
M A N N I N G

Tomasz Lelek
Jon Skeet

How to make good programming decisions

Core concepts

Top tips in this book

Top tip Page number Section

Always validate your assumptions about the code performance, depending on whether it
is executed in the single or multithreaded context.

6 1.2

We can calculate the cost of coordination within teams using Amdahl’s law. 22 2.2.1

It’s hard to use functional exception handling when mixing it with an object-oriented
approach. It’s even more complicated if the object-oriented code does not declare what
exceptions it may throw.

69 3.6.2

We can leverage the findings from the Pareto principle to find the code that brings the
most value to our consumers and focus on optimizing that part.

105 5.2.1

Encapsulating the downstream components settings from our clients allows us to evolve
without breaking the compatibility of our APIs.

145 6.5

Iterating on date and time requirements with product owners, using concrete examples
with as many corner cases as you can think of, makes implementing those requirements
much simpler.

169 7.2

Moving computations to data allows us to design big data processing that otherwise
would be very slow or not even feasible.

205 8.1.1

It’s essential to pick a library with a similar or the exact concurrency model as your appli-
cation. The scalability and performance of your software will benefit.

238 9.2.1

It is crucial to understand whether or not operations in our system are idempotent. The
more idempotent operations we have, the more resilient the system we can design.

263 10.1.3

It’s often possible to tweak the consistency versus the availability of systems we use. So
it’s crucial to understand the consequences of those decisions.

291 11.3.1

Designing the versioning strategy for a network API from the start and documenting it
publicly and clearly can give customers confidence and help them make their own ver-
sioning decisions.

331 12.3.2

Sometimes it’s wiser to develop a do-it-yourself (DIY) solution with only needed function-
ality than using a heavy library that provides a required functionality but also a lot of
other functions that we don’t need.

362 13.2.1

Software Mistakes and Tradeoffs

Software Mistakes
and Tradeoffs

HOW TO MAKE GOOD PROGRAMMING DECISIONS

TOMASZ LELEK

JON SKEET

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editors: Doug Rudder
20 Baldwin Road Technical development editor: Jeanne Boyarsky
PO Box 761 Review editor: Mihaela Batinic
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Christian Berk
Proofreader: Jason Everett

Technical proofreader: Jean-François Morin
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617299209
Printed in the United States of America

www.manning.com

 Tomasz dedicates this book to all of the open source community. Most of the tools and
architectures emerge from your devotion and contributions. You are the reason why

software is progressing and meeting today’s world demands.

Jon dedicates the chapters he authored to every software engineer who has ever been
utterly perplexed by a problem caused by either time zones or diamond dependencies.

(That covers a pretty large proportion of the developer population. . . .)

brief contents
1 ■ Introduction 1

2 ■ Code duplication is not always bad: Code
duplication vs. flexibility 16

3 ■ Exceptions vs. other patterns of handling
errors in your code 42

4 ■ Balancing flexibility and complexity 75

5 ■ Premature optimization vs. optimizing the hot path:
Decisions that impact code performance 97

6 ■ Simplicity vs. cost of maintenance for your API 126

7 ■ Working effectively with date and time data 152

8 ■ Leveraging data locality and memory
of your machines 203

9 ■ Third-party libraries: Libraries you use
become your code 231

10 ■ Consistency and atomicity in distributed systems 259

11 ■ Delivery semantics in distributed systems 280

12 ■ Managing versioning and compatibility 304

13 ■ Keeping up to date with trends vs. cost of maintenance
of your code 354
vii

contents
preface xvii
acknowledgments xix
about this book xxi
about the authors xxv
about the cover illustration xxvi

1 Introduction 1

1.1 Consequences of every decision and pattern 2
Unit testing decisions 3 ■ Proportions of unit and
integration tests 4

1.2 Code design patterns and why they do not always work 6
Measuring our code 10

1.3 Architecture design patterns and why they do not
always work 11
Scalability and elasticity 12 ■ Development speed 13
Complexity of microservices 14
ix

CONTENTSx
2 Code duplication is not always bad: Code duplication vs.
flexibility 16
2.1 Common code between codebases and duplication 17

Adding a new business requirement that requires code
duplication 18 ■ Implementing the new business requirement 19
Evaluating the result 20

2.2 Libraries and sharing code between codebases 21
Evaluating the tradeoffs and disadvantages of shared libraries 22
Creating a shared library 23

2.3 Code extraction to a separate microservice 24
Looking at the tradeoffs and disadvantages of a separate service 27
Conclusions about separate service 30

2.4 Improving loose coupling by code duplication 30
2.5 An API design with inheritance to reduce duplication 34

Extracting a base request handler 35 ■ Looking at inheritance and
tight coupling 38 ■ Looking at the tradeoffs between inheritance
and composition 39 ■ Looking at inherent and incidental
duplication 40

3 Exceptions vs. other patterns of handling errors in your code 42
3.1 Hierarchy of exceptions 43

Catch-all vs. a more granular approach to handling errors 45

3.2 Best patterns to handle exceptions in the code that
you own 48
Handling checked exceptions in a public API 48 ■ Handling
unchecked exceptions in a public API 49

3.3 Anti-patterns in exception handling 51
Closing resources in case of an error 52 ■ Anti-pattern of using
exceptions to control application flow 54

3.4 Exceptions from third-party libraries 55
3.5 Exceptions in multithread environments 58

Exceptions in an async workflow with a promise API 61

3.6 Functional approach to handling errors with Try 63
Using Try in production code 67 ■ Mixing Try with code that
throws an exception 69

3.7 Performance comparison of exception-handling code 70

CONTENTS xi
4 Balancing flexibility and complexity 75
4.1 A robust but not extensible API 76

Designing a new component 76 ■ Starting with the most
straightforward code 77

4.2 Allowing clients to provide their own metrics
framework 80

4.3 Providing extensibility of your APIs via hooks 83
Guarding against unpredictable usage of the hooks API 85
Performance impact of the hook API 87

4.4 Providing extensibility of your APIs via listeners 90
Using listeners vs. hooks 90 ■ Immutability of our design 92

4.5 Flexibility analysis of an API vs. the cost of
maintenance 94

5 Premature optimization vs. optimizing the hot path:
Decisions that impact code performance 97

5.1 When premature optimization is evil 98
Creating accounts processing pipeline 98 ■ Optimizing processing
based on false assumptions 100 ■ Benchmarking performance
optimization 101

5.2 Hot paths in your code 103
Understanding the Pareto principle in the context of software
systems 105 ■ Configuring the number of concurrent users
(threads) for a given SLA 106

5.3 A word service with a potential hot path 107
Getting the word of the day 107 ■ Validating if the word
exists 109 ■ Exposing the WordsService using HTTP
service 110

5.4 Hot path detection in your code 111
Creating API performance tests using Gatling 111 ■ Measuring
code paths using MetricRegistry 114

5.5 Improvements for hot path performance 117
Creating JMH microbenchmark for the existing solution 117
Optimizing word exists using a cache 118 ■ Modifying
performance tests to have more input words 124

CONTENTSxii
6 Simplicity vs. cost of maintenance for your API 126
6.1 A base library used by other tools 127

Creating a cloud service client 128 ■ Exploring authentication
strategies 129 ■ Understanding the configuration
mechanism 130

6.2 Directly exposing settings of a dependent library 134
Configuring the batch tool 136

6.3 A tool that is abstracting settings of a dependent
library 138
Configuring the streaming tool 139

6.4 Adding new setting for the cloud client library 141
Adding a new setting to the batch tool 142 ■ Adding a new setting
to the streaming tool 143 ■ Comparing both solutions for UX
friendliness and maintainability 144

6.5 Deprecating/removing a setting in the cloud client
library 145
Removing a setting from the batch tool 146 ■ Removing a setting
from the streaming tool 148 ■ Comparing both solutions for UX
friendliness and maintainability 149

7 Working effectively with date and time data 152

7.1 Concepts in date and time information 153
Machine time: Instants, epochs, and durations 154 ■ Civil time:
Calendar systems, dates, times, and periods 157 ■ Time zones,
UTC, and offsets from UTC 163 ■ Date and time concepts that
hurt my head 167

7.2 Preparing to work with date and time information 169
Limiting your scope 169 ■ Clarifying date and time
requirements 171 ■ Using the right libraries or packages 176

7.3 Implementing date and time code 178
Applying concepts consistently 178 ■ Improving testability by
avoiding defaults 180 ■ Representing date and time values in
text 186 ■ Explaining code with comments 193

7.4 Corner cases to specify and test 195
Calendar arithmetic 195 ■ Time zone transitions at
midnight 196 ■ Handling ambiguous or skipped times 197
Working with evolving time zone data 197

CONTENTS xiii
8 Leveraging data locality and memory of your machines 203
8.1 What is data locality? 204

Moving computations to data 205 ■ Scaling processing using
data locality 206

8.2 Data partitioning and splitting data 207
Offline big data partitioning 208 ■ Partitioning vs.
sharding 210 ■ Partitioning algorithms 210

8.3 Join big data sets from multiple partitions 213
Joining data within the same physical machine 214
Joining that requires data movement 215 ■ Optimizing
join leveraging broadcasting 217

8.4 Data processing: Memory vs. disk 218
Using disk-based processing 218 ■ Why do we need
MapReduce? 219 ■ Calculating access times 222
RAM-based processing 223

8.5 Implement joins using Apache Spark 224
Implementing a join without broadcast 226 ■ Implementing
a join with broadcast 228

9 Third-party libraries: Libraries you use become your code 231
9.1 Importing a library and taking full responsibility

for its settings: Beware of the defaults 232
9.2 Concurrency models and scalability 236

Using async and sync APIs 238 ■ Distributed scalability 240

9.3 Testability 242
Testing library 243 ■ Testing with fakes (test double) and
mocks 245 ■ Integration testing toolkit 249

9.4 Dependencies of third-party libraries 250
Avoiding version conflicts 251 ■ Too many dependencies 252

9.5 Choosing and maintaining third-party dependencies 253
First impressions 254 ■ Different approaches to reusing code 254
Vendor lock-in 255 ■ Licensing 255 ■ Libraries vs. frameworks 256
Security and updates 256 ■ Decision checklist 257

10 Consistency and atomicity in distributed systems 259
10.1 At-least-once delivery of data sources 260

Traffic between one-node services 260 ■ Retrying an application’s
call 261 ■ Producing data and idempotency 263 ■ Understanding
Command Query Responsibility Segregation (CQRS) 265

CONTENTSxiv
10.2 A naive implementation of a deduplication library 267
10.3 Common mistakes when implementing deduplication in

distributed systems 270
One node context 270 ■ Multiple nodes context 272

10.4 Making your logic atomic to prevent race conditions 274

11 Delivery semantics in distributed systems 280
11.1 Architecture of event-driven applications 281
11.2 Producer and consumer applications based

on Apache Kafka 285
Looking at the Kafka consumer side 286 ■ Understanding the
Kafka brokers setup 287

11.3 The producer logic 288
Choosing consistency vs. availability for the producer 291

11.4 Consumer code and different delivery semantics 293
Committing a consumer manually 296 ■ Restarting from the
earliest or latest offsets 297 ■ (Effectively) exactly-once
semantic 300

11.5 Leveraging delivery guarantees to provide
fault tolerance 301

12 Managing versioning and compatibility 304
12.1 Versioning in the abstract 305

Properties of versions 305 ■ Backward and forward
compatibility 306 ■ Semantic versioning 307
Marketing versions 310

12.2 Versioning for libraries 310
Source, binary, and semantic compatibility 311 ■ Dependency
graphs and diamond dependencies 319 ■ Techniques for
handling breaking changes 324 ■ Managing internal-only
libraries 328

12.3 Versioning for network APIs 329
The context of network API calls 329 ■ Customer-friendly
clarity 331 ■ Common versioning strategies 332
Further versioning considerations 338

12.4 Versioning for data storage 341
A brief introduction to Protocol Buffers 341 ■ What is a breaking
change? 343 ■ Migrating data within a storage system 344

CONTENTS xv
Expecting the unexpected 347 ■ Separating API and storage
representations 349 ■ Evaluating storage formats 352

13 Keeping up to date with trends vs. cost of maintenance
of your code 354

13.1 When to use dependency injection frameworks 355
Do-it-yourself (DIY) dependency injection 356 ■ Using a
dependency injection framework 358

13.2 When to use reactive programming 361
Creating single-threaded, blocking processing 362 ■ Using
CompletableFuture 364 ■ Implementing a reactive solution 366

13.3 When to use functional programming 368
Creating functional code in a nonfunctional language 369
Tail recursion optimization 372 ■ Leveraging immutability 373

13.4 Using lazy vs. eager evaluation 374

index 379

preface
The work of everyone involved in delivering software is full of tradeoffs. We tend to
operate with limited time, limited budgets, and limited knowledge. Therefore, today’s
decisions about the software we are creating will have consequences in the future,
such as maintenance cost, inflexibility of our software when it needs to change, lim-
ited performance when we need to scale, and many others. It is important to note that
every decision is made in a specific context. It’s easy to judge past decisions without
complete knowledge about the context in which they were made. However, the more
knowledge and the more deep analysis we do at decision time, the more aware we can
be about the tradeoffs our decisions carry.

 Throughout our professional careers, we were involved in and observed many soft-
ware decisions and learned what tradeoffs they impose. Along the way, Tomasz started
writing a personal decision log of the circumstances in which a specific decision was
made. What was its context? What were the alternatives? How did we evaluate a partic-
ular solution? And finally, how did it end up? Did we anticipate all possible tradeoffs
of a specific solution? Or were we surprised by something? It turns out that this per-
sonal list of lessons learned actually reflected problems and decisions that need to be
tackled by many engineers out there. At this point, Tomasz decided that this was an
excellent time to share that knowledge with the world. This is how the idea for this
book was born.

 We want to share our lessons learned from the experience with various software
systems: monoliths, microservices, big data processing, libraries, and many more. This
book deeply analyzes decisions, tradeoffs, and mistakes from real-life production systems.
xvii

PREFACExviii
By presenting those patterns, mistakes, and lessons, we hope to widen your context
and equip you with better tools which will help you make better decisions in your
day-to-day job. Seeing potential problems and limitations of a design upfront can save
you a lot of time and money in the future. We won’t try to give you definite answers.
When the problem is complex, it can often be solved with more than one approach.
We will present some of those challenging problems and ask questions without defi-
nite answers. Each solution will have its pros and cons, and we will analyze those. Every
solution will result in its tradeoffs, and it will be up to you to decide which one suits
your context the best.

acknowledgments
Writing a book involves a lot of effort. However, thanks to Manning, it was a pleasure
to work on it.

 First and foremost, I want to thank my wife, Małgorzata. You’ve always supported
me and listened to my ideas and problems. Because I have you, I could focus on the
book.

 Next, I’d like to acknowledge my editor at Manning, Doug Rudder. Thank you for
working with me. Your comments and feedback were invaluable. I was able to progress
my writing skills to the next level because of your involvement. Thanks as well to all
the other folks at Manning who worked with me on the production and promotion of
the book. It was truly a team effort. Another big thank you to the rest of the staff at
Manning: my production editor, Deirdre Hiam; my copyeditor, Christian Berk; my
reviewing editor, Mihaela Batinic; and my proofreader, Jason Everett.

 I’d also like to thank the reviewers who took the time to read my manuscript at var-
ious stages during its development and who provided invaluable feedback—your sug-
gestions helped make this a better book: Alex Saez, Alexander Weiher, Andres Sacco,
Andrew Eleneski, Andy Kirsch, Conor Redmond, Cosimo Atanasi, Dave Corun,
George Thomas, Gilles Iachelini, Gregory Varghese, Hugo Cruz, Johannes Verwijnen,
John Guthrie, John Henry Galino, Johnny Slos, Maksym Prokhorenko, Marc-Oliver
Scheele, Nelson González, Oliver Korten, Paolo Brunasti, Rafael Avila Martinez,
Rajesh Mohanan, Robert Trausmuth, Roberto Casadei, Sau Fai Fong, Shawn Lam,
Spencer Marks, Vasile Boris, Vincent Delcoigne, Vitosh Doynov, Walter Stoneburner,
and Will Price.
xix

ACKNOWLEDGMENTSxx
 Special thanks to Jeanne Boyarsky, development editor, for her careful review of
the content from a technical perspective.

 This book is a consequence of all the professional decisions I made and the people
I met throughout my career. There are many people who shaped me as a software
engineer and positively influenced my career. I have had the luck to meet and work
with such people from the beginning of my career. I would like to thank all my col-
leagues from Schibsted, Allegro, DataStax, and Dremio. Some of them who deserve
special thanks are

 Paweł Wołoszyn—For being a great university lecturer and teaching me that pro-
gramming can significantly impact our world

 Andrzej Grzesik—For encouraging me toward very ambitious goals
 Mateusz Kwaśniewski—For igniting an infinite spark of hunger for learning
 Łukasz Bancerowski—For giving me the initial directions and shaping my future

JVM career
 Jarosław Pałka—For providing trust and space for experiments and learning
 Alexandre Dutra—For leading by example and showing the highest possible

work ethic

—Tomasz Lelek

I thank everyone I’ve bored with time zone trivia over the years, particularly my long-
suffering family. My colleagues at Google have been essential to my thinking on the
aspects I’ve written about in this book, along with open source collaborators on Noda
Time and other projects.

 —Jon Skeet

about this book
Software Mistakes and Tradeoffs: How to make good programming decisions was written as a
list of real-world problems you may encounter in your production systems. It tries to
analyze every situation in a variety of contexts and consider all its tradeoffs. It also
presents some non-obvious mistakes that may significantly impact your systems from
various perspectives (not only correctness).

Who should read this book
Software Mistakes and Tradeoffs: How to make good programming decisions is for every soft-
ware engineer who wants to understand tradeoffs and patterns used in production sys-
tems. It also teaches how to avoid nonobvious mistakes. The book begins with lower-
level topics that can also be very valuable for software engineers starting their careers.
Then, the content progresses toward more advanced topics that even the most
advanced readers will benefit from. The primary language in which examples, pat-
terns, and code samples are created is Java, but the decisions themselves are not spe-
cific to Java.

How this book is organized
The book contains 13 chapters. The first one provides an overview of the tradeoff
analysis used in this book. The rest of the chapters are relatively independent of each
other and focus on different aspects of software engineering. To get the most benefit
from this book, we recommend reading it in the original order. However, if you are
xxi

ABOUT THIS BOOKxxii
interested in a specific aspect of software engineering, you can jump ahead to a partic-
ular chapter:

 Chapter 1 presents the approach this book will take in analyzing tradeoffs in a
specific context. It shows example tradeoffs at the software architecture, code,
and quality assurance levels.

 Chapter 2 demonstrates that code duplication is not always anti-pattern. It con-
siders different architectures and analyzes how they influence the loose cou-
pling of our systems. Finally, it uses Amdhal’s law to calculate the cost of
coordination within and between teams.

 Chapter 3 describes strategies for handling abnormal situations in your code. It
shows a use case for both checked and unchecked exceptions. It also demon-
strates how to develop exception strategies for public APIs (libraries). Finally, it
considers tradeoffs between object and functional programming approaches
for handling errors.

 Chapter 4 teaches how to balance the flexibility versus complexity of our code
and API. It shows that, often, the evolution of our code in one of the directions
impacts the other direction.

 Chapter 5 teaches that premature optimization is not always evil. With proper
tools and defined SLA, we can detect the hot path and optimize it. Further-
more, it demonstrates how leveraging the Pareto Principle can help in focusing
optimization efforts on a system’s appropriate place.

 Chapter 6 teaches how to design UX-friendly APIs. It shows that UX friendli-
ness is a characteristic of not only UI interfaces but also programming inter-
faces, such as REST APIs, command-line tools, and others. However, it also
shows that, sometimes, for UX friendliness, we need to pay with increased main-
tenance cost.

 Chapter 7 addresses the thorny issues associated with handling date and time
information. Considering how much of our data includes at least some date
and time elements, such as a date of birth or a log timestamp, there’s a lot of
opportunity for things to go wrong. It’s a tractable domain, but it does need
special attention.

 Chapter 8 teaches why data locality is crucial in big data processing. It also
demonstrates the need for partitioning algorithms that help with distributing
the data and traffic.

 Chapter 9 shows that the libraries we use become our code. It demonstrates dif-
ferent problems and tradeoffs we need to consider when importing a third-
party library to our codebase. Finally, it tries to answer whether we should
import a library or try to reimplement small parts of it.

 Chapter 10 focuses on a tradeoff between consistency and atomicity in distrib-
uted systems. It analyzes possible race conditions in a distributed system and
shows how idempotency influences the way we design our systems.

ABOUT THIS BOOK xxiii
 Chapter 11 explains how to deal with delivery semantics in distributed systems.
It helps you understand the at-least-once, at-most-once, and effectively exactly-
once semantics.

 Chapter 12 considers how software, APIs, and stored data all evolve over time as
well as how they can do so while maintaining compatibility with other systems.

 Chapter 13 demonstrates that it is not always wise to keep up with the newest
possible trends in the IT industry. It analyzes some of the widely used patterns
and frameworks, such as reactive programming, but it also discusses whether we
should use it in some specific contexts.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text.

 This book contains many examples of source code, both in numbered listings and
in snippets. The source code is formatted using the automated plugin according to
the Google code guidelines. Code annotations accompany many of the listings, high-
lighting important concepts. Each chapter has a dedicated folder in the code reposi-
tory. There is a substantial amount of unit and integration tests for all the code used
in this book to assure the best code’s quality. Not all the tests are shown in the book’s
listings. You may run and read tests to understand the specific part of logic more
deeply. All the instructions for importing and running the examples are provided in
the README.md file in the code’s repository.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/software-mistakes-and-tradeoffs. The
complete code for the examples in the book is available for download from the Man-
ning website at https://www.manning.com/books/software-mistakes-and-tradeoffs, and
from https://github.com/tomekl007/manning_software_mistakes_and_tradeoffs.

liveBook discussion forum
Purchase of Software Mistakes and Tradeoffs includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can attach
comments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the authors

https://livebook.manning.com/book/software-mistakes-and-tradeoffs
https://github.com/tomekl007/manning_software_mistakes_and_tradeoffs
https://www.manning.com/books/software-mistakes-and-tradeoffs

ABOUT THIS BOOKxxiv
and other users. To access the forum, go to https://livebook.manning.com/book/
software-mistakes-and-tradeoffs/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://livebook.manning.com/book/software-mistakes-and-tradeoffs/discussion
https://livebook.manning.com/book/software-mistakes-and-tradeoffs/discussion
https://livebook.manning.com/book/software-mistakes-and-tradeoffs/discussion
https://livebook.manning.com/discussion

about the authors
Tomasz Lelek

In his professional Software Engineering career, Tomasz has worked on various pro-
duction services, architectures, and programming languages (mostly JVM). He has pro-
duction experience with monolith and microservices architectures. He has designed
systems that handle tens of millions of unique users and hundreds of thousands of
operations per second. He has worked in

 Microservices architecture with CQRS (using Apache Kafka)
 Marketing automation and event stream processing
 Big data processing with Apache Spark and Scala

Tomasz now works at Dremio, where he helps create a modern data lakehouse solu-
tion. Before that, he was working at DataStax, building a variety of products around
the Cassandra Database. He designed tools for thousands of developers for whom API
design, performance, and UX friendliness play a crucial part. He contributed to Java-
Driver, Cassandra Quarkus, Cassandra-Kafka connector, and Stargate.

Jon Skeet

Jon is a staff developer relations engineer at Google, currently working on the Google
Cloud Client Libraries for .NET. His contributions to Open Source include the Noda
Time date and time library for .NET (https://nodatime.org), and he’s possibly best
known for his contributions to Stack Overflow. Jon is the author of the Manning book
C# in Depth and also contributed to Groovy in Action and Real-World Functional Program-
ming. Jon has interests in date and time APIs and versioning that are often regarded as
unusual at best.
xxv

https://nodatime.org

about the cover illustration
The figure on the cover of Software Mistakes and Tradeoffs is “Groenlandaisse,” or “A
Woman from Greenland,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and colored by hand. In those
days, it was easy to identify where people lived and what their trade or station in life
was just by their dress. Manning celebrates the inventiveness and initiative of the com-
puter business with book covers based on the rich diversity of regional culture centu-
ries ago, brought back to life by pictures from collections such as this one.
xxvi

Introduction
When designing our code, APIs, and system architectures, we need to make deci-
sions that impact maintenance, performance, extensibility, and many other factors.
Almost always, the decision to go in one direction limits the possibility to evolve in a
different one. The longer systems live, the harder it is to change their design and
withdraw from previous decisions. The design and programming tradeoffs pre-
sented in this book focus on choosing between two or more directions in which
your system can evolve. It’s important to understand that, whatever you decide, you
will need to live with one direction’s pros and cons.

 Depending on the context, time to market, service-level agreements (SLAs),
and other factors, the team needs to make those hard decisions. We will show you
the tradeoffs that we need to make in production systems and compare them with
alternative ways of doing things. We hope that after reading this book, you will

This chapter covers
 Important tradeoffs in production systems

 Consequences of unit testing versus integration
testing

 Understanding that code and architecture design
patterns do not fit every problem
1

2 CHAPTER 1 Introduction
start to notice the design decisions that you make every day. Noticing these allows you
to make conscious choices when considering their pros and cons.

 The first part of this book focuses on the low-level design decisions that every software
engineer needs to make in their code and APIs. The second part focuses on the bigger
picture of your systems—the architecture and data flow between components. We will
consider the tradeoffs that you need to make when working in distributed systems.

 The next sections in this chapter demonstrate the approach that this book will take
regarding analyzing tradeoffs. First, we will focus on the tradeoffs that every software
engineer needs to make: the balance between unit, integration, end-to-end, and other
types of tests. In the real world, we have a limited amount of time to deliver value
through our software. Due to this, we need to decide whether we should invest more
time into unit, integration, end-to-end, or other types of tests. We will analyze the pros
and cons of having more tests of a specific type.

 Next, we will show the well-proven singleton pattern and explain how the usability
of this pattern is changing, depending on the context, which we will analyze in a sin-
gle-threaded and multithreaded context. Finally, we will take a look at higher-level
architecture tradeoffs: microservices versus monolith.

 Note that, often, the architectures cannot be described as only monolithic or only
microservices. It is common to see a hybrid approach: some functionalities are imple-
mented as services, whereas other parts of a system may live as a monolith. For exam-
ple, a legacy system may be built as a monolith, and only a tiny piece of it is moved to
a microservices architecture. Also, it may be more reasonable for a greenfield project
to start from one application approach and not split into microservices if that comes
with a nonnegligible cost. We will concisely analyze tradeoffs between microservices
and monoliths. You should apply some of that argumentation to your context, even if
it is a hybrid architecture.

 Those sections will show you the approach that every chapter will take: solving a
problem in a particular context, then analyzing the alternative solution, and, finally,
adding context that involves tradeoffs and decisions. We will explore pros and cons of
every solution in a specific context. The subsequent chapters will dive a lot deeper
into the tradeoffs.

1.1 Consequences of every decision and pattern
The goal of this book is to show design and programming tradeoffs and mistakes.
When presenting tradeoffs and design choices in this book, I will assume that the
overall quality of the code that you write is good enough. Once your code’s quality is
sufficient, you need to decide the direction in which it should evolve.

 To understand the flow of each chapter in this book, let’s first examine the
tradeoffs between the two most useful and obvious techniques that you should use in
your code: integration and unit tests. The ultimate goal of the test coverage is to have
almost every path covered with unit and integration tests. In reality, it often is not
feasible because you have a finite time with which to write and test your code. Thus,

3Consequences of every decision and pattern
deciding about the proportions of unit and integration testing is an everyday tradeoff
that you need to make.

1.1.1 Unit testing decisions

When writing tests, you need to decide which part of the code to test. Let’s consider a
simple component that you need to unit test. Suppose that we have a SystemComponent
that exposes one public API method: publicApiMethod(). Other methods are hidden
from clients by using a private access modifier. The following listing shows the code
for this scenario.

public class SystemComponent {

 public int publicApiMethod() {
 return privateApiMethod();
 }

 private int privateApiMethod() {
 return complexCalculations();
 }

 private int complexCalculations() {
 // some complex logic
 return 0;
 }
}

The decision that you need to make here is whether to unit test complexCalculations()
or to keep this private method hidden. Such a unit test is a black-box test that covers
only the public API. This is often a good enough level of unit testing. But sometimes,
the private methods have complex logic that’s worth unit testing as well. In such a situ-
ation, you might consider lowering the access modifier of complexCalculations().
The following listing shows this approach.

 @VisibleForTesting
 public int complexCalculations() {
 // some complex logic
 return 0;
 }

By changing the visibility to the public, you are allowing yourself to write a unit test
that covers that part of the API that is not supposed to be public. Such a public
method will be visible to clients of your API, so you are risking that the clients will use
this API directly. In the listing, the @VisibleForTesting annotation (see http://mng
.bz/y4wq) serves only an informational purpose. Nothing prevents the callers from

Listing 1.1 Component to unit test

Listing 1.2 Component to unit test public visibility

http://mng.bz/y4wq
http://mng.bz/y4wq
http://mng.bz/y4wq

4 CHAPTER 1 Introduction
calling the public method of your API. If they do not notice the annotation, they may
ignore it.

 Both unit testing approaches mentioned in this section are correct; the latter gives
you more flexibility; however, the cost of maintenance may increase. You could end up
with a middle ground solution between the two. This can be achieved by making your
code package-private. Thus, when your tests are in the same package as your produc-
tion code, you don’t need to make your code public, but you will be able to use those
methods in the test code.

1.1.2 Proportions of unit and integration tests

When testing your logic, you need to decide on the proportions of integration and
unit tests for your system. Often, the decision to go in one direction limits the possibil-
ity to evolve in a different one. Moreover, this limitation may be imposed by the time
we start to develop the system.

 Because we usually have a limited timeframe for developing our features, we need
to decide whether we should invest more time in unit or integration tests. Real-world
systems should be tested using a combination of both unit and integration tests, so we
need to decide how to proportion those.

 Both approaches have pros and cons, which makes this is a typical tradeoff that you
will encounter when writing your code. Unit tests are quicker and have faster feed-
back time, so the debugging process is often faster. Figure 1.1 demonstrates the pros
and cons for both tests.

The diagram in figure 1.1 is a pyramid because, most often, the software systems have
more unit tests than integration tests. The unit tests give almost instantaneous feed-
back to the developer, thereby increasing productivity. They are also faster to execute
and decrease the debug time of your code. If you have 100% of your codebase cov-
ered in unit tests, when a new bug is introduced, chances are good that one of the
unit tests will catch this problem. You will be able to detect it at the method level that
the particular unit test is covering.

 On the other hand, when your system has no integration tests, you won’t be able
to reason about the connections between components and how these integrate.
You will have well-tested algorithms but without testing the bigger picture. You may

Time to

execute

debug

time

Integration

test

Unit test

Feedback

time

Longer

Faster

Figure 1.1 Integration vs. unit tests
and the length of time (speed) that
tests execution take

5Consequences of every decision and pattern
end up with a system that does everything correctly at a lower code level, but the
components in your system are not tested, so you cannot reason about the correct-
ness of it at a higher level. In real life, your code should have a mix of unit and inte-
gration tests.

 It is important to note that figure 1.1 focuses only on one aspect of testing: its exe-
cution time and, therefore, feedback time. In a real-production system, we have other
layers of testing. We might have end-to-end tests that holistically validate business sce-
narios. In more complex architectures, we might need to start N services that are con-
nected to provide this business functionality. Such tests will probably give us slower
feedback time due to test infrastructure setup overhead. On the other hand, they will
give us higher assurance regarding the end-to-end flow and correctness of our system.
When comparing those tests to unit or integration tests, we might analyze them using
different dimensions. For example, how well do they validate our system holistically, as
figure 1.2 illustrates?

Because unit tests run in isolation, these don’t give us much information regarding
other components in our system and how they interact with each other. Integration
tests attempt to validate more components and the interactions between them. How-
ever, these often do not span multiple (micro)services that deliver given business
functionality. Lastly, although the end-to-end tests validate our system holistically, the
number of tested components may be substantial because we need to spin up all infra-
structure, which can be N microservices, databases, queues, and so forth.

 The other dimension (resource) that we need to consider is the time required for
creating our tests. Unit tests are relatively easy to develop, and we can make many of
them in a small amount of time. Integration tests are often more time-consuming to
create. Finally, the end-to-end tests require a substantial investment upfront to create
the infrastructure needed for them.

 In reality, we have finite resources (e.g., budget and time), so we need to maximize
the quality of our software considering those constraints. But covering our code with
tests allows us to deliver better quality software and to reduce the number of released
bugs. It also improves the maintainability of our software in the future. For this, we
need to pick which type of tests to use and how many we want to implement; we need
to find a balance between the number of unit, integration, and end-to-end tests because

Holistic

Isolated

End-to-end

test

Unit test

Integration test

Number of

validated

components

Time needed

for creating

a test

Figure 1.2 Integration vs.
unit vs. end-to-end tests

6 CHAPTER 1 Introduction
of those finite resources. By analyzing different dimensions, pros, and cons of the par-
ticular test type, we can make more rational decisions.

 It is important to note that implementing tests increases development time. The
more tests we want, the more time needs to be dedicated to that. Sometimes, it is hard
to implement good end-to-end tests when not planning for those with a given dead-
line. Therefore, some types of tests should be planned accordingly—in the same way
that we add new features rather than as an afterthought.

1.2 Code design patterns and why they do not always work
The code design patterns, such as Builder, Decorator, Prototype, and many more,
were introduced years ago. They provide production-proven solutions for most well-
known problems. I strongly recommend knowing those patterns (see Design Patterns:
Elements of Reusable Object-Oriented Software by Erich et al. for more information) and
using them in your code to make it more maintainable, extensible, and just better. On
the other hand, you should use them with caution because implementing those pat-
terns depends strongly on the context. As you already know, I am trying to show that
every decision in your software involves tradeoffs and has consequences.

 To understand tradeoffs at the code level, I will demonstrate the singleton pattern
(https://refactoring.guru/design-patterns/singleton). This pattern was introduced as
a way to share the common state between all components. The singleton is one
instance that lives throughout the lifetime of your application. This one instance is
referenced by the other classes. Say you need to create a private constructor to pre-
vent creating a new instance of it. Creating a singleton for this is easy, as the following
listing shows.

public class Singleton {
 private static Singleton instance;
 private Singleton() {}

 public static Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

The only way to get the singleton is through the getInstance() method, which returns
the only one instance that you can safely share between components. The assumption
here is that every time the caller’s code wants to access the singleton, it does that via
getInstance(). Later, we will consider a different use case that does not require
accessing it every time via this method. This pattern seems like a quick win; you will be
able to share code through the global singleton instances. You may ask yourself, “Where
is the tradeoff here?”

Listing 1.3 Implementing the singleton

https://refactoring.guru/design-patterns/singleton

7Code design patterns and why they do not always work
 Let’s consider using this pattern in a different context. What happens if we use this
pattern in a multithreaded environment? When you have more than one thread that
is calling getInstance() simultaneously, you can have a race condition. In such a situ-
ation, your code creates two instances of a singleton. Having two instances of a single-
ton breaks the invariants of this pattern, and you may end up with system failures. To
prevent this behavior, you need to add synchronization before performing the initial-
ization logic, as the following listing shows.

public class SystemComponentSingletonSynchronized {
 private static SystemComponent instance;

 private SystemComponentSingletonSynchronized() {}

 public static synchronized SystemComponent getInstance() {
 if (instance == null) {
 instance = new SystemComponent();
 }

 return instance;
 }
}

The synchronized block prevents accessing this logic by two threads. All but one
thread will block and wait for the initialization logic. At first glance, everything works
as expected. But if the performance of your code is a priority for you, using a single-
ton with multiple threads may decrease the performance of your code significantly.

 Initialization is the first place at which multiple threads need to lock and wait. And
once you create a singleton, every access to the object will need to be synchronized. A
singleton can introduce thread contention (http://mng.bz/M2nn), which is a severe
performance hazard. This happens when we have a shared instance of an object, and
multiple threads are accessing it concurrently.

 The synchronized getInstance() method allows only one thread to enter the crit-
ical section, whereas other threads will need to wait on that lock. Once the thread
leaves the critical section, the second thread in the queue can enter it. The problem
with this approach is that it introduces a need for synchronization and may slow the
program substantially. In short, every time the code executes a call that is synchro-
nized, there may be some additional overhead.

 From this example, we can conclude that there is a tradeoff regarding your code’s
performance when using a singleton in a one-thread versus multithreading context.
But what is essential is the context in which your code is executing. If your code works
in a non-concurrent way or your singleton is not shared between multiple threads, the
tradeoff does not appear. But if your singleton is shared between threads, you need to

Listing 1.4 Synchronizing for a thread-safe singleton

Starts the
synchronization
block

http://mng.bz/M2nn

8 CHAPTER 1 Introduction
make it thread-safe, which potentially impacts performance. Knowing this tradeoff
allows you to make a rational decision about your design and code.

 If you decide that there are more cons for the specific design choice, you may end
up changing your decision. In this singleton example, for instance, we can improve
our solution with one of two patterns.

 The first one employs the double-checked locking technique. The difference with
this approach is that before entering the critical (synchronized) section, we must
check whether the instance is null. If it is, we can continue to the critical section. If it’s
not, we don’t need to enter the critical section, and we just return the existing single-
ton object. The following listing demonstrates this locking technique.

private volatile static SystemComponent instance;

public static SystemComponent getInstance() {
 if (instance == null) {
 synchronized (ThreadSafeSingleton.class) {
 if (instance == null) {
 instance = new SystemComponent();
 }
 }
 }
 return instance;
}

Using this pattern, we can significantly reduce the need for synchronization and
thread contention. This synchronization effect will be observed only on startup when
every thread tries to initialize the singleton.

 The second pattern that we might choose is thread confinement. It allows us to pin
the state to the specific thread. However, you need to be aware that it won’t be a sin-
gleton pattern at the global application level anymore. You will have a single instance
of your object per thread. Assuming that you have N threads, you will have N instances
as well.

 When using this pattern, every thread in our code owns the instance of an object
that is visible and tied to that specific thread. Due to this, there is no contention on
access to an object shared between multiple threads. The object is owned by one thread
and not shared. In Java, you can achieve this by using the ThreadLocal class (http://
mng.bz/aD8B). It allows us to wrap a system component that should be tied to a spe-
cific thread. From the code’s perspective, an object is inside of the ThreadLocal
instance, as the following listing shows.

private static ThreadLocal<SystemComponent> threadLocalValue = new
ThreadLocal<>();

Listing 1.5 Singleton double-checked locking

Listing 1.6 Thread confinement with ThreadLocal

If it is not null, it
doesn’t enter the
critical section.

http://mng.bz/aD8B
http://mng.bz/aD8B
http://mng.bz/aD8B

9Code design patterns and why they do not always work
public static void set() {
 threadLocalValue.set(new SystemComponent());
}

public static void executeAction() {
 SystemComponent systemComponent = threadLocalValue.get();
}

public static SystemComponent get() {
 return threadLocalValue.get();
}

The logic for pinning SystemComponent to a specific thread is encapsulated in the
ThreadLocal instance. When thread A calls the set() method, a new instance of
SystemComponent is created inside ThreadLocal. What is important is that this instance
is accessible only to this thread. If another thread (B, for instance) calls execute-
Action() without previously calling set(), it gets a null SystemComponent instance
because there is no component set() for this thread yet. The new instance dedicated
for this thread will be created and accessible only after thread B calls the set() method.

 We can simplify this by passing a supplier to the withInitial() method. This will
be invoked if the thread-local has no value, so we are not risking getting a null. The
following listing shows this implementation.

static ThreadLocal<SystemComponent> threadLocalValue =
 ThreadLocal.withInitial(SystemComponent::new);

By using this pattern, you are removing contention, which increases performance. But
the drawback is in the complexity of such a solution.

NOTE Every time the caller’s code wants to access the singleton, it does not
need to access it via the getInstance() method. It can access a singleton
instance once and assign it to a variable (reference). Once it is assigned to a
variable, subsequent calls can get the singleton object via this reference with-
out the need to call getInstance(). This reduces the contention.

The singleton instance can also be injected into other components that need to use
it. Ideally, your application creates all the components in one place and injects them
into services (using, for example, the dependency injection technique). In this case,
you may not need a singleton pattern at all. You can create just one instance of the
object that should be shared and inject it into all dependent services (see http://
mng.bz/g4dE). The other alternative would be to use an enum type that leverages
the singleton pattern underneath. Let’s now validate our assumptions by measuring
the code.

