing and

• Attribute routing

Convention-based routing is called such because it establishes a

convention for the URL paths. The first part creates the mapping for

the controller name, the second part creates the mapping for the action

method, and the third part is used for the optional parameter. We can

configure this type of routing in the Program class:

Our Web API project doesn’t configure routes this way, but if you create

an MVC project this will be the default route configuration. Of course, if

you are using this type of route configuration, you have to use the

56

app.UseRouting method to add the routing middleware in the application’s

pipeline.

If you inspect the Program class in our main project, you won’t find the

UseRouting method because the routes are configured with the

app.MapControllers method, which adds endpoints for controller

actions without specifying any routes.

Attribute routing uses the attributes to map the routes directly to the

action methods inside the controller. Usually, we place the base route

above the controller class, as you can see in our Web API controller class.

Similarly, for the specific action methods, we create their routes right

above them.

While working with the Web API project, the ASP.NET Core team suggests

that we shouldn’t use Convention-based Routing, but Attribute routing

instead.

Different actions can be executed on the resource with the same URI, but

with different HTTP Methods. In the same manner for different actions, we

can use the same HTTP Method, but different URIs. Let’s explain this

quickly.

For Get request, Post, or Delete, we use the same URI /api/companies

but we use different HTTP Methods like GET, POST, or DELETE. But if we

send a request for all companies or just one company, we are going to

use the same GET method but different URIs (/api/companies for all

companies and /api/companies/{companyId} for a single company).

We are going to understand this even more once we start implementing

different actions in our controller.

57

The resource name in the URI should always be a noun and not an action.

That means if we want to create a route to get all companies, we should

create this route: api/companies and not this one:

/api/getCompanies.

The noun used in URI represents the resource and helps the consumer to

understand what type of resource we are working with. So, we shouldn’t

choose the noun products or orders when we work with the companies

resource; the noun should always be companies. Therefore, by following

this convention if our resource is employees (and we are going to work

with this type of resource), the noun should be employees.

Another important part we need to pay attention to is the hierarchy

between our resources. In our example, we have a Company as a

principal entity and an Employee as a dependent entity. When we create

a route for a dependent entity, we should follow a slightly different

convention:

/api/principalResource/{principalId}/dependentResource.

Because our employees can’t exist without a company, the route for the

employee's resource should be

/api/companies/{companyId}/employees.

With all of this in mind, we can start with the Get requests.

So let’s start.

The first thing we are going to do is to change the base route

from [Route("api/[controller]")] to [Route("api/companies")].

Even though the first route will work just fine, with the second example

we are more specific to show that this routing should point to the

CompaniesController class.

58

Now it is time to create the first action method to return all the companies

from the database. Let’s create a definition for the GetAllCompanies

method in the ICompanyRepository interface:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);
}

For this to work, we need to add a reference from the Entities project

to the Contracts project.

Now, we can continue with the interface implementation in the

CompanyRepository class:

internal sealed class CompanyRepository : RepositoryBase<Company>, ICompanyRepository
{
 public CompanyRepository(RepositoryContext repositoryContext)
 :base(repositoryContext)
 {
 }

 public IEnumerable<Company> GetAllCompanies(bool trackChanges) =>
 FindAll(trackChanges)
 .OrderBy(c => c.Name)
 .ToList();
}

As you can see, we are calling the FindAll method from the

RepositoryBase class, ordering the result with the OrderBy method, and

then executing the query with the ToList method.

After the repository implementation, we have to implement a service

layer.

Let’s start with the ICompanyService interface modification:

public interface ICompanyService
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);

}

Since the Company model resides in the Entities project, we have to

add the Entities reference to the Service.Contracts project. At

least, we have for now.

59

Let’s be clear right away before we proceed. Getting all the entities

from the database is a bad idea. We’re going to start with the simplest

method and change it later on.

Then, let’s continue with the CompanyService modification:

internal sealed class CompanyService : ICompanyService
{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;

 public CompanyService(IRepositoryManager repository, ILoggerManager logger)
 {
 _repository = repository;
 _logger = logger;
 }

 public IEnumerable<Company> GetAllCompanies(bool trackChanges)
 {
 try
 {
 var companies =
_repository.Company.GetAllCompanies(trackChanges);

 return companies;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Something went wrong in the
{nameof(GetAllCompanies)} service method {ex}");
 throw;
 }
 }

}

We are using our repository manager to call the GetAllCompanies

method from the CompanyRepository class and return all the companies

from the database.

Finally, we have to return companies by using the GetAllCompanies

method inside the Web API controller.

The purpose of the action methods inside the Web API controllers is not

only to return results. It is the main purpose, but not the only one. We

need to pay attention to the status codes of our Web API responses as

well. Additionally, we are going to decorate our actions with the HTTP

attributes which will mark the type of the HTTP request to that action.

60

So, let’s modify the CompaniesController:

[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase
{
 private readonly IServiceManager _service;

 public CompaniesController(IServiceManager service) => _service = service;

 [HttpGet]
 public IActionResult GetCompanies()
 {
 try
 {
 var companies =
_service.CompanyService.GetAllCompanies(trackChanges: false);

 return Ok(companies);
 }
 catch
 {
 return StatusCode(500, "Internal server error");
 }
 }
}

Let’s explain this code a bit.

First of all, we inject the IServiceManager interface inside the

constructor. Then by decorating the GetCompanies action with

the [HttpGet] attribute, we are mapping this action to the GET request.

Then, we use an injected service to call the service method that gets the

data from the repository class.

The IActionResult interface supports using a variety of methods, which

return not only the result but also the status codes. In this situation,

the OK method returns all the companies and also the status code 200 —

which stands for OK. If an exception occurs, we are going to return the

internal server error with the status code 500.

Because there is no route attribute right above the action, the route for

the GetCompanies action will be api/companies which is the route

placed on top of our controller.

61

To check the result, we are going to use a great tool named Postman,

which helps a lot with sending requests and displaying responses. If you

download our exercise files, you will find the file Bonus 2-

CompanyEmployeesRequests.postman_collection.json, which

contains a request collection divided for each chapter of this book. You

can import them in Postman to save yourself the time of manually typing

them:

So let’s start the application by pressing the F5 button and check that it is

now listening on the https://localhost:5001 address:

If this is not the case, you probably ran it in the IIS mode; so turn the

application off and start it again, but in the CompanyEmployees mode:

NOTE: Please note that some GUID values will be different for your project, so

you have to change them according to those values.

62

Now, we can use Postman to test the result:

https://localhost:5001/api/companies

Excellent, everything is working as planned. But we are missing

something. We are using the Company entity to map our requests to the

database and then returning it as a result to the client, and this is not a

good practice. So, in the next part, we are going to learn how to improve

our code with DTO classes.

A data transfer object (DTO) is an object that we use to transport data

between the client and server applications.

So, as we said in a previous section of this book, it is not a good practice

to return entities in the Web API response; we should instead use data

transfer objects. But why is that?

63

Well, EF Core uses model classes to map them to the tables in the

database and that is the main purpose of a model class. But as we saw,

our models have navigational properties and sometimes we don’t want to

map them in an API response. So, we can use DTO to remove any

property or concatenate properties into a single property.

Moreover, there are situations where we want to map all the properties

from a model class to the result — but still, we want to use DTO instead.

The reason is if we change the database, we also have to change the

properties in a model — but that doesn’t mean our clients want the result

changed. So, by using DTO, the result will stay as it was before the model

changes.

As we can see, keeping these objects separate (the DTO and model

classes) leads to a more robust and maintainable code in our application.

Now, when we know why should we separate DTO from a model class in

our code, let’s create a new project named Shared and then a new folder

DataTransferObjects with the CompanyDto record inside:

namespace Shared.DataTransferObjects
{
 public record CompanyDto(Guid Id, string Name, string FullAddress);
}

Instead of a regular class, we are using a record for DTO. This specific

record type is known as a Positional record.

A Record type provides us an easier way to create an immutable

reference type in .NET. This means that the Record’s instance property

values cannot change after its initialization. The data are passed by value

and the equality between two Records is verified by comparing the value

of their properties.

Records can be a valid alternative to classes when we have to send or

receive data. The very purpose of a DTO is to transfer data from one part

of the code to another, and immutability in many cases is useful. We use

64

them to return data from a Web API or to represent events in our

application.

This is the exact reason why we are using records for our DTOs.

In our DTO, we have removed the Employees property and we are going

to use the FullAddress property to concatenate the Address and

Country properties from the Company class. Furthermore, we are not

using validation attributes in this record, because we are going to use this

record only to return a response to the client. Therefore, validation

attributes are not required.

So, the first thing we have to do is to add the reference from the Shared

project to the Service.Contracts project, and remove the Entities

reference. At this moment the Service.Contracts project is only

referencing the Shared project.

Then, we have to modify the ICompanyService interface:

public interface ICompanyService
{
 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
}

And the CompanyService class:

public IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges)
{
 try
 {
 var companies = _repository.Company.GetAllCompanies(trackChanges);

 var companiesDto = companies.Select(c =>
 new CompanyDto(c.Id, c.Name ?? "", string.Join(' ',
c.Address, c.Country)))
 .ToList();

 return companiesDto;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Something went wrong in the {nameof(GetAllCompanies)}
service method {ex}");
 throw;
 }
}

65

Let’s start our application and test it with the same request from

Postman:

https://localhost:5001/api/companies

This time we get our CompanyDto result, which is a more preferred way.

But this can be improved as well. If we take a look at our mapping code in

the GetCompanies action, we can see that we manually map all the

properties. Sure, it is okay for a few fields — but what if we have a lot

more? There is a better and cleaner way to map our classes and that is by

using the Automapper.

AutoMapper is a library that helps us with mapping objects in our

applications. By using this library, we are going to remove the code for

manual mapping — thus making the action readable and maintainable.

So, to install AutoMapper, let’s open a Package Manager Console window,

choose the Service project as a default project from the drop-down list,

and run the following command:

PM> Install-Package AutoMapper.Extensions.Microsoft.DependencyInjection

66

After installation, we are going to register this library in the Program

class:

builder.Services.AddAutoMapper(typeof(Program));

As soon as our library is registered, we are going to create a profile class,

also in the main project, where we specify the source and destination

objects for mapping:

public class MappingProfile : Profile
{
 public MappingProfile()
 {
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,
 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));
 }
}

The MappingProfile class must inherit from the AutoMapper’s Profile

class. In the constructor, we are using the CreateMap method where we

specify the source object and the destination object to map to. Because

we have the FullAddress property in our DTO record, which contains

both the Address and the Country from the model class, we have to

specify additional mapping rules with the ForMember method.

Now, we have to modify the ServiceManager class to enable DI in our

service classes:

public sealed class ServiceManager : IServiceManager
{
 private readonly Lazy<ICompanyService> _companyService;
 private readonly Lazy<IEmployeeService> _employeeService;

 public ServiceManager(IRepositoryManager repositoryManager, ILoggerManager
logger, IMapper mapper)
 {
 _companyService = new Lazy<ICompanyService>(() =>
 new CompanyService(repositoryManager, logger, mapper));
 _employeeService = new Lazy<IEmployeeService>(() =>
 new EmployeeService(repositoryManager, logger, mapper));
 }

 public ICompanyService CompanyService => _companyService.Value;
 public IEmployeeService EmployeeService => _employeeService.Value;
}

67

Of course, now we have two errors regarding our service constructors. So

we need to fix that in both CompanyService and EmployeeService

classes:

internal sealed class CompanyService : ICompanyService
{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;

 public CompanyService(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper)
 {
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 }

 ...
}

We should do the same in the EmployeeService class:

internal sealed class EmployeeService : IEmployeeService
{
 private readonly IRepositoryManager _repository;
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;

 public EmployeeService(IRepositoryManager repository, ILoggerManager logger,
IMapper mapper)
 {
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 }
}

Finally, we can modify the GetAllCompanies method in the

CompanyService class:

public IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges)
{
 try
 {
 var companies = _repository.Company.GetAllCompanies(trackChanges);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return companiesDto;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Something went wrong in the {nameof(GetAllCompanies)}
service method {ex}");

68

 throw;
 }
}

We are using the Map method and specify the destination and then the

source object.

Excellent.

Now if we start our app and send the same request from Postman, we are

going to get an error message:

This happens because AutoMapper is not able to find the specific

FullAddress property as we specified in the MappingProfile class. We

are intentionally showing this error for you to know what to do if it

happens to you in your projects.

So to solve this, all we have to do is to modify the MappingProfile class:

public MappingProfile()
{
 CreateMap<Company, CompanyDto>()
 .ForCtorParam("FullAddress",
 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));
}

This time, we are not using the ForMember method but the

ForCtorParam method to specify the name of the parameter in the

constructor that AutoMapper needs to map to.

Now, let’s use Postman again to send the request to test our app:

69

https://localhost:5001/api/companies

We can see that everything is working as it is supposed to, but now with

much better code.

70

Exception handling helps us deal with the unexpected behavior of our

system. To handle exceptions, we use the try-catch block in our code

as well as the finally keyword to clean up our resources afterward.

Even though there is nothing wrong with the try-catch blocks in our

Actions and methods in the Web API project, we can extract all the

exception handling logic into a single centralized place. By doing that, we

make our actions cleaner, more readable, and the error handling process

more maintainable.

In this chapter, we are going to refactor our code to use the built-in

middleware for global error handling to demonstrate the benefits of this

approach. Since we already talked about the middleware in ASP.NET Core

(in section 1.8), this section should be easier to understand.

The UseExceptionHandler middleware is a built-in middleware that we

can use to handle exceptions. So, let’s dive into the code to see this

middleware in action.

We are going to create a new ErrorModel folder in the Entities

project, and add the new class ErrorDetails in that folder:

using System.Text.Json;

namespace Entities.ErrorModel
{
 public class ErrorDetails
 {
 public int StatusCode { get; set; }
 public string? Message { get; set; }

 public override string ToString() => JsonSerializer.Serialize(this);
 }
}

We are going to use this class for the details of our error message.

71

To continue, in the Extensions folder in the main project, we are going

to add a new static class: ExceptionMiddlewareExtensions.cs.

Now, we need to modify it:

public static class ExceptionMiddlewareExtensions
{
 public static void ConfigureExceptionHandler(this WebApplication app,
ILoggerManager logger)
 {
 app.UseExceptionHandler(appError =>
 {
 appError.Run(async context =>
 {
 context.Response.StatusCode = (int)HttpStatusCode.InternalServerError;
 context.Response.ContentType = "application/json";

 var contextFeature = context.Features.Get<IExceptionHandlerFeature>();
 if (contextFeature != null)
 {
 logger.LogError($"Something went wrong: {contextFeature.Error}");

 await context.Response.WriteAsync(new ErrorDetails()
 {
 StatusCode = context.Response.StatusCode,
 Message = "Internal Server Error.",
 }.ToString());
 }
 });
 });
 }
}

In the code above, we create an extension method, on top of the

WebApplication type, and we call the UseExceptionHandler method.

That method adds a middleware to the pipeline that will catch exceptions,

log them, and re-execute the request in an alternate pipeline.

Inside the UseExceptionHandler method, we use the appError

variable of the IApplicationBuilder type. With that variable, we call

the Run method, which adds a terminal middleware delegate to the

application’s pipeline. This is something we already know from section

1.8.

Then, we populate the status code and the content type of our response,

log the error message and finally return the response with the custom-

72

created object. Later on, we are going to modify this middleware even

more to support our business logic in a service layer.

Of course, there are several namespaces we should add to make this

work:

using Contracts;
using Entities.ErrorModel;
using Microsoft.AspNetCore.Diagnostics;
using System.Net;

To be able to use this extension method, let’s modify the Program class:

var app = builder.Build();

var logger = app.Services.GetRequiredService<ILoggerManager>();
app.ConfigureExceptionHandler(logger);

if (app.Environment.IsProduction())
 app.UseHsts();

app.UseHttpsRedirection();
app.UseStaticFiles();
app.UseForwardedHeaders(new ForwardedHeadersOptions
{
 ForwardedHeaders = ForwardedHeaders.All
});

app.UseCors("CorsPolicy");

app.UseAuthorization();

app.MapControllers();

app.Run();

Here, we first extract the ILoggerManager service inside the logger

variable. Then, we just call the ConfigureExceptionHandler method

and pass that logger service. It is important to know that we have to

extract the ILoggerManager service after the var app =

builder.Build() code line because the Build method builds the

WebApplication and registers all the services added with IOC.

73

Additionally, we remove the call to the UseDeveloperExceptionPage

method in the development environment since we don’t need it now and

it also interferes with our error handler middleware.

Finally, let’s remove the try-catch block from the GetAllCompanies

service method:

public IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges)
{
 var companies = _repository.Company.GetAllCompanies(trackChanges);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return companiesDto;
}

And from our GetCompanies action:

[HttpGet]
public IActionResult GetCompanies()
{
 var companies = _service.CompanyService.GetAllCompanies(trackChanges: false);

 return Ok(companies);
}

And there we go. Our methods are much cleaner now. More importantly,

we can reuse this functionality to write more readable methods and

actions in the future.

To inspect this functionality, let’s add the following line to the

GetCompanies action, just to simulate an error:

[HttpGet]
public IActionResult GetCompanies()
{
 throw new Exception("Exception");
 var companies = _service.CompanyService.GetAllCompanies(trackChanges: false);

 return Ok(companies);
}

74

And send a request from Postman:

https://localhost:5001/api/companies

We can check our log messages to make sure that logging is working as

well.

NOTE: Once you send the request, Visual Studio will stop the execution inside

the GetCompanies action on the line where we throw an exception. This is

normal behavior and all you have to do is to click the continue button to finish

the request flow. Additionally, you can start your app with CTRL+F5, which will

prevent Visual Studio from stopping the execution. Also, if you want to start

your app with F5 but still to avoid VS execution stoppages, you can open the

Tools->Options->Debugging->General option and uncheck the Enable Just My

Code checkbox.

75

As of now, we can continue with GET requests by adding additional

actions to our controller. Moreover, we are going to create one more

controller for the Employee resource and implement an additional action

in it.

Let’s start by modifying the ICompanyRepository interface:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);
 Company GetCompany(Guid companyId, bool trackChanges);
}

Then, we are going to implement this interface in the

CompanyRepository.cs file:

public Company GetCompany(Guid companyId, bool trackChanges) =>
 FindByCondition(c => c.Id.Equals(companyId), trackChanges)
 .SingleOrDefault();

Then, we have to modify the ICompanyService interface:

public interface ICompanyService
{
 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
 CompanyDto GetCompany(Guid companyId, bool trackChanges);
}

And of course, we have to implement this interface in the

CompanyService class:

public CompanyDto GetCompany(Guid id, bool trackChanges)
{
 var company = _repository.Company.GetCompany(id, trackChanges);
 //Check if the company is null

 var companyDto = _mapper.Map<CompanyDto>(company);
 return companyDto;
}

So, we are calling the repository method that fetches a single company

from the database, maps the result to companyDto, and returns it. You

76

can also see the comment about the null checks, which we are going to

solve just in a minute.

Finally, let’s change the CompanyController class:

[HttpGet("{id:guid}")]
public IActionResult GetCompany(Guid id)
{
 var company = _service.CompanyService.GetCompany(id, trackChanges: false);
 return Ok(company);
}

The route for this action is /api/companies/id and that’s because the

/api/companies part applies from the root route (on top of the

controller) and the id part is applied from the action attribute

[HttpGet(“{id:guid}“)]. You can also see that we are using a route

constraint (:guid part) where we explicitly state that our id parameter is

of the GUID type. We can use many different constraints like int, double,

long, float, datetime, bool, length, minlength, maxlength, and many

others.

Let’s use Postman to send a valid request towards our API:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

Great. This works as expected. But, what if someone uses an invalid id

parameter?

77

6.1.1 Handling Invalid Requests in a Service Layer

As you can see, in our service method, we have a comment stating that

the result returned from the repository could be null, and this is

something we have to handle. We want to return the NotFound response

to the client but without involving our controller’s actions. We are going to

keep them nice and clean as they already are.

So, what we are going to do is to create custom exceptions that we can

call from the service methods and interrupt the flow. Then our error

handling middleware can catch the exception, process the response, and

return it to the client. This is a great way of handling invalid requests

inside a service layer without having additional checks in our controllers.

That said, let’s start with a new Exceptions folder creation inside the

Entities project. Since, in this case, we are going to create a not found

response, let’s create a new NotFoundException class inside that folder:

public abstract class NotFoundException : Exception
{
 protected NotFoundException(string message)
 : base(message)
 { }
}

This is an abstract class, which will be a base class for all the individual

not found exception classes. It inherits from the Exception class to

represent the errors that happen during application execution. Since in

our current case, we are handling the situation where we can’t find the

company in the database, we are going to create a new

CompanyNotFoundException class in the same Exceptions folder:

public sealed class CompanyNotFoundException : NotFoundException
{
 public CompanyNotFoundException(Guid companyId)
 :base ($"The company with id: {companyId} doesn't exist in the
database.")
 {
 }
}

78

Right after that, we can remove the comment in the GetCompany method

and throw this exception:

public CompanyDto GetCompany(Guid id, bool trackChanges)
{
 var company = _repository.Company.GetCompany(id, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(id);

 var companyDto = _mapper.Map<CompanyDto>(company);
 return companyDto;
}

Finally, we have to modify our error middleware because we don’t want to

return the 500 error message to our clients for every custom error we

throw from the service layer.

So, let’s modify the ExceptionMiddlewareExtensions class in the main

project:

public static class ExceptionMiddlewareExtensions
{
 public static void ConfigureExceptionHandler(this WebApplication app,
ILoggerManager logger)
 {
 app.UseExceptionHandler(appError =>
 {
 appError.Run(async context =>
 {
 context.Response.ContentType = "application/json";

 var contextFeature = context.Features.Get<IExceptionHandlerFeature>();
 if (contextFeature != null)
 {
 context.Response.StatusCode = contextFeature.Error switch
 {
 NotFoundException => StatusCodes.Status404NotFound,
 _ => StatusCodes.Status500InternalServerError
 };

 logger.LogError($"Something went wrong: {contextFeature.Error}");

 await context.Response.WriteAsync(new ErrorDetails()
 {
 StatusCode = context.Response.StatusCode,
 Message = contextFeature.Error.Message,
 }.ToString());
 }
 });
 });
 }
}

79

We remove the hardcoded StatusCode setup and add the part where we

populate it based on the type of exception we throw in our service layer.

We are also dynamically populating the Message property of the

ErrorDetails object that we return as the response.

Additionally, you can see the advantage of using the base abstract

exception class here (NotFoundException in this case). We are not

checking for the specific class implementation but the base type. This

allows us to have multiple not found classes that inherit from the

NotFoundException class and this middleware will know that we want to

return the NotFound response to the client.

Excellent. Now, we can start the app and send the invalid request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce2

We can see the status code we require and also the response object with

proper StatusCode and Message properties. Also, if you inspect the log

message, you will see that we are logging a correct message.

With this approach, we have perfect control of all the exceptional cases in

our app. We have that control due to global error handler implementation.

For now, we only handle the invalid id sent from the client, but we will

handle more exceptional cases in the rest of the project.

80

In our tests for a published app, the regular request sent from Postman

took 7ms and the exceptional one took 14ms. So you can see how fast

the response is.

Of course, we are using exceptions only for these exceptional cases

(Company not found, Employee not found...) and not throwing them all

over the application. So, if you follow the same strategy, you will not face

any performance issues.

Lastly, if you have an application where you have to throw custom

exceptions more often and maybe impact your performance, we are going

to provide an alternative to exceptions in the first bonus chapter of this

book (Chapter 32).

Up until now, we have been working only with the company, which is a

parent (principal) entity in our API. But for each company, we have a

related employee (dependent entity). Every employee must be related to

a certain company and we are going to create our URIs in that manner.

That said, let’s create a new controller in the Presentation project and

name it EmployeesController:

[Route("api/companies/{companyId}/employees")]
[ApiController]
public class EmployeesController : ControllerBase
{
 private readonly IServiceManager _service;

 public EmployeesController(IServiceManager service) => _service = service;
}

We are familiar with this code, but our main route is a bit different. As we

said, a single employee can’t exist without a company entity and this is

exactly what we are exposing through this URI. To get an employee or

employees from the database, we have to specify the companyId

parameter, and that is something all actions will have in common. For

that reason, we have specified this route as our root route.

81

Before we create an action to fetch all the employees per company, we

have to modify the IEmployeeRepository interface:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
}

After interface modification, we are going to modify the

EmployeeRepository class:

public IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges) =>
 FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges)
 .OrderBy(e => e.Name).ToList();

Then, before we start adding code to the service layer, we are going to

create a new DTO. Let’s name it EmployeeDto and add it to the

Shared/DataTransferObjects folder:

public record EmployeeDto(Guid Id, string Name, int Age, string Position);

Since we want to return this DTO to the client, we have to create a

mapping rule inside the MappingProfile class:

public MappingProfile()
{
 CreateMap<Company, CompanyDto>()
 .ForCtorParam("FullAddress",
 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));

 CreateMap<Employee, EmployeeDto>();
}

Now, we can modify the IEmployeeService interface:

public interface IEmployeeService
{
 IEnumerable<EmployeeDto> GetEmployees(Guid companyId, bool trackChanges);
}

And of course, we have to implement this interface in the

EmployeeService class:

public IEnumerable<EmployeeDto> GetEmployees(Guid companyId, bool trackChanges)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

82

 var employeesFromDb = _repository.Employee.GetEmployees(companyId,
trackChanges);
 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 return employeesDto;
}

Here, we first fetch the company entity from the database. If it doesn’t

exist, we return the NotFound response to the client. If it does, we fetch

all the employees for that company, map them to the collection of

EmployeeDto and return it to the caller.

Finally, let’s modify the Employees controller:

[HttpGet]
public IActionResult GetEmployeesForCompany(Guid companyId)
{
 var employees = _service.EmployeeService.GetEmployees(companyId, trackChanges:
false);
 return Ok(employees);
}

This code is pretty straightforward — nothing we haven’t seen so far —

but we need to explain just one thing. As you can see, we have the

companyId parameter in our action and this parameter will be mapped

from the main route. For that reason, we didn’t place it in the [HttpGet]

attribute as we did with the GetCompany action.

That done, we can send a request with a valid companyId:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees

83

And with an invalid companyId:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991873/employees

Excellent. Let’s continue by fetching a single employee.

So, as we did in previous sections, let’s start with the

IEmployeeRepository interface modification:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
 Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
}

Now, let’s implement this method in the EmployeeRepository class:

84

public Employee GetEmployee(Guid companyId, Guid id, bool trackChanges) =>
 FindByCondition(e => e.CompanyId.Equals(companyId) && e.Id.Equals(id),
trackChanges)
 .SingleOrDefault();

Next, let’s add another exception class in the Entities/Exceptions

folder:

public class EmployeeNotFoundException : NotFoundException
{
 public EmployeeNotFoundException(Guid employeeId)
 : base($"Employee with id: {employeeId} doesn't exist in the database.")
 {
 }
}

We will soon see why do we need this class.

To continue, we have to modify the IEmployeeService interface:

public interface IEmployeeService
{
 IEnumerable<EmployeeDto> GetEmployees(Guid companyId, bool trackChanges);
 EmployeeDto GetEmployee(Guid companyId, Guid id, bool trackChanges);
}

And implement this new method in the EmployeeService class:

public EmployeeDto GetEmployee(Guid companyId, Guid id, bool trackChanges)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 var employeeDb = _repository.Employee.GetEmployee(companyId, id, trackChanges);
 if (employeeDb is null)
 throw new EmployeeNotFoundException(id);

 var employee = _mapper.Map<EmployeeDto>(employeeDb);
 return employee;
}

This is also a pretty clear code and we can see the reason for creating a

new exception class.

Finally, let’s modify the EmployeeController class:

[HttpGet("{id:guid}")]
public IActionResult GetEmployeeForCompany(Guid companyId, Guid id)
{
 var employee = _service.EmployeeService.GetEmployee(companyId, id,
trackChanges: false);
 return Ok(employee);

85

}

Excellent. You can see how clear our action is.

We can test this action by using already created requests from the Bonus

2-CompanyEmployeesRequests.postman_collection.json file placed

in the folder with the exercise files:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees/86dba8c0-d178-
41e7-938c-ed49778fb52a

When we send the request with an invalid company or employee id:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees/86dba8c0-d178-
41e7-938c-ed49778fb52c

86

Our responses are pretty self-explanatory, which makes for a good user

experience.

Until now, we have received only JSON formatted responses from our API.

But what if we want to support some other format, like XML for example?

Well, in the next chapter we are going to learn more about Content

Negotiation and enabling different formats for our responses.

87

Content negotiation is one of the quality-of-life improvements we can add

to our REST API to make it more user-friendly and flexible. And when we

design an API, isn’t that what we want to achieve in the first place?

Content negotiation is an HTTP feature that has been around for a while,

but for one reason or another, it is often a bit underused.

In short, content negotiation lets you choose or rather “negotiate” the

content you want to get in a response to the REST API request.

By default, ASP.NET Core Web API returns a JSON formatted result.

We can confirm that by looking at the response from the GetCompanies

action:

https://localhost:5001/api/companies

88

We can clearly see that the default result when calling GET on

/api/companies returns the JSON result. We have also used

the Accept header (as you can see in the picture above) to try forcing

the server to return other media types like plain text and XML.

But that doesn’t work. Why?

Because we need to configure server formatters to format a response the

way we want it.

Let’s see how to do that.

A server does not explicitly specify where it formats a response to JSON.

But you can override it by changing configuration options through

the AddControllers method.

We can add the following options to enable the server to format the XML

response when the client tries negotiating for it:

builder.Services.ConfigureCors();
builder.Services.ConfigureIISIntegration();
builder.Services.ConfigureLoggerService();
builder.Services.ConfigureRepositoryManager();
builder.Services.ConfigureServiceManager();
builder.Services.ConfigureSqlContext(builder.Configuration);
builder.Services.AddAutoMapper(typeof(Program));

builder.Services.AddControllers(config => {
 config.RespectBrowserAcceptHeader = true;
}).AddXmlDataContractSerializerFormatters()
.AddApplicationPart(typeof(CompanyEmployees.Presentation.AssemblyReference).Assembly);

First things first, we must tell a server to respect the Accept header. After

that, we just add the AddXmlDataContractSerializerFormatters

method to support XML formatters.

Now that we have our server configured, let’s test the content negotiation

once more.

89

Let’s see what happens now if we fire the same request through Postman:

https://localhost:5001/api/companies

We get an error because XmlSerializer cannot easily serialize our

positional record type. There are two solutions to this. The first one is

marking our CompanyDto record with the [Serializable] attribute:

[Serializable]
public record CompanyDto(Guid Id, string Name, string FullAddress);

Now, we can send the same request again:

This time, we are getting our XML response but, as you can see,

properties have some strange names. That’s because the compiler behind

90

the scenes generates the record as a class with fields named like that

(name_BackingField) and the XML serializer just serializes those fields

with the same names.

If we don’t want these property names in our response, but the regular

ones, we can implement a second solution. Let’s modify our record with

the init only property setters:

public record CompanyDto
{
 public Guid Id { get; init; }
 public string? Name { get; init; }
 public string? FullAddress { get; init; }
}

This object is still immutable and init-only properties protect the state of

the object from mutation once initialization is finished.

Additionally, we have to make one more change in the MappingProfile

class:

public MappingProfile()
{
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,
 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));

 CreateMap<Employee, EmployeeDto>();
}

We are returning this mapping rule to a previous state since now, we do

have properties in our object.

Now, we can send the same request again:

91

There is our XML response.

Now by changing the Accept header from text/xml to text/json, we

can get differently formatted responses — and that is quite awesome,

wouldn’t you agree?

Okay, that was nice and easy.

But what if despite all this flexibility a client requests a media type that a

server doesn’t know how to format?

Currently, it – the server - will default to a JSON type.

But we can restrict this behavior by adding one line to the configuration:

builder.Services.AddControllers(config => {
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
}).AddXmlDataContractSerializerFormatters()
.AddApplicationPart(typeof(CompanyEmployees.Presentation.AssemblyReference).Assembly);

We added the ReturnHttpNotAcceptable = true option, which tells

the server that if the client tries to negotiate for the media type the

server doesn’t support, it should return the 406 Not Acceptable status

code.

This will make our application more restrictive and force the API

consumer to request only the types the server supports. The 406 status

code is created for this purpose.

Now, let’s try fetching the text/css media type using Postman to see

what happens:

https://localhost:5001/api/companies

92

And as expected, there is no response body and all we get is a nice 406

Not Acceptable status code.

So far so good.

If we want our API to support content negotiation for a type that is not “in

the box,” we need to have a mechanism to do this.

So, how can we do that?

ASP.NET Core supports the creation of custom formatters. Their

purpose is to give us the flexibility to create our formatter for any media

types we need to support.

We can make the custom formatter by using the following method:

• Create an output formatter class that inherits the

TextOutputFormatter class.

• Create an input formatter class that inherits the

TextInputformatter class.

• Add input and output classes to the InputFormatters and

OutputFormatters collections the same way we did for the XML

formatter.

93

Now let’s have some fun and implement a custom CSV formatter for our

example.

Since we are only interested in formatting responses, we need to

implement only an output formatter. We would need an input formatter

only if a request body contained a corresponding type.

The idea is to format a response to return the list of companies in a CSV

format.

Let’s add a CsvOutputFormatter class to our main project:

public class CsvOutputFormatter : TextOutputFormatter
{
 public CsvOutputFormatter()
 {
 SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/csv"));
 SupportedEncodings.Add(Encoding.UTF8);
 SupportedEncodings.Add(Encoding.Unicode);
 }

 protected override bool CanWriteType(Type? type)
 {
 if (typeof(CompanyDto).IsAssignableFrom(type) ||
typeof(IEnumerable<CompanyDto>).IsAssignableFrom(type))
 {
 return base.CanWriteType(type);
 }

 return false;
 }

 public override async Task WriteResponseBodyAsync(OutputFormatterWriteContext
context, Encoding selectedEncoding)
 {
 var response = context.HttpContext.Response;
 var buffer = new StringBuilder();

 if (context.Object is IEnumerable<CompanyDto>)
 {
 foreach (var company in (IEnumerable<CompanyDto>)context.Object)
 {
 FormatCsv(buffer, company);
 }
 }
 else
 {
 FormatCsv(buffer, (CompanyDto)context.Object);
 }

94

 await response.WriteAsync(buffer.ToString());
 }

 private static void FormatCsv(StringBuilder buffer, CompanyDto company)
 {
 buffer.AppendLine($"{company.Id},\"{company.Name},\"{company.FullAddress}\"");
 }
}

There are a few things to note here:

• In the constructor, we define which media type this formatter should

parse as well as encodings.

• The CanWriteType method is overridden, and it indicates whether

or not the CompanyDto type can be written by this serializer.

• The WriteResponseBodyAsync method constructs the response.

• And finally, we have the FormatCsv method that formats a response

the way we want it.

The class is pretty straightforward to implement, and the main thing that

you should focus on is the FormatCsv method logic.

Now we just need to add the newly made formatter to the list

of OutputFormatters in the ServicesExtensions class:

public static IMvcBuilder AddCustomCSVFormatter(this IMvcBuilder builder) =>
 builder.AddMvcOptions(config => config.OutputFormatters.Add(new
CsvOutputFormatter()));

And to call it in the AddControllers:

builder.Services.AddControllers(config => {
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
}).AddXmlDataContractSerializerFormatters()
 .AddCustomCSVFormatter()
.AddApplicationPart(typeof(CompanyEmployees.Presentation.AssemblyReference).Assembly);

Let’s run this and see if it works. This time we will put text/csv as the

value for the Accept header:

95

https://localhost:5001/api/companies

Well, what do you know, it works!

In this chapter, we finished working with GET requests in our project and

we are ready to move on to the POST PUT and DELETE requests. We have

a lot more ground to cover, so let’s get down to business.

96

Before we start with the Create, Update, and Delete actions, we should

explain two important principles in the HTTP standard. Those standards

are Method Safety and Method Idempotency.

We can consider a method a safe one if it doesn’t change the resource

representation. So, in other words, the resource shouldn’t be changed

after our method is executed.

If we can call a method multiple times with the same result, we can

consider that method idempotent. So in other words, the side effects of

calling it once are the same as calling it multiple times.

Let’s see how this applies to HTTP methods:

HTTP Method Is it Safe? Is it Idempotent?

GET Yes Yes

OPTIONS Yes Yes

HEAD Yes Yes

POST No No

DELETE No Yes

PUT No Yes

PATCH No No

As you can see, the GET, OPTIONS, and HEAD methods are both safe and

idempotent, because when we call those methods they will not change the

resource representation. Furthermore, we can call these methods multiple

times, but they will return the same result every time.

The POST method is neither safe nor idempotent. It causes changes in the

resource representation because it creates them. Also, if we call the POST

method multiple times, it will create a new resource every time.

97

The DELETE method is not safe because it removes the resource, but it is

idempotent because if we delete the same resource multiple times, we

will get the same result as if we have deleted it only once.

PUT is not safe either. When we update our resource, it changes. But it is

idempotent because no matter how many times we update the same

resource with the same request it will have the same representation as if

we have updated it only once.

Finally, the PATCH method is neither safe nor idempotent.

Now that we’ve learned about these principles, we can continue with our

application by implementing the rest of the HTTP methods (we have

already implemented GET). We can always use this table to decide which

method to use for which use case.

98

In this section, we are going to show you how to use the POST HTTP

method to create resources in the database.

So, let’s start.

Firstly, let’s modify the decoration attribute for the GetCompany action in

the Companies controller:

[HttpGet("{id:guid}", Name = "CompanyById")]

With this modification, we are setting the name for the action. This name

will come in handy in the action method for creating a new company.

We have a DTO class for the output (the GET methods), but right now we

need the one for the input as well. So, let’s create a new record in the

Shared/DataTransferObjects folder:

public record CompanyForCreationDto(string Name, string Address, string Country);

We can see that this DTO record is almost the same as the Company

record but without the Id property. We don’t need that property when we

create an entity.

We should pay attention to one more thing. In some projects, the input

and output DTO classes are the same, but we still recommend separating

them for easier maintenance and refactoring of our code. Furthermore,

when we start talking about validation, we don’t want to validate the

output objects — but we definitely want to validate the input ones.

With all of that said and done, let’s continue by modifying the

ICompanyRepository interface:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);

99

 Company GetCompany(Guid companyId, bool trackChanges);
 void CreateCompany(Company company);
}

After the interface modification, we are going to implement that interface:

public void CreateCompany(Company company) => Create(company);

We don’t explicitly generate a new Id for our company; this would be

done by EF Core. All we do is to set the state of the company to Added.

Next, we want to modify the ICompanyService interface:

public interface ICompanyService
{
 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
 CompanyDto GetCompany(Guid companyId, bool trackChanges);
 CompanyDto CreateCompany(CompanyForCreationDto company);
}

And of course, we have to implement this method in the

CompanyService class:

public CompanyDto CreateCompany(CompanyForCreationDto company)
{
 var companyEntity = _mapper.Map<Company>(company);

 _repository.Company.CreateCompany(companyEntity);
 _repository.Save();

 var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

 return companyToReturn;
}

Here, we map the company for creation to the company entity, call the

repository method for creation, and call the Save() method to save the

entity to the database. After that, we map the company entity to the

company DTO object to return it to the controller.

But we don’t have the mapping rule for this so we have to create another

mapping rule for the Company and CompanyForCreationDto objects.

Let’s do this in the MappingProfile class:

public MappingProfile()
{
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,

100

 opt => opt.MapFrom(x => string.Join(' ', x.Address, x.Country)));

 CreateMap<Employee, EmployeeDto>();

 CreateMap<CompanyForCreationDto, Company>();
}

Our POST action will accept a parameter of the type

CompanyForCreationDto, and as you can see our service method

accepts the parameter of the same type as well, but we need the

Company object to send it to the repository layer for creation. Therefore,

we have to create this mapping rule.

