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preface
I came to software telemetry the way most of us do: as a producer through the use of
print statements in my code and as a consumer by reading the logs and metrics pro-
duced by the code I was using. In spite of my computer science degree, I did not go
into software engineering right out of college. No, I went into what was then called IT
or operations, and I stayed there until I had clocked 14 years of experience. That
brought me to 2011, which was a new era in a lot of ways.

 That year, I left my job in higher education to join a 20-person legal technology
startup as its only operations person. That year also was in the middle of a revolution
in software telemetry, when the monitoring systems long used by operations teams
and systems administrators started to be extended for use directly by software. The
metrics style of telemetry was born. Over the next decade, we saw two more styles of
telemetry emerge as databases became featured enough to support them: observability
(which did not last long on its own) and distributed tracing.

 When I had the idea for this book in 2019, I had watched the feedback software
engineers use evolve over two and a half decades. In the beginning, it was common for
developers to watch log files inside a telnet session directly in production, and by 2019,
all that telemetry was instead accessed through browser-based applications. Telemetry—
the feedback engineers use to understand their environments—was an understood
concept centering on the three Pillars of Observability: logs, metrics, and traces. And I,
who was still on the systems or platform side of the infrastructure, realized that all these
new telemetry methods had the same core concepts—and the same core vulnerabilities.
I looked for, and I found, plenty of resources on specific technologies such as Kafka,
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Prometheus, application monitoring, and how to do centralized logging. But no
resources discussed the ecosystem of telemetry systems that were available.

 That lack is terrible. Telemetry systems underpin the efficient functioning of soft-
ware development organizations, because these systems tell you how your code (and
the systems that run your code) is operating. There are so many competing demands
on our telemetry systems now. I set out to write a book to help you navigate these com-
peting concerns, improve cost management, and get better at operating these mission-
critical systems. This book is about improving what you’re already doing and better
adapting to new telemetry technologies as they emerge.

 This book is about improving what you already have, because every software ecosys-
tem has at least some telemetry at its core. Whether you’re working on a planet-scale
Software as a Service (SaaS) application that deploys to wider percentages of your
global data centers as part of your canary deploy process, or a time-card entry system for
your city government that you update every couple of months, you’re using telemetry.
This book is both for companies in which software is the business and organizations in which soft-
ware merely enables the mission.

 If your ecosystem is a fleet of serverless functions running in your cloud provider’s
platform, or if you’re running a VMware ESX cluster down the hall, you need software
telemetry in much the same ways, even if the tools you use are quite different. Teleme-
try is a vast topic, with no one product (or even technique) suiting everyone’s needs.
After reading this book, I want you to better understand what your needs are and how
to go about meeting them.

 As an industry, we’ve come a long way from the beginning of the digital age, when
a blinking indicator light on the room-size computer was our only feedback that it was
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Figure 1 Where telemetry systems fit alongside production systems. All production systems emit 
telemetry; telemetry is how we know they’re working right. This book is about the systems that handle 
that telemetry and transform it so that people can view it.
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actually processing something. (Blinking too fast or too slow meant something was
wrong.) The figure shows where telemetry systems fit into a modern web development
stack, which is connected to everything.

 We’re not done innovating our feedback systems—not by a long shot. Expect fun
and interesting things to come onto the market over the next 10 years. This book
should set you up to operate those systems when they arrive.
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about this book
Software Telemetry teaches you the general architecture of all telemetry systems while
giving you many examples of real-world telemetry system designs as inspiration.
Although every organization uses telemetry differently, telemetry still supports the
same decisions in every organization. This book presents a systematic approach to oper-
ating these key decision-support systems.

 Architecture is one thing, but telemetry system operators need to be familiar with
certain techniques to reduce costs and better accomplish the mission of the organiza-
tion. When your organization grows enough that everyone can see all telemetry is no lon-
ger a good idea, you need to adopt multitenancy concepts. When you are using a lot
of regular expressions in your telemetry system, making those expressions more effi-
cient will improve telemetry system performance. When your production code is run-
ning on platforms where local file access is problematic, such as containers or
Function as a Service (FaaS), you need different ways to ship your telemetry. This
book covers these techniques—and more.

 Data regulations worldwide increasingly require special handling procedures for
privacy- and health-related information—information that all too easily leaks into our
telemetry systems. A decade ago, we mostly didn’t care except for health information,
but regulations like the European Union’s General Data Protection Regulation
(GDPR) are forcing us to care. Our telemetry systems need to deal with these changes
the same way that our production systems do. This book details techniques you can use
to defend against leaking protected data and to make cleaning up after leaks easier.
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 By the end of part 1, you should have a solid mental model of the architecture of
telemetry systems, which will help you reason about new systems and improve the ones
you already have. Part 2 helps you cement what you learned in part 1 by giving you 11
real-world examples of telemetry architectures in three different styles of organiza-
tions. By the end of part 3, you will have a suite of techniques you can use to solve
problems in your current telemetry systems and make them easier to operate overall.

NOTE This book is intended to help organizations that use containers exclu-
sively, organizations that use containers merely as part of their operations,
and organizations where containers haven’t yet made their presence felt. As
the author William Gibson said, “The future is already here—it’s just not
evenly distributed.” So it is with containers and serverless techniques. The
abstract principles I talk about apply to all computing types, container-based or
not, whereas the specific examples I use to teach those principles draw from
diverse computing styles. If I’m not covering your style as completely as you
want, know that another reader is having their Aha! moment.

Who should read this book
This book is for people who are looking to improve their existing telemetry systems or
are considering redesigning the ones that are already in use—systems engineers sup-
porting centralized logging systems, software engineers writing observability systems
for internal use, security engineers seeking to improve compliance, and more. This
book is not code-centric, but I do use code to illustrate examples.

 I assume that you have a basic ability to write code, which includes common data
structures and conditional logic as well as reading and writing files, and that you
understand what a stack dump is telling you. You also should have some familiarity
with writing searches, either directly (as with SQL) or indirectly (through query build-
ers). I don’t assume that you have detailed database knowledge, but you should know
the differences between tables, columns, and rows, and you should know in broad
terms how relational databases like MS-SQL and PostgreSQL differ from NoSQL sys-
tems like Elasticsearch and MongoDB.

 You will get more from this book if you have used or maintained telemetry systems
such as these:

■ SaaS providers like Datadog, New Relic, Splunk, Sumo Logic, and Honey-
comb.io

■ Dedicated log-shipping systems like Fluentd, Fluentbit, and Logstash
■ Telemetry review platforms like Grafana, Kibana, and Jaeger
■ Telemetry storage platforms like KairosDB, Elasticsearch, MongoDB, Cassan-

dra, Loki, and Prometheus
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How this book is organized: A road map
This book is divided into three parts. Part 1 gives you the general architecture that all
telemetry systems follow, and you should read it before the other two parts. 

■ Chapter 1 introduces telemetry systems and provides definitions of the four
styles of telemetry I cover in this book: centralized logging, security information
event management, metrics, and distributed tracing. Even if you’re working
with this stuff every day, this chapter gives you the nomenclature I use through-
out the book.

■ Chapters 2–5 describe the three major stages of a telemetry pipeline—emitting,
shipping, and presentation—and the techniques you use to move telemetry in
each stage.

■ Chapter 6 is about the types of transformations and markup you perform on
telemetry in each of the three stages.

■ Chapter 7 describes multitenancy concepts, why you sometimes need multi-
tenancy, and how it changes telemetry system design.

Part 2 looks at three different types of organizations and follows how their telemetry
use changes. Feel free to skip the chapters on organizations that you’re not familiar
with; they’re here to give you more examples to chew through if you want.

■ Chapter 8 follows the evolution of telemetry in a sample cloud-based company
writing a SaaS application. This chapter starts at the small stage, when telemetry
is entirely contained in the cloud provider’s dashboards, and ends at the enter-
prise stage, when the company has brought most telemetry in-house.

■ Chapter 9 follows how telemetry is used in organizations that write software
only for internal use—if they write software at all. This chapter shows more
about how telemetry is used in office IT contexts, which changes significantly as
organization size increases, and how telemetry use expands when in-house
development arrives.

■ Chapter 10 follows how telemetry is used in legacy computing environments:
mainframes. Don’t be scared off; mainframes are merely components of an
infrastructure, and their telemetry use will feel familiar.

Part 3 contains specific techniques that are useful for optimizing and improving
telemetry system operation, and the chapters are written to be read individually.

■ Chapter 11 walks through optimizing your use of regular expressions. Many
telemetry systems rely on regular expressions to extract and transform teleme-
try, so optimizing them will give you performance boosts.

■ Chapter 12 discusses standardized telemetry formats and walks you through
building a structured logger. Structured loggers are key components of teleme-
try systems that involve in-house code.

■ Chapter 13 dives into nonfile telemetry emitting techniques and provides a
close look at how telemetry is used in container and FaaS environments.
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■ Chapter 14 digs into the issue of cardinality and shows how managing cardinal-
ity forces changes in telemetry systems.

■ Chapter 15 covers telemetry integrity and ways to ensure that telemetry is not
changed, even in environments that can’t tolerate immutability.

■ Chapter 16 addresses handling regulated information (toxic data) in your
telemetry pipelines through redacting toxic-data spills both in real time and
after the fact. The chapter also covers reprocessing—reingesting telemetry—to
handle storage system upgrades or migrations to new platforms.

■ Chapter 17 describes how to build retention policies to determine how long
you store telemetry online and offline, how to create a metrics aggregation pol-
icy that maintains statistical validity, and how sampling improves the retention
period for distributed tracing.

■ Chapter 18 walks you through the impacts of legal discovery processes on
telemetry and the early steps you can take to reduce the panic if you ever have
to deal with discovery.

■ Appendix A talks about seven telemetry storage systems, showing where each
excels and where its use could be challenging.

■ Appendix B is a reference for all the recommendation checklists I’ve built in
the chapters.

■ Appendix C contains answers and guidance for the exercises included through-
out the book.

About the code 
Telemetry systems cover a vast range of software, so no single code framework is suit-
able for a book about software telemetry. For examples written in general-purpose lan-
guages, I use Python 3 for its relative ubiquity. To a lesser extent, I use Ruby due to its
better handling of certain edge cases and because two major telemetry shipping sys-
tems (Fluentd and Logstash) are written in Ruby, which is their extension language.

NOTE For a thorough guide to Fluentd (part of the Cloud Native Computing
Foundation), see Logging in Action, by Phil Wilkins (Manning, 2021; http://
mng.bz/VGlW).

This book also includes configuration file examples from several frameworks. I don’t
expect you to run these files, but they are there to illustrate points and provide con-
crete examples. The configuration file format I most commonly use is Logstash
(http://mng.bz/xGvg).

NOTE The Gitlab repository for this book includes Java versions of most of the
Python listings. You can find the GitLab repository at http://mng.bz/RKxv.

This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes, code is also in bold to

http://mng.bz/VGlW
http://mng.bz/VGlW
http://mng.bz/xGvg
http://mng.bz/RKxv
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highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page width in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have been removed from
the listings when the code is described in the text. Code annotations accompany many
of the listings, highlighting important concepts.

liveBook discussion forum
Purchase of Software Telemetry includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to http://mng.bz/2zDa. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking the author some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

Other online resources
Not every telemetry system uses regular expressions (regexes), but if yours does, you will
be well served by https://regex101.com and its careful breakdown of how regexes per-
form. Each language processes regexes differently in small ways, but if your language is
not on regex101, it will still help you reason through writing regexes in general.

 The major public cloud providers, such as AWS and Azure, are starting to offer
managed versions of telemetry systems, so now their documentation covers mainte-
nance and operation of these telemetry styles. If your production systems are in a pub-
lic cloud provider, the managed telemetry systems and their documentation are worth
a look.

 The video archives of the Monitorama conference (https://monitorama.com) con-
tain presentations on metrics, distributed tracing, and system observability in general.
Vendor conferences by telemetry SaaS providers such as o11ycon from Honeycomb.io
(https://o11ycon-hnycon.io; o11y is a numeronym for observability, which has 11 char-
acters between the beginning o and ending y) and {Future}Stack from New Relic
(https://newrelic.com/futurestack) are additional sources of presentations and talks
on the subjects I talk about in this book. More important, these conferences give you
“how to use telemetry” guidance that deserves a book beyond this one.

http://mng.bz/2zDa
https://livebook.manning.com/#!/discussion
https://regex101.com
https://monitorama.com
https://o11ycon-hnycon.io
https://newrelic.com/futurestack
https://newrelic.com/futurestack
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The figure on the cover of Software Telemetry is captioned “Catalanne,” or a woman
from Catalonia. I chose this image because it shows a woman between two places: mar-
ket and home. This book is about the space between our production systems (market)
and where we make our decisions (home). Someone had to build and maintain that
road, just as someone has to build and maintain the systems that let us learn how our
production systems are operating.

 The illustration is taken from a collection of dress costumes from various countries
by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays,
published in France in 1797. Each illustration is finely drawn and colored by hand.
The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how cul-
turally apart the world’s towns and regions were just 200 years ago. Isolated from each
other, people spoke different dialects and languages. In the streets or in the country-
side, it was easy to identify where they lived and what their trade or station in life was
just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
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Introduction

Telemetry is the feedback you get from your production systems that tells you what’s
going on in there—feedback that improves your ability to make decisions about
your production systems. For NASA, the production system might be a rover on
Mars, but most of the rest of us have our production systems right here on Earth
(and sometimes in orbit around Earth). Whether it’s the amount of power left in a
rover’s batteries or the number of containers live in production right now, every-
thing is telemetry. Modern computing systems, especially those operating at scale,
live and breathe telemetry, which is how we can manage systems that large at all.
Telemetry is ubiquitous in our industry:

 If you’ve ever looked at a graph describing site hits over time, you’ve used
telemetry.

 If you’ve ever written a logging statement in code and later looked up those state-
ments in a log-searching tool such as Kibana or Loggly, you’ve used telemetry.

 If you’ve ever researched application performance in Datadog, you’ve used
telemetry.

This chapter covers
 What telemetry systems are

 What telemetry means to different technical groups

 Challenges unique to telemetry systems
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 If you’ve ever configured the Apache web server to send logs to a relational
database, you’ve used telemetry.

 If you’ve ever written a Jenkinsfile to send continuous integration test results to
another system that could display it better, you’ve used telemetry. 

 If you’ve ever configured GitHub to send webhooks for repository events,
you’ve used telemetry.

As figure 1.1 shows, Software Telemetry is about the systems that bring you telemetry and
display it in a way that will help you make decisions. Telemetry comes from all kinds of
things, from the power distribution units your servers (or your cloud provider’s serv-
ers) are plugged into to your running code at the top of the technical pyramid. Taking
that telemetry from whatever emitted it and transforming it so that your telemetry can
be displayed usefully is the job of the telemetry system. Software Telemetry is all about
that system and how to make it durable.

Telemetry is a broad topic and one that is rapidly changing. Between 2010 and 2020,
our industry saw the emergence of metrics (adding to the monitoring that operations
groups were already doing) and distributed tracing, which combined with logs into
the three Pillars of Observability. We saw two new styles of telemetry systems in the
past decade; who knows what we will see between 2020 and 2030? This book will teach
you the fundamentals of how all telemetry systems operate, including ones you
haven’t seen yet, which will prepare you to modernize your current systems and adapt
to new styles of telemetry. Any time you teach information passing and translation,

Telemetry systems
(this book)

Production code

Load balancer or 
API gateway

Firewalls

Database

Storage

Production code
Platform code

Cloud infrastructure
or hardware

Cloud infrastructure
or hardware

Security team

Network team

Software engineering

Platform team

Database team

Telemetry system
users

Production systems

Network 
tier

Stateless 
tier

State
tier

Telemetry event flows
(logs, metrics, traces)

Application
request
flows

Figure 1.1 Where telemetry systems fit inside your overall technical infrastructure. Everything we run 
gives us some indication of how it is running. Those indications (dotted lines here) are telemetry, and 
this book is about handling that telemetry.
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which is what telemetry systems do, you unavoidably have to cover how people pass
information. This book will teach you both the technical details of maintaining and
upgrading telemetry systems and the conversations you need to have with your co-
workers while you revise and refine your telemetry systems.

 All telemetry systems have a similar architecture. Figure 1.2 is an architecture you
will see often as you move through parts 1 and 2 of this book.

Telemetry is data that production systems emit to provide feedback about what is hap-
pening inside. Telemetry systems are the systems that handle, transform, store, and
present telemetry data. This book is all about the systems, so let’s take a look at the
four major telemetry styles in use today:

 Centralized logging—The first telemetry system created, which happened in the
early 1980s. This style takes text-based logging output from production systems
and centralizes it to ease searching. Note that this technique is the only one
widely supported by hardware.

 Metrics—Grew out of the monitoring systems used by Operations teams and was
renamed metrics when software engineers adopted the technique. This system,
which emerged in the early 2010s, focuses on numbers rather than text to
describe what is happening. Metrics allow much longer timeframes to be kept
online and searchable compared to centralized logging.

Presentation stage

Telemetry pipeline stages

Shipping stage

Emitting stage

Accepts telemetry from
production systems
and prepares it for use 
inside the telemetry
pipeline  

Processes, transforms,
and ultimately stores 
telemetry for use in the
Presentation stage  

Presents telemetry to
people to support
decision-making,
drawing on Shipping-
stage storage    

Telemetry 
markup

Telemetry 
enrichment

Adding context-related 
details to telemetry to
improve understanding
of what telemetry is 
telling you  

Transforming telemetry
to bring out details 
embedded within it,
such as deserializing 
JSON or parsing 
strings  

Figure 1.2 Architecture common to all telemetry systems, though some stages are often combined 
in smaller architectures. The Emitting stage receives telemetry from your production systems and 
delivers it to the Shipping stage. The Shipping stage processes and ultimately stores telemetry. The 
Presentation stage is where people search and work with telemetry. The Emitting and Shipping 
stages can apply context-related markup to telemetry; the Shipping and Presentation stages can 
further enrich telemetry by pulling out the details encoded within.
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 Distributed tracing—Focuses directly on tracking events across many components of
a distributed system. (Large monoliths count as a large distributed system, by the
way.) This style emerged in the late 2010s and is undergoing rapid development.

 Security Information Event Management (SIEM)—A specialized telemetry system
for use by Security and Compliance teams, and a specialization of centralized
logging and metrics. The technique was in use long before the term was formal-
ized in the mid-2000s.

These telemetry styles are used throughout this book, so you will see them mentioned
a lot. Section 1.1 provides you longer definitions and histories of these telemetry styles
and shows how each style conforms to the architecture in figure 1.1.

NOTE In the past couple of years, the concept of Pillars of Observability has
emerged. The word observability was first used to define a specific style of
telemetry and evolved as a sophistication of the metrics style. Today, however,
observability is generally considered to be a practice rather than a telemetry
style. The three pillars are logs, metrics, and traces. If you use all three styles,
you are best equipped to observe how your system is operating. This book is
about supporting the systems that provide your observability. The SIEM sys-
tems used by Security teams are a form of observability, telling you who did
what, when they did it, how they did it, and what happened when they did,
just like the Pillars.

Because people matter as much as the telemetry data being handled by our telemetry
systems, section 1.2 breaks down the many teams inside a technical organization as
well as the telemetry systems each team prefers to use. These teams are referenced fre-
quently in the rest of this book.

 Finally, telemetry systems face more disasters than production systems do. Section
1.3 covers some of these disasters in brief. Part 3 of this book has several chapters that
are useful for making your telemetry systems durable.

1.1 Defining the styles of telemetry
The list of telemetry styles provided in the introduction to this chapter provides a nice
thumbnail of what each style of telemetry does and will be a good reference for you as
you move through this book. This section provides far more detailed definitions of
the four telemetry styles and gives real-world examples of them.

1.1.1 Defining centralized logging

Centralized logging brings logging data generated by production systems to a central
place where people can query it. Figure 1.3 shows an example of such a system in use
today.

 Centralized logging supports not just software telemetry, but hardware telemetry
as well! The Syslog Server box in figure 1.3 represents the modern version of a system
that was first written around 1980 as a dedicated logging system for the venerable
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sendmail program from the Berkley Software Distribution 3BSD. By 2000, Syslog was
in near-universal use across UNIX and UNIX-like operating systems. A standardization
effort in 2001 resulted in a series of requests for comment (RFCs) that defined the
Syslog format for both transmission protocol and data format. Making Syslog a stan-
dard gave hardware makers one option for emitting telemetry that wasn’t likely to
change over the decade lifespan of most hardware. The other option is Simple Net-
work Management Protocol (SNMP), which is covered in chapter 2.

 I bring up Syslog because the concepts it brought to the table influenced much of
how we think about logging from software. If you’ve ever heard the phrase Turn on
debug logging, you’ve heard a concept introduced by Syslog. The concept of log levels
originated in Syslog, which defined the eight levels listed in table 1.1.

Table 1.1 Syslog standard log levels

ID Severity Keyword

0 Emergency emerg, panic

1 Alert alert

2 Critical crit

3 Error err, error

4 Warning warn, warning

5 Notice notice

6 Info info

7 Debug debug

Cisco
hardware

Syslog
server

Fluentd
process

Elasticsearch
storage

Kibana
server

Production
code

File:
app.log

Example of a centralized logging system

Emitting stage Shipping stage Presentation 
stage 

Figure 1.3 A centralized logging system using Fluentd, Elasticsearch, and Kibana as major 
components. Telemetry is emitted from both production code and Cisco hardware. Then this telemetry 
is received by Shipping-stage components, centralized in Fluentd, and stored in Elasticsearch. Kibana 
uses Elasticsearch storage to provide a single interface for people to search all logs.
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Syslog’s biggest influence is on the keywords in table 1.1. Not every software logger
builds all eight levels; a few add more to this table, such as fatal and trace from Java.
But nearly all loggers have some concept of debug, info, warning, and error:

logger.debug("Entering Dangerous::Function with #{args.count} params.")
logger.info("Dangerous::Function finished in #{timer.to_seconds} seconds.")
logger.warn("FIXME: Dangerous::Function was not passed a CSRF token.")
logger.err("Dangerous::Function failed with ArgumentError::InvalidType")

If you’ve written software, chances are good that you’ve used these levels at some
point in your career. The concept of log levels also introduces the idea that all logging
has some context: a log level indicates how severe the event is, and the text of the
event describes what happened. Logging from software can include considerably
more context than simply priority and a message; section 6.1 describes this markup
process in much more detail.

 The middle stage of centralized logging, represented in figure 1.3 as the Fluentd
server, takes telemetry in the emitted format (Syslog for the Cisco hardware, whatever
the log file format is for the production code) and reformats it into the format
needed by Elasticsearch. Elasticsearch needs a hash data structure (an array, but with
names for each element instead of numbers), so Fluentd rewrites the Syslog format in
Elasticsearch’s format before storing it in Elasticsearch. This reformatting process,
called enrichment, is covered in chapter 4.

 The end of the pipeline, represented in figure 1.3 as the Kibana server, uses Elastic-
search as a database for queries. Section 5.2 goes into greater detail about what consti-
tutes a good Presentation-stage system for centralized logging. Here, Kibana is used to
access telemetry and assist with analysis.

1.1.2 Defining metrics

Metrics-style telemetry is about using numbers (counters, timers, rates, and the like) to
get feedback about what’s going on in your production systems. Whereas a centralized
logging system often uses plain language to suggest how long something took, as in

logger.info("Dangerous::Function finished in #{timer.to_seconds} seconds.")

metrics systems encode the same information by encoding a number and some addi-
tional fields to provide context. In this example, a function name is added for context
and a timer is used for the number:

metrics.timer("Dangerous_Function_runtime", timer.to_seconds)

Figure 1.4 is an example of a real-world metrics pipeline.
 Figure 1.4 shows a metrics system being used for both software metrics and system

metrics. The system metrics are gathered by a monitoring tool called collectd, which
has the capability to push metrics into a Graphite API. Prometheus is a database cus-
tom built for storing data over time, or time-series data. Such time-series databases are
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the foundation of many metrics systems, though other database styles can certainly be
used successfully. Grafana is a widely used open source dashboarding system, in this
case being used by both the Operations team running the infrastructure and the Soft-
ware Engineering team managing the production software.

 Like centralized logging telemetry, metrics telemetry is almost always marked up
with additional details to go with the number. In the case of the statement before fig-
ure 1.4, we are adding a single field with Dangerous_Function_runtime as the value.
Additional fields can be added, though doing so introduces complexity to the metrics
database. This complexity is known as cardinality.

DEFINITION Cardinality is the term for index complexity—specifically, the num-
ber of unique combinations the fields in the index may produce. If you have
fields A and B, where A has two possible values and B has three possible values,
the cardinality of that index is A * B, or 2 * 3 = 6. Cardinality significantly affects
search performance no matter what data storage system is being used.

Cardinality is a big part of how metrics came to be its own discrete telemetry style.
Centralized logging, with all the data it encodes, has the highest cardinality of the four
telemetry styles I talk about in this book; it also takes up the most resources by far. Due
to the combination of those two factors, centralized logging requires the most com-
plex databases and the largest volume of data of any style. Because of budget con-
straints, however, centralized logging systems can rarely keep data online and
searchable for long. Compare centralized logging with metrics, with its low cardinality,
and focus on easy-to-store numbers, and you have a telemetry system that can keep
years’ worth of telemetry online and searchable for a fraction of the cost of a central-
ized logging system!

 In the 2009–2012 era, when metrics began to be known as a software telemetry
style (it had long been used on the operations side as a monitoring system), its lower
cost versus centralized logging was one of the biggest drivers for adoption. Centralized

Production
software

StatsD
exporter

Graphite
exporter

Prometheus
storage

Grafana
server

OS
monitoring
(collectd)

Emitting stage Shipping stage Presentation 
stage 

Example of a metrics system

Figure 1.4 A metrics system in which the production software emits metrics from code into a 
Prometheus StatsD exporter process; the operating system has a monitoring package called 
collectd that collects system metrics and reports directly to a Prometheus Graphite exporter. These 
exporters submit summarized metrics to Prometheus. A Grafana server acts as the interface point 
for all users of this metrics system.
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logging was still used, but a specialized telemetry flow designed for the decision type
was a revolution—one that set up the next telemetry style to come on the scene.

1.1.3 Defining distributed tracing

Distributed tracing is a strange union of metrics and logging—the cardinality of logging
with the analytical power of metrics. Tracing enables explicit automation to add entire
execution flows (figure 1.5 shows one such flow) to the presented context when you
look to see what happened during an execution. Logging shows specific events as they
happened, with some attributes to provide context around the event. Metrics gives
you a broad overview of how the system is performing. Tracing uses the extra context
you should have on your logged events to create a linked view of executions, as you
see in figure 1.5. This visualization makes it easier for people to quickly isolate inter-
esting places to investigate. Figure 1.5 presents the kind of display of execution flow
that a distributed tracing system can provide.

Tracing is useful not only in microservices environments, but also in the following:

 Large monolithic codebases to which many teams contribute code—The traces produced
don’t respect political boundaries, thereby reducing barriers to troubleshooting.

upload_document

file_type

docx_to_pdf save_file

pdf_pages save_file

pdf_to_png

Time spent in seconds

Execution chain starts
(API endpoint). 

Call to
subprocess

Subprocess
returns

Subprocesses

Execution chain ends.

One-way calls
(no return expected)

Time request spent
in a queue

Figure 1.5 An example of a distributed tracing system’s display, following the flow of execution 
similar to a stack trace. Here, we see a call to upload_document and all the other processes 
that upload_document called during its execution. When tracing a fault in a pdf_to_png 
process, you will be presented the full context of events leading up to that specific execution.
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 Micromonolith environments with a few large applications working together—Such envi-
ronments often have separate teams working on the larger applications, so trac-
ing across all applications breaks down silos between teams.

 Monoliths that are in the process of being chipped apart and have only a few additional
microservices so far—This telemetry style often is the best choice for providing
shared context between separate systems.

Tracing also came on the scene in the late 2010s and is undergoing rapid develop-
ment. The OpenTelemetry project (https://opentelemetry.io) is an effort by major
players in the U.S. tech industry to provide standards for communication and data for-
mat for tracing telemetry. Programming languages that are well established and
mostly overlooked by the big names in the U.S. tech industry—languages such as PHP,
COBOL, and Perl—often lack a software development kit (SDK) for tracing. Frustra-
tion among software engineers is a prime driver of innovation, so I expect that these
underserved languages will get the support they need before long.

 In spite of the newness of distributed tracing, we have real-world examples to look
at today. Figure 1.6 shows one such example. 

OpenTelemetry
SDK

Jaeger
collecter

Jaeger
storage

Jaeger
frontend

Example of a distributed tracing system

Emitting stage Shipping stage Presentation 
stage 

Figure 1.6 An example of a distributed tracing system circa 2021. Production code is running an 
OpenTelemetry SDK, which sends events to a system running the Jaeger open source tracing 
system. Then the Jaeger collector stores the event in a database. The Jaeger frontend provides a 
place to search and display traces from production systems.

What about Application Performance Monitoring?
Application Performance Monitoring (APM) is a term that has been used in industry
since the early 2010s. APM began as a form of metrics but has evolved into rather
more through use of steadily increasing amounts of context—much like distributed
tracing systems do today. APM systems were around before the industry started get-
ting excited about observability; as a result, APM systems moved hard into that
space. Today, APM systems from New Relic and Datadog are one-stop-shopping sys-
tems that provide all three Pillars of Observability. In other words, APM systems unite
centralized logging, metrics, and distributed tracing. These big companies have been
around for a long time, so expect them to keep up with changes in the software telem-
etry marketplace of ideas.

In this book, whenever I refer to the Pillars of Observability, know that I’m also talking
about APM systems.

https://opentelemetry.io
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1.1.4 Defining SIEM

Many companies and organizations operate with constraints imposed on them from
outside, such as mandatory stock market reporting, industry-specific regulation in the
banking industry, and optional compliance frameworks such as those defined by ISO
standards. These standards, regulations, and compliance frameworks have been with
us for decades and have grown up along with the technical industry. Most of these
external controls require a common set of monitoring techniques inside technical
organizations, including the following:

 Track all login, logout, and account lockout events.
 Track all use of administrative privileges.
 Track all access to sensitive files and records.
 Track compliance with password complexity and age requirements.

Because these requirements are so common, and tracking and later correlating them
is so complex, they have given rise to a separate telemetry style known as the Security
Information Event Management system (SIEM). Due to the complexity of the task,
SIEMs are almost always paid-for software; few, if any, open source projects do this
work. As a telemetry style operator, you will spend more time connecting sources of
telemetry to a system that knows how to interpret the data. Figure 1.7 shows one possi-
ble architecture for integrating a SIEM into a larger telemetry system, branching off
the centralized logging system shown in figure 1.3.

There are many architectures; figure 1.7 shows only one. In another architecture,
Security has installable agents running on host servers, which emit in a completely dif-
ferent way from the centralized logging flows, making for a fully separate system. Both
approaches are viable.

Splunk
API

Fluentd
process Elasticsearch

storage

Kibana
server

Production
systems

Splunk
Splunk

dashboard

Example of a SIEM system paired with a centralized logging system

Emitting stage Shipping stage Presentation 
stage 

Figure 1.7 One possible SIEM system. Because SIEM systems are often derived from centralized 
logging systems, this figure shows an identical source for the centralized logging flow and SIEM flow. 
When telemetry enters the Fluentd process, it produces two feeds; one feed goes into Elasticsearch 
for centralized logging, and a second feed is submitted to the Splunk SaaS API. Splunk is acting as a 
SIEM in this case.
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1.2 How telemetry is consumed by different teams
Because telemetry is used to support decision-making about production systems, you
unavoidably have to consider how the people who make decisions are organized and
how that affects their use of telemetry. This section defines the major teams in a tech-
nical organization for use later in the book. Your role is likely to be in this list some-
where, and if you’ve been in the industry for a long time, you may have been on more
than one team. In my career, for example, I’ve been in customer support, operations,
DevOps, and site reliability engineering (SRE), and have done close work with Secu-
rity teams.

NOTE I use the term organization instead of company to be inclusive of noncor-
porate organizations that create technology, such as government entities and
not-for-profit organizations. The teams listed here are broad categories, and
when you see team names in capitals, such as Software Engineering, know
that I am referring to definitions in this chapter.

1.2.1 Telemetry use by Operations, DevOps, and SRE teams

For all that they cover somewhat different areas, Operations, DevOps, and SRE teams
share a lot of background. (SREs will be mentioned again in section 1.2.3 because
they share background with Software Engineering teams.)

 Operations teams were the first of these three teams to emerge (in the 1970s).
Today, teams with Operations in the title are likely in long-standing organizations that
computerized during the 1960s and 1970s, though sometimes these teams add the
word Infrastructure to create the term Infrastructure Operations or use the term Platform
Engineering. In this book, I use Operations. Teams with this name typically are in charge
of keeping the machinery running and the production code operating—cloud or
hardware, including operating systems.

 DevOps teams emerged in the first decade of the 2000s to fight the silos that had grown
up between Operations and Software Engineering teams. These days, DevOps teams
often stand in for Operations teams while maintaining the systems that ensure that code
meets minimum quality standards (continuous integration) and getting it into production
(continuous deploy). Using DevOps in a job title is controversial—DevOps is a philosophy,
not a job title—but that doesn’t stop it from being common practice anyway.

 SRE emerged in rough parallel to DevOps in some of the biggest tech companies
on the planet. Originally, SRE was the team in charge of making sure that your (web-
based) software was available to customers, the way your customers needed it to be.
The term means somewhat different things to each organization that has an SRE
team, but all these organizations care about your (usually web-based) software being
available to customers.

 Operations teams have been caring about uptime since the beginning. DevOps
cares about software quality as a way to defend uptime. SRE teams are explicitly
charged with availability. All these converging needs mean that these three teams have
common telemetry requirements, as shown in figure 1.8.
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1.2.2 Telemetry use by Security and Compliance teams
Security is charged with defense of your overall organization from outside threats. Com-
pliance is charged with ensuring that your organization complies with legislated regula-
tions and optional compliance frameworks, such as the Service and Organization
Controls (SOC 2) standard. Security and Compliance teams are often the same team
until an organization decides that separating these concerns is a good idea. Not every
organization has a Security team, though many that do not should. These teams are
unavoidable in certain industries, however, especially those involving finance and
health. Supporting both Security and Compliance missions requires setting several
policies and procedures, such as the following (not an exhaustive list):

 A vulnerability management program to ensure that software used in produc-
tion and telemetry systems is kept up to date

 Procedures for regular reviews of who has access to production and telemetry
systems

 Procedures for ensuring that terminated employees’ access is swiftly revoked
from production and telemetry systems

 Reporting to identify failed logins to production and telemetry systems
 Reporting to track the use of administrative privileges for a period of years
 A password-complexity and authentication policy to provide sufficient defense

against password-guessing and other credential-theft threats

Their charge is not only setting policies, but also ensuring that those policies are followed
by Security and Compliance teams. This task is where telemetry comes into play,
because it allows external auditors to determine whether these policies are effective.
When these teams are not ensuring compliance with policies, Security teams also have
the hard job of responding to security incidents. Figure 1.9 shows the relationship of
Security and Compliance teams with telemetry.

Centralized
logging Metrics

Distributed
tracing SIEM

Operations
DevOps

SRE

Figure 1.8 The preferred telemetry styles for Operations, DevOps, and SRE teams. Centralized 
logging is used because the infrastructure these teams manage emits there by preference, and 
metrics is used because it is the basis for tracking site availability and general monitoring. Use 
of the other two styles is possible, but centralized logging and metrics are most common.

Centralized
logging Metrics

Distributed
tracing SIEM

Security/
Compliance

Figure 1.9 The relationship of 
Security and Compliance teams to 
telemetry systems. The primary 
system is SIEM, but centralized 
logging provides much of the proof 
that policies are being followed.
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Security incidents are special cases, so when they happen, every source of telemetry is
potentially useful during the investigation. If you are on a different team, be ready to
support incident responders by providing information about how to use and search
the telemetry under your care. Security is everyone’s job.

 Compliance with regulation and voluntary frameworks invariably requires keeping
certain kinds of telemetry around for years (often seven, a number inherited from the
accounting industry). This default long-term-retention requirement is unique among
the telemetry styles here, with metrics being the only other style that approaches SIEM
systems’ retention period. (Chapter 17 addresses retention policies in detail.)

1.2.3 Telemetry use by Software Engineering and SRE teams

Software Engineering teams are responsible for writing the software in your production
environment. I mention SRE again because the mission of an SRE team is to ensure
that the availability of your software extends to both the infrastructure the code runs
on (section 1.2.1) and the code itself (this section). Some organizations split systems-
oriented SRE from software-oriented SRE as well. Software Engineering brought
about the metrics and distributed tracing styles of telemetry to better track what code
was doing, so figure 1.10 should be no surprise.

Whereas Software Engineering teams focus on how their code is performing in pro-
duction, SRE teams focus on whether the code is meeting promised performance and
availability targets. This task is related to what Software Engineering desires, but the
difference matters. Software Engineering is concerned with failures and how they
affect everything, whereas SRE is concerned with overall aggregated performance.

1.2.4 Telemetry use by Customer Support teams

Customer Support teams have a variety of other titles, including Technical Support, Cus-
tomer Success, Customer Services, and Support Account Management. These teams
are charged with working with your customers (or users or employees) and resolving
problems. They have the best information about how your production system works
for people, so if your Software Engineering and SRE teams are not talking to them,
something has gone horribly wrong in your organization. This communication needs
to go both ways, because when Customer Support teams are skilled in using the telem-
etry systems used by Software Engineering, the quality of problem reporting increases
significantly. In an organization where Customer Support has no access to telemetry
systems, problem reports come in sounding like this:

Metrics SIEM

Software
Engineering

Centralized
logging

Distributed
tracing

Figure 1.10 Telemetry systems 
used by Software Engineering teams 
(almost all of them). All three Pillars 
of Observability are used.
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Account 11213 had a failed transaction on February 19, 2023 at 18:02 UTC. They say
they’ve had this happen before, but can’t tell us when. They’re a churn risk, $21K annual
contract at risk.

Compare this report with the kind of report your Customer Support teams can make
if they have access to query telemetry systems:

Account 11213 has had several failed transactions. The reported transaction was ID
e69aed5a-0dfc-47e2-abca-8c11374b626f, which had a failure in it when I looked it up.
That failure was found four more times with this account. I also saw it happening for five
other accounts and reached out to all five. Two have gotten back to me and thanked us for
proactively notifying them of the problem. It looks like accounts with billing-code Q are
affected.

This second problem report is objectively far better because the work of isolating
where the problem may be hiding has mostly been done. You want to empower your
Customer Support teams. Figure 1.11 demonstrates the sort of telemetry systems of
which Customer Support makes the best use.

Customer Support teams work with customers to figure out what went wrong, which
means that they are most interested in events that happened recently. Telemetry sys-
tems that rely on aggregation (metrics) are not useful because the single interesting
event is not visible. Telemetry systems that rely on statistical sampling (distributed
tracing; see section 17.3) can be somewhat useful, but the interesting error needs to
be in the sample. You can get around this problem by persisting error events outside
the statistical sample, perhaps in a second errors database. (See chapter 17 for more
on this technique.)

1.2.5 Telemetry use by business intelligence

Business intelligence (BI) teams are sneaky; they work on the telemetry of the business
rather than the telemetry of the technical organization. Their versions of telemetry
include data such as marketing conversion rates, rate of account upgrade/downgrade,
signup rate, feature use, and click rates in email marketing campaigns. Although BI
teams often aren’t considered to be part of the technical organization, I mention them
here for two reasons:

Metrics SIEM

Customer
Support

Centralized
logging

Distributed
tracing

Figure 1.11 The telemetry systems best suited to Customer Support teams. 
Because these teams are most interested in specific failures, telemetry styles that 
rely on aggregation (metrics) are not as useful. Note that when Customer Support is 
more of a help desk for internal users, SIEM access is often also granted and useful.
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 People inside BI teams often have training in statistical methods, so they repre-
sent an internal resource for you when you start applying statistical methods to
your technical telemetry.

 If you are building a SaaS platform, BI teams are likely to approach you to engi-
neer telemetry flows into their systems alongside the ones you already have for
your technical organization.

If your organization already has people who are skilled in handling and manipulating
data, you need to talk to them when you are building or upgrading data handling sys-
tems. They will tell you when your plan for aggregating data won’t return valid results
(getting the MAX value of a series of data that was averaged will not give you the true
MAX value in the source data, for example). It can feel strange to ask people in a radi-
cally different department for help, but you will build better systems if you do.

1.3 Challenges facing telemetry systems
Telemetry systems face the same disasters that production systems do: fire, flood,
equipment failure, unexpected credit-card expiration, labor actions, bankruptcies,
pandemics, civil unrest, and many more. Telemetry systems in particular are vulnera-
ble to disasters specific to telemetry, which is what this section introduces. The four
major problems derive from three points:

 Telemetry systems aren’t revenue systems (see section 1.3.1).
 Different teams need different things from the telemetry they use (see sec-

tion 1.3.2).
 Telemetry is still data, even if it isn’t production data, and many people and

organizations have an interest in data (see sections 1.3.3 and 1.3.4).

1.3.1 Chronic underinvestment harms decision-making
By far the biggest threat to your telemetry systems is insufficient investment of
resources. Telemetry systems are decision support tools; they present the feedback you
send out of your production environment in a way that helps you figure out what to do
next. Maybe you focus on technical debt for the next couple of sprints because your
availability metrics are failing your service-level agreement targets. Or maybe handling
12,000 connections a second is when your load-balancer nodes start responding badly,
and it’s time to buy more for your cluster. Whatever you’re looking for, these systems
will help you find it. Underinvestment can be caused by many factors:

 Telemetry systems aren’t revenue systems. “If they don’t make money, they’re over-
head, so cut overhead to make profit; QED.” This argument shows that business
management has an incorrect understanding of the value that telemetry sys-
tems provide the overall organization.

 Don’t fix what ain’t broke. “What you have now works fine; why bother changing?”
This argument shows a disconnect between the people who would get the most
value from well-designed telemetry systems and the people who would autho-
rize the time and money to be spent for a well-designed telemetry system.
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 Centralized logging is all we need. “Why do you need a tracing system when we can
do the same with our current system in only six searches?” Centralized logging
is a powerful tool, as decades of computer management have shown. Central-
ized logging can also be forced to do the jobs of SIEM, metrics, and even dis-
tributed tracing, but it does them much more poorly than the systems designed
for those tasks. You will find yourself spending so much time writing glue auto-
mation to make this square peg fit the hexagonal hole than setting up a new
specialized system would likely save in time and money.

 Features! Features! Features! “We don’t have time for that; we need to ship this
next set of features to enable sales!” More of a pathology in growing SaaS com-
panies, this argument is another example of business management misunder-
standing the value that telemetry systems bring to an organization.

The broad trends boil down to not understanding what telemetry does and a discon-
nect between those who feel the pain and those who would approve fixing the pain.
None of these problems is an easy fix for a simple technician on a team. Depending
on your organizational culture, fixing either problem may be impossible for the man-
agers who feel the pain because approving major updates like a telemetry system
needs to happen so far up the chain of command that it doesn’t matter.

 When you’re facing these headwinds, you still have a chance to make a change. If
the organizational culture is otherwise good, underinvestment is largely a problem of
ignorance. You can fix ignorance, as follows:

 Explain the kinds of decisions that improved telemetry systems will enable.
Managers get that sort of language.

 Explain how paying for a SaaS provider now will improve everyone’s ability to
make decisions faster than spending 24 months building your own systems (and
will likely result in much better features than a DIY system could offer).

 Explain how a new telemetry style works differently than the current systems,
provide a framework showing how it would operate in your existing production
systems, and point out how it would improve identification of problems and
prioritization of work.

I spent 14 years in the public sector, 7 of them during recessions when spending new
money had to wait for the economy to turn around. Many organizations are at the
mercy of an annual or biannual budgeting process in which a group of rarely techni-
cal elected officials decide whether you will get your expensive new system. Fighting
chronic underinvestment is hard work, but it can be done. Make the case, do it well,
and plan far enough in advance (months, if not years) that you won’t be in a panic if
the answer comes down to “Not this year.”
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1.3.2 Diverse needs resist standardization

As you read section 1.2, which described the teams in a technical organization and
their telemetry needs, you may have noticed some different goals. Here are some of
the top-level differences:

 Customer Support teams need recent (within a few weeks) telemetry, and they
need all of it (no aggregation or summarization) in case what a customer is
talking about is in there.

 Security teams need their SIEM systems to keep seven or more years’ worth of
telemetry.

 To be affordable, distributed tracing systems need to sample their data statistically.
 Centralized logging systems are the most expensive to operate (on an expense

per day of telemetry basis), so keeping years’ worth of telemetry online is pro-
hibitively expensive. Sometimes, weeks’ worth of telemetry is too expensive for
an organization.

Figure 1.12 provides a view of the diverse storage and retention needs of the four
telemetry styles talked about here.

A “one policy applies to all” approach simply will not work for a telemetry system. Your
retention policies need to be written in ways that accommodate the diverse needs of
your teams and telemetry systems. (Chapter 17 is dedicated to this topic.) There is
also diversity in the shape of your telemetry data itself:

 Hardware emits in two standardized formats: Syslog or SNMP. If you can’t han-
dle the standard formats, you’re not going to get that telemetry.

 Telemetry SaaS provider SDKs might not have support for emitting telemetry
through HTTP proxies—a required feature in many production environments.

Metrics

Distributed tracing

SIEM

1y 2y 3y 4y 5y 6y 7y 8y 9y

Centralized logging

Sampled telemetry
Aggregated telemetry

Figure 1.12 The four telemetry styles charted for their preferred online availability periods. SIEM 
systems have the longest retention due to external requirements. Distributed tracing achieves 
retention through statistical sampling. Metrics achieves its duration through aggregations of the 
numbers stored inside. Centralized logging is just plain expensive, so it gets the smallest online 
retention period.
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 Platform services such as VMWare vCenter have their own telemetry handling
systems.

 Infrastructure providers such as Amazon Web Services (AWS) and Digital
Ocean provide telemetry in their own formats and in their own locations, leav-
ing it up to you to fetch and process it.

 Operating system components (Windows, Linux, FreeBSD, AIX, HP-UX, z/OS,
and so on) emit in their own formats, such as Syslog and Windows Event Log. If
you want that telemetry, you need to handle those formats.

 The programming languages in which your production systems are written and
their ages can prevent you from having access to SDKs for distributed tracing.

Challenges like these increase the complexity of your telemetry system but are not
insurmountable. I cover methods of moving telemetry in chapter 3 and transforming
formats in chapter 4. If you happen to be using a language or platform that is unloved
by the hot-new-now tech industry, you’re likely used to building support for new
things yourself. I’m sorry (she says, having run Tomcat apps on NetWare successfully).

1.3.3 Information spills and cleaning them up to avoid legal problems

Information spills and their consequences are a direct result of increasing legislation
regarding privacy (personally identifiable information [PII]) and health-related (per-
sonal health information [PHI]) information. Just as toxic-waste regulation largely
didn’t exist until the last half of the 20th century, the first half of the 21st century is
seeing information start getting classified as toxic. Telemetry systems receive feedback
from production systems, but if production is handling privacy or health-related data,
it is possible that the telemetry stream will include such toxic data as well.

 You never want to see privacy- or health-related data in your telemetry systems, because
access to telemetry data will have to follow all the rigorous (and tedious) access con-
trol and use policies that accessing production data requires. Making access to your
telemetry data more difficult reduces the overall utility of your telemetry system in
general. Few organizations are culturally and technically equipped to easily handle
data of this type, and they’re all healthcare or finance companies. For the rest of us,
keeping privacy and health-related data out of the telemetry stream is a never-ending
battle. There are three major sources of information leaks:

 The biggest leak source: exception logging with parameters—Parameters are incredibly
useful for debugging but can include privacy and health-related data, so they
are by far the largest sources of leaks I’ve seen in my own systems. This situation
is made worse by the fact that many logger modules don’t have redaction con-
cepts baked into them (see chapter 16 for more on redaction), and software
engineers aren’t used to thinking of exceptions as needing in-code redaction
before emission. Use of a structured logger (see chapter 12) gives you ways to
redact exceptions.
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 Unthinking inclusion of IP address and email addresses in logging statements—IP and
email addresses are useful for fighting fraud and isolating which account a
statement is about. Unfortunately, IP address and email addresses are protected
by many privacy regulations. If you must include these details, consider hashing
them instead to provide correlation without providing the direct values. Section
14.2.1 provides another method to limit allowed values in telemetry.

 Inclusion of any user-submitted data of any kind in logging statements—Users will stuff
all kinds of things they shouldn’t into fields. Unfortunately for you, many pri-
vacy and health-data regulations require you to detect and respond to leaks of
this type. If you are in a place subjected to that kind of law (ask your lawyers)
and have a bug-bounty program, expect to pay bounties to bug-hunters who
find ways to display user-supplied input on unprotected dashboards. But it’s
best not to emit user-submitted data in your telemetry stream in the first place.

As deeply annoying as this fact is, you must have policies and procedures in place to
retroactively remove mistakenly stored privacy and health-related information. Legis-
lation that makes these types of data toxic hasn’t been around long enough for telem-
etry handling modules to include in-flight redaction as a standard feature alongside
log levels. I hope that this situation will change in the future. Until then, we have to
know how to clean up toxic spills. Chapter 16 covers this topic extensively.

1.3.4 Court orders break your assumptions

Nearly every country on the planet has judicial rules that allow each party in a lawsuit
to request relevant business records from the opposing party or parties. Email and
Slack messages are famously business records, but telemetry data is as well. If your
organization is party to a lawsuit, opposing counsel (the other side’s lawyers) can
request telemetry data. What happens between the time the request is made and the
time you take action on it will be decided by your organization’s lawyers, opposing
counsel, and the judge overseeing the case, as shown in figure 1.13.

Opposing
counsel
requests

documents.

Lawyer
negotiation

stuff
(not your job)

Your lawyers
request

telemetry.
You produce

telemetry.

Deliver
telemetry to
your lawyers.

Your lawyers
deliver

telemetry to
opposing
counsel.

Figure 1.13 A greatly simplified flow of the document-discovery process as it relates to 
telemetry data. Your lawyers will be fighting on your organization’s behalf to reduce the 
telemetry you have to give to the other side. You can help this process by teaching your 
lawyers what technically can and can’t be produced by your telemetry system. Lying to your 
organization’s lawyers about what you are able to produce will get you fired. Let the lawyers 
do their jobs; you’re there only as a technical consultant.
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Two court processes force you to change how you handle, store, and grant access to
telemetry:

 Request to produce documents—This flow, illustrated in figure 1.13, requires you to
create an extract of telemetry. The format you need to create will be negotiated
by the lawyers, so you are likely to be pulled in to consult on the capabilities of
your telemetry systems.

 Request to hold documents—Of the two demands, this one has the greater effect on
you, the telemetry system operator. A request to hold documents means that you
have to exempt certain telemetry from your aggregation, summarization, and
deletion policies. Because legal matters sometimes take years to resolve, in bad
cases you can end up storing many multiples of your usual telemetry volumes.

Not every organization has to prepare for lawsuits to such a degree that they need
well-tested procedures for producing and holding telemetry, but certain industries are
prone to lawsuits, such as finance, drug manufacturing, and patent law. Also, certain
kinds of lawsuits, such as those filed for leaks of toxic data and insider sabotage, are
far more likely to dive into telemetry data. You should have at least a whiteboard plan
of what to do when you face a court order. Chapter 18 covers this topic.

1.4 What you will learn
This book is a guide to help any team operate telemetry systems in a technical organi-
zation. It focuses on optimizing the operation of systems involved in handling and dis-
playing telemetry, rather than optimizing your overall use of telemetry. To benefit
from this book, you should have worked with telemetry systems in some capacity, such
as making searches in dashboards or writing logging statements in code. You should
also have manipulated and searched strings by using code and built queries in graphi-
cal applications. In this book, you will learn

 The architecture of telemetry systems and how your current telemetry systems
follow the architecture

 How to optimize your telemetry handling to reduce costs and increase the
online searchable period

 How to ensure the integrity of your telemetry systems to support regulation and
compliance frameworks, as well as security investigations

 Techniques to use to support court orders as part of legal processes
 Procedures to safely handle and dispose of regulated information, such as PII

and PHI

To help you learn these skills, I will be using examples drawn from three styles of tech-
nical organization. Know that what I teach here is applicable to a growing startup, to
companies with a founding date in the 1700s, and to organizations in which writing
and running software supports the business but is not the reason for the business.
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Summary
 Telemetry is the feedback you get from your production systems.
 Telemetry is how modern computing works, because it tells us what our produc-

tion systems are up to.
 Telemetry ultimately supports the decisions you have to make about your

production systems. If your telemetry systems are poor, you will make poor
decisions.

 Centralized logging, which was the first telemetry style to emerge (in the mid-
1980s), brings all logging produced by your production systems to a central
location.

 Logging format standards such as as Syslog ensure that hardware systems emit
in standard formats, so you need to support those formats as well if you want
telemetry from hardware systems.

 Syslog introduced the concept of log levels (debug, info, warn, and error
among others) to the industry.

 Metrics (which emerged in the early 2010s) focuses on aggregatable numbers
to describe what is happening in your production systems.

 Cardinality is the term for index complexity in databases. The more fields a
table has, the higher its cardinality. Centralized logging is a high-cardinality sys-
tem; metrics systems generally are low-cardinality.

 Distributed tracing emerged in the late 2010s and focused on tracing events
across an execution flow crossing system boundaries.

 Distributed tracing provides the context of the entire execution flow when
investigating an interesting event, which further improves your ability to isolate
where a problem started.

 SaaS companies dominate the distributed tracing space due to the complexity
of distributed tracing systems.

 SIEM systems are specialist telemetry systems for Security and Compliance
teams; they store information relating to the security use case.

 SIEM systems store consistent information because regulation and voluntary
compliance frameworks largely track the same kinds of data and often require
such data to be stored for years.

 Operations and DevOps teams use telemetry to track how their infrastructure
systems are operating, focusing on centralized logging and metrics styles.

 Security and Compliance teams focus on both centralized logging and SIEM
systems because SIEM systems share a lot of history with centralized logging,
and centralized logging is useful during audits for compliance with regulation
and external compliance frameworks.

 Software Engineering teams use every telemetry system except SIEM systems in
an effort to understand how their code is behaving in production.
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 The Pillars of Observability is a software engineering concept describing the
telemetry that allows a system to be observable : logs, metrics, and traces.

 SRE teams use every telemetry system except SIEM in their mission to ensure
that the organization's software is available.

 Customer Support teams use the centralized logging and distributed tracing
styles to better isolate problems reported by customers and to improve the qual-
ity of bug reports sent to engineering.

 Business intelligence teams are rarely part of the technical organization but are
responsible for building systems for business telemetry. BI people are valuable
resources when you’re deploying a new telemetry style due to their familiarity
with statistical methods.

 A chronic threat to telemetry system is underinvestment, which can stem from a
misunderstanding of the value that telemetry systems bring to the organization
and a disconnect between decision-makers and those who feel the pain of a bad
telemetry system.

 Different teams need different things from telemetry, and different telemetry
styles benefit from different retention periods. Your telemetry system needs to
accommodate these differences to be a good telemetry system.

 Hardware, SaaS providers, infrastructure providers, third-party software, and
operating systems all emit telemetry in relatively fixed formats. Your telemetry
system needs to handle these formats if you want their telemetry.

 Privacy information (PII) and health information (PHI) require special han-
dling, and most telemetry systems aren’t built for that purpose. Do what you
can to keep PII and PHI out of your telemetry systems.

 The largest source of toxic information spills are exception logs that include
parameters; do what you can to redact them before they enter the telemetry
pipeline.

 Telemetry systems are subject to court orders the same way your production sys-
tems are, so you may be called upon to produce telemetry by your lawyers for a
legal matter.

 A court order to hold data means that the affected data is no longer subjected
to your retention policy, which can be quite expensive if the legal matter drags
on for years.
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Telemetry system architecture

Each of the telemetry systems described in chapter 1 follows the same general
architecture. Every production system emits telemetry data. Then this data is
shipped into a data store of some form, which could be a relational database, a
NoSQL document store, a SaaS provider, or even an object store, if not more than
one. From there, it is presented in such a way that people can use the processed
telemetry data to support decisions, which could be in the form of reports or on-
demand charting. Along the way, telemetry is marked up with context-related
details and then enriched to pull out details encoded in the telemetry. Figure 1
describes this architecture. 

 Chapter 1 discussed four styles of telemetry:

 Centralized logging—Bringing all logging output from hardware, cloud pro-
viders, and software into a single searchable system. Often the first teleme-
try system built, this style has high cardinality and high costs.

 Metrics—Bringing numbers-based telemetry (such as rates, counts, and
sets) into a central system, tagged with fields to provide the basis for charts
and analysis. This style has low cardinality and low costs.

 Security Information Event Management (SIEM)—A form of centralized log-
ging specific to Security and Compliance team needs. This style needs to
support storage over many years due to external constraints.

 Distributed tracing—Using new databases and presentation time process-
ing, tracing is designed to enable following execution chains through
functions, microservices, macroservices, and different tenants. This style
has high cardinality, but statistical methods help keep costs down.



Each of the telemetry styles discussed in chapter 1 has its telemetry follow the stages in
figure 1. Figure 2 provides three real-world examples of telemetry pipelines for metrics,
centralized logging, and distributed tracing (also known as the Pillars of Observability).

 All telemetry has an emitting system that prepares telemetry for use inside your
Shipping stage (chapter 2). The systems that receive emissions—the Shipping-stage
systems—process and transform telemetry to prepare it for storage (chapters 3 and 4).
Finally, Presentation-stage systems use telemetry stored by the Shipping stage to pro-
vide the visualizations and analysis needed to support decision-making (chapter 5).
Chapter 6 describes the markup and enrichment that telemetry systems apply at all
three stages of your pipeline. Finally, chapter 7, which introduces multitenancy,
describes the changes to telemetry systems that happen when more than one owner is
involved.

 
 
 
 
 
 
 
 

Figure 1 Telemetry system pipeline stages with their definitions. The Emitting stage packages 
telemetry for the Shipping stage, which processes, transforms, and stores telemetry to be consumed 
by the Presentation stage. Markup adds context-related telemetry during the Emitting and Shipping 
stages, where enrichment transforms telemetry to improve its usefulness during the Shipping and 
Presentation stages.
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Figure 2 Example telemetry pipelines for three telemetry styles, with metrics at the top, centralized 
logging in the middle, and tracing at the bottom. Black directional lines indicate telemetry flow. Each 
pipeline is broken into three stages: Emitting, Shipping, and Presentation. These technologies are 
different, but the same flow of data handling shows the similarities of these telemetry styles.
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The Emitting stage:
 Creating and

 submitting telemetry

The Emitting stage, shown in figure 2.1, is the first stage in your pipeline, where
telemetry generated by a production system enters the pipeline. This first stage can
be many things:

 Your production code itself. A logging class inside the production code pro-
vides the needed formatting and telemetry delivery (section 2.1). You can
use several techniques when emitting this way.

This chapter covers
 Understanding what the Emitting stage does

 Emitting telemetry from software you’re 
developing

 Emitting telemetry from hardware and third-party 
software

 Emitting telemetry from SaaS and IaaS platforms
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 A hardware system like Cisco networking gear or Dell servers that you configure
to emit telemetry (section 2.2).

 A Software as a Service (SaaS) or Infrastructure as a Service (IaaS) platform
such as Amazon Web Services (AWS), Azure, Atlassian products, or GitHub that
is able to provide a telemetry stream (section 2.3).

When this telemetry is emitted from the Emitting stage, it is handled by the Shipping
stage, where telemetry is transformed into a format for storage used by the Presenta-
tion stage. Because emitting telemetry requires knowledge of the Shipping stage, we
cover some of the inputs of Shipping stages in this chapter. To help explain the real-
world uses of these emitting types, we use examples drawn from three types of techni-
cal organizations:

 A 100-person startup building an API-driven application running in AWS. This
example demonstrates emitting from software you develop.

 A global logistics company founded in 1848 that computerized its business pro-
cesses in the late 1960s. This example demonstrates emitting from hardware
infrastructure.

 A 200-person company providing in-person continuing education courses, with
strong seasonality in its hiring. This example demonstrates emitting telemetry
from SaaS platforms.
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Figure 2.1 Telemetry system pipeline stages with the Emitting stage shown first, illustrating 
where it fits in the overall telemetry pipeline. The Emitting stage is where telemetry enters the 
pipeline from the production systems. Production systems can be code, whereas the Emitting stage 
is often inside the production system itself, or hardware and Software-as-a-Service systems.
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2.1 Emitting from production code
In this section, we talk about a 100-person startup that wants to start emitting metrics
from its production systems and discuss three ways of accomplishing this goal.
Although we are talking about metrics in the examples, you can use the same tech-
niques to emit logging data.

 In the Emitting stage, the big difference between metrics and logging is the format
of the data: numbers and some extra details in the case of metrics versus strings for
logging. Figure 2.2 describes the company’s production system.

This startup is running code in AWS and has elected to run that code on EC2 virtual
machines. Although Lambda or either of AWS’s container services (Elastic Container
Service and Elastic Kubernetes Service) may be more appropriate for a company of this
type, using EC2 virtual machines allows me to demonstrate more telemetry emission
methods. This section talks about Emitting-stage techniques that are pure emitters—
that deliver telemetry to the same system the code is running on. Emitting stages that
send telemetry to a different system, perhaps to a queue or a database, are Emitter/
Shipper stages, which we will cover in detail in section 3.1. The top half of figure 2.3
describes the differences between these two types of emitters.

 The bottom half of figure 2.3 demonstrates the components of a structured logger
and how it relates to the emitter and emitter/shipper concepts. (For a full examination
of structured loggers, see chapter 12.) Most programming frameworks have one or
more structured logging options available. Structured loggers have three components:

 A logger that acts as the callable item for structured loggers. For telemetry pipe-
lines, the logger is how telemetry enters the Emitting stage. The name of this
component differs depending on the programming language.

 A formatter that reformats received telemetry in the format needed by the Emitting-
and Shipping-stage systems. There can be more than one formatter.

 A writer that sends the reformatted telemetry to the next step. In some logging
frameworks, you may be able to send only to the console or a file. Other frame-
works have many more delivery options, if not extensible, allowing sending to
databases, queues, streams, SaaS providers, and many more destinations.
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Figure 2.2 The production system for 
the 100-person startup, running in AWS. 
Production code is deployed to EC2 
virtual machines running in a Virtual 
Private Cloud. This architecture allows 
us to examine several techniques for 
emitting telemetry from production code.
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Pure emitters require a Shipping-stage component (see section 4.1) to move (ship)
telemetry farther down the telemetry pipeline. In this section, we cover three methods
of emitting locally:

 Emitting into a log file
 Emitting into the system logger
 Emitting into standard out

NOTE Emitter/shipper functions emit to telemetry on systems remote from the
production code and are covered as part of the Shipping stage in section 3.1.

The three methods this section covers are among the oldest methods for getting feed-
back from what your program is doing. There is a reason why the “Hello world!” pro-
gram is using a print function to echo back Hello world!

 The code samples in this chapter use Python 3 and the default Python logger to
demonstrate telemetry emission concepts. Although Python 3 is used in my code exam-
ples, several other loggers behave in similar ways for different programming languages:

 Python—The structlog module (https://www.structlog.org/en/stable)
 Ruby—The twp/logging gem (https://github.com/twp/logging) 
 PHP—The Monolog module (https://github.com/Seldaek/monolog)

Production
code

Local
telemetry

Production
code

Remote
telemetry

Telemetry is emitted
when it leaves the
production code. 

Telemetry leaving the box
or container is shipped. 

Local-only emission means
production code is a pure emitter.

Remote emission means
production code is an emitter/shipper.

Box/container

Box/container

Logger Formatter WriterProduction
code

Entry point to
telemetry system

Reformats telemetry
for use in Shipping stage

Delivers telemetry to
the Shipping stage

Emitting stage if writing locally,
Shipping if writing remotely

Emitting stage
Elements of a structured logger

Figure 2.3 Two styles of emitting telemetry directly from production code, showing how these 
concepts relate to a structured logger. The pure emitter at top left (described in section 2.1) emits 
telemetry in the same box, container, or function as the production code, and the emitter/shipper 
at top right (described in section 3.1) emits telemetry to an external system.

https://www.structlog.org/en/stable
https://github.com/twp/logging
https://github.com/Seldaek/monolog
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 NodeJS—The Winston (https://github.com/winstonjs/winston) and Bunyan
(https://github.com/trentm/node-bunyan) modules

 Java—The log4j 2 framework (https://logging.apache.org/log4j/2.x)
 Go—The Zerolog (https://github.com/rs/zerolog) and Zap (https://github

.com/uber-go/zap) modules
 .NET Core—The built-in ILogger (http://mng.bz/ZYz5)
 Rust—The Slog module (https://docs.rs/crate/slog)

2.1.1 Emitting telemetry into a log file
The 100-person startup wants to create a metrics-emitting function in its code. This
section covers how to create this function by using log files, which can be created in a
couple of ways:

 Using the programming-language’s file read/write features to write directly to files
 Using an add-on module (such as an egg, gem, NuGet, npm, jar dependency, or

PECL) to provide a fully featured logging library to abstract away file I/O and
provide a higher-level interface for logging

Most programs of any size opt for the second bullet option: using a built-in or add-on
logging library. You may be asking, “Why would I use a logging library for metrics?”
The answer is given in the intro to section 2.1: Emitting-stage systems are all about
preparing telemetry for the Shipping stage, and there is little difference between log-
ging output and metrics output when you plan to send your telemetry to a file.

 Our first version of this startup’s metrics logger in listing 2.1 is written in Python 3
and makes use of the logging Python module to give us a high-level interface for
sending telemetry into log files. Figure 2.4 depicts the overall flow of execution lead-
ing up to the writing of a log file entry.

Figure 2.4 How calling metrics.counter("pdf_page", 2) gets written into a logfile at /var/log/ 
metrics.log. After passing into the metrics.counter function, the formatted string is sent into the predefined 
logger at the info priority. The string is reformatted by the formatter to add a timestamp. Then the Handler decides 
to not propagate the event to a different handler and outputs the formatted line to /var/log/metrics.log.

metrics.counter("pdf_pages", 2)

metlog.info("[counter] [pdf_pages] [2]"

metric_format = 
logging.Formatter('[%(asctime)s]%
(message)s')

metfile = RotatingFileHandler(
        filename='/var/log/metrics.log',
        mode="a",
        maxBytes=8*1024*1024,
        backupCount=5,
        delay=False)

metfile.propagate=False

Send to
parent

handler?

Stop

Open file
(append mode) 

/var/log/metrics.log

[2026-02-19 02:28:22,192] [counter] [pdf_pages] [2]

False

https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://github.com/trentm/node-bunyan
https://logging.apache.org/log4j/2.x
https://github.com/rs/zerolog
https://github.com/rs/zerolog
https://github.com/uber-go/zap
https://github.com/uber-go/zap%22
http://mng.bz/ZYz5
https://docs.rs/crate/slog
https://github.com/uber-go/zap
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In listing 2.1, we see the full metrics module.

import logging
from logging.handlers import RotatingFileHandler

metlog  = logging.getLogger('metlog')   

metfile = RotatingFileHandler(
  filename='/var/log/metrics.log',    
  mode="a",   
  maxBytes=8*1024*1024,               
  backupCount=5,                     
  delay=False)                       

metlog.setLevel(logging.DEBUG)    

metfile.propagate=False    

metric_format = logging.Formatter(     
  '[%(asctime)s] %(message)s',         
  )                                   

metfile.setFormatter(metric_format)    

metlog.addHandler(metfile)    

def counter(msg, count=1):   
  """Emits a metric intended to be counted or summarized.

  Example: counter("pages", "15")
  """
  metlog.info("[counter] [%s] [%s]", msg, count)

def timer(msg, time=0.0):   
  """Emits a metric for tracking run-times.

  Example: timer("convert_worker_runtime", "2.7")
  """
  metlog.info("[timer] [%s] [%s]", msg, time)

When listing 2.1 is called through the counter function, it starts a chain of events,
shown in figure 2.4:

1 The Python logging facility is set up and named metlog.
2 The counter function inside the metrics class calls the info method of metlog,

submitting [counter] [pdf_pages] [2] to the metlog facility.
3 The formatter reformats the string to add a timestamp, making it [2026-02-19

02:28:22,192] [counter] [pdf_pages] [2].
4 The handler defined with RotatingFileHandler does not send the event to any

other handlers because propagate was set to False.
5 The handler opens /var/log/metrics.log.

Listing 2.1 metrics.py: Using the Python logger to send telemetry to a log file

Creates the metric logger

Creates the logging 
handler, rotating the 
log file after 8MB

Sets the minimum log level handled by this facility

Ensures that events handled by this facility 
will not also be sent to the root facility

Creates the log format

Assigns the formatter to the handler

Assigns the handler to the logger 
and completes logger setup

Creates the 'metrics.counter' method:
'metrics.counter("executions", "2")'

Creates the 'metrics.timer' method: 
'metrics.timer("run_time", "3.8")'
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This library is brought into another Python program through import metrics, allow-
ing this startup’s software engineers to emit metrics through function calls like these:

 metrics.counter("profile_image_uploaded") to increment the count of
uploaded profile images by 1

 metrics.counter("pdf_pages", 2) to indicate that the number of pdf_pages
encountered was 2

 metrics.timer("profile_image_convert_time", 0.9) to indicate that con-
verting the uploaded profile image to an appropriate image dimension took 0.9
seconds

Function calls like these will create the following entries in the /var/log/metrics.log
file:

[2026-02-19 02:27:26,396] [counter] [profile_image_upload] [1]
[2026-02-19 02:28:22,192] [counter] [pdf_pages] [2]
[2026-02-19 02:28:27,921] [timer] [profile_image_convert_time] [0.9]

What happens after this log file is created depends on the Shipping telemetry stage,
which is discussed in section 4.1. If only a single EC2 instance ever runs this code, a
software engineer could watch the metrics roll in by watching that one file from an
SSH session, but we know from the architecture diagram that this startup has at least
six instances running. Instead, software implementing the Shipping stage reads this
file and transmits, converts, and ultimately stores events in a database that allows que-
ries as part of the Presentation stage.

 What happens next? The /var/log/metrics.log is read by a Shipping-stage compo-
nent (see section 4.1.1).

2.1.2 Emitting telemetry into the system log

Suppose that our 100-person startup wanted to send its metrics into the system log
rather than a log file; this section covers how it would make this change. The system
log is managed by the operating system. On UNIX-like systems, the system log is
almost definitely running something compatible with IETF standardized Syslog. On
Linux systems, Syslog interfaces are present, but the Systemd logging component
named journald is likely to be running the system log. On Windows systems, the sys-
tem log is the Event Log. Most modern languages intended be executed on servers
include some simple way to send events to the system log.  

System loggers and Linux systems
Ask any BSD user what they think of Linux, and they will shake their head. One of the
biggest reasons for the pressed lips and quiet (or, if pressed, the rant) has been the
adoption of a framework called Systemd by every major Linux distribution. Systemd
is a replacement for several long-standing (meaning stable and therefore reliable)
UNIX subsystems:
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Because of the three tiers of structured logging (logger, formatter, and writer), updat-
ing the metrics.py function that was sending logs to a file to send them to the system
log instead is a matter of changing three lines: importing a new module and updating
the formatter and handler. Figure 2.5 shows the changed flow of telemetry.

(continued)
a Replacing the long-standing and widely understood script-based on-boot

startup sequence with a vastly more complicated service framework that is
hard to reason about and equally hard to tune. A service framework that has
far better dependency management that can react to service failures with
more certainty and start services way faster.

b Replacing the long-standing and battle-tested set of utilities needed to turn
Domain Name System (DNS) names into IP addresses (and other resolver
actions) with a brand-new utility that needed a decade to shake the bugs out
(and isn’t done shaking them yet).

c Abstracting the long-standing system logger, Syslog, with a new system
named journald that radically upended decades-long assumptions about
where system log files end up and how they are stored. This type of system
has far better ability to review the logs from specific services versus the older
pure Syslog solutions, provides much more detailed metadata, and has an
actual access control system.

Systemd ends up being a nice parable of the Paradox of Maturity:

I use only mature systems in my production environment.
Systemd is not yet mature.
Therefore, I will not use Systemd in production. 
Therefore, Systemd will never get the testing it needs to become 
mature. QED.

Systemd is bringing a lot of new features to the Linux ecosystem, much as it pains
old hands to admit. The Systemd project is heading in the right direction, in my opin-
ion, but we still have at least another five to seven years of grumbling and bug-fixing
to match the maturity of the systems it replaced.

Fortunately for us, journald listens to the operating system the same way Syslog did,
so for programs running on Linux systems, it seems that nothing has changed with
respect to the system logger. For humans, on the other hand, it’s radically different.
For all the advances Systemd brought to the table, it deliberately left one feature
unbuilt: the ability to send system log data somewhere off the server it’s running on.
This lacking feature, weirdly enough, is why Systemd still allows sending system log
data to an actual local Syslog server.

Yes, this means that on many Linux systems, you have two ways to look at the sys-
tem logger telemetry. Simplicity means different things to different people; let’s leave
it at that.
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Listing 2.2 shows the locations of those two changed lines in the metrics.py file.

import logging
from syslog import LOG_LOCAL4
from logging.handlers import SysLogHandler

metlog  = logging.getLogger('metlog')

metfile = SysLogHandler(facility=LOG_LOCAL4)    

metlog.setLevel(logging.DEBUG)

metfile.propagate=False

metric_format = logging.Formatter(
  '%(message)s',
  )   

metfile.setFormatter(metric_format)

metlog.addHandler(metfile)

[...]

Listing 2.2 metrics.py: Using the Python logger to send telemetry to the system log

metrics.counter("pdf_pages", 2)

metlog.info("[counter] [pdf_pages] [2]"

metric_format = logging.Formatter(
'%(message)s')

metfile = 
SysLogHandler(facility=LOG_LOCAL4)

metfile.propagate=False

Send to 
parent 

handler?

Stop

Open Syslog file handle

Syslog LOCAL4 facility

Feb 19 02:28:22 ec2-host metrics[1212]: [counter] [pdf_pages] [2]

Enters logger

Enters formatter

Enters writer

Figure 2.5 How calling metrics.counter("pdf_page", 2) gets written into the local 
system log. Inside the metrics.counter function, the logger is invoked through the info 
method, passing in a formatted string. Then the formatter reformats the telemetry. Next, the 
writer, a SysLogHandler in this case, decides to not send the telemetry to another facility; 
instead, it sends the telemetry into the local Syslog, using the LOCAL4 facility.

Creates a handler to send logs to 
Syslog on the LOCAL4 Syslog facility

Removes the date/time stamp because 
Syslog will insert it automatically



36 CHAPTER 2 The Emitting stage: Creating and submitting telemetry

Listing 2.2 is substantially the same as the log file version in listing 2.1, but with three
changes:

 We import the LOG_LOCAL4 facility from the Syslog modules.
 The handler is changed to the Syslog handler, using the LOCAL4 facility.
 The format of emitted metrics is changed to remove the timestamp because

Syslog will automatically date- and timestamp everything it receives anyway.

Using this revised metrics library, the emitted telemetry would look like this for the
three examples used with the log file version:

Feb 19 02:26:26 ec2-host metrics[1212]: [counter] [profile_image_upload] [1]
Feb 19 02:28:22 ec2-host metrics[1212]: [counter] [pdf_pages] [2]
Feb 19 02:28:27 ec2-host metrics[1212]: [timer] [profile_image_convert_time] 

➥ [0.9]

Note that the log file version of these metrics includes millisecond resolution, whereas
Syslog resolves to the second. If you are building a telemetry system that uses Syslog
and need subsecond resolution of timestamps, you will need to include your own
timestamp in your emitted telemetry. But if your data will only be aggregated, second-
level resolution can be completely fine.

 This example function goes to a Syslog facility on the box it is running on. Func-
tionally, the address= attribute is using the default value of localhost. If we had a
centralized Syslog server that we wanted to talk to directly, we would update the han-
dler creation line like so:

metfile = SysLogHandler(facility=LOG_LOCAL4, address=("syslog.prod.internal",

➥ 514))

Figure 2.6 demonstrates how this update alters the flow of telemetry.

metrics.counter("pdf_pages", 2)

metlog.info("[counter] [pdf_pages] [2]"

metric_format = logging.Formatter(
'%(message)s')

metfile = SysLogHandler(facility=LOG_LOCAL4,
     address=("syslog.prod.internal", 514) )

metfile.propagate=False

Stop

Open UDP connection to syslog.prod.internal

Syslog LOCAL4 facility on the syslog.prod.internal server

Feb 19 02:28:22 ec2-host metrics[1212]: [counter] [pdf_pages] [2]

Send to
parent

handler?

Figure 2.6 A version of figure 2.6 in which the Syslog event is sent to a remote Syslog 
server over UDP/514. This figure is an example of an emitter/shipper function using Syslog.
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The rest of the file would be identical. When the file is set up this way, any metrics
received result in the sending of a User Datagram Protocol (UDP) packet to the
syslog.prod.internal host over UDP port 514. (For another look at using UDP to
send telemetry, see section 13.2.) With the metrics library configured this way, the
running code no longer needs to create files or interact with a service running on the
same box, which makes this library much more capable of running inside a container
or serverless framework such as AWS Lambda. This function is an emitter/shipper
function (section 3.1), but all we need to do is add a single line to the Emitter
function. The concept of emitting directly to a centralized Syslog server is core to integrating
hardware-generated telemetry.

 What happens next? A Shipping-stage component reads the system log (see sec-
tion 4.1.2).

2.1.3 Emitting telemetry into standard output

In this section, we cover emitting telemetry to the standard output (stdout), or the
console. If you run the program in a terminal, stdout is what you see printed back.
10 PRINT("Hello world!") emits in the standard output. Emitting telemetry in the
standard output means that your production code expects something executing the
code to handle that stream of telemetry. If your production code is running on a
Linux system, the system logger (journald) will happily capture all your output and
give you a convenient place to page through it. Function as a Service (FaaS) providers
such as AWS Lambda and Azure Functions, as well as container platforms such as
Docker and Kubernetes, have ways to trap stdout for display and further shipping.
(For more on containers and FaaS, see chapter 13.)

 Standard output is a single channel. If several different threads are emitting telem-
etry through stdout, you must take steps to ensure that they don’t collide; otherwise,
your output may be quite garbled. Using a logging library as we did in the preceding
two sections will help greatly, as those libraries (mostly) have been written so that at
least each line of output is emitted individually.

 There is a second standard output: the error channel known as standard error
(stderr). The idea of a discrete channel for reporting error messages came in the
1970s and has been used in UNIX-like systems ever since. Task execution, command
execution, and Platform as a Service (PaaS) frameworks like Windows Task Manager,
Linux Systemd, Docker, and Kubernetes all monitor both streams. 

stdout, stderr, and file handles: The ghost of POSIX
When you open a file from a program on a UNIX-like system, you are granted a file
handle by the operating system. All your operations on that file are done through that
handle. By convention, this value is a numeric value.

The standard outputs, stdout and stderr, are assigned the handle IDs 1 and 2,
respectively. These assignments are made by convention and unlikely to change.
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If we wanted to revise the metrics library from the previous two subsections to emit to
standard output instead, we would need to change three lines from listing 2.2, once
again updating the formatter and handler. Figure 2.7 shows the changed flow.

Listing 2.3 shows where in the function the changes are made. It uses StreamHandler
to send telemetry to a file handle, which is stdout:

import sys
import logging
from logging import StreamHandler

metlog  = logging.getLogger('metlog')

Listing 2.3 metrics.py: Using the Python logger to send telemetry to the console

(continued)
If you’ve ever wondered what the bit of shell programming my-program 2>&1 means,
it’s telling the shell to send the contents of file handle 2 (stderr) into the stream for
file handle 1 (stdout) to provide a single stream of all output on either handle. This
shell recipe is particularly handy when the process that executes a program, such as
cron, considers any data on stderr to be a problem that must be reported. This invo-
cation also works on Windows systems, in both command-shell and PowerShell.

metrics.counter("pdf_pages", 2)

metlog.info("[counter] [pdf_pages] [2]"

metric_format = logging.Formatter(
'[%(asctime)s] [metrics] %(message)s' 
)

metfile = StreamHandler(stream=sys.stdout)

metfile.propagate=False

Stop

Open filehandle 1 (stdout)

Console

[2026-02-19 02:28:22,192] [metrics] [counter] [pdf_pages] [2]

Send to
parent

handler?

Figure 2.7 The counter is invoked the same way as in figures 2.4–2.6. The logger is called 
with the info method and passed a string. The formatter reformats the telemetry for the 
Shipping stage, adding a [metrics] tag. Finally, the writer emits the telemetry to standard 
out. The emitted telemetry will be gathered by a Shipping-stage system that monitors the 
standard output.
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metfile = StreamHandler(stream=sys.stdout)    

metfile.setLevel(logging.DEBUG)

metfile.propagate=False

metric_format = logging.Formatter(          
  '[%(asctime)s] [metrics] %(message)s',    
  )                                         

metfile.setFormatter(metric_format)

metlog.addHandler(metfile)

[...]
def counter(msg, count=1):
  """Emits a metric intended to be counted or summarized.

  Example: counter("pages", "15")
  """
  metlog.info("[counter] [%s] [%s]", msg, count)
  metfile.flush()    

The key changes between this version of metrics.py and the ones in listings 2.1 and 2.2
are the location to which the logging is sent (standard out) and the format of the
emitted string. We’re inserting [metrics] to disambiguate the output from this func-
tion from other streams that also use stdout. The output from this function is similar
to the output from the log file emitting version, but with the second field added:

[2026-02-19 02:27:26,396] [metrics] [counter] [profile_image_upload] [1]
[2026-02-19 02:28:22,192] [metrics] [counter] [pdf_pages] [2]
[2026-02-19 02:28:27,921] [metrics] [timer] [profile_image_convert_time] [0.9]

The stdout/stderr split matters to whatever is executing our production code. For
Linux and journald, the journalctl command is used to view the output from a ser-
vice, and any output from stderr is both in another color and boldfaced to visually sep-
arate stderr output from regular stdout output. PowerShell on Windows operates
similarly, with stderr displayed differently.

Creates a handler to 
send logs to stdout

Adds a timestamp and a field 
to provide disambiguation

Adds an explicit stream flush 
to ensure that the metrics are 
emitted, which is useful during 
shutdowns

Colors and stderr
Increasingly, shells and utilities are starting to color-code output from standard error
to allow visual separation between the stdout and stderr streams. This same conven-
tion holds for many other programs that handle and display the two streams.

The default color picked by the systems is overwhelmingly red—a color that many
color-blind people perceive as being a shade of gray. (Also, red is a United States–
centric color to use for an error message.) Many of these systems provide methods
for changing the color, but the default color remains the problematic one. If you find
yourself color-coding output, consider using other colors or boldface instead.
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If our example library had been run on a Linux system running journald, we could
access our log-stream through

journalctl --unit my-program --lines=100

which would allow us to look at the most recent 100 lines sent to stdout for our
program.

 What happens next? Software engineers who write production code that emits
telemetry into standard out do so knowing that the system that receives that teleme-
try—the framework that runs the production code—is able to do something with it
(see section 4.1.3). That problem is a Shipping-stage problem.

2.1.4 Formatting telemetry for emissions

The examples in the preceding three sections used a simple format for their
emissions, though how the timestamp was handled changed somewhat depending on
what we were emitting into. For a metrics logger, a simple delimited format such as
[metric-type] [metric-name] [metric-value] is an easy-to-parse format in the
Shipping stage. But what if you want to encode telemetry more complex than metrics?
Or what if you want a format that can emit more than one metric in a given emission
of telemetry? This section covers those topics.

 When you are writing your own emitter, you have the luxury of owning the format.
Hardware, installed third-party software, and SaaS and IaaS providers impose a format
on you—overwhelmingly Syslog for hardware and HTTP + JSON for SaaS providers.
But in your own software, you can make the telemetry format fit your specific needs.

 Knowing your telemetry pipeline helps you decide on a format. Understanding the
constraints in your Shipping stage allows you to reduce the load of handling your
telemetry. The Shipping stage itself may transform emissions into something else
entirely, as covered in section 4.2.1.

 The code in the preceding sections formats the emissions in two lines of code. The
first formatting happens immediately after the function is called,

metlog.info("[counter] [%s] [%s]", msg, count)

which is where the [metric-type] [metric-name] [metric-value] format is set. If
we want to revise our class to accept a hash of metrics, we need to change the code
around the metlog.info line. Given the input

pdf_metrics = { "pdf_pages": 2, "pdf_size" : 2.9 }
metrics.counters(pdf_metrics)

we would rewrite the def counters function as shown in the following listing.
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import json
[...]

def counter(msg):
  """Emits metrics intended to be counted or summarized.

  Example: counter( { "pages": 15, "words": 16272 } )
  """
  counter_metrics = {     
    "counters": msg    
    }                    
  counter_emission = json.dumps(counter_metrics)   
  metlog.info(counter_emission)    

With no other changes except to this function, the Syslog version of this metrics emit-
ter would return a line that would read

Feb 19 02:26:26 ec2-host metrics[1212]: { "counters": { "pdf_pages": 2, 

➥ "pdf_size" : 2.9 } }

Two metrics, one emission. The Shipping stage is responsible for taking this string and
turning it into two entries in the metrics database.

WARNING Input validation applies to logging-library functions such as this
one as much as it does for any function that accepts untrusted user input.
People stuff the strangest things into their logging function calls (including
untrusted user input; don’t do that). The example here does not include
input validation for clarity of teaching. The full function would ensure that
the hash contained no nested values and that all values were of a numeric
type, and it would reject any invalid types.

JSON is used in this example, but it isn’t the only way to encode an object. The reason
why the single-metric versions of this function used a delimited format instead of
JSON is that the human eye parses delimited formats far more easily than it does
JSON-encoded formats. JSON is the data transaction format of much of the modern
web, so a lot of effort has been put into making JSON encoding/decoding operations
extremely fast, even though delimited formats are simpler algorithms. (For more dis-
cussion of telemetry formats, see section 4.2.1, which examines string formats in the
Shipping stage and goes into more detail than I do here.) The Shipping stage has to
translate any emission into a format that’s acceptable to the storage system, and you
can help speed that process by making sure that your emissions format is efficient to
parse. Here are three tips for easing the parsing burden of the Shipping stage:

 
 

Listing 2.4 metrics.py: multivalued counter function

Builds 
metrics hash Converts Python 

dict to JSON string

Emits
the

JSON
string
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 Remember that software engineers likely need to read their emissions locally in
their development environment. The human eye parses telemetry quite differ-
ently from the algorithms in the Shipping stage, so consider emitting telemetry
in a human-readable format in development environments and a machine-
readable format everywhere else.

 Use object-encoding formats (JSON, YAML, XML) to encode complex objects.
If you find yourself using these formats for simple key-value pairs, know that
you’re sacrificing readability for speed.

 Delimited formats are more flexible than you might think.

The following lines are different ways to share the same telemetry in different delim-
ited formats. First is the comma-separated-values (CSV) list,

"2026-02-26T17:52:01.002+0:00","pdf_pages exited with a fatal exception",

➥ "ip-172-16-0-12"

with three fields, and the parser needs to understand what position each field
describes. This technique is fast. Next up is a series of key-value pairs:

timestamp="2026-02-26T17:52:01.002+0:00" message="pdf_pages exited with a 

➥ fatal exception" host="ip-172-16-0-12"

The key-value format encodes the field names as part of the string, so the parser
doesn’t have to know what fields to expect. This format is more flexible than CSV, if
longer as a result; it’s slightly slower than CSV but still blazingly fast.

 This next format is a bit different in that it is a combination of formats:

[timestamp="2026-02-26T17:52:01.002+0:00" host="ip-172-16-0-12"] [pdf_pages 

➥ exited with a fatal exception]

A format like this one is expected to be parsed in more than one pass. The first posi-
tion is always host details and context (context-related details; see chapter 6). The sec-
ond position is the message. Then the first position is further reparsed as key-value to
get those fields. Parsing efficiency is more of a Shipping-stage problem (see section
4.2 for details), but the Emitting stage is where the problem starts being solved. 

Exercise 2.1
You’re developing a program by using Docker. When you review telemetry as you
develop, you’re using the docker logs command to see what has been emitted. What
style of telemetry emission is this?

a Emitting into a log file
b Emitting into the system log
c Emitting into standard output
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2.2 Emitting from hardware
For this section, we change what kind of organization we’re working with. Here, the
organization is a global logistics company founded in 1848, and unlike the 100-person
startup, this company has been using computers since the 1960s. If this global logistics
company has one thing that the startup doesn’t have, it’s extensive hardware in its
data centers. Whereas with software you write, anything goes with regard to telemetry,
for hardware systems, you’re stuck with whatever the hardware system speaks.

 Hardware systems emit telemetry for the same reason that software systems do:
humans want feedback about what’s happening. This situation is especially true for
hardware, because hardware is true black boxes (or beige, charcoal, or pretty teal),
and the only clues we have regarding what’s going on in there are vendor documenta-
tion and whatever telemetry the hardware can spit out. For physical infrastructures of
any size, getting this telemetry into a single place is a major convenience for that infra-
structure’s operators. Overwhelmingly, hardware makers choose a standards-based
emission method, mostly Syslog, but systems based on Simple Network Management
Protocol (SNMP) are often used in networking equipment.

2.2.1 Explaining SNMP

SNMP is neither simple nor solely for network management. SNMP is simple in the
sense that there isn’t much to configure, leaving all the complexity of the protocol in
how it is used. The use of SNMP was widespread once, but these days, you rarely
encounter it outside legacy infrastructures and networking systems. I discuss it in this
section because you need to know about it in case your telemetry maintenance duties
bring you into contact with SNMP.

 Like Syslog, SNMP is a UDP-based protocol. SNMP has two modes of operation,
shown in figure 2.8:

 A polling mode, in which a network management station polls SNMP-enabled
devices and either requests information or sets configuration. Polling mode is
used for distributing configuration and gathering metrics telemetry (often
described as monitoring in network management circles). Similarly to the GET
and PUT verbs used for HTTP, SNMP uses GET and SET.

 A trap mode, in which SNMP-enabled devices notify a network management sta-
tion of significant events—a form of centralized logging and SIEM telemetry. 

Exercise 2.2
Match the three structured logging components from column A with their role in the
structured logger in column B.

Column A: Column B:

Logger Delivers telemetry to the Shipping stage

Formatter Entry point into the structured logger

Writer Rewrites telemetry to fit the Shipping stage
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In the modern era, SNMP is used almost solely by networking infrastructures, though
you may still encounter non-networking use in old, long-established infrastructures
like the global logistics company we’re talking about in this section. Historically, oper-
ating systems such as Windows, NetWare, and Linux had SNMP services that allowed
management stations to poll for system state as part of a monitoring system. Old and
established systems sometimes decide to keep a perfectly functional metrics system in
place and upgrade their SNMP based metrics systems to keep working, but few new
companies elect to do so. This OS monitoring use has largely migrated to agents dedi-
cated to specific platforms, such as the CollectD system of monitors and WMI for Win-
dows. Networking systems in specific, however, maintain SNMP capabilities. Version 3
of the protocol introduced cryptographic communication and much-improved
authentication capabilities. 

Management
station

SET X 
to N

Configuration flow

GET X X is Y

Metrics flow

Network
device

X happened

Logging flow

Network
device

Network
device

Management
station

Management
station

Figure 2.8 The three SNMP styles of operation; configuration, metrics, and 
logging. Configuration uses the SET verb to push configuration. Metrics uses 
the GET (and GETNEXT, not pictured) verb to fetch metrics data. Logging uses 
SNMP traps issued by devices to capture events.

My first telemetry script
In 1998, I was two years into my postcollege career and was a member of a group of
system administrators in charge of a set of Novell NetWare servers. The organization
we belonged to also had Windows NT and Solaris, but management of WinNT and
Solaris wasn’t our job (yet), so it didn’t matter to us.

One day, I noticed that all discussions about disk provisioning were gut checks and
thought it would be nice to have charts of this stuff. So I embarked on my longest
programming challenge after graduating with a CompSci degree and wrote a disk-
space poller in Perl. This script used the SNMP agent running on NetWare to extract
out the total space and free space, and it computed space metrics for each of our
network volumes. It polled twice a day, morning and evening, and not on weekends.
It used an Oracle database to store data because the Oracle database administrator
had the cube across from mine, and a tablespace that got 28 rows inserted a day
was met with the reaction “Let the new kid have their toy.”
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2.2.2 Ingesting telemetry from a Cisco ASA firewall

Now that I’ve explained SNMP, I’ll go back to the old global logistics company. This
company has been operating data centers for decades and has a large installed base of
networking hardware to support those data centers. It is adding a new set of Cisco ASA
firewalls to its infrastructure, and the security teams want the events that these fire-
walls generate. The network operations team already has the events thanks to SNMP,
but the events are in a proprietary system that the team doesn’t want to share.

 To solve this problem, the network operations team decides to enable the Cisco
ASA’s Syslog output. Figure 2.9 demonstrates the process.

It took a while before the database had enough data to be impressive, but when the
Excel charts produced trendlines with the number of days until we intercepted the
zero-free-space mark, the power of metrics was proved. Data from that script drove
many resourcing decisions at that job.

I took the script with me to my next job, which was jointly managing NetWare and Win-
dows 2000 systems. I added Windows support (it also had an SNMP OID to poll for
space) and converted to MS-SQL for a backend. That approach was fine until the day
our largest volume was extended to 2.3 TB, and I found out that the NetWare SNMP
agent had returned a negative number for the space details. A 32-bit signed integer
had overflowed. I dutifully updated the script to convert the number to an unsigned int.

I never found out what happened when the volume crossed 4 TB; we got rid of Net-
Ware and moved all of our file serving to Windows 2008 before then. But I did find
out that the Windows SNMP agent also returned a signed int for disk space details.
This discovery drove me to rewrite the script from Perl using SNMP to PowerShell and
WMI, which was properly 64-bit. That script is the longest-running piece of telemetry
infrastructure I’ve written.

Cisco
firewalls

Management
station

SNMP

Cisco
firewalls

Management
station

Syslog
serverSyslog

ASA1(config)# logging enable
ASA1(config)# logging host dmz1 192.0.2.2 udp/514
ASA1(config)# logging trap warnings

SNMP

Figure 2.9 Configuring a Cisco ASA 
to emit logging using Syslog to a 
specific server. Dotted directional 
lines are UDP SNMP traffic; solid 
directional lines are UDP Syslog 
traffic. The top is the before state; 
the middle is the commands used to 
enable the after state (bottom). Dual 
emission allows multiple teams to 
receive event flow from the Cisco 
ASA firewalls.
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There are three commands we need to issue on the Cisco ASA to enable the Syslog
output, and send telemetry to our Syslog server:

ASA1(config)# logging enable
ASA1(config)# logging host dmz1 192.0.2.2 udp/514
ASA1(config)# logging trap warnings

First, we enable logging. Next, we configure where the Syslog server is—in this case,
the IP address 192.0.2.2, reachable by using the dmz1 interface. Finally, we configure
the ASA to send warnings and higher-level events to the Syslog server. (For more on
the log levels available in Syslog, see table 1.1.) When it’s set this way, the firewall for-
wards events to a central Syslog host, similar to the metrics script in listing 2.2. After
we enable forwarding, events flow into the Syslog host, are formatted following the
Syslog standards, and look similar to this record of a DNS request:

Feb 19 02:26:26 asa1.net.prod.internal %ASA1: Teardown of UDP connection
162121 for outside:1.1.0.0/53 to dmz1:192.0.2.19/59232 duration 0:00:00
bytes 136

The management framework for this hardware platform also shows these events,
because they are still being sent through SNMP to the management station, but for-
warding them to a central system allows more teams than network operations team to
access the event stream. Such a split also enables data enrichment possibilities beyond
what the management system offers natively. Chapters 5 and 6 cover data enrichment
generally.

 The technique demonstrated in figure 2.9—using device configuration to emit to
a Syslog server—is common to most hardware systems. This example uses Cisco ASA,
but many other hardware systems allow such configuration. The following list is not
exhaustive, merely suggestive of how widespread the emit-to-Syslog feature is:

 Cisco hardware generally
 Hewlett Packard Enterprise ProCurve network hardware
 Dell servers with iDRAC Enterprise
 HP servers with iLO
 Supermicro servers with licensed OOB/IPMI
 Hitachi storage systems running Vantara
 APC Metered Power Distribution Units (also supports SNMP)

As figure 2.9 demonstrated, for hardware systems, the procedure is simple:

1 Enable the Syslog output.
2 Configure the Syslog server to send output to (generally, an IP address or DNS

name plus a port number).
3 Configure the types of events that need to be sent through Syslog.
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2.3 Emitting from as-a-Service systems
For this section, we are focusing on the 200-person continuing education company to
describe how telemetry works when using SaaS and IaaS systems. Unlike the compa-
nies in the previous two examples, the startup company and the long established logis-
tics company, this company develops as little software as possible and delegates as
much of the burden of operating software to outside companies, which allows the
company to focus on what it does best. SaaS and IaaS platforms allow this company to
focus on the business of teaching rather than the business of writing software. This
section covers two cases:

 Emitting events from a SaaS system
 Emitting events from an IaaS system

2.3.1 Emitting events from SaaS systems

Our continuing education company uses a variety of SaaS products in its business.
Because of the highly seasonal nature of their business, the company does extensive
recruiting of instructors for their courses in the many metro areas where it does busi-
ness. It uses an applicant-tracking SaaS provider to manage the life cycle of a potential
instructor’s application. Because of the number of people moving through the appli-
cant system, our company wants to get a feed of events from the applicant-tracking sys-
tem to another SaaS provider that it’s using for centralizing events. This SaaS provider
for telemetry is similar to SumoLogic, Splunk, and SolarWinds Loggly. For SaaS sys-
tems, these products allow access to a telemetry feed in two main ways:

 Offering an API endpoint that, when accessed with the HTTP GET verb, returns
a list of events, requiring you to build a system to poll that endpoint regularly.
This method is asynchronous.

 Offering an interface that calls a configured URL to be hit every time an event
needs to be emitted, requiring you to accept HTTP POST requests. This method
is called a webhook and is synchronous.

As with the hardware systems in section 2.2, you are not in control of the format of the
emissions coming from the SaaS system. Handling those emissions is a problem for
the Shipping stage, which we’ll get to in chapters 3, 4, and 6. But this company has
delegated that problem to the telemetry SaaS provider, so it doesn’t have to worry.
The SaaS telemetry provider offers an HTTP endpoint for cases like this one, in which

Exercise 2.3
Both SNMP and Syslog emit over what network protocol?

a TCP
b UDP
c A mix of TCP and UDP
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the client needs to receive webhook telemetry from any number of sources. Their
webhook endpoint looks like this:

https://api.example.com/v3/submit-logs

When attempting to POST data to this URL, the sender (in this case, the applicant-
tracking system) needs to authenticate itself so that the SaaS telemetry provider knows
which of its many accounts to send the telemetry to. There are several valid ways of
providing this authentication:

 Add a URL parameter such as ?token=secretText to the URL when POSTing.
 Use HTTP Basic authentication with the POST request, such as https://

acccount:secretPW@api.example.com/v3/submit-logs.
 Use an HTTP Header with the POST request, with the header containing the sig-

nature and a secret key. This method requires both sides of the connection to
support the header. In the case of our continuing education company, the
telemetry SaaS provider would need to support the applicant-tracking SaaS pro-
vider’s telemetry.

As it happens, the telemetry SaaS provider does not have prebuilt integration for the
applicant-tracking provider, so it has to use one of the other authentication methods.
Now that we know this, we know that the URL that will receive the webhook will be

https://api.example.com/v3/submit-logs?token=atvhwpqxncrutndjfbtdf

Next, we configure the applicant-tracking system to send the webhook. For that pur-
pose, look at the configuration page in figure 2.10.

Create A New Web Hook
JSON data containing relevant information will be sent via POST
to the entered endpoint URL. The Secret Key will be included in
an HTTP header. See our web hook documentation for further
information.   

Name this webhook:

When the webhook will fire

Export to
Endpoint URL

Secret key

Export app-state changes

Application State Updates

https://api.example.com/v3/submit-logs?token=atv..

Name to distinguish
webhook from any
others 

Select the events that
will be sent over
webhook

The URL to submit
webhook POST
requests to

If this webhook is
being sent to a
supported endpoint,
the secret key for it

Figure 2.10 The outbound webhook 
configuration page for the applicant-
tracking SaaS provider used by our 
continuing education company. 
Because the system receiving the 
webhook does not have an explicit 
integration with this SaaS provider, 
the secret key is left blank; instead, 
a URL parameter is used to provide 
authentication.
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Because the format is decided by the SaaS provider, configuration is almost as simple
as configuring a Cisco ASA firewall to send telemetry to another system. You need the
name of the webhook so that you can tell it apart from others, the URL to POST to, and
what kind of telemetry to send. That’s it.

 At this point, the telemetry SaaS vendor will start receiving a steady flow of events
from the applicant-tracking SaaS provider. When the events show up in the telemetry
provider, the Emitting stage’s work is done.

2.3.2 Emitting events from IaaS systems

Our 200-person continuing education company couldn’t avoid running some servers,
so it elected to run the few it needs in AWS, an IaaS provider that operates a little dif-
ferently from SaaS providers like the applicant-tracking system when it comes to
telemetry. Rather than offering webhooks and API endpoints, IaaS providers such as
Microsoft Azure and Digital Ocean often have unique ways to expose their telemetry
streams, because their users have the technical skill needed to accommodate each
IaaS provider’s distinctiveness.

 Our company needs to pull the audit log for its
AWS account into its telemetry SaaS provider so
that the events can be easily searched. The perti-
nent feature in AWS is CloudTrail, which allows files
with audit information to be sent to an object stor-
age system known as an S3 bucket. Figure 2.11
shows the AWS architecture.

 To tell AWS to send audit logs to a bucket, our
company needs to complete two steps in the AWS
command-line interface, as shown in listing 2.5:

1 Create the S3 bucket.
2 Configure CloudTrail.

aws s3api create-bucket --bucket ********* \
  --create-bucket-configuration \
  LocationConstraint=eu-central-1    

aws cloudtrail create-trail --name whole-audit-log \    
  --s3-bucket-name ********* \    
  --include-global-service-events \                    
  --is-multi-region-trail                               

This is good; the audit logs are being generated. The audit logs are not yet somewhere
useful, however, because the telemetry SaaS provider can’t fetch them. More import-
ant, the telemetry SaaS provider doesn’t know that the logs need to be fetched.

Listing 2.5 Configuring CloudTrail to emit into an S3 bucket

Creates a bucket, name-obscured, 
in the eu-central-1 region

Creates the CloudTrail 
configuration to store all 
events from everywhere

AWS
CloudTrail

S3
bucket

Figure 2.11 CloudTrail configured 
to send all audit logs to a specific 
S3 bucket. Fetching the audit logs 
from the bucket for ingestion by a 
Shipping-stage component is left 
for another day.
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 Fortunately for this company, AWS provides a way to configure notices to be sent
through a service called Simple Notification Service (SNS). The telemetry SaaS pro-
vider has explicit support for AWS CloudTrail, so the desired architecture looks like
figure 2.12. The company modifies its CloudTrail configuration to send notices of new
audit logs to an SNS topic (listing 2.6). 

aws sns create-topic --name eu-audit-logs \    
  --region eu-central-1

aws cloudtrail update-trail --name whole-audit-log \    
  --sns-topic-name eu-audit-logs                    

Now that audit logs are being generated and notices are being published, the last step
is subscribing the Shipping-stage systems to the SNS topic, which can be done with a
single command:

aws sns subscribe --topic-arn arn:aws:sns::*****:eu-audit-logs \
   --protocol https \
   --notification-endpoint \
   https://api.example.com/v3/cloud-trail-data?token=*****

The telemetry SaaS provider automates the subscription confirmation process. Then
CloudTrail telemetry flows into the telemetry SaaS provider! Figure 2.13 shows the
final architecture of how CloudTrail data flows. AWS CloudWatch logs are now visible
inside the telemetry SaaS provider’s dashboards.

Listing 2.6 Configuring CloudTrail to notify an SNS topic of new telemetry

AWS
CloudTrail

S3
bucket

 SNS

Audit logs enter bucket

Notice of new audit logs

Figure 2.12 AWS CloudTrail configured to emit audit logs 
to an S3 bucket and emit notices of new audit logs to an SNS 
topic. When the SNS topic is defined and sending notices of 
new audit logs, you can configure a shipping system to 
subscribe to the topic so that it knows to fetch new audit 
logs from the S3 bucket.

Creates an SNS topic

Modifies CloudTrail to 
use the SNS service

AWS
CloudTrail

S3
bucket

 SNS

1. Audit logs enter bucket.

2. Notice of new audit logs

Telemetry
SaaS

provider

3. Receives notice

4. Fetches new logs

Figure 2.13 The order of audit-log flow for ingesting AWS CloudWatch audit logs into a telemetry SaaS 
provider. Logs first publish to an S3 bucket; then notice is posted to an SNS topic. The telemetry SaaS 
provider subscribes to the topic and gets that notice, triggering its retrieval of the new audit log. When 
this process is complete, the CloudWatch logs will be visible in the SaaS provider’s dashboards.
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Summary
 Programming languages often provide sophisticated methods for sending

telemetry to the system log, files, or other endpoints. This function is called a
Logger and may be an extension rather than built in.

 Logging methods may be extended for other purposes, such as creating a
metrics system for tracking and aggregating numbers-based telemetry.

 Logging methods may include the ability to emit to a wide variety of targets,
such as files, Syslog, Windows Event Log, queues, streams, and SaaS providers.

 Telemetry emissions from logging functions can be plain-language statements;
delimited emissions such as CSV, XML, and key-value pairs; and object-encoding
emissions such as JSON, YAML, and XML.

 When you’re building an Emitting stage from code, consider the developer use
case. A single engineer will be viewing logs directly, whereas in production, the
logs will be machine-parsed. Using different formats for development and pro-
duction will make everyone happier.

 Networking hardware largely supports SNMP, often with proprietary vendor-
specific management frameworks that make integration with a larger telemetry
pipeline more difficult.

 Most hardware systems support emitting to Syslog because Syslog is a format
defined by RFCs and therefore is unlikely to change fast. For organizations that
want to build a telemetry pipeline that integrates hardware and software, sup-
porting Syslog is highly recommended.

 SaaS systems do not support Syslog; instead, they rely on HTTP methods for
telemetry handling.

 SaaS systems may provide API endpoints to poll for their telemetry or webhook
systems to send telemetry to a shipper.

 IaaS systems are often subject to compliance and regulatory frameworks, so they
have detailed telemetry emissions.

 IaaS systems have notification methods to ease the work of Shipping stages in
ingesting emissions from the IaaS provider.
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The Shipping stage:
 Moving and

 storing telemetry

The Shipping stage in a telemetry pipeline is the second stage of the pipeline, as
shown in figure 3.1. The Shipping stage receives telemetry from the Emitting stage,
optionally marks up and enriches it (see chapter 6), and stores it for use in the Pre-
sentation stage. When the Emitting stage is entirely within your production code,
the Shipping stage can be combined directly with the Emitting stage to make an
emitter/shipper, or the Shipping stage might be a whole multisystem infrastructure
handling the telemetry needs of your incredibly diverse production system. Both
approaches are valid, and hybrid approaches are equally so.

This chapter covers
 The role of the shipping stage in a telemetry 

pipeline

 The emitter/shipper function in production code

 Ways of moving telemetry through the Shipping 
stage



53

The Shipping stage must perform two major roles:

 Move telemetry between components of the Shipping stage and ultimately into
storage (chapters 3 and 4)

 Transform telemetry through both markup and enrichment to add context
(markup) and bring out details (enrichment) (chapter 6)

The markup and enrichment role also happens during all three stages of the teleme-
try pipeline, which is why I cover it after discussing the Presentation stage in chapter 5.
Moving and storing telemetry is a big job, because your Shipping stage needs to han-
dle whatever formats the Emitting stages in your telemetry system emit as. Emitting
stages, especially hardware systems, are often inconveniently opinionated in the for-
mats they emit.

 The Shipping stage is a big topic, which is why I’m covering the Shipping stage
across two chapters:

 Chapter 3 covers moving telemetry around, including new techniques for emit-
ting telemetry (the emitter/shipper functions promised in chapter 2) and a dis-
cussion of tipping points that push for Shipping-stage changes.

 Chapter 4 covers formats: emitting formats, transforming formats to meet
standards, figuring out your standard formats, and getting telemetry ready for
storage.

Figure 3.1 Telemetry pipeline stages, with the Shipping stage second. The Shipping stage receives 
telemetry prepared by the Emitting stage and then processes and transforms it for storage. The 
Shipping stage is the only stage that performs both markup and enrichment (chapter 6).

Telemetry pipeline stages

Processes, transforms,
and ultimately stores 
telemetry for use in the
Presentation stage  

Presents telemetry to
people to support 
decision-making,
drawing on Shipping-
stage storage   

Presentation stage

Shipping stage

Emitting stage

Telemetry 
markup

Telemetry 
enrichment

Accepts telemetry from
production systems
and prepares it for use 
inside the telemetry
pipeline  

Adding context-related 
details to telemetry to
improve understanding
of what telemetry is 
telling you  

Transforming telemetry
to bring out details 
embedded within it,
such as deserializing 
JSON or parsing 
strings  
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Chapter 6 goes into more depth about enriching and transforming telemetry, which
often happens in the Shipping stage but doesn’t have to. To help with explaining
Shipping-stage architectures, I will use the example organizations from chapter 2 again:

 A 100-person startup building an API-driven application, running in AWS. This
example demonstrates shipping in fully cloud environments where the teleme-
try emitting format is entirely controlled by the organization.

 A global logistics company founded in 1848 that computerized its business pro-
cesses in the late 1960s. This example demonstrates Shipping stages in physical
data centers where the emitting format is variable and in some cases inflexible.

 A 200-person company providing in-person continuing education courses, with
strong seasonality in its hiring. This example demonstrates shipping between
SaaS applications.

3.1 Emitter/shipper functions, telemetry from production code
Section 2.1 covered emitting telemetry directly from production code to somewhere on
the same system as the production code. This section covers emitting and shipping telem-
etry to somewhere off the system, such as into a queue. You have a trade-off to make when
deciding whether to emit to a file and have something else move telemetry off the system
(section 4.1) or to have your production code do the moving (this section):

 By emitting to a file or the system log (section 2.1), a dedicated shipper pro-
gram can handle the complexity of moving telemetry so your production sys-
tems don’t have to, and will be simpler for your production systems. Also,
emitting telemetry to somewhere off the system won’t block production code-
paths if the queue or stream is temporarily down.

 By emitting directly from production code to somewhere off the system, your
telemetry spends the least amount of time on the production system possible.
Also, you don’t need to configure an additional shipper to move telemetry, so
your overall telemetry system is simpler.

Section 3.1.1 covers shipping directly into storage from your production code. The
same techniques can be used later in the shipping pipeline to move telemetry into stor-
age. Section 3.1.2 covers shipping into queues and streams from your production code.

3.1.1 Shipping directly into storage
This section covers the simplest Shipping stage, in which your Emitting-stage emitter
sends telemetry directly into storage. Section 2.1.1 described the simplest possible way
to do this: sending your telemetry to a file. Sending to a file is centralized logging only
if your production code is running in only one place. (When you’re writing software,
writing to a file may be all you need during development.) This chapter is about ship-
ping your telemetry off the system, so we will be looking at sending telemetry to a
database of some kind.

 Our 100-person startup is facing a problem. The company has grown enough that
keeping logs inside the Kubernetes cluster isn’t scaling, so it wants to send its logs to
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an Elasticsearch cluster maintained by their cloud provider instead. Figure 3.2 illus-
trates the desired architecture.

To get to the desired architecture, we need to rewrite the metrics function to send to
Elasticsearch. Figure 3.3 shows how the metric data will be transformed and written
to Elasticsearch.

The rewritten metrics.py function is simpler than the versions in chapter 2. This sim-
plicity is in large part due to the fact that we are not using the structured logging
library for Python; instead, we are embracing the Formatter/Writer aspects directly.
Listing 3.1 shows the rewritten method.

NOTE This listing requires the Python 3 elasticsearch module to run.
Install it with pip3 install elasticsearch. 

Docker
prod-code

Docker
prod-code

Docker
prod-code

Docker
prod-code

Docker
prod-code

Docker
prod-code
containerd
prod-code

Docker
prod-code

Docker
prod-code

Docker
prod-code
containerd
prod-code

Docker
prod-code

Docker
prod-code

Docker
prod-code
containerd
prod-code

Kubernetes

Elasticsearch
provider-managed

Telemetry flow

containerd
prod-code

Figure 3.2 The desired flow of telemetry from the startup’s container-based 
production code to a cloud-provider-managed Elasticsearch. Emitter functions in 
the production code will be rewritten to send telemetry directly to Elasticsearch, 
so telemetry is no longer taking up space in the Kubernetes cluster.

metrics.counter("pdf_pages", 19)

metric = {
   "metric_name":  "pdf_pages",
   "metric_value": 19,
   "metric_type":  "counter"
}

esclient.index(
   index="metrics",
   body=metric
)

HTTP PUT
http://escluster.prod.internal:9200/metrics/_doc
{ "metric_name": "pdf_pages",
  "metric_value": 19,
  "metric_type": "counter" }

Elasticsearch
provider-managed

Method entry point

Reformat metric structure Metric enters writer

HTTP PUT to Elasticsearch

Figure 3.3 metrics.py rewritten to insert into an Elasticsearch cluster. The function is called the 
same way as the functions in chapter 2. Next, the function creates a hash with the supplied 
values and passes it to the esclient object to index it into the cluster. Then the index method 
makes an HTTP PUT on an Elasticsearch specific indexing URL, passing the hash as data.
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from elasticsearch import Elasticsearch

esclient = Elasticsearch (                                
  hosts=[    
    {"host": "escluster.prod.internal", "port" : 9200}     
  ],                                                      
  sniff_on_start=False,                                 
  sniffer_timeout=60                                       
  )                                                       

def counter(msg, count=1):   
  """Emits a metric intended to be counted or summarized.

  Example: counter("pages", "15")
  """
  metric = {    
     "metric_name": msg,
     "metric_value": count,
     "metric_type": "counter"
  }
  esclient.index(    
    index="metrics",
    body=metric
  )

def timer(msg, time=0.0):    
  """Emits a metric for tracking run-times.

  Example: timer("convert_worker_runtime", "2.7")
  """
  metric = {    
    "metric_name": msg,
    "metric_value": time,
    "metric_type": "timer"
  }
  esclient.index(     
    index="metrics",
    body=metric
  )

The function in listing 3.1 is much shorter than the ones in listing 2.1 but is called the
same way in code:

 metrics.counter("profile_image_uploaded") to increment the count of
uploaded profile images by 1

 metrics.counter("pdf_pages", 19) to indicate that the number of pdf_pages
encountered was 19

 metrics.timer("profile_image_convert_time", 0.9) to indicate that con-
verting the uploaded profile image to an appropriate image dimension took 0.9
seconds

Listing 3.1 metrics.py: Emitting into Elasticsearch

Defines a client class 
for Elasticsearch

Defines a counter class

Builds a hash with the metric document 
we will insert for the counter

Inserts the metric hash 
into the ‘metrics’ index

Defines a timer class

Builds a hash with the metric 
document we will insert for the timer

Inserts the metric hash 
into the ‘metrics’ index
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Instead of emitting lines into a file or lines into Syslog, this code injects JSON-formatted
documents into an Elasticsearch index. Elasticsearch, which is the storage for this par-
ticular Shipping stage, indexes the document for searchability. A Presentation-stage sys-
tem using Elasticsearch as storage could retrieve this telemetry through a search like

metric_name:"pdf_pages"

which will return all the metrics telemetry with that value in metric_name. When com-
bined with a date-range search—the timestamp on our JSON documents is created
automatically by Elasticsearch when they are indexed—the searcher can narrow to a
small window of time. The presentation system will handle converting and aggregat-
ing the metric_value field. (See section 5.1 for more about aggregating metrics.)
Elasticsearch is used in this example, but you can use many databases for metrics.
Here are a few:

 Prometheus—A dedicated time-series database that is open source and a compo-
nent of the Cloud Native Computing Foundation stack

 InfluxDB—Another dedicated time-series database and open-core (open source
for basic features, pay for extended features such as clustering)

 KairosDB—A dedicated time-series database built on top of Cassandra
 Any relational database—Such as MySQL, Postrgres, and MS-SQL

Although the example here uses metrics, the same direct-insert method is useful for
centralized logging as well.

3.1.2 Shipping through queues and streams

Not all emitter/shipper functions ship directly to storage; often, telemetry data needs
more transformation before it is ultimately stored. Also, having the vast majority of
your production systems writing to a database individually can be woefully inefficient
(not to mention hard on the database). This section is about centralizing the flow of
telemetry to allow downstream Shipping-stage components to bulk-insert into your
storage systems. The most popular ways to accomplish this task are to use queues and
a related technology called streams (also known as event buses):

 A queue is a basic structure. Data is pushed onto the bottom of the queue, and
data at the top is serviced by the next system requesting data. The flow is first in,
first out (FIFO).

 A stream adds the concept of a consumer group—systems that act together and see
the same FIFO behavior. Different consumer groups see the same data, but the
FIFO behavior is kept inside each consumer group. To accomplish this task, the
stream system needs to keep each item of data in a stream until all consumer
groups have seen it. This system is quite powerful, and we’ll get into more on this
topic later in this section (with more concepts in chapter 7 on multitenancy).
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In the previous section, our 100-person startup had a Kubernetes cluster and wanted
its production code to send telemetry directly into Elasticsearch. But what if the exam-
ple startup had not a single Kubernetes cluster, but 100 of them? It isn’t hard to imag-
ine that Elasticsearch would be dealing with 10,000 containerd instances, each
submitting telemetry. Figure 3.4 provides two views of this problem, one with all
10,000 containerd instances writing to Elasticsearch and a second with those instances
instead writing to a queue or stream.

Although it is entirely possible to engineer Elasticsearch to accept 10,000 small writes
a second, Elasticsearch requires fewer resources (and has an easier time with consis-
tency) when dealing with fewer, larger writes. Most databases generally behave this
way, in fact. By extending our telemetry pipeline to add more stages, we take load off
of the database.

USING QUEUES IN A SHIPPING PIPELINE

To start talking about how to use queues, this section provides an example of using a
queue to take load off a storage system. Let’s focus on modifying the emitter demon-
strated in listing 3.1 to emit to a Redis list instead of an Elasticsearch database. We will
examine the bulk writers later. Redis is an in-memory data-structure store that allows
storing lists, hashes, sets, and other types of data. For our purposes, we will be using a
list, because a list can be made to function like a queue. Our data transformation flow
from figure 3.3 is revised into what you see in figure 3.5.
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Figure 3.4 Two views of the 100 Kubernetes/10,000 containerd instances problem. To the right, 
all 10,000 containerd instances are writing directly to Elasticsearch. Below, the instances write to 
a queue or stream. A group of bulk writer systems service the queue or stream and bulk-insert into 
Elasticsearch. Write transactions are reduced by 95% compared with the direct-insert model.
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We follow the same number of steps but instead are writing to a new destination. List-
ing 3.2 provides a view of the changes to our metrics.py method.

NOTE This listing needs the redis module installed. Install it with pip3
install redis.

import redis
import json

redis_client = redis.Redis(        
  host='log-queue.prod.internal'  
)                                  

def counter(msg, count=1):    
  """Emits a metric intended to be counted or summarized.

  Example: counter("pages", "15")
  """
  metric = {
    "metric_name" : msg,
    "metric_value" : count
  }
  redis_client.rpush('metrics_counters',
   ➥ json.dump(metric))   

def timer(msg, time=0.0):    
  """Emits a metric for tracking run-times.

  Example: timer("convert_worker_runtime", "2.7")
  """
  metric = {
    "metric_name": msg,
    "metric_value": time,
  }
  redis_client.rpush('metrics_timers',
   ➥ json.dump(metric))   

Listing 3.2 metrics.py: Emitting to a Redis queue/list

metrics.counter("pdf_pages", 19)

metric = {
   "metric_name":  "pdf_pages",
   "metric_value": 19,
}

redis_client.rpush('metrics_counters',
    json.dump(metric))

TCP log-queue.prod.internal:3128
RPUSH metrics_counters 
"{\"metric_name\": \"pdf_pages"\,
  \"metric_value\": 19 }"

Redis
server

Method entry point

Reformat metric structure

Write to Redis list

Figure 3.5 The metrics logger revised to send to a Redis list instead. Flow through the logger 
program is similar to figure 3.3, with fewer details encoded in the hash. The rpush method 
is called on the redis_client to submit the telemetry. The Redis RPUSH command is 
called, inserting our telemetry into the end of the list named metrics_counters.

Creates an interface to a Redis 
server on log-queue.prod.internal

The counter class, same 
as in previous examples

Pushes the generated hash into 
the list named metrics_counters

The timer class, same as 
in previous examples

Pushes the generated hash into 
the list named metrics_timers
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The revised metrics logger in listing 3.2 is called the same way as in previous examples.
The change is how telemetry is moved into the Shipping stage. When metrics.timer
or metrics.counter is called, this function generates a structured hash. Then this
hash is injected into Redis by the RPUSH command, which adds the hash to the bottom
of a list structure in Redis and makes the list work like a queue.

 Our bulk writer systems would use the BLPOP (Blocking List POP) command to fetch
the first element of the named list while blocking to ensure that no other system would
fetch the same values. Then it would inject this hash into the storage system of the
Shipping stage for display by the Presentation stage. Making sure that telemetry doesn’t
linger in the pipeline too long is a concern, however, so the bulk-writer-counter.py
program needs to flush writes early in certain cases. Figure 3.6 shows the flow.

counter_raw = 
redis_client.blpop('metrics_counters', 
wait_limit)

if counter_raw == None do_insert = True
Yes

counter     = json.loads(counter_raw)
counter['metric_type'] = 'counter'
bulk_header = { 'index' : {
    '_index': 'metrics' } }
bulk_item = [
    json.dump(bulk_header),
    json.dump(counter)
    ]
current_items.append("\n".join(bulk_item))

No

len(current_items) >= bulk_size do_insert = True
Yes

No

(time.time() - last_time) >= wait_limit do_insert = True
Yes

do_insert == True
esclient.bulk( current_items, 
index='metrics' )

do_insert = True

Yes

Elasticsearch

If Redis returned a nil, we hit
the wait_limit. Therefore,
insert what we have so far.

If we have enough objects,
insert what we have. 

If it has been too long,
insert what we have so far. 

If we get data, format that
data for bulk-insert. 

No

No

Figure 3.6 Execution flow during bulk-writer-counters.py. This example makes sure that inserts 
into Elasticsearch have enough items to be worthwhile except when too much time has elapsed 
since an insert.
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One possible version of the bulk writer script is shown in listing 3.3.

NOTE This listing needs both the elasticsearch and redis Python 3 mod-
ules installed.

import json
import redis
import time
from elasticsearch import Elasticsearch

redis_client = redis.Redis(host='log-queue.prod.internal' )
esclient = Elasticsearch (
  hosts=[{"host": "escluster.prod.internal", "port" : 9200}],
  sniff_on_start=False,
  sniffer_timeout=60
  )
wait_limit = 5   

bulk_size  = 200   

last_time     = time.time()     
current_size  = 0    
current_items = []               
do_insert     = False           

while True:
     counter_raw = redis_client.blpop(

➥ 'metrics_counters', wait_limit)    
  if counter_raw == None:     
    do_insert = True         
  else:
    counter     = json.loads(counter_raw)    
    counter['metric_type'] = 'counter'   
    bulk_header = { 'index' : {     
      '_index': 'metrics' } }    
    bulk_item = [                   
      json.dump(bulk_header),      
      json.dump(counter)           
      ]                            
    current_items.append("\n".join(bulk_item))   
    if len(current_items) >= bulk_size:                   
      do_insert = True                                   
    elif (time.time() - last_time) >= wait_limit:       
      do_insert = True                                   

  if do_insert:
    esclient.bulk( current_items, index='metrics' )    
    last_time = time.time()
    do_insert = False
       current_items = []

Listing 3.3 bulk-writer-counters.py: Watching Redis and shipping to Elasticsearch

Sets the maximum time in 
seconds we will wait to insert

Sets the maximum number 
of items we will insert

Sets defaults for the 
loop before we enter it

Fetches a value from the named 
list, waiting up to wait_limit

If the timeout expired, forces an insert; 
otherwise, processes the value

Decodes
the JSON

into a
native

hash

Updates the hash to add the metric_type field

Formats a hash for 
Elasticsearch bulk insert

Newline delimits the 
bulk_items array as 
it is appended.