Listing 1.7 Thread confinement with an initial value

http://mng.bz/g4dE
http://mng.bz/g4dE
http://mng.bz/g4dE

10 CHAPTER 1 Introduction
1.2.1 Measuring our code

So far, we’ve created three thread-safe implementations of the singleton pattern by

 Using synchronization for all operations
 Employing double-checked locking
 Using thread confinement (via ThreadLocal)

We assumed that the first version would be the slowest, but we don’t have any data
yet. Let’s create a performance benchmark that will validate all three implementa-
tions. We will use the JMH performance test tool (https://openjdk.java.net/projects/
code-tools/jmh/), which we will use a couple of times in this book for validating our
code’s performance.

 Let’s create a benchmark that executes 50,000 operations of getting the System-
Component (singleton) object (listing 1.8). We’ll implement three benchmarks, each
of those using a different singleton approach. To validate how the contention is
impacting our performance, we’ll run the code for 100 concurrent threads. Finally,
we’ll report the results (the average time) in milliseconds.

@Fork(1)
@Warmup(iterations = 1)
@Measurement(iterations = 1)
@BenchmarkMode(Mode.AverageTime)
@Threads(100)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class BenchmarkSingletonVsThreadLocal {
 private static final int NUMBER_OF_ITERATIONS = 50_000;

 @Benchmark
 public void singletonWithSynchronization(Blackhole blackhole) {
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 blackhole.consume(

➥ SystemComponentSingletonSynchronized.getInstance());
 }
 }

 @Benchmark
 public void singletonWithDoubleCheckedLocking(Blackhole blackhole) {
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 blackhole.consume(

➥ SystemComponentSingletonDoubleCheckedLocking.getInstance());
 }
 }

 @Benchmark
 public void singletonWithThreadLocal(Blackhole blackhole) {
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 blackhole.consume(SystemComponentThreadLocal.get());
 }
 }
}

Listing 1.8 Creating a singleton implementation benchmark

Executes the code
by 100 concurrent
threads

The first benchmark uses
SystemComponentSingletonSynchronized.

Tests for
SystemComponentSingletonDoubleCheckedLocking

Gets a benchmark for
SystemComponentThreadLoc

https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/

11Architecture design patterns and why they do not always work
When we run this test, we will see an average time per 50,000 invocations for 100 con-
current threads. Note that the actual numbers may differ in your environment, but
the overall trend will stay the same, as the following listing shows.

Benchmark Mode Cnt Score Error Units

CH01.BenchmarkSingletonVsThreadLocal.singletonWithDoubleCheckedLocking avgt 2.629 ms/op

CH01.BenchmarkSingletonVsThreadLocal.singletonWithSynchronization avgt 316.619 ms/op

CH01.BenchmarkSingletonVsThreadLocal.singletonWithThreadLocal avgt 5.622 ms/op

Looking at the result, the singletonWithSynchronization implementation was
indeed the slowest. An average time for completing our benchmarking logic was
above 300 ms (milliseconds). Next, we have two solutions that improve this behavior.
The singletonWithDoubleCheckedLocking performed the best (around ~2.6 ms),
and the singletonWithThreadLocal solution completed in ~5.6 ms. We can conclude
that improving the initial version of singleton pattern gives us around a 50-times per-
formance increase for the thread local solution and 115 times for the double-checked
locking solution.

 By measuring our assumptions, we can make good decisions for our multithread-
ing context. If we need to pick one solution over another when the performance is
comparable, we may decide to choose a more straightforward solution. However, with-
out the actual data, it is hard to make an entirely rational decision.

 Let’s now take a look at the design tradeoffs that involve an architectural decision.
In the next section, we will learn about microservices versus monolithic architectures
and their design tradeoffs.

1.3 Architecture design patterns and why they
do not always work
Up to now, we’ve considered low-level programming patterns and tradeoffs that lead
to different code designs. Although vital, you’re probably more comfortable modify-
ing these low-level parts if the application’s context changes. The second part of this
book will focus on architecture design patterns: those patterns that are harder to change
because they span the whole architecture of multiple services that create your system.
For now, we will focus on microservices (see http://mng.bz/enlv) architecture, which
is one of the most common patterns when creating today’s software systems.

 The microservices architecture provides many advantages over the approach of
creating one monolithic system where all business logic is implemented. However, it
also has nonnegligible maintenance costs and increased complexity. Let’s look at a
few of the most essential advantages of microservices architecture over monolithic
architecture.

Listing 1.9 Viewing the singleton implementation benchmark results

http://mng.bz/enlv

12 CHAPTER 1 Introduction
1.3.1 Scalability and elasticity

The systems that we create need to handle high traffic, but they also need to adapt and
scale, depending on demand. If one node of your application can process N requests
per second and has a surge in traffic, the microservices architecture allows you to scale
out horizontally quickly (see figure 1.3). Of course, the application needs to be written
in a way that enables easy scaling. It should also use the underlying components.

 For example, you can add a new instance of the same microservice to enable your
system to process ~2 × N requests per second (where 2 is the number of services, and
N is the number of requests that one service can serve). But this can only be achieved
if the underlying data access layer can scale up as well.

 Of course, there may be some upper threshold of scalability, after which adding
new nodes does not give much improvement in the throughput. It may be caused by
the scalability limit of the underlying components, such as database, queue, network
bandwidth, etc.

 However, the overall scalability of the microservices architecture tends to be easier
compared to the monolithic approach. Monolithic architectures do not allow you to
scale up as quickly after some upper resource limit is hit.

You can scale your app vertically (scaling up) by adding more CPUs, memory, or disk
capacity to the computing instance, and here, too, there is a hard limit over which
scaling up is not possible. For example, when you have a monolithic app deployed to
the cloud, you can scale it up by deploying it using a more powerful cloud type instance
(more CPUs or memory). As long as you can add more resources, this approach is
fine. However, the cloud provider may not offer a more powerful machine to deploy
to at some point. In such a case, scaling out (horizontally) is more flexible. If your app
is written in a way that can be deployed to N instances, you can add more instances to
your deployment to increase the total throughput of your service.

More instances

M
o
re

 u
s
e
rs

Figure 1.3 Scaling out horizontally
means adding more machines to
your pool of resources as the
demand increases.

13Architecture design patterns and why they do not always work
1.3.2 Development speed

In the microservices architecture, the work can be easily divided between multiple
teams. Team A can work on the business functionality that will be implemented in a
separate microservice. At the same time, team B can focus on a different part of the
business domain. The work of both teams is independent, and they can move faster.

 With microservices, there is no coordination at the codebase level. Teams can
make their own decisions about technologies and evolve more quickly. When a new
team member joins the team that works on part of the business domain, it is easier to
understand the system and to start working on it.

 The deployment process is more robust because each team can deploy its code-
base independently. This results in more frequent deployments that carry less risk.
Even if the team accidentally introduces a bug, the change that is deployed is smaller.
Because of that, debugging the potential issue is faster. The problems with debugging
may arise when the error comes from the integration between too fine-grained micro-
services. In that case, we need to request tracing to track the requests that are flowing
through multiple microservices (see http://mng.bz/p2w8).

 Contrary to that, in monolithic architectures, the codebase is often shared
between many team members. If your application code lives in one repository and the
application is complex, multiple teams may work on it simultaneously. In such a situa-
tion, there is a high potential for conflicts in code. Therefore, a significant part of
development time may be sacrificed on resolving those conflicts. Of course, if your
product’s code can be structured in a modularized fashion, you can reduce that effect.
However, there will always be a need for more frequent rebasing, as your product’s
main codebase changes faster if more people are working on it. When we compare
monolithic to microservices, it is easy to see that the code for a dedicated business
domain is most often smaller. Therefore, there is a high probability that there will be
fewer conflicts.

 In monolithic applications, the deployment is done less frequently. The reason
for this is that more features are merged to the main code branch (because more
people work on it). The more features it has, the longer it takes to test them. As
more features are deployed in the same release, the chances for introducing a bug
into the system grows.

 It is worth noting that all of those pains could be reduced by creating a robust con-
tinuous integration (or continuous deployment) pipeline. We can run such a pipeline
more frequently and build a new application version more often, and every version will
contain fewer features. The new release code will be easier to reason about and debug if
it introduces a problem. It is faster to find an underlying problem when the list of new
features in a release is smaller. If we compare this approach to a release cycle that builds
a new app less frequently, it is obvious that such a release will contain more features that
will be deployed to production at the same time. The more features one release has, the
more potential problems it will have, which will be harder to debug.

http://mng.bz/p2w8

14 CHAPTER 1 Introduction
1.3.3 Complexity of microservices

Once you are aware of the pros of the microservices architecture over monolithic, you
need to be aware of the cons. A microservices architecture is a complex design that
involves a lot of moving parts. You can achieve scalability if you have a proper load bal-
ancer that keeps the list of running services and routes the traffic. The underlying ser-
vices can be scaled up and down, meaning that they can appear and disappear.
Tracking such changes is not an easy task. To make it work, a new service registry com-
ponent is needed (figure 1.4).

Every microservice needs to have a running registry client that is responsible for regis-
tering it with the service registry. Once it is registered, the load balancer can route the
traffic to the new instance. The service registry handles the deregistration process by
checking the health of the service instances. This is one of the complexities of this
architecture that makes deployment significantly more difficult and complex.

 Once you know the pros and cons of your problem, you need to add context to
make a good decision about the design. If your context shows that you don’t have
high flexibility regarding scalability and your team of developers is small, you may
decide that the monolithic architecture is right for you. Every chapter in this book fol-
lows a similar process to that presented in this chapter for assessing your design
choices: finding the pros and cons of each of the designs, adding context, and answer-
ing the question of which design may be better in this specific context.

 In this chapter, you were introduced to an example of the types of design tradeoffs
that we will cover in this book. You learned about the low-level tradeoffs that involve

Request Load

balancer

192.4.3.1:8080

Rest

API

Service

instance

ARegistry

client

192.4.3.99:8080

Rest

API

Service

instance

BRegistry

client

192.4.3.20:8080

Rest

API

Service

instance

CRegistry

client

RegisterService

registry

Load

balance

Figure 1.4 Microservices
service registry

15Summary
choosing the proportion of unit versus integration tests for your apps. We also dis-
cussed that well-proven patterns like singletons may not be the best choice, depending
on the context in which they are used. These may impact the performance of your sys-
tem in multithreaded environments by, for example, introducing thread contention.
Finally, we looked at the microservices versus monolithic architecture design patterns,
which serves as an example of a higher-level design choice.

 In the next chapter, we’ll walk through the tradeoff of code duplication versus
reusability. We will consider that code duplication is not always bad, again, depending
on the context.

Summary
 When you have a finite time in which to develop your software, there are also

design consequences, such as covering your code in unit or integration testing,
that you need to consider.

 Well-proven, low-level code design patterns (like singleton) may not turn out to
be good (in terms of thread safety, for example) design choices, depending on
the context of your application.

 High-level microservices architectures do not fit every problem; we need a frame-
work for accessing architecture design choices.

Code duplication is
not always bad: Code

duplication vs. flexibility
The DRY (don’t repeat yourself) principle is one of the most well-known software
engineering rules. The main idea behind this is to remove duplicated code, which
leads to fewer bugs and better reusability of our software. But over focusing on the
DRY principle when building every possible system may be dangerous and hides a lot
of complexities. It is easier to follow the DRY principle if the system we are building is
monolithic, meaning that almost the whole codebase is in one repository.

 In today’s evolved systems, we tend to build distributed systems with many
moving parts. In such architectures, the choice of reducing code duplication has
more tradeoffs like, for example, introducing tight coupling between compo-
nents or reducing the development speed of the team. If you have one piece of
code used in multiple places, changing it may require a lot of coordination. Where

This chapter covers
 Sharing common code between independent

codebases

 Tradeoffs between code duplication, flexibility,
and delivery

 When code duplication is a sensible choice giving
us loose coupling
16

17Common code between codebases and duplication
coordination is needed, the process of delivering business value slows down. This
chapter will delve into patterns and tradeoffs involving duplication of code. We will
try to answer the question: when is code duplication a reasonable tradeoff, and when
should we avoid it?

 We will start with some duplicated code in two codebases. Next, we will reduce the
duplication by using a shared library. Finally, we will use a different approach for
extracting a common functionality, using a microservice that encapsulates this behav-
ior. After this example, we will consider inheritance as a pattern to remove duplication
in code. However, we will see that this has a nonnegligible cost as well.

2.1 Common code between codebases and duplication

We can analyze the first design problem with shar-
ing code in the context of a microservices archi-
tecture. Let’s imagine a scenario in which we have
two teams. Team A works on the payment service,
and team B works on the person service. Figure
2.1 illustrates this scenario.

 The payment service exposes an HTTP API
with the /payment URL endpoint. The person ser-
vice exposes its business logic under the /person
endpoint. Let’s assume that both codebases are
written in the same programming language. At
this point, both teams are progressing with their
work and can deliver the software quickly.

 One of the most important reasons why there
is a high development turnover (speed) is that there is no need for synchronization
between teams. We can even calculate how synchronization impacts the overall time of
the software delivery process using Amdahl’s law. This formula states that the less syn-
chronization is needed (and, thus, there is a more parallel portion of work), the more
gain we get from adding more resources for solving a problem. Figure 2.2 illustrates
this principle.

 For example, when your task is parallelized 50% of the time (and 50% time
requires synchronization), you will not gain any substantial processing speed improve-
ment by adding resources (number of processors in the diagram). However, the more
parallelized your task and the less synchronization overhead, the more processing
speed you will gain from adding more resources.

 We can use Amdahl’s formula to calculate the parallelization of concurrent process-
ing and the gains from adding new cores, but we can also adapt it to team members
working on a specific task (http://mng.bz/OG4R). The synchronization that reduces
parallelism can be the time spent on meetings, merge problems, and other actions
that require the whole team’s presence.

Payment

service

Person

service

Team A Team B

endpoint /payment/ endpoint /person/

Figure 2.1 Two independent services:
payment and person

http://mng.bz/OG4R

18 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
When the code is duplicated, it is developed independently by both teams, and there
is no synchronization needed between those teams. Adding a new team member to a
team would therefore increase performance. This situation differs when reducing
code duplication and the two teams need to work and block each other on the same
piece of code.

2.1.1 Adding a new business requirement that requires
code duplication

After some time developing both services, a new business requirement to add autho-
rization to both HTTP APIs is made. The first choice of both teams is to implement
the authorization component in both codebases. Figure 2.3 shows the modified
architecture.

 Both teams develop and maintain a similar authorization component. The work of
both groups is still independent, however.

 In this scenario, be aware that we are using a simplified version of token-based
authentication, but this solution is vulnerable to replay attacks (http://mng.bz/YgYB),
so it is not suitable for production use. We are using a simplified version to avoid obscur-
ing the main aspects discussed in this chapter. It is worth emphasizing that security is

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Amdahl’s law
Speedup

Number of processors

Parallel portion

50%

75%

90%

95%

Figure 2.2 Amdahl’s law finds the maximum expected improvement to an overall system, depending
on the proportion of parallelizable work.

http://mng.bz/YgYB

19Common code between codebases and duplication
hard to get right. If each team works independently, the chances of them both getting
security right are pretty low. Even if it takes longer to develop a shared library, the
upside could be significant in avoiding a security incident.

2.1.2 Implementing the new business requirement

Let’s take a look at the Payment service. It exposes the payment HTTP endpoint,
/payment. It has only one @GET resource to retrieve all payments for a given token as
the following listing shows.

@Path("/payment")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class PaymentResource {

 private final PaymentService paymentService = new PaymentService();
 private final AuthService authService = new AuthService();

 @GET
 @Path("/{token}")
 public Response getAllPayments(@PathParam("token") String token) {
 if (authService.isTokenValid(token)) {
 return Response.ok(paymentService.getAllPayments()).build();
 } else {
 return Response.status(Status.UNAUTHORIZED).build();
 }
 }
}

As you can see in listing 2.1, AuthService validates the token, so the caller proceeds to
the payment service, which returns all payments. In real life, AuthService would have
more complex logic. Let’s take a look at a simplified version in the following listing.

Listing 2.1 Implementing the /payment endpoint

Payment

service

Person

service

Team A Team B

endpoint /payment/ endpoint /person/

Authorization

component 2

Authorization

component 1

Figure 2.3 New authorization
component

Exposes the interface
for the payment
microservice

Creates the
AuthService instance

Validates the token
using AuthService

20 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
public class AuthService {

 public boolean isTokenValid(String token) {
 return token.equals("secret");
 }
}

NOTE In reality, the two teams are unlikely to come up with exactly the same
interfaces, method names, signatures, and so forth. That’s one advantage of
deciding to share code early: there is less time for both implementations to
diverge.

The second team works on developing the person service, which exposes an HTTP
/person endpoint. It also performs the token-based authorization, as the following
listing shows.

@Path("/person")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class PersonResource {

 private final PersonService personService = new PersonService();
 private final AuthService authService = new AuthService();

 @GET
 @Path("/{token}/{id}")
 public Response getPersonById(@PathParam("token") String token,

@PathParam("id") String id) {
 if (authService.isTokenValid(token)) {
 return Response.ok(personService.getById(id)).build();
 } else {
 return Response.status(Status.UNAUTHORIZED).build();
 }
 }
}

The service integrates an AuthService as well. It validates the token provided by the
user and then retrieves the Person using PersonService.

2.1.3 Evaluating the result

At this point, because both teams are developing independently, there is code and
work duplication.

 The duplication may lead to more bugs and mistakes. When team Person, for exam-
ple, fixes a bug in its authorization component, this does not mean that team
Payment cannot make the same mistake.

Listing 2.2 Creating the authorization service

Listing 2.3 Implementing the /person endpoint

Exposes an HTTP
interface for person
microservice

Creates the
AuthService instance

Validates the
token using
AuthService

21Libraries and sharing code between codebases
 When the same or similar code is duplicated between independent codebases, there is no
knowledge sharing between engineers. For example, team Person finds a bug in the
token calculations and fixes it in their codebase. Unfortunately, such a fix is not
automatically propagated to team Payment’s codebase. Team Payment will need
to fix this bug at a later time, independently from team Person.

 Work without coordination may progress faster. Even so, there can be a lot of similar
work done by both teams.

In reality, you would probably use the production-proven authentication strategies,
such as OAuth (https://oauth.net/2/) or JWT (https://jwt.io/) instead of implement-
ing the logic from scratch. These strategies are proven to be even more useful in the
context of microservices architecture. Both methods offer many advantages where
multiple services need to authenticate to access resources from other services. We
won’t focus on the specific authentication or authorization strategies here. Instead, we
will focus on the code aspects, such as flexibility, maintainability, and complexity. In
the next section, we will see how to solve duplication by extracting common code to a
shared library.

2.2 Libraries and sharing code between codebases
Let’s assume that, because a substantial portion of code is duplicated between two
independent codebases, both teams decide to extract common code to a separate
library. We will extract the authorization service code to a separate repository. One
team needs to create a deployment process for a new library. The most common sce-
nario is to publish a library to an external repository manager, such as JFrog’s Artifac-
tory (https://jfrog.com/open-source/). Figure 2.4 illustrates this scenario.

Once the common code is in the repository manager, both services can fetch the
library at a build time and use the classes shipped with it. Using this approach, we can
remove any duplication of code by storing it in one place.

Payment

service

Person

service

Team A Team B

endpoint /payment/

Repository

manager

Fetch library

on build time

Fetch library

on build time

Authorization

library
endpoint /person/

Figure 2.4 Fetching a common
library from a repository manager

https://oauth.net/2/
https://jwt.io/
https://jfrog.com/open-source/

22 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
 One of the apparent benefits of eliminating duplication is the overall quality of the
code. Storing a common library allows cooperation between both teams and improves
the same codebase. Because of that, when one bug is fixed, the fix is immediately
available to all library clients, so there is no duplication of work. Let’s now take a
look at the disadvantages and tradeoffs that you need to make if you decide to choose
this approach.

2.2.1 Evaluating the tradeoffs and disadvantages of shared libraries

Once we extract a new library, it becomes a new entity with its own coding style,
deployment process, and coding practices. In this context, a library means code that is
packaged (into JAR, DLL, or *.so files on Linux platforms and so on) and can be used
by multiple projects. A team or person needs to take responsibility for the new code-
base. Someone will need to set up the deployment process, validate the project’s code
quality, develop new features, and so forth. However, it is a bit of a fixed cost.

 If you decide to embrace shared libraries, you’ll need to develop the processes
for that, including coding practices, deployment, and so on. If you create the pro-
cess once, however, you will be able to apply that multiple times. The cost of adding
the first shared library may be high; the cost of adding the second should be much,
much less.

 One of the most apparent tradeoffs of this approach is that the language in which
the new library is created needs to be the same as for the clients that will use it. If, for
example, the payment and person services are developed using different languages,
such as Python or Java, creating a new library is not feasible. In real life, however, this
is rarely an issue because services are created using the same language or family of lan-
guages (e.g., JVM languages).

 It is possible to create an ecosystem of services where services are written using dif-
ferent technology. However, this substantially increases the complexity of the whole
system. It also means that we need to have people with expertise in a variety of tech-
nologies. We would also need to use a lot of tools, such as build systems and package
managers from different technology stacks. Depending on your language of choice,
you have a different ecosystem that surrounds this language.

Open source contributions
In the JVM ecosystem, there is a vibrant open source community that develops and
maintains various libraries. Before you decide on extracting a separate library, you
should do some research to find out if an open source library that solves your prob-
lem already exists. However, you may need to adapt or extend it a little bit to meet
your needs.

You can also donate your code to open source if there is no similar library available.
By contributing to an existing open source project, you give your code to other poten-
tial users. In addition, you will get a deployment process and advertising for free.
Then, chances are that other people will also find your library and reuse the code.

23Libraries and sharing code between codebases
Often, it is possible to write a library in a different language (e.g., C) and wrap it into
a native interface (i.e., Java Native Interface) language of your choice. However, using
such an approach can be problematic because our code will need yet another layer of
indirection. The code that is wrapped in the native interface may not be portable
between operating systems, and its method calls may also be slower (compared to Java
method calls). For these reasons, let’s assume that our further discussion focuses on
an ecosystem with the same technology stack.

 The new library needs to be advertised within the company to allow other teams to
know about it and use it if needed. Otherwise, you end up with a hybrid approach in
which some teams use this new library, and others are still duplicating the code.

 A repository manager is a good place for a shared library, but you also need to
maintain good documentation for the library. Often, good coverage of tests allows
other developers to contribute to a library more easily. If you have a test suite that
other developers can use and experiment with, this will boost your library usage and
contributions. Another thing to note is that the documentation may sometimes become
outdated. It’s therefore important to update the documentation regularly.

 Tests, as well, need to be maintained and updated with your code, which serves as a
good marketing tool for your library within the company and also assures potential
users about the overall quality of your library. Of course, if you choose a duplication
approach, you should test the duplicated code in all places. This means that you
should also have a duplicated testing code.

 Good test coverage should not be an excuse for not maintaining the documenta-
tion for your library. Trying to learn how to use a new library by looking at the tests
may be difficult, unless they are written specifically for that purpose. Tests need to
cover all kinds of ways to use the library—not just the encouraged ones. They might
help answer a specific question, but they’re not as useful as a dedicated page with
teaching examples and a getting started guide.

2.2.2 Creating a shared library

When creating a library, we should strive for simplicity. This is most important when
you need to depend on a third-party library. Let’s assume that our authorization com-
ponent needs to have a dependency on a popular Java library, Google Guava
(https://github.com/google/guava), so you declare this dependency explicitly. When
the payment service imports the new authorization library, it will also have a transitive
dependency on Google Guava. Everything works well until the payment service needs
to import another third-party library that has a direct dependency on Google Guava
but in a different version. Figure 2.5 shows this scenario.

 In such a situation, the payment service will have two versions of the same library.
It starts getting more problematic if the major version of the underlying library is dif-
ferent. It means they may or may not be binary compatible. Moreover, if two libraries
are present on your classpath, the newer one most often is automatically picked by
your build system (e.g., Maven or Gradle) if not configured otherwise. For example,

https://github.com/google/guava

24 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
there could be a situation in which the third-party library code relies on the older ver-
sion of Guava and calls a methodA() that is not in the newer version. If your configura-
tion does not specify which version to use, the build tool may pick the newer version
of the library. In such a case, you may get a MethodNotFound exception or something
similar. This is because the third-party library expects Guava version 27.0 with the
called methodA(), but the build tool picked the Guava version 28, so the third-party
library must use it. This creates the mentioned problems.

 Such conflicts are hard to resolve and may discourage other teams in the organiza-
tion from using your extracted library. So your library should try to have as few direct
dependencies as possible. We will discuss this more in chapter 9 and chapter 12 that
focus on the decisions that we need to make when choosing libraries for our systems.

 In this scenario, we are assuming that the newly extracted library will be used in
both the payment and person services. At this point, there is no dedicated team that
works on the authorization service itself, so both teams will be involved in the develop-
ment of the new authorization library. The development of such a library will require
some planning and coordination between members from both teams.

2.3 Code extraction to a separate microservice
Sharing the code by using libraries may be a good start, but as we saw in section 2.2.1
about tradeoffs and drawbacks, this has a couple of problems. First, the developers
working on the library need to take care of compatibility and many other factors.
They cannot use third-party libraries freely. Also, importing the library’s code means
that you have tight coupling between your code and the library at the dependencies
level. That does not mean that the microservices architecture does not involve any
tight coupling; the services can be coupled at the API level, in requests formats, and
so forth. The coupling in a library is in a different place than in the microservices
architecture.

 If the functionally that is duplicated can be captured as a separate business
domain, we can consider creating yet another microservice that exposes the function-
ality as an HTTP API. For example, we can define a separate business domain that

Authorization

library

Other

third-party

library

Payment

service

Google Guava

version 28.0

methodA()
was removed

Google Guava

version 27.0

has

methodA()

Has a dependencyImports

Imports Has a dependency

Figure 2.5 Transitive dependencies required to implement the payment
service

25Code extraction to a separate microservice
extracts and offers functionalities that were initially implemented elsewhere. Our
authorization component is a good candidate for that because it provides the orthog-
onal functionality that validates the tokens, and the authorization service has its own
business domain. We can find a business entity that this new service will handle, such
as a user entity with a username and password.

NOTE Our example is a bit simplified, but often, the authorization logic
needs to access other information (e.g., in a database). In that case, when the
permissions are stored in, say, a database, extracting the logic to separate
microservices is even more reasonable. For the simplicity of our example, our
authorization does not require access to an external service.

Adding new services requires nonnegligible efforts.
These are related not only to its development but
also to maintenance. The authorization service
clearly has its own business domain with its sepa-
rate business model. The authentication func-
tionality is orthogonal to the existing platform.
Both person and payment services are not related
to the authentication functionality. With that jus-
tification, let’s look at ways to implement the
authorization service. Figure 2.6 shows the rela-
tionship among our three services.

 As you can see in figure 2.6, our new architec-
ture has three separate microservices that are
connected with each other using an HTTP API.
This means that the person and payment services
will need to execute one additional request to val-
idate their tokens. If your application does not
have high performance requirements, making
one additional HTTP call should not be problem-
atic (assuming that this request is within a cluster or a closed network and not to some
random server on the internet that might be on the other side of the globe).

 With this new solution, the authorization service logic that was previously dupli-
cated or extracted to the library will be abstracted away, using our HTTP API that is
accessible under the /auth endpoint. Our clients will send requests to validate the
token, and if the validation fails, then an unauthorized (401) HTTP response code is
returned. If the token is valid, an HTTP API returns a 200 OK status code instead. The
following listing shows our new authorization service.

@Path("/auth")
@Produces(MediaType.APPLICATION_JSON)

Listing 2.4 Authorization service HTTP endpoint

Authorization

service

Payment

service

Person

service

Team A Team B

endpoint /payment/ endpoint /person/

Validate

token

Validate

token

Figure 2.6 The relationship of the
authorization service to the person
and payment services

26 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
@Consumes(MediaType.APPLICATION_JSON)
public class AuthResource {

 private final AuthService authService = new AuthService();

 @GET
 @Path("/validate/{token}")
 public Response getAllPayments(@PathParam("token") String token) {
 if (authService.isTokenValid(token)) {
 return Response.ok().build();
 } else {
 return Response.status(Status.UNAUTHORIZED).build();
 }
 }
}

Because AuthService still encapsulates the token validation logic, it now executes
HTTP requests instead of calling a library. The code will live in the dedicated authori-
zation microservice repository. The payment and person services will no longer need
to import authorization directly nor will they need to implement this logic in their
codebases. Both services only need an HTTP client that sends an HTTP request to the
/auth endpoint to validate the token. The following listing shows the code for send-
ing this request.

 // send request to a separate service
 public boolean isTokenValid(String token) throws IOException {
 CloseableHttpClient client = HttpClients.createDefault();
 HttpGet httpGet = new HttpGet("http:/ /auth-service/auth/validate/" +

token);
 CloseableHttpResponse response = client.execute(httpGet);
 return response.getStatusLine().getStatusCode() == HttpStatus.SC_OK;
 }

In listing 2.5, we create the HTTP client that executes HTTP requests. In real-life sys-
tems, a client will be shared between calls and components to reduce open connec-
tions and resource consumption.

 An HttpClient (https://hc.apache.org/) executes an HTTP GET request to vali-
date the token. If the response status line is equal to the OK status code, it means that
the token is valid. Otherwise, the token is invalid.

NOTE The authorization service can be exposed using the auth-service
domain name system (DNS). You can use a different service discovery mecha-
nism as well, such as Eureka (https://github.com/Netflix/eureka), Consul
(https://www.consul.io/), and so forth. The auth-service can be exposed by
using a static IP address as well.

Listing 2.5 Sending an HTTP call to an AuthorizationService

Sends an HTTP request to an
external authorization service

https://hc.apache.org/
https://github.com/Netflix/eureka
https://www.consul.io/

27Code extraction to a separate microservice
2.3.1 Looking at the tradeoffs and disadvantages of a separate service

The separate microservice fixes some of the problems that we encountered when
extracting common code to a separate library. The approach of having a separate
library involves a different mindset from the team that uses the code. When you
import a library into your codebase, this code becomes your code, and you should be
responsible for it. Using such a library also involves more tight coupling than using a
separate microservice.

 When we integrate with other microservices, we can treat them as a black box. The
only integration point is an API, which can be HTTP or a different protocol. Theoret-
ically, the library could be treated similarly. Unfortunately, as we saw in section 2.2, in
practice, we cannot treat a library as a black box because of the dependencies that it
brings to your code.

 Calling a microservice means that you also need to add a new dependency to the
client library used to execute the actual code. Theoretically, you may end up with the
same transitive dependencies problem described in the previous section. Again, in
practice, most microservices must use a client library for calls to other services. This
can be an HTTP client or something else, depending on the protocol that you use.
Therefore, when you need to call microservices from your service, you will probably
use the same HTTP client. Because of that, the problem of additional dependencies
for every called service does not exist.

 Let’s consider our authorization service as a separate microservice with its own
API. We already saw that this solves some of the library’s approach problems. But, on
the other hand, maintaining a separate microservice takes significant effort. With
this approach, we need to do a lot more than simply code the service and authoriza-
tion logic.

 A separate microservice means that you need to create a deployment process that
will publish your code into a cloud or on-premise infrastructure. A library also needs
to have a deployment process, but it is substantially more straightforward. You only
need to package a JAR file and deploy it to a repository manager. Someone will need
to monitor the health of the service and react if there are some problems. Note that
the cost of creating the process for deploying, maintaining, monitoring, and so forth
is a significant upfront expense. Once the process is in place, however, developing
subsequent microservices may be easier and faster (a similar upfront cost needs to be
done for libraries). Let’s look at a couple of the most important things to consider
when choosing an approach with a separate service.

THE DEPLOYMENT PROCESS

The microservice needs to be deployed and run as a process. This means that such a
process needs to be monitored, and the team needs to react if there is a problem or
failure. Therefore, creating, monitoring, and alerting are other factors you need to
consider when extracting a separate microservice. If your company has an ecosystem
for microservices, the alerting and monitoring solutions are probably already set up. If
you are one of the first people in a company who wants to use such an architecture, it

28 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
would mean that you need to set up those solutions yourself. This means a lot of inte-
gration points that will add a substantial amount of work.

VERSIONING

Versioning of the microservice may be a bit easier than versioning a library in some
respects. Your library should follow semantic versioning, and you should not break the
compatibility of your APIs in major versions. Microservice API versioning should also
follow the same guidelines of not breaking backward compatibility. Still, in practice, it
is easier to monitor the use of endpoints and deprecate them quickly if they are not
used anymore. If you are developing a library and switching to a new major version is
not possible, you need to be careful to not break its compatibility. Breaking it would
mean that clients, after updating the version of your library, will not compile. Such a
change is not acceptable.

 When you have an HTTP API, you can measure every endpoint usage by a simple
counter, using a metrics library, such as Dropwizard metrics (https://metrics.dropwizard
.io/4.1.2/). If the counter for a specific endpoint does not increase for a long time
and your service is used only internally within your company, you may decide to drop
support for such an endpoint. If the endpoint is public and documented, you may
need to support it longer. Even if the specific endpoint metric does not increase, that
does not mean that you can delete it. If it is public and documented, someone may
start using it.

 For now, you can see that the microservices approach gives you more flexibility
regarding API evolution. We will describe compatibility in detail in chapter 12.

RESOURCE CONSUMPTION

A library used by the client means that the computation and resource consumption of
the client code can increase. For every request your payment service processes, the val-
idation token needs to be handled in your code. If this code has substantial resource
consumption, you will need to increase CPU or RAM, depending on the usage.

 If the validation logic is hidden against the API exposed by a separate service, scal-
ing and resource consumption is no longer a direct problem for the client. The pro-
cessing will be executed at a particular microservice instance. If there are too many
requests to process, the team responsible for the service will need to react accordingly
and scale the service up as appropriate.

 You need to be aware that your client code will require an extra HTTP call in such
a case because every validation will need a round trip to the microservice. If the logic
hidden via the microservice API is straightforward, it may turn out that the extra cost
of an HTTP call is higher than the cost of executing the logic clientside. If the logic is
more complex, the HTTP cost may be negligible compared to the microservice work.
You should consider this tradeoff when deciding whether to extract the functionality
externally.

https://metrics.dropwizard.io/4.1.2/
https://metrics.dropwizard.io/4.1.2/
https://metrics.dropwizard.io/4.1.2/

29Code extraction to a separate microservice
PERFORMANCE
Finally, you need to calculate the impact on performance that executing additional
HTTP requests will have. The tokens used to authorize usually have some expiration
time associated with them. Therefore, you can cache them to reduce the number of
requests that your service needs to make. For caching functionality, you will need to
use a caching library in the client code.

 It is often the case that both approaches
(libraries and external services) are used to
deliver business functionalities. Extracting
the logic to a separate microservice imposes
the need to execute an additional HTTP call
for every user’s request to your service, which
may be a substantial drawback. You need to
calculate how this will impact your response
latencies and the service-level agreement
(SLA) of your service. Figure 2.7 shows one
such scenario.

 If, for example, your 99th percentile
latency according to your SLA needs to be
less than n milliseconds, adding calls to other
microservices may break your SLA. If the
microservice 99th percentile latency is less than n, however, you can hide the addi-
tional HTTP call by executing some requests in parallel, by retrying, or by using
speculative execution. This will worsen if a second microservice 99th percentile
latency is greater than n. In that case, you won’t fulfill your SLA. You will need to
increase the latency in SLA requirements if possible. If this is not possible, you will
need to invest more time to reduce the 99th percentile of the second service or use
the approach of extracting a library.

 If you are not concerned strictly about the latency, you still need to be careful
about cascading failures (http://mng.bz/GGrv) and guard against the dependent
microservice’s temporary unavailability. The problem of cascading failures is not spe-
cific to microservices and can occur with any external system that you need to call
(e.g., a database, an authentication API, and so on).

 If your business flow requires an additional external request, you need to decide
how to handle situations when this service is down. You may implement retry with
exponential backoff to allow the downstream service to get back online without
overwhelming the service with the request. Using this technique, you can probe the
downstream service every x milliseconds, and when it gets back online, you can grad-
ually increase the traffic. By adding an exponential backoff behavior, your retry
strategy should be executed with a decreasing frequency. For example, the first retry
after 1 second, the second retry after 10 seconds, the third retry after 30 seconds,
and so on. If it does not help, and the service is down nontemporarily, you need to

Service A Service B
Latency M ms

Latency N ms

Client will observe

N+M ms latency

Figure 2.7 Adding additional latency can
impact your services.

http://mng.bz/GGrv

30 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
guard against that by using a circuit breaker pattern (https://martinfowler.com/bliki/
CircuitBreaker.html).

 You should provide fallback behavior that will be executed when the downstream
system is down. For example, if you have a payment system and the payment provider
is down, you may decide to validate the payment and debit the account after some
period of time only after the downstream system is back online again. Such a solution
needs to be implemented carefully, and it must be a conscious business decision.

MAINTENANCE
As you can see, there are many tradeoffs for separate microservices. In real life, this
approach will need more planning and more maintenance. It would be best to com-
pare it with a more straightforward method of sharing libraries and list all the pros
and cons. If the logic that you need to share is simple and does not have many depen-
dencies, you may end up extracting the library. On the other hand, if the logic is com-
plex and can be extracted as a separate business component, you may consider
creating a new microservice. With the latter approach, you need to keep in mind that
it requires more work and probably a dedicated team that can support this running
process.

2.3.2 Conclusions about separate service

Looking at all the tradeoffs for microservices, you can see that it has a lot of draw-
backs. You need to implement a lot of new parts. Even if you do that correctly, the fail-
ure of a request that executes an external call via a network that can be unreliable is
still unavoidable. You should take all those pros and cons into consideration when
choosing the approach of a library versus a microservices approach.

NOTE It is easier to outsource when a given functionality is abstracted away
into a separate service or a library. For example, we could outsource the
implementation of the authentication logic to an external vendor. However,
this approach also has many drawbacks, including possibly a higher price,
coordination problems, inflexibility of changes, and many more.

In the next section, we will analyze duplication at a lower level. We will see how it
favors loose coupling.

2.4 Improving loose coupling by code duplication
In this section, we will look at the problem of duplication at the code level. Specifi-
cally, we will look at the design of two request handlers that process two types of trace
requests.

 Let’s assume that our system needs to handle two types of requests. The first one is
a standard trace request, and the second is a graph trace request. Both requests may
arrive from a different API, using different protocols and so forth. For that reason, we
have two code paths that handle both request types independently.

https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html

31Improving loose coupling by code duplication
 Let’s start the discussion from the most straightforward approach of having two
separate handler processor components. The GraphTraceHandler processes graph
trace requests, whereas the TraceHandler processes normal trace requests. Figure 2.8
shows this arrangement.

The logic is isolated, and there is no coupling between these two handlers. The Trace
and GraphTrace objects are similar; they carry information if the trace is enabled, and
they both take actual data. For the GraphTrace class, this information is of an int type,
whereas for the Trace class, it is a String, as the following listing shows.

public class Trace {
 private final boolean isTraceEnabled;
 private final String data;

 public Trace(boolean isTraceEnabled, String data) {
 this.isTraceEnabled = isTraceEnabled;
 this.data = data;
 }
 public boolean isTraceEnabled() {
 return isTraceEnabled;
 }

 public String getData() {
 return data;
 }
}

public class GraphTrace {
 private final boolean isTraceEnabled;
 private final int data;

 public GraphTrace(boolean isTraceEnabled, int data) {
 this.isTraceEnabled = isTraceEnabled;
 this.data = data;
 }

Listing 2.6 Decoupled Trace and GraphTrace classes

GraphTraceHandler

GraphTrace

TraceHandler

Trace

Processed byProcessed by

Figure 2.8 Two independent trace
handlers for processing trace
requests

Specifies the data
type for Trace

Notice that the data
types for GraphTrace
and Trace differ.

32 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
 public boolean isTraceEnabled() {
 return isTraceEnabled;
 }

 public int getData() {
 return data;
 }
}

At first glance, the classes look similar, but there is no common structure shared
between them. They are totally decoupled.

 Let’s now take a look at the handlers that process the trace requests. The first
handler that we will analyze is TraceRequestHandler. The responsibility of this han-
dler is to buffer incoming requests. Figure 2.9 illustrates the process for the Trace-
RequestHandler.

As you can see, TraceRequestHandler buffers the request as long as there is available space
in the buffer. When the buffer is full, the request (Request-3 in figure 2.9) is ignored.