Last, let’s modify the controller:

[HttpPost]
public IActionResult CreateCompany([FromBody] CompanyForCreationDto company)
{
 if (company is null)
 return BadRequest("CompanyForCreationDto object is null");

 var createdCompany = _service.CompanyService.CreateCompany(company);

 return CreatedAtRoute("CompanyById", new { id = createdCompany.Id },
createdCompany);
}

Let’s use Postman to send the request and examine the result:

https://localhost:5001/api/companies

101

Let’s talk a little bit about this code. The interface and the repository parts

are pretty clear, so we won’t talk about that. We have already explained

the code in the service method. But the code in the controller contains

several things worth mentioning.

If you take a look at the request URI, you’ll see that we use the same one

as for the GetCompanies action: api/companies — but this time we are

using the POST request.

The CreateCompany method has its own [HttpPost] decoration

attribute, which restricts it to POST requests. Furthermore, notice the

company parameter which comes from the client. We are not collecting it

from the URI but the request body. Thus the usage of

the [FromBody] attribute. Also, the company object is a complex type;

therefore, we have to use [FromBody].

If we wanted to, we could explicitly mark the action to take this

parameter from the URI by decorating it with the [FromUri] attribute,

though we wouldn’t recommend that at all because of security reasons

and the complexity of the request.

Because the company parameter comes from the client, it could happen

that it can’t be deserialized. As a result, we have to validate it against the

reference type’s default value, which is null.

The last thing to mention is this part of the code:

CreatedAtRoute("CompanyById", new { id = companyToReturn.Id }, companyToReturn);

CreatedAtRoute will return a status code 201, which stands for

Created. Also, it will populate the body of the response with the new

company object as well as the Location attribute within the

response header with the address to retrieve that company. We need to

provide the name of the action, where we can retrieve the created entity.

102

If we take a look at the headers part of our response, we are going to see

a link to retrieve the created company:

Finally, from the previous example, we can confirm that the POST method

is neither safe nor idempotent. We saw that when we send the POST

request, it is going to create a new resource in the database — thus

changing the resource representation. Furthermore, if we try to send this

request a couple of times, we will get a new object for every request (it

will have a different Id for sure).

Excellent.

There is still one more thing we need to explain.

9.2.1 Validation from the ApiController Attribute

In this section, we are going to talk about the [ApiController] attribute

that we can find right below the [Route] attribute in our controller:

[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase
{

But, before we start with the explanation, let’s place a breakpoint in the

CreateCompany action, right on the if (company is null) check.

Then, let’s use Postman to send an invalid POST request:

103

https://localhost:5001/api/companies

We are going to talk about Validation in chapter 13, but for now, we have

to explain a couple of things.

First of all, we have our response - a Bad Request in Postman, and we

have error messages that state what’s wrong with our request. But, we

never hit that breakpoint that we’ve placed inside the CreateCompany

action.

Why is that?

Well, the [ApiController] attribute is applied to a controller class to

enable the following opinionated, API-specific behaviors:

• Attribute routing requirement

• Automatic HTTP 400 responses

• Binding source parameter inference

• Multipart/form-data request inference

• Problem details for error status codes

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.apicontrollerattribute
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#attribute-routing-requirement
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#automatic-http-400-responses
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#binding-source-parameter-inference
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#multipartform-data-request-inference
https://docs.microsoft.com/en-us/aspnet/core/web-api/?view=aspnetcore-5.0#problem-details-for-error-status-codes

104

As you can see, it handles the HTTP 400 responses, and in our case, since

the request’s body is null, the [ApiController] attribute handles that

and returns the 400 (BadReqeust) response before the request even hits

the CreateCompany action.

This is useful behavior, but it prevents us from sending our custom

responses with different messages and status codes to the client. This will

be very important once we get to the Validation.

So to enable our custom responses from the actions, we are going to add

this code into the Program class right above the AddControllers

method:

builder.Services.Configure<ApiBehaviorOptions>(options =>
{
 options.SuppressModelStateInvalidFilter = true;
});

With this, we are suppressing a default model state validation that is

implemented due to the existence of the [ApiController] attribute in

all API controllers. So this means that we can solve the same problem

differently, by commenting out or removing the [ApiController]

attribute only, without additional code for suppressing validation. It's all

up to you. But we like keeping it in our controllers because, as you

could’ve seen, it provides additional functionalities other than just 400 –

Bad Request responses.

Now, once we start the app and send the same request, we will hit that

breakpoint and see our response in Postman.

Nicely done.

Now, we can remove that breakpoint and continue with learning about the

creation of child resources.

105

While creating our company, we created the DTO object required for the

CreateCompany action. So, for employee creation, we are going to do the

same thing:

public record EmployeeForCreationDto(string Name, int Age, string Position);

We don’t have the Id property because we are going to create that Id on

the server-side. But additionally, we don’t have the CompanyId because

we accept that parameter through the route:

[Route("api/companies/{companyId}/employees")]

The next step is to modify the IEmployeeRepository interface:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
 Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
}

Of course, we have to implement this interface:

public void CreateEmployeeForCompany(Guid companyId, Employee employee)
{
 employee.CompanyId = companyId;
 Create(employee);
}

Because we are going to accept the employee DTO object in our action

and send it to a service method, but we also have to send an employee

object to this repository method, we have to create an additional mapping

rule in the MappingProfile class:

CreateMap<EmployeeForCreationDto, Employee>();

The next thing we have to do is IEmployeeService modification:

public interface IEmployeeService
{
 IEnumerable<EmployeeDto> GetEmployees(Guid companyId, bool trackChanges);
 EmployeeDto GetEmployee(Guid companyId, Guid id, bool trackChanges);
 EmployeeDto CreateEmployeeForCompany(Guid companyId, EmployeeForCreationDto
employeeForCreation, bool trackChanges);
}

106

And implement this new method in EmployeeService:

public EmployeeDto CreateEmployeeForCompany(Guid companyId, EmployeeForCreationDto
employeeForCreation, bool trackChanges)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 var employeeEntity = _mapper.Map<Employee>(employeeForCreation);

 _repository.Employee.CreateEmployeeForCompany(companyId, employeeEntity);
 _repository.Save();

 var employeeToReturn = _mapper.Map<EmployeeDto>(employeeEntity);

 return employeeToReturn;
}

We have to check whether that company exists in the database because

there is no point in creating an employee for a company that does not

exist. After that, we map the DTO to an entity, call the repository

methods to create a new employee, map back the entity to the DTO, and

return it to the caller.

Now, we can add a new action in the EmployeesController:

[HttpPost]
public IActionResult CreateEmployeeForCompany(Guid companyId, [FromBody]
EmployeeForCreationDto employee)
{
 if (employee is null)
 return BadRequest("EmployeeForCreationDto object is null");

 var employeeToReturn =
_service.EmployeeService.CreateEmployeeForCompany(companyId, employee, trackChanges:
false);

 return CreatedAtRoute("GetEmployeeForCompany", new { companyId, id =
employeeToReturn.Id },
 employeeToReturn);
}

As we can see, the main difference between this action and the

CreateCompany action (if we exclude the fact that we are working with

different DTOs) is the return statement, which now has two parameters

for the anonymous object.

107

For this to work, we have to modify the HTTP attribute above the

GetEmployeeForCompany action:

[HttpGet("{id:guid}", Name = "GetEmployeeForCompany")]

Let’s give this a try:

https://localhost:5001/api/companies/ 14759d51-e9c1-4afc-f9bf-08d98898c9c3/employees

Excellent. A new employee was created.

If we take a look at the Headers tab, we'll see a link to fetch our newly

created employee. If you copy that link and send another request with it,

you will get this employee for sure:

108

There are situations where we want to create a parent resource with its

children. Rather than using multiple requests for every single child, we

want to do this in the same request with the parent resource.

We are going to show you how to do this.

The first thing we are going to do is extend the CompanyForCreationDto

class:

public record CompanyForCreationDto(string Name, string Address, string Country,
 IEnumerable<EmployeeForCreationDto> Employees);

We are not going to change the action logic inside the controller nor the

repository/service logic; everything is great there. That’s all. Let’s test it:

https://localhost:5001/api/companies

109

You can see that this company was created successfully.

Now we can copy the location link from the Headers tab, paste it in

another Postman tab, and just add the /employees part:

We have confirmed that the employees were created as well.

Until now, we have been creating a single resource whether it was

Company or Employee. But it is quite normal to create a collection of

resources, and in this section that is something we are going to work

with.

If we take a look at the CreateCompany action, for example, we can see

that the return part points to the CompanyById route (the GetCompany

action). That said, we don’t have the GET action for the collection creating

action to point to. So, before we start with the POST collection action, we

are going to create the GetCompanyCollection action in the Companies

controller.

110

But first, let's modify the ICompanyRepository interface:

IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges);

Then we have to change the CompanyRepository class:

public IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges) =>
 FindByCondition(x => ids.Contains(x.Id), trackChanges)
 .ToList();

After that, we are going to modify ICompanyService:

public interface ICompanyService
{
 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
 CompanyDto GetCompany(Guid companyId, bool trackChanges);
 CompanyDto CreateCompany(CompanyForCreationDto company);
 IEnumerable<CompanyDto> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
}

And implement this in CompanyService:

public IEnumerable<CompanyDto> GetByIds(IEnumerable<Guid> ids, bool trackChanges)
{
 if (ids is null)
 throw new IdParametersBadRequestException();

 var companyEntities = _repository.Company.GetByIds(ids, trackChanges);
 if (ids.Count() != companyEntities.Count())
 throw new CollectionByIdsBadRequestException();

 var companiesToReturn = _mapper.Map<IEnumerable<CompanyDto>>(companyEntities);

 return companiesToReturn;
}

Here, we check if ids parameter is null and if it is we stop the execution

flow and return a bad request response to the client. If it’s not null, we

fetch all the companies for each id in the ids collection. If the count of ids

and companies mismatch, we return another bad request response to the

client. Finally, we are executing the mapping action and returning the

result to the caller.

Of course, we don’t have these two exception classes yet, so let’s create

them.

Since we are returning a bad request result, we are going to create a new

abstract class in the Entities/Exceptions folder:

111

public abstract class BadRequestException : Exception
{
 protected BadRequestException(string message)
 :base(message)
 {
 }
}

Then, in the same folder, let’s create two new specific exception classes:

public sealed class IdParametersBadRequestException : BadRequestException
{
 public IdParametersBadRequestException()
 :base("Parameter ids is null")
 {
 }
}

public sealed class CollectionByIdsBadRequestException : BadRequestException
{
 public CollectionByIdsBadRequestException()
 :base("Collection count mismatch comparing to ids.")
 {
 }
}

At this point, we’ve removed two errors from the GetByIds method. But,

to show the correct response to the client, we have to modify the

ConfigureExceptionHandler class – the part where we populate the

StatusCode property:

context.Response.StatusCode = contextFeature.Error switch
{
 NotFoundException => StatusCodes.Status404NotFound,
 BadRequestException => StatusCodes.Status400BadRequest,
 _ => StatusCodes.Status500InternalServerError
};

After that, we can add a new action in the controller:

[HttpGet("collection/({ids})", Name = "CompanyCollection")]
public IActionResult GetCompanyCollection(IEnumerable<Guid> ids)
{
 var companies = _service.CompanyService.GetByIds(ids, trackChanges: false);

 return Ok(companies);
}

And that's it. This action is pretty straightforward, so let's continue

towards POST implementation.

Let’s modify the ICompanyService interface first:

112

public interface ICompanyService
{
 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
 CompanyDto GetCompany(Guid companyId, bool trackChanges);
 CompanyDto CreateCompany(CompanyForCreationDto company);
 IEnumerable<CompanyDto> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
 (IEnumerable<CompanyDto> companies, string ids) CreateCompanyCollection
 (IEnumerable<CompanyForCreationDto> companyCollection);
}

So, this new method will accept a collection of the

CompanyForCreationDto type as a parameter, and return a Tuple with

two fields (companies and ids) as a result.

That said, let’s implement it in the CompanyService class:

public (IEnumerable<CompanyDto> companies, string ids) CreateCompanyCollection
 (IEnumerable<CompanyForCreationDto> companyCollection)
{
 if (companyCollection is null)
 throw new CompanyCollectionBadRequest();

 var companyEntities = _mapper.Map<IEnumerable<Company>>(companyCollection);
 foreach (var company in companyEntities)
 {
 _repository.Company.CreateCompany(company);
 }

 _repository.Save();

 var companyCollectionToReturn =
_mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
 var ids = string.Join(",", companyCollectionToReturn.Select(c => c.Id));

 return (companies: companyCollectionToReturn, ids: ids);
}

So, we check if our collection is null and if it is, we return a bad request.

If it isn’t, then we map that collection and save all the collection elements

to the database. Finally, we map the company collection back, take all the

ids as a comma-separated string, and return the Tuple with these two

fields as a result to the caller.

Again, we can see that we don’t have the exception class, so let’s just

create it:

public sealed class CompanyCollectionBadRequest : BadRequestException
{
 public CompanyCollectionBadRequest()
 :base("Company collection sent from a client is null.")

113

 {
 }
}

Finally, we can add a new action in the CompaniesController:

[HttpPost("collection")]
public IActionResult CreateCompanyCollection([FromBody]
IEnumerable<CompanyForCreationDto> companyCollection)
{
 var result =
_service.CompanyService.CreateCompanyCollection(companyCollection);

 return CreatedAtRoute("CompanyCollection", new { result.ids },
result.companies);
}

We receive the companyCollection parameter from the client, send it to

the service method, and return a result with a comma-separated string

and our newly created companies.

Now you may ask, why are we sending a comma-separated string when

we expect a collection of ids in the GetCompanyCollection action?

Well, we can’t just pass a list of ids in the CreatedAtRoute method

because there is no support for the Header Location creation with the list.

You may try it, but we're pretty sure you would get the location like this:

We can test our create action now with a bad request:

114

https://localhost:5001/api/companies/collection

We can see that the request is handled properly and we have a correct

response.

Now, let’s send a valid request:

https://localhost:5001/api/companies/collection

Excellent. Let’s check the header tab:

115

We can see a valid location link. So, we can copy it and try to fetch our

newly created companies:

But we are getting the 415 Unsupported Media Type message. This is

because our API can’t bind the string type parameter to the

IEnumerable<Guid> argument in the GetCompanyCollection action.

Well, we can solve this with a custom model binding.

Let’s create the new folder ModelBinders in the Presentation project

and inside the new class ArrayModelBinder:

public class ArrayModelBinder : IModelBinder
{
 public Task BindModelAsync(ModelBindingContext bindingContext)
 {
 if(!bindingContext.ModelMetadata.IsEnumerableType)
 {

116

 bindingContext.Result = ModelBindingResult.Failed();
 return Task.CompletedTask;
 }

 var providedValue = bindingContext.ValueProvider
 .GetValue(bindingContext.ModelName)
 .ToString();
 if(string.IsNullOrEmpty(providedValue))
 {
 bindingContext.Result = ModelBindingResult.Success(null);
 return Task.CompletedTask;
 }

 var genericType =
bindingContext.ModelType.GetTypeInfo().GenericTypeArguments[0];
 var converter = TypeDescriptor.GetConverter(genericType);

 var objectArray = providedValue.Split(new[] { "," },
StringSplitOptions.RemoveEmptyEntries)
 .Select(x => converter.ConvertFromString(x.Trim()))
 .ToArray();

 var guidArray = Array.CreateInstance(genericType, objectArray.Length);
 objectArray.CopyTo(guidArray, 0);
 bindingContext.Model = guidArray;

 bindingContext.Result = ModelBindingResult.Success(bindingContext.Model);
 return Task.CompletedTask;
 }
}

At first glance, this code might be hard to comprehend, but once we

explain it, it will be easier to understand.

We are creating a model binder for the IEnumerable type. Therefore, we

have to check if our parameter is the same type.

Next, we extract the value (a comma-separated string of GUIDs) with the

ValueProvider.GetValue() expression. Because it is a type string, we

just check whether it is null or empty. If it is, we return null as a result

because we have a null check in our action in the controller. If it is not,

we move on.

In the genericType variable, with the reflection help, we store the type

the IEnumerable consists of. In our case, it is GUID. With the

converter variable, we create a converter to a GUID type. As you can

see, we didn’t just force the GUID type in this model binder; instead, we

inspected what is the nested type of the IEnumerable parameter and

117

then created a converter for that exact type, thus making this binder

generic.

After that, we create an array of type object (objectArray) that consist

of all the GUID values we sent to the API and then create an array of

GUID types (guidArray), copy all the values from the objectArray to

the guidArray, and assign it to the bindingContext.

These are the required using directives:

using Microsoft.AspNetCore.Mvc.ModelBinding;
using System.ComponentModel;
using System.Reflection;

And that is it. Now, we have just to make a slight modification in the

GetCompanyCollection action:

public IActionResult GetCompanyCollection([ModelBinder(BinderType =

typeof(ArrayModelBinder))]IEnumerable<Guid> ids)

This is the required namespace:

using CompanyEmployees.Presentation.ModelBinders;

Visual Studio will provide two different namespaces to resolve the error,

so be sure to pick the right one.

Excellent.

Our ArrayModelBinder will be triggered before an action executes. It

will convert the sent string parameter to the IEnumerable<Guid> type,

and then the action will be executed:

118

https://localhost:5001/api/companies/collection/(582ea192-6fb7-44ff-a2a1-08d988ca3ca9,a216fbbe-ebbd-
4e09-a2a2-08d988ca3ca9)

Well done.

We are ready to continue towards DELETE actions.

119

Let’s start this section by deleting a child resource first.

So, let’s modify the IEmployeeRepository interface:

public interface IEmployeeRepository
{
 IEnumerable<Employee> GetEmployees(Guid companyId, bool trackChanges);
 Employee GetEmployee(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
 void DeleteEmployee(Employee employee);
}

The next step for us is to modify the EmployeeRepository class:

public void DeleteEmployee(Employee employee) => Delete(employee);

After that, we have to modify the IEmployeeService interface:

public interface IEmployeeService
{
 IEnumerable<EmployeeDto> GetEmployees(Guid companyId, bool trackChanges);
 EmployeeDto GetEmployee(Guid companyId, Guid id, bool trackChanges);
 EmployeeDto CreateEmployeeForCompany(Guid companyId, EmployeeForCreationDto
employeeForCreation, bool trackChanges);
 void DeleteEmployeeForCompany(Guid companyId, Guid id, bool trackChanges);
}

And of course, the EmployeeService class:

public void DeleteEmployeeForCompany(Guid companyId, Guid id, bool trackChanges)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 var employeeForCompany = _repository.Employee.GetEmployee(companyId, id,
trackChanges);
 if (employeeForCompany is null)
 throw new EmployeeNotFoundException(id);

 _repository.Employee.DeleteEmployee(employeeForCompany);
 _repository.Save();
}

Pretty straightforward method implementation where we fetch the

company and if it doesn’t exist, we return the Not Found response. If it

exists, we fetch the employee for that company and execute the same

check, where if it’s true, we return another not found response. Lastly, we

delete the employee from the database.

Finally, we can add a delete action to the controller class:

120

[HttpDelete("{id:guid}")]
public IActionResult DeleteEmployeeForCompany(Guid companyId, Guid id)
{
 _service.EmployeeService.DeleteEmployeeForCompany(companyId, id, trackChanges:
false);

 return NoContent();
}

There is nothing new with this action. We collect the companyId from the

root route and the employee’s id from the passed argument. Call the

service method and return the NoContent() method, which returns the

status code 204 No Content.

Let’s test this:

https://localhost:5001/api/companies/14759d51-e9c1-4afc-f9bf-08d98898c9c3/employees/e06cfcc6-e353-
4bd8-0870-08d988af0956

Excellent. It works great.

You can try to get that employee from the database, but you will get 404

for sure:

https://localhost:5001/api/companies/14759d51-e9c1-4afc-f9bf-08d98898c9c3/employees/e06cfcc6-e353-
4bd8-0870-08d988af0956

We can see that the DELETE request isn’t safe because it deletes the

resource, thus changing the resource representation. But if we try to send

this delete request one or even more times, we would get the same 404

121

result because the resource doesn’t exist anymore. That’s what makes the

DELETE request idempotent.

With Entity Framework Core, this action is pretty simple. With the basic

configuration, cascade deleting is enabled, which means deleting a parent

resource will automatically delete all of its children. We can confirm that

from the migration file:

So, all we have to do is to create a logic for deleting the parent resource.

Well, let’s do that following the same steps as in a previous example:

public interface ICompanyRepository
{
 IEnumerable<Company> GetAllCompanies(bool trackChanges);
 Company GetCompany(Guid companyId, bool trackChanges);
 void CreateCompany(Company company);
 IEnumerable<Company> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
 void DeleteCompany(Company company);
}

Then let’s modify the repository class:

public void DeleteCompany(Company company) => Delete(company);

Then we have to modify the service interface:

public interface ICompanyService
{
 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
 CompanyDto GetCompany(Guid companyId, bool trackChanges);
 CompanyDto CreateCompany(CompanyForCreationDto company);
 IEnumerable<CompanyDto> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
 (IEnumerable<CompanyDto> companies, string ids) CreateCompanyCollection
 (IEnumerable<CompanyForCreationDto> companyCollection);
 void DeleteCompany(Guid companyId, bool trackChanges);
}

122

And the service class:

public void DeleteCompany(Guid companyId, bool trackChanges)
{
 var company = _repository.Company.GetCompany(companyId, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 _repository.Company.DeleteCompany(company);
 _repository.Save();
}

Finally, let’s modify our controller:

[HttpDelete("{id:guid}")]
public IActionResult DeleteCompany(Guid id)
{
 _service.CompanyService.DeleteCompany(id, trackChanges: false);

 return NoContent();
}

And let’s test our action:

https://localhost:5001/api/companies/0AD5B971-FF51-414D-AF01-34187E407557

It works.

You can check in your database that this company alongside its children

doesn’t exist anymore.

There we go. We have finished working with DELETE requests and we are

ready to continue to the PUT requests.

123

In this section, we are going to show you how to update a resource using

the PUT request. We are going to update a child resource first and then

we are going to show you how to execute insert while updating a parent

resource.

In the previous sections, we first changed our interface, then the

repository/service classes, and finally the controller. But for the update,

this doesn’t have to be the case.

Let’s go step by step.

The first thing we are going to do is to create another DTO record for

update purposes:

public record EmployeeForUpdateDto(string Name, int Age, string Position);

We do not require the Id property because it will be accepted through the

URI, like with the DELETE requests. Additionally, this DTO contains the

same properties as the DTO for creation, but there is a conceptual

difference between those two DTO classes. One is for updating and the

other is for creating. Furthermore, once we get to the validation part, we

will understand the additional difference between those two.

Because we have an additional DTO record, we require an additional

mapping rule:

CreateMap<EmployeeForUpdateDto, Employee>();

After adding the mapping rule, we can modify the IEmployeeService

interface:

public interface IEmployeeService
{
 IEnumerable<EmployeeDto> GetEmployees(Guid companyId, bool trackChanges);
 EmployeeDto GetEmployee(Guid companyId, Guid id, bool trackChanges);

124

 EmployeeDto CreateEmployeeForCompany(Guid companyId, EmployeeForCreationDto
employeeForCreation, bool trackChanges);
 void DeleteEmployeeForCompany(Guid companyId, Guid id, bool trackChanges);
 void UpdateEmployeeForCompany(Guid companyId, Guid id,
 EmployeeForUpdateDto employeeForUpdate, bool compTrackChanges, bool
empTrackChanges);
}

We are declaring a method that contains both id parameters – one for the

company and one for employee, the employeeForUpdate object sent

from the client, and two track changes parameters, again, one for the

company and one for the employee. We are doing that because we won't

track changes while fetching the company entity, but we will track

changes while fetching the employee.

That said, let’s modify the EmployeeService class:

public void UpdateEmployeeForCompany(Guid companyId, Guid id, EmployeeForUpdateDto
employeeForUpdate,
 bool compTrackChanges, bool empTrackChanges)
{
 var company = _repository.Company.GetCompany(companyId, compTrackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 var employeeEntity = _repository.Employee.GetEmployee(companyId, id,
empTrackChanges);
 if (employeeEntity is null)
 throw new EmployeeNotFoundException(id);

 _mapper.Map(employeeForUpdate, employeeEntity);
 _repository.Save();
}

So first, we fetch the company from the database. If it doesn’t exist, we

interrupt the flow and send the response to the client. After that, we do

the same thing for the employee. But there is one difference here. Pay

attention to the way we fetch the company and the way we fetch the

employeeEntity. Do you see the difference?

As we’ve already said: the trackChanges parameter will be set to true

for the employeeEntity. That’s because we want EF Core to track

changes on this entity. This means that as soon as we change any

125

property in this entity, EF Core will set the state of that entity to

Modified.

As you can see, we are mapping from the employeeForUpdate object

(we will change just the age property in a request) to the

employeeEntity — thus changing the state of the employeeEntity

object to Modified.

Because our entity has a modified state, it is enough to call the Save

method without any additional update actions. As soon as we call the

Save method, our entity is going to be updated in the database.

Now, when we have all of these, let’s modify the EmployeesController:

[HttpPut("{id:guid}")]
public IActionResult UpdateEmployeeForCompany(Guid companyId, Guid id,
 [FromBody] EmployeeForUpdateDto employee)
{
 if (employee is null)
 return BadRequest("EmployeeForUpdateDto object is null");

 _service.EmployeeService.UpdateEmployeeForCompany(companyId, id, employee,
 compTrackChanges: false, empTrackChanges: true);

 return NoContent();
}

We are using the PUT attribute with the id parameter to annotate this

action. That means that our route for this action is going to be:

api/companies/{companyId}/employees/{id}.

Then, we check if the employee object is null, and if it is, we return a

BadRequest response.

After that, we just call the update method from the service layer and pass

false for the company track changes and true for the employee track

changes.

Finally, we return the 204 NoContent status.

We can test our action:

126

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

And it works; we get the 204 No Content status.

We can check our executed query through EF Core to confirm that only

the Age column is updated:

Excellent.

You can send the same request with the invalid company id or employee

id. In both cases, you should get a 404 response, which is a valid

response to this kind of situation.

NOTE: We’ve changed only the Age property, but we have sent all the other

properties with unchanged values as well. Therefore, Age is only updated in the

database. But if we send the object with just the Age property, other properties

will be set to their default values and the whole object will be updated — not

just the Age column. That’s because the PUT is a request for a full update. This

is very important to know.

127

11.1.1 About the Update Method from the RepositoryBase

Class

Right now, you might be asking: “Why do we have the Update method in

the RepositoryBase class if we are not using it?”

The update action we just executed is a connected update (an update

where we use the same context object to fetch the entity and to update

it). But sometimes we can work with disconnected updates. This kind of

update action uses different context objects to execute fetch and update

actions or sometimes we can receive an object from a client with the Id

property set as well, so we don’t have to fetch it from the database. In

that situation, all we have to do is to inform EF Core to track changes on

that entity and to set its state to modified. We can do both actions with

the Update method from our RepositoryBase class. So, you see, having

that method is crucial as well.

One note, though. If we use the Update method from our repository,

even if we change just the Age property, all properties will be updated in

the database.

While updating a parent resource, we can create child resources as well

without too much effort. EF Core helps us a lot with that process. Let’s

see how.

The first thing we are going to do is to create a DTO record for update:

public record CompanyForUpdateDto(string Name, string Address, string Country,
 IEnumerable<EmployeeForCreationDto> Employees);

After this, let’s create a new mapping rule:

CreateMap<CompanyForUpdateDto, Company>();

Then, let’s move on to the interface modification:

public interface ICompanyService
{

128

 IEnumerable<CompanyDto> GetAllCompanies(bool trackChanges);
 CompanyDto GetCompany(Guid companyId, bool trackChanges);
 CompanyDto CreateCompany(CompanyForCreationDto company);
 IEnumerable<CompanyDto> GetByIds(IEnumerable<Guid> ids, bool trackChanges);
 (IEnumerable<CompanyDto> companies, string ids) CreateCompanyCollection
 (IEnumerable<CompanyForCreationDto> companyCollection);
 void DeleteCompany(Guid companyId, bool trackChanges);
 void UpdateCompany(Guid companyid, CompanyForUpdateDto companyForUpdate, bool
trackChanges);
}

And of course, the service class modification:

public void UpdateCompany(Guid companyId, CompanyForUpdateDto companyForUpdate, bool
trackChanges)
{
 var companyEntity = _repository.Company.GetCompany(companyId, trackChanges);
 if (companyEntity is null)
 throw new CompanyNotFoundException(companyId);

 _mapper.Map(companyForUpdate, companyEntity);
 _repository.Save();
}

So again, we fetch our company entity from the database, and if it is null,

we just return the NotFound response. But if it’s not null, we map the

companyForUpdate DTO to companyEntity and call the Save method.

Right now, we can modify our controller:

[HttpPut("{id:guid}")]
public IActionResult UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto company)
{
 if (company is null)
 return BadRequest("CompanyForUpdateDto object is null");

 _service.CompanyService.UpdateCompany(id, company, trackChanges: true);

 return NoContent();
}

That’s it. You can see that this action is almost the same as the employee

update action.

Let’s test this now:

129

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

We modify the name of the company and attach an employee as well. As

a result, we can see 204, which means that the entity has been updated.

But what about that new employee?

Let’s inspect our query:

You can see that we have created the employee entity in the database.

So, EF Core does that job for us because we track the company entity. As

soon as mapping occurs, EF Core sets the state for the company entity to

modified and for all the employees to added. After we call the Save

method, the Name property is going to be modified and the employee

entity is going to be created in the database.

We are finished with the PUT requests, so let’s continue with PATCH.

130

In the previous chapter, we worked with the PUT request to fully update

our resource. But if we want to update our resource only partially, we

should use PATCH.

The partial update isn’t the only difference between PATCH and PUT. The

request body is different as well. For the Company PATCH request, for

example, we should use [FromBody]JsonPatchDocument<Company>

and not [FromBody]Company as we did with the PUT requests.

Additionally, for the PUT request’s media type, we have used

application/json — but for the PATCH request’s media type, we

should use application/json-patch+json. Even though the first one

would be accepted in ASP.NET Core for the PATCH request, the

recommendation by REST standards is to use the second one.

Let’s see what the PATCH request body looks like:

[
 {
 "op": "replace",
 "path": "/name",
 "value": "new name"
 },
 {
 "op": "remove",
 "path": "/name"
 }
]

The square brackets represent an array of operations. Every operation is

placed between curly brackets. So, in this specific example, we have two

operations: Replace and Remove represented by the op property. The

path property represents the object’s property that we want to modify

and the value property represents a new value.

In this specific example, for the first operation, we replace the value of

the name property with a new name. In the second example, we remove

the name property, thus setting its value to default.

131

There are six different operations for a PATCH request:

OPERATION REQUEST BODY EXPLANATION

Add

 {
 "op": "add",
 "path": "/name",
 "value": "new value"
 }

Assigns a new value to a required
property.

Remove

 {
 "op": "remove",
 "path": "/name"
 }

Sets a default value to a required
property.

Replace

 {
 "op": "replace",
 "path": "/name",
 "value": "new value"
 }

Replaces a value of a required
property to a new value.

Copy

 {
 "op": "copy",
 "from": "/name",
 "path": "/title"
 }

Copies the value from a property in
the “from” part to the property in
the “path” part.

Move

 {
 "op": "move",
 "from": "/name",
 "path": "/title"
 }

Moves the value from a property in
the “from” part to a property in
the “path” part.

Test

 {
 "op": "test",
 "path": "/name",
 "value": "new value"
 }

Tests if a property has a specified
value.

After all this theory, we are ready to dive into the coding part.

Before we start with the code modification, we have to install two

required libraries:

• The Microsoft.AspNetCore.JsonPatch library, in the

Presentation project, to support the usage of JsonPatchDocument

in our controller and

• The Microsoft.AspNetCore.Mvc.NewtonsoftJson library, in the

main project, to support request body conversion to a PatchDocument

once we send our request.

132

As you can see, we are still using the NewtonsoftJson library to support

the PatchDocument conversion. The official statement from Microsoft is

that they are not going to replace it with System.Text.Json: “The main

reason is that this will require a huge investment from us, with not a very

high value-add for the majority of our customers.”.

By using AddNewtonsoftJson, we are replacing the System.Text.Json

formatters for all JSON content. We don’t want to do that so, we are

going ton add a simple workaround in the Program class:

NewtonsoftJsonPatchInputFormatter GetJsonPatchInputFormatter() =>
 new ServiceCollection().AddLogging().AddMvc().AddNewtonsoftJson()
 .Services.BuildServiceProvider()
 .GetRequiredService<IOptions<MvcOptions>>().Value.InputFormatters

 .OfType<NewtonsoftJsonPatchInputFormatter>().First();

By adding a method like this in the Program class, we are creating a local

function. This function configures support for JSON Patch using

Newtonsoft.Json while leaving the other formatters unchanged.

For this to work, we have to include two more namespaces in the class:

using Microsoft.AspNetCore.Mvc.Formatters;

using Microsoft.Extensions.Options;

After that, we have to modify the AddControllers method:

builder.Services.AddControllers(config => {
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
 config.InputFormatters.Insert(0, GetJsonPatchInputFormatter());

}).AddXmlDataContractSerializerFormatters()

We are placing our JsonPatchInputFormatter at the index 0 in the

InputFormatters list.

We will require a mapping from the Employee type to the

EmployeeForUpdateDto type. Therefore, we have to create a mapping

rule for that.

If we take a look at the MappingProfile class, we will see that we have

a mapping from the EmployeeForUpdateDto to the Employee type:

133

CreateMap<EmployeeForUpdateDto, Employee>();

But we need it another way. To do so, we are not going to create an

additional rule; we can just use the ReverseMap method to help us in the

process:

CreateMap<EmployeeForUpdateDto, Employee>().ReverseMap();

The ReverseMap method is also going to configure this rule to execute

reverse mapping if we ask for it.

After that, we are going to add two new method contracts to the

IEmployeeService interface:

(EmployeeForUpdateDto employeeToPatch, Employee employeeEntity) GetEmployeeForPatch(
 Guid companyId, Guid id, bool compTrackChanges, bool empTrackChanges);

void SaveChangesForPatch(EmployeeForUpdateDto employeeToPatch, Employee

employeeEntity);

Of course, for this to work, we have to add the reference to the Entities

project.

Then, we have to implement these two methods in the EmployeeService

class:

public (EmployeeForUpdateDto employeeToPatch, Employee employeeEntity)
GetEmployeeForPatch
 (Guid companyId, Guid id, bool compTrackChanges, bool empTrackChanges)
{
 var company = _repository.Company.GetCompany(companyId, compTrackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 var employeeEntity = _repository.Employee.GetEmployee(companyId, id,
empTrackChanges);
 if (employeeEntity is null)
 throw new EmployeeNotFoundException(companyId);

 var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeEntity);

 return (employeeToPatch, employeeEntity);
}

public void SaveChangesForPatch(EmployeeForUpdateDto employeeToPatch, Employee
employeeEntity)
{
 _mapper.Map(employeeToPatch, employeeEntity);
 _repository.Save();
}

134

In the first method, we are trying to fetch both the company and

employee from the database and if we can’t find either of them, we stop

the execution flow and return the NotFound response to the client. Then,

we map the employee entity to the EmployeeForUpdateDto type and

return both objects (employeeToPatch and employeeEntity) inside the

Tuple to the controller.

The second method just maps from emplyeeToPatch to employeeEntity

and calls the repository's Save method.

Now, we can modify our controller:

[HttpPatch("{id:guid}")]
public IActionResult PartiallyUpdateEmployeeForCompany(Guid companyId, Guid id,
 [FromBody] JsonPatchDocument<EmployeeForUpdateDto> patchDoc)
{
 if (patchDoc is null)
 return BadRequest("patchDoc object sent from client is null.");

 var result = _service.EmployeeService.GetEmployeeForPatch(companyId, id,
compTrackChanges: false,
 empTrackChanges: true);

 patchDoc.ApplyTo(result.employeeToPatch);

 _service.EmployeeService.SaveChangesForPatch(result.employeeToPatch,
result.employeeEntity);

 return NoContent();
}

You can see that our action signature is different from the PUT actions.

We are accepting the JsonPatchDocument from the request body. After

that, we have a familiar code where we check the patchDoc for null value

and if it is, we return a BadRequest. Then we call the service method

where we map from the Employee type to the EmployeeForUpdateDto

type; we need to do that because the patchDoc variable can apply only

to the EmployeeForUpdateDto type. After apply is executed, we call

another service method to map again to the Employee type (from

employeeToPatch to employeeEntity) and save changes in the

database. In the end, we return NoContent.

135

Don’t forget to include an additional namespace:

using Microsoft.AspNetCore.JsonPatch;

Now, we can send a couple of requests to test this code:

Let’s first send the replace operation:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

It works; we get the 204 No Content message. Let’s check the same

employee:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

And we see the Age property has been changed.

Let’s send a remove operation in a request:

136

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

This works as well. Now, if we check our employee, its age is going to be

set to 0 (the default value for the int type):

Finally, let’s return a value of 28 for the Age property:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

Let’s check the employee now:

137

Excellent.

Everything works as expected.

138

While writing API actions, we have a set of rules that we need to check. If

we take a look at the Company class, we can see different data annotation

attributes above our properties:

Those attributes serve the purpose to validate our model object while

creating or updating resources in the database. But we are not making

use of them yet.

In this chapter, we are going to show you how to validate our model

objects and how to return an appropriate response to the client if the

model is not valid. So, we need to validate the input and not the output of

our controller actions. This means that we are going to apply this

validation to the POST, PUT, and PATCH requests, but not for the GET

request.

To validate against validation rules applied by Data Annotation attributes,

we are going to use the concept of ModelState. It is a dictionary

containing the state of the model and model binding validation.

139

It is important to know that model validation occurs after model binding

and reports errors where the data, sent from the client, doesn’t meet our

validation criteria. Both model validation and data binding occur before

our request reaches an action inside a controller. We are going to use the

ModelState.IsValid expression to check for those validation rules.

By default, we don’t have to use the ModelState.IsValid expression in

Web API projects since, as we explained in section 9.2.1, controllers are

decorated with the [ApiController] attribute. But, as we could’ve seen,

it defaults all the model state errors to 400 – BadRequest and doesn’t

allow us to return our custom error messages with a different status code.

So, we suppressed it in the Program class.

The response status code, when validation fails, should be 422

Unprocessable Entity. That means that the server understood the

content type of the request and the syntax of the request entity is

correct, but it was unable to process validation rules applied on the entity

inside the request body. If we didn’t suppress the model validation from

the [ApiController] attribute, we wouldn’t be able to return this status

code (422) since, as we said, it would default to 400.

13.1.1 Rerun Validation

In some cases, we want to repeat our validation. This can happen if, after

the initial validation, we compute a value in our code, and assign it to the

property of an already validated object.

If this is the case, and we want to run the validation again, we can use

the ModelStateDictionary.ClearValidationState method to clear

the validation specific to the model that we’ve already validated, and then

use the TryValidateModel method:

[HttpPost]
public IActionResult POST([FromBody] Book book)
{
 if (!ModelState.IsValid)
 return UnprocessableEntity(ModelState);

140

 var newPrice = book.Price - 10;
 book.Price = newPrice;

 ModelState.ClearValidationState(nameof(Book));
 if (!TryValidateModel(book, nameof(Book)))
 return UnprocessableEntity(ModelState);

 _service.CreateBook(book);

 return CreatedAtRoute("BookById", new { id = book.Id }, book);
}

This is just a simple example but it explains how we can revalidate our

model object.