Checks whether we’re 
ready to insert

Performs the bulk 
insert to Elasticsearch
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The bulk-writer-counters.py script would need small tweaks to turn it into a bulk-writer-
timers.py script supporting timers; change the name of the Redis list to metrics_timers
and adjust the value of metric_value to timers. When the script is written this way, we
ensure that up to 200 metrics are inserted into Elasticsearch each time we insert. But we
are also using timeouts to make sure that our metrics data is recent enough, so we can
insert fewer than 200 metrics if we’ve waited too long to insert. Whereas we were indi-
vidually writing 10,000 metrics per second, now we are writing 10,000 per second in 500
batches. The end-to-end flow is shown in figure 3.7.

Figure 3.7 describes how this script would sit in a shipping pipeline for metrics. The
flow of telemetry would be as follows:

1 The program calls counter('pdf_pages', 19).
2 The metrics function injects a JSON document into the metrics_counters list

in the Redis server, using the RPUSH command.
3 The bulk-writer-counters.py script issues a BLPOP command for the metrics_

counters list, which will receive the JSON document when it is injected.
4 The bulk-writer-counters.py script decodes the hash to add a field and waits

until enough metrics are ready to go before attempting to write.
5 The bulk-writer-counters.py script bulk inserts the collated metrics into the

metrics index of the Elasticsearch cluster.

Other than performance, there are several reasons why you might prefer to send
telemetry to storage in a later part of the shipping pipeline when you could go there
directly:

 A different team may own the storage and won’t let systems write directly to it
without lots of negotiation.

 Submit-to-queue may be part of the standard metrics library used by all code,
including systems that don’t have the ability to write directly to storage.

metrics.py bulk-writer-counters.py

Redis Elasticsearch
2. RPUSH to

metrics_counter list
3. BLPOP from

metrics_counters list

4. Wait until we have
enough metrics to emit. 

5. Bulk-insert
into Elasticsearch.

Production Code
calls metrics.counter(“pdf_pages”, 19)

1. Program calls metrics.counter 

Figure 3.7 The flow of counter metrics, starting in the production code and ending in 
Elasticsearch. Along the way, writes are collated in the bulk-writer-counters.py script and bulk-
inserted into Elasticsearch. This example greatly reduces the number of write transactions 
Elasticsearch has to handle per second versus the direct-write model in section 3.1.
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 The storage may lack appropriate access-control lists, so granting write to emit-
ting systems also grants delete, allowing attackers who gain control of emitting
systems to modify storage. Using a queue breaks this chain and preserves the
integrity of the storage system.

 Handling storage system outages may be too complex for emitting systems, so it
is best to use the queue as a buffer.

Generally speaking, as telemetry ecosystems increase in size, the need to queue or oth-
erwise batch updates to storage grows. The telemetry generation rate may force cer-
tain architectural compromises to maintain performance; queues help with this task.
Queues also allow buffering between emitting and storage, increasing the ability of
the telemetry system to survive storage outages. If the emitting system can’t buffer
updates internally, the performance of the production system may be harmed, as
emitting functions block until service is restored.

USING STREAMS IN A SHIPPING PIPELINE

Streams (also known as event buses) are modifications of the queue idea, but the items
in the stream aren’t removed after they’re serviced. Multiple consumers of a stream
can be servicing different parts of the stream. Stream implementations vary, but the
concept of multiple consumers following their own place in the list is common to all
stream implementations. How long telemetry remains in the stream also depends on
the implementation of the stream.

NOTE Every streaming service supports multiple defined streams. Redis calls
its streaming objects a stream, for example, but Apache Kafka, which origi-
nated the concept of streaming, calls its streaming objects topics.

To demonstrate how streams are used, let’s go back to the global logistics company. In
section 2.2.2, we described how to configure their Cisco firewalls to emit telemetry
into a Syslog system. Because the company has a global footprint and is operating data
centers, it has many systems emitting telemetry. Being a global company, it has many
teams that consume telemetry, some of which is needed by multiple teams. The fire-
wall data is useful for the security/compliance and network operations team. Both
teams need the same telemetry but have their own infrastructures for handling it.
Streams are how we satisfy both teams’ needs.

 Figure 3.8 illustrates the architecture in use:

1 The Cisco firewall emits a Syslog line, sending it to the Syslog server at syslog
.prod.internal.

2 The Syslog server sends that line to a stream service, in a topic named syslog_
stream. This newline is the head of the stream.

3 The security/compliance team’s shipper listens to the topic, pulls lines, and
stores them in a SIEM system.

4 The network operations team’s shipper does so as well and stores them in
Elasticsearch.
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We’ve already shown the commands needed to send telemetry to the Syslog server in
section 2.2.2. Now let’s look at how to configure the Syslog server to send telemetry to
the stream. This task requires two bits of code: code for the Syslog server and a ship-
ping script running on the Syslog server. First, we need to configure the Syslog server
to send telemetry to a named pipe, which is a one-line addition to the rsyslog configu-
ration file:

# Config file for rsyslog

[...]
local07.*   | /dev/syslog_stream
[...]

This code tells rsyslog to send telemetry coming on the local07 Syslog facility to a
named pipe at /dev/syslog_stream. This named pipe is created by a service script
written by the operations team that runs as part of bootup of the Syslog server. This
code is short; it creates the named pipe (FIFO) and then sits in a while loop waiting
for lines.

NOTE If you want to run this code, it should run on UNIX-like systems, but
you need a Redis server to execute it successfully.

Cisco
firewall

Syslog
server

syslog_stream

Security
and

compliance

Network
operations

SIEM Elasticsearch

1

2

3

3

4

4

Emits into Syslog

Inserts into
stream topic

Shippers pull
from stream

Figure 3.8 Shipping pipeline using a stream 
to split telemetry flow to two consumers. The 
stream allows two later Shipping-stage systems 
to get an identical feed of telemetry, facilitating 
forking a stream, which is useful for multitenant 
systems (chapter 7).
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import os
import redis

os.mkfifo('/dev/syslog_stream')  

redis_client = redis.Redis( host='log-stream.prod.internal')

rsyslog_stream = open('/dev/syslog_stream', "r")   
while True:
  for line in rsyslog_stream:    
    redis_client.xadd(
      'syslog_stream',     
      '*',               
      line )              

For each line that is sent to the pipe by the Rsyslog server, the script submits that line
directly to a Redis-based stream. Figure 3.9 shows this flow.

Using the Redis stream feature, listing 3.4 uses a stream named syslog_stream.
Telemetry is appended to the stream by this shipper script. We’re using an OS-level
queue called a FIFO, or a named pipe, to pass data between rsyslog and the shipper
script. The shipper doesn’t care about the consumers; all it cares about is appending
data to the stream.

 At the global logistics company, two teams consume the firewall feed: security/
compliance and network operations. Consuming items from the stream requires a few
steps in Redis. The following listing is the beginning of a script used by the network

Listing 3.4 stream_shipper.py: On-boot service to make a FIFO and ship to Redis

Creates a FIFO device, a named 
pipe, at /dev/syslog_stream

Opens the named pipe

Waits for each line to come in on the pipe and act on it

For each line, adds it to the ‘syslog_stream’ 
stream on Redis through the XADD command.

os.mkfifo('/dev/syslog_stream')

File:
/dev/syslog_stream

rsyslog_stream = open('/dev/syslog_stream', "r")

Create

Open

for line in rsyslog_stream

redis_client.xadd(
   'syslog_stream',
   '*',
   line )

TCP log-stream.prod.internal:3128
XADD syslog_stream [...]

Redis
server

Figure 3.9 The flow of execution for stream_shipper.py. First, this script creates an 
operating system structure called a FIFO at /dev/syslog_stream; then it opens the 
stream and starts listening to lines. For each received line of text, it inserts the text 
into a Redis stream hosted at log-stream.prod.internal on the syslog_stream topic. Use 
of a stream allows more than one downstream system to get a full copy of events.
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operations team to consume telemetry from the stream. The script creates a connec-
tion to the stream and then sits in a while loop waiting for telemetry.

NOTE If you want to run this code successfully, you need a Redis server to
talk to.

import redis

redis_client = redis.Redis( host='log-stream.prod.internal' )
redis_client.xgroup_create('syslog_stream',

➥ 'noc_team', '$')    

while True:
  line = redis_client.xreadgroup(   
    'noc_team',
    'noc_ingest',    
    'syslog_stream',    
    '>')    
  do_something(line)

The important line of code is the one that reads from the stream. This code has a lot
going on. Figure 3.10 breaks out what each part does.

The script used by the security/compliance team would look similar but use sec_team
instead of noc_team for the name of its consumer group. This way, both teams get a
full stream of telemetry emitted by the Syslog server and the shipper script, but if the
network operations team’s script happened to be much faster than the security/
compliance team’s shipper, the sec_team shipper would not miss telemetry.

 The Syslog server configured here was configured to send Syslog local07 facility
telemetry to the stream. The same Syslog server can handle multiple facilities, so it
could send local06 facility telemetry to a different stream and local05 facility telem-
etry to a queuing system. At the same time, a fleet of database servers could emit
telemetry from their local Syslog servers to a database_syslog stream. Chapter 7 goes
into complex architectures like this database fleet.

Listing 3.5 consume_syslog.py: Consuming the Redis stream from listing 3.4

Creates the consumer group

Reads from the consumer group

Name of the individual consumer

Name of the stream to consume

Indicates ‘give me events that no one else has seen before’

redis_client.xreadgroup(
  'noc_team',
  'noc_ingest',
  'syslog_stream',
  '>')

Consumer group name

Stream topic name
Consumer ID

Indicates: only give 
me new messages 

Redis command
Figure 3.10 Diagram of the key 
command in consume_syslog.py, 
the Redis command that pulls 
information from the stream topic. 
We need to create five configuration 
items to set up a subscriber for the 
syslog_stream topic. Then this 
loop will get only new items that no 
other members of the consumer group 
(named noc_team) have seen.
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3.1.3 Shipping to SaaS systems

So far, we’ve talked about organizations keeping their entire telemetry systems inter-
nally, but not all organizations do so. Small startups, for example, have too much
going on to waste time building a telemetry system, so paying someone else to do the
work makes all kinds of sense. For telemetry styles such as distributed tracing, paying
someone else is by far the best option until your production systems are truly large.

 Let’s take another look at the 100-person startup. The company had a metrics service
(which we built in the previous two sections) but wants a deeper look at how its system
is evolving. That system is no longer the four containers in Amazon Elastic Container
Service it started as! The company has decided to get into distributed tracing and picked
Honeycomb.io as its SaaS provider. To use Honeycomb, the company needs to add the
Honeycomb SDK to its codebase, and start instrumenting its functions.

 The company has taken a microservices approach to its system, with lots of small
container images doing work. As we’ve seen so far, they have a function called
pdf_pages that we’ve seen metrics from. This small function does two things:

 Counts the number of pages in a supplied PDF file
 Calls out to another function called pdf_to_png, one for each page, to request

that PNG images be created from each page in the PDF

Figure 3.11 shows the flow of telemetry from when the SDK is initialized through
doing the work of pdf_pages, ending in telemetry being sent to Honeycomb.io.

hc_event = libhoney new_event()

file_details = get_file_details(options) 

hc_event add_field('file_size', file_details['file_size'])
hc_event add_field('file_extension', file_details['extension'])

page_details = get_page_details(file_details)

hc_event add_field('page_count', page_details['count'])

png_pages = enqueue_png_create(page_details)
wait_png_pages(png_pages)

 hc_event.send() HTTP POST https://api.honeycomb.io/1/events/example.profile.pages
X-Honeycomb-Team: [redacted]
X-Honeycomb-Samplerate: 4

{"file_size":132321,"file_extension":".PDF","page_count":19,
"dur_ms":6155}

libhoney.init(
  writekey=os.getenv('HC_WRITEKEY'),
  dataset='example.profile.pages',
  samplerate=4)

Adds context-related
details to telemetry

Figure 3.11 Flow of execution during a single instance of pdf_pages. Dotted boxes are 
function work; solid boxes are distributed tracing actions leading up to a POST to the Honeycomb 
Events API. Note that context-related telemetry is gathered at multiple places during this flow. 
The .send() event is nonblocking, sending to a not-pictured queuing system, to reduce the 
impact of telemetry operations on the production code.
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Listing 3.6 is our pdf_pages function, highlighting telemetry operations. This pro-
gram is not intended to be fully functional; it demonstrates how to mark up a function
with a tracing system’s functions.

# This is not intended to be executable
import libhoney   
import [lots of other things]

libhoney.init(                          
  writekey=os.getenv('HC_WRITEKEY'),    
  dataset='example.profile.pages',      
  sample_rate=4)                        

def get_file_details(options):
  [...]

def get_page_details(file_details):
  [...]

def enqueue_pdf_create(page_details):
  [...]

def wait_png_pages(png_pages):
  [...]

# Main event hook.
def do_work(options):
  hc_event     = libhoney.new_event()    
  file_details = get_file_details(options)    
  hc_event.add_field('file_size', 

   ➥ file_details['file_size'])        
  hc_event.add_field('file_extension', 
   ➥ file_details['extension'])        
  
  page_details = get_page_details(file_details)   
  hc_event.add_field('page_count', 
   ➥ page_details['count'])    

  png_pages = enqueue_png_create(page_details)    
  wait_png_pages(png_pages)                       

  hc_event.send()  

The pdf_pages function here leaves out all the code that does the work of pdf_pages,
instead showing how the Honeycomb SDK is used to track context-related details.
Note that we are capturing a page_count metric as part of this work, which will be
associated with this event in the Honeycomb dashboards. Two more pieces of explicit
context are also being gathered:

 file_size—Captures the size of the source file
 file_extension—Captures the extension of the file, which isn’t always .pdf

Listing 3.6 pdf_pages.py, instrumented with tracing

Loads the Honeycomb SDK

Initializes the 
Honeycomb connection

Creates new event and begins tracking

Fetches file-specific details

Adds file-specific context 
details to the event

Fetches pdf-specific details

Adds pdf-specific details to the event

Calls out and waits for 
pdf_to_png processes to return

Finalizes the event and sends to Honeycomb
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You may be wondering why we capture the extension when presumably, we already
know that this file is a PDF. The answer is that bugs in the past have caused certain
extensions to fool our PDF page-counting code, so the software engineers want to
track file extensions in case a similar bug happens. If you look at the final HTTP POST
in figure 3.11, however, you will notice an extra bit of telemetry we didn’t specify:

dur_ms: 6155

This value, captured by the Honeycomb SDK directly, represents the time between the
libhoney new_event() call and the hc_event.send() call. Because these calls bracket
all the functions that do the work of pdf_pages, dur_ms captures how long this
do_work() function took to perform. In figure 3.11, the function took 6.155 seconds
to count pages in the supplied PDF and wait for individual PNG images of each page
to be created.

 One final thing to note is the parameter sample_rate=4, which we gave when we
initialized the libhoney library. This value, which ended up being a header to the
HTTP POST to the Honeycomb API, indicates what percentage of events of this type to
keep—25 in this case (the true sample rate, 1, divided by the sample_rate value).
Because all telemetry SaaS vendors charge on volume in some way, using a sample rate
is among the best tools at your disposal for keeping costs down.

 Because 25% is a large sample, software engineering teams should learn how the
pdf_pages function operates in the context of the overall system without the costs
associated with keeping every event. When software engineering has a solid under-
standing of how this function works, the sample rate can be reduced even further,
bringing costs down as well.

3.2 Shipping between SaaS systems
Section 3.1 focused on software-oriented organizations, but not all organizations are in
the business of writing software. The 200-person continuing education company uses
software—quite a lot of it—but writes as little of it as possible. It may appear that a
company such as this one has no need for telemetry systems, but it does. The company’s
telemetry systems look different from the telemetry that a SaaS provider organization

Exercise 3.1
Your company provides a standard library for moving logs and metrics telemetry out
of application code and into the centralized telemetry systems. When a log or metric
needs to be emitted, this standard library sends that data to Kafka. Which type of
style of emitter/shipper is this library using?

a Direct-to-storage
b Shipping through a queue or stream
c Shipping to a SaaS application
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would build, but those systems are still telemetry systems. Our continuing education
company uses a lot of SaaS products, and its telemetry system is no different. This
section is about shipping telemetry between SaaS systems.

 When you don’t control the emitting system, such as hardware, you’re stuck with
whatever format your emitting systems use. For organizations like our continuing
education company, the constraints are imposed by the SaaS systems themselves. As
discussed in section 2.3.1, most SaaS systems handle telemetry emissions through a
polling method, in which the shipping system fetches telemetry, or a push system, in
which the SaaS product makes an HTTP call to a configured endpoint whenever
telemetry needs to be shipped. These two telemetry emission methods are a marked
difference between the direct, queue, and stream-based approaches discussed in
section 3.1.

 Some SaaS platforms can provide all your Shipping- and Presentation-stage needs.
Services such as SumoLogic, Loggly, and Splunk offer diverse methods of getting
emissions into their system to allow you to query and learn about what is going on in
your technical infrastructure. All three services permit setting up HTTP endpoints to
receive webhooks from other SaaS products and may even be able to poll a SaaS pro-
vider’s endpoint if a direct integration is available.

 The continuing education provider we talked about in section 2.3.1 set up a
webhook in a product that manages the whole workflow of job postings and interview-
ing, tracking all the job applicants and their progress through the hiring process (an
applicant-tracking system). This webhook is configured to hit to an HTTP endpoint
configured in a telemetry service provider. When this endpoint is in place, telemetry
flows from the SaaS provider to the telemetry service provider, enabling business deci-
sions and tracking. Figure 3.12 shows how this architecture looks after several of the
company’s providers are connected to the telemetry SaaS provider.

 The telemetry styles that aim at understanding software systems—metrics and
distributed tracing—do not show up in this company’s telemetry system. Centralized
logging is the style displayed in figure 3.12. Section 1.2.5 talked about business

Workday
collector

SumoLogic
SaaS

telemetry

Greenhouse
collector

Blackboard
collector

Sophos
collector

Various
cloud
and
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providers

Figure 3.12 A view of the Shipping-stage components for a continuing education company that 
relies heavily on SaaS and cloud-based offerings. The company picked SumoLogic as its 
telemetry provider. Using the procedure from section 2.3.1, the company configured telemetry 
to flow into SumoLogic from four SaaS and cloud providers: Blackboard Learning Systems for 
classroom interactions, Greenhouse for managing teacher applicant flow, Workday for handling 
human resources, and Sophos for handling antivirus telemetry coming from the desktop fleet.



71Tipping points in Shipping-stage architecture

intelligence teams and how they work on telemetry for the business. For our non-
software-producing company, software telemetry and telemetry for the business are
close friends. In this company, both telemetry styles—software and business—can be
handled by the same team.

3.3 Tipping points in Shipping-stage architecture
This section covers events that can force change in a Shipping stage. Change is
unavoidable, and major events like these can force significant change in a shipping
pipeline:

 Introduction of a new compliance framework that requires separation of cer-
tain types of telemetry, such as making separate telemetry flows for telemetry
that might contain personally identifiable information and telemetry that defi-
nitely will not

 Infrastructure growth that makes the current telemetry methods infeasible for
cost or latency reasons, forcing time to be spent on optimization, buffers, and
reorganization

 Team growth that forces the adoption of telemetry routing (chapter 7) so that
multiple teams can have their own telemetry storage and presentation systems
(multitenancy)

 A merger with another organization that forces reconciliation of the
organizations’ telemetry handling procedures

 Internal pressure to adopt a new telemetry system style, such as distributed
tracing

 Onerous upgrade and maintenance workflows that call for a redesign to reduce
operational overhead

Few telemetry systems are truly unchanging. Software end-of-life, patches to fix vulner-
abilities, and other keep-the-lights-on activities can force changes that otherwise
wouldn’t happen. Sometimes, these forced changes can be profound, such as when
your preferred data store updates to a new version that requires extensive rebuilding
and new software libraries, and the old version goes out of support.

 Standards such as Syslog make certain types of telemetry emission unchanging,
which is why hardware vendors support it so strongly. For everything else, such as the
distributed tracing systems used by software engineering teams, change is a constant.
It could be that by 2026, distributed tracing tools will be considered to be kind of old
and inflexible, and a hot new thing is where people should be focusing their efforts,
but we can’t see that future from 2021.

WARNING Telemetry systems follow one big rule: telemetry system outages should
not cause production system outages. Your telemetry system design should be built
in a way that outages in the pipeline will not materially affect your production
systems. If you find that production systems get slow when telemetry systems
get slow, you should seriously think about redesigning your telemetry systems. 
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Summary
 The Shipping stage in a telemetry pipeline is the stage that receives telemetry

from the Emitting stage, optionally modifies the telemetry, and stores it for later
presentation in the Presentation stage.

 The Shipping stage often acts as a translator between the telemetry format
received from the Emitting stage and the telemetry format used by the Presen-
tation stage.

 A Shipping stage may be anything from a single function in the code to an
entire multisystem infrastructure with dedicated engineers.

 Having the Emitting stage ship directly to storage used by the Presentation
stage is a valid Shipping stage, called an emitter/shipper, and is quite powerful.

 Having the Emitting stage send telemetry to a queue or stream allows the Emit-
ting stage to handle fewer service-interruption cases than it would if the teleme-
try were sent directly to storage.

 Streams operate somewhat like queues, with FIFO behavior, but allow trivial
forking in the form of consumer groups. A consumer group receives the stream
in a FIFO way, but a second consumer group would see the same items in their
own FIFO presentation.

Synchronous vs. asynchronous
One area in which telemetry system design can affect production systems is how
tightly coupled the two systems are. In listing 3.1, we wrote a logging function that
emitted directly from the production code into Elasticsearch. In this operation, which
is synchronous, execution in that processing thread paused while the telemetry was
shipped and persisted. If the Elasticsearch cluster is having problems and can’t
accept writes as fast as it needs to, the blocking write operation in our logging func-
tion will cause the production system to block as well, slowing performance of the
production system.

In listing 3.2 in section 3.1.2, we rewrote that blocking logging function to emit
directly into Redis, an in-memory cache system, instead of Elasticsearch. Should the
Elasticsearch cluster have ingestion problems, the production systems can continue
to emit telemetry into Redis and not slow down. Writes to Elasticsearch are asynchro-
nous. If the Redis system is at maximum memory and rejecting writes, of course, the
production systems will still be affected. There are no perfect solutions—only less-
bad ones that fit your needs better than the even-worse ones.

Exercise 3.2
Look at how telemetry is handled at your organization. In the next five or ten years,
are any of the listed tipping points likely to happen? How will your organization react?
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 Streams are powerful in telemetry systems because they allow systems pushing
data into the stream to have no knowledge of any system consuming their data.
This power enables you to reconfigure your telemetry data flows without touch-
ing your emitting systems.

 Using SaaS vendors for your telemetry allows you to focus on what you do best
rather than on building and maintaining the full telemetry pipeline.

 Most SaaS telemetry vendors charge based on volume of data received, so statis-
tical sampling methods can be used to reduce cost while maintaining the valid-
ity of your analysis.

 Queues and streams inside a Shipping stage allow complex Shipping-stage
architectures, allowing separate teams to own pieces of the telemetry pipeline.

 Organizations that use SaaS offerings exclusively still need to handle telemetry,
and platforms such as Splunk, Loggly, and SumoLogic are dedicated to filling
that need.

 Changes in Shipping-stage architecture can be forced by several external fac-
tors, including a merger with another organization, a key component of the
Shipping stage going out of support, infrastructure growth that makes main-
taining the Shipping stage too expensive, and new telemetry techniques that
gain internal advocates for adoption.
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The Shipping stage:
 Unifying diverse
 telemetry formats

This chapter is the second chapter covering the Shipping stage. Whereas chapter 3
covered moving telemetry around and preparing it for storage, this chapter covers
the format (and format transformations) of telemetry data in the Shipping stage. A
lot happens in the Shipping stage, which is why this stage is taking me a few chap-
ters to describe:

 Telemetry moves around (chapter 3). In larger systems, moving telemetry
around can be quite complex, involving telemetry systems owned and con-
trolled by different teams (multitenancy; chapter 7).

This chapter covers
 Shipping locally emitted telemetry

 Interacting with emitting stages with flexible 
and inflexible formats

 Picking formats for shipping telemetry
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 The Shipping stage needs to deal with whatever formats the Emitting stage can
handle and in diverse environments (hardware and software), many formats
(section 4.1).

 The Shipping stage needs to not only move telemetry around, but also support
any markup and enrichment (chapter 6) that happens during the Shipping
stage and the formats those components need (section 4.2).

A common misconception among many people who are new to telemetry is that the
Shipping stage is where all markup and enrichment happen. Although the Shipping
stage does perform quite a lot of both, markup can happen during both the Emitting
and Shipping stages, and enrichment can happen in the Shipping and Presentation
stages. The end-to-end nature of markup and enrichment is why that topic gets its own
chapter (chapter 6).

 This chapter focuses on two topics:

 Receiving telemetry from Emitting stages such as local log files and the system
logger, and moving them down the pipeline (section 4.1).

 Determining the telemetry data formats supported by your Shipping-stage sys-
tems. This process is both technical and political; there will be meetings, so be
warned (section 4.2).

To help with these concepts, I use the same example organizations from chapters 2
and 3:

 A 100-person startup building an API-driven application, running in AWS, with
a technical organization that is entirely software-driven.

 A global logistics company founded in 1848 that computerized its business pro-
cesses in the late 1960s. This example demonstrates Shipping stages in physical
data centers where the emitting format is variable and, in some cases, inflexible.
Also, this example is be where the nontechnical (political) discussion is
focused; big companies have big people problems.

 A 200-person company providing in-person continuing education courses, with
strong seasonality in hiring. This company uses software rather than producing it.

4.1 Shipping locally-emitted telemetry
Section 2.1 described several ways of emitting telemetry locally:

 Emitting into a log file (section 2.1.1)
 Emitting into the system logger (section 2.1.2)
 Emitting into standard output (section 2.1.3)

This section is about moving locally stored telemetry into the broader Shipping-stage
pipeline. Chapter 3 was all about moving telemetry around, from shipping directly to
storage (section 3.1.1), to shipping into queues and streams (section 3.1.2), to ship-
ping directly to SaaS providers (section 3.1.3). We will use the techniques from chap-
ter 3 to move telemetry that we pick up locally:
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 Section 4.1.1 describes shipping telemetry from a log file and into a stream.
 Section 4.1.2 describes shipping telemetry from a Windows-based system logger

and into a SaaS provider.
 Section 4.1.3 describes shipping telemetry sent to standard out and then

directly into Elasticsearch-based storage.

4.1.1 Shipping telemetry from a log file

Section 2.1.1 described sending telemetry to a log file. This section describes getting
telemetry out of that locally stored log file and into a Kafka-based stream (section
3.1.2). To help explain these concepts, we’re going back to the global logistics com-
pany that computerized in the 1960s. Its telemetry systems are mature, but even old
companies try new things once in a while.

 The networking operations group finally updated the infrastructure managing the
company’s extensive Cisco install base and wants to send the log data produced by
Cisco Prime (the Cisco framework for managing Cisco installs) to centralized logging.
This company has been writing Java software since the late 1990s, so the software engi-
neering teams have long experience with centralized logging. Also, being a large com-
pany means that the centralized logging system is already set up for multitenancy, so
adding a telemetry feed from the network operations group is not hard for the system
to deal with. The problem is getting the log-file-based data into the system. Figure 4.1
shows the planned architecture.

The network operations group at our logistics company intends to use the Filebeat
program, made by Elastic.co, to move telemetry from the log files into an Apache
Kafka-based stream. Filebeat uses YAML as a configuration format. The simple format
has two sections:

filebeat.inputs:
output.kafka:

Cisco Prime
framework

Lots of log files
Cisco

hardware

Topic: noc_events

Filebeat

Figure 4.1 The planned Shipping-stage components of the network operations teams. These 
components are filled-in boxes. This Shipping-stage pipeline inserts events into a stream on the 
noc_events topic. Telemetry flows out of the Cisco hardware (the production system, in this case), 
and into the proprietary Cisco Prime framework. Then Cisco Prime generates a variety of log files. 
Filebeat ships telemetry from the log files and into the stream. Use of agents such as this one is 
common for moving file- and system-logger-based telemetry to more advanced systems.
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The inputs section is where you define what files Filebeat should pay attention to. The
outputs section defines where Filebeat sends telemetry it processes.

NOTE Listing 4.1 is not intended to be executed, but if you want to execute
it, you will need a Kafka cluster to talk to.

filebeat.inputs:    
- type: log    
  paths:
    - /opt/CSCOlumos/logs/**    
  fields:
    environment: "production"   
    data_center: "EUC1"         
output.kafka:    
  hosts: ["k7-euc1-1:9092", "k7-euc1-2:9092", 
   ➥ "k7-euc1-3:9092"]     
  topic: "noc_events"     
  username: "nocevents_euc1" 
  password: *****           
  client_id: "cisco_prime"   

The Filebeat configuration in noc_beats.yml will have Filebeat monitor all the files in
/opt/CSCOlumos/logs and send all log lines to the Kafka topic named noc_events.
Figure 4.2 provides more context on what each part of the configuration does.

Listing 4.1 noc_beats.yml: Filebeat config for the network operations shipper

Input block defines what Filebeat tracks. Type set to log for log files.

Array of paths to watch, with wildcard

Context-related fields to add to all events

Output block defines where 
telemetry is sent (Kafka).

Defines the array of Kafka hosts 
to connect to and the topic

Defines authentication for Kafka
Defines a unique client identifier

filebeat.inputs:
- type: log
  paths:
    - /opt/CSCOlumos/logs/**
  fields:
    environment: "production"
    data_center: "EUC1"
output.kafka:
  hosts: [ "k7-euc1-1:9092", "k7-euc1-2:9092", "k7-euc1-3:9092"]
  topic: "noc_events"
  username: nocevents_euc1
  password: **********
  client_id: "cisco_prime"

Type of input

Files to watch for telemetry

Fields to add to all events (for context)

Kafka connection and topic information

Kafka authentication and identity

Figure 4.2 The configuration file for Filebeats on the Cisco Prime server. This configuration pulls 
telemetry out of all the log files in the Cisco Prime logging location and sends it on to a Kafka cluster, 
injecting telemetry into the nocevents_euc1 topic. The centralized logging platform operated by the 
software engineering teams will eventually consume the nocevents_euc1 topic and store this 
telemetry in the centralized logging database.
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The pattern shown here—using a third-party shipper to move telemetry data out of
log files to somewhere more useful—is a common one. I use Filebeat in this example
because it is a Go binary, so it’s small and relatively cross-platform, and it does the two
things I needed it to do. Here’s a list of several packages that fill the need to move file-
based data somewhere else:

 Filebeat—This Go-based binary produced by Elastic.co is built to pull log data
out of log files, containers, and a few other sources. It can also send data to
queues, streams, and Elasticsearch directly (no surprise).

 Fluentd/Fluentbit—A fully open source product and member of the Cloud Native
Computing Foundation, these Ruby-based (Fluentd) and C-based (Fluentbit)
multipurpose log shippers can pull from many frameworks and ship into queues,
streams, and a variety of databases.

 Logstash—Another Elastic.co product, this JVM-based framework is a fully fea-
tured telemetry transporting system. It can read from files but is far more capa-
ble with respect to where it can send data. You can build an entire Shipping
stage with Logstash, which makes it overkill for simply shipping files to a queue
or stream.

 Splunk Forwarder—This Splunk product, which ships as a precompiled binary, is
the entry point for telemetry into a Splunk-based telemetry ecosystem. It can
ship into the Splunk Cloud product as well a locally hosted Splunk servers.
Splunk is famous as an off-the-shelf (and now SaaS-based) centralized logging,
metrics, and SIEM provider.

 Telegraf—An InfluxData product, this Go-based multipurpose log and metrics
shipper can send logs to Syslog and Kafka streams. It can talk natively to the
InfluxDB time-series database for metrics, but for text-based logs, it is better as a
telemetry mover. 

Filebeat and its friends
Filebeat is one of several open source agents that Elastic.co offers for moving data
into its Elasticsearch database. Filebeat is customized to move strings from files. But
there are several other specialized agents:

 Metricbeat—Pulls system-level metrics in a manner similar to how the collectd,
telegraf, and nagios agents collect and ship metrics

 Auditbeat—Pulls security-related information such as the audit.log on Linux
systems

 Winlogbeat—Pulls Windows Event Log data, including the Security log, and
ships it

 Journalbeat—Pulls telemetry out of journald (part of the Linux Systemd utili-
ties) and ships it

 Packetbeat—Monitors and ships network flow telemetry
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Log files are in many ways the default shipping method for off-the-shelf production
systems designed to run on servers. Containers and FaaS platforms prefer standard
output (see section 4.1.3). Building skill in handling log files will set you up for suc-
cess. This area is one in which the problem of getting the telemetry off your system is
already solved, for the most part, so you shouldn’t need to write much code. Using
agents to handle this part is much faster.

4.1.2 Shipping telemetry from the system logger

Section 2.1.2 described emitting telemetry into the system logger; this section covers
pulling telemetry out of the system logger and into a SaaS system (section 3.1.3). To
illustrate this process, we’re going back to our continuing education company that
doesn’t produce software if it can help it. Figure 3.12, reproduced here as figure 4.3,
illustrates the company’s current approach to software telemetry.

The company has a problem. The U.S. state in which its headquarters are based has
released new requirements for education companies, so this company needs to audit
far more activities on educator laptops. Until now, the company has taken a kind of
benign neglect approach to educator laptops, letting their teachers do what they need
to do while forcing minimal security services such as antivirus and endpoint protec-
tion. It’s simply not doing the kind of end-to-end employee surveillance that larger
intellectual-property-based companies do, so addressing this regulation requires
new processes.

 This company is using Windows laptops because it has been in business for two
decades and Windows laptops are what it’s always used. Because not all the teachers
teach in a single facility, instead teaching all over their registered states, the company

Other agents are available, and more come out every year. Elastic.co makes its
money selling enterprise plans, so if these open source shippers fit your needs out
of the box (without an enterprise plan), they can stand alone quite well. For many
telemetry product vendors, the hard problem (also known as the problem you can
make money solving) is analyzing telemetry (the combination of Elasticsearch and
Kibana for Elastic.co) rather than shipping it (Filebeat and friends), so these products
are loss leaders for their real revenue-generating products.

Workday
collector

SumoLogic
SaaS

telemetry

Greenhouse
collector

Blackboard
collector

Sophos
collector

Various
cloud
and

SaaS
providers

Figure 4.3 The Shipping stage for 
our continuing education company. 
Its complete reliance on cloud and 
SaaS vendors for both production and 
Shipping-stage systems is intentional; 
not everyone runs servers, or wants to.
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can’t rely on adding every laptop to an Active Directory domain and configuring event
forwarding; the laptops simply aren’t on the enterprise network often enough.

 The planned approach is to install a SumoLogic collector on each of the traveling
laptops and configure that collector to send events to the company’s SumoLogic
account. Figure 4.4 describes the intended architecture.

First, our continuing education company needs to install the collector everywhere,
which is a two-step process:

1 Install the software.
2 Configure it.

The installation process is a single command-line command:

SumoCollector.exe -console -q "-Vsumo.accessid=[redacted]" \
  -"Vsumo.accesskey=[redacted]" \
  -"Vsources=C:\\HQ_Data\\sumo_sources.json"

This command triggers the following behavior:

1 Sends all output to the console (-console)
2 Installs in quiet mode (-q)
3 Configures the login credentials needed for the SumoLogic cloud (sumo

.accessid and sumo.accesskey)
4 Points the installer to a configuration file that defines what telemetry this col-

lector will ship into the SumoLogic cloud (C:\HQ_Data\sumo_sources.json)

The contents of this file are shown in listing 4.2.

{
  "api.version": "v1",  
  "sources": [
    {     
      "sourceType": "LocalWindowsEventLog",    

Listing 4.2 sumo_sources.json: Defining Windows telemetry collection

SumoLogic
SaaS

telemetry

Educator laptop

Windows 
Event Log

Sumo 
collector

Figure 4.4 The telemetry collection design that our continuing education company intends to build. 
The state requires certain events captured in the Windows Event Log to be centralized, so the 
company installs a SumoLogic collector on each laptop and configures that collector to send events 
to the existing SumoLogic cloud. This setup doesn’t require connection to the enterprise network 
via virtual private nework (VPN), making it well-suited to a highly mobile teaching organization.

Sets the SumoLogic API version

Defines the type of source, 
gathering local Windows events
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      "name": "TeacherLaptop",   
      "renderMessages": true,    
      "logNames": [                     
        "Security",    
        "ApplicationBestClassroom"      
      ]                                 
    }
  ]
}

With this configuration, our continuing education company is sending the contents of
two system logs to the SumoLogic cloud:

 The built-in Security log, which includes all security events configured for the
teacher laptops. This flow of events includes logins, logouts, changes to security
policy, and many other details. Depending on the security policy pushed from
corporate, this flow of events can be massive.

 A special application log called ApplicationBestClassroom, which is an event
log produced directly by the off-the-shelf classroom software. This event log is
produced by software, not by the system, using the Windows Event Log feature. 

If we tweak figure 4.4 just a bit, we can see the two types of event streams that this com-
pany is interested in (figure 4.5).

For a company that’s handling a fleet of highly mobile computers, using installed
local agents to send to a SaaS provider makes a lot of sense. Although this case shows
collecting telemetry on desktop systems, it also applies to Windows servers. Inside an
Active Directory domain, you have even more options, because remote Event Log col-
lection is possible (unlike in our example here), which reduces the number of collec-
tors that need to run in your organization.

4.1.3 Shipping telemetry from standard output
Section 2.1.3 described emitting telemetry to the standard output (stdout), the console
or default output for a print statement, trusting that whatever program launched our
production software would be listening to that output. This section covers processing
that kind of output and sending it directly to storage (section 3.1.1). To help with this
process, we’re going back to our 100-person startup.

A name for this source (unique per collector)When set
to true,

gathers all
metadata

from
Windows

events

Defines which Event Logs to 
gather, including a special app

SumoLogic
SaaS

telemetry

Educator laptop “Security”
“ApplicationBestClassroom”

Sumo 
collector

Windows 
Event Log

Figure 4.5 Configured telemetry collection for our continuing education company. Here we 
see that the SumoLogic collector pulls Security and ApplicationBestClassroom Event Log 
data and injects it into the SumoLogic cloud.
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 In section 3.1, we looked at this startup’s architecture, which is running Kubernetes
clusters in a public cloud provider, and saw the company rewrite its emitting functions
to send telemetry directly into Elasticsearch. In section 3.2, we rewrote the functions to
send to a queue or stream to allow a downstream process to bulk-write into
Elasticsearch. Now we’re going to look at a third way to reduce write-loading on the
Elasticsearch cluster: have the Kubernetes cluster machines handle the writes. Figure
4.6 describes the intended architecture.

Our 100-person startup runs Linux-based Kubernetes clusters. As a result, Kubernetes
automatically sends the stdout from containerd into the systemd system called journald.
(If you’re running Docker outside Kubernetes, --log-driver=journald in the Docker
config does the same thing.) To get telemetry out of the journal on the Kubernetes hosts
and into Elasticsearch, the company installs and configures Journalbeat from Elastic.co.
(See the end of section 4.1.1 for a list of other Beats.) By default, Journalbeat pulls the
entire system’s journal and sends it on, but Journalbeat needs to be told where to put
the journal; we want to send it into Elasticsearch. Listing 4.3 shows the configuration file.
As with Filebeat earlier, we see an input section and an output section.

NOTE This listing is not intended to be executed, but if you want to run it, you
need to run it on a Linux system and have an Elasticsearch cluster to talk to.

journalbeat.inputs:
  - paths: []    
output.elasticsearch:
  hosts: [ "http://log-es.prod.internal:9200" ]  
  index: "kates-%{+yyyy.MM.dd}"    

Listing 4.3 kate_beat.yml: Shipping journald telemetry to Elasticsearch

containerd

journald Journalbeat Elasticsearch

Kubernetes (Linux host)

1. Emit to journald.

2. Journalbeat fetches telemetry 
    from journald.

3. Journalbeat ships telemetry 
    into Elasticsearch.

containerd
containerd
containerd
containerd
containerd
containerd

Figure 4.6 Getting telemetry out of Kubernetes and containerd for our 100-person startup. 
The containerd containers (not the software inside the containers) is configured to emit 
stdout to journald of the Kubernetes host. From there, Journalbeat ships telemetry into 
Elasticsearch. Because Journalbeat batches writes, the Elasticsearch cluster faces 
reduced write transactions versus the containerd confined software writing directly.

Fetching from the default 
journald location

Specifies what Elasticsearch 
server to connect to

Specifies which Elasticsearch 
Index to send data into



83Unifying diverse emitting formats

The coding on the index name is special. kates-%{+yyyy.MM.dd} appends a date
stamp to the index name, such as kates-2023.02.19 for February 19, 2023. This code
will create one index per day automatically. Creating an index a day this way allows
our company to set retention policies quite easily. To keep 90 days’ worth of indices
online, once a day, delete any index older than that.

 Section 3.1.2 asked what would happen if instead of one Kubernetes cluster, the
company had 100. Whereas the code we wrote in section 3.2 had the production code
sending telemetry to a single queue or stream, Journalbeat can be configured to send
telemetry to a Redis-based queue or a Kafka-based stream. We saw an example of a
Kafka output as part of the code in section 4.1.1:

output.kafka:
  hosts: [ "k7-euc1-1:9092", "k7-euc1-2:9092", "k7-euc1-3:9092"]
  topic: "noc_events"
  username: "nocevents_euc1"
  password: *****
  client_id: "cisco_prime"

The same settings will work for Journalbeat. Outputting to Redis is simpler, because
Redis is a simpler system:

output.redis:
  hosts: [ "prod-logs.prod.internal:6379" ]
  key: "kates"

Specify a hostname to send telemetry to and the key to write everything to. A system
servicing this queue will pop events off the kates key for further processing.

4.2 Unifying diverse emitting formats
This section covers the technical and political challenge of selecting telemetry for-
mats. The sheer diversity of Emitting-stage systems means that no standard emitting
format exists. Most Emitting-stage systems do so in strings, but as with human lan-
guages, the format of those strings is as variable as the humans who write the strings.
Ultimately, telemetry needs to get stored somewhere, and that location also has opin-
ions about what format telemetry will be in. In a telemetry pipeline, the Shipping
stage is often charged with unifying telemetry formats for storage, especially in pipe-
lines that involve hardware and SaaS systems with inflexible emission formats.

Exercise 4.1
For off-the-shelf software (download and install), what is the most common telemetry
emission format you will have to handle?

a Log files
b The system logger, such as Syslog, or Windows Events
c Standard output
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 Because most telemetry systems use strings to pass data, there are many ways to
encode complex data structures into strings. For simple telemetry systems with one or
two emitters and only one system storing telemetry, you don’t need to pay much
attention to this problem. For complex telemetry systems with a wide variety of
emitters (hardware, many kinds of software, feeds coming from SaaS systems, and so
on), the problem of unifying formats is real. The following sections help us address
these problems:

 Section 4.2.1 examines many ways to encode telemetry into strings for shipping.
 Section 4.2.2 covers the process of selecting shipping formats for a telemetry

system with diverse needs.
 Section 4.2.3 is an example of translating telemetry emitted in Syslog into an

object-encoding format better suited for use in the Shipping stage.
 Section 4.2.4 provides guidance on selecting shipping formats with an eye on

reducing database cardinalities to keep costs low and search performance high.

4.2.1 Encoding telemetry into strings

We have already worked through several examples of encoding telemetry into strings
for shipping, but this section covers the variety of widely available string formats avail-
able to you. These formats are not plain-language formats, but ways to encode (serial-
ize) structured data in ways that are easy to translate back into structured data
(deserialize). We need the ability to transmit data structures, because the act of mark-
ing up and enriching telemetry (see chapter 6) in the Emitting and Shipping stages
sets up the Presentation stage for success. We examine two types of formats:

 Delimited formats that encode relatively simple structures that are more
human-readable, and tend to be very fast to serialize and deserialize

 Object-encoding formats that allow encoding complex structures

ENCODING INTO DELIMITED FORMATS

This section covers the most common delimited formats, the most famous of which is
the comma-separated values (CSV) list. Delimited formats work by using a character (or
a string) to mark separate fields. Think of them as a way to encode an array or a simple
one-level hash. Building a parser for these formats is relatively easy, and for common
formats like CSV, general programming languages often have a built-in function for
parsing. (Even the ancient COBOL has a native way to read CSV.) The general-purpose
Shipping-stage platforms—Elastic’s Logstash and the open source Fluentd, both Ruby-
based—have parsers that can handle these formats, so you don’t have to write a parser.
Here are three delimited formats to examine:

 Comma- or tab-separated value lists, in which each position is assigned a field
name, and this assignment has to be preshared to both the emitter and parsing
side. The delimiter can also be other characters; I’ve seen the semicolon and
pipe characters used as well.
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Example:

"2023-02-19T23:04:55.293+0:00",pdf_pages,2 

 Key-value pairs, allowing flexible field mapping but a flat field structure (no sub-
keys). This format allows encoding a simple one-level hash without preknowledge
of the fields.

Example:

time="2023-02-19 23:04:55.293" metric_name="pdf_pages" metric_value=2

 Positional-delimited, a variant of the separated value list, most commonly using
square brackets. This format is often used as a wrapper (or container) format
for others, expecting that the string will be parsed more than one time.

Example:

[2023-02-19T23:04:55.293+0:00] [pdf_pages=2]

Here, the first bracket statement is the timestamp; the second bracket state-
ment is a key-value pair that will be run through a key-value parser in a second
pass.

Delimited formats generally are computationally cheap to parse, making them
desirable for optimizing a parsing step in a telemetry pipeline. They’re often just
expressive enough, and human-readable enough, that the format can be looked at
raw by humans doing development in a virtual machine or Docker, and they’re also
easily parsable by machines for display in a Presentation-stage system with production-
system telemetry.

 Delimited formats aren’t expressive enough, however, if complex data structures
such as multilevel hashes need to be handled. For cases in which delimited formats
are too constraining, you can use any of three object-encoding formats:

 JSON
 XML
 YAML 

Parsing speed can be surprising
Although the algorithms behind parsing a key-value stream are simpler than the algo-
rithm needed to parse an object-encoding format like JSON, they’re not necessarily
faster. To demonstrate, here are the results of a parsing-speed test I ran using Log-
stash to test the performance of the key-value, CSV, JSON, and XML parsers. The
same 10-element hash was encoded in each format and then decoded. I tracked how
long (in milliseconds) the decoder took to handle 1 million hashes:
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ENCODING INTO JSON
JSON (JavaScript Object Notation) began in the JavaScript ecosystem and has been
embraced by many other systems. JSON provides easy encoding of string and number
types with complex subkey structures in hashes and arrays. NodeJS, being a JavaScript
language, assumes JSON format for all data structures natively. Most new web-based
APIs consume JSON as the transaction format. Logstash, the Shipping-stage engine
built by Elastic, uses JSON objects as part of its internal queuing system.

 The ability to encode complex data structures makes JSON valuable when your
telemetry system needs to pass around highly enriched telemetry data. Going back to
our metrics examples, here is a JSON-encoded version of our metrics that passes two
separate metrics values in the same telemetry instead of a single value:

 {
    "metrics" : [ 
      { "metric_name" : "pdf_pages", "metric_value" : 2 },
      { "metric_name" : "file_size", "metric_value" : 292.5 }
    ]
 }

This example encodes two separate metrics, pdf_page and file_size, in a single
emission. Such a format would be challenging in a tab or CSV list, is easier with a key-
value system expecting multiple metrics per line, and relies on a second parser for the
positional-delimited method.

(continued)
 JSON—0.011 ms per 10-element hash
 Key-value—0.069 ms per 10-element hash
 CSV—0.198 ms per 10-element hash
 XML—3.700 ms per 10-element hash

How can performance for the two complex object-encoding parsers, JSON and XML,
be three orders of magnitude apart? And why does JSON blow everything else out of
the water? The answers have to do with how Logstash is written. Logstash is written
in JRuby, which is Ruby running on top of Java. For JSON, Logstash uses the native
Java JSON engine, but for the other three formats, raw Ruby constructs are used.
Because JSON parsing doesn’t have to recompile from Ruby into Java and back to
Ruby, instead staying in Java the whole time, the parsing process is more efficient.
Given that fact, it makes sense that the simple-to-parse key-value set performs best
of the raw Ruby parsers.

When you’re building a parsing stage for your Shipping stage, it’s worth your while to
test parsing speeds in various formats. Your assumptions may be wrong; mine cer-
tainly were.
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ENCODING INTO XML
XML (eXtensible Markup Language) provides a sophisticated format for moving data.
Before JSON stole its thunder, XML was the data-interchange format of choice for
APIs. Because of this history, many (usually older) systems still produce XML prefer-
entially. Unlike JSON, XML was not built explicitly to encode data structures but to be
a multipurpose way to encode data of any kind.

 For telemetry purposes, XML’s lack of focus on rendering data structures makes it
both more powerful and harder to use than JSON. This extra power also make XML
prone to parser-specific assumptions about how data structures are defined. You can
encode the same pair of metrics that you did with JSON:

<MetricsEmission>
  <DateTime>2023-02-19T23:04:55.293+0:00</DateTime>
  <MetricsItems>
    <MetricItem>
      <MetricName>pdf_pages</MetricName>
      <MetricValue>2</MetricValue>
    </MetricItem>
    <MetricItem>
      <MetricName>file_size</MetricName>
      <MetricValue>292.5</MetricValue>
    </MetricItem>
  </MetricsItems>
</MetricsEmission>

This example encodes both the pdf_pages and file_size metrics as the JSON exam-
ple. The two <MetricItem> entries form an array of hashes. <MetricsEmission>
forms a hash. Unlike JSON, XML is more visually explicit about what each component
is named.

ENCODING INTO YAML
YAML (Yet Another Markup Language) is the newest of these three formats. (In the
tech industry, the third of a thing often gets prefixed by yet another; tradition!) YAML
allows the encoding of more-sophisticated structures than JSON does and has mecha-
nisms for passing strings without the need for JSON-style escaping, making it a safer for-
mat if your data includes lots of special characters, double quotes, or slashes. YAML has
some of XML’s ability to render not just data structures, but also complex data. YAML
is most commonly seen as a configuration language and a data-transaction language.

 Although it’s not useful for telemetry, YAML allows comments to be put into its struc-
ture, which is why you see it used a lot as a configuration language. YAML’s ability to sup-
port data types beyond what JSON does makes it more expressive than JSON. Once
more, let’s see the YAML version of the pair of metrics we encoded in JSON and XML:

---
metric_emission:
  time: "2023-02-19T23:04:55.293+0:00"
  metrics:
    - metric_name: "pdf_pages"
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      metric_value: 2
    - metric_name: "file_size"
      metric_value: 292.5

This formatting feels more compact than JSON and is certainly shorter than XML.
The value for pdf_pages is detected as an integer because there is no decimal in the
value, whereas the value for file_size is detected as float because it does have a deci-
mal in the value. To explicitly cast the value of pdf_pages as a float, simply add .0 to
the number or prefix the number with !!float, as in metric_value: !!float 2.
YAML represents a middle ground between the expressiveness of XML and the rigid
simplicity of JSON. 

 All three object-encoding formats allow encoding complex data structures without
line breaks or unneeded whitespace on a single line—a format known as minified. Such
minified lines generally are not human-readable, so I’m not going to render an exam-
ple here, but they do save considerable space when humans aren’t expected to parse
them visually. Minified or not, object-encoding formats are algorithmically more com-
plex to parse than delimited strings—a fact that can be quite significant if your Ship-
ping pipeline is handling thousands or hundreds of thousands of emissions a second.

 That said, using a format as ubiquitous as JSON is on the modern web means that
JSON parsers have seen a lot of optimization since 2010. When making the decision
between JSON or another object-encoding format, definitely test your pipeline to ver-
ify that performance is as you expect. Delimited formats are visually easy to parse, easy
to create, and easy to write, but that ease does not guarantee performance advantages.

The problem of protobufs
The protocol buffer (protobuf) is a concept that originated at Google. The company
wanted a way to serialize/deserialize data that was faster than XML, so in classic
Google fashion, it invented its own way. Unlike JSON, XML, and YAML, all of which
serialize into strings, protobufs are not string-based when serialized; protobufs are
binary-based.

Being a binary format truly does make protobuf pretty darned fast for serialize/
deserialize operations. But it does mean that whatever technique you use to pass
protobufs around needs to support binaries too.

Protobufs are like the comma-/tab-separated value lists in that the schema of the
message needs to be preshared before communication will work. This sharing
speeds protobufs but makes them unlike JSON, XML, and YAML, which can’t encode
arbitrary data structures. If your telemetry pipeline creates arbitrary data structures,
protobufs will be a difficult fit for you. But if you can work with a binary format and
use a static schema, protobufs are among the most efficient ways to transact data
(so long as you can ship the format at all).

Protobufs can be excellent in telemetry pipelines, but the need to define the object
format on both sides makes the format somewhat inflexible—great for metrics and
tracing, but not so great for centralized logging. In spite of the pains of using proto-
bufs, expect to see more of them in future telemetry systems.
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4.2.2 Picking a shipping format

This section covers the process of picking telemetry shipping formats. The fewer ship-
ping formats you have to support, the easier it is overall to maintain your Shipping-
stage systems, so it is worth your time to try to focus telemetry formats down to a few.
To help with this process, we will examine a complex telemetry Shipping stage for the
global logistics company mentioned in this chapter’s introduction and section 4.1.1.
As the introduction warned, the process is both technical and political.

 The first thing to understand about picking a shipping format is that you are per-
mitted to use more than one. It is more important for your telemetry to get into storage than it
is for the telemetry be shipped in the one true format. If shipping your telemetry into storage
requires a mix of JSON and key-value, so be it. Your choice of format has as much to
do with the politics of your technical organization as it does with the abilities of your
production systems; you need to accommodate both.

 The Shipping stage, especially in large technical organizations, forces telemetry
system operators to interact with many teams in the technical organization. Figure 4.7
shows the sort of large organization you would find in the global logistics company
we’ve used for a few chapters now.

In this example, we see four teams: two operations-like teams and two software engi-
neering teams building on completely different platforms. This separation was inten-
tional on the part of senior technical management (the reasons for which we’ll get
into later), and the teams have reached the point where they need to unify their
approaches. To help set the scene, figure 4.8 illustrates both architectures.

 In a telemetry shipping pipeline like this example, we have the physical data center
components (VMware and Cisco) emitting into Syslog. The Java Spring Boot applica-
tions are also emitting into Syslog. The Syslog server has been configured to ship into
two kinds of centralized logging and also sends events to a metrics shipper that stores
metrics data in a third database. Meanwhile, a different group is building in AWS. The
CloudOps team ingests infrastructure logs into a database maintained by the opera-
tions team in the physical data center, while a software engineering team is building
Go-based applications in Elastic Kubernetes Services, shipping directly from code into
both metrics and distributed tracing systems. The system they want to get to is
described in figure 4.9, which is a pretty significant change!

Java
engineering

Go
engineering

Data center
operations

Cloud
operations

Figure 4.7 The four teams of interest in our global logistics 
company as they work to pick a shipping format for their telemetry 
systems. We see that the Java software is running in actual data 
centers, whereas the Go software is running in a public cloud. 
Bridging this divide is a key part of the negotiation process.
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 In figure 4.9, we see a shipping pipeline with several components:

 The stream service acts as a unified event stream for the entire telemetry system
in both the physical and cloud production systems.

 The Syslog server for the physical data center acts as a centralized shipping
point for everything in the data center, sending telemetry into the stream.

 Emitter/Shipper functions in the Go applications ship directly into the stream.
 A dedicated shipper maintained by the CloudOps team moves AWS events into

the stream.
 Four dedicated shipping systems consume telemetry from the stream, each

operated by a different team.

This figure also shows five telemetry storage systems:

 Three log repositories, one shared between the operations and CloudOps
teams, and dedicated log repositories for the Java engineering and Go engi-
neering teams

 A metrics repository, shared between the Java and Go engineering teams
 A distributed tracing repository, used by the Go engineering team

Cisco

VMware

Syslog

Spring Boot
applications
(VMware) 

Java
logs

Ops
logs Metrics

Metrics
shipper

AWS 
eu-central-1

Go

Go
applications (EKS) 

Distributed
tracing CloudTrailMetrics

Physical
data center

Java/physical Go/cloud

Figure 4.8 The existing telemetry systems for the Java-on-data-center and Go-on-cloud environments. 
On the left are the Java systems; on the right are the Go systems based in AWS, which ships directly 
to metrics and distributed tracing. Additionally, the AWS logs themselves are shipped to a CloudTrail 
repository in the physical data center. Global-scale companies often have nearly completely separated 
computing systems like this example. (For more on that style of computing, see section 10.3.)
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This complex example demonstrates the technical and political trade-offs that need
to be made when settling on supported shipping formats. For this example, the event
that triggered the need for a unified format was deciding to implement the telemetry
stream service. To start the process of determining a supported or supportable list of
formats, we first look at three areas:

 The emitting and shipping capabilities of each component
 The existing shipping pipeline
 Which teams manage which emitting and shipping components, and how the

teams (not components) already interface

Using the information we gather here, we move to the next stage: negotiation. This
last stage is where the trade-offs between a singular format versus ease of integration
are made.

Cisco

AWS
eu-central-1

VMware

Syslog

Operations
shipper

Logs

CloudOps
shipper

Java
engineering

shipper

Go
engineering

shipper

Logs

Dist.
traceLogs

Spring Boot 
applications 
(VMware) 

Go 
applications 
(EKS) 

Metrics

Telemetry
stream
service

Figure 4.9 The unified telemetry system for our global logistics company, which centers on the use of 
a stream system to act as a unified data pipeline. Team-specific Shipping-stage components subscribe 
to stream topics to handle each team’s telemetry and ultimately store it in databases.
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DETERMINE THE EMITTING CAPABILITIES OF EXISTING SYSTEMS TO PROVIDE THE BASELINE

This section covers the first area of identifying telemetry shipping formats: identifying
the emission capabilities of each production system. We need this information to pro-
vide the technical basis for our later format negotiation. For the infrastructure
described in figure 4.8, we can see several main emitting components:

 The Cisco and VMware systems, which emit only in Syslog
 The Java Spring Boot software, which can emit in anything but is currently emit-

ting in Syslog
 The AWS CloudTrail infrastructure logs, which emits as JSON files
 The Go software, which can emit in anything

Although Java Spring Boot can emit in anything, in this specific case the Java applica-
tions themselves were first written in 1999 and have been maintained with the occa-
sional significant rewrite ever since. The early Java applications were wired to emit to
the same Syslog used by the operations team around 2000, a capability that every
maintenance and upgrade effort has ensured will continue. The Syslog history here is
deep and long; it is a well-understood and above all comfortable format for the teams
using it.

 The Go software running in Elastic Kubernetes Services is brand-new, less than a
year old. The decision to deploy in AWS was made by senior engineering management
as an experiment for this company—one that appears to be quite promising. This
company is looking to integrate these new software and deployment platforms into
the existing telemetry systems. We’re left with three main constraints:

 The hardware that requires Syslog and supports nothing else
 The deep Syslog integration in the Spring Boot applications
 The JSON emitted by the AWS CloudTrail service

The Go applications don’t contribute a constraint at this stage! Next, we look at the
existing shipping pipeline.

EXAMINE SHIPPING-STAGE CAPABILITIES TO NARROW THE CHANGE SCOPE

This section covers the second area of identifying telemetry shipping formats: deter-
mining what kind of telemetry handling is in place. This information will tell us how
much effort we need to spend to make updates, depending on the changes agreed to

The fractured nature of global companies
Truly global companies are often a bunch of smaller companies in a trenchcoat, with
the various smaller companies operating somewhat to totally independently. One
business unit may be all in on public cloud and serverless architectures, whereas
another unit is 60 years into its mainframe story and has no plans to stop. Being part
of a single company does not guarantee a common technical base everywhere inside
that company! The global logistics company in this section is no different, but it’s try-
ing to get better. You will see another couple of cases like this one in part 2.
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in the negotiation stage. The most mature shipping pipeline in this company is in the
physical data center for the Java environment. As discussed in the section on identify-
ing emission capabilities, this pipeline is strongly Syslog-based, thanks to two decades
of history and the presence of opinionated hardware. All the hardware and software
systems emit to Syslog. Then the Syslog servers emit into three separate storage sys-
tems, as shown in figure 4.10:

 A centralized-logs repository for the operations team
 A centralized-logs repository for the Spring Boot software
 A metrics repository used by the Spring Boot software

The pipeline in the AWS environment isn’t nearly as detailed because it hasn’t been
released into production yet, but it does have some shipping elements, as shown in fig-
ure 4.11:

 An S3 bucket full of JSON files emitted by CloudTrail that is pulled into the
physical data center

 A metrics repository used by the Go software
 A distributed tracing repository used by the Go software
 Go logs viewed through the AWS EKS console (because the Go engineering

team is attempting to use the tracing logs for centralized logging wherever
possible)

With analysis, we can tell that there will be a lot of inertia involved with any change to
the Java Spring Boot telemetry pipeline. The Java pipeline has been in place for more

Cisco

VMware

Syslog

Spring Boot
applications
(VMware) 

Java
logs

Ops
logs Metrics

Metrics
shipper

Figure 4.10 The existing Syslog-based 
telemetry pipeline used by the data-center-
based Java teams. Everything emits into 
Syslog. The Syslog server ships into two 
separate logging databases (one for ops and 
one for the Java apps), and to a metrics 
shipper built by the Java team that sends 
telemetry into a metrics database. This 
example demonstrates close integration 
between the operations and Java teams.
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than two decades and has been custom-fitted over the years to that specific use case.
The combined Syslog platform supports large parts of the business, so making
changes there is somewhat risky, but that process is part of our next analysis.

IDENTIFYING TEAM COMMUNICATION LINKS TO PROVIDE SCOPE FOR THE POLITICAL NEGOTIATION

This section covers the third area of identifying telemetry shipping formats: identify-
ing which teams will be involved in the telemetry pipeline and how the teams commu-
nicate. This information tells us which telemetry passing will be easy (because it
replicates existing communication links) and which will be hard (because it requires
establishing new communication links). Looking at figure 4.8, we can identify four
teams involved in this telemetry discussion:

 The software engineering team writing the Java Spring Boot software
 The software engineering team writing the Go software
 The operations team supporting the physical data center hardware underlying

the Spring Boot software
 The CloudOps team supporting the AWS infrastructure underlying the Go software

When we dig deeper into the organization, we learn a few more things:

 The Spring Boot software team develops software on two continents and
deploys its software in three data centers on three continents.

 The operations team is spread across three continents to support the data cen-
ters where the Java Spring Boot software is deployed.

 The Go software team is 30 engineers working out of the office in Hamburg,
Germany.

 The CloudOps team is across the hall from the Go team, with three remote
team members working out of the Singapore office.

AWS 
eu-central-1

Go

Go
applications (EKS) 

Distributed
tracing CloudTrailMetrics

Physical
data center

Figure 4.11 The premerger telemetry pipeline 
for the AWS-based engineering teams. The Go-
based software emits directly into two telemetry 
systems. Meanwhile, the CloudOps team emits 
the AWS telemetry into a database in the physical 
data center. The integration between the 
CloudOps and Go engineering teams isn’t as 
strong as with the Java/data center environment.
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It’s important to this discussion of team communication that half of the Go team con-
sists of former Java engineers tapped to work on this new project. The other half of
the Go team consists of engineers who were hired specifically for that team and had
no previous experience with the company. The injection of perspectives that aren’t
shaded by the history of the company is already sparking heated conversations
(debates) about best practices and the next targets for refactoring/rewriting.

 Software developed by both teams supports the business of being a global logistics
company. The teams write sales-enablement software, to permit shippers and receivers
in different countries to handle manifests and paperwork. They write inventory-tracking
software to keep track of everything in transit, waiting in customs, or waiting transship-
ment. They write software to predict future demand so the company can improve rout-
ing of carrier assets to meet those demands.

 The Java software drives most of these development cases, which grants the Java
Spring Boot software engineering teams a lot of political weight in management meet-
ings. Meanwhile, the Go engineering teams are seeing a greenfield in which to radi-
cally update this company’s software practices. Everyone agrees that having a single
telemetry pipeline enables many business decisions, but there are strong disagree-
ments on how best to make that so. Enter negotiation.

NEGOTIATING STANDARD FORMATS TO MAKE A PLAN FOR CHANGE

This section talks about bringing together the elements from the preceding three
sections to decide on the official telemetry formats. Because we need to make a
decision, it’s time to start the negotiation process. Technical requirements are only
part of how this decision is made; negotiations between business units and teams are
how the standards documentation is approved. This process is where Conway’s Law
(http://www.melconway.com/Home/Conways_Law.html) comes into play:

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization's communication structure.

A telemetry system seeking to connect diverse parts of an organization will likely mirror
the communication structure of the organization. A technical organization with two
teams that don’t talk to each other is unlikely to share a telemetry system. Conversely,
someone seeking to create a telemetry system for teams that don’t communicate will also
have to create those interteam communication links as part of the process. Where you
get new communication links, you also need to negotiate how the teams relate.

 When you’re going into a negotiation like this one, which can involve a couple of
emails with a co-worker or months of hour-long meetings between product groups,
remember a few key points:

 The goal is to get people using the new telemetry systems. Wrong use is generally better
than no use. Wrong can be corrected later.

 Simple is relative to the observer. What is simple for you can be quite complex for
another team, and the converse is also true. Have empathy for everyone
involved.

http://www.melconway.com/Home/Conways_Law.html
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 Shared understanding of goals and constraints helps everyone toward consensus. Teach,
guide, and then direct the conversation.

 You’re allowed to use more than one telemetry shipping format. You want people using
the standards, and allowing more than one format lowers the barrier to adop-
tion facing telemetry producers.

Our global logistics company that’s seeking to add a stream-based pipeline to its
telemetry systems and get the AWS-based Go systems into the pipeline faces a few
problems:

 The Java Spring Boot software engineering teams are large, distributed, and
have the weight of history.

 The Go software engineering teams are in a true greenfield, allowed to try new
things in the hope of spurring innovation.

 Although some members of the Go teams came from the Java side, many have
no experience with the Java side or with much of the rest of the company;
therefore, they have no attachment to the way things have always been done.

Already, we can see a probable communication issue between the two software engi-
neering teams. Part of this problem comes from the deliberate isolation surrounding
the Go teams, put there from the start to avoid biasing team members through expo-
sure to existing processes. Another part of the problem is the emergence of radically
different approaches to developing software.

 At the same time, forces are working in favor of a unified telemetry pipeline. The
Go team was not set up in a vacuum; people were specifically hired to be on that team,
so an executive somewhere had the budget approved to try this new idea. The use of
new infrastructure, AWS Cloud instead of physical data centers, also represents
approved budget and executive buy-in. Although the Java teams are large and have a
lot of political sway, management has shown clear, obvious intent to explore new ways
of achieving the goals of the business. To start, let’s look at the Java team’s existing
telemetry pipeline in figure 4.12:

1 Ships from code into a Syslog process running on the same host.
2 The host Syslog forwards to a central Syslog, with the Spring Boot telemetry emis-

sions encoded in the message part of Syslog. For Cisco and VMware, vendor-
defined telemetry is encoded as the message part.

3 The central Syslog, far more complex than the host-based Syslog processes,
takes Syslog-encoded telemetry and sends it into an Elasticsearch cluster.

One index is used by the Operations team, and the Spring Boot application
development teams use a second index.

4 A metrics shipper utility consumes a stream of metrics and sends them into a
time-series database (InfluxDB).
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This example contains a lot of sophistication, for all that the emission from code is
simple. Now look at the telemetry pipeline that emerged in the Go engineering team
and at figure 4.11 again (reproduced here as figure 4.13):

 The Go application emits and ships directly into a distributed tracing repository
based on Jaeger; logs are viewed from AWS consoles.

 The Go application also emits and ships directly into a metrics system based on
Prometheus, which (like Kubernetes) is a member of the Cloud Native Com-
puting Foundation, so the two systems work together easily.

 The cloud operations team has written a shipper to send AWS CloudTrail logs into
the Elasticsearch instance operated by the physical data center’s operations team.
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Figure 4.12 Java Spring Boot shipping pipeline, 
showing how telemetry moves through to storage. 
This architecture demonstrates extensive collaboration 
between the Java and operations teams.
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Figure 4.13 The premerger telemetry 
pipeline for the AWS-based engineering teams. 
Centralized logging is not centralized, with the 
software and operations teams sending their 
logs to different places. The software team uses 
metrics and distributed tracing, shipping directly 
to storage from the Go software.
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In some ways, the Go application team’s telemetry pipeline is both simpler and more
complex than the Java team’s. The pipeline is simpler in that the pipeline is definitely
shorter; the Go application is emitting directly into the repositories. It’s more com-
plex in that the Go team is using a new telemetry technique, distributed tracing.

 With the goal of unifying these two systems and modernizing their telemetry han-
dling overall, the Java and Go teams begin negotiating. During architectural analysis,
the central Syslog service for the Java environment is identified as a key player in a future
architecture because it already centralizes the emissions of the Java and hardware-driven
environment. Also, both teams are taking a similar approach to metrics even though
they’re using different platforms for the same goal (InfluxDB and Prometheus).

 Given the desire of management to modernize, both teams look at their overall
telemetry handing architectures and consider how to handle their different opera-
tional patterns. They settle on a stream-based system, as described in section 3.1.2
(and section 4.1.1), as a capable way of handling these different use cases. The pro-
posal requires a few changes:

 The Go applications will ship directly into a topic on the stream dedicated to
the Go environment.

 The Java teams will continue to emit into Syslog, with a plan to move the Java
applications slowly to emitting directly into a topic on the stream.

 The central Syslog server for the operations and Java Spring Boot teams will
emit into two separate topics: one for the Java application and one for the use
of the physical operations team.

 The cloud operations team will create a shipper that sends CloudTrail events
into the same topic used by the operations team.

 All four teams—Java engineering, Go engineering, operations, and cloud
operations—will create shippers that consume events from their topics and
send processed events into the storage of their choice.

 Both the Go and Java team’s shippers will emit metrics into the same metrics
system based on the time-series database InfluxDB, due to the fact that
InfluxDB has already been scaled up to handle the Java team’s much larger
load. InfluxDB will run with the Prometheus connector to support the Go team.
(Sorry, fully open source Prometheus.)

 The Jaeger distributed tracing tool used by the Go team will remain in place but
will be fed by the Go team’s shipper rather than directly from the Go applications.

Along the way, the teams had much discussion about telemetry formats. Because the
architecture allows dedicated topics to support dedicated shippers for each team, the
Java and Go architecture teams do not need to have the same format. Both teams support
the same metrics system, so both shippers need to send telemetry in the same format
to InfluxDB.

 Due to their extensive existing logic for parsing Syslog-encoded messages, the telem-
etry format used by the Java and operations teams will continue to be Syslog-encoded
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strings on the topic. But excitement about future ability to customize the format has
energized the Java team to rewrite its logging functions to emit directly into the topic
and experiment with object-encoding formats such as JSON.

 On the Go team, there is some resistance to shipping to a stream rather than con-
tinuing to ship directly to storage. But when it is pointed out that the stream architec-
ture makes for far more resilient telemetry systems in the event of a hack, grumbling
subsides to mere background levels. The telemetry encoding format for the stream
was driven by the telemetry format of the distributed tracing tool, which is JSON; for
simplicity, the Go team elected to pass all telemetry as JSON on the stream topic.

 When the implementation is done, the logistics company’s business intelligence
unit notices the new data stream and asks to get a feed of metrics. Perhaps both teams
would consider emitting new metrics to ease the BI team’s number-crunching. The
goal of enabling better business decisions has been accomplished. Figure 4.14 shows
the final architecture and the shipping formats.
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Figure 4.14 A large unified telemetry pipeline with four teams participating, using three telemetry 
shipping formats. Using multiple formats allows this telemetry system to support differing needs and 
survive future demands.
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4.2.3 Converting Syslog to JSON or other object-encoding formats

This section addresses the need to convert standards-based Syslog to JSON or other
object-encoding formats. Syslog is an ancient format by the standards of Internet time.
(Being born around 1980 has that effect.) But that stability means that Syslog is the
one format that most infrastructures that aren’t 100% public cloud provider services
have at least some capability of handling. Like the logistics company in section 4.2.2,
many companies that use hardware need to transform Syslog into something else as
part of the shipping pipeline.

 Listing 4.4 demonstrates a minimal config file for Syslog-ng, using a method that
the logistics company from section 4.2.1 used to connect its Syslog server to the
Apache Kafka-based stream.

@module mod-java     
@include scl.conf   

source s_syslog {
  syslog(                                
    ip(fdb5:48de:c615:15::192)          
    transport(tls)                       
    tls(                                
      peer-verify(require-trusted)     
      ca-dir('/etc/pki/home-ca/')     
      key-file('/etc/pki/syslog.key')     
      cert-file('/etc/pki/syslog.pem')   
    )
  );
};

destination d_kafka {
  kafka (
    client-lib-dir("/opt/syslog-ng/lib/syslog-ng/java-modules:
       ➥ /[path to kafka libs]")
    kafka-bootstrap-servers(
       ➥ "[fdb5:48de:c615:15::42]:9092,
       ➥ [fdb5::48de:c615:b2::42]:9092")  
    topic("${PROGRAM}")   
    template("$(format-json --scope rfc5424 
       ➥ --exclude DATE --key ISODATE)")    
  );
};

Listing 4.4 configures a single input and a single destination. The use of the ${PRO-
GRAM} macro in the topic configuration allows events to be sent to different channels/
topics based on the content of the Syslog PROGRAM field. In the context of the example
of section 4.2.2, the Java Spring Boot team’s new shipper would listen to the topics with
their program names. The template parameter in the d_kafka section re-encodes the
standard Syslog format into one parsable by something expecting JSON. Figure 4.15
demonstrates this telemetry flow.

Listing 4.4 Syslog-ng shipper for JSON to Kafka

These two are required to 
use the Kafka exporter.

Sets up a Syslog 
listener using TCP 
over IPv6 and TLS

Hints on where to find the Kakfa servers

Topic is the channel to publish events to.

Reformats log lines into JSON-encoded strings
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Another method for making this translation involves using a separate utility. Elastic’s
Filebeat and Logstash utilities both allow reading files generated by Syslog and trans-
forming them into other formats, such as JSON. The format that Filebeat uses will be
similar to the format produced by Syslog-ng, in that the message component of Syslog
will also be in a JSON field labeled "message". Logstash has the ability to further
transform and parse the Syslog files before passing them on to the next stage in the
pipeline. The following listing is a minimal Logstash pipeline configuration that
ingests a single Syslog-formatted file, parses it, conditionally reparses the message field
if the program field is right, and sends it to the same Kafka topic as listing 4.4. Because
this code involves parsing strings, here is an example of Syslog output to keep in mind
when reading the code:

Feb 19 02:28:22 ec2-host java_metrics[1212]: {"metric_name": "pdf_pages", 

➥ "metric_value" : "2" }

input {
  file {
    path => "/var/log/syslog"
    mode => "tail"    
    type => "syslog"    
  }
}

filter {
  if [type] == "syslog" {
    dissect {
      mapping => {
        "message" => "%{time} %{+time} %{+time} 
             ➥ %{host} %{program}[%{pid}]: %{syslog_message}"
      convert_datatype => {
        "pid" => "int"   
      }
    }

Listing 4.5 Logstash translating Syslog to JSON and shipping to Kafka

source s_syslog {
  syslog(
    [...]
  );
};

destination d_kafka {
  kafka (
    [...]
  );
};

Syslog 
internals

Kafka
topic

Feb 19 02:26:26 jws02-1.euc1.prod.internal sapps[14223]: 
Unexpectedly exiting framulator after 165542 iterations

{"TAGS":".source.syslog","SOURCEIP":"192.0.2.1","SOURCE":"syslog", 
"PROGRAM":"sapps","PID","14223","PRIORITY":"warn",
"MESSAGE":"Unexpectedly exiting framulator after 165542 iterations", 
"HOST":"jws02-1.euc1.prod.internal","FACILITY":"local07", 
"ISODATE":"2023-02-19T03:26:26.000+0:00"}

Figure 4.15 The process of translating a Syslog-formatted message sent by a Java web host 
into a JSON-formatted message sent to the Kafka topic. This example translates a software-
issued Syslog line, but the same process applies to hardware-issued Syslog lines.

‘tail’ to follow updates to the file

Used in conditionals later

Process Identifier (PID) is always integer.
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    date {
      match => [
        "time", "MMM dd HH:mm:ss"   
      ]
    }

    if [program] == "java_metrics" {
      json {
        source         => syslog_message
        tag_on_failure => "_bad_java_metrics"
        remove_field   => [ "syslog_message" ]    
      } 
    }
  }
}

output {
  if [program] == "java_metrics" and
     "_bad_java_metrics" not in [tags] {
    kafka {
      topic_id          => "%{program}"
      codec             => "json"    
      bootstrap_servers => 
         ➥ "[fdb5:48de:c615:15::42]:9092,
         ➥ [fdb5::48de:c615:b2::42]:9092"
    }
  }
}

Logstash config files have three stages in their internal pipeline: Inputs > Filters > Out-
puts. Inputs receive emitted telemetry. Filters transform telemetry. Outputs ship
telemetry. Filters run in the order in which they appear in the file, so our dissect {}
block parses and extracts several fields that are used later:

 time—Used by the date {} filter to set the event’s timestamp to match that of
the Syslog line

 program—Used in conditionals to determine which fields get further processing
 syslog_message—Used inside a conditional, where it is parsed for JSON data

A date {} filter is extremely useful in cases where the timestamps in the data coming
into the filter are significantly different from now. In the case of the shipper used by
the global logistics company, the timestamps usually are close to now. But when the
Logstash process was restarted and Syslog continued to send data to the file, Logstash
would set correct timestamps on the events coming in.

 The next block is a conditional, applying the json {} filter only if the parsed pro-
gram field is the right value. With the Syslog parser right before the code, after this fil-
ter is run, the event would have the metric_name and metric_value fields populated.
Then the syslog_message field is dropped from the event, because it contains only
the JSON string and isn’t useful otherwise. If JSON parsing fails, Logstash sets a spe-
cific tag on the event. To demonstrate how parsing works, figure 4.16 walks us through
the parsing stages.

Extracts the timestamp of 
the event from the event

Drop syslog_message after 
we’ve extracted from it.

Ensures that the event is JSON-
coded when sent to Kafka
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Feb 19 02:28:22 ec2-host java_metrics[1212]: {"metric_name": "pdf_pages", "metric_value" : 
"2" }

input {
  file {
    path => "/var/log/syslog"
    mode => "tail"
    type => "syslog"
  }
}

{"message":"Feb 19 02:28:22 ec2-host java_metrics[1212]: \{\"metric_name\": \"pdf_pages\", 
\"metric_value\" : \"2\" \}","type","syslog" }

if [type] == "syslog"

dissect {
  mapping => {
    "message" => "%{time} %{+time} %{+time} %{host} %{program}[%{pid}]: %{syslog_message}"
  convert_datatype => {
    "pid" => "int" 
  }
}

{"message":"Feb 19 02:28:22 ec2-host java_metrics[1212]: \{\"metric_name\": \"pdf_pages\", 
\"metric_value\" : \"2\" \}","type":"syslog","time":"Feb 19 02:28:22","host":"ec2-host", 
"program":"java_metrics","pid":"1212","syslog_message":"\
{\"metric_name\": \"pdf_pages\", \"metric_value\" : \"2\" \}" }

date {
  match => [
    "time", "MMM dd HH:mm:ss"
  ]
}

{"@timestamp":"2023-02-19T02:28:22.00","message":"Feb 19 02:28:22 ec2-host 
java_metrics[1212]: \
{\"metric_name\": \"pdf_pages\", \"metric_value\" : \"2\" \}","type":"syslog",
"time":"Feb 19 02:28:22","host":"ec2-host","program":"java_metrics","pid":"1212", 
"syslog_message":"\{\"metric_name\": \"pdf_pages\", \"metric_value\" : \"2\" \}" }

if [program] == "java_metrics"

json {
  source         => syslog_message
  tag_on_failure => "_bad_java_metrics"
  remove_field   => [ "syslog_message" ]
}

{"@timestamp":"2023-02-19T02:28:22.00","message":"Feb 19 02:28:22 ec2-host 
java_metrics[1212]: \
{\"metric_name\": \"pdf_pages\", \"metric_value\" : \"2\" \}","type":"syslog",
"time":"Feb 19 02:28:22","host":"ec2-host","program":"java_metrics","pid":"1212", 
"metric_name":"pdf_pages","metric_value":2 }

output {
  kafka { }
}

Adds year to timestamp because the Syslog 
protocol does not have a year in the format

Internally creates a hash structure but does 
not yet JSON-parse our log line

Adds metric_name and metric_value 
to our event and drops syslog_message 

Breaks apart Syslog-formatted log line to 
create more fields on our event

Figure 4.16 Parsing flow for the Logstash config in listing 4.5. The final JSON block is sent into a 
Kafka topic, which will be parsed by a later Shipping-stage system and eventually inserted into a 
database. This example illustrates enrichment (extracting details from telemetry), which will be 
covered in detail in chapter 6.
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The output block uses both the program field and the tag set by the json {} filter to
determine whether the event will be sent on to Kafka. Like the Syslog-ng example
before, the Kafka topic_id is set to the value of the program field.

4.2.4 Designing with cardinality in mind

This section discusses the trade-offs between rich telemetry and maintainability. Cardi-
nality specifically, the number of unique combinations the fields in the index may pro-
duce. If there are two fields A and B, where A has two possible values and B has three
possible values, the cardinality of that index is A * B, or 2 * 3 = 6. Cardinality has a sig-
nificant impact on search performance no matter what data storage system is being
used. Chapter 14 goes in depth about cardinality, but the topic needs to be considered
in selecting telemetry formats. The Syslog file format has five fields, one optional, as
shown in figure 4.17.

Of these five fields, two are going to be unique: the timestamp and the message. Sys-
log messages, with their five fields, create quite high cardinalities, so the data storage
system holding Syslog messages will need to handle high cardinalities. Some data-
bases, such as Elasticsearch, are designed for this sort of full-text searching. Others,
such as time-series databases like InfluxDB and Prometheus, end up being terrible at
handling such high cardinalities.

 Elasticsearch encounters a different but related problem when the number of fields
in an index grows large or when most events don’t have all available fields. The prob-
lem comes from how Elasticsearch works; every event in an index gets every field on it,
but empty fields hold a null value. If you have an event with 15 fields, but 15,000
fields are available in the index, that event will have 15 fields with defined values, and
14,985 fields with null values. It is entirely possible that the null fields will take up
more storage space than the 15 fields with defined values.

 If you have an Elasticsearch index storing Syslog-formatted data, every event in the
index will have all five fields defined. The Elasticsearch index with events like that will
likely store compactly, at the cost of having to rely on string searches within the message
field to find details about what happened. In the metrics example in section 4.2.3,
looking for metric_name and metric_value in such a Syslog-formatted Elasticsearch

Feb 19 02:28:22 ec2-host metrics[1212]: {"metric_name": "pdf_pages", "metric_value" : "2"} 

Timestamp Hostname

Program
PID

(Optional)

Message

Figure 4.17 The five fields of a Syslog-formatted string. The process identifier (PID) 
is optionally encoded in brackets attached to the Program field to enable you to tell 
emissions apart from multiple executions of the same program.
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index would rely on string searching, which is relatively inefficient compared with
looking for a metric_name field directly in events.

 The Logstash example shown in listing 4.5 and figure 4.17 potentially adds
metric_name and metric_value to the event as it passes through the filter stage of
the Logstash pipeline. But not every event passing through is a metric or will get those
values, so an Elasticsearch index containing everything that passes through that
pipeline will have events with and without those two fields. Balancing the slight cost of
null-valued fields against the tremendous performance improvement in searching is
a decision you will need to make, but here are a few pointers to help you:

 If your traffic is dominated by a single generator of telemetry, such as more
than half your overall events, your telemetry storage systems will likely behave
better if telemetry emitted by that generator is sent to a separate index that’s
not shared with other telemetry. (See section 14.2.2 for more on this method.)
Telemetry will be stored efficiently for both the high-rate system and the rest,
and you will save money and space.

 If you have the ability to modify telemetry fields within the Shipping stage, tak-
ing steps to ensure that different telemetry formats overlap on fields will create
some efficiencies. (See section 14.2.1 for more on this method.) Many logging
formats have a field for priority, so if you can get all the priority fields into the
same data type, you will save field counts.

 If you have a telemetry generator that produces huge numbers of fields, per-
haps because it emits in an object-encoding format, sending that telemetry to a
single index will isolate the performance hit to that specific production system.
(See section 14.2.2.)

 If your large telemetry-producing systems are software that your organization
develops, taking the time to work with the software engineering teams for your
organization’s software to teach them how to optimize their telemetry systems
can help reduce field sprawl. (Chapter 12 and section 14.2.1 address this topic
in detail.)

Summary
 The Shipping stage in a telemetry pipeline is the stage that receives telemetry

from the Emitting stage, optionally modifies the telemetry, and stores it for later
presentation in the Presentation stage.

 The Shipping stage often acts as a translator between the telemetry format
received from the Emitting stage and the telemetry format used by the Presen-
tation stage.

 A Shipping stage can be anything from a single function in the code to an
entire multisystem infrastructure with dedicated engineers.

 Collecting telemetry from log files is one of the oldest telemetry system prob-
lems, and as a result, there are a lot of off-the-shelf ways to solve it.
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 Several open source and open core agents will move telemetry from log files
into something more useful, if not into storage.

 Among the hardest problems in telemetry systems are the analysis and presenta-
tion of telemetry, so companies can afford to provide log shippers for free.

 Organizations that don’t write software still use telemetry systems, making them
look more like business telemetry. Such organizations often use SaaS platforms
by preference because they’re not in the business of running data centers or
managing software.

 Most Shipping-stage infrastructures pass telemetry around as strings, which may
be encoded in any of several formats, including delimited formats (such as CSV
lists and key-value pairs) and object-encoding formats (such as JSON, XML, and
YAML).

 Using protocol buffers (protobufs) is another way to encode (serialize) com-
plexly formatted telemetry. This format differs from JSON, XML, and YAML in
that it is a binary format. Unlike string-based formats, protobufs require both
the encode and decode systems to know the format of a protobuf.

 Picking a telemetry format requires understanding the technical capabilities of
the production systems and existing telemetry systems, as well as the communi-
cation capabilities of the teams that maintain every component.

 You are allowed to support more than one telemetry format. The goal is to have
the telemetry used; being prescriptive about format can cause some teams not
to use the telemetry systems and build their own instead.

 The Syslog format is defined by RFC and is considered to be stable. Hardware
vendors allow telemetry emissions in Syslog format because that format is
standardized.

 Converting Syslog-formatted telemetry to other formats is often done in the
Shipping stage.

 Cardinality is the measure of database index complexity, computed by multiply-
ing the number of unique values in a field by the number of unique values in
other fields.

 Certain telemetry storage systems, such as Elasticsearch, are built to handle
high-cardinality data and are well-suited to centralized logging systems.

 Other telemetry storage systems, such as the metrics time-series databases
InfluxDB and Prometheus, handle high cardinality poorly.

 When you’re using a high-cardinality system, you must make trade-offs between
the number of available fields, the size of the index, and search performance.
Fewer fields perform better.

 If your telemetry system involves data generated by software that your organiza-
tion built, teaching the software engineers how to reduce field sprawl will help
the organization save telemetry handling costs.
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The Presentation stage:
Displaying telemetry

The Presentation stage is the last stage of the telemetry pipeline and the one that
most people in the technical organization (and outside it) use to interact with
telemetry. For telemetry SaaS companies, the Presentation stage is what sells their
products. This chapter teaches how telemetry is presented in each of the four
telemetry system styles covered in previous chapters:

 Section 5.1 covers metrics systems and how charts and aggregations are
produced.

 Section 5.2 covers centralized logging systems and what features a good pre-
sentation system for centralized logging should have.

This chapter covers
 The function of the Presentation stage

 How to aggregate and display metrics data

 Features needed in centralized logging and 
security systems

 How correlation drives distributed tracing
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 Section 5.3 covers security systems and their specialized presentation needs.
 Section 5.4 covers distributed tracing systems and how correlation drives the

value it provides.

By the time telemetry has reached a Presentation-stage system, it has already flowed
through the Emitting and Shipping stages of the telemetry pipeline, shown in figure
5.1. Production systems first send telemetry through the Emitting stage, which per-
forms the initial formatting of telemetry for processing (chapter 2). Telemetry flows
through the Shipping stage, which optionally further transforms it for storage in the
Shipping-stage storage systems (chapters 3 and 4). Finally, people looking to support
decision-making use Presentation-stage systems, pull telemetry from Shipping-stage
storage, and display it.

The job of Presentation-stage systems is to filter, transform, aggregate, and optionally
provide complex analysis on Shipping-stage data, all to produce the tables, charts,
dashboards, and reports that people need to make decisions. Increasingly,
Presentation-stage systems are gaining the ability to define real-time alarms, which are
used to notify on-call rotations of critical events as they happen. When a table, chart,
dashboard, or report is requested, most of the transformation work happens while the
person waits. For this reason, the engineering behind Presentation-stage systems is
among the most complex in the entire telemetry pipeline—so complex, especially in
the case of distributed tracing, that open core (open source software that requires a

Telemetry
markup

Adding context-related 
details to telemetry to
improve understanding
of what telemetry is 
telling you  

Telemetry
enrichment

Transforming telemetry
to bring out details 
embedded within it,
such as deserializing 
JSON or parsing 
strings  Presentation stage

Telemetry pipeline stages

Shipping stage

Emitting stage

Accepts telemetry from
production systems
and prepares it for use 
inside the telemetry
pipeline  

Processes, transforms,
and ultimately stores 
telemetry for use in the
Presentation stage  

Presents telemetry to
people to support
decision-making,
drawing on Shipping-
stage storage    

Figure 5.1 The telemetry pipeline stages with the Presentation stage last. The Presentation stage 
consumes storage from the Shipping stage and presents it to people to support decisions. The 
Presentation stage has access to all the Shipping-stage storage, allowing it to enrich telemetry 
beyond what the previous two stages were able to provide 
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paid support plan and licensing to enable most of the features) and SaaS providers
dominate the space.

 Because the Presentation stage is how humans consume telemetry, having the right
presentation systems for the decisions that need to be made is important. For many peo-
ple in a technical organization, the Presentation-stage systems will be the only place
they will interact with the telemetry pipeline. In many ways, the Presentation-stage sys-
tems are the deliverable “service” of the telemetry ecosystem. This chapter covers the
major use cases of telemetry, the sort of presentation systems each telemetry style com-
monly uses, and the desirable Presentation-stage features to look for in each style.

 The Pillars of Observability (logs, metrics, and traces) are made useful through
these Presentation-stage systems. When all three Pillars are used together, using pre-
sentation systems that are well-suited to their task, your technical organization will be
best positioned to learn how your system is operating.

5.1 Displaying telemetry in metrics systems
This section provides an overview of displaying metrics-style telemetry. Metrics systems
are dominated by numbers, their primary data type, and use a small number of text
fields to provide searchability. The use of an easily compressible form of data—
numbers—makes metrics-style telemetry among the cheapest to store for long peri-
ods. In organizations that have been operating metrics-based telemetry systems for a
long time, you are often able to search years into the past.

 Metrics systems are close cousins (if not directly part of) the monitoring systems
used for real-time alerting of on-call rotations. Alerts are typically set with a threshold
value, beyond which (or below which) a person is paged to deal with a problem.
Where charts and graphs are used for tracking behavior over time, alerting uses the
same calculations to come up with a right now metric that will be compared with the
threshold. The statistical techniques I cover in this section apply equally to alerts:

The perils of Presentation-stage perceptions
For better or worse, most people in a technical organization consider your Presentation-
stage systems to be the entire telemetry system because those systems are where
they interact with the telemetry system as a whole. This perception is great for most
people, but it does have some unfortunate side effects for operators.

You see, when management is happy with how the Presentation-stage systems are
working, it’s harder to get resources to fix problems in the Emitting and Shipping
stages. If the volume of telemetry you’re handing has increased due to growth (a great
“problem” to have), the utter heroics you’re doing to keep the Shipping-stage systems
running can go unseen so long as the Presentation systems are still behaving.

As with any platform or largely hidden service, you have to do more work to make decision-
makers aware of how problems cascade into the revenue-driving systems. I’ve spent
a career in platform-like systems, so I have long experience with this problem.

https://cve.mitre.org
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 Section 5.1.1 gives an overview of producing graphs and charts from metrics
telemetry and the common features of successful metrics presentation systems.

 Section 5.1.2 delves into the telemetry transformation technique that most met-
rics display systems use: the aggregation functions.

 Section 5.1.3 ties the concepts from the earlier two sections with the pdf_pages
metrics function written in various styles in chapters 2–4.

For more information about on-call and alerting in general, see Operations Anti-Patterns,
DevOps Solutions, by Jeffrey D. Smith (Manning, 2020; http://mng.bz/RKED).

5.1.1 Making pretty pictures with telemetry

This section covers the most charismatic display of metrics: the graph, as shown in fig-
ure 5.2. Squiggly lines in a box have been in business reports since before the inven-
tion of the computer, and computers certainly made them easier to generate. When
you look at a graph, your brain will plot (possibly inaccurate) trends and identify pat-
terns in your data. In the absence of any other kind of advanced analytics, a graph can
stand alone and be quite informative.

The ability to create graphs is required for any metrics system. If your telemetry system does
not provide that ability, people will find a way to make the charts anyway. Perhaps your
engineers will export the numbers from the telemetry system, import them into
Microsoft Excel (or Google Docs), and make a graph there. Excel has been the
numerical Presentation stage of business processes going back decades; do not
imagine that software engineers are any different if Excel is the only tool that will give
them what they need.

Figure 5.2 An example of charted metrics displaying the HTTP hit-rate split by application and an unusual 
event that deserves investigation. Showing telemetry often reveals features that would be hidden in 
another format, such as a report. Here, the spike is obvious at a glance. Displaying data graphically allows 
the human analytic system to take some of the load away from the display automation.

http://mng.bz/RKED


111Displaying telemetry in metrics systems

 For hardware systems, access to the Emitting stage is limited to operations and other
hardware-maintenance teams. For software systems, software engineering teams are the
only ones with access. For Shipping-stage systems, the teams that interact with them are
again limited to the operations and software engineering teams maintaining the
pipeline. Anyone in the technical organization is likely to interact with Presentation-
stage systems, however. This broad use provides constraints for metrics-style pre-
sentation systems. The most successful metrics presentation systems have common
features:

 They allow a wide variety of users to create charts and graphs, enabling decision sup-
port or troubleshooting for any team that needs it.

 They have guided user interfaces for building the queries behind charts and graphs, so
users don’t have to memorize query syntax and can build complex queries
easily.

 They have the ability to organize collections of charts and graphs, often called dash-
boards, to provide at-a-glance views of a decision point that a team needs.

 They have the ability to organize dashboards, making locating the right ones easy.
Otherwise, you get a big pile of dashboards that’s hard to work with.

 They allow the creation of ad hoc dashboards without saving, permitting a user to
investigate something immediately without having to clutter the dashboard list-
ings with a dashboard that will be used once.

Dashboards that a single person uses can take any form and be successful so long as
that person gets what they were looking for. Dashboards that are used by more than
one person, or that are part of routine reporting and review supporting engineering
and support goals, need to be usable by all users. Here are a few guidelines for build-
ing dashboards that support multiple users:

 Beware of how dark-/light-mode themes affect contrast. If the presentation system sup-
ports changing background colors, pick colors so that users with dark and light
backgrounds will be able to see the lines. Yellow pops on black but is nearly
invisible on white, for example, and dark blues show up beautifully on white but
disappear on black.

 For dashboards with multiple charts, put the most important charts at the top. People
don’t like to scroll.

 Beware of information density. If you have too many charts on a page, users who are
unfamiliar with what the dashboard is displaying won’t know what to look at.

If you’re interested in building beautiful, informative dashboards, here are a few
resources that will help:

 For a focus on operations, DevOps, and SRE dashboards, see chapter 4, “Data
instead of information,” in Jeffrey D. Smith’s Operations Anti-Patterns, DevOps
Solutions (Manning, 2020; http://mng.bz/2zj9).

http://mng.bz/2zj9
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 For information on using graphs and visualizations to find trouble spots, see
section 3.2, “Spotting problems using graphics and visualization,” in Nina
Zumel and John Mount’s Practical Data Science with R, 2nd ed. (Manning, 2019;
http://mng.bz/1Ajy).

 For a deep dive into the theory of visualizations in general, see Corey L.
Lanum’s Visualizing Graph Data (Manning, 2016; http://mng.bz/PaWg).

 For advice on how to approach metrics and charting in the context of manag-
ing an agile team, see chapter 7, “Working with the data you’re collecting: The
sum of the parts,” in Christopher W. H. Davis’s Agile Metrics in Action (Manning,
2015; http://mng.bz/Jv1P).

5.1.2 Feeding the graphs with aggregation functions

This section covers the techniques metrics systems use to enable simple statistical anal-
ysis over sets of data, allowing people to identify trends that may be hidden in the raw
data. For time-series data, you pick a period of time and select an aggregation func-
tion to be run on the resulting metrics to yield a number. An aggregation function is a
mathematical function that returns a single number when run on a set of numbers.
Presentation-stage systems use aggregation functions when each pixel in the graph
would otherwise represent more than one item of collected data. Aggregation func-
tions yield an aggregated value that can be graphed or used in other analysis. Here are
some simple aggregation functions that most metrics display systems can support, sev-
eral of which are used in section 5.1.3:

 minimum—The smallest number in the period is returned by minimum.
 maximum—The largest number in the period is returned by maximum.
 mean—The average number (arithmatic mean) in the period is returned by mean.
 median—The exact middle of a sorted list if all the numbers in the period are

sorted from lowest to highest.
 mode—The most common value in the period is returned by mode.
 sum—All the numbers in the period added together represent the sum.
 count—The number of events in the period is returned by count.
 percentile—If all the numbers in the period are sorted from lowest to highest,

and that list is divided into equal parts, a percentile is a specific equal part of
that group. The median is the 50th percentile.

Each of these aggregation functions tells you something a little different about the
telemetry it is aggregating. You can also use aggregation functions to smooth teleme-
try that is noisy, such as turning a set of telemetry containing processing time for a
function from unchartable noise to a smooth line. Figure 5.3 demonstrates smooth-
ing, with the dark line being a running mean, the average of a consistent period of
time before each pixel of the line, of the noisier light line. Shading indicates the area
below the graph and provides contrast to enable users to pick out more details.

http://mng.bz/1Ajy
http://mng.bz/PaWg
http://mng.bz/Jv1P
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Beyond providing simple smoothing, each aggregation function tells you different
things about your telemetry:

 The mean and median are different ways to find the middle of your telemetry in
a given period.

 The 50th percentile is equivalent to the median in the same way that the 0th
percentile is equivalent to the minimum and the 100th percentile is equiva-
lent to the maximum.

 If the telemetry has a long tail—such as a response-time metric in which most
values are between 0.5 and 1.5 but a tiny number of events oozes out to 30—the
maximum value may not be useful, but the 95th percentile may better capture
the top edge of the interesting telemetry.

 Displaying the 5th, 50th, and 95th percentiles gives you a better feel for the
shape of your telemetry than a simple mean/median line.

WARNING Beware of further aggregating aggregated data, because that tech-
nique almost always leads to lies. Wherever possible, work on raw values,
because they will tell you accurate information. If the data you’re working
with has already been aggregated once, unless you take care to pick an appro-
priate function, subsequent functions turn what you see into lies. A sum func-
tion on data that has already had a sum run on it will be accurate, but running
a sum on data that has been run through a mean function will be lies. If you are
working with preaggregated data, a least-harm approach is to use the same
aggregation function for data that has already been through an aggregation
function. Summing your sums is safe, but anything else will be lies—lies that
will look kind of like your data but won’t be statistically valid. I’ve lost count of

Figure 5.3 Example of using aggregation functions to smooth lines, with the dark line being a smoothed 
version of the light line, showing the overall trend in temperature. Pairing noisy data with smoothed data 
gives the viewer more context as to what is happening and the overall trends. If you’ve ever added a 
trend line in Excel, you’ve provided a form of smoothed line.
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the number of charts I’ve had to fix because they used a mean function on a
sum, and the person who asked for help wondered why expanding the chart
to one month from one week didn’t increase the charted numbers. Section
17.2 covers this problem in more detail.

Some presentation systems also offer additional functions that can provide predic-
tions of the future or handle special types of data. These additional functions vary
with presentation systems, but two deserve a closer look: derivative and spread.

 Derivative gives you the rate of change between two points on the graph. Derivative is
most useful for telemetry such as disk space, where the reported value is a high number
every time it is polled or a metric that accumulates value over time. For metrics such as
disk space, a graph showing how much space is left on a volume is interesting on its own,
but a derivative function will allow you to produce a graph showing how fast that volume
is filling. A graph displaying the rate of change will help make spikes far more visible.

 Spread gives you the difference between the minimum and maximum values in a given
period. Functionally, spread is the minimum aggregate subtracted from the maximum aggre-
gate. Spread is a useful function for telemetry that normally flows within a narrow range,
when you want to draw attention to events for which that narrow range doesn’t hold true.

 Aggregation functions aren’t useful only in the Presentation stage; they’re also use-
ful during the Shipping stage as part of an aggregation policy. Section 17.2 covers
building an aggregation policy in a way that will retain statistical validity when used in
Presentation-stage systems.

5.1.3 Using aggregations with pdf_pages
In chapters 2–4, we built Emitting and Shipping stage components to handle metrics
coming from a function with the name pdf_pages. The production systems use the
Emitting-stage component from listing 2.3 to write to the standard output (stdout)
indicating the number of pages that a function named pdf_pages processed. A Shipping-
stage component reads this file and the metric (see section 4.1.1), and sends it to a
database. Figure 4.6 demonstrates this architecture, which is reproduced here as figure 5.4.

Figure 5.4 Emitting and shipping architecture producing the telemetry behind the pdf_pages metrics 
charts. Telemetry is emitted from the containerized production code into the standard out. Kubernetes 
sends this telemetry to journald. The Elastic.co program Journalbeat is installed and configured to ship 
journald telemetry directly into Elasticsearch. With our metrics in Elasticsearch, a Presentation-stage 
system will be used to make the next series of figures.

containerd

journald Journalbeat Elasticsearch

Kubernetes (Linux host)

1. Emit to journald.

2. Journalbeat fetches telemetry 
    from journald.

3. Journalbeat ships telemetry 
    into Elasticsearch.

containerd
containerd
containerd
containerd
containerd
containerd
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This section shows you how a group of pdf_pages metrics looks when aggregated with
various functions. Figure 5.5 shows the value of all of our pdf_pages metrics aggre-
gated with a simple sum.

 Figure 5.5 demonstrates a noisy set of data. The number of PDF pages being han-
dled over the graphed hour is highly variable, going from a low point of 134 pages in
one minute to a high point of 418 pages. Showing the total number of pages handled
is interesting, but if we want to know more about the range of pages handled for each
function call, we need to use a different approach. Figure 5.6 shows the same data
with the mean/average function run on it.

Figure 5.5 Demonstrating the sum aggregation function over 60 minutes of pdf_pages 
telemetry, revealing many peaks and valleys. The sum aggregation for a raw count yields the 
total count of pages in this period. By extending the summarization period to 60 seconds, 
we can smooth noisy data as well as show trends over longer time scales.

Figure 5.6 Demonstrating the mean or average aggregation function over 60 minutes of pdf_pages 
telemetry, revealing one version of the middle of the data. There are different versions of “middle” for 
data; mean/average is merely one version. Use mean when you want the numerical average case.
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The mean of PDF pages tells us more about what kind of traffic our pdf_pages
function—which calls our metrics function to emit its telemetry—is dealing with.
Average page counts are between 4 and 5 for the most part. To explore further, let’s
look at what the median, or middle-value, aggregation function tells us in figure 5.7.

Figure 5.7 shows the mean as the light upper line and the median as the darker lower
line. The median line is significantly lower than the mean! The median value is mostly
2, but it sometimes pops up to 3, and there’s a single 1 at 13:52. Because the median
shows us the middle value, having the mean be higher tells us two big things:

 Most of the page counts are between 1 and 2.
 A large population of page counts is rather higher, drawing the mean higher

with them.

To get a better feel for the shape of the pdf_pages data overall, let’s use the percen-
tiles function on the data to generate figure 5.8.

 Figure 5.8 shows four percentiles of pdf_pages, where the 50th percentile line
matches the line from figure 5.7 showing the median. The 95th percentile on this
graph approximates the top end of the page counts handled by our function and
shows that we’re dealing with some high page counts. A common feature of all three
graphs is a low point about 13:52. The sum graph shows a low point then, the mean
showed a low value, the median was a 1 for the only time in the period, but the 95th
percentile was low at that point. We can see how the higher value page counts affect
the graph overall.

 To finish our exploration of the pdf_pages data, let’s introduce a new type of
graph: the heat map. Imagine figure 5.8 without colored lines but with the axis. This

Figure 5.7 Comparing the mean and median aggregation functions over 60 minutes of 
pdf_pages telemetry, with median being the darker line. When the median is lower 
than the mean/average, you know that the data contains some high values.
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bare graph with only the light guidelines breaks the rectangular graph into blocks. A
heat map colors each of those blocks based on the amount of telemetry in that block.
Larger counts get darker colors, and smaller counts get lighter colors. A heat map
based on the pdf_pages data would give us an even better feeling for the shape of the
data. Figure 5.9 demonstrates a heat map for pdf_pages data.

Figure 5.8 Demonstrating the 25th, 50th, 75th, and 95th percentiles aggregation function 
over 60 minutes of pdf_pages telemetry, revealing the rough shape of the data. If in each time 
slice the data is ordered, percentiles show us how that part of the ordered list moves over time. 
When we’re charting multiple percentiles, the change in lines tells us how the shape of the data 
altered over the period displayed.

Figure 5.9 Demonstrating a heat map of 60 minutes of pdf_pages telemetry, showing the 
shape and distribution of the data. Heat maps chart the density of data in each given box, bounded 
by time on the X-axis and in this case count on the Y-axis. Similar to the percentiles example in 
figure 5.8, this example provides a detailed look at the shape of the data during the charted period.
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The line of dark boxes at the bottom of figure 5.9 tells us that the large majority of
metrics generated by our function fits into the smallest page counts. The fact that
median and mode are different, the way they are in figure 5.7, tells us that this result is
likely. The percentiles in figure 5.8 told us that there was a population of high page-
count metrics in the hour, shown by the 95th percentile line. The heat map shows
page counts higher than 50!

5.2 Displaying telemetry in centralized logging systems
In this section, we handle the problem of displaying telemetry in centralized logging
systems. Unlike metrics telemetry, which is mostly numbers, centralized logging telem-
etry is mostly strings. You can definitely produce graphs based on centralized logging
telemetry, which is especially useful for tracking the rates of occurrence for certain
emissions, as I will show you in this section. Most interactions with centralized logging
systems, however, involve digging into context about an event, which requires looking
at strings.

 Centralized logging is the most storage-intensive telemetry system of the systems
presented in this book, and often the most expensive style to use to maintain long
periods of searchable history. Because of this cost, centralized logging systems often
maintain a short period of time in online searchable format—a time most frequently
measured in weeks and days, not months and years. Figure 1.12, reproduced here as
figure 5.10, demonstrates this problem.

Figure 5.10 The four telemetry types and their preferred online retention periods. SIEM systems 
have the longest retention due to external requirements. Distributed tracing achieves its retention 
through the use of statistical sampling. Metrics achieves its duration through aggregations on the 
numbers stored inside. Centralized logging . . . well, it’s just plain expensive, so it gets the smallest 
online retention period.

Metrics

Distributed tracing

SIEM

1y 2y 3y 4y 5y 6y 7y 8y 9y

Centralized logging

Sampled telemetry
Aggregated telemetry
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Metrics and distributed tracing achieve their long retention times through the use of
aggregation and sampling, and SIEM achieves their retention times by being selective
in what it stores and not being allowed to keep data offline. Whereas other styles of
telemetry, such as metrics and distributed tracing, sacrifice flexibility to focus and
optimize for a specific aspect of telemetry, centralized logging is in many ways the catch-all
system that everything flows to if something better isn’t available.

 In spite of storing so much telemetry, it is incredibly unlikely that each individual
item of telemetry will ever be looked at directly. If such telemetry is referenced, it is
most often accessed indirectly in aggregate as part of a trend line of similar events. In
rare cases, one datum among billions contains the key to an investigation, so you’ll be
glad you saved it. Most telemetry that lands in a centralized logging system is sent
there in case it might be needed later. Just in case makes centralized logging incredibly
powerful, but also resource-hungry.

 Being primarily string-based, display systems for centralized logging require assis-
tance from three major sources:

 Additional markup and enrichment in the Emitting and Shipping stages (see
chapter 6)

 Search optimizations found in the databases used for centralized logging (see
appendix A)

 Regular-expression engines in the Presentation-stage system

Listing 4.5 in section 4.2.2 is a basic example of marking up and parsing as part of the
Shipping stage, in that example enriching and parsing Syslog-formatted telemetry to
produce additional fields. You can use the same technique for telemetry that follows
other formats. Chapter 6 goes into detail about that sort of enrichment. In this sec-
tion, we assume that those fields are already present. I cover creating those fields in
chapter 6. The next two subsections help you identify a good presentation system for
centralized logging:

 Section 5.2.1 explains features you want to see in the display system for central-
ized logging.

 Section 5.2.2 provides a walk-through of a full-featured display system.

5.2.1 Selecting needed features in a display system for centralized logging

Display systems for centralized logging systems have a common set of features that have
emerged from both the necessity of using any centralized logging system and from how
many organizations use centralized logging as a catch-all system for telemetry of all
kinds. 
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 To do metrics, display systems need to create visualizations. To do distributed trac-
ing work, display systems must be able to build data tables based on varied and possi-
bly unique search criteria. Centralized logging display systems can be minimally good
enough for those cases, but specialized systems dedicated to metrics and distributed-
tracing use cases will be far more functional. Many technical organizations that want
to diversify their telemetry pipelines will look to their existing centralized logging sys-
tems to fill those roles initially.

 Selecting a centralized logging display system to fill all the needs of centralized log-
ging means picking a display system that supports diverse needs. Software engineering
teams need features to help them drill down to failing code and isolate fault paths.
Support teams need to pick specific failures to draw engineering attention to them.
Operations teams look for infrastructure events that will require their attention. Each
of these different use patterns means that a good display system for centralized log-
ging must have these features:

 Ability to search by field contents—All centralized logging systems I’ve interacted
with have the concept of fields and allow users to build queries by using those
fields. Use of field (searching for priority:"high" versus "high") content will
greatly speed the performance of searches.

 Ability to support complex search logic—Sometimes, all you need is a single string.
At other times, getting what you need requires a complex “If this, then that,
except for these other things, but do include this one thing” kind of statement.

 Ability to customize field display—Events in centralized logging systems may
include tens or even hundreds of fields, displaying each one in a table that
often shows information the searcher doesn’t care about. The ability to custom-
ize a result table to show specific fields allows the searcher to scan the table for
interesting events.

 Ability to save searches and table layouts for later—If you wanted to know something
enough to build a search and table layout, chances are good that you might
need it again. The ability to save the layout for later will save you work in the
future.

 Ability to share saved searches/layouts between users—Sharing searches among users
of the telemetry system allows sharing analysis tools to improve the organiza-
tion’s ability to respond to problems instead of relying on a few skilled searchers
to do the work.

 Ability to share URLs of searches and have the same search and layout come up—
Related to sharing saved searches, sharing improvised or ad hoc searches is crit-
ical during problem response. If the URL of the telemetry display system
doesn’t re-create the search, other responders will have to do more work to see
the interesting results. A good display system will ease this effort.
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 Require a login to use—Centralized logging systems often contain company-
sensitive information and sometimes contain regulated information such as
personally identifiable information (PII). The absolute minimum requirement is
to require authentication and authorization before using the display system.
Chapter 15 covers this security topic in detail.

5.2.2 Demonstrating centralized logging display

In this section, we take a look at a Presentation-stage system that meets all the criteria
listed in section 5.2.1 for the features of a centralized logging display system. Kibana
(version 7 is shown here), published by Elastic.co as part of its Elasticstack series of
tools, provides these features. The example data used here is drawn from section 2.2,
involving a Cisco ASA firewall’s emissions. This example telemetry line is emitted from
the firewall:

Feb 19 02:26:26 asa1.net.prod.internal %ASA1: Teardown of UDP connection

➥ 162121 for outside:1.1.0.0/53 to dmz1:192.0.2.19/59232 duration 0:00:00 

➥ bytes 136

Figure 3.8, reproduced here as figure 5.11, demonstrates the Shipping stage that
delivered events from the Cisco firewall into storage. This section shows how that
Cisco firewall telemetry might be displayed in Kibana, a Presentation-stage system.

SIEM Elasticsearch
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Emits into Syslog

syslog_stream

Inserts into
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from stream.
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Figure 5.11 Shipping pipeline sending firewall 
data to Syslog for eventual display in a Presentation-
stage system drawing from Elasticsearch, from 
which data is displayed. This example demonstrates 
multitenancy, because two separate teams con-
sume the same telemetry for their own needs. The 
security team uses it to populate a SIEM; the net-
work operations team uses it for a centralized log-
ging system stored in Elasticsearch.
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Figure 5.12 demonstrates searching firewall data in Kibana and shows a range of
events that happened on March 22, 2025. All these events are various DNS lookups to
a pair of DNS servers managed by CloudFlare, 1.1.0.0 and 1.1.1.1. Let’s take a closer
look at how this dashboard was created and what else it tells us.

Figure 5.13 points out the search being used here. This example uses a field called
tags created as part of the Shipping stage. Our Shipping-stage systems add a value of
firewall to the tags field for telemetry coming from the Cisco ASA firewalls. Adding
this field and value permits us to look at all our firewall traffic by using a single search
in our Presentation-stage system. Let’s look at what kind of data we get.

 
 
 
 
 
 
 
 

Search terms

Term frequency chart

Selected report fields

Dashboard sharing and access buttons

Figure 5.12 Kibana 7 discovery page demonstrating searching firewall data in a fully featured Presentation-stage 
system for centralized logging. We can select which fields to include in the report, as well as search telemetry, 
select the time scale to search within, and choose buttons for saving and opening dashboards. All these features 
are listed in section 5.2.1 as being desirable.
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Figure 5.14 gives us an example of the kinds of fields that our Shipping stage puts in
the events. The initial log line ingested from the Cisco side is stored in the message
field, which is truncated for space in figure 5.12. Parsing the message field (enrich-
ment) gives us several new fields:

 conn_bytes—The number of bytes transacted in this connection
 conn_duration—How many hours, minutes, and seconds this connection took
 firewall_action—The Cisco log line extracted from the wrapping format
 firewall_conn—A number for this connection
 firewall_proto—The protocol used for the connection (UDP in this case)
 host—The host generating the event
 source_ip—The IP address of the internal resource opening the connection
 source_port—The IP port on the source_ip side of the connection
 source_zone—The firewall zone the internal asset belonged to
 target_ip—The IP address the internal resource opened a connection to
 target_port—The IP port the internal resource connected to
 target_zone—The firewall zone the source_ip belongs in

 
 
 
 
 

Search terms

Figure 5.13 Searching Kibana, using fields to discover firewall-specific telemetry. Kibana 
uses Lucene syntax for searching, demonstrated here. Far more complex queries can be 
produced. The Add Filter button provides an additional method of building search queries.



124 CHAPTER 5 The Presentation stage: Displaying telemetry

The value of the tags field is highlighted because our search field references it.
Kibana provides highlights as a visual cue for the information that was requested from
the search itself. If we want a specific field to be visible in the overall report—as figure
5.12 shows with the source_name, source_ip, target_zone, target_ip, and target_
port fields—we need to add them from the field sidebar, as shown in figure 5.15.

 Next, we refine our search terms to locate unusual DNS activity. Because we have a
field for target_ip, we can exclude known-good IPs. As we saw in figure 5.12, most of
our traffic was to two different IP addresses. Figure 5.16 demonstrates excluding those
two addresses to get at the interesting events.

 
 
 

Figure 5.14 Returned fields for a     
firewall event demonstrating Shipping-
stage enrichment, shown when you    
expand a table line in Kibana. The fields 
here were generated by the Shipping 
stage, which allows our Presentation 
stage to use any of these fields in 
searches. tags: firewall is high-
lighted because it is the current 
search term.
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Selected fields

Displayed fields

Figure 5.15 Selecting fields in the Kibana sidebar makes them columns in the results panel. Columns 
can also be moved right to left and clicked to sort. In this view, the current sort is by Time, but any 
field shown can be used as a sort.

Figure 5.16 Kibana search excluding two well-known IPs to narrow the search to interesting 
results. This example demonstrates using filters to extend an existing search—in this case, 
excluding two IP addresses. With the vast majority of events removed, we are left with the 
ones that deserve our attention.
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With the exclusions in place, figure 5.17 shows a single event that is unusual! Some-
one hit the Google-managed DNS servers instead of our usual ones. This event might
deserve investigation, so we save this chart for later.

 To save this chart for use by our co-workers, we click the highlighted Save button in
figure 5.12. Clicking Save brings up a dialog box that allows us to name the chart, as
shown in figure 5.18.

Figure 5.17 Demonstrating the results from the search in figure 5.16: a single event. Drilling down to a lone 
interesting event is a core feature of Presentation-stage systems for centralized logging.

Figure 5.18 The Kibana 
Save dialog, allowing this 
chart to be used by co-
workers. The ability to save 
and open dashboards and 
charts is a key feature of 
Presentation-stage systems 
that support centralized 
logging.
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After this dashboard is saved, a co-worker can click the Open button (figure 5.12),
bringing up another dialog that allows them to search for the dashboard we created.
When many searches have been saved, Kibana allows users to search the list of saved
searches. After you find what you are looking for, click the item, and the saved search
will load, including the search terms, the two exclusions, and all the selected fields
to display.

 Other solutions offer features similar to those of Kibana. The SaaS systems Splunk
and Sumo Logic both have dashboards similar to Kibana’s that interact with the
Shipping-stage storage systems they maintain. When you’re looking at Presentation-
stage systems to display your centralized logging data, remember the feature list in
section 5.2.1.

5.3 Displaying telemetry in security systems
In this section, we go over displaying telemetry in the telemetry systems used by secu-
rity teams. Security teams will use centralized logging, as discussed in section 5.2, but
the telemetry system unique to security teams is Security Information Event Manage-
ment (SIEM). SIEM systems are designed for the use case of security teams investigat-
ing incidents and verifying compliance with external regulation. The telemetry that
SIEM systems contain is often mandated (directly or indirectly) by regulations, which
include the General Data Protection Regulation (GDPR) and Health Insurance Porta-
bility Accountability Act (HIPAA) for personal privacy and personal health informa-
tion. Also, compliance frameworks such as Sarbanes-Oxley (SOX) and Service

An emerging trend: Making the Presentation stage do most of the enrich-
ment work
Grafana Labs’ Loki centralized logging solution is new (2018), and doesn’t need lots
of preprocessing the way Kibana does. Loki is a far more cloud-native solution, relying
on cloud provider data stores such as S3 and databases such as DynamoDB. Kibana
assumes that the data it is searching has already been fully enriched—all the fields
we just looked at. Loki, on the other hand, does enrichment at query time. So long
as the telemetry being ingested is already in an easy-to-parse format like JSON, Loki
will deserialize and query in real time.

This trend is part of a long-term trend in telemetry as computing has improved. When
Kibana emerged in the early 2010s, storage was still mostly on magnetic disk and
therefore slow, so it benefited from ingestion-time preprocessing to speed query-time
access. Ten years later, that calculus has changed: now it’s economical to do mini-
mal preprocessing and rely on query-time processing.

Also, relying on cloud providers for storage and trusting in query-time processing
greatly reduce the costs of keeping telemetry data online and searchable. In systems
such as Loki, keeping a year of telemetry online is much cheaper than in the older
style of telemetry system. It will be fascinating to see how this situation evolves over
the 2020s!
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Organizational Controls 2 (SOC 2) set minimum standards for organizations’ overall
technical practices.

 SIEM systems share many features of the centralized logging systems discussed in
section 5.2 but differ from them in key ways, as shown in table 5.1.

SIEM systems and centralized logging systems work primarily in strings, at least at the
emitting end of the pipeline. Both systems potentially handle large quantities of
telemetry compared with metrics and distributed tracing systems. Centralized logging
handles large quantities of telemetry because of its role as a catch-all telemetry system;
SIEM systems handle large quantities because tracing what happened in an incident
requires extensive telemetry. You definitely can build a rudimentary SIEM out of your
existing centralized logging system, but a system built for the role will serve your
needs better.

 Although most of the telemetry sent into a centralized logging system is emitted
just in case someone needs something, SIEM systems ingest data that is specifically
asked for to support certain workflows that the security team needs to perform. Some
of those common workflows are

 Proving to auditors that the actions of users with elevated privileges are tracked
 Tracking authentication and account lockout events in the production systems
 Assessing compliance with data-retention policies
 Assessing compliance with user activation and deactivation policies
 Identifying changes not performed with an appropriate change request
 Tracking an intruder’s path through the production systems
 Identifying production data that was accessed by people without authorization

Table 5.1 Differences between centralized logging and SIEM systems

Centralized logging SIEM

What is the main data 
type?

Strings (also numbers, but mostly 
strings)

Strings (numbers show up a lot, but 
strings are the main type)

Who are the main 
users?

Everyone Security teams and external auditors

What is the mission? Helps people isolate problems and 
learn about the production systems

Helps security-incident responders 
trace actions taken within the overall 
system and prove to external auditors 
that such capabilities exist

Who decides what 
events get added?

Anyone who writes a logging state-
ment in a production system that is 
hooked up to the centralized logging 
system

Regulation and compliance frame-
works provide minimum event cover-
age; Security and compliance teams 
drive additional events.

How long is telemetry 
online and searchable?

Days to weeks, driven mostly by the 
cost of keeping that much data online

Years, as required by regulation and 
compliance frameworks
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Telemetry systems sold as SIEM systems have a feature that many centralized logging
systems don’t have: a robust way to correlate events from different parts of the
production system. SIEM systems should be able to correlate a login event with a user’s
process-execution history, for example. Correlation engines need to handle a wide
variety of inputs, which creates a large opportunity to make money providing that value,
meaning that few open source SIEM systems do this work. In many ways, SIEM systems
provide the Pillars of Observability to security teams, letting them trace, track, and
monitor users of the technical system.

 Because SIEM systems share the centralized logging system problem of having to
maintain potentially large stores of data, SIEM system operators have to weigh how
long telemetry can remain online and searchable against the cost of providing that
online search capability. The nature of security team work incentivizes longer online
periods than centralized logging, so security teams spend correspondingly more time
curating what telemetry is sent into the SIEM system.

 Displaying telemetry in SIEM systems has similar requirements to centralized log-
ging systems like the one described in section 5.2. The list of features needed for cen-
tralized logging systems in section 5.2.1 also applies to SIEM systems, but SIEM
systems add several more items:

 Ability to define alerts—Whereas centralized logging systems are about asking
questions you may not have thought to ask before, SIEM systems function as
part of a monitoring system. Therefore, the ability to create alerts to notify
humans of problems is a critical feature, whereas in centralized logging systems,
it is merely optional.

 Ability to define alert priorities—Automatically triaging alarms by priority levels
allows responding humans to defer lower-priority alarms safely, leading to bet-
ter sleep and greater workplace enjoyment.

In addition to SIEM systems, security teams work with vulnerabilities in the produc-
tion system. Vulnerability management programs, called for by most regulatory and com-
pliance frameworks, are policies and procedures in place to handle bugs in first- and
third-party software. The primary source of vulnerability notifications is the Common
Vulnerabilities and Exposures (CVE) list operated by Mitre (https://cve.mitre.org),
but these notifications also come from vendors such as Microsoft, Adobe, and
VMware.

 Part of a vulnerability management program is software that analyzes production
systems for CVEs, known as vulnerability scanning. After a vulnerability list is generated,
each vulnerability finding needs to be addressed, typically by operations and DevOps
teams for operating system and hardware vulnerabilities, but an increasing number of
software engineering teams are getting this work as part of software module mainte-
nance. Managing vulnerabilities requires specialized tools, and these presentation sys-
tems have common features:

https://cve.mitre.org
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 Ability to track vulnerabilities—These vulnerabilities mostly come from the CVE
list but may include vendor-specific announcements such as those from Adobe
and Microsoft. A vulnerability management program is a common requirement
for regulatory and compliance frameworks, so vulnerability management sys-
tems must support that role.

 Ability to track accepted risks and false positives—Related to tracking vulnerabilities,
a vulnerability management system must track vulnerabilities (risks) that have
been accepted by the organization, as well as vulnerabilities that show up as
being applicable but are considered to be false-positive detections. This track-
ing allows for an ongoing vulnerability management program.