 A bufferSize parameter limits the size of the buffer passed to the constructor of
this handler by specifying how many items the TraceRequestHandler can process.
Requests are buffered in the list data structure. When the buffer is full, the processed
flag is set to true. The following listing shows the code for decoupling this handler.

public class TraceRequestHandler {
 private final int bufferSize;
 private boolean processed = false;
 List<String> buffer = new ArrayList<>();

 public TraceRequestHandler(int bufferSize) {
 this.bufferSize = bufferSize;
 }

Listing 2.7 Decoupled TraceRequestHandler

Request-1

Request-1

Processed

Processed

Ignored because

buffer is full

Trace request handler

buffer

Request-2

Request-2
Request-3

Figure 2.9 The
TraceRequestHandler
buffers incoming requests.

33Improving loose coupling by code duplication
 public void processRequest(Trace trace) {
 if (!processed && !trace.isTraceEnabled()) {
 return;
 }
 if (buffer.size() < bufferSize) {
 buffer.add(createPayload(trace));
 }

 if (buffer.size() == bufferSize) {
 processed = true;
 }
 }

 private String createPayload(Trace trace) {
 return trace.getData() + "-content";
 }

 public boolean isProcessed() {
 return processed;
 }
}

In the listing, note the createPayload() method. It has the only logic that is specific
to the Trace class. It takes the trace request, extracts its data, and creates a string that
is appended to the buffer.

 To understand this component, let’s take a look at a unit test. It will process five
requests. However, the buffer limit will be set to four. In this case, after the buffer
receives four requests, the fifth one will not be appended. In the following listing, we
create the new TraceRequestHandler with buffer size four to implement this strategy.
The last request (with the e value) should be ignored because it exceeds the buffer.

 @Test
 public void shouldBufferTraceRequest() {
 // given
 TraceRequestHandler traceRequestHandler = new TraceRequestHandler(4);

 // when
 traceRequestHandler.processRequest(new Trace(true, "a"));
 traceRequestHandler.processRequest(new Trace(true, "b"));
 traceRequestHandler.processRequest(new Trace(true, "c"));
 traceRequestHandler.processRequest(new Trace(true, "d"));
 traceRequestHandler.processRequest(new Trace(true, "e"));

 // then
 assertThat(traceRequestHandler.buffer)
 .containsOnly("a-content", "b-content",

➥ "c-content", "d-content");
 assertThat(traceRequestHandler.isProcessed()).isTrue();
 }

Listing 2.8 Creating the TraceRequestHandler unit test

If the size of the underlying
buffer is less than bufferSize,
then append to it.

If the size is full, then
set the processed
flag to true.

The actual buffer
content has no
e-content element.

After processing, isProcessed
should return true.

34 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
As you can see, the buffer contains only four records. To understand why there is
duplication between the handlers, we need to analyze the code of the GraphTrace-
RequestHandler. In fact, the only difference between the graph and normal trace
handlers is the createPayload() method that we implement in the following listing.
The graphTrace extracts the data and appends the nodeId suffix to it.

 private String createPayload(GraphTrace graphTrace) {
 return graphTrace.getData() + "-nodeId";
 }

The rest of the processing code is the same between the two components. At this
point, we can see that both trace requests and also both handlers are similar. They are
independent and loosely coupled, but the processRequest() method for the Trace-
RequestHandler is quite complicated, and evolving this logic in two places in our code
can be error prone and hard to maintain.

 We know enough details about this code to decide that the common logic can be
extracted to a separate parent class, and both handlers can inherit the most complex
parts. In the next section, we will analyze this refactoring.

2.5 An API design with inheritance to reduce duplication
In this section, we will use an inheritance technique to reduce code duplication. The
most complex method that we want to share for our request handlers is process-
Request(). If you refer back to this method in listing 2.7, you will notice that it uses
the isTraceEnabled() method to detect whether a trace request should be buffered.
Because both Trace and GraphTrace are similar, we can extract the common parts to a
new TraceRequest class, as the following listing shows.

public abstract class TraceRequest {
 private final boolean isTraceEnabled;

 public TraceRequest(boolean isTraceEnabled) {
 this.isTraceEnabled = isTraceEnabled;
 }

 public boolean isTraceEnabled() {
 return isTraceEnabled;
 }
}

With this new structure, both requests can extend the new abstract TraceRequest,
providing only the data that is specific to each kind of request. The following listing
shows how GraphTrace and Trace can extend TraceRequest.

Listing 2.9 Creating the payload for the GraphTraceRequestHandler

Listing 2.10 Creating a TraceRequest parent class

isTraceEnabled
is shared by both
GraphTrace and Trace.

35An API design with inheritance to reduce duplication
public class GraphTrace extends TraceRequest {
 private final int data;

 public GraphTrace(boolean isTraceEnabled, int data) {
 super(isTraceEnabled);
 this.data = data;
 }

 public int getData() {
 return data;
 }
}
public class Trace extends TraceRequest {
 private final String data;

 public Trace(boolean isTraceEnabled, String data) {
 super(isTraceEnabled);
 this.data = data;
 }

 public String getData() {
 return data;
 }
}

Figure 2.10 shows how the Trace and GraphTrace hierarchy will look after extracting
the common parts.

Thanks to our refactoring, we can use TraceRequest and the classes inheriting from
this class in a new handler base class that we will extract in the next section.

2.5.1 Extracting a base request handler

The goal of our refactoring is to remove code duplication in the handlers. For this, we
want to extract a new BaseTraceRequestHandler class that will operate on the Trace-
Request class. The createPayload() method that is specific to a request type will end

Listing 2.11 Extending TraceRequest

GraphTrace extends
TraceRequest.

Passes isTraceEnabled to the
parent’s class constructor

getData() for GraphTrace
returns the int type.

The Trace class also
extends TraceRequest.

getData() for Trace
differs from the
GraphTrace instance.

TraceRequest

Extends
Trace

Extends
GraphTrace

Figure 2.10 The new TraceRequest class that GraphTrace and
Trace can extend to reduce code duplication

36 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
up in the child classes that provide this concrete behavior. Figure 2.11 illustrates this
new arrangement.

We need to parameterize the new BaseTraceRequestHandler class, so it can operate
on any class that extends TraceRequest. Let’s take a look at a revised BaseTrace-
RequestHandler class in the following listing. It will work for all classes that call
TraceRequest or that extend it. The <T extends TraceRequest> is a Java technique to
achieve this invariant.

public abstract class BaseTraceRequestHandler<T extends TraceRequest> {
 private final int bufferSize;
 private boolean processed = false;
 List<String> buffer = new ArrayList<>();

 public BaseTraceRequestHandler(int bufferSize) {
 this.bufferSize = bufferSize;
 }

 public void processRequest(T trace) {
 if (!processed && !trace.isTraceEnabled()) {
 return;
 }
 if (buffer.size() < bufferSize) {
 buffer.add(createPayload(trace));
 }

 if (buffer.size() == bufferSize) {
 processed = true;
 }
 }

 protected abstract String createPayload(T trace);

Listing 2.12 Creating the BaseTraceRequestHandler parent class

BaseTraceHandler
processRequest()

Extends TraceHandler
createPayload()

ExtendsGraphTraceHandler
createPayload()

Figure 2.11 Extracting the BaseTraceHandler parent class

processRequest accepts
any TraceRequest as an
argument.

It has the isTraceEnabled()
method because it is a
TraceRequest.

The main processing
logic is the same as the
duplicated approach.

The implementation for
creating a payload is in
the child classes.

37An API design with inheritance to reduce duplication
 public boolean isProcessed() {
 return processed;
 }
}

The processRequest() logic works now on any TraceRequest class. The isTrace-
Enabled() method is accessible here because the TraceRequest class defines this
method. Note that createPayload() is an abstract method. The concrete implemen-
tation will be provided by the child classes that can process Trace or GraphTrace
requests.

 After this refactoring, both handlers can extend the base class, providing only the
necessary parts of code for their implementation. The TraceRequestHandler and
GraphTraceRequestHandler classes only need to provide the implementation for the
createPayload() method. The parent class takes a bufferSize, which is used in
the main processing logic to limit the buffer size as a parameter. The constructor
of the child class then needs to call the super constructor with this argument. The
new TraceRequestHandler extends the base class that we extracted. It is parameter-
ized using the Trace class, as the following listing shows.

public class TraceRequestHandler extends BaseTraceRequestHandler<Trace> {

 public TraceRequestHandler(int bufferSize) {
 super(bufferSize);
 }

 @Override
 public String createPayload(Trace trace) {
 return trace.getData() + "-content";
 }
}

public class GraphTraceRequestHandler extends
BaseTraceRequestHandler<GraphTrace> {

 public GraphTraceRequestHandler(int bufferSize) {
 super(bufferSize);
 }

 @Override
 public String createPayload(GraphTrace graphTrace) {
 return graphTrace.getData() + "-nodeId";
 }
}

By using inheritance, we were able to simplify the handlers substantially. We removed
the duplicated code using the DRY principle. Our code is now more maintainable,
but it is also more tightly coupled. After our hard work, we might think that this

Listing 2.13 Adding inheritance to GraphTraceRequestHandler and
TraceRequestHandler

Provides an algorithm
for processing
GraphTrace

38 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
design decision does not involve a tradeoff. Our perspective will change a little bit
when the new business requirement arrives. We will look at this in the next section.

2.5.2 Looking at inheritance and tight coupling

Our code uses inheritance now, and the handlers only provide the createPayload()
method. Let’s assume that a new business requirement arrives: we need to change the
GraphTraceRequestHandler to work using an unbounded bufferSize. (Although it is
not advisable to have unbounded buffers in production systems, we will consider this
scenario for simplicity reasons.) This also means that this handler no longer needs the
bufferSize parameter.

 As you know, the processRequest() logic is in the parent class and is shared
between all client classes. The new business requirement means that the method
responsible for processing requests can be simplified, as the following listing shows.

public void processRequest(T trace) {
 if (!processed && !trace.isTraceEnabled()) {
 return;
 }

 buffer.add(createPayload(trace));
}

One problem that we can see here is that the processRequest() method can be sim-
plified only for graph trace handlers. The logic for the standard handler needs to
track the buffer. So reducing duplication introduced a tight coupling to the design.
Due to that fact, it is not feasible to change the processRequest() method for one
child class without impacting other child classes. This lack of flexibility is the tradeoff
that we need to make, and it limits our design substantially.

 One solution to this problem is to create a special case for process requests using
instanceof and then not buffering if the trace class is a GraphTrace. The following
listing provides this solution.

if(trace instanceof GraphTrace){
 buffer.add(createPayload(trace));
}

Such a solution would be fragile and would defy the purpose of introducing inheri-
tance in the first place. It introduces tight coupling between the parent and child
classes. Suddenly, the parent class needs to know about all the request types that it
needs to handle. It no longer operates on the generic TraceRequest class only. Now, it
needs to know about one of the actual implementations: GraphTrace. The logic from
the specific graph handler is leaking to the generic handler. Therefore, handling the

Listing 2.14 Simplifying processRequest

Listing 2.15 Using instanceof as a workaround

The logic for limiting the
number of trace requests in
the buffer is no longer in place.

39An API design with inheritance to reduce duplication
GraphTrace requests is no longer encapsulated in the code responsible for processing
this request.

 To alleviate this problem, we can return to the solution with duplicated code. How-
ever, in a real-life situation, such decisions are problematic because the components
that we refactor are substantially more complex and involve a lot more work.

 The thoughtful reader can see that, for our simple example, passing the Integer
.MAX_INT in the constructor of the GraphTraceRequestHandler as the bufferSize
would solve the problem. This would theoretically mean that we can achieve the busi-
ness goal of having the unbounded buffer without changing more code. In real-world
systems, however, a change of business requirements that you may encounter will be
more complicated. You might not be able to solve them without reducing the tight
coupling and removing the inheritance again.

 I’ve chosen inheritance as a solution here due to the context in which the original
code worked. Suppose you want to provide the caller with a possibility to provide an
implementation of the handler but let the caller provide some implementation parts
(as in BaseTraceRequestHandler). This is known as the strategy pattern. In that case, it
may be easier to choose an inheritance in which the main logic and the skeleton are
provided in the parent class and the client implements the missing parts.

 You can try a different approach to reduce duplication, such as composition or
design patterns that fit your needs. However, any solution will have its pros and cons,
and you need to consider its tradeoffs. You need to decide whether the flexibility you
want to achieve is worth maintaining code duplication that can evolve in different
directions. One alternative approach you might want to consider is using composition
of independent building blocks instead of tying multiple aspects of behavior together
with inheritance.

2.5.3 Looking at the tradeoffs between inheritance and composition

The strategy pattern is a good fit for our example if each subclass always has a well-
specific set of requirements that are somewhat separate to each other. If the set of
requirements grows, however, you may want to consider using composition instead
of inheritance. This would require separating the requirements into different respon-
sibilities. In our existing system, we already have a transformation of the data into its
eventual payload format and buffering.

 Currently, the buffering is relatively straightforward and is always based on the num-
ber of elements added to it. Let’s suppose we want to apply different buffering strate-
gies, which might include infinite buffering, no buffering at all, the existing buffering
based on the number of elements in the buffer, or, perhaps, a space-based buffer that
takes into account the size of each element. With the inheritance approach, we might
implement this with a tryAddEntry() method that can either be abstract or have a
default implementation in BaseTraceHandler. Is this still the best design?

 Separating the transformation and buffering responsibilities into different abstrac-
tions (potentially reusing existing functional interfaces) allows the handler code to

40 CHAPTER 2 Code duplication is not always bad: Code duplication vs. flexibility
just be plumbing that joins the abstractions together appropriately. This allows better
flexibility and mixing and matching arbitrary buffering with arbitrary data transforma-
tions, for example. But this comes at the cost of increasing the number of abstractions
the reader needs to understand when approaching the code. Figure 2.12 shows the
two approaches side by side.

If the handler abstraction itself is sufficiently isolated from the rest of the code, per-
haps being configured in a dependency injection phase, and then simply used, you
can switch from an inheritance-based approach to a composition-based approach (or
vice versa) without disturbing the rest of the codebase. All of this discussion of how to
avoid duplication presupposes that there is genuine duplication in the first place.
That’s not always the case, even when it looks like it at first glance.

2.5.4 Looking at inherent and incidental duplication

In the real world, software engineers tend to overfit for pattern matching. One exam-
ple of this is creating a shared abstraction and then adapting the code in multiple
places to share this abstraction. The fact that two things look identical doesn’t mean
they will solve the same business goal. They may also evolve differently. This is inciden-
tal duplication rather than something inherent in the code you’re working with.

 It’s usually easier to merge two concepts into one if they turn out to be the same
rather than to separate them if they turn out to be different. Once you have abstrac-
tion and multiple usages, the coupling of the components can be high. This means
that splitting the shared code into separate classes can be challenging.

 Sometimes, what looks like duplication is just two different things that happen to
be treated the same way in current requirements but which may vary later and shouldn’t

Bas T ceHandlere ra

GraphTraceHandler
crea ePat yload()
tryAddEntry()

Base ceHandlerTra
crea ayload()teP
tryA ntry()ddE

Inheritance

ext ndse

Tra eHc andler
- pa T sformeryload ran
- bu erff

Provided at
construction
(e.g., by a
DI container)

Payload raT nsformer
(inter af ce)

Buffer
(inter af ce)

Implementation via
lambda expressions
or dedicated classes Inf iteBin uffer ElementCountBuffer ...

Composition

Figure 2.12 Composition and inheritance approaches to TraceHandler

41Summary
be treated as equivalent. It may be difficult to distinguish between those two situations
at the beginning of a system design.

 Sometimes starting from an abstraction and adapting all possible usages to it may
not be optimal. Instead, we can implement our system by creating independent com-
ponents and letting them live independently for some time (even if it requires some
code duplication). Later, we may begin to see some common patterns between those
components, and abstraction may emerge. That might be the proper time to remove
duplication by creating some abstraction instead of starting from it.

 In this chapter, we analyzed solutions for reducing duplication in your code. We
started from the code that was shared between two codebases and extracted it to a sep-
arate library. We analyzed the tradeoffs and problems that you need to tackle during
the lifecycle of the library. Next, we saw a different approach of sharing common code
via a specialized service that can extract its API and can be treated in a black-box way.
The separate microservice was solving some of the problems of the library approach
but also introduced a variety of issues and tradeoffs. The second part of this chapter
was focusing on finding abstraction between two handler components that were
decoupled from each other. We created a solution using inheritance that allows us to
solve problems with less code. Inheritance solved some problems, but when there was
a need for flexibility, we saw that it limits our design possibilities and has its tradeoffs.

 In the next chapter, we’ll learn how to handle exceptions and errors in our code.
We will also learn how to handle exceptions from third-party code and about the best
practices of handling exceptions in the multithread environment.

Summary
 Sharing common code between codebases can be achieved by extracting a sepa-

rate library. Conversely, reusing code via the library comes with various prob-
lems, such as tight coupling and less flexibility.

 Extracting common business logic to a separate service may be the right choice
for more complex problems, but it has a high maintenance cost.

 Inheritance helps us remove code duplication and share common code
between child classes. Unfortunately, it has a lot of tradeoffs that limit the flexi-
bility of our code.

 Sometimes it is worth keeping duplicated code because it provides flexibility
and reduces coordination between teams.

Exceptions vs. other
patterns of handling

errors in your code
Errors and exceptions are inevitable in our code. Almost every code path fails if
something unexpected happens. Imagine that you are executing a simple addition
of two numbers. At first glance, such a code path cannot fail. However, you need to
be aware that your program executes in some context. For example, you may get an
out of memory error if there is not enough memory to run any operation on your
machine. You may get an interrupted exception in the multithreaded context if
your code is executed in a separate thread, and this thread gets the interruption
signal. Many potential problems can occur.

 Most often, our code is not trivial, and it can fail in a variety of ways. Handling
failures should be our first thought when creating our code. Our code should be
fault-tolerant, meaning that it should recover from problems whenever possible.
Before you can decide how to handle exceptions, you need to design an API that

This chapter covers
 The best patterns for handling exceptions

 Exceptions from third-party libraries

 Exceptions in multithreaded and async code

 Exceptions in functional and object-oriented
programs
42

43Hierarchy of exceptions
tackles problems and signals them in an explicit way. However, if we signal the possi-
bility of every error explicitly, our code would become hard to read and maintain.

 Not every error pattern requires recovery in code. According to the let-it-crash phi-
losophy that was first defined in the Erlang ecosystem, it is better not to recover from
critical failures. In such a scenario, a supervisor may monitor the process, and if the
program crashes from some nonrecoverable error (out of memory, for instance), the
supervisor simply restarts it. This philosophy does not require programmers to code
defensively and to try to guard against every possible exception-causing behavior. It is
a different approach than the one mainly used in the Java ecosystem. However, some
Java-related technologies, such as Akka, follow this pattern.

 In the standard Java-based application, the let-it-crash approach would be prob-
lematic because processing users’ requests is not separated into independent pro-
cesses. A typical Java application contains n processing threads, and each of those
process requests for some users. Because we are working within one application, if we
crash the whole application due to one user’s request, it impacts other users.

 In the actor approach with Erlang, Akka, and others, the processing model is more
fine-grained. Usually, the application can contain hundreds of actors (or more), and
each of those actors is responsible for processing a small amount of user traffic. If we
crash one actor, it won’t impact others. This approach has some valid use cases, but it
depends heavily on the structure of your application and its threading model.

 We will look at the tradeoffs of both approaches and when to use them. Once we
know about the best patterns, we will add one more complexity level—handling prob-
lems in async code that works in a multithreaded environment.

 When we can design an API upfront, we can make it robust and verbose where it
should be explicit. But there are some errors we can’t do much about when they hap-
pen. Such errors should remain implicit, and we do not need to include them in our
API contract. And unfortunately, there are APIs and third-party libraries that hide
problems from us. We will delve into techniques to handle such problems.

 Finally, we will compare throwing exceptions in an object-oriented fashion with a
functional approach that uses the Try monad to address problems. Let’s start our
journey into exceptions by understanding the hierarchy of problems that our code
can signal and handle.

3.1 Hierarchy of exceptions
Before we delve into more advanced topics like designing our API’s exception han-
dling scheme, let’s take a brief look into a hierarchy of exceptions and errors that we
often use in our code. Figure 3.1 illustrates this hierarchy.

 In Java, every exception is an object. A special Throwable type (extends Object)
gives useful information for every error. It wraps the cause with a message that signals
the problem. What is more important, it contains the stack trace. This is an array of
elements where each element identifies a particular line in code in a specific class that
leads to an exception. For diagnostic purposes, this information is essential. It helps

44 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
you trace back to the line where the problem occurred, so you can debug it. Next, we
have two types of classes that extend a Throwable (Error and Exception). If your
application throws an Error, it means that a critical problem has occurred, and most
often, you should not try to catch or handle it. It can be, for example, a virtual
machine error that signals a critical problem with the environment.

 In this chapter, we won’t focus on Java error handling because we don’t have much
control over it. We will, however, consider different strategies for exception handling.
Also note that in the rest of the chapter, I will use the words error and exception inter-
changeably for the same concept.

 On the left side of figure 3.1, you can see the exceptions. We should use those to
signal problems within our code. Moreover, we should also handle them if there is a
way to recover gracefully. In fact, if a method declares a checked exception, then the
compiler requires a caller to handle such an exception (it can be caught or rethrown).
This means that your code will not compile until you handle it. For example, if you load

Object

Throwable

Checked

IOException

InterruptedException

Unchecked

IllegalArgumentException

NullPointerException

VirtualMachineError

AssertionError etc

Exceptions Error

Object

Throwable

Checked

IOException
InterruptedException

Unchecked

IllegalArgumentException
NullPointerException

VirtualMachineError

AssertionError etc

Exceptions Error

Figure 3.1 Exceptions hierarchy for Java

45Hierarchy of exceptions
some files and get an IOException, it may be reasonable to recover and try to load it
from a different place on your filesystem. Later, we will use those exceptions to design
an error-handling API explicitly.

 On the other hand, we are not required to handle unchecked exceptions. But if
your code does not handle these, they are propagated to the main application thread
and will stop your application. They often signal some usage error that cannot be
recovered, and it is better to fail fast than to try to recover from such an error. For
example, if you pass a negative number as an argument to a method that expects a
positive number, you may decide to throw an unchecked exception because there is
no point in trying to recover. The callers may also prefer to use unchecked exceptions
to simplify using them from a functional interface (lambda) API, for example. This is
the implicit part of the error handling code.

 The concept of checked or unchecked exceptions is also present in other lan-
guages, but most of those pick one strategy or the other. For example, in the Scala and
C# programming languages, every exception is treated as unchecked; therefore, you
don’t need to catch them. However, you need to be careful not to propagate excep-
tions up to the main thread. Otherwise, your program will stop.

3.1.1 Catch-all vs. a more granular approach to handling errors

Let’s look at understanding exceptions and their hierarchy in an empirical way. We’ll
assume that we have a method that declares throwing two exceptions that are checked,
as the following listing shows.

 public void methodThatThrowsCheckedException()
 throws FileAlreadyExistsException, InterruptedException

Both FileAlreadyExistsException and InterruptedException are checked excep-
tions. This means the caller of this method needs to handle them at compile time.
The first approach of handling those exceptions is to declare a catch clause for both
types, as this listing demonstrates.

public void shouldCatchAtNormalGranularity() {
 try {
 methodThatThrowsCheckedException();
 } catch (FileAlreadyExistsException e) {
 logger.error("File already exists: ", e);
 } catch (InterruptedException e) {
 logger.error("Interrupted", e);
 }
}

By using two catch blocks, we can provide a different exception handling behavior,
depending on the type. Often, this is a correct granularity level for handling exceptions.

Listing 3.1 Method that throws checked exceptions

Listing 3.2 Handling checked exceptions

Catches
FileAlreadyExistsException

Catches other exception
that is unrelated to the
previous

46 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
 Because of the exceptions hierarchy, we can alter the catch block to catch a wider
type. For example, FileAlreadyExistsException (see http://mng.bz/zQwB) extends
IOException, so the first catch block can directly catch IOException, as the following
listing illustrates.

public void shouldCatchAtHigherGranularity() {
 try {
 methodThatThrowsCheckedException();
 } catch (IOException e) {
 logger.error("Some IO problem: ", e);
 } catch (InterruptedException e) {
 logger.error("Interrupted", e);
 }
}

There’s one problem with this listing: we are losing the information that the File-
AlreadyExistsException was thrown. Whereas this information will be present at run
time, at compile time, we’ll get only the information that it throws IOException.

 We could broaden our exception type to Exception or any Throwable. However,
we could also potentially catch exceptions that we didn’t mean to catch initially. We
may catch other potentially critical exceptions unrelated to our processing, which
should be propagated to higher components.

 If the method that is called throws more than one exception that extends
IOException, we may consider creating one catch block instead of a couple lower
granularity catch blocks. This is a rational solution if we don’t need to create error
handling logic per a specific type and we are OK with a more generic approach.

 If we do not care about the type of exception, but we want to catch all the prob-
lems, it is possible to declare the catch for all exceptions. As you remember from the
previous section, every exception, checked and unchecked, extends the Exception
class, so this approach will catch all the problems of the called method. The following
listing shows this approach.

public void shouldCatchAtCatchAll() {
 try {
 methodThatThrowsCheckedException();
 } catch (Exception e) {
 logger.error("Problem ", e);
 }
}

Such an approach may be convenient because it requires less code to write, but we
lose a lot of information here. Also, you need to remember that you will catch all
exceptions, even those that are not declared as checked exceptions thrown by the

Listing 3.3 Handling checked exceptions with a wider type

Listing 3.4 Catching all exceptions

FileAlreadyExistsException
extends IOException—
handle it instead.

Catches all exceptions,
checked and unchecked

http://mng.bz/zQwB

47Hierarchy of exceptions
called method. This may not be the behavior that we expect. We are risking catching a
problem that should be propagated higher in the call stack.

 To reduce duplication and keep the information about expected exceptions, we
can use a multi-catch block. In the following listing, we declare both IOException and
InterruptedException in the catch signature.

public void shouldCatchUsingMultiCatch() {
 try {
 methodThatThrowsCheckedException();
 } catch (IOException | InterruptedException e) {
 logger.error("Problem ", e);
 }
}

To conclude our explanation of exceptions, let’s consider a similar method that
declares two checked exceptions but throws the unchecked one. RuntimeException is
the unchecked one, so it does not need to be declared in the method signature, as the
following listing shows.

 public void methodThatThrowsUncheckedException()
 throws FileAlreadyExistsException, InterruptedException {
 throw new RuntimeException("Unchecked exception!");
 }

Listing 3.4 will catch this problem even if we may not expect it to happen. If we nar-
row the catch blocks to catch only checked exceptions, RuntimeException will not
be caught and will be propagated. The following listing demonstrates how to rem-
edy this.

public void shouldCatchAtNormalGranularityRuntimeWillBeNotCatch()
 assertThatThrownBy(
 () -> {
 try {
 methodThatThrowsUncheckedException();
 } catch (FileAlreadyExistsException e) {
 logger.error("File already exists: ", e);
 } catch (InterruptedException e) {
 logger.error("Interrupted", e);
 }
 })
 .isInstanceOf(RuntimeException.class);
}

Listing 3.5 Handling checked exceptions with a multi-catch block

Listing 3.6 Throwing an unchecked exception

Listing 3.7 Calling a method that throws unchecked exception

Throws an
unchecked
exception

The propagated exception
that was not caught is
RuntimeException.

48 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
Please note the catch blocks catch only exceptions that are declared in the method-
ThatThrowsUncheckedException() signature. These do not declare catch for an
Exception; therefore, the unchecked exception will not be handled.

 In the following section, we’ll refresh our knowledge about exceptions and their
Java language types. Then, we’ll see how we should design exception handling strate-
gies for our APIs.

3.2 Best patterns to handle exceptions in
the code that you own
When you are writing your software APIs, there is a high probability that someone else
will use this code. If you work within a team, you may be responsible for developing
logic for one part of the system, while another team member is responsible for a dif-
ferent part of a system.

 The integration point between your code should be an interface that states the
intent of your code. In fact, it should not matter if only other team members use your
component or you are developing an open-source library used by more people. If you
are designing an API, you should consider explicitly communicating exceptions to allow
callers to decide how to treat those failures. However, you may develop components and
methods that contain an internal logic and are not exposed publicly. In that case, maybe
you don’t need to be explicit about every possible problem the code can have.

3.2.1 Handling checked exceptions in a public API

Let’s assume we are developing a component that exposes a public API and that other
team members will use this API. When it comes to checked exceptions, we should
clearly propagate our intent and annotate the public API methods with checked
exceptions it can throw. For example, if you expect that your public method can fail
on an I/O problem, you should declare the exception in the public API signature.

 Some languages (e.g., Scala) tend to treat all exceptions as unchecked, allowing
methods to not declare them. If you are designing such an API, know that it is error
prone because clients of your code will not get the information about possible failure
at compile time. This problem is deferred to the run time, which means your software
may fail unexpectedly while running in production. If your API declares the excep-
tions explicitly, such a situation is not possible because you are forcing the client to
decide about the exception handling strategy at compile time (when they are writing
the code).

 There is often the argument that declaring a couple (two, three, or even more)
exceptions that your API may throw is too verbose, making the client’s code harder to
write. Let’s assume that we are exposing such a method. Take a look at the following
listing.

void check() throws IOException, InterruptedException;

Listing 3.8 An API method with a couple of exceptions

49Best patterns to handle exceptions in the code that you own
When clients of this API calls this method, they will need to make an explicit decision
about handling it—every time this method is called. If this is problematic to a caller, it
can catch all the exceptions using the pattern that we learned in the previous section
and propagate the exception as an unchecked one. The following listing provides an
example of this.

 public void wrapIntoUnchecked() {
 try {
 check();
 } catch (RuntimeException e) {
 throw e;
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

In the listing, note that we catch RuntimeException before Exception to avoid unnec-
essary wrapping to another RuntimeException. Also, it is important to wrap the
underlying exception to a new unchecked one. By doing so, the caller gets all the
information about the cause of the underlying exception. Other methods in the code
can then use the wrapper method.

 I do not recommend using an API that hides actual exceptions and propagates
unchecked exceptions in your code as a solution for all problems. That will hide the
expected exceptions and make your API less fault tolerant. However, it shows that the
argument against making our API verbose is not rational. It is easy to convert checked
exceptions into unchecked ones.

 If our clients do not want to handle errors explicitly, they need to make a con-
scious decision to ignore those errors and propagate them up in the caller stack. Most
often, this is not the right solution. At this point, we can see that declaring checked
exceptions in the signature of the method in our public APIs has a couple significant
advantages:

 Such an API declares its contract explicitly. The callers can, therefore, reason about
the call outcome without looking into the method implementation.

 The caller won’t be surprised by any unchecked exceptions. It is easier to write error
handling code when we know what possible exceptions the called API can
throw.

3.2.2 Handling unchecked exceptions in a public API

In our APIs, we often need to validate the arguments and state of the objects that are
used by the caller. If such a state is invalid, we may decide to throw an unchecked
exception. As you know, unchecked exceptions do not need to be declared in the
method signature. They also don’t need to be handled in the caller’s code.

Listing 3.9 Propagating an exception as unchecked

Catches all exceptions
from the public API
method call

Wraps those into an
unchecked exception

50 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
 According to the guidelines on handling errors (see http://mng.bz/0wXN for a
Java tutorial on unchecked exceptions), declaring the unchecked exception for every
method reduces our program’s clarity. However, there are some situations in which
declaring unchecked exceptions is a viable solution. Let’s assume that we have a
method in our API that sets up a service, as the following listing shows.

 boolean running;

 public void setupService(int numberOfThreads)
 throws IllegalStateException,
 IllegalArgumentException {
 if (numberOfThreads < 0) {
 throw new IllegalArgumentException(
 "Number of threads cannot be lower than 0.
 ");
 }

 if (running) {
 throw new IllegalStateException(
 "The service is already running."
);
 }
 }

The exceptions declared in this method signature serve an informational purpose.
The caller of this method does not need to catch those exceptions, although it may be
useful to know about those exceptions when interacting with other APIs.

 If we create a method used by other components in our code, we should document
the preconditions and expected behavior. Unfortunately, the documentation is not
always read by developers, and it may become outdated over time. Declaring
unchecked exceptions in a method signature can serve the purpose of documenta-
tion. Such documentation may be better because there are greater chances that the
developer using our API will read it.

 It is true that declaring too many exceptions can make our code too verbose and
unclear. However, in real life, our software components declare only a subset of meth-
ods as a public API. The rest of the methods created to achieve the public API’s func-
tionality are hidden using private access modifiers. Such methods do not need to be
so verbose. We can drop unchecked exceptions from their method signatures without
losing much information.

 If we modify the private methods of a specific component, we need to know their
internals. We should examine these methods and know about the exceptions they can
signal. When our component is used in a black-box way, only via a public API, we
should not require the callers to know about this component’s internals. Declaring
the unchecked exceptions in these methods may be a good solution.

Listing 3.10 Throwing an unchecked exception from the API

Declares that the
method can throw
unchecked exceptions

If the argument is
incorrect, it throws the
IllegalArgumentException.

If it is already running,
it can also throw
IllegalStateException.

http://mng.bz/0wXN

51Anti-patterns in exception handling
 When making the decision of whether your API should throw checked or unchecked
exceptions, you should consider many factors. Let’s consider a situation in which the
caller’s code assumes that every code path of the API it calls can fail and may throw an
exception. This probably means the application is structured in a way in which it
catches all exceptions at some high level in the call stack. We can relate it to a situa-
tion in which you are writing the components and API used by your code. In this case,
the decision to use unchecked exceptions is reasonable. You own both caller and
implementation code. There is a low chance that the called code will surprise you in
an unpredictable way.

 However, when creating a public API that can be called by code unknown to you,
you may choose to be more explicit and declare possible problems via checked excep-
tions. This approach gives potential callers explicit information about your API. They
will know what they should expect from the called code, and they will guard against
possible exceptions. When declaring exceptions explicitly in the API contract, we are
not forcing callers to protect against all potential problems and guess the possible
exceptions.

 I am not trying to give a definite answer to which type of exceptions you should
use. Both types have their use cases. What I am presenting is the tradeoffs of both
types. You can take those tradeoffs and your context into consideration and then
decide which type of exceptions are better suited for your code. In the next section,
we will look at some anti-patterns that may prevent our code from being fault-tolerant.

3.3 Anti-patterns in exception handling
Let’s assume that we’ve created a robust API that signals the problems and exceptions
in an explicit way. Now, we need to use our API and react to problems properly. Unfor-
tunately, in this scenario, it is easy to lose this information or not handle the excep-
tions properly. If the API that we want to use declares the exceptions, we need to
handle them at compile time.

 It is often tempting to analyze the underlying code and conclude that such an
exception cannot be thrown under any circumstances. This may even be true for the
time when the code is analyzed. However, if the method declares unchecked excep-
tions, we should treat it as the method contract. Even if it does not throw an exception
when we are writing our caller code, the underlying behavior may change in the
future. The following listing shows such an anti-pattern.

 try {
 check();
 } catch (Exception e) { / / does not happen? This is very dangerous!
 }

The exception that is swallowed never propagates up in the call stack. We will also lose
that information, risking silent failure in our system. Those problems are tough to

Listing 3.11 Swallowing an exception

Uses the check() method
from the previous section

The caller thinks it is sure the
exception cannot happen.

52 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
debug! We should never ignore an exception declared in the called method signa-
ture. It may also be tempting to just print the stack trace of the exception, as the next
listing displays.

 try {
 check();
 } catch (Exception e) {
 e.printStackTrace();
}

This is also dangerous because printing the stack trace is printing the content of the
exception to standard output by default. Instead, the destination can be something
else—for example, a FileOutputStream. As well, if the standard output is not cap-
tured or propagated, we risk losing this information.

 We need to decide whether the exception should be handled at this specific code
level. If yes, then catching exceptions should extract as much information as possi-
ble. We can use a logger, as in the following listing, to extract the information about
Throwable.

 try {
 check();
 } catch (Exception e) {
 logger.error("Problem when check ", e);
 }

The logger gets the stack trace of an exception and propagates it to the caller. It will be
appended to the log file and will allow the caller to debug problems more efficiently.

 If we decide to handle a particular error at a higher level, the method that calls
check() should not try to catch it. Instead of catching it, it should only declare it in the
method signature. By declaring the exception explicitly in the method contract, we are
signaling to the clients what they should expect after calling a method. By using this pat-
tern, we allow the clients to consider their own strategy for exception handling.

3.3.1 Closing resources in case of an error

Often, our code needs to interact with methods and classes that require some system
resource consumption. For example, creating a new file requires opening a filesystem
handle. Creating an HTTP client requires opening the socket that allocates the port
from the pool of available ports. As long as the process progresses without problems
and everything works as expected, then we need to close the client after the process
completes.

 Let’s consider a simple example of creating an HTTP client, executing some
requests, and closing the client. The following listing shows the code.

Listing 3.12 Print stack trace

Listing 3.13 Using a log to catch an error

The logger.error
method extracts the
needed information.

53Anti-patterns in exception handling
CloseableHttpClient client = HttpClients.createDefault();
try {
 processRequests(client);
 client.close();
} catch (IOException e) {
 logger.error("Problem when closing the client or processing requests", e);
}

At first glance, this code looks correct, and after processing, we close the client. (Here
processing involves the logic that may fail if the network drops some packets.) Unfor-
tunately, the processRequests() method may throw an IOException. If that excep-
tion is thrown at this place in code, the close() method will not be called. We are
risking a resource leak that may lead to problems if we open too many socket connec-
tions or clients.

 We need to convert this code to call close() even if processRequests() fails. We
also need to handle problems from processRequests() separately. Only after those
are handled can we close the client. The following listing shows how this would look.

CloseableHttpClient client = HttpClients.createDefault();
try {
 processRequests(client);
} catch (IOException e) {
 logger.error("Problem when processing requests", e);
}
try {
 client.close();
} catch (IOException e) {
 logger.error("Problem when closing client", e);
}

Such a code is verbose and error prone. The verbosity comes from the fact that we
need to handle the same IOException twice. Also, we need to guard against pro-
cessing failures, and we need to fall back to the close() method call even if there is
a processing problem. It is easy to forget about this if the API throws an unchecked
exception. In such a case, we will not call the close method; thus, we risk resource
leaks.

 To improve our code a bit, we can use a try-with-resources statement to handle
closing for us. This will work only if the class we use implements the AutoCloseable
interface (see http://mng.bz/QWOv). Listing 3.16 shows how we can automatically
close our HTTP client using this mechanism.

Listing 3.14 Closing HTTP client

Listing 3.15 Closing an HTTP client in case of process request problems

Creates a new client that
allocates system resources

Processing that
uses the client

Closes the client after
processing is done Logs the error if close()

fails with an exception

Catches the process
request problem

Calls close() only after
processRequests() finishes.

http://mng.bz/QWOv

54 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
try (CloseableHttpClient client = HttpClients.createDefault()) {
 processRequests(client);
} catch (IOException e) {
 logger.error("Problem when processing requests", e);
}

Using this technique allows our caller’s code to focus only on the logic that needs to
be executed. The lifecycle of the object that implements Closeable is handled for us.
The close() method should provide the necessary logic for freeing resources. It also
states our code’s intent, clearly allowing our clients to reason about the types and their
resource usage.

NOTE If we design our API to return the object that involves some resource
consumption that should be freed after the object is no longer used, we
should implement the Closeable interface.

Although the try-with-resources abstraction is useful, your language may not support
it. The main reason for using it is to close our resources, regardless of the processing
outcome. If we execute code that throws an unchecked exception, that error may stop
our code from progressing. In this case, we need to close the resources after the logic.
Because of this, some languages allow programmers to execute code, regardless of
whether an exception was thrown.

 In Java, we can use the finally block to implement the logic responsible for clos-
ing resources. The code inside this block always executes, even if the code throws an
exception. The following listing provides an example.

CloseableHttpClient client = HttpClients.createDefault();
try {
 processRequests(client);
} finally {
 System.out.println("closing");
 client.close();
}

Now, even if processRequests() throws an exception, the finally block’s closing
logic will be executed. You can observe that because the closing message will appear in
the standard output.

3.3.2 Anti-pattern of using exceptions to control application flow

The other common anti-pattern when implementing object-oriented exception han-
dling is using exceptions to control our application flow (like the goto statement). In

Listing 3.16 Closing an HTTP client using try-with-resources

Listing 3.17 Closing resources using a finally block

Creates the
HttpClient within the

try-with-resources
statementHandles the exception

thrown by processRequests()

55Exceptions from third-party libraries
such an application, exceptions are over used and thrown to signal to the caller that
the logic should follow a different code path.