13.1.2 Built-in Attributes

Validation attributes let us specify validation rules for model properties. At

the beginning of this chapter, we have marked some validation attributes.

Those attributes (Required and MaxLength) are part of built-in attributes.

And of course, there are more than two built-in attributes. These are the

most used ones:

ATTRIBUTE USAGE

[ValidateNever]
Indicates that property or parameter should be excluded
from validation.

[Compare] We use it for the properties comparison.

[EmailAddress] Validates the email format of the property.

[Phone] Validates the phone format of the property.

[Range]
Validates that the property falls within a specified
range.

[RegularExpression]
Validates that the property value matches a specified
regular expression.

[Required] We use it to prevent a null value for the property.

[StringLength]
Validates that a string property value doesn't exceed a
specified length limit.

If you want to see a complete list of built-in attributes, you can visit this

page.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=net-5.0

141

There are scenarios where built-in attributes are not enough and we have

to provide some custom logic. For that, we can create a custom attribute

by using the ValidationAttribute class, or we can use the

IValidatableObject interface.

So, let’s see an example of how we can create a custom attribute:

public class ScienceBookAttribute : ValidationAttribute
{
 public BookGenre Genre { get; set; }
 public string Error => $"The genre of the book must be {BookGenre.Science}";

 public ScienceBookAttribute(BookGenre genre)
 {
 Genre= genre;
 }

 protected override ValidationResult? IsValid(object? value, ValidationContext
validationContext)
 {
 var book = (Book)validationContext.ObjectInstance;

 if (!book.Genre.Equals(Genre.ToString()))
 return new ValidationResult(Error);

 return ValidationResult.Success;
 }
}

Once this attribute is called, we are going to pass the genre parameter

inside the constructor. Then, we have to override the IsValid method.

There we extract the object we want to validate and inspect if the Genre

property matches our value sent through the constructor. If it’s not we

return the Error property as a validation result. Otherwise, we return

success.

To call this custom attribute, we can do something like this:

public class Book
{
 public int Id { get; set; }

 [Required]
 public string? Name { get; set; }

 [Range(10, int.MaxValue)]
 public int Price { get; set; }

142

 [ScienceBook(BookGenre.Science)]
 public string? Genre { get; set; }
}

Now we can use the IValidatableObject interface:

public class Book : IValidatableObject
{
 public int Id { get; set; }

 [Required]
 public string? Name { get; set; }

 [Range(10, int.MaxValue)]
 public int Price { get; set; }

 public string? Genre { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext
validationContext)
 {
 var errorMessage = $"The genre of the book must be {BookGenre.Science}";
 if (!Genre.Equals(BookGenre.Science.ToString()))
 yield return new ValidationResult(errorMessage, new[] {
nameof(Genre) });
 }
}

This validation happens in the model class, where we have to implement

the Validate method. The code inside that method is pretty

straightforward. Also, pay attention that we don’t have to apply any

validation attribute on top of the Genre property.

As we’ve seen from the previous examples, we can create a custom

attribute in a separate class and even make it generic so it could be

reused for other model objects. This is not the case with the

IValidatableObject interface. It is used inside the model class and of

course, the validation logic can’t be reused.

So, this could be something you can think about when deciding which one

to use.

After all of this theory and code samples, we are ready to implement

model validation in our code.

143

Let’s send another request for the CreateEmployee action, but this time

with the invalid request body:

https://localhost:5001/api/companies/ 582ea192-6fb7-44ff-a2a1-08d988ca3ca9 /employees

And we get the 500 Internal Server Error, which is a generic

message when something unhandled happens in our code. But this is not

good. This means that the server made an error, which is not the case. In

this case, we, as a consumer, sent the wrong model to the API — thus the

error message should be different.

To fix this, let’s modify our EmployeeForCreationDto record because

that’s what we deserialize the request body to:

public record EmployeeForCreationDto(
 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 string Name,
 [Required(ErrorMessage = "Age is a required field.")]
 int Age,
 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 string Position
);

This is how we can apply validation attributes in our positional records.

But, in our opinion, positional records start losing readability once the

144

attributes are applied, and for that reason, we like using init setters if we

have to apply validation attributes. So, we are going to do exactly that

and modify this position record:

public record EmployeeForCreationDto
{
 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string? Name { get; init; }

 [Required(ErrorMessage = "Age is a required field.")]
 public int Age { get; init; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 public string? Position { get; init; }
}

Now, we have to modify our action:

[HttpPost]
public IActionResult CreateEmployeeForCompany(Guid companyId, [FromBody]
EmployeeForCreationDto employee)
{
 if (employee is null)
 return BadRequest("EmployeeForCreationDto object is null");

 if (!ModelState.IsValid)
 return UnprocessableEntity(ModelState);

 var employeeToReturn =
_service.EmployeeService.CreateEmployeeForCompany(companyId, employee,
trackChanges: false);

 return CreatedAtRoute("GetEmployeeForCompany", new { companyId, id =
employeeToReturn.Id },
 employeeToReturn);
}

As mentioned before in the part about the ModelState dictionary, all we

have to do is to call the IsValid method and return the

UnprocessableEntity response by providing our ModelState.

And that is all.

Let’s send our request one more time:

145

https://localhost:5001/api/companies/582ea192-6fb7-44ff-a2a1-08d988ca3ca9/employees

Let’s send an additional request to test the max length rule:

https://localhost:5001/api/companies/582ea192-6fb7-44ff-a2a1-08d988ca3ca9/employees

Excellent. It works as expected.

The same actions can be applied for the CreateCompany action and

CompanyForCreationDto class — and if you check the source code for

this chapter, you will find it implemented.

146

13.3.1 Validating Int Type

Let’s create one more request with the request body without the age

property:

https://localhost:5001/api/companies/582ea192-6fb7-44ff-a2a1-08d988ca3ca9/employees

We can see that the age property hasn’t been sent, but in the response

body, we don’t see the error message for the age property next to other

error messages. That is because the age is of type int and if we don’t

send that property, it would be set to a default value, which is 0.

So, on the server-side, validation for the Age property will pass, because

it is not null.

To prevent this type of behavior, we have to modify the data annotation

attribute on top of the Age property in the EmployeeForCreationDto

class:

[Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower than
18")]

public int Age { get; set; }

Now, let’s try to send the same request one more time:

147

https://localhost:5001/api/companies/582ea192-6fb7-44ff-a2a1-08d988ca3ca9/employees

Now, we have the Age error message in our response.

If we want, we can add the custom error messages in our action:

ModelState.AddModelError(string key, string errorMessage)

With this expression, the additional error message will be included with all

the other messages.

The validation for PUT requests shouldn’t be different from POST requests

(except in some cases), but there are still things we have to do to at least

optimize our code.

But let’s go step by step.

First, let’s add Data Annotation Attributes to the EmployeeForUpdateDto

record:

public record EmployeeForUpdateDto
{
 [Required(ErrorMessage = "Employee name is a required field.")]

148

 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string Name? { get; init; }

 [Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower than
18")]
 public int Age { get; init; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20 characters.")]
 public string? Position { get; init; }
}

Once we have done this, we realize we have a small problem. If we

compare this class with the DTO class for creation, we are going to see

that they are the same. Of course, we don’t want to repeat ourselves,

thus we are going to add some modifications.

Let’s create a new record in the DataTransferObjects folder:

public abstract record EmployeeForManipulationDto
{
 [Required(ErrorMessage = "Employee name is a required field.")]
 [MaxLength(30, ErrorMessage = "Maximum length for the Name is 30 characters.")]
 public string? Name { get; init; }

 [Range(18, int.MaxValue, ErrorMessage = "Age is required and it can't be lower
than 18")]
 public int Age { get; init; }

 [Required(ErrorMessage = "Position is a required field.")]
 [MaxLength(20, ErrorMessage = "Maximum length for the Position is 20
characters.")]
 public string? Position { get; init; }
}

We create this record as an abstract record because we want our creation

and update DTO records to inherit from it:

public record EmployeeForCreationDto : EmployeeForManipulationDto;

public record EmployeeForUpdateDto : EmployeeForManipulationDto;

Now, we can modify the UpdateEmployeeForCompany action by adding

the model validation right after the null check:

if (employee is null)
 return BadRequest("EmployeeForUpdateDto object is null");

if (!ModelState.IsValid)
 return UnprocessableEntity(ModelState);

149

The same process can be applied to the Company DTO records and

actions. You can find it implemented in the source code for this chapter.

Let’s test this:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-

4B20-B5DE-024705497D4A

Great.

Everything works well.

The validation for PATCH requests is a bit different from the previous

ones. We are using the ModelState concept again, but this time we have

to place it in the ApplyTo method first:

patchDoc.ApplyTo(employeeToPatch, ModelState);

But once we do this, we are going to get an error. That’s because the

current ApplyTo method comes from the JsonPatch namespace, and we

need the method with the same name but from the NewtonsoftJson

namespace.

150

Since we have the Microsoft.AspNetCore.Mvc.NewtonsoftJson

package installed in the main project, we are going to remove it from

there and install it in the Presentation project.

If we navigate to the ApplyTo method declaration we can find two

extension methods:

public static class JsonPatchExtensions
{

 public static void ApplyTo<T>(this JsonPatchDocument<T> patchDoc, T
objectToApplyTo, ModelStateDictionary modelState) where T : class...

 public static void ApplyTo<T>(this JsonPatchDocument<T> patchDoc, T
objectToApplyTo, ModelStateDictionary modelState, string prefix) where T : class...
}

We are using the first one.

After the package installation, the error in the action will disappear.

Now, right below thee ApplyTo method, we can add our familiar

validation logic:

patchDoc.ApplyTo(result.employeeToPatch, ModelState);

if (!ModelState.IsValid)
 return UnprocessableEntity(ModelState);

_service.EmployeeService.SaveChangesForPatch(...);

Let’s test this now:

151

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

You can see that it works as it is supposed to.

But, we have a small problem now. What if we try to send a remove

operation, but for the valid path:

We can see it passes, but this is not good. If you can remember, we said

that the remove operation will set the value for the included property to

its default value, which is 0. But in the EmployeeForUpdateDto class, we

have a Range attribute that doesn’t allow that value to be below 18. So,

where is the problem?

Let’s illustrate this for you:

152

As you can see, we are validating patchDoc which is completely valid at

this moment, but we save employeeEntity to the database. So, we need

some additional validation to prevent an invalid employeeEntity from

being saved to the database:

patchDoc.ApplyTo(result.employeeToPatch, ModelState);

TryValidateModel(result.employeeToPatch);

if (!ModelState.IsValid)
 return UnprocessableEntity(ModelState);

We can use the TryValidateModel method to validate the already

patched employeeToPatch instance. This will trigger validation and every

error will make ModelState invalid. After that, we execute a familiar

validation check.

Now, we can test this again:

153

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees/80ABBCA8-664D-
4B20-B5DE-024705497D4A

And we get 422, which is the expected status code.

154

In this chapter, we are going to convert synchronous code to

asynchronous inside ASP.NET Core. First, we are going to learn a bit

about asynchronous programming and why should we write async code.

Then we are going to use our code from the previous chapters and rewrite

it in an async manner.

We are going to modify the code, step by step, to show you how easy is

to convert synchronous code to asynchronous code. Hopefully, this will

help you understand how asynchronous code works and how to write it

from scratch in your applications.

Async programming is a parallel programming technique that allows the

working process to run separately from the main application thread.

By using async programming, we can avoid performance bottlenecks and

enhance the responsiveness of our application.

How so?

Because we are not sending requests to the server and blocking it while

waiting for the responses anymore (as long as it takes). Now, when we

send a request to the server, the thread pool delegates a thread to that

request. Eventually, that thread finishes its job and returns to the thread

pool freeing itself for the next request. At some point, the data will be

fetched from the database and the result needs to be sent to the

requester. At that time, the thread pool provides another thread to handle

that work. Once the work is done, a thread is going back to the thread

pool.

It is very important to understand that if we send a request to an

endpoint and it takes the application three or more seconds to process

155

that request, we probably won’t be able to execute this request any faster

in async mode. It is going to take the same amount of time as the sync

request.

Let’s imagine that our thread pool has two threads and we have used one

thread with a first request. Now, the second request arrives and we have

to use the second thread from a thread pool. At this point, our thread

pool is out of threads. If a third request arrives now it has to wait for any

of the first two requests to complete and return assigned threads to a

thread pool. Only then the thread pool can assign that returned thread to

a new request:

As a result of a request waiting for an available thread, our client

experiences a slow down for sure. Additionally, if the client has to wait too

long, they will receive an error response usually the service is unavailable

(503). But this is not the only problem. Since the client expects the list of

entities from the database, we know that it is an I/O operation. So, if we

have a lot of records in the database and it takes three seconds for the

database to return a result to the API, our thread is doing nothing except

waiting for the task to complete. So basically, we are blocking that thread

156

and making it three seconds unavailable for any additional requests that

arrive at our API.

With asynchronous requests, the situation is completely different.

When a request arrives at our API, we still need a thread from a thread

pool. So, that leaves us with only one thread left. But because this action

is now asynchronous, as soon as our request reaches the I/O point where

the database has to process the result for three seconds, the thread is

returned to a thread pool. Now we again have two available threads and

we can use them for any additional request. After the three seconds when

the database returns the result to the API, the thread pool assigns the

thread again to handle that response:

Now that we've cleared that out, we can learn how to implement

asynchronous code in .NET Core and .NET 5+.

The async and await keywords play a crucial part in asynchronous

programming. We use the async keyword in the method declaration and

its purpose is to enable the await keyword within that method. So yes,

157

we can’t use the await keyword without previously adding the async

keyword in the method declaration. Also, using only the async keyword

doesn’t make your method asynchronous, just the opposite, that method

is still synchronous.

The await keyword performs an asynchronous wait on its argument. It

does that in several steps. The first thing it does is to check whether the

operation is already complete. If it is, it will continue the method

execution synchronously. Otherwise, the await keyword is going to pause

the async method execution and return an incomplete task. Once the

operation completes, a few seconds later, the async method can continue

with the execution.

Let’s see this with a simple example:

public async Task<IEnumerable<Company>> GetCompanies()
{
 _logger.LogInfo("Inside the GetCompanies method.");
 var companies = await _repoContext.Companies.ToListAsync();
 return companies;
}

So, even though our method is marked with the async keyword, it will

start its execution synchronously. Once we log the required information

synchronously, we continue to the next code line. We extract all the

companies from the database and to do that, we use the await keyword.

If our database requires some time to process the result and return it,

the await keyword is going to pause the GetCompanies method

execution and return an incomplete task. During that time the tread will

be returned to a thread pool making itself available for another request.

After the database operation completes the async method will resume

executing and will return the list of companies.

From this example, we see the async method execution flow. But the

question is how the await keyword knows if the operation is completed or

not. Well, this is where Task comes into play.

158

14.2.1 Return Types of the Asynchronous Methods

In asynchronous programming, we have three return types:

• Task<TResult>, for an async method that returns a value.

• Task, for an async method that does not return a value.

• void, which we can use for an event handler.

What does this mean?

Well, we can look at this through synchronous programming glasses. If

our sync method returns an int, then in the async mode it should

return Task<int> — or if the sync method

returns IEnumerable<string>, then the async method should

return Task<IEnumerable<string>>.

But if our sync method returns no value (has a void for the return type),

then our async method should return Task. This means that we can use

the await keyword inside that method, but without the return keyword.

You may wonder now, why not return Task all the time? Well, we should

use void only for the asynchronous event handlers which require

a void return type. Other than that, we should always return a Task.

From C# 7.0 onward, we can specify any other return type if that type

includes a GetAwaiter method.

It is very important to understand that the Task represents an execution

of the asynchronous method and not the result. The Task has several

properties that indicate whether the operation was completed successfully

or not (Status, IsCompleted, IsCanceled, IsFaulted). With these

properties, we can track the flow of our async operations. So, this is the

answer to our question. With Task, we can track whether the operation is

completed or not. This is also called TAP (Task-based Asynchronous

Pattern).

159

Now, when we have all the information, let’s do some refactoring in our

completely synchronous code.

14.2.2 The IRepositoryBase Interface and the

RepositoryBase Class Explanation

We won’t be changing the mentioned interface and class. That’s because

we want to leave a possibility for the repository user classes to have

either sync or async method execution. Sometimes, the async code could

become slower than the sync one because EF Core’s async commands

take slightly longer to execute (due to extra code for handling the

threading), so leaving this option is always a good choice.

It is general advice to use async code wherever it is possible, but if we

notice that our async code runes slower, we should switch back to the

sync one.

In the Contracts project, we can find the ICompanyRepository

interface with all the synchronous method signatures which we should

change.

So, let’s do that:

public interface ICompanyRepository
{
 Task<IEnumerable<Company>> GetAllCompaniesAsync(bool trackChanges);
 Task<Company> GetCompanyAsync(Guid companyId, bool trackChanges);
 void CreateCompany(Company company);
 Task<IEnumerable<Company>> GetByIdsAsync(IEnumerable<Guid> ids, bool
trackChanges);
 void DeleteCompany(Company company);
}

The Create and Delete method signatures are left synchronous. That’s

because, in these methods, we are not making any changes in the

database. All we're doing is changing the state of the entity to Added and

Deleted.

160

So, in accordance with the interface changes, let’s modify our

CompanyRepository.cs class, which we can find in

the Repository project:

public async Task<IEnumerable<Company>> GetAllCompaniesAsync(bool trackChanges) =>
 await FindAll(trackChanges)
 .OrderBy(c => c.Name)
 .ToListAsync();

public async Task<Company> GetCompanyAsync(Guid companyId, bool trackChanges) =>
 await FindByCondition(c => c.Id.Equals(companyId), trackChanges)
 .SingleOrDefaultAsync();

public void CreateCompany(Company company) => Create(company);

public async Task<IEnumerable<Company>> GetByIdsAsync(IEnumerable<Guid> ids, bool
trackChanges) =>
 await FindByCondition(x => ids.Contains(x.Id), trackChanges)
 .ToListAsync();

public void DeleteCompany(Company company) => Delete(company);

We only have to change these methods in our repository class.

If we inspect the mentioned interface and the class, we will see the Save

method, which calls the EF Core’s SaveChanges method. We have to

change that as well:

public interface IRepositoryManager
{
 ICompanyRepository Company { get; }
 IEmployeeRepository Employee { get; }
 Task SaveAsync();
}

And the RepositoryManager class modification:

public async Task SaveAsync() => await _repositoryContext.SaveChangesAsync();

Because the SaveAsync(), ToListAsync()... methods are awaitable,

we may use the await keyword; thus, our methods need to have

the async keyword and Task as a return type.

161

Using the await keyword is not mandatory, though. Of course, if we don’t

use it, our SaveAsync() method will execute synchronously — and that is

not our goal here.

Again, we have to start with the interface modification:

public interface ICompanyService
{
 Task<IEnumerable<CompanyDto>> GetAllCompaniesAsync(bool trackChanges);
 Task<CompanyDto> GetCompanyAsync(Guid companyId, bool trackChanges);
 Task<CompanyDto> CreateCompanyAsync(CompanyForCreationDto company);
 Task<IEnumerable<CompanyDto>> GetByIdsAsync(IEnumerable<Guid> ids, bool
trackChanges);
 Task<(IEnumerable<CompanyDto> companies, string ids)>
CreateCompanyCollectionAsync
 (IEnumerable<CompanyForCreationDto> companyCollection);
 Task DeleteCompanyAsync(Guid companyId, bool trackChanges);
 Task UpdateCompanyAsync(Guid companyid, CompanyForUpdateDto companyForUpdate,
bool trackChanges);
}

And then, let’s modify the class methods one by one.

GetAllCompanies:

public async Task<IEnumerable<CompanyDto>> GetAllCompaniesAsync(bool trackChanges)
{
 var companies = await _repository.Company.GetAllCompaniesAsync(trackChanges);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return companiesDto;
}

GetCompany:

public async Task<CompanyDto> GetCompanyAsync(Guid id, bool trackChanges)
{
 var company = await _repository.Company.GetCompanyAsync(id, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(id);

 var companyDto = _mapper.Map<CompanyDto>(company);
 return companyDto;
}

CreateCompany:

public async Task<CompanyDto> CreateCompanyAsync(CompanyForCreationDto company)
{

162

 var companyEntity = _mapper.Map<Company>(company);

 _repository.Company.CreateCompany(companyEntity);
 await _repository.SaveAsync();

 var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

 return companyToReturn;
}

GetByIds:

public async Task<IEnumerable<CompanyDto>> GetByIdsAsync(IEnumerable<Guid> ids, bool
trackChanges)
{
 if (ids is null)
 throw new IdParametersBadRequestException();

 var companyEntities = await _repository.Company.GetByIdsAsync(ids,
trackChanges);
 if (ids.Count() != companyEntities.Count())
 throw new CollectionByIdsBadRequestException();

 var companiesToReturn = _mapper.Map<IEnumerable<CompanyDto>>(companyEntities);

 return companiesToReturn;
}

CreateCompanyCollection:

public async Task<(IEnumerable<CompanyDto> companies, string ids)>
CreateCompanyCollectionAsync
 (IEnumerable<CompanyForCreationDto> companyCollection)
{
 if (companyCollection is null)
 throw new CompanyCollectionBadRequest();

 var companyEntities = _mapper.Map<IEnumerable<Company>>(companyCollection);
 foreach (var company in companyEntities)
 {
 _repository.Company.CreateCompany(company);
 }

 await _repository.SaveAsync();

 var companyCollectionToReturn =
_mapper.Map<IEnumerable<CompanyDto>>(companyEntities);
 var ids = string.Join(",", companyCollectionToReturn.Select(c => c.Id));

 return (companies: companyCollectionToReturn, ids: ids);
}

DeleteCompany:

public async Task DeleteCompanyAsync(Guid companyId, bool trackChanges)
{

163

 var company = await _repository.Company.GetCompanyAsync(companyId,
trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(companyId);

 _repository.Company.DeleteCompany(company);
 await _repository.SaveAsync();
}

UpdateCompany:

public async Task UpdateCompanyAsync(Guid companyId,
 CompanyForUpdateDto companyForUpdate, bool trackChanges)
{
 var companyEntity = await _repository.Company.GetCompanyAsync(companyId,
trackChanges);
 if (companyEntity is null)
 throw new CompanyNotFoundException(companyId);

 _mapper.Map(companyForUpdate, companyEntity);
 await _repository.SaveAsync();
}

That’s all the changes we have to make in the CompanyService class.

Now we can move on to the controller modification.

Finally, we need to modify all of our actions in

the CompaniesController to work asynchronously.

So, let’s first start with the GetCompanies method:

[HttpGet]
public async Task<IActionResult> GetCompanies()
{
 var companies = await
_service.CompanyService.GetAllCompaniesAsync(trackChanges: false);

 return Ok(companies);
}

164

We haven’t changed much in this action. We’ve just changed the return

type and added the async keyword to the method signature. In the

method body, we can now await the GetAllCompaniesAsync() method.

And that is pretty much what we should do in all the actions in our

controller.

So to continue, let’s modify all the other actions.

GetCompany:

[HttpGet("{id:guid}", Name = "CompanyById")]
public async Task<IActionResult> GetCompany(Guid id)
{
 var company = await _service.CompanyService.GetCompanyAsync(id, trackChanges:
false);
 return Ok(company);
}

GetCompanyCollection:

[HttpGet("collection/({ids})", Name = "CompanyCollection")]
public async Task<IActionResult> GetCompanyCollection
 ([ModelBinder(BinderType = typeof(ArrayModelBinder))]IEnumerable<Guid> ids)
{
 var companies = await _service.CompanyService.GetByIdsAsync(ids, trackChanges:
false);

 return Ok(companies);
}

CreateCompany:

[HttpPost]

NOTE: We’ve changed all the method names in the repository and service layers

by adding the Async suffix. But, we didn’t do that in the controller’s action. The

main reason for that is when a user calls a method from your service or

repository layers they can see right-away from the method name whether the

method is synchronous or asynchronous. Also, your layers are not limited only

to sync or async methods, you can have two methods that do the same thing

but one in a sync manner and another in an async manner. In that case, you

want to have a name distinction between those methods. For the controller’s

actions this is not the case. We are not targeting our actions by their names but

by their routes. So, the name of the action doesn’t really add any value as it

does for the method names.

165

public async Task<IActionResult> CreateCompany([FromBody] CompanyForCreationDto
company)
{
 if (company is null)
 return BadRequest("CompanyForCreationDto object is null");

 if (!ModelState.IsValid)
 return UnprocessableEntity(ModelState);

 var createdCompany = await _service.CompanyService.CreateCompanyAsync(company);

 return CreatedAtRoute("CompanyById", new { id = createdCompany.Id },
createdCompany);
}

CreateCompanyCollection:

[HttpPost("collection")]
public async Task<IActionResult> CreateCompanyCollection
 ([FromBody] IEnumerable<CompanyForCreationDto> companyCollection)
{
 var result = await
_service.CompanyService.CreateCompanyCollectionAsync(companyCollection);

 return CreatedAtRoute("CompanyCollection", new { result.ids },
result.companies);
}

DeleteCompany:

[HttpDelete("{id:guid}")]
public async Task<IActionResult> DeleteCompany(Guid id)
{
 await _service.CompanyService.DeleteCompanyAsync(id, trackChanges: false);

 return NoContent();
}

UpdateCompany:

[HttpPut("{id:guid}")]
public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto
company)
{
 if (company is null)
 return BadRequest("CompanyForUpdateDto object is null");

 await _service.CompanyService.UpdateCompanyAsync(id, company, trackChanges:
true);

 return NoContent();
}

Excellent. Now we are talking async.

166

Of course, we have the Employee entity as well and all of these steps

have to be implemented for the EmployeeRepository class,

IEmployeeRepository interface, and EmployeesController.

You can always refer to the source code for this chapter if you have any

trouble implementing the async code for the Employee entity.

After the async implementation in the Employee classes, you can try to

send different requests (from any chapter) to test your async actions. All

of them should work as before, without errors, but this time in an

asynchronous manner.

The await keyword does three things:

• It helps us extract the result from the async operation – we already

learned about that

• Validates the success of the operation

• Provides the Continuation for executing the rest of the code in the

async method

So, in our GetCompanyAsync service method, all the code after awaiting

an async operation is executed inside the continuation if the async

operation was successful.

When we talk about continuation, it can be confusing because you can

read in multiple resources about the SynchronizationContext and

capturing the current context to enable this continuation. When we await

a task, a request context is captured when await decides to pause the

method execution. Once the method is ready to resume its execution, the

application takes a thread from a thread pool, assigns it to the context

(SynchonizationContext), and resumes the execution. But this is the case

for ASP.NET applications.

167

We don’t have the SynchronizationContext in ASP.NET Core applications.

ASP.NET Core avoids capturing and queuing the context, all it does is take

the thread from a thread pool and assign it to the request. So, a lot less

background works for the application to do.

One more thing. We are not limited to a single continuation. This means

that in a single method, we can use multiple await keywords.

In our GetAllCompaniesAsync repository method if we didn’t know any

better, we could’ve been tempted to use the Result property instead of

the await keyword:

public async Task<IEnumerable<Company>> GetAllCompaniesAsync(bool trackChanges) =>
 FindAll(trackChanges)
 .OrderBy(c => c.Name)
 .ToListAsync()
 .Result;

We can see that the Result property returns the result we require:

// Summary:
// Gets the result value of this System.Threading.Tasks.Task`1.
//
// Returns:
// The result value of this System.Threading.Tasks.Task`1, which
// is of the same type as the task's type parameter.

public TResult Result
{
 get...
}

But don’t use the Result property.

With this code, we are going to block the thread and potentially cause a

deadlock in the application, which is the exact thing we are trying to avoid

using the async and await keywords. It applies the same to

the Wait method that we can call on a Task.

168

So, that’s it regarding the asynchronous implementation in our project.

We’ve learned a lot of useful things from this section and we can move on

to the next one – Action filters.

169

Filters in .NET offer a great way to hook into the MVC action invocation

pipeline. Therefore, we can use filters to extract code that can be reused

and make our actions cleaner and maintainable. Some filters are already

provided by .NET like the authorization filter, and there are the custom

ones that we can create ourselves.

There are different filter types:

• Authorization filters – They run first to determine whether a user

is authorized for the current request.

• Resource filters – They run right after the authorization filters and

are very useful for caching and performance.

• Action filters – They run right before and after action method

execution.

• Exception filters – They are used to handle exceptions before the

response body is populated.

• Result filters – They run before and after the execution of the

action methods result.

In this chapter, we are going to talk about Action filters and how to use

them to create a cleaner and reusable code in our Web API.

To create an Action filter, we need to create a class that inherits either

from the IActionFilter interface, the IAsyncActionFilter interface,

or the ActionFilterAttribute class — which is the implementation of

IActionFilter, IAsyncActionFilter, and a few different interfaces as

well:

public abstract class ActionFilterAttribute : Attribute, IActionFilter,

IFilterMetadata, IAsyncActionFilter, IResultFilter, IAsyncResultFilter, IOrderedFilter

170

To implement the synchronous Action filter that runs before and after

action method execution, we need to implement the OnActionExecuting

and OnActionExecuted methods:

namespace ActionFilters.Filters
{
 public class ActionFilterExample : IActionFilter
 {
 public void OnActionExecuting(ActionExecutingContext context)
 {
 // our code before action executes
 }

 public void OnActionExecuted(ActionExecutedContext context)
 {
 // our code after action executes
 }
 }
}

We can do the same thing with an asynchronous filter by inheriting

from IAsyncActionFilter, but we only have one method to implement

— the OnActionExecutionAsync:

namespace ActionFilters.Filters
{
 public class AsyncActionFilterExample : IAsyncActionFilter
 {
 public async Task OnActionExecutionAsync(ActionExecutingContext context,
 ActionExecutionDelegate next)
 {
 // execute any code before the action executes
 var result = await next();
 // execute any code after the action executes
 }
 }
}

Like the other types of filters, the action filter can be added to different

scope levels: Global, Action, and Controller.

If we want to use our filter globally, we need to register it inside

the AddControllers() method in the Program class:

builder.Services.AddControllers(config =>
{
 config.Filters.Add(new GlobalFilterExample());
});

171

But if we want to use our filter as a service type on the Action or

Controller level, we need to register it, but as a service in the IoC

container:

builder.Services.AddScoped<ActionFilterExample>();
builder.Services.AddScoped<ControllerFilterExample>();

Finally, to use a filter registered on the Action or Controller level, we need

to place it on top of the Controller or Action as a ServiceType:

namespace AspNetCore.Controllers
{
 [ServiceFilter(typeof(ControllerFilterExample))]
 [Route("api/[controller]")]
 [ApiController]
 public class TestController : ControllerBase
 {
 [HttpGet]
 [ServiceFilter(typeof(ActionFilterExample))]
 public IEnumerable<string> Get()
 {
 return new string[] { "example", "data" };
 }
 }
}

The order in which our filters are executed is as follows:

172

Of course, we can change the order of invocation by adding the

Order property to the invocation statement:

namespace AspNetCore.Controllers
{
 [ServiceFilter(typeof(ControllerFilterExample), Order = 2)]
 [Route("api/[controller]")]
 [ApiController]
 public class TestController : ControllerBase
 {
 [HttpGet]
 [ServiceFilter(typeof(ActionFilterExample), Order = 1)]
 public IEnumerable<string> Get()
 {
 return new string[] { "example", "data" };
 }

 }
}

Or something like this on top of the same action:

[HttpGet]

173

[ServiceFilter(typeof(ActionFilterExample), Order = 2)]
[ServiceFilter(typeof(ActionFilterExample2), Order = 1)]
public IEnumerable<string> Get()
{
 return new string[] { "example", "data" };
}

Our actions are clean and readable without try-catch blocks due to

global exception handling and a service layer implementation, but we can

improve them even further.

So, let’s start with the validation code from the POST and PUT actions.

If we take a look at our POST and PUT actions, we can notice the

repeated code in which we validate our Company model:

if (company is null)
 return BadRequest("CompanyForUpdateDto object is null");

if (!ModelState.IsValid)
 return UnprocessableEntity(ModelState);

We can extract that code into a custom Action Filter class, thus making

this code reusable and the action cleaner.

So, let’s do that.

Let’s create a new folder in our solution explorer, and name

it ActionFilters. Then inside that folder, we are going to create a new

class ValidationFilterAttribute:

public class ValidationFilterAttribute : IActionFilter
{
 public ValidationFilterAttribute()
 {}

 public void OnActionExecuting(ActionExecutingContext context) { }

 public void OnActionExecuted(ActionExecutedContext context){}
}

Now we are going to modify the OnActionExecuting method:

174

public void OnActionExecuting(ActionExecutingContext context)
{
 var action = context.RouteData.Values["action"];
 var controller = context.RouteData.Values["controller"];

 var param = context.ActionArguments
 .SingleOrDefault(x => x.Value.ToString().Contains("Dto")).Value;
 if (param is null)
 {
 context.Result = new BadRequestObjectResult($"Object is null. Controller:
{controller}, action: {action}");
 return;
 }

 if (!context.ModelState.IsValid)
 context.Result = new UnprocessableEntityObjectResult(context.ModelState);
}

We are using the context parameter to retrieve different values that we

need inside this method. With the RouteData.Values dictionary, we can

get the values produced by routes on the current routing path. Since we

need the name of the action and the controller, we extract them from the

Values dictionary.

Additionally, we use the ActionArguments dictionary to extract the DTO

parameter that we send to the POST and PUT actions. If that parameter is

null, we set the Result property of the context object to a new instance

of the BadRequestObjectReturnResult class. If the model is invalid,

we create a new instance of the UnprocessableEntityObjectResult

class and pass ModelState.

Next, let’s register this action filter in the Program class above the

AddControllers method:

builder.Services.AddScoped<ValidationFilterAttribute>();

Finally, let’s remove the mentioned validation code from our actions and

call this action filter as a service.

POST:

[HttpPost]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> CreateCompany([FromBody] CompanyForCreationDto
company)
{

175

 var createdCompany = await _service.CompanyService.CreateCompanyAsync(company);

 return CreatedAtRoute("CompanyById", new { id = createdCompany.Id },
createdCompany);
}

PUT:

[HttpPut("{id:guid}")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> UpdateCompany(Guid id, [FromBody] CompanyForUpdateDto
company)
{
 await _service.CompanyService.UpdateCompanyAsync(id, company, trackChanges:
true);

 return NoContent();
}

Excellent.

This code is much cleaner and more readable now without the validation

part. Furthermore, the validation part is now reusable for the POST and

PUT actions for both the Company and Employee DTO objects.

If we send a POST request, for example, with the invalid model we will

get the required response:

https://localhost:5001/api/companies

We can apply this action filter to the POST and PUT actions in the

EmployeesController the same way we did in the

CompaniesController and test it as well:

176

https://localhost:5001/api/companies/53a1237a-3ed3-4462-b9f0-5a7bb1056a33/employees

Because we are already working on making our code reusable in our

actions, we can review our classes from the service layer.

Let’s inspect the CompanyServrice class first.

Inside the class, we can find three methods (GetCompanyAsync,

DeleteCompanyAsync, and UpdateCompanyAsync) where we repeat the

same code:

var company = await _repository.Company.GetCompanyAsync(id, trackChanges);
if (company is null)
 throw new CompanyNotFoundException(id);

This is something we can extract in a private method in the same class:

private async Task<Company> GetCompanyAndCheckIfItExists(Guid id, bool trackChanges)
{
 var company = await _repository.Company.GetCompanyAsync(id, trackChanges);
 if (company is null)
 throw new CompanyNotFoundException(id);
 return company;
}

And then we can modify these methods.

GetCompanyAsync:

177

public async Task<CompanyDto> GetCompanyAsync(Guid id, bool trackChanges)
{
 var company = await GetCompanyAndCheckIfItExists(id, trackChanges);

 var companyDto = _mapper.Map<CompanyDto>(company);
 return companyDto;
}

DeleteCompanyAsync:

public async Task DeleteCompanyAsync(Guid companyId, bool trackChanges)
{
 var company = await GetCompanyAndCheckIfItExists(companyId, trackChanges);

 _repository.Company.DeleteCompany(company);
 await _repository.SaveAsync();
}

UpdateCompanyAsync:

public async Task UpdateCompanyAsync(Guid companyId,
 CompanyForUpdateDto companyForUpdate, bool trackChanges)
{
 var company = await GetCompanyAndCheckIfItExists(companyId, trackChanges);

 _mapper.Map(companyForUpdate, company);
 await _repository.SaveAsync();
}

Now, this looks much better without code repetition.

Furthermore, we can find code repetition in almost all the methods inside

the EmployeeService class:

var company = await _repository.Company.GetCompanyAsync(companyId, trackChanges);
if (company is null)
 throw new CompanyNotFoundException(companyId);

var employeeDb = await _repository.Employee.GetEmployeeAsync(companyId, id,
trackChanges);
if (employeeDb is null)
 throw new EmployeeNotFoundException(id);

In some methods, we can find just the first check and in several others,

we can find both of them.

So, let’s extract these checks into two separate methods:

private async Task CheckIfCompanyExists(Guid companyId, bool trackChanges)
{
 var company = await _repository.Company.GetCompanyAsync(companyId,
trackChanges);
 if (company is null)

178

 throw new CompanyNotFoundException(companyId);
}

private async Task<Employee> GetEmployeeForCompanyAndCheckIfItExists
 (Guid companyId, Guid id, bool trackChanges)
{
 var employeeDb = await _repository.Employee.GetEmployeeAsync(companyId, id,
trackChanges);
 if (employeeDb is null)
 throw new EmployeeNotFoundException(id);

 return employeeDb;
}

With these two extracted methods in place, we can refactor all the other

methods in the class.

GetEmployeesAsync:

public async Task<IEnumerable<EmployeeDto>> GetEmployeesAsync(Guid companyId, bool
trackChanges)
{
 await CheckIfCompanyExists(companyId, trackChanges);

 var employeesFromDb = await _repository.Employee.GetEmployeesAsync(companyId,
trackChanges);
 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 return employeesDto;
}

GetEmployeeAsync:

public async Task<EmployeeDto> GetEmployeeAsync(Guid companyId, Guid id, bool
trackChanges)
{
 await CheckIfCompanyExists(companyId, trackChanges);

 var employeeDb = await GetEmployeeForCompanyAndCheckIfItExists(companyId, id,
trackChanges);

 var employee = _mapper.Map<EmployeeDto>(employeeDb);
 return employee;
}

CreateEmployeeForCompanyAsync:

public async Task<EmployeeDto> CreateEmployeeForCompanyAsync(Guid companyId,
 EmployeeForCreationDto employeeForCreation, bool trackChanges)
{
 await CheckIfCompanyExists(companyId, trackChanges);

 var employeeEntity = _mapper.Map<Employee>(employeeForCreation);

 _repository.Employee.CreateEmployeeForCompany(companyId, employeeEntity);
 await _repository.SaveAsync();

179

 var employeeToReturn = _mapper.Map<EmployeeDto>(employeeEntity);

 return employeeToReturn;
}

DeleteEmployeeForCompanyAsync:

public async Task DeleteEmployeeForCompanyAsync(Guid companyId, Guid id, bool
trackChanges)
{
 await CheckIfCompanyExists(companyId, trackChanges);

 var employeeDb = await GetEmployeeForCompanyAndCheckIfItExists(companyId, id,
trackChanges);

 _repository.Employee.DeleteEmployee(employeeDb);
 await _repository.SaveAsync();
}

UpdateEmployeeForCompanyAsync:

public async Task UpdateEmployeeForCompanyAsync(Guid companyId, Guid id,
 EmployeeForUpdateDto employeeForUpdate,
 bool compTrackChanges, bool empTrackChanges)
{
 await CheckIfCompanyExists(companyId, compTrackChanges);

 var employeeDb = await GetEmployeeForCompanyAndCheckIfItExists(companyId, id,
empTrackChanges);

 _mapper.Map(employeeForUpdate, employeeDb);
 await _repository.SaveAsync();
}

GetEmployeeForPatchAsync:

public async Task<(EmployeeForUpdateDto employeeToPatch, Employee employeeEntity)>
GetEmployeeForPatchAsync
 (Guid companyId, Guid id, bool compTrackChanges, bool empTrackChanges)
{
 await CheckIfCompanyExists(companyId, compTrackChanges);

 var employeeDb = await GetEmployeeForCompanyAndCheckIfItExists(companyId, id,
empTrackChanges);

 var employeeToPatch = _mapper.Map<EmployeeForUpdateDto>(employeeDb);

 return (employeeToPatch: employeeToPatch, employeeEntity: employeeDb);
}

Now, all of the methods are cleaner and easier to maintain since our

validation code is in a single place, and if we need to modify these

validations, there’s only one place we need to change.