A SIEM and a vulnerability management programs are rarely found in the same soft-
ware. An example of a suite of products that addresses both needs is Nessus Cloud
used in combination with Splunk. Nessus Cloud provides vulnerability management
features and has some ability to set alarms, whereas Splunk provides the centralized
logging and alarming features needed as part of a SIEM. Together, both products pro-
vide base telemetry needs for security teams. Other combinations exist, such as AWS
Inspector for vulnerability management and Sumo Logic for SIEM and centralized
logging functions. As time moves forward, other options will emerge; look for them.

Software modules in vulnerability management programs
Each software development platform has some way of importing externally developed
modules or libraries:

 Eggs for Python
 Gems for Ruby
 NuGets for .NET
 NPMs for NodeJS
 Modules for Perl, Go, and Java
 Pecls for PHP
 Packages for Elixir

Although most vulnerability-scanning software focuses on the software packages
used in the operating system, newer scanners can scan software module lists to
identify which modules have open CVEs on them. Whereas fixing and remediating vul-
nerabilities used to be entirely the domain of operations teams, now software engi-
neering teams often have to force updates to modules they otherwise would prefer
to keep set at a specific version.

As more software is deployed in containerized format, which greatly reduces the
impact of operating-system-level packages, vulnerability management programs by
necessity focus on the software module ecosystem. Ideally, your continuous integra-
tion environment includes a scanner for new vulnerabilities in software modules and
will fail a build until those vulnerabilities are addressed. We are all in this together!
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5.4 Displaying telemetry distributed tracing systems
Distributed tracing provides a more formalized framework for emitting telemetry
from software with the intent of overcoming some of the limitations of centralized log-
ging. One of the chief limitations of centralized logging is its built-in assumption that
telemetry events will be correlated; in distributed tracing systems, events are linked in
an easy-to-discover way. For centralized logging systems, that work is left as a tedious
manual exercise by the person who asked questions. Distributed tracing systems over-
come this limitation by automatically creating links between production code events
in the Shipping and Presentation stages, allowing the Presentation-stage systems to
display linked events easily and cheaply.

 Let’s look at someone investigating why a Microsoft Office .docx file failed to con-
vert to PDF after being uploaded by a user of the system. Our person is using a central-
ized logging system for troubleshooting. The steps in their research look like this:

1 Searches for and finds the process exception where the docx_to_pdf process failed.
2 Uses the file identifier passed to the docx_to_pdf process to locate what code sent

the job to the docx_to_pdf process that failed, and finds an upload_document
process that sent the job.

3 Searches logging for the upload_document process for something interesting,
finds that it timed out waiting for the file conversion, and sent the same file
identifier to a file_type process.

4 Searches for file_type processes that picked up a job with that queue identi-
fier, and finds one.

5 Searches for logging in that file_type process for anything interesting, discov-
ering an exception and an identified type of .docx.

6 Reads the code for file_type and discovers that it has a bug: it shows a file’s
type as .docx for anything it can’t identify.

Although the search may be a thrilling ride of revealing interesting details over the
course of half an hour, your eyes likely glazed over the list and skipped to the end. The
reality is that someone doing this research with only centralized logging needs to under-
stand enough about the schema of their telemetry systems to know how to phrase the
right queries. For someone who is unfamiliar with what sort of telemetry is available in
the centralized logging system, moving from step 1 to step 2 might require waiting sev-
eral hours for the right person to answer a question about how to find step 2.

 Distributed tracing systems simplify this process by doing all the linking before any-
one looks at it. The same person doing the same research in a distributed tracing sys-
tem would have fewer steps:

1 Opens the user’s stream of traces and looks for traces with exceptions, finding
one trace with five separate exceptions in it, four from docx_to_pdf.

2 Opens the trace with the exceptions, giving us figure 5.19, showing exceptions
in both file_type and four different docx_to_pdf executions. Also, upload_
document fails due to exhausting retries in file-conversion.



132 CHAPTER 5 The Presentation stage: Displaying telemetry

3 The exception in file_type is interesting, because it threw an exception and
still returned a file type.

4 Reads the code for file_type and discovers that it has a bug: it shows a file’s
type as .docx for anything it can’t identify.

With a distributed tracing system in place, the person doing the searching needs
much less awareness of what telemetry looks like to get to the problem area—a misbe-
having file_type—quickly. For comparison’s sake, figure 5.20 shows a normal, unex-
ceptional execution of this workflow.

 Figure 5.20 is rather different from figure 5.19, with docx_to_pdf taking longer to
run, itself calling a new process named pdf_pages (a process that creates the graphs
shown in section 5.1.3), which further calls pdf_to_png processes to build per-page
images of the PDF created by docx_to_pdf. In spite of all this extra activity,
upload_document takes less time to run because it isn’t having to handle a retry
cascade.

 Generating a chart like this one requires each process involved in the chain of
execution to track and pass correlation identifiers whenever it accepts an API call, pops
a job off a queue, pushes a job onto a queue, or makes an API call. A correlation identifier
is a string or number that uniquely identifies that specific execution or workflow.
Shipping-stage components for a distributed tracing system link events with the same
correlation identifiers, allowing the Presentation-stage system to easily produce the
charts shown in figures 5.19 and 5.20. Correlation identifiers can be created explicitly
or abstracted as part of a tracing library used by the production code. The Open-
Telemetry project is building vendor-agnostic libraries for this kind of work. These
tracing libraries function as the Emitting-stage components of the telemetry pipeline,
similar to the various metrics.py functions we wrote in chapters 2–4.

upload_document

file_type docx_to_pdf

Processes with 
exceptions

Terminates after all retries fail

Time spent in seconds

First process crashed, retried three times

docx_to_pdf docx_to_pdf docx_to_pdf

Figure 5.19 A trace showing exceptions (dashed boxes) in both file_type and docx_to_pdf, 
with three retries of docs_to_pdf also failing. The upload_document process detected the 
failure in the first docs_to_pdf process and retried the process three times before giving up. This 
pattern tells us that the crash in docx_to_pdf is likely not related to random chance but to the 
specific document being converted.
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When you select a specific process in figure 5.20, most Presentation systems for trac-
ing provides a window showing specific telemetry for the given process. Figure 5.21
shows an example of the sort of telemetry that can be displayed.

 All the correlation identifiers in figure 5.21 make it possible for software engineer-
ing teams to ask a variety of questions:

 How do documents converted from .docx differ in convert times from native PDFs for gen-
erating page images? Compare the avg_convert_wait_time metrics between
events with source_doc_type of .docx and .pdf.

 What percentage of page conversions takes longer than 1,000 ms for account 12497714?
Count the total pdf_page executions for account_id 12497714; then count exe-
cutions for account_id 12497714 with avg_convert_wait_time longer than
1,000 ms.

 What processes had errors for account 12497714 during a specific login session? Get
processes for account_id 12497714 and session_id sassqnrfoploqje with
errors greater than zero.

 

Figure 5.20 A normal (no exceptions) example of a distributed trace showing conversion of a 
.docx file that resulted in three pages. This example demonstrates the call stack in the form of 
services, not functions or classes, for this particular execution. Two functions, docx_to_pdf 
and pdf_pages, make second calls to a save_file function in addition to returning results 
to their parent service. A chart formatted like this one provides extensive context for someone 
who’s looking to troubleshoot problems, and context speeds resolution.

upload_document

file_type

docx_to_pdf save_file

pdf_pages save_file

pdf_to_png

Time spent in seconds

Execution chain starts
(API endpoint). 

Call to
subprocess

Subprocess
returns

Subprocesses

Execution chain ends.

One-way calls
(no return expected)

Time request spent
in a queue
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pdf_pages

Tags:
session_id:            sassqnrfoplopje
document_id:         hoyuqvvnvhiqijc
api_id:                    ijqjtmxjwqmvnqw
process_id:            pdf_pages:89121
account_id:            12497714
hostname:              fecund-badger.euc1.prod.internal
source_doc_type:  docx

Logs:
+25ms        Finished file read
+199ms      Finished page-count
+225ms      Spawned pdf_to_png:11312
+232ms      Spawned pdf_to_png:11319
+240ms      Spawned pdf_to_png:11386
+419ms      Received pdf_to_png:11312
+421ms      Received pdf_to_png:11319
+498ms      Received pdf_to_png:11386
+531ms      Callback to upload_document:hoyuqvvnvhiqijc
+533ms      Spawned save_file:264431

Metrics:
errors:                                  0
pdf_size:                             131228
pdf_pages:                          3
page_count_time:               149
page_convert_wait_time:    273
avg_convert_wait_time:      91
total_execution_time:          539

All activities for a given session

All activities for a specific doc

All activities for a specific API call

All activities for a specific process

All activities for an account

All activities on a specific host

All activities for this file type

Correlations to pdf_to_png

Correlation to upload_document 
using document_id 

Correlation to save_file

Figure 5.21 Example of a distributed tracing detail page, showing the many correlation 
identifiers used to create the chart in figure 5.20 and process-specific telemetry. A wide 
variety of correlation identifiers is being used here, each permitting a separate correlation 
to be investigated.

Tracing and user-supplied data
The name of the file that the user uploaded never shows up in any of the fields for
figure 5.20. I did this intentionally. Even though the filename is a value being passed
to and from the processes in the execution chain, there is too much risk in logging it
because privacy regulations are increasingly strict about PII and health information.
Logging user-supplied data can expose you to legal risk. Although the product may
say Do not submit private information in these fields in bold letters on every field title,
there will be one user who submits a scan of their Social Security card and uses their
Social Security number as the filename. It’s better to not log user-supplied fields. If
you don’t have a choice in whether to log user-supplied data, chapters 15 and 16
address safely handling data of this kind and cleaning up data spills.
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The process execution in figure 5.20 is an example of what distributed tracing pro-
vides to a software engineering team. The questions that figure 5.21 answers are exam-
ples of what modern SaaS tracing systems and the Jaeger open source tracing system
can provide a software engineering team. When used in combination with logs and
metrics, traces greatly refine the power of collected telemetry.

 Section 5.1 (metrics systems) and section 5.2 (centralized logging systems) dis-
cussed the cost trade-off between being able to search for long periods of time and
economics of storage:

 Metrics systems store telemetry cheaply but lack much detail, whereas central-
ized logging systems are stuffed full of detail but are expensive to store.

 Distributed tracing systems share some of the problems of centralized logging
in that they’re also stuffed full of detail and suffer the same storage-cost prob-
lem as centralized logging systems.

 The use of correlation identifiers allows distributed tracing systems to benefit
from statistical sampling to reduce costs.

Chapter 16 covers sampling in more detail, but sampling is storing a small but repre-
sentative group of events from which you can draw valid conclusions. In its broadest
form, distributed tracing systems work best when execution chains are sampled.

5.5 Displaying telemetry in large organizations
Large organizations have many discrete teams within each functional group, such as
nine software engineering teams working on their own pieces of a product. When
telemetry handling is a large enough problem to have dedicated teams for the teleme-
try pipeline, the definition of affordable changes in key ways. To offload the effort of
building a telemetry pipeline, small organizations will by necessity use off-the-shelf or
SaaS systems by default. When organizations become larger, the economics begins to
shift in favor of bespoke, or in-house, solutions.

 Developing something in-house starts looking like a good idea when

 The cost of a key SaaS or purchased off-the-shelf presentation system becomes
large enough to force the question.

 The organization’s telemetry needs shift in ways that further adaptation of the
existing off-the-shelf solutions raises questions about their fitness.

 Dissatisfaction with telemetry presentation forces an organizational reassess-
ment of telemetry handling.

Looking like a good idea and being a good idea are different things, so here is some
advice on telling the difference. In most cases, the prerequisite for being a good idea is
a pool of software engineers available to develop the product and DevOps/operations/
SRE people able to support the product. Without that dedicated pool, creating and
maintaining  a new system from scratch are going to decrease overall satisfaction with
telemetry presentation systems.
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 As mentioned in the introduction to this chapter, the presentation systems are
most people’s only interaction with the telemetry pipeline. Being the only interaction
point makes presentation systems seem to be the only component that matters. When
you’re deciding to make your own presentation systems, consider what improved user
experience a new bespoke presentation system will provide over the current ones.
Degrading user experience with a new bespoke system will seem like a step down for
people who were not feeling the pain and pushing for the change in the first place,
which will lead to organizational strife.

 If cost is a driving factor in the push for a bespoke system, consider the main role
of telemetry systems: decision support for management and engineering. Moving to a
bespoke system may save direct costs, but a poorly-built presentation system will
reduce the ability of the technical organization to make decisions. The cost impacts of
poor decisions are hard to quantify but are still present and need to be accounted for
in the decision.

Summary
 The Presentation stage in a telemetry pipeline is the stage humans use to inter-

act with telemetry.
 The Presentation stage’s role is to consume the storage prepared by the Ship-

ping stage and translate it for humans.
 For many people in a technical organization, the Presentation-stage systems are

the only places they will interact with the telemetry pipeline, so a wider selec-
tion of users will interact with Presentation-stage systems than those in any
other stage.

 Metrics systems are designed to take numbers, which are far more efficient to
store than strings, and store them for long periods.

 The graph or chart is a telemetry format that humans desire. Be thoughtful
about what you display, and make it possible for people to build their own
charts and graphs.

 If people aren’t allowed to build their own graphs or charts, you may find them
building their own with whatever is available (such as Excel).

 Aggregation functions summarize data over a given period, allowing graphs to
be built that smooth the source data or reveal patterns in the raw data.

 When graphing telemetry that has already been run through an aggregation
function, perhaps in the Shipping stage, running a second aggregation func-
tion over the telemetry will give you distorted results (also known as lies). Using
the same aggregation function a second time (mean your means, min your
mins) will give you a sense of the shape of data, but don’t think that you’re get-
ting the true shape; for that result, you need to work on the raw values.

 Metrics display systems need certain features, listed in section 5.1.1, to fully
serve your needs.
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 Centralized logging systems are designed around string handling, which makes
them the most expensive systems for keeping telemetry online and searchable
for long timeframes.

 Centralized logging systems are often the catch-all system that everything flows
to if something better isn’t available.

 Telemetry sent to centralized logging systems usually is sent there in case it is
ever needed, which makes centralized logging systems incredibly powerful tools
(though resource-hungry).

 Centralized logging display systems need certain features, listed in section 5.2.1,
to fully serve the needs of users.

 Security teams use SIEM systems, which function similarly to centralized log-
ging systems.

 Centralized logging systems focus on just-in-case information, whereas SIEM
systems focus on data explicitly needed by teams, enabling the longer retention
periods required by regulatory and compliance frameworks.

 Security teams also need telemetry systems to support a vulnerability manage-
ment program, called for by most regulatory and compliance frameworks.

 Distributed tracing tools operate on correlation identifiers, allowing presenta-
tion systems to display execution chains spanning many systems.

 Logging user-supplied data of any kind puts you at risk of failing to comply with
regulatory frameworks surrounding private information.

 When reaching a tipping point between using adapted or off-the-shelf presenta-
tion systems and building your own, ensure that the new system’s user experi-
ence is at least close to the old one. If you don’t, the decision to change will be
seen as a step backward by many people.
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Marking up and
 enriching telemetry

Much of the power of a telemetry pipeline derives from the transformation of
telemetry between when the Emitting stage receives it from the production systems
and when telemetry is displayed to a human by the Presentation stage. Each of the
three stages of the telemetry pipeline—Emitting (chapter 2), Shipping (chapters 3
and 4), and Presentation (chapter 5)—has the opportunity to enhance telemetry.
The two biggest forms of added value are the right side of figure 6.1:

 Marking up telemetry by adding context regarding where it originated, provid-
ing clues to people asking questions about where and when certain events hap-
pened. This context can include execution details such as the browser session,
server identifier, and software version that produced a piece of telemetry, as
well as business details such as payment level, user type, and team identifier.

This chapter covers
 The difference between markup and enrichment

 Where markup and enrichment happen

 How each telemetry style handles markup and 
enrichment
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 Enriching telemetry by transforming the format to improve the ability of the Pre-
sentation stage to answer questions and providing correlations between events,
such as taking a phrase like processed 2 pages and parsing it to produce a database
field named pages with a value of 2.

We saw a great example of enrichment in chapter 5 while talking about Presentation-
stage systems for centralized logging. Figure 5.14 gave us a long list of fields that the
telemetry pipeline was able to extract from this emission from a Cisco firewall:

Mar 22 19:50:51 asa1.net.prod.internal %ASA1: Teardown of UDP connection

➥ 162121 for outside:1.1.0.0/53 to dmz2:192.0.5.119/49522 duration 0:00:00

➥ bytes 136

Figure 6.2 shows the wide array of details that our telemetry pipeline was able to
extract from this one log line.

 After this thorough enrichment, the Cisco-generated log line gives us an event
with lots of detail—and, more important, lots of searchable and indexed detail that
will make it far easier to perform research involving firewall data. This chapter is
about the additional value that our telemetry pipeline produces:

 Section 6.1 dives into the sort of markup applied by the Emitting stage.
 Section 6.2 describes the markup and enrichment techniques of the Shipping stage.
 Section 6.3 covers the enrichment provided by the Presentation stage.
 Section 6.4 covers each of the four telemetry styles and describes in brief how

each style prefers markup and enrichment to happen.

Telemetry 
markup

Telemetry 
enrichment

Adding context-related 
details to telemetry to
improve understanding
of what telemetry is 
telling you  

Transforming telemetry
to bring out details 
embedded within it,
such as deserializing 
JSON or parsing 
strings  

Processes, transforms,
and ultimately stores 
telemetry for use in the
Presentation stage  

Presents telemetry to
people to support 
decision-making,
drawing on Shipping-
stage storage   

Accepts telemetry from
production systems
and prepares it for use 
inside the telemetry
pipeline  

Presentation stage

Shipping stage

Emitting stage

Telemetry pipeline stages

Figure 6.1 Telemetry pipeline stages. Telemetry markup happens during the Emitting and Shipping 
stages, whereas telemetry enrichment happens during the Shipping and Presentation stages. 
Markup and enrichment happen in all pipeline stages, which is the focus of this chapter.
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Mar 22 19:50:51 

asa1.net.prod.internal 

%ASA1:

Teardown of UDP 

connection 162121 for 

outside:1.1.0.0/53 to 

dmz2:192.0.5.119/49522 

duration 0:00:00

bytes 136

Markup
fields

Enrichment
fields

Figure 6.2 After running through the whole telemetry pipeline, the Cisco ASA log line (on the right, 
in the middle of all the arrows) turns into all the fields displayed here. Arrows point from source text 
to the enriched fields displayed on the left. To the left of the list of fields are arrows pointing to two 
fields that are markup—context details created by telemetry pipeline components. This figure is a 
typical example of enrichment of telemetry coming from hardware systems.
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6.1 Markup in the Emitting stage
In this section, we cover the sorts of markup and enrichment that can be done in the
first stage of the telemetry pipeline: the Emitting stage. The Emitting stage is where
telemetry generated by a production system enters the telemetry pipeline, which it
can do from any number of sources. Telemetry generated by software is among the
most diverse telemetry, whereas telemetry emitted by hardware systems is the most
standardized (almost always using Syslog, though some hardware systems prefer
SNMP). Figure 6.3 zooms figure 6.1 into the focus of this section.

The Emitting stage is the best place for you to apply markup—clues to the context of
the emitted event—because the emitter has the most available context surrounding
what is being emitted. The absolute best place to apply markup is inside the production
system itself, such as the emitter and emitter/shipper functions we looked at in sections
2.1, 3.1, and 4.1. When you are adding context for software systems, useful context
items can include the class, method, and function call the code was in when the telem-
etry was emitted, as well as useful or interesting parameters (so long as they’re not pri-
vacy- or health-related). For hardware systems, useful context is likely applied by the
Syslog server that receives the telemetry, which is more a function of the Shipping
stage (covered in detail in section 6.2). For SaaS platforms, emissions format and
telemetry are likely set by the platform, and you have to adapt; again, the Shipping
stage is likely your most useful injection point for markup and enrichment. This sec-
tion covers mostly software systems and marking up their emissions.

 In section 3.1.2, we looked at a Python module implementing a metrics logger that
ships into a Redis-based list structure (listing 3.2). The code in that section produces
entries in the list that look like this JSON structure:

{
  "metric_name": "pdf_pages",
  "metric_value": 3
}

This JSON is inserted into a Redis list (a form of queue) named counters. The JSON
and the list name gives us three points of telemetry produced by listing 3.2:

Figure 6.3 The Emitting stage and telemetry markup. The Emitting stage is the best place 
to apply markup because it is closest to the production systems and their context.

Emitting stage

Telemetry pipeline stages Telemetry 
markup

Adding context-related 
details to telemetry to
improve understanding
of what telemetry is 
telling you  

Accepts telemetry from
production systems
and prepares it for use 
inside the telemetry
pipeline  
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 The list name (counters)
 The name of the metric (pdf_pages)
 The value of the metric (3)

Three items make for a minimal list of telemetry; the only context regarding where the
code execution happened is encoded in the name of the metric. At the Presentation
stage, someone investigating execution couldn’t drill down to the code running on the
specific host that generated the example JSON. To drill down to the host running the
code, we need to add hostname (at minimum) to the telemetry emitted by our metrics
logger. If we want to drill even deeper, we can add the process identifier (pid) to tell the
person asking questions which process on which host emitted our metric. If the code
has that information, it would be nice to know what version or release of our software
emitted the metric (version_id). Listing 6.1 rewrites listing 3.2 to add the three new
pieces of context-related telemetry and consumes a program-specific data structure
called metadata that contains context about the specific user interaction.

NOTE This listing needs the redis module installed before it will execute.
Create a file named version.py in your directory, and define __version__ in it.

import redis
import json
import socket                         
import os    
from version import __version__       

redis_client = redis.Redis( host=’log-queue.prod.internal’)

def __context_telemetry(metadata):    
  context = {
    "hostname" : socket.gethostname(),
    "pid" : os.getpid(),
    "version_id" : __version__,
    "payment_plan" : metadata['payment_plan']
  }
  return context

def counter(msg, metadata, count=1):
  """Emits a metric intended to be counted or summarized.

  Example: counter("pages", metadata, "15")
  """
  base_metric = {
    "metric_name" : msg,
    "metric_value" : count
  }
  context = __context_telemetry(metadata)   
  metric = { **base_metric, **context }    
  redis_client.rpush('metrics_counters', json.dump(metric))

Listing 6.1 metrics.py: Emitting to redis, with context-related telemetry

Imports modules needed to 
fetch context-related telemetry

Private method to generate 
context-related telemetry

Fetches context-related telemetry

Merges both hashes to create 
unified hash with context telemetry
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def timer(msg, metadata, count=1):
  """Emits a metric for tracking run-times.

  Example: timer("convert_worker_runtime", metadata, "2.7")
  """
  base_metric = {
    "metric_name" : msg,
    "metric_value" : time
  }
  context = __context_telemetry(metadata)    
  metric = { **base_metric, **context }    
  redis_client.rpush('metrics_timers', json.dump(metric))

Listing 6.1 produces a JSON document with more telemetry than the one produced
by listing 3.2:

{ "hostname": "ebulent-gnu.euc1.prod.internal",
  "pid": 13221,
  "version_id": "2025.02.19.8cd321b9",
  "payment_plan": "2023a1cdb4",
  "metric_name": "pdf_pages",
  "metric_value": 3 }

Figure 6.4 describes how this hash was built.

The JSON produced here includes far more details regarding what produced the met-
ric, which makes this telemetry far more useful than the version produced by listing
3.2. What’s more, adding the extra context is cheap in terms of CPU or RAM cost:

Fetches context-related telemetry

Merges both hashes to create 
unified hash with context telemetry

metrics.counter("pdf_pages", 3)

base_metric = { "metric_name": "pdf_pages", "metric_value": 3 }

context = { "hostname": "ebulent-gnu.euc1.prod.internal",
"pid": 13221,
"version_id": "2025.03.19.8cd321b9",
"payment_plan": "2023a1cdb4" }

metric = { **base_metric, **context } metric = {
 "hostname": "ebulent-gnu.euc1.prod.internal",
 "pid”: 13221,
 "version_id": "2025.03.19.8cd321b9",
 "payment_plan": "2023a1cdb4",
 "metric_name": "pdf_pages",
 "metric_value": 3 }

Enters metric.counters() function

redis_client.rpush('metrics_counters', 
json.dump(metric))

Format sent to
Shipping stage 

Figure 6.4 How the metrics emission is built with additional context-related details (markup). The 
metrics.counters() function adds a standard set of details (hostname, process identifier, soft-
ware version number, and payment-plan identifier) to all calls to the function. Then the marked-up 
hash is sent to the Shipping stage (redis in this case). We are able to add these details in large 
part because this function is running inside the production software itself.
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 hostname is fetched by a single system call, which retrieves a (mostly) static
value from the operating system kernel. In most cases, there is no disk access for
this call.

 pid is a piece of telemetry that all running processes have in the environment
and counts as a static identifier.

 version_id is statically defined in code. Taking the extra time to add context
when writing this metrics logger greatly improves the utility of the metrics
produced.

 payment_plan was set well before the metrics were emitted and is a simple hash
lookup by the time of the metrics emission.

This technique, adding context-related telemetry, is one of the secrets behind how dis-
tributed tracing provides the value it does. Let’s take another look at figure 5.20,
reproduced here as figure 6.5.

The chart in figure 6.5 shows, from beginning to end, a single process flow of an API
call to upload_document. The execution flow ran through several stages before
upload_document finished execution. We can display this chain because we tracked
context-related telemetry at emission time as part of the context telemetry that the

upload_document

file_type

docx_to_pdf save_file

pdf_pages save_file

pdf_to_png

Time spent in seconds

Execution chain starts
(API endpoint). 

Call to
subprocess

Subprocess
returns

Subprocesses

Execution chain ends.

One-way calls
(no return expected)

Time request spent
in a queue

Figure 6.5 Example distributed tracing chart showing the flow of execution including 
pdf_pages, producing three page images in .png format. This chart is made possible through the 
use of correlation identifiers applied as part of the software libraries for distributed tracing. These 
correlation identifiers often include user-added context-related telemetry such as a process-id 
(to correlate telemetry coming from a specific running instance) and browser session-id (to 
correlate all telemetry from a specific login session).
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distributed tracing system applied. Emission-stage markup allows the Presentation
stage chart to be built. Listing 6.2 shows how OpenTelemetry (http://mng.bz/gxJ8),
an open source framework for tracing, would mark up the perform() function of
pdf_pages. Use pip install opentelemetry to install that module.

import os
import socket
from opentelemetry import trace

tracer   = trace.get_tracer(__name__)   
hostname = socket.gethostname()
pid      = os.getpid()

# Called by queue system
def perform(options)
  attributes = {    
    "session_id" : options[session_id],
    "document_id" : options[document_id],
    "process_id" : pid,
    "account_id" : options[account_id],
    "host" : hostname
  }
  with tracer.start_as_current_span("pdf_pages",   
   ➥ attributes=attributes):   
    pages = convertPages(options)
    metrics.counter("pdf_pages", pages)
  # end trace  
# end perform()

In listing 6.2, we have the perform() function of a larger piece of code that is pulling
jobs off a queue. The jobs arrive with a payload: a hash named options. When the
perform() method is entered, we first set our correlation identifiers in an attributes
hash and put some local context in the tracing method. Next, we open a span, a
distributed tracing term used to define a segment of code whose start and stop times
will be tracked. Then we do the work of pdf_pages by calling convertPages().
Although execution leaves the scope of the perform() method, it is still considered to
be part of the span. In convertPages(), as shown in figure 6.5, pdf_to_png is called
three times. When convertPages() returns a number of pages, we use that number to
emit a metric value, using our metric function from listing 6.1. When execution leaves
the with statement, the span is closed, and two forms of telemetry are reported to the
Shipping stage:

 The span and attributes are reported to the distributed tracing Shipping stage.
 The count of pages metrics is reported by way of the metrics.counter function

from listing 6.1.

Figure 6.6 illustrates which telemetry is context-related and when it is applied.

Listing 6.2 pdf_pages: OpenTelemetry example

Instantiates the 
tracing infrastructure

Sets our correlation 
identifiers and context

Starts the tracing, known as 
a span, using our attributes

Causes the span to close 
and telemetry to emit

http://mng.bz/gxJ8
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The technique demonstrated here is passing correlation identifiers along with the
payload of jobs in a queue. You could build this same technique of passing identifiers
and waiting for a return by using Remote Procedure Call patterns, or using them as
part of an API. If you don’t have a distributed tracing system, passing correlation iden-
tifiers with your request for work (queues, procedure calls, API calls, and so on) will
still allow you to ask deeper questions of your telemetry systems.

6.2 Markup and enrichment in the Shipping stage
The Shipping stage, the second stage in the telemetry pipeline, accepts telemetry from
the Emitting stage. (See chapters 3 and 4 for details about what the Shipping stage
does.) This section covers both the markup that can be added in the Shipping stage and
the sort of enrichment that the Shipping stage may apply. The Shipping stage is
especially important when the Emitting stage isn’t software under your control, such as
with hardware emissions or emissions coming from SaaS platforms. The other major
function of the Shipping stage is to reformat telemetry for storage in the storage systems
used by the Presentation stage. Figure 6.7 illustrates the overlapping nature of markup
and enrichment in the Shipping stage.

 
 
 

def perform(options)
  attributes = {
    "session_id" : options[session_id],
    "document_id" : options[document_id],
    "process_id" : pid,
    "account_id" : options[account_id],
    "host" : hostname
  }
  with tracer.start_as_current_span("pdf_pages",
                                    attributes=attributes):
    pages = convertPages(options)
    metrics.counter("pdf_pages", pages)

Context-related telemetry passed in 
from the process that submitted the
queue job

Add context telemetry to the span.

Pass context telemetry to next stage.

Figure 6.6 How context-related metadata moves through listing 6.2. Here, we are using 
context-related telemetry passed into the function from a parent function and adding one 
of our own (process_id). This hash of attributes is used to associate with the span (a 
distributed tracing concept noting a traced context). Note that we also pass the same options 
hash to another function. In the grand scheme of things, waiting for child processes to finish 
gets recursive fast, allowing figure 6.5 to be built.

Exercise 6.1
Examine some of the telemetry coming out of a program you work with.

What markup is being applied by the program?

What additional markup would make this telemetry more useful?
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This section covers these topics:

 Section 6.2.1 covers adding telemetry relating to the context that generated it,
greatly enhancing the ability of someone to find related events.

 Section 6.2.2 covers decoding and extracting meaning in telemetry to create
fields to improve searchability.

 Section 6.2.3 covers converting types of telemetry from the format in which it
was emitted to the format needed by the Shipping-stage storage systems. These
conversion operations improve the Presentation-stage system’s ability to analyze
telemetry.

6.2.1 Applying context-related telemetry in the Shipping stage

The Emitting stage is best suited to applying context-related telemetry. But Shipping-
stage components that receive directly from the Emitting stage can apply some context-
related telemetry even if the emitting system is not capable of adding it. Adding context
to telemetry generated by hardware and SaaS can be done by the first Shipping-stage
system. This section shows how a Shipping stage can apply context-related telemetry.
Let’s look at some Shipping-stage architecture. Figure 4.1 demonstrates components of
a Shipping pipeline that exist on a server, reproduced here as figure 6.8.

 
 
 

Presentation stage

Telemetry pipeline stages

Shipping stage

Emitting stage

Accepts telemetry from
production systems
and prepares it for use 
inside the telemetry
pipeline  

Processes, transforms,
and ultimately stores 
telemetry for use in the
Presentation stage  

Presents telemetry to
people to support
decision-making,
drawing on Shipping-
stage storage    

Telemetry 
markup

Telemetry 
enrichment

Adding ccontext-related 
details to telemetry to
improve understanding
of what telemetry is 
telling you  

Transforming telemetry
to bring out details 
embedded within it,
such as deserializing 
JSON or parsing 
strings  

Figure 6.7 The Shipping stage is responsible for both markup and telemetry, and is the only stage 
that does both things. Transforming telemetry into a format that can be stored is a form of enrichment, 
which is why format transformation happens alongside extracting details from telemetry.
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Figure 6.8 shows Cisco Prime, the proprietary software package for administering
Cisco networking gear, emitting telemetry into a set of log files. These emitted log files
are consumed by Filebeat, which sends the telemetry into a Kafka stream on the
noc_events topic. Looking at the context-related telemetry we produce in listing 6.1,
we find hostname, process identifier, software version, and payment plan. Filebeat is
in a place to provide most of these items of context even though the emitting program
cannot to do so itself:

 hostname—Filebeat is running on the same host, so adding this field to the
telemetry received from Cisco Prime is trivial. In fact, Filebeat adds it by default.

 process identifier—This telemetry is the hardest because it requires Filebeat to
poll running processes to determine the process ID of the program.

 version—Filebeat is running on the same host as Cisco Prime, so fetching the
version of the program is possible. If the version doesn’t change often, Filebeat
could be statically configured to apply version telemetry. Alternately, the pro-
duction software deploy process can update the Filebeat configuration file to
add static values like this one.

 payment_plan—Unlike the emitter-shipper function in listing 6.1, Filebeat is not
in a place to directly receive a data structure from the production software, the
way that listing 6.2 did. Of the four types of context-related telemetry, this one is
the one that Filebeat can’t provide by itself. (As it happens, Cisco Prime does
not produce this telemetry, even internally.)

Having the production program apply these items of context-related telemetry would
be better, but if the program is incapable of producing this telemetry, or if updates
that would allow this function are prohibited, the Shipping stage can get most of this
list. Shipping-stage components that are custom-written for the use case, unlike the

Cisco Prime
framework

Lots of log files
Cisco

hardware

Topic: noc_events

Filebeat

Figure 6.8 Shipping log files from production software that can’t do anything else. Cisco 
Prime creates log files and leaves it to local administrators to do something with them. 
Here, the Elastic.co program called Filebeat is configured to ingest the log files and send 
telemetry into a Kafka-based stream on a topic called noc_events. This configuration 
allows the local network operations team to view Cisco Prime telemetry from the 
centralized logging system.



149Markup and enrichment in the Shipping stage

off-the-shelf Filebeat, may apply quite detailed context-related telemetry for programs
that can’t handle adding context details themselves. The effort is truly justified only if
your unmodifiable program is central to the function of your production systems, as
maintaining the software of the custom shipping component is a maintenance cost
that will have to be paid continually.

For hardware systems, having a shipping component on the same hardware as the
emitter is rarely possible; this approach reduces the amount of context-aware teleme-
try that the Shipping stage may glean from the Emitting stage. Figure 6.9 demon-
strates a basic shipping architecture, with a Cisco firewall emitting to a Syslog server.
The standardized nature of Syslog makes it an attractive shipping format for hardware
makers (when they aren’t making bespoke telemetry systems as part of their add-on
management platforms, such as Cisco Prime). Taking standardized, string-based
telemetry and turning it into something that modern Presentation-stage systems can
consume is the job of the Shipping stage.

 
 

Dealing with inflexible log file formats from software
To engineers who are looking to provide as much local context as possible for their
telemetry emissions, off-the-shelf software that simply doesn’t provide it is a constant
vexation. If you are dealing with such software, a few techniques may allow you to get
what you’re looking for:

 Set logging to debug mode. Often, off-the-shelf software has the ability to
enable verbose and debug modes, with debug modes giving hints as to what
internal function the software was in when something was emitted. The trade-
off here is that debug mode can slow software performance, and you will have
to handle a possibly vastly higher volume of log data.

 Use systemd and journald on Linux hosts. If you can direct the log stream into
standard out, the logs will be handled by journald on modern Linux hosts.
journald will provide a PID value because its format is very similar to Syslog
format.

 Use Syslog on UNIX hosts. As with journald, if you can direct the log stream to
Syslog somehow, you will get hostname and PID for free.

 Run the program as a service through sc create on Windows hosts. The sc
program will direct stdout to the Application event log, which will add several
other pieces of telemetry, such as the timestamp of the event, the user who
ran it, and the name of the computer that generated it.

 Run the program under Docker. This approach works best if you’re already
using Docker and are familiar with it, but Docker is built to capture standard
out and send that stream to several places, including the system logger (even
in Windows).
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At the point where the Syslog event is received by the Syslog server, having been emit-
ted by the Cisco firewall in figure 6.9, the Syslog server already has many pieces of
telemetry defined by the Syslog standard:

 date—The month, day, hour, minute, and second when the event was created
 facility—A Syslog identifier, statically set when setting up Syslog forwarding

on the Cisco firewalls
 host—The IP of the firewall device that generated the event
 message—The full text of the emission

The date and host are valuable pieces of context-related telemetry built into the
protocol. The Syslog protocol itself encodes several fields, should devices be
configured to use them. For devices with more complete Syslog support, we could also
get severity (a ranking of how urgent the event is), process-id (the same as emitted
in listing 6.1), and program tag (to identify which of the many processes on the box
emitted the event). The contents of the message field are important, though.
Programs and hardware that emit through Syslog know Syslog’s limitations and often
insert context-related telemetry into the plain-text part of the Syslog event. To decode
such embedded telemetry, we need to talk about enrichment.

6.2.2 Extracting and enriching telemetry in-flight

Part of the job of the Shipping stage is to extract interesting telemetry from less-well-
formatted telemetry and enrich each item of telemetry to improve its utility in the
Presentation stage. This section covers the techniques needed to provide extraction

source s_syslog {
  syslog(
    [...]
  );
};

destination d_kafka {
  kafka (
    [...]
  );
};

Syslog
internals

Kafka
topic

Feb 19 02:26:26 ASA-1.euc1.prod.internal sapps[14223]: 
Unexpected ejection of supervisor module

{"TAGS":".source.syslog","SOURCEIP":"192.0.2.1", 
"SOURCE":"syslog","PROGRAM":"sapps","PID","14223", 
"PRIORITY":"warn", "MESSAGE":"Unexpected ejection of supervisor 
module", "HOST":"ASA1-1.euc1.prod.internal","FACILITY":"local07", 
"ISODATE":"2025-02-19T03:26:26.000+0:00"}

Figure 6.9 A Cisco firewall emitting directly to a Syslog server, part of the Shipping stage, 
and the Syslog server reformatting the received telemetry to send on to a Kafka topic. The 
transformation here is from the Syslog format defined by RFC to a JSON-encoded format that 
another Shipping-stage system subscribed to the topic will consume and further process. All 
the attributes in the hash came from the Syslog server itself or the UDP packet that contained 
the emission.
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and enrichment in the Shipping stage. In most cases, we parse an existing telemetry
field to populate more fields, though some systems have the ability to enrich telemetry
based on data held in multiple events. To start, let’s use an example from chapter 2,
the sample output for a Cisco ASA firewall:

Teardown of UDP connection 162121 for outside:1.1.0.0/53 to 

➥ dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136

We can see several items of interest in this string:

 Teardown of UDP connection gives us an event string.
 UDP connection gives us the protocol used (UDP).
 connection 162121 gives us a connection number, 162121, which is possibly

useful for correlation.
 outside:1.1.0.0/53 gives us several details:

– The interface used (outside)
– The IP address connected to (1.1.0.0)
– The port connected to (53)

 dmz1:192.0.2.19/59232 gives us similar details for the inside identity.
 duration 0:00:00 tells us how long the connection took (not long at all).
 bytes 136 tells us how much data was transacted (136 bytes).

That’s quite a bit of information crammed into a short space! Fetching telemetry out
of a long string like this is the bread and butter of centralized logging shipping sys-
tems, and there are a couple of main methods for doing so. The first method is to use
regular expressions and capture groups. Listing 6.3 shows an example Logstash filter
configuration that will pull out all these details. (Logstash is an Elastic program built
to be a dedicated Shipping-stage system.)

filter {

  if [facility] == 'local07' and [syslogmessage] =~ “^Teardown” {    
    grok {    
      match => {
        "syslogmessage" => "^%{DATA:firewall_action} %{NUMBER:conn_id} for 
        ➥ %{NOTSPACE:target} to %{NOTSPACE:source} duration %{TIME:duration}
             ➥ bytes %{NUMBER:bytes}$"
      }
    }

    grok {    
      match => {

Listing 6.3 Extracting firewall fields with Logstash grok{}

Conditionals to try parsing only the right lines

First-pass
parsing

Second-pass parsing
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        "source" => 
             ➥ "^%{WORD:source_int}:%{IP:source_ip}:%{NUMBER:source_port}$"
        "target" => 
             ➥ "^%{WORD:target_int}:%{IP:target_ip}:%{NUMBER:target_port}$"
        "firewall_action" => "for %{WORD:protocol} connection"
      }
    }
  }
}

Use the Logstash grok {} filter plugin (http://mng.bz/5W17) when you need to
apply regular expressions to text and extract fields. Like all regular expression
engines, match patterns can become incomprehensibly complex, even to those who
supposedly maintain them (like me). Chapter 11 covers optimizing the use of regular
expressions at scale, and section 11.3 covers optimizing for this telemetry specifically.
The two grok {} statements here parse out many fields and could be combined into a
single grok {} statement but would turn already-long lines into even longer ones
(which you’ll see in chapter 11; it’s a doozy). The first statement takes a first pass at
the data, capturing several fields. Figure 6.10 shows how it works.

That first grok {} statement gives us six new fields: firewall_action, conn_id, source,
target, duration, and bytes. Then processing moves to the second grok {} statement,
which adds even more fields (figure 6.11).

 
 
 
 
 
 

{"syslogmessage": "Teardown of UDP connection 162121 for outside:1.1.0.0/53 
to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136"}

grok {
  match => {
    "syslogmessage" => "^%{DATA:firewall_action} %{NUMBER:conn_id} for  
%{NOTSPACE:target} to %{NOTSPACE:source} duration %{TIME:duration} bytes 
%{NUMBER:bytes}$"
  }
}

{"syslogmessage": "Teardown of UDP connection 162121 for outside:1.1.0.0/53 
to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136", 
"firewall_action":"Teardown of UDP connection","conn_id":"162121", 
"target":"outside:1.1.0.0/53","source":"dmz1:192.0.2.19/59232", 
"duration":"0:00:00","bytes":"136" }

Follow which 
text ends up 
in the lower 
JSON hash 
and which 
match 
statement 
put it there.    

Figure 6.10 How our firewall emission is transformed by the first grok{} statement into a hash 
with far more explicit details. Text in the original hash that is matched by grok{} is boxed; new 
attributes in the final hash are underlined.

http://mng.bz/5W17
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After these two grok {} statements, we’ve added 13 new fields to the telemetry:

 firewall_action—Teardown of UDP connection
 conn_id—162121
 target—outside:1.1.0.0:53
 source—dmz:192.0.2.19:59232
 duration—0:00:0
 bytes—136
 source_int—dmz
 source_ip—192.0.2.19
 source_port—59232
 target_int—outside
 target_ip—1.1.0.0
 target_port—53
 protocol—UDP

Because of how Logstash’s grok {} filter works, all these fields will be of the string
data type. If we wanted to convert the numbers to integers, we could do so by modify-
ing the capture statements, such as this one capturing conn_id:

%{NUMBER:conn_id:int}

{"syslogmessage": "Teardown of UDP connection 162121 for outside:1.1.0.0/53 
to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136", 
"firewall_action":"Teardown of UDP connection","conn_id":162121, 
"source":"outside:1.1.0.0/53","target":"dmz1:192.0.2.19/59232", 
"duration":"0:00:00","bytes":"136","target_int":"outside", 
"target_ip":"1.1.0.0","target_port":"53","source_int":"dmz", 
"source_ip":"192.0.2.19","source_port":"59232","protocol":"UDP"}

{"syslogmessage": "Teardown of UDP connection 162121 for outside:1.1.0.0/53 
to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136", 
"firewall_action":"Teardown of UDP connection","conn_id":"162121", 
"target":"outside:1.1.0.0/53","source":"dmz1:192.0.2.19/59232", 
"duration":"0:00:00","bytes":"136" }

grok {
  match => {
    "source" => "^%{WORD:target_int}:%{IP:target_ip}:%{NUMBER:target_port}$"
    "target" => "^%{WORD:source_int}:%{IP:source_ip}:%{NUMBER:source_port}$"
    "firewall_action" => "for %{WORD:protocol} connection"
  }
}

Follow which 
text ends up 
in the lower 
JSON hash
and which 
match 
statement 
put it there.    

Figure 6.11 How our firewall emission is further transformed by the second grok{} statement. 
Text in the original hash that is captured by the grok{} statement is boxed. New fields in the final 
statement are underlined. Seven new fields are added, derived from fields parsed from the first 
grok{} statement. All 13 fields could be derived from a single, huge, mostly incomprehensible 
grok{} statement, but splitting them up makes the flow easier to follow (if slower to process).
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After all these fields are put in storage, the Presentation-stage systems will be able to
build visualizations and reports using the enriched data. For a feed of firewall events,
being able to exclude events that you already know is helpful for isolating the interest-
ing events. Figure 5.16, reproduced here as figure 6.12, demonstrates excluding
known DNS servers to help find internal users touching unknown DNS servers.

Although regular expressions are powerful, they have a reputation for being some-
what slow. In cases such as firewall emissions, in which the format is well-known and
unchanging, we have other ways to generate these fields efficiently. Logstash has
another filter called dissect {} that does not rely on regular expressions; instead, it
relies on a simpler capture expression. Listing 6.4 rewrites the Logstash config to use
dissect instead of grok.

filter {

  if [facility] == 'local07' and [syslogmessage] =~ “^Teardown” {
    dissect {
      mapping => {
        "syslogmessage" => "Teardown of %{protocol} connection %{conn_id} 
        ➥ %{source} to %{target} duration %{duration} bytes %{bytes}"
      }
    }

    dissect {
      mapping => {
        "source" => "%{source_int}:%{source_ip}:%{source_port}"
        "target" => "%{target_int}:%{target_ip}:%{target_port}"
      }
    }
  }
}

Listing 6.4 Extracting firewall fields with dissect

Figure 6.12 Excluding known DNS servers to find interesting events. The base 
filter finds all firewall events (tags:"firewall"). Then the search is modified 
with two explicit excludes, removing events with target_ip set to 1.1.1.1 or 
1.1.0.0. Thereafter, only events with target_ip addresses that aren’t the two 
well-known values will be visible and worth investigating.
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Listing 6.4 is simpler to read than listing 6.3, which improves maintainability and per-
forms faster. The performance improvements come from how dissect parses the Sys-
log string. Everything that’s not inside a curly brace is considered to be a delimiter,
and strings between delimiters are fields; that’s it. dissect is a not a one-to-one equiv-
alent to grok, though; we’re missing the firewall_action field. We’re missing that
field because this string does not have a way to separate (delimit) that part of the
string from the rest. dissect is simpler and easier to maintain, but with some cost in
flexibility.

dissect also lacks a way to convert fields to specific data types the way grok does, but
Logstash provides a way to convert arbitrary fields to specific types. Data types are
important for storage and Presentation-stage systems because of the limits that each
data type imposes. Many systems will be happy to add the string "12" to the string

Writing for maintainability is good; you should do it
A maintainable system is one with low barriers to understanding what a system is
doing. Regular expressions have a decades-long reputation for being gibberish to those
who don’t know what every symbol means, and they can still be gibberish to those of
us who do know those meanings. It takes time to diagram what’s going on in there.
Regular expressions can be incredibly powerful, but using that power limits who can
fix an expression when something goes wrong. If you can solve a string-parsing problem
without using complicated regular expressions, you have likely improved the maintain-
ability of the overall system.

This concept applies to software systems in general. Any old codebase almost defi-
nitely has one function/class/method that is way too long, is doing way too much,
and has a comment at the top of it saying

# Number of people who tried to refactor this and gave up: 7

Such code is almost always the result of years of accumulated scar tissue relating
to edge cases. Code like this survives style refactors because the dark calculus of
maintainability means having all that code in one place is the least-bad option versus
hiding it all in eight one-use functions scattered across the entire codebase that
would require a whiteboard and lots of sticky notes to trace the logic flow. Least-bad
is not good, but sometimes, reality means that least-bad is the best you can do. Here
are two points to consider when facing code that might be unmaintainably complex:

 If you have to choose between stylish and maintainable, lean toward main-
tainable. Intellectual purity isn’t worth the maintenance headaches.

 What you, the expert, consider to be maintainable often isn’t maintainable to
someone who doesn’t have all your context (see also: writing this book). Let
someone else make the maintainability decisions (see also: all the editors
and proofers involved in making this book work at all). Your code will survive
after you’re gone; plan for it.
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"13" to produce a sum of "1213", but the integer 12 can be added to the integer 13 to
get 25.

6.2.3 Converting field types during the Shipping stage

In this section, we cover the places in a Shipping stage that may perform type conver-
sions and discuss why you want to convert types. Adding strings together produces
inconsistent results, as discussed at the end of section 6.2.2, so converting a string rep-
resentation of a number to a number will make math operations easier later in the
pipeline. Listing 6.5 gives us an example that converts the dissected string values from
listing 6.4 to their appropriate data type.

filter {
  if [facility] == 'local07' and [syslogmessage] =~ "^Teardown" {
    dissect {
    [... Listing 6.4 code ...]
    }

    mutate {
      convert => {
        "conn_id"     => "integer"
        "bytes"       => "integer"
        "source_port" => "integer"
        "target_port" => "integer"
      }
    }
  }
}

Let’s see what this mutate {} statement does to the JSON hash from figure 6.11. With
our telemetry data now in the correct type, as shown in figure 6.13, the analysis we can
perform on this telemetry has been magnified. Creating a step in the Shipping pipe-
line to ensure that field data types are what the storage expects is a good idea, and you
should implement it if Shipping-stage technology allows.

 
 

Listing 6.5 Converting dissected fields to their correct data type

Exercise 6.2
Given the following telemetry sample, identify as much enrichable telemetry as you
can.

2025-02-19T00:59:26.142  INFO  9202 --- [expl-http-api]

➥ c.a.s.s.t.CallbackWorker : API callback triggered for account 

➥ 3671 using APPID 9285861, response 403
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A classic reason why rationalizing data types is a good idea can be explained by look-
ing at Boolean values and how they convert. A Boolean value is either true or false.
Representing that truth value as a string or number has several conventions, however.
All these values are equivalent to true in some cases (but critically, not all):

 The integer 1
 The integer 0 (uncommon)
 An integer or float value greater than zero
 An integer or float value not equal to zero (may be negative)
 The string 't'
 The string 'true'
 The string 'y'
 The string 'yes'
 A string of any length greater than zero

One of the main roles of a Shipping stage is to convert data types to something that
the storage systems can handle, so be sure to convert types out of string wherever fea-
sible. When you’re converting into a storage system that has a Boolean type, it is better
to do the type conversion in the shipping pipeline and not rely on the storage system’s Boolean con-
version logic. Doing the type conversion in the pipeline makes the conversion explicit

{"syslogmessage": "Teardown of UDP connection 162121 for outside:1.1.0.0/53 
to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136", 
"firewall_action":"Teardown of UDP connection","conn_id":"162121", 
"target":"outside:1.1.0.0/53","source":"dmz1:192.0.2.19/59232", 
"duration":"0:00:00","bytes":"136","target_int":"outside", 
"target_ip":"1.1.0.0","target_port":"53","source_int":"dmz", 
"source_ip":"192.0.2.19","source_port":"59232","protocol":"UDP"}

mutate {
  convert => {
    "conn_id"     => "integer"
    "bytes"       => "integer"
    "source_port" => "integer"
    "target_port" => "integer"
  }
}

{"syslogmessage": "Teardown of UDP connection 162121 for outside:1.1.0.0/53 
to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136", 
"firewall_action":"Teardown of UDP connection","conn_id":162121, 
"target":"outside:1.1.0.0/53","source":"dmz1:192.0.2.19/59232", 
"duration":"0:00:00","bytes":136,"source_int":"outside", 
"target_ip":"1.1.0.0","target_port":53,"target_int":"dmz", 
"source_ip":"192.0.2.19","source_port":59232,"protocol":"UDP"}

Note that the 
lower hash lacks 
quotes around the 
circled numbers. 
That is the type 
change.

Figure 6.13 Typecasting our firewall telemetry to turn important values into numbers 
instead of strings. This mutate {} statement is converting four values to integers. Due 
to how JSON formats numbers, it seems that all this code is doing is removing the quotes 
around the numbers. When this retyped telemetry reaches Shipping-stage storage, the 
difference will be profound; you can perform different analysis on number-based data 
instead of string-based data. Converting telemetry data to the correct type is powerful.
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and puts the conversion logic where it will be more maintainable (see sidebar in sec-
tion 6.2.2).

 Section 2.1.4 introduces the concept of using object-encoding formats such as JSON
and YAML as part of emissions, and section 4.2 covers the decision process for selecting
telemetry emissions formats generally. The Shipping stage is one of the main places
where that format is converted from the negotiated standardized formats (section 4.2)
to the format needed by storage systems. Generally speaking, object-encoding formats
such as JSON, YAML, and XML (for a discussion of protobufs, see sidebar in section 4.2)
are good at representing several data types:

 Strings
 Numbers
 Arrays
 Hashes

Although strings are a simple type, numbers are not. Integers are different from
floating-point numbers, and some storage systems treat the two types differently.
Whether that storage difference matters to you depends on your data, but you should
be aware that the difference is possible. The Boolean type is not represented uniquely
in these object-encoding formats, so if storage uses Boolean, something—possibly the
storage system itself—will need to convert the strings and numbers to their appropriate
true and false values. 

Data types and numbers
Integer (number without a decimal) and floating-point (number with a decimal) types
are the basic computing number types, going back before even the vacuum-tube era.
Performing math operations on integers requires different logic from performing them
on floating-point numbers, so CPUs can be better or worse at one task versus the
other. The Intel 8088 CPU that launched the IBM PC was good with integers, but
doing floating-point computations fast required an extra chip: the math coprocessor
known as the 8087. These days, a regular Intel or AMD CPU can do extensive floating-
point math on chip, but the math coprocessor’s role has moved to Graphics Process-
ing Units, such as those produced by NVidia. The IEEE 794 standard (1985) defines
how floating-point mathematics happens inside hardware.

Two others concepts that are familiar to programmers are precision and overflow,
which relate to the number of bits assigned to hold a number. An 8-bit-wide integer
can hold a value of 2 to the eighth power or 2 to the seventh power if that value needs
to include positive and negative numbers. Attempting to store a number that can’t be
held in eight bits overflows the integer. The year 2038 problem exists because that’s
when the UNIX Epoch counter will overflow a 32-bit signed integer and turn negative.

Precision applies to floating-point numbers. Floating-point numbers are not as prone
to overflow as integers are; they merely become less precise. The bit width of a floating-
point number determines the number of decimal places to which the number is
accurate.
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You can convert data types in several places, and some (larger, longer, rather complex)
pipelines convert data several times before it is finally stored. Listing 6.5 demonstrated
a conversion in the middle of the pipeline. But type conversion can also happen at the
beginning of the Shipping stage, when the emitted telemetry enters the Shipping
system. In listing 6.6, we are using Logstash to ingest a file produced by an older Arabic-
language Windows system running codepage 1256, which is not Unicode.

input {
  file {
    path => "C:/Program Data/AppLog/output.txt"  
    codec => plain {
      charset => "Windows-1256"   
    }
  }
}

The file is produced by the production systems, where Logstash ingests it. The file {}
plugin tells Logstash to expect the file to be in the Windows codepage Windows-1256.
Logstash always converts strings internally to UTF-8; because it knows the format in
which strings are entering the pipeline, Logstash will know how to translate text into
UTF-8. Any later filter {} and output {} plugins will be working on UTF-8 data.

WARNING Not everyone is blessed enough to work solely with UTF-8 strings.
Java programmers see UTF-16 strings more often than those who work in
other programming languages, and Windows used a dialect of UTF-16 by
preference for much of its post-Windows-NT history. Mainframes and other
systems running code that was first written in the 1960s and 1970s and contin-
ually updated often don’t emit in Unicode at all (EBCDIC). Knowing how to
convert string encodings will allow you to build a telemetry pipeline to sup-
port more of your production systems.

Listing 6.6 Converting old Windows Arabic to UTF-8 by using Logstash

When it comes to telemetry, numbers take on a different meaning. Some makers of
telemetry systems have noticed that when humans chart numbers, especially floating-
point numbers, they rarely look past the seventh digit. The operations performed on
telemetry system numbers are rarely the complex multistage analysis functions that
precision problems magnify and compound, but simple methods in which imprecision
is hidden by the digits not shown.

The idea of a scaled float is starting to emerge in telemetry storage systems as a
result of this observation. A scaled float is an integer with a second integer to record
the decimal place. As a true format for performing complex math functions, a scaled
float is terribly imprecise, but it’s definitely good enough for dashboarding. Scaled
floats store more efficiently than true floating-point numbers do, which matters when
it comes to resource provisioning. If you store a lot of floating-point numbers, using
scaled floats wherever possible will save you money.

The path of files to ingest

Tells Logstash what character 
set string will be encoded as
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Type conversion often also happens at the interface between the Shipping-stage stor-
age system and the systems that send it data. The adapter that inserts telemetry into a
storage system can convert types, and the storage system itself can convert types. In
listing 6.7, we have a Logstash output adapter sending telemetry into the InfluxDB
time-series database, where we are converting types as part of the adapter rather than
trusting InfluxDB to convert types correctly.

output {
  influxdb {
    host => "influxdb.euc1.prod.internal"   
    db => "app_metrics"    
    measurement => "java_metrics"   
    data_points => {                         
      "host" => "%{host}",  
      "pid" => "%{pid}",                      
      "version_id" => "%{version_id}",       
      "name" => "%{counter_name},            
      "value" => "%{counter_value},            
      "type" => "counter"                   
    }
    send_as_tags => [     
      "host",    
      "pid",             
      "version_id",       
      "name",              
      "type"              
    ]

    coerce_values => {     
      "value" => "float",  
      "pid"   => "string"  
    }
  }
}

The coerce_values section in listing 6.7 is forcing the data type of the value field to
be float and pid to string. Although a process identifier is a number, its value in this
database system is to act as an identifier, so converting it to string will make it more
powerful. Figure 6.14 shows this transformation process.

 To see an example of a storage system itself doing the type conversion, let’s look at
Elasticsearch, which provides a method for converting types in the form of index
templates that predefine field types. In listing 6.8, we’re setting the priority field to
the keyword type and the percent_cpu field to a special type.

 
 
 
 

Listing 6.7 Using the influxdb output adapter to perform type conversions of numbers

Hostname of the InfluxDB server

The database to send metrics into

The 
measurement 
(table) to send 
metrics into

The list of fields to 
send into influx

The list of 
fields to treat as 
indexed values

Fields to type-convert into 
specific InfluxDB types.
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{
  "mappings": {
    "_doc": {
      "properties": {
        "percent_cpu": {
          "type": "scaled_float",
          "scaling_factor": 1000
        },
        "priority": {
          "type": "keyword"
        }
      }
    }
  }
} 

The keyword type is a special form of string that gets less indexing but is more efficient
in producing your visualizations. The scaled_float type is a custom form of floating-
point number that is stored as an integer but allows decimal values; in this case, it is set

Listing 6.8 Elasticsearch template defining types and type conversion behavior

{"host":"jws1-132.euc1.prod.internal","pid":25112,"version_id":"2.1.10926", 
"counter_name":"pdf_pages","counter_value":3}

output {
  influxdb {
    host => "influxdb.euc1.prod.internal"
    db => "app_metrics"
    measurement => "java_metrics"
    data_points => {
      "host"       => "%{host}",
      "pid"        => "%{pid}",
      "version_id" => "%{version_id}",
      "name"       => "%{counter_name},
      "value"      => "%{counter_value},
      "type"       => "counter"
    }
    send_as_tags => [
      "host",
      "pid",
      "version_id",
      "name",
      "type"
    ]
    coerce_values => {
      "value" => "float",
      "pid"   => "string"
    }
  }
}

java_metrics,host=jws-
132.euc1.prod.internal,pid=2511
2,version_id=2.1.10926,name=pdf
_pages,type=counter value=3.0 
1742443312129534

InfluxDB line protocol

A space separates the tag 
values from field values.

Timestamp in epoch time, 
microsecond resolution

Figure 6.14 The type conversion performed as part of the influxdb output adapter. We 
see the incoming data in the JSON hash at the top, with pid and counter_value set to a 
number type. To the right, we see how the output {} block transforms this data structure 
into the InfluxDB line protocol. value is typecast to float as part of the adapter. If it were 
specified as an integer, value would be represented as 3 with no decimal point.



162 CHAPTER 6 Marking up and enriching telemetry

to include three places past the decimal. In Elasticsearch, the data type is converted
when a new event is inserted into the database. In the case of percent_cpu, the Shipping
stage converts the source metric from the string it started life as to a double-precision
floating-point value. When the metric is ingested into Elasticsearch, it is further con-
verted to a scaled float.

6.3 Enrichment in the Presentation stage
The Presentation stage of a telemetry pipeline is the stage that displays telemetry for
humans and is the public face of the telemetry system. Chapter 5 covers the Presenta-
tion stage in detail, but this section focuses on the sorts of markup and enrichment
the Presentation stage can provide. Being the last stage in the telemetry pipeline, the
Presentation stage uses telemetry that has been marked up and enriched by the Emit-
ting and Shipping stages to provide even more detail.

 The distributed tracing style of telemetry makes the most use of Presentation-stage
enrichment of telemetry because it focuses on using correlation identifiers to link
telemetry. Depending on the technical details, the linkage of telemetry might happen
in the Shipping stage as part of storage, but it is the Presentation stage that takes those
correlations and displays them to improve decision-making and troubleshooting by
people. Figure 6.5, which gave the context for the work done by listing 6.2, is an exam-
ple of the sort of display a distributed tracing system can generate based on correla-
tion data, and most of this enrichment is happening in the Presentation stage. Figure
6.5 is reproduced here as figure 6.15.

Figure 6.15 A normal, no-exception example of a distributed trace showing conversion of a .docx 
file that resulted in three pages. This figure demonstrates the call stack—in the form of services, not 
functions or classes—for this particular execution. A chart formatted like this one provides extensive 
context for someone who’s looking to troubleshoot problems, and context speeds resolution.

upload_document
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docx_to_pdf save_file

pdf_pages save_file

pdf_to_png

Time spent in seconds

Execution chain starts
(API endpoint). 
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Enrichment in the Presentation stage is less about modifying telemetry for better per-
formance and more about creating visual displays that are useful for humans. Charts
and graphs are visual displays as much as tables with curated columns. Trend lines on
graphs and forecasting columns for reports built from telemetry are another form of
enrichment that Presentation-stage systems produce.

 Section 5.1.3 provides a series of charts exploring the enrichment possibilities avail-
able through the use of aggregation functions when you’re manipulating metrics data
produced by the pdf_pages function by way of the metrics.py file from listing 6.1. Each
aggregation function provides a different view into a set of telemetry, allowing the per-
son doing the research to learn about the shape of the data and what patterns may be
present. The enrichment here is provided by the system displaying the metrics data.

 For centralized logging data, which is mostly strings enriched and marked up by
the Emitting and Shipping stages, different forms of enrichment are possible. Given a
set of centralized logging telemetry, here are some example charts and reports that
you can make:

 Chart the occurrence of a specific error message over time to determine
whether the error is increasing or decreasing after a recent software release.

 Chart the occurrence of messages with a priority of CRITICAL for a specific
application to identify spike patterns.

 Chart the ratio of INFO to CRITICAL messages coming from a specific function
to isolate periods when failure rates are higher.

 Chart the count of API calls from a specific customer to learn what their request
patterns are.

 Chart the code classes making the highest number of CRITICAL messages to
determine areas to focus technical debt work on.

 Report the hosts making connections to the public Ruby Gems servers to iden-
tify software not configured to use the proxy systems.

 Chart the number of internal hosts making network connections to a malware
command-and-control server to determine how many infected hosts there are.

 Report sudo use by the Operations team to ensure that change-control proce-
dures are being followed.

Figure 5.12, reproduced here as figure 6.16, gives us one example of enriched data in
a Presentation-stage system.

 Figure 6.16 gives us a view of DNS requests made over a couple of minutes, using
telemetry enriched by the Shipping stage (see section 6.2.2 for a description) to pro-
vide the fields we see in the report. The emitted string had no markup or enrichment,
so the Shipping stage extracted and enriched the telemetry as new events flowed
through the pipeline. Each field in the report can be used in the search query to
restrict the graph to the interesting telemetry.

 A technique used by the big SaaS vendors for centralized logging, such as Splunk
and Sumo Logic, puts in place more explicit Presentation-stage enrichment. When
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you’re operating large distributed systems with the goal of providing centralized log-
ging services to large numbers of customers, certain problems of scale start showing
up, such as cardinality. (See chapter 14 for more about that problem in your systems.)
One method that is economical at a SaaS provider’s scale is to handle decoding of
object-encoding formats like JSON during the presentation process rather than as
part of the Shipping stage. You provide a query that broadly selects the data you need;
as part of a second stage of the query, a field containing JSON data is converted to
fields (deserialized). The fields produced by this pass can be used in later queries or
made part of a report. Listing 6.9 provides an example query for Sumo Logic.

(_collector="FrankfurtDC”)    
| json field=_raw "syslog.severity" as severity    
| json field=_raw "syslog.facility" as facility    
| json field=_raw "syslog.hostname" as host        
| where severity = "WARN”  

The first line selects which dataset we are interested in, and a time range is selected in
the user interface (not pictured here). The second, third, and fourth lines use the
pipe operator to parse the JSON blob in the _raw field to pull out three fields and

Listing 6.9 Using Shipping-stage markup in Sumo Logic

Search terms

Term frequency chart

Selected report fields

Dashboard sharing and access buttons

Figure 6.16 Providing an enriched view of telemetry, displaying a frequency chart and a report of findings. This 
dashboard software (Kibana 7 from Elastic.co) provides all the features needed for a good Presentation-stage 
system for centralized logging.

Selects dataset to operate with

Adds fields to dataset 
by parsing JSON

Uses added field as conditional 
to reduce dataset returned
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make them part of the event being displayed. The fifth line is a conditional using one
of the created fields. All three of the extracted fields are available for reporting.

 Presentation-stage enrichment of this kind can be powerful, but the more transfor-
mation work the Presentation-stage systems have to do, the slower they seem to be for
the people who are asking questions. SaaS providers allow this sort of system because
their presentation systems sell their product, so they put years of engineering into
making that experience fast. A feature such as this one is not yet widely available in
open source solutions, but that situation is changing; GrafanaLabs’ relatively young
Loki product is already built to use exactly this style of Presentation-stage enrichment!

6.4 How telemetry style affects markup and enrichment
Sections 6.1 through 6.3 teach how markup and enrichment happen at each stage of
the telemetry pipeline. This section focuses on the four telemetry styles and their pref-
erences for where markup and enrichment happen. The styles we’re focusing on are

 Centralized logging—The first telemetry system to emerge from multicomputer
infrastructures

 Security Information Event Management (SIEM)—A form of centralized logging spe-
cialized for security-team workloads involving incident response and compliance

 Metrics—A way to store information online and searchable longer by focusing
on numbers and a few tags to search them

 Distributed tracing—Specialized for tracing execution flows across distributed sys-
tems and associated telemetry events

We will go over each of these styles in turn and explain why they enrich and markup
where they do. The state of the art is constantly changing, so by the time you read this
book, there might be new styles that are not in this list. If you find yourself wondering
where a new style might fit, read the next few sections to discover the trends. 

Why timestamp format and correct time matter
Telemetry systems have a simple rule: all clocks generating timestamps must be syn-
chronized to the same source to ensure that telemetry from all systems can be ordered
correctly by your presentation systems.

There is a corollary to this rule: Timestamp formats must be as precise as possible (to
the millisecond, microsecond, or nanosecond, if required) to improve ordering by your
presentation systems.

The Syslog RFC 3164 specified a timestamp format that is accurate to the second
and leaves off the year. Anything that parses these timestamps has to guess what
year the telemetry was emitted in—not a good choice for high-resolution telemetry
systems in which milliseconds matter.

Syslog RFC 5424 clarifies the Syslog timestamp format to allow far more accurate
timestamps, such as those conforming with ISO8601. 
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6.4.1 Markup and enrichment with centralized logging
Centralized logging is the modern descendant of the first programs that emitted a
stream of output meant for operators and developers rather than program users. Cen-
tralized logging systems take the log output of programs across the production sys-
tems and bring them into one place for operators, engineers, and managers to search
and ask questions. It is the oldest telemetry style, dating from the Berkeley Software
Distribution around 1980.

 Syslog, Windows Event Log, and Systemd’s journald are operating-system-based
platforms designed for collecting logs on a given server and electively sending them
somewhere else. Applications have the option of building their own telemetry delivery
systems; perhaps they send telemetry into a queue or a stream, or directly into a data-
base. A common factor in all of these delivery methods is that centralized logging is
about shipping, manipulating, and searching strings. Figure 6.17 provides an example
drawn from figure 1.3.

(continued)
ISO8601 is the format responsible for timestamps like 2025-02-19T19:57:18.922-
01:00, indicating Feb 19 in the year 2025, at 19:57, 18 seconds, 922 milliseconds
in a time zone offset –1 from UTC.

ISO8601 is a convenient format for timestamps because it uses fixed widths for each
digit, allowing parsers to take shortcuts to speed parsing. This format is a highly
machine-parsable format, and you should use it wherever you are allowed to do so.

Be warned: the more precise your timestamps are, the more visible clock drift will be.
The NTP protocol is pretty good at keeping servers synchronized, but there is a lower
bound to how precise it is. When you have microsecond or nanosecond resolution,
you will start seeing events happening a bit out of order from how they actually
occurred, and you won’t have a way to tell that this is the case.

Cisco
hardware

Syslog
server

Fluentd
process

Elasticsearch
storage

Kibana
server

Production
code

File:
app.log

Markup in 
software

Shipping-
stage markup 

Enrichment and 
type conversion 

Enrichment by 
software

Presentation 
stage 

Shipping stageEmitting stage

Figure 6.17 Figure 1.3 with pointers to where centralized logging prefers to do its markup and 
enrichment. We see both software- and hardware-produced telemetry in this pipeline. Software performs 
its own markup, whereas the Cisco hardware relies on Shipping-stage components to do that work. 
Enrichment is handled mainly as part of the Shipping stage, with the Presentation-stage software 
providing the rest. Centralized logging relies more on Shipping-stage enrichment than metrics.
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For centralized logging systems, here are a few guidelines on when and where to
enrich and mark up your telemetry:

 If the Emitting stage can’t do context-related markup (see section 6.2.1), such
as for hardware systems, the Shipping stage may be used to extract and enrich
telemetry based on the logged strings, as demonstrated in listings 6.4 and 6.5.

 If software is emitting telemetry, it has the best context for adding context-
related markup right at the time telemetry is emitted, just before or during the
Emitting stage. Markup can be added directly to the event right at emission.

 If hardware is emitting telemetry, it often includes context-related telemetry in
the logged string. The Shipping stage can extract the context-related telemetry
and enrich the telemetry event for the Presentation stage, as was done in sec-
tion 6.2.2.

 Timestamps and other date/time structures are critical for making centralized
logging systems work well. The Shipping stage should transform various
date/time strings from their source format to the format that the Presentation-
stage systems need.

 Syslog’s protocol deliberately leaves the year off its timestamp because it should
be obvious when a line was emitted. If you are dealing with Syslog-formatted
telemetry in any capacity, consider adding a timestamp in the logged line if pos-
sible, or making rules for how to add a year.

 Regular expressions may be needed to extract interesting telemetry from
strings—a function done mostly by the Shipping stage.

 Object-encoding formats such as JSON, YAML, and XML are one way to ship
telemetry objects in strings, to be converted back to objects (enriched) by the
Shipping stage.

Centralized logging systems are almost definitely in place in your environment; they
emerge naturally in any multisystem environment. Centralized logging is the most
resource-intensive of the telemetry system styles, so taking time to optimize your pipe-
lines will save money and improve everyone’s experience.

6.4.2 Markup and enrichment with SIEM systems

SIEMs are specialized versions of centralized logging focused on the workflows that
security teams encounter during incident response, compliance, and regulatory-
related activities. Where centralized logging systems handle telemetry that’s interest-
ing to software engineering and operations teams, security teams focus on specific
well-known types of telemetry. SIEM systems are built to enable those workflows, and
this section describes where SIEM systems prefer markup and enrichment to happen.

 SIEM systems are almost always purchased software, including cloud options,
because of the scale of the problem. The amount of engineering needed to deliver a
viable solution for diverse needs makes this an added value you can use to finance a
company. A poor SIEM can be cobbled together out of a centralized logging system,
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but when the organization reaches the level of having compliance or regulatory
requirements, a full-featured SIEM becomes necessary. The purchased constraint lim-
its the effectiveness of markup and enrichment in the Emitting and Shipping stages
because the SIEM itself may be the Shipping stage. Paying for add-ons to enhance cor-
relation is a valuable option that you should consider. Figure 6.18 is figure 1.7 with the
areas of markup and enrichment that SIEM systems prefer.

There is a distinction between security and anomaly detection inside the production
system using production data written in production-system code and security and
anomaly detection using telemetry. The former is more a product feature. The latter
is a telemetry system charged with tracking the old standby security concerns: making
sure that users with elevated privileges are using them correctly, tracking logins to the
production environment, and catching excessive login attempts at external access
points. Traditionally, SIEM telemetry systems are the second kind of security system.

 For larger companies that can afford full-time software engineers to write an in-
house SIEM system, the calculus changes considerably. For companies at that scale,
the volume of data entering the SIEM may be large enough that the annual salaries of
a couple of software engineers can be cheaper than the cost of relicensing a pur-
chased solution. When the SIEM is an in-house-developed product, markup in the
Emitting stage can be incredibly powerful. Generally, for security-incident response,
more context is never bad. The real engineering challenge exists in the Shipping and
Presentation stages, where correlation and display happen.
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Figure 6.18 The example SIEM system from chapter 1, with pointers to where markup and 
enrichment happen. The Emitting stage has some markup, but the Shipping stage completes it. 
Because this example uses a SaaS system, telemetry data is sent to the SaaS provider, where 
extensive enrichment happens. Dashboards for SIEM systems are backed by complex analysis 
systems.
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6.4.3 Markup and enrichment with metrics

Metrics grew out of the union between monitoring systems run by operations teams
and the desire of software engineering teams to track how their code was performing.
Early metrics systems used outright monitoring systems such as Nagios and Xenoss.
Around 2010, mindshare began to shift into calling this pattern metrics, and the first
dedicated time-series databases began to be released. This section covers where and
when metrics systems like to have markup and enrichment.

 Metrics was an improvement on centralized logging because numbers compress
well, allowing much longer timescales to be online and searchable for a similar cost—
years versus weeks for centralized logging. Metrics in this era contained only a few
nuggets of context-related telemetry because the databases backing metrics systems
weren’t built for infinite cardinalities. Metrics were often summarized to further
improve their storage efficiency, which by necessity lost context.

 The monitoring systems used in the early years are still present, and modern equiv-
alents, such as Telegraf from InfluxData, can emit directly into storage—push-based
monitoring, to use the old term. (For a closer look at monitoring-system choices for
pull versus push, see section 9.3.) Systems like these often exist in parallel to software-
based metrics. The union between systems metrics and program metrics can enable
deep understanding of the impact of code changes on an environment. Figure 1.4
showed the union of system and software metrics, reproduced here as figure 6.19 with
the markup and enrichment points described.

Sections 2.1 and 3.1 use metrics as a teaching pattern for Emitting- and Shipping-stage
architectures because of their ease of use. The metrics.py listing variants presented in
section 2.1 demonstrate several ways of emitting metrics into a centralized logging sys-
tem; listing 6.1 is a version that adds context-related telemetry; and section 6.2
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Figure 6.19 The example metrics pipeline from chapter 1, with the markup and emitting points 
highlighted. Metrics and monitoring rely extensively on markup during the Emitting stage. Here, 
we see the production software being aggregated (enriched) by a Prometheus StatsD exporter, and 
the OS monitoring software is talking to the Prometheus Graphite exporter. The Grafana server in 
the Presentation stage provides extensive enrichment for both monitoring and metrics systems.
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describes how to turn those metrics into numbers. Then the Shipping stage inserts the
numbers into a time-series database, the same as the one used for systems metrics. For
metrics-style telemetry systems, here are a few guidelines on when and where markup
and enrichment should happen:

 Emitting-stage systems add context-related telemetry, such as a class path, host-
name, program name, or other broad details, as shown in listing 6.1.

 Shipping-stage systems transform emitted telemetry into numbers and deliver
them to a metrics database, as shown in listing 6.7.

 Shipping-stage systems may generate metrics on their own, based on telemetry
observed in the pipeline, such as a count of telemetry with priority set to WARN.

 Emitter/shipper functions, the direct-to-storage pattern from section 3.1.1, do
all these things in one place.

 Metrics databases often have limits on cardinality, so be selective when picking
context-related telemetry.

 Presentation systems use aggregation functions to enrich displayed telemetry, as
covered in-depth in section 5.1.

6.4.4 Markup and enrichment with distributed tracing systems

Distributed tracing systems slowly emerged during the mid-2010s as databases began
to catch up with unmet cardinality demands and storage systems became SSD by
default. The first tracing systems, confusingly called observability systems, simply
added correlation identifiers to metrics and used Presentation-stage analysis to make
sophisticated charts. By the late 2010s, the name distributed tracing was cemented, and
tracing became the third Pillar of Observability (the other two being logs and met-
rics). Tracing systems allow correlating events across an entire system—microservice,
monolith, or variants; it doesn’t matter—greatly expanding the technical organiza-
tion’s ability to understand complete workflows. Figure 6.20 provides a view of where
markup and enrichment happen for this style.

 Distributed tracing relies heavily on context-related telemetry, specifically in the
form of correlation identifiers added during the Emitting stage. The SDKs for distrib-
uted tracing systems add their own correlation identifiers as part of the protocol, but
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Emitting stage Shipping stage Presentation 
stage 

Figure 6.20 Markup and enrichment points for distributed tracing, here using the Jaeger tracing 
platform. These telemetry styles rely heavily on markup set on telemetry at the time it is emitted. 
Presentation-stage systems perform deep analysis of data and provide most of the enrichment.
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they also allow emitting additional telemetry. In fact, tracing encourages emitting
additional telemetry during the Emitting stage to improve an operator’s ability to
understand (observe) production systems.

 The distributed tracing platforms available at the dawn of the 2020s don’t rely on
general Shipping-stage platforms the way that centralized logging and metrics can.
Distributed tracing platforms quite often emit directly into a dedicated tracing service
without having to pass through queues or streams first. But the Shipping stage plays a
large role in one architecture: programming languages like COBOL that don’t have
an SDK for a distributed tracing platform.

 For software that lacks an SDK for a tracing platform, you can use the Shipping
stage to transform a telemetry event from such a software platform into an event that
can be ingested by a tracing platform. Figure 6.21 demonstrates an architecture in
which a software platform that lacks an SDK can still emit into a tracing system.

Instrumenting COBOL software for distributed tracing, which does not directly sup-
port a distributed tracing SDK, can still be done through a few steps:

1 COBOL emits telemetry into a stream, as in section 3.1.2.
2 A tracing parser running a supported platform reads the tracing data, marks it

up appropriately, and relays it to the SaaS provider’s API.

Supporting an architecture like this one requires you to design a shipping format that
the tracing parser can use to create an event compatible with the tracing platform you
are using. You can use an approach like this one when a distributed tracing SDK isn’t
permitted directly inside the production environment. Some production systems
working in highly secure environments are not permitted to make the network con-
nections required for current tracing SDKs, so proxying those connections by way of a
queue or stream makes sense.

COBOL
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honeycomb.io 
ingestion API 

honeycomb.io
storage

honeycomb.io
dashboard

Tracing 
parser

Emit to 
queue/steam. 

Parse and relay 
to SaaS API. 
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Figure 6.21 Tracing from a non-SDK software platform and ingesting into a SaaS provider of 
tracing. This example relies on extending the production software to provide tracing data, which is 
then shipped through a queue/stream. A tracing parser reads this tracing data and relays it up to 
the SaaS API. From there, the pipeline looks the same as with a supported platform. An architecture 
like this one allows tracing systems that otherwise couldn’t be traced.
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Summary
 Most of the analytical power of a telemetry pipeline comes from the transforma-

tion of telemetry between when it is sent out of the production systems and
when a person views it as part of the Presentation stage, greatly simplifying the
effort a person needs to go through to answer questions and gain insights.

 Markup adds context to telemetry about when and where an event occurred.
When you add markup, you improve people’s ability to understand the environ-
ment around a specific item of telemetry.

 Enrichment is transforming the format of telemetry to make details inside
telemetry more searchable. When you enrich, you also improve the ability of
people to understand what a specific item of telemetry is saying.

 The Emitting stage is the best place to apply markup, because the Emitting
stage is closest to the context of the production system at the time telemetry was
emitted.

 For hardware systems, which rely predominantly on Syslog, the Emitting stage is
not under your control, so you should handle markup as part of the Shipping
stage, which is under your control.

 Common added context for telemetry, known as markup, includes the class,
module, or function that generated the event; the process identifier; and the
version of the software that generated the event. These extra context-related
details help people isolate which code or specific execution is responsible for a
given event.

 The Shipping stage is especially important in enriching telemetry coming from
Emitting stages you don’t control, such as from hardware or SaaS platforms,
allowing you to extract meaning to ease understanding what happened.

 The Shipping stage is responsible for transforming the format telemetry was
emitted in to the format used by Shipping-stage storage, which means that the
Shipping stage performs most of the enrichment in a telemetry pipeline.

 Converting data types in the Shipping stage, usually from a string to some form
of number, is one of the main enrichment functions that a Shipping stage per-
forms. When it’s converted to numbers, number-based telemetry is far more
powerful than the string format it began as.

 It is better to do Boolean type conversions in the Shipping stage than to rely on
automatic type conversion in storage systems. Doing so makes the type conver-
sion explicit and more maintainable.

 Converting data types as they are injected into storage by the adapter makes the
type conversions explicit and more maintainable.

 The Presentation stage takes advantage of all the markup and enrichment done
by the Emitting and Shipping stages to provide visualizations and reporting.
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 Converting string-based timestamps to a dedicated date/time format allows you
to build time-based reporting in the Presentation stage.

 For metrics-style telemetry, the Presentation stage provides extensive enrich-
ment through the use of aggregation functions enabled by type conversions
performed by the Shipping stage.
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Handling multitenancy

A system with multitenancy is one in which different owners control, or have rights
to, different parts of the overall system. A system like Digital Ocean is an example
of a multitenant system, in which each account owner operates certain assets inside
Digital Ocean’s infrastructure. For telemetry ecosystems, multitenancy can be as
simple as having a robust access control framework on the dashboarding system, or
it may involve complicated event routing infrastructure to deliver telemetry events
to storage and presentation systems owned and operated by different teams.

 The core multitenant feature is the ability to hide telemetry from other tenants
and data owners. Because telemetry data can be concealed in many ways, a multi-
tenant telemetry ecosystem means different things to different technical organiza-
tions. This chapter will help you figure out what it means for you:

This chapter covers
 How multitenant systems came into being

 How queues and streams are used to move 
telemetry

 What Presentation-stage features you need
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 Section 7.1 covers how organizations transform into multitenant architectures.
 Section 7.2 covers designing for multitenant telemetry systems.
 Section 7.2.1 covers Shipping stages that use two different techniques to deliver

telemetry to owners: queues and streaming systems.
 Section 7.2.2 covers multitenant Presentation-stage systems and the features

you want to have when implementing systems in the Presentation stage.

7.1 How multitenant architectures come about
All telemetry systems evolve over time, accommodating production-system changes,
adding new telemetry systems, upgrading or removing old ones, and adapting to
changing regulatory environments. Changes such as these can force a telemetry sys-
tem into multitenancy where it wasn’t before. This section covers several ways this
change comes about. For some systems, multitenancy shows up overnight, such as
when a corporate merger is announced. For other systems, multitenancy creeps in on
silent cat feet, and how the current system is different from what came before is visible
only to old-timers if they sit and think about it. To understand how the evolution hap-
pens, we need to look at a few single-owner systems and what their telemetry systems
look like:

 An early-stage startup, with only software engineers in the technical organiza-
tion (one of whom is possibly a founder)

 An organization with a culture of free sharing of telemetry
 An organization inside a much older company that maintains strong separation

between member teams of the technical organization

7.1.1 Evolving multitenancy in an early-stage startup

For an early-stage startup, the entire technical organization is almost always made up
of software engineers, fewer than 10 of them. A technical organization this small is
incredibly nimble because little organizational inertia provides incentives to stay the
course. A startup, especially in the modern era, is all but guaranteed to be running its
infrastructure in a public cloud of some form, such as AWS, Digital Ocean, or Azure.
This section shows how a company like this one, small enough that everyone knows
everyone else, can evolve into multitenancy.

 The software stack that this early-stage startup is running can be almost anything,
which has some bearing on the implementation details of what the telemetry systems
look like. Perhaps the company is running everything in a monolithic Ruby on Rails
application to get a viable product to market as fast as possible. Or maybe it’s running
in a serverless platform such as AWS Lambda or Azure Functions to provide easy scal-
ing. Whatever the production system looks like, the important fact is that a single team
is operating, maintaining, and building the production system.

 Figure 7.1 demonstrates that both production and telemetry systems are con-
trolled by a single team. In fact, an early-stage startup simply has no other teams. The
concept here is that small organizations generally don’t bother with multitenancy.
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They don’t yet have the need to provide separation to accommodate different owners;
there is only one owner, and that owner is “us.”

 For the early-stage startup, the most likely driver of multitenancy is growth. Startups
need to grow or die, so you can predict where the problems are going to be. Although
this example startup had fewer than 10 software engineers during the early stage, by the
time it becomes a mid-stage startup and is starting to pursue big contracts, it may have
five to seven software engineering teams, in addition to picking up a DevOps or SRE
team along the way, as well as an early secu-
rity team. The simple telemetry system
from figure 7.1 is no more. For more on
how growth in a startup affects telemetry
systems, see chapter 8.

7.1.2 Evolving multitenancy in a culture 
of free sharing

This section covers the next organization
we’re looking at: an organization with a cul-
ture of free sharing of telemetry. This orga-
nization is different from the early-stage
startup in section 7.1.1, in that it is both
larger and more complex. We saw an exam-
ple of a free-sharing organization like this
one in section 4.2, which discussed teleme-
try shipping formats. In that discussion, the
older software development group had
been shipping  Java software since the 1990s
and had worked cooperatively with an oper-
ations team ever since. Figure 4.10, repro-
duced here as figure 7.2, demonstrates the
environment.

 Here, we have a telemetry system that
joins the operations team’s hardware—
both Cisco and VMware infrastructure—

Single software 
engineering team 

Production
systems

Telemetry 
systems

Figure 7.1 An early-stage startup’s production 
and telemetry systems, managed by a single team. 
A single team can share context across the entire 
organization (the team), and everyone has access 
to everything. When more teams are added, this 
simplicity goes away.
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Figure 7.2 A telemetry system shared by 
software and operations teams, with telemetry 
event flow represented by directional arrows 
and ending in storage systems (cylinders). The 
software team maintains the Spring Boot 
application software, with the operations team 
maintaining most of the rest. This shared 
system is open to all participants even though 
multiple teams are involved.
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with the software engineering team’s
application telemetry. In this case, the
architecture came about because the two
systems grew up together hand in hand.
Using the same Syslog-based telemetry
pipeline gave this organization efficien-
cies in its centralized logging telemetry
system, and the teams share a metrics sys-
tem. Although logs are stored in different
systems, nothing is stopping a software
engineer from poking their nose into
virtual-machine start/stop events or an
operations engineer from looking into
errors coming from the Java environ-
ment. Although two quite different teams
are interacting with this telemetry pipe-
line, their culture of sharing has grown
up with them. Figure 7.3 demonstrates
how joint the telemetry system is.

 The software engineering team man-
ages the metrics shipper and part of the
data storage for metrics; the operations
team manages Syslog and both of the
centralized log repositories. The opera-
tions team uses the metrics system and
provides consulting on ways to make the
metrics system more durable. This tech-
nical organization can be quite large.

 For the organization with a culture of free sharing, the conversion to multitenant
can come from several sources. One possible way was described in section 4.2, which
discussed picking a shipping format. In that discussion, we found out that manage-
ment created a new software engineering team using a different software platform
(Go instead of Java) and hired a different operations team to run on a different infra-
structure (AWS instead of physical data centers), all in a bid to spark innovation inside
the company. The experiment worked out, and the two separate infrastructures nego-
tiated a shared telemetry system that could support the long-standing Java environ-
ment and the new Go-based one.

 A second way that organization with a culture of sharing can convert to multiten-
ancy can happen when this organization decided to move into the healthcare market
and took on all the regulation governing handling of health information. Most laws
governing access to health information take an understandably exclusive approach to
who can access what and where they can do it. If there is any possibility that health
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Figure 7.3 A telemetry system shared by 
operations and software engineering, with the 
systems managed by software engineering marked, 
demonstrating the extent of the shared system. 
Arrows indicate the direction and flow of events, 
which end up stored in one of three storage systems. 
Software engineering is maintaining and operating 
the metrics shipper used by both the software and 
operations teams, and both teams jointly operate 
the metrics storage system. This system is shared, 
not multitenant.
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information could show up in the telemetry pipeline, that pipeline needs to be locked
down. There is a lot of work to be done in general when moving into a regulated mar-
ket, and telemetry systems are not excluded from that work.

 A third way that a culture of sharing can turn into a culture of asking for permis-
sion is as a result of a merger. Suddenly having to integrate with another technical
organization is a great way to discover the limits of your own; more important, two dif-
ferent technical cultures create a huge incentive to provide some separation between
owners. Integration activities between the two parts of the company can take years to
resolve.

7.1.3 Evolving multitenancy in a culture of strong separation

This section is about our third organization, which maintains strong separation
between teams and their supporting telemetry infrastructure. This organization is in
many ways the opposite of the shared infrastructure described in section 7.1.2. The
software engineering teams manage centralized logging, metrics, and distributed trac-
ing infrastructure that the operations team has no visibility into. The operations teams
manage centralized logging and a metrics system (called a monitoring system). Addi-
tionally, the security team is consuming a feed of events from the operations infra-
structure that is handled by a SIEM system managed by the security team. Figure 7.4
demonstrates this split infrastructure.

 With two separate centralized logging systems in figure 7.4, it is easy to challenge
the assertion that either system is centralized. Words mean different things to differ-
ent people, however, and in this particular technical organization, which shows little
cooperation between teams, the software engineering and operations teams sepa-
rately consider their centralized logging system to be centralized.

 For our organization with minimal sharing, change is not likely to happen organi-
cally. This company is long-standing and well-established, which in turn means that a
lot of organizational inertia is preventing such a move. A move to multitenancy has to
be imposed externally somehow.

Living through a merger, part 1
The single-tenant telemetry systems I built and maintained for HelloSign looked much
like this organization; application and operational telemetry were in the same system,
and everyone could see everything. This arrangement worked great right up until we
got purchased by Dropbox.

We didn’t immediately merge our telemetry systems with Dropbox because there
were much bigger merger-related problems to solve than deduplicating our telemetry
infrastructure. In the immediate aftermath of the merger, Dropbox had two islands of
telemetry systems: their stuff and our stuff. We looked more like the section 7.1.3
organizations!
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One method of imposition is for management to push for a DevOps transformation in
an effort to bring agility into the technical organization. DevOps transformations
come in many types, but one of the core concepts of DevOps is to get different parts of
the technical organization talking to one another. Don’t have just the managers of
each team talk to one another; get the engineers talking as well. As people start
talking, learning about what everyone else is working on, getting used to helping oth-
ers without having to be told by their boss that help is allowed, some questions start to
get asked. One such question might be “We have two metrics and centralized logging
systems. Why do we need two? I bet we can save money if we consolidate to one!”

 Multitenancy is born. At this point, the company starts looking to consolidate its
systems, leading to discussions on format (section 4.2) and cross-team telemetry stan-
dards (chapter 12).

 The other method for imposing multitenancy externally is the same as that for the
sharing culture: a merger with a larger organization. This organization is already all
about separation, so keeping the technical organization separate from the parent
organization is second nature. But what happens if the parent organization wants to
merge the two? Breaking culture like that one is fraught with peril, but if the breakup
is done with empathy and concern for all sides, it can be brought about with a
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Figure 7.4 Three teams, three separate telemetry systems, with no sharing. Telemetry event 
flow is directional arrows indicating where the telemetry will be stored. Metrics and centralized 
logging are duplicated between the software engineering and operations teams because they 
don’t share, and neither system is multitenant. The teams don’t want to share; each thinks that 
the other team is icky.
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minimum of rage-quitting engineers and engineering managers. The result is some
form of multitenancy.

You likely recognize one of these three systems from your own history; the patterns are
common. The paths to multitenancy are different for every organization. You may
think that multitenancy is inevitable, which isn’t all that wrong. For small technical
organizations, multitenancy isn’t worth the effort. For larger ones, you can avoid multi-
tenancy for a long time by maintaining common telemetry systems for everyone. But
market constraints, regulation, and sheer stubborn politics often force technical orga-
nizations to adopt multitenancy in their telemetry systems.

7.2 Designing multitenant telemetry systems
Multitenant telemetry systems have two major design points that you need to consider
when designing systems:

 Build the Shipping stage to handle telemetry from different owners and systems.
 Build the Presentation stage to handle separating access to telemetry.

Building fully separated telemetry systems like those shown in figure 7.4 is not
multitenancy—that is, silos of access do not cross boundaries. Figure 7.4 can be
uncharitably rewritten as figure 7.5.

 A true multitenant system has Shipping or Presentation stages that allow (and sep-
arate) access to more than one type of team. Allowing software engineers from differ-
ent products to review metrics for their separate systems from the same interface is
one version; another is a centralized logging system that has a single ingestion point
but can deliver logs to many storage systems supporting separate Presentation-stage
systems.

Living through a merger, part 2
The Dropbox and HelloSign telemetry systems started as islands for the understand-
able reason that they had never worked together before. Two years later, our systems
are very separate. The reason is not the cultural example I’ve described; Dropbox
and HelloSign engineering (and platform engineering) get along well. The problem is
technical.

Dropbox and HelloSign built their products on different platforms and assumptions.
The much larger Dropbox had written telemetry libraries for engineers to use to ease
getting telemetry into the central systems—libraries that were not written in any lan-
guage HelloSign used. HelloSign’s approach to telemetry was based more on stock
APIs instead of libraries that abstracted away API/RPC management.

In time, some degree of unification will be inevitable, and that’s fine. Also, I men-
tioned before that truly global companies are often many smaller companies in a
trenchcoat. Mergers are big drivers of that sort of thing.
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In some organizations, a group like operations or DevOps might maintain the unified
Shipping stage. In others, a team may be dedicated to maintaining the telemetry pipe-
line. Individual approaches will vary, and that’s fine.

 The following two sections address multitenancy in the Shipping (section 7.2.1)
and Presentation (section 7.2.2) stages.

7.2.1 Multitenancy in the Shipping stage

This section covers the effects of multitenancy on the Shipping stage. As mentioned in
previous chapters, the Shipping stage is responsible for a large part of the transforma-
tion of telemetry from when the production systems send it to the Emitting stage and
when humans review telemetry as part of the Presentation stage. In multitenant systems,
the Shipping stage is often charged with delivering telemetry to the correct storage system.

 Shipping stages must be able to perform two tasks in a multitenant system, illus-
trated in figure 7.6:

 Route telemetry to the correct storage systems
 Fork telemetry to allow delivery of the same telemetry to multiple recipients

Routing telemetry seems to be obvious, but forking isn’t. Think of the case of the security
team and the telemetry it is interested in. Security teams care deeply about events that
describe account logins and logouts, use of privileges, and who accessed what when.
Often, telemetry including this list of events is bundled inside telemetry that operations
or DevOps teams maintain as part of the stream of events coming out of operating sys-
tems. Both teams have interest in those events, so both teams need to be able to receive
them. A multitenant shipping system will enable dual delivery of telemetry.

Our telemetry stuff

Telemetry for 
that team we 
have to work with 

Telemetry for the team whose 
stuff runs on our stuff (but we 
never talk to them)  

IT SecurityDevelopment

Figure 7.5 Editorially rewriting figure 7.4, demonstrating communication problems among the 
three teams represented here. The darkest boxes are queues or streams; the lighter boxes are 
telemetry parsers; cylinders are telemetry storage. Although this figure shows some slight 
multitenancy, it is clearly grudging, and strict boundaries are maintained whenever possible.
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Figure 7.6 Two example telemetry systems. Dotted 
lines represent possible paths that telemetry can take; 
solid lines are paths that are selected; filled circles pass 
through or store telemetry. The left side performs routing, 
sending telemetry to a single location across one or more 
hops. The right side performs forking to create two 
streams and then routes both forks in a second hop.
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 Routing of telemetry applies to most of the telemetry system styles discussed in this
book. Centralized logging and metrics both benefit strongly from multitenant sys-
tems. The SIEM systems used by security are often the first multitenant system a telem-
etry system has to accommodate. The distributed tracing systems currently available
(early 2021) requires a direct connection to dedicated Shipping-stage components;
this situation is likely to change as the OpenTelemetry project and its supporting eco-
system mature.

 Two technologies allow routing and forking to take place: queues (point-to-point
message passing) and streams (decoupled publisher/subscriber message passing). The
next two sections address Shipping-stage architecture that uses both of these systems.
Hybrid Shipping stages that use both are definitely possible; as you read the sections,
consider how the concepts can be mixed and might apply to your own telemetry system.

NOTE For more examples of multitenant shipping systems beyond the
descriptions here, see the three part 2 chapters. Each chapter in part 2
includes examples of large telemetry systems. Such systems almost always have
some aspect of multitenancy.

DESIGNING ARCHITECTURES WITH QUEUES

Multitenant shipping stages use queues to buffer the event stream and provide isola-
tion between event producers and consumers. Also, queuing systems are somewhat
easier to build and maintain than common streaming systems, so they are an attractive
technology for routing telemetry. Because queues are a FIFO system, the ability of a
queue to support forking seems to be suspect, but this attitude overlooks the true
architecture. Figure 7.7 is one version of a queue-based routing system.

Production
systems Router

DevOps 
parser

Security 
parser

Infrastructure 
parser

Shipping 
storage

Shipping 
storage

Shipping 
storage

1. Emit into 
    single queue. 

2. Router 
    serves queue.

3. Router requeues 
    events per type. 4. Dedicated parsers 

    service queues.
5. Dedicated parsers 
    ship to storage.

Figure 7.7 A queue-based telemetry routing system, including a routing tier and multiple 
parsers allowing routing and forking. Telemetry flow is described with directional arrows.    
An architecture like this one reduces the need for sophistication in the Emitting stage.
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In figure 7.7, telemetry leaving the production systems follows this path through the
telemetry pipeline:

1 All telemetry from all sources is emitted into a single queue.
2 A dedicated telemetry routing system, which can be a horizontally scaling group

of systems, pulls telemetry off the routing queue and makes routing decisions.
3 The dedicated routing system pushes telemetry into the correct queue based on

what kind of telemetry it is.
4 Dedicated parsers for each team pull telemetry from their queues.
5 Dedicated parsers for each team parse, transform, reformat, and submit the

finalized telemetry to storage.

An important note is that a fork can happen in step 2 of this process. An SSH login
event recorded by the production systems will be routed to both the DevOps parser
and the security parser. This system is simple but still powerful. The design presented
in figure 7.7 makes several assumptions:

 Emitting-stage systems are written with the eventual routing stage in mind, adding
context-related telemetry wherever possible (section 6.1) to ease the routing-
decision stage.

 All Emitting-stage systems emit directly into a queue (section 3.1.2), or helper
shipping programs on the production systems pull from what the Emitting
stages can produce and inject telemetry into the routing queue (section 4.1.1).

 The routing system expects to receive telemetry in a predictable format, so
Emitting-stage and helper programs need to generate/transform telemetry into
that format (section 4.2).

 The routing system performs minimal markup and enrichment (section 6.2),
preferring to let the dedicated parsing systems handle that task, which lets the
routing system handle more events per second.

 Dedicated parsing systems and the storage they send telemetry into are con-
trolled by their respective teams.

Figure 7.8 shows another architecture that brings routing decision-making closer to
the production systems.

 Figure 7.8 brings the router to the production system directly. In this architecture,
the routing system collects telemetry from the production system in the form of log
files or one of the nonfile techniques from chapter 13, and then directly ships col-
lected telemetry to the dedicated queues. In this architecture, only the dedicated
router needs to emit to a queue; all the other Emitting- stage components can emit
however works best for them. This system is a simpler one in the sense that each item
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of telemetry has to take fewer hops to reach its storage destination. This simplicity has
a few costs, though:

 The routing software on the production system is competing with production
software for CPU and RAM resources—a parasitic load that can be quite signifi-
cant if the production systems are prolific telemetry generators.

 An attacker gaining access to the production system will have a good idea what
the telemetry system looks like by examining the configuration of the routing
software.

 Pushing configuration changes to the routing software is a far more complex
task when the routing software is on every production system versus on a dedi-
cated tier of systems. 

Production 
system

Router

Router ships to 
dedicated queues.

Dedicated shipping 
software

Dedicated parsers 
service queues.

Dedicated parsers 
ship to storage.

DevOps 
parser

Security 
parser

Infrastructure 
parser

Shipping 
storage

Shipping 
storage

Shipping 
storage

Figure 7.8 A queue-based telemetry routing system, including routing software in the 
production system, that directly reduces the time telemetry takes to reach storage. Telemetry 
flow is solid lines, ending in dedicated storage systems. This architecture puts the routing 
decision into competition with production software—a potentially undesirable parasitic load.

How parasitic is that parasitic load?
Determining how parasitic telemetry operations are on a production node takes some
analysis. There are three areas where telemetry operations could make your produc-
tion systems slower:

 CPU costs—If the only thing you’re doing with your telemetry is reshipping it,
with no other changes, this area is not likely to be significant. If you do perform
changes, however (perhaps one of the chapter 15 techniques to ensure tele-
metry integrity), this charge can be significant. In large hardware instances,
you may not notice these costs. But in container or FaaS environments, the
increased run time of the container or function can be noticeable.
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Queue-based systems can do away with the routing tier altogether. Figure 7.9 demon-
strates one system in which the parsing and routing tiers are combined.

Figure 7.9 shows the same central queue as figure 7.7. Unlike the architecture in the
earlier figure, however, the routing system in figure 7.9 is also doing all the parsing.
This architecture is similar to the architectures discussed in section 3.1.2. With pars-
ing centralized in this way, all telemetry parsing needs to be done by a single tier of
systems. If the technical organization has a dedicated telemetry engineering team,
such a system is likely to be maintained by that team.

 The architecture in figure 7.9 can be one step in the evolution from a shared eco-
system to one with owners. The process begins like figure 7.1, with production systems
shipping into a telemetry system owned by a single team. As that telemetry system
evolves, new storage systems are added. Then, as the technical organization grows and
new teams are added, dedicated Presentation-stage systems are created while the exist-
ing Shipping stage is retained. From there, the telemetry system can further evolve

 RAM costs—Depending on how your shipping software works, you need RAM
to perform your change operations and to batch up events for sending down-
stream. On large hardware instances or virtual machines, this change may
not be significant. For containers or FaaS, where RAM usage is metered,
these effects can be noticeable.

 I/O costs—Writing a whole bunch of telemetry to disk is an I/O charge; so is
reading it by your telemetry software. If your storage is slow, telemetry I/O
absolutely will compete with production I/O. If you’re running slow storage, you
will be better off if you put your logs on separate disks from your production
operations. Or maybe you can redesign your telemetry systems to use one of
the chapter 13 techniques and avoid files altogether. In my career, I’ve seen
cases in which telemetry I/O dwarfs I/O generated by production operations!

In reality, the best way to determine the impact of your telemetry operations on your
production systems is to run experiments. Play with different ways to emit telemetry
(avoiding files) or the amount of enrichment you’re providing inside the production
environment, and see what happens.

Production 
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DevOps
storage

Security 
storage

Infrastructure 
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Figure 7.9 A queue-based telemetry 
routing system in which the routing 
and parsing tier are merged. 
Telemetry event flow is directional 
arrows ending in storage systems. 
All telemetry continues to be emitted 
into a single queue serviced by a 
group of centralized parser nodes. 
This parser group routes telemetry 
to dedicated storage based on what 
kind of telemetry is being processed.
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into the one in figure 7.7, with separate teams taking over some parsing duties from
the central parser.

NOTE One central idea behind sending all telemetry to a queue and parsing
it at a later stage rather than on the production systems is to get the teleme-
try off the production systems as fast as possible. This idea has nothing to do
with multitenancy and everything to do with making it harder for an attacker
to manipulate telemetry before it enters the pipeline. Doing minimal
markup and enrichment on the production system and shipping it to a
queue in a timely way will make your production systems more defensible in
the event of an attack. Should you be lucky enough to bring a prosecution to
court (chapter 18 is all about helping your legal team), the validity of your
telemetry will be easier to prove because of how little time the attacker had
to fiddle with it. Chapter 15 provides more guidance on making your teleme-
try systems defensible.

DESIGNING ARCHITECTURES WITH STREAMING SYSTEMS

Multitenant telemetry ecosystems that use streams have options beyond what queues
provide, which we cover in this section. Streams are a relatively recent innovation
made popular by the Kafka project (https://kafka.apache.org). The base concept
behind a stream is that a publisher sends data into a topic in the stream and has no
awareness of any consumers of the data, who subscribe to the topic. The important
distinction is that each consumer independently tracks where in the stream topic it
has gotten to. Queues work as a FIFO system; when a piece of data reaches the front of
the queue, the first system to request data will get that data. Most streaming systems
allow consumer groups to enable queue-like behavior within that group, while allow-
ing other consumer groups to do likewise. Whereas a queue-based system might
require a producer to push data into multiple queues to deal with different consum-
ers, in a stream-based system, the producer has to push only once. In multitenant
telemetry systems, streams provide real power. Figure 7.10 shows the differences
between a queue-based and a stream-based system.

 In both the telemetry systems shown in figure 7.10, we see the SSHD process gen-
erating events, where they are picked up by Syslog and shipped onward. In the queue-
based system, Syslog injects telemetry into two separate queues: one for operations
and a second for security. In the stream-based system, Syslog injects telemetry only
once, to a stream topic called ssh_events. The security and operations parsers sub-
scribe to that topic, and both receive a complete flow of events. Because Syslog doesn’t
have to know what downstream parsers will need events, the Syslog configuration is
simpler in the stream version versus the queue version.

 One problem with streams is that the technology is relatively new, so not all telemetry
emitting systems support them. For telemetry ecosystems that need to accommodate
emitters that don’t support streams, such as Syslog-emitting hardware and third-party
software that can ship only to a log file, using a better-supported queue as a temporary

https://kafka.apache.org
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way-station is quite permissible. Figure 7.11 demonstrates a hybrid infrastructure with
hardware emitting through Syslog and programs that don’t have stream support.
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storage
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Operations 
parser

Operations 
storage

Queues

Stream

topic_id: ssh_events

Figure 7.10 A queue-based multitenant system (top) and a stream-based one (bottom), showing the 
different approaches to shipping telemetry. Solid directional lines indicate telemetry flow. Forking in 
a queue-based system requires awareness of the need to fork in the enqueing system, whereas in the 
stream-based system, the forking decision is made by the consumer side of the stream rather than 
the producer side.

Figure 7.11 A stream-based multitenant telemetry system with support for hardware and software 
emitters, showing how less-capable emitters can ship into a stream. Solid directional lines indicate 
telemetry flow. The hardware systems (Cisco and Hitachi) emit to a Syslog system acting as an entry 
point for telemetry, which then injects received telemetry into the stream on various topics. Whereas 
Program A emits directly to the stream through emitter/shipper functions in the code, Program B 
emits into a log file and relies on a shipper program to move telemetry into the stream.
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In figure 7.11, we have several production systems with two programs: Cisco network-
ing gear and Hitachi storage arrays. Only one of the production systems—Program
A—has direct stream support. Program B is third-party software that has support only
for emitting into a log file, which a shipper program on the server ingests and injects
into the stream’s topic. On the hardware side, we have a Syslog shipping system that
receives emissions from both the Cisco and Hitachi hardware and then resubmits it to
the stream under appropriate topic_id settings for the hardware. On the other side
of the stream system, we have four parsers, one for each of the production systems on
the left. This architecture is the stream version of the queue-based architecture in fig-
ure 7.8, in which the routing decisions are made on the emitting side.

 Figures 7.10 and 7.11 show the power of streams, but they also are architectures in
which the stream system is accessible from the front-line production systems, which in
turn means that they are accessible to an attacker who gains access to the front-line
production systems. Some technical organizations consider this risk to be perfectly
acceptable; others will need a buffer between the stream systems and the emitters. Fig-
ure 7.12 shows a hybrid architecture combining queues and streams.

There are a lot of similarities between figure 7.12 and figure 7.7, which is the fully
queue-based version of this shipping architecture. Whereas figure 7.7 had the router
sending telemetry to individual queues, with streams, the router is sending telemetry
to individual topics that are picked up by the dedicated parsers. The approach in fig-
ure 7.12 merges the protection of queue-based systems when getting telemetry off the
production systems with the flexibility of streams for handling parsing tasks. In the fig-
ure 7.12 architecture, if the security team wanted to parse all telemetry going to both
DevOps and infrastructure, it is easy to set a consumer group in each topic and ingest
everything. There’s no need to update the router to fork events so that security can
get a combined feed!
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Figure 7.12 A telemetry 
system using a queue-
based router to shield the 
streaming system from 
potential attackers. Solid 
directional lines indicate 
telemetry flow. Production 
systems emit all telemetry 
into a single queue, which 
is serviced by a router 
before getting moved 
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 One difference between queues and streams comes down to who can suck down
what telemetry. With streams, it is easy to set up additional consumer groups to fork a
telemetry feed without having to bother any upstream development teams to add that
support. When you’re managing a stream system in a multitenant ecosystem, manag-
ing access control lists and users is paramount. The security team in the previous para-
graph could consume two topics because the user on the stream system permitted that
activity. The DevOps parser, on the other hand, is permitted access to only the one
topic. Multitenant systems require managing access control, often inside the pipeline
itself. (Section 15.2 covers ACL management inside Shipping stages as a defense
against attackers.)

7.2.2 Multitenancy in the Presentation stage

This section covers how multitenancy manifests in the Presentation stage, which is the
stage that most telemetry-consuming people consider to be the telemetry system. For
telemetry systems such as centralized logging and metrics, the Presentation stage can
be all you need for true multitenancy. Currently, open source distributed tracing sys-
tems lack the access-control features needed to provide true multitenancy, but this sit-
uation is likely to change across the 2020s, as the SaaS distributed tracing vendors
already provide these features.

 Multitenancy in the Presentation stage happens when you have a display technol-
ogy, such as Grafana for metrics or Kibana for centralized logging, that has access to
telemetry storage systems owned by different teams but allows denying access to a stor-
age system if the user isn’t on the right teams. Rather than run multiple versions of
the same software, if the Presentation-stage software offers features enabling multiten-
ancy, you can save maintenance overhead by running a single system. You want to see
certain features in a Presentation-stage system that supports multitenancy, which
extends the feature lists provided for metrics in section 5.1, centralized logging in sec-
tion 5.2, and SIEM in section 5.3:

 Ability to define roles—The core of any access control system is the ability to
define roles or groups with permissions.

 Ability to use single-sign-on (SSO) frameworks such as SAML and OpenID Connect
(OIDC)—The Presentation system can hook into an existing authentication
framework maintained by the technical organization.

 Ability to restrict access to data sources by role—You can keep members of different
roles from accessing databases they shouldn’t, which reduces the cleanup area
of leaks of regulated data.

 Ability to assign users to multiple roles—Users should be able to serve in multiple
roles, such as engineering managers who need to be in several team roles.

 Ability to restrict access to dashboards by role—Not every dashboard is intended for
use by every member of the system, so limiting access applies to accessing dash-
boards, making for a less-crowded experience for everyone.
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 Ability to restrict who can create or modify dashboards by role—View-only users can
find existing dashboards to be quite powerful, and restricting edit access
reduces dashboard sprawl.

One thing to keep in mind is that the open source dashboard vendors, such as Kibana
(Elastic.co) and Grafana (GrafanaLabs), consider extensive access control and single-
sign-on support to be paid add-ons; projects need to make money somehow, and orga-
nizations that are big enough to need these features are big enough to afford to pay
for them. For Kibana, basic authentication is supported in the open source version,
but the ability to tie authentication to an SSO system such as SAML or LDAP requires
a paid add-on. Grafana also supports basic and SSO authentication in the open source
version, but restricting access to specific data sources requires a paid add-on. The
requirements of running a SaaS system mean that these features are present by
default for SaaS vendors, but full richness in open source, especially SSO support, may
be bought only at enterprise price levels.

 The realities of how software works for Presentation systems forces certain choices
in multitenant architecture. Figure 7.13 demonstrates the difference between using
free and low-cost systems versus systems with paid enterprise features.

On the left side is a free version of the Grafana metrics presentation system
(https://grafana.com). Each of the interested teams operates its own Grafana installa-
tion to maintain separation between its telemetry and that of other teams. This sepa-
rated version is not multitenant in the Presentation stage, because multitenancy was
handled in the Shipping stage alone.

 On the right side is an enterprise (paid) version of Grafana, which comes with fea-
tures that enable separation of telemetry through the use of access control rules on
data sources, allowing only one Grafana installation to be required. The central ver-
sion is multitenant, because several tenants share an access system.
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Figure 7.13 Two different Presentation-stage designs based on the cost of features. Telemetry 
is parsed and sent to storage, and that storage is consumed by Grafana.

https://grafana.com
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 For large telemetry systems with many tenants, multitenancy in the Presentation
stage can make the overall telemetry system easier to maintain. Politically, central sys-
tems are likely to be managed by a dedicated telemetry team, but they can also be
managed by DevOps or SRE teams as part of their developer enablement and avail-
ability missions.

 For an example, let’s look at figure 7.14, which shows four Presentation-stage systems
for all four telemetry styles: metrics, logging, tracing, and SIEM. There are two SaaS pro-
viders in this mix. SaaS providers use multitenant features as a key part of their service.
The other two Presentation-stage systems, Kibana and Grafana, need enterprise plans to
provide the multitenancy features required by the company. Grafana can also display log-
ging data alongside metrics data, so it pulls
from the logging data storage systems. By hav-
ing four systems fronting a large telemetry sys-
tem, this company saves money and staff time
by having to manage Presentation-stage sys-
tems only once. The alternative, as with the
highly siloed system we saw in figure 7.5, is to
maintain many of the same Presentation-
stage systems in different places serving from
different storage systems, likely in different
software versions, which magnifies the cost of
managing Presentation-stage systems for the
technical organization as a whole.

Summary
 A system with multitenancy is one in which different owners control or have

rights to different parts of the overall system.
 Telemetry systems often start as single-tenant and evolve into multitenant as the

organization grows and changes. This history is important when you try to make
changes in a telemetry system that’s new to you.

 Small organizations generally don’t bother with multitenancy because they
don’t need it yet.

 Medium-size and even large technical organizations can stay single-tenant if
they have a culture of open sharing among teams. Sharing is often a sign of
healthy communication within the organization.

 External forces, such as new regulation or compliance frameworks and merg-
ers, can force a single-tenant telemetry system to adopt multitenancy.

 Some technical organizations operate separate telemetry systems rather than
share them among teams. This arrangement is single-tenancy.

 Organizations that have strict separation between teams can be forced into multi-
tenancy after external events such as a DevOps transformation or a corporate
merger.
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Figure 7.14 Presentation-stage systems for a 
large cloud-based startup, with Shipping-stage 
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systems in solid lines. This type of architecture 
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 Multitenant telemetry systems need to consider how to design the Shipping
stage to handle telemetry destined for multiple owners and how to separate
access in Presentation-stage systems.

 To support diverse teams, multitenancy in the Shipping stage needs to support
the ability to route telemetry to correct storage systems and fork telemetry to
allow multiple delivery of telemetry.

 Forking in the Shipping stage is the ability to send the same telemetry to multi-
ple owners, possibly undergoing separate transformations along the way.

 Shipping telemetry off a production system to a dedicated routing queue or
stream topic makes the Emitting stages on the production systems easier to
maintain and provides isolation to defend against attackers.

 Putting a Shipping-stage system that performs routing decisions on production
systems means that the router is competing for CPU and RAM with the produc-
tion software.

 Stream systems were popularized by the Apache Kafka project and provide
more telemetry system flexibility than queue-based Shipping-stage systems.

 Consumer groups in a stream system allow queuelike behavior within the
consumer group while still providing all events to all consumer groups.

 Streams are relatively new technology, so support for them in software isn’t as
robust as it is with queues.

 Using a queue in front of a stream is an effective way of getting telemetry into a
stream from systems that support only queues.

 Managing multitenancy in a Shipping stage often requires some degree of
access-control management by separate owners.

 Multitenancy in the Presentation stage happens when you have more than one
owner accessing telemetry through a common system while preventing one
owner from seeing the telemetry of another owner. This arrangement is similar
to how SaaS providers operate.

 Presentation-stage systems that support multitenancy require features for defin-
ing and enforcing user roles, accessing data sources, and restricting access to
defined dashboards.

 SSO support, such as SAML or OIDC, is quite often an enterprise feature
requiring a higher-level paid plan for many Presentation-stage software plat-
forms. Elastic.co and Grafana Labs both use this model as their primary reve-
nue stream.

 Large technical organizations find that using centralized multitenant Presentation-
stage systems offers favorable costs and a higher level of overall features, compared
with having each team manage its own system independently of the rest of the tech-
nical organization.



Part 2

Use cases revisited:
 Applying architecture concepts

Whereas part 1 described the overall architecture for telemetry systems,
focusing on techniques, technology, and some of the people aspects of operat-
ing telemetry systems, part 2 gives you a catalog of examples of how different
organizations design their telemetry systems. Every organization approaches the
problem of telemetry differently, so we will be covering three quite different
example organizations. The cases here are merely examples to describe differ-
ences; they’re not intended to be paragons you must meet. I hope that at least
one of these examples will be familiar to you.

 The software industry is vast, and the concrete examples I used throughout
part 1 had to be equally diverse. If you had trouble connecting the lessons from
part 1 to your own experience, the chapters here should get you closer to mak-
ing that connection:

 Chapter 8 covers a technology startup, beginning from the early stage
with a small handful of engineers and ending after the initial public offer-
ing as the company moves into enterprise dominance, with a technology
organization of well over 1,000 employees and a global presence.

 Chapter 9 covers companies in which software merely gets the job done; it
isn’t what they’re selling. This chapter covers companies with small offices
of a few people all the way up to enterprise-size with significant internal
software development.



 Chapter 10 covers long-established companies, the kind that incorporated
during the paper-and-ink era and computerized well before the IBM PC era. If
you ever wondered how telemetry operations work with mainframes, this chap-
ter is yours. It covers organizations up to true multinational companies.

Each chapter includes organizations of different sizes and addresses the reasons
behind changes in their telemetry systems as organizations grow. Long-established
organizations may have already been enterprise or multinational when they first
adopted computers. The 2010s were a time of rapid improvement of telemetry system
options. All organizations had to adapt. The 2020s and 2030s undoubtedly will bring
about even more options. Understanding how different organizations react to change
will position you to handle the coming transformations.

NOTE These chapters are intended to provide you more examples of teleme-
try systems as they exist in different sizes and types of organizations. If you feel
that you have a solid grasp of the concepts from part 1, it is entirely safe for
you to skip these chapters and move on to part 3.
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Growing
 cloud-based startup

This chapter is about how telemetry system design changes over the life cycle of a
cloud-based technology startup. This company is building everything from
scratch—a blank canvas to develop its big idea. For teaching purposes, this com-
pany is stuck in a moment. It became a small company now; its growth to enterprise
is all now. In truth, by the time a technology company moves from three people
with a big idea to one that built its own headquarters building, it is accommodating
a decade or more of technology decisions every time a new decision is made.

This chapter covers
 Startup telemetry architecture at many stages 

of growth

 Forces that drive change at different growth 
stages

 How telemetry architecture changes with 
rapid growth
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NOTE All the part 2 chapters are written to tell telemetry stories using the
techniques from part 1, as a means of providing more concrete examples of
integrated telemetry systems. If you feel that you need more real-world exam-
ples to understand how these systems work, these chapters are for you. If you
feel that you already have a good grasp of the concepts, skipping these chap-
ters and moving on to part 3 is fine.

A cloud-based technology startup has several distinguishing features:

 It is young. This company is less than 10 years old. If it’s much older than 10, it
begins to look more like the organizations in chapter 9.

 Nothing came before. This company is building from scratch; there is no before to
work past or refactor.

 It moves fast, at least at the start. When you have no history, history can’t force you
to stay the course, so you can change direction quickly. This advantage goes
away as the company ages, though.

 The tech industry loves it. This fact has many effects, such as easing finances and
improving the company’s ability to hire technical talent. Popularity has its bene-
fits, which is why this chapter is the first in part 2.

From the point of view of telemetry systems, the key difference among startups, non-
software organizations (chapter 9), and long-established computing organizations
(chapter 10) is the existence of a group of technical employees who need to use
telemetry to do their work—a group that has been there from day one. For a nonsoft-
ware company, such a group doesn’t show up until the company is a certain size (see
section 9.3). For a long-established company, this group of technical employees has
been around since the 1970s, which was long after the company’s founding. For a
startup, telemetry handling is among the long list of things to be addressed before the
product is brought to market.

 Each section in this chapter has two subsections:

 A description of the example organization’s production and telemetry systems
to highlight changes among companies of different sizes

 An analysis of the telemetry techniques the telemetry systems are using, drawn
from chapters 2–7, to demonstrate how these techniques fit together in a com-
plete telemetry system

This chapter is all about showing how the skills you learned in chapters 2–7 are used
in an organization of these sizes and types. As you read about each type of company,
ask yourself a few questions:

 What is the telemetry architecture on display?
 What incentives are in place to make the described telemetry architecture the

one that was picked?
 What elements of how the technical organization is structured drove the telemetry

architecture design?
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The answers to these questions will teach you what to expect when your career takes
you to organizations of this type. When you are asked to integrate a new telemetry sys-
tem, you will be able to place it correctly within the context of the existing telemetry
systems and business drivers. Remember: the politics of the humans has as much to do with
telemetry system design as the realities of the technology you are using.

8.1 Telemetry at the small-company stage
A small cloud-based startup is one that hasn’t released a product yet or that has a small
number of people supporting its product. This section covers how the problem of
telemetry is approached by an organization of this size that also has dedicated soft-
ware engineers. This organization might have been started by three software engi-
neers who had other jobs, but they have a big idea and started working on it in their
free time. At some point, the big idea looked like something with some market poten-
tial, so the three people decided to take the plunge and incorporated to start selling
the big idea to investors.

 When investors decide that the big idea has some market legs, a seed round (initial
investment) allows the three founders to start growing their new company without
immediate fear of running out of money. More engineers are hired to help build the
big idea; some customer account managers are hired to maintain relationships with
customers and close deals.

 The business challenge of a company in this phase is looking for market fit—any
market fit, wherever they can find it. Concepts such as minimally viable product (MVP,
the simplest product that will be accepted by the market) are mentioned a lot, and
MVP models are tweaked based on feedback from sales and support. Every closed deal
is celebrated, and when high-contract-value customers get cranky, everyone pays atten-
tion. The biggest risk to the business is running out of money.

Minimally viable product
Much of the effort in a small startup is spent on figuring out what the MVP is. Some
companies get lucky and figure it out on the first shot; others have to tweak their prod-
uct to adapt to what their target market is saying, or react to an unexpected market
deciding that their product fits quite well. In case the point made earlier wasn’t clear,
a small startup is in constant fear of running out of money before it finds the MVP.

But that’s not all. The MVP concept also applies to any market the company tries to
get into. It could be that the first market it did well in was one- to three-person real
estate offices. Multioffice real estate agencies, however, have rather more advanced
requirements that need satisfaction, which means that the MVP for those companies
is more challenging. The MVP concept never goes away with startup-style companies.
Even companies that are comfortably selling to Fortune 500 companies still talk
about MVP products when they are bringing something new to market to diversify
what they sell.
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The fear of running out of money and the drive to find market fit are strong incen-
tives to the small but growing technical organization to focus all its efforts on the pro-
duction system. Everything else needs to be delegated to third parties if at all possible,
which is why companies of this size almost always host their production systems in a
public cloud of some form. Their telemetry systems will either be the native option
that comes with the public cloud or a third-party option that manages as much of the
telemetry pipeline as possible. Figure 8.1 shows an example of this fully delegated
approach to telemetry.