 It is also tempting to use exception(s) to overcome the one return type per
method limitation. Let’s assume that we have a method that returns a String. After
some time, we want to change this method to return a special value if the string is too
long. At first glance, throwing an exception in such a case seems like the correct solu-
tion, and as long as this exception is indeed an exceptional situation, using an excep-
tion is justified. Problems will start to appear if the caller builds conditional logic that
executes different code paths, depending on the outcome of the method.

 The more exception types the method throws, the more complex the caller logic
becomes. Building complicated logic around exceptions is expensive (we’ll look at
performance in the last section of this chapter). Changing code paths depending
on the exception makes our code complex, hard to reason about, and difficult to
maintain.

 Suppose we want to design our code so that it imposes on the caller a need for han-
dling the edge cases in their logic. In that case, we may look at the functional pro-
gramming constructs, such as Try (which we discuss later in this chapter) or Either.
By using those constructs, we can design our code for handling edge cases without
overusing exceptions.

 Often, when we write our code, we use third-party libraries, and we do not have any
(or we have very limited) influence over their codebase evolution. The next section
focuses on error handling strategies when calling the code that we do not own.

3.4 Exceptions from third-party libraries
When we interact with the third-party libraries, our strategy of handling exceptions
should be thoughtful. Let’s consider an example of developing a software component
responsible for saving information about a person to a catalog.

 Our API will have two public methods. The first method gets the information
about a person based on the person’s name. The second method creates information
about a person’s name. The getPersonInfo() method loads the file from the filesys-
tem, whereas the createPersonInfo() method creates a new file for the given person
and saves the information to a file. The client code will interact with our API via two
public methods, as figure 3.2 shows.

 In our scenario, let’s assume that we use a third-party library that provides the mech-
anism for saving and retrieving files in our filesystem. For that, we will use the Apache
Commons IO library (http://mng.bz/9KW7). The library throws IOException or File-
ExistsException (http://mng.bz/jynr) when there is a problem with any operation
regarding file system access. As we know by now, every interaction with a filesystem
involves a method call that can fail. Listing 3.18 shows how the API of our catalog
component will look.

http://mng.bz/9KW7
http://mng.bz/jynr

56 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
import java.io.IOException;
import org.apache.commons.io.FileExistsException;

public interface PersonCatalog {
 PersonInfo getPersonInfo(String personName) throws IOException;
 boolean createPersonInfo(String personName, int amount) throws

FileExistsException;
}

The most important thing to note here is that both API method declarations may
throw an exception. The getPersonInfo() method throws the IOException that is
available in the Java standard JDK. The createPersonInfo() method throws the
FileExistsException that is an exception specific to the underlying third-party
library we imported. This is reasonable because both interact with the filesystem via
the third-party library that also declares these exceptions.

 On one hand, such a solution will work as expected: clients will need to handle
the IOException and FileExistsException in their code when interacting with the
PersonCatalog component. On the other hand, we will leak the internal exception
used by the underlying third-party library. Once we propagate those exceptions and
their types in the API, we will introduce tight coupling between the client’s code and
the third-party library, which we use internally in the PersonCatalog component. This
defies the purpose of abstraction that we introduced because we cannot change the
underlying library responsible for the filesystem operations. Changing that library
would mean that other exceptions may be thrown, and our API method signature no
longer reflects this.

Listing 3.18 An API with declared exceptions

getPersonInfo(personName)

createPersonlnfo(personName,

amount)

Person catalog

Interacts with

Interacts with

Calls

Interacts with

File: personName1.txt

File: personName2.txt

File: personName3.txt

Client code

Figure 3.2 A person catalog API that exposes two public methods

Imports the third-party
class, which looks suspicious

Throws the
IOException from the
standard Java libraryThrows an exception that leaks

the underlying implementation

57Exceptions from third-party libraries
 It might also be possible that a different third-party library would not have a File-
ExistsException class that we declared in the method signature. The IOException is
less problematic because it is present in the JDK available in the client’s code. You may
wonder why we cannot just remove the throws FileExistsException and replace it
with an exception from a different third-party library. Because this is a public inter-
face, changing this type will mean that we’ll break our library’s compatibility. When
clients use the new version of this method, the code will no longer compile!

 We can conclude that propagating the third-party exception in our code’s public
API methods may not be an ideal solution. How can we solve that problem? We can
introduce a library-specific exception and wrap the underlying exception within it.
Let’s introduce a PersonCatalogException that will wrap any underlying exception
thrown by the third-party library responsible for interacting with the filesystem. The
following listing shows this implementation.

public class PersonCatalogException extends Exception {
 private PersonCatalogException(String message, Throwable cause) {
 super(message, cause);
 }
 public static PersonCatalogException getPersonException(String personName,
 Throwable t) {
 return new PersonCatalogException("Problem when getting person file for: " +

personName, t);
 }
 public static PersonCatalogException createPersonException(String personName,
 Throwable t) {
 return new PersonCatalogException("Problem when

➥ creating person file for: " + personName, t);
 }
}

PersonCatalogException takes a private constructor that encapsulates the actual
Throwable and error message. For the getPersonInfo() method, we have a getPerson-
Exception() factory that constructs the domain-specific exception. The createPerson-
Info() API method presents a similar situation in which we wrap an underlying
Throwable into our new PersonCatalogException.

 Once we have a new domain-specific PersonCatalogException, we can propagate
it easily in the public API without leaking the actual exception types of the underlying
third-party library. The following listing shows the domain-specific exception.

public interface PersonCatalog {
 PersonInfo getPersonInfo(String personName) throws PersonCatalogException;
 boolean createPersonInfo(String personName, int amount) throws

PersonCatalogException;
}

Listing 3.19 Creating a domain-specific exception

Listing 3.20 PersonCatalog without leaking a third-party exception

The PersonCatalogException
private constructor

58 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
After those changes, both get and create methods declare that they throw the Person-
CatalogException. Note that the third-party exception no longer leaks, and the cli-
ent’s code can use this API without tight coupling to the specific implementation that
we are currently using. Such a solution gives us high flexibility when evolving the API
and gives the clients code more information about the reason for the exception. By
only looking at the exception type, the caller can infer the reason and place where the
exception was thrown. If we use the low-level exceptions, such as IOException, the
name of the exception itself carries a lot less information than it should.

 We can see that wrapping exceptions can be useful in the public API and in our
own code because this gives more context about the error. It basically carries more
information with the same amount of exception output. This does not mean that we
should wrap every exception propagated from the third-party libraries into our own
codebase, but we should consider the cost of maintaining the new exception versus all
the pros it gives us. Most often, introducing a domain-specific exception would give us
more benefits than its cost of maintenance. If you are designing a private component
that won’t be exposed to clients directly, you should be OK with using the exceptions
without wrapping them into custom ones.

 Note also that, even if the exception type gives the caller a lot of information, the
message that the exception carries should contain a detailed explanation of what hap-
pened. Besides that, the stack trace is recorded in the exception, and when an abnor-
mal situation occurs, it also provides a lot of insight into what went wrong. When
combining those three pieces of information together (i.e., exception type, message,
and stack trace), it is easier to reason about what went wrong. The exception type is
also useful for the compiler. When the error occurs at run time, we want to have all
that information as well.

 Up to this point, our design was concerned with code that worked synchronously.
In the next section, we will see how to handle the code that works in a multithreaded
and asynchronous way.

3.5 Exceptions in multithread environments
Handling exceptions in a multithreaded context is different than when our program
is executed within a single-threaded context. When we submit a new action to an exec-
utor, we should get feedback about the success or failure of this action. Without a
mechanism to get this information, we risk that the async action executed in a sepa-
rate thread may fail without any signal. Such silent failures are dangerous and hard
to diagnose.

 When interacting with an executor, we have two ways to submit work. We can
schedule a new action to be executed using the submit() method that returns the
Future instance and then we can use this Future instance to get the result of the
action. The second way of scheduling an async operation is to use the execute()
method. This is basically the fire-and-forget approach, meaning that we will not get
results from such action.

59Exceptions in multithread environments
 When we do get the result of our action, it means that such a result can succeed or
fail if some exception is thrown from the code. Let’s see how the exception handling
code looks when we submit an action, as the following listing shows.

ExecutorService executorService = Executors.newSingleThreadExecutor();
Runnable r =
 () -> {
 throw new RuntimeException("problem");
 };
Future<?> submit = executorService.submit(r);
assertThatThrownBy(submit::get)
 .hasRootCauseExactlyInstanceOf(RuntimeException.class)
 .hasMessageContaining("problem");

It is important to note that the get() method blocks our flow, and the blocking oper-
ation must finish when get() is executed. If the underlying action finishes with an
exception, it is propagated to the main thread. If you submit an action and don’t use
this result anywhere in code (fire-and-forget), the exception is not propagated, and
you are risking silent failure. You need to remember, if the executor service returns a
Future (promise), you must validate its correctness.

NOTE You can find information about the Future interface at http://mng
.bz/W70a. For .NET developers, a Future is similar to a Task.

The execute method is a bit different because it does not return any result. Let’s look
at the following listing to see its implementation.

Runnable r =
 () -> {
 throw new RuntimeException("problem");
 };
executorService.execute(r)

The fact that our executor does not return a result means that the failure of an async
action executed in a separate thread may fail silently. Such an exception can cause
your thread to stop working. This may be problematic if you use a thread pool with a
fixed number of threads. When the thread fails, it may not be recreated, and you are
risking that, at some point, all threads will fail and the pool will be empty. If you have
a thread pool that adapts to traffic, you are risking resource leaks. Every thread occu-
pies a substantial amount of memory, and creating a lot of new threads may lead to
out of memory problems.

Listing 3.21 Submit and wait

Listing 3.22 Execute and forget

We will be using an executor with
one separate worker thread.

The action that is submitted will
throw an unchecked exception.

The submit()
returns a Future.

The get() involves
blocking the main thread.

http://mng.bz/W70a
http://mng.bz/W70a
http://mng.bz/W70a

60 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code

Set
 The sane solution for such processing would be to register a global exception han-
dler, which is executed for failures in any thread in our processing. We can register
the exception handler for all threads using the UncaughtExceptionHandler (http://
mng.bz/Ex5d), as figure 3.3 illustrates.

As figure 3.3 shows, the main thread submits the work to worker-thread-1 using the
execute() method (without getting the promise object back). Then, the worker
thread executes this action asynchronously. If there is no promise returned, the main
thread now has no way of letting us know if any problem occurs in the worker-thread
processing. Fortunately, we can register a global exception handler that will be
invoked if any exception in processing occurs. If there is no handler (as in worker-
thread-2), we risk that the exception is silently discarded and the worker thread may
stop working, leading to the resource leak described previously.

 Let’s take a look at a unit test that validates the global exception handler logic. We
will call the execute() method with an action that will fail. Then, we will assert that
the UncaughtExceptionHandler was called when the exception occurs. The following
listing shows this use case.

// given
AtomicBoolean uncaughtExceptionHandlerCalled = new AtomicBoolean();
ThreadFactory factory =
 r -> {
 final Thread thread = new Thread(r);
 thread.setUncaughtExceptionHandler(
 (t, e) -> {
 uncaughtExceptionHandlerCalled.set(true);

Listing 3.23 Registering UncaughtExceptionHandler

Main

thread

Submits work
w worker-thread-2orker-thread-1

UncaughtExceptionHandler

If there is no handler,
the execution is silently
discarded.

Submits work

Throws exception

Figure 3.3 Global exception handling in a multithreading context.

Set to true if the
handler is executed.

s the global
exception

handler

An exception happens,
so we set the uncaught-
ExceptionHandlerCalled
to true.

http://mng.bz/Ex5d
http://mng.bz/Ex5d
http://mng.bz/Ex5d

61Exceptions in multithread environments
 logger.error("Exception in thread: " + t, e);
 });
 return thread;
 };

Runnable task =
 () -> {
 throw new RuntimeException("problem");
 };
ExecutorService pool = Executors.newSingleThreadExecutor(factory);
// when
pool.execute(task);
await().atMost(5,

TimeUnit.SECONDS).until(uncaughtExceptionHandlerCalled::get);

As you can see, exception handling in a multithreaded environment is tricky, espe-
cially if the API that we use allows or forces us to fire some action in an async way and
forget about the results. But if we can get the Future object that wraps the async exe-
cution result, we should use this API because it forces us to think about the results and
the possibility of an exception.

 The promise API is a well-known construct that allows us to create async code and
compose async operations fluently. This Java API has the CompletableFuture con-
struct to create fluent async APIs that capture the failures explicitly (see http://mng
.bz/NxMn). You will also find similar APIs in other programming languages. Let’s
take a look at how to handle exceptions using Java’s promise API.

3.5.1 Exceptions in an async workflow with a promise API

Ideally, when creating an async workflow, we would interact with I/O, networks, and
other external resources, using an API that works in an async way. Such an API should
return a promise that we can use to chain async operations. Unfortunately, in the real
world, sometimes we need to create a translation layer between sync and async APIs.

 Let’s assume that we need to call an external service. The method responsible for call-
ing this external service works synchronously, so we need to wrap it into a Completable-
Future API that allows us to change the subsequent async flow. The external call
involves an I/O operation, so it declares that it can throw the IOException.

 Because the IOException is a checked exception, we need to handle it somehow in
an async fashion. We’ll use the supplyAsync() method that wraps the blocking call
and returns a nonblocking type, which is propagated to the callers that are expecting
the async operation. The first approach would be to wrap this checked exception into
unchecked one to propagate it to the caller, as the following listing shows.

public int externalCall() throws IOException {
 throw new IOException("Problem when

Listing 3.24 Wrapping an exception in the async API

execute() invokes the action
in a separate worker thread.

Sets the time to
await until the

handler is invoked
(everything is async).

The externalCall() methods
can throw IOException.

http://mng.bz/NxMn
http://mng.bz/NxMn
http://mng.bz/NxMn

62 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
➥ calling an external service");
}

public CompletableFuture<Integer> asyncExternalCall() {
 return CompletableFuture.supplyAsync(
 () -> {
 try {
 return externalCall();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 });
 }

It is important to note that we are propagating IOException from the underlying
library directly without creating a domain exception that wraps it. We do this for
the simplicity of this example. For a detailed discussion about pros and cons, see
section 3.4.

 This approach of wrapping the exception and propagating the unchecked one is
far from ideal. We are mixing two abstractions: one is a promise API, which should
encapsulate the result that can be fulfilled in the future or an exception if this action
fails. The other abstraction synchronously throws an exception that will propagate to
the caller. The Java API wraps this exception into CompletionException, captured in
the thread pool on which the async action is executed.

 When calling the asyncExternalCall() method, you will see a stack trace denoting
that this exception was propagated to multiple layers of the concurrent API. Finally, you
will then find the underlying problem. The following listing shows the stack trace.

ava.util.concurrent.CompletionException: java.lang.RuntimeException:
java.io.IOException: Problem when calling an external service

 at java.util.concurrent.CompletableFuture.encodeThrowable(
CompletableFuture.java:273)

 at java.util.concurrent.CompletableFuture.completeThrowable(
CompletableFuture.java:280)

 at java.util.concurrent.CompletableFuture$AsyncSupply.run(
CompletableFuture.java:1592)

 at java.util.concurrent.CompletableFuture$AsyncSupply.exec(
CompletableFuture.java:1582)

 at java.util.concurrent.ForkJoinTask.doExec(ForkJoinTask.java:289)
 at java.util.concurrent.ForkJoinPool$WorkQueue.runTask(

ForkJoinPool.java:1056)
 at java.util.concurrent.ForkJoinPool.runWorker(ForkJoinPool.java:1692)
 at java.util.concurrent.ForkJoinWorkerThread.run(

ForkJoinWorkerThread.java:157)
Caused by: java.lang.RuntimeException: java.io.IOException:

➥ Problem when calling an external service

Such a stack trace denotes that you didn’t handle failure correctly because it involves
many intermediate steps to handle this in the concurrent library. Depending on your

Listing 3.25 Stack trace of an exception that is not properly handled

Throws a new IOException
to simulate a failure

Wraps the sync
call and returns the
CompletableFuture

Wraps the IOException
into an unchecked one

A lot of
library calls

that need
to handle

unexpected
exceptions

After the library
code, you will find
the underlying cause.

63Functional approach to handling errors with Try
language or library, you might not have much luck because such an exception may be
not propagated, or it may kill the thread leading to a resource leak. How can we han-
dle the errors and compose them with the promise API?

 To solve this problem, we should create a new instance of CompletableFuture that
returns the result or an exception. The latter case is crucial here. In the following list-
ing, we fill the promise with the exception, but the exception is not thrown.

CompletableFuture<Integer> result = new CompletableFuture<>();
CompletableFuture.runAsync(
 () -> {
 try {
 result.complete(externalCall());
 } catch (IOException e) {
 result.completeExceptionally(e);
 }
 });
return result;

This above method’s caller gets the value or the actual underlying cause by wrapping
the exception into the promise API. You won’t see any stack trace related to the con-
current library because we didn’t rethrow the exception. Thanks to that, we are not
risking that this exception will kill the thread or go unnoticed.

NOTE The technique I presented in this section is common for most async
APIs: you should find it useful in your chosen language.

We will compare our object-oriented way of handling errors using exceptions and
throwing them with a functional programming approach in the next section. We will
also look at a Try construct that encapsulates the success or failure, which will be simi-
lar to the promise API that we just learned.

3.6 Functional approach to handling errors with Try
Up to this point, we discussed the object-oriented way of handling exceptions. Let’s
now take a look at the functional approach to managing errors. We will focus on one
of the main aspects of functional programming: code that is side effect free.

 If a method throws an exception, it means that it has side effects. If we have a sim-
ple method that returns a value and throws an exception, we may consider that it
throws the exception in the method’s declaration. We’re used to this pattern in the
object-oriented world, but we need to remember that the exception is a side effect.
The caller needs to handle the actual returned value, but it also needs to guard
against exceptions. When the exception is explicitly mentioned in the method’s con-
tract, the functional code knows what to expect and can guard against this side effect,
wrapping it within Try (more on that later).

Listing 3.26 Fulfilling promise with the result or exception

The new
CompletableFuture

that is yet to be
fulfilled

The external call succeeded
and completes the promise.

If an exception
happens, wraps it
into the promiseReturning result that

will be fulfilled with
value or exception.

64 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
 On the other hand, when the exception thrown is unchecked and it is not declared
in the method contract, the caller may not handle it, and the side effect will be propa-
gated up in the call stack. This lack of handling may come from the caller not expecting
the exception and, therefore, not guarding against it. Such behavior is problematic in a
functional programming world.

 The main philosophy in functional programming is to model every possible out-
come of a function call with a type. If the function that we call can fail, this outcome
should be modeled by the function’s return type and a declared exception. Throwing
an exception is explicit if we use the checked exception, but it may be implicit if the
method throws an unchecked one. Such inconsistent behavior should be prohibited
in a functional programming world. The type that a function returns must model
every possible outcome of a function. This is a reason why the Try monad (also called
an Error monad) is crucial when modeling error handling in functional program-
ming (see http://mng.bz/la42 and http://mng.bz/BxV1).

 Let’s look at a simple construct. Try can carry one of two possible states: the first
possible state is success, and the second is failure. The state of this type can be one or
another but never both. Figure 3.4 shows the possible states.

In the previous section, we saw a promise type using the CompletableFuture API. This
type is similar because it carries the result of the async computation or returns failure,
showing what happened during the API’s processing. It has one substantial limita-
tion—it should only be used in the context of async processing.

 The Try monad, however, can encapsulate the processing state in both synchro-
nous and asynchronous contexts. The Try type is more general and flexible, and
because of that, it serves as the primary abstraction to capture the failure or success in
a functional programming approach. Let’s see how the functional approach of han-
dling errors will look in the Java programming language. We will use the Vavr library
(https://www.vavr.io/), which provides the Try type for us to use.

NOTE If your method returns a Try type, the caller of this method will always
need to handle the fact that such a method may fail. Further processing can
be chained using functional programming methods, such as a map, filter, or
something similar.

Try

Failure Success

ValueException

Figure 3.4 A Try monad type

http://mng.bz/BxV1
http://mng.bz/la42
https://www.vavr.io/

65Functional approach to handling errors with Try
Let’s now look at how the caller of the method that returns Try can handle the pro-
cessing. Our client’s action is the task that may fail; therefore, it can throw an excep-
tion. We are mocking it for the purpose of this test to demonstrate the behavior of Try
when the wrapped call does not fail, as the following listing demonstrates. In a real-life
system, we would wrap calls to components or external systems that can fail.

// given
String defaultResult = "default";
Supplier<Integer> clientAction = () -> 100;

// when
Try<Integer> response = Try.ofSupplier(clientAction);
String result = response.map(Object::toString).getOrElse(defaultResult);

// then
assertTrue(response.isSuccess());
response.onSuccess(r -> assertThat(r).isEqualTo(100));
assertThat(result).isEqualTo("100");

It is important to note that the integration point with the action that may fail (client
action) is wrapped into a Try type. A Try abstraction should be returned from the
methods that can fail. The caller can chain subsequent processing on the Try type
instead of worrying about exceptions. The Try monad already encapsulates the excep-
tions if that happens.

 If we want to extract the actual String value from Try, we can get the value from
the monad using the getOrElse() method. However, if the Try monad carries the
exception, it won’t have a return value. For that situation, we need to provide a default
result that can be returned if the action wrapped into a Try fails. This is achieved via
the getOrElse() method call.

 If we want to create a process based on whether the action succeeds or fails, we
can use the isSuccess() method to check that (because the Try abstraction is a
functional programming construct). We can chain functional processing, using
methods such as a map. If the Try is successful, then the map is called. Otherwise,
the map is not invoked. On success, the callback is executed only if it contains a
value—not an error.

 One of the biggest benefits of the Try monad usage is that we don’t need to handle
the exception in standard try-catch blocks. The exceptions are still caught, instead
by using the Try functional programming API. Therefore, the exception handling
code does not pollute our business logic. Let’s now look at how functional error pro-
cessing behaves if the wrapped action throws an exception.

 When the client action fails, the same Try abstraction interacts with the type sys-
tem. Note that this time, the clientAction throws an exception. By doing that, we
simulate a call to the component that fails. We can use that to test how the Try abstrac-
tion looks now.

Listing 3.27 A Try monad with success

66 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
 Listing 3.28 shows the same Try type that wraps the action. There is no difference
in our processing at this stage. Our API caller should interact with the component
that may fail only through this Try type if we want to create some logic that is not pol-
luted with the try-catch blocks.

Supplier<Integer> clientAction =
 () -> {
 throw new RuntimeException("problem");
 };

// when
Try<Integer> response = Try.ofSupplier(clientAction);
String result = response.map(Object::toString).getOrElse(defaultResult);
Option<Integer> optionalResponse = response.toOption();

// then
assertTrue(optionalResponse.isEmpty());
assertTrue(response.isFailure());
assertThat(result).isEqualTo(defaultResult);

response.onSuccess(r -> System.out.println(r));
response.onFailure(ex -> assertTrue(ex instanceof RuntimeException));

Note that the functional processing that we want to perform is chained in the same
way as before. Our logic uses the map() method to execute some action if the underly-
ing client’s action succeeds. However, this time map() is not invoked because the
underlying client action throws an exception. In our case, the Try carries the failure.
Therefore, when getOrElse() is called, it returns a default value. It cannot return the
processed value because there isn’t one.

 We can transform the Try to an Option (a construct from the Vavr library that’s
similar to the Java Optional), which is yet another functional programming type. It
signals the presence or absence of a value. It is similar to Try but does not contain the
reason why the value may be empty. Some functional APIs operate on the Option type.
By using this conversion, we can integrate between those APIs easily. The Try caller
can check whether the result failed with the isFailure() method in a similar way to
the previous example when we executed the check isSuccess(). We can use both
checks here. Finally, we chain two functional processes.

 When using the Try in production, the caller of the code should handle both suc-
cess and failure. It can be handled, for example, by creating both onSuccess() and
onFailure() methods. For our case, when we simulate the failure, only the latter call-
back will be executed. The callback extracts the underlying cause of the problem.

Listing 3.28 A Try monad with failure

67Functional approach to handling errors with Try

st
p

3.6.1 Using Try in production code

Let’s now take a look at a more real-life example of using Try. Suppose we want to exe-
cute an HTTP request to an external service. This service returns the JSON content.
We need to extract only an ID from the JSON. To achieve that, we need to execute a
couple of operations that may fail and throw exceptions.

 The first action is an external HTTP call. Next, we need to extract the string con-
tent from the HTTP entity body. This operation may fail because it involves I/O oper-
ations. Finally, we need to map the string content to a Java entity class. This operation
may also fail because we are deserializing the string content to a JSON. Once we have
our entity, we can extract its ID.

 Such processing can be easily chained using the Try API. Firstly, we need to wrap
the client call into the Try monad. It will encapsulate the outcome of processing.
Next, each stage of processing can be expressed using the Try API. If the action that
we want to execute throws an unchecked exception, we need to execute our action
within the mapTry() method. If the exception is thrown, the Try type is fulfilled,
and the whole processing flow will be marked as failed. The following listing shows
this call.

 private static final Logger logger =
LoggerFactory.getLogger(HttpCallTry.class);

 public String getId() {
 CloseableHttpClient client = HttpClients.createDefault();
 HttpGet httpGet = new HttpGet("http:/ /external-service/resource");
 Try<HttpResponse> response = Try.of(() -> client.execute(httpGet));
 return response
 .mapTry(this::extractStringBody)
 .mapTry(this::toEntity)
 .map(this::extractUserId)
 .onFailure(ex -> logger.error("The getId() failed.", ex))
 .getOrElse("DEFAULT_ID");
}
private String extractUserId(EntityObject entityObject) {
 return entityObject.id;
}

private String extractStringBody(HttpResponse r) throws IOException {
 return new BufferedReader(
 new InputStreamReader(r.getEntity().getContent(),

StandardCharsets.UTF_8))
 .lines()
 .collect(Collectors.joining("\n"));
}

private EntityObject toEntity(String content) throws JsonProcessingException {
 return OBJECT_MAPPER.readValue(content, EntityObject.class);
}

Listing 3.29 An HTTP service call with Try

Wraps the external
call into the Try

monad

Uses mapTry() because the
extractStringBody() throws

In the last
age of our
rocessing,

extracts
the ID

Logs the
exception
in case of
a problem

Returns the default if
there was a failure at

any stage of processing

68 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
static class EntityObject {
 String id;

 public EntityObject(String id) {
 this.id = id;
 }
}

Only by looking at the processing definition can we reason about the stages that might
fail and the stages that may not. The extractStringBody() and toEntity() calls can
fail. If you look at the extractStringBody() method declaration, you will notice that
it declares the IOException that the caller must handle. Similarly, toEntity() can
throw a JsonProcessingException. Once all actions that may fail complete, we
extract the user ID. Finally, we want to return the String type from our getId()
method. In that situation, the caller of this method does not know about the Try
monad that is used internally.

 When we want to extract the underlying String from the Try monad, we have a
couple of options. Here we use the getOrElse() method. If the processing suc-
ceeds, it will simply return the proper user ID. However, if any stage of our process-
ing fails and we are able to provide a sane default to the caller, we can do that by
returning the default value. Note that we also log the exception (if it occurs) by using
the onFailure() method. If there is no way to provide a reasonable default, we may
consider returning the Try type from our getId() and let the caller deal with it, which
would be preferable.

 Finally, we can transform our functional processing based on the Try to a standard
throwing exception pattern via getOrElseThrow(). If the Try monad carries the
exception, it will be thrown to the caller. The last approach has a couple of disadvan-
tages, and we will discuss those in the next section. However, before we do that, let’s
compare the Try approach with the standard exception-based Java implementation, as
the following listing shows.

public String getIdExceptions() {
 CloseableHttpClient client = HttpClients.createDefault();
 HttpGet httpGet = new HttpGet("http:/ /external-service/resource");
 try {
 CloseableHttpResponse response = client.execute(httpGet);
 String body = extractStringBody(response);
 EntityObject entityObject = toEntity(body);
 return extractUserId(entityObject);
 } catch (IOException ex) {
 logger.error("The getId() failed", ex);
 return "DEFAULT_ID";
 }
 }

Listing 3.30 An HTTP service call with the Exception API

69Functional approach to handling errors with Try
The actual logic looks similar to the Try approach. The one difference is that we need
to create many of the intermediate variables used in the next processing step. The Try
approach follows a more functional approach, and we can pass the function refer-
ences (lambdas).

 The main difference between the standard try-catch approach and the func-
tional programming approach is the return type of the method. With the functional
approach, we can return the Try<String> and let the caller decide what to do with
the failure. The possible failure is communicated by the compile type (Try) and
needs to be handled; otherwise, the code does not compile. The exception-based
logic is more implicit, and there is no way to return one type that encapsulates suc-
cess or failure. The caller needs to handle the String result and to guard against a
possible exception. Those are different philosophies for handling abnormal situa-
tions. Let’s discuss common pitfalls when using the Try abstraction with an API that
uses Exceptions.

3.6.2 Mixing Try with code that throws an exception

The most important thing to note is that the caller code should interact with the
component that may fail through Try. But by using the Try abstraction, we can
model every possible outcome (success or failure) with the type system. Unfortu-
nately, there are a couple of problems when introducing functional programming to
handle errors in languages that use exceptions as the primary mechanism for signal-
ing failures. When choosing the mechanism for handling exceptions—functional pro-
gramming using Try or object-oriented programming using exceptions—we should
stick to one of them and use it consistently in our codebase. Mixing both solutions
would make our code hard to reason about. We would need to handle both states of
Try (success and failure), but we would also need to use try and catch patterns to
catch exceptions.

 As you remember, unchecked exceptions can be thrown by any method. We don’t
need to declare them in method signatures. Because of that, it becomes problematic
to wrap every possible method that can fail into Try. Imagine that we have a logic that
interacts with more components, where every component may throw an unchecked
exception. In such a scenario, every call to every component would need to be
wrapped into a Try type. This would make our code hard to read and too lengthy.

 When we call functional code from nonfunctional code, we need to transform it
into a try-catch pattern. When we call nonfunctional code from functional code, we
need to catch all possible exceptions and encapsulate them into Try monads to
remove side effects.

 If you remember the section about designing public APIs, I’ve mentioned that it is
often useful to declare all exceptions (checked and unchecked) in method signatures.
If you interact with such a component, it is easier to wrap such an API into a func-
tional Try construct. Everything is explicit, and if you choose to use the functional
approach of handling errors, it will be easier for you to wrap only methods that throw

70 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
exceptions. On the other hand, let’s assume that you integrate the functional pro-
gramming approach with an API that throws unchecked exceptions that are not
declared in the method’s signature. You will end up wrapping almost every call into a
Try monad, making your code hard to read and too verbose.

 We can conclude that the functional approach of handling errors works best when
using an explicitly typed system. If such an approach suits your style, using Try will
prove beneficial. Unfortunately, it may be hard to create a unified exception handling
system if the APIs you call are overusing unchecked exceptions. In the next section,
we will compare the performance of different exception handling strategies.

3.7 Performance comparison of exception-handling code
Finally, let’s compare the strategies of exception handling from the performance per-
spective. We will use the Java Microbenchmark Harness (JMH) tool for microbench-
marks. It will allow us to benchmark exception handling code at a fine-grained level.
We will want to test a couple of strategies.

 The first strategy to test is the standard try-catch approach. Next, we will com-
pare that with the Try monad approach, wrapping the underlying cause into it.
Finally, we will see how consuming the stack trace impacts performance. We will con-
sume the exception using standard output and a logger that logs the Throwable.

 To begin, we need a baseline method that does not involve exception handling.
This will be used to compare how exceptions impact performance. We’ll run every
benchmarking operation 50,000 times to have more repeatable runs (running the test
only once will not give us much insight). We will use a for loop to emulate this behav-
ior. You can also use the JMH iterations parameter for this purpose instead of the
manual for loop. Both solutions are good enough for our use case. The following list-
ing shows the benchmark baseline.

private static final int NUMBER_OF_ITERATIONS = 50_000;
@Benchmark
public void baseline(Blackhole blackhole) {
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 blackhole.consume(new Object());
 }
}

The Blackhole (see http://mng.bz/doVo) JMH construct simulates the actual usage
of the benchmarked code. If we do not use it, we risk having the JIT compiler opti-
mize it or remove it altogether. The actual benchmarking code does not do much. It
only creates an object and lets the Blackhole consume it. Let’s now create the first
benchmark code, as the following listing shows. We will throw an exception and catch
it in the catch block.

Listing 3.31 Exceptions benchmark baseline

http://mng.bz/doVo

71Performance comparison of exception-handling code
@Benchmark
public void throwCatch(Blackhole blackhole) {
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 try {
 throw new Exception();
 } catch (Exception e) {
 blackhole.consume(e);
 }
 }
}

This allows us to validate the performance of standard exception handling code. Note
that the exception is consumed. It simulates usage from the real-life code, but it does
not examine the exception’s stack trace or log the exception. The following listing
shows how we can enrich our benchmarks suite with those operations.

@Benchmark
public void getStackTrace(Blackhole blackhole) {
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 try {
 throw new Exception();
 } catch (Exception e) {
 blackhole.consume(e.getStackTrace());
 }
 }
}

@Benchmark
public void logError() {
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 try {
 throw new Exception();
 } catch (Exception e) {
 logger.error("Error", e);
 }
 }
}

When using a logger, it is important to note that the error method will get the stack
trace, but it will also append to the log using an appender. To conclude our bench-
mark suite, let’s add a benchmark that uses the functional programming approach of
handling failures, as the following listing shows. We will wrap the exception into a Try
monad, and the Try should be consumed.

@Benchmark
public void tryMonad(Blackhole blackhole) {

Listing 3.32 Throwing a catch benchmark

Listing 3.33 Consuming the stack trace benchmark

Listing 3.34 Try monad benchmark

Gets all stack
traces associated
with the exception

Passes the
exception to
a logger

72 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
 for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
 blackhole.consume(Try.of(() -> { throw new Exception();}));
 }
}

Let’s now take a look at the performance result of our benchmarks. Note that the
exact numbers may differ if you run this on your machine, but the overall trend will
be the same. Figure 3.5 shows the results of these benchmarks on my machine.

The baseline average takes less than one millisecond (ms). It shows the code that does
not involve exception handling. Next, the throwCatch average operation takes less
than 100 ms, and wrapping the exception to the Try monad is nearly identical. This
means that when choosing an approach (functional or object-oriented) to handle
errors, performance does not need to be taken into consideration. More interesting
things happen if we need to examine the stack trace.

 If we only get the stack trace, meaning that an array with all stack traces is created
and consumed, the exception handling code takes around 750 ms per operation. Get-
ting the stack trace is almost ten times slower than throwing and catching the excep-
tion without examining the stack trace. The most costly procedure is logging the
exception. It involves getting the stack trace and constructing the string message out
of it. Additionally, it might involve appender logic that may include an I/O operation
to save the content to a disk file. The performance of logging the exception is around
30 times worse than the throw-catch approach or by using the functional Try. It is also
three times slower than getting the stack trace. It is a reasonable conclusion because it
needs to do a lot of additional work.

Wraps the Exception into a Try.
The stack trace is not accessed.

Figure 3.5 Our exception benchmark results (the results may differ on your machine).

73Summary
 To finish this section about performance, you can see that you will be OK with
both functional and object-oriented ways of handling errors, as long as you don’t need
to examine the stack trace. Even if you need to examine the stack trace, it should not
be a problem in most cases. You may notice performance problems when your code is
overusing exceptions and throwing them on almost every code path.

 Of course, there will be times when you want to unwrap the exception stack trace
and log it for debugging. The performance results give us one more bit of informa-
tion in this regard. If you catch the exception and rethrow it, logging the exception in
this intermediate step results in a substantial performance degradation. If you want to
rethrow the exception to a higher level, then you should not log it; it will be handled
at that level in the call stack and logged. If you are catching the exception without
rethrowing, the one execution involving getting the stack trace is justified.

 In most use cases (besides high-frequency, low latency processing), the perfor-
mance impact discussed in this section will be negligible and can be safely ignored.
Therefore, treat this section more as interesting information than as an excuse not to
use exceptions where they should be used.

 In this chapter, we learned about different strategies for handling exceptions.
Exceptions and errors should not be used to control business logic. They serve the
purpose of notifying you about the unexpected behavior of your code. As long as you
are not over using exceptions, you should not observe performance problems related
to them.

 In the next chapter, we’ll learn how to foresee the features needed by our users.
We will see that the benefits of some features are lesser than the complexity and cost
of their maintenance.

Summary
 A hierarchy of exceptions and errors exists for many object-oriented languages.

For diagnostic purposes, understanding exceptions hierarchy is essential.
 To design error-handling APIs, we can choose either checked or unchecked

exceptions. Checked exceptions are an explicit part of such APIs and must be
handled; unchecked exceptions are an implicit part of error handling code and
are not required to be handled.

 When designing exception handling logic for public APIs, we should analyze
the pros and cons of checked versus unchecked exceptions, comparing them
with the handling of exceptions in the code that we own.

 With our error-handling APIs, we need to react to problems properly. It is often
tempting to analyze the underlying code and conclude that an exception can-
not be thrown under any circumstances. Understanding common anti-patterns
in exception-handling logic helps with this decision.

 When we interact with third-party libraries, we should develop a strategy of han-
dling exceptions. When integrating with third-party libraries, leaking exception

74 CHAPTER 3 Exceptions vs. other patterns of handling errors in your code
types may lead to tight coupling, so it’s important to understand the need for
wrapping third-party exceptions.

 Handling failure in asynchronous processing that involves multithreading
should be done with care; otherwise, we may risk silent failures.

 Throwing exceptions is not the only possible method of handling failures in
our code. The Try monad construct encapsulates success or failure as well.

 We can use performance benchmarks for different exception handling strate-
gies to determine which operations are most costly.

Balancing flexibility
and complexity
When designing our systems and APIs, we want to find a balance between a set of
features that it supports and the maintenance cost that arises from those features’
complexity. In an ideal world, every API change, such as adding a new feature,
would be backed by empirical studies. For example, we can analyze the traffic on
our website and, according to a need, add a new feature. We can also conduct A/B
(http://mng.bz/ragJ) testing to decide which feature should be retained and
which is not needed. Based on the results of A/B testing, we can remove features
that are not needed.

 However, it is essential to note that removing functionality from a public API
may be problematic or not feasible. If we need to keep backward compatibility, for
example, removing a feature is a breaking change, and often we cannot do it. We

This chapter covers
 Flexibility and extensibility versus cost of

maintenance and complexity of APIs

 Providing maximum extensibility with the listener
and hooks APIs

 Tackling complexity and guarding against
unpredictable usage
75

http://mng.bz/ragJ

76 CHAPTER 4 Balancing flexibility and complexity
can try to deprecate and migrate our clients to a new API without the removed ele-
ments, but this is a complex task. You will find more on compatibility in chapter 12.

 When designing a public API, it is often better to start small. We can start with a
limited set of features and extend a list of features based on the end users input rather
than implementing many features upfront without the possibility of removing them.

 On the other hand, when we build libraries used by other engineers and teams in
our organization, we need to foresee a need for some features. If we create a library
with a minimal set of features and design that is not extensible, we may end up in a sit-
uation where we need to refactor the code and change the API frequently. On the
other hand, we can create a super extensive codebase and allow for its customization
in all places. By doing so, we try to foresee all possible use cases for our code, but we
also increase the complexity of our code, which often makes it over engineered. This
chapter will help you find a balance between your codebase’s flexibility and extensibil-
ity and the complexity and maintenance burdens that arise from it.

4.1 A robust but not extensible API
Let’s assume that your team has a new task to create a software component shared
with other teams and users. This means that once you write this component, it will be
used by other people. We have a list of requirements that your code should meet.

4.1.1 Designing a new component

In our scenario, a new component’s primary responsibility is to allow clients to exe-
cute a POST HTTP request for a given URL. Besides that, we need to add metrics to
this code. If the request succeeds, the requests.success metrics should be incre-
mented. If it fails, then we need to increment the requests.failure metric.

 The third functionality that our code should provide is the possibility to retry an
action. The caller of our code will specify the maximum number of retries. If the retries
are exhausted, the processing fails. On the other hand, if it succeeds after one retry, the
retry should be transparent for the client. We should increment the requests.retry
metric denoting that there was a retry needed to fulfill the request. Note that failure is
propagated to the client only after all retries are made. We can create a diagram that
shows a set of features that our API should support, as figure 4.1 illustrates.

 When designing such a component, we need to answer questions about third-party
libraries we will use. But more importantly, we need to foresee use cases to allow
proper extensibility points without over engineering this new component. Sometimes,
engineers tend to start the implementation phase using patterns that would enable
extending the code in the future. When we begin with this approach, we risk introduc-
ing many abstraction levels that add complexity to our system.