180

Additionally, if you want you can create a new class and extract these

methods, register that class as a service, inject it into our service classes

and use the validation methods. It is up to you how you want to do it.

So, we have seen how to use action filters to clear our action methods

and also how to extract methods to make our service cleaner and easier

to maintain.

With that out of the way, we can continue to Paging.

181

We have covered a lot of interesting features while creating our Web API

project, but there are still things to do.

So, in this chapter, we’re going to learn how to implement paging in

ASP.NET Core Web API. It is one of the most important concepts in

building RESTful APIs.

If we inspect the GetEmployeesForCompany action in the

EmployeesController, we can see that we return all the employees for

the single company.

But we don’t want to return a collection of all resources when querying

our API. That can cause performance issues and it’s in no way optimized

for public or private APIs. It can cause massive slowdowns and even

application crashes in severe cases.

Of course, we should learn a little more about Paging before we dive into

code implementation.

Paging refers to getting partial results from an API. Imagine having

millions of results in the database and having your application try to

return all of them at once.

Not only would that be an extremely ineffective way of returning the

results, but it could also possibly have devastating effects on the

application itself or the hardware it runs on. Moreover, every client

has limited memory resources and it needs to restrict the number of

shown results.

Thus, we need a way to return a set number of results to the client in

order to avoid these consequences. Let’s see how we can do that.

182

Mind you, we don’t want to change the base repository logic or implement

any business logic in the controller.

What we want to achieve is something like this:

https://localhost:5001/api/companies/companyId/employees?pa

geNumber=2&pageSize=2. This should return the second set of two

employees we have in our database.

We also want to constrain our API not to return all the employees even if

someone calls

https://localhost:5001/api/companies/companyId/employees.

Let's start with the controller modification by modifying the

GetEmployeesForCompany action:

[HttpGet]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)
{
 var employees = await _service.EmployeeService.GetEmployeesAsync(companyId,
trackChanges: false);
 return Ok(employees);
}

A few things to take note of here:

• We’re using [FromQuery] to point out that we’ll be using query

parameters to define which page and how many employees we are

requesting.

• The EmployeeParameters class is the container for the actual

parameters for the Employee entity.

We also need to actually create the EmployeeParameters class. So, let’s

first create a RequestFeatures folder in the Shared project and then

inside, create the required classes.

First the RequestParameters class:

public abstract class RequestParameters

183

{
 const int maxPageSize = 50;
 public int PageNumber { get; set; } = 1;

 private int _pageSize = 10;
 public int PageSize
 {
 get
 {
 return _pageSize;
 }
 set
 {
 _pageSize = (value > maxPageSize) ? maxPageSize : value;
 }
 }

And then the EmployeeParameters class:

public class EmployeeParameters : RequestParameters
{
}

We create an abstract class to hold the common properties for all the

entities in our project, and a single EmployeeParameters class that will

hold the specific parameters. It is empty now, but soon it won’t be.

In the abstract class, we are using the maxPageSize constant to restrict

our API to a maximum of 50 rows per page. We have two public

properties – PageNumber and PageSize. If not set by the caller,

PageNumber will be set to 1, and PageSize to 10.

Now we can return to the controller and import a using directive for the

EmployeeParameters class:

using Shared.RequestFeatures;

After that change, let’s implement the most important part — the

repository logic. We need to modify the GetEmployeesAsync method in

the IEmployeeRepository interface and

the EmployeeRepository class.

So, first the interface modification:

public interface IEmployeeRepository
{
 Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyId,

184

 EmployeeParameters employeeParameters, bool trackChanges);
 Task<Employee> GetEmployeeAsync(Guid companyId, Guid id, bool trackChanges);
 void CreateEmployeeForCompany(Guid companyId, Employee employee);
 void DeleteEmployee(Employee employee);
}

As Visual Studio suggests, we have to add the reference to the Shared

project.

After that, let’s modify the repository logic:

public async Task<IEnumerable<Employee>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges) =>
 await FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges)
 .OrderBy(e => e.Name)
 .Skip((employeeParameters.PageNumber - 1) * employeeParameters.PageSize)
 .Take(employeeParameters.PageSize)
 .ToListAsync();

Okay, the easiest way to explain this is by example.

Say we need to get the results for the third page of our website, counting

20 as the number of results we want. That would mean we want to skip

the first ((3 – 1) * 20) = 40 results, then take the next 20 and return

them to the caller.

Does that make sense?

Since we call this repository method in our service layer, we have to

modify it as well.

So, let’s start with the IEmployeeService modification:

public interface IEmployeeService
{
 Task<IEnumerable<EmployeeDto>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges);
 ...
}

In this interface, we only have to modify the GetEmployeesAsync

method by adding a new parameter.

After that, let’s modify the EmployeeService class:

public async Task<IEnumerable<EmployeeDto>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges)
{

185

 await CheckIfCompanyExists(companyId, trackChanges);

 var employeesFromDb = await _repository.Employee
 .GetEmployeesAsync(companyId, employeeParameters, trackChanges);
 var employeesDto = _mapper.Map<IEnumerable<EmployeeDto>>(employeesFromDb);

 return employeesDto;
}

Nothing too complicated here. We just accept an additional parameter

and pass it to the repository method.

Finally, we have to modify the GetEmployeesForCompany action and fix

that error by adding another argument to the GetEmployeesAsync

method call:

[HttpGet]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)
{
 var employees = await _service.EmployeeService.GetEmployeesAsync(companyId,
 employeeParameters, trackChanges: false);

 return Ok(employees);
}

Before we continue, we should create additional employees for the

company with the id: C9D4C053-49B6-410C-BC78-2D54A9991870. We

are doing this because we have only a small number of employees per

company and we need more of them for our example. You can use a

predefined request in Part16 in Postman, and just change the request

body with the following objects:

{

 "name": "Mihael Worth",

 "age": 30,

 "position": "Marketing expert"

}

{

 "name": "John Spike",

 "age": 32,

 "position": "Marketing expert

II"

}

{

 "name": "Nina Hawk",

 "age": 26,

 "position": "Marketing expert

II"

}

{

 "name": "Mihael Fins",

 "age": 30,

 "position": "Marketing expert"

{

 "name": "Martha Grown",

 "age": 35,

{

 "name": "Kirk Metha",

 "age": 30,

 "position": "Marketing expert"

186

} "position": "Marketing expert

II"

}

}

Now we should have eight employees for this company, and we can try a

request like this:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-

BC78-2D54A9991870/employees?pageNumber=2&pageSize=2

So, we request page two with two employees:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=2&pageSize=2

If that’s what you got, you’re on the right track.

We can check our result in the database:

And we can see that we have the correct data returned.

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2
https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?pageNumber=2&pageSize=2

187

Now, what can we do to improve this solution?

Since we’re returning just a subset of results to the caller, we might as

well have a PagedList instead of List.

PagedList will inherit from the List class and will add some more to it.

We can also move the skip/take logic to the PagedList since it makes

more sense.

So, let’s first create a new MetaData class in the

Shared/RequestFeatures folder:

public class MetaData
{
 public int CurrentPage { get; set; }
 public int TotalPages { get; set; }
 public int PageSize { get; set; }
 public int TotalCount { get; set; }

 public bool HasPrevious => CurrentPage > 1;
 public bool HasNext => CurrentPage < TotalPages;
}

Then, we are going to implement the PagedList class in the same

folder:

public class PagedList<T> : List<T>
{
 public MetaData MetaData { get; set; }

 public PagedList(List<T> items, int count, int pageNumber, int pageSize)
 {
 MetaData = new MetaData
 {
 TotalCount = count,
 PageSize = pageSize,
 CurrentPage = pageNumber,
 TotalPages = (int)Math.Ceiling(count / (double)pageSize)
 };

 AddRange(items);
 }

 public static PagedList<T> ToPagedList(IEnumerable<T> source, int pageNumber, int
pageSize)
 {
 var count = source.Count();
 var items = source

188

 .Skip((pageNumber - 1) * pageSize)
 .Take(pageSize).ToList();

 return new PagedList<T>(items, count, pageNumber, pageSize);
 }
}

As you can see, we’ve transferred the skip/take logic to the static method

inside of the PagedList class. And in the MetaData class, we’ve added a

few more properties that will come in handy as metadata for our

response.

HasPrevious is true if the CurrentPage is larger than 1, and HasNext is

calculated if the CurrentPage is smaller than the number of total pages.

TotalPages is calculated by dividing the number of items by the page

size and then rounding it to the larger number since a page needs to exist

even if there is only one item on it.

Now that we’ve cleared that up, let’s change our EmployeeRepository

and EmployeesController accordingly.

Let’s start with the interface modification:

Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges);

Then, let’s change the repository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
 EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
 .OrderBy(e => e.Name)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

After that, we are going to modify the IEmplyeeService interface:

Task<(IEnumerable<EmployeeDto> employees, MetaData metaData)> GetEmployeesAsync(Guid
companyId, EmployeeParameters employeeParameters, bool trackChanges);

Now our method returns a Tuple containing two fields – employees and

metadata.

189

So, let’s implement that in the EmployeeService class:

public async Task<(IEnumerable<EmployeeDto> employees, MetaData metaData)>
GetEmployeesAsync
 (Guid companyId, EmployeeParameters employeeParameters, bool trackChanges)
{
 await CheckIfCompanyExists(companyId, trackChanges);

 var employeesWithMetaData = await _repository.Employee
 .GetEmployeesAsync(companyId, employeeParameters, trackChanges);
 var employeesDto =
_mapper.Map<IEnumerable<EmployeeDto>>(employeesWithMetaData);

 return (employees: employeesDto, metaData: employeesWithMetaData.MetaData);
}

We change the method signature and the name of the employeesFromDb

variable to employeesWithMetaData since this name is now more

suitable. After the mapping action, we construct a Tuple and return it to

the caller.

Finally, let’s modify the controller:

[HttpGet]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)
{
 var pagedResult = await _service.EmployeeService.GetEmployeesAsync(companyId,
 employeeParameters, trackChanges: false);

 Response.Headers.Add("X-Pagination",
JsonSerializer.Serialize(pagedResult.metaData));

 return Ok(pagedResult.employees);
}

The new thing in this action is that we modify the response header and

add our metadata as the X-Pagination header. For this, we need the

System.Text.Json namespace.

Now, if we send the same request we did earlier, we are going to get the

same result:

190

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=2&pageSize=2

But now we have some additional useful information in the X-Pagination

response header:

As you can see, all of our metadata is here. We can use this information

when building any kind of frontend pagination to our benefit. You can play

around with different requests to see how it works in other scenarios.

We could also use this data to generate links to the previous and next

pagination page on the backend, but that is part of the HATEOAS and is

out of the scope of this chapter.

16.4.1 Additional Advice

This solution works great with a small amount of data, but with bigger

tables with millions of rows, we can improve it by modifying the

GetEmployeesAsync repository method:

191

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId, EmployeeParam
eters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId), trackCha
nges)
 .OrderBy(e => e.Name)
 .Skip((employeeParameters.PageNumber - 1) * employeeParameters.PageSize)
 .Take(employeeParameters.PageSize)
 .ToListAsync();

 var count = await FindByCondition(e => e.CompanyId.Equals(companyId), trackChanges
).CountAsync();

 return new PagedList<Employee>(employees, count,
employeeParameters.PageNumber, employeeParameters.PageSize);
}

Even though we have an additional call to the database with the

CountAsync method, this solution was tested upon millions of rows and

was much faster than the previous one. Because our table has few rows,

we will continue using the previous solution, but feel free to switch to this

one if you want.

Also, to enable the client application to read the new X-Pagination

header that we’ve added in our action, we have to modify the CORS

configuration:

public static void ConfigureCors(this IServiceCollection services) =>
 services.AddCors(options =>
 {
 options.AddPolicy("CorsPolicy", builder =>
 builder.AllowAnyOrigin()
 .AllowAnyMethod()
 .AllowAnyHeader()
 .WithExposedHeaders("X-Pagination"));

 });

192

In this chapter, we are going to cover filtering in ASP.NET Core Web API.

We’ll learn what filtering is, how it’s different from searching, and how to

implement it in a real-world project.

While not critical as paging, filtering is still an important part of a flexible

REST API, so we need to know how to implement it in our API projects.

Filtering helps us get the exact result set we want instead of all the

results without any criteria.

Filtering is a mechanism to retrieve results by providing some kind of

criterion. We can write many kinds of filters to get results by type of

class property, value range, date range, or anything else.

When implementing filtering, you are always restricted by the predefined

set of options you can set in your request. For example, you can send a

date value to request an employee, but you won’t have much success.

On the front end, filtering is usually implemented as checkboxes, radio

buttons, or dropdowns. This kind of implementation limits you to only

those options that are available to create a valid filter.

Take for example a car-selling website. When filtering the cars you want,

you would ideally want to select:

• Car manufacturer as a category from a list or a dropdown

• Car model from a list or a dropdown

• Is it new or used with radio buttons

• The city where the seller is as a dropdown

• The price of the car is an input field (numeric)

• ….

You get the point. So, the request would look something like this:

193

https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&

state=used&city=washington&price_from=30000&price_to=50000

Or even like this:

https://bestcarswebsite.com/sale/filter?data[manufacturer]=ford&[mod

el]=expedition&[state]=used&[city]=washington&[price_from]=30000&[pr

ice_to]=50000

Now that we know what filtering is, let’s see how it’s different from

searching.

When searching for results, we usually have only one input and that’s the

one you use to search for anything within a website.

So in other words, you send a string to the API and the API is responsible

for using that string to find any results that match it.

On our car website, we would use the search field to find the “Ford

Expedition” car model and we would get all the results that match the car

name “Ford Expedition.” Thus, this search would return every “Ford

Expedition” car available.

We can also improve the search by implementing search terms like

Google does, for example. If the user enters the Ford Expedition without

quotes in the search field, we would return both what’s relevant to Ford

and Expedition. But if the user puts quotes around it, we would search the

entire term “Ford Expedition” in our database.

It makes a better user experience.

Example:

https://bestcarswebsite.com/sale/search?name=ford focus

https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&state=used&city=washington&price_from=30000&price_to=50000
https://bestcarswebsite.com/sale?manufacturer=ford&model=expedition&state=used&city=washington&price_from=30000&price_to=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000
https://bestcarswebsite.com/sale/filter?data%5bmanufacturer%5d=ford&%5bmodel%5d=expedition&%5bstate%5d=used&%5bcity%5d=washington&%5bprice_from%5d=30000&%5bprice_to%5d=50000

194

Using search doesn’t mean we can’t use filters with it. It makes perfect

sense to use filtering and searching together, so we need to take that into

account when writing our source code.

But enough theory.

Let’s implement some filters.

We have the Age property in our Employee class. Let’s say we want to

find out which employees are between the ages of 26 and 29. We also

want to be able to enter just the starting age — and not the ending one —

and vice versa.

We would need a query like this one:

https://localhost:5001/api/companies/companyId/employees?mi

nAge=26&maxAge=29

But, we want to be able to do this too:

https://localhost:5001/api/companies/companyId/employees?mi

nAge=26

Or like this:

https://localhost:5001/api/companies/companyId/employees?ma

xAge=29

Okay, we have a specification. Let’s see how to implement it.

We’ve already implemented paging in our controller, so we have the

necessary infrastructure to extend it with the filtering functionality. We’ve

used the EmployeeParameters class, which inherits from the

RequestParameters class, to define the query parameters for our paging

request.

195

Let’s extend the EmployeeParameters class:

public class EmployeeParameters : RequestParameters
{
 public uint MinAge { get; set; }
 public uint MaxAge { get; set; } = int.MaxValue;

 public bool ValidAgeRange => MaxAge > MinAge;
}

We’ve added two unsigned int properties (to avoid negative year values):

MinAge and MaxAge.

Since the default uint value is 0, we don’t need to explicitly define it; 0 is

okay in this case. For MaxAge, we want to set it to the max int value. If

we don’t get it through the query params, we have something to work

with. It doesn’t matter if someone sets the age to 300 through the

params; it won’t affect the results.

We’ve also added a simple validation property – ValidAgeRange. Its

purpose is to tell us if the max-age is indeed greater than the min-age. If

it’s not, we want to let the API user know that he/she is doing something

wrong.

Okay, now that we have our parameters ready, we can modify the

GetEmployeesAsync service method by adding a validation check as a

first statement:

public async Task<(IEnumerable<EmployeeDto> employees, MetaData metaData)>
GetEmployeesAsync
 (Guid companyId, EmployeeParameters employeeParameters, bool trackChanges)
{
 if (!employeeParameters.ValidAgeRange)
 throw new MaxAgeRangeBadRequestException();

 await CheckIfCompanyExists(companyId, trackChanges);

 var employeesWithMetaData = await _repository.Employee
 .GetEmployeesAsync(companyId, employeeParameters, trackChanges);
 var employeesDto =
_mapper.Map<IEnumerable<EmployeeDto>>(employeesWithMetaData);

 return (employees: employeesDto, metaData: employeesWithMetaData.MetaData);
}

196

We’ve added our validation check and a BadRequest response if the

validation fails.

But we don’t have this custom exception class so, we have to create it in

the Entities/Exceptions class:

public sealed class MaxAgeRangeBadRequestException : BadRequestException
{
 public MaxAgeRangeBadRequestException()
 :base("Max age can't be less than min age.")
 {
 }
}

That should do it.

After the service class modification and creation of our custom exception

class, let’s get to the implementation in our EmployeeRepository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId) && (e.Age
>= employeeParameters.MinAge && e.Age <= employeeParameters.MaxAge), trackChanges)
 .OrderBy(e => e.Name)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

Actually, at this point, the implementation is rather simple too.

We are using the FindByCondition method to find all the employees

with an Age between the MaxAge and the MinAge.

Let’s try it out.

Let’s send a first request with only a MinAge parameter:

197

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?minAge=32

Next, let’s send one with only a MaxAge parameter:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?maxAge=26

After that, we can combine those two:

198

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?minAge=26&maxAge=30

And finally, we can test the filter with the paging:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=32&maxAge=35

Excellent. The filter is implemented and we can move on to the searching

part.

199

In this chapter, we’re going to tackle the topic of searching in ASP.NET

Core Web API. Searching is one of those functionalities that can make or

break your API, and the level of difficulty when implementing it can vary

greatly depending on your specifications.

If you need to implement a basic searching feature where you are just

trying to search one field in the database, you can easily implement it. On

the other hand, if it’s a multi-column, multi-term search, you would

probably be better off with some of the great search libraries out there

like Lucene.NET which are already optimized and proven.

There is no doubt in our minds that you’ve seen a search field on almost

every website on the internet. It’s easy to find something when we are

familiar with the website structure or when a website is not that large.

But if we want to find the most relevant topic for us, we don’t know what

we’re going to find, or maybe we’re first-time visitors to a large website,

we’re probably going to use a search field.

In our simple project, one use case of a search would be to find an

employee by name.

Let’s see how we can achieve that.

Since we’re going to implement the most basic search in our project, the

implementation won’t be complex at all. We have all we need

infrastructure-wise since we already covered paging and filtering. We’ll

just extend our implementation a bit.

What we want to achieve is something like this:

https://lucenenet.apache.org/?fbclid=IwAR2rCcmIrI3SUa-j9oHVgCICfhg2k2NdVcVyvJd1Grd-9laU4QYHIyJuKX8

200

https://localhost:5001/api/companies/companyId/employees?se

archTerm=Mihael Fins

This should return just one result: Mihael Fins. Of course, the search

needs to work together with filtering and paging, so that’s one of the

things we’ll need to keep in mind too.

Like we did with filtering, we’re going to extend our

EmployeeParameters class first since we’re going to send our search

query as a query parameter:

public class EmployeeParameters : RequestParameters
{
 public uint MinAge { get; set; }
 public uint MaxAge { get; set; } = int.MaxValue;

 public bool ValidAgeRange => MaxAge > MinAge;

 public string? SearchTerm { get; set; }
}

Simple as that.

Now we can write queries with searchTerm=”name” in them.

The next thing we need to do is actually implement the search

functionality in our EmployeeRepository class:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
 .FilterEmployees(employeeParameters.MinAge, employeeParameters.MaxAge)
 .Search(employeeParameters.SearchTerm)
 .OrderBy(e => e.Name)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

We have made two changes here. The first is modifying the filter logic and

the second is adding the Search method for the searching functionality.

https://localhost:5001/api/companies/companyId/employees?searchTerm=Mihael
https://localhost:5001/api/companies/companyId/employees?searchTerm=Mihael

201

But these methods (FilterEmployees and Search) are not created yet, so

let’s create them.

In the Repository project, we are going to create the new folder

Extensions and inside of that folder the new class

RepositoryEmployeeExtensions:

public static class RepositoryEmployeeExtensions
{
 public static IQueryable<Employee> FilterEmployees(this IQueryable<Employee>
employees, uint minAge, uint maxAge) =>
 employees.Where(e => (e.Age >= minAge && e.Age <= maxAge));

 public static IQueryable<Employee> Search(this IQueryable<Employee> employees,
string searchTerm)
 {
 if (string.IsNullOrWhiteSpace(searchTerm))
 return employees;

 var lowerCaseTerm = searchTerm.Trim().ToLower();

 return employees.Where(e => e.Name.ToLower().Contains(lowerCaseTerm));
 }
}

So, we are just creating our extension methods to update our query until

it is executed in the repository. Now, all we have to do is add a using

directive to the EmployeeRepository class:

using Repository.Extensions;

That’s it for our implementation. As you can see, it isn’t that hard since it

is the most basic search and we already had an infrastructure set.

Let’s send a first request with the value Mihael Fins for the search term:

202

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees?searchTerm=Mihael
Fins

This is working great.

Now, let’s find all employees that contain the letters “ae”:

https://localhost:5001/api/companies/c9d4c053-49b6-410c-bc78-2d54a9991870/employees?searchTerm=ae

Great. One more request with the paging and filtering:

203

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=32&maxAge=35&searchTerm=MA

And this works as well.

That’s it! We’ve successfully implemented and tested our search

functionality.

If we check the Headers tab for each request, we will find valid x-

pagination as well.

204

In this chapter, we’re going to talk about sorting in ASP.NET Core Web

API. Sorting is a commonly used mechanism that every API should

implement. Implementing it in ASP.NET Core is not difficult due to the

flexibility of LINQ and good integration with EF Core.

So, let’s talk a bit about sorting.

Sorting, in this case, refers to ordering our results in a preferred way

using our query string parameters. We are not talking about sorting

algorithms nor are we going into the how’s of implementing a sorting

algorithm.

What we’re interested in, however, is how do we make our API sort our

results the way we want it to.

Let’s say we want our API to sort employees by their name in ascending

order, and then by their age.

To do that, our API call needs to look something like this:

https://localhost:5001/api/companies/companyId/employees?or

derBy=name,age desc

Our API needs to consider all the parameters and sort our results

accordingly. In our case, this means sorting results by their name; then,

if there are employees with the same name, sorting them by the age

property.

So, these are our employees for the IT_Solutions Ltd company:

205

For the sake of demonstrating this example (sorting by name and then by

age), we are going to add one more Jana McLeaf to our database with the

age of 27. You can add whatever you want to test the results:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees

Great, now we have the required data to test our functionality properly.

And of course, like with all other functionalities we have implemented so

far (paging, filtering, and searching), we need to implement this to work

well with everything else. We should be able to get the paginated,

filtered, and sorted data, for example.

Let’s see one way to go around implementing this.

206

As with everything else so far, first, we need to extend our

RequestParameters class to be able to send requests with the orderBy

clause in them:

public class RequestParameters
{
 const int maxPageSize = 50;
 public int PageNumber { get; set; } = 1;

 private int _pageSize = 10;
 public int PageSize
 {
 get
 {
 return _pageSize;
 }
 set
 {
 _pageSize = (value > maxPageSize) ? maxPageSize : value;
 }
 }

 public string? OrderBy { get; set; }
}

As you can see, the only thing we’ve added is the OrderBy property and

we added it to the RequestParameters class because we can reuse it for

other entities. We want to sort our results by name, even if it hasn’t been

stated explicitly in the request.

That said, let’s modify the EmployeeParameters class to enable the

default sorting condition for Employee if none was stated:

public class EmployeeParameters : RequestParameters
{
 public EmployeeParameters() => OrderBy = "name";

 public uint MinAge { get; set; }
 public uint MaxAge { get; set; } = int.MaxValue;

 public bool ValidAgeRange => MaxAge > MinAge;

 public string? SearchTerm { get; set; }
}

Next, we’re going to dive right into the implementation of our sorting

mechanism, or rather, our ordering mechanism.

207

One thing to note is that we’ll be using the System.Linq.Dynamic.Core

NuGet package to dynamically create our OrderBy query on the fly. So,

feel free to install it in the Repository project and add a using directive

in the RepositoryEmployeeExtensions class:

using System.Linq.Dynamic.Core;

Now, we can add the new extension method Sort in our

RepositoryEmployeeExtensions class:

public static IQueryable<Employee> Sort(this IQueryable<Employee> employees, string
orderByQueryString)
{
 if (string.IsNullOrWhiteSpace(orderByQueryString))
 return employees.OrderBy(e => e.Name);

 var orderParams = orderByQueryString.Trim().Split(',');
 var propertyInfos = typeof(Employee).GetProperties(BindingFlags.Public |
BindingFlags.Instance);
 var orderQueryBuilder = new StringBuilder();

 foreach (var param in orderParams)
 {
 if (string.IsNullOrWhiteSpace(param))
 continue;

 var propertyFromQueryName = param.Split(" ")[0];
 var objectProperty = propertyInfos.FirstOrDefault(pi =>
pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

 if (objectProperty == null)
 continue;

 var direction = param.EndsWith(" desc") ? "descending" : "ascending";

 orderQueryBuilder.Append($"{objectProperty.Name.ToString()} {direction},
");
 }

 var orderQuery = orderQueryBuilder.ToString().TrimEnd(',', ' ');

 if (string.IsNullOrWhiteSpace(orderQuery))
 return employees.OrderBy(e => e.Name);

 return employees.OrderBy(orderQuery);
}

Okay, there are a lot of things going on here, so let’s take it step by step

and see what exactly we've done.

208

First, let start with the method definition. It has two arguments — one for

the list of employees as IQueryable<Employee> and the other for the

ordering query. If we send a request like this one:

https://localhost:5001/api/companies/companyId/employees?or

derBy=name,age desc, our orderByQueryString will be name,age

desc.

We begin by executing some basic check against the orderByQueryString.

If it is null or empty, we just return the same collection ordered by name.

if (string.IsNullOrWhiteSpace(orderByQueryString))
 return employees.OrderBy(e => e.Name);

Next, we are splitting our query string to get the individual fields:

var orderParams = orderByQueryString.Trim().Split(',');

We’re also using a bit of reflection to prepare the list of PropertyInfo

objects that represent the properties of our Employee class. We need

them to be able to check if the field received through the query string

exists in the Employee class:

var propertyInfos = typeof(Employee).GetProperties(BindingFlags.Public |

BindingFlags.Instance);

That prepared, we can actually run through all the parameters and check

for their existence:

if (string.IsNullOrWhiteSpace(param))
 continue;

var propertyFromQueryName = param.Split(" ")[0];
var objectProperty = propertyInfos.FirstOrDefault(pi =>

pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

If we don’t find such a property, we skip the step in the foreach loop and

go to the next parameter in the list:

if (objectProperty == null)
 continue;

209

If we do find the property, we return it and additionally check if our

parameter contains “desc” at the end of the string. We use that to decide

how we should order our property:

var direction = param.EndsWith(" desc") ? "descending" : "ascending";

We use the StringBuilder to build our query with each loop:

orderQueryBuilder.Append($"{objectProperty.Name.ToString()} {direction}, ");

Now that we’ve looped through all the fields, we are just removing excess

commas and doing one last check to see if our query indeed has

something in it:

var orderQuery = orderQueryBuilder.ToString().TrimEnd(',', ' ');

if (string.IsNullOrWhiteSpace(orderQuery))
 return employees.OrderBy(e => e.Name);

Finally, we can order our query:

return employees.OrderBy(orderQuery);

At this point, the orderQuery variable should contain the “Name

ascending, DateOfBirth descending” string. That means it will order

our results first by Name in ascending order, and then by DateOfBirth in

descending order.

The standard LINQ query for this would be:

employees.OrderBy(e => e.Name).ThenByDescending(o => o.Age);

This is a neat little trick to form a query when you don’t know in advance

how you should sort.

Once we have done this, all we have to do is to modify the

GetEmployeesAsync repository method:

public async Task<PagedList<Employee>> GetEmployeesAsync(Guid companyId,
EmployeeParameters employeeParameters, bool trackChanges)
{
 var employees = await FindByCondition(e => e.CompanyId.Equals(companyId),
trackChanges)
 .FilterEmployees(employeeParameters.MinAge, employeeParameters.MaxAge)

210

 .Search(employeeParameters.SearchTerm)
 .Sort(employeeParameters.OrderBy)
 .ToListAsync();

 return PagedList<Employee>
 .ToPagedList(employees, employeeParameters.PageNumber,
employeeParameters.PageSize);
}

And that’s it! We can test this functionality now.

First, let’s try out the query we’ve been using as an example:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-

2D54A9991870/employees?orderBy=name,age desc

And this is the result:

We can see that this list is sorted by Name ascending. Since we have two

Jana’s, they were sorted by Age descending.

We have prepared additional requests which you can use to test this

functionality with Postman. So, feel free to do it.

211

Right now, sorting only works with the Employee entity, but what about

the Company? It is obvious that we have to change something in our

implementation if we don’t want to repeat our code while implementing

sorting for the Company entity.

That said, let’s modify the Sort extension method:

public static IQueryable<Employee> Sort(this IQueryable<Employee> employees, string
orderByQueryString)
{
 if (string.IsNullOrWhiteSpace(orderByQueryString))
 return employees.OrderBy(e => e.Name);

 var orderQuery = OrderQueryBuilder.CreateOrderQuery<Employee>(orderByQueryString);

 if (string.IsNullOrWhiteSpace(orderQuery))
 return employees.OrderBy(e => e.Name);

 return employees.OrderBy(orderQuery);
 }

So, we are extracting a logic that can be reused in the

CreateOrderQuery<T> method. But of course, we have to create that

method.

Let’s create a Utility folder in the Extensions folder with the new

class OrderQueryBuilder:

Now, let’s modify that class:

public static class OrderQueryBuilder
{
 public static string CreateOrderQuery<T>(string orderByQueryString)
 {
 var orderParams = orderByQueryString.Trim().Split(',');
 var propertyInfos = typeof(T).GetProperties(BindingFlags.Public |
BindingFlags.Instance);
 var orderQueryBuilder = new StringBuilder();

212

 foreach (var param in orderParams)
 {
 if (string.IsNullOrWhiteSpace(param))
 continue;

 var propertyFromQueryName = param.Split(" ")[0];
 var objectProperty = propertyInfos.FirstOrDefault(pi =>
pi.Name.Equals(propertyFromQueryName, StringComparison.InvariantCultureIgnoreCase));

 if (objectProperty == null)
 continue;

 var direction = param.EndsWith(" desc") ? "descending" :
"ascending";

 orderQueryBuilder.Append($"{objectProperty.Name.ToString()}
{direction}, ");
 }

 var orderQuery = orderQueryBuilder.ToString().TrimEnd(',', ' ');

 return orderQuery;
 }
}

And there we go. Not too many changes, but we did a great job here. You

can test this solution with the prepared requests in Postman and you'll get

the same result for sure:

But now, this functionality is reusable.

213

In this chapter, we are going to talk about a neat concept called data

shaping and how to implement it in ASP.NET Core Web API. To achieve

that, we are going to use similar tools to the previous section. Data

shaping is not something that every API needs, but it can be very useful

in some cases.

Let’s start by learning what data shaping is exactly.

Data shaping is a great way to reduce the amount of traffic sent from the

API to the client. It enables the consumer of the API to select

(shape) the data by choosing the fields through the query string.

What this means is something like:

https://localhost:5001/api/companies/companyId/employees?fi

elds=name,age

By giving the consumer a way to select just the fields it needs, we can

potentially reduce the stress on the API. On the other hand, this is

not something every API needs, so we need to think carefully and

decide whether we should implement its implementation because it has a

bit of reflection in it.

And we know for a fact that reflection takes its toll and slows our

application down.

Finally, as always, data shaping should work well together with the

concepts we’ve covered so far – paging, filtering, searching, and sorting.

First, we are going to implement an employee-specific solution to data

shaping. Then we are going to make it more generic, so it can be used by

any entity or any API.

https://localhost:5001/api/companies/companyId/employees?fields=name,age
https://localhost:5001/api/companies/companyId/employees?fields=name,age

214

Let’s get to work.

First things first, we need to extend our RequestParameters class since

we are going to add a new feature to our query string and we want it to

be available for any entity:

public string? Fields { get; set; }

We’ve added the Fields property and now we can use fields as a query

string parameter.

Let’s continue by creating a new interface in the Contracts project:

public interface IDataShaper<T>
{
 IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString);
 ExpandoObject ShapeData(T entity, string fieldsString);
}

The IDataShaper defines two methods that should be implemented —

one for the single entity and one for the collection of entities. Both are

named ShapeData, but they have different signatures.

Notice how we use the ExpandoObject from System.Dynamic

namespace as a return type. We need to do that to shape our data the

way we want it.

To implement this interface, we are going to create a new DataShaping

folder in the Service project and add a new DataShaper class:

public class DataShaper<T> : IDataShaper<T> where T : class
{
 public PropertyInfo[] Properties { get; set; }

 public DataShaper()
 {
 Properties = typeof(T).GetProperties(BindingFlags.Public |
BindingFlags.Instance);
 }

 public IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString)
 {

215

 var requiredProperties = GetRequiredProperties(fieldsString);

 return FetchData(entities, requiredProperties);
 }

 public ExpandoObject ShapeData(T entity, string fieldsString)
 {
 var requiredProperties = GetRequiredProperties(fieldsString);

 return FetchDataForEntity(entity, requiredProperties);
 }

 private IEnumerable<PropertyInfo> GetRequiredProperties(string fieldsString)
 {
 var requiredProperties = new List<PropertyInfo>();

 if (!string.IsNullOrWhiteSpace(fieldsString))
 {
 var fields = fieldsString.Split(',',
StringSplitOptions.RemoveEmptyEntries);

 foreach (var field in fields)
 {
 var property = Properties
 .FirstOrDefault(pi => pi.Name.Equals(field.Trim(),
StringComparison.InvariantCultureIgnoreCase));

 if (property == null)
 continue;

 requiredProperties.Add(property);
 }
 }
 else
 {
 requiredProperties = Properties.ToList();
 }

 return requiredProperties;
 }

 private IEnumerable<ExpandoObject> FetchData(IEnumerable<T> entities,
IEnumerable<PropertyInfo> requiredProperties)
 {
 var shapedData = new List<ExpandoObject>();

 foreach (var entity in entities)
 {
 var shapedObject = FetchDataForEntity(entity, requiredProperties);
 shapedData.Add(shapedObject);
 }

 return shapedData;
 }

 private ExpandoObject FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)
 {
 var shapedObject = new ExpandoObject();

216

 foreach (var property in requiredProperties)
 {
 var objectPropertyValue = property.GetValue(entity);
 shapedObject.TryAdd(property.Name, objectPropertyValue);
 }

 return shapedObject;
 }
}

We need these namespaces to be included as well:

using Contracts;
using System.Dynamic;
using System.Reflection;

There is quite a lot of code in our class, so let’s break it down.

We have one public property in this class – Properties. It’s an array of

PropertyInfo’s that we’re going to pull out of the input type, whatever it is

— Company or Employee in our case:

public PropertyInfo[] Properties { get; set; }

public DataShaper()
{
 Properties = typeof(T).GetProperties(BindingFlags.Public | BindingFlags.Instance);
}

So, here it is. In the constructor, we get all the properties of an input

class.

Next, we have the implementation of our two public ShapeData methods:

public IEnumerable<ExpandoObject> ShapeData(IEnumerable<T> entities, string
fieldsString)
{
 var requiredProperties = GetRequiredProperties(fieldsString);

 return FetchData(entities, requiredProperties);
}

public ExpandoObject ShapeData(T entity, string fieldsString)
{
 var requiredProperties = GetRequiredProperties(fieldsString);

 return FetchDataForEntity(entity, requiredProperties);
}

217

Both methods rely on the GetRequiredProperties method to parse the

input string that contains the fields we want to fetch.

The GetRequiredProperties method does the magic. It parses the

input string and returns just the properties we need to return to the

controller:

private IEnumerable<PropertyInfo> GetRequiredProperties(string fieldsString)
{
 var requiredProperties = new List<PropertyInfo>();

 if (!string.IsNullOrWhiteSpace(fieldsString))
 {
 var fields = fieldsString.Split(',', StringSplitOptions.RemoveEmptyEntries);

 foreach (var field in fields)
 {
 var property = Properties
 .FirstOrDefault(pi => pi.Name.Equals(field.Trim(),
StringComparison.InvariantCultureIgnoreCase));

 if (property == null)
 continue;

 requiredProperties.Add(property);
 }
 }
 else
 {
 requiredProperties = Properties.ToList();
 }

 return requiredProperties;
}

There’s nothing special about it. If the fieldsString is not empty, we

split it and check if the fields match the properties in our entity. If they

do, we add them to the list of required properties.

On the other hand, if the fieldsString is empty, all properties are

required.

Now, FetchData and FetchDataForEntity are the private methods to

extract the values from these required properties we’ve prepared.

The FetchDataForEntity method does it for a single entity:

private ExpandoObject FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)
{
 var shapedObject = new ExpandoObject();

218

 foreach (var property in requiredProperties)
 {
 var objectPropertyValue = property.GetValue(entity);
 shapedObject.TryAdd(property.Name, objectPropertyValue);
 }

 return shapedObject;

}

Here, we loop through the requiredProperties parameter. Then, using

a bit of reflection, we extract the values and add them to our

ExpandoObject. ExpandoObject implements

IDictionary<string,object>, so we can use the TryAdd method to

add our property using its name as a key and the value as a value for the

dictionary.

This way, we dynamically add just the properties we need to our dynamic

object.

The FetchData method is just an implementation for multiple objects. It

utilizes the FetchDataForEntity method we’ve just implemented:

private IEnumerable<ExpandoObject> FetchData(IEnumerable<T> entities,
IEnumerable<PropertyInfo> requiredProperties)
{
 var shapedData = new List<ExpandoObject>();

 foreach (var entity in entities)
 {
 var shapedObject = FetchDataForEntity(entity, requiredProperties);
 shapedData.Add(shapedObject);
 }

 return shapedData;
}

To continue, let’s register the DataShaper class in the

IServiceCollection in the Program class:

builder.Services.AddScoped<IDataShaper<EmployeeDto>, DataShaper<EmployeeDto>>();

During the service registration, we provide the type to work with.