8.1.1 Describing the small company’s telemetry system

In figure 8.1, we see an example architecture that a small startup might use for its pro-
duction and telemetry systems. This company picked the telemetry SaaS vendor Data-
dog to provide its telemetry ecosystem. The company is running its code in AWS ECS
and using an emitter/shipper function (see section 3.1.3) inside its production code
to emit telemetry to a Datadog API. When people want to interact with telemetry, they
use the SaaS platform Datadog to do so. This architecture allows the software engi-
neering teams to worry only about being compatible with the Datadog API—not
about building and maintaining an entire telemetry ecosystem themselves.

 An architecture of this shape, with telemetry delegated, allows the technical orga-
nization to focus its efforts on the production code. Being in a public cloud, especially
for a highly managed service such as AWS ECS and Fargate, frees the technical organi-
zation from bothering with managing the operating system and the networking com-
ponents of the production system. Although telemetry service providers like Datadog
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Amazon ECS

Fargate cluster

Shipping stage Presentation stage

Production task
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shipper

Datadog
SaaS

reporting
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Production containers run 
tasks dispatched by Fargate. 

Production containers have Datadog
emitter/shipper functions.

Figure 8.1 An early-stage startup production/telemetry architecture, based on the 
AWS Elastic Container Services (AWS ECS) offering. By delegating the Shipping and 
Presentation stages to a SaaS provider, our startup’s software engineering team can 
focus entirely on producing the production systems and get to profitability faster.
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often base their prices on the amount of data ingested, a small startup likely doesn’t
have enough traffic for such costs to be a major problem yet.

 For telemetry styles, the ECS consoles are likely to be the sole sources of central-
ized logging. Datadog provides metrics and optionally distributed tracing. A company
of this size and age might be relying entirely on distributed tracing for its centralized
logging needs and using AWS consoles for AWS-specific telemetry.

 Companies of this size often have only software engineers in their technical
organization because everything else has been delegated to third parties. An operations
team isn’t needed because the cloud provider is doing almost everything; what is left can
be handled by software engineers. A DevOps team might be present, but it’s likely made
up of software engineers who focus more on testing and deploy tooling than on the
production software and may not consider themselves to be a separate team yet. Security
teams are present only if the market the company is attempting to sell to requires high-
security solutions. The technical org chart is as pared down as the production/telemetry
system architecture: a single box.

8.1.2 Analyzing the small company’s telemetry system

Let’s take a look at how telemetry is handled at the Emitting, Shipping, and Presenta-
tion stages of the telemetry pipeline of this small startup. We see from figure 8.1 that
the company is using two telemetry styles:

 Metrics, from the software itself
 Centralized logging, from AWS itself and whatever gets emitted by the software

to standard out

EMITTING STAGE

This section focuses on the Emitting stage for our small startup’s telemetry pipeline.
Small products have small footprints, as we see in figure 8.2.

Fargate cluster

Datadog endpoint

AWS ECS console

Shipping stage

metrics

logging
Production tasks

Emitter/
shipper

Figure 8.2 Emitting stage for the small cloud-based startup, with two telemetry styles 
(metrics and logging) shipping to SaaS providers. Emitting-stage components are filled boxes 
and solid lines. The Fargate cluster ships to the AWS console, and any output from the 
production tasks also ships to the AWS console. A Datadog function in the production tasks 
ships metrics to the Datadog SaaS cloud. The lone component that our startup is maintaining 
directly is the emitter/shipper function for metrics inside the production code. Maintain as 
little of the Emitting stage as possible to maximize focus on the production code.
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There are exactly two sources of emissions in this architecture:

 Metrics issued by the production system
 Anything that shows up in the AWS ECS consoles, including AWS- and Fargate-

specific telemetry and output from the production software

Their production software uses an emitter/shipper function inside the code, which is
the technique from section 3.1.3. This code uses the Datadog SDK, which is running
in the production software, to emit into a Datadog API endpoint. Although Datadog
supports tracing, this company’s production systems aren’t complex enough for that
feature.

 Centralized logging is handled end-to-end entirely by AWS. Section 2.1.3 describes
how you can use standard output for a way to emit telemetry, which this company is
doing with AWS ECS and Fargate. AWS ECS itself is using techniques from section
4.1.3 to capture the output, which leads us to the Shipping stage.

SHIPPING STAGE

This section focuses on the Shipping stage for our small startup. Because the telemetry
pipelines are highly delegated to third parties, this section focusses mostly on how telem-
etry moves into the Datadog and AWS systems. Figure 8.3 demonstrates the Shipping-
stage components of its systems.

For the metrics telemetry, the emitter/shipper function is still part of the shipping sys-
tem. The emitter/shipper code sends metrics to the Datadog cloud. The metrics ship-
ping pipeline is

1 Emitted from the emitter/shipper function in the production software
2 Received by the Datadog agent in the production code and then shipped to the

Datadog cloud

For centralized logging, when telemetry is emitted into the standard output, it enters
the AWS platform, and that’s all we care about right now. This system is deliberately
simple because our company is more focused on reaching profitability than on mak-
ing sure that its software is fully instrumented with logging, metrics, and tracing.

Datadog
SaaS

AWS ECS 
console

Fargate cluster

Emitter/
shipper metrics

logging

1 2

Production tasks

Figure 8.3 Shipping stage for the small cloud-based startup. Filled boxes are 
Shipping-stage components; dotted boxes are Emitting-stage components. 
SaaS providers and their code make up the entire Shipping stage, leaving our 
small startup to focus entirely on getting its product to profitability.
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PRESENTATION STAGE

This section covers the Presentation stage for our small startup, which has a pretty
small system. This company has delegated the Presentation stage to third parties, so its
Presentation-stage systems are outside systems. For metrics, the Datadog SaaS portal
provides all the metrics needed for the Presentation stage. For centralized logging,
the AWS ECS console fills all Presentation-stage logging needs.

8.2 Telemetry at the medium-size company stage
A medium-size cloud-based startup is one that has figured out how to sell to at least
one market and is established. This company has enough incoming revenue to quiet
the small-stage fear of running out of money. Money fears aren’t entirely gone—they
never are in a startup—but the prospect of corporate death is now years in the future
instead of months. The bigger fears of insiders are layoffs to get expenses back under
revenue. This section is about a company that has figured out its market and is look-
ing to expand its share of that market.

 This company has grown a lot since the small-company stage. Whereas it used to
have a single big team of software engineers, now it has enough people in the techni-
cal organization to have multiple teams. At this stage, a DevOps team has likely gained
independence and is an official team. (Whether their team name includes the word
DevOps depends on the people in the technical organization.). This team focuses on
improving development workflows and making software deploys as easy as possible.
This stage is the first one in which an SRE team might show up, possibly instead of a
DevOps team, to make the product stable from the point of view of customers. A sepa-
rate security team remains unlikely, but you’ll see one if the market requires such a
team to be present.

 Although it has continuing revenue, the company has likely run out of the money
provided in the initial investment by outside investors. Companies at this stage often
seek a second or third round of investment (the A and B series of investments) to con-
tinue living beyond their means and supercharge development of their product. Gen-
erally speaking, if a company isn’t a superstar, the more outside investment it needs to
keep operating, the more influence investors have on its operations. This influence
sometimes guides the way that the technical infrastructure grows.

 This company has had several years to build, refine, and enhance its product.
More features mean more code and more complexity in the production systems. Fig-
ure 8.4 shows how the architecture has changed from figure 8.1.

8.2.1 Describing the medium-size company’s telemetry system

When comparing figure 8.4 and figure 8.1, we see that the company has expanded its
use of AWS ECS and added a second telemetry SaaS product in the form of Sumo Logic,
and it is now using more than one Fargate cluster to host production code. The com-
pany added a new Fargate cluster dedicated to its continuous integration and deploy-
ment services, used to test code for quality before deploy (continuous integration [CI])
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and to automate the deployment process (continuous deployment [CD]). Whereas the
small company used the AWS ECS console for centralized logging, the midsize com-
pany has realized the limitations of that system and subscribed to the Sumo Logic SaaS
product to provide centralized logging for both the production systems and CI/CD
systems. It retained Datadog to continue providing metrics and now distributed tracing
services. As with the small company, nearly all the telemetry pipeline is contracted to
external parties rather than owned.

 The company continues its practice of using emitter/shipper functions in produc-
tion systems. These functions now emit into two separate pipelines, one for each of
the SaaS companies that handle telemetry. The CI/CD cluster emits into Datadog
because it uses the metrics and tracing data to verify that new code does not introduce
performance regressions.

 At this stage, reliance on external parties for telemetry services begins to show up
in the corporate bottom line. Until now, using third parties for telemetry services has
allowed the company to focus on what really matters: making the product that will
make money. Now that the product is making money, improving profitability by
reducing operating costs starts looking attractive. Every company is different and faces
different forces, but if our midsize startup begins to run out of investment money and
has to live on direct earnings, bringing those delegated telemetry services in-house
starts to make sense.

AWS ECS

Prod Fargate 
cluster 

Prod Fargate
cluster 

CI/CD Fargate 
cluster 

Datadog
SaaS

Sumo Logic
SaaS

Metrics and distributed tracing

Centralized logging

Production code
Emitter/
shipper

Production code
Emitter/
shipper

Test/staging code
Emitter/
shipper

AWS ECS logs

Figure 8.4 Example production and telemetry system architecture for a midsize cloud-
based startup. Two external providers for telemetry services are present instead of one. 
(Sumo Logic is new.) We also see a dedicated continuous integration/deploy Fargate 
cluster. SaaS providers remain the sole telemetry system to allow software engineering 
to continue focusing solely on product.
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Figure 8.5 presents a different architecture for this shift of telemetry. Facilitating this
change are those DevOps or SRE teams, which often have infrastructure management
experience.

 In figure 8.5, we see that the centralized logging role played by Sumo Logic in fig-
ure 8.4 has been replaced by a different system hosted in a combination of AWS
(SQS), AWS Elastic Kubernetes Services (EKS), and AWS Elasticsearch. Here, the
emitter/shipper functions in the production ECS tasks have been updated to emit
directly into SQS, an architecture similar to the one presented in section 3.1.2. From
there, Fluentd has been configured to pull items off of the SQS queue. After Fluentd
is done processing and transforming events, it stores them in Elasticsearch. Kibana,
provided as part of the AWS Elasticseach offering, is used as the Presentation stage for
the centralized logging system.

 Finally, seeing EKS in the figure is a sign that this company is beginning to feel the
constraints of the AWS ECS platform. ECS is opinionated; it makes a specific type of
application design easy, and varying from that pattern makes for a lot of work. This
arrangement is great for a company that’s just starting out, because it doesn’t have to
waste time building deploy automation or spend meetings deciding on application
design patterns. Going outside the ECS box while still using containers, however, gen-
erally means adopting EKS to provide that extra flexibility. EKS requires more mainte-
nance than ECS does, which is where those DevOps and SRE teams come into play. To
summarize, the changes from small to medium-size company include

 A much larger technical organization is broken into multiple teams.
 The production systems are much more complicated and now include CI/CD

systems.

AWS 
SQS

Elasticsearch

Kibana

AWS ECS (Fargate) AWS Elasticsearch 
(includes Kibana) 

Datadog
SaaS Emitter/shipper

Emitter/shipper

Emitter/shipper

Metrics and 
distributed tracing

Centralized logging

AWS Kubernetes (EKS)

Fluentd Fluentd Fluentd

Fluentd Fluentd FluentdCentral queue

Event parsing

Figure 8.5 A variation on the midsize cloud-based startup, with centralized logging 
handled in AWS instead of another SaaS application. Moving centralized logging in-house 
signals cost sensitivity to using a SaaS service for the most expensive telemetry style 
(centralized logging).
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 Telemetry systems have added a third telemetry style: tracing.
 The cost of SaaS-based telemetry systems is now large enough to be a concern

and can trigger moving a telemetry system in-house.

8.2.2 Analyzing the medium-size company’s telemetry system

Let’s take a look at how telemetry is handled in each of the three stages of the teleme-
try pipeline. Complicating matters somewhat is the shift this company made partway
through its medium-size stage, where centralized logging started as part of a SaaS solu-
tion (the early medium stage) but was moved in-house on a different public cloud
container management offering (the late medium stage).

EMITTING STAGE

This section covers the Emitting stage for our medium-size startup and the drivers that
forced changes here. Emissions continue to focus more on emitter/shipper functions,
but those functions are now getting more complex in how they work. Figure 8.6 shows
how the Emitting stage changed partway through.

The early-stage systems look much as they did in the small company, with production
software using emitter/shipper functions inside the code to send metrics and now log-
ging telemetry to SaaS providers. But now there are three separate emitter/shipper
functions:

 Using the Datadog SDK, the company wrote a specific metrics-emitting func-
tion that sends to the Datadog agent.

 Also using the Datadog SDK, it instrumented their code for tracing, used for
distributed tracing, that also sends to the Datadog agent.

 After configuring AWS ECS logs to go directly to Sumo Logic, the company
wrote specific loggers sending events to the standard output (see section 2.1.3).

After the company moved to the late stage as a medium company, centralized logging
was moved in-house. Doing so required changing the third emitter/shipper function
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Figure 8.6 Emitting-stage components for a midsize cloud-based startup. Emitting-stage components 
have a solid fill. This figure shows an early/late split in telemetry handling; the early midsize company 
used a SaaS provider for centralized logging but moved to an in-house solution for cost reasons late in 
the midsize period. The late stage is the first time this company has taken on the burden of directly 
creating and maintaining a telemetry system.
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away from shoveling everything into stdout and instead sending directly to a SQS in
AWS—the direct-to-queue pattern from section 3.1.2.

SHIPPING STAGE

This section covers the Shipping-stage portion of our medium-size startup as it trans-
forms through growth. Unlike the small version of this company, the late-period mid-
size company starts maintaining part of the Shipping stage (figure 8.7).

As in the Emitting stage, there are significant differences between the early- and late-
stage telemetry architectures. The early-stage architecture is much like the small-
company architecture, with metrics, distributed tracing, and centralized logging
pipelines looking like this:

1 Metrics, tracing, and logging emit from emitter/shipper functions.
a Tracing and metrics emit directly to the SaaS provider.
b Logging emits through the standard output and is captured by Fargate logging.
c Sumo Logic polls Fargate logging.

2 Metrics, tracing, and logging are ingested by the SaaS provider cloud.

Bringing centralized logging in-house marks the first real change in this company’s
Shipping stage. The new pipeline involves self-managing the markup and enrichment
(chapter 6) end to end. The pipeline stages are

1 An emitter function in the production code adds context-related telemetry (see
section 6.1) and sends telemetry to an AWS SQS queue (see section 3.1.2).

2 Fluentd, running in EKS on AWS, is configured to pull events from the queue.
3 Fluentd enriches the telemetry (see section 6.2.2) and converts data types as

needed (see section 6.2.3) before sending the telemetry to storage in Elasticsearch.
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Figure 8.7 Shipping-stage components for the midsize cloud-based startup in both its early and 
late periods. Dotted lines and boxes are Emitting-stage components and event flow; solid lines and 
filled boxes are Shipping-stage components and event flow. The company’s move to maintain its 
own telemetry system and Shipping-stage components is made possible by financial security and 
improving skill in the technical organization.
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If you look at figure 8.7 closely, you will see dotted lines (Emitting-stage event flow)
coming from Fluentd and going to the SQS queue. This dotted-line event flow rep-
resents telemetry emitted by the telemetry systems themselves that will be ingested.
The Elasticsearch and Kibana components don’t have this dotted line because they’re
part of the managed AWS Elasticsearch service.

PRESENTATION STAGE

This section covers the Presentation stage of the telemetry system used by our medium-
size startup and shows how it changed with the move of part of the Shipping stage to an
internally manage system. The early- and late-stage medium-size company architecture
has a key difference in that for the first time, the late-stage architecture has a
presentation system managed by the company rather than a SaaS provider. The early-
stage company used two SaaS providers for its Presentation stage systems: Datadog
for metrics and tracing, and Sumo Logic for centralized logging. The late-stage
company, however, uses the feature list from section 5.2 to develop a Presentation-stage
system for centralized logging, using the Kibana provided by AWS Elasticsearch.

8.3 Telemetry at the large-company stage
A large cloud-based startup is one that is well-established in small to medium-size busi-
ness markets and is looking to move upmarket to gain contracts from the likes of the
Fortune 500. Small and medium-size businesses are not picky about who they select
for providers, but large companies often require vendor assessments to be completed
by any new vendor to ensure that the newcomer is safe to do business with. What was a
quite viable product in the small and medium-size business market is not even mini-
mally viable in the big companies. MVP has changed, so to move upmarket, the prod-
uct has to change again. This section is about the changes that being a large company
brings to the production and telemetry architectures.

 This company has grown from a middle-size company, with revenue now in the
high tens of millions (if not more). The technical organization has also grown in com-
plexity as the company has consolidated its place in the small/medium-size business
space. There are now enough software engineers that all-hands meetings require an
auditorium, and everyone doesn’t know everyone else. SRE is created as a new team if
it didn’t arrive during the medium-size stage, bringing technical discipline to product
development. The move to enterprise and all the vendor assessments that come with it
spurred the creation of a security team for the first time, if one wasn’t already in place.
DevOps or operations teams now exist because maintaining the platform on which
the production systems run is a big enough job to call for full teams.

 This stage is also the first big off-ramp from public cloud to running actual com-
puters in a data center. The decision to make this shift, even for a partial chunk of the
production systems, is a major shift in focus, so isn’t done lightly. If the product
involves lots of storage, running a data center full of storage systems provides enough
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efficiency of scale to beat public cloud options. Or maybe the market benefits from
specialist hardware that public clouds simply don’t provide. Whatever the cause, the
move to physical hardware can happen at this point, bringing a true operations team
into the technical organization.

 Use of public cloud options can also shift at this stage, as economies of scale begin
to factor into platform decisions. AWS ECS is fabulous for bringing code to market
fast, and its fully managed systems allow technical organizations to focus on what they
do best: write code. The cost calculus changes when a technical organization has more
than 250 people, because some of those people could be quite skilled at building and
maintaining the kind of systems that were previously contracted out. Or maybe the
managed options are merely pretty good, and the company needs awesome, so it builds
its own version in a generalist cloud such as AWS or Azure.

 The production systems at this point are fully featured for the small/medium-size
business space and aim to challenge the big players. This system has a beautiful web
UI, an API for interacting with the system programmatically, and a mobile experience.
There are likely several databases backing different features.

 Codewise, the choices made when the company was small are coming back to
haunt the large company, making for a creeping tech-debt problem. The cutting-edge
technology that was picked when the company was three people with a big idea now
borders on mainstream, and this company may even be one of the drivers behind that
push. All these factors considered alongside the growth in customers add up to a sig-
nificant redesign of the product to change design assumptions. Monoliths are broken
apart; microservices are merged; the technical organization is reorganized; databases
are split or merged; and telemetry systems are looked at anew.

 The final driver of organizational change is the desire to land contracts with For-
tune 500 companies. The vendor assessments that such companies require is an
extended interview process to ensure that a prospective vendor has safe data-handling
processes, is likely to survive common disasters, and is likely to still be in business in
five or ten years. This interview process can be shortened considerably, and sometimes
eliminated, by achieving compliance with frameworks like the Service Operational
Controls 2 (SOC 2) framework from the American Institute of CPAs.

 Compliance frameworks like SOC 2 require an organization to meet certain stan-
dards of internal processes, procedures, and data-handling policies, and are audited
by third-party auditors on a schedule. Presenting a prospective customer with a report
issued by a third party detailing your company’s compliance with safe operating pro-
cedures greatly improves the speed of landing big sales deals. This situation is wonder-
ful, but getting to that point is a huge project that often takes years.

 SOC 2 and other compliance frameworks force a technical organization to a spe-
cific minimum level of organizational maturity that likely hasn’t existed before (or
hasn’t existed uniformly). Whereas the small company with five engineers allowed
each engineer to push code to production directly and directly probe how production
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systems are working, a company that’s subject to compliance frameworks has to greatly
reduce or eliminate the ability of the people who write the code to modify production
systems directly. A process must be in place to ensure that code moving to production
has been tested and approved for deployment and that changes to production systems
have been similarly vetted. This process is a change management process.

NOTE Telemetry systems are central to assessing procedure compliance by
third-party auditors. When you go through your project to achieve compli-
ance, your telemetry systems will see a lot of updates. You’ll find that you
need to add much more to your telemetry streams than you did before. Be
prepared.

Whereas the infrastructure charts of the small and medium-size companies were simi-
lar enough to be recognizable, the one for the large company is radically different
because of all the changes needed to push into the enterprise market. Figure 8.8
shows the production systems.

We see that company has expanded its use of AWS since its midsize days, extending its
use of EKS and adding both AWS Relational Database Services (RDS) databases and
AWS RabbitMQ queues. The company is running an API gateway that points to the
EKS resources. Not shown here for space reasons are the CI/CD systems that now run
in AWS EKS, same as the production systems.

 Significant changes in the production systems are small compared with what hap-
pened to the telemetry systems. Figure 8.9 shows the telemetry changes.
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Figure 8.8 Production-system architecture for the large cloud-based startup, showing extensive 
use of AWS managed services (AWS EKS, RDS, and RabbitMQ) and new use of general purpose 
systems (AWS EC2 using Linux). The use of RabbitMQ replaces SQS, used in the medium-size 
company architecture. Containers in EKS and instances in EC2 communicate with telemetry 
services (figure 8.9). This figure demonstrates the increasing sophistication of the production 
environment and improving skill with operating a large system.
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8.3.1 Describing the large company’s telemetry system

Sumo Logic used to be the centralized logging service back in the early stage of the
medium-size company, but the company removed it due to cost pressure by the late
stages. Why is it back? The new security team needed a SIEM, and Sumo Logic has fea-
tures that make it work for that team, giving Sumo Logic a highly filtered stream of
telemetry from the centralized logging flow, handled here as part of the router service.

 The company also removed Datadog as a metrics service but kept it for the more
expensive distributed tracing telemetry style. This change is a sign that the company
thought that the Datadog metrics service, which had served it well in the small and
medium-size stages, wasn’t featured enough for what it now wanted and decided to build
its own. The new metrics service is built on the foundation of the Prometheus time-series
database with custom-built automation to provide aggregation and reporting.

 Another difference between the medium-size and large telemetry architecture is
what is serving as the queue. The medium-size architecture used Amazon’s SQSas the
central point of shipping, yet in the large architecture, that role is being filled by Ama-
zon’s managed RabbitMQ service. What caused the change? Features. SQS is a simple
queue, but the company needed a true message broker and chose RabbitMQ because
of its use of the well-supported Advanced Message Queuing Protocol (AMQP) and
ability to support distributed architectures.

 This new telemetry architecture also demonstrates multitenancy for the first time,
with a security team being all by itself in Sumo Logic. The use of a router is a multi-
tenant technique, talked about more in section 7.2.1, though here it is used more to
direct telemetry to style-specific queues. That said, the seeds are planted for support-
ing fuller multitenancy.
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Figure 8.9 Telemetry system architecture for the large cloud-based startup, showing four telemetry 
styles in use and event flow from the production systems. SaaS providers now provide only distributed 
tracing and SIEM services; centralized logging and metrics have been brought inside. The fact that 
metrics has been brought inside is a sign that this company needed more complexity in its metrics 
telemetry than the SaaS provider could support.
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 Not displayed here is the sheer volume of telemetry flowing through this ecosys-
tem. Compliance frameworks have clear mandates to be able to trace (and prove that
they can trace) who did what, when, where, and how; satisfying this mandate requires
capturing far more system-level telemetry than was captured before. Handling all this
tracing telemetry requires dedicated security software: the SIEM.

 That’s a lot of change! Here are some quick hits that drove most of that change:

 The need for a passing audit report for a compliance framework is driving sig-
nificant changes to both the production and telemetry systems.

 Message routing complexity is becoming a driver of telemetry system changes.
 Increasing the size of the technical organization also increases the capabilities

of the organization, allowing the company to handle directly tasks that used to
be contracted out.

 Increasing technical sophistication in production systems is beginning to drive
the company from its original cloud provider in favor of providers that allow
the level of customization it needs.

8.3.2 Analyzing the large company’s telemetry system

In this section, we take a look at how the three telemetry pipeline stages evolved
between the medium-size and large company stages. We saw the beginning of the pro-
cess of moving telemetry services inside as part of the medium-size stage, and this
process moved farther along at the large stage.

EMITTING STAGE

This section covers the Emitting-stage components of our large startup and shows how
it changed to support a new computing platform. These components (figure 8.10) are
familiar from the late-stage medium-size company, as the company continues to use
emitter/shipper functions wherever possible.

The biggest evolution in the Emitting stage is the addition of EC2-based Linux servers
as a deployed platform in the production system, but even the container code is con-
tinuing to follow the pattern of emitter/shipper functions inside the production code.
Whereas the company was still using Datadog for metrics at the medium-size stage,
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Tracing 
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Figure 8.10 Emitting-stage components of the 
large cloud-based company, now running code in 
two public clouds
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now it’s brought metrics inside and built internally maintained SDKs for software
engineers to use to provide metrics emissions from their code. With metrics moving to
self-hosted and the queue changing from SQS to RabbitMQ, however, the emitter/
shipper functions have changed subtly:

 For code running in AWS EKS, all centralized logging and metrics emissions are
submitted to a RabbitMQ-based queue instead of the SQS queue.

 For telemetry coming from the EC2-based Linux servers themselves, Fluentd is
installed locally to send system telemetry from journald into RabbitMQ.

 Telemetry systems running on EC2 instances are new and also emit centralized
logging to the RabbitMQ-based queue.

 Datadog continues to be used by both EKS- and EC2-based production systems.

The large stage is when security and compliance concerns start biting for real: the sys-
tem log that comes with managing operating systems now has to be included in the
telemetry stream because the new security team needs that telemetry. What happens
to the system log telemetry—be it Syslog or Windows Event Log—is a story for the
Shipping stage.

SHIPPING STAGE

This section covers the Shipping-stage components for our large cloud-based startup
and shows how it adapted to a new platform and compliance requirements. Sophisti-
cation has increased significantly from the medium-size system as our company fur-
ther refines how it uses telemetry. Figure 8.11 shows the Shipping-stage components.
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Figure 8.11 Shipping-stage components of the large cloud-based startup. Emitting-stage components 
and event flows use dotted lines, Shipping-stage components are filled, and event flows use solid lines. 
All telemetry sources continue to use Datadog for tracing. This system demonstrates multitenancy in 
the form of the SIEM system.
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The Shipping stage for the large company is quite a bit more complex than the one
for the medium-size company. Whereas the medium-size company had a centralized
logging system using SQS for shipping telemetry, the large system

 Moved the queue to RabbitMQ instead of SQS to save money and increase flex-
ibility. (Unlike SQS, RabbitMQ allows complexity.)

 Embraced the router concept from section 7.2.1, with containers dedicated to
deciding which telemetry system, or owner, needs to be the next one to process
each item of telemetry. The router uses dedicated queues for the logging and
metrics telemetry styles. Queue-based routing allows simplifying the SDKs
needed in the production code. (Ship everything to the queue, and let the
router sort it out.)

 Forked logging telemetry at the new parser. The security team also needs this
feed, so the parser sends security-relevant telemetry to two places.

 Diversified its parser system, adding dedicated container groups for logging
and metrics to scale with the size of its infrastructure.

The use of a combined stream for centralized logging and metrics, to be split at a
router, is a multitenancy concept from chapter 7. Although this company has only two
political owners—security and everyone else—each telemetry style’s system (metrics
and centralized logging, in this case) are functional owners. This telemetry system
demonstrates multitenancy in the Shipping stage. The metrics pipeline functions sim-
ilarly to the centralized logging one, with a dedicated metrics parser. The tracing pipe-
line remains the same. (Ship telemetry directly to Datadog.)

PRESENTATION STAGE

This section covers the Presentation-stage
components for our large cloud-based
startup and the addition of a new style of
telemetry. Unlike the medium-size company,
the large company manages many systems
for presenting its telemetry. Figure 8.12
shows the components. 

 With the move of metrics from Datadog to
an internal system, this company had to
come up with Presentation-stage software for
its metrics. (See section 5.1 for a discussion of
presentation systems for metrics telemetry.)
It picked the Grafana (https://grafana.com)
dashboard system to act as the Presentation
stage for metrics. Grafana has robust support
for the company’s metrics database, Pro-
metheus, which allows the creation of dash-
boards and has an access control system.
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Figure 8.12 Presentation-stage components 
for the large cloud-based startup. Presentation-
stage components are filled, and their data 
sources (part of the Shipping stage) are dot-
ted. SaaS providers are supplying the tracing 
and SIEM presentation stages, whereas inter-
nally managed telemetry systems are using 
Grafana for metrics and logging, and Kibana for 
logging. Unlike the organizations you will see in 
chapters 9 and 10, this company has managed 
to centralize telemetry into one system for 
each telemetry style.
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Grafana also supports pulling logging data to pair with metrics in dashboards, so that
system also pulls from Elasticsearch.

 Centralized logging continues to use the Kibana that comes with the managed
AWS Elasticsearch service, as it did with the late-stage medium-size company. The
addition of compliance requirements pushed this company to adopt SAML-based SSO
and access controls into Kibana to be able to trace who viewed what telemetry and
when. Using presentation systems supporting ACLs allows the company to separate
application telemetry from the growing operating system telemetry managed by the
DevOps/SRE teams, demonstrating multitenancy in the Presentation stage. (See sec-
tion 7.2.2 for a discussion of multitenancy in the Presentation stage.)

 Tracing data continues to be served by Datadog, though the volume of tracing data
is becoming a budgetary concern. SIEM functionality for the security teams is being
supplied by Sumo Logic.

8.4 Telemetry at the enterprise stage
The enterprise stage of our cloud-based startup is the end stage. A company that
makes it to this stage—and few companies do—has not only figured out how to sell to
Fortune 500 companies, but also is doing well in that market segment. This company
is an established name in the big-company space, while also serving its small and
medium-size business roots. There are few markets left to enter, such as government
and international sales.

 This company has grown a lot since its large-company days, and not only finan-
cially. The technical organization alone numbers in the high hundreds to thousands
of people, making a product framework far larger than any one person could hold in
their head. The technical organization is spread across multiple offices and might
even have expanded internationally; time zones are now major barriers to cross-team
cooperation.

 This company is no longer a startup, but one of the established players in the field.
It has taken the founders a decade or longer to climb from three people with a big
idea to chief executive officer, chief information officer, and chief operating officer of
a company with revenue pushing $1 billion U.S. The company isn’t a startup anymore,
but a unicorn (a one-in-a-million shot that paid off).

 The enterprise stage is when a company’s production systems are big enough that
building data centers to run them is a perfectly reasonable stance to take. The public
cloud goes far, but there comes a time when the cost of paying a provider like AWS or
Azure to run data centers for you is less attractive than running those data centers
yourself. Some companies gleefully jump at the savings; others are quite happy to
keep paying the professionals at their public cloud provider. Regardless of the cloud
state, the production systems are big enough that hard work has gone into making
sure that a regional disaster (such as a massive earthquake or a hurricane) can no lon-
ger take everything down.
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 The telemetry systems have transformed as much as the production systems. The
scale of enterprise-stage telemetry means that any SaaS providers are likely to be
either niche players or full strategic partners; there is no in-between stage. Telemetry
systems are now built to handle the same regional disaster tolerance that the produc-
tion systems are, which requires as much service mirroring and replication as in the
production systems—a requirement that smokes out telemetry service components
that don’t support that level of availability. More of the telemetry ecosystem is devel-
oped and maintained internally than at any previous stage. This stage is where compa-
nies consider open-sourcing their internal telemetry tooling to help the broader
community.

 The three major drivers of change since the large-company days and the big com-
pliance push are

 Pushing into international markets, exposing the company to different regula-
tory frameworks, contract, and labor laws

 Surviving regional disasters (a requirement for doing business with some
companies)

 Scaling everything up to handle a global user base

The product is rather more complex than it was in the large-company days, with auto-
scaling pools, complex network routing to handle failovers, failover logic in the code
itself, and the existence of actual hardware in production systems. New hires have no
idea how the product ever ran in a single ECS Fargate cluster.

 Figure 8.13 shows that our enterprise-size company is operating three physical data
centers: two in the United States and one in Germany. It is still making extensive use
of AWS. The two U.S. data centers and two AWS regions are on the East and West
coasts and are configured to replicate to each other. The data centers are hot stand-
bys, meaning that failing over to the other data center is a fast process, but a brief out-
age still occurs. Bringing failover to Europe is in the process of being built out.
Customers are provisioned in the U.S. or EU data centers, and fancy networking is
used to route customers to the United States or European Union as appropriate.
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U.S. East

Data center 
U.S. West

AWS 
us-east-2

AWS
us-west-2

Data center 
EU Germany

AWS 
eu-central-1

United States European Union

Figure 8.13 Data centers and AWS regions in use by the enterprise-size cloud-
based startup. Physical data centers are used for the first time, and U.S. systems 
are configured for replication. AWS is still supported. Telemetry systems are also 
replicated—the first time we’ve seen replication in a telemetry system.
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The telemetry systems follow the same general architecture, with a few differences:

 Due to the legal penalties for mistakenly transmitting private user data, the
European Union and United States operate fully separate centralized logging
systems. Logging data recorded in the European Union stays in the European
Union, whereas data recorded in the United States is replicated to the other
U.S. data centers but not sent to the European Union.

 Metrics are replicated between the U.S. and EU data centers and may be
accessed from either, with a replication delay when viewing metrics from the
remote data center.

 Distributed tracing is no longer being handled by a SaaS provider.

To begin our investigation of their telemetry systems, let’s take a look at the Emitting-
stage (and early-Shipping-stage) components in figure 8.14.

EMITTING AND EARLY SHIPPING STAGE

This section covers the Emitting and early Shipping stages of our enterprise-size
cloud-based startup, which includes hardware for the first time. Everything eventually
ends up in a streaming system with topics. (See section 7.2.2 for a discussion of stream-
based Shipping stages.) This telemetry system has several features:

 All production code includes an emitter function for emitting logging and met-
rics telemetry to an API wrapper for code that doesn’t support streams or
directly to a topic in a telemetry stream system (see section 3.1.2 for a discussion
of this style of emitting) for code running in AWS or on hardware.

Emitter function 
(prod code)

Cisco 
networking 

gear

Production 
server

Operating
system

API wrapper

Syslog 
wrapper

Journald 
wrapper

Telemetry stream

topic_id: syslog

topic_id: linux
topic_id: metrics

topic_id: logging
topic_id: metrics
topic_id: tracing

EventLog 
wrapper

topic_id: windows
topic_id: metrics

Figure 8.14 Emitting (solid lines, dark boxes) and early Shipping-stage (dotted lines, light boxes) 
components for the enterprise-size company, showing three emitting techniques (emit to stream 
from code, emit to API, and emit to Syslog), sending telemetry into a stream, demonstrating a partial 
emitter-based routing architecture in the form of which stream topic_id telemetry is written to.
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 All production code also includes tracing libraries based on the OpenTelemetry
SDK, which emits tracing telemetry to an API wrapper for code that doesn’t
support streams or directly to a telemetry stream for code that does.

 Cisco networking gear in the data centers is configured to emit to a Syslog
server. (See section 2.2 for a discussion of emitting telemetry from hardware.)

 Production servers are configured to emit their IPMI events—telemetry that
emits directly from server hardware—to Syslog, similar to the Cisco hardware. 

 Four wrappers are configured to accept telemetry and inject it into the teleme-
try stream system: an API wrapper for telemetry coming from production code,
a EventLog wrapper for events coming from Windows systems, a journald wrap-
per for events coming from Systemd, and a Syslog wrapper for events coming
from hardware systems.

The journald wrapper is installed on all Linux systems and ships to the stream directly
from a process in the operating system. Any Windows systems would have a similar
wrapper for Event Log.

 Standardized logging libraries have been created for every software framework in
use at this company. This logging library includes helper functions that allow software
engineers writing code to emit telemetry into the logging or metrics pipelines easily.
Because this company has dropped Datadog for tracing, it’s become a corporate spon-
sor of OpenTelemetry and is using OpenTelemetry SDKs to provide tracing instead.
Part of the logging library includes functions to emit tracing telemetry into the
stream.

 Production code emits directly into the stream, but each of the four wrappers also
emits into dedicated topics:

 The API-wrapper accepts API calls and injects them into the logging stream as
part of the logging, metrics, and tracing topics.

 The EventLog wrapper running on all the Windows hosts consumes the system,
application, security, and any configured additional event-log streams and
injects events, with appropriate context-related markup (see chapter 6), into
the logging stream as part of the windows or metrics topic.

 The journald wrapper running on all the Linux hosts consumes the local sys-
tem log and injects events, with appropriate context-related markup, into the
logging stream as part of the linux or metrics topic.

 The Syslog wrapper accepts events from hardware systems, marks it up with
context-related telemetry, enriches the format to the one supported by
downstream shippers, and injects them into the logging stream as part of the
syslog topic.

The stream is handling six topics:

 A logging topic containing application logging
 A metrics topic containing both application and operating system metrics
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 A tracing topic containing OpenTelemetry telemetry
 A linux topic containing Linux operating system logging
 A windows topic containing Windows Event Log telemetry
 A syslog topic containing logging coming from hardware systems

WHOLE SHIPPING STAGE

This section covers the Shipping stage of our enterprise-size cloud-based startup—
specifically, the part of the Shipping stage after the central stream system—and shows
how it meets the mission of cross-region high availability. Now that we have examined
the telemetry deep enough to see how it is funneled into a single pipeline system, let’s
take a look at the whole Shipping stage after telemetry is centralized into the stream
system. This stage is where the international architecture begins to be visible. First, let’s
look at figure 8.15, which shows how centralized logging is handled.

As we saw with the Emitting- and early-Shipping-stage architecture, this company
makes extensive use of streams. Let’s follow the path that centralized logging teleme-
try takes from the four centralized logging topics (logging, syslog, windows, and
linux):

1 A large group of machines performing log parsing is in a consumer group and
subscribes to the syslog, linux, windows, and logging topics of the telemetry
stream.

2 The log parsers further enrich telemetry unifying the format and send it back
into the stream under the log_commit topic.
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Figure 8.15 Log parsing and storage components of the centralized logging Shipping stage, including 
replication to a remote data center. Events enter the telemetry stream on any of four topics and in the 
United States are eventually shipped to a remote data center for replication. This centralized logging 
system demonstrates both dedicated systems for bulk-writing efficiently into storage and high-
availability replication.
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3 A smaller group of machines dedicated to storing telemetry is in a consumer
group and subscribes to both the log_commit and log_replicate topics, where
log_replicate is the stream of events coming from the remote data center
(United States only).

4 The log-writer group stores telemetry in many storage targets based on teleme-
try encoded by the log parsers, functioning as a router (see section 6.2.1).

5 In the United States, and planned for the European Union, another group of
machines dedicated to log exporting is in a consumer group and also sub-
scribes to the log_commit topic, giving it only the telemetry that was generated
by the local log parsers.

6 The log-exporting machines send data across wide-area networking (WAN)
links to a stream in the remote U.S. data center in the log_replicate topic.

7 (not pictured) The log writers in the remote U.S. data center, which are sub-
scribed to the log_replicate topic, also store telemetry from the first U.S. data
center.

Centralized logging telemetry follows many steps, but the design here allows the
remote data center to have a (mostly) complete record of what happened in both data
centers. When we look at the Shipping stage as a whole, we see that each bit of gener-
ated telemetry takes three or four hops before getting stored locally, as shown in fig-
ure 8.16:

1 Emission from code, operating system, or hardware is sent to a wrapper (except
code that is able to emit directly to a stream, which emits directly to the stream
and skips step 2).

2 The wrapper ships telemetry into the stream.
3 The log-parser machines enrich and transform the telemetry, shipping it back

to the stream in a new topic.
4 The log writer writes telemetry to storage based on details in the telemetry.

With the centralized logging system out of the way, let’s take a look at the metrics
system and its Shipping stage. Unlike centralized logging, metrics telemetry is allowed
to replicate outside the U.S./EU regions, so there is a central system for metrics
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Figure 8.16 The flow of centralized logging events from emission to storage, including the 
replication flow. This architecture provides a (mostly) complete mirror of logging storage 
between the two regions.
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operated from the U.S. data centers. Figure 8.17 shows the metrics architecture in two
regions.

 The early life of a metrics emissions is common in both the European Union and
United States:

1 Metrics ship into the metrics topic in the telemetry stream.
2 Metrics parsers in a consumer group that subscribes to the metrics topic

receive the telemetry stream.
3 The metrics parsers enrich and transform the telemetry, and submit the teleme-

try to the metrics_commit topic.

When the metrics telemetry is in the metrics_commit topic, we start to see different
handling between the United States and European Union:

 In both the the United States and European Union, dedicated exporters sub-
scribe to metrics_commit to ship received metrics to streams in different
regions. There are two exporters for the European Union and one for each of
the U.S. data centers. The United States has a single exporter, exporting to the
other U.S. data center.
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Figure 8.17 Metrics parsing and storage components of the metrics Shipping stage. This example 
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 Both U.S. data centers have a group of metrics writer machines that subscribe
to all three of the metrics_commit, metrics_commit_eu, and metrics_remote
topics to store telemetry from all regions.

This company chose to store metrics data in a single location for a couple of reasons.
First and most important, metrics data is small and cheap to store (and to transmit
across the Atlantic Ocean), making a single big repository viable. Second, metrics data
is far less likely to contain the sorts of information that is subject to export controls—
information such as PII and health information.

 Tracing data for this company hasn’t been sent to Datadog since the company
joined the development effort for OpenTelemetry. Not sending tracing data to a SaaS
provider ended up being a significant savings, but joining in an industry effort to stan-
dardize tracing techniques pays dividends for the whole industry.

 Unlike logging and metrics, this company’s tracing data is not replicated between
data centers. The reason is part of the development effort: the company is helping to
write the components that will enable such ocean-spanning architectures and hold
high volumes of tracing data. The replication isn’t production-ready yet. Figure 8.18
shows the tracing architecture in each region.

Compared with the centralized logging and metrics architectures, tracing is simpler.
Not having to build replication topologies greatly simplifies the flow of telemetry.
There is another reason why this company hasn’t pushed hard to get replication in
place, and that reason has to do with the nature of distributed tracing telemetry.
Tracing is most useful for software engineers, enabling them to analyze what broke in
a specific workflow and to see how performance changed across software versions.
Troubleshooting is most commonly done on recent data (less than a few weeks old).
Software-version analysis needs telemetry that goes back months or possibly years but
does not need every single workflow that happened; it needs only telemetry that has
been statistically sampled. (See section 17.3 for more on sampling.)

 In the future, the plan is to provide a single access point for tracing data for software
engineers, but that plan is waiting for better maturity in the software that handles
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Figure 8.18 Tracing parsing and storage components of the Shipping stage. Support for 
replication and bulking writes through dedicated writers is still being developed as part 
of the OpenTelemetry development effort. Use of a relatively immature technology by a 
company of this size can radically speed maturity of that technology.
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replication. Until then, engineers need to remember which data center their stuff is
running in and hitting that tracing endpoint.

 The next telemetry system we need to look at is how security’s SIEM evolved in the
enterprise era of this company. In the large stage, the SIEM was an appendix to the
centralized logging system, accepting a feed of telemetry from centralized logging
before it was parsed and persisting it in Sumo Logic. In the enterprise stage, forking is
still happening, though a sizable amount of SIEM data is now being held internally
(figure 8.19).

This architecture is quite similar to the centralized logging architecture in figure 8.15.
In fact, the first steps of the SIEM telemetry pipeline are identical right up to when
telemetry enters the log parser. Then the log parser routes telemetry, with centralized
logging reentering the stream on the log_commit topic ID, and security telemetry on
the siemapp_commit and siemos_commit topics. From there, SIEM telemetry follows a
similar path, but through different components, as the centralized logging telemetry.
The big difference is that Sumo Logic is also receiving a feed of telemetry: the
siemos_commit topic, the last SaaS product remaining in this telemetry system.

 The reason why Sumo Logic is still there has to do with the nature of SIEM systems
in general. Compliance and regulatory frameworks require certain common types of
telemetry to be persisted in SIEM systems—telemetry such as login, logout, lockout,
privilege use, elevated command use, and other relevant details commonly gathered by
operating systems. The problem of correlating all those events and displaying them in
a useful way is a complex one, and one you can build a company around. Therefore, our

ParserParserParserParserLog 
parser siemapp_commit 

siemos_commit
SIEM 
writer

SIEM 
exporterSIEM storage

siemapp_commit 
siem_replicate

siem_replicate

Other U.S. 
data center

siemos_commit 
siemapp_commit siem_replicate

siemapp_commit

Sumo Logic

logging

syslog
linux

windows

siemos siemapp

Telemetry stream

Telemetry stream

Telemetry stream

Figure 8.19 SIEM architecture for the enterprise organization. Telemetry destined for storage in the 
SIEM enters the pipeline the same way as the logging data, at the log parsers. The parsers fork SIEM-
related events to two new topics. Eventually, SIEM data lands in both replicated self-hosted storage 
and Sumo Logic. This split use shows that our enterprise-size company is beginning to bring some 
SIEM components inside. SIEM is the last telemetry style at the enterprise-size company to continue 
using a SaaS provider.
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enterprise-size company is using an outside vendor to provide correlation and
presentation for common security-related telemetry generated by operating systems
and hardware.

 The security team, however, has extended its monitoring of security events to
inside the main application. Unlike OS and hardware events, the application gener-
ates events unique to this company, so it makes sense for the company to handle those
events directly, which is where the siemapp_commit stream topic comes into play. The
software engineering teams have built in support for emitting SIEM-related events,
which are emitted as part of the logging streams. The log parser routes those events
into the SIEM pipeline. Dedicated software engineers with the security team have
built Presentation-layer systems for this extra, internal feed of telemetry.

 If it feels like there was a universe of change between the large and enterprise sizes
of the company, you’re not far wrong. The dual problems of increasing complexity in
the production systems as well as the technical organization itself made the transition from
medium-size to large significant and was even more profound here. With a technical
organization as large as the enterprise one, the prospect of building your own teleme-
try system from scratch becomes cost-advantageous. Additionally, the technical com-
plications of running in both multiple data centers and on different continents
provides strong pressure toward bespoke systems.

PRESENTATION STAGE

This section covers the Presentation-stage components of our enterprise-size cloud-
based startup (no longer a startup by any means except historical). The sheer scale of
enterprise telemetry has left its mark on this company’s presentation systems. Let’s
take a look at each telemetry style in turn. This system is not a clean one; you don’t get
this big without bringing along some of your past.

 For centralized logging, the company has mostly moved away from Kibana; annual
renewal costs are high enough to fund dedicated software engineers to build their own
presentation systems, which they have started to do. Kibana is still around in some areas,
but the use is considered to be deprecated. The Kibana-based system is kept around as
a restore target for old data to support restore requests coming from external auditors
as part of annual compliance work. (See section 17.1 for more on retention policies and
how supporting no-longer-used telemetry systems affects such policies.)

 For metrics, there has been a large fracturing of databases as different product
owners built their own. The enterprise-size company’s shipping pipeline allows multi-
tenancy of this sort and even provides replication. The presence of multitenancy and
replication, however, means that the company’s presentation systems need to deal
with them. Grafana is still in wide use, with multitenant features. But other metrics
presentation systems, including one built by the company, are also in use.

 For SIEM work, Sumo Logic continues to be the main access point for security
events related to common operating system and public cloud systems. For security
events that come from the production code itself, new presentation systems have been
written by this company and stored entirely internally.
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 For distributed tracing, the company is actively developing Presentation-stage
open source software as part of the wider OpenTelemetry project and ecosystem.
These systems are hosted in each data center, with region-specific URLs for access. A
grand unified access point is on the road map for the future, with an eye toward
releasing it as open source software.

8.5 Looking back at all this growth
The cloud-based startup has to grow or die, which makes it a great example of how
telemetry systems evolve over the course of the new tech-company life cycle. If you get
hired in the small stage and stick around until the enterprise stage, you can see all the
changes in telemetry handling firsthand. Few companies go from three people with a
big idea and day jobs to a name that everyone recognizes within a decade.

 The guiding principle for telemetry at the start was to do as little work with it as
possible, because getting the production systems built was far more important. Use
your cloud provider’s tools for everything as long as you can so that you don’t waste
effort on stuff that doesn’t lead directly to revenue. The biggest risk to the business is
running out of money to operate, so polish such as having a nice telemetry system is a
problem to solve later.

 When revenue has advanced far enough, or when not having a nice telemetry sys-
tem hurts enough, don’t invent the system yourself; instead, use a third-party provider.
Yes, it costs money, but at the small-company stage, the lowest developer price plan
can be all you need. You get a professionally polished presentation system without hav-
ing to write it yourself.

 The “Have other people do it” principle holds into the medium-size stage, even
though revenue is less of a concern. Engineering resources are scarce, and building it
yourself takes people away from product development. Even so, this stage is the first
one where the cost of third-party solutions can start forcing some telemetry systems
inside. The highest-cost telemetry style, centralized logging, is often the first to be
brought inside.

 The medium-size stage is when production systems often start getting dedicated
emitter/shipper components, such as dedicated logging libraries. These emitter/
shipper components aren’t commonly perceived as being part of a telemetry system,
but they are the home-built interface between the production systems and third-party
telemetry systems. Such components are a sign that telemetry operation is getting
attention from software engineering.

 The large-company stage is when changes start to truly bloom in telemetry systems.
At this point the company is well-established, and the technical organization is grow-
ing large. The cost of paying other people to do telemetry system handling is now a
serious part of the budget. Centralized logging could have been brought inside at the
medium-size stage, but the large stage is where that decision is made part of the strat-
egy. The large stage is also where the costs of other telemetry styles, such as metrics
and distributed tracing, are reassessed.
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 Business needs at the large stage often trigger the creation of a security team as
part of a move into the enterprise market segment, which incentivizes the adoption of
compliance frameworks to ease selling into that market. Whereas a company may not
have bothered with a SIEM before, doing compliance work guarantees that it will have
to do something about SIEM functionality. This stage also represents the first major
instance of multitenancy in a telemetry system, as the security team needs to have
assurances that any infrastructure teams that maintain the existing telemetry systems
can’t alter telemetry residing inside the SIEM systems.

 The enterprise stage brings far more fundamental changes to telemetry systems
because, at this stage, there is enough internal technical prowess to bring all telemetry
operations inside. Additionally, organizational complexity has reached the point
where the telemetry system has no choice but to handle multitenancy at multiple lev-
els. Use of third parties for telemetry systems can certainly be done, but doing so is a
strategic choice rather than what happened because no one thought to change things.

 As a side effect of doing telemetry at the enterprise stage, the company is big
enough and doing enough complex things to consider open-sourcing its techniques.
LinkedIn adopted Kafka, a streaming technology and turned it into a tool that our
example enterprise company made extensive use of. Etsy released the StatsD program
for metrics. The OpenTSDB time-series database came out of StumbleUpon to solve a
metrics problem. Not every company chooses to open-source a technique, but those
that get here have the opportunity to do so. Or if releasing the project themselves is
not possible, companies can join in industry efforts—such as the OpenTelemetry
effort to provide a broad standard for distributed tracing—to advance existing proj-
ects in useful ways.

Summary
 Cloud-based startups are young, building from scratch, and moving fast. Not

having any technical legacy to bring forward allows these companies to use the
latest technology right away.

 Production systems for the small cloud-based startup are based in a public cloud
to speed development, which frees the startup from having to worry about
operating its compute platform and allows it to focus on building a revenue-
producing product.

 Telemetry handling for the small cloud-based startup is delegated to SaaS pro-
viders so that the company can focus on making a revenue-producing product.

 The biggest risk for a small cloud-based startup is running out of money, so a lot
of tech debt is taken on at this stage of growth.

 The small cloud-based startup uses SaaS SDKs to write metrics libraries—emitter-
shipper functions (section 3.1.3) that talk directly to SaaS providers.

 Logging for the small cloud-based startup is handled by a public cloud provider
and is not well built out yet.
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 The medium-size cloud-based startup has a more complex production system
and introduces concepts including CI/CD telemetry, causing the company to
add a new SaaS provider for its centralized logging needs.

 The medium-size cloud-based startup is the stage at which costs associated with
SaaS-based telemetry systems can start to be significant, so the company opts to
bring centralized logging (the most expensive telemetry style) inside and self-
manage it,

 Also at the medium-size stage, dedicated DevOps or SRE teams become discrete
teams, adding to the software engineering teams already present. These new
teams drive different use cases for telemetry systems and enable self-hosting of
telemetry systems.

 The biggest driver of change for the large cloud-based startup is the need to
achieve compliance, such as with SOC2, to land contracts with the largest
companies.

 Compliance requires the presence of a security team, which in turn requires the
presence of a SIEM system.

 Telemetry systems are central to assessing procedure compliance by auditors,
which drives significant telemetry change, often over the course of years.

 The large cloud-based startup has enough internal technical knowledge to
manage multiple telemetry systems, reducing its reliance on expensive SaaS
providers.

 The enterprise stage of a cloud-based startup is the end stage. The company is
one that you recognize. Almost no startups make it this far on their own.

 The enterprise stage is where concepts such as multiregion serving and interna-
tional hosting start showing up in the production and telemetry systems.

 Being international also exposes the company to different data-handling laws,
which forces them to keep logging telemetry centralized per legal boundary
rather than globally.

 The enterprise-stage company uses SaaS products only for niche or specialized
use cases, such as providing a SIEM system for security. Use of a SaaS product at
this stage is a deliberate choice.

 Presentation-stage systems at the enterprise stage are fractured due to how long
it takes to move to a new presentation system and incomplete adoption of inter-
nal standards.

 Technical skill in the enterprise stage is high enough that the company is able to
sign on to industry-wide open source efforts and make significant contributions.
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Nonsoftware business

NOTE All the part 2 chapters are written to tell telemetry stories using the
techniques from part 1, as a means of providing more concrete examples
of integrated telemetry systems. If you feel that you need more real-world
examples to understand how these systems work, these chapters are for
you. If you feel that you already have a good grasp of the concepts, skip-
ping these chapters and moving on to part 3 is fine.

Whereas chapter 8 covered telemetry use in a software-producing startup, following
the changes in telemetry use at each stage of the startup’s growth from three peo-
ple with a big idea to a name-you-recognize unicorn, this chapter is about a much
larger part of the technical industry: organizations that consume software but pro-
duce it only for internal use. You know these organizations; they’re everywhere.
Here are a few examples:

This chapter covers
 Telemetry use in companies that don’t sell 

software

 How business size changes telemetry use

 How business IT uses telemetry techniques
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 The locally-owned pizza shop, with its point-of-sale systems for managing
orders, a fleet of delivery drivers, and marketing

 The veterinarian you take your pets to, with animal-oriented patient tracking
systems and pharmaceutical and lab ordering platforms

 The design studio you contracted to rebuild your main bathroom, with its archi-
tectural software, digital filing, and customer communication systems

 The construction firm contracted by the state to rebuild the highway inter-
change near you—a project that will take three years—and all the project man-
agement, vendor management, subcontractor management, and human
resources systems needed to pull it off

 The keyless-entry locksmith, famous for a century for providing keyed locks,
you chose to replace the keyed lock on your front door, with all the embedded
programming, server infrastructure, and API systems needed to support a
mobile-oriented keyless-entry system.

The smallest of these software-consuming organizations may not care one little bit
about telemetry, and that’s fine. We’re interested in those organizations that do have
an interest because they’re more likely to employ people like us to keep their teleme-
try systems organized. The larger these organizations are, the more likely they are to
create software to support the business; the keyless-entry locksmith is a prime example
in the preceding list. As a broad rule of thumb:

 Small and medium-size organizations are most concerned with business teleme-
try (think office IT crossed with business intelligence), which for our purposes
is the same as software telemetry. Sections 9.1 and 9.2 cover organizations of
this size.

 Large and enterprise organizations still care about business telemetry but are
likely to do telemetry relating to software development as well. Sections 9.3 and
9.4 cover organizations of this size.

Unlike chapter 8, which followed one company from inception to global dominance,
this chapter focuses on four organizations to highlight how each one uses telemetry.
The “Grow or die” imperative of startups doesn’t apply here; these organizations are
already profitable and happy where they are.

 One last word before we dig in: more companies employ people to manage desk-
top and laptop fleets than there are companies that employ software engineers. In
fact, for small and medium-size organizations that consume software, office IT is a
larger department than software engineering (if software engineering exists). The
telemetry concepts we covered in part 1 apply to those organizations, too.

9.1 Telemetry use in small organizations
Small organizations are those with 20 people or fewer. They’re delivering a service or
product that is enabled by software, but they’re not making the software themselves. A
software-consuming organization of this size has a few attributes we are interested in:



228 CHAPTER 9 Nonsoftware business

 It uses SaaS products for everything it can.
 It is not likely to be managing its desktop or laptop fleets, letting each person

do what they need to on their computer so long as they have a browser that sup-
ports all their SaaS apps.

 Specialist-installed software, such as accounting or numerical analysis software,
is installed on only a few computers.

 It is not managing servers in any way—not if it can avoid doing so, that is. If the
company has to run a server, that server is in a closet next to the copier/printer;
gets upgraded every eight years or so; and is run by Brent, who has been with
the company (as an employee, spouse of an employee, or long-term volunteer)
for 20 years.

The SaaS revolution made its biggest changes in organizations of this size, which
means that the telemetry ecosystem for this organization is full of SaaS platforms. Fig-
ure 9.1 gives us a taste of one version.

Figure 9.1 shows five SaaS systems used by our small organization, managing account-
ing (QuickBooks), payment processing (Square), customer relations (Microsoft
Dynamics CRM), office operations (Office 365), and recruiting (LinkedIn). What lit-
tle management of laptops and desktops is being done (endpoint management) is
being handled by Office 365, and the company isn’t doing much of that management
yet. As suggested earlier in this section, desktop/laptop management involves order-
ing a new computer online when one is needed and letting the person who gets the
computer do pretty much whatever they want with it.

 The closest thing this organization has to any of the four telemetry styles mentioned
in part 1 is QuickBooks, which receives a feed of payments from Square, integrates with
the customer relationship management (CRM) system, and exports reports in the form
of Excel spreadsheets to Office 365. Even so, LinkedIn is an island that doesn’t inte-
grate with anything else, and frankly, this organization doesn’t need it to.

 This organization doesn’t have centralized logging. Its metrics are contained
entirely within the walled garden of each SaaS vendor. Not doing endpoint manage-
ment means that the company has no need for a SIEM, and it’s not developing soft-
ware, so it doesn’t need distributed tracing. So why are we talking about this
organization at all?

QuickBooks 
accounting

MS 
Office365

Square 
payments

LinkedIn 
recruiting

MS Dynamics 
CRM

Transaction import

Full integrations

Reporting

Figure 9.1 The production (and telemetry) 
ecosystem of one small organization. This 
organization uses SaaS products for nearly 
all its operations.
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TIP Small organizations sometimes turn into bigger ones, and you need to
understand what came before when you help these organizations adapt to
growth.

Now let’s look at a different kind of small organization in an industry that requires
telemetry use: a small-town doctors’ office. This office has two doctors, three nurses,
and six support staffers of various types. A coffee shop has as many employees as this
office, but healthcare regulations require far more computerization than the coffee
shop does. Figure 9.2 gives us a feel for the practice’s production systems.

When you’re running a business in a highly regulated market such as healthcare,
external forces often require practices that an organization of this size wouldn’t
bother with otherwise. The doctors’ office in figure 9.2 is doing three things that the
more casual business across the street doesn’t do:

 Enforcing laptop settings—Protecting health information requires minimum set-
tings. If a doctor forgets and leaves a treatment machine alone with a patient,
that patient shouldn’t be able to view any other records. Settings such as an
annoyingly short screen-lock timeout are key here.

 Enforcing endpoint protection software—Health information requires software to
defend against malware attacks. Because these laptops (endpoints) run Win-
dows, a lot of malware is written for them.

 Reviewing access logs—Access to health information is regulated in most coun-
tries, so the practice management software tracks and reports which users
accessed which records that might be required during any audits. Also, the
Office 365 management system tracks logins on all laptops.

We’re seeing some telemetry use here! The use is centralized logging, but it’s recog-
nizable, unlike in the organization depicted in figure 9.1. Figure 9.3 describes the two
uses of centralized logging.

 The primary telemetry store for our doctors’ office is the one provided by its practice
management software, which manages the repository of private health information.

Dr. Chrono
practice management

software

Office
365

Xero
Accounting

All-in-one healthcare management

Treatment 
laptop

Front-desk 
laptop

Back-office 
laptop

Enforced secure 
settings

Figure 9.2 The production environment of an 11-person small-town doctors’ office, which 
uses SaaS applications for everything. We see three SaaS products in use, but unlike in figure 
9.1, computers are managed centrally. The practice management software provides all 
healthcare-related needs in a single product, including all telemetry needs. Office 365 is used 
to enforce settings that protect health-information privacy on all laptops used in this office.
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Telemetry use in an organization of this size, when it happens at all, often happens inside
all-in-one products such as the one we see here. Centralization happens because
organizations of this size rarely have the need or skill to design and build a centralized
logging system that pulls feeds from multiple SaaS products. (There are always
exceptions, though.)

 The last thing I need to mention about organizations of this size is that they’re the
most responsive to changes in the industry. Small organizations of this type may have
been around for 50 years, but they use SaaS products because there isn’t enough iner-
tia to keep maintaining servers in the copier room. You’ll run into servers like those
from time to time, but they’re almost always old and running equally old software.

9.2 Telemetry use in medium-size organizations
Medium-size organizations are those that range between about 30 and 500 employees.
(This definition doesn’t overlap with the definition of small organizations; these
boundaries are squishy.) Organizations of this size face complications that smaller
organizations rarely face, which affects how they use telemetry. We’ll cover these com-
plications in this section. Medium-size architectures have a few drivers of change com-
pared with small architectures:

 The presence of professional IT—Enough people are having problems with their
computers now that a specific person or a department to solve problems
becomes a core business need. (Goodbye, Brent.) This need radically changes
how endpoint management is done and drives telemetry adoption and maturity.

 The presence of human resources—An organization of fewer than 30 people can avoid
having professional human resources department, but the more people you have,
the harder the problems of benefits management and managing people become.
Human resources complicates the number of business systems in use, as dedi-
cated Human Resources Information Systems (HRIS) start showing up.
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Figure 9.3 Uses of centralized logging in 
our small-town doctors’ office. Office 365 
and the practice management software do 
internal reporting of events. This use isn’t 
truly centralized, but it represents the first 
consistent use of telemetry techniques for 
software-consuming organizations.
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 Changing business rules—Laws vary by country, but there is often a threshold of
employee count at which businesses start getting treated differently by regula-
tions and laws. In some countries, if you have fewer than a certain number of
employees, you don’t have to offer health insurance, for example.

Software-consuming organizations of this size have several attributes that affect their
use of telemetry techniques:

 Professional IT is managing endpoints, which opens the door to centralized
logging and SIEM systems.

 SaaS application use is still the primary means of getting things done.
 Specialist-installed software is still avoided wherever possible, but the presence

of professional IT makes this challenge less severe.
 Software development, if present, is likely limited to support scripting built by

professional IT.
 Managed servers appear at this level. There are few of these servers, they are

run in the cloud if possible, and they support endpoint management and other
systems managed by professional IT.

The small organization had software-focused telemetry buried inside all its business
telemetry, but here, we have the chance of seeing systems that are more like those I
spent all of part 1 explaining. Professional IT really makes a difference! Figure 9.4
gives us a view of the production systems that contribute to telemetry systems.

 All the endpoint management systems shown in figure 9.4 focus on the employee’s
computer, and every component in the system reports log data to the Sumo Logic
cloud. This system is the kind of software telemetry system we looked at in part 1, one

Azure
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policy and config

Office 365
office software

Sumo Logic
cloud

Employee
computer

Production flows
Telemetry flowsSecurity events

Endpoint events

Policy events
Access
events

Endpoint management and centralized logging

Figure 9.4 Production systems that contribute to telemetry for our medium-size software-
consuming organization. The endpoint (employee computer) management framework is 
quite comprehensive versus that of the small organization. Professional IT also introduces 
centralized logging in the form of the Sumo Logic Cloud SaaS product, which centralizes 
logs from Azure Active Directory (login, logout, and other security details), Microsoft Intune 
(policy enforcement actions), Office 365 (use of documents), and the employee’s computer 
itself. Software professionals (IT) introduce telemetry in a real way.
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that came in with the professional IT department. At first, centralized logging remains
the domain of the IT department and endpoint management, but having a single
place to trace who did what is a capability that managers across the company will real-
ize has great power. After IT has made some demonstrations, it won’t be long until
many more SaaS systems are wired in (figure 9.5).

Telemetry systems like the one depicted in figure 9.5 are quite unlike the software-
development driven telemetry systems we looked at in chapter 8, which examined
telemetry use in a growing startup company. Our medium-size software-consuming
company has centralized the feeds provided by many SaaS vendors to provide managers
the support they need to make decisions and make investigations. This telemetry system
is all about business operations, and much software is involved in this architecture. 
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Figure 9.5 The medium-size 
organization has configured each 
of its SaaS products to send telemetry 
to the Sumo Logic cloud as part of 
a centralized logging system. This 
centralized logging system is used 
by both professional IT and business 
operations, extending well beyond the 
endpoint management system shown 
in figure 9.4. This system is a true 
centralized logging system.

Business operations and professional IT matter for startups, too
It should be obvious by now that this chapter focuses our telemetry story on the
business operations part of the organization. As you read this chapter, think about
how the business operations side of the organization worked in the startup-style
organizations examined in chapter 8. The software engineers in a software-creating
company are the rock stars, the talent that makes the business do what it needs to
do, and they earn a lot of attention.

But business operations matters in medium-size, large, and enterprise-size startup-
style companies too. The professional IT departments that maintain them may not
ever talk to the software engineering department or its managers, but IT has as many
telemetry needs as software engineering does. In a software-producing organization,
the chance that professional IT includes significant internal software development is
higher than in purely software-consuming organizations, but whether that internal
development is permitted to use the same telemetry systems as software engineering
is determined by the culture of the organization.
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9.3 Telemetry use in large organizations
Large organizations start at about 500 employees and become hard to separate from
enterprise-size organizations. For our purposes, large organizations focus on a single
large office or region, whereas enterprise-size organizations have offices in multiple
regions, if not multiple countries. To split hairs even further, this section covers large
organizations that began life after 1981 (the year when the IBM PC was released,
launching the Intel revolution in offices worldwide). Section 10.2 covers large organi-
zations that began before 1981.

 Organizations of this size rarely grow up overnight all by themselves, so we’re look-
ing at an organization that likely was at least medium-size in the 2000–10 era. This era
came before the SaaS explosion, so companies of this size most often ran servers
somewhere to support business operations. These companies probably run fewer of
those servers now than they did in previous decades, as tasks that used to require
server-installed software (such as email) moved into the cloud and SaaS, but the orga-
nizational history still exists. The big drivers of change in a large organization are

 The company has experience managing servers and likely still has facilities for hosting
them. If not, the company is operating in a public cloud after a “lift and shift”
operation to bring all its physical servers into a public cloud like AWS or Azure
and still maintain its server-operating fluency.

 Professional IT is long established. The company has history with professional IT,
and chances are good that some employees are 20-year veterans. That kind of
organizational history is both a blessing (deep organizational context) and a
curse (it worked 10 years ago; it’ll keep working now).

 The servers were on-premises before they were in the cloud. Having server management
in the organizational history has a lot of subtle effects, the most important one
being an unshakable assumption that every endpoint touches the internal
network—something that COVID-19 taught the world is definitely not the case.
Expect to see a lot of virtual private network (VPN) requirements in organ-
izations of this type.

 It has a lot more devices that need management. Larger employee counts mean more
endpoints to manage. But not just that, more diversity in those endpoints such
as Apple and Google hardware in addition to the computers running Windows.

Age and presence in the pre-SaaS era have a lot of effects, as we’ll find out. When it
comes to telemetry use, here are the major organizational attributes that drive teleme-
try use by this large company:

If it helps, think of each company described in this chapter as the telemetry story of
the nonengineering part of a startup-style business. Large and enterprise-size
startup-style businesses still need to worry about payroll processing, expense man-
agement, and HRIS.
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 The company has been managing servers for decades at this point, so it has a
monitoring system (also known as a metrics system, but probably not called
that).

 Managing servers for decades means that the company already has some skill in
centralized logging.

 Age and size mean that the company has faced its share of security incidents, so
it has a security team and a SIEM system.

 The company deployed Microsoft Active Directory (AD) in the early 2000s and
has spent the past decade tying SaaS services to AD authentication by way of
Security Assertion Markup Language (SAML) integrations.

 Development of internal software is common at this size of company, so we will
see software-development style telemetry for the first time.

The large organization has a mature IT organization that’s used to managing servers
and the telemetry systems that go with them, and is doing internal software develop-
ment with those telemetry requirements. Whether those two telemetry systems are
unified depends on the culture of the technical organization. If the systems aren’t uni-
fied, you end up with telemetry systems that look like figure 7.5, reproduced here as
figure 9.6.

Large software-consuming organizations are far more likely not to have gone through
the DevOps transformation than their software-producing counterparts, making them
much more likely to have strong to insurmountable barriers between telemetry sys-
tems maintained by software development (Dev) and professional IT (Ops). First, we
will look at the professional IT telemetry system, followed by the software develop-
ment telemetry system. Then we’ll talk about how a unified environment would look.

 Figure 9.7 shows a fairly traditional telemetry ecosystem for the kinds of in-house
machine rooms operated in the 2000–10 era (I spent the entire decade with systems like
these), brought forward to the 2020s. We see that centralized logging is in use, focusing
on Splunk software installed locally and Splunk’s Syslog integration for everything else.
We see a monitoring system in use (also known as a metrics system to developers) built
on the SolarWinds monitoring product. Although Emitting-stage components are not

Our telemetry stuff

Telemetry for 
that team we 
have to work with 

Telemetry for the team whose 
stuff runs on our stuff (but we 
never talk to them)  

IT SecurityDevelopment

Figure 9.6 An uncharitable look at telemetry systems for a large organization with a culture of 
strong separation between IT and development teams. Our professional IT team is the middle 
panel; the software development team the left panel; and security is the right panel. This 
example is a viable way to do telemetry, but it leads to significant duplication of effort.
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in the figure for space reasons, the Shipping and Presentation stages are marked. This
ecosystem gives the overall organization quite a lot of value:

 Due to the use of SAML for all of the SaaS products, the access logs coming
from AD provide broad-level access tracing for the entire production system.

 With full AD and Splunk forwarders installed on employee computers, the
organization has high-resolution tracing data for what happens on employee
computers.

 Faults in server hardware are centralized, allowing correlation with other events
to discover fault chains and speed root-cause analysis.

 Server metrics are centralized, allowing correlation between resource use and
loads running on hardware.

This kind of full-resolution telemetry is common in organizations that have a high
level of maturity in server and data center operations. Next, we need to look at the
telemetry systems used by the in-house software development team, which is charged
with writing software to speed the business but will always be run by internal teams.
This software can be used by customers or other people who interact with the com-
pany, such as in vendor management portals or building-permit filing systems (in the
case of a county clerk’s office). Most company web pages qualify as internally devel-
oped software and are often the biggest developed pieces of software a company has.
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Figure 9.7 The telemetry ecosystem of our professional IT department for the large software-
consuming organization. This figure shows two telemetry styles in use: centralized logging and 
metrics. Centralized logging centralizes events from both the employee computer fleet and the 
servers the department is managing.
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Although this internal software development team could look like the medium-size
startup in section 8.2, with exclusive use of public cloud and SaaS products, our inter-
nal team is working with an IT department that knows how to run things on servers.
So for variety, figure 9.8 demonstrates how an internal development team can use
telemetry that isn’t exclusively SaaS-based.

We see the three Pillars of Observability (logs, metrics, and traces) hooked into the
production software. First is centralized logging, which uses the same Splunk-based
flow as the IT systems and even uses the same storage and presentation systems. The
flow of telemetry for logging is

1 Logging telemetry is emitted from an emitter function in the production code
into a file. (See section 2.1.1 for this pattern.)

2 The Splunk forwarder ingests log lines from the file. (See section 4.1.1 for this
pattern.)

SolarWinds? Didn’t they get mega-hacked?
Yes, indeed, SolarWinds (specifically, SolarWinds Orion) was the target of a highly
publicized nation-state attack. Why am I including it in examples? SolarWinds defi-
nitely lost a lot of business as a result of the intrusion, but it did not disappear. Its
network monitoring platform is a dominant player in the market, and an organization
like that doesn’t get toppled easily. You will see SolarWinds products in telemetry
stacks for years to come. What doesn’t kill you (or put you out of business) makes
you stronger.
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Figure 9.8 Telemetry system for our internal development team in a large software-
consuming company. Unlike the architecture in the startup example, this architecture 
uses internally managed serving facilities to host the production system. Logging, 
metrics, and tracing are used here, but only tracing uses a SaaS provider; logging uses 
the existing Splunk logging pipeline, and metrics is managed internally.
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3 The Splunk forwarder ships the ingested log lines to the internally running
Splunk Logging server.

4 Splunk reporting uses storage in the logging system to provide a Presentation
stage for centralized logging.

The tracing pipeline’s steps are shorter because it uses a SaaS API:

5 Tracing telemetry is emitted directly from the Honeycomb SDK integrated into
the production software and sends telemetry to the Honeycomb API SaaS end-
point.

6 Tracing telemetry is searched from the Honeycomb dashboard to provide a Pre-
sentation stage for tracing.

Metrics telemetry is hosted on internally managed software similar to Splunk, but
instead, the software is open source. This metrics system is only for software develop-
ment, not for IT. Even though it is internally hosted, the number of steps matches the
SaaS pipeline used for tracing:

7 Metrics telemetry is emitted directly from metrics functions in the production
software, an example of an emitter/shipper function (see section 3.1.1 for this
pattern), shipping directly into the InfluxDB open source time-series database.

8 The presentation system for metrics telemetry is the Grafana open source dash-
boarding system.

We have two groups that share one telemetry system (centralized logging) but noth-
ing else. How could these two groups improve their telemetry system sharing? The
most obvious point is finding a way to get the current split between SolarWinds (mon-
itoring system for the IT department) and InfluxDB/Grafana (metrics system for soft-
ware development) unified into something new. Although software development is
using the metrics system extensively, IT management, always on the lookout to cut
costs, asks a key question: “Can InfluxDB and Grafana cut down on our annual licens-
ing renewal for SolarWinds?” IT points out that SolarWinds and InfluxDB/Grafana
use separate methods for gathering metrics:

 Pull-based metrics—SolarWinds maintains a list of everything it is tracking and
polls the list on a schedule. The SolarWinds polling engine needs to be told
explicitly what to look for, where to look for it, and how often to look for it.

 Push-based metrics—InfluxDB/Grafana has no awareness of what it is tracking;
instead, it relies on systems to send metrics directly into InfluxDB. This style
relies on the systems generating metrics to know where to send them.

Although the production software has been written to push (ship) metrics into
InfluxDB, the Windows and UNIX operating systems managed by IT don’t have that
capability yet. After doing research, IT discovers the Telegraf series of agents offered by
InfluxData, which provides installable software that knows how to extract system-level
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metrics from operating systems, databases, caches, and other components of infrastruc-
ture and send those collected metrics to InfluxDB. These agents aren’t as convenient to
use as the ones produced by SolarWinds—free open source generally costs more
time—but the cost in money is hard to argue with. Figure 9.9 demonstrates one way to
get system metrics out of Windows and into InfluxDB.

Figure 9.9 shows a three-step process for moving Windows system metrics into
InfluxDB:

1 On a schedule (every 10 seconds by default, but this setting is configurable),
poll Windows Performance Counters for metrics.

2 Receive metrics from the perf subsystem.
3 Repackage and ship metrics to InfluxDB.

Ultimately, our company determines that Telegraf/InfluxDB/Grafana is not a com-
plete replacement for its existing system, but it does provide some cost benefits versus
SolarWinds. SolarWinds is kept for network operations—the network engineers aren’t
willing to give up all those nice features just to save money—but the role of Solar-
Winds in application and system monitoring is significantly scaled back. Then profes-
sional IT takes over management of the InfluxDB system, which results in a lot of
high-availability engineering work to make InfluxDB and Grafana reliable enough to
bet the company on. The result is that software development and professional IT are
using the same telemetry components for centralized logging and (most) metrics.

 Figure 9.10 shows the unified telemetry system our large software-consuming orga-
nization built as part of the metrics/monitoring unification effort. We see that the net-
work teams continue to use SolarWinds because that platform suited the company’s
needs better than the savings would justify, a political decision made by the people in
the company. If you face this choice, you may decide differently, which is fine. The
software developed by the internal software development team remains the only sys-
tem using tracing, which is not surprising because tracing (at least in its early-2020s
form) is a software-only concept.
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Figure 9.9 Using Telegraf agents to fetch 
system metrics from Windows servers and 
send the metrics to InfluxDB. IT configures 
the Telegraf agent to poll metrics on a 
schedule and push metrics into InfluxDB, 
which provides push-based metrics support 
for a system (Windows, in this case) that 
assumes a poll-based metrics approach.
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9.4 Telemetry use in enterprise organizations
Enterprise organizations are the largest, most sprawling of the software-consuming
organizations we’re looking at in this chapter. These organizations have major pres-
ences in multiple regions, maybe having big offices in Chicago and Atlanta, or operate
internationally. The organizations in this section are different from the ones described
in section 10.3 in that they came to computers after 1981, the year the IBM PC was
released.

 Like the large organizations in section 9.3, companies don’t get to this size over-
night, so we’re looking at organizations that automated their business operations in
the late 1980s to early 2000s. Automating during this time made these companies ones
that grew to enterprise size while operating servers in employee break rooms, copier
closets, machine rooms, and small data centers. Unlike the large organizations in sec-
tion 9.3, these organizations did all those things while handling business operations
(and computing) in diverse regions. The big drivers of change between large and
enterprise-size organizations are

Splunk
logging

SolarWinds
collection

engine

Splunk
storage

Splunk
forwarder
(laptops)
Splunk

forwarder
(servers)

UNIX
servers

Active
Directory

Production
systems

Network
hardware

Shipping
stage

Splunk format
Syslog format
SolarWinds polling

SolarWinds
storage

Splunk
reporting

SolarWinds
dashboard

Presentation
stage

Metrics
Monitoring

Centralized
logging 

Production
software

InfluxDB format

InfluxDB
API

Grafana
dashboard

Honeycomb
API

Honeycomb
dashboard

Tracing

HTTP post

InfluxDB
storage

Telegraf
agent

Figure 9.10 The unified telemetry ecosystem for our large software-consuming organization. Soft-
ware development manages the production software box and is the sole emitter to the Honeycomb 
API. Network Hardware remains on SolarWinds, a political decision made by this organization during 
the metrics/monitoring unification efforts. Unlike the systems used by the startup-style companies 
in chapter 8, this telemetry system involves hardware at a much earlier stage.
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 An enterprise-size company is used to operating with wide-area networks (WANs).
Because the business is multiregional, so is its approach to computing. It’s likely
to have been handling multiregion operations back when WAN links were
expensive and slow, and brought those approaches forward.

 Multiregional means multicultural. Different regions, even different regions in a
large country like the United States, have different cultures. This organization
has come to terms with regional holidays, differing standards of vacation time,
and different labor markets.

 It’s used to operating under different labor laws. Being multiregional, and especially
international, means that this organization has to operate under different labor
laws all within the same organization. Being international means accommodat-
ing different state holidays and still continuing operations.

 It uses at least some public cloud for operations. The company’s history is in running
computers, and it definitely has those skills. But the benefits of public cloud are
obvious enough that the company has made some headway moving into it.

 It’s developing large amounts of software for internal use. A company doesn’t get to
this size without having some need to create bespoke solutions. Software com-
plexity certainly can rival the complexity we examined in the enterprise-size
software producing organization in section 8.4, if not quite to the same horizon-
tal scale.

The first three points of this list add up to one of the major cultural differences
between enterprise companies and the others: internal divisions are far more appar-
ent, leading to islands of software telemetry built in ignorance of (or in objection to;
never underestimate the driver of innovation known as spite) other systems in the
organization. Public cloud, the fourth point, makes these islands of telemetry far eas-
ier to bring about than they were back when you needed to put servers in your copier
room or a spare cubicle. These telemetry islands look a lot like the medium-size (sec-
tion 8.2) and large (section 8.3) telemetry systems we examined in chapter 8.

 Figure 9.11 depicts a worst-case scenario for a global enterprise organization, show-
ing 12 telemetry islands that share little, if anything—three for Office IT based on
regions and nine for different business functions. This legacy of separation also means
that the organization may manage far more diverse technology internally as a result of
the same problem getting solved many ways by many people. Organizations this size
are often lots of smaller organizations in a trenchcoat; they look like one big organiza-
tion but are in truth a bunch of smaller organizations that work closely together. Some
of the diversity this organization can experience includes

 Maybe the website engineering department follows modern software develop-
ment practices drawn from Bay Area companies, where warehouse operations
continues to use IBM AIX-based terminal systems because that’s what it started
using in the 1990s and hasn’t bothered to get off them.
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 Maybe office IT (Americas) is managing an employee computer fleet that is 70%
Apple computers, but office IT (Europe/Middle East/Africa) is 100% Windows.

 Maybe business intelligence and website engineering operate large databases doing
heavy transactional loads but share zero infrastructure or administrative support.

Many organizations come to realize that they’re split into pieces and decide to attempt
to unify things, or at least provide some standards to prevent further fragmentation. In
this section, we will examine that environment: a set of prebuilt telemetry services
offered by the organization to allow software developers to add telemetry fast, and
nudge them to use centralized services rather than reinventing the telemetry wheel.

 We’ll call this effort the Paved Roads Project, giving software developers easy-to-
access paved roads to hook into telemetry in an effort to keep them from building
new roads from scratch. Developers like easy; it lets them focus on what they want to
be doing. We already know which roads we need to pave:

 Centralized logging for applications—Provide an emissions standard for applica-
tions that can emit directly, provide wrapper-format standards for applications
that have to emit indirectly (such as those that have to emit through Syslog),
and provide easy-to-access ingestion points and an interface to get at them.

 Centralized logging for systems—Physical data centers are easier to control, so pro-
vide hardware standards and configuration runbooks to ensure that hardware is
emitting where it should. For operating systems, which can run on hardware or
public clouds, provide software and endpoints to send events. Wire public
cloud telemetry into these systems as well.

 Metrics for applications and systems—Provide an emissions standard for applica-
tions that can emit directly and wrapper formats for those that can emit only
indirectly. Also provide agents for operating systems and a dashboarding system
to chart metrics, as well as alert functionality to enable the metrics system to
work as a monitoring system.

 Tracing for applications—Operating systems and hardware don’t need these fea-
tures, so these features are only for developed software. The best path here
requires creating and deploying libraries for every supported programming lan-
guage in the organization (which is probably too many)—a lot of work, but it
pays off in the long run.
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Figure 9.11 An example of telemetry 
islands in an enterprise-size software-
consuming organization. This example 
is a severe case of isolation, but most 
enterprise-size software-consuming 
companies have islands of some kind.
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Much of this work focuses on building Shipping- and Presentation-stage components
that can handle a wide variety of telemetry coming from the production systems.
Emitting-stage components are, for the most part, not under the control of the
department that builds the unified telemetry offering. Our telemetry operators need to
provide easy-to-use building blocks and hope that people use them. (Please use them.)
So long as developers building software decide to use these building blocks, they will get
a high level of telemetry maturity for a low cost of effort. Unlike the software-producing
enterprise organization from section 8.4, this organization isn’t worried about
replicating telemetry into multiple regions, so it keeps telemetry inside regions.

 Figure 9.12 shows what a paved road looks like in the abstract. The Shipping- and
Presentation-stage systems are managed centrally and sized to accommodate the scale
of handling everything. The Emitting stage is where the politics happens; because we
need to provide encouragement to software development groups to use our systems,
we need those SDKs and libraries to be mature. Not all production systems can use
SDKs or libraries; hardware and operating systems have their own emitting formats
that aren’t flexible. For these inflexible emitters, we need proxies, such as Syslog serv-
ers, that can accept telemetry in the format our inflexible emitters can emit and then
translate the telemetry into our Shipping-stage format (section 4.2). For flexibility, we
use a streaming system, in which a group of systems subscribes to stream topics to
enrich telemetry and injects it into storage. Finally, a reporting interface consumes
storage for people asking questions.

Let’s look at a real implementation, this time for metrics (figure 9.13).
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Figure 9.12 An abstract rendering of a paved road for telemetry. The Shipping and Presentation 
stages are centrally managed. Emitting-stage SDKs are provided to the creators of the production 
system. For production systems that are unable to talk directly to the stream, a format bridge system 
(or group of systems) is provided to proxy connections in a format the production system is able to 
use. This paved road accommodates both well-supported and partially-supported software, as well 
as hardware and operating system emitters that have fixed emission formats.
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Figure 9.13 shows the Paved Roads architecture for metrics telemetry in this organiza-
tion. Let’s walk through it:

1 Metrics is emitted by production systems.
a Hardware systems emit in their fixed formats.
b Operating systems have a metrics agent installed, and the agent emits in its

own format.
c Partially-supported software submits telemetry in a wrapped format, going to

Syslog.
d Well-supported software emits directly to the stream.

2 Fixed formatted telemetry is run through proxy systems to unwrap metrics.
a Cisco Prime is used to translate telemetry coming from the networking

infrastructure.
b Syslog is used for everything else that emits in a fixed format, including

partially-supported software.
3 Proxies and well-supported software emit into the stream on the raw_metrics

topic.
4 A group of metrics parsers subscribes to the raw_metrics topic and parses the

metrics format into its final form.
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Figure 9.13 The eight-stage metrics pipeline following the Paved Roads standard. Production 
systems emit in the formats they are capable of emitting in. This pipeline provides many ways to 
get metrics into a centralized system and should reduce the number of metrics telemetry islands in 
the organization.
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5 The metrics parsers submit finalized metrics to the store_metrics topic.
6 A group of metrics writers subscribes to the store_metrics topic and prepares

metrics for storage.
7 The metrics writers store metrics into metrics storage (which is OpenTSDB,

based on Hadoop).
8 The Enterprise Grafana system uses metrics storage to present metrics.

The metrics system here includes several features for scalability and use by many
departments:

 Streams buffer metrics so processing-rate problems won’t block metrics coming
from the production systems.

 The metrics-parser group of machines is horizontally scalable to handle bursts.
 Use of OpenTSDB (based on Hadoop) uses in-house experience with Hadoop

to provide horizontal scalability of the time-series database.
 Enrichment during the metrics-parser stage of the pipeline encodes attributes

used for multitenancy.
 The metrics writers use attributes created by the metrics parsers to write metrics

telemetry to different OpenTSDB databases to support multitenancy.
 Grafana is running with a paid subscription to enhance its multitenant support.

Multitenancy—the ability of a system to separate access to parts of the system based on
roles and groups (see chapter 7)—is a foundational feature of the Paved Roads Proj-
ect. Multitenancy is needed for political reasons, because not every department gets
along well with each other, making strong isolation between departmental data a firm
requirement. Once again, the “many smaller organizations in a trenchcoat” nature of
enterprise organizations affects telemetry design.

 Now let’s take a look at the Paved Roads architecture for tracing. Unlike metrics,
tracing is intended to support only software, so the need to support hardware and
operating systems is dropped. Complexity isn’t reduced all that much, though, as we
see in figure 9.14. The architecture is similar to the one for metrics, using separated
enrichment and writing stages to improve overall throughput.

 Because sections 9.1–9.3 spoke a lot about office IT style telemetry, it’s only fair
that we cover how office IT handles telemetry in an organization of this size. Every
organization does telemetry in a different way. If your global company isn’t doing it
this way, that’s fine. We saw this example for a medium-size organization in figure 9.4.
Figure 9.15 is more complex, because our enterprise-size organization is running
more than Windows on its employee computers and is running physical servers
instead of cloud servers in Azure.

 The Azure-only Microsoft Intune in the medium-size organization is replaced by
Microsoft Endpoint Manager (EM) in the enterprise-size organization because EM runs
on servers you manage. New to this chart is JAMF Pro, which is a highly featured
management framework for Apple OSX systems. In this enterprise-size organization,
Apple endpoints can be managed by either EM or JAMF Pro, depending on the
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Figure 9.14 The eight-stage pipeline for distributed tracing in our enterprise-size software-consuming 
organization. This architecture uses the Jaeger project to provide tracing functionality internally. Well-
supported software (which has a native Jaeger SDK) emits telemetry directly into the stream on the 
raw_metrics topic. Partially-supported software (which needs to wrap tracing data in another 
format) emits to Syslog, where the Syslog server will unwrap the tracing telemetry and send it into the 
raw_metrics stream. From there, the Jaeger collector transforms tracing data from the stream and 
submits it back to the stream on the store_tracing topic for the Jaeger ingester to insert into 
storage. Jaeger query is used to pull up traces. In the only example of reduced complexity from the 
metrics version, this system accepts inputs from fewer systems.
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Figure 9.15 Centralized logging telemetry for endpoints in our enterprise-size software-consuming 
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preferences of the local office IT department. This system is still a Paved Roads system
because management flexibility is built-in.

 The high degree of diversity inside a software-consuming organization of this size
makes it quite a different thing from the software-producing organization we looked at
in section 8.4. Telemetry systems are more of a marketed service than in the software-
producing organization, whereas in the other organization, telemetry is driven by the
needs of the software being produced. Both organizations value software engineer
speed, though their approaches are different.

Summary
 Business operations dominate telemetry growth in small and medium-size

organizations; software development becomes a factor only in large and
enterprise-size organizations.

 Small software-consuming organizations try to use SaaS products exclusively
wherever possible, to avoid having to manage software.

 Small organizations avoid having to install software wherever possible, or on
only a few computers.

 Small organizations often don’t bother managing employee computers (end-
points), letting each person do their own thing so long as they have a browser
that works with the SaaS products.

 Small organizations working in certain industries, such as healthcare, often
have external requirements that force them to care about telemetry, such as the
ability to produce audit logs of health-record accesses.

 Small organizations are the most responsive to changes in the industry. The
SaaS revolution benefited them the most of all the organizations in this chapter.

 Medium organizations are big enough to need someone to answer “Why is my
computer broken?” questions, which is why they have professional IT groups.

 Professional IT groups in medium-size organizations often introduce the first
recognizable telemetry system: centralized logging, generally of endpoint
events.

 Medium-size organizations try to use SaaS software wherever possible, but pro-
fessional IT reduces the pain if using installed software is unavoidable.

 Endpoint management in the medium-size organization is likely driven by
cloud options (Azure and Office 365 for Windows-dominated organizations,
JAMF for Apple-dominated ones), all to avoid having to manage servers.

 Unlike small and medium-size organizations, large organizations managed serv-
ers before the SaaS revolution and likely still manage them somewhere. This
experience gives them far more comfort with server-based solutions than
medium-size organizations have.

 Large organizations commonly produce software internally, unlike small and
medium-size organizations.
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 Large organizations have more endpoints, but also more endpoint diversity;
Apple and Google hardware often joins the Windows endpoints, which compli-
cates endpoint management.

 Large organizations are the first to have a security team and a SIEM system.
Smaller organizations would have them only if outside forces such as regulation
required them to do so.

 Office IT and software development don’t always share telemetry systems in
large organizations because the software telemetry system often grows up inde-
pendently of the one used by office IT, leading to duplicated efforts.

 Enterprise software-consuming organizations are the largest organizations and
have a major presence in multiple regions, if not multiple countries.

 Enterprise-size organizations are used to doing computing across wide areas
because they did so back when networking was slow.

 Enterprise-size organizations are unavoidably multicultural in the sense of dif-
fering regional traditions, holidays, and labor laws. These cultural differences
increase the sense of separation from other parts of the organization, which
affects the level of cross-organization coordination that happens.

 Enterprise-size organizations are developing large amounts of software for inter-
nal use, so have full software engineering teams and their telemetry systems.

 Being large and with a history of separation between departments makes for far
more internal diversity of technology than in the software-producing organiza-
tion of the same size in section 8.4.

 Enterprise-size organizations are often a bunch of smaller organizations in an
enterprise-size trenchcoat, which makes centralized telemetry standards harder
to bring about.

 Building a centralized set of telemetry systems in an enterprise-size organiza-
tion requires building a system that can compete with SaaS-based systems in
terms of ease of use, nudging software developers to use the central systems
when they can.

 Multitenancy is a core feature of any centralized telemetry system in a software-
consuming enterprise organization because it allows the separation between
departments that builds trust in the overall system.
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Long-established
 business IT

In this chapter, we cover a slightly different type of organization: one that started
operating in the paper-and-ink era and later computerized before the IBM PC revo-
lution. Organization in this case can mean governments, and some governments
have been operating for centuries. Some companies in Europe have founding
dates in the 1600s, which long predates the typewriter, much less any electronic
computing devices. Computerizing your business operations in an era where the
organization had a single computer, which occupied a whole room and required a
crew of eight to operate, leaves an indelible mark on an organization’s approach to
technology. Where you get changes in computerization, you get changes in
approaches to telemetry.

This chapter covers
 Telemetry use in organizations that started 

with paper and ink

 How adopting modern telemetry systems works 
in mature organizations

 The role of mainframes in modern infrastructures
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NOTE All the part 2 chapters are written to tell telemetry stories using the
techniques from part 1, intending to provide more concrete examples of inte-
grated telemetry systems. If you feel you need more real-world examples to
understand how these systems work, these are your chapters. If you feel you
already have a good grasp of the concepts, skipping these chapters and mov-
ing to part 3 is fine.

Unlike in chapters 8 and 9, we won’t be looking at a small version of this organization
type. As mentioned in chapter 9, small organizations are the most responsive to
changes in computerization because they have the least organizational inertia to over-
come when adopting changes. A 30-person firm that incorporated in France in 1951
likely didn’t bother computerizing until the 1980s anyway, which would make it more
of a fit for section 9.1. A small firm that adopted a few computers in the mid-1970s
likely did away with them in favor of much-cheaper-to-operate Intel-based computers
during the rise in office automation in the late 1980s and 1990s.

 The 1960s and 1970s were a career ago now in the industry, so the memory of what
computing in that era was like is beginning to fade. It certainly predates me, but I
spent the first seven years of my career around people who grew up then. These are
the attributes of computing Back When:

 Every organization that had a computer or three operated a machine room to
keep it in, with special cooling, power, and likely plumbing. (Several computer
systems of the era were water-cooled.)

 It was the era before TCP/IP, so talking to the computer required a lot of serial
connections (specifically, the RS-232 standard).

 Computers operated in batch mode, which required computer operators to
mount and dismount tapes to load data and store results, as well as make sure
the batch jobs executed on time and without problems.

 Some computers could switch between online and batch mode. Online mode
was used during the day when the system had to handle lots of transactions,
such as those from a room full of data-entry clerks typing in yesterday’s parking
tickets. Batch mode was used for running reports. This mode switch was sched-
uled, and you couldn’t do both at the same time.

 Computer operators also worked the night shift, because that’s when most
batch jobs ran. Your Cron daemon was named Kathy, and you saw her some
mornings if you got in early.

 Computer operators kept the computer fed with tapes (for loading programs,
reading input, and recording output from programs). Kathy, the night opera-
tor, was also your auxiliary I/O controller.

 System programmers wrote batch jobs that computer operators ran, and com-
puter operators often had a list of system programmers to call on the phone if
anything went wrong. Kathy, the night operator, was also your alerting system.
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 System programmers also provided documentation about what kind of output
to expect from each job. Kathy, the night operator, was also your monitoring
system.

 Systems analysts managed system programmers and kept track of how the batch
jobs interacted. The systems analyst likely met Kathy, the night operator, a few
times but otherwise didn’t know her.

It turns out that no one likes working the overnight shift, so the computing industry
has spent every year since the .com boom took off trying to put Kathy, the night oper-
ator, out of a job and has mostly succeeded. We now automate our batch jobs, track
their telemetry, and automate callouts should something go wrong, and the system
programmer EDP analyst developer software engineer who wrote the code can look
up job output themselves without bothering anyone else. It’s a nice world now, and
almost no one has to work overnight anymore.

 Except in the organizations that computerized back when, the ghost of Kathy and
the world she worked in remains in everything they do (including job titles like senior
systems analyst III). Although Kathy may now be a director of IT on the edge of
retirement, exorcising the ghost of Kathy, the night operator, requires a deliberate lift-
and-shift operation to destroy the past and rebuild on a new platform. Many
organizations did this in the 1990s and 2000s and got rid of their mainframes,
minicomputers, and batch systems to build new ones on Solaris, AIX, or even Windows.
Or they waited until the early 2010s and lifted and shifted to the early public cloud
offerings, like AWS. But the legacy computing operational patterns remain, which we
will see in the next three sections. That said, all these organizations have been writing
software for internal use for more than 40 years. This chapter walks through the stories
of three different sizes of organization:

 Section 10.1 talks about telemetry use in medium-size organizations.
 Section 10.2 talks about telemetry use in national organizations.
 Section 10.3 talks about telemetry use in global organizations.

10.1 Telemetry use in medium-size organizations
For the purposes of this section, medium organizations are similar to the ones
described in section 9.2 except that they start closer to 150 people instead of 50 and
run to about 500. Of the three sizes of organizations in this chapter, the medium-size
organization is the one most likely to have forgotten its past and moved on. Organiza-
tions that have forgotten look like the organizations from section 9.2; those that
haven’t quite done so are what we talk about in this section. Organizations that con-
tinue the mainframe pattern have the resources of a medium-size organization, so
they are less able to keep up with the latest trends in mainframe-style computing.
When you look at the larger organizations in sections 10.2 and 10.3, you will see how
constrained operating mainframes can feel at this size of organization.
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 Unlike the medium-size software-consuming organizations in section 9.2, these
legacy computing organizations definitely still have software development going on
inside them. For that reason, our examination of the use of software telemetry will
focus on two big use cases:

 Telemetry use in office IT
 Telemetry use in production systems

Our example organization is the unemployment insurance office of a U.S. state. This
government agency is responsible for managing income from paycheck unemploy-
ment premiums and payments to the unemployed. Like all U.S. social support sys-
tems, it has complex and ever-changing rules regarding who gets what, when they get
it, what people need to do to get it, how often they get it, and under which conditions
they can be denied benefits ever again. The COVID-19 recession of 2020–21 forced
more changes as certain rules were suddenly relaxed and benefits were increased
(until they weren’t). Any unemployment insurance system needs to respond rapidly to
changing legislation, which requires programmers and a software distribution system.

 Benefits systems such as this one computerized early due to the sheer scale of the
problem and the need to do accounting of a statewide money disbursement system in
a reasonable time. Early batch-mode computers were a good fit, so many U.S. states
adopted mainframes and minicomputers (smaller than mainframes, bigger than toy
computers) to automate their benefits management systems. The time being the
1970s, benefits applications were done on paper and keypunched (by data-entry
clerks) into the computer, and benefits were batched to check printers and mailed or
held at will-call windows. In the 2020s, paper applications have been replaced by web
portals, and paper checks have (for the most part) been replaced by electronic funds
transfers or reloadable debit cards. In many cases, the mainframe/minicomputer
model is still being used today rather than moving to clusters of autoscaling microser-
vices and horizontally scaling, sharded databases. That said, both computing styles
faced different scaling problems when 20% of the workforce suddenly became unem-
ployed due to a pandemic and the corresponding 7× increase in benefits workload.

10.1.1 Telemetry use in office IT
This section discusses the use of software telemetry in our hypothetical unemploy-
ment insurance agency for a U.S. state, which is subject to the IT guidelines of the
state government. Such guidelines tend to be liberal due to the diverse nature of gov-
ernment agencies. Our unemployment insurance agency has office operations like
those of any other organization, including both software development and what in
other organizations would be called customer service representatives. We will be look-
ing at how this organization manages its office operation automation. This organiza-
tion differs from the one we examined in section 9.2 in several ways:

 It’s developing software and using mature, reliable technology to do it.
 It has had computers in the office directly on desks, or indirectly in the form of

serial terminals to the computer in the data center, since the 1970s.
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 It’s continuing to manage servers.
 It’s quite willing to install specialist software on employees’ machines and has

been doing so for 30-plus years.
 It’s a government employer, so employees tend to stick around for a long time.
 It’s had in-house human resources, accounting, and other business processes

since long, long before the SaaS revolution, so it uses much less SaaS than other
organizations of its size. (It’s hard to give up a bespoke system that does exactly
what you need it to for a system that does most of what you need and requires
you to change how you do things for the rest.)

 Their workforce is not at all mobile, and any remote access is done through
VPN.

This workforce looks like organizations in the 1995–2010 era: server-focused, using
Microsoft file servers for sharing documents, centralized login for employee Windows
desktop machines, grudging adoption of laptops and mobile devices, and the all-seeing
eye of the employer surveillance panopticon.

 Figure 10.1 shows the office IT telemetry ecosystem. This figure looks somewhat like
figure 9.15 (an enterprise-size software-consuming organization), but it depicts a
medium-size organization. Our unemployment insurance department has been
running servers for decades, so when new telemetry needs emerged, it reached first for
the infrastructure it already had: servers. There is one odd similarity to the enterprise-
size organizations self-hosting their centralized logging system; the larger organization
wrote its own software for this role, but the medium-size organization is using off-the-
shelf software (Splunk) installed on its own servers. Even so, we see some differences
between that larger organization and this one:

 The presence of SharePoint and file serving, which are two different ways to
save and share files when not using a cloud service. There are likely two and a
half decades of files in these servers that don’t exist in the Office 365 storage.

 A new telemetry system used for tracking employee web browsing, which
requires installing an agent on employee endpoints and provides a dedicated
reporting interface for use by managers.

 No Apple hardware. This unemployment insurance department clearly wants
extensive control of employee endpoints. Smaller organizations that desire as
much control over endpoints rarely have the organizational bandwidth to sup-
port more than one operating system. If support for Apple hardware exists at
all, it is half-baked and for special trusted employees such as executives.

As we’ve seen with all the office IT telemetry systems, this organization’s telemetry
focuses most on centralized logging systems. The reporting systems can also derive
metrics-like charts from logging data, but that still isn’t metrics the way we talked about
through all of part 1; that’s centralized logging standing in for metrics which it can do,
if not nearly as good. How does this centralized logging focus translate to the software-
development side of the house? 
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Figure 10.1 Our office IT telemetry ecosystem for our medium-size legacy computing organization. 
This IT ecosystem collects event-log telemetry from all Windows systems (servers and employee 
endpoints) and uses Endpoint Manager for pushing configuration and policy. Employee surveillance 
is new in this organization, which stores web-browsing telemetry for review in a reporting interface 
in the Presentation stage. Such detailed and SaaS-free telemetry is a result of this organization’s 
decades-long history of running servers internally.

My experience with a medium-size organization
My first job out of college was with a city government. Although I was hired to help
with desktop support for a Windows-based office (with NetWare file servers), the sys-
tem driving payroll and human resources was a minicomputer. This minicomputer
was made by Pr1me Systems (anyone born after 1970 has likely never heard of it),
was purchased in 1978 and upgraded a few times in the 1980s, and was still doing
work in 1999. It ran Oracle 4 (released in 1984).

What ultimately killed the Pr1me system was the year-2000 problem. The city knew
that the deadline was coming and spent 1997 and 1998 attempting to convert the
payroll and human resources systems to an off-the-shelf solution. That project was
abandoned after the feasibility study determined that the project could be brought in
at the top of the budget for the bottom of the requested features. The city council
caught all kinds of grief for making the decision to stop (“You’re throwing all that
money away! It’s a waste of taxpayer resources!”), but it was the right decision.

The city spent 1998 and 1999 rewriting the Pr1me-based payroll and human resources
systems, written in COBOL and Oracle 4, as something that would run on a Windows
machine. Helping this process was the fact the original programmer, who wrote it in
1978, was still on staff and led the rewrite effort. I helped specify the hardware that
would host the rewritten software, which was still running COBOL, but with Oracle 8i.

We didn’t hit the ship deadline (January 1, 2000), so the Pr1me had to have its clock
turned back to 1973 because the calendar that year was the same as for the year
2000. Don’t worry—our paychecks still had the right year on them. (I checked.) But
when the payroll department ran its first payroll on the new system, everyone was
ecstatic.
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10.1.2 Telemetry use in production systems

Office IT in section 10.1.1 showed a lot of self-hosted solutions, using centralized log-
ging as the only telemetry system in use. The production software side of our unem-
ployment insurance department is definitely using telemetry. This section shows how
telemetry works in an organization as focused on self-hosting as this one is and that
started computer operations in the 1970s. Figure 10.2 illustrates the production soft-
ware environment for our government agency.

Our unemployment insurance department is using a single IBM mainframe running
z/OS to process transactions. This mainframe is running a cluster of web and applica-
tion servers (IBM WebSphere) and using the IBM DB2 database for storage. Not pic-
tured are the batch jobs specified in Job Control Language (JCL) that distribute
benefits. We see that the WebSphere servers (functionally virtual machines) are fol-
lowing a familiar pattern by emitting into a Syslog server, ultimately into Splunk for
centralized logging. The DB2 and z/OS telemetry, on the other hand, follows a new
process: it gets sent to an operator console.

 The operator console, which is straight out of the pre-PC era, traditionally was a
printer that spat out system events as they happened or a monitor that displayed
events. More modern versions can color-code events so operators can quickly tell
which ones are important. (Think of it as a kind of monitoring and alerting system for

(continued)
When the data entry was done, generating the payroll took 15 minutes, whereas it
used to take four hours.

Twenty years later, I would not be at all surprised if that bespoke system first written
in 1978 is still running.
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Figure 10.2 The telemetry system for the production software for our unemployment 
insurance department. Web serving and database operate on an IBM mainframe running 
z/OS. The WebSphere software has a familiar telemetry feed to Splunk, but the z/OS is 
new: an operator console.
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mainframes with logging functionality.) In our unemployment insurance case, the
operator console is where telemetry related to the database and JCL (business auto-
mation running inside z/OS) events can be viewed. This viewing can be done physi-
cally in the data center by an operator or through the right kind of remote terminal
connection.

 What we see here is a system in a box. It’s a big box, called a mainframe for a rea-
son, but it’s a box that’s also supporting a whole state’s unemployment insurance sys-
tem. This department is still relatively small, so it’s using vendor components for
everything it can to try to save money. Also, being a government department in the
United States means chronic underfunding, so operations aren’t quite up to the state
of the art for mainframes. (We’ll see what state of the art looks like in section 10.3.)
Like office IT, all the telemetry operations are variations on centralized logging.

 Their lone point of convergence between their production software and office IT
is the Splunk infrastructure. We see here that the agency’s experience with running
servers has it doing just that for office automation, as well as the production systems.
The agency is doing only centralized logging for office IT and production system
telemetry; its development patterns don’t provide incentives to look deeply into met-
rics or tracing.

10.2 Telemetry use in large organizations
We cover large organizations in this section—the legacy computing type that have one
central office and lots of branch offices or other small nodes of access. Think a
regional bank with a central headquarters but branches scattered across five states or
an auto-parts maker with factories in three states. Whereas the medium-size organiza-
tion has a single location that does a lot of work, the large organization works in many
places. More important, the large organization has more resources for developing
software than the medium-size organization does. This section shows how a large orga-
nization mixes mainframe-style computing with more conventional computing.

 Here are some major differences between medium-size organizations and large
ones in the legacy computing space:

 Large organizations have more development resources, so their production
software environments are correspondingly more complex.

 They are managing employees in multiple locations remote from where all the
servers are.

 They are managing both legacy computing and more conventional computing
at the same time.

 They have more people in general, so they are able to keep up with best prac-
tices better.

In this chapter, we are going to look at an auto-parts maker operating factories in
three states that sends auto parts to both automakers and retail chains. It may seem
that not much software is involved in these processes, but there is quite a lot of it.
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Figure 10.3 shows the various zones of software use and development that our auto-
parts maker is managing.

 The unique box in figure 10.3 is Factory Automation; this box is all about Supervi-
sory Control and Data Acquisition (SCADA) systems and how they interact with both
humans and other computer systems in the company. SCADA systems control
hardware ; they handle and display the telemetry generated by the hardware compo-
nents, such as like welding robots, coolant pumps, and assembly-line motors. Because
this is book is about software telemetry, we will be looking at the telemetry provided by
the supervisor computer running the SCADA system rather than the telemetry from
the eight enframulators on the factory floor, as demonstrated in figure 10.4.

 The history of our auto-parts maker matters in how the rest of the infrastructure is
put together. This company came into existence in the 1950s and has been serving the
Big Three U.S. automakers ever since. The first systems to computerize were inventory,
ordering, and delivery in the mid 1960s. Fac-
tory Automation began to adopt robotics in the
early 1970s. The time-card system computer-
ized in the early 1980s, which is when office IT
started to emerge. Factory robots got more
complex in the 1980s, so the first SCADA sys-
tems were introduced. The late 1980s saw
access to the factories change from a key-and-
watchman system to proximity cards, which
allowed the merger of the time-card system with
the PACS. In the 1990s, ordering and delivery
were split from inventory control as part of an
internal reorganization at the company.

Factory
Automation

Time-Card and
Physical Access Control

Office IT Inventory
Control

Ordering and
Delivery

Runs factory robots
Keeps the factories and 
warehousing in parts

Employee access control to
factories and buildings

Delivering completed
product to vendors

Figure 10.3 The five areas of software use and development our auto-parts maker is managing. Factory 
Automation is for the software controlling the machines involved in the factory. Office IT is for business 
office automation. Inventory Control is for managing supplies for the factory and storage of completed 
product. Ordering and Delivery is for managing the process of shipping completed product. Time Card 
and Physical Access Control (PACS) is for tracking access to facilities and managing hourly employee 
timekeeping. Multiple zones such as these are common in companies involved with making things.

SCADA
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computer

Hardware
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Software
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Figure 10.4 SCADA systems and the 
separation between the hardware and 
software sides. Hardware Land is where 
the supervisor computer controls all the 
hardware systems and manages telemetry 
coming from the hardware. Software Land is 
where non-SCADA software communicates 
with the SCADA system. We will be 
focusing on the left side of this chart.
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 Figure 10.5 demonstrates how these five software zones connect and where each
zone exists between the head office, factories, and warehouse. It also shows two differ-
ent CPU architectures: mainframe-style IBM POWER9 and commodity hardware
amd64-based systems. Unlike our medium-size organization, this organization is man-
aging diverse hardware in its production systems. To start looking at software teleme-
try use, let’s look at the Factory Automation group. 

To start, let’s focus in on the Factory Automation group. Figure 10.6 lays out its telem-
etry systems, split between the head office and factory locations.
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Figure 10.5 Production 
system connectivity (and CPU 
architecture) between the five 
software zones for our auto-
parts maker. Although we do 
have five separate zones and 
software stacks, they talk 
to one another quite a bit 
(macroservices, if you will).

Which is it: amd64 or x86? And what about x86_64?
What you call the CPU architecture that Intel and AMD produce chips for depends on
who you ask. If you ask Debian what CPU architecture its running, you’ll get variations
on amd64. Ask SuSE, and you get x86_64. The mainframe world calls CPUs from Intel
and AMD x86 exclusively, and has done so for decades in spite of the change of
terms in the rest of the industry. I’m using amd64 for these figures because readers
of this book will likely be more familiar with that term. However, it’s called amd64
because AMD built the first widely adopted 64-bit specification for the PC market.

Intel had a 64-bit architecture (called Itanium, or IA64) that never saw widespread
marketplace acceptance. Intel licensed AMD’s 64-bit architecture because it seemed
that the marketplace liked it better. In areas where you see universal use of Intel and
AMD CPUs, x86 is still sometimes used as a generic term, but for the most part, CPU
architecture doesn’t come up. Sometimes, x86 is used to refer to 32-bit Intel/AMD
CPUs if a distinction is needed.

With Apple releasing hardware running on ARM CPUs, not Intel, however, CPU archi-
tecture discussions are once again starting to happen even in stalwart Intel environ-
ments. By the time a second edition of this book is called for, I imagine that there
will be far more dual-architecture (amd64 plus ARM) environments out there.
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The telemetry pipeline for our Factory Automation group is surprisingly similar to
what we saw in chapter 8 with the software-producing companies, all in spite of having
SCADA to work with. The SCADA supervisor in their case is running on 32-bit hard-
ware (x86 instead of amd64) and communicates with 16- and 8-bit hardware as part of
its duties. It offers interfaces for the auto-parts maker to request metrics, however,
which allows our auto-parts maker to integrate telemetry from the factory floor into its
overall management framework. The head-office metrics and logging infrastructure
are interesting for us because this infrastructure is shared among teams. Now let’s
look at the other amd64-based group: Time Card/PACS.

 Telemetry for the Time Card/PACS group, as shown in figure 10.7, is significantly
different than the telemetry used for the Factory Automation group. Although both
groups are using the centralized metrics and logging pipelines, how telemetry moves
into those pipelines is different. Both the employee time-card system and the PACS
system are purchased software frameworks, meaning that the Time Card/PACS group
is mostly managing software it didn’t write. The group did create a logging poller for
use with the PACS system; this poller queries API endpoints on the PACS in each
remote facility to fetch events and then repackages those events for submission to the
logging queue. The time-card systems in the head office are part off-the-shelf software
and part in-house-developed software, which is why that system is able to emit metrics
and logging directly to the queues. Unlike the Factory Automation group, this group
isn’t using Honeycomb.io for tracing; most of what it works on is purchased software,
so tracing wasn’t a big enough need to bother building out.
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Figure 10.6 Telemetry system flows for the Factory Automation group at our auto-parts maker. 
We see three telemetry systems in use here: metrics, centralized logging, and tracing. Metrics 
are extracted from the SCADA systems through a metrics poller the group has written. Metrics are 
submitted across the WAN to a queue in the head office. Logging follows a similar path, with log lines 
submitted across the WAN to a queue in the head office. Tracing is using the Honeycomb.io SaaS 
product. Centralizing telemetry in one location is common in organizations working with branch offices.
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We’ll look at the architectures of the Inventory Control and Ordering and Delivery
groups together. Although the two groups split apart in the 1990s as part of a reorga-
nization, both groups continue to follow mainframe-centered development patterns.
The inventory software used by our auto-parts maker is purchased software that is
licensed by the CPU, which is why the Inventory Control group has a small mainframe
of its own to reduce overall costs to the company. The Ordering and Delivery group
operates its mainframe in the head office, and the Inventory Control group operates
its directly at the warehouse. Ordering and Delivery uses a small partition of the
Inventory Control group’s mainframe for warehouse-local operations, isolating the
partition so it doesn’t increase software license costs. (This sort of partitioning is a
core feature of mainframes.) Inventory Control operates a small group of amd4
machines at each factory to act as interfaces to its system.

 Figure 10.8 shows the telemetry architectures of the Inventory Control and Order-
ing and Delivery groups. This figure is the first time we’ve seen a mainframe emit to a
logging queue, which is accomplished by running Linux in partitions (logical partition,
or LPAR) on the Ordering and Delivery mainframe. These Linux partitions run soft-
ware developed by our auto-parts maker that interfaces with the software running in
z/OS and also acts as the web frontend for vendors and customers. By using more con-
ventionally built software—in modern languages more common on amd64 systems—
the Ordering and Delivery group is able to use the full range of telemetry, but it has cho-
sen to use only logging due to a long history on mainframes that biases the group
toward that method alone.

 Meanwhile, the Inventory Control group has taken a slightly different approach. Its
purchased software emits only to the console, true, but it has built wrapper automation
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Figure 10.7 Telemetry system flow for the Time Card/PACS group. Remote refers to both warehouse 
and factory locations. We see the time-card systems rolling up inside the production software to the 
head office, where metrics and logging are emitted into the same infrastructure our Factory Automation 
group used. The PACS systems require a dedicated logging poller running in the head office to fetch 
logging data, which is then sent into the centralized systems. Unlike the Factory Automation group, 
the Time Card/PACS group is not using tracing. As both the PACS and time-card systems are 
purchased software, the ability to use tracing is greatly reduced.
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around the purchased inventory-management software to take some of the sharp edges
off the interfaces. This group is operating amd64-based systems in each of the three fac-
tories that interface across the WAN with the mainframe back at the warehouse. The
amd64-based systems emit into centralized logging and also the metrics pipelines in the
head office.

 Which brings us around to Office IT. This company has had computers or serial
terminals (often both in the 1980s and 1990s) on the desks at the head office going
back to the 1970s, and also had a machine room to put servers in. The Office IT
telemetry system we saw for the medium-size organization in section 10.1.1 was heavy
on locally hosted server-based solutions for the same reason, and the large organiza-
tion isn’t any different. The difference is that Office IT for the large organization also
has three factories and a warehouse to manage, whereas the medium-size organization
has a single office.

 The first thing that stands out in figure 10.9 is that it shares no infrastructure with
the software telemetry designs we’ve seen so far for our auto-parts maker. The reason
for this separation is historical. Back in the 1980s, when the PC revolution kicked off,
this company already had mainframes. The IBM PC was considered to be a microcom-
puter in those days (this name has been dropped), with no clear business use beyond
replacing typewriters, so the existing software and hardware operations groups for our
auto-parts maker didn’t bother to manage the new computers popping up on desks
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Figure 10.8 The telemetry architecture for the Inventory Control and Ordering and Delivery groups. 
Solid boxes on the left are amd64-based production systems; dot-filled boxes on the left are IBM 
POWER9-based production systems. Each POWER9 system emits to the mainframe console. The 
head office Ordering and Delivery system also emits to the logging queue through a Linux partition 
on the mainframe. The Inventory Control systems running in each factory continue to emit metrics 
and logging data to queues hosted in the head office. Again, we see that mainframe operations has 
a strong preference for using the console for all telemetry.
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here and there. Eventually, the company learned that PCs could replace serial termi-
nals and that when PCs were networked together, sharing electronic files was more
efficient than sharing paper files. The office hired someone to manage these new net-
worked computers, which led to the creation of a different department. That separa-
tion has been maintained for more than 30 years.

 Unlike the large software producing organization we saw in section 8.4, which
phased out its use of SaaS providers for logging, this company is still embracing it.
Our auto-parts maker is using the Loggly cloud platform for centralized logging, but
only for Office IT. It can get away with doing this, unlike the large software-producing
organization, because making parts for automobiles requires fewer computers overall
than running a SaaS provider. Scale is still working in the company’s favor, so it’s
embracing scale—and is almost the only group in this company doing so. (The other
is the Factory Automation group, with Honeycomb for tracing.)

 All in all, the telemetry system for our large organization is quite a bit more com-
plex than the one we examined for the medium-size provider. More people makes for
more departments, which in turn leads to more software being written and more
telemetry systems being used. The decades-long history of computing in this company
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Figure 10.9 Telemetry architecture for Office IT in our large legacy computing environment. 
This design accounts for multiple office locations, unlike the medium-size organization’s version 
in figure 10.1. We see network telemetry being gathered in a vendor-specific framework, and 
endpoint telemetry moving through Microsoft Endpoint Manager. We also see that all amd64 
servers (Windows and Linux) have a SaaS vendor’s collector installed, which ships logging data 
to the Loggly cloud. This architecture has no metrics telemetry, but it has three different ways 
of handling centralized logging!
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certainly makes a significant difference in how it approaches telemetry compared with
the software-producing organizations in chapter 8:

 Far more use of centralized logging
 Almost no use of tracing
 Continued use of SaaS products

10.3 Telemetry use in global organizations
Much like the enterprise organizations we talked about in section 9.4, the global orga-
nizations we talk about in this section operate in many legal jurisdictions. This chapter
is on large organizations that computerized before 1981, so they achieved wide adop-
tion of computers before Intel dominated the CPU market. Chances are good that
these organizations helped set the standard for computerization in their markets
(think banking, airlines, and insurance) and have been living that legacy ever since.
Organizations of this size still make extensive use of amd64-based computing, as we
will see. Here are the major differences between global organizations and the large
organizations we talked about in section 10.2:

 Global organizations operate internationally, so they have different legal enti-
ties in each country, are subject to different laws, and have different workplace
cultures.

 They were big before computerization, so they were able to go big on comput-
ers in the era when having more than one was kind of a big deal.

 Like the enterprise organizations in section 9.4, they produce a lot of software.
Unlike the section 9.4 organizations, they’ve been producing and refining the
same software for several decades.

 Whereas the large organization had branch offices, the global organization has
branch offices all over the world.

The organization we’ll focus on here is a European airline that began flying in the
1950s and survived seven decades of regulation, deregulation, mergers with rivals,
strikes, and the ever-increasing security apparatus surrounding air travel. The airline
has not only survived business environment changes, but also weathered the explo-
sion of computerized reservation systems, computerized flight-plan submissions to
aviation authorities, GPS flight tracking, introduction of Internet connectivity in
flight, and deployment of mobile applications so passengers can access in-flight
entertainment from their own devices. Airlines have gone deep into technology, and
they did it early.

 Although the airline’s mobile and web-application development looks much like
that of the software-creating organizations from chapter 8, the reservation, inventory,
and aviation-authority systems were among the first to get computerized. Because our
company started in the 1950s, these first computerized systems were put on the same
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kind of mainframes as the organizations from sections 10.1 and 10.2. Those main-
frames are still there and form the (deeply buried) foundation of all the online,
mobile, and travel agent reservation systems. To understand how this works, let’s look
at the hypothetical path followed by a query of available flights in figure 10.10:

1 The user submits the request to an edge web service.
2 The edge web service sends an API call to the internal capacity API.
3 The internal capacity API sends the request to a capacity querent for fulfillment.
4 The capacity querent queries the Db2 database for matching records.
5 The Db2 database returns records to the capacity querent.
6 The capacity querent returns results by way of the internal capacity API.
7 The internal capacity API returns the call to the edge web.
8 The edge web service starts rendering results for the user.

The edge web box in figure 10.10 could be a geographically distributed set of machines
(to be closer to end users), each of which sends queries to the same Db2 database
housed in France. The mainframe in this architecture is the central transaction-
handling system. Historically, mainframes have been extremely good at handling high
transaction rates. In section 10.1, we saw a system that was contained on a single
mainframe. In section 10.2, we saw an ecosystem with multiple mainframes and amd64-
based systems working together. In this section, the mainframe is merely another part
of a large, complex software ecosystem. Like the enterprise-size software-consuming
organization we looked at in section 9.4, however, our airline is made up of many parts
that consume and use software, as shown in figure 10.11.
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Figure 10.10 The flow of requests (a trace, if you will) that happens when a user submits 
a query for available flights. The frontend web service is a modern autoscaling pool of 
servers, but the capacity API it uses to fulfill the request from the user is on a mainframe. 
Note that this mainframe is running both Linux and z/OS applications.
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Each department in figure 10.11 owns certain kinds of data and provides it to others,
much like a group of smaller companies operating inside a bigger one. Here are some
examples from figure 10.11:
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Figure 10.11 Software-consuming and -producing departments for our global airline, with seven 
examples of data produced and consumed within the airline. Producing departments are darker 
boxes; consuming departments are lighter boxes.
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 Booking and Passenger Manifests owns the list of which passengers and crew
are on each flight, which is consumed by government data control to maintain
compliance with transportation security laws in relevant countries.

 Flight Operations owns the plane inventory list, which is consumed by Mainte-
nance and Cargo Operations.

 Flight Operations also owns the list of scheduled flights, which is consumed by
everything else.

 Employee Scheduling owns the list of which employees are assigned to flights,
which is consumed by Booking and Passenger Manifests and In-Flight Services.

 Employee Scheduling also owns the list of gate agents, which is consumed by
Airport and Gate Operations to staff gates.

 Airport and Gate Operations owns the list of takeoff slots and assigned gates,
which is consumed by Flight Operations, Cargo Operations, Maintenance
Operations, and Employee Scheduling.

 Loyalty Programs owns the list of which passengers are enrolled, which is con-
sumed by Booking and Passenger Manifests and In-Flight Services.

We’re going to take a close look at the software telemetry used in two departments:

 Section 10.3.1 examines the telemetry ecosystem for the Booking and Passen-
ger Manifest department, which computerized operations in the 1970s.

 Section 10.3.2 examines the telemetry ecosystem for Loyalty Programs, which
computerized much later.

10.3.1 Telemetry use in the Booking and Passenger Manifest department

The Booking and Passenger Manifest department for our European airline is charged
with maintaining passenger data, including reservations, as well as flight manifests
that also include the flight crew. This department handles truly worldwide operations,
accepting transfers from other airlines, getting check-in data from every gate as it hap-
pens worldwide, automates the fare structure for the entire airline’s operations, and
so much more. This department has a lot going on, and this section covers how it
keeps track of its automation. This department uses a mix of mainframe and conven-
tional approaches to computing. Unlike the medium-size organization, this depart-
ment takes a state-of-the-art approach to computing and telemetry.

 Before we can dig into the telemetry architecture, we need to look at the produc-
tion systems. We’ll be looking at two primary workflows. The first is the reservation
workflow, which is a (mostly) conventional web application with a mainframe as the
database. The second is the gate-check flow, where boarding passes are scanned and a
passenger manifest is built.