 In this chapter, we will try a different approach. We will start with the most straight-
forward design without extensibility points. We will then progress to a more flexible
code from the client’s perspective. However, we will also observe that flexibility adds
complexity to our code.

77A robust but not extensible API
4.1.2 Starting with the most straightforward code

We will start our refactoring journey from the most straightforward implementa-
tion. Let’s first understand the implementation and then answer a question about
its limitations. Next, we will try to foresee missing use cases and extensibility points
we can provide.

 We will call our new component HttpClientExecution. The constructor of this
component takes MetricRegistry as an argument. This is a class from a third-party
library that’s used to expose metrics (https://metrics.dropwizard.io/4.2.0). The fol-
lowing listing presents a first look at this component.

 import com.codahale.metrics.Meter;
 import com.codahale.metrics.MetricRegistry;

 private final int maxNumberOfRetries;
 private final CloseableHttpClient client;
 private final Meter successMeter;
 private final Meter failureMeter;
 private final Meter retryCounter;

 public HttpClientExecution(
 MetricRegistry metricRegistry, int maxNumberOfRetries,

CloseableHttpClient client) {
 this.successMeter = metricRegistry.meter("requests.success");
 this.failureMeter = metricRegistry.meter("requests.failure");
 this.retryCounter = metricRegistry.meter("requests.retry");
 this.maxNumberOfRetries = maxNumberOfRetries;
 this.client = client;
 }

Listing 4.1 HttpClientExecution parameters

Figure 4.1 Set of supported features
for our shared software component

Execute request

Increment
success metric

Increment failure
metric

Increment retry
metric

Retry

If failure

If success

Return success

Calls

If retries not exhausted

If retries exhausted
return failure

Caller

Creates metrics using
MetricRegistry

Sets an upper bound for retries
that this component can execute

The client is provided by the caller,
who is responsible for configuring it.

https://metrics.dropwizard.io/4.2.0

78 CHAPTER 4 Balancing flexibility and complexity

a

Note that our code uses a third-party library that provides the MetricRegistry class
(http://mng.bz/Vlzy). We will use this class to construct and publish metrics from our
code. We can treat it as a black box, using its public API. However, by using this class in
our component, we are coupling our HttpClientExecution to a specific metric library.
There are a couple of metrics libraries available, and if the client wants to pick a differ-
ent one, our code will not allow doing so. We will get back to this problem later.

 Let’s now focus on the algorithm implementation of execution with the retry
method. To execute the POST request, this method should take only one parameter—
a String path. The following listing is a reminder of how we increment metrics and
provide retries.

public void executeWithRetry(String path) {
 for (int i = 0; i <= maxNumberOfRetries; i++) {
 try {
 execute(path);
 return;
 } catch (IOException e) {
 logger.error("Problem when sending request for retry number: " + i, e);
 failureMeter.mark();
 if (maxNumberOfRetries == i) {
 logger.error("This is the last retry, failing.");
 throw new RuntimeException(e);
 } else {
 logger.info("Retry once again.");
 retryCounter.mark();
 }
 }
 }
}

private void execute(String path) throws IOException {
 CloseableHttpResponse execute = client.execute(new HttpPost(path));
 if (execute.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
 successMeter.mark();
 } else {
 failureMeter.mark();
 }

}

In the listing, note that we mark success only if the HTTP status code is 200. In any
other case, regardless if it was an exception or non-200 status code, we increment
failureMeter. We could also change this and treat all 2xx codes as success, but this is
not essential for our example.

 When you thoroughly analyze this algorithm, you will notice that it implements the
logic from the figure 4.1 with supported features. Our code meets the requirements, but
it does not provide any way to extend it. The only way the caller can alter its behavior is

Listing 4.2 Executing POST with retry logic

Iterate as long as there
are more retries.

If the execution finishes
without a problem,
returns from a method

In case of
failure,

increments
the failure

metric

If we exhaust
retries, wraps
the exception
and propagates
it to the caller

If we have
more retries,

increments
the counter

nd continues
the logic

In case of success, increments
the success metric

Treats any non-200
code as a failure

http://mng.bz/Vlzy

79A robust but not extensible API
by passing the maxNumberOfRetries parameter. Later, we will modify this code, mak-
ing it more flexible, so use it as a reference point before any refactoring.

 Finally, to understand our end-to-end logic, let’s take a look at unit tests that will vali-
date the behavior of this component. The first unit test verifies that we should execute
only one request if the first once succeeds. The following listing shows the code for this.

@Test
public void shouldNotRetryIfFirstRequestsSuccessful() throws IOException {
 // given
 MetricRegistry metricRegistry = new MetricRegistry();
 CloseableHttpClient client = mock(CloseableHttpClient.class);
 CloseableHttpResponse response = mock(CloseableHttpResponse.class);
 when(response.getStatusLine())
 .thenReturn(new BasicStatusLine(HTTP_1_1, HttpStatus.SC_OK, null));
 HttpClientExecution httpClientExecution = new

HttpClientExecution(metricRegistry, 3, client);

 when(client.execute(any())).thenReturn(response);

 // when
 httpClientExecution

➥ .executeWithRetry("http:/ /localhost/user");

 // then
 assertThat(getMetric(metricRegistry, "requests.success"))

➥ .isEqualTo(1);
 assertThat(getMetric(metricRegistry, "requests.failure")).isEqualTo(0);
 assertThat(getMetric(metricRegistry, "requests.retry")).isEqualTo(0);
}

If all subsequent retries fails, we should increment the failure and retry metrics.
Finally, the underlying cause should be propagated to the client, as the following list-
ing shows. In this test, we simulate failure for all retries.

when(client.execute(any())).thenThrow(new IOException("problem"));
HttpClientExecution httpClientExecution = new

HttpClientExecution(metricRegistry, 3, client);

// when
assertThatThrownBy(
 () -> {
 httpClientExecution.executeWithRetry("url");
 })
 .hasCauseInstanceOf(IOException.class);

// then
assertThat(getMetric(metricRegistry, "requests.success")).isEqualTo(0);

Listing 4.3 Validating success without retries

Listing 4.4 Validating failure with retry

Mocks the HTTP client
to return success

Executes
executeWithRetry(),
which is our public API

Increments the
request.success metric

After all retries, propagates
the underlying IOException

80 CHAPTER 4 Balancing flexibility and complexity
assertThat(getMetric(metricRegistry,

➥ "requests.failure")).isEqualTo(4);
assertThat(getMetric(metricRegistry,

➥ "requests.retry")).isEqualTo(3);

NOTE The requests.failure metric value will be higher than the client’s
retries by one. This happens because the first request is not counted toward
the full retry count.

Finally, if the first request fails, but the second one succeeds, the retry logic should
allow the call to pass. From the client’s perspective, there will be no information about
retries. Only metrics can tell the client if the retry happened or not. The following list-
ing shows this last unit test, where the first request fails and the second succeeds.

when(client.execute(any())).thenThrow(new
IOException("problem")).thenReturn(response);

HttpClientExecution httpClientExecution = new
HttpClientExecution(metricRegistry, 3, client);

// when
httpClientExecution.executeWithRetry("url");

// then first call failed and retried, second succeeded
assertThat(getMetric(metricRegistry,

➥ "requests.success")).isEqualTo(1);
assertThat(getMetric(metricRegistry,

➥ "requests.failure")).isEqualTo(1);
assertThat(getMetric(metricRegistry,

➥ "requests.retry")).isEqualTo(1)

Although we have a component that is relatively simple and easy to maintain, it comes
with a number of limitations. We don’t have many extension points, and we impose on
the client’s code to use a specific metric library implementation. This means there is a
tight coupling between our component and the third-party library.

 Let’s assume that we want to improve our component, allowing for more flexibility.
End users should be able to pick their library and to provide the implementation. Our
component should not care about the actual library used for collecting metrics. In the
next section, we will see how trying to foresee this feature will impact our codebase.

4.2 Allowing clients to provide their own metrics
framework
At this point, our component is not very flexible, and it has a hard dependency on a
third-party library that is responsible for gathering metrics. This is not problematic at
first sight, but other engineers and systems will use our code. By using any class from

Listing 4.5 Validating retry and success

Specifies three retries
plus the first request

Equal to the parameter that we
passed to HttpClientExecution

Simulates the scenario of
failure and success

Once our component
finishes processing, we
should have one success.

There is also one failure:
the first request.

Issues one retry to make the
second attempt successful

81Allowing clients to provide their own metrics framework
this third-party library in our codebase, we limit our component’s future implementa-
tions. Moreover, we place the restriction that everywhere our piece of code is used, the
same metrics library needs to be used.

 When you look at the imports in our HttpClientExecution component, you will
notice that we have dependencies to third-party libraries. The following listing shows
these dependencies.

import com.codahale.metrics.Meter;
import com.codahale.metrics.MetricRegistry;

It turns out that our simple code has a tight coupling that makes it hard to test and to
extend the code. For that reason, we abstract away the metrics-related code. The pattern
of abstracting it out is quite simple. We need to define an interface that is generic and
that can be an entry point to our system (see figure 4.2). But from this point on, our
code will integrate with any metrics-specific implementation only via this new interface.

The new metrics interface needs to define the contract between our component and
any third-party library. It may look as simple as that shown in the following listing.

public interface MetricsProvider {
 void incrementSuccess();
 void incrementFailure();
 void incrementRetry();
}

This interface does not allow the caller to get the data back out of the component. It is,
however, a sound limitation because the caller can inject their metric registry to track
metrics. Due to that fact, the caller owns the metric registry code and can access the met-
rics directly. There is no need to add accessor methods in this MetricsProvider inter-
face. And MetricsProvider does not need to import any class from a third-party metrics
library, so we don’t have a tight coupling between our new MetricsProvider and specific
metrics implementation.

Listing 4.6 Metrics dependencies on third-party libraries

Listing 4.7 Defining our metrics interface

Figure 4.2 Abstracting away
the metrics third-party library
using an interface

Second metrics

implementation

Abstract away

Abstract away

Uses

First metrics

implementation

Our

component

Metrics

interface

82 CHAPTER 4 Balancing flexibility and complexity
 HttpClientExecution will interact with metrics via this abstraction. By doing so,
we don’t need to worry about the implementation details. They will need to be pro-
vided by the client. Let’s assume the clients want to provide an implementation for
the metrics Dropwizard library. Most importantly, the client needs to implement the
MetricsProvider interface. The following listing shows this implementation.

public class DefaultMetricsProvider implements MetricsProvider {
 private final Meter successMeter;
 private final Meter failureMeter;
 private final Meter retryCounter;

 public DefaultMetricsProvider(MetricRegistry metricRegistry) {
 this.successMeter =

➥ metricRegistry.meter("requests.success");
 this.failureMeter = metricRegistry.meter("requests.failure");
 this.retryCounter = metricRegistry.meter("requests.retry");
 }

 @Override
 public void incrementSuccess() {
 successMeter.mark();
 }

 @Override
 public void incrementFailure() {
 failureMeter.mark();
 }

 @Override
 public void incrementRetry() {
 retryCounter.mark();
 }
}

How did foreseeing this feature impact the flexibility and complexity of our compo-
nent? First, we can see that the actual implementation details were abstracted away
from our component, and the logic of HttpClientExecution is simplified. There’s no
longer a need to implement that in our system. The clear conclusion from this is that
the complexity of our component decreased. And because clients can now provide
any metrics implementation that they want, flexibility is also increased.

 It would seem that increasing flexibility and decreasing complexity is a win–win sit-
uation. However, this approach has some drawbacks. The complexity that we removed
from our system needs to live somewhere. If multiple clients use our component, they
all need to implement a new metrics interface. Now, the complexity lives in various cli-
ents’ repositories. In essence, we outsourced the complexity to external clients. It
looks like we increased flexibility, but we also increased complexity. It just did not
grow in our codebase.

Listing 4.8 Implementing a metrics provider

This implementation
provides internal details.

Interface methods are
the only integration
points with our
component.

83Providing extensibility of your APIs via hooks
 From the client’s perspective, using a component that requires many additional
steps, such as providing its own metrics implementation, may be cumbersome, and
clients may end up using a different system or component! A good middle ground
here would be to extract the metrics interface but provide a default implementation
that’s used by most users. By doing so, we are allowing extensibility, but the com-
plexity will be tacked on to our system. We do not outsource it to the client’s code. If
they want a different implementation, they can easily implement that and provide it
to our component.

 Our systems rely on many external components in real life, and abstracting them
may not be feasible. Even for our simple example, we depended on the actual imple-
mentation of an HTTP client. The HTTP client provides more methods that may be
hard to hide against abstraction. Developing an abstraction that hides an HTTP cli-
ent when trying to foresee every use case of such a library will increase the complex-
ity of our code.

 In the next section, we will see one of the most flexible and extensive mechanisms
for providing those extension points, knowing that the complexity of our design will
increase substantially. We will look at a mechanism, a hooks API, that allows clients to
provide their behavior in various places of our component life cycle. We will consider
a different use case (that is not metrics related).

4.3 Providing extensibility of your APIs via hooks
Every framework and system has a life cycle with multiple steps. Instead of trying to
foresee every possible use case for our clients, we may attempt to allow clients to
provide their own behavior and inject it into our component. We no longer need to
alter our API and code, based on the new feature requests. Clients can provide their
logic, and our code does not need to know about it. In theory, this approach sub-
stantially increases extensibility, and we don’t need to worry about that anymore. In
practice, we need to be careful about code that is injected into our system. There
are not many assumptions that we can make because we know nothing about the
caller’s provided behavior.

 It’s possible to make each phase of the life cycle extensible and flexible by using
various patterns, such as abstracting away (shown in the previous section) or using
inheritance. Often, if we want to give maximum flexibility to our code for our clients,
we can employ a hook mechanism. This pattern allows clients to plug their code in
between phases of the specific component’s life cycle. In our example API, we want to
enable clients to hook into code after preparing the HTTP request but before sending
an actual HTTP request to a REST endpoint. Figure 4.3 shows this arrangement.

 The client first executes the executeWithRetry() method. This starts the life cycle
of our component, which creates an HTTP request method. Normally, once this
phase of the life cycle completes, this method executes an external REST call, and the
life cycle of our component finishes. By introducing the hooks API, we are allowing
clients to intercept a specific call. The client only needs to implement a hook interface.

84 CHAPTER 4 Balancing flexibility and complexity
Next, we call this hook in a proper life cycle of our component. This provides a flexi-
ble mechanism that removes the burden of foreseeing the exact features that our cli-
ents may need in the future.

 The first step to support the hooks API is to create an interface that allows our code to
call the hook in a specific phase of our code’s life cycle. The new interface is simple. It
has only one method, as the following listing shows. We will call this method passing
HttpRequestBase as an argument, which is created in the first phase of our life cycle.

public interface HttpRequestHook {
 void executeOnRequest(HttpRequestBase httpRequest);
}

The client of our component injects the hook implementation (clients can inject
more than one hook). Therefore, we need to accept a list of hooks in our constructor,
as the next listing shows.

public HttpClientExecution(
 MetricRegistry metricRegistry,
 int maxNumberOfRetries,
 CloseableHttpClient client,
 List<HttpRequestHook> httpRequestHooks) {
this.metricRegistry = metricRegistry;
this.successMeter = metricRegistry.meter("requests.success");
this.failureMeter = metricRegistry.meter("requests.failure");
this.retryCounter = metricRegistry.meter("requests.retry");
this.maxNumberOfRetries = maxNumberOfRetries;
this.client = client;
this.httpRequestHooks = httpRequestHooks;
}

Listing 4.9 Implementing the hooks interface

Listing 4.10 Using a hook constructor

Creates HTTP

request

Execute the REST

external call

Calls executeWithRetry()

Lifecycle

phase 2

Lifecycle

phase 1

Intercepts
Hook API

Figure 4.3 How the hooks API
plugs into your codebase

The client’s code
injects hooks.

We need to save
them for later use.

85Providing extensibility of your APIs via hooks
Next, let’s look at how the hooks API plugs into our component’s existing life cycle.
Because the client’s code executes between life cycle phases, it iterates over every
injected hook and passes the HttpPost object to the caller code. The following listing
shows this procedure.

private void execute(String path) throws IOException {
 HttpPost httpPost = new HttpPost(path);
 for (HttpRequestHook httpRequestHook : httpRequestHooks) {
 httpRequestHook.executeOnRequest(httpPost);
 }
 CloseableHttpResponse execute = client.execute(httpPost);
 if (execute.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
 successMeter.mark();
 }
}

Using this mechanism allows clients to inject their code in the middle of our process-
ing. Here we are passing the HTTP post request to the client code. The caller can exe-
cute any action on it. Thus, the flexibility of this solution is high.

4.3.1 Guarding against unpredictable usage of the hooks API

In this example, we iterate over all hooks provided by the client and then pass the
HttpPost() method to the API. At this point, we can conclude that we were able to
achieve high extensibility without increasing the complexity of our code substantially.
Unfortunately, we need to realize that we don’t have any influence over the client’s
code. Our hook interface does not declare any exceptions. However, as we learned in
the chapter about exceptions, clients can still throw an unchecked exception from
their code. It means that when the client’s code does something unpredictable, it can
lead to an unchecked exception.

Listing 4.11 Executing without error handling

Documenting contracts for hooks not throwing exceptions versus guarding
against hooks that can throw exceptions
In an ideal world, when we expose an API for our users to our clients, we should doc-
ument its contract. We may, for example, state that all hook implementations cannot
throw exceptions. However, it is hard to impose that requirement on all our clients.
Someone may forget to do so (or not read the documentation). Someone else may
rely on some other code that throws unchecked exceptions, even if it shouldn’t. For
those reasons, if we state that no exception should be thrown, it’s wise to guard
against possible exceptions. Otherwise, the client’s application that uses our code
may fail with hard to detect problems (or silent failures).

The first phase of the life cycle
creates an HttpPost object. Executes

client’s code
between life
cycle phases

The second phase of our life cycle
executes an external REST call.

86 CHAPTER 4 Balancing flexibility and complexity
We can validate that assumption by writing a unit test that provides a hook that throws
an unchecked exception. The following listing shows such a test.

HttpClientExecution httpClientExecution =
 new HttpClientExecution(
 metricRegistry,
 3,
 client,
 Collections.singletonList(
 httpRequest -> {
 throw new RuntimeException("Unpredictable problem!");
 }));

In such a case, the life cycle of our component will be impacted; by providing flexi-
bility to a client, we introduce complexity to our code. To guard against this prob-
lem, we need to wrap the code that we don’t own into a try-catch block, as the
following listing displays.

for (HttpRequestHook httpRequestHook : httpRequestHooks) {
 try {
 httpRequestHook.executeOnRequest(httpPost);
 } catch (Exception ex) {
 logger.error("HttpRequestHook throws an exception. Please validate your

hook logic", ex);
 }
 }

We can log the error to provide feedback to the client if the exception is not fatal
from the perspective of our core business processing (the code that calls hooks). In
other words, regardless of the type of logic injected by the caller, we don’t want our
processing to be impacted by those problems. If the code provided by the hook fails,
we can log that for debugging, but we can still continue with our processing.

 If we allow this exception to propagate, it will impact the logic of our library. We
don’t want to allow that behavior because our library code works as expected, but
things may get even more complicated. If we pass a stateful object, such as the HTTP
client object to a hooks API, we cannot influence how this object will be used. The
code from the hooks API may execute code that alters the internals of the client. For
example, it can be used to execute additional HTTP requests. This may be problem-
atic if you have tweaked your HTTP client for your traffic (you’ve configured proper
queue size, timeouts, and other settings).

 The provided logic of your component may consume resources that are needed
for a normal workflow. As a result, you may break the service level agreement (SLA),
or the whole life cycle may fail. In the worst case, the client’s code may execute some
logic that makes the HTTP client fail. In such a case, your component will also fail.

Listing 4.12 Testing for unpredictable problems in a hook

Listing 4.13 Guarding against failures

An unexpected problem
is thrown from the code

we don’t control.

We must expect
anything, so any
Exception can be
thrown.

We can’t stop the lifecycle of our
component if the client throws.

87Providing extensibility of your APIs via hooks
NOTE You need to be careful when passing any internal state to the code you
don’t own. Documenting the hooks API code assumption is a good first step,
but it will not prevent unexpected usages in real life.

In this section, we learned how to guard against unexpected usage from the correct-
ness perspective. How does it look from the performance perspective? Let’s take a
look at this problem in the next section.

4.3.2 Performance impact of the hook API

From the correctness perspective, our code should handle unexpected failures of the
client’s provided code. But we need to be aware that the logic provided by the client
may be blocking. This means that we don’t have any influence over the time it takes to
call the hooks API.

 Let’s assume that the caller provides the hook logic that exe-
cutes some I/O call, such as a network or filesystem call that
involves blocking. Every I/O call can be unpredictable, and it
may result in high latency. Let’s assume that the latency of the
hooks API call is 1,000 ms. If our first life-cycle phase takes 100
ms and the second life-cycle phase takes 200 ms, we will have a
total time of one call equal to 1,300 ms instead of 300 ms. This is
four times slower! This impacts the performance of our compo-
nent substantially. Figure 4.4 summarizes this scenario.

 The caller will observe high latency, and looking at our
component’s current design, we can do nothing about it. The
synchronous call inside of the hook uses the same thread that
our component uses. Because of that, in some situations, we
may even risk deadlock.

 Imagine a scenario in which we have a minimal number
of threads and the client’s code provided in the hooks API
blocks or waits for some external resource to be available.
Even if this external resource is not available in one out of
many situations, the thread shared between our component
and client’s code will block. If this happens multiple times, we may risk a problem
when there are not enough threads to process requests.

 We can require clients to execute nonblocking calls in the callback code. This
means that every client needs to manage a thread pool that will handle the hooks API
actions. Again, even if we document it, we cannot enforce it easily. It is possible to
detect a blocking call on our thread, but it will substantially complicate the design.

 The described situation worsens if we have multiple independent hook actions,
and each of them executes logic that involves blocking behavior. If we have two
blocking hooks, and each of them takes 1,000 ms, our total processing time
increases to 2,300 ms, which is eight times slower than the code without the hooks
API, as figure 4.5 illustrates.

Lifecycle phase 1

lasts 100 ms

Lifecycle phase 2

lasts 200 ms

Caller

Blocking

lasts 1,000 ms

Observed latency: 1,300 ms

Figure 4.4 The hooks
API blocking call

88 CHAPTER 4 Balancing flexibility and complexity
One solution for this problem would be to assume that the hooks API code is not safe
and always may be blocking. By introducing this assumption, we can wrap every hook
API call into an action executed on a separate thread.

 With the current design, every hook API is submitted to a separate thread pool,
and the thread pool needs to be managed and maintained in our code. We need to
decide about the number of threads needed, the queue size, and other factors such as
allowing the addition of threads dynamically or not. We also need to monitor this
thread pool usage and threads consumption.

 Managing a separate thread pool increases the complexity of our codebase. The
thread pool contains a queue of tasks that we can process, so we need to monitor this
queue, so it does not risk exceeding memory with pending tasks. Also, we need to make
sure that threads are not dying silently when some unexpected exception occurs.

 We can submit n parallel hook executions, where n is a number of threads in our
thread pool. Let’s assume the caller provides two hooks. Each of these executes a block-
ing call that lasts 1,000 ms. Ideally, those hooks can be run separately without a need to
wait between stages. In that case, they will not impact the latency of our component call.
But if you remember, this new API allows clients to plug the code between phases of our
life cycle. Because of that, there is a happens-before relationship between completing all
the hooks API calls and proceeding to the next phase of our life cycle. Even if we can
parallelize the calls, we need to wait for all of them to finish. So the latency that’s added
will be at least as high as the slowest operation provided via the hooks API. Our flexibil-
ity of this design decreases the performance by increasing latency.

 Let’s take a look at the design of our HttpClientExecution component that takes
into account improvements regarding correctness and performance. We need to
create a dedicated thread pool for the hooks API, which increases complexity and

Lifecycle phase 1

lasts 100 ms

Lifecycle phase 2

lasts 200 ms

Caller

Submit to a thread

pool

(blocks for 1,000 ms)

Blocking

lasts 1,000 ms

Blocking

lasts 1,000 ms

Observed latency: ~1,300 ms

Figure 4.5 Hooks API parallelize
blocking calls

89Providing extensibility of your APIs via hooks
maintenance. In the following listing, note that every hook API is submitted to the
dedicated thread pool.

private final ExecutorService executorService =
Executors.newFixedThreadPool(8);

private void executeWithErrorHandlingAndParallel(String path) throws
Exception {

 HttpPost httpPost = new HttpPost(path);
 List<Callable<Object>> tasks =

➥ new ArrayList<>(httpRequestHooks.size());
 for (HttpRequestHook httpRequestHook : httpRequestHooks) {
 tasks.add(
 Executors.callable(
 () -> {
 try {
 httpRequestHook.executeOnRequest(httpPost);
 } catch (Exception ex) {
 logger.error(
 "HttpRequestHook throws an exception. Please validate

your hook logic", ex);
 }
 }));
 }
 List<Future<Object>> responses =

➥ executorService.invokeAll(tasks);
 for (Future<Object> response : responses) {
 response.get();
 }

 CloseableHttpResponse execute = client.execute(httpPost);
 if (execute.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
 successMeter.mark();
 }
}

Compared to the first design of our component, our code gets complicated. We
need to handle any failure to not risk killing the threads from the thread pool
silently. Also, we need to parallelize the hooks execution, but this does not solve all
performance issues that arise from using hooks. We still need to wait for them to fin-
ish. The flexibility that clients can achieve using the hooks API does not come for
free. We will pay for that with more maintenance costs for dedicated thread pools
and the complexity of our solution.

 In the next section, we will look at another mechanism, the listener API, that
allows us to make our API flexible without a need to foresee every possible feature that
clients may request. We will also provide a way for propagating the information about
the number of retries to a client. Finally, we will see how anticipating this feature later
complicates the logic.

Listing 4.14 Improving parallelism

Calls for n tasks,
where n is equal to
the number of hooks

Constructs a callable
for every hook action

Invokes all tasks

Iterates over a list
of pending tasks

Waits for every async
action before progressing
to the next step

Executes the final stage
after all hooks complete

90 CHAPTER 4 Balancing flexibility and complexity
4.4 Providing extensibility of your APIs via listeners
At first glance, the listener API may appear to be similar to a hooks API, but there
are differences that make it worth explaining separately. As you may remember, the
hooks API design was synchronous because we needed to wait for all hooks comple-
tion before progressing to the next step. As depicted in figure 4.6, the observer design
pattern, which provides a listener API, takes a different approach for providing exten-
sion points for the client. Our component (called a subject in the observer pattern)
allows clients to register observers. Those observers will get a notification when some
action in our component occurs.

We allow clients to provide multiple observers. Let’s take a look at the most significant
difference between a listener API and the hooks API.

4.4.1 Using listeners vs. hooks

When we send some event (e.g., denoting that our component finishes the life cycle
phase), the notification is fully asynchronous. There will be no happens-before relation-
ship between events and progressing to the next stage of our component. This means
that there is no risk of performance degradation as long as we execute listeners in a sepa-
rate thread pool. The only difference is that we don’t need to wait on the listener’s API
actions to be completed.

 It may be tempting to expose an internal state or signal that some event occurred
using the listener API. It is a flexible abstraction because we can allow clients to pro-
vide their own behavior without modifying our code or API. Let’s assume that we
decide that we want to foresee a new use case and that we send a notification with a
retry state when our component finishes executing, as figure 4.7 illustrates.

Subject ObserverB

ObserverA

ObserverC

Subject

changed . . .

Update()

Update()

Observer

Figure 4.6 The observer
design pattern allows clients
to register observers.

91Providing extensibility of your APIs via listeners
We will expose the retry status when all retries finish. For that purpose, we need to cre-
ate a new RetryStatus class that encapsulates the information that we want to propa-
gate to a client. The following listing shows this new class.

public class RetryStatus {
 private final Integer retryNumber;
 public RetryStatus(Integer retryNumber) {
 this.retryNumber = retryNumber;
 }
 public Integer getRetryNumber() {
 return retryNumber;
 }
}

For the sake of simplicity in this example, our retry status contains only the retry num-
ber. It returns the counter of a specific retry.

 We will allow our clients to register the OnRetryListener that is invoked by our
component when the expected action occurs. The OnRetryListener interface has
only one onRetry() method to get the status of retries, and each retry will have a ded-
icated RetryStatus. The following listing shows this implementation.

public interface OnRetryListener {
 void onRetry(List<RetryStatus> retryStatus);
}
public class HttpClientExecution {
 private final List<OnRetryListener> retryListeners = new ArrayList<>();
 public void registerOnRetryListener(OnRetryListener onRetryListener) {
 retryListeners.add(onRetryListener);
 }
// remaining methods
}

When the retry logic finishes, we can iterate over every listener and propagate all retry
statuses for a given execution. We need to aggregate those into a list and then send
the list to every retry listener. The following listing shows this implementation.

Listing 4.15 Creating a RetryStatus class

Listing 4.16 OnRetryListener

Retry

Retry status

If successIf failure and

number of

retries <= max Signal/listen on

Caller
Figure 4.7 Sending a retry
state using a listener API

Keeps a list of listeners

Registers a new listener via
a dedicated method

92 CHAPTER 4 Balancing flexibility and complexity
public void executeWithRetry(String path) {
 List<RetryStatus> retryStatuses = new ArrayList<>();
 for (int i = 0; i <= maxNumberOfRetries; i++) {
 // retry logic
 retryListeners.forEach(l -> l.onRetry(retryStatuses));

 }
}

Note that the rules for handling failures and how to make our code run in parallel
are the same rules discussed in section 4.3. At first sight, the logic looks correct, but
we need to be aware of one caveat when propagating our internal state to the
caller’s code. We cannot prevent the caller from modifying the state that is passed.
Modifying this state can make our logic corrupted. Let’s look at this problem in the
next section.

4.4.2 Immutability of our design

When propagating any state from our component, we cannot be sure that it will not
be modified in the client’s code. The following listing shows a unit test that we can cre-
ate to simulate this behavior.

httpClientExecution.registerOnRetryListener(
 List::clear);
httpClientExecution.registerOnRetryListener(
 statuses -> {
 assertThat(statuses.size()).isEqualTo(1);
 });

The list of retry statuses that is passed to OnRetryListener is a reference to an actual
list. There is nothing preventing the client from calling clear() or from removing or
adding an element to this list. If the first listener clears the statuses, the second lis-
tener will not see the modification. This means there is a side effect introduced by the
caller’s code. Such a situation makes our API error prone and nondeterministic. To
prevent such a situation, we can create a copy of the actual list that is propagated to a
client. The following listing shows this.

retryListeners.forEach(l -> l.onRetry(new ArrayList<>(retryStatuses)));

For every listener, we create a copy of the retry status, which is sent to every listener.
Because of that, even if the caller modifies the object, it will not impact any other lis-
tener or our API code. This has a couple of drawbacks.

Listing 4.17 Invoking OnRetryListener

Listing 4.18 Modifying state via a listener

Listing 4.19 Copying the object propagated to listeners

Aggregates every
RetryStatus in a list

Leaves
the actual
Retry logic
unchanged

Propagates the retry
statuses to every listener

Client clears or modifies the
status, introducing the side effect!

There should be
one retry status.

93Providing extensibility of your APIs via listeners
 First, we need to create a lot of copies of the data if this is a deep copy of the orig-
inal object. A deep copy copies all values from the original object to the new one, and
it may increase the memory usage of our application substantially. If we have n lis-
teners, we need to copy the actual data n times, which increases memory consumption
by this amount. The second drawback is the potential difficulty of silent problems in
the listener’s code. If the client modifies the list, it may be nonintentional, and
sometimes, it is better to signal that such an operation is forbidden explicitly by
throwing an exception.

 We can solve both problems by wrapping the statue into an immutable wrapper.
For a list, we can use the ImmutableList (http://mng.bz/xvzd) construct, as the fol-
lowing listing shows.

retryListeners.forEach(l -> l.onRetry(ImmutableList.copyOf(retryStatuses)));

Wrapping the actual state into an immutable abstraction does not create a copy. It will
create a class that throws an exception on any modification of the underlying list. We
don’t need to copy the actual content of the list every time it is propagated to the lis-
tener. Only methods that make any modifications are forbidden. The second benefit
of this approach is that it’s explicit and fail-fast. If the code in the listener API modifies
the content accidentally, the feedback is provided immediately, and there is no risk of
failing silently.

 If you are propagating any state to a code that you don’t own, you should always
assert that the state is immutable. You can make it immutable from the beginning by
designing it that way. It can be achieved by using immutable classes and the final
fields. If the API that you are using is immutable, you don’t need to create a defensive
copy. The memory footprint will be substantially lower.

 In reality, we often need to use libraries that are not immutable. The majority of
collections, such as lists or maps, are mutable. It would help if you were extremely
careful when propagating these to a client. In such a case, you should wrap the state
into an immutable class that hides or forbids the modification of the underlying data.

 The other problem that you may have when propagating state to the listener API
is the risk of overwhelming listeners with traffic. If you are invoking n listeners every
time there is some action, it means that your application’s memory consumption
increases substantially. There is a risk that the caller’s code will not keep up with the
traffic and block, impacting the main processing of your application. You may con-
sider adding back pressure or buffering more status events and sending them in
batch in such a case. All solutions to this problem complicate your design substan-
tially. You should exercise caution if you decide to send notifications from your
component.

 You can see that even a simple propagating state using a listener API makes your
code complex: you need to assure that your data is immutable, and you need to assert

Listing 4.20 Wrapping into an immutable object

http://mng.bz/xvzd

94 CHAPTER 4 Balancing flexibility and complexity
that caller’s code will be able to keep up with the traffic. Foreseeing use cases that look
simple at first sight add a lot of complexity to your code.

4.5 Flexibility analysis of an API vs. the cost
of maintenance
The most important conclusion you should take from the examples in this chapter
is that every new feature increases the complexity at some level. For example, some-
times we want to abstract away a specific library that we depend on. We saw an exam-
ple of this pattern when abstracting away the metric-specific library. Abstracting
away the actual implementation decreases the complexity in our component but
increases it in the client’s code. Every client would need to provide the implementa-
tion for the concrete metrics library. For this, we found that a hybrid solution may
be the best in the majority of use cases—abstracting away but providing the default,
most used implementation.

 If we try to guess and foresee the exact use case, we may be tempted to introduce
fairly generic patterns, such as listeners or hooks APIs. At first sight, they are flexible
and do not add a lot of complexity. This statement may be accurate, but we will pay for
the extensibility with increased complexity.

 When using a hooks API, you need to guard against any unpredictable usage. This
means that your code should expect any exception. Also, you need to pay attention to
the thread execution model of your API extension points. If your design allows syn-
chronous client calls, we must assume that some clients will block these, impacting the
SLA of your component and resource usage, such as threads. But introducing asyn-
chronous logic that should work in parallel in your code adds additional complexity.
You need to maintain a dedicated thread pool and monitor it.

 Additionally, you need to pay attention to your component extensibility points
and the happens-before relationship between phases of processing. If this is the
case, even if you make your processing parallel, you cannot reduce the additional
latency to zero. This is a complexity that you need to pay for by exposing the hooks
API to the callers.

 The listener API is similar to the hooks API, but it does not involve blocking
between phases of your component’s execution. The signals you emit are asynchro-
nous, so it should not impact your component’s overall latency. But you need to be
careful about the emitted state. Once you pass some code to a caller component, you
don’t know if the client will modify it or not. Because of that, the immutability of state
that is propagated in the listener API is crucial.

 In general, the higher flexibility your API has, the more complexity you will
introduce. It can be code complexity or the execution model complexity if you need
to introduce async processing. Figure 4.8 illustrates these two approaches: flexibility
versus complexity.

 Comparing those approaches, abstracting away metrics library gives some flexibil-
ity, but we still have an explicit API contract that the clients should fulfill. On the

95Summary
other hand, the hooks or listener APIs are a lot more flexible. However, they are
exposing an internal event or state of our APIs. The client can do anything with it.
This gives us a lot of flexibility, but we cannot reason about the client code; we’ll need
to guard against unpredictable failures. For this, we need to use an immutable state.
Another disadvantage is that we are unable to reason about the client’s concurrency
model (if it will be a blocking or asynchronous execution). Because of that, sometimes
making our system flexible will provide too much trouble. We need to find a place on
the flexibility–complexity axis and design our systems accordingly.

 I’ve demonstrated only a small subset of patterns and ways of making our APIs
more flexible. There are several different patterns (such as decorator, factory, proxy,
and many others) that we can use. This chapter’s main purpose was to pick some of
those patterns and demonstrate their pros and cons. When a given solution gives you
a lot of flexibility, you may want to analyze its inherent complexity too. These general
rules apply to all software engineering patterns.

 In the next chapter, you’ll learn that premature optimization is not always evil.
You also learn about cases when optimizing the hot path is rational and how to detect
the hot paths in your code to make a favorable decision about optimizing parts of
your code.

Summary
 We can introduce flexibility to our API via abstracting away third-party logic.
 Introducing the hooks and listener APIs can provide the highest flexibility for

our code. These APIs allow us to make our code extensible from the client’s
perspective.

 Making our system more generic and flexible may increase its complexity.
 Complexity can be added not only to the code and its maintenance but also to

other parts of our system.

Flexibility

Complexity

Abstracting away metrics

Hook/listener API

Figure 4.8 Flexibility
vs. complexity

96 CHAPTER 4 Balancing flexibility and complexity
 When making our code highly extensible using the hooks API, we need to be
careful about handling failures and the complexity of the execution model that
arises from this API.

 Immutability helps us when reasoning about the system.
 There are various tradeoffs between complexity and flexibility when using dif-

ferent patterns.

Premature optimization vs.
optimizing the hot path: Decisions

that impact code performance
There is an old computer science saying that premature optimization is the root of
all evil. This has a solid background because it’s accurate for a lot of use cases. With-
out any input data about expected traffic and a service level agreement (SLA), it’s
hard to reason about your code and its required performance. Optimizing random
paths in code in such a situation is like shooting in the dark. You will complicate
your code without a sane reason.

NOTE SLA specifies the amount of traffic the service should handle. It can
also state the number of requests that it needs to execute and the given
number of requests that must be executed with a latency lower than a spe-
cific threshold. A similar concept is nonfunctional requirements (NFR),
which may specify the expected performance of a system.

At the design stage, we may know a lot about the expected traffic our system will
need to handle. In such a scenario, we can design performance benchmarks that

This chapter covers
 When premature optimization is evil

 Finding the hot path in your code using
performance testing and measurements

 Optimizing the hot path
97

98 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
will reflect the production traffic. Once we are able to simulate the traffic, we can
measure paths in our code and find the hot path. The hot path is a part of your code
that does most of the work and is executed for almost every user request. In this chap-
ter, we will learn that the Pareto principle can be used to find and estimate where the
hot path occurs. Once we have detected the hot path, we can optimize it.

 Some can say that this is premature optimization because we optimize code before it’s
even deployed to production. The truth is that by having enough data, we can make
rational decisions that allow us to make nonnegligible performance improvements
before our system goes to production. The data should come from the performance
benchmarks that are executed before the application is deployed to production. We can
model the expected traffic when we have defined an SLA and expectations about the
real production traffic for our system. When we have enough data that backs up our
experiments and hypotheses, optimization is no longer premature.

 This chapter will focus on finding a hot path in our code and how to benchmark it.
We will see how to introduce improvements to our code with the assurance that our
changes will improve our app’s performance. Let’s start by understanding when pre-
mature optimization is, indeed, evil or, at least, problematic.

5.1 When premature optimization is evil
Often, when we write our application code, we don’t have much input data regarding
its expected traffic. In the ideal world, we would always have information about the
expected throughput and maximum latency requirements. In reality, we often need to
follow a more ad hoc approach. We start by writing software that is maintainable and
easy to change. However, as we write the code, we don’t have strict performance
requirements. In such a case, optimizing the code up front has too many unknowns.

 When optimizing the performance of some code path, we often increase its com-
plexity. Sometimes, however, we need to write parts of it in a specific way. In those
parts of the system, we are trading performance over complexity. This may be code
complexity, but it can also be maintenance or system complexity of the components
we use. Without input data about the traffic, it may turn out that the given code is not
impacting the overall performance of our main workflow. Because of that, we intro-
duce additional complexity without the benefit of increasing performance.

 Another pitfall we might encounter is optimizing code that’s based on false
assumptions. Let’s see how easy it is to make this mistake.