Because we want to use the DataShaper class inside the service classes,

we have to modify the constructor of the ServiceManager class first:

219

public ServiceManager(IRepositoryManager repositoryManager, ILoggerManager logger,
 IMapper mapper, IDataShaper<EmployeeDto> dataShaper)
{
 _companyService = new Lazy<ICompanyService>(() =>
 new CompanyService(repositoryManager, logger, mapper));
 _employeeService = new Lazy<IEmployeeService>(() =>
 new EmployeeService(repositoryManager, logger, mapper, dataShaper));
}

We are going to use it only in the EmployeeService class.

Next, let’s add one more field and modify the constructor in the

EmployeeService class:

...
private readonly IDataShaper<EmployeeDto> _dataShaper;

public EmployeeService(IRepositoryManager repository, ILoggerManager logger,
 IMapper mapper, IDataShaper<EmployeeDto> dataShaper)
{
 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 _dataShaper = dataShaper;
}

Let’s also modify the GetEmployeesAsync method of the same class:

public async Task<(IEnumerable<ExpandoObject> employees, MetaData metaData)>
GetEmployeesAsync
 (Guid companyId, EmployeeParameters employeeParameters, bool trackChanges)
{
 if (!employeeParameters.ValidAgeRange)
 throw new MaxAgeRangeBadRequestException();

 await CheckIfCompanyExists(companyId, trackChanges);

 var employeesWithMetaData = await _repository.Employee
 .GetEmployeesAsync(companyId, employeeParameters, trackChanges);

 var employeesDto =
_mapper.Map<IEnumerable<EmployeeDto>>(employeesWithMetaData);
 var shapedData = _dataShaper.ShapeData(employeesDto,
employeeParameters.Fields);

 return (employees: shapedData, metaData: employeesWithMetaData.MetaData);
}

We have changed the method signature so, we have to modify the

interface as well:

Task<(IEnumerable<ExpandoObject> employees, MetaData metaData)> GetEmployeesAsync(Guid
companyId,
 EmployeeParameters employeeParameters, bool trackChanges);

220

Now, we can test our solution:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-2D54A9991870/employees?fields=name,age

It works great.

Let’s also test this solution by combining all the functionalities that we’ve

implemented in the previous chapters:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name
desc&fields=name,age

221

Excellent. Everything is working like a charm.

Let’s send the same request one more time, but this time with the

different accept header (text/xml):

222

It works — but it looks pretty ugly and unreadable. But that’s how the

XmlDataContractSerializerOutputFormatter serializes our

ExpandoObject by default.

We can fix that, but the logic is out of the scope of this book. Of course,

we have implemented the solution in our source code. So, if you want,

you can use it in your project.

All you have to do is to create the Entity class and copy the content

from our Entity class that resides in the Entities/Models folder.

After that, just modify the IDataShaper interface and the DataShaper

class by using the Entity type instead of the ExpandoObject type. Also,

you have to do the same thing for the IEmployeeService interface and

the EmployeeService class. Again, you can check our implementation if

you have any problems.

After all those changes, once we send the same request, we are going to

see a much better result:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name
desc&fields=name,age

223

If XML serialization is not important to you, you can keep using

ExpandoObject — but if you want a nicely formatted XML response, this

is the way to go.

To sum up, data shaping is an exciting and neat little feature that can

make our APIs flexible and reduce our network traffic. If we have a high-

volume traffic API, data shaping should work just fine. On the other hand,

it’s not a feature that we should use lightly because it utilizes reflection

and dynamic typing to get things done.

As with all other functionalities, we need to be careful when and if we

should implement data shaping. Performance tests might come in handy

even if we do implement it.

224

In this section, we are going to talk about one of the most important

concepts in building RESTful APIs — HATEOAS and learn how to

implement HATEOAS in ASP.NET Core Web API. This part relies heavily on

the concepts we've implemented so far in paging, filtering, searching,

sorting, and especially data shaping and builds upon the foundations

we've put down in these parts.

HATEOAS (Hypermedia as the Engine of Application State) is a very

important REST constraint. Without it, a REST API cannot be considered

RESTful and many of the benefits we get by implementing a REST

architecture are unavailable.

Hypermedia refers to any kind of content that contains links to media

types such as documents, images, videos, etc.

REST architecture allows us to generate hypermedia links in our

responses dynamically and thus make navigation much easier. To put this

into perspective, think about a website that uses hyperlinks to help you

navigate to different parts of it. You can achieve the same effect with

HATEOAS in your REST API.

Imagine a website that has a home page and you land on it, but there are

no links anywhere. You need to scrape the website or find some other

way to navigate it to get to the content you want. We're not saying that

the website is the same as a REST API, but you get the point.

The power of being able to explore an API on your own can be very

useful.

Let's see how that works.

225

21.1.1 Typical Response with HATEOAS Implemented

Once we implement HATEOAS in our API, we are going to have this type

of response:

As you can see, we got the list of our employees and for each employee

all the actions we can perform on them. And so on...

So, it's a nice way to make an API self-discoverable and evolvable.

21.1.2 What is a Link?

According to RFC5988, a link is "a typed connection between two

resources that are identified by Internationalised Resource Identifiers

(IRIs)". Simply put, we use links to traverse the internet or rather the

resources on the internet.

Our responses contain an array of links, which consist of a few properties

according to the RFC:

• href - represents a target URI.

• rel - represents a link relation type, which means it describes how

the current context is related to the target resource.

https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987

226

• method - we need an HTTP method to know how to distinguish the

same target URIs.

21.1.3 Pros/Cons of Implementing HATEOAS

So, what are all the benefits we can expect when implementing

HATEOAS?

HATEOAS is not trivial to implement, but the rewards we reap are worth

it. Here are the things we can expect to get when we implement

HATEOAS:

• API becomes self-discoverable and explorable.

• A client can use the links to implement its logic, it becomes much

easier, and any changes that happen in the API structure are

directly reflected onto the client.

• The server drives the application state and URL structure and not

vice versa.

• The link relations can be used to point to the developer’s

documentation.

• Versioning through hyperlinks becomes easier.

• Reduced invalid state transaction calls.

• API is evolvable without breaking all the clients.

We can do so much with HATEOAS. But since it's not easy to implement

all these features, we should keep in mind the scope of our API and if we

need all this. There is a great difference between a high-volume public

API and some internal API that is needed to communicate between parts

of the same system.

That is more than enough theory for now. Let's get to work and see what

the concrete implementation of HATEOAS looks like.

227

Let’s begin with the concept we know so far, and that’s the link. In the

Entities project, we are going to create the LinkModels folder and

inside a new Link class:

public class Link
{
 public string? Href { get; set; }
 public string? Rel { get; set; }
 public string? Method { get; set; }

 public Link()
 { }

 public Link(string href, string rel, string method)
 {
 Href = href;
 Rel = rel;
 Method = method;
 }
}

Note that we have an empty constructor, too. We'll need that for XML

serialization purposes, so keep it that way.

Next, we need to create a class that will contain all of our links —

LinkResourceBase:

public class LinkResourceBase
{
 public LinkResourceBase()
 {}

 public List<Link> Links { get; set; } = new List<Link>();
}

And finally, since our response needs to describe the root of the

controller, we need a wrapper for our links:

public class LinkCollectionWrapper<T> : LinkResourceBase
{
 public List<T> Value { get; set; } = new List<T>();

 public LinkCollectionWrapper()
 { }

 public LinkCollectionWrapper(List<T> value) => Value = value;
}

228

This class might not make too much sense right now, but stay with us and

it will become clear later down the road. For now, let's just assume we

wrapped our links in another class for response representation purposes.

Since our response will contain links too, we need to extend the XML

serialization rules so that our XML response returns the properly

formatted links. Without this, we would get something like:

<Links>System.Collections.Generic.List`1[Entites.Models.Link]<Links>.

So, in the Entities/Models/Entity class, we need to extend the

WriteLinksToXml method to support links:

private void WriteLinksToXml(string key, object value, XmlWriter writer)
{
 writer.WriteStartElement(key);

 if (value.GetType() == typeof(List<Link>))
 {
 foreach (var val in value as List<Link>)
 {
 writer.WriteStartElement(nameof(Link));
 WriteLinksToXml(nameof(val.Href), val.Href, writer);
 WriteLinksToXml(nameof(val.Method), val.Method, writer);
 WriteLinksToXml(nameof(val.Rel), val.Rel, writer);
 writer.WriteEndElement();
 }
 }
 else
 {
 writer.WriteString(value.ToString());
 }

 writer.WriteEndElement();
}

So, we check if the type is List<Link>. If it is, we iterate through all the

links and call the method recursively for each of the properties: href,

method, and rel.

That's all we need for now. We have a solid foundation to implement

HATEOAS in our project.

When we generate links, HATEOAS strongly relies on having the ids

available to construct the links for the response. Data shaping, on the

229

other hand, enables us to return only the fields we want. So, if we want

only the name and age fields, the id field won’t be added. To solve that,

we have to apply some changes.

The first thing we are going to do is to add a ShapedEntity class in the

Entities/Models folder:

public class ShapedEntity
{
 public ShapedEntity()
 {
 Entity = new Entity();
 }

 public Guid Id { get; set; }
 public Entity Entity { get; set; }
}

With this class, we expose the Entity and the Id property as well.

Now, we have to modify the IDataShaper interface and the DataShaper

class by replacing all Entity usage with ShapedEntity.

In addition to that, we need to extend the FetchDataForEntity method

in the DataShaper class to get the id separately:

private ShapedEntity FetchDataForEntity(T entity, IEnumerable<PropertyInfo>
requiredProperties)
{
 var shapedObject = new ShapedEntity();

 foreach (var property in requiredProperties)
 {
 var objectPropertyValue = property.GetValue(entity);
 shapedObject.Entity.TryAdd(property.Name, objectPropertyValue);
 }

 var objectProperty = entity.GetType().GetProperty("Id");
 shapedObject.Id = (Guid)objectProperty.GetValue(entity);

 return shapedObject;
}

Finally, let’s add the LinkResponse class in the LinkModels folder; that

will help us with the response once we start with the HATEOAS

implementation:

public class LinkResponse

230

{
 public bool HasLinks { get; set; }

 public List<Entity> ShapedEntities { get; set; }

 public LinkCollectionWrapper<Entity> LinkedEntities { get; set; }

 public LinkResponse()
 {
 LinkedEntities = new LinkCollectionWrapper<Entity>();
 ShapedEntities = new List<Entity>();
 }
}

With this class, we are going to know whether our response has links. If it

does, we are going to use the LinkedEntities property. Otherwise, we

are going to use the ShapedEntities property.

What we want to do is to enable links in our response only if it is explicitly

asked for. To do that, we are going to introduce custom media types.

Before we start, let’s see how we can create a custom media type. A

custom media type should look something like this:

application/vnd.codemaze.hateoas+json. To compare it to the

typical json media type which we use by default: application/json.

So let’s break down the different parts of a custom media type:

• vnd – vendor prefix; it’s always there.

• codemaze – vendor identifier; we’ve chosen codemaze, because

why not?

• hateoas – media type name.

• json – suffix; we can use it to describe if we want json or an XML

response, for example.

Now, let’s implement that in our application.

21.4.1 Registering Custom Media Types

First, we want to register our new custom media types in the middleware.

Otherwise, we’ll just get a 406 Not Acceptable message.

231

Let’s add a new extension method to our ServiceExtensions:

public static void AddCustomMediaTypes(this IServiceCollection services)
{
 services.Configure<MvcOptions>(config =>
 {
 var systemTextJsonOutputFormatter = config.OutputFormatters

 .OfType<SystemTextJsonOutputFormatter>()?.FirstOrDefault();

 if (systemTextJsonOutputFormatter != null)
 {
 systemTextJsonOutputFormatter.SupportedMediaTypes
 .Add("application/vnd.codemaze.hateoas+json");
 }

 var xmlOutputFormatter = config.OutputFormatters
 .OfType<XmlDataContractSerializerOutputFormatter>()?
 .FirstOrDefault();

 if (xmlOutputFormatter != null)
 {
 xmlOutputFormatter.SupportedMediaTypes
 .Add("application/vnd.codemaze.hateoas+xml");
 }
 });
}

We are registering two new custom media types for the JSON and XML

output formatters. This ensures we don’t get a 406 Not Acceptable

response.

Now, we have to add that to the Program class, just after the

AddControllers method:

builder.Services.AddCustomMediaTypes();

Excellent. The registration process is done.

21.4.2 Implementing a Media Type Validation Filter

Now, since we’ve implemented custom media types, we want our Accept

header to be present in our requests so we can detect when the user

requested the HATEOAS-enriched response.

To do that, we’ll implement an ActionFilter in the Presentation project

inside the ActionFilters folder, which will validate our Accept header

and media types:

232

public class ValidateMediaTypeAttribute : IActionFilter
{
 public void OnActionExecuting(ActionExecutingContext context)
 {
 var acceptHeaderPresent = context.HttpContext
 .Request.Headers.ContainsKey("Accept");

 if (!acceptHeaderPresent)
 {
 context.Result = new BadRequestObjectResult($"Accept header is
missing.");
 return;
 }

 var mediaType = context.HttpContext
 .Request.Headers["Accept"].FirstOrDefault();

 if (!MediaTypeHeaderValue.TryParse(mediaType, out MediaTypeHeaderValue?
outMediaType))
 {
 context.Result = new BadRequestObjectResult($"Media type not
present. Please add Accept header with the required media type.");
 return;
 }

 context.HttpContext.Items.Add("AcceptHeaderMediaType", outMediaType);
 }

 public void OnActionExecuted(ActionExecutedContext context){}
}

We check for the existence of the Accept header first. If it’s not present,

we return BadRequest. If it is, we parse the media type — and if there is

no valid media type present, we return BadRequest.

Once we’ve passed the validation checks, we pass the parsed media type

to the HttpContext of the controller.

Now, we have to register the filter in the Program class:

builder.Services.AddScoped<ValidateMediaTypeAttribute>();

And to decorate the GetEmployeesForCompany action:

[HttpGet]
[ServiceFilter(typeof(ValidateMediaTypeAttribute))]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)

Great job.

Finally, we can work on the HATEOAS implementation.

233

We are going to start by creating a new interface in the Contracts

project:

public interface IEmployeeLinks
{
 LinkResponse TryGenerateLinks(IEnumerable<EmployeeDto> employeesDto,
 string fields, Guid companyId, HttpContext httpContext);
}

Currently, you will get the error about HttpContext, but we will solve

that a bit later.

Let’s continue by creating a new Utility folder in the main project and

the EmployeeLinks class in it. Let’s start by adding the required

dependencies inside the class:

public class EmployeeLinks : IEmployeeLinks
{
 private readonly LinkGenerator _linkGenerator;
 private readonly IDataShaper<EmployeeDto> _dataShaper;

 public EmployeeLinks(LinkGenerator linkGenerator, IDataShaper<EmployeeDto>
dataShaper)
 {
 _linkGenerator = linkGenerator;
 _dataShaper = dataShaper;
 }

}

We are going to use LinkGenerator to generate links for our responses

and IDataShaper to shape our data. As you can see, the shaping logic is

now extracted from the EmployeeService class, which we will modify a

bit later.

After dependencies, we are going to add the first method:

public LinkResponse TryGenerateLinks(IEnumerable<EmployeeDto> employeesDto, string
fields, Guid companyId, HttpContext httpContext)
{
 var shapedEmployees = ShapeData(employeesDto, fields);

 if (ShouldGenerateLinks(httpContext))
 return ReturnLinkdedEmployees(employeesDto, fields, companyId, httpContext,
shapedEmployees);

 return ReturnShapedEmployees(shapedEmployees);

234

}

So, our method accepts four parameters. The employeeDto collection,

the fields that are going to be used to shape the previous collection,

companyId because routes to the employee resources contain the Id from

the company, and httpContext which holds information about media

types.

The first thing we do is shape our collection. Then if the httpContext

contains the required media type, we add links to the response. On the

other hand, we just return our shaped data.

Of course, we have to add those not implemented methods:

private List<Entity> ShapeData(IEnumerable<EmployeeDto> employeesDto, string fields)
=>
 _dataShaper.ShapeData(employeesDto, fields)
 .Select(e => e.Entity)
 .ToList();

The ShapeData method executes data shaping and extracts only the

entity part without the Id property.

Let’s add two additional methods:

private bool ShouldGenerateLinks(HttpContext httpContext)
{
 var mediaType = (MediaTypeHeaderValue)httpContext.Items["AcceptHeaderMediaType"];

 return mediaType.SubTypeWithoutSuffix.EndsWith("hateoas",
StringComparison.InvariantCultureIgnoreCase);
}

private LinkResponse ReturnShapedEmployees(List<Entity> shapedEmployees) =>
 new LinkResponse { ShapedEntities = shapedEmployees };

In the ShouldGenerateLinks method, we extract the media type from

the httpContext. If that media type ends with hateoas, the method

returns true; otherwise, it returns false. The ReturnShapedEmployees

method just returns a new LinkResponse with the ShapedEntities

property populated. By default, the HasLinks property is false.

235

After these methods, we have to add the ReturnLinkedEmployees

method as well:

private LinkResponse ReturnLinkdedEmployees(IEnumerable<EmployeeDto> employeesDto,
string fields, Guid companyId, HttpContext httpContext, List<Entity> shapedEmployees)
{
 var employeeDtoList = employeesDto.ToList();

 for (var index = 0; index < employeeDtoList.Count(); index++)
 {
 var employeeLinks = CreateLinksForEmployee(httpContext, companyId,
employeeDtoList[index].Id, fields);
 shapedEmployees[index].Add("Links", employeeLinks);
 }

 var employeeCollection = new LinkCollectionWrapper<Entity>(shapedEmployees);
 var linkedEmployees = CreateLinksForEmployees(httpContext, employeeCollection);

 return new LinkResponse { HasLinks = true, LinkedEntities = linkedEmployees };
}

In this method, we iterate through each employee and create links for it

by calling the CreateLinksForEmployee method. Then, we just add it to

the shapedEmployees collection. After that, we wrap the collection and

create links that are important for the entire collection by calling the

CreateLinksForEmployees method.

Finally, we have to add those two new methods that create links:

private List<Link> CreateLinksForEmployee(HttpContext httpContext, Guid companyId,
Guid id, string fields = "")
{
 var links = new List<Link>
 {
 new Link(_linkGenerator.GetUriByAction(httpContext, "GetEmployeeForCompany",
values: new { companyId, id, fields }),
 "self",
 "GET"),
 new Link(_linkGenerator.GetUriByAction(httpContext,
"DeleteEmployeeForCompany", values: new { companyId, id }),
 "delete_employee",
 "DELETE"),
 new Link(_linkGenerator.GetUriByAction(httpContext,
"UpdateEmployeeForCompany", values: new { companyId, id }),
 "update_employee",
 "PUT"),
 new Link(_linkGenerator.GetUriByAction(httpContext,
"PartiallyUpdateEmployeeForCompany", values: new { companyId, id }),
 "partially_update_employee",
 "PATCH")
 };

 return links;

236

}

private LinkCollectionWrapper<Entity> CreateLinksForEmployees(HttpContext httpContext,
LinkCollectionWrapper<Entity> employeesWrapper)
{
 employeesWrapper.Links.Add(new Link(_linkGenerator.GetUriByAction(httpContext,
"GetEmployeesForCompany", values: new { }),
 "self",
 "GET"));

 return employeesWrapper;
}

There are a few things to note here.

We need to consider the fields while creating the links since we might be

using them in our requests. We are creating the links by using the

LinkGenerator‘s GetUriByAction method — which accepts

HttpContext, the name of the action, and the values that need to be

used to make the URL valid. In the case of the EmployeesController, we

send the company id, employee id, and fields.

And that is it regarding this class.

Now, we have to register this class in the Program class:

builder.Services.AddScoped<IEmployeeLinks, EmployeeLinks>();

After the service registration, we are going to create a new record inside

the Entities/LinkModels folder:

public record LinkParameters(EmployeeParameters EmployeeParameters, HttpContext

Context);

We are going to use this record to transfer required parameters from our

controller to the service layer and avoid the installation of an additional

NuGet package inside the Service and Service.Contracts projects.

Also for this to work, we have to add the reference to the Shared project,

install the Microsoft.AspNetCore.Mvc.Abstractions package needed

for HttpContext, and add required using directives:

using Microsoft.AspNetCore.Http;
using Shared.RequestFeatures;

237

Now, we can return to the IEmployeeLinks interface and fix that error

by importing the required namespace. As you can see, we didn’t have to

install the Abstractions NuGet package since Contracts references

Entities. If Visual Studio keeps asking for the package installation, just

remove the Entities reference from the Contracts project and add it

again.

Once that is done, we can modify the EmployeesController:

[HttpGet]
[ServiceFilter(typeof(ValidateMediaTypeAttribute))]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)
{
 var linkParams = new LinkParameters(employeeParameters, HttpContext);

 var pagedResult = await _service.EmployeeService.GetEmployeesAsync(companyId,
 linkParams, trackChanges: false);

 Response.Headers.Add("X-Pagination",
JsonSerializer.Serialize(pagedResult.metaData));

 return Ok(pagedResult.employees);
}

So, we create the linkParams variable and send it instead of

employeeParameters to the service method.

Of course, this means we have to modify the IEmployeeService

interface:

Task<(LinkResponse linkResponse, MetaData metaData)> GetEmployeesAsync(Guid companyId,
 LinkParameters linkParameters, bool trackChanges);

Now the Tuple return type has the LinkResponse as the first field and

also we have LinkParameters as the second parameter.

After we modified our interface, let’s modify the EmployeeService class:

private readonly IRepositoryManager _repository;
private readonly ILoggerManager _logger;
private readonly IMapper _mapper;
private readonly IEmployeeLinks _employeeLinks;

public EmployeeService(IRepositoryManager repository, ILoggerManager logger,
 IMapper mapper, IEmployeeLinks employeeLinks)
{

238

 _repository = repository;
 _logger = logger;
 _mapper = mapper;
 _employeeLinks = employeeLinks;
}

public async Task<(LinkResponse linkResponse, MetaData metaData)> GetEmployeesAsync
 (Guid companyId, LinkParameters linkParameters, bool trackChanges)
{
 if (!linkParameters.EmployeeParameters.ValidAgeRange)
 throw new MaxAgeRangeBadRequestException();

 await CheckIfCompanyExists(companyId, trackChanges);

 var employeesWithMetaData = await _repository.Employee
 .GetEmployeesAsync(companyId, linkParameters.EmployeeParameters,
trackChanges);

 var employeesDto =
_mapper.Map<IEnumerable<EmployeeDto>>(employeesWithMetaData);
 var links = _employeeLinks.TryGenerateLinks(employeesDto,
linkParameters.EmployeeParameters.Fields,
 companyId, linkParameters.Context);

 return (linkResponse: links, metaData: employeesWithMetaData.MetaData);
}

First, we don’t have the DataShaper injected anymore since this logic is

now inside the EmployeeLinks class. Then, we change the method

signature, fix a couple of errors since now we have linkParameters and

not employeeParameters as a parameter, and we call the

TryGenerateLinks method, which will return LinkResponse as a result.

Finally, we construct our Tuple and return it to the caller.

Now we can return to our controller and modify the

GetEmployeesForCompany action:

[HttpGet]
[ServiceFilter(typeof(ValidateMediaTypeAttribute))]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId,
 [FromQuery] EmployeeParameters employeeParameters)
{
 var linkParams = new LinkParameters(employeeParameters, HttpContext);

 var result = await _service.EmployeeService.GetEmployeesAsync(companyId,
 linkParams, trackChanges: false);

 Response.Headers.Add("X-Pagination",
JsonSerializer.Serialize(result.metaData));

239

 return result.linkResponse.HasLinks ? Ok(result.linkResponse.LinkedEntities) :
 Ok(result.linkResponse.ShapedEntities);
}

We change the pageResult variable name to result and use it to return

the proper response to the client. If our result has links, we return linked

entities, otherwise, we return shaped ones.

Before we test this, we shouldn’t forget to modify the ServiceManager’s

constructor:

public ServiceManager(IRepositoryManager repositoryManager, ILoggerManager logger,
 IMapper mapper, IEmployeeLinks employeeLinks)
{
 _companyService = new Lazy<ICompanyService>(() =>
 new CompanyService(repositoryManager, logger, mapper));
 _employeeService = new Lazy<IEmployeeService>(() =>
 new EmployeeService(repositoryManager, logger, mapper, employeeLinks));
}

Excellent. We can test this now:

240

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=1&pageSize=4&minAge=26&maxAge=32&searchTerm=A&orderBy=name
desc&fields=name,age

You can test this with the xml media type as well (we have prepared the

request in Postman for you).

241

In one of the previous chapters (Method Safety and Method

Idempotency), we talked about different HTTP requests. Until now, we

have been working with all request types except OPTIONS and HEAD. So,

let’s cover them as well.

The Options request can be used to request information on the

communication options available upon a certain URI. It allows consumers

to determine the options or different requirements associated with a

resource. Additionally, it allows us to check the capabilities of a server

without forcing action to retrieve a resource.

Basically, Options should inform us whether we can Get a resource or

execute any other action (POST, PUT, or DELETE). All of the options

should be returned in the Allow header of the response as a comma-

separated list of methods.

Let’s see how we can implement the Options request in our example.

We are going to implement this request in the CompaniesController —

so, let’s open it and add a new action:

[HttpOptions]
public IActionResult GetCompaniesOptions()
{
 Response.Headers.Add("Allow", "GET, OPTIONS, POST");

 return Ok();
}

We have to decorate our action with the HttpOptions attribute. As we

said, the available options should be returned in the Allow response

header, and that is exactly what we are doing here. The URI for this

action is /api/companies, so we state which actions can be executed for

242

that certain URI. Finally, the Options request should return the 200 OK

status code. We have to understand that the response, if it is empty,

must include the content-length field with the value of zero. We don’t

have to add it by ourselves because ASP.NET Core takes care of that for

us.

Let’s try this:

https://localhost:5001/api/companies

As you can see, we are getting a 200 OK response. Let’s inspect the

Headers tab:

Everything works as expected.

Let’s move on.

243

The Head is identical to Get but without a response body. This type of

request could be used to obtain information about validity, accessibility,

and recent modifications of the resource.

Let’s open the EmployeesController, because that’s where we are

going to implement this type of request. As we said, the Head request

must return the same response as the Get request — just without the

response body. That means it should include the paging information in the

response as well.

Now, you may think that we have to write a completely new action and

also repeat all the code inside, but that is not the case. All we have to do

is add the HttpHead attribute below HttpGet:

[HttpGet]
[HttpHead]
public async Task<IActionResult> GetEmployeesForCompany(Guid companyId, [FromQuery]

EmployeeParameters employeeParameters)

We can test this now:

https://localhost:5001/api/companies/C9D4C053-49B6-410C-BC78-
2D54A9991870/employees?pageNumber=2&pageSize=2

As you can see, we receive a 200 OK status code with the empty body.

Let’s check the Headers part:

244

You can see the X-Pagination link included in the Headers part of the

response. Additionally, all the parts of the X-Pagination link are populated

— which means that our code was successfully executed, but the

response body hasn’t been included.

Excellent.

We now have support for the Http OPTIONS and HEAD requests.

245

In this section, we are going to create a starting point for the consumers

of our API. This starting point is also known as the Root Document. The

Root Document is the place where consumers can learn how to interact

with the rest of the API.

This document should be created at the api root, so let’s start by creating

a new controller:

[Route("api")]
[ApiController]
public class RootController : ControllerBase
{
}

We are going to generate links towards the API actions. Therefore, we

have to inject LinkGenerator:

[Route("api")]
[ApiController]
public class RootController : ControllerBase
{
 private readonly LinkGenerator _linkGenerator;

 public RootController(LinkGenerator linkGenerator) => _linkGenerator =
linkGenerator;
}

In this controller, we only need a single action, GetRoot, which will be

executed with the GET request on the /api URI.

There are several links that we are going to create in this action. The link

to the document itself and links to actions available on the URIs at the

root level (actions from the Companies controller). We are not creating

links to employees, because they are children of the company — and in

our API if we want to fetch employees, we have to fetch the company

first.

If we inspect our CompaniesController, we can see that GetCompanies

and CreateCompany are the only actions on the root URI level

(api/companies). Therefore, we are going to create links only to them.

246

Before we start with the GetRoot action, let’s add a name for the

CreateCompany and GetCompanies actions in the

CompaniesController:

[HttpGet(Name = "GetCompanies")]
public async Task<IActionResult> GetCompanies()

[HttpPost(Name = "CreateCompany")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> CreateCompany([FromBody]CompanyForCreationDto

company)

We are going to use the Link class to generate links:

public class Link
{
 public string Href { get; set; }
 public string Rel { get; set; }
 public string Method { get; set; }
 …
}

This class contains all the required properties to describe our actions while

creating links in the GetRoot action. The Href property defines the URI

to the action, the Rel property defines the identification of the action

type, and the Method property defines which HTTP method should be

used for that action.

Now, we can create the GetRoot action:

[HttpGet(Name = "GetRoot")]
public IActionResult GetRoot([FromHeader(Name = "Accept")] string mediaType)
{
 if(mediaType.Contains("application/vnd.codemaze.apiroot"))
 {
 var list = new List<Link>
 {
 new Link
 {
 Href = _linkGenerator.GetUriByName(HttpContext, nameof(GetRoot), new
{}),
 Rel = "self",
 Method = "GET"
 },
 new Link
 {
 Href = _linkGenerator.GetUriByName(HttpContext, "GetCompanies", new
{}),
 Rel = "companies",
 Method = "GET"
 },
 new Link

247

 {
 Href = _linkGenerator.GetUriByName(HttpContext, "CreateCompany", new
{}),
 Rel = "create_company",
 Method = "POST"
 }
 };

 return Ok(list);
 }

 return NoContent();
}

In this action, we generate links only if a custom media type is provided

from the Accept header. Otherwise, we return NoContent(). To generate

links, we use the GetUriByName method from the LinkGenerator class.

That said, we have to register our custom media types for the json and

xml formats. To do that, we are going to extend the

AddCustomMediaTypes extension method:

public static void AddCustomMediaTypes(this IServiceCollection services)
{
 services.Configure<MvcOptions>(config =>
 {
 var systemTextJsonOutputFormatter = config.OutputFormatters
 .OfType<SystemTextJsonOutputFormatter>()?.FirstOrDefault();

 if (systemTextJsonOutputFormatter != null)
 {
 systemTextJsonOutputFormatter.SupportedMediaTypes
 .Add("application/vnd.codemaze.hateoas+json");
 systemTextJsonOutputFormatter.SupportedMediaTypes
 .Add("application/vnd.codemaze.apiroot+json");
 }

 var xmlOutputFormatter = config.OutputFormatters
 .OfType<XmlDataContractSerializerOutputFormatter>()?
 .FirstOrDefault();

 if (xmlOutputFormatter != null)
 {
 xmlOutputFormatter.SupportedMediaTypes
 .Add("application/vnd.codemaze.hateoas+xml");
 xmlOutputFormatter.SupportedMediaTypes
 .Add("application/vnd.codemaze.apiroot+xml");
 }
 });
}

We can now inspect our result:

248

https://localhost:5001/api

This works great.

Let’s test what is going to happen if we don’t provide the custom media

type:

249

https://localhost:5001/api

Well, we get the 204 No Content message as expected.

Of course, you can test the xml request as well:

https://localhost:5001/api

Great.

Now we can move on to the versioning chapter.

250

As our project grows, so does our knowledge; therefore, we have a better

understanding of how to improve our system. Moreover, requirements

change over time — thus, our API has to change as well.

When we implement some breaking changes, we want to ensure that we

don’t do anything that will cause our API consumers to change their code.

Those breaking changes could be:

• Renaming fields, properties, or resource URIs.

• Changes in the payload structure.

• Modifying response codes or HTTP Verbs.

• Redesigning our API endpoints.

If we have to implement some of these changes in the already working

API, the best way is to apply versioning to prevent breaking our API for

the existing API consumers.

There are different ways to achieve API versioning and there is no

guidance that favors one way over another. So, we are going to show you

different ways to version an API, and you can choose which one suits you

best.

In order to start, we have to install the

Microsoft.AspNetCore.Mvc.Versioning library in the Presentation

project:

This library is going to help us a lot in versioning our API.

251

After the installation, we have to add the versioning service in the service

collection and configure it. So, let’s create a new extension method in the

ServiceExtensions class:

public static void ConfigureVersioning(this IServiceCollection services)
{
 services.AddApiVersioning(opt =>
 {
 opt.ReportApiVersions = true;
 opt.AssumeDefaultVersionWhenUnspecified = true;
 opt.DefaultApiVersion = new ApiVersion(1, 0);
 });
}

With the AddApiVersioning method, we are adding service API

versioning to the service collection. We are also using a couple of

properties to initially configure versioning:

• ReportApiVersions adds the API version to the response header.

• AssumeDefaultVersionWhenUnspecified does exactly that. It

specifies the default API version if the client doesn’t send one.

• DefaultApiVersion sets the default version count.

After that, we are going to use this extension in the Program class:

builder.Services.ConfigureVersioning();

API versioning is installed and configured, and we can move on.

Before we continue, let’s create another controller:

CompaniesV2Controller (for example’s sake), which will represent a

new version of our existing one. It is going to have just one Get action:

[ApiVersion("2.0")]
[Route("api/companies")]
[ApiController]
public class CompaniesV2Controller : ControllerBase
{
 private readonly IServiceManager _service;

 public CompaniesV2Controller(IServiceManager service) => _service = service;

 [HttpGet]

252

 public async Task<IActionResult> GetCompanies()
 {
 var companies = await _service.CompanyService
 .GetAllCompaniesAsync(trackChanges: false);

 return Ok(companies);
 }
}

By using the [ApiVersion(“2.0”)] attribute, we are stating that this

controller is version 2.0.

After that, let’s version our original controller as well:

[ApiVersion("1.0")]
[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase

If you remember, we configured versioning to use 1.0 as a default API

version (opt.AssumeDefaultVersionWhenUnspecified = true;). Therefore, if a client

doesn’t state the required version, our API will use this one:

https://localhost:5001/api/companies

If we inspect the Headers tab of the response, we are going to find that

the controller V1 was assigned for this request:

253

Of course, you can place a breakpoint in GetCompanies actions in both

controllers and confirm which endpoint was hit.

Now, let’s see how we can provide a version inside the request.

24.2.1 Using Query String

We can provide a version within the request by using a query string in the

URI. Let’s test this with an example:

https://localhost:5001/api/companies?api-version=2.0

So, we get the same response body.

But, we can inspect the response headers to make sure that version 2.0 is

used:

254

24.2.2 Using URL Versioning

For URL versioning to work, we have to modify the route in our controller:

[ApiVersion("2.0")]
[Route("api/{v:apiversion}/companies")]
[ApiController]
public class CompaniesV2Controller : ControllerBase

Also, let’s just slightly modify the GetCompanies action in this controller,

so we could see the difference in Postman by just inspecting the response

body:

[HttpGet]
public async Task<IActionResult> GetCompanies()
{
 var companies = await _service.CompanyService
 .GetAllCompaniesAsync(trackChanges: false);

 var companiesV2 = companies.Select(x => $"{x.Name} V2");

 return Ok(companiesV2);
}

We are creating a projection from our companies collection by iterating

through each element, modifying the Name property to contain the V2

suffix, and extracting it to a new collection companiesV2.

Now, we can test it:

255

https://localhost:5001/api/2.0/companies

One thing to mention, we can’t use the query string pattern to call the

companies v2 controller anymore. We can use it for version 1.0, though.

24.2.3 HTTP Header Versioning

If we don’t want to change the URI of the API, we can send the version in

the HTTP Header. To enable this, we have to modify our configuration:

public static void ConfigureVersioning(this IServiceCollection services)
{
 services.AddApiVersioning(opt =>
 {
 opt.ReportApiVersions = true;
 opt.AssumeDefaultVersionWhenUnspecified = true;
 opt.DefaultApiVersion = new ApiVersion(1, 0);
 opt.ApiVersionReader = new HeaderApiVersionReader("api-version");
 });
}

And to revert the Route change in our controller:

[ApiVersion("2.0")]
[Route("api/companies")]

Let’s test these changes:

256

https://localhost:5001/api/companies

If we want to support query string versioning, we should use a new

QueryStringApiVersionReader class instead:

opt.ApiVersionReader = new QueryStringApiVersionReader("api-version");

24.2.4 Deprecating Versions

If we want to deprecate version of an API, but don’t want to remove it

completely, we can use the Deprecated property for that purpose:

[ApiVersion("2.0", Deprecated = true)]

We will be able to work with that API, but we will be notified that this

version is deprecated:

257

24.2.5 Using Conventions

If we have a lot of versions of a single controller, we can assign these

versions in the configuration instead:

services.AddApiVersioning(opt =>
{
 opt.ReportApiVersions = true;
 opt.AssumeDefaultVersionWhenUnspecified = true;
 opt.DefaultApiVersion = new ApiVersion(1, 0);
 opt.ApiVersionReader = new HeaderApiVersionReader("api-version");
 opt.Conventions.Controller<CompaniesController>()
 .HasApiVersion(new ApiVersion(1, 0));
 opt.Conventions.Controller<CompaniesV2Controller>()
 .HasDeprecatedApiVersion(new ApiVersion(2, 0));
});

Now, we can remove the [ApiVersion] attribute from the controllers.

Of course, there are a lot more features that the installed library provides

for us — but with the mentioned ones, we have covered quite enough to

version our APIs.

258

In this section, we are going to learn about caching resources. Caching

can improve the quality and performance of our app a lot, but again, it is

something first we need to look at as soon as some bug appears. To cover

resource caching, we are going to work with HTTP Cache. Additionally, we

are going to talk about cache expiration, validation, and cache-control

headers.

We want to use cache in our app because it can significantly improve

performance. Otherwise, it would be useless. The main goal of caching is

to eliminate the need to send requests towards the API in many cases and

also to send full responses in other cases.

To reduce the number of sent requests, caching uses the expiration

mechanism, which helps reduce network round trips. Furthermore, to

eliminate the need to send full responses, the cache uses the validation

mechanism, which reduces network bandwidth. We can now see why

these two are so important when caching resources.

The cache is a separate component that accepts requests from the API’s

consumer. It also accepts the response from the API and stores that

response if they are cacheable. Once the response is stored, if a

consumer requests the same response again, the response from the

cache should be served.

But the cache behaves differently depending on what cache type is used.

25.1.1 Cache Types

There are three types of caches: Client Cache, Gateway Cache, and Proxy

Cache.

259

The client cache lives on the client (browser); thus, it is a private cache.

It is private because it is related to a single client. So every client

consuming our API has a private cache.

The gateway cache lives on the server and is a shared cache. This cache

is shared because the resources it caches are shared over different

clients.

The proxy cache is also a shared cache, but it doesn’t live on the server

nor the client side. It lives on the network.

With the private cache, if five clients request the same response for the

first time, every response will be served from the API and not from the

cache. But if they request the same response again, that response should

come from the cache (if it’s not expired). This is not the case with the

shared cache. The response from the first client is going to be cached,

and then the other four clients will receive the cached response if they

request it.

25.1.2 Response Cache Attribute

So, to cache some resources, we have to know whether or not it’s

cacheable. The response header helps us with that. The one that is used

most often is Cache-Control: Cache-Control: max-age=180. This states

that the response should be cached for 180 seconds. For that, we use the

ResponseCache attribute. But of course, this is just a header. If we want

to cache something, we need a cache-store. For our example, we are

going to use Response caching middleware provided by ASP.NET Core.

Before we start, let’s open Postman and modify the settings to support

caching:

260

In the General tab under Headers, we are going to turn off the Send no-

cache header:

Great. We can move on.