 Figure 10.12 shows both of the workflows, which interact with three API systems run-
ning on an IBM mainframe. The regional web clusters support the airline’s reservation
systems. The gate computers at each airport gate that loads passengers is responsible
for supplying the data that will build the flight manifest that will ultimately ship with the
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plane itself for the in-flight staff, be sent to civil aviation authorities for flight tracking,
and be delivered to other government security entities that are required by law to
receive such data.

 Figure 10.13 gives us the flow of logging data out of the Booking and Passenger
Manifest department’s production servers and into the telemetry pipeline. A lot is
going on here, so let’s step through it:

1 Events are emitted by the three production systems.
a Globally located reservation web servers ship events by way of webhook to

webhook receivers hosted in the Paris data center, using emitter/shipper
functions in the backend application code. (See section 3.1.3 for an example
of sending telemetry by way of HTTP POSTs.)

b API servers running in LPARs on the Paris mainframe ship events directly into
a Kafka-based stream on the logging_raw topic, also using emitter/shipper
functions. (See section 3.1.2 for an example of sending telemetry into streams.)

c The Create Flight Manifest batch job on the Paris mainframe emits job out-
put into the mainframe system’s console.
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Figure 10.12 Two workflows for our Booking and Passenger Manifest department: one 
for accepting reservations and a second for checking in passengers to generate a flight 
manifest. This airline operates three regional clusters of web servers supporting reservations in 
North America, Europe, and Singapore. There is a gate computer at each airport gate loading 
passengers. The reservation servers and the gate computer talk to up to three APIs hosted on 
a central mainframe in Europe. The flight manifest is created as a batch job after all passengers 
are checked in. We will be looking at this production environment in later figures.



267Telemetry use in global organizations

2 Events from the web servers and the batch job ship into the stream.
a The webhook receiver reformats telemetry from the reservation web servers

and injects them into the logging_raw stream topic (similar to how section
3.1.2 describes sending into streams).

b Data from the mainframe console ships into the IBM Common Data Provider.
c The Common Data Provider sends console telemetry into Logstash, running

in a partition on the mainframe.
d Logstash sends events into the logging_raw stream topic.

3 Logging parsers subscribe to the logging_raw stream topic and enrich events.
(See “Using streams in a shipping pipeline” in section 3.1.2 and section 6.1 for
enrichment during the Shipping stage.)

4 Logging parsers send enriched telemetry onto a queue called logging commit
queue.

5 Logging writers pop events off of the logging commit queue.
6 Logging writers aggregate and bulk insert events into a Hadoop cluster.
7 Logging data can be reviewed through a custom logging interface the airline

has written.

The metrics pipeline looks similar.
 Figure 10.14 shows a metrics telemetry flow that looks almost identical to the log-

ging flow in figure 10.13, but with some of the names changed. Here, metrics data is
stored in OpenTSDB instead of Hadoop, which is a bit of a lie because OpenTSDB sits
on top of Hadoop. Having the metrics pipeline be so similar to the logging pipeline
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Figure 10.13 Centralized logging telemetry flow for our global European airline example, 
showing both the reservation/booking system telemetry (reservation web servers and API 
servers) and the flight check-in telemetry flow (API servers and create flight manifest batch 
job). Three emission and shipping techniques are used here. This figure demonstrates how 
mainframe batch jobs can contribute logging data to telemetry pipelines.
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(in fact, the webhook receiver functions the same in both pipelines, with different
endpoints based on the type of telemetry) makes comprehending the entire pipeline
ecosystem easier for everyone and eases maintenance burdens.

 Our Booking and Passenger Manifest department is doing modern web develop-
ment, so it is also using distributed tracing techniques. Their COBOL components
don’t play a role in the key booking workflows, but the API servers running on the
mainframe are critical to the process. Figure 10.15 shows the tracing telemetry flows.

Figure 10.15 shows something unexpected for a company this size: use of a SaaS prod-
uct! Why use SaaS at this scale, when the software-producing company at this size was
actively getting rid of any SaaS use? First, that company was still using SaaS for its
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Figure 10.14 The metrics telemetry flow for our global European airline. The flow is identical in 
steps to the logging flow but instead flows into OpenTSDB instead of Hadoop. But OpenTSDB is 
based on Hadoop and is optimized for time-series data. The similarity in telemetry flows with 
logging eases maintenance burdens by being easier to comprehend by the teams supporting both.
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Figure 10.15 Distributed tracing flows for the Booking systems for our European airline. The 
department picked the New Relic SaaS platform to provide tracing. Use of SaaS providers at 
this scale is a deliberate choice. Our airline has the technical skill to host a tracing pipeline 
internally but has elected not to.
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SIEM systems, which is an example of a strategic use of SaaS products when you have
enough traffic for a seven- to eight-figure annual renewal cost. Second, both this air-
line and the company from section 8.4 chose to use SaaS in a given place because they
believed that they got better value from paying someone else to build and maintain
the system than from doing it themselves. The software-producing company in section
8.4 had so many software engineers around that it could handle distributed tracing
internally, whereas this legacy computing airline felt that the role best outsourced to a
long-standing partner.

10.3.2 Telemetry use in the Loyalty Programs department

The Loyalty Programs department of our European airline is charged with managing
this airline’s frequent-flyer and awards programs for all its brands. This role requires
tracking the spending patterns of loyal customers using branded credit cards, points or
miles earned during flights, and arranging award use of points or miles. Frequent-flyer
programs are more recent innovations than commercial air travel, coming into exis-
tence between 1972 and 1982, making this story look like the software-consuming orga-
nizations of chapter 9. This section shows how this department’s telemetry use differs

Mainframes are for more than batch jobs
Section 10.3.1 shows Linux servers running on the mainframe. The old standard role
of mainframes was batch-job engine, where jobs were scheduled to run (written in Job
Control Language) that ran queries against the database and returned results. Main-
frames are far more these days, however. One of the key selling points is reliability;
mainframes are engineered to provide years between restarts. Mainframe systems
allow you to hot-swap a CPU with a spare without dropping computing load, and that’s
only one reliability feature.

As we see in section 10.3, organizations that use mainframes still need to coexist
with systems that provide reliability as a distributed system instead of one highly reli-
able (and large) box. Not every workload can be distributed; it needs to have that one
box not go down but still needs to talk to systems that can be distributed. To help,
mainframes offer built-in ways to talk to z/OS components fast (in-memory networking
and similarly optimized paths) and also provide interfaces for external systems to the
mainframe ones. Logical partitions are virtualized environments similar to what
VMware ESX provides; they allow running other operating systems, which in turn allows
moving traditional software systems into the mainframe’s high-availability zone.

Where you get Linux, you also get other open source products. Mainframe is among
the last environments supported by open source products, but supported it is. Both
Kubernetes and containerd can run on mainframe, which means that you can do
microservices on a mainframe! Hosting ephemeral containers seems to be the oppo-
site of what mainframes are about, but the reason why so much of the rest of the
industry has moved to containers is the same reason why mainframe shops move to
it. Mainframes are only components—highly available ones—of an organization’s
technical ecosystem.
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from what we examined with the Booking and Passenger Manifests department in sec-
tion 10.3.1.

 The main customer interfaces are a subsite on the airline’s main site and the air-
line’s mobile application. Although the Booking and Passenger Manifest department
maintains the website, leaving the Loyalty Program department as a tenant, the roles
are reversed in the mobile application. This organization isn’t terribly efficient, but
politics makes for seemingly strange choices. Strange organizational structures always
are there for a reason, but that reason doesn’t have to be a good one.

 To start, we need to look at the Loyalty Programs department’s production sys-
tems. Unlike the Booking and Passenger Manifest department, which has to supply
data to civil aviation and government security services, the Loyalty Programs depart-
ment shares only with other airlines and financial institutions. As part of this data
interchange agreement with other airlines, it supplies APIs for looking up loyalty
details for internal and external alliance use.

 Figure 10.16 shows a multilayered production system with application, API, data-
base, and batch tiers. Although this system is not microservices strictly speaking, it
does show a tendency to split roles into different code bases. We also see two different
software stacks in use, with Java being used on the reservation web servers and credit
card interfaces, and .NET Core being used for all the API tier systems. We also see
mobile development for the first time. Let’s take a look at what that means for the
telemetry systems. First up is logging flows.
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Figure 10.16 The production systems for our Loyalty Programs department. The main applications 
supported are a subapplication on the Java-based Reservation Web Servers, mobile apps in the 
Google and Apple app stores, and a credit-card interface system. These applications consume four 
APIs, which use an Oracle database. A batch processor runs scheduled jobs and is not a mainframe 
app. The batch processor and various APIs also communicate with APIs not managed by this 
department; some are internal and others are external, such as the Loyalty Program APIs for allied 
airlines. This architecture, which uses modern software practices, can emerge in even century-old 
companies.
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Figure 10.17 shows the logging telemetry system, which uses three delivery methods.
The Reservation Web Servers use the same delivery method the Booking and Passen-
ger Manifest systems did in figure 10.13, sending events to a webhook receiver. Mean-
while, the API servers running in Azure and on .NET Core submit telemetry directly
to an Azure-managed stream service called an Event Hub. Mobile apps don’t log from
the application, but a crash-reporting service sends application-crash data to a Crash
Report API. They are also running a set of log parsing instances that service both the
logging Event Hub and the crash Event Hub to enrich telemetry before inserting it
into an Elasticsearch cluster maintained by Azure.

This architecture represents a radical difference from any we’ve seen so far in this
chapter in that the telemetry systems are all in the public cloud (Azure). Organizations the
size of our European airline are big enough that islands of computing can spawn that
draw little from the history of the organization as a whole. In this case, rather than
hosting everything in one of the long-standing data centers the airline operates, it is
hosting everything in the public cloud. So far, we’ve seen that this airline is API-driven
internally, which allows different parts of the company to operate on radically differ-
ent stacks so long as API support is maintained.

 Figure 10.18 shows the distributed tracing system used by the Loyalty Programs
department, and we see diversity here. Remember that Loyalty Programs is running a
subsite on the Reservation Web Servers managed by the Booking and Passenger Mani-
fests department. Because of that subsite, the department has no choice but to use the
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Figure 10.17 Logging telemetry flows for the production systems of the Loyalty Programs 
department for our European airline. Although the production systems may not be all hosted in 
the public cloud, this department’s telemetry system certainly is, demonstrating that even old 
companies use public cloud systems in some cases.
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New Relic tracing system as a tenant in the account managed by Booking and Passen-
ger Manifests. For the credit-card, API, and batch-processing systems, it uses the Azure-
managed tracing service known as Azure Monitor. Finally, for mobile applications, it
built an AppTrace API system to receive tracing telemetry generated by mobile appli-
cations, which feeds into a custom-built parsing, storage, and presentation system.

 This system is absolutely not the converged tracing system we saw with the enter-
prise-size software-producing organization in section 8.4! Convergence is not always
possible; the trick is to know when splitting your telemetry is a good idea. Loyalty Pro-
grams decided to split their tracing infrastructure up for a few reasons:

 The tracing system for the website was set by another department, so it had no
choice.

 Tracing from mobile applications has different constraints from tracing from
an application running on your own networks, such as dodgy networking, pri-
vacy settings or filters blocking certain kinds of telemetry from reaching home,
and operating system updates that break functions.

 The department wanted to trace user actions in addition to software flow inside
the mobile applications, so writing a converged tracing stream required a cus-
tomized solution.

Also, this department doesn’t have a metrics telemetry system; it decided a while ago
that tracing gave it everything it needed, so it never bothered to build one. System
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Figure 10.18 Tracing telemetry flow for the Loyalty Programs department of our European 
airline. We see three separate tracing systems here! As nice as it is to have everything flow 
into one bucket and have one place to look at things, it isn’t always possible.
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metrics are visible in the Azure dashboards if anyone needs to look at them, but the
department is doing nothing special to gather, collate, and enrich metrics telemetry.

Summary
 Small firms are the most responsive to changes in computing, so small, long-

established IT companies are more likely to follow the pattern discussed in sec-
tion 9.1.

 Computers before the IBM PC era were different from what we’re used to now,
which makes reasoning about how they were used (and their impact on tech-
nology use in companies 40 years later) harder to predict.

 Early computers often operated in batch mode, running predefined jobs on a
schedule with no interactivity. Mainframes are the descendants of those early
computers and are still some of the best systems for running large batch jobs on
large datasets.

 Organizations that computerized in the 1960s and 1970s often still have a small
data center (sometimes called a machine room) because of this legacy.

 Breaking the habit of local computing requires a deliberate decision by man-
agement to break with the past, which we saw in the 1990s and early 2000s as
people moved to UNIX or Windows platforms, and in the 2010s as they moved
to public cloud computing.

 Organizations that computerized early also got into the habit of writing custom
software early, so all the organizations in this chapter are writing software.

 Medium-size organizations computerized early because they had a problem that
required fast resolution of financial accounting, so batch-mode mainframes
made a lot of sense. Organizations of this size are often still running mainframe-
style because they lack the organizational talent for a lift and shift to a new
platform.

 Medium-size organizations automated business processes such as human
resources and accounting long before the SaaS revolution, so they are using
fewer SaaS platforms than the medium-size organizations in sections 9.2 and 8.2.

 Office IT telemetry use in the medium-size organization follows the pattern we
saw in chapter 9, focusing mostly on centralized logging.

 The system log for mainframes is the operator console, which stands in for cen-
tralized logging.

 Large organizations are those with a single central office and a lot of branch
offices, which is a contrast to the medium-size organization that was hosted in a
single location. Being bigger and having to deal with WANs change how large
organizations approach telemetry use.

 Large organizations have more people to develop software than medium-size
organizations do, so their sophistication in telemetry use tends to be higher as a
result.
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 SCADA systems control industrial processes and handle detailed physical telem-
etry from robots and sensors throughout a facility. Software telemetry interfaces
with SCADA systems at the supervisory computer, which can expose APIs for
metrics polling.

 The modern CPU architecture used in mainframes is POWER, instead of
amd64/x86_64 or x86, which matters quiet a lot if you are running Linux on a
mainframe. Your Linux distribution (and any software you write) needs to be
compiled for POWER.

 Organizations operating in the head office-plus-branch office pattern often roll
their telemetry up to the head office from the branch location, simplifying their
computing footprint in the branch locations.

 The large organization still uses SaaS products in telemetry systems, unlike the
large software-producing organization in section 8.3. Although the large orga-
nization is still producing software, it’s not to the scale of the section 8.3 organi-
zation, so the economics of SaaS are still in favor of use.

 Global organizations operate internationally, unlike the large organizations,
making them subject to many legal environments.

 Global organizations computerized in a big way before the IBM PC revolution, so
they have the most inertia to overcome if they want to do away with mainframes.

 The largest global organizations are in heavily regulated industries such as
finance, air travel, and insurance, which makes changing business practices
harder to bring about.

 Modern web development can still use mainframe-based databases as part of
their architecture, which makes mainframes harder to identify when looking at
how a site works.

 Mainframes allow creating LPARs that allow running different operating sys-
tems, similar to how VMWare ESX works for virtualization. It is actually possible
to run Kubernetes on a mainframe through use of Linux in an LPAR!

 IBM makes a Common Data Provider that enables shipping of mainframe con-
sole data into other places, such as streams and queues, allowing it to partici-
pate in centralized logging and metrics pipelines.

 Global organizations are big enough that islands of computing can exist inde-
pendently and grow unaware of the greater organization’s history in early com-
puting practices. This is how one department can be mainframes and some
Linux, where another department is hosting the entire infrastructure in Azure.

 Mobile application development has very different constraints when it comes to
tracing, with dodgy networking, privacy filters blocking actions, and Google or
Apple changing the operating system in ways that break your telemetry. For
these reasons, tracing for mobile looks different from tracing for server-
deployed software.



Part 3

Techniques for
 handling telemetry

Part 1 taught you the overall architecture of telemetry systems, and part 2 gave
many examples of real-world telemetry systems in a variety of settings. I hope
that you found some familiar ground in part 2. Part 3 is all about specific tech-
niques. This part is a toolbox; each chapter solves a problem facing telemetry
systems.

NOTE These chapters can be read selectively, though the structured
logging concepts in chapter 12 show up again in chapters 13–16. For
this reason, you should consider reading chapter 12 regardless of what
else you plan to read.

Chapter 11 dives into the performance bane of telemetry systems: regular
expressions. Powerful but slow, regular expressions are hard to avoid if your
telemetry systems have to deal with telemetry data coming from hardware sys-
tems. This chapter provides several easy techniques to speed the regular expres-
sions you can’t avoid. Not everyone needs to optimize regular expressions, but if
you do, you really do.

 Chapter 12 covers standardized logging formats and how to build them.
When you have the luxury of controlling the format your telemetry emits as,
such as with production code your organization writes, great gains in maintain-
ability and performance can be realized. Getting there takes some work (see sec-
tion 4.2 for that story), but this chapter is about the technical details of making
standards happen.



 Chapter 13 provides methods of avoiding files altogether when emitting (and
receiving) telemetry. Sending telemetry over TCP sockets or UDP datagrams avoids
potentially expensive disk I/O. Sometimes, you need to build an additional emitting
method beyond what you’re already doing to handle a special need, such as emitting
distributed tracing telemetry. Kubernetes and FaaS technologies need to emit teleme-
try too, and sometimes, their built-in methods aren’t quite good enough.

 Chapter 14 digs into the technical problem of index cardinality in your telemetry
data-stores. Paying attention to cardinality as part of your overall telemetry system
design sets you up for successful scaling. This chapter presents several techniques for
tackling the cardinality problem.

 Chapter 15 addresses telemetry system security, because telemetry systems are criti-
cal systems supporting your organization’s regulatory and compliance efforts. Attack-
ers (internal and external) love to modify telemetry to hide their tracks, so this
chapter will discuss ways to prevent such tampering, or make such tampering evident.
Telemetry data can support legal actions, so if that is a concern for you, pay attention
to this chapter.

 Chapter 16 covers procedures that far too few telemetry system operators think
about until it’s too late: how to clean up after data spills. Privacy legislation worldwide
is slowly making certain types of data toxic to handle—such as health information,
personally identifiable information (PII), and financial details—so your telemetry sys-
tem must be prepared to clean up after spills. If your production systems handle any
kind of regulated information, your telemetry systems may end up accidentally storing
some of it in the form of exception traces with parameters and other logging data.

 Chapter 17 dives into one of the bigger drivers of telemetry system cost: sprawling
data-storage costs. Data aggregation and retention policies let you save storage costs at
the cost of not having full-resolution data for as long. This chapter covers how to set
aggregation and retention policies, and shows how they intersect with regulatory and
compliance frameworks.

 Chapter 18 gives you guidance on surviving one of the scariest things to happen to
a telemetry system operator: court orders to produce or preserve data. Certain indus-
tries are more prone to receiving such judicial demands than others, but if your orga-
nization receives them, you will thank yourself for having at least some sketched-out
procedures in place for handling the demands. This chapter is not legal advice; it sets
you up to help your organization’s legal team. You will not get a subpoena directly; it
will pass through your own lawyers first.
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Optimizing for regular
 expressions at scale

The best way to optimize regular expressions (regexes) at scale is to not use regular
expressions. But the telemetry tooling we have available sometimes doesn’t give us
the option of avoiding regular expressions, and we have to deal with them anyway.
This chapter is about making the regexes you must use perform the best they can.
Much like programming, regexes are used for two reasons in a telemetry pipeline:

 Control program flow—If a string matches a regex, do something, such as
attempt parsing a certain way.

 Extract fields from strings—Using regex, you can capture expressions to add
fields to telemetry being processed, known as enrichment. (See chapter 6 for
more on enrichment in general.)

This chapter covers
 Knowing where regular expressions are used 

in telemetry

 Optimizing your regular-expression use

 Changing your emissions to speed regular 
expressions
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Section 6.2.2 provides examples of both of these uses, including code, so if you
haven’t already used regular expressions in telemetry systems, I recommend reading
that section before moving on here. Regexes are incredibly powerful tools, but with
great power comes greatly hidden complexity that will hurt your performance in
many ways. Like many powerful tools, simple expressions that are easy to understand
often perform worse than a far more complex but more tightly scoped expression.
Regular expressions are terrible when it comes to building maintainable code because
the code that performs best is the hardest for someone unfamiliar with the specific
use case to reason about. To prove the point, the following regex matches any IPv4
address, such as 192.0.2.241:

(?<![0-9])(?:(?:[0-1]?[0-9]{1,2}|2[0-4][0-9]|25[0-5])[.](?:[0-1]

➥ ?[0-9]{1,2}|2[0-4][0-9]|25[0-5])[.](?:[0-1]?[0-9]{1,2}|2[0-4][0-9]

➥ |25[0-5])[.](?:[0-1]?[0-9]{1,2}|2[0-4][0-9]|25[0-5]))(?![0-9])

Believe it or not, this three-line monstrosity performs better and handles more edge
cases than this vastly more readable one-liner:

[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}

Even though I work with stuff like this, I rub my forehead when trying to dive into a
regex as complex as the first one. I certainly can do it, but I don’t enjoy doing so, and
you are unlikely to need to build patterns as unreadable as that one. My goal for this
chapter is to show you enough of the power of regexes to build expressions that per-
form well and have a hope of being readable.

NOTE The biggest reason for not being able to avoid regular expressions is
handling telemetry emissions from sources such as hardware, third-party soft-
ware, and SaaS platforms. These sources emit telemetry in their own formats
and leave it up to you to turn those generated strings into enriched telemetry.
Section 11.3 provides a detailed look at parsing one example of this type of
telemetry. If your telemetry enrichment engine has regular expressions only,
this chapter is for you.

The way you make regexes perform fast is to build them so that the regular-expression engine
knows to stop trying to find a match as fast as possible. For badly optimized expressions, a
match failure can be far more expensive in resources than a full match. I cover three
techniques for making regular expressions perform better:

 Section 11.1 describes a simple trick known as anchoring to make your regular
expressions perform faster.

 Section 11.2 goes into a less simple trick for giving hints to the regex engine to
get it to stop matching.

 Section 11.3 applies what you learned in sections 11.1 and 11.2 to dig into a
familiar piece of telemetry—that coming from a Cisco ASA firewall.
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 Section 11.4 talks about changing your emissions (for code you control) to
make them easier to perform regular expressions on and make your expres-
sions easier for more people to understand.

WARNING The regular expressions in this chapter use Ruby-flavored regex
because the two major Shipping-stage engines, Fluentd and Logstash, are
written in Ruby. I know that this is a change from the Python used until now,
but if you end up using either platform, you’ll likely need to produce at least
some Ruby.

11.1 Anchoring expressions for speed
This section shows you how a simple technique called anchoring can make your exist-
ing regexes perform better. When I deployed anchoring in my telemetry pipelines, I
saw a 12% improvement in overall throughput per node parsing telemetry, and 12%
matters a lot when you’re handling 20,000 events a second. When you’re handling
100,000 events a second, a 12% increase saves money. Not everyone will see 12%—
that increase had more to do with how our regexes were already written—but you will
see some improvement.

DEFINITION Anchoring is the use of the beginning-of-string marker (^ or
caret) and the end-of-string marker ($ or dollar sign) as part of your regular
expression.

To explain how anchoring works, we need to look at a set of plain-language logging
statements of the kind software engineers write when they’re not using a highly
sophisticated logging framework inside their applications. If you have five engineers
working in the same codebase, especially in English, you will have seven ways of phras-
ing the same idea. Here is the list we will be working with:

Added account 1141 in zone 42 with email twitterbot@example.com
Account 1141 deleted from zone 37
Suspended zone 42 account 1141 for excessive email volume
Created new zone: 99
Zone 98 deleted

These five log lines tell slightly different things in different ways, added over the
course of three years. To start, let us look at the regex that matches the first line.

 Figure 11.1 shows a regular expression that will parse the first line in the list of five
lines. This regex is using Ruby regular expressions because the two big open source
log shippers in the market, Fluend and Logstash, are Ruby projects. The Logstash
Grok plugin uses Oniguruma Regex (http://mng.bz/6N1R), which is Ruby but with
support for a regex-pattern library added to it (among other things, which we don’t
need to go into here). The figure shows the core concept of regular expressions in
enrichment: the named capture group. We have four capture groups that populate
four fields in our telemetry as it moves through the Shipping and Presentation stages.

http://mng.bz/6N1R
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TIP The examples in the listings in this chapter are written in Ruby. If you
don’t have Ruby installed locally, the online Ruby regex tester at https://
rubular.com will be quite helpful for testing capturing and other concepts. 

Figure 11.2 gives us an expression that matches the second of our example log entries.
Because this log entry has one fewer piece of useful context-related telemetry
encoded within it (it lacks the email_address field from the first log line), the expres-
sion is shorter. We also see three reused capture groups from the first expression.

"Added account 1141 in zone 42 with email twitterbot@example.com"

^(?<acct_action>\w+) account (?<acct_id>\d+) in zone (?<zone_id>\h+) with email (?<email_address>.*)$

Field name Regex
\w = Word character
A-Z + a-z + 0-9 + _ 
+ = 1 or more chars

Regex
\d = Digit

0-9 

Regex
\h = Hex Digit

0-9 + a-f

Regex
.* = The rest
of the string

acct_id       = 1141
acct_action   = "Added"
zone_id       = 42
email_address = "twitterbot@example.com"

Figure 11.1 A regular expression matching the first of the example log entries. This expression contains 
four separate capture groups (fields, for enrichment) named acct_action, acct_id, zone_id, and 
email_address.

"Account 1141 deleted from zone 37"

^Account (?<acct_id>\d+) (?<acct_action>\w+) from zone (?<zone_id>\h+)$

Field name
Regex

\d = Digit
0-9 

Regex
\w = Word character
A-Z + a-z + 0-9 + _ 
+ = 1 or more chars

Regex
\h = Hex Digit

0-9 + a-f

acct_id     = 1141
acct_action = "deleted"
zone_id     = 37

Figure 11.2 Regular expression matching the second of the example log entries. This log entry has 
three capturable pieces of information; all three were in the first expression in figure 11.1. Because of 
the natural-language nature of the original log lines, the only ways to tell this set of fields apart from 
the ones in figure 11.1 are the lack of an email address and the contents of acct_action. This sort 
of differentiation is common in software with lots of natural-language logging.

https://rubular.com/
https://rubular.com/
https://rubular.com/
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Figure 11.3 provides the match expressions for the other three log lines, completing
the listing of matching regular expressions for our sample log lines. We see two new
fields: suspension_reason and zone_action. But the regex patterns used to capture
these new fields are the same as we’ve seen in others; email_address is the same as
suspension_reason, and acct_action is the same as zone_action. 

Now that we have all five expressions, let’s put them to work in some code. Listing 11.1
is a benchmarking script I’ll use to describe how anchoring our regexes improved
throughput for my company’s Shipping stage by 12%. The benchmark script in listing
11.1 has four test cases, which we’ll look at in pieces:

 Unanchored regular expressions, matching directly to their log line with no failures.
 Anchored regular expressions, matching directly to their log line with no failures.
 Unanchored regular expressions, where each log line is matched to all five regex

patterns. A dictionary pattern has a lot of match failures.
 Anchored regular expressions, following the dictionary pattern from the unan-

chored expression test case.

#!/usr/bin/env ruby
require 'benchmark'

log_examples = [
  'Added account 1141 in zone 42 with email

    ➥ twitterbot@example.com',                
  'Account 1141 deleted from zone 37',        

Listing 11.1 Benchmarking regexes with anchoring and dictionaries

"Suspended zone 42 account 1141 for excessive email volume"

(?<acct_action>\w+) zone (?<zone_id>\h+) account (?<acct_id>\d+) for (?<suspension_reason>.*)

"Created new zone: 99"

(?<zone_action>\w+) new zone: (?<zone_id>\h+)

"Zone 98 deleted"

Zone (?<zone_id>\h+) (?<zone_action>\w+)

Figure 11.3 Matching regular expressions for the remaining three log lines of our example set. 
This sort of natural-language logging is easy to parse visually but leaves much to be desired when 
we’re attempting to parse it by computer.

Our example 
log lines

https://regex101.com/
https://regex101.com/
http://www.regexplanet.com/%22
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  'Suspended zone 42 account 1141 for excessive email volume',    
  'Created new zone: 99',    
  'Zone 98 deleted',                                              
 ]
iter = 1000000    

rbase = [
  Regexp.new('(?<acct_action>\w+) account (?<acct_id>\d+) in zone
   ➥ (?<zone_id>\h+)with email (?<email_address>.*)'),              
  Regexp.new('Account (?<acct_id>\d+) 
   ➥ (?<acct_action>\w+) from zone (?<zone_id>\h+)'),              
  Regexp.new('(?<acct_action>\w+) zone (?<zone_id>\h+) account
   ➥ (?<acct_id>\d+)for (?<suspension_reason>.*)'),                  
  Regexp.new('(?<zone_action>\w+) new zone: (?<zone_id>\h+)'),      
  Regexp.new('Zone (?<zone_id>\h+) (?<zone_action>\w+)')            
]

ranchor = [
  Regexp.new('^(?<acct_action>\w+) account (?<acct_id>\d+) in
   ➥ zone (?<zone_id>\h+) with email (?<email_address>.*)$'),     
  Regexp.new('^Account (?<acct_id>\d+) 
   ➥ (?<acct_action>\w+) from zone (?<zone_id>\h+)$'),            
  Regexp.new('^(?<acct_action>\w+) zone 
(?<zone_id>\h+) account (?<acct_id>\d+) for 
   ➥ (?<suspension_reason>.*)$'),                                 
  Regexp.new('^(?<zone_action>\w+) new zone: 
   ➥ (?<zone_id>\h+)$'),                                          
  Regexp.new('^Zone (?<zone_id>\h+) 
   ➥ (?<zone_action>\w+)$')                                        
]
Benchmark.bmbm do |rep|
  rep.report("Plain Regex-match") {              
    for m in 1..iter                             
      for q in 0..4                               
        log_examples[q].match?(rbase[q])           
      end                                       
    end                                          
  }                                            
  rep.report("Anchored Regex-match") {        
    for m in 1..iter                          
      for q in 0..4                             
        log_examples[q].match?(ranchor[q])    
      end                                     
    end                                       
  }                                             
  rep.report("Plain Regex-dictionary") {     
    log_examples.each do |sl|                  
      for m in 1..iter                       
        rbase.each do |relist|                  
          sl.match?(relist)                  
        end                                    
      end                                    
    end                                        
  }                                           

Our example 
log lines

Number of iterations to 
loop through in runs

Unanchored 
regexes for testing, 
precompiling to 
ensure that we 
don’t compile 
during tests

Anchored regexes 
for testing, also 
precompiling

Test case 1: 
Unanchored 
direct matches

Test case 2: 
Anchored direct 
matches

Test case 3: 
Unanchored 
regexes in a 
dictionary
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  rep.report("Anchored Regex-dictionary") {     
    log_examples.each do |sl|                   
      for m in 1..iter                          
        ranchor.each do |relist|                 
          sl.match?(relist)                    
        end                                   
      end                                        
    end                                        
  }                                             
end

Anchoring is the simple act of putting the beginning-of-string (^) and end-of-string
($) markers in your pattern. Put two characters at the beginning and end of your pat-
terns, and you can see serious speed improvements. This change is the simplest you
can make to your regexes to get speedups.

NOTE Anchoring works only when you are matching the whole string. If your
patterns are matching substrings, anchoring will be much less helpful. If your
substring is always at the beginning (^) or end ($) of your string, using one of
the anchors will still help.

Two of our four test cases mention a dictionary pattern, in which each known regular
expression is matched against each log line coming through for enrichment. In our
case, with five log lines and five expressions, test cases 3 and 4 loop through the bench-
mark and will result in 25 attempts at matching. Figure 11.4 illustrates this dictionary-
pattern process.

The dictionary pattern in figure 11.4 seems to be horribly inefficient, and it is. But if
your enrichment tooling can’t filter strings before attempting to match them against
their exact regex, this technique will get you the enrichment you want. There are bet-
ter ways to do this, ways that take a lot more work, and section 11.4 provides the best
way to use regexes on emissions from code you manage (if you have to use regexes).

 Now let’s look at some benchmarking results that show how anchoring affects per-
formance. Figure 11.5 compares the performance of the direct-match and dictionary-
match patterns using Ruby 3.0 and shows how anchoring changes both patterns.

Test case 4: 
Anchored 
regexes in a 
dictionary

"Zone 98 deleted"

(?<acct_action>\w+) account (?<acct_id>\d+) in zone (?<zone_id>\h+) 
with email (?<email_address>.*)

Account (?<acct_id>\d+) (?<acct_action>\w+) from zone (?<zone_id>\h+)

(?<acct_action>\w+) zone (?<zone_id>\h+) account (?<acct_id>\d+) for 
(?<suspension_reason>.*)

(?<zone_action>\w+) new zone: (?<zone_id>\h+)

Zone (?<zone_id>\h+) (?<zone_action>\w+)

Figure 11.4 The dictionary pattern of regex matching. Each incoming piece of telemetry is 
compared with the set of regexes. Here, we see that the last regex matches (darker arrow) after 
four failures. When using the dictionary pattern, you want to put your regexes with the highest 
likelihood of matches at the top and your regexes with the lowest likelihood of matches lower.
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Remember that the regex-match tests are comparing each log line directly with its
matching regex, so they will have no failed matches. This scenario represents the best
case, and we can see that anchoring provides no significant benefit. This benchmark
uses the Ruby regular-expression engine, but regex engines in other languages per-
form a bit differently. If you’re building a custom Shipping-stage parser, definitely test
your platform’s regex engine to see how performance differs.

 The regex-dictionary tests follow the pattern shown in figure 11.4. Each log line is
compared with all five regexes, so each log line will cause four match failures and one
match success. This scenario represents the worst case, and we see a radical speedup
when anchors are used, making for 41.2% faster performance! When we performed
this optimization, we saw 12% improvement because we ordered our dictionary of
regexes so that the most common log lines were at the top of the list, and our entire
dictionary didn’t need to be parsed for each line nearly as often. The difference
between

Zone (?<zone_id>\h+) (?<zone_action>\w+)

and

^Zone (?<zone_id>\h+) (?<zone_action>\w+)$

makes for significant performance increases and is a small change. This speed
increase is entirely attributable to the anchors, because they tell the regex engine to
start matching at the beginning of the string instead of walking through the string
looking for anything that matches. Fast failures make for a faster telemetry pipeline.
We have other ways to achieve faster failures, which we talk about in section 11.2. 

Figure 11.5 Benchmarking results from listing 11.1 showing speed results for four different tests. 
We see that for the Ruby regular-expression engine, anchoring provides radical speed improvements 
versus unanchoring when using a regex dictionary and for straight matches, a negligible difference 
in performance.
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11.2 Building expressions to fail fast
A fast regular expression is one that tells the regex engine to stop trying to match a bad
string as fast as possible. More speed is found by reducing the options the regex
engine has to work through. Using string anchors like the beginning-of-string (^) and
end-of-string ($) markers, as discussed in section 11.1, is a powerful way to get a fast
failure. This section is about more ways to make your regex engine stop match
attempts faster.

 Before I go into specific techniques, I need to talk a little about how matching
works with a regex engine. These engines try hard to find any match in a given string
and will backtrack across the string to find matches if that’s what it takes. Let’s look at
a simple regular expression and see how it handles the matching process for a string.
Here are the regular expression and the string it will match in figure 11.6:

.*Account: (?<acct_id>\d+?).*Zone: (?<zone_id>\h+?)
2028-02-19T14:08.232 Account: 1121 Region: EMEA Zone: 42

Isn’t email_address technically personally identifiable information? 
Why are we looking at that?
Under European privacy regulations, email addresses are now considered to be PII
and therefore are subject to special handling procedures, so you should stop using
email addresses in your logging statements. Chapter 16 covers the topic of handling
regulated data like email addresses, but handling regulated data well requires you to
know that it’s there.

The regular-expression parsing you did in this section will leave you with a field called
email_address. Then your Shipping stage can directly handle redacting or masking
this field as appropriate. It’s better to not emit this data, but if you’re cleaning up
after bad habits, the techniques here set you up to do better.

Exercise 11.1
Using https://regex101.com, build a regular expression that will match the following
two lines. Copy both lines into the test-string field, and build your regular expression
in the regular-expression field. The match-information field will tell you what your
matches are, and the site will colorize your matched strings. Use named capture
groups to grab the action, the application ID, response code, and the log level.

[INFO] Sent API callback to APPID 1141, response 200
[WARN] Sent API callback to APPID 96821, response 503

On the left is a regex debugger that will show you the steps that your expression takes
to reach a match.

https://regex101.com/
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Figure 11.6 shows the 49 attempts the regex engine made to make a match with our
example string. We also see that most of the attempts were caused by the .* at the
beginning of the string, because this part of the expression matched the whole string,
and the regex engine had to back through the string one character at a time before
finding a match for the next part of the expression. This example illustrates greediness;
it grabs everything and slowly gives characters back until the next match happens.

Also note what happened with the \d+? expression as part of the acct_id capture.
This matches base-10 digits, and the ? modifier makes it step forward one character at
a time until it runs out of digits. The plus operator is also greedy, but adding the

Figure 11.6 The series of match attempts for our example regex and a given string. Match 
attempts are boldfaced; captured fields have squares around them. We see that .* matches the 
whole string immediately, and the regex engine backs the match up one character at a time until 
it finds 'Account: '. The process is repeated with the second .* until it matches 'Zone: '.
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question-mark operator makes it lazy; it takes one additional character at a time until
the next match happens.

WARNING Using greedy operators like .* (dot-star) and .+ (dot-plus) is quite
dangerous for performance. If you are building regular expressions for telem-
etry enrichment, use only .* (or any other format, such as \d* or \w*) if you
mean “Match everything past this point.” Even better, use .*$ or .+?, pairing
.* or .+ with the end of string marker ($) to further hint to the regex engine
that you intend to match everything else. Using .* or .+ anywhere in the
middle of an expression will slow performance in most cases. Consider using
.+? (dot-plus with question-mark) instead; this operator is lazy, so it will step
forward in the string until it finds the next match.

Believe it or not, figure 11.6 is a simplified view of what happens! When you give a
character range for matching, such as \d for 0-9 and \h for 0-9 & a-f, the regex
engine will attempt to match the next charac-
ter with each character in the range until it
finds a match. Figure 11.7 visualizes this for
matching \h+? with Zone: 42.

 We see in figure 11.7 that the example
regex engine took six tries to match 42. If we
combine using greedy and lazy operators with
taking care to limit the character set, we can
give the regex engine many clues that it should
stop trying to find a match for a string that
won’t ever match. We can do more to help so
long as we know what kind of telemetry data
we will be operating with. The string our examples were matching, Account: 1121
Region: EMEA Zone: 42, had a Region: entry in the middle of our two capture state-
ments for acct_id and zone_id. The regex we tested in figure 11.6 had a greedy .* to
skip this telemetry we don’t care about, which resulted in match failures before find-
ing Zone:. If we know what values Region: will have, we can tune the regex engine to
match faster (changes in boldface):

.+?Account: (?<acct_id>\d+?) Region: .{2,4} Zone: (?<zone_id>\h+?)

The .{2,4} construct tells the regex engine to accept any group of two to four charac-
ters, and we don’t capture the characters. Placed this way, the engine will match any
characters between the space characters. With this regex, figure 11.6 turns into fig-
ure 11.8.

 Figure 11.6 required 49 match attempts before matching the entire string, whereas
our revised regex in figure 11.8 needs only 35. Most of the savings came from starting
the expression with .+? (dot-plus question-mark) instead of .* (dot-star), with the rest
coming from our optimization with Region:. This regex is well optimized for the

Test: `Zone: 4` == `Zone: 1`   Fail
Test: `Zone: 4` == `Zone: 2`   Fail
Test: `Zone: 4` == `Zone: 3`   Fail
Test: `Zone: 4` == `Zone: 4`   Pass
Test: `Zone: 42` == `Zone: 41` Fail
Test: `Zone: 42` == `Zone: 42` Pass

Figure 11.7 Regular-expression matching 
for ranges, here using \h to match base-16 
numbers. We see the regex engine iterating 
through the numbers until it matches 
the string before moving on to the next 
character. Overly large character ranges 
will harm regex-engine performance, so use 
narrow ranges to speed your performance.
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successful case, but if we wanted to optimize it to fail fast we would embrace the
timestamp at the front of the string and apply anchoring:

^2.+?Account: (?<acct_id>\d+?) Region: .{2,4} Zone: (?<zone_id>\h+?)$

When we add ^2 to the beginning of the string, our regex engine can tell within two
tries whether it is worthwhile to match this string. That’s failing fast, all right! If a Java
stack dump is in the telemetry stream, starting with a tab character or other
whitespace, adding ^2 to the beginning of our regex will make those lines fail
extremely fast.

 This method is highly useful when using the dictionary pattern. Match each telem-
etry line with a list of regexes, described in section 11.1. Because the beginning-of-string
marker followed by 2 is extremely simple and fast to test, you can use it as a filter for the
more complex dictionary regexes. Listing 11.2 presents a mockup of how this works in
Logstash, with the regex plugin Grok.

 
 
 

Figure 11.8 Regex matching attempts for our better-optimized regular expression. Matches are 
boldfaced; field captures have boxes. Unlike in figure 11.6, we see no evidence that the regex engine 
backtracked in the string during processing; progress is always forward. By handling the Region: data 
in the regex, we reduce the number of attempts the regex engine has to make to confirm a match.
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filter {
  if [message] =~ "^2" {   
    grok {
      match => {
        "message" => [     
          "regex1"     
          "regex2"    
          "regex3"     
        ]              
      }
      tag_on_failure => "_regex_fail"  
    }
  }
}

The grok {} block, which is the Logstash regex plugin, will run only if the string
being tested begins with the digit 2. Grok operates in order, so each regex will be
tested until one matches; the rest of the patterns will be not tested. Rather than have
three regexes each test and fail, by applying the filter before the Grok block, we
ensure that the string is tested only once, and fails, and execution moves on to other
things. Figure 11.9 shows this conditional in action.

TIP Using a simple, fast regular expression to test whether to try a far more
complex regex is an effective method for reducing the performance hit of
using regular expressions.

Listing 11.2 Example Grok statement gated by a regex-using filter

This regex test must succeed 
for the grok {} block to run.

The dictionary 
pattern

Tagging failures eases improving 
the regexes and filter.

"2028-02-19T21:58:23.192 Account: 15202 Region: APAC Zone: a19"

"          at java.net.SocketInputStream.read(SocketInputStream.java:59"

if [message] =~ "^2"
grok {
[...]
}

Yes

Skip Next Statement

   No

Figure 11.9 Two strings being tested by our Logstash config: one regular log statement (dashed line) 
and one component of a Java stack dump (dotted-dashed line). Because our regular log statement 
begins the string with a 2, it is sent to Grok for parsing. Our Java stack-dump component does not 
begin with a 2, so Logstash skips Grok for this statement. The conditional prevented running rather 
more complex regular expressions on our stack dump and speeded the logging pipeline.
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11.3 Digging into the Cisco ASA firewall telemetry
Now that we have anchoring (section 11.1) and failing fast (section 11.2) down, this
section examines using regular expressions with some telemetry we worked with
during part 1: the telemetry coming from Cisco ASA firewalls. (For a look at what this
enrichment work enables, see section 5.2.) We will look at three ways to parse this
telemetry, including the method from section 6.2.2. This section will show the differ-
ence in performance between easy regular expressions and complex optimized ones,
and discuss why overoptimization doesn’t always pay off in improvements.

WARNING This section will show you why you want to benchmark your regu-
lar expressions. Optimizing your expressions so that the regular-expression
engine can find (or fail to find) a match in the fewest steps is useful, but
sometimes, overhead in your programming language is more expensive.

Our Cisco ASA firewall telemetry enters the pipeline through Syslog, which is what
Cisco ASA speaks. Here is an example string (the colon after %ASA is the delimiter
between the Syslog telemetry and the Cisco telemetry):

Feb 19 02:26:26 asa1.net.prod.internal %ASA1: Teardown of UDP connection

➥ 162121 for outside:1.1.0.0/53 to dmz1:192.0.2.19/59232 duration 0:00:00

➥ bytes 136

Listing 6.3 in section 6.2.2 provided an example of grok {} parsing of this string.
(Section 6.2.2 also gave a much faster nonregex method of parsing the string.). But
that regular expression was inefficient to fit the page and teach, so we’re going to look
at how to change the regular expression matching this example string, using what we
learned earlier in this chapter. Table 11.1 shows three regular expressions that extract
the same number of fields but are written in increasingly optimized ways.

 3-pass—Matches the method used in section 6.2.2, where the regex engine does
a first matching pass and then performs a second and third pass on fields
extracted in the first pass. This expression is the simplest to understand and the
worst-performing.

 1-pass—This expression gathers all the fields that 3-pass did, using the same
regex capture groups, in a single expression and a single pass.

 1-pass slimmed—The 1-pass version, with lengths specified for each regex compo-
nent to further guide the regex engine on what kind of strings to expect. This
expression is the most complex statement and should be the best-performing
(but isn’t).
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Table 11.1 Three regex variations matching Cisco ASA telemetry

String to match 3-pass (first pass)
3-pass (second and 

third passes)
1-pass 1-pass slimmed

‘Teardown of ‘ ‘Teardown of ‘ ‘Teardown of ‘ ‘Teardown of ‘

UDP (?<protocol>
\w+?)

(?<protocol>
\w+?)

(<protocol>
[A-Z]{3})

‘ connection ‘ ’ connection ‘ ’ connection ‘ ’ connection ‘

162121 (?<conn_id>
\d+?)

(?<conn_id>
\d+?)

(?<conn_id)
\d+?)

’ for ‘‘ ’ for ‘ ’ for ‘ ’ for ‘

outside:1.1.0.0/
53

(?<source>
\S+?)

outside (?<source_int>
\w+?)

(?<source_int>
\w+?)

(?<source_int>
\w{1,8}

1.1.0.0 (<source_ip>
\S+?)

(<source_ip>
\S+?)

(?<source_ip>
\S{7,15})

53 (?<source_port>
\d+)

(?<source_port>
\d+)

(?<source_port>
\d{1,5})

’ to ‘ ’ to ‘ ’ to ‘ ’ to ‘

dmz1:192.0.2.19/
59232

(?<target>
\S+?)

dmz1 (?<target_int>
\w+?)

(?<target_int>
\w+?)

(?<target_int>
\w{4,8})

192.0.2.19 (?<target_ip>
\S+?)

(?<target_ip>
\S+?)

(?<target_ip>
\S{7,15})

59232 (?<target_port>
\d+?)

(?<target_port>
\d+)

(<target_port>
\d{1,5})

’ duration ‘ ’ duration ‘ ’ duration ‘ ’ duration ‘

0:00:00 (?<duration>
\S+?)

(?<duration>
\S+?)

(?<duration>
\d{1,2}:\d{2}:
\d{2})

’ bytes ‘ ’ bytes ‘ ’ bytes ‘ ’ bytes ‘

136 (?<bytes>
\d+)

(?<bytes>\d+) (?<bytes>\d+)
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To show how these three regexes perform, we’re going to compare them with four
strings:

 hardfail—Obvious failing match

 halfmatch—Teardown of TCP connection 113121 SYNTAX ERROR

 substringmatch—Feb 19 02:26:26 asa1.net.prod.internal %ASA1:

Teardown of UDP connection 162121 for outside:1.1.0.0/53 to

dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136

 fullmatch—Teardown of UDP connection 162121 for outside:

1.1.0.0/53 to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136

We will also be comparing anchored versions of each regex (see section 11.1 for a
description) to demonstrate how anchoring works with the optimizations here. As
mentioned in section 11.1, anchoring is most useful for getting the regular-expression
engine to stop attempting to match a string that won’t match but makes matching
against a true match slightly slower.

 Figures 11.10–11.13 are generated from data from the cisco-regex.rb script in
the CH11 folder of the Git repository for this book (http://mng.bz/oGJD). This script
is similar in form to what you saw in listing 11.1 but made for the case we are testing
in this chapter. It tests all three regex patterns against the four strings described
earlier.

 Figure 11.10 shows how the three regexes, including two more to test anchoring,
perform against the hardfail string. The 3-pass variant used in section 6.2.2 performs
worst of the bunch by quite a bit. The extra code (nonregex) conditionals needed to
test whether to try to perform the second and third passes take enough extra time to
make matching more than twice as slow. The difference between the anchored ver-
sions and unanchored versions is visible, if slight. When I run this test with an older
version of Ruby, the differences go away.

 But the 1-pass-slim variant—the one that uses range expressions like \w{2,6}
instead of the lazy operator like \w+?— performed worse than the 1-pass variant. The
effect is slight, about 4.8%, but there. Explaining why requires looking into what hap-
pens during matching.

 All the 1-pass regex variants start with either the letter T or the anchored expres-
sion ^T. The anchored versions will look for the beginning of string, followed by a T,
which "Obvious failing match" doesn’t have; the match fails after two steps. The
unanchored version will start at the beginning of "Obvious failing match", step for-
ward one letter at a time, and not find a T anywhere. Because we’re not seeing a 23×
difference in performance, this benchmark clearly is including some form of over-
head from the language (Ruby). The longer and more complex 1-pass-slimmed regu-
lar expression adds more overhead than it saves, at least in the hardfail case.
Definitely test your regex engine to see how it performs! Let’s see whether this prob-
lem continues.

http://mng.bz/oGJD
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Figure 11.11 shows how each of our three regexes performs against the halfmatch
string, which includes the first part of the full string. This test is a different match-failure
case, in which the string being tested conforms to the regex expectations (to a point).
We don’t expect anchoring to help with this test, because the beginning of the string
matches for a few components in the regex, and we see that the anchored expressions
perform a bit slower than the unanchored versions (about 2.1%, which is slightly above
the margin of error).

 Did we see the same performance regression for the slimmed versions? You can’t
see it in figure 11.11, but the 1-pass-slimmed version was 1.4% slower than the simpler
1-pass, which is right on the margin of error. The “More complex regexes slow match
speed” hypothesis, however, finds new data in the anchored expressions. Here,
anchoring merely adds a single step to the beginning, so the impact should be mini-
mal, but that’s not what we see. The 2.1% performance regression versus the unan-
chored versions can be explained by the overhead of the longer regex itself.

 The next string is our substringmatch. Figure 11.12 shows the performance of
each regex versus the substringmatch string, where the tested string contains our
telemetry but the whole string does not match. Anchoring will not help here, because
we’re not expecting a whole-string match for the regex, so the anchoring variants
should perform similarly to the failure patterns in previous figures. As we see, that’s
the case here.

Figure 11.10 Regex timings for the hardfail string. This example tests how efficient each regex is 
at failing fast. We see that the 3-pass regex is terrible at that task. Different regular-expression engines 
behave differently, so definitely test yours.
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Figure 11.11 Regex speeds for the halfmatch that includes a portion of the full string. This 
example tests how efficient each regex is about failing fast in a string that has some, but not 
all, matches. Once again, the 3-pass regex is the slowest by far. The anchored expressions 
performed slightly worse than the unanchored versions.

Figure 11.12 Regex speeds for the substringmatch, where the string contains what the 
unanchored regexes expect but not the anchored versions. This example tests performance of partial 
string matches. Anchored versions should fail because anchoring implies a full-string match. We see 
that the most-optimized expression, 1-pass-slim, doesn’t perform better than the 1-pass version!
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We also see an unexpected spread in performance for the variants that did match.
3-pass remains the slowest of the bunch but is now extremely slow, coming in at three
times as slow as the 1-pass variant. The optimization we spent on character expecta-
tions in the 1-pass-slimmed variant hurt overall performance; that version performed
19% slower than 1-pass. Clearly, the time we spent optimizing the 1-pass-slim variant
wasn’t worthwhile for the substring match case; the variant slows everything.

 Finally, let’s look at whole-string match performance, which is the happy path of all
five versions. Figure 11.13 shows how each regex performs against a string that will
fully match it. We see the same general pattern we saw in figure 11.11 and the sub-
stringmatch, but this time the anchored expressions are performing equivalently to
their unanchored versions. The easy-to-understand 3-pass version performs abysmally
compared with the others. Once again, 1-pass-slimmed performs worse than 1-pass
(about 22% worse).

The performance I show here is Ruby, which is what both Fluentd and Logstash are
written in. For Ruby, shorter regular expressions perform better than longer but more
tightly scoped ones. As you build your own telemetry systems, absolutely benchmark
how your programming language performs under these conditions! Assumptions can
be wrong, and overoptimizing can make things worse.

Figure 11.13 Regex speeds for the fullmatch string, testing the complete-match case. All 
regexes succeed in this test.
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 Given what we’ve seen here, we’ve learned a few things:

 The more optimized the regular expression, the harder it is to understand what
it is doing.

 When you’re using chained regexes, the 3-pass regex pattern is terrible for per-
formance. It’s better to merge the patterns into a single one (the 1-pass pat-
tern) if you value speed over maintainability.

 Supplying length expectations in your regex (such as [a-z]{3,8} for three to
eight lowercase characters) means that the regular-expression engine takes
fewer steps to find a match versus the lazy operators (+?; start at 1 and move
forward).

 Anchoring is extremely effective when a portion of the string being tested would
otherwise match the regex; it turns a soft failure into a full failure faster. If you
intend to match only full strings, anchoring will speed things markedly.

 The size of the regular expression factors into overall performance, so bench-
mark your system to determine how big a problem this is. For Ruby at least,
shortness matters more than fewer regex steps. 

Exercise 11.2
The regular-expression visualizer at https://regex101.com is quite useful for optimiz-
ing expressions. Use it to see for yourself how the four 1-pass variants perform
against the four test strings. Tip: Change the delimiter from forward slash (/) to tilde
(~) to avoid having to escape the forward slashes in your regexes.

Test strings

 hardfail—Obvious failing match
 halfmatch—Teardown of TCP connection 113121 SYNTAX ERROR
 substringmatch—Feb 19 02:26:26 asa1.net.prod.internal %ASA1:

Teardown of UDP connection 162121 for outside:1.1.0.0/53 to
dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136

 fullmatch—Teardown of UDP connection 162121 for outside:
1.1.0.0/53 to dmz1:192.0.2.19/59232 duration 0:00:00 bytes 136

Regular expressions

 1-pass—Teardown of (?<protocol>\w+?) connection (?<conn_id>\d+?) 
for (?<source_int>\w+?):(?<source_ip>\S+?)/(?<source_port>\d+?) 
to (?<target_int>\w+?):(?<target_ip>\S+?)/(?<target_port>\d+?) 
duration (?<duration>\S+?) bytes (?<bytes>\d+)

 1-pass-anchored—^Teardown of (?<protocol>\w+?) connection 
(?<conn_id>\d+?) for (?<source_int>\w+?):(?<source_ip>\S+?)/ 
(?<source_port>\d+?) to (?<target_int>\w+?):(?<target_ip>\S+?)/ 
(?<target_port>\d+?) duration (?<duration>\S+?) bytes 
(?<bytes>\d+)$

https://regex101.com
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11.4 Refining emissions to speed regular-expression performance
The best way to speed regular-expression performance is to get rid of the regular
expressions and use a different method of enriching your telemetry. Unfortunately,
not everyone works where replacing a major part of the telemetry system is viable.
This section talks about making the best use of what you have, giving you time to work
on the far harder problem of changing how you handle centralized logging in your
production code. The techniques here are for code you manage, so you control the
emission format.

 Sections 11.1–11.3 gave us several techniques to speed regular-expression
performance:

 If you are matching entire strings, using the beginning-of-string (^) and end-of-
string ($) markers can seriously accelerate performance when using a regex
dictionary.

 Using the greedy operators (* and +) at the end of a string prevents a major
performance regression. Instead, use the lazy operator (+? for one or more
matches; *? for zero or more matches) for midstring matches.

 Specifying lengths in your regular expressions (such as \d{3,7} for three to
seven base-10 digits) will shorten the number of match attempts the regex
engine makes. This advantage is balanced by the cost of the longer regex string
itself; overoptimization can reduce speed, benchmarking is the only way to
judge you’ve found the correct balance.

 Pretesting strings with an easy regex (such as ^20[2-3][0-9] for matching only
lines beginning with a timestamp with year) before applying your complex,
optimized regex dictionary reduces expensive match failures.

 1-pass-slimmed—Teardown of (?<protocol>[A-Z]{3}) connection 
(?<conn_id>\d+?) for (?<source_int>\w{1,8}):(?<source_ip>\ 
S{7,15})/(?<source_port>\d{1,5}) to (?<target_int>\w{4,8}): 
(?<target_ip>\S{7,15})/(?<target_port>\d{1,5}) duration 
(?<duration>\d{1,2}:\d{2}:\d{2}) bytes (?<bytes>\d+)

 1-pass-slimmed-anchored—^Teardown of (?<protocol>[A-Z]{3}) 
connection (?<conn_id>\d+) for (?<source_int>\w{1,8}): 
(?<source_ip>\S{7,15})/(?<source_port>\d{1,5}) to 
(?<target_int>\w{4,8}):(?<target_ip>\S{7,15})/
(?<target_port>\d{1,5}) duration (?<duration>\d{1,2}: 
\d{2}:\d{2}) bytes (?<bytes>\d+)$

On the left side of Regex101 is a link to a Regex debugger that will let you walk
through all the match steps each expression follows while attempting a match.
Regex101 uses Perl-flavored regex by default, which is close enough to Ruby-flavored
that these expressions should not need translation.
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Section 11.1 also gave us a set of five example log emissions that I used to talk about
how anchoring speeded things:

Added account 1141 in zone 42 with email twitterbot@example.com
Account 1141 deleted from zone 37
Suspended zone 42 account 1141 for excessive email volume
Created new zone: 99
Zone 98 deleted

If the only telemetry components you control are the emissions themselves and the
regular expressions that match them, what can you do to improve your event through-
put? These five samples came into being when five software engineers found the need
to write a log statement and wrote their statements on the spot, using the grammar
that popped into their heads at the moment. There are no standards here beyond nat-
ural language. Looking at the five log lines, we see that the top three involve actions
on accounts:

Added account 1141 in zone 42 with email twitterbot@example.com
Account 1141 deleted from zone 37
Suspended zone 42 account 1141 for excessive email volume

The bottom two involve actions on zones:

Created new zone: 99
Zone 98 deleted

What if we prepended a string to indicate account or zone and then pretested each
log line against those strings?

[account] Added account 1141 in zone 42 with email twitterbot@example.com
[account] Account 1141 deleted from zone 37
[account] Suspended zone 42 account 1141 for excessive email volume
[zone] Created new zone: 99
[zone] Zone 98 deleted

We could place the account regexes under a conditional that tests for ^\[account\]
and the zone regexes under a conditional that tests for ^\[zone\], which would mean
the log lines about zone actions would never be compared with the account regexes.
When we test for exact strings, not ranges, and use the beginning-of-string marker (^),
we make these pretests extremely fast.

 Listing 11.3 is an excerpt from another benchmarking script that I’ll use to show
the difference in performance between what we saw back in section 11.1 and what
happens after we pretest the string against two regex dictionaries. Listing 11.3 pro-
vides the key code for the benchmark test case of the split version.
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[...]
split_examples = [
  '[account] Added account 1141 in zone 42 with email 

    ➥ twitterbot@example.com',
  '[account] Account 1141 deleted from zone 37',
  '[account] Suspended zone 42 account 1141 for excessive email volume',
  '[zone] Created new zone: 99',
  '[zone] Zone 98 deleted',
]

raccount = [
  Regexp.new('^\[account\] (?<acct_action>\w+) account 

   ➥ account (?<acct_id>\d+?) in zone (?<zone_id>\h+?) with email 

   ➥ (?<email_address>.*)$'),                                    
  Regexp.new('^\[account\] Account (?<acct_id>\d+?) 

   ➥ (?<acct_action>\w+?) from zone (?<zone_id>\h+)$')              
  Regexp.new('^\[account\] (?<acct_action>\w+?) zone

   ➥ (?<zone_id>\h+?) account (?<acct_id>\d+?) for 

   ➥ (?<suspension_reason>.*)$'),                                
]

rzone = [
  Regexp.new('^\[zone\] (?<zone_action>\w+?) new zone: 

   ➥ (?<zone_id>\h+)$'),                              
  Regexp.new('^\[zone\] Zone (?<zone_id>\h+?) 

   ➥ (?<zone_action>\w+)$')                             
]

isaccount = Regexp.new('^\[account\]')
iszone    = Regexp.new('^\[zone\]')

[...]

  rep.report("Account/Zone split regexes") {
    split_examples.each do |sl|
      for m in 1..iter
        if sl.match?(isaccount)    
          raccount.each do |relist|
            sl.match?(relist)
          end
        elsif sl.match?(iszone)     
          rzone.each do |relist|
            sl.match?(relist)
          end
        end
      end
    end
  }

Now let’s see how performance differs! Figure 11.14 provides the comparison from
testing all five regexes versus testing them in groups based on the prepended string.

Listing 11.3 Excerpt of [appendix script] showing account/zone split

Dictionary 
of Account 
regexes

Dictionary of 
Zone regexes

Pretest conditional to 
determine which regex 
set gets tested.
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Simply splitting our dictionaries by prepending a string took 57% of the time of run-
ning every log line with every anchored regex. A performance improvement like this
one is enough to justify changes to both the log-emitting and log-enrichment systems.
But we can eke even more performance out of this set of log lines. Prepending the
string got us a lot, but our language is still natural language and made by many soft-
ware engineers. Our three account log lines

[account] Added account 1141 in zone 42 with email twitterbot@example.com
[account] Account 1141 deleted from zone 37
[account] Suspended zone 42 account 1141 for excessive email volume

flow cleanly from an English-language point of view, but they convey similar informa-
tion. We have account and zone IDs in each of them, and for two of them, we have
some extra information. If we re-word our log lines with an eye to improving regex
performance, we get

[account] Added account 1141 in zone 42 with email domain example.com
[account] Deleted account 1141 in zone 37
[account] Suspended account 1141 in zone 42 for excessive email volume

This step is a great place to look at what you are logging and make changes. Here, we
are no longer logging the email address used to create an account because email
addresses are now private information. This is still natural language, but it is also far
easier to parse with regular expressions.

Figure 11.14 Two techniques for applying regular expressions to a list of five example log items. 
The top bar is performing a beginning-of-string test for either [account] or [zone] before 
attempting to capture telemetry from the log data. The lower bar is testing all regular expressions 
against each log line. We see a radical improvement in the time it takes to process our example log 
lines by pretesting and splitting the regular expressions.
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^\[account\] (?<acct_action>\w+?) account (?<acct_id>\d+?) in zone

➥ (?<zone_id>\h+?)\S?(?<acct_extra>.*)$

This code is somewhat complex, but note that \S? means “Match zero or more
whitespace characters,” and the final (?<acct_extra>.*$) means “Match everything
else in the string.” This construction allows the Deleted log line, which has no extra
text, to be matched while also matching the Added and Suspended cases. Depending
on your regex engine’s specifics, acct_extra will be null, undefined, or an empty
string if it isn’t matched, as in the Deleted case. Table 11.2 provides a side-by-side look
at this unified regex and shows how it matches all three log lines.

Now let’s do the same for the pair of zone log lines:

[zone] Created new zone: 99
[zone] Zone 98 deleted

These lines can easily be turned into

[zone] Created zone 99
[zone] Deleted zone 98

which makes for a nicely simple regex:

^\[zone\] (?<zone_action>\w+?) zone (?<zone_id>\h+)$

If we update our benchmarking script to add a third case, using these singular unified
regexes in place of the prepended one, we can compare how all three cases work. List-
ing 11.4 shows the additions to the code in listing 11.3 that adds our new test case.

 
 

Table 11.2 Unified account regex capturing all three log lines

Log line 1 Log line 2 Log line 3 Regex

‘[account] ’ ‘[account] ‘ ‘[account] ‘ ‘^\[account\] ‘

‘Added’ ‘Deleted’ ‘Suspended’ (?<acct_action>\w+?)

‘ account ‘ ‘ account ‘ ‘ account ‘ ‘ account ‘

‘1141’ ‘1141’ ‘1141’ (?<acct_id>\d+?)

‘ in zone ‘ ‘ in zone ‘ ‘ in zone ‘ ‘ in zone ‘

‘42’ ‘37’ ‘42’ (?<zone_id>\h+?)

‘ ‘ ’’ ’ ’ \S?

‘with email domain 
example.com’

’’ ‘for excessive 
email volume’

(?<acct_extra>.*)$
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[...]
 unified_examples = [                                     
   '[account] Added account 1141 in zone 42 with eamil 

     ➥ domain example.com',                                  
   '[account] Deleted account 1141 in zone 37',            
   '[account] Suspended account 1141 in zone 42 for 

     ➥ excessive email volume',                            
   '[zone] Created zone 99',                              
   '[zone] Deleted zone 98'                                 
 ]                                                         

[...]

eaccount = Regexp.new('^\[account\] 
(?<acct_action>\w+) account (?<) in zone 

 ➥ (?<zone_id>\h+?)\S?(?<acct_extra>.*)$')    
ezone    = Regexp.new('^\[zone\] (?<zone_action>\w+?) 

 ➥ zone (?<zone_id>\h+?)$')   

isaccount = Regexp.new('^\[account\]')
iszone    = Regexp.new('^\[zone\]')

[...]

  rep.report("Account/Zone unified regexes") {
    unified_examples.each do |sl|
      for m in 1..iter
        if sl.match?(isaccount)
          sl.match?(eaccount)
        elsif sl.match?(iszone)
          sl.match?(ezone)
        end
      end
    end
  }

First, each log line will be pretested to see whether it is an account- or zone-style log
line; then it is compared with the single unified regular expression for that type. This
example should perform better because it isn’t trying multiple regexes for each log
line. Let’s see how different it is. Figure 11.15 provides a breakdown of performance
for the three test cases.

 Performance has improved markedly once more! Using the unified regular
expressions performed in 56% of the time versus simply prepending a string and split-
ting the tests. Also, the unified regex performed in 32% of the time versus the dictio-
nary pattern of testing each log line against all five regexes. If your production code
and telemetry systems are using regular expressions to this degree, it is well worth
your time to do the optimizations listed here.

 Getting to the most-improved state is a project that spans many phases. The size
and age of your codebase are (sadly) going to determine how much work you have to

Listing 11.4 Excerpt of benchmarking script adding the unified regex case

Example log 
lines to test

Regex for account-
style log lines

Regex for zone-style log lines
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do. The longer a code base has been in existence and the more engineers contributed
to it, the more subtle differences in natural-language logging you will have to investi-
gate. The major project phases are

1 Agree to a set of prepended strings.
2 Agree to a regexable grammar with your team.
3 Update your telemetry system to handle prepended and not-prepended log data.
4 Add your unified regexes for each prepend string to your telemetry system.
5 Convert existing log emissions to the new grammar.
6 When all log emissions are converted, remove support for the old grammar

from your telemetry system.

Let us dig into each phase a bit more.

PHASE 1: AGREE TO A SET OF PREPENDED STRINGS

The prepended strings are the [account] and [zone] in the above example, but you
will need to look at your current logging statements (the ones that are examined by
regex) to determine what common sets you have. If your software product is large, this
analysis will be a cross-team activity. If your organization uses a design review process,
absolutely use that process for this work.

PHASE 2: AGREE TO A REGEXABLE GRAMMAR WITH YOUR TEAM

Now that you have your logging groups (the prepend strings from the first phase),
examine each group to see how you can re-word each statement to allow a single regex

Figure 11.15 Three techniques for testing an example set of five log lines against their matching 
regular expressions. The top bar is the most efficient, using a pretest check for [account] or [zone] 
at the beginning of the string before attempting to capture using a singular regular expression tuned 
to capture all account or zone telemetry. The bottom bar is the worst case, where each log line is tested 
against each regular expression.
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statement. Look at re-wording both the log statement text and your regex sophistication.
It is possible that you will find some log statements that need to be split (or combined)
to work under the proposed grammar, which is fine and will be fixed in a later phase.

PHASE 3: UPDATE YOUR TELEMETRY SYSTEM TO HANDLE PREPENDED AND NOT-PREPENDED LOG DATA

Your telemetry system will need to handle both cases for a while, so this phase sets the
stage for handling the migration. You will be moving entirely to prepend-only in a
later phase. While you are at it, now is a great time to assess where you’re sending pri-
vate data such as email addresses into your logging stream and to stop doing that. (See
chapter 16 for more about private and other regulated data.)

PHASE 4: ADD YOUR UNIFIED REGEXES FOR EACH PREPEND STRING TO YOUR TELEMETRY SYSTEM

Depending on your project, this phase can be combined with phase 3. Log data that
has a prepended string will get matched against one of the unified regexes; the unpre-
pended strings will get matched against the current (inefficient) handling.

PHASE 5: CONVERT EXISTING LOG EMISSIONS TO THE NEW GRAMMAR

Start converting your existing log statements to the new grammar. You can make this
conversion one prepend string at a time, one class at a time—whatever works for you.
You will likely discover during this process that your grammar isn’t sophisticated
enough. That’s fine; update your telemetry system regexes as needed, and keep moving.

PHASE 6: WHEN ALL LOG EMISSIONS ARE CONVERTED, REMOVE SUPPORT FOR THE OLD GRAMMAR

FROM YOUR TELEMETRY SYSTEM

This phase is the last step of the migration process. When all your logging data is con-
verted to the new grammar, remove support for the old grammar from your telemetry
system. This phase makes the telemetry system slightly more efficient because it will
have one fewer compare to perform when processing telemetry data.

 When this project is done and your telemetry is flowing faster, I hope that this effi-
ciency project will earn you enough reputation in your organization to allow you to
push for adopting new telemetry patterns. Organizations that use regex to enrich cen-
tralized logging telemetry data, as we’ve done in this section, are working around a
limitation in their telemetry systems. Rather than pass a single string that you later
have to parse, a better approach is to provide a string and a hash of attributes (correla-
tion identifiers, to use the distributed tracing term), taking the burden of parsing
away from your telemetry systems. The string

“Added account 1411 to zone 42”

turns into

"Added account -- acct_id=1141 zone_id=42"

In this case, a logging string is separated from a string of key-value pairs by a double
dash. (Chapter 12 covers this sort of encoding of standards, if you want to read more.)
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This string is quite easy to split into logging data and enrichment data, much easier
than regular expressions, and with more flexibility. Good luck!

11.5 Additional regular-expression resources
This section points you to tools you can use to explore regular expressions in general.
Many online tools are available for testing regular expressions. Although all the exam-
ples in this chapter use Ruby, there is no guarantee that you will be working with Ruby
when you start fixing the regexes in your telemetry systems.

 https://regex101.com provides a browser-based experience for PHP/Perl,
JavaScript, Golang, and Python-flavored regular expressions. This website also
provides a visual guide to matching expressions and explains the components
of a regex you paste in.

 https://rubular.com provides a browser-based experience for Ruby-flavored reg-
ular expressions. If you don’t have Ruby installed locally and want to see how
the regex in my listings works, this website will be a great help.

 http://www.regexplanet.com provides a wide variety of languages not shown on
Regex101, such as .NET, Java, and Haskel.

If you are looking to get deep into regular expressions, these books will help:

 An Introduction to Regular Expressions, by Thomas Nield (O’Reilly Media, 2019)
 Mastering Regular Expressions, 3rd ed., by Jeffrey Friedl (O’Reilly Media, 2016)
 JavaScript Regular Expressions, by Loiane Groner and Gabriel Manricks (Packt

Publishing, 2015)
 Java 9 Regular Expressions, by Anubhava Srivastava (Packt Publishing, 2017)

Summary
 The best way to optimize your regular expressions is to stop using regular expres-

sions, because regexes are the slowest method of enriching your telemetry.
 Sometimes, you don’t have a choice about using regexes, such as when you’re

re-enriching telemetry coming from hardware and SaaS platforms.
 In telemetry systems, regexes are used for both control flow (determining

which processing and routing events will receive) and enrichment flow (extract-
ing useful fields from telemetry data).

Exercise 11.3
Rewrite the following three log lines into a regexable grammar and provide a regular
expression that will match all three:

Converted 0.192 MB pdf file in 0.89 seconds
Took 1.2 seconds to digitally sign a 0.192 MB pdf file
Successfully uploaded type:pdf size:0.192 time:0.019

https://regex101.com
https://rubular.com
http://www.regexplanet.com
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 Regular expressions are difficult to maintain because tightly scoped expressions
that perform well are often vastly more complex than simple expressions,
reducing the number of people who can maintain them.

 The goal of optimizing regular expressions is to get the regex engine to stop
attempting to match a string that won’t match. You want the attempt to fail fast.
The performance improvements between badly optimized regex and well-
optimized ones is highly significant.

 For badly optimized regexes, the regex engine will take more time with a failing
match than with a successful match. You want to avoid this case wherever you
can.

 Logstash and Fluentd are open source telemetry shipping platforms that have
regular-expression support. Both use Ruby (and Ruby’s regex library) as their
foundation, though Logstash is slowly moving to straight Java.

 If you are doing whole-string matches, adding anchors—the beginning-of-string
(^) and end-of-string ($) markers—to your expression will give you significant
performance improvements when you are testing multiple regexes for each
event.

 If you always compare a string with its exact matching expression, anchors will
slow you slightly.

 The greedy regex operators (* and +) will match to the end of the string and
step back one character at a time until it finds what it is looking for. Use the
greedy operator (such as .*) only when you intend to match the rest of the
string. In that case, .*$ makes that intention explicit.

 The lazy operator (?) modifies a greedy operator to instead add characters
until it runs out of matches. An expression like .*? will match zero or more
characters, adding one at a time. This operator often performs better than the
greedy versions when used in the middle of a regex.

 Using a simple regular expression to test for fitness before trying a far more
complex regex is an effective way to prevent the complex regexes (and the test
failures they bring) from being executed against strings that won’t match.

 Providing explicit length guidance in your capture expressions, such as
[a-z]{3,8} for three to eight lowercase characters, reduces the match attempts
that a regex engine makes but potentially makes matches slower by making the
regex itself more complex.

 Re-wording your logging statements to reduce the number of regexes you need
to use also provides large increases in performance.
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Standardized logging
 and event formats

This chapter focuses on emitting (and parsing) events from your production code.
Chapter 2 was all about the Emitting stage in general, and if you haven’t read it,
this chapter will make less sense. Standardizing the format of telemetry for central-
ized logging and metrics emissions makes your telemetry system easier to maintain
overall. There is a clear up-front cost to building standards—especially if you are
retrofitting standards into an existing group of software—but the results should
provide room to grow.

 Figure 12.1 should be familiar if you’ve read part 1; it describes the various pipe-
line stages for telemetry and the roles each stage plays. The standards we’re talking
about in this chapter are encoded in the Emitting stage and decoded in the Shipping

This chapter covers
 The components of a structured logger

 Building support for a telemetry emissions format 
in your code

 Parsing the telemetry emissions format in your 
Shipping stage
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stage. This encode/decode process also provides a great chance to add context-specific
details (telemetry markup) as part of the Emitting-stage work and to make the process
of extracting additional telemetry from existing telemetry (telemetry enrichment) far
more efficient in the Shipping and Presentation stages. The Presentation stage plays a
minor role in all this standards work, as it passively consumes the finished product.

 Standardizing your emitting formats provides many benefits:

 A well-written set of standards reduces your need to include regular expressions
in your Shipping-stage systems, which will make your telemetry system more
efficient overall. (See chapter 11 for the impact of regular-expression use.)

 Embracing structured logging techniques—mentioned in part in chapter 2 but
explored in depth in section 12.1—gives your Emitting stage far more options
regarding where it sends telemetry data and enables multiple streams of telem-
etry. Structured logging emitters allow sending data over novel channels like
TCP sockets directly, as discussed in chapter 13.

 Taking a systematic look at logging standards gives you tools to fight the prob-
lem of index cardinality in your centralized logging and metrics data stores.
Chapter 14 is your deep dive into managing the cardinality problem.

Telemetry pipeline stages

Shipping stage

Emitting stage

Accepts telemetry from
production systems
and prepares it for use 
inside the telemetry
pipeline  

Processes, transforms,
and ultimately stores 
telemetry for use in the
Presentation stage  

Telemetry 
markup

Telemetry 
enrichment

Adding context-related 
details to telemetry to
improve understanding
of what telemetry is 
telling you  

Transforming telemetry
to bring out details 
embedded within it,
such as deserializing 
JSON or parsing 
strings  Presentation stage

Presents telemetry to
people to support
decision-making,
drawing on Shipping-
stage storage    

Figure 12.1 The Telemetry pipeline stages touched by logging and event standards. The Emitting 
and Shipping stages are deeply connected by standards, because that is where the standards are 
encoded (Emitting) and decoded (Shipping). Also, the concepts of telemetry markup (context-
specific telemetry) and telemetry enrichment (extracting details from existing telemetry) play a key 
role in event-standard building and implementation. The Presentation stage merely consumes the 
results of all this standards work.
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 Structured logging formatters (more on this topic in section 12.1) are where
you can start making your telemetry tamper-evident, providing resistance to
attackers meddling with telemetry. Chapter 15 examines more of the topic of
making telemetry durable in the face of attack.

 By providing a systematic way to add context-related details (markup) as part of
the Emitting stage, telemetry in your Presentation stage will be far more
detailed about when and how an event happened, improving your ability to plug
leaks of regulated information. (See chapter 16 for more on cleaning up after
data spills.)

Standardized logging formats are part of the foundation of a truly robust and efficient
telemetry pipeline. To cover this foundational topic, this chapter is split into three
sections:

 Section 12.1 covers what structured logging is, the components of it, and how to
build a structured logger.

 Section 12.2 covers using structured logging to implement two example logging
standards.

 Section 12.3 covers decoding the two example logging standards in the Shipping
stage, using both a dedicated Shipping-stage product (Logstash) and general-
purpose programming.

12.1 Implementing structured logging in your code
This section covers creating standard emitting formats for your production code and
using structured logging to support the standard. Structured logging is the name for a
systematic approach to handling logging data coming out of an application. Logging
data can be centralized logging, part of a metrics system, and even support tracing.
Chapter 2 covered structured logging in brief. In fact, figure 2.3 broke down the com-
ponents of a structured logger. Part of that figure is reproduced here as figure 12.2.

Logger Formatter WriterProduction
code

Entry point to
telemetry system

Reformats telemetry
for use in Shipping stage

Delivers telemetry to
the Shipping stage

Emitting stage if writing locally,
Shipping if writing remotely

Emitting stage

Figure 12.2 The components of a structured logger: logger, formatter, and writer. Structured 
logging is a built-in feature of most modern programming languages; if it isn’t, support is easily 
added through a module.
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A structured logger has three components:

 A logger, which is where telemetry enters the logging system. This object or func-
tion is called by the production code when it needs to emit telemetry.

 Formatters take the telemetry received from the logger and transform it into
whatever format is needed later in the telemetry system. This is the first place
where telemetry standards are built.

 Writers send formatted telemetry to the next stage in the telemetry pipeline,
which might even be directly to the final storage used by the Presentation-stage
systems.

The three names—logger, formatter, and writer—are general names for the main roles
of a structured logger; each structured logging framework can call these roles different
names. The important concept here is the three components. Although we looked at
some logging examples in chapters 2 and 3, let’s take a look at a new Python listing.
Listing 12.1 gives us a Python-based structured logger using the structlog module.

NOTE To run listing 12.1, you need to install the structlog module (pip3
install structlog), written for Python 3. The structlog module is used for
many of the listings in this chapter.

import logging
import datetime            
import sys   
import socket              
import os                  
from structlog import (
  get_logger,
  configure,
)
from structlog.stdlib import (
  LoggerFactory,
  BoundLogger,
  add_log_level
)
from structlog.processors import (
  KeyValueRenderer,
  JSONRenderer,
  UnicodeDecoder,
  TimeStamper
)

logging.basicConfig(    
  format="%(message)s", 
  stream=sys.stdout,    
  level=logging.INFO,  
)                       

__release__ = "0.7.1"
__commit__ = "f0d00b1"

Listing 12.1 A Python example of structured logging using the structlog module

Modules supporting 
context-related telemetry

Configures the default Python 
logger to send to stdout
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configure(
  processors=[
    TimeStamper(fmt="iso"),                 
    UnicodeDecoder(),    
    add_log_level,                          
    KeyValueRenderer(key_order=[            
      'timestamp', 'metric_name',              
      'metric_type', 'metric_value'])       
  ],                                        
  context_class=dict,
  logger_factory=LoggerFactory(),   
  wrapper_class=BoundLogger,    
  cache_logger_on_first_use=False
)

logger = get_logger()   

def __add_context(event):            
  event = event.bind(    
    hostname=socket.gethostname(),   
    pid=os.getpid(),                 
    release_id=__release__,          
    commit=__commit__                
    )                               
  return event                       

def __do_metric(metric, value, mtype, metadata):   
  event = logger.bind(                          
    payment_plan=metadata['payment_plan'],    
    metric_name=metric,                           
    metric_value=value,                           
    metric_type=mtype)                          
  event = __add_context(event)    
  return event

def counter(msg, value, metadata):    
  event = __do_metric(msg, value, 'c', metadata)
  event.info()   

def timer(msg, value, metadata):
  event = __do_metric(msg, value, 't', metadata)
  event.info()

counter('pdf_pages', 3, {'payment_plan': "alpha"})
counter('pdf_pages', 19, {'payment_plan': "thunderdome"})
timer('page_convert_time', 0.92, {'payment_plan': "alpha"})

Listing 12.1 will send to standard out (the console) and will generate the following:

timestamp='2023-02-19T17:47:30.712266Z' metric_name='pdf_pages' 

➥ metric_type='c' metric_value=3 payment_plan='alpha' hostname='k8s-

➥ 14.euc1.prod.internal' pid=32595 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'
timestamp='2023-02-19T17:47:30.712449Z' metric_name='pdf_pages' 

➥ metric_type='c' metric_value=19 payment_plan='thunderdome' hostname='k8s-

➥ 14.euc1.prod.internal' pid=32595 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'
timestamp='2023-02-19T17:47:30.712591Z' metric_name='page_convert_time' 

Formatters for structlog, 
adding timestamps and ending 
in key-value formatting

Tells 
structlog 
to use the 
basic logger 
defined 
earlier for 
writing

Tells structlog to use 
basic logger classes

Instantiates the structlog; 
runs the configure block

Internal function to add 
generic context-related 
telemetry

Base metrics function called 
by counter and timer

Creates a new logger object 
from the instantiated object, 
adding context

Injects static context-related 
telemetry into the event

The counter 
class, called 
from code

Causes logging data to emit
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➥ metric_type='t' metric_value=0.92 payment_plan='alpha' hostname='k8s-

➥ 14.euc1.prod.internal' pid=32595 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'

To understand how we go from counter('pdf_pages', 3, {'payment_plan':
"alpha"}) to the first of the log lines above, we have to look at how we added context-
related telemetry and what happens in that stack of processors in the configure ()
block. Each time we call .bind(key=value), we are eventually adding another key-
value pair to the output.

 Figure 12.3 charts the flow of execution between when we called counter() to the
created log line. Along the way, we add key-value pairs to the logger in two spots, cap-
turing both the values that were submitted as part of the counter() call and static
information added to all telemetry. When the logger is told to write information, exe-
cution moves into structlog. Four different processors (formatters) modify the event
hash, the last of which, KeyValueRenderer(), turns everything into a single string
value full of key-value pairs. Finally, this string value is sent to LoggerFactory (the
writer), where the string value is emitted to the console.

 Now, if we replace the KeyValueRenderer() line with JSONRenderer(), a one-line
change, our output changes to

{"payment_plan": "alpha", "metric_name": "pdf_pages", "metric_value": 3, 

➥ "metric_type": "c", "hostname": "k8s-14.euc1.prod.internal", "pid": 2371, 

➥ "release_id": "0.7.1", "commit": "f0d00b1", "timestamp": "2023-02-

➥ 19T17:47:30.712266Z", "level": "info"}

The structlog module for Python supports both key-value and JSON out of the box.
Building your own processors (formatters) is supported by structlog, and we will be
digging into that process as part of section 12.2. This code emits directly to the con-
sole, but it doesn’t have to; using the built-in Python logger as the log emitter means
we can send to Syslog, the Windows Event Log, and a number of other places.

 Although I use Python as a concrete example here to teach the concepts, remem-
ber that other programming languages have support for structured logging. The git
repository for this book includes Java versions of my Python listings. Some languages
have multiple extensions to support structured logging! Here is a nonexhaustive list
of languages and their structured-logging options:

 Python—The structlog module (https://www.structlog.org/en/stable)
 Ruby—The twp/logging gem (https://github.com/twp/logging)
 PHP—The Monolog module (https://github.com/Seldaek/monolog)
 NodeJS—The Winston (https://github.com/winstonjs/winston) and Bunyan

(https://github.com/trentm/node-bunyan) modules
 Java—The log4j 2 framework (https://logging.apache.org/log4j/2.x)
 Go—The Zerolog (https://github.com/rs/zerolog) and Zap (https://github

.com/uber-go/zap) modules
 .NET Core—The built-in ILogger (chapter 17 of http://mng.bz/n2Jd)
 Rust—The Slog module (https://docs.rs/crate/slog)

https://www.structlog.org/en/stable
https://github.com/twp/logging
https://github.com/Seldaek/monolog
https://github.com/winstonjs/winston
https://github.com/trentm/node-bunyan
https://logging.apache2.org/log4j/2.x
https://github.com/rs/zerolog
https://github.com/uber-go/zap
https://github.com/uber-go/zap
https://github.com/uber-go/zap
http://mng.bz/n2Jd
http://mng.bz/n2Jd
https://docs.rs/crate/slog
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counter('pdf_pages', 3, {'payment_plan': "alpha"})

counter()

__do_metric()

logger.bind(
        payment_plan='alpha',
        metric_name='pdf_pages',
        metric_value=3,
        metric_type='c')

__add_context()

event.bind(
        hostname='k8s-14.euc1.prod.internal',
        pid=32595,
        release_id='0.7.1',
        commit='f0d00b1'
        )

__do_metric()

counter()

event.info()

Creates logger object, adds initial context

Adds broader context to the log object

Execution returns up to counter().

Log event starts emitting.

processors[TimeStamper(fmt="iso")]

Adds timestamp context to log object

processors[UnicodeDecoder()]

Ensures correct string format

processors[KeyValueRenderer(key_order=[
            'timestamp', 'metric_name',
            'metric_type', 'metric_value'])]

Converts to key-value
format, sets key order 

logger_factory=LoggerFactory() Sends formatted text for writing

timestamp='2023-02-19T17:47:30.712266Z' metric_name='pdf_pages' metric_type='c' 
metric_value=3 payment_plan='alpha' hostname='k8s-14.euc1.prod.internal' 
pid=32595 release_id='0.7.1' commit='f0d00b1' level='info'

processors[add_log_level]

Inserts the log-level (info in this
case) context to log object 

stream=sys.stdout Writes to the standard output (console)

Figure 12.3 How the final log entry (bottom dotted box) was created from the initial function 
call (top dotted box). The execution stack runs from top to bottom. The logger object is created 
in __do_metric() and is passed into __add_context() as an object, where the function 
adds more context. Execution returns to counter(), where the .info method is called on the 
logger object (returned from __do_metric(). From there, the log object passes through three 
formatters (call processors here), which add an ISO8601-formatted timestamp, ensure that the 
string handles Unicode correctly, and is formatted as a list of key-value pairs with certain keys at 
the front of the string. Finally, this formatted string is passed to LoggerFactory, which writes 
the string to the console.
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12.2 Implementing standards in your code
Whereas section 12.1 introduced structured logging, this section is about writing your
telemetry standards into your structured logging system. I talked about negotiating
the standards within the technical organization in section 4.2, so I recommend look-
ing there for a longer discussion of how to go about selecting a standard. Telemetry
format standards aren’t required, but they make your job as a telemetry system opera-
tor far easier. In brief:

 You are allowed to support more than one telemetry standard; it is more
important that people use a standard than to use only the one true standard.
Also, certain formats are easier than others to implement in specific program-
ming languages, so having more than one standard to choose among will keep
people from improvising in hard-to-support ways.

 Object-encoding formats (JSON, YAML, and XML) are amazingly versatile, and
JSON parsing has seen radical optimization since 2010. Even so, delimited for-
mats such as CSV and key-value are algorithmically simpler. Definitely test pars-
ing speeds when selecting a format to verify your performance assumptions.

 The process of selecting the telemetry format standard has as much to do with
the humans supporting the production technical systems as with the actual
technical systems themselves. Sometimes, the optimal technical solution isn’t
the optimal political solution. This negotiation process is why I encourage sup-
porting more than one format.

When you have your standards, it’s time to build support for them in your production
code (and also your Shipping stage, but we’ll get to that in section 12.3). We will be
expanding on the structured logger we built in listing 12.1 to discuss these concepts.
Listing 12.1 emits key-value pairs to the standard output as part of a metrics logger,
but we will also look at revising that base to be part of centralized logging. To start, we
need to examine the role of the processors from listing 12.1.

  processors=[
    TimeStamper(fmt="iso"),
    UnicodeDecoder(),
    add_log_level,
    KeyValueRenderer(key_order=[
      'timestamp', 'metric_name',
      'metric_type', 'metric_value'])
  ],

As we saw in figure 12.3, this ordered list describes the order of transformations our
metrics telemetry went through:

1 TimeStamper—Adds a timestamp value to the telemetry, using an ISO format
(ISO8601)

2 UnicodeDecoder—Transforms the strings in the telemetry to be unified
3 add_log_level—Adds the logging level (debug, info, warn, err, critical, and so

on) to the telemetry
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4 KeyValueRenderer—Transforms the one-dimensional hash of telemetry into a
single string, formatted in key-value, with four keys ordered at the beginning of
the string

The last value here, KeyValueRenderer, encodes the metrics standard this function
was written against:

timestamp='2023-02-19T17:47:30.712266Z' metric_name='pdf_pages' 

➥ metric_type='c' metric_value=3 payment_plan='alpha' hostname='k8s-

➥ 14.euc1.prod.internal' pid=32595 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'

Replacing that one line with JSONRenderer gives us JSON-encoded telemetry:

{"payment_plan": "alpha", "metric_name": "pdf_pages", "metric_value": 3, 

➥ "metric_type": "c", "hostname": "k8s-14.euc1.prod.internal", "pid": 32595, 

➥ "release_id": "0.7.1", "commit": "f0d00b1", "timestamp": "2023-02-

➥ 19T17:47:30.712266Z", "level": "info"}

For a metrics emitter, either of these formats is pretty complete. It has a metrics name
with value, and context-related details are packaged with the metrics. The context-
related details are static, however. How would we update listing 12.1 to accommodate
an optional hash of context to also emit with the metrics? Right now, metrics are emit-
ted with a call like this:

counter('pdf_pages', 3, {'payment_plan': "alpha",'account_id': "1121"})

A hash of metadata is the third parameter, which is consumed by logging functions
such as the one from listing 12.1. In the listing 12.1 case, only payment_plan is
extracted from the metadata hash and emitted; the others, like release_id, are a
static set of details that gets emitted for everything. Let’s rewrite listing 12.1 so that
people calling our metrics function can specify which fields in the metadata hash to
include with their metrics, as follows:

context_fields = ['payment_plan', 'account_id', 'region', 'datacenter']
counter('pdf_pages', 3, metadata, context_fields)

To start with, our counter() function’s define will need to be rewritten from

def counter(msg, value, metadata):

to a version that can handle the extra parameter and the idea that metadata is
optional (it’s mandatory in listing 12.1):

def counter(msg, value, metadata = [], fields = []):

Also, because counter() is a wrapper for __do_metric(), we need to rewrite that
function’s define as well, from

def __do_metric(metric, value, mtype, metadata):
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to

def __do_metric(metric, value, mtype, metadata = [], fields = []):

Now that we’re inside __do_metric(), we need to update the logic inside it to handle
variable fields. The original version only statically assigned a single value from the
metadata hash:

def __do_metric(metric, value, mtype, metadata):
  event = logger.bind(
    payment_plan=metadata['payment_plan'],
    metric_name=metric,
    metric_value=value,
    metric_type=mtype)
  event = __add_context(event)J
  return event

Our new version needs to add variable telemetry from the metadata hash based on
what is passed in on the fields array. Here, we loop through the fields passed in,
and if the metadata hash has any of the fields, they’re added as context. Listing 12.2
shows the rewritten __do_metric function from listing 12.1, but all other code
remains the same.

[...]
def __do_metric(metric, value, mtype, metadata = [], fields = []):
  event = logger.bind(
    metric_name=metric,
    metric_value=value,
    metric_type=mtype)
  context_fields = {}    
  for f in fields:                           
    if f in metadata:                         
      context_fields[f]=metadata[f]           

  event = event.bind(**context_fields)   
  event = __add_context(event)
  return event

Now that we have __do_metric() updated, we should be able to see how telemetry
handling has changed. Let’s see what we get when we feed in the following calls to our
revised metrics logger:

metadata1 = {'payment_plan': 'alpha', 'account_id': '1121'}
metadata2 = {'payment_plan': 'thunderdome', 'account_id': '23b9c1'}
metadata3 = {'payment_plan': 'skyfall', 'account_id': 'a3953021'}

counter('pdf_pages', 3, metadata1, ['payment_plan'])
counter('pdf_pages', 19, metadata2, ['payment_plan', 'account_id'])
timer('page_convert_time', 0.92, metadata3, ['account_id'])
timer('page_convert_time', 1.22)

Listing 12.2 Revising __do_metric to accept variable telemetry

Creates an empty context_fields 
hash to populate

Loops through fields and 
adds to context_fields any 
metadata values that match

Applies context_fields 
to the telemetry
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Four different calls, each specifying slightly different fields. The last call to timer()
specifies no telemetry at all, so the emitted telemetry for that call should have no
payment_plan or account_id. To help, I’ve bolded the variable telemetry fields that
were emitted:

timestamp='2020-09-24T00:43:37.659549Z' metric_name='pdf_pages' 

➥ metric_type='c' metric_value=3 payment_plan='alpha' hostname='k8s-

➥ 14.euc1.prod.internal' pid=19661 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'
timestamp='2023-02-19T00:43:37.659707Z' metric_name='pdf_pages' 

➥ metric_type='c' metric_value=19 payment_plan='thunderdome' 

➥ account_id='23b9c1' hostname='k8s-14.euc1.prod.internal' pid=19661 

➥ release_id='0.7.1' commit='f0d00b1' level='info'
timestamp='2023-02-19T00:43:37.659833Z' metric_name='page_convert_time' 

➥ metric_type='t' metric_value=0.92 account_id='a3953021' hostname='k8s-

➥ 14.euc1.prod.internal' pid=19661 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'
timestamp='2023-02-19T00:43:37.659954Z' metric_name='page_convert_time' 

➥ metric_type='t' metric_value=1.22 hostname='k8s-14.euc1.prod.internal' 

➥ pid=19661 release_id='0.7.1' commit='f0d00b1' level='info'

Success! Now software engineers can add arbitrary context to their metrics!
Empowerment!

 How can we rewrite this to be a generic logger rather than a metrics emitter? To
start, we need to get rid of the function defines for counter() and timer() because
we don’t need them anymore. In their place, we need to add new functions to handle
different log levels, but we want to keep the idea that software engineers can add cus-
tom context to each log they create:

def counter(msg, value, metadata = [], fields = []):
  [...]

def timer(msg, value, metadata = [], fields = []):
  [...]

def info(event, metadata=[], fields=[]):
  [...]

def warning(event, metadata=[], fields=[]):
  [...]

def error(event, metadata=[], fields=[]):
  [...]

This gives us three different log levels to expose to the rest of the application: info,
warning, and error. We are still using the same arbitrary context method from the
metrics logger, accepting a hash and a list of fields in the hash as parameters to these
functions. What we want is to take inputs such as this

metadata = {
  'account_id': '1515323',
  'payment_plan': 'Enterprise Plus',
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  'region': 'euc1',
  'feature_flags': { 'new_login': True, 'new_profile': False }
  }

info("Profile image updated", metadata, ["account_id", "feature_flags"])

and turn it into a JSON hash like this, with the dynamic context boldfaced:

{"hostname": "k8s-14.euc1.prod.internal", "pid": 23030, "release": "0.7.1", 

➥ "commit": "f0d00b1",  "account_id": "1515323", "feature_flags": 

➥ {"new_login": 

➥ true, "new_profile": false}, "event": "Profile image updated", "timestamp":

➥ "2023-02-19T14:41:22.918238Z", "level": "info"}

Listing 12.3 shows the changes from listing 12.2 to make this work.

[...]
configure(
  processors=[
    TimeStamper(fmt="iso"),
    UnicodeDecoder(),
    add_log_level,
    JSONRenderer(),
  ],
  context_class=dict,
  logger_factory=LoggerFactory(),
  wrapper_class=BoundLogger,
  cache_logger_on_first_use=False
)

logger = get_logger()

def __add_context():    
  context = {
    'hostname': socket.gethostname(),
    'pid': os.getpid(),
    'release': __release__,
    'commit': __commit__
  }
  return context

def __filter_metadata(metadata, fields):    
  fcontext = {}    
  for f in fields:                          
    if f in metadata:                      
      fcontext[f] = metadata[f]             

  return fcontext

def __merge_context(metadata, fields):   
  base_context = __add_context()
  filter_context = __filter_metadata(metadata, fields)
  merged_context = {**base_context, **filter_context}  
  return merged_context

Listing 12.3 A general logger allowing arbitrary context-related telemetry to be added

__add_context() is unchanged 
from listings 12.1 and 12.1.

Pulls the requested fields 
from the metadata hash and 
returns them in a new hash

Merges context fetched from 
_add_context() to the context 
from __filter_metadata()

Merges the two hashes
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def info(eventdata, metadata=[], fields=[]):
  event = logger.bind(**__merge_context(
   ➥ metadata, fields))    
  event.info(eventdata)    

def warning(eventdata, metadata=[], fields=[]):
  event = logger.bind(**__merge_context(metadata, fields))
  event.warning(eventdata)

def error(eventdata, metadata=[], fields=[]):
  event = logger.bind(**__merge_context(metadata, fields))
  event.error(eventdata)

Let’s follow the telemetry execution flow, shown in figure 12.4.

Binds all 
context 
to a new 
logger

Emits the event at ‘info’ level, with 
context added in the previous line

Figure 12.4 The flow of execution from listing 12.4, a logger function with three priorities that 
accepts arbitrary context-related telemetry. Our metadata hash and field list are handled as part 
of __add_context, which we see in the final JSON.

info("Profile image updated", metadata, ["account_id", "feature_flags"])

info(eventdata, metadata, fields)

__merge_context(metadata, fields)

__add_context()

__filter_metadata(metadata, fields)

event.info(eventdata)

event = logger.bind(**__merge_context(metadata, fields))

processors[TimeStamper(fmt="iso")]

processors[UnicodeDecoder()]

processors[add_log_level]

processors[JSONRenderer]

logger_factory=LoggerFactory()

{"hostname": "k8s-14.euc1.prod.internal", "pid": 23030, "release": "0.7.1",
 "commit": "f0d00b1",  "account_id": "1515323",
 "feature_flags": {"new_login": true, "new_profile": false},
 "event": "Profile image updated", "timestamp": "2023-02-19T14:41:22.918238Z",
 "level": "info"}

Fetches general context

Fetches fields from metadata

logger.bind(**__merge_context(metadata, fields))

Adds gathered context to 
log object

Starts emitting telemetry

Reformats everything into JSON

stream=sys.stdout
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Figure 12.4 shows how execution flows through the stack and how context-related
telemetry is gathered. When the context is added to the logging object, our emitted
string, "Profile image uploaded", is run through four processors. The final JSON-
Renderer processor formats the telemetry and the context-related telemetry as a
JSON hash, which is emitted to the standard output by way of the LoggerFactory().

 So far, we’ve seen standard key-value and JSON-formatted telemetry, but the
standards-negotiation process sometimes produces strange results due to the technical
(and political) requirements of everyone involved. This next format we’ll look at is the
product of just such a balancing act. Let’s take a look at a sample, using the same inputs
we diagramed above but with a new format that puts the timestamp and the logged
statement outside the JSON string:

2023-02-19T14:41:22.918238Z Profile image updated -- {"hostname": "k8s-

➥ 14.euc1.prod.internal", "pid": 23030, "release": "0.7.1", "commit": 

➥ "f0d00b1",  "account_id": "1515323", "feature_flags": {"new_login": true, 

➥ "new_profile": false}, "level": "info"}

On the surface, it’s pretty clear: a timestamp, followed by the plain-language log state-
ment, double dashes, and then a JSON data structure for any additional context. A
strange format like this one makes sense if you have programming languages that
aren’t optimized for JSON; the initial timestamp and log line mirrored the state of
centralized logging in this organization until fairly recently and are well supported by
anything that can build strings.

 In this case, we can’t use the KeyValueRenderer or JSONRenderer, so we will need
to make a custom processor. To do that, we make a class, shown in listing 12.4. We
name this file internalrenderer.py to ease importing in other code.

import json

class InternalRenderer(object):

  def __init__(self, serializer=json.dumps):  
    self._dumps = serializer   

  def __call__(self, logger, name, event_dict):  
    timestamp = event_dict.pop('timestamp')  
    event = event_dict.pop('event')    
    context_json = self._dumps(event_dict)     
    return timestamp + " " + event + " -- " +
       ➥ context_json   

This class has two functions. The first function, __init__(), is called during the con-
figure() block that defines all the processors for our logger. Our function can accept

Listing 12.4 Creating a custom processor class for Python structlog

This allows changing the JSON 
serialization method, if desired.

__init__ is called during 
the configure() block.

__call__ is called whenever 
telemetry is emitted.

Pulls out the timestamp and 
event hash-entries so they’re 
not included in the JSON part

Builds the JSON part of the emission

Renders the entire string for emissions
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the name of another JSON serializer in case the built-in one isn’t good enough for
some reason. This would be done as part of the configure() block.

 The second function, __call__(), is called whenever telemetry is ready to emit.
This function formats the emitted telemetry and is where our internal standard for-
mat is codified. Figure 12.5 shows how our new InternalRenderer class interacts with
the logging framework we’ve been building in this chapter.

Listing 12.5 updates listing 12.3 to use this InternalRenderer instead of the JSON-
Renderer. To run this listing locally, put the code from listing 12.4 in a file named
internalrenderer.py to get our custom formatter.

import logging
import datetime
import sys

Listing 12.5 Updating the listing 12.3 code to use the InternalRenderer

configure(
    processors=[
        TimeStamper(fmt="iso"),
        UnicodeDecoder(),
        add_log_level,
        InternalRenderer(),
    ],
    context_class=dict,
    logger_factory=LoggerFactory(),
    wrapper_class=BoundLogger,
    cache_logger_on_first_use=False
)

class InternalRenderer(object):

    def __init__ (self, serializer=json.dumps):
        self._dumps = serializer

info("Profile image updated")

def __call__(self, logger, name, event_dict):
    timestamp = event_dict.pop('timestamp')
    event = event_dict.pop('event')
    context_json = self._dumps(event_dict)
    return timestamp + " " + event + " -- " + context_json

[Other Processors]

2023-02-19T14:41:22.918238Z Profile image updated -- {"hostname":
"k8s-14.euc1.prod.internal", "pid": 23030, "release": "0.7.1", "commit": 
"f0d00b1",  "account_id": "1515323", "feature_flags": {"new_login": true, 
"new_profile": false}, "level": "info"}

InternalRenderer

Figure 12.5 How our new InternalRenderer class gets called during the telemetry workflow. 
The __init__() function is called during the configure() block, near when the program starts 
up for the first time. The __call__() function is called whenever telemetry is emitted and 
performs the final formatting. This sort of create-early/call-late process is common.
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import socket
import os
from internalrenderer import (InternalRenderer)   
from structlog import (
  get_logger,
  configure,
)
[...]
configure(
  processors=[
    TimeStamper(fmt="iso"),
    UnicodeDecoder(),
    add_log_level,
    InternalRenderer(),   
  ],
  context_class=dict,
  logger_factory=LoggerFactory(),
  wrapper_class=BoundLogger,
  cache_logger_on_first_use=False
)
[...]

Listing 12.5 didn’t require many updates to use the InternalRenderer from listing
12.4, merely two additional lines. With these changes, we get our desired telemetry
emission:

2023-02-19T14:41:22.918238Z Profile image updated -- {"hostname": "k8s-

➥ 14.euc1.prod.internal", "pid": 23030, "release": "0.7.1", "commit": 

➥ "f0d00b1",  "account_id": "1515323", "feature_flags": {"new_login": true, 

➥ "new_profile": false}, "level": "info"} 

Imports our custom 
class into this scope

Defines our InternalRenderer as the 
final processor, implementing our 
standard format

Python is merely the example; think of the bigger picture
I’m using Python for this dive into structured logging and standards because that’s
what I’ve been using for most of this book. These concepts are not unique to Python;
the end of section 12.1 provides an abbreviated list of structured logging frameworks
for a variety of languages. If Python isn’t your choice, I hope that one of those frame-
works will be suitable. Remember the base components of structured logging:

 Logger—The entry point into the structured logger from your production code.
In all these examples, it has been a function definition in our listings.

 Formatter—Modifies telemetry to prepare it for the Shipping stage. In all
these examples, this is the list of processors in the configure() block. All
good structured loggers have an equivalent.

 Writer—Ships fully formatted telemetry into the Shipping stage. In these
examples, this is the base Python logger that structlog sits on top of and
emits directly into the standard output.

If you’re not writing Python, consider looking up the structured logger for the language
you’re more familiar with and seeing whether you can build functionality equivalent to
what I’m showing here.
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So far, we’ve been emitting only into the standard output. How about shipping into
something more direct, such as a queue? The structlog module sits on top of the base
Python logger, as we see at the beginning of listings 12.1 and 12.5:

logging.basicConfig(
    format="%(message)s",
    stream=sys.stdout,
    level=logging.INFO,
) 

As it happens, we examined several methods for shipping to useful places in chapter
3. For now, let’s focus on the changes needed to send telemetry into a Redis-based
(https://redis.io) queue. Although the base logging module in Python doesn’t ship
with a RedisHandler or equivalent, a RedisListHandler extension is available as a
module (https://github.com/lobziik/rlog). We can use this module to update our
logger to send to a Redis list.

NOTE To get this listing to compile, you need the rlog module installed
(pip3 install rlog). To function, this listing needs a Redis server, which I
do not expect you to set up. This implementation is an example.

[...]
from rlog import RedisListHandler    
[...]
redis_config = {                               
  'host': 'logqueue.euc1.prod.internal',  
  'port': 6379,                                
}                                              

logging.basicConfig(
  format="%(message)s",
  handlers=[                                 
    RedisListHandler(key='central_queue', 
      ➥ **redis_config)                        
  ],                                         
  level=logging.INFO,
)
[...]

Listing 12.6 Updating our logger to emit to a Redis-based list

Exercise 12.1
The previous two listings demonstrated how to add a new formatter (processor) to
our structured logger. Listing 12.3 shows adding context to our telemetry as part of
the logger (entry point for telemetry). How would you rewrite the listing to use a for-
matter to perform the context additions instead of doing it as part of the logger?

Imports the RedisListHandler 
we need from its module

Hash needed to configure 
RedisListHandler and tell it 
where to find the Redis server

Configures RedisListHandler to tell it 
which key to emit into and provides 
the config hash

https://redis.io/
https://github.com/lobziik/rlog
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We see in listing 12.6 that we’re replacing stream=sys.stdout with the new Redis-
ListHandler(), which is the only configuration change we’re making in the entire
script. With this one change, the telemetry we’ve been emitting to standard output
will instead be sent to a Redis list.

 Figure 12.6 shows the flow of telemetry now that we are using RedisListHandler
in the basic Python logger. We see that telemetry is flowing over the network, rather
than being sent to standard out in the hope that something else is configured to
receive that stream and will send it somewhere useful.

There are trade-offs to make between emitting locally through stdout—requiring
another telemetry system to move the telemetry further into the pipeline—and emit-
ting remotely to a queue, stream, or API. Chapters 2 and 3 cover this topic extensively,
but in brief:

event.info(eventdata)

processors[TimeStamper(fmt="iso")]

processors[UnicodeDecoder()]

processors[add_log_level]

processors[InternalRenderer]

Starts emitting telemetry

logger_factory=LoggerFactory()

RedisListHandler(key="central_logging")

2023-02-19T14:41:22.918238Z Profile image updated -- {"hostname":
"k8s-14.euc1.prod.internal", "pid": 23030, "release": "0.7.1", "commit": 
"f0d00b1",  "account_id": "1515323", "feature_flags": {"new_login": true, 
"new_profile": false}, "level": "info"}

TCP/6379 to logqueue.euc1.prod.internal

Redis

Reformats telemetry to the
standard format 

Emits formatted telemetry
to Redis

Figure 12.6 Our metrics logger emitting to a Redis-based list instead of standard output. The 
built-in Python logger is updated to use RedisListHandler instead of sys.stdout. The effect 
of this change is to redirect logging to a new place: across a TCP connection to a Redis server. 
Architectures like this one are discussed in chapter 3, but moving telemetry to a remote location 
from inside the production code itself means that fewer telemetry system components need to 
compete with the production code for resources.
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 Emitting locally, such as to a file or standard out, is easy and lightweight on the
production code itself. The cost of this ease is the need to have an additional
Shipping-stage system, such as Fluentd or Elastic’s Filebeat or Journalbeat, to
receive this local telemetry and ship it onward.

 Emitting remotely, such as to a queue, stream, or API, means that the telemetry
spends the least time on the box that generated it, giving attackers less time to
modify it. When you use this method, you don’t need additional software locally
to move telemetry. But the production code must be able to handle telemetry
network and service outages in a way that local emissions don’t, which increases
complexity in code.

Now that we’ve been through an entire structured logger, you can do a lot more
things with one than implement your logging standards:

 Dig into emitting directly off the box, as we did with Redis. Chapter 13 covers
techniques.

 If you care deeply about telemetry integrity, why not build a formatter (proces-
sor in the preceding examples) to compute the checksums of key fields and
ship them alongside the telemetry? Chapter 15 covers telemetry integrity.

 If you’re handling regulated information such as personally identifiable infor-
mation (PII) or electronic personal health information (ePHI), the structured
logger is your first point of defense to prevent such regulated data from enter-
ing your telemetry pipeline. Build a formatter that autoredacts (or outright
rejects) regulated telemetry fields such as email or diagnosis code. Doing so as
part of the Emitting stage will help you avoid the problem presented in chapter
16: what to do when such regulated information spills.

 Exceptions are among the highest-risk strings for containing regulated informa-
tion because they often contain the parameter values passed to the function that
failed. Consider building a second structured logger for exception logs that gets
more thorough scrubbing than your regular centralized logging traffic.

12.3 Implementing standards in the Shipping stage
This section is about parsing the telemetry we emitted in section 12.2 and seeing what
it looks like in the Shipping stage. Parsing standard formats like JSON is a native, one-
step operation in most modern languages, and all the open source Shipping-stage sys-
tems have easy ways to parse it:

Exercise 12.2
In the software you work with in your day-to-day life, how are exceptions tracked? How
would your existing logging systems handle them? Given what you’ve learned here,
how much work would it take to handle exceptions through a new path?
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 With Fluentd, <parse> @type json </parse> will do the job for inputs.
 With Logstash, using codec => json is all you need to do on an input.
 For Filebeat, which reads log files and isn’t a general-purpose Shipping-stage

package like the previous two, using the decode_json_fields processor will
perform parsing before moving telemetry onward.

What is more interesting are non-JSON formats and how to build parsers for them. We
will be looking at parsing key-value formatted telemetry (like what listing 12.1 emits)
and the custom format we built in section 12.2 (listings 12.4 and 12.5). We will be
looking at both a dedicated Shipping-stage framework like Logstash and a general-
programming approach to parsing these formats. As a reminder, the custom format
we built in section 12.2 looks like this for centralized logging:

2023-02-19T14:41:22.918238Z Profile image updated -- {"hostname": "k8s-

➥ 14.euc1.prod.internal", "pid": 23030, "release": "0.7.1", "commit": 

➥ "f0d00b1",  "account_id": "1515323", "feature_flags": {"new_login": true, 

➥ "new_profile": false}, "level": "info"}

The format is an ISO8601-formatted timestamp followed by a plain-text string, double
dashes, and a JSON data structure. The key-value version of a metrics emitter looks
like this:

timestamp='2023-02-19T14:41:22.918238Z' metric_name='pdf_pages' 

➥ metric_type='c' metric_value=3 payment_plan='alpha' hostname='k8s-
➥ 14.euc1.prod.internal' pid=19661 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'

First, we will look at the custom format and what parsing with Logstash would look like.
Logstash is an open source, dedicated, Shipping-stage framework put out by Elastic.co,
best known as the L in ELK Stack (the other two letters standing for Elasticsearch and
Kibana). Logstash is written in a combination of JRuby (it started as a Ruby platform)
and Java, and is slowly moving toward a straight Java implementation.

 Listing 12.7 is a complete Logstash config file that will test parsing our standard
formatted string. If you want to run it yourself, make sure to change the path => value
in the file{} output to be appropriate for your system.

input {
  generator {   
    message => '2023-02-19T14:41:22.918238Z Profile 
      ➥ image updated -- {"hostname": 
      ➥ "k8s-14.euc1.prod.internal", "pid": 23030, 
      ➥ "release": "0.7.1",  "commit": "f0d00b1",  
      ➥ "account_id": "1515323", "feature_flags": 
      ➥ {"new_login": true, "new_profile": false}, 
      ➥ "level": "info"}'   
    count => 10    

Listing 12.7 Parsing the standard format with Logstash

Generates our test string 
so we can test parsing

Our
test

string
The number of times the 
generator{} input will 
generate a string
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  }
}

filter {
  if [message] =~ / -- / {   
    dissect {                                             
      mapping => {    
        "message" => "%{plain_part} -- %{json_part}"      
      }                                                    
      remove_field => [ "message" ]                       
    }                                                      
  } else {
    mutate {                         
      copy => {   
        "message" => "plain_part"     
      }                              
      add_field => {       
        "json_part" => ""  
      }                    
      remove_field => [ "message" ]
    }
  }

  dissect {                                        
    mapping => {   
      "plain_part" => "%{timestamp} %{event}"      
    }                                              
    remove_field => [ "plain_part" ]               
  }                                                

  json {                                
    source => "json_part"    
    remove_field => [ "json_part" ]     
  }                                      

  date { match => [ "timestamp", "ISO8601" ] }  
}

output {
  file {
    path => "/tmp/standard-format.log"
    codec => json_lines{}
  }
}

As written, the code in listing 12.7 will create a file with ten lines of JSON-delimited
strings. The output should look like this (the sequence and @timestamp fields are
added by Logstash internally):

{"sequence":0,"feature_flags":{"new_login":true,"new_profile":false},"commit"

➥ :"f0d00b1","level":"info","@version":"1","@timestamp":"2023-02-

➥ 19T14:41:22.918Z","pid":23030,"account_id":"1515323","hostname":"k8s-

➥ 14.euc1.prod.internal","release":"0.7.1","event":"Profile image 

➥ updated","timestamp":"2023-02-19T14:41:22.918238Z"}

Makes sure we run the right 
field splitter on the string

Splits the string into a 
plain_part and a json_part; 
will be further parsed later

If we’re not field-splitting, 
rename the message field 
to plain_part.

Sets the json_part field to empty so the 
later parser won’t barf on a missing field

Break the plain_part field into 
a timestamp and an event text, 
removing the plain_part field 
when done.

Parse the json_part field, 
and remove the json_part 
field when done.

Parse the timestamp field to 
change the date of the event 
to what is in the string.



328 CHAPTER 12 Standardized logging and event formats

{"sequence":1,"feature_flags":{"new_login":true,"new_profile":false},"commit"

➥ :"f0d00b1","level":"info","@version":"1","@timestamp":"2023-02-

➥ 19T14:41:22.918Z","pid":23030,"account_id":"1515323","hostname":"k8s-

➥ 14.euc1.prod.internal","release":"0.7.1","event":"Profile image 

➥ updated","timestamp":"2023-02-19T14:41:22.918238Z"}

We’re using a filter called dissect {} to break the string apart. Dissect uses delimiters
to extract fields from strings, which makes it faster than regular expressions but also
less flexible. This is why the if [message] =~ / -- / { conditional is there; we need to
make sure that a delimiter is present before trying dissect {} on it. The first
dissect {} creates the plain_part and json_part fields we will use later. If the condi-
tional fails, we merely rename the message field to be plain_part and set a blank
value for json_part. The second dissect {} breaks the plain_part field into the
timestamp and event fields.

 After that, we parse the json_part field with the json {} filter and the timestamp
field with the date {} filter, and we’re done parsing! We finish with the output {} sec-
tion to send our fully parsed events somewhere interesting—a file in this case. Figure
12.7 diagrams this flow of execution.

[message]

yes no

dissect {} mutate {}

dissect {}

json {}

date {}

Adds plain_part and
json_part fields

Adds timestamp
and event fields from
plain_part field

Parses json_part field

Parses timestamp field

output {}

if [message] =~ / -- /

Figure 12.7 The Logstash parsing flow for listing 12.7. The first step is to determine whether 
we need to use dissect {} or mutate {} on the string. The second step creates the 
plain_part and json_part fields. The third part parses the plain_part field to create the 
timestamp and event fields. The fourth part parses the json_part field to add encoded fields 
to the object. The fifth part parses the timestamp field to set the timestamp of the object to 
be what the event’s timestamp is. Finally, we move to the output {} block to send the parsed 
object somewhere interesting. This parser is relatively small to write and easy to understand for 
someone who is new to Logstash—a key maintainability feature.
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Now that we’ve seen how Logstash parses our string, let’s take a look at a Python
parser. Listing 12.8 shows a complete Python parser that takes our test string and
emits a JSON block to be consumed elsewhere in the Shipping stage. The flow of exe-
cution is similar to the Logstash version.

import json

test_string = '2023-02-19T14:41:22.918238Z Profile image updated -- 

➥ {"hostname": "k8s-14.euc1.prod.internal", "pid": 23030, "release": 

➥ "0.7.1", "commit":  "f0d00b1",  "account_id": "1515323", "feature_flags":
➥ {"new_login":  true, "new_profile": false}, "level": "info"}'

if ' -- ' in test_string:    
  plain_part, json_part = test_string.split(' -- ', 1)    
else:
  plain_part = test_string  
  json_part = ''   

timestamp, event = plain_part.split(' ', 1)    
fields = json.loads(json_part)    
fields['event'] = event           
fields['timestamp'] = timestamp   
print(json.dumps(fields))

Execution flow in listing 12.8 is similar to what was shown in figure 12.7 and listing
12.7. The role dissect {} played with Logstash here is filled by .split(pattern, 1).
The only step missing is parsing the timestamp field, because Logstash keeps a sepa-
rate @timestamp field that is considered to be authoritative for the event; we don’t
have @timestamp here, so we can safely avoid date parsing.

Next, we will look at the key-value version of the telemetry, shown above in our metrics
logger. As a reminder, this is what it looks like:

Listing 12.8 Parsing our logging-standard telemetry with straight Python

If our delimiter string is present, 
changes how we parse the string

Splits our string on the first 
occurrence of ‘ -- ’, assigning 
plain_part and json_part

If our delimiter string is not present, assigns plain_ 
part as the whole string and json_part as empty

Splits our plain_part into timestamp 
and event variables by the first space 
in plain_part

Parses our json_part to create the fields hash

Adds the event and json 
variables to the fields hash

Exercise 12.3
We’ve seen two versions of building a parser for this logging standard format. How
would you build a parser for this standard in your language of choice? Remember, it
needs to handle the case where ' -- ' is not in the string.

2023-02-19T14:41:22.918238Z Profile image updated -- {"hostname": "k8s-

➥ 14.euc1.prod.internal", "pid": 23030, "release": "0.7.1", "commit": 

➥ "f0d00b1",  "account_id": "1515323", "feature_flags": {"new_login": true, 

➥ "new_profile": false}, "level": "info"}
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timestamp='2023-02-19T14:41:22.659549Z' metric_name='pdf_pages' 

➥ metric_type='c' metric_value=3 payment_plan='alpha' hostname='k8s-
➥ 14.euc1.prod.internal' pid=19661 release_id='0.7.1' commit='f0d00b1' 

➥ level='info'

Logstash has a native filter for key-value-formatted telemetry, so we get to take fewer
steps when building a Logstash config file that supports telemetry formatted this way.
Listing 12.9 shows a complete Logstash pipeline configuration that will test our telem-
etry and parsing.

input {
  generator {
    message => "timestamp='2023-02-19T14:41:22.659549Z' 
      ➥ metric_name='pdf_pages' metric_type='c' metric_value=3 
      ➥ payment_plan='alpha'  hostname='k8s-14.euc1.prod.internal' 
      ➥ pid=19661 release_id='0.7.1' commit='f0d00b1' level='info'"
    count => 10
  }
}

filter {
  kv {                                
    source => "message"    
    remove_field => [ "message" ]     
  }                                   

  date {                                    
    match => [ "timestamp", "ISO8601" ]   
  }                                         
}

output {
  file {
    path => "/tmp/kv-format.log"
    codec => json_lines{}
  }
}

Listing 12.9 is much simpler than listing 12.7, which parsed the standard formatted
telemetry! One filter, kv {}, does all the parsing. Handling the standard format telem-
etry required a conditional check followed by two parsing stages; for the key-value telem-
etry, we’re doing a single parsing stage. Here are two lines of what this config creates:

{"release_id":"0.7.1","@timestamp":"2023-02-

➥ 19T14:41:22.659Z","hostname":"k8s-14.euc1.prod.internal",

➥ "payment_plan":"alpha","pid":"19661","commit":"f0d00b1","@version":"1",

➥ "sequence":0,"level":"info","metric_value":"3","metric_type"

➥ 14.euc1.prod.internal",:"c","timestamp":"2023-02-19T14:41:22.659549Z",

➥ "metric_name":"pdf_pages"}

Listing 12.9 Parsing key-value-formatted telemetry with Logstash

Tells Logstash to run the kv {} filter, 
key-value, over the ‘message’ field, 
and remove the message field

Parses the ‘timestamp’ field and populates 
the ’@timestamp` field with that value
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{"release_id":"0.7.1","@timestamp":"2023-02-19T14:41:22.659Z",

➥ "hostname":"k8s-14.euc1.prod.internal",

➥ "payment_plan":"alpha","pid":"19661","commit":"f0d00b1","@version":"1",

➥ "sequence":1,"level":"info","metric_value":"3","metric_type"

➥ :"c","timestamp":"2023-02-19T14:41:22.659549Z","metric_name":"pdf_pages"}

Having a premade filter for your telemetry format is a tremendous convenience. The
key-value filter for Logstash is capable of handling quoted values, such as key=”value
with spaces”, and changing your delimiters such as key:value. The code to handle
such convenience is somewhat complex (http://mng.bz/ve1a), but that’s the nature
of convenience sometimes. Contrast this with the Python version of the parser, shown
in listing 12.10. It gets the job done but isn’t as flexible.

import re
import json

test_string="timestamp='2023-02-19T14:41:22.659549Z' 

➥ metric_name='pdf_pages' metric_type='c' metric_value=3 

➥ payment_plan='alpha' hostname='k8s-14.euc1.prod.internal' pid=19661

➥ release_id='0.7.1' commit='f0d00b1' level='info'"

splitter = re.compile("(\S+)=(\S+)")    
quote_chars = "'\""    

fields = {}
for kv in splitter.findall(test_string):    
  if kv[1][0] in quote_chars:   
    trim_v = kv[1][0]                            
    value = kv[1].strip(trim_v).rstrip(trim_v)  
  else:
    if '.' in kv[1]:        
      value = float(kv[1])   
    else:                   
      value = int(kv[1])    

  fields[kv[0]] = value

print(json.dumps(fields))

The output produced by listing 12.10 is somewhat different from the output pro-
duced by Logstash. Note the number types and the lack of the Logstash internal fields
@timestamp and sequence:

{"timestamp": "2023-02-19T14:41:22.659549Z", "metric_name": "pdf_pages", 

➥ "metric_type": "c", "metric_value": 3, "payment_plan": "alpha", 

➥ "hostname": "k8s-14.euc1.prod.internal", "pid": 19661, 

➥ "release_id": "0.7.1", "commit": "f0d00b1", "level": "info"}

Listing 12.10 Parsing key-value delimited telemetry with Python

Precompiles a regular expression 
to match key-value pairs

A string of quote characters, 
used for a conditional later Uses precompiled regex to produce a 

list of key-value pairs to iterate over

Uses quote character string to determine whether 
the first character in the value is a quote

Removes quote characters from the 
beginning and end of the string

Checks for existence of a period and 
then type-casts the value to float.

If no period, types cast to integer

http://mng.bz/ve1a
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Figure 12.8 shows the processing flow of the Python parser in listing 12.10, using a
much smaller test string than we did in the listing itself. The big capability difference
between the Python in listing 12.10 and the Logstash config in listing 12.9 is the ability
to handle quoted strings as values, such as the event field from our centralized logger
examples, event=”Profile image updated”. The Python parser would need to be
rather more complex to handle such values. But if the generated key-value pairs the
metrics system produces never emits quoted strings with spaces, the inability to handle
such strings doesn’t matter.