5.1.1 Creating accounts processing pipeline

Let’s consider a simple scenario where we have an account entity for which we want to
build a processing pipeline that finds an account with a given ID. The following listing
shows this entity.

public class Account {
 private String name;

Listing 5.1 Building an account entity

99When premature optimization is evil
 private Integer id;
// constructors, getters and setters omitted
}

Our code operates on the list of accounts and takes the ID that it should find as an
argument. The following listing presents the filtering logic for our account entity.

public Optional<Account> account(Integer id) {
 return accounts.stream().filter(v -> v.getId().equals(id)).findAny();
}

This simple code uses the stream API and hides many performance optimizations
already. The stream abstraction works lazily. This means that it executes the filter
operation that checks if the account ID matches the argument as long as there is no
account found yet.

We created this code as a first approach. It is important to note that we don’t have any
performance information. The list of accounts that we process could contain a couple
of elements, but it can also hold millions of elements. Without this knowledge, it is
hard to optimize the performance for the processing.

 For a few accounts, however, our code will be good enough. But for millions of ele-
ments, we may consider splitting the work into different threads. One solution would
be to create those threads manually, split the work into batches, and submit them to
multiple threads. We can also use existing mechanisms, such as parallel streams that
hide the creation of threads and split the work.

 The problem that we have here is that the assumptions about this code may be
false. We can safely assume that it will process maximum N elements, where N is equal
to 10,000. As long as the system analysis backs this number, we can start optimizing
this part of the code. Unfortunately, we often don’t have this input data. It is problem-
atic to optimize code in such a context because we will introduce additional complex-
ity without clear benefit. Let’s see how wrong assumptions can complicate our code.

Listing 5.2 Initial filtering logic

findAny() vs. findFirst() methods
Let’s clarify the use of findAny() and findFirst(), which are often used in the
wrong context. Laziness is achieved by using findAny(). This method will stop pro-
cessing when any element is found. If we use findFirst(), it mimics the same
behavior as sequential processing. If this processing is split into parts, then find-
Any() may perform better because we do not care about the ordering of processing.
However, using findFirst() means that the processing must be done sequentially,
which slows down the processing pipeline. This difference becomes more important
when we use parallel streams.

100 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
5.1.2 Optimizing processing based on false assumptions

Let’s assume that we decide to introduce performance optimization to our processing
code. We notice that the processing works in one thread. This means that we do not
split the work and execute it concurrently, leveraging all cores of our CPU. One of the
possible optimizations we can make is to use the work-stealing algorithm, where we
need to split the work into N independent stages: all input accounts will have N ele-
ments in them. Figure 5.1 illustrates this approach.

First, we will split the work in half into two threads. At this point, two threads will be
responsible for processing half of the N accounts. Second, our code should undergo
another split because not all threads are utilized, so the work will be split into four of
N accounts. Now, every thread can start the actual processing. Our split phase should
split the accounts into as many parts as there are available threads or cores. The fol-
lowing listing shows how the proposed logic can be written in a simple way, using the
streams API.

public Optional<Account> accountOptimized(Integer id) {
 return accounts.parallelStream().filter(v ->

v.getId().equals(id)).findAny();
}

The parallelStream() method splits the work into N parts. It uses the internal fork–join
thread pool (http://mng.bz/Axro) with a number of threads equal to the number of
cores –1. It looks simple, but this hides a lot of complexity. The most important
change is that our code is multithreaded now, which means that the processing should
be stateless (for example, we shouldn’t modify state from any processing method used
as a filter.) Because we use a thread pool, we should monitor its use and utilization.

 Another hidden complexity that the work-stealing algorithm presents is the phase of
splitting the work. This phase takes additional time, adding performance overhead to
our code. This overhead can be higher than the gain we get from making it parallel.

Listing 5.3 Work stealing using parallelStream()

Figure 5.1 Work stealing as performance optimization

N accountsThread 1

Thread 2

Thread 3

Thread 4

1/2 accountsN

1/2 accountsN

1/4 accountsN

1/4 accountsN

1/4 accountsN

1/4 accountsN

Split Split

http://mng.bz/Axro

101When premature optimization is evil
 And because we based our optimization work on false (or no) assumptions, we can-
not reason how this code will perform in production. To verify that our performance
optimization is efficient, we need to write a performance benchmark that validates
both methods.

5.1.3 Benchmarking performance optimization

As you may remember, we assumed that the processing would work for N accounts,
where N is equal to 10,000. Regardless, if this number is based on empirical data or
on our assumption, we should at least write a performance benchmark to validate
our optimization.

 Our benchmarking code will generate N random accounts with IDs from 0 to
10,000. For this, we can create a random string using the UUID class. The fork param-
eter states that all tests should run in the same JVM. For this requirement, we will
use the Java Microbenchmark Harness (JMH) tool for benchmarking (see https://
github.com/openjdk/jmh). Other platforms have other tools available to help you
benchmark your code properly, such as BenchmarkDotNet (https://benchmarkdot
net.org/) for .NET. There are many subtleties involved in benchmarking; it’s worth
investing time in learning the tried-and-tested tools for your platform rather than
trying to roll your own.

 Before the actual benchmarking logic, we need to run a warmup that allows JIT
to optimize the code paths. This is configured using the @Warmup annotation. We
will execute 10 iterations of measurements, which is good enough—the more itera-
tions we execute, the more repeatable the results will be. We are interested in the
average time the method takes, and the results will be reported using millisecond
(ms) time units. Let’s take a look at the benchmark initialization logic, as the follow-
ing listing shows.

import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;

@Fork(1)
@Warmup(iterations = 1)
@Measurement(iterations = 10)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class AccountsFinderPerformanceBenchmark {
 private static final List<Account> ACCOUNTS =
 IntStream.range(0, 10_000)
 .boxed()

Listing 5.4 Initializing the account’s benchmark

https://github.com/openjdk/jmh
https://github.com/openjdk/jmh
https://github.com/openjdk/jmh
https://benchmarkdotnet.org/
https://benchmarkdotnet.org/
https://benchmarkdotnet.org/

102 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
 .map(v -> new Account(UUID.randomUUID().toString(), v))
 .collect(Collectors.toList());
 private static final Random random = new Random();
// actual testing methods

The baseline method executes the first version of our accounts finder logic. The
parallel() method then executes the improved version that uses parallelStream, as
the following listing shows.

@Benchmark
public void baseline(Blackhole blackhole) {
 Optional<Account> account =
 new AccountFinder(ACCOUNTS)

➥ .account(random.nextInt(10_000));
 blackhole.consume(account);
}

@Benchmark
public void parallel(Blackhole blackhole) {
 Optional<Account> account =
 new AccountFinder(ACCOUNTS)

➥ .accountOptimized(random.nextInt(10_000));
 blackhole.consume(account);
}

Let’s execute the benchmark logic and view the results. Note that the exact number
may differ on your machine, but the overall trend will be the same. The following list-
ing shows the result when I execute the benchmark logic on my machine. Notice that
the performance of both solutions is almost the same.

CH05.premature.AccountsFinderPerformanceBenchmark.baseline

➥ avgt 10 0.027 ± 0.002 ms/op
CH05.premature.AccountsFinderPerformanceBenchmark.parallel

➥ avgt 10 0.030 ± 0.002 ms/op

The parallel processing may be slightly slower because of the split overhead needed
before the actual work. If you increase the number of accounts, however, you may
notice that the parallel version is slightly faster. But overall, the difference between
both solutions will be negligible.

 From this simple test, we saw that the parallel solution’s performance results do
not justify adding the additional complexity that arises from using a multithreading solu-
tion. However, the code complexity doesn’t increase, whether you choose a parallel-
Stream or a standard stream. The complexity is hidden in the internals of the
parallelStream() method. Further, our optimization can yield different results in pro-
duction because we decided on performance improvements based on false assumptions.

Listing 5.5 Implementing the account’s benchmark logic

Listing 5.6 Viewing the performance benchmark output

Generates N accounts to
use in this benchmark

Calls the random generator to
get the ID we are searching for

The account finder looks for an
account with a random number.

Consumes the result to let the JIT
know that it is used somewhere

The logic for the parallel
version is exactly the same.

103Hot paths in your code
In such a scenario, optimizing our code prematurely before we gain insight about the
way it will be used in production may be problematic.

 To summarize our efforts, we put some work into optimizing specific code parts
in our system. It turns out our improvements didn’t provide any value. In essence,
we wasted time based on false assumptions. We assumed the code would be called
for a specific number of elements. In such a context, the second version of our code
did not perform better. The problem is that the numbers used to conduct the test
were a guess. In a real-world system, it’s probable that the number of elements to
process will be substantially different (higher or lower). This means that we will have
more empirical data that we can use to optimize the code, but this time it will be
based on real-world assumptions. In that case, we can get back to optimizing the
code—this time using the correct numbers.

 If you know up front that your accounts will grow over time, you need to adapt
your benchmarking code. Once you hit some threshold, you will notice that parallel-
Stream() will perform better than the standard stream(). In such a case, it won’t be
premature optimization anymore.

 We looked at one aspect of the input information needed for useful performance
optimizations. In real-world systems, we have a lot of code paths. Even assuming that
we know N for all input processing, it may not be feasible to optimize all of those
paths. We should know how often the given code path will be executed to decide if it
is worth optimizing. There are code paths that are executed rarely, such as code ini-
tialization. However, we have code paths that are executed for every user request. We
call this code the hot path. Optimizing code on this path is often worth doing, resulting
in a substantial performance improvement of the overall system. In the next section,
we will learn how to reason about our hot paths.

5.2 Hot paths in your code
In the previous section, we saw an example of optimization based on false assumptions.
We also saw that one of the essential data characteristics that’s useful when optimizing
your code is knowing the input number of elements (N). This may be the number of
requests per second or the number of files you need to read. As we know, an algorithm’s
complexity can be calculated by knowing the input number of elements (N). We can
pick the proper algorithm, but we can also estimate memory usage.

 Knowing N is vital, but not all code in our applications has the same importance in
real production systems. For example, let’s consider a simple HTTP application that has
different endpoints executed more or less often. Figure 5.2 shows this request frequency.

 The first request endpoint exposes the main functionality of our application. It
executes for almost every client call and does the main work in our code. Let’s assume
that this endpoint is executed by our clients 10,000 times per second. We can also
assume that N for both endpoints is calculated based on the empirical data or the SLA
that our service offers. In this example, the data we are using is based on assumptions
backed up by actual data.

104 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
On the other hand, we have a different method that does more of the heavy work.
The modify-user-details manipulates the data structure in the underlying database that
this HTTP application uses. It is called rarely because changing the user details is not a
common task that clients will execute. Once the user details are changed, it will stay in
the same structure for a long time.

 Now, let’s assume that we measure the 99th percentile of latency for both endpoints
(i.e., 99% of the requests are faster than a specific number). After some time, we get the
results, concluding that the p99 latency for our process-request is equal to 200 ms, and
the p99 latency for the modify-user-details is 500 ms. If we look only at those measure-
ments without the context of the number of requests per second, we could conclude
that we should start optimizing the modify-user-details endpoint first. When you add
context about the number of requests, however, it is easy to see that optimizing the
process-request endpoint will give us more overall savings in resources and time.

 For example, if we can reduce the p99 latency for process requests by only 20 ms
(10%), we will get an overall reduction of latency equal to 200,000 ms:

(10,000 × 200) – (10,000 × 180) = 200,000

However, if we optimize the modify user details endpoint twice to 250 ms, we will get a
substantially lower overall latency reduction that is equal to 2,500 ms: (10 × 500) –
(10 × 250) = 2,500.

 Based on that calculation, we can conclude that investing time in optimizing the
endpoint that is called more often results in 80 times more savings than optimizing
the endpoint that takes more time to execute: 200,000 ÷ 2,500 = 80.

 As previously mentioned, the path that is executed for the majority of requests is
called a hot path. Finding and optimizing it is a crucial aspect if we want to optimize
the performance of every application.

 It turns out that in real-world systems, this pattern of unevenly distributed traffic
between code paths in our application happens quite often. A lot of empirical studies
conclude that the Pareto principle can simplify thinking about our systems. Let’s take
a look at this principle in the next section.

Figure 5.2 Endpoints with
different request frequencies

process-request

modify-schema
Client

10,000 requests per second

10 requests per second

105Hot paths in your code
5.2.1 Understanding the Pareto principle in the context
of software systems

Studies of multiple systems (organizations, work efficiency, and software systems)
found interesting characteristics for most of them. We will analyze those characteris-
tics in the context of software systems.

 It turns out that a small fraction of code delivers a substantial proportion of the
value produced by our software. The ratio that was detected most often was 80% to
20%. This means that 80% of the value and work that our system performs is delivered
by only 20% of our code. Figure 5.3 depicts this ratio in a graph.

If we have a linear behavior, every path in our code has the same importance. In such
a scenario, adding a new component to our system means that the value delivered to
our clients increases proportionally. In reality, every system has a core functionality
that provides the most value for the core business. The rest of the functionalities,
such as validation and handling edge cases and failures, are not crucial and do not
produce much value (say, 20%). However, they require 80% of the time and effort
to build.

 Of course, the actual proportion differs, depending on the business domain and sys-
tem. It may be 30% to 70% or even 10% to 90%. The actual number is not important.

Figure 5.3 The 80/20 rule, as presented by the Pareto principle

20% Effort

80% Results

80/20 rule

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

80/20 rule

Linear behavior

Value

Effort

106 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
What’s the most important lesson from this characteristic? We can conclude that opti-
mizing a smaller part of our codebase will impact most of our clients.

 When creating a new system, we should have SLA requirements with an expected
upper bound of traffic that our system can handle. Once we have those numbers, we
can create performance tests that simulate real-world traffic.

5.2.2 Configuring the number of concurrent users (threads)
for a given SLA

Let’s assume that our service needs to provide an SLA for handling 10,000 requests
per second. The average latency is 50 ms. If we want to examine such a system by a
performance tool, it’s essential to set the correct number of threads (concurrent
users) to execute the requests to a system under stress.

 If we pick one thread, we can run, at most, 20 requests per second (1000 ms ÷ 50 ms
= 20). Such a performance setup won’t allow us to examine the system SLA. How-
ever, once we know that one thread can handle 20 requests per second, we can cal-
culate the total number of threads that we’ll need. We can then divide the expected
number of requests per second by the number of requests that one thread can han-
dle: 10,000 ÷ 20 = 500.

 This will tell us that we need 500 threads to saturate the system or the network traf-
fic. Once we have that number, we can configure our benchmark tool accordingly. If
the stress test tool is unable to create that many threads on one node, we can divide
the traffic into N stress test nodes, where each test node handles a portion of the traf-
fic. For example, we can execute requests from four stress test nodes. In that case,
each of those nodes will need to execute requests for 125 concurrent users (500
threads ÷ 4 nodes = 125). Note that those calculations may be a bit different, depend-
ing on the performance tool that you use.

 If your performance tool uses an event loop (nonblocking I/O), you may exe-
cute more requests from one thread. In such a case, you first need to measure the
number of requests that one thread can handle and adapt the rest of the calcula-
tions to that number. Then, you should create a bit more threads than the number
calculated because the calculations are based on average latency. There might still
be some outliers that will slow down the concurrent threads. To see how many outli-
ers we have, we can look at the latency of higher percentiles (e.g., p90, p95, p99).
Due to that fact, we can multiply the total number of threads needed for an average
SLA by some factor (e.g., 1.5) to allocate extra threads in the case of a temporary
slowdown of a system under stress.

 Finally, we can measure critical code paths for the number of invocations and the
time that this takes. With those numbers, we can detect the hot path and calculate
how significant performance gains we’ll get from optimizing a small part of our code.
Thanks to the characteristics of most of the systems that follow the Pareto principle,
by optimizing our hot path, we can impact and deliver improvements to the majority
of our clients. In the next section, we will apply this framework for optimizing a system

107A word service with a potential hot path
that has a defined SLA, where we will build a new system and its domain. With our
newly found understanding, we will optimize its hot path.

5.3 A word service with a potential hot path
Let’s say that we want to build a word service that has two functionalities exposed
under two API endpoints. Figure 5.4 shows the architecture of this service.

The first functionality it offers is getting the word of the day. It calculates the offset
specific for the current date and returns the word with the index equal to this offset.

 The second functionality validates the word. The user passes the word as a query
parameter, and the service scans the dictionary for its existence, returning the infor-
mation about its existence in a response body. The word service, demonstrated in
the following listing, is a core component of our system and is based on the Words-
Service interface.

public interface WordsService {
 String getWordOfTheDay();
 boolean wordExists(String word);
}

The getWordOfTheDay() method does not take any arguments. It just returns the correct
word. The wordExists() method takes the word that should be checked and returns
whether it exists or not. The first implementation of WordsService does not do any pre-
mature optimizations, as we don’t have any numbers regarding SLA or traffic yet.

5.3.1 Getting the word of the day

The core functionality for getting word of the day calculates the index for a given day.
The following listing shows that this logic is simple, as it uses year and day of the year
plus a multiplying factor to get a better distribution of the returned words.

Listing 5.7 Implementing the WordsService interface

Figure 5.4 The architecture of a word service with two functionalities

Word=make

Client

Client

Gets word of the day
Word-of-the-day

Word-exists

Finds word by offset

Scan if word exists.

Dictionary

108 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code

ice
vice.
 private static final int MULTIPLY_FACTOR = 100;
 private static int getIndexForToday() {
 LocalDate now = LocalDate.now();
 return now.getYear() + now.getDayOfYear() * MULTIPLY_FACTOR;
 }

NOTE We picked the multiplying factor to be equal to 100, but it can be any
arbitrary number.

The implementation of the word service needs to take the path to the actual dictio-
nary file as an argument to load the file and scan it. The function for providing an
index for today can be mocked by passing a supplier function, as the following listing
shows. This is useful for unit testing because we don’t want to base our test on the state
returned by the LocalDate.now() call.

public class DefaultWordsService implements WordsService {

 private static final int MULTIPLY_FACTOR = 100;
 private static final IntSupplier DEFAULT_INDEX_PROVIDER =

DefaultWordsService::getIndexForToday;
 private Path filePath;
 private IntSupplier indexProvider;

 public DefaultWordsService(Path filePath) {
 this(filePath, DEFAULT_INDEX_PROVIDER);
 }

 @VisibleForTesting
 public DefaultWordsService(Path filePath,

➥ IntSupplier indexProvider) {
 this.filePath = filePath;
 this.indexProvider = indexProvider;
 }

The logic for calculating the word of the day uses the Scanner class (http://mng
.bz/ZzjR), which allows us to scan the file lazily. If we want the next line, we need to
call the method that retrieves it. Once we are done processing, there is no need
to load more lines.

 The logic for this example is quite simple. It iterates over the file as long as the line
number index denoting the day’s expected word is not found. If there are more lines,
we continue to execute our logic. Finally, if the current processing index equals the
index for the expected word, we return the word and finish the processing. The fol-
lowing listing demonstrates the logic for getting the word of the day.

Listing 5.8 Getting the word of the day

Listing 5.9 Adding the DefaultWordsService constructor

The DefaultWordsServ
implements WordsSer

The supplier invokes the function
that uses the local date.

The path to the dictionary must
be passed as an argument.

The second constructor is only
needed for unit testing.

Uses an Int from the supplier as
the index for the word of the day

http://mng.bz/ZzjR
http://mng.bz/ZzjR
http://mng.bz/ZzjR

109A word service with a potential hot path

r

@Override
public String getWordOfTheDay() {
 int index = indexProvider.getAsInt();
 try (Scanner scanner = new Scanner(filePath.toFile())) {;
 int i = 0;
 while (scanner.hasNextLine()) {
 String line = scanner.nextLine();
 if (index == i) {
 return line;
 }
 i++;
 }
 } catch (FileNotFoundException e) {
 throw new RuntimeException("Problem in getWordOfTheDay for index: " +

filePath, e);
 }
 return "No word today.";
}

Note that at the end of processing, we are handling one edge case. If the index for the
word of the day was too high, no word for today is returned. This can happen when
the index for the given day is out of bounds of the underlying file.

5.3.2 Validating if the word exists

The second business functionality that our service delivers is validation of whether the
specific word exists. The logic for getting this information is similar to word of the day,
but to determine if the word exists, we need to iterate over the whole file. The
wordExists() method searches for the word passed as an argument. If the line loaded
from the file equals the word argument, we return true, which means that the word
exists. Finally, if the word is not found after iterating the whole file, we return false.
Let’s look at the code in the following listing to see this functionality.

@Override
public boolean wordExists(String word) {
 try (Scanner scanner = new Scanner(filePath.toFile())) {
 while (scanner.hasNextLine()) {
 String line = scanner.nextLine();
 if (word.equals(line)) {
 return true;
 }
 }
 } catch (FileNotFoundException e) {
 throw new RuntimeException("Problem in wordExists for word: " + word, e);
 }
 return false;
}

Listing 5.10 Adding the getWordOfTheDay() method

Listing 5.11 Adding the wordExists() method

Gets the index for
the current day

Provides the scanne
with the location of
a dictionary file

Retrieves
the next line
as a String

110 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code

nce
The logic for wordExists() is not optimized because we did not define the SLA. We
don’t have a performance test to find the performance of the current solution yet, but
now we can expose our logic under an API endpoint.

5.3.3 Exposing the WordsService using HTTP service

The WordsController exposes two endpoints, as listing 5.12 shows. The first end-
point, /word-of-the-day, uses a GET HTTP request that does not take any query
parameters. The request triggers loading the file with a dictionary and then loads a
words.txt file from the resources folder. The first endpoint functionality is exposed as
a /word-of-the-day API path. (The prefix for every path in our example is /words.)
The second functionality is exposed under the /word-exists endpoint. It uses a word
provided as a query parameter and checks if this word exists.

@Path("/words")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class WordsController {
 private final WordsService wordsService;

 public WordsController() {
 java.nio.file.Path defaultPath =
 Paths.get(
 Objects.requireNonNull(

getClass().getClassLoader().getResource("words.txt")).getPath());
 wordsService = new DefaultWordsService(defaultPath);
 }
 @GET
 @Path("/word-of-the-day")
 public Response getAllAccounts() {
 return Response.ok(wordsService.getWordOfTheDay()).build();
 }
 @GET
 @Path("/word-exists")
 public Response validateAccount(@QueryParam("word") String word) {
 boolean exists = wordsService.wordExists(word);
 return Response.ok(String.valueOf(exists)).build();
 }
}

Finally, we can start our HTTP application using the Dropwizard embedded HTTP server
(see http://mng.bz/REpZ). Our application needs to extend the io.dropwizard
.Application class that provides the functionality to start the HTTP server, as listing
5.13 demonstrates. Because of that, we need to extend the Application class with a
default Configuration. This creates a WordsController that provides our business
functionalities. Next, it registers this controller as an API endpoint. Finally, our app
starts the HTTP web server, which is accessible under http:/ /localhost:8080/words.

Listing 5.12 Adding the WordsController

Constructs the default
implementation of

WordsService

Wraps the word of the day
within the HTTP response body

Wraps the information
about the word’s existe
into an HTTP response

http://mng.bz/REpZ

111Hot path detection in your code
public class HttpApplication extends Application<Configuration> {

 @Override
 public void run(Configuration configuration, Environment environment) {
 WordsController wordsController = new WordsController();
 environment.jersey().register(wordsController);
 }

 public static void main(String[] args) throws Exception {
 new HttpApplication().run("server");
 }
}

NOTE If you run this main function, the Words application with both control-
lers will be up and running on your local machine.

In the next section, we will use information about expected traffic to detect our hot
path. For this, we will use Gatling benchmarks (https://gatling.io/open-source/) to
model the traffic and the Dropwizard’s MetricsRegistry to measure the code paths.
We will see if the structure of our application follows the Pareto principle described in
the previous section.

5.4 Hot path detection in your code
Let’s assume that our traffic estimations and SLA states that the word-of-the-day end-
point will serve one request per second. On the other hand, the word-exists endpoint
will be called more frequently at 20 requests per second. Straightforward calculations
will show us that this exceeds the values from the Pareto principle (the 80/20 rule):

1 ÷ (20 + 1) = ~5%

20 ÷ (20 + 1) = ~95%

This equation shows that the word-exists functionality serves 95% of the user’s
requests, while not serving 5% of them. Before we start optimizing this endpoint, how-
ever, we should create a performance test for both endpoints to give us latencies. By
knowing both numbers of requests and latencies, we can calculate the overall benefits
of optimizing one functionality or the other. For this, we will use the Gatling tool for
performance testing.

5.4.1 Creating API performance tests using Gatling

We want to model two performance test scenarios. The first should target the word-
of-the-day endpoints and execute one request per second. The duration of this
benchmark will be 1 minute to get fast feedback. This will be enough for our use case
to compare the initial and optimized versions. However, when you are performance
testing real-life systems, this value should be substantially longer.

Listing 5.13 Starting an HTTP server

https://gatling.io/open-source/

112 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
 The simulations using Gatling are written with the Scala programming language, and
every simulation needs to extend the Simulation class. The scenario for getting our
word of the day is straightforward. We need to execute a GET request for a given end-
point, and every request will be executed in the context of the http:/ /localhost:8080/
words URL. If you want to deploy the Words application on a separate server, you will
need to change this URL. Our API endpoint accepts and produces JSON format. The
benchmarking scenario executes the GET HTTP request on the /word-of-the-day end-
point. We expect the result to be equal to the 200 HTTP response code. Any other code
will be treated as an error. The following listing shows the implementation.

class WordsSimulation extends Simulation {
 val httpProtocol = http
 .baseUrl("http:/ /localhost:8080/words")
 .acceptHeader("application/json")

 val wordOfTheDayScenario = scenario("word-of-the-day")
 .exec(WordOfTheDay.get)

 object WordOfTheDay {
 val get = http("word-of-the-day").get("/word-of-the-day").check(status is

200)

 }

The second scenario is similar, but the HTTP get request needs to send the word to
validate as an HTTP parameter. Because of that, we need to feed the scenario with
words we want to validate. The following listing shows the words in our example
words.csv file.

word
1Abc
bigger
presence
234
zoo

Note that we have the word bigger from the beginning of the dictionary. We also have
the word presence in the middle of it. Finally, we have the word zoo, which resides at the
end of a dictionary. Besides that, we have two words that do not exist; they will trigger
a full file scan.

 The validate scenario uses the words.csv file and passes it as the query parameter to
the API endpoint. The feeder fetches words from words.csv and executes them ran-
domly. Finally, the scenario executes a GET request with the word query parameter.
The following listing displays the code for this scenario.

Listing 5.14 Getting the word-of-the-day’s performance

Listing 5.15 Words used for performance testing

Uses this scenario
to generate traffic

113Hot path detection in your code
val validateScenario = scenario("word-exists")
 .exec(ValidateWord.validate)

object ValidateWord {
 val feeder = csv("words.csv").random
 val validate = feed(feeder).exec(
 http("word-exists")
 .get("/word-exists?word=${word}").check(status is 200)
)
}

Once we have defined our scenarios, we should inject them into the execution engine
and specify the expected traffic. Listing 5.17 shows an example of how to do this. The
first scenario executes one request per second. The second (validate) scenario, which
is responsible for 95% of the client’s requests, executes 20 requests per second.

 setUp(
 wordOfTheDayScenario.inject(
 constantUsersPerSec(1) during (1 minutes)
),
 validateScenario.inject(
 constantUsersPerSec(20) during (1 minutes)
)).protocols(httpProtocol)

Now, we are able to start the actual performance benchmark. First, HttpApplication
must be started. Once the application is running on our localhost, we can start using
Gatling benchmarks by issuing the command: mvn gatling:test. This will start the
performance test for our application. After some time, the results will be available as
an HTML web page.

 Let’s analyze the performance results for both scenarios. As figure 5.5 shows, the
performance for the word-of-the-day scenario seems good enough.

Listing 5.16 Validating the word-exists’s performance

Listing 5.17 Setting up the traffic profile

The word-exists
scenario executes
the validate logic.

Figure 5.5 Viewing the word-of-the-day initial performance results

114 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
All requests for the /word-of-the-day endpoint succeed below 800 ms. The p99
latency is equal to 361 ms.

 Let’s now take a look at the results for our validate words scenario. As figure 5.6
shows, this endpoint executed the majority of requests.

The majority of requests for the /words endpoint have a latency higher than 1,200 ms.
Here, the p99 is almost 5 s.

 By looking at both results, we can see that the word-exists performance is prob-
lematic. Fixing it will impact 95% of our customers. There is no need to prematurely
optimize the word of the day, as the performance is good enough, and it impacts
only 5% of our customers.

 Let’s calculate the performance impacts of both endpoints using the formula from
the second chapter. The word-of-the-day p99 is 360 ms, but we have only one request per
second: (1 × 360) = 360. On the other hand, the word-exists p99 is almost 5,000 ms:
(20 × 5,000) = 100,000. We can calculate that the word-of-the-day is responsible for less
than 1% of our service requests handling work: 360 / (100,000 + 360) = 0.003 == 0.3%.

 Once we have these calculations, it is obvious where we should focus our optimiza-
tion efforts. The word-exists logic takes 99.7% of the total workload of our system.

 Once we know that the word-exists logic is problematic, we need to get informa-
tion from our code’s lower level. We will need to understand what parts of the code
path take most of the processing time. We can get this information by measuring the
code that is on the hot path, which we will do in the next section.

5.4.2 Measuring code paths using MetricRegistry

Initially, in section 5.3, the code for validating if the word existed was simple and had
no optimization. We didn’t know at that point that optimization might be necessary.
Now, we have input regarding the number of requests that our service will handle.

Figure 5.6 Viewing the word-exists initial performance results

115Hot path detection in your code
The performance tests showed that we have a problem with latencies on the /word-
exists endpoint that serves 95% of our user’s requests.

 The Gatling tests were black box, meaning that we got the information on how the
specific endpoints perform, but we don’t have any internal information about the
most time-consuming parts of the system. Let’s look at that now.

 The wordExists() method consists of two main functionalities. The first loads the
file containing words to check. The second, the scan phase, finds whether the actual
word exists. We can wrap both stages into separate timers to measure every invocation
of those methods and give us more detailed information about their performance. In
listing 5.18, we create two timers. The first timer measures the time it takes to load the
file. The second timer measures the scan time (i.e., how long it takes to find whether
or not the word is valid).

@Override
public boolean wordExists(String word) {
 Timer loadFile = metricRegistry.timer("loadFile");
 try (Scanner scanner = loadFile.time(() -> new

Scanner(filePath.toFile()))) {

 Timer scan = metricRegistry.timer("scan");
 return scan.time(
 () -> {
 while (scanner.hasNextLine()) {
 String line = scanner.nextLine();
 if (word.equals(line)) {
 return true;
 }
 }
 return false;
 });

 } catch (Exception e) {
 throw new RuntimeException("Problem in wordExists for word: " + word, e);
 }
}

The timer will be executed for every operation, and it will give percentiles, average,
and the number of invocations. You can measure your code at any granularity level
that suits your needs. Measuring every code path may impact the processing logic’s
overall performance, so you should use it carefully. Once your logic is optimized, you
may decide to remove some or all of the measurements.

 The final step before rerunning the performance tests is to use the new Measured-
DefaultWordsService in the WordsController. The following listing shows this code.

wordsService = new MeasuredDefaultWordsService(defaultPath);

Listing 5.18 Measuring the word-exists logic

Listing 5.19 Using MeasuredDefaultWordsService

Measures the creation
of a new scanner to
access the file

Measures the main
logic of our method

116 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
When we restart the application, it will measure every request that hits the /word-
exists API endpoint. After the Gatling performance test finishes, we can visit the
http:/ /localhost:8081/metrics?pretty=true endpoint to see all the metrics exposed
by our application. You should see a section dedicated to loadFile, which will have
data for percentiles. We are most interested with the 99th percentile, so let’s take a
look at it in the following listing.

loadFile": {
"count": 1200,
"p99": 0.000730684,
"duration_units": "seconds"
}

The results are reported in seconds, and we can see that the 99th percentile of the
load file action is equal to 7 ms. The load file operation is not causing the perfor-
mance problems that we detected using the Gatling test.

 You also have a count that shows the number of invocations of the specific code.
Using that, you can compare different code paths and see where most of the time is
spent. It may be handy if you don’t have predefined information about expected traf-
fic or SLA. If you have that information, you can use the metrics to validate your
assumptions. In such a scenario, you can deploy the application to production with
metrics and calculate which code paths were invoked most of the time. By having this
information, you can detect the hot path and focus on improving its performance.
The following listing shows the scan timer.

"scan": {
"count": 1200,
"p99": 4.860273076,
"duration_units": "seconds"
}

We can see that the 99th percentile is almost 5 ss. It seems that we found the underly-
ing cause of our performance problems. The scan operation takes a long time to exe-
cute, and it takes most of the request’s processing time.

 Once we detect the underlying cause, we can start optimizing the hot path. We will do
that in the next section and validate if our improvement results in better performance.

NOTE If we cannot add a measurement code to the application we are perfor-
mance testing, we may consider using a profiling technique to get more
insights into the time spent in specific parts of the code. In the JVM world, we
can use, for example, the Java Flight Recorder (http://mng.bz/2jYg).

Listing 5.20 Viewing the performance of loadFile

Listing 5.21 Measuring scan performance

http://mng.bz/2jYg

117Improvements for hot path performance
5.5 Improvements for hot path performance
We want to focus on optimizing the word-exists code path. When we experiment with
wordExists() method and try a different approach, we should get feedback regard-
ing its performance. We can use our existing Gatling performance tests, but they are
high-level and more time consuming to run. For that, we need to start the actual web
server, start the Gatling tests, and collect the results. Because we know the exact code
path that should be optimized, we can write more low-level microbenchmarks that
focus only on the specific code path. Using this approach, we will get faster feedback
that will allow us to find a more performant solution.

 It is worth noting that writing a microbenchmark for every change may not be nec-
essary if we have those higher-level performance tests. The microbenchmarks require
more work, but on the other hand, they provide faster feedback. If you want to test N
solutions for solving the same low-level problem, you may find microbenchmarks
more useful.

 In this section, I will show how to implement microbenchmarks for learning pur-
poses. You can, however, develop a different solution to solve our problem. You can
also write another microbenchmark to compare it with the solution presented in
this section.

5.5.1 Creating JMH microbenchmark for the existing solution

Before we optimize the code path, let’s write a JMH benchmark for the existing code.
We will call this benchmark the baseline. We will use this as a point of reference when
improving our code. The benchmark will cover the logic from the hot path that takes
the majority of request processing time.

 Let’s take a look at the setup logic for our benchmark (listing 5.22). It executes 10
iterations for our example run (the more iterations there are, the more accurate results
will be). We want to measure the average time that the benchmarking method takes. One
benchmark measures the invocation of wordExists NUMBER_OF_CHECKS * WORDS_TO_
CHECK.size() times. Every iteration executes 100 checks to simulate a more realistic use
case. The word service will be reused 100 times, then the next iteration will start.

@Fork(1)
@Warmup(iterations = 1)
@Measurement(iterations = 10)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class WordExistsPerformanceBenchmark {
 private static final int NUMBER_OF_CHECKS = 100;
 private static final List<String> WORDS_TO_CHECK =
 Arrays.asList("made", "ask", "find", "zones", "1ask", "123");

Note that we pick words to check from the beginning, middle, and end of the dictio-
nary file. We also have some words that do not exist.

Listing 5.22 Creating the word-exists benchmark

118 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
 The baseline creates the DefaultWordsService (the current logic without any
optimization). Checking word existence will be done 100 times, and every word from
the list of words to check will be examined once per iteration.

 The WordsService is created once per JMH measurement iteration. It is reused
100 * WORDS_TO_CHECK.size() times. The wordExists() method is invoked for every
word. The following listing shows this approach.

@Benchmark
public void baseline(Blackhole blackhole) {
 WordsService defaultWordsService = new DefaultWordsService(getWordsPath());
 for (int i = 0; i < NUMBER_OF_CHECKS; i++) {
 for (String word : WORDS_TO_CHECK) {
 blackhole.consume(defaultWordsService.wordExists(word));
 }
 }
}

 private Path getWordsPath() {
 try {
 return Paths.get(
 Objects.requireNonNull(getClass().getClassLoader()

➥ .getResource("words.txt")).toURI());
 } catch (URISyntaxException e) {
 throw new IllegalStateException("Invalid words.txt path", e);
 }

Benchmark Mode Cnt Score Error Units
CH05.WordExistsPerformanceBenchmark.baseline avgt 55440.923 ms/op

Once we measure the baseline, we can try to create another optimized variant of the
wordExists() method and add a benchmark. By doing so, we will be able to validate
whether or not our optimization influences the performance. The baseline results
show us the number of milliseconds per operation. We will use those numbers to see
how the improved version compares to this one.

5.5.2 Optimizing word exists using a cache

Let’s assume the words file that we are using for checking a word’s existence is
static and does not change. This assumption is important in the context of our
logic. It means that once we check whether the word exists, the value will not
change in the future.

 We could construct a static map where the key is a word and the value denotes if it
exists. Constructing such a map would need to be done at the initialization time of
our application. Figure 5.7 shows a theoretical map for our use case.

 The dictionary file can contain millions of records, and constructing the map up
front means our application’s startup time increases substantially; in this case, we are

Listing 5.23 Getting the baseline benchmark

Gets the path to
the dictionary file

119Improvements for hot path performance
using eager optimization. This also means that we need to use substantial resources
for precomputing data that may not be required in the future.

 We will use some portion of RAM, regardless of the actual usage of our service. It
may turn out that only a small percentage of words are checked, whereas others are
not needed. Those unneeded words will occupy the memory space with no apparent
reason, so the program will use more RAM than necessary.

 The other solution we may choose is to construct a cache lazily. This means that
we start with an empty cache and build it up as the request arrives. Our assumption
is that the words file is static and does not change. If our file contains a small
amount of data, we could cache it indefinitely without eviction. However, there can
be a case in production systems that need to load a lot more data. For example, we
can imagine an application that checks the word’s existence for more languages
(e.g., English, Spanish, Chinese, etc.) and needs to load all dictionaries. For such a
case, we’ll want to reduce unnecessary memory usage, so we may choose to utilize
time eviction for data that is stale for some time.

 The eviction time can be calculated based on the traffic information. For example, if
we record the logs for requests, we can get statistics about the requested words. Based
on the time of requests, we can get time intervals between requests. The next step is to
construct the statistical distribution of those time intervals. Once we have that informa-
tion, we can get, for example, the 90th percentile and set the eviction time for this value.
This guarantees that the cache should serve 90% of our request. If the 99th percentile
eviction time is not too high, we can also pick this value as eviction.

 Our solution focuses on a situation in which the application is not yet deployed,
and we don’t have much information about traffic distribution besides the SLA and
expected number of requests per second. In such a situation, we can pick some value
based on prediction and record cache statistics. Once the application is in production,
we can get the cache hit, cache miss, and other similar statistics to see if our cache per-
forms well. If the miss ratio is high, we should consider increasing the eviction time.

 Let’s implement the solution based on the cache and measure its performance (list-
ing 5.24). We need to construct a cache that calls the existing word-exists method if
the given word is not present. For that, we will set the default eviction time to 5 min-
utes (min). This can be adapted once we have more data about production traffic
distribution. We are constructing the cache, so a word is a key and the information

Ask

Made

ZonesOperator

Starts the application
Word-exists

Delays start

True

True

True

Figure 5.7 Eager initialization and computation

120 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
about its existence is value. We will use Guava’s LoadingCache (http://mng.bz/1jOX)
for this.

NOTE We are using a Google Guava library because it’s one of the most com-
monly used caching libraries in Java. We could also choose other caching
libraries (one such as Caffeinate), but still, the overall conclusion from this
chapter will remain the same.

When the specific word is not accessed by the eviction time, it’s removed from the
cache. The following listing shows how to construct our cache.

public static final Duration DEFAULT_EVICTION_TIME = Duration.ofMinutes(5)

LoadingCache<String, Boolean> wordExistsCache =
 CacheBuilder.newBuilder()
 .ticker(ticker)
 .expireAfterAccess(DEFAULT_EVICTION_TIME)
 .recordStats()
 .build(
 new CacheLoader<String, Boolean>() {
 @Override
 public Boolean load(@Nullable String word) throws Exception {
 if (word == null)
 return false;
 }
 return checkIfWordExists(word);
 }
 });

Before we test the performance of the improved solution, let’s test its correctness. We
will use FakeTicker() to simulate time movement without a need to use a sleep
thread, as listing 5.25 demonstrates. The first check of word existence will trigger the
actual check operation. After this check, the cache should have one entry.