Let’s assume we want to use the ResponseCache attribute to cache the

result from the GetCompany action:

It is obvious that we can work with different properties in the

ResponseCache attribute — but for now, we are going to use Duration

only:

[HttpGet("{id}", Name = "CompanyById")]
[ResponseCache(Duration = 60)]
public async Task<IActionResult> GetCompany(Guid id)

And that is it. We can inspect our result now:

261

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see that the Cache-Control header was created with a public

cache and a duration of 60 seconds. But as we said, this is just a header;

we need a cache-store to cache the response. So, let’s add one.

The first thing we are going to do is add an extension method in the

ServiceExtensions class:

public static void ConfigureResponseCaching(this IServiceCollection services) =>

services.AddResponseCaching();

We register response caching in the IOC container, and now we have to

call this method in the Program class:

builder.Services.ConfigureResponseCaching();

Additionally, we have to add caching to the application middleware right

below UseCors() because Microsoft recommends having UseCors before

UseResponseCaching, and as we learned in the section 1.8, order is very

important for the middleware execution:

app.UseCors("CorsPolicy");
app.UseResponseCaching();

Now, we can start our application and send the same GetCompany

request. It will generate the Cache-Control header. After that, before 60

262

seconds pass, we are going to send the same request and inspect the

headers:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see the additional Age header that indicates the number of

seconds the object has been stored in the cache. Basically, it means that

we received our second response from the cache-store.

Another way to confirm that is to wait 60 seconds to pass. After that, you

can send the request and inspect the console. You will see the SQL query

generated. But if you send a second request, you will find no new logs for

the SQL query. That’s because we are receiving our response from the

cache.

Additionally, with every subsequent request within 60 seconds, the Age

property will increment. After the expiration period passes, the response

will be sent from the API, cached again, and the Age header will not be

generated. You will also see new logs in the console.

Furthermore, we can use cache profiles to apply the same rules to

different resources. If you look at the picture that shows all the properties

we can use with ResponseCacheAttribute, you can see that there are a

lot of properties. Configuring all of them on top of the action or controller

263

could lead to less readable code. Therefore, we can use CacheProfiles

to extract that configuration.

To do that, we are going to modify the AddControllers method:

builder.Services.AddControllers(config =>
{
 config.RespectBrowserAcceptHeader = true;
 config.ReturnHttpNotAcceptable = true;
 config.InputFormatters.Insert(0, GetJsonPatchInputFormatter());
 config.CacheProfiles.Add("120SecondsDuration", new CacheProfile { Duration =
120 });
})...

We only set up Duration, but you can add additional properties as well.

Now, let’s implement this profile on top of the Companies controller:

[Route("api/companies")]
[ApiController]
[ResponseCache(CacheProfileName = "120SecondsDuration")]

We have to mention that this cache rule will apply to all the actions inside

the controller except the ones that already have the ResponseCache

attribute applied.

That said, once we send the request to GetCompany, we will still have the

maximum age of 60. But once we send the request to GetCompanies:

https://localhost:5001/api/companies

There you go. Now, let’s talk some more about the Expiration and

Validation models.

264

The expiration model allows the server to recognize whether or not the

response has expired. As long as the response is fresh, it will be served

from the cache. To achieve that, the Cache-Control header is used. We

have seen this in the previous example.

Let’s look at the diagram to see how caching works:

So, the client sends a request to get companies. There is no cached

version of that response; therefore, the request is forwarded to the API.

The API returns the response with the Cache-Control header with a 10-

minute expiration period; it is being stored in the cache and forwarded to

the client.

If after two minutes, the same response has been requested:

265

We can see that the cached response was served with an additional Age

header with a value of 120 seconds or two minutes. If this is a private

cache, that is where it stops. That’s because the private cache is stored in

the browser and another client will hit the API for the same response. But

if this is a shared cache and another client requests the same response

after an additional two minutes:

The response is served from the cache with an additional two minutes

added to the Age header.

We saw how the Expiration model works, now let’s inspect the Validation

model.

266

The validation model is used to validate the freshness of the response. So

it checks if the response is cached and still usable. Let’s assume we have

a shared cached GetCompany response for 30 minutes. If someone

updates that company after five minutes, without validation the client

would receive the wrong response for another 25 minutes — not the

updated one.

To prevent that, we use validators. The HTTP standard advises using Last-

Modified and ETag validators in combination if possible.

Let’s see how validation works:

So again, the client sends a request, it is not cached, and so it is

forwarded to the API. Our API returns the response that contains the Etag

and Last-Modified headers. That response is cached and forwarded to the

client.

After two minutes, the client sends the same request:

267

So, the same request is sent, but we don’t know if the response is valid.

Therefore, the cache forwards that request to the API with the additional

headers If-None-Match — which is set to the Etag value — and If-

Modified-Since — which is set to the Last-Modified value. If this request

checks out against the validators, our API doesn’t have to recreate the

same response; it just sends a 304 Not Modified status. After that, the

regular response is served from the cache. Of course, if this doesn’t check

out, a new response must be generated.

That brings us to the conclusion that for the shared cache if the response

hasn’t been modified, that response has to be generated only once.

Let’s see all of these in an example.

To support validation, we are going to use the Marvin.Cache.Headers

library. This library supports HTTP cache headers like Cache-Control,

Expires, Etag, and Last-Modified and also implements validation and

expiration models.

So, let’s install the Marvin.Cache.Headers library in the Presentation

project, which will enable the reference for the main project as well. We

are going to need it in both projects.

268

Now, let’s modify the ServiceExtensions class:

public static void ConfigureHttpCacheHeaders(this IServiceCollection services) =>

services.AddHttpCacheHeaders();

We are going to add additional configuration later.

Then, let’s modify the Program class:

builder.Services.ConfigureResponseCaching();
builder.Services.ConfigureHttpCacheHeaders();

And finally, let’s add HttpCacheHeaders to the request pipeline:

app.UseResponseCaching();
app.UseHttpCacheHeaders();

To test this, we have to remove or comment out ResponseCache

attributes in the CompaniesController. The installed library will provide

that for us.

Now, let’s send the GetCompany request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

We can see that we have all the required headers generated. The default

expiration is set to 60 seconds and if we send this request one more time,

we are going to get an additional Age header.

25.6.1 Configuration

We can globally configure our expiration and validation headers. To do

that, let’s modify the ConfigureHttpCacheHeaders method:

public static void ConfigureHttpCacheHeaders(this IServiceCollection services) =>
 services.AddHttpCacheHeaders(

269

 (expirationOpt) =>
 {
 expirationOpt.MaxAge = 65;
 expirationOpt.CacheLocation = CacheLocation.Private;
 },
 (validationOpt) =>
 {
 validationOpt.MustRevalidate = true;
 });

After that, we are going to send the same request for a single company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see that the changes are implemented. Now, this is a private

cache with an age of 65 seconds. Because it is a private cache, our API

won’t cache it. You can check the console again and see the SQL logs for

each request you send.

Other than global configuration, we can apply it on the resource level (on

action or controller). The overriding rules are the same. Configuration on

the action level will override the configuration on the controller or global

level. Also, the configuration on the controller level will override the global

level configuration.

270

To apply a resource level configuration, we have to use the

HttpCacheExpiration and HttpCacheValidation attributes:

[HttpGet("{id}", Name = "CompanyById")]
[HttpCacheExpiration(CacheLocation = CacheLocation.Public, MaxAge = 60)]
[HttpCacheValidation(MustRevalidate = false)]
public async Task<IActionResult> GetCompany(Guid id)

Once we send the GetCompanies request, we are going to see global

values:

But if we send the GetCompany request:

You can see that it is public and you can send the same request again to

see the Age header for the cached response.

First, we have to mention that the ResponseCaching library doesn’t

correctly implement the validation model. Also, using the authorization

header is a problem. We are going to show you alternatives later. But for

now, we can simulate how validation with Etag should work.

So, let’s restart our app to have a fresh application, and send a

GetCompany request one more time. In a header, we are going to get our

ETag. Let’s copy the Etag’s value and use another GetCompany request:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

271

We send the If-None-Match tag with the value of our Etag. And we can

see as a result we get 304 Not Modified.

But this is not a valid situation. As we said, the client should send a valid

request and it is up to the Cache to add an If-None-Match tag. In our

example, which we sent from Postman, we simulated that. Then, it is up

to the server to return a 304 message to the cache and then the cache

should return the same response.

But anyhow, we have managed to show you how validation works.

If we update that company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

And then send the same request with the same If-None-Match value:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

You can see that we get 200 OK and if we inspect Headers, we will find

that ETag is different because the resource changed:

272

So, we saw how validation works and also concluded that the

ResponseCaching library is not that good for validation — it is much

better for just expiration.

But then, what are the alternatives?

There are a lot of alternatives, such as:

• Varnish - https://varnish-cache.org/

• Apache Traffic Server - https://trafficserver.apache.org/

• Squid - http://www.squid-cache.org/

They implement caching correctly. And if you want to have expiration and

validation, you should combine them with the Marvin library and you are

good to go. But those servers are not that trivial to implement.

There is another option: CDN (Content Delivery Network). CDN uses HTTP

caching and is used by various sites on the internet. The good thing with

CDN is we don’t need to set up a cache server by ourselves, but

unfortunately, we have to pay for it. The previous cache servers we

presented are free to use. So, it’s up to you to decide what suits you best.

https://varnish-cache.org/
https://trafficserver.apache.org/
http://www.squid-cache.org/

273

Rate Limiting allows us to protect our API against too many requests that

can deteriorate our API’s performance. API is going to reject requests that

exceed the limit. Throttling queues exceeded requests for possible later

processing. The API will eventually reject the request if processing cannot

occur after a certain number of attempts.

For example, we can configure our API to create a limitation of 100

requests/hour per client. Or additionally, we can limit a client to the

maximum of 1,000 requests/day per IP and 100 requests/hour. We can

even limit the number of requests for a specific resource in our API; for

example, 50 requests to api/companies.

To provide information about rate limiting, we use the response headers.

They are separated between Allowed requests, which all start with the X-

Rate-Limit and Disallowed requests.

The Allowed requests header contains the following information :

• X-Rate-Limit-Limit – rate limit period.

• X-Rate-Limit-Remaining – number of remaining requests.

• X-Rate-Limit-Reset – date/time information about resetting the

request limit.

For the disallowed requests, we use a 429 status code; that stands for too

many requests. This header may include the Retry-After response header

and should explain details in the response body.

To start, we have to install the AspNetCoreRateLimit library in the main

project:

274

Then, we have to add it to the service collection. This library uses a

memory cache to store its counters and rules. Therefore, we have to add

the MemoryCache to the service collection as well.

That said, let’s add the MemoryCache:

builder.Services.AddMemoryCache();

After that, we are going to create another extension method in the

ServiceExtensions class:

public static void ConfigureRateLimitingOptions(this IServiceCollection services)
{
 var rateLimitRules = new List<RateLimitRule>
 {
 new RateLimitRule
 {
 Endpoint = "*",
 Limit = 3,
 Period = "5m"
 }
 };

 services.Configure<IpRateLimitOptions>(opt => { opt.GeneralRules =
rateLimitRules; });
 services.AddSingleton<IRateLimitCounterStore,
MemoryCacheRateLimitCounterStore>();
 services.AddSingleton<IIpPolicyStore, MemoryCacheIpPolicyStore>();
 services.AddSingleton<IRateLimitConfiguration, RateLimitConfiguration>();
 services.AddSingleton<IProcessingStrategy, AsyncKeyLockProcessingStrategy>();
}

We create a rate limit rules first, for now just one, stating that three

requests are allowed in a five-minute period for any endpoint in our API.

Then, we configure IpRateLimitOptions to add the created rule. Finally, we

have to register rate limit stores, configuration, and processing strategy

as a singleton. They serve the purpose of storing rate limit counters and

policies as well as adding configuration.

Now, we have to modify the Program class again:

builder.Services.AddMemoryCache();
builder.Services.ConfigureRateLimitingOptions();
builder.Services.AddHttpContextAccessor();

Finally, we have to add it to the request pipeline:

app.UseIpRateLimiting();

275

app.UseCors("CorsPolicy");

And that is it. We can test this now:

https://localhost:5001/api/companies

So, we can see that we have two requests remaining and the time to

reset the rule. If we send an additional three requests in the five-minute

period of time, we are going to get a different response:

https://localhost:5001/api/companies

The status code is 429 Too Many Requests and we have the Retry-After

header.

We can inspect the body as well:

276

https://localhost:5001/api/companies

So, our rate limiting works.

There are a lot of options that can be configured with Rate Limiting and

you can read more about them on the AspNetCoreRateLimit GitHub page.

277

User authentication is an important part of any application. It refers to the

process of confirming the identity of an application’s users. Implementing

it properly could be a hard job if you are not familiar with the process.

Also, it could take a lot of time that could be spent on different features of

an application.

So, in this section, we are going to learn about authentication and

authorization in ASP.NET Core by using Identity and JWT (Json Web

Token). We are going to explain step by step how to integrate Identity in

the existing project and then how to implement JWT for the

authentication and authorization actions.

ASP.NET Core provides us with both functionalities, making

implementation even easier.

Finally, we are going to learn more about the refresh token flow and

implement it in our Web API project.

So, let’s start with Identity integration.

Asp.NET Core Identity is the membership system for web applications that

includes membership, login, and user data. It provides a rich set of

services that help us with creating users, hashing their passwords,

creating a database model, and the authentication overall.

That said, let’s start with the integration process.

The first thing we have to do is to install the

Microsoft.AspNetCore.Identity.EntityFrameworkCore library in

the Entities project:

278

After the installation, we are going to create a new User class in the

Entities/Models folder:

public class User : IdentityUser
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

Our class inherits from the IdentityUser class that has been provided

by the ASP.NET Core Identity. It contains different properties and we can

extend it with our own as well.

After that, we have to modify the RepositoryContext class:

public class RepositoryContext : IdentityDbContext<User>
{
 public RepositoryContext(DbContextOptions options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 }

 public DbSet<Company> Companies { get; set; }
 public DbSet<Employee> Employees { get; set; }
}

So, our class now inherits from the IdentityDbContext class and not

DbContext because we want to integrate our context with Identity. For

this, we have to include the Identity.EntityFrameworkCore

namespace:

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

279

We don’t have to install the library in the Repository project since we

already did that in the Entities project, and Repository has the

reference to Entities.

Additionally, we call the OnModelCreating method from the base class.

This is required for migration to work properly.

Now, we have to move on to the configuration part.

To do that, let’s create a new extension method in the

ServiceExtensions class:

public static void ConfigureIdentity(this IServiceCollection services)
{
 var builder = services.AddIdentity<User, IdentityRole>(o =>
 {
 o.Password.RequireDigit = true;
 o.Password.RequireLowercase = false;
 o.Password.RequireUppercase = false;
 o.Password.RequireNonAlphanumeric = false;
 o.Password.RequiredLength = 10;
 o.User.RequireUniqueEmail = true;
 })
 .AddEntityFrameworkStores<RepositoryContext>()
 .AddDefaultTokenProviders();
}

With the AddIdentity method, we are adding and configuring Identity

for the specific type; in this case, the User and the IdentityRole type.

We use different configuration parameters that are pretty self-explanatory

on their own. Identity provides us with even more features to configure,

but these are sufficient for our example.

Then, we add EntityFrameworkStores implementation with the default

token providers.

Now, let’s modify the Program class:

builder.Services.AddAuthentication();
builder.Services.ConfigureIdentity();

And, let’s add the authentication middleware to the application’s request

pipeline:

280

app.UseAuthentication();
app.UseAuthorization();

That’s it. We have prepared everything we need.

Creating tables is quite an easy process. All we have to do is to create

and apply migration. So, let’s create a migration:

PM> Add-Migration CreatingIdentityTables

And then apply it:

PM> Update-Database

If we check our database now, we are going to see additional tables:

For our project, the AspNetRoles, AspNetUserRoles, and AspNetUsers

tables will be quite enough. If you open the AspNetUsers table, you will

see additional FirstName and LastName columns.

Now, let’s insert several roles in the AspNetRoles table, again by using

migrations. The first thing we are going to do is to create the

RoleConfiguration class in the Repository/Configuration folder:

public class RoleConfiguration : IEntityTypeConfiguration<IdentityRole>
{
 public void Configure(EntityTypeBuilder<IdentityRole> builder)
 {

281

 builder.HasData(
 new IdentityRole
 {
 Name = "Manager",
 NormalizedName = "MANAGER"
 },
 new IdentityRole
 {
 Name = "Administrator",
 NormalizedName = "ADMINISTRATOR"
 }
);
}

For this to work, we need the following namespaces included:

using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;

And let’s modify the OnModelCreating method in the

RepositoryContext class:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
 base.OnModelCreating(modelBuilder);

 modelBuilder.ApplyConfiguration(new CompanyConfiguration());
 modelBuilder.ApplyConfiguration(new EmployeeConfiguration());
 modelBuilder.ApplyConfiguration(new RoleConfiguration());
}

Finally, let’s create and apply migration:

PM> Add-Migration AddedRolesToDb

PM> Update-Database

If you check the AspNetRoles table, you will find two new roles created.

To create/register a new user, we have to create a new controller:

[Route("api/authentication")]
[ApiController]
public class AuthenticationController : ControllerBase
{
 private readonly IServiceManager _service;

 public AuthenticationController(IServiceManager service) => _service = service;
}

282

So, nothing new here. We have the basic setup for our controller with

IServiceManager injected.

The next thing we have to do is to create a UserForRegistrationDto

record in the Shared/DataTransferObjects folder:

public record UserForRegistrationDto
{
 public string? FirstName { get; init; }
 public string? LastName { get; init; }
 [Required(ErrorMessage = "Username is required")]
 public string? UserName { get; init; }
 [Required(ErrorMessage = "Password is required")]
 public string? Password { get; init; }
 public string? Email { get; init; }
 public string? PhoneNumber { get; init; }
 public ICollection<string>? Roles { get; init; }
}

Then, let’s create a mapping rule in the MappingProfile class:

CreateMap<UserForRegistrationDto, User>();

Since we want to extract all the registration/authentication logic to the

service layer, we are going to create a new IAuthenticationService

interface inside the Service.Contracts project:

public interface IAuthenticationService
{
 Task<IdentityResult> RegisterUser(UserForRegistrationDto userForRegistration);
}

This method will execute the registration logic and return the identity

result to the caller.

Now that we have the interface, we need to create an implementation

service class inside the Service project:

internal sealed class AuthenticationService : IAuthenticationService
{
 private readonly ILoggerManager _logger;
 private readonly IMapper _mapper;
 private readonly UserManager<User> _userManager;
 private readonly IConfiguration _configuration;

 public AuthenticationService(ILoggerManager logger, IMapper mapper,
 UserManager<User> userManager, IConfiguration configuration)
 {
 _logger = logger;

283

 _mapper = mapper;
 _userManager = userManager;
 _configuration = configuration;
 }
}

This code is pretty familiar from the previous service classes except for

the UserManager class. This class is used to provide the APIs for

managing users in a persistence store. It is not concerned with how user

information is stored. For this, it relies on a UserStore (which in our case

uses Entity Framework Core).

Of course, we have to add some additional namespaces:

using AutoMapper;
using Contracts;
using Entities.Models;
using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.Configuration;
using Service.Contracts;

Great. Now, we can implement the RegisterUser method:

public async Task<IdentityResult> RegisterUser(UserForRegistrationDto
userForRegistration)
{
 var user = _mapper.Map<User>(userForRegistration);

 var result = await _userManager.CreateAsync(user,
userForRegistration.Password);

 if (result.Succeeded)
 await _userManager.AddToRolesAsync(user, userForRegistration.Roles);

 return result;
}

So we map the DTO object to the User object and call the CreateAsync

method to create that specific user in the database. The CreateAsync

method will save the user to the database if the action succeeds or it will

return error messages as a result.

After that, if a user is created, we add that user to the named roles — the

ones sent from the client side — and return the result.

284

If you want, before calling AddToRoleAsync or AddToRolesAsync, you

can check if roles exist in the database. But for that, you have to inject

RoleManager<TRole> and use the RoleExistsAsync method.

We want to provide this service to the caller through ServiceManager

and for that, we have to modify the IServiceManager interface first:

public interface IServiceManager
{
 ICompanyService CompanyService { get; }
 IEmployeeService EmployeeService { get; }
 IAuthenticationService AuthenticationService { get; }
}

And then the ServiceManager class:

public sealed class ServiceManager : IServiceManager
{
 private readonly Lazy<ICompanyService> _companyService;
 private readonly Lazy<IEmployeeService> _employeeService;
 private readonly Lazy<IAuthenticationService> _authenticationService;

 public ServiceManager(IRepositoryManager repositoryManager,
 ILoggerManager logger,
 IMapper mapper, IEmployeeLinks employeeLinks,
 UserManager<User> userManager,
 IConfiguration configuration)
 {
 _companyService = new Lazy<ICompanyService>(() =>
 new CompanyService(repositoryManager, logger, mapper));
 _employeeService = new Lazy<IEmployeeService>(() =>
 new EmployeeService(repositoryManager, logger, mapper,
employeeLinks));
 _authenticationService = new Lazy<IAuthenticationService>(() =>
 new AuthenticationService(logger, mapper, userManager,
configuration));
 }

 public ICompanyService CompanyService => _companyService.Value;
 public IEmployeeService EmployeeService => _employeeService.Value;
 public IAuthenticationService AuthenticationService =>
_authenticationService.Value;
}

Finally, it is time to create the RegisterUser action:

[HttpPost]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> RegisterUser([FromBody] UserForRegistrationDto
userForRegistration)
{
 var result = await
_service.AuthenticationService.RegisterUser(userForRegistration);
 if (!result.Succeeded)

285

 {
 foreach (var error in result.Errors)
 {
 ModelState.TryAddModelError(error.Code, error.Description);
 }
 return BadRequest(ModelState);
 }

 return StatusCode(201);
}

We are implementing our existing action filter for the entity and model

validation on top of our action. Then, we call the RegisterUser method

and accept the result. If the registration fails, we iterate through each

error add it to the ModelState and return the BadRequest response.

Otherwise, we return the 201 created status code.

Before we continue with testing, we should increase a rate limit from 3 to

30 (ServiceExtensions class, ConfigureRateLimitingOptions

method) just to not stand in our way while we’re testing the different

features of our application.

Now we can start with testing.

Let’s send a valid request first:

https://localhost:5001/api/authentication

286

And we get 201, which means that the user has been created and added

to the role. We can send additional invalid requests to test our Action and

Identity features.

If the model is invalid:

https://localhost:5001/api/authentication

If the password is invalid:

https://localhost:5001/api/authentication

Finally, if we want to create a user with the same user name and email:

https://localhost:5001/api/authentication

Excellent. Everything is working as planned. We can move on to the JWT

implementation.

287

Before we get into the implementation of authentication and

authorization, let’s have a quick look at the big picture. There is an

application that has a login form. A user enters their username and

password and presses the login button. After pressing the login button, a

client (e.g., web browser) sends the user’s data to the server’s API

endpoint:

When the server validates the user’s credentials and confirms that the

user is valid, it’s going to send an encoded JWT to the client. A JSON web

token is a JavaScript object that can contain some attributes of the

logged-in user. It can contain a username, user subject, user roles, or

some other useful information.

JSON web tokens enable a secure way to transmit data between two

parties in the form of a JSON object. It’s an open standard and it’s a

popular mechanism for web authentication. In our case, we are going to

use JSON web tokens to securely transfer a user’s data between the client

and the server.

JSON web tokens consist of three basic parts: the header, the payload,

and the signature.

One real example of a JSON web token:

288

Every part of all three parts is shown in a different color. The first part of

JWT is the header, which is a JSON object encoded in the base64 format.

The header is a standard part of JWT and we don’t have to worry about it.

It contains information like the type of token and the name of the

algorithm:

 {
 "alg": "HS256",
 "typ": "JWT"
 }

After the header, we have a payload which is also a JavaScript object

encoded in the base64 format. The payload contains some attributes

about the logged-in user. For example, it can contain the user id, the user

subject, and information about whether a user is an admin user or not.

JSON web tokens are not encrypted and can be decoded with any

base64 decoder, so please never include sensitive information in the

Payload:

{
 "sub": "1234567890",
 "name": "John Doe",
 "iat": 1516239022
}

Finally, we have the signature part. Usually, the server uses the signature

part to verify whether the token contains valid information, the

information which the server is issuing. It is a digital signature that gets

generated by combining the header and the payload. Moreover, it’s based

on a secret key that only the server knows:

289

So, if malicious users try to modify the values in the payload, they have

to recreate the signature; for that purpose, they need the secret key only

known to the server. On the server side, we can easily verify if the values

are original or not by comparing the original signature with a new

signature computed from the values coming from the client.

So, we can easily verify the integrity of our data just by comparing the

digital signatures. This is the reason why we use JWT.

Let’s start by modifying the appsettings.json file:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 }
 },
 "ConnectionStrings": {
 "sqlConnection": "server=.; database=CompanyEmployee; Integrated Security=true"
 },
 "JwtSettings": {
 "validIssuer": "CodeMazeAPI",
 "validAudience": "https://localhost:5001"
 },
 "AllowedHosts": "*"
}

We just store the issuer and audience information in the appsettings.json

file. We are going to talk more about that in a minute. As you probably

remember, we require a secret key on the server-side. So, we are going

to create one and store it in the environment variable because this is

much safer than storing it inside the project.

290

To create an environment variable, we have to open the cmd window as

an administrator and type the following command:

setx SECRET "CodeMazeSecretKey" /M

This is going to create a system environment variable with the name

SECRET and the value CodeMazeSecretKey. By using /M we specify that

we want a system variable and not local.

Great.

We can now modify the ServiceExtensions class:

public static void ConfigureJWT(this IServiceCollection services, IConfiguration
configuration)
{
 var jwtSettings = configuration.GetSection("JwtSettings");
 var secretKey = Environment.GetEnvironmentVariable("SECRET");

 services.AddAuthentication(opt =>
 {
 opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
 opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
 })
 .AddJwtBearer(options =>
 {
 options.TokenValidationParameters = new TokenValidationParameters
 {
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,

 ValidIssuer = jwtSettings["validIssuer"],
 ValidAudience = jwtSettings["validAudience"],
 IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(secretKey))
 };
 });
}

First, we extract the JwtSettings from the appsettings.json file and

extract our environment variable (If you keep getting null for the secret

key, try restarting the Visual Studio or even your computer).

Then, we register the JWT authentication middleware by calling the

method AddAuthentication on the IServiceCollection interface.

Next, we specify the authentication scheme

291

JwtBearerDefaults.AuthenticationScheme as well as

ChallengeScheme. We also provide some parameters that will be used

while validating JWT. For this to work, we have to install the

Microsoft.AspNetCore.Authentication.JwtBearer library.

For this to work, we require the following namespaces:

using Microsoft.AspNetCore.Authentication.JwtBearer;
using Microsoft.AspNetCore.Identity;
using Microsoft.IdentityModel.Tokens;
using System.Text;

Excellent.

We’ve successfully configured the JWT authentication.

According to the configuration, the token is going to be valid if:

• The issuer is the actual server that created the token

(ValidateIssuer=true)

• The receiver of the token is a valid recipient

(ValidateAudience=true)

• The token has not expired (ValidateLifetime=true)

• The signing key is valid and is trusted by the server

(ValidateIssuerSigningKey=true)

Additionally, we are providing values for the issuer, the audience, and the

secret key that the server uses to generate the signature for JWT.

All we have to do is to call this method in the Program class:

builder.Services.AddAuthentication();
builder.Services.ConfigureIdentity();
builder.Services.ConfigureJWT(builder.Configuration);

And that is it. We can now protect our endpoints.

Let’s open the CompaniesController and add an additional attribute

above the GetCompanies action:

292

[HttpGet(Name = "GetCompanies")]
[Authorize]
public async Task<IActionResult> GetCompanies()

The [Authorize] attribute specifies that the action or controller that it is

applied to requires authorization. For it to be available we need an

additional namespace:

using Microsoft.AspNetCore.Authorization;

Now to test this, let’s send a request to get all companies:

https://localhost:5001/api/companies

We see the protection works. We get a 401 Unauthorized response, which

is expected because an unauthorized user tried to access the protected

endpoint. So, what we need is for our users to be authenticated and to

have a valid token.

Let’s begin with the UserForAuthenticationDto record:

public record UserForAuthenticationDto
{
 [Required(ErrorMessage = "User name is required")]
 public string? UserName { get; init; }
 [Required(ErrorMessage = "Password name is required")]
 public string? Password { get; init; }
}

To continue, let’s modify the IAuthenticationService interface:

public interface IAuthenticationService
{
 Task<IdentityResult> RegisterUser(UserForRegistrationDto userForRegistration);
 Task<bool> ValidateUser(UserForAuthenticationDto userForAuth);
 Task<string> CreateToken();
}

293

Next, let’s add a private variable in the AuthenticationService class:

private readonly UserManager<User> _userManager;
private readonly IConfiguration _configuration;

private User? _user;

Before we continue to the interface implementation, we have to install

System.IdentityModel.Tokens.Jwt library in the Service project.

Then, we can implement the required methods:

public async Task<bool> ValidateUser(UserForAuthenticationDto userForAuth)
{
 _user = await _userManager.FindByNameAsync(userForAuth.UserName);

 var result = (_user != null && await _userManager.CheckPasswordAsync(_user,
userForAuth.Password));
 if (!result)
 _logger.LogWarn($"{nameof(ValidateUser)}: Authentication failed. Wrong user
name or password.");

 return result;
}

public async Task<string> CreateToken()
{
 var signingCredentials = GetSigningCredentials();
 var claims = await GetClaims();
 var tokenOptions = GenerateTokenOptions(signingCredentials, claims);

 return new JwtSecurityTokenHandler().WriteToken(tokenOptions);
}

private SigningCredentials GetSigningCredentials()
{
 var key = Encoding.UTF8.GetBytes(Environment.GetEnvironmentVariable("SECRET"));
 var secret = new SymmetricSecurityKey(key);

 return new SigningCredentials(secret, SecurityAlgorithms.HmacSha256);
}

private async Task<List<Claim>> GetClaims()
{
 var claims = new List<Claim>
 {
 new Claim(ClaimTypes.Name, _user.UserName)
 };

 var roles = await _userManager.GetRolesAsync(_user);
 foreach (var role in roles)
 {
 claims.Add(new Claim(ClaimTypes.Role, role));
 }

 return claims;
}

294

private JwtSecurityToken GenerateTokenOptions(SigningCredentials signingCredentials,
List<Claim> claims)
{
 var jwtSettings = _configuration.GetSection("JwtSettings");

 var tokenOptions = new JwtSecurityToken
 (
 issuer: jwtSettings["validIssuer"],
 audience: jwtSettings["validAudience"],
 claims: claims,
 expires: DateTime.Now.AddMinutes(Convert.ToDouble(jwtSettings["expires"])),
 signingCredentials: signingCredentials
);

 return tokenOptions;
}

For this to work, we require a few more namespaces:

using System.IdentityModel.Tokens.Jwt;
using Microsoft.IdentityModel.Tokens;
using System.Text;
using System.Security.Claims;

Now we can explain the code.

In the ValidateUser method, we fetch the user from the database and

check whether they exist and if the password matches. The

UserManager<TUser> class provides the FindByNameAsync method to

find the user by user name and the CheckPasswordAsync to verify the

user’s password against the hashed password from the database. If the

check result is false, we log a message about failed authentication. Lastly,

we return the result.

The CreateToken method does exactly that — it creates a token. It does

that by collecting information from the private methods and serializing

token options with the WriteToken method.

We have three private methods as well. The GetSignInCredentials

method returns our secret key as a byte array with the security

algorithm. The GetClaims method creates a list of claims with the user

name inside and all the roles the user belongs to. The last method,

GenerateTokenOptions, creates an object of the JwtSecurityToken

295

type with all of the required options. We can see the expires parameter as

one of the token options. We would extract it from the appsettings.json

file as well, but we don’t have it there. So, we have to add it:

"JwtSettings": {
 "validIssuer": "CodeMazeAPI",
 "validAudience": "https://localhost:5001",
 "expires": 5
 }

Finally, we have to add a new action in the

AuthenticationController:

[HttpPost("login")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> Authenticate([FromBody] UserForAuthenticationDto
user)
{
 if (!await _service.AuthenticationService.ValidateUser(user))
 return Unauthorized();

 return Ok(new { Token = await _service
 .AuthenticationService.CreateToken() });
}

There is nothing special in this controller. If validation fails, we return the

401 Unauthorized response; otherwise, we return our created token:

https://localhost:5001/api/authentication/login

Excellent. We can see our token generated.

296

Now, let’s send invalid credentials:

https://localhost:5001/api/authentication/login

And we get a 401 Unauthorized response.

Right now if we send a request to the GetCompanies action, we are still

going to get the 401 Unauthorized response even though we have

successful authentication. That’s because we didn’t provide our token in a

request header and our API has nothing to authorize against. To solve

that, we are going to create another GET request, and in the

Authorization header choose the header type and paste the token from

the previous request:

https://localhost:5001/api/companies

Now, we can send the request again:

297

https://localhost:5001/api/companies

Excellent. It works like a charm.

Right now, even though authentication and authorization are working as

expected, every single authenticated user can access the GetCompanies

action. What if we don’t want that type of behavior? For example, we

want to allow only managers to access it. To do that, we have to make

one simple change:

[HttpGet(Name = "GetCompanies")]
[Authorize(Roles = "Manager")]
public async Task<IActionResult> GetCompanies()

And that is it. To test this, let’s create another user with the Administrator

role (the second role from the database):

298

We get 201.

After we send an authentication request for Jane Doe, we are going to get

a new token. Let’s use that token to send the request towards the

GetCompanies action:

https://localhost:5001/api/companies

We get a 403 Forbidden response because this user is not allowed to

access the required endpoint. If we log in with John Doe and use his

token, we are going to get a successful response for sure. Of course, we

don’t have to place an Authorize attribute only on top of the action; we

can place it on the controller level as well. For example, we can place just

[Authorize] on the controller level to allow only authorized users to access

299

all the actions in that controller; also, we can place the [Authorize

(Role=…)] on top of any action in that controller to state that only a user

with that specific role has access to that action.

One more thing. Our token expires after five minutes after the creation

point. So, if we try to send another request after that period (we probably

have to wait 5 more minutes due to the time difference between servers,

which is embedded inside the token – this can be overridden with the

ClockSkew property in the TokenValidationParameters object), we are

going to get the 401 Unauthorized status for sure. Feel free to try.

300

In this chapter, we are going to learn about refresh tokens and their use

in modern web application development.

In the previous chapter, we have created a flow where a user logs in, gets

an access token to be able to access protected resources, and after the

token expires, the user has to log in again to obtain a new valid token:

This flow is great and is used by many enterprise applications.

But sometimes we have a requirement not to force our users to log in

every single time the token expires. For that, we can use a refresh token.

Refresh tokens are credentials that can be used to acquire new access

tokens. When an access token expires, we can use a refresh token to get

a new access token from the authentication component. The lifetime of a

refresh token is usually set much longer compared to the lifetime of an

access token.

Let’s introduce the refresh token to our authentication workflow:

301

1. First, the client authenticates with the authentication component by

providing the credentials.

2. Then, the authentication component issues the access token and

the refresh token.

3. After that, the client requests the resource endpoints for a protected

resource by providing the access token.

4. The resource endpoint validates the access token and provides a

protected resource.

5. Steps 3 & 4 keep on repeating until the access token expires.

6. Once the access token expires, the client requests a new access

token by providing the refresh token.

7. The authentication component issues a new access token and

refresh token.

8. Steps 3 through 7 keep on repeating until the refresh token expires.

302

9. Once the refresh token expires, the client needs to authenticate

with the authentication server once again and the flow repeats from

step 1.

So, why do we need both access tokens and refresh tokens? Why don’t

we just set a long expiration date, like a month or a year for the access

tokens? Because, if we do that and someone manages to get hold of our

access token they can use it for a long period, even if we change our

password!

The idea of refresh tokens is that we can make the access token short-

lived so that, even if it is compromised, the attacker gets access only for

a shorter period. With refresh token-based flow, the authentication server

issues a one-time use refresh token along with the access token. The app

stores the refresh token safely.

Every time the app sends a request to the server it sends the access

token in the Authorization header and the server can identify the app

using it. Once the access token expires, the server will send a token

expired response. Once the app receives the token expired response, it

sends the expired access token and the refresh token to obtain a new

access token and a refresh token.

If something goes wrong, the refresh token can be revoked which means

that when the app tries to use it to get a new access token, that request

will be rejected and the user will have to enter credentials once again and

authenticate.

Thus, refresh tokens help in a smooth authentication workflow without the

need for users to submit their credentials frequently, and at the same

time, without compromising the security of the app.

303

So far we have learned the concept of refresh tokens. Now, let’s dig into

the implementation part.

The first thing we have to do is to modify the User class:

public class User : IdentityUser
{
 public string? FirstName { get; set; }
 public string? LastName { get; set; }
 public string? RefreshToken { get; set; }
 public DateTime RefreshTokenExpiryTime { get; set; }
}

Here we add two additional properties, which we are going to add to the

AspNetUsers table.

To do that, we have to create and execute another migration:

Add-Migration AdditionalUserFiledsForRefreshToken

If for some reason you get the message that you need to review your

migration due to possible data loss, you should inspect the migration file

and leave only the code that adds and removes our additional columns:

protected override void Up(MigrationBuilder migrationBuilder)
{
 migrationBuilder.AddColumn<string>(
 name: "RefreshToken",
 table: "AspNetUsers",
 type: "nvarchar(max)",
 nullable: true);

 migrationBuilder.AddColumn<DateTime>(
 name: "RefreshTokenExpiryTime",
 table: "AspNetUsers",
 type: "datetime2",
 nullable: false,
 defaultValue: new DateTime(1, 1, 1, 0, 0, 0, 0, DateTimeKind.Unspecified));
}

protected override void Down(MigrationBuilder migrationBuilder)
{
 migrationBuilder.DropColumn(
 name: "RefreshToken",
 table: "AspNetUsers");

 migrationBuilder.DropColumn(
 name: "RefreshTokenExpiryTime",
 table: "AspNetUsers");
}

304

Also, you should open the RepositoryContextModelSnapshot file, find

the AspNetRoles part and revert the Ids of both roles to the previous

values:

b.ToTable("AspNetRoles", (string)null);

b.HasData(
 new
 {
 Id = "4ac8240a-8498-4869-bc86-60e5dc982d27",
 ConcurrencyStamp = "ec511bd4-4853-426a-a2fc-751886560c9a",
 Name = "Manager",
 NormalizedName = "MANAGER"
 },
 new
 {
 Id = "562419f5-eed1-473b-bcc1-9f2dbab182b4",
 ConcurrencyStamp = "937e9988-9f49-4bab-a545-b422dde85016",
 Name = "Administrator",
 NormalizedName = "ADMINISTRATOR"
 });

After that is done, we can execute our migration with the Update-

Database command. This will add two additional columns in the

AspNetUsers table.

To continue, let’s create a new record in the

Shared/DataTransferObjects folder:

public record TokenDto(string AccessToken, string RefreshToken);

Next, we are going to modify the IAuthenticationService interface:

public interface IAuthenticationService
{
 Task<IdentityResult> RegisterUser(UserForRegistrationDto userForRegistration);
 Task<bool> ValidateUser(UserForAuthenticationDto userForAuth);
 Task<TokenDto> CreateToken(bool populateExp);
}

Then, we have to implement two new methods in the

AuthenticationService class:

private string GenerateRefreshToken()
{
 var randomNumber = new byte[32];
 using (var rng = RandomNumberGenerator.Create())
 {
 rng.GetBytes(randomNumber);
 return Convert.ToBase64String(randomNumber);

305

 }
}

private ClaimsPrincipal GetPrincipalFromExpiredToken(string token)
{
 var jwtSettings = _configuration.GetSection("JwtSettings");

 var tokenValidationParameters = new TokenValidationParameters
 {
 ValidateAudience = true,
 ValidateIssuer = true,
 ValidateIssuerSigningKey = true,
 IssuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(Environment.GetEnvironmentVariable("SECRET"))),
 ValidateLifetime = true,
 ValidIssuer = jwtSettings["validIssuer"],
 ValidAudience = jwtSettings["validAudience"]
 };

 var tokenHandler = new JwtSecurityTokenHandler();
 SecurityToken securityToken;
 var principal = tokenHandler.ValidateToken(token, tokenValidationParameters, out
securityToken);

 var jwtSecurityToken = securityToken as JwtSecurityToken;
 if (jwtSecurityToken == null ||
!jwtSecurityToken.Header.Alg.Equals(SecurityAlgorithms.HmacSha256,
 StringComparison.InvariantCultureIgnoreCase))
 {
 throw new SecurityTokenException("Invalid token");
 }

 return principal;
}

GenerateRefreshToken contains the logic to generate the refresh token.