We have seen four ways to parse standardized telemetry emitted from a structured log-
ger. Although these examples are specific to Logstash and Python, the techniques
involved are generalizable:

 For the Shipping stage, the performance advantage of compiled languages ver-
sus interpreted languages can be significant.

 Building your logging standards around prebuilt parsers in your Shipping stage
will make maintaining your telemetry pipeline easier for everyone involved.

one=1 two='two'

splitter.findall(test_string)

( ('one', 1), ('two', "'two'") )for kv in 

('one', 1)

if 'o' in quote_chars:

NO

if '.' in 1:

NO

fields['one'] = int(1) 

('two', "'two'")

if "'" in quote_chars:

YES

trim_v = "'"

value = 
"'two'".strip(trim_v).rstrip(trim_v)

fields['two'] = 'two' 

Figure 12.8 The processing flow for our Python key-value parsing script, showing two branches 
of execution. The left branch is an unquoted string, so it is tested for the presence of a period to 
determine whether it is an integer or float. The right branch is a quoted string, so the quotes are 
stripped from the value before being persisted in the fields[] hash. This parser is a simple one 
and would break down if the quoted string included a space. Fortunately, we don’t expect to see that 
kind of value in this flow.
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 If you can trust that your inputs will be limited, you can reduce complexity in
your parsers, thus improving maintainability.

 Although we didn’t cover it here, string conversion between formats needs to
happen in the Shipping stage. (Section 6.2.3 covers this topic specifically.)
String conversion between EBCDIC and Unicode, for example, is something
that your parsers will need to handle before deserializing your strings (unless
you can deserialize directly from EBCDIC, in which case go for it).

Defending your telemetry system against dealing with toxic data spills matters in the
Shipping stage as well as the Emitting stage. Section 12.2 ended with a suggestion for
using the formatters in your structured logging system to filter out PII and ePHI from
your logging system. The Shipping stage is capable of this filtering as well because it
has even more awareness of the fields present in telemetry. Anything you can do to
keep PII and ePHI from landing in a widely viewable database, you should do; your
organization’s lawyers will thank you.

Summary
 Standardizing the format of how telemetry emits from your production code

makes your telemetry system easier to maintain overall.
 Your Emitting-stage systems encode your standardized telemetry, whereas your

Shipping-stage systems decode it for further processing. This process is made
easier when telemetry format standards are being used.

 A well-written set of telemetry event standards reduces your need for expensive
regular expressions (see chapter 11) in your shipping stage.

 Structured logging frameworks make encoding into negotiated standard for-
mats much easier, allowing emitting telemetry into novel formats such as TCP
sockets and email.

 Structured logging is the first place you can start making your telemetry tamper-
evident, such as adding checksum fields for key fields. (See chapter 15 for more
on this topic.) Defending your telemetry from the point it enters the pipeline
makes your telemetry more defensible in court.

 Structured logging frameworks have three components: loggers, formatters,
and writers. Loggers are used by production code to emit telemetry. Formatters
take that code and reformat it into standards for use in the Shipping stage. Writ-
ers send the formatted telemetry to the next step in the Shipping stage. Each
structured logging framework likely calls these components by different names,
but the concepts are the same.

 Most modern programming languages have structured logging built in or avail-
able as an add-on module. You should use structured loggers for your central-
ized logging needs instead of simply opening a file and writing to it.
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 You are allowed to have more than one telemetry format standard! You want as
many things to use a standard as possible, and sometimes, that means using
more than one.

 During the format selection process, definitely test parsing speeds. Built-in pars-
ers for JSON have seen radical improvement since 2010, but that doesn’t mean
other formats can’t fill the need.

 Selecting a telemetry format has as much to do with the humans involved in the
process as with the technical systems involved. The optimal technical solution
sometimes isn’t the optimal political one.

 Implementing your telemetry format in a structured logger requires modifying
the formatter or writer components; which kind to update depends on the
structured logger itself.

 Emitting telemetry locally, such as to stdout or to a file, is lightweight on the
production code but requires additional telemetry components coexecuting
with the code to move emitted telemetry further into the Shipping stage. These
components compete with your production code for resources; you will need to
decide whether this parasitic load is acceptable versus adding complexity to
your production code.

 Emitting telemetry remotely—such as to a queue, stream, or API—reduces the
need for additional telemetry software competing with your production code.
But the added complexity of handling telemetry network and service outages
will increase the complexity of telemetry-handling code in your production soft-
ware. You will need to decide whether this complexity is acceptable versus using
purpose-built shipping software like Filebeat and Fluentd.

 Beyond encoding your telemetry in a standard format, structured loggers sup-
port several other telemetry system goals. Writers can emit to novel targets such
as a raw TCP socket. Formatters can add checksum fields to make your teleme-
try tamper-evident. Formatters are your first line of defense in keeping PII out
of your telemetry.

 Dedicated Shipping-stage frameworks like Logstash and Fluentd have many
prebuilt parsers for formats, making them convenient to use. Still test parsing
performance, though! Convenience often has a cost.

 When parsing telemetry, consider the performance trade-off between the con-
venience of interpreted languages versus the deployment challenges of com-
piled languages. Interpreted languages like Ruby often perform worse than
compiled languages like Go or Java.

 Building your logging standards around your most efficient parsers will pay
technical dividends. (The political dividends are up to you.)
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Using more nonfile
 emitting techniques

In this chapter, we cover emitting telemetry using additional methods other than
files (section 2.1.1) or the standard output (also known as the console or stdout;
section 2.1.3). Chapters 2 and 3 covered emitting techniques that also aren’t files
or the standard output:

 The system logger, such as Syslog or Windows Event Log (section 2.1.2).
 Queues and streams (section 3.1.2), with chapter 8 giving complete sample

architectures using queues and streams.
 SaaS APIs (section 3.1.3), useful for delegating Shipping- and Presentation-

stage services to a third party. The same technique is useful for technical
organizations that require use of API endpoints for everything rather than
other techniques, such as queues.

This chapter covers
 Sending telemetry using sockets/datagrams

 Getting telemetry out of containers or FaaS

 Encrypting telemetry over datagrams
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 Directly into storage, bypassing the need for any further Shipping-stage systems
(section 3.1.1).

This chapter will be adding more emitting techniques to our toolkit to handle
additional cases. We will be looking at both container and FaaS (also known as
serverless) environments, where writing files is a definite anti-pattern. Some serverless
platforms lack a system logger, so that method is not available. Although the Kubernetes
standard-output handler is highly featured, politics and telemetry formatting standards
can make that telemetry delivery service less attractive than bypassing it.

 Never forget the role that politics plays in telemetry system design! Section 10.3.2
described the telemetry systems in use for the Loyalty Programs department of a hypo-
thetical global airline. This department operated a subsite on the airline’s main web-
site, which was maintained by a different department. Does Loyalty Programs use the
built-in telemetry systems from this other department, which does things quite differ-
ently, or does it build its own, which is more compatible with the rest of the depart-
ment’s systems? Politics is the reason behind most seemingly strange technical choices.

 Section 13.1 covers designing for socket (TCP)- and datagram (UDP)-based emit-
ters. Section 13.2 dives into handling telemetry in container and serverless production
code.

13.1 Designing for socket- and datagram-based emitters
This section covers building Shipping-stage components that use straight TCP or
UDP, rather than an application protocol like HTTP, Redis, and Kafka. I’m using the
Shipping stage for a component in production code in the way I did back in chapter
3, because moving telemetry off the box that generated it is the role of the Shipping
stage. In light of the structured loggers we built in chapter 12, a writer that writes to
the network is a Shipping-stage component, even though the logger and formatter
parts of the structured logger are definitely Emitting-stage components. We saw this
split in figure 12.1, reproduced here as figure 13.1.

Logger Formatter WriterProduction
code

Entry point to
telemetry system

Reformats telemetry
for use in Shipping stage

Delivers telemetry to
the Shipping stage

Emitting stage if writing locally,
Shipping if writing remotely

Emitting stage

Figure 13.1 Elements of a structured logger: logger, formatter, and writer. The logger is the entry 
point into the structured logger, called from production code. The formatter reformats telemetry to 
be acceptable to the Shipping stage. The writer is part of the Emitting stage if it emits locally, such 
as to a file or the system log. The writer is part of the Shipping stage if it emits remotely over the 
network, such as to a Redis server, Kafka cluster, or HTTP API.
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Making your writer use a raw TCP socket or UDP datagram makes it part of the Ship-
ping stage, even though it is attached to the Emitting stage. This leads to a question:
Why use TCP or UDP when application protocols likely have better handling for net-
work problems? Application protocols do have better handling of network problems,
which is why I cover them in most of the part 1 chapters. But modern infrastructures
often have many containers, virtual machines, logical partitions, slices, and zones run-
ning on the same physical computing hardware. Under such conditions, networking
problems such as packet loss, out-of-order arrival, routing flops, and switch resets are
much, much less likely to occur. Simpler networks allow simpler networking protocols
to work, which means that

 Your production software will have less code dedicated to telemetry system use,
making it easier to ship.

 For microservices, not having to use an expensive (and expansive) library like
Kafka makes for a much smaller deliverable binary.

 Not having to support a telemetry system application protocol means that you
have one fewer module to include in your production software—one fewer
module to keep track of dependencies, one fewer module to handle for security
vulnerabilities, and less overall code to contain bugs.

The benefits of using TCP or UDP for telemetry delivery are felt less in large mono-
lithic codebases that already have expansive software dependencies and more in mini-
and microservices systems that are built to do a few things well. Simpler software has
fewer edge cases to debug (in theory). Figure 13.2 shows how using simple network-
ing for telemetry shipping can work in practice with Kubernetes and UDP.

Figure 13.2 shows a Kubernetes cluster node with a group of container applications,
and a single container called a logging reshipper. The application containers send
UDP packets to the logging reshipper over the internal Kubernetes network. Then
the logging reshipper repackages telemetry and sends it out to a Redis server and the

Container
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Container
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Container
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reshipper
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Figure 13.2 Ten containerized apps on a Kubernetes cluster node send UDP datagrams 
to a logging reshipper running on the same node. Then the reshipper delivers telemetry 
to a Redis server as part of a queue. This pattern, having a dedicated app for a specific 
metafunction like logging, is sometimes called the sidecar pattern.
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greater Shipping stage. The pattern of having a dedicated container for a utility or
proxy, such as a logging function like this one, is called the sidecar pattern.

 The service that performs the reshipping doesn’t have to be another container,
however. The reshipper can be a process on the Kubernetes node itself. Either will
work, because both a process and another container have access to the same internal
network. Use whatever works best for your service discovery systems. This pattern also
works for the logical partitions (LPARs) on mainframes, as well as virtual machines on
a VMware ESX host.

 To demonstrate how the network in figure 13.2 works, we will look at a pair of list-
ings. Listing 13.1 is a simple echo server that receives data through UDP and prints it
to the console. We will use this echo server for testing listing 13.2.

import socket        

host = "127.0.1.2"    
port = 9201          

telemetry_in = socket.socket(    
  socket.AF_INET, 
  socket.SOCK_DGRAM)            

telemetry_in.bind((host, port))  

while 1:
  data, addr = telemetry_in.recvfrom(8192)    
  try:
    value = data.decode('utf8')    
    print(value)
  except:
    print("Invalid data received.")

telemetry_in.close()

Listing 13.1 is a simple UDP echo server. All it does is print what it receives to the con-
sole, after making sure that the data it received is UTF-8 formatted. Using 127.0.1.2 as
an address means that the server will listen on your computer’s localhost network.
Port 9201 is high enough that it isn’t considered to be privileged (privilege ports are 1
through 1024), so unprivileged users can use it. If you have netcat installed (the nc
command), you can test with

echo -n "Hello there!" | nc -u 127.0.1.2 9201

This code should cause "Hello there!" to be printed by the listing 13.1 script. Using
-n for echo means to not send a line feed, and -u for nc tells it to use UDP instead of
TCP.

Listing 13.1 A simple Python UDP echo server to use for testing

Imports socket library, and 
sets our server and port

Creates our socket object 
using IPv4 and UDP

Starts our script listening on 
the given address and port

Sets the receive buffer 
to 8 KB, setting a data 
and address variable

Decodes the data as UTF-8
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 Now that we have a way to see UDP output, we need to look at listing 13.2. Listing
13.2 is listing 12.6 rewritten to include emitting telemetry by way of UDP. Listing 12.6
demonstrates how structured loggers work and can be updated to emit arbitrary
context-related telemetry. For more on what listing 12.6 is doing, see section 12.2.
Listing 13.6 contains a few changes from 12.6, which are boldfaced.

NOTE To run listing 13.2, you need to save listing 12.4 as a file named
internalrenderer.py in the same directory in which you run this script
and also install the structlog Python module. The full version of listing
13.2 is in the code repository.

import logging
import datetime
import sys
import socket    
import os
import json
from internalrenderer import (InternalRenderer)    
from structlog import (
  get_logger,
  configure,
)
from structlog.stdlib import (
  LoggerFactory,
  BoundLogger,
  add_log_level,
)
from structlog.processors import (
  JSONRenderer,
  UnicodeDecoder,
  TimeStamper
)
from logging.handlers import (    
  DatagramHandler,                
)                                  

class PlainDatagramHandler(DatagramHandler):    
  def emit(self, record):                        
    try:
      s = record.msg    
      self.send(s.encode('utf8'))   
    except Exception:
      self.handleError(record)

logging.basicConfig(
  format="%(message)s",
  handlers=[
    PlainDatagramHandler('127.0.1.2', 9201)  
  ],
  level=logging.INFO,

Listing 13.2 The structured logger change to emit through UDP

Imports the socket library 
so we can use UDP

Imports the InternalRenderer 
(listing 12.4) for custom log 
formatting

Imports the DatagramHandler 
from structlog so we can modify it

Overrides the emit() function in 
DatagramHandler to not pickle output

Extracts the telemetry to export 
from the Python LogRecord

Sends the
telemetry
over UDP,

encoded in
UTF-8

Tells the writer to use 
our overridden class 
for emitting
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)

__release__ = "0.7.1"
__commit__ = "f0d00b1"

configure(
  processors=[
    TimeStamper(fmt="iso"),   
    UnicodeDecoder(),   
    add_log_level,           
    InternalRenderer(),       
  ],
  context_class=dict,
  logger_factory=LoggerFactory(),
  wrapper_class=BoundLogger,
  cache_logger_on_first_use=False
)

logger = get_logger()    

[... functions defining the logger ...]

If everything goes to plan, running listing 13.2 like info("Profile image updated",
metadata, ["account_id", "feature_flags"]) when you have listing 13.1 running
on the same machine should get output like this in the window running the listing 13.1
script:

2023-02-19T01:01:24.251261Z Profile image updated -- {"hostname": "k8s-

➥ 14.euc1.prod.internal", "pid": 11321, "release": "0.7.1", "commit": 

➥ "f0d00b1", "account_id": "1515323", "feature_flags": {"new_login": true, 

➥ "new_profile": false}, "level": "info"}

To show how we get from info("Profile image updated", metadata, ["account_
id", "feature_flags"]) to the preceding result requires understanding how struc-
tured loggers work. This topic was covered in detail in chapter 12, but the logger, for-
matter, and writer components are all present in this listing. Figure 13.3 shows those
components and the logical flow.

 We are overriding the DatagramHandler that ships with Python’s structlog module
to make our UDP emitter because of a Pythonism. The stock DatagramHandler emits
telemetry pickled, which is a Python-specific serialized format for passing objects that few
other systems support. The PlainDatagramHandler I built in listing 13.2 skips the pick-
ling step and instead emits strings. I’m doing this because a system that emits plain
strings is more interoperable with other systems that aren’t running Python themselves.

 Also note that the UDP emissions here aren’t encrypted in any way in transit, so
they are best suited to emit over fully trusted networks. The sidecar pattern, in which
the emissions occur entirely over the internal network of a hypervisor or host
machine, is a good use case.

The list of formatters our 
logger will use, including 
our internal format

Object to use in logger 
functions; instantiates all 
the previous configuration
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It’s worth our while to look at ways to receive streams of UDP events, so let’s take a look
at how Logstash and Fluentd are configured to consume UDP inputs. First up is

info("Profile image updated", metadata, ["account_id", "feature_flags"])

info(eventdata, metadata, fields)

__merge_context(metadata, fields)

__add_context()

__filter_metadata(metadata, fields)

event.info(eventdata)

log = logger.bind(**__merge_context(metadata, fields))

processors[TimeStamper(fmt="iso")]

processors[UnicodeDecoder()]

processors[add_log_level]

processors[InternalRenderer()]

logger_factory=LoggerFactory()

2023-02-19T01:01:24.251261Z Profile image updated -- 
{"hostname": "k8s-14.euc1.prod.internal", "pid": 11321, "release": "0.7.1",
 "commit": "f0d00b1", "account_id": "1515323",
 "feature_flags": {"new_login": true, "new_profile": false}, "level": "info"}

Fetches general context

Fetches fields from metadata

logger.bind(**__merge_context(metadata, fields))

Adds gathered context to
log object

Starts emitting telemetry

Reformats everything into the
internal-standard format

handlers=[PlainDatagramHandler
('127.0.1.2', 9201)]

emit()

self.send(s.encode('utf8'))

Enters the Writer phase 

Enters our custom emitter
and function

Sends telemetry over UDP

Enters the Logger phase

Enters the Formatter phase

Figure 13.3 Logical flow of our emitted telemetry from where it enters the logger to when it emits 
over UDP. During the logger phase, the __add_context() and __filter_metadata() functions 
provide additional context. During the formatter phase, the Timestamper processor adds a timestamp 
in ISO-8601 format, ensures that strings are encoded correctly, adds the log level (Info), and finally 
reformats the telemetry into the internal standard. In the writer phase, the string is moved into our 
custom handler, where it is sent over a UDP socket to 127.0.1.2. port 9201. Section 12.2 goes 
deeper into the formatter phase of this execution.
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Elastic’s Logstash. In Logstash, inbound telemetry is configured in input {} blocks;
telemetry enrichment happens later in filter {} stages and is covered more in part 1:

input {
  udp {
    host  => "172.28.5.128"
    port  => 9201
    type  => "metrics"
    codec => plain {
      charset => "UTF8"
    }
  }

  udp {
    host  => "172.28.5.128"
    port  => 9202
    type  => "exceptions"
    codec => plain {
      charset => "UTF8"
    }
  }
}

We see two separate listeners set up here—one named metrics on port 9201 and a sec-
ond named exceptions on port 9202. As with the simple UDP echo server from listing
13.1, we are configuring these listeners to expect UTF8-encoded data. We accomplish
this task through the codec definition on both listeners. Open source Fluentd handles
the inputs similarly:

<source>
  @type udp
  tag metrics
  bind 172.28.5.128
  port 9201
</source>

<source>
  @type udp
  tag exceptions
  bind 172.28.5.128
  port 9202
</source>

Fluentd doesn’t have an expectation for UTF-8 the way Logstash does, but we do see
two listeners set up. When we use an extremely lightweight shipper to move telemetry
to a sidecar, the sidecar can use heavier shipping technologies (in terms of code com-
plexity) to shield the simple functions and containers from that burden. Figure 13.4
reframes figure 13.2, talking to Kafka streams instead of a Redis queue.

 The Kafka client is a fairly complex chunk of code. Although that complexity might
not matter in a large monolith that already has a lot of code complexity, adding the
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Kafka client as part of the logging system can add substantially to the size of a micro-
service. A transport like UDP will require loading a sockets library into the microservice,
which is likely already loaded due to the API-driven nature of many microservices archi-
tectures (telemetry without more libraries!).

 Use of UDP for sending logging data goes back decades. Internet Engineering
Task Force RFC 3164, defined in August 2001, formalized the de facto Syslog standard
and set UDP/514 as the official Syslog port. Syslog had been using UDP/514 for many
years before the standardization effort. As mentioned in chapter 2, hardware vendors
often emit in Syslog format because it is a standardized format and therefore unlikely
to change. Using UDP for your telemetry has a deep history behind it. Besides, after
HTTP/3 gains widespread adoption, HTTP APIs will be using UDP as well.

 Straight TCP sockets can also be used similarly to how figure 13.4 uses UDP data-
grams. TCP is somewhat heavier in terms of effect on processing, because unless care
is taken, the act of setting up a TCP connection can block production code while the
telemetry is sent. UDP is connectionless, so it can be safely fired and forgotten, and
therefore nonblocking. A portion of the heaviness in application protocols such as
AMQP (RabbitMQ) and Kafka is due to the networking stack TCP brings with it.

 As with UDP, if your telemetry is emitting across the in-memory network of a
hypervisor, kernel, or mainframe, the chance that network problems will slow your
TCP connections is greatly reduced. Because of this simplicity, a TCP-based emitter is
less likely to need additional code to handle retries in case of a reset connection,
among other issues.

 One thing TCP has that UDP lacks (easily) is the ability to use Transport Layer Secu-
rity (TLS): encryption. If your telemetry system has even the possibility of handling reg-
ulated information such as privacy or health information, regulation requires
encryption of such regulated information in transit. Adding a TLS negotiation to your
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Figure 13.4 Moving telemetry from simple containerized applications and into the Shipping 
stage. The first leg of travel happens over UDP on the internal network of the Kubernetes cluster 
node, delivering to a logging reshipper sidecar. Then the sidecar reships telemetry to Kafka topics, 
where a log parser box in the Shipping stage subscribes to topics to further enrich telemetry. This 
architecture allows the containerized applications to avoid having the complex Kafka client library 
installed on each of them.
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telemetry will slow things down, but it will also make your TCP telemetry transmission
technique easier to justify to external auditors. 

13.2 Emitting and shipping for container- and serverless-based code
This section is about handling telemetry for platforms that don’t have the full suite of
operating system assumptions available to them: Kubernetes and other container-
management frameworks, and FaaS (also known as serverless). Serverless is a style of
computing popularized by AWS Lambda; since then, Azure Functions and Google
Cloud Functions have emerged in the major public clouds. Serverless runs functions
on cloud-provider managed servers and allocation, so all the developer has to worry
about is triggering the function and consuming the output.

 Container and serverless both consider small, targeted applications that do one
thing well to be the ideal thing to run on either platform. Small applications are easier
to understand and, therefore, to debug. Small applications limit the fault domain, so
bugs don’t spread when something goes wrong. As discussed in section 13.1, small

Exercise 13.1
Pair protocols from column A with attributes in column B.

Protocols: Attributes:

TCP Connectionless: fire and forget

TCP Connection-oriented: tracks connection state

TCP Will retry if the network glitches

TCP Useful on fully private in-memory networks

UDP The basis of application protocols like AQMP and Kafka

UDP The basis of server protocols like Syslog and SNMP

UDP Relies on the operating system to handle retries

UDP Relies on the application to handle retries

Exercise 13.2
Which of the following is the most correct definition for the Sidecar Pattern in a Kuber-
netes system?

a A service on the cluster host that reships all output to containerd logs to a
Kafka stream

b A container that serves as a log forwarder for all containers in a cluster node
c A network endpoint that serves a utility purpose, such as a proxy, relay, or

service discovery
d A container that serves a utility purpose, such as a proxy, relay, or local ser-

vice endpoint for all containers in a cluster node
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applications need to consider their telemetry needs, and requiring heavy clients like
the Kafka client can make the small application look more like a medium-size applica-
tion. Getting telemetry out of container- and serverless-based systems is a little differ-
ent from large applications running on servers and virtual machines.

 Section 13.2.1 dives into Kubernetes and containerd, as well as the many ways to
get telemetry out of there. Section 13.2.2 looks into serverless systems and the chal-
lenges those systems face for telemetry.

13.2.1 Emitting and shipping from containerd-based code

This section is about getting telemetry out of Kubernetes-based applications. Kuber-
netes has a lot working in its favor in the form of the capabilities of the containerd and
Kubernetes platforms. We talked a little about this topic in section 4.2, noting that
containerd is able to ship the standard output (stdout) to the host’s journald system
(if the host is a Linux system) by way of Kubernetes. But Kubernetes is able to direct
stdout to many places:

 json-file—The default; stores telemetry in files on the host. (See chapter 3
for moving telemetry in log files into the rest of the telemetry system.)

 syslog—Sends telemetry to Syslog on the host but not across the network. (See
chapters 2–4 for more about Syslog and telemetry.)

 journald—Works only if the host is a Linux machine, but sends telemetry to
the journald process. journald is part of the systemd family of programs.

 etwlogs—Uses Event Tracing for Windows to send telemetry, which requires
the host to be running Windows.

 fluentd—Sends telemetry to a Fluentd daemon running on the host.
 gelf—Sends Graylog Extended Formatted telemetry to a network endpoint,

which can be Graylog, Fluentd, Logstash, or others.
 splunk—Sends telemetry to a Splunk endpoint, which can be a self-hosted or

cloud-hosted Splunk.
 awslogs—Sends telemetry to Amazon’s CloudWatch Logs service.
 gcplogs—Sends telemetry to Google’s Cloud Platform Logging service.

All the methods in the preceding list require the application running in Docker (for
development environments) or Kubernetes (for production environments) to send
telemetry out through the standard output. (See section 2.1.3 for details on emitting
to stdout.) If stdout is the only method to send centralized logging, metrics, and
observability telemetry, your telemetry format standard will need to be able to encode
all three styles. Figure 13.5 slightly updates figure 7.7.

 The routing topology shown in figure 13.5 is made possible because the format of
the telemetry—context-related telemetry encoded by the production systems them-
selves—allows the router to quickly determine what kind of telemetry it is looking at.
If the telemetry format is pure JSON, it could be that a top-level field named style—
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an example follows—is required to be set to one of three values (logs, metrics, or
traces—the three Pillars of Observability).

{
  "style": "metrics",
  "metric_name": "pdf_pages",
  "metric_value": 3
}

Our router deserializes the JSON and looks for a single field, ignoring the rest. Then
the router decides where to send that telemetry based on the contents of that field. If
our container-based application emits both metrics and logging through the same
channel, so long as the application sets the style field correctly, telemetry will end up
in the right places. Using a router in this way requires any program emitting into the
telemetry pipeline to do so with a common format (or one of a few common formats;
human politics often require compromise).

 Kubernetes doesn’t strictly require telemetry to be emitted through stdout, how-
ever. Most distributed tracing systems in use in the early 2020s have a strong prefer-
ence for emitting to an API—often, a SaaS provider’s API—over encoding into a
string and parsing later. Distributed tracing systems are an interesting case for teleme-
try and small services, because tracing needs to run alongside the production code to
do the work it needs to do. The code-complexity charge has already been paid by the
time telemetry needs to be emitted. Figure 13.6 shows a split of this nature, with trac-
ing telemetry going over API to Honeycomb.io, and the rest going through stdout and
into the Kubernetes system.

Production
systems Router

Logging
parser

Metrics
parser

Tracing
parser

Shipping
storage

Shipping
storage

Shipping
storage

1. Emit into
    single queue.  

2. Router
    serves queue.

3. Router requeues
    events per type.

4. Dedicated parsers
    service queues.

5. Dedicated parsers
    ship to storage.

Figure 13.5 How a unified telemetry format ends up with appropriate systems parsing 
each style of telemetry. Telemetry leaves the production systems in a single stream. Then 
a router looks at each item of telemetry and determines how to route the telemetry based 
on details in the telemetry. After routing, telemetry is parsed and stored.
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13.2.2 Emitting and shipping from serverless-based code

This section is about getting telemetry out of serverless, also known as FaaS-based
code. Serverless as a style of computing took off with the introduction of AWS’s
Lambda service, which offers API-driven ways to trigger execution of code. Unlike
container platforms like Kubernetes, serverless systems are running in platforms built
by cloud providers and inherit the provider’s logging capabilities and preferences.
The three major serverless systems send their logs to:

 AWS Lambda logs stdout into CloudWatch logs, an API-  and S3 (file object)-based
service.

 Azure Functions logs stdout into a Storage Account or the Monitor Logs ser-
vice, based on Log Analytics.

 Google Functions logs stdout into a Cloud Console, where you can query logs.

These default log targets are designed to be flexible enough for many needs, but many
needs often doesn’t overlap with your needs. For a startup looking to avoid the complex-
ity of maintaining Kubernetes clusters, serverless looks like an amazing way to focus
on what the company does best: write code that makes money. Such a startup is likely
to be using the latest software development techniques, which means adopting distrib-
uted tracing. Both Azure (Application Insights) and Amazon AWS (X-Ray) now have
API-driven tracing solutions. That serverless-using startup is almost definitely embrac-
ing HTTP APIs for its tracing system. Further, such a startup is likely to be using dis-
tributed tracing as its primary telemetry method, bundling metrics and centralized
logging. Figure 13.7 shows this pattern.
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Figure 13.6 Here, containerd applications split their telemetry delivery. Tracing is sent 
to an API at Honeycomb.io, where metrics and logging telemetry emit through standard 
out. Standard out is gathered by containerd and Kafka and then sent into journald on the 
Kubernetes host (a Linux system). Journalbeat, a program from Elastic, reads journald and 
sends telemetry into a Redis server for processing later. Even tiny containers can follow 
this pattern and not significantly increase code complexity.
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Contrast this latest and greatest startup with a much older company looking to adopt
new techniques for doing what it does. A company of this type—old—has long-
established patterns of computing and telemetry. Rather than radically reinvent
everything, including telemetry, a company like this one will seek to speed adoption of
the new technology by integrating what it can into existing telemetry services.
Whereas the startup paid other people to handle telemetry, this older company can
use existing infrastructure.

 This older company also faces the code-complexity problem I’ve spoken about a
few times in this chapter. The existing systems, which aren’t serverless, can safely
assume that the system logger is there and configured to centralize whatever is sent to
it. The system logger for serverless platforms looks nothing like the Windows, Linux,
or Kubernetes system loggers, which presents a challenge if their existing telemetry
systems assume that Event Log (Windows) or Syslog (Linux) are in use. This company
is in better shape if it engineered around the system logger by using other techniques,
such as queues, streams, and APIs:

 If it built telemetry assuming that the system logger is present, adopting server-
less will require the company to create novel telemetry delivery methods or
engineer a new solution for consuming the cloud provider’s logging store for
serverless logs.

 If it built telemetry by using techniques such as streams, queues, and APIs, it will
need to consider code complexity in serverless functions.

The simpler the function, the more onerous it becomes to have a thick set of libraries
just to emit an event describing the successful transaction. Deciding whether to keep
that library or add an abstraction layer to simplify the overall code is made easier by
the fact that serverless is a cloud-provider offering. All the major cloud providers have
easy-to-use ways to submit jobs to queues (and in some cases, streams as well). Figure
13.8 shows one way to embrace the convenience of provider-based queues.

 Figure 13.8 shows two telemetry flows, one using traditional computing and the other
using serverless. To address the code-complexity problem of putting the RabbitMQ
client in every serverless function, this company instead uses the simple-to-use queue
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Figure 13.7 Telemetry flows for a startup using serverless as its production platform. 
Distributed-tracing telemetry flows directly to an HTTP API managed by the distributed tracing 
vendor. Everything else (what there is of it) ends up in the cloud provider’s logging service. A 
startup of this nature is likely using distributed tracing for all its telemetry needs and may use 
the logging service more as a place to look up exceptions that killed computation early.
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system that’s native to the cloud provider. It also built a new Shipping-stage system that
pops telemetry off the native cloud-provider queuing system and pushes events into the
RabbitMQ system. From there, telemetry flows as it does for the traditional computing
flows. The extra step in the telemetry pipeline adds latency—it takes data longer to hit
storage and be searchable versus traditional computing—but enables the same
Presentation-stage systems to support both traditional and serverless systems.

 This architecture is not without risk. The job-size limit for the native cloud-
provider queuing system, for example, is likely much, much smaller than the payload
size of RabbitMQ (which can go up to 512 MB). Azure Queues limits jobs to 64 KB,
and AWS’s Simple Queuing Service limits them to 256 KB. If the events that our
example company produces sometimes exceed the size limit of the cloud-provider
native queues, the reshipper is going to have to deal with reassembly of events from
multiple jobs (or possibly compression/decompression cycles).

 Although serverless lacks a system logger that looks like what Linux and Windows
run, the Syslog protocol works over a network. Section 2.1.2 focused on emitting to
the system logger in detail, but as a reminder, Syslog classes in programming frame-
works allow sending Syslog messages to remote servers. Because Syslog works over
UDP, it doesn’t require loading a complex client that performs service discovery to
detect the architecture of a target service, the way that Kafka and RabbitMQ do. Syslog
is small. If our older company is already using Syslog, its conversion to serverless can
be pretty easy. Figure 13.9 shows how Syslog-based serverless could integrate with an
existing Syslog-based telemetry shipping system.

 Interestingly, a company that is based on something as constrained as Syslog has an
easier time integrating a radically new computing technology than a company that uses
direct-to-stream or direct-to-queue telemetry techniques. Because the Syslog RFCs do
not uniformly describe how encryption is supported, Syslog-based telemetry will be sent
unencrypted. This plain-text transmission is a major problem if the telemetry system has
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even the possibility of containing regulated information, such as privacy and health
information, because regulation governing such protected information often requires
end-to-end encryption.

13.3 Encrypting UDP-based telemetry
Taking a page from section 13.1, how would we build a UDP-based telemetry emitter
that would be secure when used over an untrusted (for regulatory values of untrusted)
network? Socket libraries are relatively cheap, in terms of code complexity, and cryp-
tographic libraries are often already loaded if the function performs any API work.
Listing 13.3 is a Python formatter class (see section 12.2 for far more on the role of
formatters in structured logging) that we can use with the structured logger we
worked with in section 13.1.

NOTE This listing uses an encryption key directly in the code, which is clearly
a bad idea. I use it here to demonstrate the concept. It is a best practice to
deliver secrets through a channel other than code, such as environmental
variables or a system like Hashicorp’s Vault. To run this code, you need to
install the cryptography Python module, which includes fernet.
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Figure 13.9 A Syslog-based telemetry system involving both traditional and serverless computing. 
Both techniques emit telemetry over UDP port 514. They also have metrics and logging parsers 
listening to dedicated topics that parse metrics and logging telemetry, respectively, to store in 
dedicated storage. For this company, serverless doesn’t present much of a telemetry challenge.

Exercise 13.3
In the following list, which are constraints facing telemetry flow in FaaS (serverless)
environments?

 Complete reliance on emitting telemetry through stdout
 The cloud provider’s opinionated storage system for telemetry emitted

through stdout
 Lack of queue or stream support
 Lack of system logger support
 The size limit of jobs in the cloud provider’s queues
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from cryptography.fernet import Fernet   
import json
import base64

class Encrypter(object):

    def __init__(self):
        bkey = b'this is a bad key -- do not use.' 
        self._key = base64.b64encode(bkey)   
        self._key_version = '1.0'  

    def __call__(self, logger, name, event_dict):
        enc_event = { 'kver': self._key_version }
        cipher = Fernet(self._key)    
        safe_event = cipher.encrypt(
             ➥ event_dict.encode('utf8'))                     
        enc_event['event'] = 
             ➥ base64.b64encode(safe_event).decode('utf8')    
        return json.dumps(enc_event)    

Telemetry passing through this formatter will get encrypted and should look like this,

{"kver": "1.0", "event": "Z0FBQUFBQmZ[...cut for space...]MswzA"}

returning a two-element JSON hash, with kver setting the key version and event con-
taining the base64-encoded encrypted hash. Updating the script in listing 13.2 to use
this new formatter requires changing two lines of code, shown in listing 13.4. Changes
are boldfaced. I used the Fernet helper for symmetric cryptography that Python pro-
vides because it uses safe defaults; this saves me from potentially making a security-
breaking mistake in my selection of encryption algorithm, cipher, key lengths, and ini-
tialization vectors. (Fernet uses AES in CBC mode with a 128-bit key, AES256 for
HMAC, and random Initialization Vector; reasonably safe, for early-2020s values of
“safe.”) To make sure that this listing will import our encrypter module, rename list-
ing 13.3 encrypter.py in the same directory as listing 13.4.

[...]
from internalrenderer import (InternalRenderer)
from encrypter import (Encrypter)
from structlog import (
    get_logger,
    configure,
)
[...]
configure(
    processors=[
        TimeStamper(fmt="iso"),

Listing 13.3 A formatter named Encrypter, written in Python

Listing 13.4 Updating listing 13.2 to use the Encrypter

Imports the symmetric encryption helper 
from the cryptography module

The
encryption
key to use.
Don’t use
this one.

Sets the Fernet key by base64-
encoding the binary key; runs 
on program start

Sets the key version, used by the decrypter

Creates the Fernet cipher, using 
the key set during program start

Encrypts our telemetry, using 
the Fernet cipher, and sets the 
‘event’ attribute

JSON serializes our telemetry.
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        UnicodeDecoder(),
        add_log_level,
        InternalRenderer(),
        Encrypter(),    
    ],
[...]

If you run the UDP echo server from listing 13.1 and then run listing 13.4, you will see
our encrypted output with kver and event values. Encrypting in this way, at the Appli-
cation layer rather than the Transport layer, will make telemetry that might contain
private or health information easier to pass auditorial scrutiny. Because this listing
does not use recognizable TLS (sometimes known as HTTPS), you should expect
more questions about your encryption methods. But as long as you get your key man-
agement right, use correct key sizes, and select a correct cipher, you should have little
trouble convincing your auditors that this path is secure. Figure 13.10 shows how the
new formatter fits into the structured logger.

Appends Encrypter() to the 
processors, encrypting the 
InternalRenderer() format

info("Profile image updated", metadata, ["account_id", "feature_flags"])

event.info(eventdata)

processors[TimeStamper(fmt="iso")]

processors[UnicodeDecoder()]

processors[add_log_level]

processors[InternalRenderer()]

logger_factory=LoggerFactory()

{'kver': '1.0',
 'event': 'Z0FBQUFBQmZnMDQwbjZzUzVpRFhfV2JrUTV3djh[...]JHUFlhWm9Ea1BYdEs3'}

Starts emitting telemetry

Reformats everything into the
internal-standard format

handlers=[PlainDatagramHandler
('127.0.1.2', 9201)]

emit()

self.send(s.encode('utf8'))

Enters the Writer phase 

Enters our custom emitter
and function

Sends telemetry over UDP

Enters the Formatter phase

[See figure 13.3 for these steps]

processors[Encrypter()] Encrypts the formatted telemetry

Figure 13.10 Where our Encrypter formatter fits into the structured logger. Encrypter 
follows InternalRenderer, so the Encrypter will be encrypting the formatted telemetry. 
As we see at the bottom, we have our kver key version and event crypt-text hash encoded as 
JSON. The UDP receiver uses the kver value to select the key to use to decrypt the telemetry.
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To provide decryption, let’s update our simple UDP echo server to decrypt and echo
back our telemetry. Listing 13.5 updates listing 13.1 to decrypt the telemetry we are
producing in listing 13.4. As with listing 13.3, you will need to install the cryptogra-
phy Python module, which includes fernet.

from cryptography.fernet import Fernet
import socket
import json
import base64

host = "127.0.1.2"
port = 9201

badkey = b'this is a bad key -- do not use.'    
decrypter = Fernet(base64.b64encode(badkey))   
telemetry_in = socket.socket(
  socket.AF_INET,
  socket.SOCK_DGRAM)

telemetry_in.bind((host, port))

while 1:
  data, addr = telemetry_in.recvfrom(8192)
  try:
    value = data.decode('utf8')
    print('Encrypted text: %s ' % value)
    enc_event = json.loads(value)   
    b64event = base64.b64decode(enc_event['event'])    
    try:
      event = 
          ➥ decrypter.decrypt(b64event).decode('utf8')   
    except:
      print('Failed decryption')
    print('Clear text: %s' % event)
  except:
    print("Invalid data received.")

telemetry_in.close()

To test the pair of programs, launch the listing 13.5 code first so that you have a UDP
listener running. Second, run the listing 13.4 code. You should get output similar to
this:

Encrypted text: {"kver": "1.0", "event": 

➥ "Z0FBQUFBQmZnMUZvbVlMZEVTcE5qTExVbTJLb2w4UHc3XzZVdEZ6MHVKNFI5cnBobVBKTD

➥ hVY3ZVcWc0SUZ2eWprdFZsbm90d0tKaHo4WlRick9xR29rU1pVWVdPeG1ORG05UnJ0UmN5d

➥ VE4enllTGZVaVFYZ2JCcFN0N2hFQWUwS08tUUhGQU0yaFItSjZ6anphcTBPLU1lZWYyLWZ4

➥ TXlDNDQ5N2dMcTNaTnRNaEw5TElXbHVlX2hBOGhHVTNvTTQ1MWstMGdRQ2d6U1Z2UUZSYjg

➥ 0V09hd0ZEYUFYWWQ2YVpFaU53eWh2cDM1SFlEZUFNUmJ3bm81VWhjNVVvZ2YydHhDMGg2R0

Listing 13.5 A decrypting UDP echo server

Sets up the Fernet decryption object 
for use; runs at program start

Load the JSON from the 
UDP packet into a hash.

Base64-decode the ‘event’ 
attribute from the hash.

Attempt decrypting 
the event attribute.
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➥ dXYklWZ18yektfdmRGRG"} 
Clear text: 2023-02-19T18:39:36.090158Z Profile image updated -- {"hostname": 

➥ "k8s-14.euc1.prod.internal", "pid": 15815, "release": "0.7.1", 

➥ "commit": "f0d00b1", "account_id": "1515323", "feature_flags": 

➥ {"new_login": true, "new_profile": false}, "level": "info"}

Because cryptographic functions are increasingly the cost of doing business over a net-
work, they should be present in the runtime you are using for your serverless func-
tions. Interpreted languages like Python have them shipping with the main language
without having to import more modules. For compiled languages like Go, adding
cryptographic functions will increase the final binary size somewhat, but the functions
themselves are part of the base language.

WARNING I used Python’s Fernet for a reason: it gives me an easy-to-use inter-
face with safe defaults, so I didn’t have to do a ton of research about what spe-
cific encryption options are safe today. I certainly could have encoded the
Fernet defaults by using base encryption functions, but that approach would
merely increase the surface area for bugs. If you decide to attempt encryption
in your own code, it’s preferable to use any similar safe-defaults interfaces
present in your languages.

If you want more information about the role that encryption can play in telemetry sys-
tems, not just at the emitting stage, section 15.2 goes into more detail.

Summary
 A structured logger writer that emits to a remote location is part of the Ship-

ping stage because it is involved in moving telemetry to a new location.
 Application protocols such as Kafka, AMQP (for RabbitMQ), and other distrib-

uted system applications often require large libraries and clients to be loaded
into your production code, which increases the code complexity of your pro-
duction code.

 Microservices are especially sensitive to code complexity. Their job is to be a
small, maintainable piece of code; adding a heavy client for telemetry can cre-
ate a serious increase in complexity.

 Monoliths can be quite complex with respect to code, so they are far less
affected when a heavy application protocol is picked to move telemetry.

 Containers, virtual machines, logical partitions, slices, and zones have in-memory
networks based in their hypervisor, kernel, or mainframe. These networks are far
more reliable than cloud or hardware networks, allowing you to use simpler pro-
tocols safely to move telemetry.

 Transmitting telemetry over in-memory networks to a dedicated container (or
equivalent), which is responsible for reshipping telemetry over heavy protocols,
is called the sidecar pattern and is an effective way to shield your small contain-
ers and functions from complexity.
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 Transmitting telemetry over TCP sockets or UDP datagrams over in-memory
networks is far safer than using general networks and allows the use of simpler
code in your containers and functions.

 If you are using a structured logger in your telemetry (see chapter 12), use a
writer to build your TCP- or UDP-based logger. Some logging frameworks have
a socket (TCP) or datagram (UDP) writer built in or available for you to
customize.

 UDP-based writers don’t have easy access to TLS, so they are best suited for in-
memory network emissions to limit the “in the clear” exposure they experience.

 TCP-based writers do have access to TLS, which makes them more suitable for
use over general networks.

 The Syslog protocol uses UDP port 514 by standard (RFC 3164 August 2001), so
there is a long history of using UDP for telemetry.

 The HTTP/3 protocol is based on UDP, so expect increasing sophistication
with UDP networking during the 2020s.

 Kubernetes offers a wide variety of ways to reship the standard output from con-
tainers to somewhere more interesting, such as Syslog, Event Tracing for Win-
dows, and SaaS products like Splunk.

 Even though Kubernetes has a lot of shipping capabilities, the telemetry styles
you use sometimes require another method. This requirement results in split
telemetry flows, such as stdout for logging and a Datadog API call for metrics.

 Distributed tracing systems (at least in the early 2020s) have strong preferences
for API-driven telemetry. Fortunately, using distributed tracing means that the
code-complexity charge is already paid when it comes time to emit.

 If multiple telemetry styles are emitting through the Kubernetes logger, you
need to encode ways to tell each style apart into the telemetry format itself. This
approach enables a Shipping-stage component to route each item of telemetry
to the correct parsers.

 All serverless frameworks emit logs into vendor-specific log-searching frame-
works, which isn’t suitable for all telemetry needs but is still better than digging
through files by hand.

 As with Kubernetes, serverless leads to split telemetry flows for specific needs
due to the limits of the default loggers. Some organizations will forgo using the
default logger and will instead use a SaaS platform.

 When older organizations with established computing patterns adopt server-
less, they often try to integrate serverless into their existing telemetry flows. If
those flows are based on logging to files or using the system logger, these orga-
nizations will need to come up with new ways to get telemetry into their existing
systems.
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 Because serverless frameworks are made by cloud providers, they often provide
easy ways to get data into other provider systems such as queues, which helps
the code-complexity problem.

 The old Syslog protocol, based on UDP port 514, still works over networks. An
older company that is still using Syslog can continue to use Syslog in serverless,
so long as it pays attention to what telemetry requires encryption.

 Although using TLS with UDP is tricky, you can still use encryption to wrap
telemetry. Some cryptography modules in programming languages have conve-
nience methods that make this process less fraught with peril; use these meth-
ods. When used correctly, they will solve the auditor problem with respect to
handling and safely transmitting regulated information.
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Managing
 cardinality in telemetry

This chapter dives deep into one of the maintenance headaches of managing
telemetry systems: cardinality in your storage systems. Here is the definition of car-
dinality from chapter 1:

DEFINITION Cardinality is the term for index complexity—specifically, the
number of unique combinations the fields in the index may produce. If
you have fields A and B, where A has two possible values and B has three
possible values, the cardinality of that index is A * B, or 2 * 3 = 6. Cardinal-
ity significantly affects search performance no matter what data storage sys-
tem is being used.

All telemetry styles have searching telemetry as a key feature; searching is made
faster through indexing, and indexing cardinality affects search performance.

This chapter covers
 How cardinality affects telemetry performance

 Ways to identify cardinality problems

 Techniques for managing cardinality
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Search performance is affected by many things besides indexing, such as search fre-
quency and the shape of the data. Cardinality of the data and indices, however, is the
problem that forces compromise by database makers. Because of this compromise,
each storage system handles indexing and cardinality differently. Also different for
each storage system is the degree of impact cardinality has on search performance
and other maintenance operations. Section 14.1 goes into detail about how cardinal-
ity affects common storage systems used for telemetry. To demonstrate cardinality
concepts, let’s take a look at an example metrics table (table 14.1).

Table 14.1 is a simple table with five fields, four of them indexed. As a metrics table, it
has a small amount of context-related telemetry in the form of the account_id and
subscription_id fields. We also index metric_name to ease searching but do not
index metric_value. To compute the cardinality of this table, first we need to look at
how many unique values exist in each field in table 14.2.

Right away, we see in table 14.2 that the timestamp field will be a problem due to how
many unique values it has. Timestamp columns often get a dedicated index specifi-
cally for this problem, especially in a metrics systems, where time-based searches hap-
pen on just about every query. So if we have one index for the timestamp column, how
much cardinality do we have for the other indexed columns?

256,121 accounts * 132 subscriptions * 1251 metric_names = 42,293,772,972 

➥ potential combinations

Table 14.1 An example metrics table with field definitions

Field name Field type Indexed

account_id long-int *

subscription_id long-int *

timestamp long-int *

metric_name string(32 char) *

metric_value double-float

Table 14.2 An example metrics table with field definitions and uniqueness

Field name Field type Indexed Unique count

account_id long-int * 256,121

subscription_id int * 132

timestamp long-int * One per row

metric_name string(32 char) * 1251

metric_value double-float
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That 42 billion is an incredibly large number, but it is a theoretical maximum of a
compound (multifield) index. Because every account doesn’t have every subscription,
and because in this hypothetical case each account uses only 70% of the total metric_
name values possible on average, we can rephrase our cardinality computation. If you
know through other sources that accounts have on average 4.8 subscriptions associ-
ated with them over time, the math turns into

256,121 accounts * 4.8 subscriptions * (1251 * .7) metric_names =  

➥ 1,076,568,767 actual combinations

One billion is a far better number but still quite high. How much cardinality is a prob-
lem, though? The answer depends on your storage systems. For a relational database
like MS-SQL or Postgres, indexes like these are perfectly fine; the “account” table that
has account_id as a primary key likely is as highly cardinal as this metrics table. For
the time-series databases InfluxDB and Prometheus, this cardinality is crippling. For a
SaaS provider like Honeycomb.io, you don’t care about this cardinality, because it is
the provider’s problem (and if cardinality is a problem for the provider, it will make
you care about it through its billing structure).

 Search performance is a complex balancing act among indexes, data, use patterns,
and the shape of the data being searched. If you are maintaining Presentation-stage sys-
tems for telemetry, you care about search performance. Although I can’t go over every
telemetry storage engine out there and describe how it reacts to cardinality (more are
made every month), I can give you the tools to identify whether you are in trouble (sec-
tion 14.1), as well as techniques for getting out of and avoiding trouble (section 14.2).

14.1 Identifying cardinality problems
This section is about identifying a cardinality problem in your telemetry storage sys-
tems. The broadest measure that you might have a cardinality problem is slow search
performance, but that can be caused by many things. Symptoms of cardinality prob-
lems depend on your storage system, but include the following:

 Slow search performance—This symptom is the one that most people notice,
because search performance is a primary feature of Presentation-stage systems.
Unfortunately, many things other than a cardinality problem can cause slow
search, but slow performance is a sign to look for that problem.

 Increased memory use for normal operations—Many storage systems keep indexes in
memory. As those indexes grow, so does memory use. Most of these storage sys-
tems allow reading indexes from disk if they won’t fit in memory, which greatly
slows search performance. Relational databases like MySQL are famous for this
pattern.

 Increased memory use for routine scheduled operations—Scheduled optimization proce-
dures in some storage systems are affected by cardinality. InfluxDB (as of version
2.0) performs compaction operations regularly, and high cardinality leads to
increased (often much increased) memory use compared with the rest of the time.

https://spinnaker.io/%22
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 Decreases in ability to insert new data—As indexes get larger, they need to be
updated. Indexing efficiency varies by storage engine, and not all storage
engines are good at it. The overhead of handling inserting new values into the
indexes can, for some systems, scale up as the unique-value count increases,
which in turn reduces the ability to insert new data into the system.

 Increased time to allow querying after starting the database—Some storage systems
need to load indexes into memory before being able to query. The larger the
indexes are, the longer this process takes. Because stateful systems like these
may not be restarted often, this problem can surprise you at a bad time.

 Increases in consumed disk space that scales higher than your ingestion rate—Some
storage systems keep indexes in separate files from table data. Each time you
insert new data with a new unique value, the storage system needs to update the
table data with the new value, as well as update any indexes and their files. In
other systems, such as Elasticsearch, every new piece of data gets all fields, even
if those fields have a null value. Therefore, if you have 10,000 fields, and a new
event is inserted with 15 fields, that new event will have 9,985 nulled fields on it.

In this section, we will go over two broad types of storage system and the ways in which
cardinality affects each type. Cardinality in time-series databases is covered in section
14.1.1, and cardinality in logging databases is covered in section 14.1.2. The third Pil-
lar of Observability—traces—is currently dominated by SaaS platforms. The dominant
self-hosted platform is Jaeger, which sits on top of Cassandra or Elasticsearch and
inherits the cardinality problems of those platforms (which are covered here).

14.1.1 Cardinality in time-series databases

Time-series databases are optimized for serving data organized by time, which is why
time-series databases form the foundation of many metrics-style telemetry systems.
The common design goals of time-series databases are to enable fast searches of
recent data (the most common type of search in a metrics presentation system) and to
make aggregating data over time easier (chapter 17). The four time-series databases I
will be covering here are

 OpenTSDB, the first time-series database to really break out, which was created
by StumbleUpon and based on Hadoop

 KairosDB, an open source time-series database based on Cassandra
 Prometheus, which was part of a larger monitoring platform, was made famous

by SoundCloud, and is a member of the Cloud Native Computing Foundation
 InfluxDB, another stand-alone metrics datastore that is now part of a suite of

utilities put out by InfluxData

OpenTSDB has a strict cardinality limit per field of 16 million unique values.
Although this limit is generous, using a field to store highly unique information such
as IP address or the container ID in a Kubernetes pod will quickly run your key out of
space. You will notice this happening when you don’t get new values in your metrics.
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 The other area where cardinality comes into play with OpenTSDB is the queries
themselves. Queries that require a lot of fields, or that involve fields with a lot of cardi-
nality, will be slower than queries involving little cardinality. You can speed things by
using multiple region servers (a Hadoop concept) in your OpenTSDB cluster, which
allows OpenTSDB to partition or shard data across the many region servers. When
they’re split up this way, queries will be submitted to each region, processed in paral-
lel, and then reassembled. Parallel processing makes the query much faster, and most
distributed databases make use of this pattern. Figure 14.1 demonstrates this process.

KairosDB doesn’t have any explicit cardinality limits, but how it operates does provide
some de facto limits to cardinality. There are four main pieces of data for a metric:

 The metric name
 The timestamp
 The value
 Any key-value pairs associated with the metric
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Figure 14.1 How OpenTSDB splits queries for high-cardinality data. The time-series daemon receives the 
query from the client and then redistributes it to the region servers. The region servers query their local 
storage and deliver any local results to the daemon. Then the daemon reassembles all the results to 
return to the client. A slow-performing high-cardinality query is made faster through parallel processing.
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A critical thing to understand with KairosDB is that the key-value pairs are not indexed.
Using them in a query will slow your query, and the more unique values you have in a
specific key, the slower your query gets. To use an SQL example of what is happening,
let us look at how KairosDB returns results for a metric named pdf_pages and with
the tag datacenter=euc1 set. The SQL-like first query that KairosDB performs when
processing a user query is

SELECT metric_value, tags
FROM metrics_table
WHERE 
    metric_name = 'pdf_pages' AND
    timestamp > abc AND
    timestamp < xyz

which returns a list of all metrics with the name pdf_pages in it. Then KairosDB walks
through the entire result set, looking for tags fields that contain datacenter=euc1.
The more unique values are in the tags fields, the more data KairosDB has to throw
away before returning results, which in turn means that queries cause a lot of storage
I/O for few results. Figure 14.2 shows this process.

If your KairosDB infrastructure is consuming a lot of storage I/O capacity and feels
slow, you likely have a cardinality problem in your tags. In general, use tags only to
indicate low-cardinality data. Our example uses datacenter as a tag; this tag has fewer
than 10 values for this example company. Keep in mind that the first phase of the
query, done on Cassandra, has its own cardinality issues; too many metrics slow that
query as well. How much is too much? Keeping an eye on your query performance is
the only way to tell.

KairosDB

Cassandra
database

Phase 1: Fetch results
from Cassandra (indexed). 

metric_name = 'pdf_pages'

Phase 2: Filter results based on tag data (unindexed).

KairosDB

datacenter = 'euc1'
High-cardinality tag results
(many discards)

Low-cardinality tag results
(few discards)

Figure 14.2 The two passes KairosDB makes when responding to a query using tags. The first pass, 
which uses Cassandra and its indexing, is pretty fast. The second pass goes over the result set one 
by one, looking for rows with the right tags. For tags with high cardinality (high uniqueness), most 
of the result set will be discarded, and few rows will match. For tags with low cardinality, a large 
percentage of the returned rows will match. The storage charge for the query is the same for high- 
and low-cardinality queries, but high-cardinality queries will require more I/O capacity to resolve.
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 Prometheus says in its documentation that you shouldn’t put too many metrics in
it, and the limiting factor is memory on the Prometheus server. Right now (2021), a
Prometheus server with two million time series (metric name multiplied by each key
value) needs 8 GB of memory to ingest and process queries. If you find that your Pro-
metheus server is running out of memory, you likely have a cardinality problem.

 InfluxDB (up to version 2.0) has an explicit cardinality limit that must be set, and
this limit applies per database. When this cardinality limit is reached, InfluxDB will
not accept metrics that attempt to increase cardinality. You will notice that this limit
has been reached when you aren’t seeing new data in the affected database. Setting
the limit high will work to a point, but when InfluxDB performs shard compaction (a
shard is the metrics data for a regular length of time), the amount of memory this
takes is related directly to cardinality in the database.

 InfluxDB will let you declare multiple databases, which is one way to get around
the cardinality problems. Keep in mind that shard compaction needs to happen for
each database, and when those events overlap, significant memory can be required to
complete. You can tell that you have exceeded a database server’s ability to support
the InfluxDB databases when the InfluxDB process runs out of memory. On Linux sys-
tems, the OOMKiller will terminate the InfluxDB process unless you’ve configured
the kernel to avoid the process.

Exercise 14.1
The following table shows the indexed fields for a time-series database table that is
used as part of a metrics system supporting a Kubernetes environment. (Field values
are not indexed.) The metric field is the metric name; the other fields are used for
context-related details. Cardinality on this table is more than 12 million, which is
causing problems with the database. To get table cardinality under 1 million and still
keep maximum context-related details, which field should we drop?

Pick which field to drop:

a host
b pod
c service
d environment

Field name Unique values Use

metric 309 Name of the metric

host 19 Hostname of the node where it emitted

pod 78 Kubernetes pod where it emitted

service 15 The service that emitted the metric (could be 
from multiple applications)

environment 2 The deploy environment: prod or uat here
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14.1.2 Cardinality in logging databases

This section is about the databases used to host centralized logging data. The most
famous of these databases is the E in ELK Stack: Elasticsearch. Another document-
oriented database that sees a lot of use for centralized logging is MongoDB. We will
look at both databases to show the similarities.

 Cardinality in Elasticsearch behaves rather differently from the time-series data-
bases in section 14.1.1. An index in Elasticsearch contains a list of fields, and Elastic-
search further indexes each field to enable searching. Because Elasticsearch was
initially built for searching plain language, making for highly unique fields, it is less
bothered by individual field cardinality than the time-series databases are. Also, Elastic-
search shards its database by default, so you get parallelization working for you when
you’re resolving queries. (See figure 14.1 for that process.) Elasticsearch experiences
cardinality pressure in two areas:

 Disk-space consumption by field indexes—The indexes for each field take up space.
Depending on the mapping type set for each field and the text-analysis settings
you chose, the amount of storage consumed can be quite variable. Large files
slow search performance due to the need to sift through lots of disk to assemble
results.

 Average document size—Every field in an index is present in every document, so if
an index has 15,000 fields, and a document only has 15 fields defined, there will
be 14,985 fields set to null. Such a small record—only 15 fields—likely has
most of its space consumed by all those nulled fields. Large document sizes slow
search performance, as Elasticsearch has to move large documents.

When it comes to Elasticsearch, there are two metrics to pay attention to in terms of
cardinality:

 Average document size—Take the total size of the index, and divide it by the num-
ber of documents in the index. The result is the size per document. A slowly
increasing value, even though you’re not increasing the size of the documents
being fed in, is a sign that you have a creeping index problem.

 Count of fields—This metric is a direct measure of cardinality, and the best case
for your index is that all documents have all fields defined in them. If you find
that the count of fields is steadily increasing, however, check your inputs to see
whether someone is using something with high cardinality as a field key rather
than a field value.

When Elasticsearch is used with time-based indexes—such as one index per day or
week, which is common with centralized logging telemetry systems—you can easily
track both of these metrics over time. Search performance generally scales with the
size of the shards inside an index, so track that as well. Time-based indexes also let you
see the progress you’ve made in fixing problems.
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MongoDB is another document-oriented database. Unlike Elasticsearch, which pro-
vides an index for every field, MongoDB relies on externally defined indexes. The
implication of having to define your own indexes is that all the data going into a given
collection (similar to an index in Elasticsearch) looks about the same. This design
makes MongoDB less flexible in the face of variable inputs but gives you more direct
control of search performance. As with relational databases, searching for things in
unindexed fields kills search performance.

 All is not lost, though. MongoDB supports creating a single index for every string-
type field in the collection. This design more closely matches the design of Elastic-
search in that all text searches will be done through the index. Using this feature for
centralized logging will make the index of the collection significantly larger than the
collection itself. This large index is not always a bad thing—it certainly improves
search performance—but it does change where you look for problems.

 MongoDB supports sharding, splitting a collection onto different database servers.
This sort of splitting is a great way to allow more write capacity and also reduces the
absolute sizes of your index and data files on each given shard server. Sharding allows
MongoDB to take advantage of search parallelization, similar to how OpenTSDB (see
figure 14.1) and Elasticsearch handle searches.

NOTE If you are setting up a new telemetry system and are looking to use
MongoDB, make sure that you shard your databases from the beginning. This
approach will make scaling horizontally far easier. Adding sharding after
you’ve built your system is much more complex than doing it from the start.
You can select a shard count of 1 to start with.

How Elasticsearch field count affected my telemetry systems
We adopted Spinnaker (https://spinnaker.io) to assess how it could be used in our
application deployments. Spinnaker is a group of Java-based microservices with a dif-
ferent logging pattern from the rest of our systems, but we threw the log stream into
our Elasticsearch-based telemetry systems anyway. Spinnaker used a JSON-based
log format, which we dutifully ingested.

What we hadn’t noticed, however, was how many fields that process introduced to
the Elasticseach index we sent those logs to. Before we hooked Spinnaker up, we
ran between 500 and 700 fields in the index. After we hooked Spinnaker up, the field
count ballooned to around 3,000. At the same time, average document size in the
index went up significantly. Whereas Spinnaker was about 0.05% of overall traffic to
that index, the other 99.95% of the documents in the index had an extra 2,500 nulled
fields. Those fields accounted for nearly all the increase in average document size.
If you’re sharing an index, it only takes a tiny system with bad habits to create big
headaches. Section 14.2 shows how we fixed this problem.

https://spinnaker.io
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14.2 Lowering the cost of cardinality
This section addresses what to do when you’ve identified that you have a cardinality
problem or want to avoid having one in the future. Managing cardinality is good prac-
tice generally, so these techniques should serve most telemetry systems well. Definitely
review the warning signs of cardinality problems in section 14.1, which should serve
both to warn you of problems you already have and give you guidance on how your
planned or existing systems can experience cardinality problems. This section covers
three key concepts in managing cardinality costs:

 Section 14.2.1 describes how logging and telemetry standards are useful in
reducing cardinality of produced telemetry.

 Section 14.2.2 covers two storage-side methods for reducing the cardinality
penalty.

 Section 14.2.3 shows when it is a good idea to make cardinality someone else’s
problem.

14.2.1 Use logging standards to contain cardinality

This section is about how your logging and telemetry formatting standards help you
reduce cardinality. Logging standards are more useful for software you develop in-
house, because third-party applications and hardware are inflexible producers of
telemetry. We will cover cardinality that affects centralized logging (and by extension
SIEM systems) and metrics telemetry. Distributed tracing is currently dominated by
inflexible formats, so cardinality there is better tackled on the storage side (section
14.2.2) or by someone else who’s paid to handle it (section 14.2.3).

USING LOGGING STANDARDS TO TAME CARDINALITY IN CENTRALIZED LOGGING

We’ve covered logging standards in several places in this book—first in section 4.2,
again in section 6.1, and with another long look in chapter 12. Those standards
embraced flexibility, showing how you can add arbitrary context-related details to
telemetry to improve its utility when it comes time to analyze what’s going on in your

Exercise 14.2
Which of the following are symptoms of a telemetry system experiencing cardinality
problems?

a Increased disk use
b Increased memory use
c Increased CPU use
d Increased query rates
e Increased storage I/O
f Increased search times
g Decreased event ingestion rates
h Decreased CPU use
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production systems. This section is about what happens when arbitrary goes too far.
Section 14.1.2 described how two commonly used data stores for centralized logging,
Elasticsearch and MongoDB, react to cardinality problems.

 Let’s look at the hypothetical case of a centralized logging system that embraced
JSON as its telemetry transmission format and required only three fields in its schema:
app, level, and message. Any other fields would be added as context. Here is a sam-
ple, with the field keys boldfaced:

{ "application": "framulator", "level": "info", "message": "Retrieved profile 

➥ pictures", "acct_id": 1121, "subs_id": 137, "team_id": 734, 

➥ "retrieval_time": 2.1, "file_type": "svg", "file_count": 1, 

➥ "file_size": 17232 }

We see the three required fields and seven additional pieces of context-related telem-
etry. All this code looks great; the context is relevant to what the message said hap-
pened. Now let’s look at another sample:

{ "application": "framulator", "level": "info", "message": "Uploaded profile 

➥ image", "account": 6823, "subscription": 96, "team": 612, "upload_time": 

➥ 0.982, "upload_type": "png", "upload_count": 1, "upload_size": 9257 }

We see the same three required fields, but we’re looking at an uploaded profile image
instead of a retrieved one. If you look at the differences between the first and second
samples, however, you will see similar concepts encoded in different ways. Although the
line for the retrieved profile image uses file_type, file_count, and file_size, the
one for the uploaded profile image uses upload_type, upload_count, and upload_
size. Also, these two lines encode account-id, subscription-id, and team-id but
use different field names for each—the same telemetry ideas, worded differently. This
sort of thing happens all the time in codebases with more than one developer (also
more often than you’d like for codebases with a single developer) and is completely ter-
rible when it comes to cardinality.

 What we need here is a schema for telemetry. Figure 14.3 shows how we can rewrite
the two examples to bring down our field count.

 Figure 14.3 demonstrates how our field-count cardinality (important for Elastic-
search) changes by rephrasing our example telemetry emissions to be more standard-
ized. Most important, commonly added context-related telemetry must have
standardized field names, which make searching for that data far easier and improve
your search performance. The figure also shows us unifying retrieval_time and
upload_time into transfer_time as a general concept. Although retrieval and
upload describe the function, they hurt us in cardinality. The figure also shows turn-
ing file_type and upload_type (and their _count and _size siblings) into object_
type, showing that providing ways to encode common concepts will also save in field-
count cardinality.
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If you are facing a codebase with a lot of natural-language field names leading to a
sprawl of cardinality, you have a few paths forward to try to urge people to a standard.
The hard part is agreeing to the standard in the first place; that negotiation must be
done with the owners of the code. When you have a standard, here are a few options
to nudge people toward compliance:

 Create a mandatory code review step that reviews all logging statements to ensure that they
comply with the agreed-on schema. This option is your automation-free option; it
relies on humans to remember to do the code review. But you can do this
review immediately after deciding on your standard.

 Update your continuous integration (CI) jobs to check to make sure that new logging state-
ments use only fields from the allowed list. This option requires writing the automa-
tion for your CI pipeline but is more reliable than trusting code review and
humans. When builds that include not-allowed field names fail, people will get
the message.

 Provide new logger interfaces that enforce schema, and move all your logging and metrics
emissions to the new interface. If you have a large codebase, it will take some time
to get all the changes smoked out, but this option is the most long-term-
maintainable option in this list.

{
 "application": "framulator",
 "level": "info",
 "message": "Retrieved profile pictures",
 "acct_id": 1121,
 "subs_id": 137,
 "team_id": 734,
 "retrieval_time": 2.1,
 "file_type": "svg",
 "file_count": 1,
 "file_size": 17232

}

{
  "application": "framulator",
  "level": "info",
  "message": "Uploaded profile image",
  "account": 6823,
  "subscription": 96,
  "team": 612,
  "upload_time": 0.982,
  "upload_type": "png",
  "upload_count": 1,
  "upload_size": 9257
 }

{
  "application": "framulator",
  "level": "info",
  "message": "Retrieved profile pictures",
  "acct_id": 1121,
  "subs_id": 137,
  "team_id": 734,
  "transfer_time": 2.1,
  "object_type": "svg",
  "object_count": 1,
  "object_size": 17232
}

{
  "application": "framulator",
  "level": "info",
  "message": "Uploaded profile image",
  "acct_id": 6823,
  "subs_id": 96,
  "team_id": 612,
  "transfer_time": 0.982,
  "object_type": "png",
  "object_count": 1,
  "object_size": 9257
 }

Identify common metadata
and standardize names.

Identify common concepts
and standardize names.

Freeform cardinality: 17

Standardized cardinality: 10

Figure 14.3 The effect on cardinality of freeform field names and standardized field names. The top pair 
of statements have freeform field names, and the bottom pair have standardized ones; boldfaced field 
names count toward cardinality. You can achieve substantial savings in field counts by standardizing 
commonly added context-related details (acct_id, subs_id, and team_id). You can find more by 
providing a way to encode common concepts—in this case, object type, count, and size.
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I demonstrated another reliable technique in section 12.2: passing a hash of metadata
around with execution, and passing the metadata hash and an array of field names as
part of your telemetry emissions. In your production code, that technique looks like
this:

context_fields = ['team_id', 'acct_id', 'region', 'datacenter']
counter('pdf_pages', 3, metadata, context_fields)

Here, we see a metrics function called counter() called with a metric name, a metric
value, a metadata object, and an array. The metadata object is a hash that contains any
amount of metadata and contains common fields like acct_id and team_id from our
examples above. Execution can add more items to the hash. The important part is
that the counter() function is built with the allowed list of fields in it, so it will reject
attempts to emit fields that aren’t allowed.

 This production code looks fairly innocent; it contains no regulated information,
such as email address, people’s names, diagnosis codes, or phone numbers. The
beauty of the logger-based filtering system is that if a software engineer writes the fol-
lowing, it won’t cause a data cleanup incident:

context_fields = ['team_id', 'email_address', 'region', 'datacenter']
counter('pdf_pages', 3, metadata, context_fields)

The produced telemetry will not have the email_address field in it or will have a
placeholder that looks like an email address, such as redacted@redacted.local. Figure
14.4 shows what you want to end up with.

Set of fields
passed in for
an emission

Set of allowed
fields for
telemetry

Fields applied
to telemetry

Unsafe fields
dropped from

telemetry

message: "Added account"
email: "rjreichold68@example.com"
address: "98231 W. Anglia Road"
cell_phone: 01514960624
country: "UK"
acct_id: 192842
datacenter: "EUC1"

message: "Added account"
acct_id: 192842
datacenter: "EUC1"

email: "rjreichold68@example.com"
address: "98231 W. Anglia Road"
cell_phone: 01514960624
country: "UK"

Fields applied
to telemetry

Unsafe fields
dropped from

telemetry

Figure 14.4 Using an allowed 
list of fields for telemetry with 
incoming telemetry emissions. 
When new telemetry emissions 
come in, their fields are 
checked against the list. Only 
fields on the allow list will be 
moved into the Shipping stage. 
This approach prevents unsafe 
fields, such as those containing 
personal or health-related 
information, from entering the 
telemetry system and risk 
being leaked.
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Figure 14.4 shows a pure filter; fields that aren’t on the allowed list are dropped with-
out placeholders being put in place. Sanitized telemetry moves into the telemetry
pipeline, entering the Shipping stage. Doing this filtering as part of your logger saves
your storage systems cardinality, but also provides significant defenses against leaking
regulated information.

USING LOGGING STANDARDS TO TAME CARDINALITY IN METRICS SYSTEMS

Metrics as a telemetry style emerged in the early 2010s as a way to provide long-term
searchability for numbers-based telemetry. Centralized logging is incredibly expensive
to keep online and searchable for years, which is why most organizations don’t do
things that way. Metrics systems and their numbers-based format made for vastly
cheaper storage per item of telemetry, which made multiyear online searching eco-
nomical for the first time. To get this flexibility, metrics systems of the early 2010s
deliberately did not have high cardinality. Unfortunately, as the decade wore on, the
utility of high-cardinality metrics became obvious. This section is for organizations
that are already operating metrics systems and are looking for methods to tame their
cardinality problems.

 As we saw in section 14.1.1, cardinality in most time-series databases relates to
index cardinality rather than the field-count cardinality we saw in the logging data-
bases. A single field with 14,000 unique values is mostly no big deal for the logging
databases, but it will blow up the database in a time-series database.

WARNING A metrics system that is bursting at the seams for cardinality is a
symptom of a technical organization that should take a serious look at distrib-
uted tracing. Software engineers looking to get tracing out of a metrics system
will steadily increase cardinality to learn the exact circumstances (or fre-
quency of a specific set of circumstances) under which an interesting event
happens. Troubleshooting of this nature is far easier in distributed tracing
systems. Metrics systems can be bent to do an approximation of this work, but
the fit is bad, and the overall cost is hard to pay.

Due to how sensitive time-series databases are to cardinality in general, the centralized
logging pattern of throwing a bunch of context-related telemetry on each telemetry
emission is an antipattern. You want some context-related telemetry, but most metrics
systems can’t afford the sort of telemetry that will allow a searcher to isolate the metrics
coming from a specific execution of a function. Metrics systems are meant to provide
a broad, systemwide view of how the production systems are operating, not fine, detailed
views of specific executions.

 What sort of context-related information do we need to have beyond metric name
and metric value to get the benefit of context-related information without killing the
database with cardinality? Let’s look at a few examples:

 Application name—In a production system running more than one application,
storing application names is quite viable. The total unique count is likely to be
small, and it will be used in nearly every query.
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 Application version—Version is an interesting one when paired with retention
periods, because the total unique values in the field will be the number of
unique versions stored in the retention period. (For more on retention periods,
see chapter 17.) If you can afford the cardinality hit, application version will let
you track how metrics change versus their application version.

 Class name—This concept is more of a tracing concept, but if you have a metric_
name that is used in more than one class for more than one purpose, having the class
name as a metric will help you separate the two. Putting a class name on every piece
of metric is an antipattern, however because most metric_names likely don’t need
this disambiguation, and using class names will explode your cardinality. A better
pattern for separating two otherwise-identical metric_name uses is to use different
metric_name values (class1_pdf_pages instead of class2_pdf_pages).

 Cluster—This word means different things to different organizations, but if you
need to correlate error rates or something equivalent to a given group of
machines/instances/nodes, cluster is quite useful.

 Hostname—For some organizations, especially those running on physical hard-
ware, hostname is a small enough set of unique values to be as useful as cluster
is for correlating behaviors. For other organizations, such as those running in a
public cloud and using lots of autoscaling systems, hostname can be highly
unique and a clear antipattern.

 Data center or region—If your organization is operating in more than one com-
puting facility, having a split for those facilities is useful, especially because this
value is not likely to have many unique values.

NOTE In most metrics systems, the metric_name value will end up with the
highest cardinality. You want any associated context-related telemetry to be as
low-cardinality as possible to maximize your metric volume.

Some of the fields in this list are clearly valuable, such as application name. Others,
such as class name, have very limited utility in a metrics systems. As you review the
fields in your metrics system, ask yourself these questions:

 Is this field used to get a broad sense of how the system is operating, or is it
there to isolate execution in some way? If it is to isolate execution, you should
be using a tracing system in addition to your metrics.

 Is the uniqueness in this field still useful? Time changes patterns, and it could
be that sheer growth has turned a once-useful field into noise. 

How growth changed our use of metrics telemetry
When my company first adopted the metrics style of telemetry, we were still small.
For that reason, we decided to use hostname as one of the interesting fields to put
on metrics. We were running few servers at that point, so knowing whether a host
was bad in some way was useful information. Many people built dashboards to split
metrics by hosts.
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When it comes to logging formats, you want the classes you write as the entry point to
your metrics systems to limit the amount of context-related telemetry put on each
emission. You don’t necessarily want to follow the metadata pattern from the central-
ized logging example; instead, rely on adding a few pieces of context-related teleme-
try as part of the call from the production software, and add the rest as part of the
metrics class. To demonstrate, here is an example entry point:

counter('pdf_pages', 19)

No context-related details are being added in this call! The telemetry possibilities
from the list two paragraphs ago would be added after execution enters the
counter() function and would add general context. The counter() function and the
functions it calls run in the same process as the production code that started the call
stack, so they share all the preceding telemetry. Here is another example, which is a
little different from what you’ve seen before:

EXAM_LOG.info('metrics: converters c pdf_pages=19')

This example uses a centralized logging emission! Somewhere in the Shipping stage
will be a parser looking for strings beginning with metrics: that will treat those as
metrics statements. We see an application name, converters, a metrics type (c for
counters), and a metric name-value pair. This emission would reach the Shipping-
stage metrics parser with all the additional context-related telemetry of a centralized
logging telemetry event, but the parser knows to strip out everything but the interest-
ing fields. (For more on enrichment of this type, see chapter 6.) This sort of telemetry
is easy on production systems and leaves the complexity to the Shipping stage.

(continued)
Fast-forward a few years and we were much bigger. Whereas we used to be running
a handful of servers, we were running many servers, and the lifetimes of those serv-
ers were much shorter. When the metrics system began, it was common for a server
to last several days before being recycled. After a lot of growth, our average server
lifetime was measured in hours.

That hostname field we picked at the beginning? No one used it anymore. The only
time it got used was when someone needed to see a per-host split to identify whether
we had a bad server in the mix. Otherwise, it was noise that added a lot of cardinality
to our time-series database.

I dropped hostname from our list of fields. After enough time had passed for our data-
base to be fully on the new field names, cardinality had dropped 86%. That one field
alone had more cardinality than metric_name did!
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14.2.2 Using storage-side methods to tame cardinality

Cardinality issues can be addressed at the opposite end of the telemetry pipeline from
where the logging standards are applied: in the storage systems themselves at the end
of the Shipping stage. This section is about techniques you can use to handle a cardi-
nality problem by modifying your approach to storage. Many of the cardinality prob-
lems we’ve discussed so far come about because of too much cardinality in one place.
Depending on what kind of database you are using, you have several options for shift-
ing cardinality around.

 You have two main ways to address cardinality problems by changing your storage
systems:

 Partitioning—Create additional storage pools (databases, indexes, or even serv-
ers) and send different telemetry to everything. This approach keeps highly
cardinal data narrowed to its own problematic pool while letting other data per-
form fast.

 Sharding—Spread your high cardinality data over multiple storage pools. Not
every storage system supports this technique, but if yours does, this method is
powerful.

PARTITIONING STORAGE TO ADDRESS CARDINALITY ISSUES

This section is about using partitioning to address your cardinality issues in storage. If
your storage system has no support for sharding, such as with Prometheus, partition-
ing is your biggest tool. Partitioning is viable in most storage systems, though some
storage systems do require you to create entire new systems to use it.

 Consider the example of a growing startup. In the beginning, the company threw
all its logs into a single centralized logging system. This approach worked well because
the company was small and had a single log-producing product. As the company grew,
its product grew in complexity. (Whether this complexity is a single monolith or a
pack of microservices doesn’t matter for this example.) The production systems are
producing far more telemetry than they did when the company was three people with
a big idea.

Exercise 14.3
Which of the following types of context-related telemetry would be a bad choice for
use in a time-series database?

a Application name
b Process ID
c Application version
d Account ID
e Data center or region
f Function or class name
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 Figure 14.5 shows how this company’s single centralized logging database grew
with the organization to store the logging data for six applications. This approach can
work fine if all six applications produce similar telemetry in terms of field names and
contents; perhaps the company had a strong logging standardization effort in the
past. But this architecture begins to fail when the logging needs of the applications
drift apart, perhaps because each application is produced by different software teams.
When that happens, this singular logging database can experience cardinality
problems.

This company could address its cardinality problems by following the advice in section
14.2.1 and enforcing logging standards as a way of reducing the cardinality hitting the
database. But politics sometimes makes that sort of standardization effort far more
challenging than finding a technical solution in the storage systems. To solve the
problem without engaging in heated political debates, the company needs to adopt
partitioning. Figure 14.6 shows how this solution could look.

 We see in figure 14.6 that our company split its storage system into five databases for
the six applications. Two applications—the fetcher and the persister—are sharing a
database because they perform similar functions and generate highly similar logging.
No changes needed to be made in production code to make this change in the storage
systems, which prevents a potentially lengthy political argument about logging stan-
dards. The centralized logging parser needed an update to route telemetry (chapter 7)
to the correct database rather than simply throw everything into a single database.

 Making this change took some work, but the project wasn’t a major one. To support
a centralized logging system, most telemetry systems operate some kind of retention
policy to expire old logs out of the system to keep costs under control. (See section
17.1.1 for details on setting retention policies for centralized logging.) Our company is
no different in this respect; all that new databases mean is that the company needs to

Centralized
logging
storage

Centralized
logging
parser

Database server

app: [
  "biller",
  "converter",
  "fetcher",
  "indexer",
  "janitor",
  "persister"
]

Six applications, one logging database

Figure 14.5 Our example company has six production applications sending 
centralized logging telemetry to a single database. This approach works so long 
as the logging produced by all six applications is similar in terms of fields and 
field contents, but it becomes a cardinality problem when logging needs change 
between the applications.
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extend the expiration logic to those databases. Because the systems are highly avail-
able, the company also needs to add the new databases to any data backup strategies in
play. Here are the project phases for moving to the new architecture (illustrated in fig-
ure 14.7):

1 Create the new databases.
2 Extend the expiration logic to the new databases.
3 Extend the backup system to include the new databases.
4 Update the Presentation-stage systems to include the new databases.
5 Update the centralized logging parser to send data to the new databases. At this

point, the new databases are live.
6 Wait until the expiration logic has fully emptied the old database. Depending

on the expiration policies in place, this process can take days, weeks, or months.
7 Remove the old database from the Presentation-stage systems.
8 Remove the old database from the backup system.
9 Remove the old database from the expiration logic.

10 Remove the old database.

app: biller

Centralized
logging
parser

Database server

Six applications, five logging databases

app: converter

app: fetcher
app: persister

app: indexer

app: janitor

Parser performs
routing.

One database for
similar apps

Centralized
logging
storage

Centralized
logging
parser

Database server

app: [
  "biller",
  "converter",
  "fetcher",
  "indexer",
  "janitor",
  "persister"
]

Six applications, one logging database

Figure 14.6 Our example company that has six logging-producing applications rebuilt 
its centralized logging storage to address a cardinality problem. To make this approach 
work, the centralized logging parser performs routing (chapter 7) to send telemetry to 
the correct database.
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1. Create new databases (DBs). 2. Extend expiration logic to new DBs.

3. Include new DBs in backup system. 4. Add new DBs to Presentation stage.

5. Update parser to send to new DBs. 6. Wait until old DB is empty.

7. Remove old DB from Presentation stage. 8. Remove old DB from backups.

9. Remove old DB from expiration logic. 10. Remove old DB.

Parser

ParserParser

Parser

Parser Parser

Parser

Figure 14.7 The 10-step process our example company followed to partition its single logging 
database into five databases. The dark box is the centralized logging parser, with dark arrows 
indicating where it is routing telemetry to. Dotted boxes are databases affected by that step’s 
change. Sometimes, a technical process is easier to bring about than a political process among 
separate software teams.
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Partitioning is an effective tool when your telemetry data provides easy separation
points. What happens when you don’t have an attribute as convenient as application,
as in our example company? We need to look into sharding.

SHARDING STORAGE TO ADDRESS CARDINALITY ISSUES

Sharding is a form of partitioning supported directly in the database rather than rely-
ing on an external process (such as a centralized log parser in figures 14.6–14.7). For
databases that support sharding directly, such as KairosDB/Cassandra and MongoDB,
you have a built-in way to address cardinality issues. This section is about using this
capability to improve the performance of your searches.

 There are many ways that sharding is supported in databases that support distrib-
uted (many-node) operation, but a common way is to select one field (or a group of
fields) to act as a sharding key. This sharding key is hashed and used to determine
which physical database server to write to or request from. This way, all data with the
same sharding-key values end up on the same server. Alternately, if you pick the time-
stamp as your sharding key, reads and writes will be evenly spread across your group of
database servers. Being careful in selecting your sharding key is critical to designing a
system for scale. Here is some advice for picking a sharding key:

 If you are using MongoDB for metrics-style telemetry, using the timestamp field
as your shard key will even out reads and writes across your servers.

How partitioning saved us from a cardinality crisis
The sidebar in section 14.1.2 talked about how adding an application (Spinnaker) to
our centralized logging exploded a cardinality problem in our centralized logging.
Although this new application was 0.05% of our overall logging, it exploded the field
count in our Elasticsearch index from between 500 and 700 to 3,000. Average doc-
ument size ballooned because of all the nulled fields in each document, and the disk
space consumed by the cluster grew incredibly.

The fix for this crisis was to look at how we were using the index. After investigating,
I found out that one application was responsible for 98% of the events in that data-
base and that those log entries created a small set of fields (fewer than 200). The
solution seemed to be obvious: send all that application’s events to a dedicated
index.

We split the application’s telemetry into a new index and updated our Presentation-
stage systems to point to that index by default. The tiny application responsible for
0.05% of our logging traffic went into the “everything else” index, where the field
explosion was far less harmful due to how small that index was now. Overall disk con-
sumption in the Elasticsearch cluster dropped by a lot. Whew!

We should have sent that one application to its own index years before we did, but
this example is life in a growing company. We didn’t notice the lurking problem until
we researched why disk consumption spiked as much as it did. Partitioning saved us!
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 If you are using KairosDB for metrics, that database handles the sharding setup
for Cassandra for you.

 If you are using MongoDB for a centralized logging system, using timestamp as
the shard key will still even out reads and writes across servers. Using a com-
pound shard key such as application plus year/month/day, however, will ensure
that all application writes on a given day will be written to the same node,
potentially reducing the cardinality in that shard versus truly even writes.

 If you are using Cassandra or MongoDB for a centralized logging system, using
application as your shard key is functionally equivalent to partitioning (see the
preceding section) but does not give you the benefit of horizontal scale.

The primary way that sharding helps your cardinality problem is by providing horizon-
tal scale; the problem is cut into smaller pieces. If your indexes are getting too large,
or if search results are too slow, adding more servers to your cluster should make your
per-server indexes smaller and improve search performance. Figure 14.8 shows this
process.

Sharding, however, provides diminishing returns the larger your database cluster gets.
Each new server you add provides steadily less new headroom in each existing shard.
But if your ingestion rate is constant, adding shards makes the headroom each shard
still has last longer due to fewer writes landing on each shard.

 Don’t overlook the possibilities of combining partitioning and sharding. Sharding
a database makes it tempting to use a single database and keep adding servers to it.
Partitioning into multiple databases will reduce cardinality for all the reasons men-
tioned in the preceding section. Pairing that with sharding will further reduce the
performance hit of high cardinality.

 
 
 

Data size Index size Added server

Three-node cluster
adds a node.

Resized four-node cluster

More space to grow!

Figure 14.8 What happens when a sharded database adds a server. After the fourth node is 
added, the database rebalances data and indexes across all the nodes in the cluster. Although 
this rebalancing operation costs network, storage, and CPU resources, it reduces the total data 
and index size on each node, creating more room to grow.
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14.2.3 Make cardinality someone else’s problem

This section is about what happens when all else fails. You have the option of making
your cardinality problem go away by throwing money at it (paying someone else to
deal with it). A wide variety of telemetry SaaS vendors out there will happily ingest
your events and handle all the bother of managing storage cardinality so that you
don’t have to do it. Most small startups these days go for SaaS vendors by preference
and bring telemetry handling inside only when they grow enough. (See chapter 8 for
an example of this progression.) Data handling of this type is an expensive business,
and most SaaS vendors charge by volume of data handled.

 I mentioned this before, but it bears repeating: if you are facing a large cardinality
problem in your metrics telemetry systems, that problem is a sign that you need to
look into adopting distributed tracing. You can get some of the benefits of distributed
tracing by adding cardinality to your metrics telemetry, but that approach is still a
poor solution to the problem that engineers are trying to solve. Distributed tracing is
currently dominated by SaaS providers, and adopting a new telemetry style is a prime
place to consider going outside to solve the problem.

 If you’ve followed the guidance here and are still facing cardinality problems in
telemetry systems, you clearly need to make a change somewhere else. Perhaps your
problems are in this list:

How many shards is too many?
Sharding does not provide infinite scale, though some datasets and databases can
get you close. Unfortunately, the answer to the question “How many shards is too
many?” is “It depends.” I’ve heard of an Elasticsearch cluster configured to provide
an index per day, with 200 shards. If any one shard server failed, recovery provided
enough disruption to slow ingestion across the whole cluster. This setup worked fine
for the organization involved.

Sharding is a great way to scale up your ability to handle writes. More servers means
more separate storage pools, which means more capacity to write things. For truly
large telemetry systems—ones that ingest 1 million events a second—massively
sharded storage is the only way to keep up.

Sharding is not a one-size-fits-all solution, though. The biggest warning sign that you
need to take another look at your sharding configuration is when search doesn’t
improve after you add shards. If you find that search doesn’t improve:

 Check your query endpoints for load.
 Consider increasing database/index size to reduce shard counts.

Consider this trade-off when the count of shards adds to query time. Picking a reme-
diation will require testing, but the performance hit of large per-shard databases/
indexes sometimes is less than the hit from having to coalesce results from a large
number of shards. Large scale is tricky that way.
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 Maybe the people who built your telemetry systems left the company a few years
ago, and no one understands how it works, which means that all the steps in this
chapter will require consultants.

 Maybe the person who built your telemetry systems is now in management and
doesn’t have time for a major rebuild project.

 Maybe the software used in your telemetry systems is so old that extending the
cluster or reworking your logging patterns feels like making the same mistake
all over again.

 Maybe you’re the one who built the current systems and are tired of dealing
with it.

Whatever the reason, the current solution isn’t working now, and it doesn’t look as
though you can make it work. This circumstance makes throwing out your existing sys-
tems for a SaaS provider tempting. The major challenge with moving telemetry han-
dling to an outside party is the same as for any project that moves something handled
internally to something handled externally:

 The cost of employees maintaining your current system is often hard to assign a
monetary value to, which makes comparing the costs of a SaaS option harder.
When you’re costing out an external solution, those unhidden costs will feel
larger until you add the hidden people costs to the current solution.

 The cost of hardware or cloud-provider resources involved in your current sys-
tem is amortized with the rest of your infrastructure costs, so those costs feel
hidden. As with the people costs, if you don’t factor in the hosting costs of your
current system, you won’t get a true comparison with the external solution’s
cost.

 Moving from open source tools to a per-month-cost provider feels like giving
up. This reaction is an emotional one (the humans who make the decision are
emotional creatures; ignore this fact at your peril), but it’s no less of a barrier to
decision-making than costs are. Focus on the rational costs and business value
to get over the emotional reaction.

As with any significant business-process change, getting budget approval and manage-
ment backing is an entirely political process. You want to demonstrate that a SaaS pro-
vider will be better able to deliver the service and do so in a way that is either cost-
neutral or enables business growth in a new way. If you aren’t a manager, get a man-
ager on your side to help make the pitch. Generally speaking, SaaS providers consider
their Presentation-stage systems to be the things that sell the product, so they are
often higher quality than open source or in-house systems.

Summary
 All telemetry styles (centralized logging, metrics, SIEM, and distributed trac-

ing) have searching as a core feature, which makes search performance a core
performance metric.
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 Cardinality is the number of unique values in an index. Different storage sys-
tems react in different ways when cardinality gets high.

 Cardinality affects search performance, which is the main feature of Presentation-
stage systems, so if you manage telemetry systems, you have to pay attention to
cardinality.

 Each data-storage system reacts to cardinality in different ways, so I have no one-
size-fits-all pieces of advice to give.

 The most obvious way that cardinality problems show up in your Presentation-
stage systems is poor search performance.

 Increases in cardinality usually cause an increase in key system resources, such
as memory and disk space. Some of that use may occur only during mainte-
nance operations.

 Time-series databases are optimized to provide fast searches for time-based data
but less optimized for other kinds of cardinality, such as the kind that comes
from context-related telemetry like account_id.

 OpenTSDB experiences cardinality problems when you have too many unique
values per field (more than the hard limit of 16 million). Do not use fields with
highly unique values if you are using OpenTSDB.

 KairosDB experiences cardinality problems when you use tags with highly
unique values. The Cassandra database on which KairosDB runs also shows car-
dinality problems when too many metrics are in the system, but the only way to
tell is when search performance gets bad. When you use tags, use only tags that
have a low number of unique values.

 Prometheus experiences cardinality problems by requiring more memory for
each unique value. If you have a memory problem on your Prometheus server,
you likely have a cardinality problem too. Do not use fields with high numbers
of unique values or use too many fields. If those approaches aren’t feasible, con-
sider partitioning.

 InfluxDB has a configurable explicit cardinality limit and experiences cardinal-
ity problems during routine background maintenance that can run your
InfluxDB server out of memory. As with Prometheus, don’t use fields with high
numbers of unique values, or use too many fields. If those approaches aren’t
feasible, consider partitioning.

 Elasticsearch experiences cardinality problems when there are too many fields
in an index, which takes up more disk space and makes searching slower as a
result. Try to store telemetry data that looks similar in each index, and separate
telemetry data that is formatted differently.

 MongoDB experiences cardinality problems in the size of its indexes, which can
exceed the size of the data being indexed. When you’re tracking resource use
in MongoDB, be sure to track index size as well.
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 Using your logging standard to enforce a schema for telemetry field names is
powerful for dealing with a field-count cardinality problem. Standardizing com-
mon values is (depressingly) useful in reducing field sprawl.

 Code review and automation in CI systems are two places to enforce your telem-
etry standards in ways that urge software engineers to change their habits.

 Providing (or updating) logger libraries to encode your revised standards is a
high-impact way to reduce field sprawl.

 Using an allowed list of telemetry fields, enforced in your structured logging
formatter or the Shipping stage, is effective for both reducing cardinality and
keeping regulated information out of your telemetry systems.

 Metrics databases experience cardinality problems mostly due to index sizes,
rather than the field-count cardinality experienced by the centralized logging
databases.

 A metric system experiencing lots of cardinality problems is a symptom that
your technical organization should look into adopting distributed tracing. Met-
rics can stand in for tracing, but the fit is poor, and the cost is high. Tracing
solves the base need better.

 Metrics systems are designed to provide a broad, systemwide view of the produc-
tion system, unlike centralized logging, which looks at specific events in the
context in which they happened.

 In metrics systems, the field representing the name of the metric should be the
highest-cardinality field in the system after the timestamp field. This approach
maximizes the amount of metrics you can store in a given database.

 Due to how cardinality-sensitive metrics systems are, you want to seriously limit
how much context-related telemetry gets added to each metric when it is emit-
ted. Do not treat metrics systems like centralized logging events.

 Partitioning is a database technique where different telemetry is sent to addi-
tional storage pools, which reduces the telemetry cardinality in each pool.

 Sharding is another database technique that spreads telemetry over multiple
storage pools, reducing the data and index sizes for each. This technique is
paired with distributed queries, so searching is generally faster than one giant
database.

 Partitioning allows you to wall off problematic telemetry sources into their own
pool, which lets the rest of your telemetry systems operate more efficiently.

 When using a database that supports sharding, selecting an appropriate shard
key is critical. For most telemetry systems, using the timestamp field as the
shard key will spread telemetry evenly across your storage pools.

 Using another telemetry field, such as application, for your shard key is func-
tionally equivalent to partitioning.
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 Combining partitioning and sharding is absolutely something you can do. The
combination is powerful for speeding search performance and managing
cardinality.

 If fixing your cardinality problem is more hassle than you want to put up with,
moving your telemetry to a SaaS provider makes cardinality the provider’s prob-
lem instead of yours.

 The distributed tracing space is currently dominated by SaaS vendors, so if your
internal metrics systems are bursting at the seams with cardinality, adopting a
SaaS-based tracing product will help take pressure off your metrics systems (if
not outright replace it).

 Moving telemetry to a SaaS provider requires making the business case for
investing in a new platform versus maintaining and upgrading the existing
platforms.
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Ensuring
 telemetry integrity

This chapter is about security. Your telemetry systems provide details about how
your production systems are operating, which includes a whole host of details that
an attacker looking to hide their tracks would rather not be present. Outside
attackers seek to prevent telemetry that shows their presence from entering the sys-
tem. Inside attackers (evil insiders) remove or alter telemetry to hide their activi-
ties. Your telemetry systems need to be resilient to both kinds of attacks, which
requires multiple defense techniques.

 Your goal as a system defender is to prevent alteration wherever possible, and if you can’t
do that, make it harder to perform alteration and slow the attacker down. By forcing an
attacker to take more time or perform more steps, you increase your chance to
catch them before they get too far. When you make alteration harder, attackers

This chapter covers
 Understanding why you should defend telemetry 

integrity

 Defending telemetry against outside attackers

 Defending telemetry against malicious insiders

 Making telemetry tamper-evident
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leave more traces that they have to modify, which increases the chances that they will
miss one. That missed trace may be the key to detecting the attack.

 Regulatory and compliance frameworks often have targeted requirements for the
integrity of telemetry systems. One common requirement is that the design must ensure
that someone who has access to the telemetry system can’t alter the traces of their use
of that system. That requirement is a mouthful, but it’s why centralized logging systems
often share telemetry with SIEM systems. Because access traces are also persisted in the
SIEM systems, telemetry operators can still modify the centralized logging system (and
operators can tell what security is doing inside the centralized logging system).
Organizations that are not subject to regulation or compliance frameworks rarely go to
the effort to defend their telemetry systems in this way, which is a major reason why
attempting to achieve compliance forces such radical changes in telemetry systems.

 It is not feasible to list all possible attacks on telemetry, but I feel that I need to
share a few to get you thinking about ways to attack telemetry systems (and, by exten-
sion, think about ways to defend against these attacks):

 Force the production code to use an HTTP POST to dump out environment
variables, including the API keys for the SaaS-based telemetry system.

 With remote code execution, dump the application’s config file, including
authentication details for the telemetry systems.

 With remote code execution, update the log-shipping software to monitor a dif-
ferent log file, allowing the attacker to filter the real application’s log before it
hits the one that enters the Shipping stage.

 Access a Presentation-stage system, such as Kibana, that had access control set
up incorrectly.

 Access a public cloud storage system, such as AWS S3, that had access control
set up incorrectly.

 Using an operator’s credentials, live-patch the telemetry parsers (so that there is no
Git or other VCS commit trace) to drop telemetry from a specific program, allowing
the operator to run a program on production systems that leaves no traces.

 Deliberately add a bug that sends the SaaS provider’s API token as an HTTP
header on API callbacks.

Security is a dense topic, but if you read nothing else in this chapter, you must take
these two major points to heart:

 Production systems should emit telemetry using write-only methods. If the production sys-
tems can read what they wrote—or, worse, delete what they wrote—you have a
vulnerability. Section 15.1 covers methods to make write-only telemetry a reality.

 Once emitted, all access to telemetry (including operator/root/admin access) must be trace-
able, and modifications must be made obvious. This method ensures that telemetry
that has already been emitted remains a true record of what happened in your
production systems and makes later tampering evident. Section 15.2 covers
these methods.
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15.1 Getting telemetry out of reach of an attacker
Outside attackers have limited resources when trying to modify telemetry that might
reveal their presence; your job is to make it as hard as possible for them to do that.
One of the best techniques for making the job of hiding their tracks harder is to move
the telemetry out of the system that produced it quickly. That process is what this sec-
tion is about. Attackers can enter your production systems from many points, but the
production code is one area you can robustly defend. When it comes to telemetry
movement, you should be concerned about two zones:

 The production code itself—When a remote code execution or server-side-request
forgery attack happens, the production code is the attacker’s entry point.

 The server running the production code—The server may be inside the container
for Kubernetes or inside the virtual machine for VM and cloud services. An
insider with legitimate access looking to perform malicious actions uses this
access as the entry point for an attack.

The direct-to-storage (section 3.1.1), direct-to-queue (section 3.1.2), direct-to-stream
(also section 3.1.2), and direct-to-SaaS (section 3.2) methods all involve the produc-
tion code emitting telemetry directly to somewhere off the place it is executing. This
technique gives attackers minimal chance to modify telemetry before it enters the rest
of the Shipping stage. These methods of defending against a local attacker are robust,
but section 15.2 discusses their integrity problems.

 Using direct-emissions methods isn’t always possible, however. Emitting telemetry
locally, as we examined in chapter 2 (log files in section 2.1.1, the system logger in sec-
tion 2.1.2, and the standard output in section 2.1.3), gives attackers a better chance to
modify or remove telemetry before it fully enters the Shipping stage. This section cov-
ers three broad methods for reducing the risk of locally emitted telemetry:

 Section 15.1.1 covers how a local shipper, such as a Filebeat process ingesting
application log files, should be configured to defend against attacks.

 Section 15.1.2 covers how using operating system access control techniques,
such as SELinux and NTFS permissions, allows you to create write-only methods
of telemetry emission.

 Section 15.1.3 covers threats targeting SaaS-based telemetry systems and dis-
cusses what you should look for in a telemetry provider if you are concerned
about telemetry integrity.

15.1.1 Move telemetry too fast to catch

This section covers the race between an attacker looking to hide their tracks and the
Shipping-stage systems looking to move telemetry from where it was emitted to the
greater Shipping stage. When you are using one of the techniques from chapter 2 for
emitting telemetry locally and relying on a Shipping-stage component to move it on
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(chapter 4), you have a race on your hands. Ideally, as soon as your production sys-
tems emit something into a log file, the system logger, the standard output (stdout),
or the Shipping-stage component—which can be many things, such as Logstash or
Fluentd—immediately picks it up and moves it somewhere else. Figure 4.1, repro-
duced here as figure 15.1, demonstrates this architecture for log files and Filebeat.

We need to talk about log files because they are the most exposed of the three local
emission methods. Keep in mind that some organizations configure their Syslog to
emit into a local log file, so for these organizations, emitting to the system logger is
equivalent to emitting directly to a log file. Emitting to stdout is how frameworks such
as Kubernetes, containerd, and serverless work, and in those frameworks, telemetry
enters the Shipping stage after it leaves the container or function. In other systems,
such as those running under Systemd on Linux, emitting to stdout is functionally
equivalent to emitting to the system logger, which can still result in the creation of a
log file.

 Section 4.1.1 generally discusses shipping telemetry from log files. But if integrity
is one of your telemetry system design targets, you need to do a few more things than
that section talks about:

 Telemetry needs to be shipped continually. Some telemetry systems rely on a Cron or
Windows Scheduler task to copy log files from a server to a central NFS or
shared drive. The long lag between when telemetry is emitted and when the log
file leaves the box is a huge window for an attacker.

 Telemetry needs to have low lag between when the emission happens and when it is
shipped into the rest of the Shipping stage. Low lag further reduces the window an
attacker has to modify telemetry. Shipping continually is not enough; you need
to be shipping recently as well. If telemetry integrity is highly important for
your organization, creating an alarm for excessive shipping lag is called for.

Cisco Prime
framework

Lots of log files
Cisco

hardware

Topic: noc_events

Filebeat

Figure 15.1 An example of locally emitted telemetry from the Cisco Prime software, relying 
on a local Shipping-stage component, Filebeat, to move telemetry into a stream topic. An 
attacker gaining access to this server needs to race Filebeat to modify log files before it 
ships the telemetry inside the log files to the stream.
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The techniques you need to use to speed your shipper depend on what you are using
for shipping. Here are tips on some of the most popular packages for shipping log
files:

 Filebeat is based on threads. Each - input block handles multiple harvesters, so
splitting files between - input blocks will improve parallelism.

 Fluentd has a multiprocess worker feature that allows spawning multiple work-
ers. Although multiple workers can’t track the same file, if you have a group of
files, you can specifically assign workers to files to provide parallelism.

 Logstash is also based on threads. Each input {} block gets a thread. So if you
have the thread-blocking we saw (see sidebar), move file inputs into many
input {} blocks to maximize parallelism.

 Syslog-ng runs multithreaded by default. If you are performing any filters,
ensure that they aren’t relying on information in the MSG field.

Tracking your ingestion lag takes some work, but if you are tracking a hostname value
in your telemetry, a simple query to figure lag out is to ask, per host, how old the most
recently received telemetry is. If that value is increasing steadily, you have an ingestion
problem in your log shippers.

 
 
 

How we experienced shipping lag
A few years ago, my company performed an experiment to see how our production
code behaved on larger cloud-provider instances. It turned out that we had great ver-
tical scalability; more processors didn’t slow us much at all! It took us a while to
notice that not everything scaled up as well as we hoped.

It turned out that our log file shipping was tremendously lagging. After handling a day
of prod-like load, some of our shippers were more than an hour and a half behind. As
daytime load reduced, they eventually caught up. We traced the problem to a single-
thread issue in our shipper. The production code was running on 16 cores, and all
those cores were writing to the same set of log files. Our log file shipper, on the other
hand, had a single thread to monitor changes to that small group of files. The 16:1
ratio was high enough to saturate the log file shipper.

This information identified our scaling ceiling for our production code, and the prob-
lem wasn’t the production code itself; it was the telemetry components. We down-
sized the instance type one level, which got us fewer cores, and our log shipper
behaved fine.

Could we have optimized our log file shipper to perform better? Definitely. But we
were exploring options, so we didn’t have any urgency about addressing the issue.
We went with more, smaller instances, and everything worked fine.
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15.1.2 Use ACLs to enforce write-only telemetry

If your production code is allowed to modify or delete emitted telemetry, an attacker’s
job is much easier. Using write-only techniques to emit telemetry defends against
modification attacks from local attackers and makes attackers work harder to access
queue and stream systems. This section covers the techniques you need to follow to
defend against these sorts of attacks. It covers two areas:

 Using ACLs to create write-only areas for log files
 Using ACLs for write-only access to queues and streams

USING ACLS TO CREATE WRITE-ONLY AREAS FOR LOG FILES

Access control lists (ACLs) are nothing new to operating systems, and building defen-
sible systems means that you need to understand the ACL systems available to you.
Windows, UNIX, and Linux have different ways of providing ACLs, but the general
techniques are similar. This section is about providing those techniques.

 Let’s start with Windows, which has a richly featured permissions system. This com-
plexity makes for a readily accessible way to make write-only places to put log files.
Granting Write permission without also granting Modify or Read-only permission on
a directory allows a program to create a file and then write to it. If the program closes
and reopens the file for writing, the ACL will allow it to do so. Figure 15.2 provides an
example of configuring a write-only directory by using the icacls utility.

This example grants the ExampleApp user the ability to list files in the M:\applogs\
example directory (/grant ExampleApp:(CI)RD) and create files for writing in
M:\applogs\example (/grant ExampleApp:(OI)W). Because we used CI (container
inherit) to set the list files permission (RD), created files (which are objects, not

Exercise 15.1
How effective are the production systems you work with at moving telemetry away
from its producer quickly? Can you do anything to speed that movement?

icacls M:\applogs\example /grant ExampleApp:(CI)RD,W /grant ExampleApp:(OI)W

Directory being modified
Grants ability to list files (RD) and 
create files (W) in the directory (CI) 

Grants ability to write data (W) 
to files (OI) in the directory

Figure 15.2 Using the icacls command to create a write-only directory for the example application. 
The first /grant parameter allows the ExampleApp user to read the list of files and create files in the 
directory. The second /grant parameter allows ExampleApp to write to files in the directory. (create-
files does not imply the ability to write to them.) These permissions do not allow reading or deleting 
files in the directory.
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containers) will not inherit the RD permission. When the RD permission is set on a file,
it grants the ability to read the file. We also set the W permission at the same time; in
container context, W allows creating files within the directory.

 To allow writing to created files, the second /grant is needed. This parameter gives
created log files the W (write) permission, which allows writing to the files. Created
files do not inherit a right allowing reading of files. We grant with OI (object inherit)
to ensure that write is inherited on new files in the directory.

 When it comes to UNIX, the access control landscape is both far simpler and more
complex. It’s simpler in that the standard ACL system is easy and more complex in
that (for Linux, anyway) several optional ACL systems provide more refinement.
Whereas Windows allows setting many access control statements on a given directory
or file, UNIX systems allow one (unless you’re using one of the optional systems; more
on those later). Figure 15.3 shows how the standard ACL system works for Linux and
UNIX systems.

Setting an ACL to allow only write and execute on the directory (on directories, the
execute bit allows listing directory contents) for the user of our example application
lets that user create files in the directory and write to them. But any created file will
get the default ACL for that user, which almost always includes the ability to read the
file. Unlike Windows systems, in which the system operator can set permissions in a
way that is secure by default, UNIX systems using the default ACL system require the
production code to create the log file with secure settings.

 The open() syscall in UNIX and Linux allows setting the permissions of the cre-
ated file, but not all programming languages expose this feature; the concept isn’t
cross-platform, so why would they? This difficulty in creating write-only locations is
part of why UNIX and Linux systems have additional, optional ACL systems. Here are
the most common of those systems in Linux:

 
 
 

d-wxr-x---   1 exampleapp adm  124 Feb  19 16:26 /var/log/example/app

This says:
Grant write(w), view-file-list(x) to User (exampleapp),
Grant read(r), view-file-list(x) to Group (adm), and no permissions to All.

Allows creating and
writing to files in the
directory but not
reading files   

User Group

Figure 15.3 Example of using the built-in ACL system for UNIX systems, creating a write-only directory 
in which to put logs for an example application. No global access is granted (at the end of the ACL). To 
ensure that the exampleapp user can’t read files, that user must not be in the adm group.
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 POSIX ACL—This extension to the default ACL system allows Windows-like
specification of multiple permissions on a directory or file. It requires filesystem
support, however, and a specific mount option to enable it, Because remount-
ing is a simple operation and you can remount with different parameters,
removing POSIX ACL support from a volume is easy. Because ACL enforce-
ment can be turned off so easily, most security teams don’t consider POSIX
ACLs to be truly viable.

 SELinux—Security Enhanced Linux is a Mandatory Access Control (MAC) sys-
tem that is compiled into the Linux kernel. Unlike POSIX ACLs, SELinux can
be enforced everywhere. SELinux works by giving every file, object, process,
and everything else a label and defining how each label can interact with other
labels. This setup allows defining relationships such as permitting exampleapp
to access sockets created by logging_platform without having to specify file-level
permissions. Red Hat and SLES support SELinux out of the box.

 AppArmor—This MAC system is also compiled into the Linux kernel. It was
developed after SELinux as a way to provide most of the benefits of SELinux,
but with a much easier method for managing the interface. When processes
launch, they are assigned an AppArmor profile. Because the UNIX philosophy
is to treat everything like a file, AppArmor profiles define which files each pro-
file can access and what operations the profile is allowed to perform on them.
Ubuntu and SLES support AppArmor out of the box.

SELinux and AppArmor work in conjunction with default permissions. If the default
permissions allow access, SELinux or AppArmor can still deny access. At the same
time, if SELinux and AppArmor permit access, the default ACL will still deny access.
Let’s take a look at SELinux and AppArmor versions of creating a write-only log file.
First up is SELinux (figure 15.4).

We see a short, one-line definition that allows the exampleapp_t type (defined else-
where) to communicate with the var_log_t type, using one of three syscalls. Note that
the syscalls do not include read! This type enforcement policy allows our example appli-
cation to write to /var/log, but not read it or delete it (the unlink syscall). This policy

gen_require (`
  type exampleapp_t;
  type var_log_t;
')
allow exampleapp_t var_log_t:dir { getattr open write };

SELinux labels to import
into the definition 

Syscalls to allow permits
writing but not reading 

Allow exampleapp to
communicate with var_log_t.

Figure 15.4 An example SELinux type-enforcement file that allows our example application to create 
and write to files in /var/log but not read from them. This example presumes that you already have a 
type defined for exampleapp. Even if the file is flagged to allow reading, SELinux will prevent reads!
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works in coordination with the default ACL policies. A file in /var/log/otherapp still
can’t be read by our example application, because the default ACL policies deny it. But
if /var/log/exampleapp/error.log is flagged to allow
users to read it, SELinux will prevent attempts by our
application to read the file. Next, let’s look at the
AppArmor equivalent (figure 15.5).

 The AppArmor version is shorter than the SELinux
version, in part because this figure is merely a compo-
nent of the larger exampleapp policy. This single line
would be added to the ExampleApp AppArmor policy
to enforce the write-only nature of files in the logging
location. With our SELinux example, even if the file
were flagged to allow the Example App user to read,
AppArmor would prevent that from happening.

 There is another benefit to using one of the MAC
systems: auditing. If you are enforcing SELinux or
AppArmor, the kernel will report attempts to read outside the allowed areas, which is
a potential sign that an attacker is probing the boundaries. I encourage you to ingest
these events into your system telemetry streams and take reports of out-of-bound
access seriously. Most of the time, the access will be a developer adding a feature with-
out consulting the platform teams, but when it isn’t, you will be incredibly glad that
you captured those events.

USING ACLS FOR WRITE-ONLY ACCESS TO QUEUES AND STREAMS

If your production systems are emitting directly into queues and streams, chances are
good that they are already authenticating against the queue/stream service to publish
telemetry. This section is about the techniques you need to follow to ensure that an
attacker who gains access to your production code is unable to modify telemetry that’s
already in the queue or stream system.

 If your production code also uses queue/stream systems as part of its operation, it is
quite easy to use the same credentials for your telemetry system that you do for produc-
tion operations. This pattern is a clear antipattern because your production access almost
definitely includes read/write access and often also includes configure access to provide
dynamic queues or stream topics. Think of a telemetry queue/stream as being owned by
another team: you are granted the ability to publish events but not modify them.

WARNING If your production system uses queues or streams, always provide dif-
ferent credentials for production and telemetry use. The production credential
almost definitely has more access than write-only, which makes it unsuitable for
telemetry use. The telemetry credential should allow only publishing events,
and the production operation credential must be specifically denied access to
the telemetry queues/streams. This separation makes telemetry more resistant
to attack, and the audit logs from the queue/stream system will be able to dis-
criminate between production and telemetry operations.

/var/log/exampleapp/* w,

Path to control

Access to allow 
(write only)

Figure 15.5 AppArmor policy 
statement in the exampleapp 
policy. This example grants 
the profile the ability to write 
to files in /var/log/exampleapp 
but not read or execute them. 
Even if the default ACLs allow the 
application user to read the file, 
AppArmor will prevent reading.
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Redis added an access control system in version 6 in May 2020; earlier versions had a
single password for entry that granted global access. If you are using Redis as a stream
or queue system (it supports both), I strongly encourage you to use the ACL system.
Create different users for production and telemetry use, and restrict the telemetry
user to the telemetry keys. Here, we define the rights of two users:

ACL setuser telemetry_user ~appevents:*

ACL setuser prodops_user ~sessions:*
ACL setuser prodops_user ~locks:*
ACL setuser prodops_user ~shadowbans*

Here, we are allowing the telemetry_user access to any key beginning with app-
events:, and adding access to three key prefixes for the prodops_user. This snippet
works only in Redis 6 and later, but it is an example of setting different ACLs for
Redis-based access.

 The same guidance holds for AMQP-based systems such as RabbitMQ and Azure
Event Hubs. Use one well-privileged credential for production operations and a sec-
ond reduced-privilege credential for telemetry operations. Certain systems, such as
RabbitMQ, allow the creation of virtual hosts in the AMQP cluster, which allows more
logical separation between production operations and telemetry operations. Better
yet, use separate clusters for production and telemetry use! Keep those failure
domains separate.

15.1.3 Durable telemetry when using SaaS providers

If your telemetry is handled entirely by SaaS providers, you are not immune to the
write-only requirement of durable telemetry. This section covers the features you want
from your telemetry SaaS providers and the use patterns you should follow to use a
SaaS provider safely. Most providers are aware of these risks and enable safe use.

 When selecting a SaaS provider for telemetry, you want to know whether you can
send events to that provider by using a method or authentication token that can’t do
anything else. This approach minimizes the impact if an attacker gets into your
application (or your API key follows former employees out the door). Write-only
endpoints leaking to attackers still enable an attacker to send garbage to your endpoints,
potentially hiding their true attacks behind a sea of misdirection. For convenience, here
are several common telemetry SaaS providers and their approaches to API key and
ingestion-endpoint handling:

 Datadog has a dual-key model, requiring both an API key and an application key
to read data. If you have only an API key, you can only write data. Be careful,
though; you can still write data with an API+application key, which would give
an attacker quite a bit more access in Datadog.

 Honeycomb.io allows the creation of multiple API keys and can assign different
duties to each key. This design is somewhat unsafe, because it is easy to create a
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key that can do everything and use that key in your application. For safety, cre-
ate one API key to use the Events API (to insert telemetry), and use different
API keys for additional API features.

 New Relic provides five kinds of API keys. One type is an insert key, which you
use to submit telemetry. Most important, New Relic does not provide a “does
everything” key! When they don’t have such a key, software engineers have to
make a conscious choice about what kind of operations they will be performing
and which keys to use for them.

 Splunk has an HTTP event collector that requires authentication with a token
dedicated to the collector. This token is used only to send events into Splunk; it
can’t be used for anything else.

 Sumo Logic provides write-only webhook endpoints to submit telemetry, which
does not support authentication (security through obscurity). An application
sending webhooks to Sumo Logic has no access to Sumo beyond the ability to
insert events.

If you are using a SaaS provider for your telemetry, build your production code to use
only the provider’s ingestion API endpoints and API keys wherever possible. Mixing
API keys in an application, to provide both ingestion and more advanced API use, is
dangerous but unavoidable in some cases, such as providing an admin portal that
exposes the ability to search telemetry. As with all security, understand the risks that
your applications face when you pick your SaaS-provider access methods. Least privi-
lege is best.

15.2 Making telemetry harder to mess with
Whereas section 15.1 covered techniques to make telemetry harder to tamper with
from the point of view of an outside attacker, this section is all about defending
against inside attackers. Remember that an outside attacker that manages to imper-
sonate a trusted internal resource is considered to be an inside attacker, the same as a
malicious insider employee. The attacks I talk about defending against here are on
the telemetry pipeline and storage itself.

REMINDER Once emitted, all access to telemetry (including operator/root/
admin access) must be traceable, and modifications must be made obvious.

Prevent changes where possible, increase the effort of making changes everywhere
else, make tampering obvious, and ensure that all telemetry access is tracked and

Exercise 15.2
If your production systems are using a SaaS platform for telemetry in any way, are
they using a write-only key, or are they using an admin credential for convenience?
What changes do you need to make to use a write-only key for sending telemetry?
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traced to enable reconstruction of events after the fact. Telemetry systems are core
parts of any organization’s security infrastructure and should be treated that way.
Attackers looking to change telemetry by using insider access can do so in several
places. Figure 15.6 shows an example of attacking a centralized logging telemetry
pipeline.

We cover three broad techniques to defend against attacks:

 Examining the roles of authentication and access control in providing barriers,
and enabling tracing of activities (section 15.2.1)

 Defending the integrity of your telemetry system configuration (section 15.2.2)
 Making modifications to telemetry obvious (section 15.2.3)

15.2.1 Using access control requirements to defend against attacks

We took a look at operating system and queue/stream level access control techniques
in section 15.1.2; this section takes a more systemic view of the role that ACLs play in
defense. These concepts are central to maintaining the security of any computer sys-
tem, not only telemetry systems. If you take nothing else from this section, know two
things:

 All systems must support authentication, if possible, and be configured to
require it.

 The logs that show those authentication attempts must also be tracked (and
likely forked into your security team’s SIEM systems).

To help frame the concepts, we need to look at a generic telemetry pipeline in fig-
ure 15.7.

Cisco
hardware

Syslog
server

Fluentd
server

Elasticsearch
storage

Kibana
server

Production
code

File:
app.log

Attacking a centralized logging system

Modify Fluentd parsing
configuration to drop
suspicious events.  

Access Elasticsearch
storage to delete or
modify existing events.  

Modify Syslog config to
drop certain facilities. 

Figure 15.6 Three ways to attack an example centralized logging pipeline to hide suspicious 
events. The Syslog server in front of the Cisco hardware can be modified to drop firewall events, 
hiding probing activity. The Fluentd server parsing all centralized logging events can be modified to 
drop suspicious events. Finally, suspicious events can be removed from the Elasticsearch storage 
system. If an authorized user is making these changes, the best defense is tracing the change and 
ensuring that hand-updated changes are overwritten quickly by the authorized configuration.
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As we see in the figure, we have telemetry flowing into a queue or stream, getting
parsed by a parser, and injected into storage. From there, a presentation system con-
sumes storage to display telemetry for people who are looking to solve problems.
We’ve spent most of this book looking at event flows like this one. Now let’s look at the
areas where authentication should be happening:

 The telemetry parser needs to authenticate to the queue or stream to fetch
events for processing. It needs to pop events off the queue or read events from
the stream, which requires authentication and authorization to perform those
actions.

 The telemetry parser needs to authenticate to telemetry storage to insert new
telemetry.

 The presentation system needs to authenticate to telemetry storage to fetch
telemetry for display.

 If the telemetry parser is anything other than a container or serverless system, it
likely permits login by operators through SSH or other remote means.

 If the telemetry storage is not a cloud-provider system such as Amazon Elastic
search Service, its highly stateful nature means that it also likely permits opera-
tor login through SSH or other remote means.

Each solid arrow in figure 15.7 is a different authentication with different permissions.
These authentication and permission sets are functionally application users, similar to
application users on operating systems that your applications run under. The users
used by the telemetry applications must not be reused by telemetry system operators
for purposes such as building monitoring infrastructure or by operators themselves.
Monitoring and operator use should be done through different credentials. Structur-
ing your credential use in this way—creating separate credentials for separate use
cases—ensures that the audit log correctly describes who performed which activities.

 In an ideal world, each telemetry system operator will get their own personal
account in each area they might need to access. If you don’t use shared admin
accounts, you provide the most details to security teams that are attempting to reas-
semble events from audit-log traces. This approach is a best practice, though it isn’t
practical in some cases.

Production
systems

Queue
or

stream

Telemetry
parser Telemetry

storage

Presentation
system

Generic telemetry pipeline

Figure 15.7 A generic telemetry pipeline. Anything with a solid line is potentially 
attackable. The dotted box and line were addressed in section 15.1. Solid lines and 
boxes represent vulnerable attack areas in telemetry pipelines in general. It’s important 
to note that each solid arrow represents a different access control system or need.
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 Also, telemetry system operators should not routinely be given accounts that can
modify telemetry data. Yes, we sometimes need to modify telemetry data directly as
part of cleaning up after toxic data spills (see chapter 16 for more on that topic), but
that access should be temporary and targeted. Again, this approach isn’t practical in
every case, but it is a best practice.

15.2.2 Ensuring configuration integrity in your telemetry systems

As we saw in figure 15.6 at the start of section 15.2, some of the attacks are on the code
involved in the telemetry pipeline. The problem faced by telemetry systems is the
same problem faced by production code: how to defend against unauthorized
changes. For technical organizations that have undergone the process of achieving a
compliance framework certification, one of the biggest challenges is dealing with one
of the big dictums of compliance:

If you wrote it, you can’t edit it in production.

The big idea is that you create a change for production; it goes through a series of
automated and manual tests and approvals, and only then is deployed to production.
To ensure that what is running in production is what is approved to be running in pro-
duction, everyone is locked out of the production systems except for the disaster
response team. Connecting directly to a server and hand-updating code violates all
this careful work, which is why deploying production code is defended as solidly as it
is. (All that agility-destroying “useless overhead” is there for a reason.)

 Unfortunately, telemetry system code often doesn’t get the same rigorous atten-
tion to change control as production code, in part because significantly different
teams may be producing the code running inside the telemetry systems. But team cul-
tural differences are also partly responsible. Teams with a lot of operations back-
ground may not think about full testing suites for their “mere scripts.”

 If your organization is having trouble getting the telemetry system code under a
full software development life cycle policy, you can use a few other techniques to make
ad hoc changes harder. The first of these techniques is the concept of configuration
management; the second, which is a competing philosophy, is immutability.

 Configuration management was made famous through tools such as CFEngine,
Puppet, and Chef. Since the first generation of tools, we’ve seen products like Salt,
Ansible, and Rudder expand the space. You define a system state you want on your
computing infrastructure, and the configuration management system enforces that
state. If someone changed something manually, that change will be reverted automat-
ically the next time state is enforced. Because hand changes do not persist, people get
out of the habit of making hand changes, and the overall system becomes more con-
sistent. Figure 15.8 shows the steps.

 The first box in figure 15.8 is the configured state. We have a specific code version
running in production, and Filebeat has its configuration file enforced. Then a telem-
etry operator comes in and makes two manual changes: updating production code a
point and making a hand update to the Filebeat configuration. When Puppet runs
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next, it downgrades production code to the approved version and reverts the hand
updates to the Filebeat configuration. For organizations that are sensitive to produc-
tion changes, the fact that Puppet made changes can raise alarms.

 Immutability is a somewhat related concept, but it assumes that no one is permitted to
make local changes. For Linux servers, this concept means that SSH is turned off. Docker
and FaaS are famous applications of immutability principles, but the same technique
can also be applied to servers. Immutability assumes that configuration management is
not run at all or run only for operating-system-level components because configuration
management that pushes a change violates the immutable state of the server.