 @Test
 public void shouldEvictContentAfterAccess() {
 // given
 FakeTicker ticker = new FakeTicker();
 Path path = getWordsPath();
 CachedWordsService wordsService = new CachedWordsService(path, ticker);

 // when
 assertThat(wordsService.wordExists("make")).isTrue();

 // then
 assertThat(wordsService.wordExistsCache.size()).isEqualTo(1);
 assertThat(wordsService.wordExistsCache.stats()

➥ .missCount()).isEqualTo(1);

Listing 5.24 Constructing a word-exists cache

Listing 5.25 Unit testing the word-exists cache

Records the stats
to get insights about
the cache efficiency

If the word is null,
optimizes and returns

false right away
Otherwise, executes
the actual check
method

The first
request
triggers the
actual load.

http://mng.bz/1jOX

121Improvements for hot path performance
 assertThat(wordsService.wordExistsCache.stats()

➥ .evictionCount()).isEqualTo(0);

 // when
 ticker.advance(

➥ CachedWordsService.DEFAULT_EVICTION_TIME);
 assertThat(wordsService

➥ .wordExists("make")).isTrue();

 // then
 assertThat(wordsService.wordExistsCache.stats()

➥ .evictionCount()).isEqualTo(1);
}

Finally, listing 5.26 shows how to write a microbenchmark, using JMH to validate
whether our new design improves the wordExists() performance. The only difference
with this benchmark is that we use a different implementation backed by our cache.

@Benchmark
public void cache(Blackhole blackhole) {
 WordsService defaultWordsService = new CachedWordsService(getWordsPath());
 for (int i = 0; i < NUMBER_OF_CHECKS; i++) {
 for (String word : WORDS_TO_CHECK) {
 blackhole.consume(defaultWordsService.wordExists(word));
 }
 }
}

Let’s start the benchmarks again and compare the results between the first baseline
version and the improved version based on cache. The following listing shows how
to do this.

Benchmark Mode Cnt Score Error Units
CH05.WordExistsPerformanceBenchmark.baseline avgt 55440.923 ms/op
CH05.WordExistsPerformanceBenchmark.cache avgt 557.029 ms/op

We can conclude that the average performance of our solution increased by 100
times. That’s an outstanding result, and we are ready to test the whole application in
an end-to-end fashion. The only change we need to make so our Words application
uses the new implementation based on cache is to initialize it in the WordsService.
The following listing shows how this is done.

wordsService = new CachedWordsService(defaultPath);

Listing 5.26 Writing the word-exists cache microbenchmark

Listing 5.27 Benchmark results for baseline and cache version

Listing 5.28 Using the CacheWordsService in the WordsController

The entry was not evicted;
it sits in the cache.

Advances the time to
simulate the eviction

Calls wordExists() to
trigger the eviction

After this operation, the entry
is evicted: eviction count = 1.

122 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
We are ready to run the Gatling performance tests. To run the tests, follow the same
procedure we followed in section 5.4. Let’s open the results (see figure 5.8) from our
performance test.

We can see that the performance of our solution increased substantially. The 99th per-
centile latency is equal to 65 ms. It is almost 80 times faster than the initial solution!

 Once we perform our optimization, we should recalculate the impact that specific
parts of the code will make. Our p99 latency is reduced to 65 ms now. We can use the
second section’s formula to calculate the performance impact of the word-of-the-day
and word-exists logic:

 The word-exists traffic is 20 requests per second with p99 equal to 65:

(20 × 65) = 1,300

 The word-of-the-day has one request per second with p99 equal to ~360
milliseconds:

(1 × 360) = 360

Finally, we can calculate the percentage of traffic generated by both endpoints. We
can do this by calculating the traffic for the word of the day:

360 ÷ (360 + 1,300) ~= 0.21 == 21%

Figure 5.9 shows that our calculations reveal that the word-of-the-day traffic generates
21% of the workload on our system, and the word-exists traffic is responsible for the
other 79% of the workload. We reduced the word-exists workload from 99.7%,
although it is still responsible for most of the workload. However, as we calculated

Figure 5.8 The performance results for improved word-exists

123Improvements for hot path performance
before, that impacts 95% of our user’s requests. After our optimization, the word of
the day (which affects 5% of our user’s request) takes 21% of the processing
resources. If we seek further optimizations, we can calculate the possible time savings
with section 5.2’s formulas. Let’s assume we can further improve the performance of
both endpoints by 10%. For the word of the day, those formulas will give us 36 ms of
time savings because we have only one request per second: 0.1 × 360 × 1 = 36.

 Improving the word-exists performance by a further 10% gives us 130 ms of time
saved because we have 20 requests per second: 0.1 × 65 × 20 = 130.

 However, it may turn out that optimizing the word-exists performance by a further
10% is not practical or is hard to achieve. We can calculate that only by optimizing the
word-of-the-day by 40%, which will give us more time savings than optimizing the
word-exists by 10%: 0.4 × 360 × 1 = 144.

 If optimizing this endpoint by 40% is more feasible than optimizing the word-exists
by 10%, we may decide that we should focus on the non-hot path optimization. How-
ever, as you noticed, optimizing the hot path gives more benefits with lower efforts. In
real life, optimizing the specific code path by 10% is more realistic than 40%.

NOTE When optimizing the performance of one endpoint, we often need to
allocate more resources for handling the traffic. This may improve the laten-
cies and/or throughput of a given endpoint, but it can also mean that those
resources need to be taken from other endpoints. As a result, the perfor-
mance of other endpoints may be impacted. For that reason, it is crucial to
monitor the performance of all endpoints that are exposed to customers and
to assure that the endpoints’ performance don’t drop. Also, the more
resources we use, the higher utilization of the node on which the app is run-
ning will be. At some point, we would need to scale our application to more
nodes (horizontal scaling) or have a more powerful node (vertical scaling).
So increasing performance often (but not always) means that we need to allo-
cate more resources, and the need for more resources impacts scalability.

Word-of-the-day

21.7%

Word-exists

78.3% Figure 5.9 Percentage of
traffic for word-of-the day
vs. word-exists

124 CHAPTER 5 Premature optimization vs. optimizing the hot path: Decisions that impact code
5.5.3 Modifying performance tests to have more input words

There is one more important observation to make. Our final solution uses the cache to
back our logic. It means that doing performance tests for only six input words does not
validate our performance that well; we hit the cache with only a few existing values.

 When performing performance tests of a solution using the cache underneath, we
should test it using more input words. That way, it better validates whether the cache
does not evict that data too soon. It also validates whether the cache does not put too
much memory pressure on our system.

 Let’s take a random 100 words from the dictionary and put it into the words.csv file
used by the Gatling simulation. The number of words should be picked according to
expected traffic. Our test executes 20 requests per second for 60 s, which is a total of
1,200 requests. If we use more random words (e.g., 1,000), almost every request hits
the cache with an unloaded value, and the performance improvement that we observed
will not be seen.

 We can choose a different approach, pick more random words, and, also, extend
the performance test time. By doing so, we will fill the cache with data. Then, the next
subsequent requests will hit the entries that exist in the cache already.

 To get the random N words from words.txt, we can use a Linux sort command. The
following listing shows the code for getting our random words.

sort -R words.txt | head -n 100 > to_check.txt

Finally, we need to copy words from the to_check.txt file to the words.csv used by the
Gatling simulation and start the simulation once again. Figure 5.10 shows that the
results are substantially different.

Listing 5.29 Getting a random number of words

Figure 5.10 Words exists with more input words

125Summary
The performance is still substantially better than the initial solution, but there are
higher latencies. This is because almost 10% (100 ÷ 1,200) of requests hit a cold cache.

 You can experiment with different traffic patterns and performance test times. The
important lesson learned from this section is that when changing the details of a
solution (say, to a cache), you may also consider adapting your performance tests to
capture more realistic traffic distribution.

 With analysis and gathering a lot of information before releasing your software,
you are no longer doing premature optimization. Benchmarks will give you a lot of
insights into your code. When you have benchmarks based on close to real-world traf-
fic, you can produce realistic performance data. Once you have that data, you can
optimize your code’s proper parts and be certain that those optimizations will give you
good results.

 In this chapter, we were able to reduce the latency and increase our application’s
performance without it being deployed to production. Premature optimization when
we have enough input data regarding SLA and expected traffic is possible and can
yield great results. We need to remember to follow the strategy of finding the bottle-
neck before optimizing random code paths. If your application delivers functionality
and follows the Pareto principle for traffic distribution in your code, you should find
the hot path quite easily. Once you detect where the hot path is, you can narrow the
scope using microbenchmarks. They will allow you to optimize your code more effi-
ciently because of the faster feedback loop you will get. Remember that once you opti-
mize your hot path, the bottleneck may shift into different parts of code.

 In the next chapter, we’ll learn how our user interfaces simplicity may increase
maintenance costs. We will also learn about the benefits of abstracting away the under-
lying systems and their tradeoffs.

Summary
 Even if your code is not on the hot path, it may take a lot of time to execute.

Such a situation often occurs if a non-hot path code is orders of magnitude
slower than a hot path; thus, your code may require optimization.

 You can use the calculations from the second section of this chapter to find
code paths to focus your optimizing efforts.

 Writing benchmarks using the Gatling performance tool allows us to detect the
hot path based on the expected traffic.

 Parts of our code can be measured using metrics.
 Narrowing the scope of performance tests can be achieved using microbench-

marks and JMH.
 Often, we can optimize our hot path using cache.
 The Gatling output can be leveraged for validation and comparison of perfor-

mance results.

Simplicity vs. cost
of maintenance

for your API
When building our systems for end users, our API’s simplicity and friendly user
experience (UX) are essential. It is important to note that UX can apply to all
interfaces. We can design a graphic user interface (GUI) that is clean and user
friendly. We can also create our REST APIs in a UX-friendly way. Going one level
deeper, the command-line tools can also be UX friendly or not UX friendly. Basi-
cally, every software that needs to interact with the user in any way requires a discus-
sion and planning about its UX.

 The configuration mechanism of our system is an entry point that we need to
expose to clients. It is also a vital part of the UX friendliness of our component.
Often, our systems depend on and use multiple components to provide the result
of processing. Each of the dependent components exposes its configuration set-
tings that need to be set in some way.

This chapter covers
 UX and maintenance tradeoffs when integrating

with third-party libraries

 The evolution of settings exposed to clients

 Pros and cons of abstracting away things you
don’t own
126

127A base library used by other tools
 We can abstract away every downstream component (any element used by the sys-
tem for which we are creating a UX) and not expose any of those component settings
directly with the tool that interacts with the user. This will improve the UX of our sys-
tem, but it will require substantial maintenance.

 On the other side of the spectrum, we can directly expose all dependent settings.
This option does not require much maintenance from us, but such an approach has a
couple of tradeoffs. First, we are tightly coupling our clients with the downstream
component used by our service or tool. This makes it hard to change the component.
Additionally, handling changes to the downstream component in a UX-friendly (and
backward compatible) way will be difficult if not impossible.

 Both solutions have their tradeoffs and can be used as a base for a discussion
regarding our API’s simplicity versus its cost of the maintenance. I will elaborate on
those tradeoffs in this chapter, as this chapter focuses on those aspects. Let’s start our
chapter by introducing and analyzing a cloud component that already has its configu-
ration mechanism. Next, we’ll use this component with two tools that take different
approaches to costs of maintenance and UX simplicity.

6.1 A base library used by other tools
We need to integrate with and use various software systems when delivering business
value from our system. For example, we may need to integrate with databases, queues,
or cloud providers. We may also need to integrate with parts of an operating system,
such as the filesystem, network interfaces, or disk. The majority of systems that we
depend on provide their own software development kits (SDKs) or client libraries.
These allow us to easily integrate with their systems without developing the whole inte-
gration from scratch. Figure 6.1 illustrates this aspect of integration.

As mentioned, in the real world, our application may need to integrate with databases,
queues (such as Apache Kafka or Pulsar), and cloud services (e.g., EC2 and GCP).
All these services provide client libraries. Using them, we can deliver a more robust

DB external

system

Our application

Calls
Client SDK

that provides

integration a db

Calls
Client SDK

that provides

integration a queue

Queue external

system

Calls
Client SDK that

provides integration

with a cloud

Cloud external

system

Figure 6.1 SDKs with a client that provides integration with external systems

128 CHAPTER 6 Simplicity vs. cost of maintenance for your API
software faster compared to a situation in which we would need to write every integra-
tion from scratch.

 Almost every client needs to be configured before we can interact with the third-
party system. It can be, for example, authentication credentials, timeouts, buffer size,
or a variety of other settings. The configuration can be provided, for instance, via sys-
tem properties, environment variables, or config files, and all users of the client com-
ponent need to deliver their configuration to the client library.

 For the examples in this chapter, and for clarity and simplicity, we will build a sim-
ple cloud client component that we will need to configure before using. Then, we will
use this component from two tools that deliver value to our end users. Let’s start by
creating this component and understanding its usage.

6.1.1 Creating a cloud service client

Our cloud service client will provide a way for our component’s callers to execute a
request that loads data to a cloud service. Before the request is executed, it is authen-
ticated. We have two ways of authenticating the requests. The first uses a token to vali-
date it. The second uses a username and password. The authentication strategy is
picked based on the configuration provided by the user. Figure 6.2 depicts these
alternatives.

Let’s look at these components. The first entry point of the caller for our cloud com-
ponent is the Request class. It carries the list of data elements and the information
needed to perform authentication: username, password, or token. The following listing

Caller

Sends
Request with auth

information and

data

Cloud service

client

Sends data
Cloud service

Auth strategy

UsernamePassword
AuthStrategyTokenAuthStrategy

Authenticate

Uses one of those

strategies

Figure 6.2 Cloud client component and two possible authentication strategies

129A base library used by other tools
shows this implementation (see http://mng.bz/PWgw if you’re unfamiliar with the
@Nullable annotation in the listing).

public class Request {
 @Nullable private final String token;
 @Nullable private final String username;
 @Nullable private final String password;
 private final List<String> data;
 // constructors, hashCode, equals, getters, and setters omitted
}

The CloudServiceClient component handles the request (we can think of this com-
ponent as a cloud client library for a cloud provider like AWS, Azure, GCP, etc.). The
interface of our component is straightforward, as the following listing shows. It
exposes only one public method that should be used by the clients of this component.

public interface CloudServiceClient {
 void loadData(Request request);
}

The loadData() method takes the request and loads it into the cloud service. The
implementation of this method also performs authentication. Now, let’s take a look at
some authentication strategies for this component that our clients can use.

6.1.2 Exploring authentication strategies

Our cloud component supports two strategies for authentication. The first is a simple
username/password authentication strategy, as listing 6.3 shows. It requires both user-
name and password to be nonnull in the incoming request. It’s constructed based on
this configuration and checks whether the Request’s username/password matches the
configuration.

public interface AuthStrategy {
 boolean authenticate(Request request);
}

public class UsernamePasswordAuthStrategy implements AuthStrategy {
 private final String username;
 private final String password;

 public UsernamePasswordAuthStrategy

➥ (String username, String password) {
 this.username = username;

Listing 6.1 Creating the cloud request

Listing 6.2 Creating the CloudServiceClient interface

Listing 6.3 Adding the username/password authentication strategy

Tells the users
that token can be
a null value

AuthStrategy is
implemented by both
authentication strategies.

Creates strategy
for username and
password extracted
from the config file

http://mng.bz/PWgw

130 CHAPTER 6 Simplicity vs. cost of maintenance for your API
 this.password = password;
 }

 @Override
 public boolean authenticate(Request request) {
 if (request.getUsername() == null

➥ || request.getPassword() == null) {
 return false;
 }

 return request.getUsername().equals(username) &&
request.getPassword().equals(password);

 }
}

Both strategies implement the AuthStrategy interface. If the request contains a user-
name or password with a null value, the authenticate() method returns false. Note
that storing a password as a String can be problematic because it can leak from our
application. Thus, it can be stolen by an attacker. We will look at a better approach to
handle this later.

 The second authentication strategy is similar but uses a token to validate the request.
If the token matches the one provided by the constructor, the authenticate() returns
true.

public class TokenAuthStrategy implements AuthStrategy {
 public TokenAuthStrategy(String token) {
 this.token = token;
 }

 private final String token;

 @Override
 public boolean authenticate(Request request) {
 if (request.getToken() == null) {
 return false;
 }
 return request.getToken().equals(token);
 }
}

The logic is the same as the previous authentication mechanism in listing 6.4, but it
uses a token from the request.

6.1.3 Understanding the configuration mechanism

The client provides our cloud service configuration via a YAML file.

NOTE Many real-world frameworks and libraries use a very similar YAML-based
configuration mechanism (i.e., Spring Boot), so you may relate the examples

Listing 6.4 TokenAuthStrategy

If the username or
password request is
null, it returns false.

The actual validation
checks if username and
password match.

Implements
AuthStrategy

Checks if the
token matches

131A base library used by other tools
from this chapter to some of them. However, to keep this chapter technology
agnostic, we will use a custom code instead of an existing framework.

Based on the configuration in this file, we’ll create a CloudServiceConfiguration
class used by the cloud service implementation. At this stage of our client library, the
configuration contains only the AuthStrategy that we’ll use in our authentication
mechanism. The following listing displays the code to create our cloud service
configuration.

public class CloudServiceConfiguration {
 private final AuthStrategy authStrategy;

 public CloudServiceConfiguration(AuthStrategy authStrategy) {
 this.authStrategy = authStrategy;
 }

 public AuthStrategy getAuthStrategy() {
 return authStrategy;
 }
}

Loading the configuration from YAML should be abstracted away from the implemen-
tation of CloudServiceClient. This abstraction may be useful if we decide to support
another configuration file, such as JSON, Hocon, and so forth. To do this, we will cre-
ate a DefaultCloudServiceClient that injects the CloudServiceConfiguration via a
constructor. The loadData() method first validates whether the request should be
authenticated. It uses the CloudServiceConfiguration#authStrategy provided in
the configuration object, as the following listing demonstrates.

public class DefaultCloudServiceClient implements CloudServiceClient {
 private CloudServiceConfiguration cloudServiceConfiguration;
 public DefaultCloudServiceClient(CloudServiceConfiguration

cloudServiceConfiguration) {
 this.cloudServiceConfiguration = cloudServiceConfiguration;
 }

 @Override
 public void loadData(Request request) {
 if (cloudServiceConfiguration.getAuthStrategy().authenticate(request)) {
 insertData(request.getData());
 }
 }

The last step we need to implement is reading the YAML config file and constructing
our cloud client. The YAML configuration file should contain a section dedicated to

Listing 6.5 Implementing a CloudServiceConfiguration

Listing 6.6 Creating our default CloudServiceClient

After validation,
inserts the data into
a cloud service

132 CHAPTER 6 Simplicity vs. cost of maintenance for your API
the authentication configuration. The following listing shows how the config file should
look for the username/password strategy.

auth:
 strategy: username-password
 username: user
 password: pass

We will use the strategy value, username-password, to construct a proper Auth-
Strategy implementation. For the token strategy, the YAML configuration looks a bit
different. For testing purposes, the actual token value can be any UUID. In a real pro-
duction system, tokens won’t be hardcoded. They are generated dynamically and
refreshed based on some time interval. The following listing shows our token strategy.

auth:
 strategy: token
 token: c8933754-30a0-11eb-adc1-0242ac120002

Let’s finally construct the builder class responsible for loading the configuration and
constructing the DefaultCloudServiceClient. We will use ObjectMapper (http://
mng.bz/J14o) to read the YAML config file and parse it. Because we are using YAML,
the configuration file has a structure that can be presented as a map of maps. The first
outer map contains all the settings needed for the auth section. The second outer
map contains other settings. Figure 6.3 provides a first look at our map of maps.

In the figure, the inner map is keyed by the property name (e.g., strategy), and the
value can be any object (e.g., token). Another outer map has a dedicated section in
our configuration. Our auth section is a dedicated outer map. If we would like to add

Listing 6.7 Cloud service config for username and password

Listing 6.8 Cloud service token

Auth
Strategy: token

token: token-value

Key: value
Other setting

section

Figure 6.3 Configuration structure
in our YAML file

http://mng.bz/J14o
http://mng.bz/J14o
http://mng.bz/J14o

133A base library used by other tools

YA
c

a config section in the future, it will have a new dedicated section (e.g., other setting
section).

 In listing 6.9, the CloudServiceClientBuilder constructor creates a map of map
type to read the YAML file. We also have constants with strategy identifiers (e.g., USER-
NAME_PASSWORD_STRATEGY) to construct the proper authentication strategy. For this
example, we’ll use the YAMLFactory class from the Jackson library (http://mng.bz/
wnGO). The ObjectMapper reads the configuration from the YAML file.

public class CloudServiceClientBuilder {
 private static final String USERNAME_PASSWORD_STRATEGY = "username-password";
 private static final String TOKEN_STRATEGY = "token";
 private final ObjectMapper mapper;
 private final MapType yamlConfigType;

 public CloudServiceClientBuilder() {
 mapper = new ObjectMapper(new YAMLFactory());
 MapType mapType =
 mapper.getTypeFactory().constructMapType(HashMap.class, String.class,

Object.class);
 yamlConfigType =
 mapper
 .getTypeFactory()
 .constructMapType(
 HashMap.class, mapper.getTypeFactory()
 ➥ .constructType(String.class), mapType);
 }
 // ...

Now, let’s look at the final part of our cloud service client. As listing 6.10 shows, two
methods are responsible for creating the object. We allow the callers of this code to
pass the path to the YAML config file. Still, we also expose the way to provide Cloud-
ServiceConfiguration programmatically without using the YAML configuration
mechanism. The fact that those two config mechanisms are exposed allows the callers
to configure the client in two ways. Both have their own tradeoffs, and we will analyze
them later.

public DefaultCloudServiceClient

➥ create(CloudServiceConfiguration cloudServiceConfiguration) {
 return new DefaultCloudServiceClient(cloudServiceConfiguration);
}

public DefaultCloudServiceClient create(Path configFilePath) {
 try {

 Map<String, Map<String, Object>> config =
 mapper
 ➥ .readValue(configFilePath.toFile(), yamlConfigType);

Listing 6.9 CloudServiceClientBuilder constructor

Listing 6.10 Creating DefaultCloudServiceClient based on the config

The mapper will be used
to read the config file.

Because the file is a YAML,
uses the YAMLFactory

The inner map type
has a string key and
object value.

The outer map
contains the inner
map type.

Passes the
configuration
to the
constructor

Reads the
ML file using
onfigFilePath

http://mng.bz/wnGO
http://mng.bz/wnGO
http://mng.bz/wnGO

134 CHAPTER 6 Simplicity vs. cost of maintenance for your API
 AuthStrategy authStrategy = null;
 Map<String, Object> authConfig = config.get("auth");

 if (authConfig.get("strategy")
 ➥ .equals(USERNAME_PASSWORD_STRATEGY)) {
 authStrategy =
 new UsernamePasswordAuthStrategy(
 (String) authConfig.get("username"),
 ➥ (String) authConfig.get("password"));

 } else if (authConfig.get("strategy")
 ➥ .equals(TOKEN_STRATEGY)) {
 authStrategy = new TokenAuthStrategy((String) authConfig.get("token"));
 }
 return new DefaultCloudServiceClient(new

CloudServiceConfiguration(authStrategy));
 } catch (IOException e) {
 throw new UncheckedIOException("Problem when loading file from: " +

configFilePath, e);
 }
}

The YAML-based create() method extracts the authentication section from the con-
figuration. Next, it checks if the strategy matches the CloudServiceConfiguration. If
it does, then create() logic tries to construct the UsernamePasswordAuthStrategy
class. Otherwise, if the strategy is TOKEN_STRATEGY, then it creates the TokenAuth-
Strategy.

 Once we have our cloud client library ready, we can implement two tools that will
use it. They both take a different approach to integration. The first exposes the set-
tings of the cloud client directly; we will see how that impacts the maintenance cost.
The second abstracts those settings away, exposing their configurations and mapping
them to a cloud service. Let’s start with the tool that exposes settings directly.

6.2 Directly exposing settings of a dependent library
The first tool we’ll implement uses the cloud client as a batch service. Its primary
responsibility is to batch the incoming requests until the buffer size exceeds the batch
size parameter. Once the buffer is full, it calls the cloud client that performs authenti-
cation and sends the data to the cloud service, as figure 6.4 illustrates.

 The client needs to configure the batch service before its use. Because the batch
service uses a cloud client, we also need to pass the client’s configuration to the cloud
client. The configuration needs to be provided by the end user to construct the
underlying CloudServiceClient used by the BatchService.

 The batch service configuration is quite simple, as it contains only one setting—the
batch size—which is specific to the batch service. Listing 6.11 shows this configuration.

Extracts the
authentication
config section

If the strategy is
USERNAME_PASSWORD_
STRATEGY we create

Username-
Password-

AuthStrategy. A similar logic applies
to TOKEN_STRATEGY.

135Directly exposing settings of a dependent library
public class BatchServiceConfiguration {
 public final int batchSize;

 public BatchServiceConfiguration(int batchSize) {
 this.batchSize = batchSize;
 }

 public int getBatchSize() {
 return batchSize;
 }
}

The batch service uses its configuration to limit the number of aggregated events.
When the data in a batch has enough elements (equals to or exceeds the batchSize
parameter), it uses the cloud client to send the actual data. BatchService operates on
the Request class we saw in the previous section. Let’s look at the logic for Batch-
Service in the following listing.

public class BatchService {
 private final BatchServiceConfiguration batchServiceConfiguration;
 private final CloudServiceClient cloudServiceClient;
 private final List<String> batch = new ArrayList<>();

 public BatchService(
 BatchServiceConfiguration batchServiceConfiguration, CloudServiceClient

cloudServiceClient) {
 this.batchServiceConfiguration = batchServiceConfiguration;
 this.cloudServiceClient = cloudServiceClient;
 }

 public void loadDataWithBatch(Request request) {
 batch.addAll(request.getData());

Listing 6.11 Implementing BatchServiceConfiguration

Listing 6.12 Viewing the BatchService logic

Cloud

Sends request

Client

Sends dataCloud service client

Batch service

Batch of incoming requests

When batch is full, calls

Figure 6.4 Batch service architecture for our cloud client

Buffers the
data in the list

Uses an injected
CloudServiceClient

136 CHAPTER 6 Simplicity vs. cost of maintenance for your API

h
 if (batch.size() >=
 ➥ batchServiceConfiguration.getBatchSize()) {
 cloudServiceClient.loadData(withBatchData(request));
 }
 }

 private Request withBatchData(Request request) {
 return new Request(request.getToken(), request.getUsername(),

request.getPassword(), batch);
 }
}

It’s important to note that the batch service uses the cloud client directly when execut-
ing these requests. Injecting CloudServiceClient in the constructor is our integra-
tion point between batch tool and cloud client.

6.2.1 Configuring the batch tool

The most important decision regarding the UX and the maintenance of the batch ser-
vice is how we provide settings to the underlying cloud client. We’ve decided that the
end user of the batch tool needs to provide a configuration as a YAML file. The auth
section of this file is passed directly to the underlying cloud client configuration
loader, as figure 6.5 shows.

Encapsulating the CloudServiceClient
In this example, we operate on the CloudServiceClient interface that is generic in
the context of this particular cloud library. However, if we want to have higher flexibil-
ity, we may consider creating a separate class that encapsulates the concrete
CloudServiceClient. By doing so, it will be easier to switch the underlying libraries
without impacting the caller’s code (because this code will use the cloud client via
the abstraction layer).

When the batc
size equals or
exceeds the
batch size . . .

. . . it uses the
cloud service
and loads the
data.

Batch-service

Cloud client

Uses it directly

Batch-service-config.yaml

Auth:

Strategy: username-password
Username: u
Password: p

Batch:

Size: 100.

Figure 6.5 Passing the cloud client settings directly from the YAML config file

137Directly exposing settings of a dependent library
It is important to note that the auth section of the batch service configuration must
have the same structure as the cloud-configured YAML. This also means we are expos-
ing the internal details of the cloud client configuration to the batch service clients.
Because of this approach, constructing the cloud configuration does not require any
maintenance from our side when we implement this mechanism. The client of batch
service provides the configuration, and the batch service passes it as is.

 The batch service uses the batch section of the configuration. The batch service
builder takes the YAML file as an argument and loads the file. Next, it extracts the
batch section and uses it to construct the BatchServiceConfiguration. Finally, it
passes the whole YAML file to the cloud client service builder. As you may remember
from the previous section, the CloudServiceClientBuilder extracts the auth section
from the file and constructs the client. The following listing shows this procedure.

public class BatchServiceBuilder {
 public BatchService create(Path configFilePath) {
 try {

 Map<String, Map<String, Object>> config =
 mapper.readValue(configFilePath.toFile(), yamlConfigType);
 Map<String, Object> batchConfig = config.get("batch");
 BatchServiceConfiguration batchServiceConfiguration =
 new BatchServiceConfiguration
 ➥ ((Integer) batchConfig.get("size"));

 CloudServiceClient cloudServiceClient =
 new CloudServiceClientBuilder()
 ➥ .create(configFilePath);
 return new BatchService(batchServiceConfiguration, cloudServiceClient);
 } catch (IOException e) {
 throw new UncheckedIOException("Problem when loading file from: " +

configFilePath, e);
 }
 }
}

As long as the configuration structure passed to the cloud client builder is correct, the
batch service doesn’t need to do any specific processing. If there is a problem, an
exception is thrown.

 Let’s analyze how creating the YAML configuration format and embedding the
cloud client library structure in it impacts our software. The first issue is that we are
introducing tight coupling between our service and the underlying cloud client
library by passing the path to the config file directly to the cloud configuration loader.
It expects the auth section in this file. In case the section is missing, an exception is
thrown. If we want to migrate to a different cloud library in the future, it will be diffi-
cult. The auth section that is exposed by our tool becomes a contract (API). If this
tool is used publicly, our software systems’ clients will need to provide the YAML file

Listing 6.13 Passing a YAML file to the cloud client

Extracts the
batch section of
the configuration

Uses BatchConfig
to construct
BatchServiceConfiguration

Passes
the YAML

file path (raw
configuration)
to the builder

138 CHAPTER 6 Simplicity vs. cost of maintenance for your API
with the authentication configuration in it. We cannot remove or change the auth sec-
tion if it is no longer required or has a different format.

 The second issue with this approach manifests if the cloud client changes or depre-
cates and removes some configuration setting. We will discuss this problem in greater
detail later in this chapter.

 There are also advantages to this approach. If you are integrating with a down-
stream system that exposes tens or hundreds of settings, passing configurations
directly may be a good choice for you. It’s also important to note that the caller must
know the downstream system configuration format and use it in its code. Our use case
satisfies that requirement because the cloud client allows callers to pass the settings
directly. Also, the caller, in this case, knows the structure of the downstream settings: a
YAML file with an auth section. You don’t need to worry about mapping settings to
the proper structure, so there is no maintenance cost here.

 In the next section, we will create a streaming tool with a different approach to
configuration and the UX of its API. Settings from the underlying cloud client will not
be directly exposed.

6.3 A tool that is abstracting settings of
a dependent library
Let’s now focus on the second service that takes a different approach for configuring
the dependent cloud client. The streaming service that we build in this section now
exposes only the settings it owns. It uses those settings to construct a cloud client.
However, it abstracts the creation and configuration of the cloud client from the user.
The end users of the streaming tool will know nothing about the cloud client used
underneath. The following listing provides the configuration specific to streaming ser-
vice, which contains only one setting: maxTimeMs.

public class StreamingServiceConfiguration {
 private final int maxTimeMs;

 public StreamingServiceConfiguration(int maxTimeMs) {
 this.maxTimeMs = maxTimeMs;
 }

 public int getMaxTimeMs() {
 return maxTimeMs;
 }
}

This value for maxTimeMs is used to track the time of the request in milliseconds. If the
time of the request exceeds that value, a warning is logged. In this case, the streaming
service does not batch requests because low latency of processing is critical. The
loadData() method uses a Request object (the previous batch service used the same
object). The total time of processing is calculated by subtracting the time after cloud

Listing 6.14 Building the StreamingServiceConfiguration

139A tool that is abstracting settings of a dependent library
service load from the start time. Let’s look at this logic in the following listing, where
the code validates if the total time is greater than the maximum time from the stream-
ing tool configuration object.

public void loadData(Request request) {
 long start = System.currentTimeMillis();
 cloudServiceClient.loadData(request);
 long totalTime = System.currentTimeMillis() - start;
 if (totalTime > streamingServiceConfiguration.getMaxTimeMs()) {
 logger.warn(
 "Time for a streaming request exceeded! It is equal to: {}, but

should be less than: {}",
 totalTime,
 streamingServiceConfiguration.getMaxTimeMs());
 }
}

Let’s now look at the mechanism for loading the streaming configuration. We’ll also
see how it abstracts away the cloud service configuration.

6.3.1 Configuring the streaming tool

The streaming service also uses a YAML file for its configuration. The most signifi-
cant difference between its configuration format and the batch tool configuration
from section 6.2 is that the streaming service exposes all the settings in the streaming
section. It is also important to note that the streaming tool supports only username/
password authentication. The following listing shows the pertinent section in the
YAML file.

streaming:
 username: u
 password: p
 maxTimeMs: 100

The dedicated streaming section defines all the settings for the streaming tool, which
owns the configuration. Consequently, our clients know nothing about the underlying
cloud service client. In other words, the configuration of the cloud service is
abstracted away from the user. The streaming section defines a clear contract owned
by the streaming tool. It looks simpler from the UX perspective, but it requires some
maintenance to map the settings from the streaming format to the cloud client.

 Let’s now take a look at the streaming service creation logic in listing 6.17. All the
settings related to the streaming tool are extracted from the streaming section: it
pulls the maxTimeMs setting and constructs the StreamingServiceConfiguration.
The most important part of the code happens when we are constructing a cloud cli-
ent. The internal cloud library and its UsernamePasswordAuthStrategy are abstracted

Listing 6.15 Streaming tool logic

Listing 6.16 The streaming service configuration

140 CHAPTER 6 Simplicity vs. cost of maintenance for your API

p

away from the user. The client of StreamingService does not know anything about its
configuration mechanism. Additionally, the username and password settings construct
the UsernamePasswordAuthStrategy. Next, this strategy creates a cloud service client
using its programmatic configuration API.

public StreamingService create(Path configFilePath) {
 try {

 Map<String, Map<String, Object>> config =
 mapper.readValue(configFilePath.toFile(), yamlConfigType);
 Map<String, Object> streamingConfig =
 ➥ config.get("streaming");

 StreamingServiceConfiguration streamingServiceConfiguration =
 new StreamingServiceConfiguration((Integer)
 ➥ streamingConfig.get("maxTimeMs"));

 CloudServiceConfiguration cloudServiceConfiguration =
 new CloudServiceConfiguration(
 new UsernamePasswordAuthStrategy(
 (String) streamingConfig.get("username"),
 (String) streamingConfig.get("password")));
 return new StreamingService(
 streamingServiceConfiguration,
 new CloudServiceClientBuilder().create(cloudServiceConfiguration));
 } catch (IOException e) {
 throw new UncheckedIOException
 ➥ ("Problem when loading file from: " + configFilePath, e);
 }
}

It is important to note that a cloud client’s construction requires some additional
work from our side. We need to map the settings exposed by the streaming service
to a cloud configuration. Once the system is released, we need to maintain this map-
ping. Therefore, it involves an additional maintenance cost. On the other hand, the
UX of our streaming tool configuration is better off because callers need to focus
only on a dedicated configuration section. The cloud client used by this tool is
abstracted away.

 Let’s assume that you are integrating with a downstream system that exposes tens
or hundreds of settings. What is important is that we choose a configuration option
that abstracts those settings away. Due to this, you need to map every downstream
library setting to the setting in your tool. This may mean a substantial amount of code
that only needs to rewrite those settings. This effect will be an order of magnitude
higher if you have N services or tools that use a downstream system that exposes many
of those settings. In such a scenario, the maintenance cost is nonnegligible.

 In the next section, we will analyze both configurations when the new setting is
added to the cloud client from the perspective of UX and cost of maintenance for

Listing 6.17 Constructing the streaming service

This section is extracted and
owned by the streaming service.

Uses maxTimeMs to
create its configuration

Uses the
username and
password to
construct the
configuration

The builder
with a

rogrammatic
API that

creates a
cloud client

141Adding new setting for the cloud client library
both tools. You’ll see that we pay the maintenance cost upfront. Fortunately, this cost
will give us some benefit in the long run. Let’s analyze these scenarios now.

6.4 Adding new setting for the cloud client library
Let’s assume that the client service is modified and exposes a new setting responsible
for timeouts. This new setting will have a dedicated timeouts section in the YAML
configuration, as the following listing shows.

auth:
 strategy: username-password
 username: user
 password: pass

timeouts:
 connection: 1000

We will also add this new setting to the CloudServiceConfiguration. The following
listing shows this implementation.

public class CloudServiceConfiguration {
 private final AuthStrategy authStrategy;
 private final Integer connectionTimeout;
 // constructors, hashCode, equals, getters, and setters omitted
}

The builder of the cloud client extracts the timeouts section from the YAML configu-
ration and uses it to construct the client. This next listing shows this part of our pro-
cess for adding a new cloud client library setting.

 Map<String, Object> timeouts = config.get("timeouts");
 // ...
 return new DefaultCloudServiceClient(
 new CloudServiceConfiguration(authStrategy, (Integer)

timeouts.get("connection")));

From the perspective of both tools (streaming and batch), this is an important change
because it is not backward compatible. Conversely, if the cloud client provides a
default when the setting is not set, the change will be backward compatible. However,
if the default and provided value are not explicitly set, the new version of the cloud cli-
ent cannot be constructed. Both tools need to provide the new timeout value to be
able to construct the cloud client. Let’s first analyze how this change impacts the
batch service that passes the settings directly to the cloud client builder.

Listing 6.18 Adding a new timeout setting

Listing 6.19 A new timeout setting for CloudServiceConfiguration

Listing 6.20 Extracting timeout in the CloudServiceClientBuilder

142 CHAPTER 6 Simplicity vs. cost of maintenance for your API
6.4.1 Adding a new setting to the batch tool

The batch tool passes the settings directly from the caller to the cloud client builder.
This means that the client needs to provide the new timeouts section to run the batch
tool. The following listing shows how the new YAML batch configuration could look.

auth:
 strategy: username-password
 username: u
 password: p

timeouts:
 connection: 1000
batch:
 size: 100

If we want our batch tool to construct the cloud client with new configuration settings,
all clients need to add this section. If they do not add it, the cloud client and the con-
struction of the batch service tool that uses it will fail.

 There is one crucial remark regarding adding this new setting. As you may recall
from section 6.2, the BatchServiceBuilder passes the YAML file directly to the cloud
client. Because of that, there is no need to change any code for handling the new
timeout parameter for our batch tool. The raw configuration is passed to the underly-
ing cloud client library, as figure 6.6 illustrates.

We can conclude that the UX of the solution did not change substantially. The clients
still need to scrutinize about the underlying cloud client construction and add the

Listing 6.21 Adding a new timeouts section

Adds the new
configuration
section

Batch-service

Cloud client

Uses it directly

Batch-service-config.yaml

Auth:

Strategy: username-password
Username: u
Password: p

Timeouts:

Connection: 1000

Batch:

Size: 100.

Figure 6.6 Passing cloud client settings directly with a new timeouts section

143Adding new setting for the cloud client library
batch tool’s configuration in sync with it. The batch tool’s maintenance cost is close to
zero because we don’t need to do any code changes to support the new setting. The
raw file is passed, and the CloudServiceClientBuilder extracts both the auth and
timeouts sections from the YAML file.

 If you anticipate changes to happen quite often and that they will be additive, you
can see that the presented approach in this section works well. Moreover, let’s assume
you have multiple services that integrate with the same downstream cloud client. This
means when you add a new setting, you don’t need to change anything in those ser-
vices. It will be the client’s responsibility to take care of new settings and provide those
with your tools. The maintenance burden is propagated to your tools’ callers, so we
can argue that it is a nonideal UX in this context. Let’s see how the streaming tool can
handle the addition of a new cloud client setting.

6.4.2 Adding a new setting to the streaming tool

The streaming tool takes a different approach for UX and the configuration of the
underlying library: it owns all its settings and exposes them under the dedicated
streaming section. To be able to pass the new connection timeout setting, we need
to add this section to the streaming tool’s YAML configuration, as the following list-
ing shows.

streaming:
 username: u
 password: p
 maxTimeMs: 100
connectionTimeout: 1000

Because the streaming tool constructs the cloud client programmatically, the code
responsible for it needs to change. For this, the connectionTimeout is extracted from
the YAML file and passed to the CloudServiceConfiguration, as the following listing
shows.

new CloudServiceConfiguration(
 new UsernamePasswordAuthStrategy(
 (String) streamingConfig.get("username"),
 (String) streamingConfig.get("password")),
 (Integer) streamingConfig.get("connectionTimeout"));

There is a maintenance cost associated with every new setting added to the cloud cli-
ent. In real-world systems, adding a configuration may be more common, and such
changes may be required often. The more settings added, the higher the mainte-
nance cost associated with it. Let’s analyze this configuration mechanism in this sce-
nario when you anticipate changes that are happening quite often and are additive.