We use the RandomNumberGenerator class to generate a cryptographic

random number for this purpose.

GetPrincipalFromExpiredToken is used to get the user principal from

the expired access token. We make use of the ValidateToken method

from the JwtSecurityTokenHandler class for this purpose. This method

validates the token and returns the ClaimsPrincipal object.

After that, to generate a refresh token and the expiry date for the logged-

in user, and to return both the access token and refresh token to the

caller, we have to modify the CreateToken method in the same class:

public async Task<TokenDto> CreateToken(bool populateExp)
{
 var signingCredentials = GetSigningCredentials();

306

 var claims = await GetClaims();
 var tokenOptions = GenerateTokenOptions(signingCredentials, claims);

 var refreshToken = GenerateRefreshToken();

 _user.RefreshToken = refreshToken;

 if(populateExp)
 _user.RefreshTokenExpiryTime = DateTime.Now.AddDays(7);

 await _userManager.UpdateAsync(_user);

 var accessToken = new JwtSecurityTokenHandler().WriteToken(tokenOptions);

 return new TokenDto(accessToken, refreshToken);
}

Finally, we have to modify the Authenticate action:

[HttpPost("login")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> Authenticate([FromBody] UserForAuthenticationDto
user)
{
 if (!await _service.AuthenticationService.ValidateUser(user))
 return Unauthorized();

 var tokenDto = await _service.AuthenticationService
 .CreateToken(populateExp: true);

 return Ok(tokenDto);
}

That’s it regarding the action modification.

Now, we can test this by sending the POST request from Postman:

307

https://localhost:5001/api/authentication/login

We can see the successful authentication and both our tokens.

Additionally, if we inspect the database, we are going to find populated

RefreshToken and Expiry columns for JDoe:

It is a good practice to have a separate endpoint for the refresh token

action, and that’s exactly what we are going to do now.

Let’s start by creating a new TokenController in the Presentation

project:

[Route("api/token")]
[ApiController]
public class TokenController : ControllerBase
{
 private readonly IServiceManager _service;

 public TokenController(IServiceManager service) => _service = service;
}

308

Before we continue with the controller modification, we are going to

modify the IAuthenticationService interface:

public interface IAuthenticationService
{
 Task<IdentityResult> RegisterUser(UserForRegistrationDto userForRegistration);
 Task<bool> ValidateUser(UserForAuthenticationDto userForAuth);
 Task<TokenDto> CreateToken(bool populateExp);
 Task<TokenDto> RefreshToken(TokenDto tokenDto);
}

And to implement this method:

public async Task<TokenDto> RefreshToken(TokenDto tokenDto)
{
 var principal = GetPrincipalFromExpiredToken(tokenDto.AccessToken);

 var user = await _userManager.FindByNameAsync(principal.Identity.Name);
 if (user == null || user.RefreshToken != tokenDto.RefreshToken ||
 user.RefreshTokenExpiryTime <= DateTime.Now)
 throw new RefreshTokenBadRequest();

 _user = user;

 return await CreateToken(populateExp: false);
}

We first extract the principal from the expired token and use

the Identity.Name property, which is the username of the user, to fetch

that user from the database. If the user doesn’t exist, or the refresh

tokens are not equal, or the refresh token has expired, we stop the flow

returning the BadRequest response to the user. Then we just populate the

_user variable and call the CreateToken method to generate new Access

and Refresh tokens. This time, we don’t want to update the expiry time of

the refresh token thus sending false as a parameter.

Since we don’t have the RefreshTokenBadRequest class, let’s create it

in the Entities\Exceptions folder:

public sealed class RefreshTokenBadRequest : BadRequestException
{
 public RefreshTokenBadRequest()
 : base("Invalid client request. The tokenDto has some invalid values.")
 {
 }
}

309

And add a required using directive in the AuthenticationService class

to remove the present error.

Finally, let’s add one more action in the TokenController:

[HttpPost("refresh")]
[ServiceFilter(typeof(ValidationFilterAttribute))]
public async Task<IActionResult> Refresh([FromBody]TokenDto tokenDto)
{
 var tokenDtoToReturn = await
_service.AuthenticationService.RefreshToken(tokenDto);

 return Ok(tokenDtoToReturn);
}

That’s it.

Our refresh token logic is prepared and ready for testing.

Let’s first send the POST authentication request:

https://localhost:5001/api/authentication/login

As before, we have both tokens in the response body.

Now, let’s send the POST refresh request with these tokens as the request

body:

310

https://localhost:5001/api/token/refresh

And we can see new tokens in the response body. Additionally, if we

inspect the database, we will find the same refresh token value:

Usually, in your client application, you would inspect the exp claim of the

access token and if it is about to expire, your client app would send the

request to the api/token endpoint and get a new set of valid tokens.

311

In the previous chapter, we had to use our appsettings file to store some

important values for our JWT configuration and read those values from it:

"JwtSettings": {
 "validIssuer": "CodeMazeAPI",
 "validAudience": "https://localhost:5001",
 "expires": 5
},

To access these values, we’ve used the GetSection method from the

IConfiguration interface:

var jwtSettings = configuration.GetSection("JwtSettings");

The GetSection method gets a sub-section from the appsettings file

based on the provided key.

Once we extracted the sub-section, we’ve accessed the specific values by

using the jwtSettings variable of type IConfigurationSection, with

the key provided inside the square brackets:

ValidIssuer = jwtSettings["validIssuer"],

This works great but it does have its flaws.

Having to type sections and keys to get the values can be repetitive and

error-prone. We risk introducing errors to our code, and these kinds of

errors can cost us a lot of time until we discover them since someone else

can introduce them, and we won’t notice them since a null result is

returned when values are missing.

To overcome this problem, we can bind the configuration data to strongly

typed objects. To do that, we can use the Bind method.

312

To start with the binding process, we are going to create a new

ConfigurationModels folder inside the Entities project, and a new

JwtConfiguration class inside that folder:

public class JwtConfiguration
{
 public string Section { get; set; } = "JwtSettings";

 public string? ValidIssuer { get; set; }
 public string? ValidAudience { get; set; }
 public string? Expires { get; set; }
}

Then in the ServiceExtensions class, we are going to modify the

ConfigureJWT method:

public static void ConfigureJWT(this IServiceCollection services, IConfiguration
configuration)
{
 var jwtConfiguration = new JwtConfiguration();
 configuration.Bind(jwtConfiguration.Section, jwtConfiguration);

 var secretKey = Environment.GetEnvironmentVariable("SECRET");

 services.AddAuthentication(opt =>
 {
 opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
 opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
 })
 .AddJwtBearer(options =>
 {
 options.TokenValidationParameters = new TokenValidationParameters
 {
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,

 ValidIssuer = jwtConfiguration.ValidIssuer,
 ValidAudience = jwtConfiguration.ValidAudience,
 IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(secretKey))
 };
 });
}

We create a new instance of the JwtConfiguration class and use the

Bind method that accepts the section name and the instance object as

parameters, to bind to the JwtSettings section directly and map

configuration values to respective properties inside the

313

JwtConfiguration class. Then, we just use those properties instead of

string keys inside square brackets, to access required values.

There are two things to note here though. The first is that the names of

the configuration data keys and class properties must match. The other is

that if you extend the configuration, you need to extend the class as well,

which can be a bit cumbersome, but it beats getting values by typing

strings.

Now, we can continue with the AuthenticationService class

modification since we extract configuration values in two methods from

this class:

...
private readonly JwtConfiguration _jwtConfiguration;

private User? _user;

public AuthenticationService(ILoggerManager logger, IMapper mapper,
 UserManager<User> userManager, IConfiguration configuration)
{
 _logger = logger;
 _mapper = mapper;
 _userManager = userManager;
 _configuration = configuration;
 _jwtConfiguration = new JwtConfiguration();
 _configuration.Bind(_jwtConfiguration.Section, _jwtConfiguration);
}

So, we add a readonly variable, and create an instance and execute

binding inside the constructor.

And since we’re using the Bind() method we need to install the

Microsoft.Extensions.Configuration.Binder NuGet package.

After that, we can modify the GetPrincipalFromExpiredToken method

by removing the GetSection part and modifying the

TokenValidationParameters object creation:

private ClaimsPrincipal GetPrincipalFromExpiredToken(string token)
{
 var tokenValidationParameters = new TokenValidationParameters
 {
 ValidateAudience = true,
 ValidateIssuer = true,

314

 ValidateIssuerSigningKey = true,
 IssuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(Environment.GetEnvironmentVariable("SECRET"))),
 ValidateLifetime = true,
 ValidIssuer = _jwtConfiguration.ValidIssuer,
 ValidAudience = _jwtConfiguration.ValidAudience
 };

 ...

 return principal;
}

And let’s do a similar thing for the GenerateTokenOptions method:

private JwtSecurityToken GenerateTokenOptions(SigningCredentials signingCredentials,
List<Claim> claims)
{
 var tokenOptions = new JwtSecurityToken
 (
 issuer: _jwtConfiguration.ValidIssuer,
 audience: _jwtConfiguration.ValidAudience,
 claims: claims,
 expires: DateTime.Now.AddMinutes(Convert.ToDouble(_jwtConfiguration.Expires)),
 signingCredentials: signingCredentials
);

 return tokenOptions;
}

Excellent.

At this point, we can start our application and use both requests from

Postman’s collection - 28-Refresh Token - to test our configuration.

We should get the same responses as we did in a previous chapter, which

proves that our configuration works as intended but now with a better

code and less error-prone.

In the previous section, we’ve seen how we can bind configuration data to

strongly typed objects. The options pattern gives us similar possibilities,

but it offers a more structured approach and more features like validation,

live reloading, and easier testing.

315

Once we configure the class containing our configuration we can inject it

via dependency injection with IOptions<T> and thus injecting only part

of our configuration or rather only the part that we need.

If we need to reload the configuration without stopping the application,

we can use the IOptionsSnapshot<T> interface or the

IOptionsMonitor<T> interface depending on the situation. We’ll see

when these interfaces should be used and why.

The options pattern also provides a good validation mechanism that uses

the widely used DataAnotations attributes to check if the configuration

abides by the logical rules of our application.

The testing of options is also easy because of the helper methods and

easy to mock options classes.

29.2.1 Using IOptions

We have already written a lot of code in the previous section that can be

used with the IOptions interface, but we still have some more actions to

do.

The first thing we are going to do is to register and configure the

JwtConfiguration class in the ServiceExtensions class:

public static void AddJwtConfiguration(this IServiceCollection services,
IConfiguration configuration) =>
 services.Configure<JwtConfiguration>(configuration.GetSection("JwtSettings"));

And call this method in the Program class:

builder.Services.ConfigureJWT(builder.Configuration);
builder.Services.AddJwtConfiguration(builder.Configuration);

Since we can use IOptions with DI, we are going to modify the

ServiceManager class to support that:

public ServiceManager(IRepositoryManager repositoryManager,
 ILoggerManager logger,
 IMapper mapper, IEmployeeLinks employeeLinks,
 UserManager<User> userManager,
 IOptions<JwtConfiguration> configuration)

316

We just replace the IConfiguration type with the IOptions type in the

constructor.

For this, we need two additional namespaces:

using Entities.ConfigurationModels;
using Microsoft.Extensions.Options;

Then, we can modify the AuthenticationService’s constructor:

private readonly ILoggerManager _logger;
private readonly IMapper _mapper;
private readonly UserManager<User> _userManager;
private readonly IOptions<JwtConfiguration> _configuration;
private readonly JwtConfiguration _jwtConfiguration;

private User? _user;

public AuthenticationService(ILoggerManager logger, IMapper mapper,
 UserManager<User> userManager, IOptions<JwtConfiguration> configuration)
{
 _logger = logger;
 _mapper = mapper;
 _userManager = userManager;
 _configuration = configuration;
 _jwtConfiguration = _configuration.Value;
}

And that’s it.

We inject IOptions inside the constructor and use the Value property to

extract the JwtConfiguration object with all the populated properties.

Nothing else has to change in this class.

If we start the application again and send the same requests, we will still

get valid results meaning that we’ve successfully implemented IOptions

in our project.

One more thing. We didn’t modify anything inside the

ServiceExtensions/ConfigureJWT method. That’s because this

configuration happens during the service registration and not after

services are built. This means that we can’t resolve our required service

here.

317

Well, to be precise, we can use the BuildServiceProvider method to

build a service provider containing all the services from the provided

IServiceCollection, and thus being able to access the required

service. But if you do that, you will create one more list of singleton

services, which can be quite expensive depending on the size of your

application. So, you should be careful with this method.

That said, using Binding to access configuration values is perfectly safe

and cheap in this stage of the application’s lifetime.

29.2.2 IOptionsSnapshot and IOptionsMonitor

The previous code looks great but if we want to change the value of

Expires to 10 instead of 5 for example, we need to restart the application

to do it. You can imagine how useful would be to have a published

application and all you need to do is to modify the value in the

configuration file without restarting the whole app.

Well, there is a way to do it by using IOptionsSnapshot or

IOptionsMonitor.

All we would have to do is to replace the IOptions<JwtConfiguration>

type with the IOptionsSnapshot<JwtConfiguration> or

IOptionsMonitor<JwtConfiguration> types inside the

ServiceManager and AuthenticationService classes. Also if we use

IOptionsMonitor, we can’t use the Value property but the

CurrentValue.

So the main difference between these two interfaces is that the

IOptionsSnapshot service is registered as a scoped service and thus can’t

be injected inside the singleton service. On the other hand,

IOptionsMonitor is registered as a singleton service and can be injected

into any service lifetime.

318

To make the comparison even clearer, we have prepared the following list

for you:

IOptions<T>:

• Is the original Options interface and it’s better than binding the

whole Configuration

• Does not support configuration reloading

• Is registered as a singleton service and can be injected anywhere

• Binds the configuration values only once at the registration, and

returns the same values every time

• Does not support named options

IOptionsSnapshot<T>:

• Registered as a scoped service

• Supports configuration reloading

• Cannot be injected into singleton services

• Values reload per request

• Supports named options

IOptionsMonitor<T>:

• Registered as a singleton service

• Supports configuration reloading

• Can be injected into any service lifetime

• Values are cached and reloaded immediately

• Supports named options

Having said that, we can see that if we don’t want to enable live reloading

or we don’t need named options, we can simply use IOptions<T>. If we

do, we can use either IOptionsSnapshot<T> or IOptionsMonitor<T>,

but IOptionsMonitor<T> can be injected into other singleton services

while IOptionsSnapshot<T> cannot.

We have mentioned Named Options a couple of times so let’s explain

what that is.

319

Let’s assume, just for example sake, that we have a configuration like this

one:

"JwtSettings": {
 "validIssuer": "CodeMazeAPI",
 "validAudience": "https://localhost:5001",
 "expires": 5
},
"JwtAPI2Settings": {
 "validIssuer": "CodeMazeAPI2",
 "validAudience": "https://localhost:5002",
 "expires": 10
},

Instead of creating a new JwtConfiguration2 class that has the same

properties as our existing JwtConfiguration class, we can add another

configuration:

services.Configure<JwtConfiguration>("JwtSettings",
configuration.GetSection("JwtSettings"));
services.Configure<JwtConfiguration>("JwtAPI2Settings",
configuration.GetSection("JwtAPI2Settings"));

Now both sections are mapped to the same configuration class, which

makes sense. We don’t want to create multiple classes with the same

properties and just name them differently. This is a much better way of

doing it.

Calling the specific option is now done using the Get method with a

section name as a parameter instead of the Value or CurrentValue

properties:

_jwtConfiguration = _configuration.Get("JwtSettings");

That’s it. All the rest is the same.

320

Developers who consume our API might be trying to solve important

business problems with it. Hence, it is very important for them to

understand how to use our API effectively. This is where API

documentation comes into the picture.

API documentation is the process of giving instructions on how to

effectively use and integrate an API. Hence, it can be thought of as a

concise reference manual containing all the information required to work

with the API, with details about functions, classes, return types,

arguments, and more, supported by tutorials and examples.

So, having the proper documentation for our API enables consumers to

integrate our APIs as quickly as possible and move forward with their

development. Furthermore, this also helps them understand the value and

usage of our API, improves the chances for our API’s adoption, and makes

our APIs easier to maintain and support.

Swagger is a language-agnostic specification for describing REST APIs.

Swagger is also referred to as OpenAPI. It allows us to understand the

capabilities of a service without looking at the actual implementation

code.

Swagger minimizes the amount of work needed while integrating an API.

Similarly, it also helps API developers document their APIs quickly and

accurately.

Swagger Specification is an important part of the Swagger flow. By

default, a document named swagger.json is generated by the Swagger

tool which is based on our API. It describes the capabilities of our API and

how to access it via HTTP.

321

We can use the Swashbuckle package to easily integrate Swagger into our

.NET Core Web API project. It will generate the Swagger specification for

the project as well. Additionally, the Swagger UI is also contained within

Swashbuckle.

There are three main components in the Swashbuckle package:

• Swashbuckle.AspNetCore.Swagger: This contains the Swagger

object model and the middleware to expose SwaggerDocument

objects as JSON.

• Swashbuckle.AspNetCore.SwaggerGen: A Swagger generator

that builds SwaggerDocument objects directly from our routes,

controllers, and models.

• Swashbuckle.AspNetCore.SwaggerUI: An embedded version of

the Swagger UI tool. It interprets Swagger JSON to build a rich,

customizable experience for describing web API functionality.

So, the first thing we are going to do is to install the required library in

the main project. Let’s open the Package Manager Console window and

type the following command:

PM> Install-Package Swashbuckle.AspNetCore

After a couple of seconds, the package will be installed. Now, we have to

configure the Swagger Middleware. To do that, we are going to add a new

method in the ServiceExtensions class:

public static void ConfigureSwagger(this IServiceCollection services)
{
 services.AddSwaggerGen(s =>
 {
 s.SwaggerDoc("v1", new OpenApiInfo { Title = "Code Maze API", Version = "v1"
});
 s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2"
});
 });
}

322

We are creating two versions of SwaggerDoc because if you remember,

we have two versions for the Companies controller and we want to

separate them in our documentation.

Also, we need an additional namespace:

using Microsoft.OpenApi.Models;

The next step is to call this method in the Program class:

builder.Services.ConfigureSwagger();

And in the middleware part of the class, we are going to add it to the

application’s execution pipeline together with the UI feature:

app.UseSwagger();
app.UseSwaggerUI(s =>
{
 s.SwaggerEndpoint("/swagger/v1/swagger.json", "Code Maze API v1");
 s.SwaggerEndpoint("/swagger/v2/swagger.json", "Code Maze API v2");
});

Finally, let’s slightly modify the Companies and CompaniesV2 controllers:

[Route("api/companies")]
[ApiController]
[ApiExplorerSettings(GroupName = "v1")]
public class CompaniesController : ControllerBase

[Route("api/companies")]
[ApiController]
[ApiExplorerSettings(GroupName = "v2")]
public class CompaniesV2Controller : ControllerBase

With this change, we state that the CompaniesController belongs to group

v1 and the CompaniesV2Controller belongs to group v2. All the other

controllers will be included in both groups because they are not versioned.

Which is what we want.

And that is all. We have prepared the basic configuration.

Now, we can start our app, open the browser, and navigate to

https://localhost:5001/swagger/v1/swagger.json. Once the page

is up, you are going to see a json document containing all the controllers

and actions without the v2 companies controller. Of course, if you change

323

v1 to v2 in the URL, you are going to see all the controllers — including

v2 companies, but without v1 companies.

Additionally, let’s navigate to

https://localhost:5001/swagger/index.html:

Also if we expand the Schemas part, we are going to find the DTOs that

we used in our project.

If we click on a specific controller to expand its details, we are going to

see all the actions inside:

324

Once we click on an action method, we can see detailed information like

parameters, response, and example values. There is also an option to try

out each of those action methods by clicking the Try it out button.

So, let’s try it with the /api/companies action:

Once we click the Execute button, we are going to see that we get our

response:

325

And this is an expected response. We are not authorized. To enable

authorization, we have to add some modifications.

To add authorization support, we need to modify the ConfigureSwagger

method:

public static void ConfigureSwagger(this IServiceCollection services)
{
 services.AddSwaggerGen(s =>
 {
 s.SwaggerDoc("v1", new OpenApiInfo { Title = "Code Maze API", Version = "v1"
});
 s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2"
});

 s.AddSecurityDefinition("Bearer", new OpenApiSecurityScheme
 {
 In = ParameterLocation.Header,
 Description = "Place to add JWT with Bearer",
 Name = "Authorization",
 Type = SecuritySchemeType.ApiKey,
 Scheme = "Bearer"
 });

 s.AddSecurityRequirement(new OpenApiSecurityRequirement()
 {
 {
 new OpenApiSecurityScheme
 {
 Reference = new OpenApiReference
 {
 Type = ReferenceType.SecurityScheme,
 Id = "Bearer"

326

 },
 Name = "Bearer",
 },
 new List<string>()
 }
 });
 });
}

With this modification, we are adding the security definition in our

swagger configuration. Now, we can start our app again and navigate to

the index.html page.

The first thing we are going to notice is the Authorize options for

requests:

We are going to use that in a moment. But let’s get our token first. For

that, let’s open the api/authentication/login action, click try it out, add

credentials, and copy the received token:

327

Once we have copied the token, we are going to click on the authorization

button for the /api/companies request, paste it with the Bearer in front of

it, and click Authorize:

328

After authorization, we are going to click on the Close button and try our

request:

And we get our response. Excellent job.

Swagger provides options for extending the documentation and

customizing the UI. Let’s explore some of those.

First, let’s see how we can specify the API info and description. The

configuration action passed to the AddSwaggerGen() method adds

information such as Contact, License, and Description. Let’s provide some

values for those:

s.SwaggerDoc("v1", new OpenApiInfo
{
 Title = "Code Maze API",
 Version = "v1",
 Description = "CompanyEmployees API by CodeMaze",
 TermsOfService = new Uri("https://example.com/terms"),
 Contact = new OpenApiContact
 {
 Name = "John Doe",
 Email = "John.Doe@gmail.com",
 Url = new Uri("https://twitter.com/johndoe"),
 },
 License = new OpenApiLicense
 {
 Name = "CompanyEmployees API LICX",
 Url = new Uri("https://example.com/license"),
 }
});

329

…

We have implemented this just for the first version, but you get the point.

Now, let’s run the application once again and explore the Swagger UI:

For enabling XML comments, we need to suppress warning 1591, which

will now give warnings about any method, class, or field that doesn’t have

triple-slash comments. We need to do this in the Presentation project.

Additionally, we have to add the documentation path for the same

project, since our controllers are in the Presentation project:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">
 <DocumentationFile>CompanyEmployees.Presentation.xml</DocumentationFile>
 <OutputPath></OutputPath>
 <NoWarn>1701;1702;1591</NoWarn>
 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|AnyCPU'">
 <NoWarn>1701;1702;1591</NoWarn>
 </PropertyGroup>

Now, let’s modify our configuration:

s.SwaggerDoc("v2", new OpenApiInfo { Title = "Code Maze API", Version = "v2" });

var xmlFile = $"{typeof(Presentation.AssemblyReference).Assembly.GetName().Name}.xml";
var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
s.IncludeXmlComments(xmlPath);

330

Next, adding triple-slash comments to the action method enhances the

Swagger UI by adding a description to the section header:

/// <summary>
/// Gets the list of all companies
/// </summary>
/// <returns>The companies list</returns>
[HttpGet(Name = "GetCompanies")]
[Authorize(Roles = "Manager")]
public async Task<IActionResult> GetCompanies()

And this is the result:

The developers who consume our APIs are usually more interested in

what it returns — specifically the response types and error codes. Hence,

it is very important to describe our response types. These are denoted

using XML comments and data annotations.

Let’s enhance the response types a little bit:

/// <summary>
/// Creates a newly created company
/// </summary>
/// <param name="company"></param>
/// <returns>A newly created company</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>
/// <response code="422">If the model is invalid</response>
[HttpPost(Name = "CreateCompany")]
[ProducesResponseType(201)]
[ProducesResponseType(400)]
[ProducesResponseType(422)]

Here, we are using both XML comments and data annotation attributes.

Now, we can see the result:

And, if we inspect the response part, we will find our mentioned

responses:

331

Excellent.

We can continue to the deployment part.

332

Before we start the deployment process, we would like to point out one

important thing. We should always try to deploy an application on at least

a local machine to somehow simulate the production environment as soon

as we start with development. That way, we can observe how the

application behaves in a production environment from the beginning of

the development process.

That leads us to the conclusion that the deployment process should not be

the last step of the application’s lifecycle. We should deploy our

application to the staging environment as soon as we start building it.

That said, let’s start with the deployment process.

Let’s create a folder on the local machine with the name Publish. Inside

that folder, we want to place all of our files for deployment. After the

folder creation, let’s right-click on the main project in the Solution

Explorer window and click publish option:

In the “Pick a publish target” window, we are going to choose the Folder

option and click Next:

333

And point to the location of the Publish folder we just created and click

Finish:

Publish windows can be different depending on the Visual Studio version.

After that, we have to click the Publish button:

334

Visual Studio is going to do its job and publish the required files in the

specified folder.

Before any further action, let’s install the .NET Core Windows Server

Hosting bundle on our system to install .NET Core Runtime. Furthermore,

with this bundle, we are installing the .NET Core Library and the ASP.NET

Core Module. This installation will create a reverse proxy between IIS and

the Kestrel server, which is crucial for the deployment process.

If you have a problem with missing SDK after installing the Hosting

Bundle, follow this solution suggested by Microsoft:

Installing the .NET Core Hosting Bundle modifies the PATH when it installs

the .NET Core runtime to point to the 32-bit (x86) version of .NET Core

(C:\Program Files (x86)\dotnet\). This can result in missing SDKs when

the 32-bit (x86) .NET Core dotnet command is used (No .NET Core SDKs

were detected). To resolve this problem, move C:\Program Files\dotnet\

https://dotnet.microsoft.com/download/dotnet/thank-you/runtime-aspnetcore-6.0.0-windows-hosting-bundle-installer
https://dotnet.microsoft.com/download/dotnet/thank-you/runtime-aspnetcore-6.0.0-windows-hosting-bundle-installer

335

to a position before C:\Program Files (x86)\dotnet\ on the PATH

environment variable.

After the installation, we are going to locate the Windows hosts file on

C:\Windows\System32\drivers\etc and add the following record at the

end of the file:

127.0.0.1 www.companyemployees.codemaze

After that, we are going to save the file.

If you don’t have IIS installed on your machine, you need to install it by

opening ControlPanel and then Programs and Features:

After the IIS installation finishes, let’s open the Run window (windows key

+ R) and type: inetmgr to open the IIS manager:

336

Now, we can create a new website:

In the next window, we need to add a name to our site and a path to the

published files:

And click the OK button.

337

After this step, we are going to have our site inside the “sites” folder in

the IIS Manager. Additionally, we need to set up some basic settings for

our application pool:

After we click on the Basic Settings link, let’s configure our application

pool:

ASP.NET Core runs in a separate process and manages the runtime. It

doesn't rely on loading the desktop CLR (.NET CLR). The Core Common

Language Runtime for .NET Core is booted to host the app in the worker

process. Setting the .NET CLR version to No Managed Code is optional but

recommended.

Our website and the application pool should be started automatically.

https://asp.net/?fbclid=IwAR1rWdEZTzG1t5oyipFi4pTECXhmG1ufeZQEYAjTOvr_sMP3ERJlR_BU33I

338

In the section where we configured JWT, we had to use a secret key that

we placed in the environment file. Now, we have to provide to IIS the

name of that key and the value as well.

The first step is to click on our site in IIS and open Configuration

Editor:

Then, in the section box, we are going to choose

system.webServer/aspNetcore:

339

From the “From” combo box, we are going to choose

ApplicationHost.config:

After that, we are going to select environment variables:

Click Add and type the name and the value of our variable:

As soon as we click the close button, we should click apply in the next

window, restart our application in IIS, and we are good to go.

Let’s open Postman and send a request for the Root document:

340

http://www.companyemployees.codemaze/api

We can see that our API is working as expected. If it’s not, and you have

a problem related to web.config in IIS, try reinstalling the Server Hosting

Bundle package.

If you get an error message that the Presentation.xml file is missing, you

can copy it from the project and paste it into the Publish folder. Also, in

the Properties window for that file, you can set it to always copy during

the publish.

Now, let’s continue.

We still have one more thing to do. We have to add a login to the SQL

Server for IIS APPPOOL\CodeMaze Web Api and grant permissions to

341

the database. So, let’s open the SQL Server Management Studio and add

a new login:

In the next window, we are going to add our user:

After that, we are going to expand the Logins folder, right-click on our

user, and choose Properties. There, under UserMappings, we have to

342

select the CompanyEmployee database and grant the dbwriter and

dbreader roles.

Now, we can try to send the Authentication request:

http://www.companyemployees.codemaze/api/authentication/login

Excellent; we have our token. Now, we can send the request to the

GetCompanies action with the generated token:

http://www.companyemployees.codemaze/api/companies

And there we go. Our API is published and working as expected.

343

As mentioned in section 6.1.1, we will show you an alternative way of

handling error responses. To repeat, with custom exceptions, we have

great control of returning error responses to the client due to the global

error handler, which is pretty fast if we use it correctly. Also, the code is

pretty clean and straightforward since we don’t have to care about the

return types and additional validation in the service methods.

Even though some libraries enable us to write custom responses, for

example, OneOf, we still like to create our abstraction logic, which is

tested by us and fast. Additionally, we want to show you the whole

creation process for such a flow.

For this example, we will use an existing project from part 6 and modify it

to implement our API Response flow.

Let’s start with the API response model classes.

The first thing we are going to do is create a new Responses folder in the

Entities project. Inside that folder, we are going to add our first class:

public abstract class ApiBaseResponse
{
 public bool Success { get; set; }

 protected ApiBaseResponse(bool success) => Success = success;
}

This is an abstract class, which will be the main return type for all of our

methods where we have to return a successful result or an error result. It

also contains a single Success property stating whether the action was

successful or not.

Now, if our result is successful, we are going to create only one class in

the same folder:

344

public sealed class ApiOkResponse<TResult> : ApiBaseResponse
{
 public TResult Result { get; set; }

 public ApiOkResponse(TResult result)
 :base(true)
 {
 Result = result;
 }
}

We are going to use this class as a return type for a successful result. It

inherits from the ApiBaseResponse and populates the Success property

to true through the constructor. It also contains a single Result property

of type TResult. We will store our concrete result in this property, and

since we can have different result types in different methods, this

property is a generic one.

That’s all regarding the successful responses. Let’s move one to the error

classes.

For the error responses, we will follow the same structure as we have for

the exception classes. So, we will have base abstract classes for NotFound

or BadRequest or any other error responses, and then concrete

implementations for these classes like CompanyNotFound or

CompanyBadRequest, etc.

That said, let’s use the same folder to create an abstract error class:

public abstract class ApiNotFoundResponse : ApiBaseResponse
{
 public string Message { get; set; }

 public ApiNotFoundResponse(string message)
 : base(false)
 {
 Message = message;
 }
}

This class also inherits from the ApiBaseResponse, populates the

Success property to false, and has a single Message property for the

error message.

345

In the same manner, we can create the ApiBadRequestResponse class:

public abstract class ApiBadRequestResponse : ApiBaseResponse
{
 public string Message { get; set; }

 public ApiBadRequestResponse(string message)
 : base(false)
 {
 Message = message;
 }
}

This is the same implementation as the previous one. The important thing

to notice is that both of these classes are abstract.

To continue, let’s create a concrete error response:

public sealed class CompanyNotFoundResponse : ApiNotFoundResponse
{
 public CompanyNotFoundResponse(Guid id)
 : base($"Company with id: {id} is not found in db.")
 {
 }
}

The class inherits from the ApiNotFoundResponse abstract class, which

again inherits from the ApiBaseResponse class. It accepts an id

parameter and creates a message that sends to the base class.

We are not going to create the CompanyBadRequestResponse class

because we are not going to need it in our example. But the principle is

the same.

Now that we have the response model classes, we can start with the

service layer modification.

Let’s start with the ICompanyService interface:

public interface ICompanyService
{
 ApiBaseResponse GetAllCompanies(bool trackChanges);
 ApiBaseResponse GetCompany(Guid companyId, bool trackChanges);
}

346

We don’t return concrete types in our methods anymore. Instead of the

IEnumerable<CompanyDto> or CompanyDto return types, we return the

ApiBaseResponse type. This will enable us to return either the success

result or to return any of the error response results.

After the interface modification, we can modify the CompanyService

class:

public ApiBaseResponse GetAllCompanies(bool trackChanges)
{
 var companies = _repository.Company.GetAllCompanies(trackChanges);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return new ApiOkResponse<IEnumerable<CompanyDto>>(companiesDto);
}

public ApiBaseResponse GetCompany(Guid id, bool trackChanges)
{
 var company = _repository.Company.GetCompany(id, trackChanges);
 if (company is null)
 return new CompanyNotFoundResponse(id);

 var companyDto = _mapper.Map<CompanyDto>(company);
 return new ApiOkResponse<CompanyDto>(companyDto);
}

Both method signatures are modified to use APIBaseResponse, and also

the return types are modified accordingly. Additionally, in the

GetCompany method, we are not using an exception class to return an

error result but the CompanyNotFoundResponse class. With the

ApiBaseResponse abstraction, we are safe to return multiple types from

our method as long as they inherit from the ApiBaseResponse abstract

class. Here you could also log some messages with _logger.

One more thing to notice here.

In the GetAllCompanies method, we don’t have an error response just a

successful one. That means we didn’t have to implement our Api response

flow, and we could’ve left the method unchanged (in the interface and

this class). If you want that kind of implementation it is perfectly fine. We

347

just like consistency in our projects, and due to that fact, we’ve changed

both methods.

Before we start changing the actions in the CompaniesController, we

have to create a way to handle error responses and return them to the

client – similar to what we have with the global error handler middleware.

We are not going to create any additional middleware but another

controller base class inside the Presentation/Controllers folder:

public class ApiControllerBase : ControllerBase
{
 public IActionResult ProcessError(ApiBaseResponse baseResponse)
 {
 return baseResponse switch
 {
 ApiNotFoundResponse => NotFound(new ErrorDetails
 {
 Message = ((ApiNotFoundResponse)baseResponse).Message,
 StatusCode = StatusCodes.Status404NotFound
 }),
 ApiBadRequestResponse => BadRequest(new ErrorDetails
 {
 Message = ((ApiBadRequestResponse)baseResponse).Message,
 StatusCode = StatusCodes.Status400BadRequest
 }),
 _ => throw new NotImplementedException()
 };
 }
}

This class inherits from the ControllerBase class and implements a

single ProcessError action accepting an ApiBaseResponse parameter.

Inside the action, we are inspecting the type of the sent parameter, and

based on that type we return an appropriate message to the client. A

similar thing we did in the exception middleware class.

If you add additional error response classes to the Response folder, you

only have to add them here to process the response for the client.

Additionally, this is where we can see the advantage of our abstraction

approach.

348

Now, we can modify our CompaniesController:

[Route("api/companies")]
[ApiController]
public class CompaniesController : ApiControllerBase
{
 private readonly IServiceManager _service;

 public CompaniesController(IServiceManager service) => _service = service;

 [HttpGet]
 public IActionResult GetCompanies()
 {
 var baseResult = _service.CompanyService.GetAllCompanies(trackChanges:
false);

 var companies =
((ApiOkResponse<IEnumerable<CompanyDto>>)baseResult).Result;

 return Ok(companies);
 }

 [HttpGet("{id:guid}")]
 public IActionResult GetCompany(Guid id)
 {
 var baseResult = _service.CompanyService.GetCompany(id, trackChanges:
false);
 if (!baseResult.Success)
 return ProcessError(baseResult);

 var company = ((ApiOkResponse<CompanyDto>)baseResult).Result;

 return Ok(company);
 }
}

Now our controller inherits from the ApiControllerBase, which inherits

from the ControllerBase class. In the GetCompanies action, we extract

the result from the service layer and cast the baseResult variable to the

concrete ApiOkResponse type, and use the Result property to extract

our required result of type IEnumerable<CompanyDto>.

We do a similar thing for the GetCompany action. Of course, here we

check if our result is successful and if it’s not, we return the result of the

ProcessError method.

And that’s it.

349

We can leave the solution as is, but we mind having these castings inside

our actions – they can be moved somewhere else making them reusable

and our actions cleaner. So, let’s do that.

In the same project, we are going to create a new Extensions folder and a

new ApiBaseResponseExtensions class:

public static class ApiBaseResponseExtensions
{
 public static TResultType GetResult<TResultType>(this ApiBaseResponse
apiBaseResponse) =>
 ((ApiOkResponse<TResultType>)apiBaseResponse).Result;
}

The GetResult method will extend the ApiBaseResponse type and

return the result of the required type.

Now, we can modify actions inside the controller:

[HttpGet]
public IActionResult GetCompanies()
{
 var baseResult = _service.CompanyService.GetAllCompanies(trackChanges: false);

 var companies = baseResult.GetResult<IEnumerable<CompanyDto>>();

 return Ok(companies);
}

[HttpGet("{id:guid}")]
public IActionResult GetCompany(Guid id)
{
 var baseResult = _service.CompanyService.GetCompany(id, trackChanges: false);
 if (!baseResult.Success)
 return ProcessError(baseResult);

 var company = baseResult.GetResult<CompanyDto>();

 return Ok(company);
}

This is much cleaner and easier to read and understand.

Now we can start our application, open Postman, and send some

requests.

Let’s try to get all the companies:

350

https://localhost:5001/api/companies

Then, we can try to get a single company:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

And finally, let’s try to get a company that does not exist:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce2

And we have our response with a proper status code and response body.

Excellent.

351

We have a solution that is easy to implement, fast, and extendable.

Our suggestion is to go with custom exceptions since they are easier to

implement and fast as well. But if you have an app flow where you have

to return error responses at a much higher rate and thus maybe impact

the app’s performance, the APi Response flow is the way to go.

352

In this chapter, we will provide an introduction to the CQRS pattern and

how the .NET library MediatR helps us build software with this

architecture.

In the Source Code folder, you will find the folder for this chapter with

two folders inside – start and end. In the start folder, you will find a

prepared project for this section. We are going to use it to explain the

implementation of CQRS and MediatR. We have used the existing project

from one of the previous chapters and removed the things we don’t need

or want to replace - like the service layer.

In the end folder, you will find a finished project for this chapter.

The MediatR library was built to facilitate two primary software

architecture patterns: CQRS and the Mediator pattern. Whilst similar, let’s

spend a moment understanding the principles behind each pattern.

33.1.1 CQRS

CQRS stands for “Command Query Responsibility Segregation”. As the

acronym suggests, it’s all about splitting the responsibility of commands

(saves) and queries (reads) into different models.

If we think about the commonly used CRUD pattern (Create-Read-

Update-Delete), we usually have the user interface interacting with a

datastore responsible for all four operations. CQRS would instead have us

split these operations into two models, one for the queries (aka “R”), and

another for the commands (aka “CUD”).