 An attacker who is looking to make changes to a telemetry pipeline following
immutability principles won’t be making local changes; they will be making changes
upstream in the deployment pipeline. If a local attacker can push out a hacked ver-
sion of a telemetry package and then hide the traces of their deploy, that’s a vulnera-
bility you need to address.

 Keep in mind that immutability works best on stateless systems such as telemetry
parsers and routers, where the amount of locally stored state is measured in seconds.
For systems that hold a lot of state, such as the stream and storage systems in the Ship-
ping stage, immutability is best achieved by delegating management of those systems
to your cloud provider. If you can’t delegate to your cloud provider, configuration
management principles are better at managing stateful systems. Figure 15.9 shows the
difference between the stateless and stateful components of your Shipping stage.

 There is one exception to the guidance that stateful systems should be managed
with configuration management: when the stateful system is already built to be a fully
distributed database. Elasticsearch and MongoDB are two such distributed databases,
built in such a way that the loss of a single state-holding server will not cause much dis-
ruption. Systems such as these are more able to be managed by immutable principles,
but there is a trade-off:

 If you manage these systems by using immutable principles, every time you
make a change, you have to remove a server and add a new one, so you need to
recopy the full server’s worth of data to that server. During this recopy period,
the overall system is less resilient to additional failures.

 If you manage these systems by using configuration management, every time you
make a change, the state is still on the system; the amount of data to recopy is lim-
ited to the changes made while the system undergoing change was unavailable.

ProdCode version: 3.0.1.1
Filebeat config: [doc]

ProdCode version: 3.0.1.2
Filebeat config:

[doc] + hand-changes 

ProdCode version: 3.0.1.1
Filebeat config: [doc]

Puppet creates
initial state. 

State after
hand updates 

Puppet reverts
hand updates. 

Figure 15.8 Example configuration-management workflow. After an operator makes manual changes to 
the code version and Filebeat, on its next enforcement run, Puppet reverts the manual changes. This 
approach ensures that what is running in production is what is approved to be running in production.
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You need to decide which is more important to you: immutability and the security it
brings, or minimizing the risk of data loss whenever you make a change. The answer
will be different for each organization. 

Telemetry
parser

Telemetry
router

Telemetry
storage

Telemetry
storage

Stateless systems:
Minimal local state. If the system
disappears, generally less than a
few seconds of telemetry is lost.  

Stateful systems:
Lots of local state. If the system
disappears, it’s a disaster. 

Production
systems

Telemetry stream

Telemetry
parser

Figure 15.9 The stateful and stateless components of a generic telemetry pipeline. Stateful 
systems include telemetry storage and the stream systems used to pass data. Stream systems 
are considered to be stateful because they store stream data over long periods of time. Our 
telemetry router and parsers are stateless because they merely transact telemetry data and 
move it along; local state is held for at most a few seconds.

When telemetry isn’t immutable
It’s easy to look at what I’m talking about here and decide that telemetry should be
written once and then carved into digital stone. Entire telemetry systems are built
with immutability of telemetry itself in mind. The sorts of telemetry handled by secu-
rity teams as part of SIEM systems may be of this type.

There is a major case against immutable logging, though. If your production systems
handle regulated information such as privacy- or health-related information, the
chance that regulated information will leak into your telemetry systems is not zero.
For that reason, telemetry systems supporting production systems that handle regu-
lated information must be built with toxic-data cleanup in mind. Cleanup means delet-
ing wrongly logged data or redacting information inside logged data.

Systems such as Grafana Labs’ Loki centralized logging system have immutability as
a base assumption (at least as of 2021), and their entire architecture is built with
that assumption in mind.
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15.2.3 Making changes obvious
The third leg of telemetry defense is making any changes in telemetry obvious. This
section is about techniques to digitally sign, checksum, encrypt, and otherwise make
telemetry modifications evident. Open source Presentation-stage systems are not com-
monly built with support for these sorts of validation models in mind, as of 2021, but if
you are developing Presentation-stage systems for your organization, you have the
opportunity to advance the field. I cover two broad topics in this section:

 The role of cryptographic hashing in telemetry
 How encryption works with telemetry and the challenges facing encryption-

based assurance systems

THE ROLE OF CRYPTOGRAPHIC HASHING IN TELEMETRY

This section is about the use of cryptographic hashes in telemetry. Hashes gives you a
method to check whether telemetry was changed since the hash was generated. One
somewhat common pattern of making telemetry tamper-evident is to provide a cryp-
tographic hash of a given field, and if the hash doesn’t match the field contents, to
mark that mismatch somehow. This next snippet shows the message field accompa-
nied by a message_256 field containing the sha256 hash of the message field:

message: "This is telemetry"
message_256: "82ca206123ed9fddaf0574e6992d827ac51acf88ed2ec68e854b6469b5e722ed"

As mentioned in the introduction to this section, open source presentation systems
currently don’t have out-of-the-box ways to indicate when a field fails its hash check. If
that’s the case, why is adding a hash a common pattern? There are two big reasons:

 When you’re doing a security investigation, having hashed fields makes it far
easier to detect events that were tampered with.

 Because the job of the Shipping stage is to modify telemetry (see chapters 3, 4,
and 6), it is in a prime place to validate the hash coming from a production sys-
tem (or another Shipping-stage component) and alarm in real time if it catches
a hash failure.

Figure 15.10 shows how this process works when a structured logger creates a hash of
the telemetry, which is checked by a parser in the Shipping stage.

 As with all markup and enrichment (see chapter 6), hashes can be applied in the
Emitting and Shipping stages. When hashing is done as part of the Emitting stage, as

(continued)
Going back to remove or modify telemetry is a major problem. Chapter 16 goes into
far more detail about redacting (section 16.2) and reprocessing (section 16.3) log-
ging as part of toxic-data spills, but I need to bring up the implications of immutable
logging here. If your logging system needs to clean up after spills occasionally, using
immutable logging patterns is a bad idea—at least until your defenses of logging reg-
ulated information are far more reliable. 
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we saw in figure 15.10, it is considered to be markup. (The structured logger we inves-
tigated in chapter 12 would add hash fields as part of a formatter, the same way that we
added a timestamp field.) If the Shipping stage is adding a hash, that’s more of an
Enrichment step, because the telemetry may have been modified legitimately. In fact,
the Shipping stage can add more hash fields based on telemetry it enriches from what
it received from the Emitting stage!

WARNING Be careful of string encoding when hashing fields. To the human
eye, a string encoded in UTF-16 looks identical to a string encoded in UTF-8,
but their computed hashes will be different. When you are working in a plat-
form with a preference for UTF-16 strings, such as Java, make sure that you
are explicit about string encoding and that all stages of the telemetry pipeline
will preserve your standard format. Unless told otherwise, platforms like Log-
stash will quietly reconvert to UTF-8, which will break hashes generated on
strings of different encodings.

To give you a brief example of this process, let’s take a look at a synthetic example. List-
ings 15.1 and 15.2 go together to demonstrate the hash-creation and verification pro-
cess, using Logstash and a Ruby script. Listing 15.1 is the Logstash config, which creates
three events. Each of these events has a hash of the message field applied to it; a mutate
filter alters one of the events so that the message field doesn’t match the hash; the Ruby
script is called to validate the hash; and finally, the events are sent to a log file.

{ message: "aafroman logged in from bastion.euc1.prod.internal" }

Telemetry is initially created by logger.

{ message: "aafroman logged in from bastion.euc1.prod.internal",
  message_256: "b8266ee1c36d7842b28be253294896317aa7be5a79cc7d833ae11535116fb461"
}

Formatter hashes message field 
and adds message_256 field. 

Shipping-stage 
parser

{ message: "aafroman logged in from bastion.euc1.prod.internal",
  message_256: "b8266ee1c36d7842b28be253294896317aa7be5a79cc7d833ae11535116fb461"
  tags: [ "_message_valid" ]
}

Parser hashes the message field and
compares it to the message_256 field. 
If we have a match, everything is fine.   

Figure 15.10 How a hash added by a structured logger formatter is checked by the Shipping stage. 
Telemetry enters the logger, and a formatter adds a new field with the sha256 hash of the message 
field. Telemetry with the hash is sent into the Shipping stage. The Shipping-stage parser validates 
the telemetry by hashing the message field and comparing it with the message_256 field. If the 
computed hash matches the message_256 field, it adds a tag to the message indicating that it 
found the telemetry hash to be valid. If later investigation shows that the hashes do not match, the 
presence of the tag suggests that the telemetry was modified after the Shipping-stage parser saw it.
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input {
  generator {                  
    lines => [    
      "This is an event",     
      "Another event",        
      "Changed event"  ]       
    count => 1               
  }
}

filter {
  fingerprint {   
    source => message   
    target => message_256    
    method => "SHA256"  
  }

  mutate {                                       
    gsub => [ "message", "Changed", "Altered" ]  
  }                                              

  ruby {                                      
    path => "/etc/logstash/hash_check.rb"    
  }                                             
}

output {
  file {
    path => "/tmp/filtered.log"
    codec => "json_lines"
  }
}

When this code is run, the filtered.log file should look like this:

{"message_valid":true,"@timestamp":"2023-02-19T00:18:13.939Z","message":"This 

➥ is an event","message_256":"b39d2a3411ed3575023b912a05f85172571022d93f65ad

➥ 2b335450dcc5edc55e","host":"parser.euc1.prod.internal",

➥ "sequence":0,"@version":"1"}
{"message_valid":true,"@timestamp":"2023-02-19T00:18:13.940Z","message":

➥ "Another event","message_256":"57fd7fd1e61b532b820e10dd315957d76a9ebe416a8

➥ c190885a8b1effd57370e","host":"parser.euc1.prod.internal","sequence":0, 

➥ "@version":"1"}
{"message_valid":false,"@timestamp":"2023-02-19T00:18:13.943Z","message":

➥ "Altered event","message_256":"ef95a48a219c20cc432772ddd50bc21610093d886

➥ cc48958ec08f51e52dd93e5","host":"parser.euc1.prod.internal",

➥ "sequence":0,"@version":"1"}

We see two events with message_valid set to true and one set to false. The message_
256 field is created by the fingerprint {} filter, which is the technique you would use
to add assurance inside the Shipping stage. The event that the mutate {} filter
changed—turning Changed event into Altered event—was flagged as false by the
ruby {} filter. To see how we did this, let’s look at the Ruby script (in listing 15.2) that

Listing 15.1 Logstash config demonstrating hash generation and checking

Event generator, used 
for testing, creates 
three events.

Fingerprint {} 
generates the 
hash we will 
test.

The hash is generated from the 
contents of the message field, 
created by generator {}.

The resulting hash is put into 
the message_256 field.The hash

function
used is

SHA256. The mutate {} filter modifies one event, 
to test a hash-match failure. Array is 
field, text to replace, replacement text.

Calls the listed ruby script (see listing 
15.2) to validate the hash matches
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the ruby {} filter calls. Any script called by the ruby {} filter needs a filter() function
that is called for each event and performs filtering.

def filter(event) 
  msg  = event.get('message')     
  hmsg = event.get('message_256')
  Thread.current['message_check'] ||=
   ➥ OpenSSL::Digest::SHA256.new           
  hasher = Thread.current['message_check'] 
  test = hasher.hexdigest(msg.to_s)    
  if hmsg == test                         
    event.set('message_valid', true)   
  else                                     
    event.set('message_valid', false)     
  end                                    
  return [event]
end

The meat of the filter is quite simple. We fetch the message and message_256 values out
of the event, compute the SHA256 sum of the contents of the message field, and then
check whether the computed hash equals the contents of the message_256 field. If so,
flag the event as valid. If not, flag the event as false. We see this flow in figure 15.11.

Listing 15.2 Ruby helper script for Logstash config in listing 15.1

Required function filter(), 
called for each event Fetches the message and 

message_256 fields for testing

Thread safely creates a hash-check 
function, if it hasn’t been created yet.

Generates a SHA256 hash of 
the current message field

Tests whether the generated hash 
matches the stored hash and sets 
message_valid appropriately

msg  = event.get('message')
hmsg = event.get('message_256')

test = @digest.hexdigest(msg.to_s)

if hmsg == test event.set('message_valid', true)

event.set('message_valid', false)

Yes

No

return[event]

Fetch fields out of event.

Generate SHA256 hash
from message, to compare. 

Compare computed hash
against stored hash.

Set message_valid
appropriately.

Thread.current['message_check'] ||= OpenSSL::Digest::SHA256.new
hasher = Thread.current['message_check']

Create hashing function.

Figure 15.11 The flow of execution when validating a field hash in the Logstash pipeline 
from listing 15.1. This execution is from listing 15.2. If the contents of the message field 
have changed between when the stored hash was computed and when we try to validate it, 
this function will set the message_valid field to false, indicating potential tampering.
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This example shows validating a hash inside the pipeline. I’m using Logstash because
it is a general-purpose Shipping stage built for the task of moving telemetry, but this
method comes with some performance and maintainability warnings. Using the
ruby {} filter in Logstash generally slows things, so if performance is important, try to
minimize how often you use that filter. Switching between a domain-specific language
like Logstash configuration files and a language like Ruby means that anyone who’s
charged with maintaining this pipeline has to be fluent enough in both languages to
maintain both. The ruby {} filter is powerful, but it increases the base knowledge a
team needs to maintain it successfully. If you have to use the ruby {} filter, here are a
few tips:

 Keep the functions simple to reduce the cognitive load of people who aren’t
you when it comes to maintainability.

 These plugins run inside the Ruby-language plugin context of Logstash (most
plugins are Ruby-language plugins as of version 7.13), which is multithreaded,
so build your scripts with thread safety in mind.

 Try not to use it at all. The built-in plugins are solidly optimized, so if you can
use them, do.

 As we talked about with regular expressions in chapter 11, format your condi-
tionals to run the ruby {} filter only on telemetry that definitely needs it. This
approach will improve performance.

When it comes to applying a hash to fields, Logstash isn’t the only Shipping-stage tool
that comes with that function out of the box. Here are a few common ones:

 Elastic’s Logstash comes with the fingerprint {} filter-stage plugin, which can
create hashes of arbitrary telemetry fields.

 Elastic’s Beat suite of tools (Filebeat, Journalbeat, and Auditbeat being the most
significant for this book) has a fingerprint processor that works similarly to
the Logstash fingerprinter.

 fluent-plugin-genhashvalue (http://mng.bz/2z7a) is a plugin for Fluentd that
will create a hash value for a given set to keys. Unlike fingerprint {} for the
Elastic products, this plugin can run on an event only once.

The examples so far have been simple hashes—ways to tell that telemetry has been
tampered with. What if we wanted to use something stronger, such as providing a digi-
tal signature on telemetry to verify that it was created by a trusted party? For that task,
we need to talk about encryption.

HOW ENCRYPTION WORKS WITH TELEMETRY

Any time you bring encryption into a process, you also bring in all the maintainability
problems encryption comes with. This section gives you guidance on how to avoid the
major pitfalls. This warning applies to both full encryption and cryptographic digital
signatures.

http://mng.bz/2z7a
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 Why would you use encryption or digital signatures in a telemetry system? Here are
a few reasons:

 Encrypting the originally emitted telemetry side by side with unencrypted
telemetry gives security-incident responders hints about what telemetry was
changed.

 Encryption provides a safer way to handle toxic information, such as privacy-
and health-related information.

 Compared with hashing (see the preceding subsection), digitally signing telem-
etry provides far stronger assurance that telemetry was last modified by a
trusted party.

 Digital signatures provide all the benefits of hashing by making changes tamper-
evident.

The biggest challenge for encryption in telemetry systems is supporting the retention
periods required. The SIEM systems used by security teams often have retention peri-
ods measured in years, with seven years being a common period inherited from finan-
cial accounting regulation. Centralized logging systems often have similar retention
periods, though most of their period is spent in offline storage. The threshold separat-
ing broken encryption from good-enough encryption is changing constantly, and seven
years is long enough to likely include one such move. Encryption systems are fragile by
design—you want encryption or validation to fail if someone changed something—so
you must accommodate that fragility in your telemetry system design. To explore how
encryption techniques support telemetry systems, I will describe two different models
of encryption use:

 Using public-key cryptography to allow a structured logger in an Emitting stage
to encrypt emitted telemetry right at the source

 Using public-key cryptography in the Shipping stage to validate that received
telemetry was last modified by a trusted party

Let’s look at encrypting telemetry right at the source. Here, public keys are shipped to
production systems to allow them to encrypt telemetry securely. This method permits
shipping an encrypted version of the emitted telemetry alongside a plain-text version
that the Shipping stage will mark up and enrich. Figure 15.12 shows an example.

 The process in figure 15.12 creates parallel telemetry: the plain text that will be
modified by the Shipping stage and be searchable in the Presentation stage, and the
encrypted version of the original telemetry that only someone with the private key can
read. It’s important to note that the encrypted data in this model is used by only a few
people. This method is relatively easy to build, because only encryption operations are
performed in the pipeline, which means that decryption, signature verification, and
the hassles of safely handling private keys don’t need to be automated.
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Things get quite a bit more complicated (and more defensibly secure) when we look
at using digital signatures inside a telemetry pipeline. Here, each process that creates
or modifies telemetry cryptographically signs telemetry as it finishes with it. We see
that process in figure 15.13.

 The process in figure 15.13 is far more complicated than the one in figure 15.12,
because far more encryption operations are taking place. We see digital signatures
being applied in three separate places:

 In step 3, when the last formatter of the structured logger signs the telemetry
emission with the Emitter key

 In step 6, when the router signs marked-up telemetry with the Router key
 In step 8, when the billing-platform parser signs enriched telemetry with the

Parser key just before telemetry is stored for searching

Because signing something digitally requires access to the private key, this telemetry
pipeline requires shipping private keys to three places in the system, including the
most at-risk location: the edge of the network, where the production code is running.
Securely distributing private keys is a process with many pitfalls that reduce security.
This telemetry method provides a high degree of assurance that any telemetry tam-
pering will be detected immediately in flight and offers the possibility of detecting
tampering after telemetry is stored.

Production
code

Logger

Formatter

Writer

Shipping-stage
parsers

Shipping-stage
storage

Structured
logger

1. Production code emits telemetry 
   by calling the logger. 

2. The last formatter before the writer
    creates an encrypted field containing 
    the emitted telemetry.  

3. Writer and Shipping-stage parsers
    manipulate the plain-text telemetry, 
    leaving the encrypted telemetry untouched.  

4. Telemetry is written to storage, including
    the encrypted version of the original telemetry. 

5. During incident response, security 
    engineers recover original telemetry from 
    encrypted fields, discovering any changes.

Figure 15.12 Encrypting originally emitted telemetry to support later security investigations. 
These five steps result in fully marked-up/enriched telemetry that is stored alongside the fully 
encrypted original telemetry. To a security investigator with the private key, decrypting the 
original telemetry reveals what changes were made to the telemetry since the original encryption.
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Encryption is a deliberately fragile process, which makes a telemetry pipeline that
depends on encryption/decryption cycles more fragile. This fragility means that the
off-the-shelf Shipping stage engines such as Logstash and Fluentd don’t have native
support for digital signatures and encryption, because the encryption edge cases are
so varied that writing a general-purpose framework is problematic. The method from
figure 15.12, which encrypts only the raw telemetry as part of the Emitting stage, is
supportable because no decryption or validation operations happen during the Ship-
ping stage. The method in figure 15.13, with multiple sign/verify/sign cycles, requires
custom code of some kind to build. If you want to build a system of strong assurance
like the method shown in figure 15.13, here are pain points you want to address:

Production
code

Logger

Formatter

Writer

Billing platform
parser

Shipping-stage
storage

Telemetry
router

1. Telemetry enters the pipeline by calling
    the logger method of the structured logger. 

2. The formatter marks up telemetry.

3. The last formatter in the chain digitally 
    signs the fully marked up telemetry using 
    the Emitter key. 

 

4. The Writer submits the signed telemetry
    to a stream topic named logging_raw. 

5. The telemetry router receives the
    telemetry and checks the signature 
    to ensure validity.  

6. If invalid, the router raises an alert. If
    valid, the router changes markup, resigns
    the telemetry using the Router key, and 
    sends it to a stream topic named billing.  

ALARM

7. The billing parser receives the telemetry
   and checks the signature to ensure the 
   router signed it. 

8. If invalid, the parser raises an alarm. If
   valid, the parser finishes markup, resigns 
   the telemetry using the Parser key, and 
   sends to storage.  

 

ALARM

Telemetry
stream

Telemetry stream

Structured
logger

Figure 15.13 A centralized logging pipeline using three separate signing keys to provide 
assurance at multiple stages of the pipeline. In these eight steps, telemetry is signed three 
times: by the emitter that generated it, by the router that forwarded it to a parser, and finally 
by the parser. If any step fails signature verification, an alarm is raised.
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 If the writer of the structured logger silently recodes strings, such as ASCII to
UTF-8, any digital signature created by a formatter will break. Make sure that
the formatter and writer components of your structured logger are crystal-clear
with regard to string encoding.

 If your queues, streams, or other telemetry transport methods silently recode
strings, any digital signatures will break. Make sure that you build your system to
handle those string conversions.

 If your storage system silently recodes strings or changes the precision of floating-
point numbers, the last digital signature will break.

 Key expiration will break your telemetry system the same way that forgetting to
renew the SSL certificates on your website breaks your website. To avoid that
kind of outage, you need to create a system to safely renew signing/encryption
keys. Also, you need to communicate the key renewals to the validation stages
so that they know to expect the change. Using public key cryptography that
chains up to a certificate authority will help but moves the problem to expiring
certificate authorities.

 Any failure in distributing private and public keys will create at least a partial
telemetry outage. Build this failure case into your service offering (modify your
service-level agreements, to use the SRE term) so that your telemetry users have
a better understanding of your availability promise.

Encrypting or signing telemetry digitally isn’t something that every organization
needs to do, but you should have a conversation about these techniques when consid-
ering updates to your telemetry systems. You pick these methods when you need
strong assurance that telemetry hasn’t been tampered with. Startup companies likely
don’t yet have the risk exposure to make this step necessary, whereas companies enter-
ing the healthcare market can find themselves suddenly having to put these tech-
niques to use. Because these techniques require at least some custom coding, they’re
more for medium-size and large organizations. (See part 2 for a breakdown of organi-
zation by size and type.)

Exercise 15.3
What are the two key principles of defending telemetry from attackers?

a Production systems should emit using write-only methods.
b Telemetry must be transmitted over encrypted channels.
c Once emitted, all access to telemetry must be traceable, and modifications

must be made obvious.
d Avoid using log files, because attackers can change them.
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Summary
 Telemetry systems are incredibly useful in a security incident, which is why

attackers try to break or subvert them to hide their tracks.
 Your goal as a telemetry system defender is to prevent telemetry alteration wher-

ever possible and to increase the effort of making changes everywhere else. This
approach makes the attacker’s job harder and increases the chance that you will
be able to trace their movements afterward.

 Compliance and regulatory frameworks often require system design that makes
alteration by an insider harder. Because most growing organizations encounter
these frameworks after their products (and telemetry systems) are created, they
have to add assurance features to existing systems.

 Production systems should emit telemetry by using write-only methods, which
make it harder for attackers to bend the production system to change telemetry.

 Once emitted, all access to telemetry (including operator/admin/root access)
must be traceable, and modifications must be made obvious to ensure that
recorded telemetry remains a true record of what happened in production.

 Emitting to log files gives attackers more of a chance to change telemetry than
other methods, so plan to ingest and ship your log file contents as fast as possible.

 Telemetry needs to be shipped from log files continually, rather than in
batches, which greatly reduces exposure to attackers.

 Telemetry needs to have low lag between when the emission happens and when
it is shipped to the rest of the Shipping stage, further reducing the time that an
attacker has to make changes.

 Creating a write-only place to put log files often can be done with operating sys-
tem permissions. Grant the write permission, but not read.

 Creating a write-only directory is easiest on Windows systems because the access
control system allows complexity that UNIX/Linux systems generally lack.

 SELinux and AppArmor are Mandatory Access Control systems for Linux that
allow complex rights definitions, enabling the creation of true write-only direc-
tories for applications.

 When you’re using a queue or stream system for both telemetry and production
access, do not use the same credentials for production work and telemetry
work. Instead, use separate credentials: make the telemetry credential write-
only, and deny the production credential access to the telemetry channels.

 When you’re selecting a telemetry SaaS provider, make sure that the provider
offers a way to submit telemetry through a write-only API token or method. At
all costs avoid using the admin token (if one is offered) to send telemetry.
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 All telemetry systems—such as queues, streams, and APIs—must support
authentication, and if possible, must be configured to require it. The logs show-
ing those authentication requests must also be tracked and likely streamed into
your SIEM systems as well. This approach provides security a way to trace events
during an incident.

 Ideally, telemetry system operators will have individual accounts on each system
they need to access instead of using a shared account. This approach gives secu-
rity teams the highest-resolution details when they reassemble events during an
incident.

 Code inside the telemetry system needs to be subjected to the same change-control
techniques that production code undergoes, for many of the same reasons.

 Configuration management tools such as CFEngine, Puppet, and Chef are use-
ful for enforcing the approved state of telemetry configuration, which makes ad
hoc changes harder to bring about.

 Immutability is a related concept; you design your systems so that no one can
make changes. Docker and FaaS are famous examples of this pattern, but serv-
ers and virtual machines can be made immutable as well.

 Attacking immutable systems likely requires attacking the deployment method
for the immutable systems, so defend those systems as well.

 Cryptographic hashing of telemetry is useful for making changes to telemetry
obvious; the stored hash and the newly computed hashes don’t match.

 Security teams can use hashes in telemetry to isolate telemetry that potentially
was modified by an attacker.

 Hashes can be used by Shipping-stage components to ensure that incoming
telemetry has not been modified and send an alarm if it has been.

 String encodings are land mines if you are using hashes. Many systems silently
recode strings, such as from UTF-16 to UTF-8, which will silently break a hash
generated using the previous encoding. You need to be explicit with string
encoding at every step to be sure that your hashes will continue to validate
telemetry.

 Encryption and digital signatures are valuable in a telemetry system because
they provide strong assurance that telemetry was last modified by a trusted
party, not by some hacker who figured out that you’re using unsalted SHA256
hashes as a checksum.

 The biggest problem facing encryption in telemetry systems is the retention
period; in some cases, you legitimately need to be able to verify signatures or
decrypt data that is up to seven years old.

 Using digital signatures inside a telemetry pipeline to validate that changes
were made by a trusted party requires securely distributing private keys, which is
easy to get wrong.
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Redacting and
 reprocessing telemetry

There are two big reasons why you might want to rewrite stored telemetry:

 Regulated information—such as privacy- and health-related information,
and sometimes financial information—somehow got into your telemetry sys-
tems and needs to be removed before your organization has to notify cus-
tomers and users of the breach (redaction). I call information like this toxic
data because information of these kinds require special handling, and there
are severe penalties for getting it wrong.

 Upgrading a telemetry storage system often means that backups or databases
need to be reformatted to ensure restorability, or replacing one telemetry
system with another means having to import your old telemetry into the new
system (reprocessing).

This chapter covers
 Identifying toxic data and where it comes from

 Cleaning up after toxic data spills

 Reducing the scope of toxic data spills

 Reprocessing cold storage to improve restorability
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This chapter is about handling both of these concerns, which certainly can happen at
the same time! When upgrading/replacing your storage, you have a great opportunity
to redact things you don’t want in your telemetry systems. Although most of what I talk
about in this chapter focuses on toxic-information cleanup—it is the more complicated
problem—reprocessing matters as much for long-term maintenance of telemetry
systems.

 These maintenance tasks are easy to miss, especially in a small but growing company.
Compliance and regulatory frameworks force you to pay attention to these problems,
so many growing companies have to pay down years of technical debt when they attempt
to achieve compliance. Although regulation about health information with stern pen-
alties has been present for decades, privacy regulation with similar penalties is relatively
new, with the European General Data Protection Regulation (GDPR) going into force
only in 2018 and other laws coming into force since then. This recency of regulation
means that safe-by-default handling of certain inputs—name, address, email, phone
number, and so on—is not yet built into programming languages and frameworks.

 Although safe defaults will improve over the 2020s, most of us will be working on
systems that weren’t built on platforms with safe handling of privacy/health informa-
tion in mind. Telemetry systems are a major leak point for privacy and health informa-
tion, so expect to see telemetry systems start picking up features to handle them
better. Until then, learn how to redact and reprocess your telemetry for safety.

16.1 Identifying toxic data and where it comes from
Data toxicity is my term for data that requires special handling, notification of spills,
requirements for cleanup, and severe penalties for not following those procedures.
Much as environmental regulations largely didn’t bother with regulating toxic sub-
stances until the 1970s or so, 50 years later, toxic data is beginning to enter the realm
of regulation. This section is about what makes up toxic data and how it enters your
telemetry systems. There are three major types of toxic information.

 Financial information—The first kind of toxic data has been treated as such by
financial institutions and their regulators for decades, though it took the Pay-
ment Card Industry to provide and enforce handling standards outside banks.
This standard is called the Payment Card Industry Data Security Standard
(PCI/DSS).

 Health information—The second type of toxic data to gain broad acceptance,
computerization of health records (and the ease of sharing that enables) drove
health-privacy regulation such as the American Health Insurance Portability
and Accountability Act (HIPAA). This information is also known as ePHI (elec-
tronic protected health information).

 Personally identifiable information (PII)—PII is the third type of toxic data to gain
acceptance. The European Union’s GDPR was the first comprehensive regula-
tion to arrive, and it started a cascade of other regulations in states, provinces,
and nations across the world.
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The standards defining what qualifies as one of these three types of toxic data evolves
over time, as the regulating bodies update standards based on better understanding of
data use. Before the GDPR, for example, the IP address that a user used to access a
service was not generally considered to be the same kind of private information as
home address and phone number. If your organization handles one of the three regu-
lated toxic data types, make sure that your telemetry systems aren’t making it easy to
gather and display newly classified information types. (For more on getting rid of
newly classified information you’re already handling, see section 16.2.)

 There is a fourth type of toxic data, somewhat different from the other three: secu-
rity information. Data of this type includes plain-text passwords, private encryption
keys, password hashes, API keys, and anything else that would allow someone looking
at telemetry to impersonate someone else or access something they’re not authorized
to see. A government agency won’t make trouble for your organization for mishan-
dling security information (unless you’re working with government secrets; then
you’ll be in more trouble than you ever want to experience), but it needs to be treated
as toxic data, the same as the other kinds. The risk that this type of toxic data rep-
resents is reputational; if the world finds out that you don’t treat this kind of data
safely, everyone will stop using your services.

 If at all possible, don’t display toxic data in your telemetry systems. The special handling
rules for toxic data make accessing telemetry much harder, which makes your teleme-
try systems harder to use overall. When you make access to your telemetry systems dif-
ficult, people stop using them—or, worse, make their own telemetry systems that
aren’t subject to the defenses you built, which leads to leaks and official penalties.

 Figure 16.1 shows the penalties for getting caught leaking toxic information, which
are severe. The penalties come in five types:

 Denial of handling that sort of information for a period of time—Violate PCI/DSS
hard enough, and the Payment Card Industry will ban you from processing
credit and debit cards. This penalty puts nearly all young companies out of busi-
ness or shunts them into niche markets that accept only direct bank transfers
and cryptocurrencies.

 Great big fines—Regulators know that businesses understand money, so they
make violations hurt monetarily. To make matters even worse, such fines are
commonly made public information, so a major hit to the organization’s repu-
tation also happens.

 Publicly admitting that the violation happened—Mandatory disclosure laws force
violating organizations to notify the affected people or make a public disclosure
that the violation happened. No company enjoys admitting fault, which is why
regulations force this step as a way to make the “Don’t violate” lesson stick.

 Explicitly assigning civil liability—Regulation and laws make it clear that the par-
ties affected by the leaked information are entitled to sue for damages, possibly
as a class action.
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 Increased regulatory scrutiny—Sometimes, violation means that regulators will be
looking at your organization extra-hard for the next several years to ensure that
no further violations happen. This extra attention often slows internal pro-
cesses due to the need for the regulator to approve the change, and it some-
times forces internal process changes to appease the regulator well after the
incident was resolved.

People absolutely do lose their jobs for violating (intentionally or not) data handling
rules and regulations, and in certain cases, they can be held criminally liable. If your
production systems handle toxic data, the chances that your telemetry systems will
unintentionally handle toxic data are nonzero. You need to be scared of this stuff.

 Toxic data enters telemetry systems in two big ways. The first way is programmatic
exceptions. Every programming language throws exceptions, most of which allow emit-
ting more than simply “crashed :(”. Indeed, stack dumps are common. Unfortunately,
so is emitting the parameters that caused the exception. Parameters are incredibly use-
ful for diagnosing why the program died in that way, but they are absolutely evil when
it comes to handling toxic data safely. Take the following exception example:

ExampleClass::VroomBoxFault at vroombox.vbr:192 with
[ speed = -999,
  firmware = "4.3.19.02",

Ban your use of that data

You can’t use that kind of data
anymore, which can put your
organization out of business.  

The penalties for mishandling privacy- and health-related data

Great big fines

Regulators use big fines to
motivate organizations to take
handling toxic data seriously.  

Public admission of guilt

Regulators use organizational
fear of embarrassment to
motivate organizations to take
handling toxic data seriously.   

Assign civil liability

Your organization can be
sued for damages relating to
the mishandling of toxic data,
possibly as a class action.   

Increased regulatory scrutiny 

Regulators pay much closer 
attention to you, possibly
requiring their presence inside
your business to ensure that you
don’t mess up again.   

Telemetry pipeline

Figure 16.1 The penalties for mishandling toxic data are severe and can put your 
organization out of business. 
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  account_id = "0009121205",
  make = "Audi",
  model = "CRX-11",
  license = "US:NM:0000SU",
  owner = "John Rutherford",
  notification_email = "jruth73@example.com"
]

First, speed is a suspicious negative number and is likely why VroomBoxFault was
thrown. But this exception also includes two pieces of privacy information: a full name
and an email address. Why is that information there?

 Sometimes, a programming language dumps these details by default, and it’s up to
the engineers to determine how much detail is included in exception dumps. At other
times, engineers are unconditionally serializing function parameters and trusting that
PII/ePHI won’t be in there; worse, they don’t understand that an email address has
been considered to be PII ever since GDPR, as in this unconditional dump:

catch ExampleClass::VroomBoxFault
  logger.warn("Broke my toe sending an email notice. Params: " + toJson(params))

An engineer who is aware of the privileged nature of two of the fields could rewrite
this code to be safer:

catch ExampleClass::VroomBoxFault
  safe_params = []
  safe_params.add(params["speed"])
  safe_params.add(params["firmware"])
  safe_params.add(params["account_id"])
  logger.warn("Broke my toe sending an email notice. Params: "
   ➥ + toJson(safe_params))

Including account_id but none of the identifying details of the car or owner urges
our debugging engineer to use the production system—and all its access safeguards—
to look up what the other parameters likely were. This method is a far safer way to log
an exception, and you can do it immediately.

 One safer pattern is not to serialize to string, as we’re doing above, but pass in a
hash to the logging function. This approach lets you create middleware in your logger
to exclude toxic data automatically. Chapters 12 and 14 cover structured loggers
(chapter 12) and methods of restricting the sorts of data that end up in logging
streams (chapter 14) through using structured loggers. Section 16.4 discusses a sec-
ond technique for safely handling high-risk telemetry when using a structured logger
isn’t possible.

 Besides exceptions, the other big source of toxic data in telemetry streams is
unconditionally echoing user-supplied input as part of telemetry. Similar to what I just
talked about regarding exceptions, knowing what the user submitted greatly helps
debugging what went wrong. If the user is submitting something that routinely
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includes PII, however, their bad values will likely include PII. To demonstrate, take
this log statement:

logger.warn("Invalid payload for API call. Got: " + api_payload.to_string)

This statement is quite useful for figuring out bad API calls but ignores data safety. If
the bad payload is a JSON block that had the final } cut from it, rendering the JSON
invalid, the rest of the data structure is present and now in your telemetry stream. If
the API call was submitting privacy- or health-related information, your telemetry sys-
tem has that information in it (figure 16.2).

There are safer ways of handling bad-inputs types of logging, and I talk about them in
section 16.4. Now that we know how this stuff gets into the pipeline, let’s talk about
what to do about it.

16.2 Redacting toxic information spills
Section 16.1 describes what toxic data is, and what the penalties are for not handling it
safely (fines, embarrassment for your organization, lawsuits, and sometimes criminal
proceedings). This section describes what to do about toxic data that enters your

2023-02-19T01:19:03T-00:00 [api-ingest] [info] Decrementing API quota for practice 228
2023-02-19T01:19:22T-00:00 [api-ingest] [warn] Invalid payload for API call. Got:
  { "patient_id": 221252,
    "practice_id": 191
    "diagnosis_codes": [
      "B01.89"
    ],
    "name":"John Rutherford",
    "weight": 82,
    "height": 178
2023-02-19T01:19:25-00:00 [api-ingest] [info] Updated patient 921132
2023-02-19T01:19:27-00:00 [api-ingest] [info] Added  2 codes to patient 921131
2023-02-19T01:19:27-00:00 [api-ingest] [info] Decrementing API quota for practice  92

JSON missing the end }

Chicken-pox diagnosis code

logger.warn("Invalid payload for API call. Got: " + api_payload.to_string)

Figure 16.2 How an unconditional emission of a bad parameter leads to a leak of health information. 
The API call didn’t have a valid JSON structure, which is sent directly into the logs, including all the 
troublesome health information. Don’t do this.

Exercise 16.1
Which of the following is not one of the top two ways that toxic data enters telemetry
streams?

a Engineers logging parameters as part of normal logging
b Exception logs including parameters
c Logging unredacted user-supplied input
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telemetry system (other than hiding under your desk until the lawyers go away).
Redaction is the process of removing or masking information, and it must be done if
you have stored toxic data accidentally.

 Before we get to redaction, we need to examine what happens when you find toxic
data in your telemetry systems. Maybe someone else found it and came to you wonder-
ing what to do. Maybe you found it. Whatever the source, as a telemetry system opera-
tor, you have a duty to report the potential liability to the appropriate people:

1 Report the spill to your security, compliance, or (if you have one) data control team. This
step starts the process, and the longer you wait to do this, the bigger the mess
you will have to clean up later. For certain types of toxic data and under certain
regulatory frameworks, not reporting a spill in a timely manner opens you per-
sonally to penalties.

2 Work with the team to identify how widespread the problem is. This step determines the
scope of the problem. You will be acting as an expert on telemetry systems. The
teams you are working with will be trying to determine how many people
accessed the toxic data, assessing that risk, and judging whether it should trig-
ger a more rigorous incident response. In most cases, this step goes fast, is
quickly traced to a single line of code, and doesn’t go much farther.

3 Work with the team to determine an action plan. Responses will vary, but this step is
the first time you can be asked to remove the toxic data. The code that is leak-
ing the data will be addressed through whatever hotfix or other urgent bugfix
methods your organization uses to push code outside the regular development
cycle. Depending on how long fixing the production code takes, you can end
up performing the redaction steps several times.

4 Perform a final redaction when the leak is plugged. Now that the leak is fixed, you
perform one last redaction to clean up all traces of the spill. Whether you need
to go through your offline storage and redact there (reprocessing; see section
16.3) is a conversation you will have with your data control and security teams.

To demonstrate how this process works, let’s look at an example that is all too com-
mon. Our example organization has a support widget on its site written in JavaScript,
which communicates with an API on a server. We don’t need to know more—only that
the JavaScript sends things to a specific API. The code behind the API is wired into a
centralized logging system, which we see in figure 16.3.

 This support widget takes logged-in user-supplied data and sends it into the API.
One of the fields in the API request is username. As on many websites, for our exam-
ple organization, the username is an email address—something that is now consid-
ered to be PII per European standards.

 One day, the support widget receives an update that changes how it constructs the
API request. For whatever reason, email addresses with a plus sign in them, such as
jreichold63+techsupport@example.com, now cause the format of the request to fail
validation by the API server. We don’t care why this happened; what we care about is
how the API server reacts to an invalid request.
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Our API server has been there for a while, and the engineers who wrote it did so
before realizing that email is a sensitive string that needs special handling. A previous
incident revealed that the server was logging every event, similar to this code:

logger.info("Opening ticket for #{username}")

This code sent the email addresses into the logs for every API call. It was a bad day
when security noticed what was happening, but engineering made a hotfix to log the
account ID number instead. Engineering had to look up the ID from the username
first, but the ID is a safe value to log and more useful for debugging (the primary key
on the database table):

logger.info("Opening ticket for #{account_id}")

Engineering missed the exception handler, however. On the day the support widget
received the breaking update, a slow trickle of API requests landed on a logging state-
ment like this one:

logger.error("Invalid API payload received: #{payload.to_string}")

Nothing in this statement suggests that PII will be emitted when it is executed; all the
details are hiding in whatever is lurking inside payload. On this day of the bug
release, the logger statement produced a logging statement with the following in it
(dangerous value in bold):

Invalid API payload received: {"date":"2023-02-19T01:55:32+0600",
"subject":"Why are my pajamas \"in holding \" in Ireland?",
"username":"jreichold63+"techsupport@example.com",
"details": "They're pajamas for Pete's sake!" }

API
code

Log
file Filebeat

Elasticsearch
storage

Writes to
log file

Kibana

Shipping stage reads log file 
and sends into Elasticsearch.

Presentation stage
reads from Elasticsearch.

Support widget
(JavaScript)

Figure 16.3 The telemetry system for our redaction example. The code behind the 
API emits centralized logging telemetry into a log file, which is read by Filebeat and 
shipped into Elasticsearch. From there, Kibana is the Presentation stage and 
consumes Elasticsearch storage. The log file contains JSON-formatted lines, which 
Filebeat turns into a hash—the extent of the enrichment being performed here.
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We see that the support widget is inserting a double quote after the plus sign in the
email address without escaping it, which renders this JSON block invalid. The import-
ant point is that we have an email address in our telemetry again.

 Support calls engineering about angry customers who never got an email confir-
mation that their support requests were received. After digging into the logs, our engi-
neer notices the email hiding in the exception trace. Their memory fresh from the
earlier mini-crisis of removing email addresses from a large part of the logging, they
know to contact their security team (“Help—it’s happening again”).

 Security and engineering investigate and quickly identify both the exception log
statement and the bug in the support widget as the cause. The bad support widget
code has been in place for 22 hours, and new lines are being generated at a rate of
three an hour—not a large leak, but still a leak, and leaks must be fixed. Engineering
creates a hotfix for the exception logger to change how that event is handled:

logger.warn("Invalid API payload received: #{exception_name}")

Meanwhile, security sends a bug to the people who made the support widget to get
them to fix the parsing and encoding bug they introduced in the release. So far, so
normal. Our telemetry system operator is given the task of removing the PII from the
Elasticsearch system. Luckily for our operator, Elasticsearch has a convenient API that
they can use to remove the bad data in a single API call (listing 16.1).

curl https://logger.es.prod:9200/filebeat-2023.02.19/

➥ _delete_by_query \
  -XPOST \    
  -H'Content-Type: application/json' \   
  -d'
{ "query": {    
    "match": {    
      "message": "Invalid API payload"    
    }    
  }    
}'

A single API will remove all the matching documents in the given index. Repeating the
same call for the filebeat-2023.02.18 index to pick up yesterday’s bad records will
finish the cleanup. This technique also removes all the exception traces for this func-
tion, including ones without PII in them. Sometimes, such collateral damage is accept-
able; maybe engineering already reviewed two days of exceptions and doesn’t need
those logs anymore, or maybe the engineers simply don’t care about them enough to
be worried about rewriting instead of removing. In two calls, the problem is cleaned up,
and everyone goes back to their planned work. There’s no need for lawyers.

Listing 16.1 Using Elasticsearch delete_by_query API

Uses the HTTP POST verb for the API

Sets the Content-Type header so 
Elasticsearch knows to expect JSON

The body of the API call, 
removing all documents with 
‘Invalid API payload’ in them
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 But what if there were thousands of these lines instead of fewer than a hundred?
You can configure the delete_by_query API call to limit the number of delete
requests per second that Elasticsearch attempts in the background. This technique is
useful if the delete activity will slow ingestion of new events. Listing 16.2 shows the
revised API call, with the change in boldface.

curl https://logger.es.prod:9200/filebeat-2023.02.19/

➥ _delete_by_query \
  -XPOST \
  -H'Content-Type: application/json' \
  -d'
{ "requests_per_second": 200,    
  "query": {
    "match": {
      "message": "Invalid API payload"
    }
  }
}'

What if our engineering team wasn’t fine with losing these logs? In that case, a simple
delete_by_query is not viable, and we have to rewrite the given events, which takes
more work. To resolve this problem, we need to write a short script to fetch the bad
events, and then update them with the bad data removed. To handle cases with tens or
hundreds of thousands of events to redact, we will use paginated search and bulk-
update operations. The flow of our script will be

1 Set up a paginated search for our bad data, which will return a fresh block of
documents each time the search is executed.

2 Iterate through the returned documents to build an update set, redacting the
bad data.

3 When the size of our update set meets our arbitrary bulk-update threshold,
send the update set to Elasticsearch as a bulk operation, and reset the update
set to empty.

4 Repeat steps 2 and 3 until the paginated search stops giving us documents.

Listing 16.3 shows one method of fetching and rewriting events, based on scripts I’ve
used in real life. This listing uses the paginated search and bulk-update techniques
from figure 16.4. As of Elasticsearch 7.10, Elastic has added a new method for han-
dling paginated search as part of its paid X-Pack extension. I’m using the free/OSS
version here, as that version is more accessible. This listing is drawn from several ver-
sions I use in my own redaction processing.

 
 
 

Listing 16.2 Using the Elasticsearch delete_by_query API with a rate limit

Limits the number of background 
deletes to 200 per second
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NOTE Listing 16.3 requires the elasticsearch gem. The version you install
depends on the version of Elasticsearch you plan to talk to (gem install
elasticsearch -v [version]). See the gem documentation for details.

require 'elasticsearch'

ES_HOST = 'logger.es.prod'
BULK_SIZE = 1000

esclient = Elasticsearch::Client.new host: ES_HOST    

result_set = esclient.search(    
  index: 'filebeat-2023.02.19',  
  search_type: 'scan',           
  scroll: '2m',                    
  q: 'message:"Invalid API payload"
   ➥ AND message:"username"')    

doc_count = 0
update_set = []
loop do    

Listing 16.3 Redacting our mistakenly logged PII in Ruby

Set up paginated search

Do we have
documents left

to redact?
Bulk update

No

Redact documents
Add to update set
Rerun paginated search

Is the
update set big
enough yet?

Bulk update
Reset update set

Yes

No Yes

Finish

Figure 16.4 The process flow for redacting a large number of documents in Elasticsearch, using bulk 
updates. The paginated search returns zero documents when there are no more documents matching the 
search that have not yet been returned. We use a second loop to manage the size of the bulk updates 
to keep it reasonable, rather than throwing potentially hundreds of thousands of updates in a single call.

Creates a class to handle our 
Elasticsearch communication

Creates an object for our document search

Specifies the Elasticsearch index to search

Configures paginated search, keeping a 
snapshot of the results for two minutes

Our search query

Loops through our paginated search
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  result_set = esclient.scroll(              
    scroll_id: result_set['_scroll_id'],    
    scroll: '2m')                            
  break if result_set['hits']['hits'].empty?  
  result_set['hits']['hits'].each do |doc|   
    doc_count = doc_count + 1
    clean_mess = doc['fields']['message'][0]
      ➥ .split(':')    
    update_set.push( {             
      update: {    
        _index: doc['_index'],     
        _id: doc['_id'],           
        data: {                    
          message: clean_mess[0]   
        }                          
      } } )                        
    end
  if doc_count >= BULK_SIZE    
    esclient.bulk body: update_set  
    doc_count = 0
    update_set = []
  end
end
esclient.bulk body: update_set     

Our example uses Elasticsearch as a data store, but other databases are in common use
for centralized logging. Another popular option is MongoDB. Here are the MongoDB-
equivalent Ruby and shell operations to the Elasticsearch Ruby and shell operations
used in listings 16.1 through 16.4:

 The shell equivalent to the Elasticsearch delete_by_query is db.collection
.deleteMany(), which also accepts a filter and will remove documents in a sin-
gle call.

Fetches a batch of documents 
from our paginated search object

If we get no documents, break 
the loop! We’re done.

If we have 
documents, 
loop through 
each.

Splits the log line on the colons, which 
is how we will redact the bad data

Pushes the Update object to the 
update_set array, with message 
set to ‘Invalid API payload’

Sends our updates in 
batches of BULK_SIZE

Submits the update set 
to the bulk updater

But what about immutable logging?
Immutable logging—write once, read many style logging (WORM)—is a clear win in
the fight to defend logging from later modification. In fact, certain regulatory frame-
works (especially finance) mandate immutable logging in certain cases. But if PII or
ePHI ends up in your immutable logs when it doesn’t belong there, you have a real
problem on your hands.

How this problem is allowed to be solved varies from organization to organization, but
the main approach is simple: create a new immutable log set with the redactions per-
formed, documenting the heck out of the need to perform that work and exactly what
was done to make the new log set. Changing an immutable artifact must include a
lot of paperwork and tracking.

All this is a long way of saying this: don’t apply WORM techniques to application
telemetry unless you have utter confidence that you’ve solved any potential leaks of
regulated information or have the ability to live-redact queries.
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 Paginated search and update, demonstrated in figure 16.3, can be accom-
plished through a Ruby one-liner performing the update_many function after a
find function. Then Mongo performs the looping in the background:

client = Mongo::Client.new(
  [logs.mongo.prod:27017]
)
documents = client.collection('documents')

documents.find({
  :message => "Invalid API Payload",
  :message => "username"
}).update_many({
  :message => "Invalid API Payload: [redacted]"
})

16.3 Reprocessing telemetry to support upgrades
Reprocessing is either rerunning your source telemetry through your pipeline (some-
times done for migrations to a new platform) or restoring old telemetry from offline
storage to reformat, reorder, or modify every event. Not every storage system requires
reprocessing for storage upgrades, but enough systems do that I want to cover the
technique. This section is about reprocessing your telemetry to support storage system
upgrades, migrations to new storage systems, and redactions of your cold/offline stor-
age (section 16.2).

 If you are using a SaaS provider for your telemetry, reprocessing applies only if you
decide to migrate from the vendor and need to export all your telemetry. You can
avoid this step by maintaining your SaaS-provider contract for the duration of your
retention period and not sending any new telemetry to the provider. Most providers
bill on ingestion rate anyway, so keeping a provider around for cold storage should be
much cheaper than using it for active storage.

 If you are maintaining the storage for your telemetry systems, consider reprocess-
ing to be part of your telemetry system design. Periodic reprocessing is driven by a few
things:

 Your telemetry storage system changes its format, requiring you to reprocess to
update the storage format of telemetry already in the system.

 Your telemetry storage system changes its backup (offline) format, requiring you
to reprocess to ensure that your backups (or offline storage) can be restored.

 Your presentation systems change their expectations for how telemetry is format-
ted, requiring you to reprocess old telemetry to match the new expectations.

Elasticsearch is famous for requiring reprocessing when used as part of a telemetry sys-
tem. Elasticsearch supports snapshots—its method of making an offline copy of an
index, used for both backup and offline storage purposes. Snapshots can be restored
by the current and plus-one version of Elasticsearch. Because new Elasticsearch ver-
sions come out every 12 to 18 months, reprocessing your old snapshots every 12 to 18
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months is required if you want to make sure that your old snapshots can be restored.
Elastic and Open Search provide many tools to build automation for this process, but
it is up to you to build the automation. One version of this process is presented later
in this section. The need to reprocess your telemetry can also come from a variety of
one-off reasons:

 A discovered PII leak has been leaking long enough that your offline storage
contains the bad data too, requiring you to restore, clean, and re-offline your
cold data.

 You move to a new telemetry storage system and want to restore your old telem-
etry into the new system so that you don’t have to keep two storage systems
around with one used only for restores.

 You change how you segregate telemetry—such as moving from one database
per week to one database per day—and want to backport the change to your
offline storage as well.

 You need to remove some technical debt present in your older offline data due
to lack of understanding of how your storage system worked in the early days.

Figure 16.5 provides the broad steps of reprocessing.
 Reprocessing is hard on the databases involved, because you’re reinserting days or

weeks of telemetry in a short period. When you restore a database, the load is light,

Restore your old data, using a slightly different database 
name. Reprocess into a correctly named database.

Telemetry
data

(original)
Telemetry
storage

(restored)

Telemetry
data

(redone)

Telemetry
storage

(reprocessed)

Copy/rewriter

Offline
storage

Re-backup your reprocessed
telemetry (in a correctly named
database) to offline storage. 
Then delete both original and
reprocessed databases from 
your online systems.   

Copies and reformats data,
redacting if needed 

Figure 16.5 The broad steps of reprocessing telemetry. First, old telemetry is restored to the 
online system under a different database name. Second, telemetry is copied (and, if necessary, 
redacted) to a new database named what the original would have been named. Finally, when the 
copy is complete, you take a backup of the new database and delete both old and new databases. 
This approach allows future restores to continue to use expected database names.
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because you’re likely restoring the actual database files themselves. But for reprocessing,
you’re rebuilding the database through INSERTing and UPDATEing individual or bulk
events, which requires building the database and index files from scratch.

 When you set up to reprocess old telemetry, you need to understand the impact it
will have on your systems. In the best case—which is much easier to do if your infra-
structure is in a public cloud, where adding a new cluster means spending more money
for a bit—you set up a new database cluster to do your restore/reprocess/backup pro-
cedures; this approach keeps reprocessing stress away from your production telemetry
systems. If you have no choice but to use your production telemetry systems for repro-
cessing, definitely test reprocessing of a small part of your old data to judge the impact
it will have on your telemetry operations. You want to know whether you have to keep
that activity as an off-hours thing or whether it is safe for you to let it run 24/7 until done.

 Let’s take a look at a real-world concrete example: the procedure I used to repro-
cess telemetry stored in Elasticsearch 1.x for use in an Elasticsearch 2.x cluster. I open-
sourced the framework (not that I know anyone else who has used it); you can find it
at https://github.com/hellosign/logstash-reindexer. This framework was written in
Ruby 2.x because that’s what I was most familiar with at the time. The reprocessing
framework I wrote has three components:

 A Redis server, used to support a Resque-based (https://github.com/resque/
resque) queuing service.

 A Ruby-based worker named snapper, which is responsible for restoring and
taking snapshots. In an Elasticsearch cluster, only one snapshot operation at a
time is allowed, so this single worker governs that process.

 A Ruby-based worker named reindexer, which is responsible for copying events
to the new index, performing any transformations needed, and triggering the
restore of the next snapshot. You can have several of these workers running in
parallel.

The queue hosts a list of snapshots yet to process, as well as the queues that the snap-
per and reindexer workers listen to. The snapshot list is primed through the
gen_snaplist.rb script, which polls the snapshot repository for snapshots matching a
given regular expression and pushes each into the queue. Figure 16.6 illustrates how a
snapshot is restored, reprocessed, and retaken:

1 snapper restores an index and sends a job to the reindexer queue.
2 A reindexer worker picks up the job and performs any redactions or other

modifications to the source and target indexes.
3 reindexer reprocesses, creating and populating a new index from the old.
4 reindexer pops a new snapshot off the snaplist queue.
5 reindexer sends a job to snapper to take a snapshot of the just-reprocessed index.
6 reindexer sends a job to Snapper to restore an index, using the snapshot

popped from snaplist.
7 Go to 1 until snaplist is empty.

https://github.com/resque/resque
https://github.com/resque/resque
https://github.com/resque/resque
https://github.com/hellosign/logstash-reindexer
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Only one Snapper worker should run, but multiple reindexer workers can run. For
the Elasticsearch 1.x to 2.x reprocessing, reindexing speed was limited to CPU on the
part of the nodes running the reindexer workers and write I/O performance on the
Elasticsearch data nodes handling event ingestion.

Because reprocessing took us weeks of 24/7 processing, the reprocessing framework
had to accommodate living in a production environment. This accommodation
involved building in the ability to pause reprocessing so we could patch servers as part
of our routine patching processes (the pause_workers and unpause_workers scripts in
the logstash-reindexer repo), and additional scripts to trigger rerunning a reprocess
against an index in case something broke (the inject_reindexer script in the repo).

 When we reprocessed for the upgrade from 2.x to 5.x (Elasticsearch skipped
versions 3 and 4 for branding reasons), we performed redactions (see section 16.2)
during the reprocessing. We did this on the source (old format) index so that the

Snapper
Restore
index

Snapper
Take

snapshot

Reindexer
Modify
source

Reindexer
Reindex

Snaplist
queue

1 2

5

6

Reindexer
Snapshot
actions

3

4
Figure 16.6 The flow 
of reprocessing an index. 
This flow iterates through 
the Snaplist queue until 
it’s empty.

Reprocessing rates and our Elasticsearch upgrade from 1.x to 2.x
When my company decided to upgrade our telemetry systems from Elasticsearch 1.x
to 2.x, we had to reprocess our telemetry. This reprocessing wasn’t due to snap-
shots/backup format incompatibility—all our snapshots were in ES 1.x format, which
would theoretically run on ES 2.x just fine—but because Elasticsearch 2.x changed
how schema management worked in ways that would break searching if we restored
the old indexes. Because we were in a public cloud, we decided to spin up a second
Elasticsearch cluster to handle all our reprocessing work.

It was a good thing that we did. At the time, our production centralized logging system
was handling between 8,000 and 11,000 events a second. On the identically-sized
reprocessing cluster, we hit our ingestion limit—the maximum rate at which our clus-
ter could accept events—at between 20,000 and 25,000 events per second. To get
that rate, we had to reprocess three to four indexes at the same time.

Even so, it took us almost three weeks to reprocess multiple years of history using
that separate cluster. If we had to perform reprocessing on our production cluster, it
would have taken us twice to three times as long to not affect regular telemetry pro-
cessing and still get through everything.



427Reprocessing telemetry to support upgrades

created new-format index would be as optimized as possible. When we did the 5.x to
6.x reprocessing, we had significantly smaller snapshot sizes due to changes in
Elasticsearch itself. This reprocessing also included redactions.

 What if you want to reprocess to migrate to a new telemetry storage system, such as
Grafana Labs’ Loki? The redaction script we looked at in listing 16.3 (section 16.2)
gave us much of the framework we need, so let’s extend it to write to a Loki promtail
server. We will need to make a few changes:

 Promtail expects the timestamp of each event to be newer than the previous
one, so our search will need to be ordered by time.

 We won’t be writing to another Elasticsearch service, so we will need to use
HTTP POST instead to send events to Promtail.

These changes have little effect on the process flow we saw in figure 16.4. The few
changes we see are in figure 16.7.

The code is about the same size, though it includes logic for handling the HTTP POST
to Promtail, as we see in listing 16.4. The API call to ingest events in Promtail contains
an ordered two-element array of events we will need to construct. The two elements of
the inside array are a timestamp followed by the event text.

NOTE Like listing 16.3, listing 16.4 requires the elasticsearch gem. The
version you install depends on the version of Elasticsearch you plan to talk to
(gem install elasticsearch -v [version]). See the gem documentation
for details. Also install the rest-client (for REST interfaces) and json gems.

Set up paginated search

Do we have
documents left

to redact?
Send to Promtail

No

Redact/reformat documents
Add to update set
Rerun paginated search

Is the
update set big
enough yet?

Send to Promtail
Reset update set

    Yes

No Yes

Finish

Figure 16.7 The slightly different reprocessing flow for migrating telemetry in an Elasticsearch index 
into Grafana Loki, by way of the Promtail client (part of Loki). This figure is similar to figure 16.4.
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require 'elasticsearch'
require 'rest-client'
require 'json'

ES_HOST = 'logger.es.prod'
PROMTAIL_HOST = 'logger.promtail.prod'
BULK_SIZE = 100   

esclient = Elasticsearch::Client.new host: ES_HOST

def reindex(source_idx)
  result_set = esclient.search(     
    index: source_idx,    
    search_type: 'scan',            
    scroll: '2m',                   
    sort: ['_timestamp,asc'])       

  uri = "http://#{PROMTAIL_HOST}:8080/
   ➥ loki/api/v1/push"   
  loki_base = { "streams": [ {            
    "stream": { "label": "exampleapp" }, 
    "values": []                           
  } ] }                                   
  doc_count = 0
  update_set = []
  loop do
    result_set = esclient.scroll(           
      scroll_id: result_set['_scroll_id'],  
      scroll: '2m')                         
    break if result_set['hits']['hits'].empty?    
    result_set['hits']['hits'].each do |doc|
      doc_count = doc_count + 1
      telemetry = doc['fields']
      # Redactions, if any, go here
      update_set.push = [           
        doc['_timestamp'],    
        JSON.dump(telemetry) ]     
    end
    if doc_count >= BULK_SIZE    
      loki_update = loki_base
      loki_update['streams'][0]['values'] = update_set    
      RestClient.post(                         
        uri,                                    
        JSON.dump( loki_update ),               
        :content_type => 'application/json' )   
      update_set = []
      doc_count = 0
    end
  end
  loki_update = loki_base                          
  loki_update['streams'][0]['values'] = update_set 
  RestClient.post(                                 

Listing 16.4 Reprocessing an Elasticsearch index into Grafana Loki by way of Promtail

Sets the bulk-update limit

Sets up the paginated 
search, ordering results 
by _timestamp, ascending

As of version 2.1.0, Promtail 
doesn’t have HTTPS support.

The base construct of 
the Loki API call, to be 
completed later

Fetches a new batch of 
documents from Elasticsearch

If we get zero documents 
back, the search has found 
everything; exit the loop.

Builds the update set: an array 
of two-value arrays (timestamp 
and a logging string)

If the update set is big enough, 
send the API call to Loki/Promtail.

Builds the
API call

with our
update set

Sends JSON-formatted 
telemetry to Promtail 
by way of HTTP POST

Sends the final batch of 
updates, if any are lingering
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    uri,                                     
    JSON.dump( loki_update ),    
    :content_type => 'application/json' )    
end

The function in listing 16.5 would be called by

reindex('logstash-2019.08.21')

and would send documents in batches of 100 into the Promtail server. Depending on
how Promtail’s parsing performs, the batch size can be increased or decreased.
Loki/Promtail uses a different method of telemetry markup (see chapter 6) from
Elasticsearch, preferring to do more parsing at query time to take complexity out of
the database. For this reason, Elasticsearch’s extensive markup will be consumed at
query time, and searchers will rely on a correctly set “label” here in the loki_base
variable to speed searches. 

16.4 Isolating toxic data to reduce cleanup costs
Redacting and reprocessing are expensive procedures: expensive in time, expensive
in lost feature work, and expensive in direct costs if additional computing resources
need to be spun up to accomplish it. If you know that you have leaks of toxic data (see
section 16.1 for that definition) into your telemetry systems from your production sys-
tems, this section is about steps you can take to reduce the costs associated with
cleanup activities. Defense in depth applies to more than security; when it comes to toxic

Sends the final batch of 
updates, if any are lingering

How far back do you need to reprocess?
This sidebar touches on the topic of chapter 17, which is about retention and aggre-
gation policies, but I can give you some guidance now.

 For telemetry that is more security- or compliance-focused, such as the kind
of telemetry you use in a SIEM system, you want to reprocess your entire his-
tory. This history is likely seven or more years long, but it is important for your
organization to comply with external regulation and compliance regimes.

 For application telemetry used by engineering, I find that requests to access
telemetry more than 13 months old are extremely rare. Because application
telemetry is likely the largest pool of telemetry in your system, reprocessing
only 13 months’ worth will save you money.

Exercise 16.2
For your telemetry storage systems, have you ever had to perform reprocessing?
What drove the decision process? What will help you handle the process better next
time?



430 CHAPTER 16 Redacting and reprocessing telemetry

data, it’s about failing safer. If you take nothing else from this section, take these
points:

 Isolating telemetry streams that are at risk of containing toxic data (such as API
server events) from streams that definitely will not (such as networking hardware
telemetry) will save you money and time when you need to deal with a spill.

 If your production systems handle toxic data, throwing all your centralized log-
ging into a single system is a clear antipattern, which maximizes your cleanup
zone.

 Use the access control list (ACL) features available in your Presentation-stage
systems to limit access to potentially toxic data containing telemetry to the
teams that specifically need that access. This policy reduces the impact of leaks.

 Because exceptions are among the highest-risk bits of telemetry for containing
toxic data, take time to engineer separate handling for your exceptions. This pol-
icy gives you far better capabilities for live redaction (redacting toxic data as part
of the emitting and shipping stages), allows you to have a different ACL for
reviewing exceptions, and lets you grant wider access to your application logging.

Isolating access to telemetry that can contain toxic data is quite important for the safety
of your organization. The more eyes that potentially could have viewed the toxic data,
the more work the security, compliance, or data control teams have to do to judge the
true risk of the spill, which increases the risk that a spill could become notifiable—an
official breach under the law that requires public disclosure. 

Why you should never, ever say “@security, I think I found a breach”
Well, you can say it if you’re on the legal team in charge of determining whether a
legal exposure is present; otherwise, never use the B word. Just about every reader
of this book is not that kind of person. (If you are, I’m trying to help.) The problem
with the word breach is that it now shows up in enough laws, with a legal definition,
that using the word incorrectly can open your organization to legal liability. Start prac-
ticing not using the B word unless you’re talking about breaches that are already
declared or have happened to other organizations.

The problem comes from legal language that reads like this: ”. . . shall notify the reg-
ulatory office within 48 hours of detection of the breach . . .” The question boils down
to when the breach was detected. Nearly every organization wants to put off the offi-
cial notifications as long as possible, so not using the B word makes it easier to jus-
tify doing the official notifications only after the data controller, legal, or some other
entity charged with managing data determines that a breach has officially occurred.

If you poke security in Slack with “I think I found a breach,” that could, if cast in the
right light, with the right judge, be viewed as starting the official notification clock,
and the penalties for not performing the notices on time are severe. It doesn’t matter
how you interpret the rules; that’s not your job. Don’t open liability for your organiza-
tion by using regulated language like the word breach unless you’re talking about one
that’s already been declared.
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Figure 16.8 shows the risk difference between managing a single large telemetry pool
with everything in it versus telemetry pools isolated based on application and use. The
big shared pool makes for a much higher potential impact for a spill, which can open
the organization to legal liability. The isolated pools mean that a spill has a much
smaller potential impact, and the organization reduces liability.

I’ve already talked about the biggest way to get this isolation: using ACLs in your
Presentation-stage systems:

 Section 5.2.1 provided a feature list to qualify Presentation-stage systems to be
used with centralized logging.

 Section 7.2.2 extended that list to support multitenancy, adding roles and ACL
concepts. Multitenancy is about keeping telemetry out of the hands of teams
that shouldn’t see it, and protecting toxic data is much the same concept.

Managing ACL-based separation certainly is more work than letting everyone view
everything, but if you are handling PII or ePHI, simplicity isn’t a luxury you can afford
for long. Centralized logging is the telemetry style most affected by PII and ePHI
leaks, though organizations are increasingly using distributed tracing instead of
(rather than in addition to) centralized logging and sending logging-like statements
with their traces. Redaction tooling for distributed tracing systems is still developing;
it’s better to isolate where you can.

 The other isolation technique is creating separate telemetry streams and handling
those streams differently. In section 16.1, I talked about a way to handle bad-inputs-style
logging, in which an engineer needs to know what the inputs to a function are to
determine why it is failing. Separated telemetry is a great way to handle that use case.
The same can be done for handling exceptions.

 But also consider the different applications in your environment and their differ-
ing toxic data handling needs. To demonstrate separation, figure 16.9 shows two
applications managed by the same team and their telemetry systems. One application
handles PII directly, so it is at high risk of leaking toxic data into its telemetry feed.
The other application supports the first but handles only anonymized data such as
account IDs (not account names) and object paths to objects named with a globally
unique identifier (GUID).

App A

App C App D

SRE

App B

One
Big

Telemetry
Pool

One
Big

Telemetry
Pool

Isolated risk pools
Spill = Limited problems

One big shared risk pool
Spill = Big problems

App A–D
SRE

Figure 16.8 The risk difference 
between shared versus isolated 
telemetry systems in light of the 
problems presented by a toxic data 
spill. The big shared pool is easy (and 
cheap) to manage; everyone sees 
everything. The isolated pool is 
trickier to manage (and likely more 
expensive), but the problem scope of 
a spill is much smaller as a result.



432 CHAPTER 16 Redacting and reprocessing telemetry

Let’s follow the steps telemetry takes before getting stored:

1 Logging from application A (which handles PII) emits into the stream topic-id
of unsafe_logging.

2 The live redactor subscribes to unsafe_logging and performs extensive detec-
tion and autoredaction of any toxic data.

3 The live redactor sends cleaned telemetry to the logging topic. Meanwhile,
application B (not PII handling) sends directly to this topic.

4 The logging parser subscribes to the logging topic and performs telemetry
enrichment.

5 The logging parser sends fully enriched telemetry to storage.

The method in figure 16.9 is one way to handle potentially toxic data, but there are
other methods. If the unsafe_logging telemetry ended up in a different storage sys-
tem, covered by a different (and more restrictive) ACL, you also get most of the bene-
fits of isolation. Engineering your telemetry pipeline to include a live redactor like the
one in figure 16.9 enables your organization to spend less time cleaning up spills. If
you configure the live redactor to tag telemetry that required redaction, you have an
easy way to indicate leaky code without having to go through all the trouble of a
cleanup operation.

 Because more and more organizations are using distributed tracing in the place of
centralized logging, updating figure 16.9 for distributed tracing is similar, as we see in
figure 16.10.

 
 
 

Application A
(PII handling)

Application B
(no PII)

topic_id: unsafe_logging

topic_id: logging

Live redactor

topic_id: unsafe_logging

topic_id: loggingLogging
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Logging
storage

topic_id: logging

Structured logger
(Emitting stage)
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Cleaned telemetry
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Figure 16.9 Separate telemetry handling for potentially PII-containing telemetry. Both applications 
emit to a stream for their telemetry, but on different topics. A live redactor listens to the stream 
from the risky application to act as a filter before resubmitting the cleaned telemetry for writing.
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Let’s walk through the steps our unsafe tracing telemetry took:

1 Traces are emitted from application A, which handles PII; therefore, the traces
might contain PII as well. These traces are sent to a stream system on the
unsafe_tracing topic.

2 The live redactor subscribes to unsafe_tracing and performs extensive detec-
tion and redaction of PII on the tracing data.

3 The live redactor submits the cleaned tracing data to the SaaS provider’s inges-
tion API. Meanwhile, application B (which does not handle PII at all) submits
to the ingestion API directly without bothering with a stream.

The system we see in figure 16.10 is simpler than the one in figure 16.9 because we’re
using a SaaS vendor for telemetry, so application B doesn’t need to pass through the
stream first. This example provides the same benefits as the centralized logging frame-
work shown in figure 16.9. Filters work!

 As an industry, we are in the early stages of building generalized tooling for detect-
ing toxic data in real time as part of a telemetry pipeline. This field is evolving rapidly,
and there is a rush of mostly machine-learning-based products (open source and not)
to fill this need. Any time you get a rush of new products, in five or ten years the field
will be consolidated and quite different. Here are two tools put out by major public
cloud providers, meaning that these tools are likely to still be around in 2025:

 Microsoft Presidio (https://github.com/microsoft/presidio)—An open source,
standalone service that is extensible (needed if your PII could show up in differ-
ent formats). Being a standalone service makes it horizontally scalable.

topic_id: unsafe_tracing

Live redactor

topic_id: unsafe_tracing

Distributed tracer
(Emitting stage)

1

3

Telemetry stream

Cleaned telemetry
gets sent to vendor. 

SaaS provider
ingest API

3

2

Application A
(PII handling)

Application B
(no PII)

Figure 16.10 Separate telemetry handling for a distributed tracer. Traces emit from both applications, 
but only application B sends directly to the provider’s API. Application A takes a tour through the live 
redactor before being sent to the provider!

https://github.com/microsoft/presidio
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 Amazon Comprehend (https://aws.amazon.com/comprehend)—An API offered by
AWS that accepts text and returns any detected toxic data. As an option, it auto-
redacts detected toxic data so that you don’t have to do it. Being an AWS product,
it is definitely not free and charges based on the size of data being analyzed.

To help systems designed to detect PII decrease their false-positive rate (and reduce
the number of nuisance tickets you have to handle because of those false positives),
figure 16.11 provides some application design tips to make your life easier:

 Avoid using random 16-digit integers for things. Credit card numbers are 16 digits.
Although every 16-digit integer isn’t a valid credit card number, if you are ran-
domly generating enough of these integers, sheer probability will create num-
bers that pass the Luhn algorithm that defines the valid format of credit card
numbers. A million monkeys banging on typewriters can turn out Shakespeare
eventually, but a random-number generator can turn out a viable credit card
number far faster. Save yourself some trouble; make those integers 15 or 17 dig-
its instead. Better yet, make them hex and avoid integers entirely.

 
 
 

The Presentation-stage system features we need to defend against toxic data
Presentation-stage systems (see chapter 5) are where telemetry companies make their
money. Open source frontends are increasingly the loss leaders for enterprise plans,
but they’re in wide use in organizations where reduced features are good enough. As
an industry, however, we need to do more to deal with the increasing risk that toxic
data presents to our organizations and our data-handling habits. Presentation-stage
systems such as Grafana, Jaeger, and Kibana need to start supporting live redaction
in their interfaces, and they need to support it in their open source versions.

Presentation-stage systems are the last stop before data enters the human eyeball,
which means that these systems are the last chance to keep private data private.
The modern web is full of sites using email addresses as usernames, and email
addresses are now classified as PII. As a result, the modern web, from enterprise
megasites to single-dev hobby sites, is full of sites handling PII. Making data safety
features require an enterprise plan is disaster capitalism, ensuring that only enter-
prises will handle toxic data safely; startups and small organizations will continue to
handle PII and ePHI unsafely. The profit motive makes the whole industry less safe
overall when it comes to handling toxic data safely.

If you are developing a Presentation-stage system—perhaps it’s for internal use, or
maybe you’re working on a new framework to challenge Grafana for the open source
pie—please consider how toxic data is handled in your free tier. Do not treat that fea-
ture as an upsell opportunity; it isn’t ethical.

https://aws.amazon.com/comprehend
https://aws.amazon.com/comprehend/%22
https://aws.amazon.com/comprehend
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 Avoid using random 10- to 13-digit integers for things. Most phone numbers with
country codes are in this range (or U.S. phone numbers with area code). If the
first few numbers end up matching a country code, these integers can look like
phone numbers and get flagged as PII by detectors.

 Avoid using random 9-digit integers for things. These integers are the same length
as U.S. Social Security numbers. U.S. centrism in the tech industry means that
PII detectors care about this fact, even if you aren’t doing business in the
United States. As for credit cards, a validation algorithm of sorts exists, and a
random-number generator will make hits often enough to be annoying.

1
[...]
9
10
11
12
13
14
15
16
17
[...]

16. Looks like credit and debit cards

Random integer lengths to avoid (hex has fewer problems):

10–13. Looks like international phone numbers

9. Looks like U.S. Social Security numbers

Emit account IDs, not emails:

2023-02-19T21:19:08-0600 bobs@example.com account created

2023-02-19T21:19.08-0600 A1185828 account created

Bad

Good

Keep IP addresses out of your application telemetry (if you must have them, use a hash):

2023-02-19T21:19:08-0600 Account A1185828@192.0.2.252 exceeded API quota

2023-02-19T21:19.08-0600 Account A1185828@0xf98cb8221 exceeded API quota Good

Bad

Keep narrow geographic details out of your application telemetry:

2023-02-19T21:19:08-0600 Account A1186828 login from Berlin, DE

2023-02-19T21:19.08-0600 Account A1186828 login from EU Good

Bad

Formatting your telemetry to reduce false-positive privacy/health
information detection and avoid toxic data problems 

Figure 16.11 Four broad suggestions for avoiding PII/ePHI detections on your telemetry. Random-
number generators are cool, but they sometimes spit out numbers that look like things they’re not.
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 Emit account numbers, not account names. All too often, the account name is an
email address (or something that looks like an email address) and therefore
gets flagged by detectors. It’s better to emit telemetry in whatever the primary
key of your account table is because that’s probably a number. (Perhaps do it in
another base to avoid the integer problems.)

 Keep IP addresses in your networking, web server, API gateway, and load balancer logs,
and out of your application telemetry. IP addresses are now considered to be PII by
many privacy regimes. Store IP addresses somewhere and provide a way to look
them up in an admin portal easily, but keep the actual addresses out of your
telemetry. If you still need IP-address tracing, use a hash or other proxy value
instead.

 Avoid emitting geographical IP data (GeoIP) with your application telemetry. Several
libraries and services will return a city, state, country, and continent if given an
IP address. Paid services narrow GeoIP resolution even further, isolating IP
addresses to neighborhoods or even specific buildings. As a result, privacy regu-
lators consider such GeoIP data to be private data. These services are incredibly
useful in fraud and malicious-use investigations, as well as complying with
government-mandated sanctions against other countries, but putting this data
on every single piece of application telemetry needlessly exposes your organiza-
tion to legal risk. Keep GeoIP data to your web server and networking telemetry.

Summary
 Redacting (rewriting online telemetry) and reprocessing (rewriting offline

telemetry) are done for two big reasons: to clean up after a spill of regulated infor-
mation such as privacy- or health-related information, and to reformat telemetry
to deal with a storage system upgrade or migration to a new storage system.

 Toxic data is data that has severe penalties for mishandling, including health
information, privacy information, and financial information. The penalties come
from regulatory frameworks such as HIPAA (United States) and GDPR (Euro-
pean Union). Handling toxic data makes your organization subject to these reg-
ulations and the effects on your telemetry systems that come with them.

 The penalties for mishandling toxic data are severe and often public. People
get fired for it, so you should be scared of this stuff.

 What qualifies as toxic data changes as regulations change. When regulations
change, your telemetry systems have to adapt. Sometimes, as happened with
GDPR, you have to reprocess a lot of telemetry to get rid of newly toxic data types.

 You want to avoid displaying toxic data in your telemetry systems, because dis-
playing it means that you have to encyst it in all the access control and overhead
that come with toxic data handling. Restricting access to telemetry in this way
reduces the ability of your technical organization to use their telemetry systems
and degrades decision-making overall. Worse, it leads to shadow-telemetry sys-
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tems (mostly in SaaS providers) that aren’t cleared for handling your organiza-
tion’s data.

 Programs throwing exceptions are among the biggest risk points for leaking
toxic data. Many exception handlers also emit the parameters that triggered the
exception, which is where the leak happens. If your production system handles
toxic data, ensure that exceptions do not emit parameters.

 Unconditionally emitting user-supplied data is the second biggest risk point for
leaking toxic data. Although this information is incredibly useful for debug-
ging, if there is any chance that the input data will be toxic, that data should not
be emitted into your telemetry stream.

 Redacting telemetry comes in two types: removing the bad events and rewriting
the events to remove the bad data selectively. Deleting is easier to write tooling
for, whereas rewriting preserves more data but requires a case-by-case change to
your tooling.

 The two most popular data stores for in-house hosting of centralized logging,
Elasticsearch and MongoDB, have delete-by-query functions that allow you to
make a single API call to remove all matching documents.

 When you have to rewrite hundreds of thousands of events or more, use the
paginated search functions of your data store, and bulk-update where possible.
This approach is easier on your data store and will block regular operations less.

 When you are designing your telemetry storage systems, consider the role that
reprocessing will play in regular maintenance. Certain storage systems require
reprocessing as part of version upgrades or whenever you change the database
schema.

 Routine operations can force you to reprocess your telemetry (such as storage
version upgrades). But less-routine events can force the need as well. You will
need to reprocess your historical telemetry if a toxic data leak is bad enough
that you need to scrub your cold storage, if you plan to move to a new storage
system and need to import your historical telemetry, or if changes in how you
separate telemetry need to be backported.

 Redaction and reprocessing are expensive operations in terms of time, money,
and postponed feature work. You can limit the scale of the interruption by iso-
lating telemetry that potentially contains toxic data to fewer people. This
approach reduces the scope of the problem and often makes cleanup cheaper.

 If your production systems handle toxic data, throwing all your telemetry into a
single datastore is an antipattern, which maximizes the cost of cleanup activities.

 Use ACL features in your Presentation-stage systems to isolate toxic data con-
taining telemetry from telemetry that doesn’t contain it. This approach reduces
the exposure your organization faces when a leak happens.
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 Build separate telemetry pipelines for telemetry that is at high risk of containing
toxic data (such as exception traces and the application logs from applications
that handle toxic data directly). This approach enables you to build live-redaction
capabilities targeting the risky telemetry flows and ACL-based separation.

 Some organizations are using distributed tracing in the place of centralized log-
ging for reporting text-based events. The redaction and reprocessing tech-
niques here are less well supported with distributed tracing, so if your
application handles toxic data, be certain of your ability to redact from your
tracing systems.
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Building policies
 for telemetry retention

 and aggregation

Retention policies (how long to keep telemetry) and aggregation policies (how to sum-
marize telemetry) are some of the most important policies you will set for your
telemetry systems. Related to aggregation, the sampling technique uses statistical
methods to summarize telemetry and is commonly used in distributed tracing. This
chapter is about those policies and the trade-offs you need to consider when it
comes time to set your own. For the most part, the trade-off is cost versus features—
a familiar balancing act for business.

 Your retention policy determines how long your telemetry is useful for people
in supporting the decisions they need to make. Many organizations find the need

This chapter covers
 Creating retention policies for your telemetry

 Creating aggregation policies for your metrics

 Understanding the role sampling plays in 
telemetry and retention policies
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for two retention periods: an online retention period, when everything is searchable,
and an offline period (cold storage), when telemetry can be made online if needed
but otherwise isn’t searchable without bringing it online again. Retention policies are
your most important policy for keeping the cost of your telemetry system reduced to
something you’re willing to pay.

 Although retention policies are your most important policies for overall telemetry
cost containment—especially in centralized logging and distributed tracing systems—
aggregation policies are most important for containing metrics costs. The cost reduc-
tions come through summarization and loss of fine-grained resolution of events.
Aggregation of metrics telemetry improves costs by reducing the amount of telemetry
needed to be stored; it also improves performance by precomputing certain functions
to make Presentation-stage activities faster. Aggregation as a technique chiefly helps
metrics-style telemetry.

 Whereas aggregation policies are the cost-containment policy for metrics systems,
sampling is the cost-containment policy for distributed tracing. Sampling how your
production systems are operating as whole, rather than diving into individual events,
will allow you to store far less telemetry for a given period. Storing less telemetry
allows you to keep telemetry online and searchable for longer than not sampling
does. Sampling as a telemetry technique came into its own with the distributed tracing
styles, though certain metrics implementations (such as StatsD) also used it. All three
policies represent important decisions you need to make when building or updating a
telemetry system.

 Section 17.1 addresses building retention policies and the trade-offs each
telemetry style faces.

 Section 17.2 is about aggregation policies, mostly affecting metrics telemetry,
and some of the hidden gotchas you will encounter.

 Section 17.3 covers sampling techniques (related to aggregation), which mostly
affects distributed tracing systems.

17.1 Creating a retention policy
Retention policies determine how long you keep telemetry around and in what for-
mats. Telemetry that is online and searchable is the most useful telemetry to have—
and also the most expensive to retain. All retention polices, which is what this section
covers, are careful balancing acts among

 The advantages to decision-makers of having online and searchable telemetry.
 The cost of keeping telemetry online and searchable.
 The ease of bringing offline telemetry online. The easier it is to do, the cheaper

the telemetry system; your online set can be smaller if offline data can be
brought online easily.

 The legal exposure brought about by telemetry that potentially contains privacy-
or health-related information, or toxic data. See chapter 16 for more on managing
that risk.
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Retention policies are tightly linked with aggregation (section 17.2) and sampling
(section 17.3), but I’m talking about retention policies first because the trade-off dis-
cussions you’ll have about retention policies are similar to the discussions you’ll have
about aggregation and sampling. To demonstrate how linked these concepts are, fig-
ure 1.12, reproduced here as figure 17.1, shows the four telemetry styles in this book
and their general online-and-searchable periods.

We see in figure 17.1 that there is a high variation in general online retention periods!
The period for centralized logging is smallest because it is the most expensive teleme-
try style to keep online and searchable; all that text is huge, and the indexes needed to
search it are pretty big. The retention period for the Security Information Event Man-
agement (SIEM) systems used by security and compliance teams is the longest—seven
years—because regulation and compliance frameworks often mandate a minimum
retention period for certain kind of telemetry. Metrics and distributed tracing both
use aggregation or sampling to reduce the amount of telemetry data being stored to
save costs and increase their online retention periods (see sections 17.2 and 17.3).

 Figure 17.1 shows the online-and-searchable retention period, but retention poli-
cies also include how long offline backups are kept just in case. If backups are easy to
restore to the online system—or, better, easily automated so that humans don’t have to
do the restore tasks—the online retention period can be shorter. Figure 17.2 shows fig-
ure 17.1 revised to show the offline retention periods in addition to the online periods.

 We see that centralized logging has as long an offline storage period as SIEM has
an online storage period. Even though the two styles are technically similar, SIEM sys-
tems achieve this feat by being highly selective about the sort of telemetry stored in
them. At the same time, metrics doesn’t have an offline period at all! This lack of an
offline period has more to do with the nature of most metrics databases than with any-
thing else. In the time-series databases that metrics systems use, new telemetry is
inserted into the same database as old telemetry is removed, whereas with centralized

Metrics

Distributed tracing

SIEM

1y 2y 3y 4y 5y 6y 7y 8y 9y

Centralized logging

Sampled telemetry
Aggregated telemetry

Retention period

Figure 17.1 The four telemetry styles in this book and their general online and searchable 
retention periods. Also marked are their preferred methods of reducing cost (not applicable 
to SIEM and centralized logging).
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logging, the most common pattern is a new database per day or week, and the data-
bases are removed over time. Now let’s look at the four telemetry styles and dig into
the factors driving online storage cost for each:

 Centralized logging is not selective; it takes anything that’s sent to it. Its primary
format is strings and natural-language text. Indexing for strings and natural-
language text is complex; therefore, the storage and presentation systems for
this style are expensive due to the indexing and search capabilities required.

 Metrics is selective; it accepts only numbers and a small set of text-based tags. Its
primary format is numbers. The small set of text-based tags makes indexing
easy. Therefore, the storage and presentation systems for this style are cheap due
to the simplicity of the databases. This cheapness is why metrics was the second
telemetry type to break out after centralized logging.

 Distributed tracing is moderately selective; it needs telemetry to be in a specific
format. Its primary format is a mix of numbers and text; it doesn’t have to sup-
port natural-language search. The predefined format reduces indexing costs,
but the allowance of arbitrary tags makes for a significant cardinality problem.
(See chapter 14 for more on cardinality.) Distributed tracing performs exten-
sive correlation work, which increases the complexity of storage systems. There-
fore, the storage and presentation systems for this style are expensive due to the
cardinality issues and indexing, as well as the added need to correlate events
into process traces.

 SIEM systems are highly selective in the inputs they accept, and those inputs are
often in well-understood formats to begin with. Although its primary format is
text, and it does need to do natural-language processing to some extent,
selectivity greatly reduces the raw amount of data that needs to be handled per
day. Therefore, the storage and presentation systems for this style are probably a
SaaS system that charges by ingestion rate due to the extensive correlation work
that the Presentation-stage systems need.

Metrics

Distributed tracing

SIEM

1y 2y 3y 4y 5y 6y 7y 8y 9y

Centralized logging

Sampled telemetry

Aggregated telemetry

Retention period

Centralized logging

Online

Offline

Figure 17.2 Online versus offline retention periods for the four telemetry styles covered in this 
book. Offline storage allows centralized logging to go much farther back in time.
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NOTE All four styles can be SaaS services, but few open-source SIEM systems
can stand up to the SaaS offerings in terms of features. My rankings of expense
here also apply to the cost of SaaS providers; centralized logging providers like
Splunk cost more to run per month than metrics providers like Datadog, in
large part due to the differences in the size of data you send to them. Tracing
providers are new enough that they’re still working on their pricing models, so
expect to see potentially significant changes over the 2020s.

17.1.1 Building a policy for centralized logging

In this section, we talk about the factors guiding your decisions in building a retention
policy for centralized-logging-style telemetry systems. These systems are the largest
and most expensive, and also some of the oldest in many organizations. Centralized
logging systems also support the broadest array of decision-making in your organiza-
tion, which makes them the hardest to pick a policy for. (I’m sorry.)

 Every organization is different, but broad arrays of teams use centralized logging
in slightly different ways. (See section 1.2 for the definitions of these teams.) Teams’
uses are ranked by how general or specific the use is and how far back in time they like
their telemetry to go:

 Software engineering and SRE teams write the logging statements that produce
much of the data inside the centralized logging system; they use centralized log-
ging to chase down errors, judge how the system is operating, and look for anom-
alies. They also need to compare with historical logging to dig up when bugs
started and compare performance. Their use is both specific and general, and
they need both recent and historical data. In general, software engineering
teams like several release sprints’ worth of telemetry to be online and searchable.

 Operations, DevOps, and SRE teams manage systems that produce logging, but for
the most part, they don’t control the logging statements themselves. Similar to
how software engineering teams use telemetry, these teams use it to sniff out
anomalies and chase errors. There is less drive to compare current and histori-
cal telemetry, though. Their use is both specific and general, but mostly over
recent telemetry. In general, these teams like a few weeks’ to months’ worth of
telemetry to be online and searchable.

 Security and compliance teams use centralized logging depending on whether they
have a SIEM; if they lack a SIEM, the centralized logging system is their SIEM.
Regardless of the presence of a SIEM system, these teams use centralized log-
ging to handle audits, support security investigations, and reduce leaks of toxic
data. Their use is specific and recent, but certain investigations will require old
data, so a robust way to bring offline telemetry back online is needed.
– For teams that have a SIEM system, the centralized logging system is merely a

backup for that activity. Their use of centralized logging is mostly restricted
to incident-response and toxic-data defense. In general, they like to have a
month or two online and searchable.
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– For teams that lack a SIEM system, the centralized logging system has to be
their SIEM system. You need to give them a way to keep their security data
separated in a way that allows you to keep potentially years’ worth of it online
and searchable. In general, they want to have multiple years online and
searchable (or easily restorable if they can’t).

 Customer support teams use centralized logging to troubleshoot problems re-
ported by customers and users and to create bug reports for software engineer-
ing. Having your support teams use centralized logging is a major benefit for
your organization, and you should do so if you haven’t already. Their needs are
specific and recent. In general, they want to have the last few weeks online and
searchable.

Figure 17.3 illustrates these constraints.

Software engineering and security will be the biggest drivers of long-term online
retention periods. Only you can determine how expensive it is to keep longer periods
online, but both groups will happily accept all of time for their retention period. Only
companies like Google have a chance of supporting indefinite retention, and even
they push back sometimes.

 Offline retention periods are different, because they are rather cheaper to keep
around. Ease of restoration and the toil of having to keep your offline telemetry
restorable (see section 16.3) will guide you on how long you want to keep that stuff
around.

Security and compliance (no SIEM)

1m 2m 3m 4m 5m 4y 5y 6y 7y

Software engineering and SRE

Operations, DevOps, and SRE

Customer support

Security and compliance (with SIEM)

Online

Offline

Centralized logging – General retention guidance by team

Time

Figure 17.3 General guidance on retention period by team, showing a balance between 
recency of data and cost. Teams with a strong recency bias, such as customer support, don’t 
need long offline retention periods. Meanwhile, teams such as security and compliance need 
many years’ worth of data online and searchable if they don’t have a separate SIEM system.
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17.1.2 Building a policy for metrics

In this section, we talk about building a retention policy for metrics-style telemetry.
This style is heavily influenced by your aggregation policy, of course (see section 17.2).
Even so, in the 2020s, metrics-style telemetry is likely the cheapest telemetry style you
will support, so you have a lot of latitude here. The biggest pushback in terms of reten-
tion is less about space and more about managing cardinality (see chapter 14),
although time-series databases that are emerging at the dawn of the 2020s are taking a
lot of steps to reduce the impact of cardinality.

 For the most part, metrics systems (or monitoring systems, to use the name familiar
to sysadmins and pre-2010 environments) already support multiyear retention,
though they do so through aggregation. Metrics is the second-most-widely-used telem-
etry style, second only to centralized logging. For this reason, two retention policies
are key when it comes to metrics:

 Full-resolution metric retention—Full-resolution metrics retains every data point as
it was received. This kind of metrics is the most useful to have around, but it is
also expensive to keep for long periods due to slowdowns in queries.

 Aggregated metrics retention (see section 17.2)—Aggregation summarizes full-
resolution metrics and is much smaller. It enables multiple years of retention
for most systems, and it greatly reduces the amount of data that needs to be
stored and sorted during queries.

The cost of each policy depends on your specific circumstances. To help, figure 17.4
shows a metrics-retention policy that I’ve used.

 In my example retention period, the full-resolution data was kept for one week
and still was the slowest-performance database in our metrics system. But one week is
enough for “state of the system” and “Did that release just break production?” dash-
boards. Longer-term research on the performance of certain activities happened in
the aggregated datasets, with reducing resolution over time. We’ll talk about this topic

But what about Loki?
Grafana Labs’ Loki challenges some of the assumptions I make here, specifically
because it was written to be cloud-native (using cloud storage and cloud databases).
Not only that, Loki’s design means that it isn’t creating fast indexes the way historic
centralized logging databases do (mostly Elasticsearch and MongoDB).

Loki is new; it came to market only in 2018. But Loki embraced a feature more com-
mon among SaaS providers such as Sumo Logic and Splunk, in that it does quite a
bit more query-time processing than Elasticsearch- and MongoDB-based systems do.
The storage systems behind Loki are simple, but the trade-off is far more power
needed in the presentation systems, and a willingness to read orders of magnitude
more data from your storage to supply queries. That said, the march of technical prog-
ress means that the trade-off is beginning to make sense. Watch this space over the
2020s to see what happens!
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more in section 17.2, but the data in the aggregated sets were derived directly from
the full-resolution data.

 Most databases that support metrics also support changing your mind with regard to
retention. The 10-second retention in figure 17.4 shows a five-week retention period; that
period was 28 days until engineering management asked to be able to search a full month
to support end-of-month reporting. Supporting that request cost more in backup time
and space, but we did it because of the benefits it brought to the organization.

 Also consider the benefits of using dedicated databases. SRE could use a dedicated
database to store SLO metrics over time and not aggregate at all. The retention on
that database could effectively be infinite!

17.1.3 Building a policy for distributed tracing

This section covers building a retention policy for distributed tracing style telemetry
systems, which tend to be used only by software engineering (and sometimes SRE).
Having fewer teams involved eases your decision process for retention. This space is
dominated by SaaS providers, so chances are that the biggest factor in your retention-
policy decision will be SaaS costs.

 Software engineering teams use distributed tracing systems to compare how process
behavior changes after code releases and isolating bugs, and generally learn how their
production systems operate as a whole. Distributed tracing specifically helps individual
teams track problems in a large system in which no one team manages the whole product.

 In general, for tracing you will find that longer retention periods are better, but
the benefits of longer retention fade over time. There is a big difference between 15-
day retention and 30-day retention, but moving from four months to eight months
isn’t as significant. Tracing benefits from sampling (see section 17.3) to reduce the
amount of data you have to pay to ingest and retain. Here are two points on the rela-
tionship between retention policy and sampling policy:

1-minute aggregation (6 months)

1-hour aggregation (5 years)

1m 2m 3m 4m 5m 4y 5y 6y 7y

10-second aggregation (5 weeks)

Metrics – Example retention policy by aggregation interval

Full-resolution (1 week)

Time

Figure 17.4 An example metrics retention policy split by aggregation interval. I’ve used this policy, 
and the key drivers were search performance in each interval. Even at one week, searches on the full-
resolution data performed slowest—in my experience, anyway. Your experience may be different.
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 A retention period long enough to compare several software release periods
lets you watch how behavior changes across releases.

 Sampling lets you cut ingestion costs but risks missing errors. Tracing systems
generally assume that if an error happened once, it’ll happen more often, so
the sample will catch it.

For those of you using OpenTelemetry-compliant databases, I don’t have a lot to say
yet. OpenTelemetry is still being developed in early 2021 as I write this chapter, so we
don’t yet have a lot of industry experience with how those systems are actually used.
For this reason, I offer my generic advice for setting a retention policy:

 Search performance is a key detail for any telemetry system, tracing included.
When search performance slows, people get cranky, and cranky people aren’t
having a good experience. Cranky users are a sign that you need to shorten
your retention period.

 The cost of offline backups matters as much as the cost of online storage, so
consider both costs in your calculations.

17.1.4 Building a policy for SIEM systems

This section covers the process of selecting a retention policy for SIEM systems. These
systems are rarely used by teams other than security and compliance, and they are
often subject to external compliance and regulation regarding how long certain kinds
of data need to be retained. As a result, building a policy for a SIEM system is pretty
easy; most of the work has already been done for you.

 The seven-year retention period is inherited from certain long-standing financial
accounting practices and shows up in several compliance frameworks as a result. For
SIEM systems and retention policies, the bigger challenge is qualifying SIEM vendor
products against the retention goals set by your organization (set in response to com-
pliance and regulation). Budget absolutely plays a role in these negotiations.

 Every organization is different, as are the compliance and regulation frameworks
your organization is subjected to, which makes generalized guidance tricky to provide.
Even so:

 Plan for a retention period measured in years.
 To contain costs, be highly selective in the telemetry you send to the SIEM.

Exercise 17.1
Match the telemetry styles with their method of handling long retention policies.

Centrallized logging Aggregation

Metrics Rewrites telemOffline archives that can quickly be brought online

Distributed tracing Being highly selective about what is stored

SIEM Statistical sampling
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17.2 Creating an aggregation policy
Aggregation policies define how you summarize your metrics-style telemetry and are
the biggest cost-containment tools available for that style of telemetry. This section
describes how aggregation policies work and how to keep the aggregated metrics in
your system statistically valid. These considerations are important if you want to pre-
serve metrics across three, five, or even seven years.

NOTE If you haven’t encountered aggregation functions before, I strongly
recommend reviewing sections 5.1.2 and 5.1.3, which walk through several
aggregation functions and the kinds of stories they tell about your telemetry
data. That material will make the concepts in this section far more clear.

An aggregation policy defines what sort of precomputed aggregation-function output
you want to keep. Aggregation lets you store far less data in your metrics databases,
which makes storing long time scales much cheaper. We saw an example of the time
scales in figure 17.4, reproduced here as figure 17.5.

Figure 17.5 shows one of the key concepts of aggregation policies: use of time buckets.
We see four buckets in use. The first is the full-resolution bucket, which has no aggre-
gations and contains every data point received from the telemetry system. The second
is aggregated from the full-resolution bucket for all data in each 10-second interval,
which could reduce thousands of data points to a single data point. The same thing is
done for a 1-minute interval and a 1-hour interval.

 To understand the aggregations themselves, let’s look at a SQL statement that
mimics what happens in these systems. This statement is aggregating a range of
pdf_pages and docx_pages metrics on six functions:

1-minute aggregation (6 months)

1-hour aggregation (5 years)

1m 2m 3m 4m 5m 4y 5y 6y 7y

10-second aggregation (5 weeks)

Metrics – Example retention policy by aggregation interval

Full-resolution (1 week)

Time

Figure 17.5 An example retention policy for a metrics system, showing four aggregation 
series: a full-resolution series that has no aggregations performed on it, a series aggregated on 
10-second buckets, a series aggregated on 1-minute buckets, and finally a series aggregated 
on 1-hour buckets. The larger the time bucket, the longer the aggregation series can be kept.
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SELECT metric_name,
  min(metric_value)    AS min,
  mean(metric_value)   AS mean,
  median(metric_value) AS median,
  max(metric_value)    AS max,
  sum(metric_value)    AS sum,
  count(metric_value)  AS count
FROM metrics_fullresoltuion
WHERE
  (timestamp >  "2023-02-19T16:44:20.000") AND
  (timestamp <= "2023-02-19T16:44:30.000")
GROUP BY metric_name

This statement returns rows that look something like this:

---------------------------------------------------------
| metric_name | min | mean | median | max | sum | count |
---------------------------------------------------------
| pdf_pages   |   1 |  1.2 |      2 |  19 | 392 |   157 |
| docx_pages  |   1 |  1.4 |      3 |  28 | 451 |    93 |
---------------------------------------------------------

This example uses common aggregation functions, but there are many more (and I
go over several of them in section 5.1.3). What aggregation functions you pick
depends on the type of data you are working on. You can find a good overview of met-
rics types on the StatsD metrics type page at http://mng.bz/PaRR. Here are the most
relevant to metrics:

 Counters—These metrics track how many times a thing happens. pdf_pages is
an example of a counter. Metrics of this type are most often added to get a sin-
gle number but can also be subjected to population metrics such as percentiles.

 Timers—These metrics report how long something took. Metrics of this type
often get aggregations breaking down the population, such as figuring out per-
centiles and standard deviations. The pdf_pages metric could easily be paired
with a pdf_convert_time metric tracking how long those pages took to manage.

 Gauges—These metrics are the state of a thing at a given point in time, such as a
water level or instantaneous RAM use value. Gauges are different from counters
because adding them does not give you useful information. These metrics gen-
erally are not aggregated by means of numerical methods and are more likely to
use a selection function, such as first, median, or last. Fancy aggregation func-
tions such as derivative are needed to get a rate of change from these metrics.

My recommendation is to separate telemetry of different types to ease your aggrega-
tion work, but separation is not required. The problem with aggregations like these is
that you need to know what kinds of questions you want to ask of your data weeks,
months, and even years before you ask it. If you have the full-resolution telemetry
available, you can run whatever functions you want on it, and it will still be statistically
valid. That isn’t the case for functions that have already been aggregated.

http://mng.bz/PaRR
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 Suppose that we have timing metrics that gather min, mean, median, and max values,
as well as a group of percentiles: 2nd percentile (p2), 10th percentile (p10), 25th per-
centile (p25), 75th percentile (p75), 90th percentile (p90), and 98th percentile
(p98). Remember that min is equivalent to the p0 value, median is equivalent to the
p50 value, and max is equivalent to the p100 value.

 A year passes, and SRE wants to know whether changing the target for a service-
level objective from the p98 value to the p95 will be a better fit for availability targets.
SRE’s ability to judge fitness will go back only as far as you have full-resolution data,
because that’s the only data that will provide a correct p95 value.

 Because SLOs are moving targets, you add p95 to the list of percentiles you gener-
ate with your aggregations and then wait a couple of months. Two months later, SRE
checks whether its hypothesis for fit makes sense. Lots of organizations aren’t great
with “Set it and check in a few months” workflows, but aggregations are one area in
which you kind of have to make changes.

 This example is a great case for splitting metrics! If you’re using metrics to deter-
mine SLO compliance, sending the service-level indicators—metrics that tell you
whether you are meeting your SLO—to a dedicated database for SLO stuff is a viable
strategy. This split keeps the full-resolution metrics available longer, so SRE has an eas-
ier time testing different models for fit.

 You need to be aware of a major problem with building an aggregation policy, and
it has to do with how you build your larger time buckets. Figures 17.4 and 17.5 showed
three buckets beyond the full-resolution one:

 One aggregating on 10-second buckets, kept for five weeks
 One aggregating on 1-minute buckets, kept for six months
 One aggregating on 1-hour buckets, kept for five years

I said earlier that these buckets need to be generated directly from the full-resolution
bucket (one-week retention in my example), and now I need to explain why. Do not
generate the larger-bucket aggregations from the next-smaller bucket, because you
will get lies. Chapter 5 included this warning:

WARNING Beware of further aggregating aggregated data, because that tech-
nique almost always leads to lies. Wherever possible, work on raw values, because
they will tell you accurate things. If the data you’re working with has already been
aggregated once, unless you take care to pick an appropriate function, subse-
quent functions turn what you see into lies. A sum function on data that has
already had a sum run on it will be accurate, but running a sum on data that has
been run through a mean function will be lies. If you are working with preaggre-
gated data, a least-harm approach is to use the same aggregation function for
data that has already been through an aggregation function. Summing your
sums is safe, but anything else will be lies—lies that will look kind of like your data
but not be statistically valid. I’ve lost count of the number of charts I’ve had to
fix because they used a mean function on a sum, and the person who asked for
help wondered why expanding the chart to one month from one week didn’t
increase the charted numbers. Section 17.2 covers this problem in more detail.
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I will show the lies visually. The next two figures show the same 24-hour period for
website response time, but with metrics derived from the four buckets listed above.
The charts were built with Grafana, which applied a second aggregation after the hid-
den aggregation performed by the metrics systems. Figure 17.6 shows four versions of
the mean, or average, response time. Note how the numbers vary.

The difference is quite significant! The full-resolution, no-aggregation number is the
real number, because it was computed against the full dataset of response times, and
the only aggregation performed was done by Grafana when it built the chart. Notice
how different the 10-second, 1-minute, and 1-hour aggregation answers are. The
10-second aggregation number is closest to the true one, but even it is off by 25%.

 The explanation of this result has to do with populations. Each chart has a line show-
ing the numbers in the interval. This chart is a website response time chart over a full
day, with the left half of the curve tracking high-use time and the right half tracking low-
use time. The 10-second, 1-minute, and especially 1-hour buckets are aggregating far
more data points during the peak period than in the overnight trough. Yet when we try
to aggregate the aggregated data points, Grafana treats a peak hour with the same
weight as a trough hour. Treating each hour as identical in terms of population is lying

Figure 17.6 The results of 
asking “What is the average 
response time for this site over 
the past 24 hours?” and the 
answers that four different 
metrics buckets give you. Full-
resolution is the most accurate 
answer; it has all the data 
points. The other three charts 
show the average of the 10-
second, 1-minute, and 1-hour 
averages, which give different 
numbers.
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with statistics, because the 03:00 data point aggregating 1,000 hits weighs the same as the
13:00 data point aggregating 10,000 hits in the averaging computation.

 To compute a means value that is far more statistically correct, we would need to
include the count of data points for each bucket in the interval and include it in a
weighted average. Grafana has no support for this style of computation (yet), so getting
this value requires running the numbers yourself in a script. Table 17.1 shows this
computation for the 1-hour aggregation series, using example values:

 Weight factor is the total hits in the hour divided by the total hits in the day
(114,300).

 Weighted response is the mean response time multiplied by the weight factor.
 Raw average is the unweighted average of the mean response column.
 Weighted average is the sum of the weighted response column.

Table 17.1 Deriving a true(ish) mean response time from the 1-hour aggregation series

Hour Hits Mean 
response Weight factor Weighted response

0–1 1200 150 0.010498687664042 1.5748031496063

1–2 1100 155 0.009623797025372 1.49168853893263

2–3 1000 145 0.008748906386702 1.26859142607174

3–4 1000 150 0.008748906386702 1.31233595800525

4–5 1000 150 0.008748906386702 1.31233595800525

5–6 1100 150 0.009623797025372 1.44356955380577

6–7 1200 150 0.010498687664042 1.5748031496063

7–8 1800 160 0.015748031496063 2.51968503937008

8–9 2500 165 0.021872265966754 3.60892388451444

9–10 4500 172 0.039370078740158 6.77165354330709

10–11 5700 199 0.0498687664042 9.9238845144357

11–12 8000 230 0.069991251093613 16.0979877515311

12–13 9100 250 0.079615048118985 19.9037620297463

13–14 10000 275 0.087489063867017 24.0594925634296

14–15 11000 275 0.096237970253718 26.4654418197725

15–16 10000 275 0.087489063867017 24.0594925634296

16v17 9700 250 0.084864391951006 21.2160979877515

17–18 8500 240 0.074365704286964 17.8477690288714

18–19 7700 210 0.067366579177603 14.1469816272966

19–20 6200 160 0.05424321959755 8.67891513560805
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We see a significant difference between raw average and weighted average. If you look
down the weighted-response column, you can see that the 14–15 hour had the largest
input into the weighted average by far and that the 2–3 hour had barely any input. In
the raw average, which takes the average of the mean response column, both hours
have the same weight. This is why an unweighted mean-of-means makes a lie—a lie
that looks close to where the truth is on a chart but not a number you want to be tak-
ing as highly truthful.

 The next chart of site response time computes the median, or 50th percentile
from the same data we saw in figure 17.6. The median has different problems from
the mean (figure 17.7):

 We can see the day/night split in the chart lines, whereas we couldn’t see it with
the means chart.

 Our median values are well below our means, telling us that we have a lot of
high-latency somewhere. (For more about using aggregations to learn about
the shape of data, see section 5.1.3.)

 We see that the 10-second aggregation chart got pretty darn close to the real
result in the full-resolution chart.

Explaining why the variance here is less significant than it is with means is due to the
nature of the median. The median is the exact middle value of the sorted values in the
period, so it isn’t too sensitive to the number of values in the period, the way that a
mean is. Over a 24-hour period, the 10-second bucket series will have 8,640 values (6
per minute, 60 minutes per hour, 24 hours), which is a nicely large set and also fine-
grained (lots of values) and evenly distributed across the period.

 Explaining why the 1-minute aggregation is less than any of the others has to do with
the nature of this particular data, which includes API traffic. API traffic is often driven
by cron jobs, so the API gets hits at the top of the minute. The :00- to :09-second bucket
gets a lot of hits, with higher response times, whereas the rest of the minute gets lower
response times. Where the 10-second aggregation would produce one high value and

20–21 4900 155 0.042869641294838 6.64479440069991

21–22 3200 150 0.027996500437445 4.1994750656168

22–23 2200 150 0.019247594050744 2.88713910761155

23–24 1700 140 0.014873140857393 2.082239720035

Hits 114300

Raw average 187.75

Weighted average 221

Table 17.1 Deriving a true(ish) mean response time from the 1-hour aggregation series (continued)

Hour Hits Mean 
response Weight factor Weighted response
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five lower values in a 1-minute period, the 1-minute aggregation produces a generally
lower value because over 60 seconds, more hits land in the 50 seconds of lower response
time than in the 10 seconds of higher response time.

 The 1-hour bucket is highest of the lot for a similar reason: populations. Because a
day has only 24 hours, the higher-traffic slow hours count the same as the lower-traffic
fast hours, skewing the results higher. The 1-minute bucket didn’t have this problem
as much because there are 1,440 minutes in a day—two orders of magnitude more
data points to sort and compute a median with.

 That’s enough scaring you. Now for some recommendations:

 Always make sure that the precomputed aggregations your metrics system performs are done
against full-resolution data. Because of how most Presentation-stage systems work
(they need to get a single value per pixel, and if more data points exist in a pixel,
they need to reduce it to one), double aggregations are hard to avoid. For this
reason, you want the first aggregation to be as statistically valid as possible.

 If possible, keep your full-resolution data for at least seven days. This retention period
allows telemetry users to build dashboards that show “the past week” and be able
to use the full suite of statistical methods without fear of hidden aggregation-
based accuracy problems.

Figure 17.7 Four ways of find-
ing the median response time 
for a website during a 24-hour 
period. The true answer is the 
full-resolution, no-aggregation 
number because it is computing 
the median on the whole data-
set. Although the differences in 
the other three charts aren’t as 
profound as the means version 
of this chart (figure 17.6), they 
are clear.
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 When you plan your aggregations, find out what intervals people are interested in. Inter-
vals of 10 seconds and 1 minute are popular for tracking fast-moving changes,
but 1-hour and 1-day intervals are popular for tracking changes across months
and years. Intervals of 1-hour and 1-day aggregations are cheap to store, but
performing the aggregation itself can be expensive.

 Percentiles are great, except when you don’t have enough data. A p98 value in a 10-second
bucket means something only when that bucket holds a lot of values. A p98 value
for a bucket in which only two events happened isn’t a p98 value. Fine-grained
percentiles mean something only when there are more than 100 points of data
to summarize. When you’re picking percentiles to aggregate, understand the
frequency of your events; you may need to increase your aggregation interval to
collect enough data.

 Know how your metrics database reacts to cardinality, and plan your aggregations accord-
ingly. Chapter 14 talks about cardinality directly, but this topic needs another
mention. Although newer metrics databases are starting to tackle the cardinal-
ity problem, well-established metrics databases (such as Prometheus and
InfluxDB) generally don’t tolerate cardinality well. For this reason, don’t plan
aggregations based on frequently changing data. If you are in a public cloud
and do a lot of autoscaling, for example, or if you operate Docker swarms, don’t
aggregate on Hostname or Docker-ID.

 Build training on how to get valid data out of longer-time-range dashboards by using
aggregated data. I’ve lost count of the number of times I’ve seen graphs using the
presentation system’s mean() function on data that our metrics system used
sum() on and then gotten questions about why zooming out to a full year shows
much less volume than people were expecting. I’ve also found graphs that use
the presentation system’s percentile functions aggregating over a minute for 10-
second aggregated data, meaning that the percentile function is operating on
six values. Helping other people understand how to handle aggregated data
correctly will help your organization achieve its missions.  

But what about StatsD?
For those of you who haven’t heard of it, StatsD is a metrics-gathering process made
popular by Etsy and adopted widely after it made waves. The big cool factor of StatsD
is the fact that it performs aggregations live so that the metrics storage system
doesn’t have to. Also, it can use UDP to keep your metrics logger from blocking when
reporting metrics. It provides a fast, nonblocking, accurate-enough metrics system,
which was important in the 2011–13 era when it broke out.

I’m not a fan, even though I ran it for several years. The trauma I experienced from
running StatsD allowed me to write the past several pages. I find StatsD-style metrics
to be problematic for two reasons:
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(continued)
 You don’t have the option of full-resolution metrics, which means that users

of metrics systems need to understand what they’re getting, and most of
them don’t. This lack of understanding leads to dashboards full of hidden
lies, and I got tired of correcting them.

 If you have low-frequency metrics, such as events that fire only once or twice
a minute, you need to set up different StatsD endpoints that aggregate on 1-
minute or longer intervals. These StatsD instances carry a lot of local state, and
when they restart, that state is lost, along with the metrics they were holding.

These two points were serious enough that I got fed up dealing with them and replaced
our StatsD-based metrics with a different system that used a short full-resolution pool
of metrics as the basis of our aggregations. Our dashboards became far more accurate
after that work, especially our longer-time-frame items. The trade-off was more CPU
spent deriving our aggregation buckets, but technology has advanced far enough by
2021 that “Throw more compute at it” was a viable choice for us.

My opinion is that preaggregating metrics before they enter storage was a viable
trade-off in the 2010–15 era, but the state of metrics databases has advanced
enough since then that we don’t need to do that anymore. The time-series databases
on the horizon at the dawn of the 2020s look to be doing away with the need to aggre-
gate and are beginning to tackle the cardinality problem as well.

The only time I see preaggregation as being a good idea is when you are operating a
truly large infrastructure, such as 20,000 servers, each producing 200 metrics a sec-
ond, meaning that the metrics database has to ingest 4 million data points a second.
Preaggregation is one method of taking some of the write burden off that database.

Another, somewhat novel approach is to use a top-of-rack metrics database (or a met-
rics database sidecar in your Kubernetes cluster) that hosts full-resolution metrics
for that rack/cluster, which then submits aggregated data to the central metrics store.
This approach allows you to safely produce longer time buckets, such as 1 hour and
1 day, which you can’t do with a service such as StatsD. Most people don’t work on
truly large infrastructures, though. For smaller operators, a central full-resolution bucket
is completely viable and makes your metrics more useful than preaggregation.

Exercise 17.2
I made the charts in figures 17.6 and 17.7 by using Grafana and an aggregated met-
rics database. If you are using Grafana in your organization, reproduce the mean and
median charts, using your own aggregated data. How different do the aggregation
intervals look? How many dashboards are relying on similar summarization?
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17.3 Using sampling to reduce costs and increase retention
Sampling is a statistical technique for examining a representative subset of data to find
truth about the whole. When it comes to telemetry systems, distributed tracing benefits
most from sampling. Sampling gives you two big benefits: it allows you to keep more
data online for less money, and it still lets you track population-level changes over long
time frames. This section is about how to do sampling correctly and ways to work
around some of the problems that sampling brings to your telemetry systems.

 On the surface, sampling is easy to explain: send a randomized percentage of your
traces or metrics into storage. This percentage could be 1%, 10%, or even 50%. The
smaller the percentage, the more time you can keep your metrics in your storage sys-
tems. Randomization is key, because that’s what makes your metrics statistically useful.
So long as you also store your sample rate, you can extrapolate what the 100% version
would look like.

 The key concept with selecting sample rates is that you’re allowed to have more
than one. Your technical systems are not a uniform population, but a messy popula-
tion full of buggy processes, nearly bulletproof processes that never fail, processes that
are entering production for the first time, processes that have been unchanged in pro-
duction for two years, processes that run only a few times an hour, processes that run
hundreds of times a minute, and processes that happen only when internal users press
a button. Real data is messy, and one sample rate will not unite it all.

 Good distributed tracing systems let you attach different sample rates to different
processes. Take two different API endpoints:

/v2/upload_document
/v3/upload_document

The v2/upload_document endpoint is well-established, but the v3/upload_document
endpoint is new with this release. The v3 endpoint has never seen production, so no
one trusts it yet. A good tracing system will let you set a low sample rate for the old and
battle-tested v2 endpoint (perhaps as low as 0.1%), and a fairly high one for the new
endpoint (perhaps even 100% for a short time). The old endpoint is likely still in
heavy use anyway, so a low sample rate will save you money on ingest, and the new v3
endpoint may be getting only beta traffic while the feature gets tested.

 Picking a sample rate depends on several factors:

 The more you understand a process, the lower the sample rate. You don’t need
to monitor it heavily if you understand it.

 The less you understand a process, the higher the sample rate. You need to build
trust (and understanding) by observing the process under many conditions.

 The more frequently a process occurs, the lower the sample rate. If your popu-
lation is large, you can get away with sample rates like 0.0001%. Imagine if Twit-
ter attempted to trace every single tweet.
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 If you’ve identified a low-frequency error that you need to capture, increasing
the sample rate for a short time will help you catch it in the act.

 Production-system sample rates are allowed to be different from load-testing
and continuous-integration sample rates. Yes, sampling your load-testing and
pre-production environments lets you compare with production to see whether
those tools are valid tests.

 A sample rate of 100% gives you the highest-quality data for the most cost.

Sample rates are a lot like feature flags—in fact, many distributed-tracing SDKs make
setting the sample rate gateable by a feature flag—in that they let you perform experi-
ments on your production code. So a customer calls in to say that the code breaks
when they do this weird thing? Crank up the sample rate via feature flag when the cus-
tomer’s data goes through. This is some seriously powerful stuff.

 That said, there are two opposing use cases for distributed tracing systems:

 Learn how the whole system reacts to changes.
 Learn why this one trace went wrong.

I call these use cases opposing because the first case benefits greatly from sampling,
whereas the second case is mostly destroyed by it. The whole-system use case is about
generality, whereas the error-tracking use case is about specificity. Sampling is about
generality. Remember the thing I said about having to increase your sample rate to
catch low-frequency errors? You do that in reaction to noticing the errors. If support
comes to you and asks why this one thing failed—the customer is cranky and is a top-
20 customer by contract value—not being able to pull up the bad process will make
you break out in a sweat.

 To know why getting the erroring trace is such a good thing, let’s take another look
at figures 5.19 and 5.20, combined here as figure 17.8. This figure shows two traces: a
successful execution and one with an error.

 The top trace shows a successful execution of upload_document, which calls a cou-
ple of other things that leads into a bunch of processes before ultimately returning suc-
cessfully. The bottom trace, on the other hand, looks different. We see that we
recorded exceptions in both file_type and docx_to_pdf. Looking into the file_type
trace, we find that the exception is related to an inability to determine the type of a file,
so the trace returned a default type: docx. When the docx_to_pdf process ran, it hit a
fatal exception because the file it was working on was definitely not a .docx file. The
upload_document process retried the docx_to_pdf process three more times just in
case there was a glitch. Looking at this trace helps engineering determine that the
default file-type behavior is not safe and revise how file_type handles bad detections.

 Errors are interesting. If your distributed-tracing system allows it, making the sample
rate for errors high will improve the lives of your production engineers. Better for
you, the telemetry system operator, you won’t have to crank up the sample rate for
everything just to capture those pesky rare errors and end up spending a lot of money.
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If your tracing platform supports arbitrary sample rates, it will safely handle variable
sample rates for the same process.

 If your tracing system doesn’t support changing sample rates, a centralized logging
system can step in to help. Throw exceptions into a centralized logging pipeline. This
technique isn’t the same as having the error in your traces, but it’s far better than not
capturing the error at all. Telemetry systems support one another. 

Successful execution

Failing execution

upload_document

file_type

docx_to_pdf save_file

pdf_pages save_file

pdf_to_png

Time spent in seconds

Execution chain starts 
(API endpoint).

Call to
subprocess

Subprocess
returns.

Subprocesses

Execution chain ends.

One-way calls
(no return expected)

Time request spent
in a queue

upload_document

file_type docx_to_pdf

Processes with 
exceptions

Terminates after all retries fail

Time spent in seconds

First process crashed, retried three times

docx_to_pdf docx_to_pdf docx_to_pdf

Figure 17.8 Two versions of upload_document. The top trace shows a successful execution. 
The bottom trace shows an execution that errored out. Dashed boxes are processes that recorded 
an exception. We see in the bottom trace that upload_document never received a return from 
docx_to_pdf and retried three times before finishing. We also see that file_type threw an 
exception but returned a value anyway. Could this behavior be related to the docx_to_pdf behavior?
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Summary
 Retention policies define how long you keep telemetry data and in what form.

The costs of your telemetry systems relate directly to how much telemetry you
need to keep online. Long periods give decision-makers more advantages;
shorter periods save money.

 Aggregation policies define how you numerically summarize telemetry data and
greatly reduce the amount of data you need to keep online and searchable.
These policies make storing telemetry cheaper.

 Sampling is a statistical technique used with distributed tracing systems (and
sometimes metrics) to preserve the ability to learn about the system as a whole
without keeping every single data point, reducing the costs of storage and SaaS-
provider bills.

 The ability to restore data quickly from offline storage can reduce your need to
keep telemetry online and searchable, and reduces overall costs.

Metrics are numbers; statistics is about numbers; therefore, you can sam-
ple metrics. QED.
This statement is true! In fact, StatsD from Etsy has sampling built right into the pro-
tocol, and it was there from the beginning. You configure your metrics emitter to emit
only a certain sample rate and put that sample rate into the metric. Here is the
StatsD line protocol, which includes a sample rate. Translated, pdf_pages:5|
c|@0.1 means that the metric name (pdf_pages) is a counter (c) with a value of 5
and is running a 10% sample (@0.1). StatsD will do the right thing with this informa-
tion when it reports summarized metrics back to the metrics database, so it looks as
though you didn’t sample your data.

That said, I haven’t run into many metrics systems besides StatsD that offer sampling-
support at ingestion. StatsD was built at a time when databases were tiny, space was
precious, and write I/O still depended on spinning disks rather than solid-state ones.
In short, StatsD is optimized to minimize writes. As I mentioned in the sidebar at the
end of section 17.2, this sort of write reduction isn’t needed anymore except in the
largest organizations; technology has advanced enough that most organizations don’t
need to optimize that deeply. If you are working in a truly planet-scale metrics system,
however, sampling is a great way to reduce write loading in addition to aggregations.

Exercise 17.3
Order the telemetry styles from longest default online retention period to shortest.

a Centralized logging
b Metrics
c Distributed tracing
d SIEM
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 Long retention periods expose your organization to legal risk if your toxic-data
handling (see chapter 16) is not sufficient.

 Centralized logging has the shortest default online retention period, because
that data is both large and complex to index, making it the most expensive per
day to keep online and searchable.

 SIEM systems have the longest default online retention period due to regula-
tion and compliance frameworks that require the longer time range.

 Metrics has the second-longest default online retention period because the
main data type, numbers, is cheap to store and index. When paired with an
aggregation policy, retention periods of multiple years are economical.

 Distributed tracing is not as expensive per day as centralized logging but more
expensive than SIEM and metrics. Longer retention periods are achieved
through the use of sampling to make storage costs manageable.

 SIEM systems are most often SaaS systems, making their key scaling problem
the annual or monthly subscription cost.

 Setting a retention policy for centralized logging systems is complicated by the
fact that these systems are used by every team in a technical organization. Keep
at least a few weeks online for support to help engineering, make it easy to
restore offline telemetry, and accommodate engineering decision cycles such as
monthly reporting.

 In the 2020s, cardinality is a bigger scaling problem for metrics systems than
space is, which affects search performance. Longer time frames tend to make for
more cardinality in your indexes. Consider search performance when you’re set-
ting your retention period for metrics.

 Keep a short full-resolution pool of metrics (not summarized/aggregated)
from which you can derive your aggregated pools. Using seven days for your
full-resolution pool allows your technical organization to build “over the past
week” dashboards with top accuracy.