The following image illustrates how this works:

353

The Application simply separates the query and command models.

The CQRS pattern makes no formal requirements of how this

separation occurs. It could be as simple as a separate class in the same

application (as we’ll see shortly with MediatR), all the way up to separate

physical applications on different servers. That decision would be based

on factors such as scaling requirements and infrastructure, so we won’t

go into that decision path here.

The key point being is that to create a CQRS system, we just need

to split the reads from the writes.

What problem is this trying to solve?

Well, a common reason is when we design a system, we start with data

storage. We perform database normalization, add primary and foreign

keys to enforce referential integrity, add indexes, and generally ensure

the “write system” is optimized. This is a common setup for a relational

database such as SQL Server or MySQL. Other times, we think about the

read use cases first, then try and add that into a database, worrying less

about duplication or other relational DB concerns (often “document

databases” are used for these patterns).

Neither approach is wrong. But the issue is that it’s a constant balancing

act between reads and writes, and eventually one side will “win out”. All

354

further development means both sides need to be analyzed, and often

one is compromised.

CQRS allows us to “break free” from these considerations and give each

system the equal design and consideration it deserves without worrying

about the impact of the other system. This has tremendous benefits on

both performance and agility, especially if separate teams are working on

these systems.

33.1.2 Advantages and Disadvantages of CQRS

The benefits of CQRS are:

• Single Responsibility – Commands and Queries have only one job. It

is either to change the state of the application or retrieve it.

Therefore, they are very easy to reason about and understand.

• Decoupling – The Command or Query is completely decoupled from

its handler, giving you a lot of flexibility on the handler side to

implement it the best way you see fit.

• Scalability – The CQRS pattern is very flexible in terms of how you

can organize your data storage, giving you options for great

scalability. You can use one database for both Commands and

Queries. You can use separate Read/Write databases, for improved

performance, with messaging or replication between the databases

for synchronization.

• Testability – It is very easy to test Command or Query handlers

since they will be very simple by design, and perform only a single

job.

Of course, it can’t all be good. Here are some of the disadvantages of

CQRS:

• Complexity – CQRS is an advanced design pattern, and it will take

you time to fully understand it. It introduces a lot of complexity that

355

will create friction and potential problems in your project. Be sure to

consider everything, before deciding to use it in your project.

• Learning Curve – Although it seems like a straightforward design

pattern, there is still a learning curve with CQRS. Most developers

are used to the procedural (imperative) style of writing code, and

CQRS is a big shift away from that.

• Hard to Debug – Since Commands and Queries are decoupled from

their handler, there isn’t a natural imperative flow of the

application. This makes it harder to debug than traditional

applications.

33.1.3 Mediator Pattern

The Mediator pattern is simply defining an object that encapsulates how

objects interact with each other. Instead of having two or more objects

take a direct dependency on each other, they instead interact with a

“mediator”, who is in charge of sending those interactions to the other

party:

In this image, SomeService sends a message to the Mediator, and the

Mediator then invokes multiple services to handle the message. There is

no direct dependency between any of the blue components.

The reason the Mediator pattern is useful is the same reason patterns

like Inversion of Control are useful. It enables “loose coupling”, as the

dependency graph is minimized and therefore code is simpler and easier

356

to test. In other words, the fewer considerations a component has, the

easier it is to develop and evolve.

We saw in the previous image how the services have no direct

dependency, and the producer of the messages doesn’t know who or how

many things are going to handle it. This is very similar to how a message

broker works in the “publish/subscribe” pattern. If we wanted to add

another handler we could, and the producer wouldn’t have to be modified.

Now that we’ve been over some theory, let’s talk about how MediatR

makes all these things possible.

You can think of MediatR as an “in-process” Mediator implementation,

that helps us build CQRS systems. All communication between the user

interface and the data store happens via MediatR.

The term “in process” is an important limitation here. Since it’s a .NET

library that manages interactions within classes on the same process, it’s

not an appropriate library to use if we want to separate the commands

and queries across two systems. A better approach would be to use a

message broker such as Kafka or Azure Service Bus.

However, for this chapter, we are going to stick with a simple single-

process CQRS system, so MediatR fits the bill perfectly.

Let’s start by opening the starter project from the start folder. You will

see that we don’t have the Service nor the Service.Contracts projects.

Well, we don’t need them. We are going to use CQRS with MediatR to

replace that part of our solution.

But, we do need an additional project for our business logic so, let’s

create a new class library (.NET Core) and name it Application.

357

Additionally, we are going to add a new class named

AssemblyReference. We will use it for the same purpose as we used the

class with the same name in the Presentation project:

public static class AssemblyReference
{
}

Now let’s install a couple of packages.

The first package we are going to install is the MediatR in the

Application project:

PM> install-package MediatR

Then in the main project, we are going to install another package that

wires up MediatR with the ASP.NET dependency injection container:

PM> install-package MediatR.Extensions.Microsoft.DependencyInjection

After the installations, we are going to configure MediatR in the Program

class:

builder.Services.AddMediatR(typeof(Application.AssemblyReference).Assembly);

For this, we have to reference the Application project, and add a using

directive:

using MediatR;

The AddMediatR method will scan the project assembly that contains the

handlers that we are going to use to handle our business logic. Since we

are going to place those handlers in the Application project, we are

using the Application’s assembly as a parameter.

Before we continue, we have to reference the Application project from

the Presentation project.

Now MediatR is configured, and we can use it inside our controller.

358

In the Controllers folder of the Presentation project, we are going to

find a single controller class. It contains only a base code, and we are

going to modify it by adding a sender through the constructor injection:

[Route("api/companies")]
[ApiController]
public class CompaniesController : ControllerBase
{
 private readonly ISender _sender;

 public CompaniesController(ISender sender) => _sender = sender;
}

Here we inject the ISender interface from the MediatR namespace. We

are going to use this interface to send requests to our handlers.

We have to mention one thing about using ISender and not the

IMediator interface. From the MediatR version 9.0, the IMediator

interface is split into two interfaces:

public interface ISender
{
 Task<TResponse> Send<TResponse>(IRequest<TResponse> request, CancellationToken
cancellationToken = default);
 Task<object?> Send(object request, CancellationToken cancellationToken =
default);
}
public interface IPublisher
{
 Task Publish(object notification, CancellationToken cancellationToken =
default);
 Task Publish<TNotification>(TNotification notification, CancellationToken
cancellationToken = default)
 where TNotification : INotification;
}
public interface IMediator : ISender, IPublisher
{
}

So, by looking at the code, it is clear that you can continue using the

IMediator interface to send requests and publish notifications. But it is

recommended to split that by using ISender and IPublisher interfaces.

With that said, we can continue with the Application’s logic

implementation.

359

MediatR Requests are simple request-response style messages where a

single request is synchronously handled by a single handler (synchronous

from the request point of view, not C# internal async/await). Good use

cases here would be returning something from a database or updating a

database.

There are two types of requests in MediatR. One that returns a value, and

one that doesn’t. Often this corresponds to reads/queries (returning a

value) and writes/commands (usually doesn’t return a value).

So, before we start sending requests, we are going to create several

folders in the Application project to separate queries, commands, and

handlers:

Since we are going to work only with the company entity, we are going to

place our queries, commands, and handlers directly into these folders.

But in larger projects with multiple entities, we can create additional

folders for each entity inside each of these folders for better organization.

Also, as we already know, we are not going to send our entities as a

result to the client but DTOs, so we have to reference the Shared project.

That said, let’s start with our first query. Let’s create it in the Queries

folder:

public sealed record GetCompaniesQuery(bool TrackChanges) :

IRequest<IEnumerable<CompanyDto>>;

360

Here, we create the GetCompaniesQuery record, which implements

IRequest<IEnumerable<CompanyDto>>. This simply means our request

will return a list of companies.

Here we need two additional namespaces:

using MediatR;
using Shared.DataTransferObjects;

Once we send the request from our controller’s action, we are going to

see the usage of this query.

After the query, we need a handler. This handler in simple words will be

our replacement for the service layer method that we had in our project.

In our previous project, all the service classes were using the repository

to access the database – we will make no difference here. For that, we

have to reference the Contracts project so we can access the

IRepositoryManager interface.

After adding the reference, we can create a new GetCompaniesHandler

class in the Handlers folder:

internal sealed class GetCompaniesHandler : IRequestHandler<GetCompaniesQuery,
IEnumerable<CompanyDto>>
{
 private readonly IRepositoryManager _repository;

 public GetCompaniesHandler(IRepositoryManager repository) => _repository =
repository;

 public Task<IEnumerable<CompanyDto>> Handle(GetCompaniesQuery request,
 CancellationToken cancellationToken)
 {
 throw new NotImplementedException();
 }
}

Our handler inherits from IRequestHandler<GetCompaniesQuery,

IEnumerable<Product>>. This means this class will

handle GetCompaniesQuery, in this case, returning the list of companies.

361

We also inject the repository through the constructor and add a default

implementation of the Handle method, required by the

IRequestHandler interface.

These are the required namespaces:

using Application.Queries;
using Contracts;
using MediatR;
using Shared.DataTransferObjects;

Of course, we are not going to leave this method to throw an exception.

But before we add business logic, we have to install AutoMapper in the

Application project:

PM> Install-Package AutoMapper.Extensions.Microsoft.DependencyInjection

Register the package in the Program class:

builder.Services.AddMediatR(typeof(Application.AssemblyReference).Assembly);
builder.Services.AddAutoMapper(typeof(Program));

And create the MappingProfile class, also in the main project, with a

single mapping rule:

public class MappingProfile : Profile
{
 public MappingProfile()
 {
 CreateMap<Company, CompanyDto>()
 .ForMember(c => c.FullAddress,
 opt => opt.MapFrom(x => string.Join(' ', x.Address,
x.Country)));
 }
}

Everything with these actions is familiar since we’ve already used

AutoMapper in our project.

Now, we can modify the handler class:

internal sealed class GetCompaniesHandler : IRequestHandler<GetCompaniesQuery,
IEnumerable<CompanyDto>>
{
 private readonly IRepositoryManager _repository;
 private readonly IMapper _mapper;

 public GetCompaniesHandler(IRepositoryManager repository, IMapper mapper)
 {

362

 _repository = repository;
 _mapper = mapper;
 }

 public async Task<IEnumerable<CompanyDto>> Handle(GetCompaniesQuery request,
 CancellationToken cancellationToken)
 {
 var companies = await
_repository.Company.GetAllCompaniesAsync(request.TrackChanges);

 var companiesDto = _mapper.Map<IEnumerable<CompanyDto>>(companies);

 return companiesDto;
 }
}

This logic is also familiar since we had almost the same one in our

GetAllCompaniesAsync service method. One difference is that we are

passing the track changes parameter through the request object.

Now, we can modify CompaniesController:

[HttpGet]
public async Task<IActionResult> GetCompanies()
{
 var companies = await _sender.Send(new GetCompaniesQuery(TrackChanges: false));

 return Ok(companies);
}

We use the Send method to send a request to our handler and pass the

GetCompaniesQuery as a parameter. Nothing more than that.

We also need an additional namespace:

using Application.Queries;

Our controller is clean as it was with the service layer implemented. But

this time, we don’t have a single service class to handle all the methods

but a single handler to take care of only one thing.

Now, we can test this:

363

https://localhost:5001/api/companies

Everything works great.

With this in mind, we can continue and implement the logic for fetching a

single company.

So, let’s start with the query in the Queries folder:

public sealed record GetCompanyQuery(Guid Id, bool TrackChanges) :

IRequest<CompanyDto>;

Then, let’s implement a new handler:

internal sealed class GetCompanyHandler : IRequestHandler<GetCompanyQuery, CompanyDto>
{
 private readonly IRepositoryManager _repository;
 private readonly IMapper _mapper;

 public GetCompanyHandler(IRepositoryManager repository, IMapper mapper)
 {
 _repository = repository;
 _mapper = mapper;
 }

 public async Task<CompanyDto> Handle(GetCompanyQuery request, CancellationToken
cancellationToken)
 {
 var company = await _repository.Company.GetCompanyAsync(request.Id,
request.TrackChanges);
 if (company is null)
 throw new CompanyNotFoundException(request.Id);

 var companyDto = _mapper.Map<CompanyDto>(company);

 return companyDto;

364

 }
}

So again, our handler inherits from the IRequestHandler interface

accepting the query as the first parameter and the result as the second.

Then, we inject the required services and familiarly implement the

Handle method.

We need these namespaces here:

using Application.Queries;
using AutoMapper;
using Contracts;
using Entities.Exceptions;
using MediatR;
using Shared.DataTransferObjects;

Lastly, we have to add another action in CompaniesController:

[HttpGet("{id:guid}", Name = "CompanyById")]
public async Task<IActionResult> GetCompany(Guid id)
{
 var company = await _sender.Send(new GetCompanyQuery(id, TrackChanges: false));

 return Ok(company);
}

Awesome, let’s test it:

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce3

Excellent, we can see the company DTO in the response body.

Additionally, we can try an invalid request:

365

https://localhost:5001/api/companies/3d490a70-94ce-4d15-9494-5248280c2ce2

And, we can see this works as well.

As with both queries, we are going to start with a command record

creation inside the Commands folder:

public sealed record CreateCompanyCommand(CompanyForCreationDto Company) :

IRequest<CompanyDto>;

Our command has a single parameter sent from the client, and it inherits

from IRequest<CompanyDto>. Our request has to return CompanyDto

because we will need it, in our action, to create a valid route in the return

statement.

After the query, we are going to create another handler:

internal sealed class CreateCompanyHandler : IRequestHandler<CreateCompanyCommand,
CompanyDto>
{
 private readonly IRepositoryManager _repository;
 private readonly IMapper _mapper;

 public CreateCompanyHandler(IRepositoryManager repository, IMapper mapper)
 {
 _repository = repository;
 _mapper = mapper;
 }

 public async Task<CompanyDto> Handle(CreateCompanyCommand request,
CancellationToken cancellationToken)
 {
 var companyEntity = _mapper.Map<Company>(request.Company);

 _repository.Company.CreateCompany(companyEntity);
 await _repository.SaveAsync();

366

 var companyToReturn = _mapper.Map<CompanyDto>(companyEntity);

 return companyToReturn;
 }
}

So, we inject our services and implement the Handle method as we did

with the service method. We map from the creation DTO to the entity,

save it to the database, and map it to the company DTO object.

Then, before we add a new mapping rule in the MappingProfile class:

CreateMap<CompanyForCreationDto, Company>();

Now, we can add a new action in a controller:

[HttpPost]
public async Task<IActionResult> CreateCompany([FromBody] CompanyForCreationDto
companyForCreationDto)
{

if (companyForCreationDto is null)
 return BadRequest("CompanyForCreationDto object is null");

 var company = await _sender.Send(new
CreateCompanyCommand(companyForCreationDto));

 return CreatedAtRoute("CompanyById", new { id = company.Id }, company);
}

That’s all it takes. Now we can test this:

https://localhost:5001/api/companies

A new company is created, and if we inspect the Headers tab, we are

going to find the link to fetch this new company:

367

There is one important thing we have to understand here. We are

communicating to a datastore via simple message constructs without

having any idea on how it’s being implemented. The commands and

queries could be pointing to different data stores. They don’t know how

their request will be handled, and they don’t care.

33.5.1 Update Command

Following the same principle from the previous example, we can

implement the update request.

Let’s start with the command:

public sealed record UpdateCompanyCommand
 (Guid Id, CompanyForUpdateDto Company, bool TrackChanges) : IRequest;

This time our command inherits from IRequest without any generic

parameter. That’s because we are not going to return any value with this

request.

Let’s continue with the handler implementation:

internal sealed class UpdateCompanyHandler : IRequestHandler<UpdateCompanyCommand,
Unit>
{
 private readonly IRepositoryManager _repository;
 private readonly IMapper _mapper;

 public UpdateCompanyHandler(IRepositoryManager repository, IMapper mapper)
 {
 _repository = repository;
 _mapper = mapper;
 }

 public async Task<Unit> Handle(UpdateCompanyCommand request, CancellationToken
cancellationToken)
 {

368

 var companyEntity = await
_repository.Company.GetCompanyAsync(request.Id, request.TrackChanges);
 if (companyEntity is null)
 throw new CompanyNotFoundException(request.Id);

 _mapper.Map(request.Company, companyEntity);
 await _repository.SaveAsync();

 return Unit.Value;
 }
}

This handler inherits from IRequestHandler<UpdateCompanyCommand,

Unit>. This is new for us because the first time our command is not

returning any value. But IRequestHandler always accepts two

parameters (TRequest and TResponse). So, we provide the Unit

structure for the TResponse parameter since it represents the void type.

Then the Handle implementation is familiar to us except for the return

part. We have to return something from the Handle method and we use

Unit.Value.

Before we modify the controller, we have to add another mapping rule:

CreateMap<CompanyForUpdateDto, Company>();

Lastly, let’s add a new action in the controller:

[HttpPut("{id:guid}")]
public async Task<IActionResult> UpdateCompany(Guid id, CompanyForUpdateDto
companyForUpdateDto)
{
 if (companyForUpdateDto is null)
 return BadRequest("CompanyForUpdateDto object is null");

 await _sender.Send(new UpdateCompanyCommand(id, companyForUpdateDto,
TrackChanges: true));

 return NoContent();
}

At this point, we can send a PUT request from Postman:

369

https://localhost:5001/api/companies/7aea16e2-74b9-4fd9-c22a-08d9961aa2d5

There is the 204 status code.

If you fetch this company, you will find the name updated for sure.

33.5.2 Delete Command

After all of this implementation, this one should be pretty straightforward.

Let’s start with the command:

public record DeleteCompanyCommand(Guid Id, bool TrackChanges) : IRequest;

Then, let’s continue with a handler:

internal sealed class DeleteCompanyHandler : IRequestHandler<DeleteCompanyCommand,
Unit>
{
 private readonly IRepositoryManager _repository;

 public DeleteCompanyHandler(IRepositoryManager repository) => _repository =
repository;

 public async Task<Unit> Handle(DeleteCompanyCommand request, CancellationToken
cancellationToken)
 {
 var company = await _repository.Company.GetCompanyAsync(request.Id,
request.TrackChanges);
 if (company is null)
 throw new CompanyNotFoundException(request.Id);

 _repository.Company.DeleteCompany(company);
 await _repository.SaveAsync();

 return Unit.Value;
 }
}

Finally, let’s add one more action inside the controller:

[HttpDelete("{id:guid}")]

370

public async Task<IActionResult> DeleteCompany(Guid id)
{
 await _sender.Send(new DeleteCompanyCommand(id, TrackChanges: false));

 return NoContent();
}

That’s it. Pretty easy.

We can test this now:

https://localhost:5001/api/companies/7aea16e2-74b9-4fd9-c22a-08d9961aa2d5

It works great.

Now that we know how to work with requests using MediatR, let’s see

how to use notifications.

So for we’ve only seen a single request being handled by a single handler.

However, what if we want to handle a single request by multiple

handlers?

That’s where notifications come in. In these situations, we usually have

multiple independent operations that need to occur after some event.

Examples might be:

• Sending an email

• Invalidating a cache

• ...

371

To demonstrate this, we will update the delete company flow we created

previously to publish a notification and have it handled by two handlers.

Sending an email is out of the scope of this book (you can learn more

about that in our Bonus 6 Security book). But to demonstrate the

behavior of notifications, we will use our logger service and log a message

as if the email was sent.

So, the flow will be - once we delete the Company, we want to inform our

administrators with an email message that the delete has action occurred.

That said, let’s start by creating a new Notifications folder inside the

Application project and add a new notification in that folder:

public sealed record CompanyDeletedNotification(Guid Id, bool TrackChanges) :

INotification;

The notification has to inherit from the INotification interface. This is

the equivalent of the IRequest we saw earlier, but for Notifications.

As we can conclude, notifications don’t return a value. They work on the

fire and forget principle, like publishers.

Next, we are going to create a new Emailhandler class:

internal sealed class EmailHandler : INotificationHandler<CompanyDeletedNotification>
{
 private readonly ILoggerManager _logger;

 public EmailHandler(ILoggerManager logger) => _logger = logger;

 public async Task Handle(CompanyDeletedNotification notification,
CancellationToken cancellationToken)
 {
 _logger.LogWarn($"Delete action for the company with id:
{notification.Id} has occurred.");

 await Task.CompletedTask;
 }
}

Here, we just simulate sending our email message in an async manner.

Without too many complications, we use our logger service to process the

message.

372

Let’s continue by modifying the DeleteCompanyHandler class:

internal sealed class DeleteCompanyHandler :
INotificationHandler<CompanyDeletedNotification>
{
 private readonly IRepositoryManager _repository;

 public DeleteCompanyHandler(IRepositoryManager repository) => _repository =
repository;

 public async Task Handle(CompanyDeletedNotification notification,
CancellationToken cancellationToken)
 {
 var company = await _repository.Company.GetCompanyAsync(notification.Id,
notification.TrackChanges);
 if (company is null)
 throw new CompanyNotFoundException(notification.Id);

 _repository.Company.DeleteCompany(company);
 await _repository.SaveAsync();
 }
}

This time, our handler inherits from the INotificationHandler

interface, and it doesn’t return any value – we’ve modified the method

signature and removed the return statement.

Finally, we have to modify the controller’s constructor:

private readonly ISender _sender;
private readonly IPublisher _publisher;

public CompaniesController(ISender sender, IPublisher publisher)
{
 _sender = sender;
 _publisher = publisher;
}

We inject another interface, which we are going to use to publish

notifications.

And, we have to modify the DeleteCompany action:

[HttpDelete("{id:guid}")]
public async Task<IActionResult> DeleteCompany(Guid id)
{
 await _publisher.Publish(new CompanyDeletedNotification(id, TrackChanges:
false));

 return NoContent();
}

To test this, let’s create a new company first:

373

Now, if we send the Delete request, we are going to receive the 204

NoContent response:

https://localhost:5001/api/companies/e06089af-baeb-44ef-1fdf-08d99630e212

And also, if we inspect the logs, we will find a new logged message

stating that the delete action has occurred:

Often when we build applications, we have many cross-cutting concerns.

These include authorization, validating, and logging.

Instead of repeating this logic throughout our handlers, we can make use

of Behaviors. Behaviors are very similar to ASP.NET Core middleware in

that they accept a request, perform some action, then (optionally) pass

along the request.

In this section, we are going to use behaviors to perform validation on the

DTOs that come from the client.

As we have already learned in chapter 13, we can perform the validation

by using data annotations attributes and the ModelState dictionary. Then

374

we can extract the validation logic into action filters to clear our actions.

Well, we can apply all of that to our current solution as well.

But, some developers have a preference for using fluent validation over

data annotation attributes. In that case, behaviors are the perfect place to

execute that validation logic.

So, let’s go step by step and add the fluent validation in our project first

and then use behavior to extract validation errors if any, and return them

to the client.

33.7.1 Adding Fluent Validation

The FluentValidation library allows us to easily define very rich custom

validation for our classes. Since we are implementing CQRS, it makes the

most sense to define validation for our Commands. We should not bother

ourselves with defining validators for Queries, since they don’t contain

any behavior. We use Queries only for fetching data from the application.

So, let’s start by installing the FluentValidation package in the Application

project:

PM> install-package FluentValidation.AspNetCore

The FluentValidation.AspNetCore package installs both FluentValidation

and FluentValidation.DependencyInjectionExtensions packages.

After the installation, we are going to register all the validators inside the

service collection by modifying the Program class:

builder.Services.AddMediatR(typeof(Application.AssemblyReference).Assembly);
builder.Services.AddAutoMapper(typeof(Program));
builder.Services.AddValidatorsFromAssembly(typeof(Application.AssemblyReference).Assem

bly);

Then, let’s create a new Validators folder inside the Application

project and add a new class inside:

public sealed class CreateCompanyCommandValidator :
AbstractValidator<CreateCompanyCommand>
{

375

 public CreateCompanyCommandValidator()
 {
 RuleFor(c => c.Company.Name).NotEmpty().MaximumLength(60);

 RuleFor(c => c.Company.Address).NotEmpty().MaximumLength(60);
 }

}

The following using directives are necessary for this class:

using Application.Commands;
using FluentValidation;

We create the CreateCompanyCommandValidator class that inherits

from the AbstractValidator<T> class, specifying the

type CreateCompanyCommand. This lets FluentValidation know that this

validation is for the CreateCompanyCommand record. Since this record

contains a parameter of type CompanyForCreationDto, which is the

object that we have to validate since it comes from the client, we specify

the rules for properties from that DTO.

The NotEmpty method specifies that the property can’t be null or empty,

and the MaximumLength method specifies the maximum string length of

the property.

33.7.2 Creating Decorators with MediatR PipelineBehavior

The CQRS pattern uses Commands and Queries to convey information,

and receive a response. In essence, it represents a request-response

pipeline. This gives us the ability to easily introduce additional behavior

around each request that is going through the pipeline, without actually

modifying the original request.

You may be familiar with this technique under the name Decorator

pattern. Another example of using the Decorator pattern is the ASP.NET

Core Middleware concept, which we talked about in section 1.8.

MediatR has a similar concept to middleware, and it is called

IPipelineBehavior:

376

public interface IPipelineBehavior<in TRequest, TResponse> where TRequest : notnull
{
 Task<TResponse> Handle(TRequest request, CancellationToken cancellationToken,
RequestHandlerDelegate<TResponse> next);
}

The pipeline behavior is a wrapper around a request instance and gives us

a lot of flexibility with the implementation. Pipeline behaviors are a good

fit for cross-cutting concerns in your application. Good examples of cross-

cutting concerns are logging, caching, and of course, validation!

Before we use this interface, let’s create a new exception class in the

Entities/Exceptions folder:

public sealed class ValidationAppException : Exception
{
 public IReadOnlyDictionary<string, string[]> Errors { get; }

 public ValidationAppException(IReadOnlyDictionary<string, string[]> errors)
 :base("One or more validation errors occurred")
 => Errors = errors;
}

Next, to implement the IPipelineBehavior interface, we are going to

create another folder named Behaviors in the Application project, and

add a single class inside it:

public sealed class ValidationBehavior<TRequest, TResponse> :
IPipelineBehavior<TRequest, TResponse>
 where TRequest : IRequest<TResponse>
{
 private readonly IEnumerable<IValidator<TRequest>> _validators;

 public ValidationBehavior(IEnumerable<IValidator<TRequest>> validators) =>
_validators = validators;

 public async Task<TResponse> Handle(TRequest request, CancellationToken
cancellationToken,
 RequestHandlerDelegate<TResponse> next)
 {
 if (!_validators.Any())
 return await next();

 var context = new ValidationContext<TRequest>(request);

 var errorsDictionary = _validators
 .Select(x => x.Validate(context))
 .SelectMany(x => x.Errors)
 .Where(x => x != null)
 .GroupBy(
 x => x.PropertyName.Substring(x.PropertyName.IndexOf('.') + 1),
 x => x.ErrorMessage,

377

 (propertyName, errorMessages) => new
 {
 Key = propertyName,
 Values = errorMessages.Distinct().ToArray()
 })
 .ToDictionary(x => x.Key, x => x.Values);

 if (errorsDictionary.Any())
 throw new ValidationAppException(errorsDictionary);

 return await next();
 }
}

This class has to inherit from the IPipelineBehavior interface and

implement the Handler method. We also inject a collection

of IValidator implementations in the constructor. The FluentValidation

library will scan our project for all AbstractValidator implementations

for a given type and then provide us with the instance at runtime. It is

how we can apply the actual validators that we implemented in our

project.

Then, if there are no validation errors, we just call the next delegate to

allow the execution of the next component in the middleware.

But if there are any errors, we extract them from the _validators

collection and group them inside the dictionary. If there are entries in our

dictionary, we throw the ValidationAppException and pass the

dictionary with errors. This exception will be caught inside our global error

handler, which we will modify in a minute.

But before we do that, we have to register this behavior in the Program

class:

builder.Services.AddMediatR(typeof(Application.AssemblyReference).Assembly);
builder.Services.AddAutoMapper(typeof(Program));
builder.Services.AddTransient(typeof(IPipelineBehavior<,>),
typeof(ValidationBehavior<,>));
builder.Services.AddValidatorsFromAssembly(typeof(Application.AssemblyReference).Assem

bly);

After that, we can modify the ExceptionMiddlewareExtensions class:

public static class ExceptionMiddlewareExtensions

378

{
 public static void ConfigureExceptionHandler(this WebApplication app,
ILoggerManager logger)
 {
 app.UseExceptionHandler(appError =>
 {
 appError.Run(async context =>
 {
 context.Response.ContentType = "application/json";

 var contextFeature = context.Features.Get<IExceptionHandlerFeature>();
 if (contextFeature != null)
 {
 context.Response.StatusCode = contextFeature.Error switch
 {
 NotFoundException => StatusCodes.Status404NotFound,
 BadRequestException => StatusCodes.Status400BadRequest,
 ValidationAppException =>
StatusCodes.Status422UnprocessableEntity,
 _ => StatusCodes.Status500InternalServerError
 };

 logger.LogError($"Something went wrong: {contextFeature.Error}");

 if (contextFeature.Error is ValidationAppException exception)
 {
 await context.Response
 .WriteAsync(JsonSerializer.Serialize(new { exception.Errors
}));
 }
 else
 {
 await context.Response.WriteAsync(new ErrorDetails()
 {
 StatusCode = context.Response.StatusCode,
 Message = contextFeature.Error.Message,
 }.ToString());
 }
 }
 });
 });
 }
}

So we modify the switch statement to check for the

ValidationAppException type and to assign a proper status code 422.

Then, we use the declaration pattern to test the type of the variable and

assign it to a new variable named exception. If the type is

ValidationAppException we just write our response to the client providing

our errors dictionary as a parameter. Otherwise, we do the same thing we

did up until now.

379

Now, we can test this by sending an invalid request:

https://localhost:5001/api/companies

Excellent, this works great.

Additionally, if the Address property has too many characters, we will

see a different message:

Great.

33.7.3 Validating null Object

Now, if we send a request with an empty request body, we are going to

get the result produced from our action:

380

https://localhost:5001/api/companies

We can see the 400 status code and the error message. It is perfectly fine

since we want to have a Bad Request response if the object sent from the

client is null. But if for any reason you want to remove that validation

from the action, and handle it with fluent validation rules, you can do that

by modifying the CreateCompanyCommandValidator class and

overriding the Validate method:

public sealed class CreateCompanyCommandValidator :
AbstractValidator<CreateCompanyCommand>
{
 public CreateCompanyCommandValidator()
 {
 RuleFor(c => c.Company.Name).NotEmpty().MaximumLength(60);

 RuleFor(c => c.Company.Address).NotEmpty().MaximumLength(60);
 }

 public override ValidationResult
Validate(ValidationContext<CreateCompanyCommand> context)
 {
 return context.InstanceToValidate.Company is null
 ? new ValidationResult(new[] { new
ValidationFailure("CompanyForCreationDto",
 "CompanyForCreationDto object is null") })
 : base.Validate(context);
 }
}

Now, you can remove the validation check inside the action and send a

null body request:

381

https://localhost:5001/api/companies

Pay attention that now the status code is 422 and not 400. But this

validation is now part of the fluent validation.

If this solution fits your project, feel free to use it. Our recommendation is

to use 422 only for the validation errors, and 400 if the request body is

null.

	1 Project Configuration
	1.1 Creating a New Project
	1.2 launchSettings.json File Configuration
	1.3 Program.cs Class Explanations
	1.4 Extension Methods and CORS Configuration
	1.5 IIS Configuration
	1.6 Additional Code in the Program Class
	1.7 Environment-Based Settings
	1.8 ASP.NET Core Middleware
	1.8.1 Creating a First Middleware Component
	1.8.2 Working with the Use Method
	1.8.3 Using the Map and MapWhen Methods
	1.8.4 Using MapWhen Method

	2 Configuring a Logging Service
	2.1 Creating the Required Projects
	2.2 Creating the ILoggerManager Interface and Installing NLog
	2.3 Implementing the Interface and Nlog.Config File
	2.4 Configuring Logger Service for Logging Messages
	2.5 DI, IoC, and Logger Service Testing

	3 Onion Architecture Implementation
	3.1 About Onion Architecture
	3.1.1 Advantages of the Onion Architecture
	3.1.2 Flow of Dependencies

	3.2 Creating Models
	3.3 Context Class and the Database Connection
	3.4 Migration and Initial Data Seed
	3.5 Repository Pattern Logic
	3.6 Repository User Interfaces and Classes
	3.7 Creating a Repository Manager
	3.8 Adding a Service Layer
	3.9 Registering RepositoryContext at a Runtime

	4 Handling GET Requests
	4.1 Controllers and Routing in WEB API
	4.2 Naming Our Resources
	4.3 Getting All Companies From the Database
	4.4 Testing the Result with Postman
	4.5 DTO Classes vs. Entity Model Classes
	4.6 Using AutoMapper in ASP.NET Core

	5 Global Error Handling
	5.1 Handling Errors Globally with the Built-In Middleware
	5.2 Program Class Modification
	5.3 Testing the Result

	6 Getting Additional Resources
	6.1 Getting a Single Resource From the Database
	6.1.1 Handling Invalid Requests in a Service Layer

	6.2 Parent/Child Relationships in Web API
	6.3 Getting a Single Employee for Company

	7 Content Negotiation
	7.1 What Do We Get Out of the Box?
	7.2 Changing the Default Configuration of Our Project
	7.3 Testing Content Negotiation
	7.4 Restricting Media Types
	7.5 More About Formatters
	7.6 Implementing a Custom Formatter

	8 Method Safety and Method Idempotency
	9 Creating Resources
	9.1 Handling POST Requests
	9.2 Code Explanation
	9.2.1 Validation from the ApiController Attribute

	9.3 Creating a Child Resource
	9.4 Creating Children Resources Together with a Parent
	9.5 Creating a Collection of Resources
	9.6 Model Binding in API

	10 Working with DELETE Requests
	10.1 Deleting a Parent Resource with its Children

	11 Working with PUT Requests
	11.1 Updating Employee
	11.1.1 About the Update Method from the RepositoryBase Class

	11.2 Inserting Resources while Updating One

	12 Working With PATCH Requests
	12.1 Applying PATCH to the Employee Entity

	13 Validation
	13.1 ModelState, Rerun Validation, and Built-in Attributes
	13.1.1 Rerun Validation
	13.1.2 Built-in Attributes

	13.2 Custom Attributes and IValidatableObject
	13.3 Validation while Creating Resource
	13.3.1 Validating Int Type

	13.4 Validation for PUT Requests
	13.5 Validation for PATCH Requests

	14 Asynchronous Code
	14.1 What is Asynchronous Programming?
	14.2 Async, Await Keywords, and Return Types
	14.2.1 Return Types of the Asynchronous Methods
	14.2.2 The IRepositoryBase Interface and the RepositoryBase Class Explanation

	14.3 Modifying the ICompanyRepository Interface and the CompanyRepository Class
	14.4 IRepositoryManager and RepositoryManager Changes
	14.5 Updating the Service layer
	14.6 Controller Modification
	14.7 Continuation in Asynchronous Programming
	14.8 Common Pitfalls

	15 Action Filters
	15.1 Action Filters Implementation
	15.2 The Scope of Action Filters
	15.3 Order of Invocation
	15.4 Improving the Code with Action Filters
	15.5 Validation with Action Filters
	15.6 Refactoring the Service Layer

	16 Paging
	16.1 What is Paging?
	16.2 Paging Implementation
	16.3 Concrete Query
	16.4 Improving the Solution
	16.4.1 Additional Advice

	17 Filtering
	17.1 What is Filtering?
	17.2 How is Filtering Different from Searching?
	17.3 How to Implement Filtering in ASP.NET Core Web API
	17.4 Sending and Testing a Query

	18 Searching
	18.1 What is Searching?
	18.2 Implementing Searching in Our Application
	18.3 Testing Our Implementation

	19 Sorting
	19.1 What is Sorting?
	19.2 How to Implement Sorting in ASP.NET Core Web API
	19.3 Implementation – Step by Step
	19.4 Testing Our Implementation
	19.5 Improving the Sorting Functionality

	20 Data Shaping
	20.1 What is Data Shaping?
	20.2 How to Implement Data Shaping
	20.3 Step-by-Step Implementation
	20.4 Resolving XML Serialization Problems

	21 Supporting HATEOAS
	21.1 What is HATEOAS and Why is it so Important?
	21.1.1 Typical Response with HATEOAS Implemented
	21.1.2 What is a Link?
	21.1.3 Pros/Cons of Implementing HATEOAS

	21.2 Adding Links in the Project
	21.3 Additional Project Changes
	21.4 Adding Custom Media Types
	21.4.1 Registering Custom Media Types
	21.4.2 Implementing a Media Type Validation Filter

	21.5 Implementing HATEOAS

	22 Working with OPTIONS and HEAD Requests
	22.1 OPTIONS HTTP Request
	22.2 OPTIONS Implementation
	22.3 Head HTTP Request
	22.4 HEAD Implementation

	23 Root Document
	23.1 Root Document Implementation

	24 Versioning APIs
	24.1 Required Package Installation and Configuration
	24.2 Versioning Examples
	24.2.1 Using Query String
	24.2.2 Using URL Versioning
	24.2.3 HTTP Header Versioning
	24.2.4 Deprecating Versions
	24.2.5 Using Conventions

	25 Caching
	25.1 About Caching
	25.1.1 Cache Types
	25.1.2 Response Cache Attribute

	25.2 Adding Cache Headers
	25.3 Adding Cache-Store
	25.4 Expiration Model
	25.5 Validation Model
	25.6 Supporting Validation
	25.6.1 Configuration

	25.7 Using ETag and Validation

	26 Rate Limiting and Throttling
	26.1 Implementing Rate Limiting

	27 JWT, Identity, and Refresh Token
	27.1 Implementing Identity in ASP.NET Core Project
	27.2 Creating Tables and Inserting Roles
	27.3 User Creation
	27.4 Big Picture
	27.5 About JWT
	27.6 JWT Configuration
	27.7 Protecting Endpoints
	27.8 Implementing Authentication
	27.9 Role-Based Authorization

	28 Refresh Token
	28.1 Why Do We Need a Refresh Token
	28.2 Refresh Token Implementation
	28.3 Token Controller Implementation

	29 Binding Configuration and Options Pattern
	29.1 Binding Configuration
	29.2 Options Pattern
	29.2.1 Using IOptions
	29.2.2 IOptionsSnapshot and IOptionsMonitor

	30 Documenting API with Swagger
	30.1 About Swagger
	30.2 Swagger Integration Into Our Project
	30.3 Adding Authorization Support
	30.4 Extending Swagger Configuration

	31 Deployment to IIS
	31.1 Creating Publish Files
	31.2 Windows Server Hosting Bundle
	31.3 Installing IIS
	31.4 Configuring Environment File
	31.5 Testing Deployed Application

	32 Bonus 1 - Response Performance Improvements
	32.1 Adding Response Classes to the Project
	32.2 Service Layer Modification
	32.3 Controller Modification
	32.4 Testing the API Response Flow

	33 Bonus 2 - Introduction to CQRS and MediatR with ASP.NET Core Web API
	33.1 About CQRS and Mediator Pattern
	33.1.1 CQRS
	33.1.2 Advantages and Disadvantages of CQRS
	33.1.3 Mediator Pattern

	33.2 How MediatR facilitates CQRS and Mediator Patterns
	33.3 Adding Application Project and Initial Configuration
	33.4 Requests with MediatR
	33.5 Commands with MediatR
	33.5.1 Update Command
	33.5.2 Delete Command

	33.6 MediatR Notifications
	33.7 MediatR Behaviors
	33.7.1 Adding Fluent Validation
	33.7.2 Creating Decorators with MediatR PipelineBehavior
	33.7.3 Validating null Object