 Distributed tracing systems are typically used by software engineering and SRE.
Longer time frames allow comparison of performance across multiple releases
of code, which is quite valuable for engineering.

 An aggregation policy defines the sorts of precomputed aggregations you keep
in your metrics storage, which lets you store orders of magnitude less data in
your storage. This policy keeps costs down and improves search performance.

 Aggregation policies often define multiple series of data, aggregated on differ-
ent intervals, such as a series aggregated over 10-second buckets, another on
1-minute buckets, and a third on 1-hour buckets. The larger the bucket is, the
cheaper it is to store and chart long periods of time.

 Having a short full-resolution pool of metrics lets you compute the full array of
aggregations in your aggregation series while maintaining statistical validity.
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 The drawback to aggregation series is that you need to know which aggrega-
tions you’re interested in well in advance of your need. When you’ve lost your
full-resolution metrics pool, computing a 75th percentile when you didn’t have
it before is not possible. Adding one to new aggregations is easy, though.

 Splitting aggregation policies based on use case is entirely possible! If your SRE
team needs to keep SLO-related information online and searchable for long
periods, you can send those (much smaller than the rest of your system) metrics
to a dedicated retention policy.

 When you’re working with preaggregated data in a Presentation-stage system
like Grafana, you have to understand how the aggregation functions that the
Presentation-stage system uses interact with your data. Doing things wrong
leads to dashboards full of lies. Figures 17.6 and 17.7 provide visual descriptions
of the sorts of lies that come from reaggregating an aggregated metrics series.

 Sampling is a statistical technique for examining a representative subset of data
to find truth about the whole, which makes sampling a key cost-saving tech-
nique for distributed tracing.

 A sampling rate is a percentage of events that will be sent on to the distributed
tracing provider and often can be set at both function and program levels.

 Good distributed tracing systems natively support variable sample rates in a
given program, which lets you use a higher rate for catching exceptions and a
lower rate for well-understood processes that are known to be highly reliable.

 Using sampling in your load testing and other pre-production systems lets you
compare performance with production to determine whether tests of those pre-
production systems are useful.

 Many distributed tracing SDKs let you set a sample rate based on feature flags, a
useful feature that allows you to use a higher sample rate for highly valuable
customers.

 Errors are usually more interesting than regular operation, so build your sam-
pling so that captured errors are always sent to the distributed tracing provider.
This approach guarantees that you will have interesting events to review.
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Surviving legal processes

This chapter is unlike any other in this book because it isn’t about dispassionate
technology or the virtual arm wrestling of setting internal policies. This chapter is
about an event that most technologists won’t encounter in their careers—legal pro-
cesses that make them the expert on the spot—so they’re horribly unprepared
when it happens to them. I want to prepare you for this event so if the unlikely hap-
pens, you will respond from a place of competence rather than shocked and reac-
tive surprise.

WARNING This chapter is not about turning you into a lawyer; this chapter
is about helping you support your organization’s lawyers. Your legal opin-
ion doesn’t matter; that’s not what you were hired for. This chapter is
about working with legal processes, which are far better documented than
legal opinion.

This chapter covers
 The process of legal discovery

 The role telemetry plays in legal eDiscovery

 How to work with lawyers successfully
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The sorts of legal trouble that organizations can get into is infinite, but only a subset
of that infinite could potentially put your telemetry systems in the crosshairs of the
other side’s lawyers. This brings me to the first of many definitions: eDiscovery.

DEFINITION eDiscovery (noun): The short form of electronic discovery. Like
email, it is no longer hyphenated. Discovery is the pretrial process of obtain-
ing evidence from parties to the lawsuit and bears the weight of a court order.
eDiscovery uses computer files instead of paper. If a party is ordered to pro-
duce documents, that party (your organization) must do so unless certain
conditions are met—conditions that your lawyers will figure out for you.

eDiscovery is the legal procedure that affects telemetry systems, and this chapter gives
you a primer on what it is, what you can expect if you have to participate in it, and how
to talk to the lawyers involved. If your telemetry systems are relevant to a legal matter,
something must have happened to make the operating telemetry of your production
systems relevant to the case. Here are a few examples, both hypothetical and drawn
from real life, to spur your imagination, along with the questions that eDiscovery
hopes to answer:

 Your organization was caught leaking health information on a publicly accessi-
ble API. 
– How did the open API get there? How long has it been available? How many

people had their information stolen? Two years ago, an engineering man-
ager backlogged a ticket that would have fixed this problem; why?

 Members of your customer success team were caught selling private informa-
tion to dark-web brokers for big payouts.
– When did the payouts start? How many people had their information sold?

Are other people participating in the same scheme? Was remote access
granted to ease the transfer of private information?

 One of your top customers had an information leak because of a highly publi-
cized vulnerability that supposedly was fixed six months ago, contradicting your
compliance audit reports.
– Why was the vulnerability management process not followed in this case?

Why was this vulnerability not detected? What is the patching history for the
affected system?

 A member of your software engineering organization was paid to pin a NodeJS
module to a specific version that contained a back door placed by a hostile
country.
– Who wrote the code that pinned the version? Who approved the code? Why

did the library vulnerability-scanning process not identify the vulnerable
module? Were any other implants placed? Over the past three years, what did
the bribed engineer do, when did they do it, and how did they do it?
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 Your organization wants to bring a gross-negligence lawsuit against one of your
SaaS suppliers after a series of recent outages not only blew way past its service-
level agreement, but also caused your organization to lose massive revenue.
– What specific problems did the outages cause? What workarounds were pro-

posed by the SaaS provider’s support, and how did they perform once
deployed? How did your organization’s users suffer as these mitigations and
workarounds were deployed?

All organizations have some legal risk, but certain types of organizations have higher
ones. All telemetry system operators should consider—on paper at minimum—how
they could respond to eDiscovery requests for telemetry data. By keeping your deliber-
ations hypothetical, similar to the tabletop exercises that disaster planners use, you
can smoke out the most obvious problems. You should have a plan for the following
two major requests:

 A demand to preserve documents—You can’t delete anything that could be related
to the case, even if your retention policy (chapter 17) says it should be deleted
or you would otherwise redact it (chapter 16). This request comes first in a legal
case, and the legal hold (what this demand is) can last years. We’ll talk more
about this topic in section 18.2.

 A demand to provide documents—You work with your lawyers to bundle up teleme-
try data that is relevant to the case. You have several ways to deal with this kind
of thing; I go over them in section 18.3.

I talk about four different styles of telemetry in this book, but each style has different
exposure to legal processes. Here is how they rank for exposure:

1 SIEM systems—These systems are built from the start to support security investi-
gations and handle information safely enough to survive trials and prosecutions.

2 Centralized logging systems—The next-most-exposed after SIEM systems, central-
ized logging systems contain vast details about the events that happened in your
production systems, which makes them big targets for legal processes.

3 Distributed tracing systems—If you have a centralized logging system, distributed
tracing systems are less vulnerable. But if you are using your distributed tracing
systems in place of a centralized logging system, they are just as exposed as cen-
tralized logging systems: you are likely tracking more than simple function
states in these systems if you lack a centralized logging system, and those extras
are often relevant to legal matters.

4 Metrics systems—These systems are the least exposed telemetry you have, mostly
because this style is all about numbers. If the legal matter relates to perfor-
mance, and your performance numbers are in your metrics system, you can see
requests for metrics telemetry. In extreme cases, the statistical validity of your
aggregation policy (see section 17.2) can be challenged in court to try to throw
out your telemetry as invalid.
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WARNING Unless you have already been through eDiscovery, I strongly rec-
ommend reading section 18.1 before any others in this chapter. That section
defines the legal processes involved here and provides many definitions that I
use in later sections. The word production, for example, has a specific meaning
to lawyers; you want to know how it differs from what the word means in chap-
ters 1–17.

18.1 Defining the eDiscovery process
eDiscovery is the legal process that parties to a lawsuit use to gather electronic evi-
dence. Discovery in the general sense (paper) evolved out of English common law
and followed the British empire to all its colonies (including the United States). As
various countries gained independence, their need to harmonize contract law and
other legal frameworks for doing business was great enough that keeping the concept
of discovery made a whole bunch of sense—which is to say that the concept of discovery
exists in most European countries and the countries that once were their colonies.

 Figure 1.13 gave us the simplified stages of eDiscovery. Let’s update it a bit in fig-
ure 18.1.

Although figure 18.1 looks like an endless cycle (and can certainly feel like one if
you’re in the middle of it), it represents a form of agile iteration. When a matter starts,
opposing counsel (the other side’s lawyers) don’t know much about the shape of the
data they will be requesting. Their first requests will be broad and will be argued down
by your organization’s lawyers (“Your honor, this is a fishing expedition!”, to use a cin-
ematic example). As time passes, though, they begin to get a feel for how your data is
shaped, so requests start getting extremely specific, which brings us to our next defini-
tion: responsive.

Your jobYour jobFilter Filter

Opposing
counsel
requests

documents.

Lawyer
negotiation

stuff
(not your job)

Your lawyers
request

telemetry.
You produce

telemetry.

Deliver
telemetry to

your lawyers.

Your lawyers
deliver

telemetry to
opposing
counsel.

Figure 18.1 The eDiscovery life cycle and your role in it (unless you’re a lawyer). Your job is 
to produce telemetry or enable telemetry to be produced by others—likely your organization’s 
lawyers. Your lawyers may make repeated requests of you before they’re ready to deliver 
telemetry to opposing counsel. Everything you do will be filtered through your organization’s 
lawyers, which is safest for everyone involved.
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DEFINITION Responsive (adjective): A document (or telemetry event) that
matches a discovery request is said to be responsive. Documents that are nonre-
sponsive will not be delivered to opposing counsel. If a document is partially
responsive, it will be redacted before delivering. Figuring out whether a docu-
ment is responsive is the job of your organization’s lawyers.

At its base, the discovery phase of a lawsuit is about discovering the responsive records,
documents, and events that relate to the legal matter at hand. This phase, which can
be extremely quick or can drag out over years, applies to all parties to the matter.
When the responsive records are gathered, the matter—in theory, at least—can move
forward to settlement negotiation or further legal wrangling.

 This process does not begin when a lawsuit is filed, but when your organization’s
lawyers decide that a lawsuit is likely. That lawsuit might be threatened or planned.
Your organization’s lawyers are obligated to preserve (protect from any changes)
records, documents, and events that could possibly be responsive and will order you
to preserve telemetry. This order is called a legal hold, which is covered in detail in sec-
tion 18.2.

DEFINITION Legal hold (noun): A requirement to protect business records
(telemetry, in our case) from any deletion or modification. Records that are
subject to a legal hold are exempted from retention policies, and if redaction
is needed, that redaction will be made on a copy. Modifying or deleting
records (or the metadata of the record) subjected to a legal hold can lead to
sanction by the court and sanction by your organization. Mishandling this
stuff can get you fired.

Legal holds can arrive at any time during the discovery phase. Record types and repos-
itories that people didn’t realize could contain potentially responsive records can be
discovered and then subjected to a legal hold. Unless the matter obviously would
involve telemetry systems from the outset, telemetry systems are more likely to be sub-
ject to these late-arriving hold orders. People who manage records systems (telemetry
systems are records systems) are called custodians and are the people who implement
the hold order.

DEFINITION Custodian (noun): People who are needed to provide records or
otherwise manage record systems. You, in other words. Custodians are not legal
professionals (usually). Examples of custodians include email administrators,
Google-apps account administrators, and telemetry system administrators.

When the legal hold is in place, some organizations will start going through the pro-
cess of early case assessment (ECA).
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DEFINITION Early case assessment (noun): When an organization expects a law-
suit, it reviews potentially responsive records to determine how much of a
problem it has on its hands; this review is ECA. ECA drives formulation of
legal strategy. It also applies to organizations that plan to file a lawsuit when
the goal is to determine whether there is enough substance to support a legal
matter.

ECA is the second place where you, the telemetry system operator, will be involved.
Your organization’s lawyers or their consultants will start diving through telemetry
subjected to legal hold orders. A lot can happen in this phase, especially if the legal
team is expecting to be able to export data out of your telemetry systems and into spe-
cialist document review systems. Or your legal team may rely on you and your team to
search for and extract telemetry from your systems. Smaller organizations are more
likely to expect you to be a key player in ECA; larger organizations are more likely to
expect you to enable key players. The act of looking over potentially responsive docu-
ments is called review.

DEFINITION Review (or document review) (noun): The phase in which records
are assessed to determine whether they are responsive to the legal matter.
Lawyers and paralegals perform review on data collected as part of a legal
hold. You will hear review used by legal staff in phrases such as “Review has a
production deadline of August 5” and “We are performing review for five
requests.”

When the lawsuit is filed, ECA can continue in the background, but your organiza-
tion’s lawyers will start fielding (and issuing) discovery requests. On the receiving end,
discovery requests look a lot like ECA requests, but with a few differences:

 A different legal team may be making the requests. It’s pretty common for orga-
nizations to retain outside counsel (consulting lawyers) to help with a case, so
you’ll probably be working with new people who don’t understand your organi-
zation the way your organization’s own lawyers do. Sometimes, these outside
lawyers come with their own technical people (known as “legal support”).

 You can be asked to provide records in a different format from the one used
during ECA. Courts like to see records in specific formats (PDF and TIFF being
the most common), and ideally, your lawyers will handle the re-encoding. Not
all lawyers do, however.

 Unlike ECA requests, discovery requests come with deadlines that are set by the
presiding judge and are not affected by your on-call, child-appointment, or ath-
letic schedules. If you are unlucky, you will find out why lawyers (and their para-
legals) often work weird and extended hours (see sidebar at the end of section
of 18.3).

All the preceding points lead up to providing the requested documents to opposing
counsel. The fully formatted bundle of records is called document production.
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DEFINITION Production (noun): in the legal world, production is short for docu-
ment production and is a singular noun. You might hear your legal team say,
“We reviewed the January 29 production.” In our world, production is an adjec-
tive, here modifying systems (“This chart diagrams our production systems”).
A production is created by your organization’s lawyers from telemetry data
you provide. 

Discovery requests typically come as a request for documents containing certain key-
words. If the lawyers know what kind of record storage system you’re using, the
requests sometimes come as straight-up queries in whatever language your storage sys-
tem supports. These keyword lists can be expansive, and as a matter drags on, the key-
words have excludes and includes, and resemble some pretty gnarly logic statements.

 Be careful about modifying records, though! Lawyers and the court care about
both the data and the metadata, so you have to take care to preserve both. What
counts as metadata depends on both your storage system and what your organization’s
lawyers decide counts as metadata, but it could include access logs for specific events
in your telemetry. If you do end up changing data (perhaps because you dropped a
field or accidentally redacted PII), you spoliate it.

DEFINITION Spoliate (verb): The act of modifying business records outside
procedures. Telemetry data subject to a legal hold that was later modified is
called spoliated. Spoliating data is a serious problem with potentially serious
consequences to the legal matter and your job. If you feel that you need to
change data inside the legal hold, consult your organization’s lawyers before
making changes—any changes.

18.2 Dealing with records-retention requests
The first time a legal matter is likely to affect your telemetry systems is when a request
to retain records (a legal hold; see section 18.1) comes from your organization’s legal
team. This request is a demand to retain specific telemetry and shield it from further
modification. Chapter 17 was about building retention and aggregation policies, and
legal holds are the great big exceptions to all that nice work. This section is about
adapting your procedures to deal with the potential for handling legal holds and
some techniques to take some of the pain away.

 The best way to deal with legal holds is to have a plan for them long before you have to handle
them. Far too many telemetry system operators are caught with no plan at all when the
legal team gives them a preservation request, which means that they react from a
place of surprise and without awareness of how their answers will affect the organiza-
tion’s legal options. Section 18.4 is about working with lawyers in general, but you can
save yourself and your team a lot of stress by having a plan for legal holds.

 This plan doesn’t have to be a fully fleshed-out and exercised runbook, with sup-
porting automation that is actively maintained and refreshed. Such a runbook would
be quite nice to have, but that’s a lot of effort for what should be an extremely rare
disaster for most organizations. What I’m talking about when I say “have a plan” is
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this: you have considered the possibility of legal holds in your telemetry system design
and have a sketched-out procedure for handling one.

 The best time to consider these problems is when you are planning on making a
major change to your telemetry system. Perhaps you’re thinking of upgrading a key
component or migrating to something new. Whatever the cause, here are questions
you need to have answers for:

 If we get asked to save a part of our telemetry, is it easier to save that piece or to save every-
thing from that time? Knowing whether it’s easier to store partial datasets or full
datasets before you need to think about the issue will save everyone effort.

 How will we shield the held data from routine redactions and reprocessing?  You need to
be able to prevent changes to the legal-hold data. If your current systems make
that task hard, spend time easing it.

 How will we protect our unredacted/unreprocessed legal-hold data from our usual custom-
ers? If you need to perform redactions, you need to keep the unredacted telem-
etry visible only to the lawyers. If the legal matter proceeds to discovery, the
lawyers will perform any redactions. Also, if you need to run a second set of sys-
tems for the held data—systems that need to be exempted from your organiza-
tion’s patch policies—you can isolate access to the potentially vulnerable
systems to the lawyers involved and the minimum number of telemetry system
operators needed to keep the systems running.

 How will we allow our lawyers to review our saved data? Unless the hold order is for
everything, chances are high that your organization’s lawyers will want to make
sure you’re saving the right things. Let them. You will need to make this check
anyway when ECA starts (section 18.1).

 If the legal hold requires us to hold telemetry that is still being generated, what changes do
we need to make to ensure that such telemetry is preserved? Not all requests are solely
for historic information; some holds may require you to hold some or all of
your currently generated telemetry. Knowing what changes you need to make
to support preserving live telemetry will make writing the changes much easier
if you get asked to do so.

 Is our oldest telemetry data viewable in our current software versions? If part of your
retention policy involves storing telemetry offline for a period of time, you need
to know early whether your oldest telemetry can be restored into the current
system or needs a second system for the restore. Setting up a second system
requires resources, so knowing beforehand how much to request will save every-
one time and worry.

 If we have to upgrade our storage software during the hold period, will we need to avoid upgrad-
ing the legal hold systems? Hold orders can last years as lawsuits grind their way
through the process. Knowing whether it is safe to upgrade the resources involved
in the hold order will help you stay compliant with whatever regulations you’re sub-
jected to. If upgrading is not safe, knowing early allows you to put exceptions in your
patching and vulnerability management policies specifically for this edge case.
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The next two sections examine two different centralized logging systems and answer
the preceding questions. Section 18.2.1 shows a self-hosted, Elasticsearch-based cen-
tralized logging system; section 18.2.2 shows a SaaS hosted centralized logging system.
Although your situation is likely different, one of these examples should be close
enough to be useful as a jumping-off point for your own enquiries.

18.2.1 Examining an ELK-based centralized logging system
ELK is the de facto name for a centralized logging system that uses Logstash as a Ship-
ping stage, Elasticsearch as Shipping-stage storage, and Kibana as the Presentation
stage. ELK environments these days often include elements of Elastic.co’s Beats frame-
work of telemetry shippers, and you sometimes see Fluentd/Fluentbit instead of Log-
stash, but the details don’t matter for our review in this section.

 Figure 18.2 diagrams this architecture. Unlike similar figures in previous chapters,
this figure includes retention-policy details on how long telemetry is retained online
and offline. Remember that legal holds focus more on Shipping-stage storage than on
markup and enrichment.

Now that we have our architecture, let’s ask the questions from section 18.2 how this
system reacts to records-retention requests.

If we get asked to save a part of our telemetry, is it easier to save that piece or to save
everything from that time?

Elasticsearch has many features, but one feature that’s relevant to this question is the
Reindex API. At its simplest, the Reindex API copies an entire index into another
index, but it also supports using a query to restrict which documents get copied into
the new index. You can perform this operation in a single command and simply wait
for it to complete. If this system follows the usual pattern for ELK environments and
creates indexes based on day, week, or month patterns, you can use the Reindex API
to copy from multiple-source indexes into a single legal-hold one.

Beats
shipping

Logstash
shipping

Elasticsearch

Retention policy:
Store online telemetry 36 days.
Store offline for 5 years.
Offline telemetry is allowed to be 
restored on demand.
Offline telemetry is reprocessed 
after Elasticsearch upgrades to 
ensure restorability.

Azure
cloud storage

Backups

Restores

Kibana

Online storage

Offline storage

Telemetry
user access

Logstash
enrichment

Figure 18.2 Our example ELK-based centralized logging system, with a retention policy. 
Dashed boxes are Shipping-stage elements that don’t factor into our assessment of how 
suitable this system is for handling legal hold requests. We are most interested in the 
Elasticsearch (online) and Azure Cloud Storage (offline) telemetry storage systems.
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 It looks as though in Elasticsearch, restoring everything and selective copying are
similarly easy. To break the tie, pick the approach that’s cheaper for resources!

How will we shield the held data from routine redactions and reprocessing?

Routine redactions of privacy and health-related data (toxic data) need to continue to
happen in the regular indexes. That situation is not going to change. If you keep the
legal-hold data in dedicated indexes that are not part of routine operations, however,
you can shield them from modification. It looks as though shielding held data will be
pretty easy.

How will we protect our unredacted/unreprocessed legal-hold data from our usual
customers?

For this example, you’re using Kibana. If you’re using the enterprise or OpenSearch
version, you have full access control support, which lets you write access control rules
that keep regular users out of the legal-hold indices.

 But if you’re using the open source version of Kibana, which doesn’t have robust
access control support, not much prevents your regular users from accessing a separate
index, which makes for a much more complicated answer. Resolving this matter likely
requires using a separate Elasticsearch cluster for the legal-hold data, providing a sec-
ond Kibana specifically for that use, keeping regular users out of that second Kibana.

 Supporting that cluster isn’t that bad except for the resource costs of setting it up.
The Reindex API absolutely can copy documents to a different cluster. The difference
is providing a target host in the API call. You see what a separate cluster could look
like in figure 18.3.

Beats
shipping

Logstash
shipping

Elasticsearch

Azure
cloud storage

Backups

Restores

Kibana

Online storage

Offline storage

Telemetry
user access

Legal hold
Elasticsearch Legal hold

Kibana

Reindex API

Separate cluster for
isolating legal-hold
telemetry  

Logstash
enrichment

Retention policy:
Store online telemetry 36 days.
Store offline for 5 years.
Offline telemetry is allowed to be 
restored on demand.
Offline telemetry is reprocessed 
after Elasticsearch upgrades to 
ensure restorability.

Figure 18.3 Adding a second Elasticsearch cluster because open source Kibana can’t 
prevent regular users from accessing the legal-hold indices. Separating access matters if 
the legal-hold indexes contain unredacted information, such as privacy- or health-related 
information (toxic data) that your telemetry system was not designed to hold.
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How will we allow our lawyers to review our saved data?

If you’re using the paid version of Kibana, this process is as easy as creating a new ACL
group for your lawyers and walking them through how to use the system. But if you’re
using the open source one, you have to set up a second Kibana. In this case, you have
to set up network isolation or use a wrapping technique to shield the Kibana server
inside a single sign-on (SSO) prompt. Then you would use your SSO system to grant
only the lawyers (and telemetry system operators) access to this second Kibana.

If the legal hold requires us to hold telemetry that is still being generated, what changes do we
need to make to ensure that such telemetry is preserved?

If current telemetry is subject to the hold order, you need a way to shield telemetry
from redactions while providing a way to perform redactions. The dual-use nature of
your telemetry—regular operations and legal hold—strongly suggests that your telem-
etry will be forking (see chapter 7 for forking and routing topics) into multiple
indexes or multiple clusters, depending on the ACL features available in your version
of Kibana. The Logstash enrichment box needs to get updated to handle the fork, as
shown in figure 18.4.

Is our oldest telemetry data viewable in our current software versions?

You see from your retention policy that offline storage is reprocessed to make sure
that it is always restorable with the current cluster, so the answer is “By policy, yes.” If

Logstash
enrichment
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Legal hold
Elasticsearch Legal hold

Kibana

Reindex API
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isolating legal-hold
telemetry  

Fork telemetry into
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Retention policy:
Store online telemetry 36 days.
Store offline for 5 years.
Offline telemetry is allowed to be 
restored on demand.
Offline telemetry is reprocessed 
after Elasticsearch upgrades to 
ensure restorability.

Figure 18.4 If live telemetry is subjected to a legal hold, you need a way to fork telemetry into 
both the regular cluster and the legal hold cluster. The Logstash enrichment system is updated 
to write the full telemetry stream to the regular Elasticsearch cluster and any telemetry subject 
to the hold order to the legal-hold cluster. This way, you can continue to redact toxic data from 
the regular cluster while providing unmodified telemetry to your legal team.
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data requested by a legal hold is up to five years old, you should have no trouble bring-
ing it back online.

If we have to upgrade our storage software during the hold period, will we need to avoid
upgrading the legal hold systems?

This question gets into the weeds a bit. If the amount of data subjected to hold is rela-
tively small, chances are good that you are keeping separate indexes online just for
that purpose. Elasticsearch will support indexes from the current and previous ver-
sions, so online index should be fine for (probably) up to 24 months. When you get to
the +2 version, that index will need to be moved to a separate system or reprocessed
into the newer format. Ask your lawyers whether reprocessing is permissible.

 If the amount of held data is sizable, running a second cluster just for the legal-
hold data makes sense. If you already do this because you’re using open source
Kibana, keeping the second cluster at the older version is easier. By keeping the sec-
ond cluster you don’t need to ask the lawyers to make a judgment about whether
doing an index upgrade spoliates (section 18.1) the data.

18.2.2 Examining a Sumo Logic-based centralized logging system

This section is about examining the Sumo Logic SaaS offering for the kinds of
changes you might need to make to accommodate a hold order coming from your
lawyers. Although I examine a specific SaaS service here, this section is intended to
guide your thinking about these questions in cases where a SaaS provider is your
telemetry storage and presentation system. Figure 18.5 shows the example Sumo
Logic-based telemetry system, with a bit more detail than we’ve had before because
the SaaS provider’s internal details matter for this analysis.

Sumo Logic 
agent

Sumo Logic 
webhook 
collector

Sumo Logic 
router

App1 partition: 6 months
Sumo Logic 

webhook 
collector

Production
server

Sumo Logic 
agent

Production
server

Production
server

Production
server

App2 partition: 6 months

SIEM partition: 7 years

SRE partition: 1 year

NetEng partition: 60 days

Production code ships telemetry
directly to Sumo Logic. 

Production code that needs
an agent to ship telemetry 

Routes and forks telemetry
into specific partitions 

Sends received webhooks
into the router 

Stores telemetry, implements 
retention policies, billing

Left: Our infrastructure
Right: Sumo Logic infrastructure

Figure 18.5 An example telemetry system using the Sumo Logic SaaS platform for centralized logging 
and SIEM work. Partitions are where telemetry is stored and retention policies are defined, and they are 
key to billing. Telemetry that lands in multiple partitions counts more than once for billing purposes.
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The production environment sends all telemetry into Sumo Logic via either of two
methods: sending direct to SaaS (section 3.1.3) or using a local agent to do the ship-
ping into SaaS (section 4.1). From there, telemetry eventually enters a router that
makes decisions about which partitions telemetry will end up in. Telemetry can land
in more than one partition. Because billing is tied to ingestion rate in the partitions,
telemetry that lands in more than one partition costs more per item of telemetry than
single-partition telemetry does. Partitions are where we define our retention policies,
as figure 18.5 shows. The figure shows five partitions in use: two for applications, one
for security, and two more for SRE and network engineering.

 Now that we have our architecture, let’s answer the questions from section 18.2.

If we get asked to save a part of our telemetry, is it easier to save that piece or to save
everything from that time?

Sumo Logic allows you to change the retention policy for a partition simply, so if you
want to keep everything in a partition for longer, this job is easy to do (if more expen-
sive). Partial saving takes more work, because Sumo Logic doesn’t provide a single
reindexing API, the way Elasticsearch does (section 18.2.1). What it does provide is an
export API that lets you use a query and export the results into a CSV file. From there,
it’s up to you to do something with it.

 If you want to keep your saved telemetry in Sumo Logic, here’s one possible way:

1 Set up a new partition for your saved telemetry, and update the router with a
rule to send your reprocessed telemetry into it.

2 Export the CSV.
3 Write a script to send each event back into Sumo Logic, where the router sends

it into a partition.

All things considered, “save all” is definitely the easier option; simply increase the
retention period. But if cost becomes a problem, you can use a more complex method
to save money. That method looks like figure 18.6.

How will we shield the held data from routine redactions and reprocessing? 

You’re in good shape here; Sumo Logic doesn’t require routine reprocessing, so
reprocessing is not a concern. Redactions currently require a support case to be
opened, in which case the details of redaction are out of your control. To make things
easier on Sumo Logic support, making a dedicated partition should allow you to
prove to the court that you are not making changes.

How will we protect our unredacted/unreprocessed legal-hold data from our usual
customers?

As with the ELK system in section 18.2.1, if you’ve performed redactions on your regu-
lar telemetry, you will not be performing them on the held data, which means that you
need to keep your held data from being accessed. If you know that the responsive telem-
etry is not subject to redactions, you can safely extend an existing partition’s retention
policy as needed and not worry about it. But if you are performing redactions, you will
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need a dedicated legal hold partition, which enables you to build ACLs to prevent cer-
tain groups from querying the legal hold partition.

How will we allow our lawyers to review our saved data?

Sumo Logic is a SaaS telemetry platform, so it comes with an ACL system even in the
lowest tiers. This system lets you create a role to allow our lawyers to read telemetry in
as much or as little of the telemetry system as you want. This part is easy, fortunately.

If the legal hold requires us to hold telemetry that is still being generated, what changes do we
need to make to ensure that such telemetry is preserved?

This is where you embrace the router. If you’re keeping everything, you don’t have to
do anything; the partition’s retention policy does all the work for you. But if you have
to make a hold partition, you will need to update the rules in the router to send
potentially responsive telemetry into both the legal-hold partition and its usual loca-
tion. These changes are straightforward to set up in the Sumo Logic platform.

Is our oldest telemetry data viewable in our current software versions?

You are using a SaaS platform, so this problem does not apply!

If we have to upgrade our storage software during the hold period, will we need to avoid
upgrading the legal hold systems?

Because you are using a SaaS platform, software versions are among the things you’re
paying the SaaS vendor to worry about. Where you potentially get into a problem is if
your SaaS vendor makes a new product offering with better features. Will you move to
that product, or will the requirements of a legal hold force you to keep your held data

App1 partition: 6 months

App2 partition: 6 months

SIEM partition: 7 years

SRE partition: 1 year

NetEng partition: 60 days

Hold partition: 7 years

Stores our legal-hold
telemetry in isolation 

Production code ships telemetry
directly to Sumo Logic. 

Sends received webhooks
into the router 

Stores telemetry, implements 
retention policies, billing

Production code that needs
an agent to ship telemetry 

Routes and forks telemetry
into specific partitions 

Left: Our infrastructure
Right: Sumo Logic 

Sumo Logic 
agent

Sumo Logic 
webhook 
collector

Sumo Logic 
router

Sumo Logic 
webhook 
collector

Production
server

Sumo Logic 
agent

Production
server

Production
server

Production
server

Figure 18.6 Showing how figure 18.5 changes when a legal-hold partition is added. Telemetry 
flows potentially involving responsive telemetry are dark lines with arrows; lighter lines show 
regular telemetry flows. This example also demonstrates telemetry routing; incoming telemetry 
that is potentially responsive is sent to both its usual partitions as well as to the hold partition.
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in the older platform? Only your organization’s lawyers will be able to tell you which
path is correct. Most SaaS vendors don’t advertise breaking changes well in advance,
so you’ll have to put this problem down as a known risk and plan to deal with it when
it happens.

18.3 Dealing with document-production requests
After the first legal holds are in place, lawyers start digging through your telemetry.
First is ECA (see section 18.1), in which your organization’s lawyers go through the
telemetry to decide on a legal strategy. After ECA, when the legal matter has been
filed, the matter enters the discovery phase which is when opposing counsel starts
requesting records. This section is about handling document production requests
from your own lawyers (ECA) and other lawyers (discovery). Figure 18.1 illustrated
the discovery process. Let’s look at it again as figure 18.7.

When ECA or discovery starts, you need to allow lawyers to look at the telemetry
you’ve put aside as part of the legal hold. (Section 18.2 covers handling legal-hold
orders.) Ideally, you can give the lawyers access to the Presentation-stage systems and
they will handle the rest of the tasks, so you have to be concerned only with keeping
them fed with telemetry. The first passes are likely to be done by your organization’s
lawyers, but retaining outside counsel is quite common in large cases, so later requests
might come from lawyers who don’t know your organization or you. Section 18.4 goes
into more detail about working with lawyers, but in brief, when you have questions
about what outside counsel is asking for, ask your organization’s lawyers. The lawyers
are your guides in this process and the parties responsible for translating needs and
requirements to all sides. If you are entering ECA or discovery, it is an incredibly good
idea to make friends with your organization’s lawyers: you will be working together for
a long time.

Your jobYour jobFilter Filter

Opposing
counsel
requests

documents.

Lawyer
negotiation

stuff
(not your job)

Your lawyers
request

telemetry.
You produce

telemetry.

Deliver
telemetry to

your lawyers.

Your lawyers
deliver

telemetry to
opposing
counsel.

Figure 18.7 The eDiscovery life cycle and your role in it (unless you’re a lawyer). Your job is 
to produce telemetry or enable telemetry to be produced by others—likely your organization’s 
lawyers. This job can involve your lawyers making repeated requests of you before they’re ready 
to deliver telemetry to opposing counsel. Everything you do will be filtered through your 
organization’s lawyers, which is safest for everyone involved.



478 CHAPTER 18 Surviving legal processes

 Any discovery request has three phases:

 Collection—Reviewing held data to see what might be responsive and extracting it
into a new repository.

 Review—Lawyers and paralegals review each document to determine respon-
siveness and perform redactions on documents that are partially responsive.

 Production—All the responsive documents and their redactions are exported in
a negotiated format to send to opposing counsel.

For small companies that are trying to save legal costs, doing review in place through
native tooling instead of dedicated review software eases the costs of paying for a review
platform. The cheap method means that you, the telemetry system operator, will likely
be asked to write automation to turn responsive telemetry into court-standard formats
(probably PDF or TIFF, but other formats are occasionally used). Full-service review plat-
forms make reviewing large document sets easy and offer predefined ways to turn doc-
uments into court-standard formats. You won’t use these systems but may be asked to
produce exports for them.

 In bad cases, you will be involved with all three phases, but the more resources
your legal team (and its retained law firms) has, the less work you must do. In the next
three sections, I’ll go over each phase and explain how it might affect telemetry sys-
tem operators.

18.3.1 Telemetry in the collection phase

The collection phase of a discovery request is when lawyers or their delegates identify
potentially responsive document repositories and export them into a new repository.
This phase is distinct from a legal hold because this new repository is no longer con-
trolled by your organization. For nontelemetry records, these activities enable the
legal teams to dig through and export telemetry in your legal-hold systems, which is
what this section is about. Important: The collection phase starts the chain of custody.

DEFINITION Chain of custody (noun): The complete record of transfers and
copies of records, including who performed the operation and any changes
in who is possessing the records. Breaking the chain of custody by not docu-
menting a copy or making changes risks spoliating the records, which could
result in sanction by the court.

The best thing you can do to reduce the impact of the collection phase on you and your day-to-day
work is to enable the lawyers to collect their own telemetry and to grant them API access. You and
your organization’s lawyers will have to work with your organization’s security and IT
teams to enable this collection, but you will save a lot of work by not being in the col-
lection workflow. You may be asked to write automation to turn something like an
Elasticsearch query into an archive full of JSON documents, but if you write the auto-
mation well enough, you won’t have to be involved in every document collection. If
you can manage to grant this access to your legal team, your role in collections is
pretty much done.
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 If you can’t grant this access for some reason, you will likely end up pairing with a
lawyer or one of their delegates while they ask you to search for potentially responsive
documents, using your credentials and access. This supervision is incredibly import-
ant in maintaining the chain of custody. You will be identifying queries that reveal
potentially responsive telemetry, digging into them to see whether they lead to other
potentially responsive telemetry. When you have those queries, you will be asked to
export them. This process can take quite a lot of time and may be unavoidable for
smaller organizations.

 Granting API access to telemetry systems to people who are not directly employed
by your organization (the retained outside counsel) is likely to be an unplanned excep-
tion to your normal access control policies. You will have to negotiate with whoever man-
ages corporate identities, and likely with your organization’s security team, to build a
framework to grant this access. If you meet strenuous resistance, providing this access
can require you to build a fully isolated network to host these legal-matter-related telem-
etry systems. Building an isolated network will feel like a lot of work, but if the legal mat-
ter is likely to last a long time (ask your organization’s lawyers), the front-loaded work
will mean that your day-to-day work for the rest of the matter will look more usual instead
of unusually legal. Figure 18.8 shows one possible isolated-network diagram.

Production network (with telemetry)

Legal-hold network

IT managed users and roles
Full security and vulnerability  
policy
Broad operations/platform 
group access

Manually managed users
Exempted from vulnerability 
policy
Limited ops/platform group 
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system (+ API)

App
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One-way
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Production
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Production
Cluster

Production
Cluster

Production
Cluster
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Parser
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Parser
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App
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Ops
Parser
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and exports it to the
legal-hold systems   

Figure 18.8 Two isolated networks; one production network with a full telemetry system, and a 
legal-hold network containing only telemetry storage and a Presentation-stage system. Regular telemetry 
flows are diagramed with straight lines with arrows. A one-way exporter extracts potentially responsive 
telemetry from the production network’s telemetry storage and injects it into the legal-hold network’s 
telemetry storage. Extraction flows are diagramed with dotted lines with arrows. By limiting authorized 
access in the legal-hold network much more tightly than in the production network, you make the relaxed 
security policies—such as exempting the legal-hold telemetry systems from the vulnerability management 
policy—easier to justify to your security team. Also, granting outside access to these legal-hold systems 
is much easier to justify to your security team: the granted access is extremely narrow.
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The fully isolated network in figure 18.8 gives you a much better chance of persuading
your security and IT teams to allow outsiders to access organizational systems. Having
an isolated network is especially important for teams that are unused to working with
lawyers and don’t quite know what the rules are or when they can safely say no. Having
this option in your pocket will make those negotiations easier on everyone.

 If you have to perform the document collections, you will do so under supervision, and
your lawyers will tell you what formats they will accept. The most common format by
far is PDF, but TIFF is also common. These formats may seem unusual, considering
that most telemetry systems these days happily spit out JSON data structures that don’t
turn into pages in any kind of pretty way. The review systems your lawyers will use,
however, have their own list of acceptable formats, which will almost definitely be
broader than PDF or TIFF.

 If you have to perform the document collection yourself, you will need to write a util-
ity to take whatever your telemetry system produces and translate it into whatever your
lawyers need. Think of this process as being a kind of batch mode and ad hoc Shipping
stage, because you will be translating a format much as your telemetry systems do in
their Shipping stage. In some cases, your lawyers may already have such a tool.

 Doing the document collection means that you are involved in the chain of cus-
tody. Make sure that your organization’s lawyers train you in correct handling proce-
dures, and follow those procedures strictly. You don’t want to spoliate the records.

18.3.2 Telemetry in the review phase

The review phase of a discovery request is when your organization’s lawyers and para-
legals review telemetry collected during the collection (section 18.3.1) phase. The col-
lection phase identified any telemetry that potentially was responsive; during the review
phase, each piece of telemetry is specifically determined to be responsive or not. Some
poor paralegal is likely looking at events one by one (usually with deduplication sup-
port) and marking each one as responsive or nonresponsive.

 In the best case, you won’t need to worry about this phase. If you’ve managed to get collec-
tion delegated to the legal teams, review is their problem now. Review is happening in
systems your organization doesn’t manage, which makes it blessedly not your problem.

 For smaller matters, or in an organization that is trying to save money, you may have to sup-
port review. You won’t be doing review yourself, but you will be enabling the people
who are involved in it. As I talked about in the collection phase (section 18.3.1), you
will be required to provide access to the telemetry systems that hold the potentially
responsive telemetry. The big difference between the collection and review phases is
the reviewers will be looking for specific events rather than groups of events.

 Doing manual review extends the chain of custody to the telemetry systems them-
selves, not just the gathered documents. The extension limits the changes you are
allowed to make in those systems, including routine changes such as patching and vul-
nerability remediation. You will need to work with the legal team involved to identify
safe actions.
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 The person who does manual review will then store records. Likely, this task
involves print-to-PDF or something much like it. You are not likely to be involved in
this phase other than providing tech support. Lawyers working with electronic data
often employ technical specialists, so you will become one of those people for your
lawyer or work with them.

18.3.3 Telemetry in the production phase

The production phase of a discovery request is when your organization’s lawyers pack-
age all the responsive documents and deliver them to opposing counsel. In the first
decade of the 2000s, this task often required FedExing a hard drive to the other
party’s lawyers. In the second decade, as Internet speeds grew, this delivery process
increasingly happened online through secure upload portals. As SaaS offerings get
more market share, this sharing increasingly involves granting access to the produc-
tion to another user on the system.

 In the best case, you won’t even know that productions are happening because you aren’t
involved in any way. If you’ve managed to get yourself out of the review process, you’ve
gotten yourself out of the production process as well. Purpose-built review systems
come with ways to build productions, so your legal team won’t have to involve you.

 If you are involved, production looks much like the collection phase, but with tighter restric-
tions on format. Telemetry system operators should be involved in the production
phase only for small matters or reduced sets of documents. This process is a key part
of the chain of custody, so if you are building the productions, you simply must be
trained. Ideally, your organization’s lawyers will have technical specialists to help you
extract the responsive events and turn them into the correct formats. This area is not
one you can spend ten minutes researching on Google and then decide that you know
what you’re doing; your lawyers need to help you determine what the acceptable for-
mats are. If the lawyers are not helpful, tell someone who might have leverage. 

Discovery and the life of a paralegal
“Be a lawyer,” they said. “Make lots of money,” they said. Instead, I’m reviewing
documents at 9:30 p.m. on a Saturday to meet a 9 a.m. Monday production
deadline because the lawyers annoyed the judge for playing games.

Before electronic discovery was ruled to be admissible, you had to perform discovery
on paper. In the 1980s, when CBS News announced that Chrysler responded to a
lawsuit with umpty-million pages of documents, those pages were actual paper and
likely took more than one semi-truck to ship to opposing counsel. Then lawyers and
paralegals had to review each and every page, one by one, for responsiveness. As
you can well imagine, this process took many, many months. Burying the other side
in paper is a long-standing legal tradition.

In the late 1990s, after office automation had advanced to the point that most offices
had a file server full of Microsoft Office (or, less frequently, WordPerfect or Lotus
1-2-3) files, courts still required paper. 
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18.4 Working with lawyers
This section is about a skill that few technologists need to develop: working effectively
with lawyers. I hope that other people will do all this work so that you don’t have to, but
if you do have to, the advice in this section will serve you well. Lawyers are profession-
als with their own specialty, one that a lot of people seem to think they can do well
enough after a bit of Internet searching. You know how that goes in our specialty.

 The first thing to understand about lawyers is that they come in many different
types. The sort of lawyer you go to unpick the mess your parents made of their estate is
not the same kind of lawyer you’d use to handle a real-estate transaction. The sort of
lawyer whom software engineers are most likely to encounter is the one we need to
consult when asking this question: “I’d like to use this software module in our prod-
uct, but it’s GPL3-licensed. Can we use it?”

 Lawyers who answer questions like this one are for the most part not scary. It’s
their job to assess the legal risks of new licenses and end-user agreements, which does
mean that they will tell you no from time to time.

(continued)
This electronically stored information (ESI) wasn’t admissible, so lawyers responding
to discovery requests had to print it out (a process called blowing, named after the
high-speed printers used for this purpose). Because law firms performing review
charged by the page, and because it’s a good idea to make the other side pay more
for legal costs, each printed email had the full reply chain printed with it. Reviewers
had to check to make sure that no one edited the chain along the way. It was a ter-
rible job.

After electronic discovery was allowed, the process of review increasingly moved
online. eDiscovery was late to the SaaS game because the problem is incredibly com-
plex: you legitimately need to handle any office file format used since 1985 correctly,
in multiple languages, and also render the fonts correctly; there are so many edge
cases (such as pre-Unicode mid-1990s Japanese business systems). When trying to
make a SaaS product for eDiscovery, the V in MVP is a much higher bar, so you didn’t
get startups going straight to SaaS (not successfully, at least); you saw established
players moving into SaaS.

I worked for one of these companies from 2011–2013, and I can attest to the sheer
complexity of handling that many document types. But we brought a product to mar-
ket that did the job, though getting the interface right took some work. (That job was
the most interesting distributed-processing job I’ve ever had.) Artificial Intelligence
has been a hot topic in legal tech spaces since 2012, long before it became a trendy
word in the rest of the industry. AI is more often called predictive coding in legal cir-
cles; it’s yet another tool that cuts down on the toil of doing review.

These days, the poor paralegal doing review at 9:30 p.m. on a Saturday to meet a
9 a.m. Monday production deadline is likely doing it at home rather than the office
(or, before eDiscovery, in a warehouse full of paper) and has the benefit of autotag-
ging to speed the process of tagging responsive documents.
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 The next-most-common type of lawyer we software-handling people encounter
works more with senior ICs and managers as part of contract negotiations with new
service and product providers. Enterprise agreements have a lot of moving parts, and
legal needs to be involved in the process. Your role depends on how central you are to
the negotiation process. These lawyers generally are not scary because they’re pointed
at the other side.

 The lawyers who get involved in the sorts of matters that lead to discovery requests
are a quite different type. To explain how, I need to put a mirror in front of software
engineers. Our job involves understanding the minute details of the languages we
work with to produce the products we’re paid to produce. The “Pay attention to the
details” feature of our jobs mean that some of us have a hard time turning it off; we
always sweat the details.

 We’ve all met the engineer who needs to dig into the details of everything and calls
out any imprecision as being unworkable ambiguity. Pedantism is a great thing when
you’re doing code reviews; it’s less great when you’re trying to plan a vacation for a
family of five. This person isn’t all of us, but they’re enough of us.

 Lawyers—trial lawyers specifically—have a similar trait. There’s a reason for the
term arguing in court. Whereas we sweat the details, trial lawyers learned early that you
always ask for the moon when all you need is low orbit. Just as we get overly detailed
when planning vacations, trial lawyers sometimes have trouble turning off their “ask
for the moon” mindset. They ask for everything to get a feel for what’s possible, and
they fully expect you to push back. Given that fact, here are a few tips on working with the
trial lawyers who are involved in your organization’s matter:

 Your own organization’s lawyers speak lawyer better than you do. If you’re uncertain
what the trial team is talking about, ask your organization’s lawyers to clarify.
(This tip applies to interpreting happenings in the matter, by the way, even if
the events don’t affect you.) Unlike outside counsel, your organization’s lawyers
are likely salaried and not billing by the minute.

 Cost management is a key responsibility of your organization’s lawyers. Outside counsel
costs money; they charge for every interaction and find ways to bill for any time
when their attention is on your case. If you think that a request is too broad
(that is, possibly too expensive), ask your organization’s lawyers to advise.
Advice is what they’re there to provide.

 Outside trial lawyers usually come with technical specialists. Use them. If you’re not
clear about what a request means, even after asking your own lawyers, the trial
lawyers’ technical people likely can translate the request from lawyer to engi-
neer. Their billing rate is far lower than that of actual lawyers too.

 If you have to push back on technical details, do that with the technical specialists. The
outside team’s specialists are much better versed in discovery procedure than
you are, so they are valuable for determining what is feasible. They’re also
much less likely to be “ask for the moon” types.
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If you read that list and are thinking “I really shouldn’t ever talk to trial lawyers,”
you’ve made the right choice. Your reflexes aren’t right for that job; you are merely a
small technician in a large machine. A whole legal team is there to support you. Make
friends with your organization’s lawyers as early as you can; you’ll be much happier.

Summary
 The one legal process that could affect telemetry systems is pretrial discovery. If

records in the telemetry system are identified as being potentially responsive to
the trial, your telemetry system will be subject to legal holds, and outsiders may
start digging through your records.

 Discovery can be triggered by an outside threat of a lawsuit or your organiza-
tion’s decision to file suit against another organization. Both events could affect
your telemetry system.

 During the discovery process, your organization’s lawyers will be your interface
to the whole process, which is safest for everyone involved. If you build a good
relationship with your lawyers, your job during the legal matter will be much
easier.

 Legal holds mean that you must not exercise your retention and redaction poli-
cies on telemetry that is subject to the hold. You need a plan (preferably made
well in advance) to exempt held telemetry from these routine processes. By cre-
ating at least a rough plan before a hold order arrives, you will save time and
grief dealing with the order.

 It is quite common for organizations to hire outside lawyers (retain outside
counsel) to help in litigation, which means that you likely will be working with
unfamiliar people and nonemployees during the discovery phase.

 Allowing nonemployees to view organizational telemetry is going to cause con-
cern on the security team, and I strongly advise you to argue in favor of grant-
ing that access. When the lawyers can access held telemetry on their own, your
role in the discovery process is greatly reduced.

 When the legal matter reaches the point at which discovery requests are issued,
your ability to make routine changes (such as patching and routine software
version upgrades) to the system holding the held data is not guaranteed. Always
consult your organization’s lawyers before proceeding, because you may need
to support running old and insecure software for a time.

 Legal matters often take years to resolve and may enter and exit discovery mul-
tiple times. No one enjoys this process, but you still need to be ready to avoid
spoliating records during the entire matter.

 Discovery requests have three phases: collection, review, and production. Col-
lection gathers potentially responsive telemetry and starts the chain of custody.
Review is performed by legal professionals to determine exact responsiveness
(and make redactions). Production is when responsive telemetry is delivered to
opposing counsel. Your role in these three phases depends on the choices your
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lawyers make and how successful you are in getting the lawyers direct access to
the legal-hold telemetry.

 If your security group is unhappy with granting outsiders access to telemetry sys-
tems, or if you need to isolate the legal-hold telemetry systems from the vulner-
ability management program, one effective method is to put the legal-hold
telemetry systems in an isolated network. This isolated network will be accessed
only by the legal team and telemetry system operators—no one else. Because
this approach reduces the blast radius in the event of a security incident, you
may be able to persuade security to grant direct access to the legal team.

 Granting direct access to the legal-hold telemetry systems allows the legal team
to perform its own collections, which means you don’t have to worry about the
chain of custody. If you can’t grant this access, you will be responsible for build-
ing collections and will have to be supervised by someone who is trained in the
chain of custody.

 If the legal team can perform its own collections, you won’t be involved in the
review process. For small matters, your legal team will be performing review
directly from your telemetry systems. Your job will be tech support, helping the
lawyers navigate the telemetry system and helping them build ways to mark
responsive telemetry.

 If the legal team can perform its own collections, you won’t be involved in the
production process either. For small matters on which your legal team is per-
forming direct review, you may be asked to build export utilities to move telem-
etry from your native system to a format specified by your lawyers (likely PDF).

 When working with lawyers, remember that your organization’s lawyers under-
stand your organization and are on your side. They are your best resource for
resolving conflicts with the matter’s legal team, which can include outside coun-
sel. Their opinions are the only ones that matter in your organization.

 Outside counsel almost always comes with technical professionals (legal sup-
port) who are deeply familiar with legal procedure. They are quite useful in
translating lawyer to engineer, and their hourly rate is better than lawyers’.
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appendix A
Telemetry storage systems

Storage systems compete with the Presentation-stage systems for being the most
important technical component of a telemetry system. If you don’t elect to use a
SaaS platform for your telemetry, picking and specifying your storage system
should be one of your top priorities when setting up or updating a telemetry sys-
tem. In this appendix, I give you guidance on what each of these storage systems is
good at and finds challenging. Although chapter 14, which covers cardinality,
touched on several storage systems, there is more to consider than simply how well
each handles cardinality.

 If you are using Kubernetes, you have some well-qualified default systems to
choose from. If your production systems are small to medium-size, these options
will take you far. The systems in this list have plenty of documentation for integrat-
ing with a Kubernetes-based infrastructure:

 Use Prometheus for metrics. This Cloud Native Computing Foundation product
is the de facto standard for Kubernetes deployments.

 Use Grafana Labs’ Loki or Elasticsearch for logs. Grafana Labs is attempting to
make Loki the Prometheus of logging and might pull it off! Elasticsearch has
been used for centralized logging for close to a decade, so there is a lot of
documentation for that use case.

 Use FluentD or Fluentbit as the Shipping-stage log mover. This system isn’t a storage
system, but Kubernetes deployments have a strong preference for this plat-
form because it is also a Cloud Native Computing Foundation product. It has
native support for shipping into Elasticsearch, and Grafana Labs offers a
plugin to ship to Loki.

 Use Jaeger (which sits on top of Elasticsearch or Cassandra) for tracing. This Cloud
Native Computing Foundation product will likely be the first product to fully
support the emerging OpenTelemetry standard when that process is complete.
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In this appendix, I cover these systems, as well as a few others that are used outside
containerized environments. No matter what product you pick, you need to under-
stand three concepts to discuss telemetry storage systems. These concepts are familiar
from general-purpose database talks but are equally relevant for telemetry systems:

 Ingestion rate—The number of events (individual metrics, log lines, or traces) a
storage system has to write in a given period, usually specified in seconds. This
rate defines your write throughput. I discuss factors that affect a given system’s
ingestion rate.

 Query rate—Queries coming from Presentation-stage systems. The more queries
you have to support, the more your storage systems need to be optimized for
read-only workflows as well as writing a lot of telemetry. This rate defines your
read throughput.

 Cardinality—The topic of chapter 14, so I won’t be going into detail here.

No matter which storage system you use, all of them perform better if you can batch
your writes. Instead of sending each log, metric, or trace as an individual insert, bun-
dling them up into a group will get you a higher ingestion rate before you run into
problems, as shown in figure 3.4, reproduced here as figure A.1.

A.1 Analyzing Elasticsearch
Elasticsearch is perhaps the most famous telemetry storage system, having grown to
prominence as part of the ELK Stack—which stands for Elasticsearch (storage), Log-
stash (shipping automation), and Kibana (presentation)—a centralized logging sys-
tem that arose in the early 2010s and improved throughout the decade. The Jaeger
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Figure A.1 The benefits of bulk writing versus everything writing on its own. Both Elasticsearch 
clusters handle the same number of events per second (ingestion rate), but the one being written to 
by the bulk writer has fewer write transactions in-flight at any given time. The bulk writer Elasticsearch 
cluster will be able to handle a higher ingestion rate as a result.
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tracing platform can use Elasticsearch as its storage system, and other lesser-known
telemetry systems are built on top of Elasticsearch.

 Elasticsearch was built to optimize for one thing: extremely fast searches of text.
This speed makes Elasticsearch excellent for use as a centralized logging system. Over
the years, Elasticsearch has had more capabilities bolted on, which make it a viable
platform for distributed tracing and even metrics telemetry. Elastic.co’s X-Pack add-on
allows you to use Elasticsearch for all three Pillars of Observability: logs, metrics, and
tracing.

 Elasticsearch is a distributed database, sharding by default. This horizontal scale
allows Elasticsearch to scale to high ingestion rates and storage volumes. Elasticsearch
has features that allow you to optimize your cluster for tiers of service, with one tier
optimized for ingesting high rates of data and another tier that holds a lot of data
optimized to support searching. This flexibility allows Elasticsearch to scale from 2
data nodes to 500.

 In early 2021, the maker of Elasticsearch, Elastic.co, changed the license for Elastic-
search in an attempt to prevent cloud service providers from reselling Elasticsearch ser-
vices. AWS, which had been doing that for years, responded by forking Elasticsearch
into OpenSearch and promised to keep the Apache 2.0 license that the Elastic.co
version left behind. This fight is ongoing, and only the future will tell us which com-
pany will gain de facto control of Elasticsearch (or OpenSearch).

A.1.1 What Elasticsearch is good at
Elasticsearch is one of the best databases for storing centralized logging telemetry. A
lot of centralized logging is strings, and string processing is what Elasticsearch does
best. Elasticsearch easily handles highly enriched telemetry that has many fields
defined on each event. This field flexibility makes Elasticsearch a useful platform on
which to build a distributed tracing system.

 Two important Elasticsearch concepts are tokenizers and analyzers. Tokenizers iden-
tify parts of a field, such as which parts of the string are words, to speed searches for
those components. Analyzers go a step further, performing deeper analysis of strings to
provide language-specific (human language, not computer language) indexing of
strings. Tokenizers and analyzers allow a high degree of customizability of searching.

 For ingestion rate, Elasticsearch scales horizontally pretty well through sharding.
The more shards an index has, the more write capacity it has. The number of fields in
the index plays a role, though. If you have a lot of fields (thousands) that aren’t on
every event, you will see more write I/O because you are writing a lot of nulled fields
instead of event content.

 For query rate, Elasticsearch was designed to offer search for production applica-
tions, so it is built to handle a lot of simultaneous queries. Even so, you want to keep
your shard sizes at 50 GB or smaller to maximize your query performance. The num-
ber of shards per data node plays a role as well, because too many shards in one place
will put memory pressure on the JVM and slow queries.
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A.1.2 What is challenging for Elasticsearch
Because Elasticsearch was written to provide a search engine for text hosted in
another system, it wasn’t written to have a high degree of write integrity; you could
always reload it from primary storage. It will drop writes in some circumstances, so if
you need 100% of your telemetry in your storage, you will need to work harder to
ensure that Elasticsearch doesn’t reach the conditions at which it will drop writes.

 Although Elasticsearch does support large shard counts (I’ve heard of a cluster of
200 shards in the version 2.4 era), changing the sharding of an index isn’t supported.
For telemetry use cases, this lack of support is not a major problem, because most
telemetry systems use time-based indexes based on day, week, or month; wait for the
next period to get your new shard count. If you need to reshard an existing index, you
will have to re-create the entire index into a new one with new shard settings—an I/O-
and CPU-intensive process.

 Elasticsearch has some support as a metrics database, but the purpose-built time-
series databases such as Prometheus and InfluxDB have a wider array of the statistical
and analytic functions needed for a truly first-class metrics system.

A.2 Analyzing Apache Cassandra
Apache Cassandra is a database designed to be horizontally scalable to a high degree
and not be rigid about schema. Cassandra has an interesting feature that allows you to
select the level of consistency of writes from the highest (“Don’t confirm the write
until all nodes have confirmed that the write is flushed”), to the most permissive
(“Always confirm writes”). As a telemetry data store, it can be used for

 Metrics by being the backing store for KairosDB
 Metrics again through bespoke metrics systems at a multinational company
 Tracing by being one possible backing store for Jaeger
 Centralized logging for a bespoke logging system

Cassandra allows a high degree of horizontal scale, which is why the preceding list
mentions bespoke systems. Large software-producing companies (see chapter 8) often
have enough engineering talent on hand to justify building their own telemetry pipe-
lines instead of assembling them from open source parts.

A.2.1 What Cassandra is good at
The number one thing Cassandra is good at? Scale. You pick Cassandra because you
are expecting to store and ingest high volumes of telemetry. If you expect to reach a
petabyte of storage, Cassandra can handle it; simply add more nodes to the cluster.

 For ingestion rate, Cassandra scales linearly with the number of nodes in the cluster,
which is why global-scale companies use Cassandra for datasets that span multiple data
centers. If you’re in a growing company where ingestion rate is doubling every 18
months, Cassandra can carry you through the growth curve without forcing you to
redesign your entire telemetry system.

 For query rate, Cassandra scales linearly, like the ingestion rate.
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A.2.2 What is challenging for Cassandra
Although Cassandra brings a lot of scale to your infrastructure, it finds rich searching
to be a challenge. The query language for Cassandra is a query language, in that it is
good at supporting queries for exact field contents. What it doesn’t do easily is search
for parts of fields. For this reason, Cassandra gets a lot of use for metrics and tracing
but little for logging. Metrics and tracing have a schema and rarely use subfield
searching; whereas for logging, subfield searching is extremely nice to have. Elastic-
search was built for subfield searching (with all those tokenizers) and does it fantasti-
cally well, but Cassandra wasn’t built for that task and doesn’t perform it well.

 When you do see Cassandra used for centralized logging, it’s on logging data that
has been rigidly formatted. In the part 3 chapters, I presented a method for using
structured logging to handle leaks of privacy- and health-related information that uses
a static string, with an array of context details. Here is one example, sending a static
string and a hash of context:

logger.info("Added account to team", {"team": 1597682, "account_id": 

➥ "A881821"})

A structure like this one could work on a Cassandra database because searchers would
look for the exact string "Added account to team" and pair it with some context
details. The more typical log statement often wouldn’t work well:

logger.info("Added account A881821 to team 1597682")

With Elasticsearch, you could phrase a search like this one and get everything you
want:

"Added account" AND "1597682"

With Cassandra, getting the list of added accounts for team 1598682 will require
highly inefficient searches. Cassandra benefits greatly from structure.

A.3 Analyzing Grafana Labs’ Loki
Grafana Labs’ Loki is quite new as a centralized logging system, announced only in
2018. Its youth means that it is still being assembled in 2021, so expect many changes
in coming years. I mention Loki because Grafana Labs is directly targeting the Kuber-
netes and Cloud Native Computing Foundation market, and its goal is to make a
highly scalable centralized logging system—something that the foundation is missing,
something like Cassandra but good for the centralized logging use case.

 Loki has two major components when it comes to storage:

 The service hosting the key-value chunks, which can be several things, such as AWS
DynamoDB, AWS S3, Cassandra, Google Cloud Storage, or Google Bigtable.

 The service hosting the index of key-value chunks, which can be AWS DynamoDB,
Cassandra, or Google Bigtable.
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Loki also embraces the postprocessing concept used by some SaaS logging vendors,
such as Splunk and Sumo Logic, in which the Presentation-stage system performs a lot
of enrichment while a user is making queries. Whereas Elasticsearch is indexing and
tokenizing every field it encounters as that field is ingested into storage, Loki does
those things only for major fields that you already know you need (called labels) and
relies on the Presentation stage to handle the smaller fields. This approach takes some
of the load off your Shipping-stage components. The following query finds a specific
application’s telemetry and then uses Presentation-stage enrichment to further drill
down into the telemetry from a specific team:

{datacenter="euc1",app="account-maint"} | json | team="A881821"

This query pulls telemetry from the EU Central 1 data center—specifically from the
account-maint application—and runs the fetched telemetry (a lot of it) through a
JSON deserializer to bring more fields into the query. Finally, it returns any telemetry
with a team attribute of A881821. In the kind of telemetry system that relies on pre-
processing, the Shipping stage would perform the JSON deserialization and create
the team field before the Presentation stage got involved.

 The key innovation that Loki brings to a data store like Cassandra is the query
frontends. Those frontends perform the kind of searches that Cassandra is bad at,
which makes this product more competitive with Elasticsearch as a centralized logging
system.

 Finally, like Elasticsearch (Elastic.co version), MongoDB, and InfluxDB, Loki is an
open core product.

A.3.1 What Loki is good at
Loki was made for one thing: handling logs at scale. By using cloud provider storage
buckets like AWS S3 and Google Cloud Storage, you take the thought out of scaling
your storage. When you use technologies such as Cassandra and DynamoDB (which
Cassandra was inspired by) for the index, the main technological problem is reduced
to keeping the indexes happy instead of keeping petabytes of storage servers happy.

 Ingestion rate is linearly scalable by expanding distributor nodes to increase their
ability to accept incoming telemetry and by expanding ingester nodes to handle writ-
ing chunks to storage and indexing. You can run into bottlenecks from the indexer
service if you haven’t provisioned enough capacity.

 For query rate, Loki relies on a tier of query frontend nodes to handle queuing que-
ries, distribute queries across the cluster, and perform transforms (such as the JSON
transform from the earlier example). User queries can bottleneck again on the
indexer service when it runs out of capacity.

A.3.2 What is challenging for Loki
Loki is young, and it has young problems. That said, it is being actively developed, so
these problems might not exist much longer. The three big problems are
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 No support for out-of-order arrival—Each log should have a more recent timestamp
than the previous one. If your telemetry workflows include processing old sets
once in a while—maybe your business involves mobile telemetry that sometimes
arrives hours late due to airplane mode—Loki may be a bad fit.

 No support for targeted deletions—Retention policies are set globally; everything
gets a single policy, with no chance for different policies for different systems.
Also, if you need to delete a specific set of telemetry for some reason (perhaps
you have a spill of privacy- or health-related information to clean up), that dele-
tion is better done in storage than in Loki directly.

 No support for redaction—If your logging might contain privacy- or health-related
information, Loki does not support rewriting. To deal with spills of such data,
you will need to remove the old streams and reprocess the entire set.

A.4 Analyzing MongoDB
MongoDB was one of the first NoSQL storage engines to get a lot of mindshare. The
project made some controversial design decisions in the early years, earning MongoDB
a lot of scorn among people who didn’t pay attention to the nuances and got burned.
Twelve years later, MongoDB versions 4 and later have done away with those con-
troversial design choices and removed many of the hidden gotchas that vexed early
adopters.

 MongoDB is the top document storage engine, which is subtly different from the
search engine that is Elasticsearch. MongoDB was designed to be a primary storage
system; Elasticsearch was not. This difference matters when it comes to maintaining
the system and defending it from failure.

 MongoDB is sometimes used as a centralized logging storage system due to how it
handles text-based data. It isn’t as laser-focused on text-based search as Elasticsearch,
but it has much better text-search features than Cassandra and is already being used
for in-application search in many places. Because of these features, some companies
pick MongoDB as the foundation of a bespoke centralized logging system.

 Similarly to Elasticsearch, MongoDB embraces a shard-and-replica approach to
scaling out storage. Sharding splits the database into smaller parts, allowing you to
scale your storage performance. Replicas duplicate shards, allowing you to better sur-
vive outages.

 Unlike with Elasticsearch, you have to specifically define what indexes you want to
have in place, so you need to know what your data looks like as you are designing your
MongoDB system. For an existing production system, you already have those details,
so the task shouldn’t be too hard. But when you’re setting up a new system, expect to
have to redo things several times before you get a good fit.

 Finally, MongoDB is an open core product, like Elasticsearch (Elastic.co variant)
and InfluxDB. Although you can do a lot with the free version, including contribute
code, you may need a paid license to use certain features.
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A.4.1 What MongoDB is good at
MongoDB is great at centralized logging with a high guarantee of write fidelity.
Elasticsearch drops writes in certain rare circumstance, but MongoDB doesn’t (or can
be configured not to). Unlike Loki, MongoDB was not built as a dedicated telemetry
engine, but the fact that it is a document store makes it a great fit for telemetry use
cases. If you’re already using MongoDB in your production systems, using MongoDB
for telemetry should be quite easy for you.

 For ingestion rate, MongoDB scales based on the ability of shards to keep up with
write volume, so if writes are getting highly latent, add more shards. Also, you want to
use many collections (a database; think of it like partitioning) to further enhance your
ability to scale horizontally. MongoDB also is aware of locality (called zones), such as
data center or cloud-provider region, which enhances performance by directing reads
and writes to local shards.

 For query rate, MongoDB is governed by the presence of indexes, but it also bene-
fits from query optimization in Presentation-stage systems. Unlike with Elasticsearch,
you have to specifically define the indexes you want. MongoDB can have up to 64
indexes in a collection, so if you need more indexes, consider splitting your collection
into multiple collections.

A.4.2 What is challenging for MongoDB
The biggest challenges in using MongoDB as a telemetry storage system are how com-
plex it is to manage and the lack of off-the-shelf Presentation-stage systems that sup-
port it. You need to actively manage how MongoDB stores telemetry to a greater
extent than you do with most of the other logging storage systems discussed in this
appendix. If you’re already doing this management for your production systems, this
extra management should not be an impediment.

A.5 Analyzing Prometheus
Prometheus is a time-series database and metrics system that is the default platform
for Kubernetes environments. This Cloud Native Computing Foundation project is
fully open source. Prometheus provides a query interface specially designed for work-
ing with time-series data and includes a wide array of transformation and summariza-
tion functions—incredibly important for gaining value from metrics.

 Prometheus can operate as a standalone, single-node system, which is easy to set
up and get going. The popularity of Prometheus in the Kubernetes space makes the
Prometheus protocol a de facto standard for transmitting metrics. Prometheus the
product embraces this popularity by allowing the use of other storage systems (such as
InfluxDB, as well as various cloud-provider-specific systems) as the main storage of
Prometheus while still providing the same interface to consumers.

 The swappable nature of the Prometheus storage layer makes it trickier to discuss
storage performance, but if you are reaching the limits of the native storage engine,
evaluate the possibility of moving to a new engine. In this section, I’ll be examining
the native storage engine.
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A.5.1 What Prometheus is good at
Prometheus is good at metrics, and anything (assuming that it’s running in a contain-
erized environment) is likely built to assume that it will talk to Prometheus. Organiza-
tions that are beginning to outgrow Prometheus will create several Prometheus
servers rather than consider a different platform.

 Unlike the other storage systems discussed in this appendix, Prometheus embraces
a hierarchical approach to scaling. Rather than sharding a single data store horizon-
tally, the way Elasticsearch, Cassandra, MongoDB, and InfluxDB (paid) do, Pro-
metheus creates a tree to roll up metrics (figure A.2).

Prometheus uses aggregations (see sections 5.1.1 and 17.2) to provide a view of what is
happening in wider scopes. Presentation-stage systems (likely Grafana) will be config-
ured with multiple data sources: use top-level Prometheus for aggregated views and
use lower-level Prometheus for detailed views in narrow areas. This approach allows
Prometheus to scale up to a high degree.

 For ingestion rate, individual Prometheus servers scale based on the storage perfor-
mance of the server itself but are limited by cardinality in the database. As a Pro-
metheus ecosystem, ingestion depends entirely on your ability to route metrics into
individual servers and configure the aggregation rollups—not as easy as adding a
shard, but more scalable than setting up a single server.

 For query rate, the split nature of Prometheus means that your top-level aggregated
servers will be seeing a lot of traffic, probably from alerting systems running auto-
mated queries to feed on-call rotations in addition to the usual dashboarding traffic.
Lower-level, narrow scoped servers will see traffic from engineering looking for details
and queries will be mostly infrequent. Prometheus also limits query rate on the cardi-
nality of the database, which makes queries more expensive for RAM.
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Figure A.2 The Prometheus scaling model. Unlike most of the other storage systems 
discussed in this appendix, Prometheus does not provide a single wide-scale storage system. 
Instead, it relies on rolling aggregations up the tree and querying area-specific (data center, 
cluster, application, and so on) Prometheus servers for detailed metrics.
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A.5.2 What is challenging for Prometheus
Prometheus becomes a challenging platform to adopt in two situations:

 Large environment or large monolithic product—In this case, Prometheus’s scaling
technique will require more effort to deploy than a shardable data store like
InfluxDB or Cassandra. Prometheus grew up in the container and microser-
vices space, where it’s far easier to hand-shard metrics telemetry into different
Prometheus servers. As always with a popular open source product, many SaaS
offerings and consulting services are available to handle the complexity for you.

 Cardinality—I talked about this topic in chapter 14. Time-series databases in
general have a problem handling high cardinality, and Prometheus is no differ-
ent. Prometheus’s documentation is clear that you need to pay attention to car-
dinality and that the cost of not paying attention to cardinality is slow queries
and high RAM use.

A.6 Analyzing InfluxDB
InfluxDB is another time-series database, which makes it a great place to store metrics.
InfluxData, the creator of InfluxDB, has made this data store the core of an entire
metrics pipeline as a way to compete with the Prometheus and Grafana combination.
As a data store, InfluxDB and Prometheus have a lot in common, but the commercial
version of InfluxDB offers the ability to shard the database for horizontal scale and car-
dinality reasons.

 The commercial version of InfluxDB, InfluxDB Enterprise, lets you create a cluster
of multiple data and metadata servers. Clusters allow replication between nodes to tol-
erate failures (and routine operations like patching cycles) and a configurable level of
write consistency. Sharding within the cluster increases the effective cardinality limit
for a database by spreading the costs of cardinality across multiple data servers.

A.6.1 What InfluxDB is good at
Low cardinality metrics is what InfluxDB was designed to handle well. InfluxData
knows that Prometheus is the dominant player in the self-hosted metrics market, so
InfluxDB has a Prometheus-compatible API endpoint as well as several less-popular
metrics transports, including StatsD and Graphite. InfluxDB represents a paid self-
hosted option, one that comes with the kind of support contracts that large, old enter-
prises consider to be the minimum requirement for a mission-critical component.

 For ingestion rate, InfluxDB is mostly limited by storage performance (not a major
concern if solid state drives are used) and the CPU required to update indexes. That
said, InfluxDB enforces maximum cardinality per database and rejects writes that
increase cardinality.

 For query rate, InfluxDB is limited by CPU and memory to hold indexes, because
increased CPU and memory use are the manifestations of the cardinality problem.
Prometheus has a similar issue with cardinality of queries.
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A.6.2 What is challenging for InfluxDB
The chief problem for InfluxDB is scaling up in the free version: you have to follow
the Prometheus model and create a tree of discrete servers that aggregates metrics
from lower-tier servers into higher-tier ones. Scaling up with a single database is an
Enterprise-plan feature, so if your organization is already large, plan to budget for
sharding and clustering features.

 Like most time-series databases, InfluxDB has a problem with high cardinality met-
rics. The company has plans to address that problem over the lifetime of the 2.x
series, so keep an eye out for advances in coming years. The industry as a whole has a
deep need for high cardinality metrics, which is a fundamentally difficult problem.

A.7 Analyzing Jaeger
Jaeger is a self-hosted tracing system, which makes it stand out in a market dominated
by SaaS players. Jaeger is also a member of the Cloud Native Computing Foundation,
so it is fully open source. Jaeger is likely to be the first self-hosted tracing data store to
fully support the emerging OpenTelemetry tracing standard (also a CNCF project)
when it is finalized.

 Like Grafana Labs’ Loki, Jaeger sits on top of other storage systems to provide its
data store. In Jaeger’s case, you can use either Elasticsearch or Cassandra to provide
the storage layer. The rest of Jaeger sits on top, ingesting traces coming from the Ship-
ping stage and providing a query layer for the Presentation stage. Because Jaeger sits
on top of other storage technologies, scaling Jaeger out relies as much on Cassandra
or Elasticsearch as it does on its own components.

 Jaeger can use Kafka (a streaming service) as part of its internal operations. It does
so for many of the reasons I talked about in part 1: to make telemetry operations asyn-
chronous, to improve resilience in the face of errors, and to handle back pressure if
telemetry processing gets backed up.

A.7.1 What Jaeger is good at
Jaeger is the dominant player in the self-hosted distributed tracing space and was built
to scale out. When used on top of Elasticsearch, Jaeger can let Elasticsearch take some
of the indexing load and write more telemetry per ingestion worker. If you’re already
using Elasticsearch for centralized logging or as part of your production applications,
Jaeger is an easier product to deploy.

 For ingestion rate, Jaeger scales horizontally pretty well. It requires an ingester
worker to insert telemetry into the storage systems, but this ingester can scale horizon-
tally far enough to saturate the storage system. Jaeger recommends running Elastic-
search over Cassandra because Elasticsearch can take on some of the indexing work.

 For query rate, Jaeger provides a UI and API for fetching traces and spans. Perfor-
mance depends on storage performance and CPU available for the query service. Due
to the nature of tracing, storage will be handling far more writes than reads. The UI
and API services are horizontally scalable, though they don’t necessarily support
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browser session storage across discrete query services. Other services, such as Grafana,
will use the API for queries.

A.7.2 What is challenging for Jaeger
Jaeger was designed to run in Kubernetes, and if you are not a Kubernetes shop, Jae-
ger will be challenging for you to deploy. Some organizations are beginning to use
their distributed tracing system in place of a centralized logging system, which Jaeger
has some support for. You will still be better served by a purpose-built centralized log-
ging system.
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appendix B
Recommendation

 checklist reference

Over the 18 chapters of this book, I made many recommendations on any number
of things. This appendix collates those recommendation lists into a single refer-
ence that you can look up as you work on improving your telemetry systems. Per-
haps these lists will be helpful for you in your efforts to persuade management to
make the changes you’re pushing for.

B.1 Telemetry standards, structure, and setting policies
These lists cover the topics of telemetry format and standards, as well as policies
related to telemetry, such as retention and sampling policies.

Section 4.2.2: Setting standardized telemetry formats
Section 4.2.2 was a walk-through of setting telemetry format standards for a multi-
national logistics company. This process is as much political as it is technical. You
should keep a few things in mind while having your standards-setting meetings:

 The goal is to get people using the new telemetry systems. Wrong use is generally bet-
ter than no use; wrong can be corrected later.

 Simple is relative to the observer. What is simple for you can be quite complex for
another team; the converse is also true. Have empathy for everyone involved.

 Shared understanding of goals and constraints helps everyone toward consensus.
Teach, guide, and then direct the conversation.

 You’re allowed to use more than one telemetry shipping format. You want people
using the standards, and allowing more than one format lowers the barrier
to adoption facing telemetry producers.
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Section 4.2.4: Designing telemetry formats with cardinality in mind
Section 4.2.4 was the first time I gave specific advice on handling cardinality in telem-
etry. The list was mostly a pointer to chapter 14, but the summary bullets are useful:

 If your traffic is dominated by a single generator of telemetry, such as more
than half your overall events, your telemetry storage systems will likely behave
better if telemetry emitted by that generator is sent to a separate index that’s
not shared with other telemetry. (See section 14.2.2 for more on this method.)
Telemetry will be stored efficiently for both the high-rate system and the rest,
and you will save money and space.

 If you have the ability to modify telemetry fields within the Shipping stage, tak-
ing steps to ensure that different telemetry formats overlap on fields will create
some efficiencies. (See section 14.2.1 for more on this method.) Many logging
formats have a field for priority, so if you can get all the priority fields into the
same data type, you will save field counts.

 If you have a telemetry generator that produces huge numbers of fields, per-
haps because it emits in an object-encoding format, sending that telemetry to a
single index will isolate the performance hit to that specific production system.
(See section 14.2.2.)

 If your large telemetry-producing systems are software that your organization
develops, taking the time to work with the software engineering teams for your
organization’s software to teach them how to optimize their telemetry systems
can help reduce field sprawl. (Chapter 12 and section 14.2.1 address this topic
in detail.)

Section 6.4.1: When and where to mark up or enrich telemetry 
in centralized logging systems
Section 6.4.1 was a discussion on how markup (adding context-related telemetry) and
enrichment (pulling details out of existing telemetry) affect centralized logging.
Centralized logging benefits greatly from both techniques, so the following list is
longer:

 If the Emitting stage can’t do context-related markup (see section 6.2.1), such
as for hardware systems, the Shipping stage may be used to extract and enrich
telemetry based on the logged strings, as demonstrated in listings 6.4 and 6.5.

 If software is emitting telemetry, it has the best context for adding context-
related markup right at the time telemetry is emitted, just before or during the
Emitting stage. Markup can be added directly to the event right at emission.

 If hardware is emitting telemetry, it often includes context-related telemetry in
the logged string. The Shipping stage can extract the context-related telemetry
and enrich the telemetry event for the Presentation stage, as was done in sec-
tion 6.2.2.
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 Timestamps and other date/time structures are critical for making centralized
logging systems work well. The Shipping stage should transform various date/
time strings from their source format to the format that the Presentation-stage
systems need.

 Syslog’s protocol deliberately leaves the year off its timestamp because it should
be obvious when a line was emitted. If you are dealing with Syslog-formatted
telemetry in any capacity, consider adding a timestamp in the logged line if pos-
sible or making rules for how to add a year.

 Regular expressions may be needed to extract interesting telemetry from
strings—a function done mostly by the Shipping stage.

 Object-encoding formats such as JSON, YAML, and XML are one way to ship
telemetry objects in strings, to be converted back to objects (enriched) by the
Shipping stage.

Section 6.4.3: When and where to mark up or enrich telemetry 
in metrics systems
Metrics systems don’t benefit as greatly from markup and enrichment as centralized
logging systems do. That said, due to the cardinality sensitivity of most time-series
databases, the concerns for markup and enrichment with metrics are different:

 Emitting-stage systems add context-related telemetry, such as a class path, host-
name, program name, or other broad details, as shown in listing 6.1.

 Shipping-stage systems transform emitted telemetry into numbers and deliver
them to a metrics database, as shown in listing 6.7.

 Shipping-stage systems may generate metrics on their own, based on telemetry
observed in the pipeline, such as a count of telemetry with priority set to WARN.

 Emitter/shipper functions, the direct-to-storage pattern from section 3.1.1, do
all these things in one place.

 Metrics databases often have limits on cardinality, so be selective when picking
context-related telemetry.

 Presentation systems use aggregation functions to enrich displayed telemetry, as
covered in-depth in section 5.1.

Section 7.2.1: How parasitic is that parasitic load?
The sidebar in section 7.2.1 lists the sorts of parasitic load (load that takes resources
away from your production operations) that telemetry systems running on the same
server/VM/container/partition/function as your production systems can incur. The
following things are important to understand when you make telemetry system
decisions:



502 APPENDIX B Recommendation checklist reference

 CPU costs—If the only thing you’re doing with your telemetry is reshipping it,
with no other changes, this area is not likely to be significant. If you do perform
changes, however (perhaps one of the chapter 15 techniques to ensure teleme-
try integrity), this charge can be significant. In large hardware instances, you
may not notice these costs. But in container or FaaS environments, the
increased run time of the container or function can be noticeable.

 RAM costs—Depending on how your shipping software works, you need RAM to
perform your change operations and to batch up events for sending down-
stream. On large hardware instances or virtual machines, this change may not
be significant. For containers or FaaS, where RAM usage is metered, these
effects can be noticeable.

 I/O costs—Writing a whole bunch of telemetry to disk is an I/O charge; so is
reading it by your telemetry software. If your storage is slow, telemetry I/O abso-
lutely will compete with production I/O. If you’re running slow storage, you
will be better off if you put your logs on separate disks from your production
operations. Or maybe you can redesign your telemetry systems to use one of the
chapter 13 techniques and avoid files altogether. In my career, I’ve seen cases in
which telemetry I/O dwarfs I/O generated by production operations!

Chapter 11: Making regular expressions fast
Chapter 11 was one giant checklist for making regular expressions (regexes) fast.
Although the chapter had a checklist (which I’ll get to below), there wasn’t one that
summarized the entire chapter. This new checklist provides the summary:

 The best way to make regular expressions fast is to not use them. Regular expressions
are computationally expensive, and putting them in your telemetry pipeline
will slow the pipeline. Avoid using them where you can.

 The best regular expression is one that stops trying matches fast. Regular expression
engines try hard to find matches in a given string, so you will gain efficiencies by
phrasing your regexes in a way that tells the regex engine to stop trying to
match a string. Fail fast for faster performance.

 If you are matching the whole string, using the anchor tags will speed everything. The
^ tag (for beginning of string) and $ tag (for end of string) tell the regex
engine where to start trying matches. Anchors are powerful for getting the
regex engine to stop trying to match a string that will never match.

 You gain speed by specifying narrow character sets and match lengths. If you know that
a given field in a string is between four and eight characters long, writing your
regex to specify that length rather than a lazy operator like + means that the
regex engine has to make fewer comparisons while testing for a match. This
approach improves match speeds.
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 Beware of overoptimization; long regexes can perform worse than shorter expressions.
Although narrow character sets and match lengths reduce the number of
match attempts the regex engine attempts, some programming languages per-
form worse with long and precise regexes versus short and general ones. When
optimizing your expressions, always test them with real data to validate your per-
formance assumptions.

 You will gain telemetry speed by taking the time to rewrite your logging statements to be
regex-friendly. Not every organization has the option of using a structured logger.
If your organization is one of those, taking the time to rewrite your logging
statements to make them efficient to parse with regexes will gain you a lot of
telemetry performance.

 Well-specified regular expressions often perform better than lazy versions but are harder to
maintain. Regexes are not easy for humans to parse visually, and complex
expressions force even regex experts to stop to figure out what those expres-
sions are saying. This cognitive load reduces the number of people who will feel
comfortable maintaining a given regex.

Section 11.4: The project phases for optimizing your logging 
statements for regular expressions
Section 11.4 walked through how you could turn a program that had been using natu-
ral language logging statements into one that used easily regexed grammar in the
name of increasing telemetry throughput. This is the list of the major project phases:

1 Agree to a set of prepended strings.
2 Agree to a regexable grammar with your team.
3 Update your telemetry system to handle prepended and not-prepended log data.
4 Add your unified regexes for each prepend-string to your telemetry system.
5 Convert existing log emissions to the new grammar.
6 Once all log emissions are converted, remove support for the old grammar

from your telemetry system.

Chapter 12: The benefits of using a structured logger
Chapter 12 was about structured logging, and that chapter’s introduction included a
list of the benefits of structured logging. Use this list if you need to make the case for
converting to a structured logger in your projects:

 A well-written set of standards reduces your need to include regular expressions
in your Shipping-stage systems, which will make your telemetry system more
efficient overall. (See chapter 11 for the impact of regular-expression use.)

 Embracing structured logging techniques—mentioned in part in chapter 2 but
explored in depth in section 12.1—gives your Emitting stage far more options
regarding where it sends telemetry data and enables multiple streams of telem-
etry. Structured logging emitters allow sending data over novel channels like
TCP sockets directly, as discussed in chapter 13.
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 Taking a systematic look at logging standards gives you tools to fight the prob-
lem of index cardinality in your centralized logging and metrics data stores.
Chapter 14 is your deep dive into managing the cardinality problem.

 Structured logging formatters (more on this topic in section 12.1) are where
you can start making your telemetry tamper-evident, providing resistance to
attackers meddling with telemetry. Chapter 15 examines more of the topic of
making telemetry durable in the face of attack.

 By providing a systematic way to add context-related details (markup) as part of
the Emitting stage, telemetry in your Presentation stage will be far more
detailed about when and how an event happened, improving your ability to plug
leaks of regulated information. (See chapter 16 for more on cleaning up after
data spills.)

Section 13.1: In-memory networking and how it eases telemetry
Chapter 13 was about nonfile emitting techniques, and section 13.1 was about using
TCP and UDP transports for telemetry. When you are using Kubernetes or another
technology in which containers or virtual machines communicate over an in-memory
network, you can use simpler (and smaller) networking technologies. Using in-memory
networks provides several advantages:

 Your production software will have less code dedicated to telemetry system use,
making it easier to ship.

 For microservices, not having to use an expensive (and expansive) library like
Kafka makes for a much smaller deliverable binary.

 Not having to support a telemetry system application protocol means that you
have one fewer module to include in your production software—one fewer
module to keep track of dependencies, one fewer module to handle for security
vulnerabilities, and less overall code to contain bugs.

Section 14.2.1: Enforcing logging standards through development process
Chapter 14 was about cardinality, and section 14.2.1 was about using logging stan-
dards to contain cardinality problems. Moving to a new standard is a political process,
and you can ease the transition by making a few updates to your software development
practices:

 Create a mandatory code review step that reviews all logging statements to ensure that they
comply with the agreed-on schema. This option is your automation-free option; it
relies on humans to remember to do the code review. But you can do this
review immediately after deciding on your standard.

 Update your continuous integration (CI) jobs to check to make sure that new logging state-
ments use only fields from the allowed list. This option requires writing the automa-
tion for your CI pipeline but is more reliable than trusting code review and
humans. When builds that include not-allowed field names fail, people will get
the message.
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 Provide new logger interfaces that enforce schema, and move all your logging and metrics
emissions to the new interface. If you have a large codebase, it will take some time
to get all the changes smoked out, but this option is the most long-term-
maintainable option in this list.

Section 17.1.3: Recommendations on setting a tracing retention policy
Chapter 17 was about setting retention, aggregation, and sampling policies for telem-
etry. Section 17.1 was about retention policies, and it had two checklists. This one is
for distributed tracing, which benefits from sampling:

 Search performance is a key detail for any telemetry system, tracing included.
When search performance slows, people get cranky, and cranky people aren’t
having a good experience. Cranky users are a sign that you need to shorten
your retention period.

 The cost of offline backups matters as much as the cost of online storage, so
consider both costs in your calculations.

Section 17.1.4: Recommendations on setting a SIEM retention policy
SIEM systems have unique constraints on their telemetry and retention policies:

 Plan for a retention period measured in years.
 To contain costs, be highly selective in the telemetry you send to the SIEM.

Section 17.3: Considerations when picking a sampling rate
Distributed tracing (and to a lesser extent metrics) benefits from statistical sampling
as a way to keep telemetry costs down. Picking the right sample rate is tricky, and I pro-
vided a list of considerations:

 The more you understand a process, the lower the sample rate. You don’t need
to monitor it heavily if you understand it.

 The less you understand a process, the higher the sample rate. You need to build
trust (and understanding) by observing the process under many conditions.

 The more frequently a process occurs, the lower the sample rate. If your popu-
lation is large, you can get away with sample rates like 0.0001%. Imagine if Twit-
ter attempted to trace every single tweet.

 If you’ve identified a low-frequency error that you need to capture, increasing
the sample rate for a short time will help you catch it in the act.

 Production-system sample rates are allowed to be different from load-testing
and continuous-integration sample rates. Yes, sampling your load-testing and
pre-production environments lets you compare with production to see whether
those tools are valid tests.

 A sample rate of 100% gives you the highest-quality data for the most cost.
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B.2 Presentation-stage recommendations
Chapter 5 gave you several recommendations on what a good Presentation-stage sys-
tem needs to have for each of the telemetry styles in this book. Later chapters added
to those recommendations in certain circumstances. Here they are in one place for
easy reference.

Section 5.1.1: The features of a good metrics system
Metrics systems are the backbone of so many things—from SLO/SLA compliance
auditing to seeing if the latest deploy is performing right. You want a good one, which
will have these features:

 They allow a wide variety of users to create charts and graphs, enabling decision sup-
port or troubleshooting for any team that needs it.

 They have guided user interfaces for building the queries behind charts and graphs, so users
don’t have to memorize query syntax and can build complex queries easily.

 They have the ability to organize collections of charts and graphs, often called dash-
boards, to provide at-a-glance views of a decision point that a team needs.

 They have the ability to organize dashboards, making locating the right ones easy.
Otherwise, you get a big pile of dashboards that’s hard to work with.

 They allow the creation of ad hoc dashboards without saving, permitting a user to
investigate something immediately without having to clutter the dashboard list-
ings with a dashboard that will be used once.

Section 5.1.1: Considerations for building dashboards
Dashboards and graphs are how metrics presentation systems operate, so I gave you a
few tips on doing it right. That said, effective visualizations are a broad topic, and
there is a lot of work out there better than mine on how to do it right or beautifully.
Here are three points to keep in mind when building dashboards:

 Beware of how dark-/light-mode themes affect contrast. If the presentation system sup-
ports changing background colors, pick colors so that users with dark and light
backgrounds will be able to see the lines. Yellow pops on black but is nearly
invisible on white, for example, and dark blues show up beautifully on white but
disappear on black.

 For dashboards with multiple charts, put the most important charts at the top. People
don’t like to scroll.

 Beware of information density. If you have too many charts on a page, users who are
unfamiliar with what the dashboard is displaying won’t know what to look at.

Section 5.2.1: The features of a good centralized logging system
Centralized logging systems overlap in many ways with SIEM systems but are still the
largest physical telemetry systems in terms of space consumed. The presentation
system for your centralized logging has to support robust, complicated searches as
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people diagnose what happened in their production systems. To perform these duties
effectively, a good centralized logging system should have these abilities:

 Ability to search by field contents—All centralized logging systems I’ve interacted
with have the concept of fields and allow users to build queries by using those
fields. Use of field (searching for priority:"high" versus "high") content will
greatly speed the performance of searches.

 Ability to support complex search logic—Sometimes, all you need is a single string.
At other times, getting what you need requires a complex “If this, then that,
except for these other things, but do include this one thing” kind of statement.

 Ability to customize field display—Events in centralized logging systems may
include tens or even hundreds of fields, displaying each one in a table that
often shows information the searcher doesn’t care about. The ability to custom-
ize a result table to show specific fields allows the searcher to scan the table for
interesting events.

 Ability to save searches and table layouts for later—If you wanted to know something
enough to build a search and table layout, chances are good that you might
need it again. The ability to save the layout for later will save you work in the
future.

 Ability to share saved searches/layouts between users—Sharing searches among users
of the telemetry system allows sharing analysis tools to improve the organiza-
tion’s ability to respond to problems instead of relying on a few skilled searchers
to do the work.

 Ability to share URLs of searches and have the same search and layout come up—
Related to sharing saved searches, sharing improvised or ad hoc searches is crit-
ical during problem response. If the URL of the telemetry display system
doesn’t re-create the search, other responders will have to do more work to see
the interesting results. A good display system will ease this effort.

 Require a login to use—Centralized logging systems often contain company-
sensitive information and sometimes contain regulated information such as
personally identifiable information (PII). The absolute minimum requirement
is to require authentication and authorization before using the display system.
Chapter 15 covers this security topic in detail.

Section 5.3: Extending centralized logging to SIEM work
SIEM systems need a few extra features beyond what I specified in section 5.2.1 to sup-
port the mission of security teams:

 Ability to define alerts—Whereas centralized logging systems are about asking
questions you may not have thought to ask before, SIEM systems function as
part of a monitoring system. Therefore, the ability to create alerts to notify
humans of problems is a critical feature, whereas in centralized logging systems,
it is merely optional.
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 Ability to define alert priorities—Automatically triaging alarms by priority levels
allows responding humans to defer lower-priority alarms safely, leading to bet-
ter sleep and greater workplace enjoyment.

Section 7.2.2: Adding multitenancy
When your telemetry systems grow enough, you eventually need to isolate telemetry to
specific groups. This isolation is multitenancy. This list extends the feature list you
need for your presentation systems:

 Ability to define roles—The core of any access control system is the ability to
define roles or groups with permissions.

 Ability to use single-sign-on (SSO) frameworks such as SAML and OpenID Connect
(OIDC)—The Presentation system can hook into an existing authentication
framework maintained by the technical organization.

 Ability to restrict access to data sources by role—You can keep members of different
roles from accessing databases they shouldn’t, which reduces the cleanup area
of leaks of regulated data.

 Ability to assign users to multiple roles—Users should be able to serve in multiple
roles, such as engineering managers who need to be in several team roles.

 Ability to restrict access to dashboards by role—Not every dashboard is intended for
use by every member of the system, so limiting access applies to accessing dash-
boards, making for a less-crowded experience for everyone.

 Ability to restrict who can create or modify dashboards by role—View-only users can
find existing dashboards to be quite powerful, and restricting edit access
reduces dashboard sprawl.

B.3 Cardinality management
Cardinality is one of the most important constraints on telemetry storage, which is
why I spent chapter 14 on it and why it’s getting its own section in this appendix.

Section 4.2.4: Designing telemetry formats with cardinality in mind
Section 4.2.4 was the first time I gave specific advice for handling cardinality in telem-
etry. The list was mostly a pointer to chapter 14, but the summary bullets are useful.

 If your traffic is dominated by a single generator of telemetry, such as more
than half your overall events, your telemetry storage systems will likely behave
better if telemetry emitted by that generator is sent to a separate index not
shared with other telemetry (see section 14.2.2 for more on this method).
Telemetry will be efficiently stored for both the high-rate system and the rest,
and you will save money and space.

 If you have the ability to modify telemetry fields within the Shipping stage, tak-
ing steps to ensure different telemetry formats overlap on fields will make some
efficiencies (see section 14.2.1 for more on this method). Many logging formats
have a field for priority, if you can get all the priority fields into the same data-
type, you will save field counts.
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 If you have a telemetry generator that produces huge numbers of fields, per-
haps because it emits in an object-encoding format, sending that telemetry to a
single index will isolate the performance hit to that specific production system
(see section 14.2.2 for more).

 If your larger telemetry producing systems are software your organization devel-
ops, taking time to work with the Software Engineering teams for your organiza-
tion’s software to teach them how to optimize their telemetry systems can help
reduce field-sprawl. Chapter 12 and section 14.2.1 address this topic in detail.

Section 14.1: The symptoms of high cardinality
While not a list of recommendations, the following is a list of signs telling you that you
need to take steps to address a creeping cardinality problem in your telemetry systems:

 Slow search performance—This symptom is the one that most people notice,
because search performance is a primary feature of Presentation-stage systems.
Unfortunately, many things other than a cardinality problem can cause slow
search, but slow performance is a sign to look for that problem.

 Increased memory use for normal operations—Many storage systems keep indexes in
memory. As those indexes grow, so does memory use. Most of these storage sys-
tems allow reading indexes from disk if they won’t fit in memory, which greatly
slows search performance. Relational databases like MySQL are famous for this
pattern.

 Increased memory use for routine scheduled operations—Scheduled optimization pro-
cedures in some storage systems are affected by cardinality. InfluxDB (as of ver-
sion 2.0) performs compaction operations regularly, and high cardinality leads
to increased (often much increased) memory use compared with the rest of the
time.

 Decreases in ability to insert new data—As indexes get larger, they need to be
updated. Indexing efficiency varies by storage engine, and not all storage
engines are good at it. The overhead of handling inserting new values into the
indexes can, for some systems, scale up as the unique-value count increases,
which in turn reduces the ability to insert new data into the system.

 Increased time to allow querying after starting the database—Some storage systems
need to load indexes into memory before being able to query. The larger the
indexes are, the longer this process takes. Because stateful systems like these
may not be restarted often, this problem can surprise you at a bad time.

 Increases in consumed disk space that scales higher than your ingestion rate—Some
storage systems keep indexes in separate files from table data. Each time you
insert new data with a new unique value, the storage system needs to update the
table data with the new value, as well as update any indexes and their files. In
other systems, such as Elasticsearch, every new piece of data gets all fields, even
if those fields have a null value. Therefore, if you have 10,000 fields, and a new
event is inserted with 15 fields, that new event will have 9,985 nulled fields on it.
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Section 14.2.1: Healthy low-cardinality context-related telemetry
Context-related telemetry (markup) is incredibly important for telling people what
happened in their production systems. At the same time, context-related telemetry is
one of the chief drivers of cardinality. Although systems like Elasticsearch are gener-
ally fine with many unique values per field, time-series databases are incredibly sensi-
tive. Even so, some common context-related telemetry options are usually helpful for
metrics telemetry:

 Application name—In a production system running more than one application,
storing application names is quite viable. The total unique count is likely to be
small, and it will be used in nearly every query.

 Application version—Version is an interesting one when paired with retention
periods, because the total unique values in the field will be the number of
unique versions stored in the retention period. (For more on retention periods,
see chapter 17.) If you can afford the cardinality hit, application version will let
you track how metrics change versus their application version.

 Class name—This concept is more of a tracing concept, but if you have a metric_
name that is used in more than one class for more than one purpose, having the
class name as a metric will help you separate the two. Putting a class name on every
piece of metric is an antipattern, however because most metric_names likely don’t
need this disambiguation, and using class names will explode your cardinality. A
better pattern for separating two otherwise-identical metric_name uses is to use
different  metric_name values (class1_pdf_pages instead of class2_pdf_pages).

 Cluster—This word means different things to different organizations, but if you
need to correlate error rates or something equivalent to a given group of
machines/instances/nodes, cluster is quite useful.

 Hostname—For some organizations, especially those running on physical hard-
ware, hostname is a small enough set of unique values to be as useful as cluster
is for correlating behaviors. For other organizations, such as those running in a
public cloud and using lots of autoscaling systems, hostname can be highly
unique and a clear antipattern.

 Data center or region—If your organization is operating in more than one com-
puting facility, having a split for those facilities is useful, especially because this
value is not likely to have many unique values.

Section 14.2.2: How sharding affects cardinality management
Section 14.2 discusses a pair of storage-side techniques that are useful in the fight
against excessive cardinality. Section 14.3.2 talks about sharding, a common feature of
distributed databases to spread read and write loading. Sharding impacts cardinality
management in several ways, depending on the data store you are using:

 If you are using MongoDB for metrics-style telemetry, using the timestamp field
as your shard key will even out reads and writes across your servers.
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 If you are using KairosDB for metrics, that database handles the sharding setup
for Cassandra for you.

 If you are using MongoDB for a centralized logging system, using timestamp as
the shard key will still even out reads and writes across servers. Using a com-
pound shard key such as application plus year/month/day, however, will ensure
that all application writes on a given day will be written to the same node,
potentially reducing the cardinality in that shard versus truly even writes.

 If you are using Cassandra or MongoDB for a centralized logging system, using
application as your shard key is functionally equivalent to partitioning (see the
preceding section) but does not give you the benefit of horizontal scale.

Section 14.2.3: When to make cardinality someone else’s problem
Section 14.2.3 is about what happens when you decide to stop managing telemetry
yourself and pay someone else to do it by picking up a SaaS platform. This choice is
not an easy one to make, and such a fundamental shift in how everything works will
create disruption on your teams. I provided a list of challenges to consider when you
are planning your pitch to management to change your practices:

 The cost of employees maintaining your current system is often hard to assign a
monetary value to, which makes comparing the costs of a SaaS option harder.
When you’re costing out an external solution, those unhidden costs will feel
larger until you add the hidden people costs to the current solution.

 The cost of hardware or cloud-provider resources involved in your current sys-
tem is amortized with the rest of your infrastructure costs, so those costs feel
hidden. As with the people costs, if you don’t factor in the hosting costs of your
current system, you won’t get a true comparison with the external solution’s
cost.

 Moving from open source tools to a per-month-cost provider feels like giving
up. This reaction is an emotional one (the humans who make the decision are
emotional creatures; ignore this fact at your peril), but it’s no less of a barrier to
decision-making than costs are. Focus on the rational costs and business value
to get over the emotional reaction.

B.4 Telemetry safety and effects
Telemetry safety covers both protecting it from attackers who are looking to hide their
tracks and from spills of regulated data such as data related to finances, privacy, and
health (what I call toxic data). Chapter 15 and 16 covered both topics and provided
many recommendation lists on these two topics.

Chapter 15: The two principles of secure telemetry
Chapter 15 is about securing your telemetry systems against internal and external
attack. You need to follow two broad principles in planning your defenses:
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 Production systems should emit telemetry using write-only methods. If the production sys-
tems can read what they wrote—or, worse, delete what they wrote—you have a
vulnerability. Section 15.1 covers methods to make write-only telemetry a reality.

 Once emitted, all access to telemetry (including operator/root/admin access) must be trace-
able, and modifications must be made obvious. This method ensures that telemetry
that has already been emitted remains a true record of what happened in your
production systems and makes later tampering evident. Section 15.2 covers
these methods.

Section 15.1.1: Moving telemetry too fast to catch
The defense technique I talked about in section 15.1.1 was moving telemetry off the
production server/VM/instance/container/partition faster than an attacker could
change it. I gave two design goals for this process:

 Telemetry needs to be shipped continually. Some telemetry systems rely on a Cron or
Windows Scheduler task to copy log files from a server to a central NFS or
shared drive. The long lag between when telemetry is emitted and when the log
file leaves the box is a huge window for an attacker.

 Telemetry needs to have low lag between when the emission happens and when it is
shipped into the rest of the Shipping stage. Low lag further reduces the window an
attacker has to modify telemetry. Shipping continually is not enough; you need
to be shipping recently as well. If telemetry integrity is highly important for
your organization, creating an alarm for excessive shipping lag is called for.

Section 15.2.1: The three Linux Mandatory Access Control systems
Section 15.2.1 talked about using access control systems to create write-only places to
put log files. Windows is easy, but Linux has a complex set of options for creating a
write-only directory. I provided a list of the three mandatory ACL systems Linux has
available and advice on where they’re better used:

 POSIX ACL—This extension to the default ACL system allows Windows-like
specification of multiple permissions on a directory or file. It requires filesystem
support, however, and a specific mount option to enable it, Because remount-
ing is a simple operation and you can remount with different parameters,
removing POSIX ACL support from a volume is easy. Because ACL enforce-
ment can be turned off so easily, most security teams don’t consider POSIX
ACLs to be truly viable.

 SELinux—Security Enhanced Linux is a Mandatory Access Control (MAC) sys-
tem that is compiled into the Linux kernel. Unlike POSIX ACLs, SELinux can
be enforced everywhere. SELinux works by giving every file, object, process,
and everything else a label and defining how each label can interact with other
labels. This setup allows defining relationships such as permitting exampleapp
to access sockets created by logging_platform without having to specify file-level
permissions. Red Hat and SLES support SELinux out of the box.
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 AppArmor—This MAC system is also compiled into the Linux kernel. It was
developed after SELinux as a way to provide most of the benefits of SELinux,
but with a much easier method for managing the interface. When processes
launch, they are assigned an AppArmor profile. Because the UNIX philosophy
is to treat everything like a file, AppArmor profiles define which files each pro-
file can access and what operations the profile is allowed to perform on them.
Ubuntu and SLES support AppArmor out of the box.

Section 15.2.1: Places to use ACLs in a telemetry pipeline
Section 15.2 examined the Shipping stage and the areas an inside attacker can exploit
to modify telemetry. Two guiding principles are involved:

 All systems must support authentication, if possible, and be configured to
require it.

 The logs that show those authentication attempts must also be tracked (and
likely forked into your security team’s SIEM systems).

Section 15.2.3: How encryption and digital signatures support telemetry
This section had two recommendation lists. The first list defined how digital signa-
tures (a way to verify that something hasn’t been tampered with) help the goals of
telemetry:

 When you’re doing a security investigation, having hashed fields makes it far
easier to detect events that were tampered with.

 Because the job of the Shipping stage is to modify telemetry (see chapters 3, 4,
and 6), it is in a prime place to validate the hash coming from a production sys-
tem (or another Shipping-stage component) and alarm in real time if it catches
a hash failure.

The second list extended the first list to address the role of encryption in a telemetry
pipeline:

 Encrypting the originally emitted telemetry side by side with unencrypted
telemetry gives security-incident responders hints about what telemetry was
changed.

 Encryption provides a safer way to handle toxic information, such as privacy-
and health-related information.

 Compared with hashing (see the preceding subsection), digitally signing telem-
etry provides far stronger assurance that telemetry was last modified by a
trusted party.

 Digital signatures provide all the benefits of hashing by making changes tamper-
evident.



514 APPENDIX B Recommendation checklist reference

Section 15.2.3: How encryption and digital signatures make 
telemetry more fragile
Encryption is the best way to prove that telemetry hasn’t been tampered with, but it
also makes your telemetry more fragile—a trade-off that you have to make. If you want
to add encryption or digital signatures to your telemetry, here is a list of pain points to
consider before you embark on your project:

 If the writer of the structured logger silently recodes strings, such as ASCII to
UTF-8, any digital signature created by a formatter will break. Make sure that
the formatter and writer components of your structured logger are crystal-clear
with regard to string encoding.

 If your queues, streams, or other telemetry transport methods silently recode
strings, any digital signatures will break. Make sure that you build your system to
handle those string conversions.

 If your storage system silently recodes strings or changes the precision of floating-
point numbers, the last digital signature will break.

 Key expiration will break your telemetry system the same way that forgetting to
renew the SSL certificates on your website breaks your website. To avoid that
kind of outage, you need to create a system to safely renew signing/encryption
keys. Also, you need to communicate the key renewals to the validation stages
so that they know to expect the change. Using public key cryptography that
chains up to a certificate authority will help but moves the problem to expiring
certificate authorities.

 Any failure in distributing private and public keys will create at least a partial
telemetry outage. Build this failure case into your service offering (modify your
service-level agreements, to use the SRE term) so that your telemetry users have
a better understanding of your availability promise.

Section 16.1: The three types of toxic data
Toxic data is data subject to regulations mandating safe handling procedures, and
there are penalties for not getting those procedures correct. If your production sys-
tems handle toxic data, your telemetry systems can inadvertently contain it as well.
Here are the biggest categories of toxic data:

 Financial information—The first kind of toxic data has been treated as such by
financial institutions and their regulators for decades, though it took the Pay-
ment Card Industry to provide and enforce handling standards outside banks.
This standard is called the Payment Card Industry Data Security Standard
(PCI/DSS).

 Health information—The second type of toxic data to gain broad acceptance,
computerization of health records (and the ease of sharing that enables) drove
health-privacy regulation such as the American Health Insurance Portability
and Accountability Act (HIPAA). This information is also known as ePHI (elec-
tronic protected health information).



515APPENDIX B Recommendation checklist reference

 Personally identifiable information (PII)—PII is the third type of toxic data to gain
acceptance. The European Union’s GDPR was the first comprehensive regula-
tion to arrive, and it started a cascade of other regulations in states, provinces,
and nations across the world.

Section 16.1: The penalties for mishandling toxic data
Getting toxic data handling wrong will put your organization in legal jeopardy. The
impacts are variable, but I provided a list of possible penalties. Use this list to scare
people into taking this threat seriously:

 Denial of handling that sort of information for a period of time—Violate PCI/DSS
hard enough, and the Payment Card Industry will ban you from processing
credit and debit cards. This penalty puts nearly all young companies out of busi-
ness or shunts them into niche markets that accept only direct bank transfers
and cryptocurrencies.

 Great big fines—Regulators know that businesses understand money, so they
make violations hurt monetarily. To make matters even worse, such fines are
commonly made public information, so a major hit to the organization’s repu-
tation also happens.

 Publicly admitting that the violation happened—Mandatory disclosure laws force
violating organizations to notify the affected people or make a public disclosure
that the violation happened. No company enjoys admitting fault, which is why
regulations force this step as a way to make the “Don’t violate” lesson stick.

 Explicitly assigning civil liability—Regulation and laws make it clear that the par-
ties affected by the leaked information are entitled to sue for damages, possibly
as a class action.

 Increased regulatory scrutiny—Sometimes, violation means that regulators will be
looking at your organization extra-hard for the next several years to ensure that
no further violations happen. This extra attention often slows internal pro-
cesses due to the need for the regulator to approve the change, and it some-
times forces internal process changes to appease the regulator well after the
incident was resolved.

Section 16.3: What drives periodic reprocessing
Reprocessing is a telemetry procedure in which you have to rewrite all your telemetry
for some reason. This process can be driven by a few things:

 Your telemetry storage system changes its format, requiring you to reprocess to
update the storage format of telemetry already in the system.

 Your telemetry storage system changes its backup (offline) format, requiring you
to reprocess to ensure that your backups (or offline storage) can be restored.

 Your presentation systems change their expectations for how telemetry is format-
ted, requiring you to reprocess old telemetry to match the new expectations.
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Section 16.4: Why isolating telemetry helps you
Section 16.4 opened with a list of principles explaining why isolating your telemetry
ultimately reduces the impact of toxic data spills. Reducing impact reduces all the
bother of spill cleanup.

 Isolating telemetry streams that are at risk of containing toxic data (such as API
server events) from streams that definitely will not (such as networking hard-
ware telemetry) will save you money and time when you need to deal with a
spill.

 If your production systems handle toxic data, throwing all your centralized log-
ging into a single system is a clear antipattern, which maximizes your cleanup
zone.

 Use the access control list (ACL) features available in your Presentation-stage
systems to limit access to potentially toxic data containing telemetry to the
teams that specifically need that access. This policy reduces the impact of leaks.

 Because exceptions are among the highest-risk bits of telemetry for containing
toxic data, take time to engineer separate handling for your exceptions. This pol-
icy gives you far better capabilities for live redaction (redacting toxic data as part
of the emitting and shipping stages), allows you to have a different ACL for
reviewing exceptions, and lets you grant wider access to your application logging.

Section 16.4: Tips to avoid false-positive toxic-data detections
Section 16.4 ended with advice on writing your applications to avoid false-positive
detections when the telemetry is scanned with a toxic-data detector, such as the PII
detectors available from Amazon and Microsoft:

 Avoid using random 16-digit integers for things. Credit card numbers are 16 digits.
Although every 16-digit integer isn’t a valid credit card number, if you are ran-
domly generating enough of these integers, sheer probability will create num-
bers that pass the Luhn algorithm that defines the valid format of credit card
numbers. A million monkeys banging on typewriters can turn out Shakespeare
eventually, but a random-number generator can turn out a viable credit card
number far faster. Save yourself some trouble; make those integers 15 or 17 dig-
its instead. Better yet, make them hex and avoid integers entirely.

 Avoid using random 10- to 13-digit integers for things. Most phone numbers with
country codes are in this range (or U.S. phone numbers with area code). If the
first few numbers end up matching a country code, these integers can look like
phone numbers and get flagged as PII by detectors.

 Avoid using random 9-digit integers for things. These integers are the same length
as U.S. Social Security numbers. U.S. centrism in the tech industry means that
PII detectors care about this fact, even if you aren’t doing business in the
United States. As for credit cards, a validation algorithm of sorts exists, and a
random-number generator will make hits often enough to be annoying.
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 Emit account numbers, not account names. All too often, the account name is an
email address (or something that looks like an email address) and therefore
gets flagged by detectors. It’s better to emit telemetry in whatever the primary
key of your account table is because that’s probably a number. (Perhaps do it in
another base to avoid the integer problems.)

 Keep IP addresses in your networking, web server, API gateway, and load balancer logs,
and out of your application telemetry. IP addresses are now considered to be PII by
many privacy regimes. Store IP addresses somewhere and provide a way to look
them up in an admin portal easily, but keep the actual addresses out of your
telemetry. If you still need IP-address tracing, use a hash or other proxy value
instead.

 Avoid emitting geographical IP data (GeoIP) with your application telemetry. Several
libraries and services will return a city, state, country, and continent if given an
IP address. Paid services narrow GeoIP resolution even further, isolating IP
addresses to neighborhoods or even specific buildings. As a result, privacy regu-
lators consider such GeoIP data to be private data. These services are incredibly
useful in fraud and malicious-use investigations, as well as complying with
government-mandated sanctions against other countries, but putting this data
on every single piece of application telemetry needlessly exposes your organiza-
tion to legal risk. Keep GeoIP data to your web server and networking telemetry.

B.5 Legal topics
Chapter 18 was unique in this book, because it talked about something that gets little
coverage in technical books: how to work with lawyers. This chapter had two lists that
need to be repeated.

Section 18.2: Questions to ask when assessing a telemetry 
system to handle legal hold orders
The first step in responding to a potential legal matter is when your organization’s
legal department issues a legal hold on records that might be relevant to whatever legal
matter is brewing. This hold can include your telemetry systems. You will be much
happier with the whole process if you have already thought about what happens
during this process. Here are the questions you should ask yourself as you assess
telemetry design:

 If we get asked to save a part of our telemetry, is it easier to save that piece or to save every-
thing from that time? Knowing whether it’s easier to store partial datasets or full
datasets before you need to think about the issue will save everyone effort.

 How will we shield the held data from routine redactions and reprocessing? You need to
be able to prevent changes to the legal-hold data. If your current systems make
that task hard, spend time easing it.
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 How will we protect our unredacted/unreprocessed legal-hold data from our usual custom-
ers? If you need to perform redactions, you need to keep the unredacted telem-
etry visible only to the lawyers. If the legal matter proceeds to discovery, the
lawyers will perform any redactions. Also, if you need to run a second set of sys-
tems for the held data—systems that need to be exempted from your organiza-
tion’s patch policies—you can isolate access to the potentially vulnerable
systems to the lawyers involved and the minimum number of telemetry system
operators needed to keep the systems running.

 How will we allow our lawyers to review our saved data? Unless the hold order is for
everything, chances are high that your organization’s lawyers will want to make
sure you’re saving the right things. Let them. You will need to make this check
anyway when ECA starts (section 18.1).

 If the legal hold requires us to hold telemetry that is still being generated, what changes do
we need to make to ensure that such telemetry is preserved? Not all requests are solely
for historic information; some holds may require you to hold some or all of
your currently generated telemetry. Knowing what changes you need to make
to support preserving live telemetry will make writing the changes much easier
if you get asked to do so.

 Is our oldest telemetry data viewable in our current software versions? If part of your
retention policy involves storing telemetry offline for a period of time, you need
to know early whether your oldest telemetry can be restored into the current
system or needs a second system for the restore. Setting up a second system
requires resources, so knowing beforehand how much to request will save every-
one time and worry.

 If we have to upgrade our storage software during the hold period, will we need to avoid
upgrading the legal hold systems? Hold orders can last years as lawsuits grind their
way through the process. Knowing whether it is safe to upgrade the resources
involved in the hold order will help you stay compliant with whatever regula-
tions you’re subjected to. If upgrading is not safe, knowing early allows you to
put exceptions in your patching and vulnerability management policies specifi-
cally for this edge case.

Section 18.4: How to work with lawyers
Working with lawyers can be scary if you’ve never done it before! Remember that lawyers
are different kinds of technicians. Better, you can have your organization’s lawyers talk
to the extra-scary lawyers for you. If you are required to work with lawyers, keep these
points in mind:

 Your own organization’s lawyers speak lawyer better than you do. If you’re uncertain
what the trial team is talking about, ask your organization’s lawyers to clarify.
(This tip applies to interpreting happenings in the matter, by the way, even if
the events don’t affect you.) Unlike outside counsel, your organization’s lawyers
are likely salaried and not billing by the minute.
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 Cost management is a key responsibility of your organization’s lawyers. Outside counsel
costs money; they charge for every interaction and find ways to bill for any time
when their attention is on your case. If you think that a request is too broad
(that is, possibly too expensive), ask your organization’s lawyers to advise.
Advice is what they’re there to provide.

 Outside trial lawyers usually come with technical specialists. Use them. If you’re not
clear about what a request means, even after asking your own lawyers, the trial
lawyers’ technical people likely can translate the request from lawyer to engi-
neer. Their billing rate is far lower than that of actual lawyers too.

 If you have to push back on technical details, do that with the technical specialists. The
outside team’s specialists are much better versed in discovery procedure than
you are, so they are valuable for determining what is feasible. They’re also
much less likely to be “ask for the moon” types.
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appendix C
Exercise answers

This appendix contains the answers to exercises that have a correct answer. Open-
ended exercises are omitted.

EXERCISE 2.1
The correct answer is C. The docker logs command reviews output sent to the
standard out.

EXERCISE 2.2
The correct associations are

 Logger —> Entry point into the structured logger
 Formatter —> Rewrites telemetry to fit the Shipping stage
 Writer —> Delivers telemetry to the Shipping stage

EXERCISE 2.3
The correct answer is B; both protocols emit over UDP. Syslog can often be config-
ured to use TCP, but I don’t talk about that topic in this book.

EXERCISE 3.1
The correct answer is B: shipping through a queue or stream. Apache Kafka made
streaming famous.

EXERCISE 3.2
Looking to the future and working to address problems before they arise is the sort
of work that can get you promoted.

EXERCISE 4.1
The correct answer is A: log files. Log files were among the first types of telemetry
created, and files are ubiquitous. Off-the-shelf software often has the option of
using the system logger, but log files are the first choice of most off-the-shelf and
open source software.
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EXERCISE 11.1
Several answers will match correctly. Here is one:

^\[(?<log_level>\w+?)\] (?<action>.+?) to APPID (?<app_id>\d+?), response 

➥ (?<response_code>\d{3})$

Remember that +? means a lazy match. Watch what happens to the number of steps
when you remove the ? characters. Use the regex debugger to watch how matching
flow changes between the greedy and nongreedy versions.

EXERCISE 11.3
Multiple answers will work. Here is one example

Converted type:pdf size:0.192 time:0.89
Signed type:pdf size:0.192 time:1.2
Successful Upload type:pdf size:192 time:0.019

that matches the regular expression:

^(?<action>.+?) type:(?<file_type>\w{0,6}) size:(?<file_size>[\d.]+?) 

➥ time:(?<op_time>[\d.]+)$

The ^(?<action>.*+?) expression matches the first everything at the beginning of
the string before “ type:”. The type:(?<file_type>\w{0,6}) expression matches
file types, which are allowed to be zero to six characters. The (?<file_size>[\d.]+?)
expression matches numbers with a single decimal, such as 12.3.

EXERCISE 12.1
There are several ways to answer this question, but the broad strokes of one answer are

1 Remove the __add_context function from the main file (or make it return an
empty hash).

2 Create a new file named addcontext.py.
3 Define a class in addcontext.py named AddContext.
4 In the main file, add from addcontext import (AddContext), which puts our

class (and the context-adding features) back into scope.
5 In the processors list, add AddContext before the final processor.

The Python in addcontext.py doesn’t have to be that complex and in fact could be
mostly the removed code from the __add_context function:

import socket
import os

__release__ = "deadbeef"
__commit__  = "abcd1234"

class AddContext(object):
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  def __init__(self):                    
    self.context = {                        
      'hostname': socket.gethostname(),    
      'pid': os.getpid(),                
      'release': __release__,              
      'commit': __commit__                  
    }
  
  def __call__(self, logger, name, event_dict):
    return {**event_dict, **self.context}  

EXERCISE 13.1
The correct associations are

 TCP
– Connection-oriented, tracks connection state
– Will retry if the network glitches
– The basis of application protocols such as AQMP and Kafka
– Relies on the operating system to handle retries

 UDP
– Connectionless: fire and forget
– Useful on fully private in-memory networks
– The basis of server protocols such as Syslog and SNMP
– Relies on the application to handle retries

HTTP/3 is based on UDP and deliberately moves TCP concepts such as flow control,
transmission window sizing, and retransmits into the browser and away from the base
operating system.

EXERCISE 13.2
The correct answer is D: a container that serves a utility purpose, such as a proxy,
relay, or local service endpoint for all containers in a cluster node.

 A is an example of the direct-to-standard-out telemetry method because containers
emit logs to stdout and rely on something on the cluster server to reship.

 B is an example use of the sidecar pattern for logs, not the definition of the sidecar
pattern.

 C is an example of a conventional network service and could exist outside Kuber-
netes or service mesh environments.

EXERCISE 13.3
The correct constraints are

 The cloud provider’s opinionated storage system for telemetry emitted through
stdout

 Lack of system-logger support

Complete reliance on emitting telemetry through stdout is incorrect because each cloud pro-
vider captures stdout for display in its opinionated storage.

Defining context in 
__init__ means we have to 
run this code only once.

Returns the merged hash of context 
and the keys already added
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 Lack of queue or stream support is incorrect because each cloud provider has some
native queue available for programmers to use.

 The size limit of jobs in the cloud provider’s queues is not a constraint of the FaaS system;
it is a constraint on the native queues provided by the cloud provider.

EXERCISE 14.1
The correct answer is A: host.

 Dropping host (A) changes cardinality to 723,060 (309 * 78 * 15 * 2). This envi-
ronment is Kubernetes, and host is rarely used in Kubernetes environments,
making it a good piece of context to lose.

 Dropping pod (B) would change cardinality to 139,050 (309 * 19 * 15 * 2),
which is quite nice. But pod is a key piece of context-related telemetry in Kuber-
netes environments, so losing it also drops a lot of key context.

 Dropping service (C) would change cardinality to 915,876 (309 * 19 * 78 * 2),
but service tells you what code generated the metric, so it is highly useful.

 Dropping environment (D) would change cardinality to 6,869,070, which is
above the required 1,000,000 threshold.

EXERCISE 14.2
The correct answers are

 Increased disk use—As indexes grow, so does the disk to contain them.
 Increased memory use—Most databases hold indexes in memory. As those indexes

grow, so does the memory use of the database. Also, certain databases spike
memory use during maintenance activities.

 Increased storage I/O—As cardinality increases, the database has to store more data
per index. Larger indexes manifest as high I/O during query operations, as car-
dinality is managed during query and high I/O during maintenance operations.

 Increased search times—This symptom is the most visible consequence of cardinality!
 Decreased ingestion rates—As indexes grow more complex, the overhead of insert-

ing data becomes bigger with each new event, slowing performance.

The incorrect answers are wrong because

 Increased CPU use—The impact here is slight and dwarfed by the other impacts.
 Increased query rates—This impact is caused more by sharding a database (Elastic-

search, Cassandra, and InfluxDB) than by increasing cardinality.
 Decreased CPU use—If the CPU is waiting for storage to come back with index

contents, those cycles can be used for other queries.

EXERCISE 14.3
The correct answers are

 Process ID—Identifies a specific execution; metrics systems are all about
generalities. Process ID is also highly unique, making it a poor choice for
metrics telemetry.
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 Account ID—Unless the production systems have few accounts, this detail will
have too many unique values to make it a good fit for a metrics system.

 Function or class name—This attribute is useful only if you’re using the same
metric name in different places and need disambiguation. As a general key, it
has too many unique values to be useful in a metrics system. On the other hand,
it highly useful in a centralized logging system!

EXERCISE 15.3
The correct answers are

 Production systems should emit using write-only methods.
 Once emitted, all access to telemetry must be traceable, and modifications must

be made obvious

EXERCISE 16.1
The correct answer is A: engineers logging parameters as part of normal logging. A is
definitely one leak, and I’ve seen it happen more than once, but it is not one of the
top two.

EXERCISE 17.1
The correct associations are

 Centralized logging = Offline archives that can quickly be brought online
 Metrics = Aggregation
 Distributed tracing = Sampling
 SIEM = Being highly selective about what is stored

EXERCISE 17.3
The correct order is

 SIEM
 Metrics
 Distributed tracing
 Centralized logging
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