Listing 6.22 New timeout setting for the streaming configuration

Listing 6.23 New timeout setting in the StreamingServiceBuilder

Exposes the
new setting as
connectionTimeout

144 CHAPTER 6 Simplicity vs. cost of maintenance for your API
 Every new setting of the underlying cloud client needs to be mapped programmat-
ically. If you have multiple services using this library, the code in all of them needs to
change. Remember, with every code change, there is an associated maintenance cost.
You also need to cover this change with end-to-end tests but also execute some high-
level integration or end-to-end tests. Once the new code change’s quality is good
enough, you need to deploy your changed application to production.

 This procedure needs to be repeated for every service or tool that uses the down-
stream client library! The more services that are using the cloud client and that add a
new setting, the more work you have. The maintenance cost of supporting the encapsula-
tion is quite high. At this point, you may not see the benefit of this additional complexity.

 In the next section, I will demonstrate a different example that allows you to justify
the maintenance cost associated with this approach. First, let’s sum up our findings of
UX and the cost of maintenance of both solutions when a new setting is added.

6.4.3 Comparing both solutions for UX friendliness and maintainability

We saw that adding new settings to the underlying library caused changes in both
tool’s configuration mechanisms and that

 The batch service propagates changes to the end user.
 The streaming service tries to abstract away that it uses a cloud service.

With the batch service, the client’s responsibility is to provide a new dedicated section
with a setting that is expected by the cloud client. The most significant advantage of
this solution is that it does not require any maintenance cost on our side. We don’t
need to change the code because the configuration file is passed directly to the cloud
client builder. However, you need to remember that the cost of maintenance is propa-
gated to the end user. All users of our services and tools will need to adopt their con-
figuration according to the new downstream cloud client setting.

 Because the streaming service abstracts away its usage of the cloud service, it needs
to map the settings provided by the end users to the cloud client configuration. Add-
ing a new setting to the cloud client also requires adding the new setting to the
streaming service, which owns the new setting. The end user has no idea about the
underlying construction of the cloud service. This comes with a cost. Every new setting
of the downstream system needs to be exposed and mapped to the expected format
for the streaming service. Because of that, every setting requires a maintenance cost:
we need to change the code in the streaming service.

 Table 6.1 sums up these scenarios for us. It is important to note that this table pre-
sents UX and maintenance costs from one service’s perspective.

Table 6.1 Adding a new setting to client and how it impacts both tools

Tool name Maintenance cost UX

Batch tool No cost User needs to add a new setting

Streaming tool Growing cost User needs to add a new setting

145Deprecating/removing a setting in the cloud client library
If you are using the cloud client from N services, you need to multiply these costs by
the N factor. The maintenance cost grows for every piece of software using the cloud
client and encapsulating the settings.

 In the next section, we will see a scenario in which the streaming tool’s abstraction
is worth the additional costs. The cloud client will deprecate and remove the settings.

6.5 Deprecating/removing a setting
in the cloud client library
In this section, we will analyze a different scenario in which the cloud client setting is
deprecated and needs to be removed. As you may remember, the cloud client uses the
authentication strategy when connecting to a cloud service. Let’s assume that, after
some time, we see that the current UsernamePasswordAuthStrategy is not safe because
it keeps the plain text password in the YAML configuration and in memory. This is
dangerous from a security perspective. It allows for the possibility of a malicious attacker
to steal the password(s) used in our code.

 We decide to develop a new UsernamePasswordHashedAuthStrategy that uses the
hashed version of the password when performing authentication. This will use the
SHA-256 algorithm from the hashing class (http://mng.bz/q2aA). When it performs
the request’s authentication, it compares hashed versions of the password. The follow-
ing listing shows the code for the new hashed authentication strategy.

public class UsernamePasswordHashedAuthStrategy implements AuthStrategy {
 private final String username;
 private final String passwordHash;
 public UsernamePasswordHashedAuthStrategy(String username, String

passwordHash) {
 this.username = username;
 this.passwordHash = passwordHash;
 }
 @Override
 public boolean authenticate(Request request) {
 if (request.getUsername() == null || request.getPassword() == null) {
 return false;
 }
 return request.getUsername().equals(username)
 && toHash(request.getPassword()).equals(passwordHash);
 }
 public static String toHash(String password) {
 return Hashing.sha256().hashString(password,

StandardCharsets.UTF_8).toString();
 }
}

The unique identifier of the new authentication strategy is username-password-
hashed, as the following listing shows. Clients of the cloud configuration should use

Listing 6.24 The new UsernamePasswordHashedAuthStrategy

Stores the password
in the hashed form

Performs
authentication on
the hashed
version of the
password

Uses the SHA-256
algorithm to hash
the password

http://mng.bz/q2aA

146 CHAPTER 6 Simplicity vs. cost of maintenance for your API

u

is
this new value instead of the old username-password that constructs the version with a
plain text password.

public class CloudServiceClientBuilder {
 private static final String USERNAME_PASSWORD_STRATEGY = "username-password";
 private static final String TOKEN_STRATEGY = "token";
 private static final String

➥ USERNAME_PASSWORD_HASHED_STRATEGY = "username-password-hashed";

 // ...
 public DefaultCloudServiceClient create(Path configFilePath) {
 // ...
 if (authConfig.get("strategy").equals(USERNAME_PASSWORD_HASHED_STRATEGY))

{
 authStrategy =
 new UsernamePasswordHashedAuthStrategy(
 (String) authConfig.get("username"), (String)

authConfig.get("password"));

 } else if (authConfig.get("strategy").equals(TOKEN_STRATEGY)) {
 authStrategy = new TokenAuthStrategy((String) authConfig.get("token"));
 } else if (authConfig.get("strategy").equals(USERNAME_PASSWORD_STRATEGY))

{
 throw new UnsupportedOperationException(
 "The " + USERNAME_PASSWORD_STRATEGY + " strategy is no longer

supported.");
 }
 return new DefaultCloudServiceClient(
 new CloudServiceConfiguration(authStrategy, (Integer)

timeouts.get("connection")));
 }
}

When the cloud service constructs the authentication strategy and the old username-
password strategy is specified, it throws an exception denoting that it is no longer sup-
ported. This means all callers need to migrate to the new strategy if they want to use
the cloud client. Let’s see how this change of behavior impacts the batch tool.

6.5.1 Removing a setting from the batch tool

As we know by now, the batch tool passes the client’s provided YAML file directly to
the cloud client. Up to this point, all of our clients used the username–password or
token strategies. Our batch service configuration will throw an exception to the client
if the client specifies a deprecated username–password strategy. Now, all clients need
to migrate to the new type if they want to use the batch tool. This substantially impacts
the UX of our solution.

 All clients configuring the batch tool will see the authentication problem of the
underlying cloud client. We can observe this behavior in a unit test that uses the

Listing 6.25 Prohibiting the old authentication strategy

Implements
the new
username-
password-
hashed
strategy

Constructs the
UsernamePassword-
HashedAuthStrategy

If the
sername-
password
 specified,
throws an
exception

147Deprecating/removing a setting in the cloud client library
batch-service-config-timeout.yaml file with a strategy equal to username-password.
The following listing shows the test.

@Test
public void shouldThrowIfUsingNotSupportedAuthStrategy() {
 // given
 Path path =
 Paths.get(
 Objects.requireNonNull(
 getClass().getClassLoader().getResource("batch-service-

config-timeout.yaml"))
 .getPath());

 // when
 assertThatThrownBy(() -> new BatchServiceBuilder().create(path))
 .isInstanceOf(UnsupportedOperationException.class)
 .hasMessageContaining("The username-password strategy is no longer

supported.");

}

All clients can now observe the UnsupportedOperationException. This means all
batch tool clients will need to migrate their YAML configuration to the new user-
name-password-hashed! The UX of such a solution is poor. We expose the internals of
a third-party library so that every change for this configuration will need to be adapted
in the client’s code.

 Let’s imagine a scenario in which multiple client tools use our batch service. We
publish a new batch service that prevents end users from using the username–password
strategy. Once the end users change their software to use the new batch service, they
cannot deploy it without changes to their YAML configuration. Every client that leaves
the authentication setting unchanged will get an exception at run time when using a
new version of the batch service. For backward compatibility and to reduce UX prob-
lems, we need to provide a hacky workaround.

 First, we will need to load the configuration file under the configFilePath. Then,
we will scan and locate the map entry for auth.strategy. Once we have that entry, we
will modify the configuration strategy by replacing username-password with username-
password-hashed. Next, we need to extract the plain text password and hash it manu-
ally, replacing the password map entry. The following listing shows the workaround.

// DON’T DO THIS
public BatchService create(Path configFilePath) {
 try {
 Map<String, Map<String, Object>> config =
 mapper.readValue(configFilePath.toFile(), yamlConfigType);
 Map<String, Object> batchConfig = config.get("batch");

Listing 6.26 Throwing an exception for unsupported auth strategy

Listing 6.27 BatchServiceBuilder hacky workaround

148 CHAPTER 6 Simplicity vs. cost of maintenance for your API

se

con
 BatchServiceConfiguration batchServiceConfiguration =
 new BatchServiceConfiguration((Integer) batchConfig.get("size"));

 Map<String, Object> authConfig = config.get("auth");
 if (authConfig.get("strategy").equals(USERNAME_PASSWORD_STRATEGY)) {
 authConfig.put("strategy",
 ➥ USERNAME_PASSWORD_HASHED_STRATEGY);
 }
 String password = (String) authConfig.get("password");
 String hashedPassword = toHash(password);
 authConfig.put("password", hashedPassword);
 Path tempFile = Files.createTempFile(null, null);
 Files.write(tempFile, mapper.writeValueAsBytes(config));

 CloudServiceClient cloudServiceClient = new
CloudServiceClientBuilder().create(tempFile);

 return new BatchService(batchServiceConfiguration, cloudServiceClient);
 } catch (IOException e) {
 throw new UncheckedIOException
 ➥ ("Problem when loading file from: " + configFilePath, e);
 }
}

Finally, we need to save a modified configuration to a new temporary file path and
pass that file location to the CloudServiceClientBuilder. Such a solution is awful: it
tweaks the original file, changes the configuration value without the user’s knowledge,
and may introduce bugs that are hard to debug. Besides that, we need to create a tem-
porary file every time the client is created.

 It is also important to note that the actual configuration setting names are leaking
from the CloudServiceClientBuilder to the new BatchServiceBuilder hacky work-
around, which introduces tight coupling between our components. The service
builder that is only responsible for loading configuration sections from the YAML file
suddenly needs to know the exact cloud client configuration structure and alter it.

 The streaming service takes a different approach to the configuration. Let’s see
how the settings removal is handled by the streaming tool in the next section.

6.5.2 Removing a setting from the streaming tool

With the streaming tool, the internal authentication strategy used by the cloud library
is abstracted away from the user. The clients of the streaming tool do not know any-
thing about its configuration mechanism. We can transparently change the authenti-
cation strategy without user knowledge and without breaking compatibility. We can
migrate without affecting our users, and the YAML configuration of the streaming ser-
vice will not change at all.

 In listing 6.28, we use the same username and password as passed before, passing
the password as plain text. The StreamingServiceBuilder constructs the Username-
PasswordHashedAuthStrategy, then passes the hashed version of the password to it.

The first
place where

the cloud
rvice config
abstraction

leaks Overriding a setting may lead
to hard-to-debug problems!

Another
config leak

Overrides
another
setting

Creates a
temporary
file

Saves the
modified

figuration

Passes the altered config file (not
the one passed by the caller)

149Deprecating/removing a setting in the cloud client library
CloudServiceConfiguration cloudServiceConfiguration =
 new CloudServiceConfiguration(
 new UsernamePasswordHashedAuthStrategy(
 (String) streamingConfig.get("username"),
 toHash((String) streamingConfig.get("password"))),
 (Integer) streamingConfig.get("connectionTimeout"));

This change of behavior is hidden from streaming tool users. The UX provided by this
solution is better because it does not require a change in the configuration of the
streaming service. The end users of the streaming service can easily use the new ver-
sion of it without changing anything on their side.

 The streaming service can change the cloud client library it is using without expos-
ing this to the end users. If the team that is developing a streaming service decides to
change the cloud client to a different library, it will be easy to do. The mapping of set-
tings is already in place, so in that situation, only the mapping layer needs to be
adapted to a new configuration format.

 Mapping the old authentication strategy to the new UsernamePasswordHashed-
AuthStrategy without the end user’s knowledge is a good short-term solution. However,
in the long term, we should migrate to the new UsernamePasswordHashedAuthStrategy
because it provides better security for our users.

 The migration step needs to be implemented at some point, but because the stream-
ing tool encapsulates the underlying cloud configuration, the migration process is
simplified. For example, we can introduce a new configuration property that carries
the hashed password. If the end user provides the hashed password, we don’t need to
do a manual mapping from a plain text password to the hashed one. Instead of that,
we can use the new UsernamePasswordHashedAuthStrategy.

 While the migration is in progress, we should support both ways of providing pass-
words. It will allow the streaming tool clients to migrate at their peace without worry-
ing about breaking the underlying cloud client’s changes.

 Let’s now compare the UX and the maintenance cost of both solutions. The next
section presents this comparison.

6.5.3 Comparing both solutions for UX friendliness and maintainability

We can conclude that the UX and maintenance cost when the downstream system
removes or deprecates the setting differs. Let’s look at the differences.

 First, the streaming tool owns the whole configuration, and it can handle the
migration of any downstream component more easily. If we want to remove the cloud
client entirely and replace it with a different one, it will be easier with the streaming
service.

 The batch service passing the settings directly from its clients to the cloud client is
a terrible situation in this scenario. Removing the dependent setting means all clients
simultaneously need to migrate to the new value. We cannot hide it from them.

Listing 6.28 Abstracting away the construction of the hashed strategy

Constructs the hashed
strategy instead of
plain text

Hashes the
password before
passing it to the
hashed strategy

150 CHAPTER 6 Simplicity vs. cost of maintenance for your API
Additionally, the UX of our tool is brittle. If we wanted to handle it gracefully, we
would need to create a very hacky workaround that is error prone.

 The additional configuration abstraction introduced in the streaming service gives
us the possibility to evolve our tools in a UX friendly way. Let’s conclude this discus-
sion with table 6.2, which provides a comparison of the two tools:

The decision regarding the maintenance cost is associated with the risk of breaking
and nonbackward compatible changes of the downstream component. If the down-
stream cloud client library evolves in a nonbackward compatible way, the services that
are using the client would need to abstract their configuration mechanism. Suppose
you are developing a service, and you impact the lifecycle of the underlying library. In
that case, you may be able to reduce the number of nonbackward compatible changes.
You may even forbid such changes and evolve the downstream library without break-
ing changes. You may not need to pay additional maintenance costs associated with
abstracting away its configuration mechanism in such a case.

 Contrary to that, let’s assume you are using a downstream library that evolves in an
unpredictable way, and you don’t influence this library’s life cycle. This means non-
backward compatible changes are possible, and you should guard against those. In
such a scenario, the additional maintenance cost may be worth the effort. You will cre-
ate a much better UX tool; one that is easy to use by your clients.

 In this chapter, we learned about different ways of designing our tools. We started
by creating a cloud client library that was later used by two tools: streaming and batch.
The former took the indirect approach to configuration. It abstracted away from the
underlying library, paying some maintenance cost when the new setting was added.
The latter used the cloud client config API directly without the abstraction layer. We
were able to evolve the batch tool without any maintenance cost when the new setting
of the underlying library was added.

 The situation changed drastically when the downstream setting was deprecated
and removed. The abstraction introduced in the streaming service allowed us to keep
the excellent UX for our users with a small maintenance cost. However, the batch ser-
vice was not able to address this change, while keeping the good UX. The little main-
tenance cost improved our UX in this situation. In the next chapter, we will learn
about tradeoffs and mistakes when working with the date and time APIs.

Table 6.2 Removing or deprecating a setting from the client and how it impacts both tools

Tool name UX Maintenance cost

Batch tool Low; users greatly impacted High/nonfeasible

Streaming tool High; users not impacted Very low

151Summary
Summary
 Technical decisions can impact UX.
 Adding the new setting to a downstream library can be handled with zero main-

tenance cost.
 Additional abstraction can allow us to evolve our tools without breaking com-

patibility. However, it adds a maintenance cost.
 With additional abstraction, each change if the underlying component results

in additional work in our code.
 If our product is public-facing, and the UX of our users is important, it is wise

not to propagate internal details of libraries we use in our code.

Working effectively
with date and time data
Dates and times occur very naturally in almost all applications, even if it’s only in
the timestamp of the application’s log messages. Unfortunately, they often cause
significant problems, either with overcomplicated code or bugs that might only be
seen for two hours per year or only by users in one remote corner of the planet. It’s
all too easy to dismiss such bugs, but with the right set of tools you can avoid them.

This chapter covers
 Thinking carefully about date and time

information in specific concepts

 Limiting the scope and documenting precise
product requirements

 Choosing the best libraries to use in your date
and time code

 Using date and time concepts consistently
throughout your code and ensuring date and
time code is testable

 Choosing appropriate text formats for date
and time data

 Considering corner cases related to calendar
arithmetic and time zones
152

153Concepts in date and time information
 The tools here come in two distinct flavors:

 Concepts—Help you think and write clearly about the information you’re work-
ing with

 Libraries—Help you turn those concepts into code

Sometimes, the libraries you use will be part of the underlying platform (e.g., using
the java.time libraries introduced in Java 8), or they may be third party libraries you
need to install explicitly (e.g., the Noda Time library for .NET, to pick an example
entirely at random [Well, maybe not quite so random. Jon is the primary author of
Noda Time.]).

 Depending on which platform and libraries you’re using, there may not be a 1:1
mapping between the concepts we introduce in this chapter and the types you’ll use
to represent them. That’s okay. It makes life slightly harder, but the concepts can still
be applied to your project; you’ll just need to be more careful about documenting
your intent, whether that’s through comments, naming, documentation, or a mixture
of all three.

 As well as talking about the concepts and how your appli-
cation code can put them into practice, this chapter will give
you some guidance on how to test your date- or time-related
code effectively too. By the end of the chapter, you’ll be in a
position to design and implement date and time logic care-
fully as well as confidently.

 To try to make everything concrete, we’ll use an online
shopping scenario. Figure 7.1 shows a product requirement
as it might initially be presented to the development team.

 As we go through the chapter, we’ll see how this require-
ment should be transformed into one that is much more
detailed with clearly testable acceptance criteria. We’ll then implement the require-
ment and write the corresponding tests. We’ll start off looking at the concepts, hardly
mentioning code at all.

7.1 Concepts in date and time information
As with so many topics, you can always dig deeper into date and time, finding more
and more esoteric examples of odd behavior. If you keep digging, you may well never
get back to the surface. Some platforms and libraries err in the opposite direction, try-
ing to pretend the world is so simple that they miss really important situations. We’ve
tailored the concepts provided in this section to achieve a happy medium: they’re
detailed enough to cover most business applications but without going so deep that
the chapter becomes an entire book.

NOTE This does mean that if you work in particularly niche areas you’ll need
to look elsewhere for inspiration, but even then, the concepts here may
well be enough for most of your application. If you’re building GPS devices,

Customers

can return

items within

3 months

Figure 7.1 A high-level
requirement for an online
shopping site

154 CHAPTER 7 Working effectively with date and time data
representing data in ancient history, or writing a Network Time Protocol
(NTP) client, the concepts here may well be enough for most of your applica-
tion. Keep the niche and fiddly aspects as confined as you can.

It also means that if you understand leap seconds intimately, you may object
to some of the hand-waving here. I do empathize, but this is one of those
areas where absolute accuracy would get in the way of clarity.

Where concepts are represented directly in the java.time and Noda Time libraries, the
corresponding types will be listed, so you can experiment with them further, should
you wish to. Let’s start with some basic concepts: an instant in time, an epoch, and
a duration.

7.1.1 Machine time: Instants, epochs, and durations

How humans handle date and time information is very culture specific. It’s probably
the area of software engineering that is most heavily influenced by religion, for exam-
ple. While it’s important to understand that cultural aspect, it’s also useful to try to
remove it from the equation where possible. That’s why the first concepts we’ll look at
are the purer ones, which don’t include any of the mess that humans tend to bring
to software.

INSTANTS

Type in java.time: java.time.Instant. Type in Noda Time: NodaTime.Instant.
 An instant is a universal timestamp. Two people anywhere in the world (or

beyond!) can agree on what now means as an instant. They might look at their watches
and see different local times due to time zones or disagree about which month they’re
in due to cultural differences, but they can still agree on an instant. You can think of
an instant as a sort of machine time that doesn’t care about puny human concepts, such
as days or years.

 You can think of instants as being plotted on a timeline that doesn’t have any sub-
divisions. See figure 7.2 for an example of this concept.

Even instants would become really complex, or even impossible, if we needed to take
relativity and other tricky bits of physics into account. That’s where trying to achieve
absolute correctness with the physical universe would be a mistake in almost all applications.

Now

Time

10 seconds
ago

5 seconds
from now

Figure 7.2 A timeline
of instants without any
subdivisions

155Concepts in date and time information
 Instants are the natural conceptual type to use when considering when something
happened—for example, when a database transaction is committed, or when a log
entry is created. You may be wondering how instants should be represented internally.
While that’s an implementation detail, it’s still a useful one to consider, and it requires
a new concept.

EPOCHS

The timeline shown in figure 7.2 doesn’t have any numbers on the axis; the points on
the line are just relative to each other. The typical solution is to agree on an artificial
zero point, known as an epoch, and measure everything from there. Let’s add an epoch
to the existing example, where the epoch was 15 seconds before now. At this point we
can represent each instant as a number of seconds since the epoch. See figure 7.3 for
a graphical representation of this, expanding figure 7.2 by adding an epoch and the
relative durations from it.

It’s important that everyone using the same representation uses the same epoch, so in
some ways we’ve just moved the problem a little. We still need to agree on one instant
in time, but then, we can represent every instant.

 The epoch that most systems use is the Unix epoch, which is the instant that
occurred at midnight at the start of January 1, 1970, in UTC. We haven’t discussed
UTC, months, or years yet; one of the problems inherent in talking about date and
time is that the concepts can feel cyclical.

 That’s not the only commonly-used epoch, however. The .NET epoch is midnight
at the start of January 1st, AD 1, although that’s AD 1 in a proleptic Gregorian calen-
dar, which refers to even more complexity we haven’t talked about yet.

 Excel and Microsoft’s COM representation use epochs around the start of 1900,
although those epochs become harder to discuss due to bugs in software that treats
1900 as a leap year.

 In a well-encapsulated date and time library, you shouldn’t need to know which
epoch is used internally, although many libraries provide functions to convert between
the library representation and, for example, a number of seconds since the Unix
epoch. For this reason, you usually won’t even see a type encapsulating the concept of
an epoch in date and time libraries.

Epoch
(= 0 s)t

Now
(= 5 s)t 1

Time

10 seconds ago
(= 5 s)t

5 seconds
from now
(= 20 s)t

Figure 7.3 A timeline
anchored to an epoch

156 CHAPTER 7 Working effectively with date and time data
 In the examples so far we’ve only considered amounts of time since the epoch in
terms of seconds, but of course, in real life we often want far more fine-grained mea-
sures of time. Rather than always assuming a particular unit, it’s useful to encapsulate
the concept of an amount of elapsed time as a duration.

DURATIONS

Type in java.time: java.time.Duration. Type in Noda Time: NodaTime.Duration.
 A duration is a measure of elapsed time, rather than a point in time. If you measure

the difference between two points on the timeline, that’s a duration. If you start a
stopwatch, the value shown is a duration. Durations can be negative as well as positive
(e.g., an instant that occurs before the epoch might be represented internally with a
negative duration). Logically, the following operations are available with instants
and durations:

 Instant – Instant => Duration
 Duration + Duration => Duration
 Instant + Duration => Instant
 Instant – Duration => Instant

Figure 7.4 shows these graphically. In particular,

 The result of now – x is a duration of 10 seconds.
 The result of 10 seconds + 5 seconds is a duration of 15 seconds.
 We can add or subtract durations to get 10 seconds before now or 5 seconds

from now.

The internal representation of a duration typically has a limit in terms of precision.
Common precisions include milliseconds; microseconds; and nanoseconds, or ticks—
the last of which being specific to Windows or .NET—where a tick is 100 ns.

 Importantly, a duration is always absolutely fixed in terms of the elapsed time it
measures. So while 1 second, 5 microseconds, and 3 hours are all valid durations, but 2
months isn’t because months vary in length. Whether 1 day is a valid duration or not
depends on how you understand 1 day. If you think of it as the elapsed time between mid-
night one day and midnight the next day, then it’s not because that comes into time zone

Epoch Now

d1 = 10 s d2 = 5 s

Time

x = now – d1 y = now + d2

Figure 7.4 Instant and
duration arithmetic on a
timeline

157Concepts in date and time information
territory, where a day could be 23 hours or 25 hours long. However, if you think of 1
day as a synonym for 24 hours, then it is a valid duration.

NOTE If it helps, you can think of an instant as being like a point in geometry
and a duration as a vector. If you look at the operations available between
instants and durations, they all map to point and vector operations.

Some libraries in the past have avoided encapsulating the concept of a duration,
instead keeping numbers and units separately. That leads to function signatures like
this (from java.util.concurrent.locks.Lock):

boolean tryLock(long time, TimeUnit unit)

While there are cases where this is useful, it generally becomes much more awkward
than having a Duration type you can use everywhere the concept of an elapsed time
is relevant.

 While instants and durations are the most important concepts in machine time
(with epochs as a sort of background concept), libraries often provide additional types
for convenience. The most common of these is an interval, which just encapsulates a
pair of instants: a start and an end. Different libraries take different approaches about
whether intervals can be open-ended (without a start instant or without an end
instant) and whether the start instant can be later than the end instant (a sort of nega-
tive interval). It’s worth being aware of what’s available within the library you’re using,
but we won’t go into more detail here, as it’s not a fundamental concept in the same
way as instant and duration.

 Machine time is useful in several situations, but it’s extremely unfriendly for end
users, and even developers, if you want to look at the information. If you’re reading a
log file, which would you rather see: 1605255526 or 2020-11-13T08:19:46Z? Comput-
ing often gets a lot more complicated when humans get involved, and that’s particu-
larly true in the area of date and time information. Let’s look at how humans break
time up into different concepts.

7.1.2 Civil time: Calendar systems, dates, times, and periods

If you’ve ever been stung by time zone bugs, you may have been surprised to see the
absence of time zones in the list of concepts we’re describing in this section. Don’t
worry, they’re coming—just not yet. First, we can imagine a world without time zones
and discover it’s not the paradise of simplicity you might expect it to be. Let’s start
with a question you might expect to be straightforward: what day is it today?

CALENDAR SYSTEMS: BREAKING TIME INTO DAYS, MONTHS, AND YEARS

Types in java.time: java.time.chrono.Chronology, java.time.LocalDate and java
.time.chrono.ChronoLocalDate. Types in Noda Time: NodaTime.CalendarSystem and
NodaTime.LocalDate.

 One fairly universal aspect of human experience is the way we live on a day-to-day
basis. Every civilization has the concept of day and night, and we tend to work during

158 CHAPTER 7 Working effectively with date and time data
the day and sleep at night. It’s, therefore, entirely natural to break the timeline up
into days.

 Next, the seasons have been historically important to a large proportion of human-
ity, and even though fewer of us are farmers these days, the yearly cycle still has an
impact on our lives, so it’s also reasonable to break the timeline up into years.

 Months are more a matter of convenience, as a useful level of granularity. The
lunar phase cycle of about 29.5 days probably had an impact on civilizations designing
their calendar systems, but the phases of the moon have less impact on our lives than
days and years do.

 So a calendar system is a way of referring to a specific day in terms of a year, a month
within that year, and a day within that month. This would all be relatively straightfor-
ward if we had a single calendar system, but that’s not reality.

NOTE When we think about dates and times from a human perspective, with
days, months and years, this is known as civil time. It’s very culture-sensitive,
unlike the machine time we looked at in the previous section.

So to answer the question that led into this section: as I’m writing this, it’s November
20th, 2020, at least in the United Kingdom. That sounds like an unambiguous state-
ment, but even that has an implicit assumption in it because I could also accurately say
it’s November 7th, 2020. How can it be both dates at the same time? It’s November
20th, 2020 in the Gregorian calendar system and November 7th in the Julian calendar
system. It’s also the 4th day of Kislev in the year 5781 in the Hebrew calendar and the
4th day of Rabīʿ ath-Thānī 1442 in the Hijri calendar system. These are just a few of
the calendar systems used around the world. Table 7.1 shows a few days leading up to
today’s date in all of those calendar systems.

Different calendar systems can have very different traits. The Gregorian and Julian
calendar systems are almost identical; they only differ in terms of which years are

Table 7.1 A timeline of dates in four calendar systems

Gregorian Julian Hebrew Hijri

16 November 2020 3 November 2020 29 Heshvan 5781 30 Rabı̄ ʿ al-ʾAwwal 1442

17 November 2020 4 November 2020 1 Kislev 5781 1 Rabı̄ ʿ ath-Thānı̄ 1442

18 November 2020 5 November 2020 2 Kislev 5781 2 Rabı̄ ʿ ath-Thānı̄ 1442

19 November 2020 6 November 2020 3 Kislev 5781 3 Rabı̄ ʿ ath-Thānı̄ 1442

20 November 2020 7 November 2020 4 Kislev 5781 4 Rabı̄ ʿ ath-Thānı̄ 1442

21 November 2020 8 November 2020 5 Kislev 5781 5 Rabı̄ ʿ ath-Thānı̄ 1442

22 November 2020 9 November 2020 6 Kislev 5781 6 Rabı̄ ʿ ath-Thānı̄ 1442

159Concepts in date and time information
leap years. Compare that with the Hebrew calendar system, for which the length of
both Heshvan and Kislev vary year by year and where a leap year isn’t a year with an
extra day—it’s a year with an extra month. (The month of Adar is split into Adar I
and Adar II.) There are many calendar systems associated with Islam, which makes it
quite tricky to know exactly what someone means if they simply refer to the Islamic
calendar system.

 The calendar system that has surprised me most in terms of handling it in code is
the Badíʿ calendar used in the Bahá’í faith, in which each year has 19 months of 19
days long and four or five days that come between the 18th and 19th month. Those
days aren’t in a month at all.

 Not to mention that all of the above description includes an assumption that every-
one agrees on when one day ends and the next starts—that’s midnight, right? That’s
not correct for all calendar systems, historically. In Hebrew and Islamic calendars
(among others) the boundary between days is sunset—not midnight.

 I understand if all of this sounds terrifying, but we’ll see in section 7.2.1 that most
of the time you won’t need to worry about it too much. That’s the good news; the bad
news is that, even sticking to the Gregorian calendar system, you need to keep on your
toes. But once we’ve divided a timeline (again, ignoring time zones) into years,
months, and days, referring to the time of day is relatively straightforward.

TIME OF DAY

Type in java.time: java.time.LocalTime. Type in Noda Time: NodaTime.LocalTime.
 While there have been systems of timekeeping that choose different units of time,

you can probably ignore them for the most part. If you want to find out more, the
“Internet Time” article from Swatch (https://www.swatch.com/en-us/internet-time
.html) is a good starting point.

 Leaving that aside, and still ignoring time zones and leap seconds, we can probably
all agree to think of a day as 24 hours, each composed of 60 minutes, each composed
of 60 seconds. A second can be further subdivided into whatever units of precision
you’re interested in, such as milliseconds, microseconds, or nanoseconds.

 It’s almost as simple as that, leaving this as the shortest subsection in the chapter.
The only tricky aspect is whether 24:00 is useful to consider as time of day, represent-
ing the exclusive end of the day, as opposed to 00:00 representing the inclusive start of
the day. A value of 24:00 is not used very widely, but you may well come across situa-
tions where you need to take it into account.

 To return to somewhat trickier ground, let’s think about arithmetic within civil
time. In machine time, this was simple: you could always add durations together, add
or subtract a duration from an instant, and take the difference between two instants to
obtain another duration. Everything is fairly predictable. In civil time, arithmetic can
be surprising.

https://www.swatch.com/en-us/internet-time.html
https://www.swatch.com/en-us/internet-time.html
https://www.swatch.com/en-us/internet-time.html

160 CHAPTER 7 Working effectively with date and time data
PERIODS: ARITHMETIC IN CIVIL TIME

Type in java.time: java.time.Period. Type in Noda Time: NodaTime.Period.
 Normally, when we think of arithmetic, there’s a natural right answer. If you’re tak-

ing a math test as a child, and you’re asked to calculate 5 + 6, the right answer is defi-
nitely 11. You’ll either get a tick or a cross—not a maybe.

 Calendar arithmetic isn’t like that. At least not in the edge cases, and those edge
cases are sufficiently common that you can’t ignore them. If the question is “What is
the date one month later than May 31st 2021?” you could reasonably answer “June
30th, 2021” or “July 1st, 2021.” Figure 7.5 shows this ambiguity.

We can still define a useful concept, however: a period. A period is like a vector of val-
ues for different calendrical units, such as a certain number of years, a certain number
of months, etc. So 3 years, 1 month, and 2 days would be a period. Within date and time
libraries, there isn’t consensus about whether periods should stop at days or go down
to smaller units (e.g., hours, minutes, seconds, and subsecond units).

NOTE A duration always represents a fixed amount of elapsed time, regard-
less of context. Three seconds is always three seconds. The elapsed time within
a period can vary with the most obvious example being 1 month, which varies
based on which month it is (and in the case of February, which year).

Periods can have numbers that sound slightly nonsensical, too; it’s entirely reasonable
to have a period of 16 months or 35 days, even if those sound odd to start with. While
you might reasonably normalize 16 months to 1 year and 4 months (if you know you’re
dealing with the Gregorian calendar system), you definitely can’t normalize 35 days
into an equivalent period of 1 month and x days because the value of x would depend
on the length of the month when you happen to use the period.

 Arithmetic purely between periods is quite straightforward: adding 2 months and 3
days and 1 year and 2 days gives you 1 year, 2 months and 5 days, for example. It’s a matter
of opinion within date and time libraries whether subtraction always makes sense; a
difference between those two periods leading to a result of 1 year, –2 months, and –1 day

June 2021

31 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 1 2 3 4

July 2021

28 29 30 1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31 1

+ 1 month = ?

May 2021

26 27 28 29 30 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31 1 2 3 4 5 6
Figure 7.5 Adding a
month to a date doesn’t
always have an obvious
answer

161Concepts in date and time information
can work reasonably well in terms of the code, but there isn’t consensus on whether
it’s a meaningful and useful period. More generally, the question is whether periods
with mixed signs are a good idea, given that they’d rarely come up naturally.

 By and large, I’d expect the following operations to be available:

 Date + Period => Date
 Date – Period => Date
 Date – Date => Period (potentially specifying what units you want to use)
 Period + Period => Period
 Period – Period => Period

While purely-period arithmetic is simple, as soon as we introduce date and period
arithmetic (the first two operations listed above), we end up with potential problems.
Going back to the edge cases mentioned earlier, different libraries will give different
results for some calculations, and different humans would give different answers if you
ask them, too. This isn’t a matter of libraries being broken (although that’s always a
possibility), it’s a matter of there being no clear right answer. But whatever answer a
library gives to any given question, it’s likely that it will violate some simple expecta-
tions you might have. There are two particular aspects that surprise many people.

 Firstly, addition in calendar arithmetic isn’t associative. For example, suppose we
want to add the values of January 31, 2021, 1 month, and 2 months. We could bracket
that in two different ways:

 (January 31, 2021 + 1 month) + 2 months
 January 31, 2021 + (1 month + 2 months)

In both java.time and Noda Time, the result of the first operation is April 28th 2021,
whereas the result of the second is April 30th 2021. Here are the steps to get those results:

 (January 31, 2021 + 1 month) + 2 months
– January 31, 2021 + 1 month => February 28, 2021
– February 28, 2021 + 2 months => April 28, 2021

 January 31, 2021 + (1 month + 2 months)
– 1 month + 2 months => 3 months
– January 31, 2021 + 3 months => April 30, 2021

Other libraries might give different results, which may be consistent with each other
in this case but inconsistent in other situations.

 Secondly, addition of a date and a period isn’t reversible. In other words, for a date
d and a period p, you might like the result of (d + p) - p to always be d, but that’s not
going to work out. For example, whatever rules a library has, if you add a month to
January 31st and then subtract a month from the result, you’re not going to get back
to January 31st.

 If this all sounds like it wouldn’t matter in the real world, consider this hypotheti-
cal situation, shown in figure 7.6: There is an election on February 28, 2022, and

162 CHAPTER 7 Working effectively with date and time data
anyone who is 18 years old on election day is eligible to vote. Should someone born
on February 29, 2004 be able to vote in the election?

 While this example is hypothetical, such elections can happen. The United King-
dom held a general election on February 28, 1974, for example. It might be consid-
ered sensible to try to avoid creating such ambiguities, where you have control over
the dates in question.

 How would you express that requirement using arithmetic? Here are two options
which sound reasonable:

 “Subtract 18 years from election day. Anyone already born on that day can vote.”
 “Add 18 years to a person’s birth date. They can vote if the election is on that

day or later.”

Both java.time and Noda Time are consistent with each other, but give different
results for the different options. The first option would suggest that the person can’t
vote, because the person hadn’t been born on February 28th 2004. The second option
would suggest that the person can vote, because adding 18 years to February 29th 2004
returns February 28th 2022. A different library might decide to “roll over” the result
to March 1st 2022.

 I would personally expect that the second approach is the right one here, and that
the result from java.time and Noda Time is the one most likely to be correct in law.
But I don’t know whether every country in the world would phrase its laws that
way—and it’s entirely possible that some countries have laws which are ambiguous
or inconsistent.

 None of this is intended to act as scaremongering. Instead, it’s intended to encour-
age you to think really carefully any time you perform calendar arithmetic, and make
sure everyone involved has the same expectations.

 So far we’ve looked at machine time in terms of well-defined instants, and civil
time which splits a timeline into years, months and days, but we haven’t tried to map
machine time onto civil time. In order to do that, we need time zones.

February 2004

26 27 28 29 30 31 1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

February 2022

31 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 1 2 3 4 5 6

Vote!

Candidate 1

Candidate 2

Candidate 4

Candidate 5

Candidate 3 Figure 7.6 Real-world
implications of choices
between calendar
arithmetic options

163Concepts in date and time information
7.1.3 Time zones, UTC, and offsets from UTC

Types in java.time: java.time.ZoneId and java.time.ZoneOffset. Types in Noda
Time: NodaTime.DateTimeZone and NodaTime.Offset.

 You probably already know what time zones are, at least roughly. Unfortunately,
there are quite a few ways in which time zones are commonly misunderstood, which
we’ll try to correct here. For the sake of this section, I’ll pretend that the Gregorian
calendar is the only calendar system. It’s not actually hard to extend the description
of time zones here to other calendar systems, but it makes it more complicated
to explain.

 Humans generally like to treat time in a way in which 12 noon on any given day is
roughly when the sun is directly overhead. That happens at different instants in time
for different places around the world. Time zones are a way of accounting for that.
For example, as I’m writing this, it’s 3:53 p.m. in the UK. I know that for someone in
San Francisco, it’s 7:53 a.m. For someone in India, it’s 9:23 p.m.

 A time zone essentially contains three pieces of information:

 An identifier or name
 A region of the earth’s surface, which is deemed to be in that time zone
 A function that maps any instant to a civil date and time

If you imagine that everyone is wearing an accurate wristwatch, correctly configured
for the time zone they’re in, then everyone within a single time zone will see the same
date and time at any instant in time as the result of the mapping in the time zone. Two
people in different time zones may see the same date and time, but they may be differ-
ent, and even if they see the same date and time as each other right now, they might
see different values from each other a minute later.

 When we introduced epochs, I mentioned that the Unix epoch was the instant rep-
resented by midnight at the start of January 1, 1970 UTC. So what is UTC? It’s the null
time zone, or baseline, used to describe other time zones. Strictly speaking, it’s not a
time zone at all (because there’s no region of the earth that is designated as being
within the UTC time zone), but it’s very often used as if it were a time zone—and the
simplest possible one. I’m introducing it here because it’s a sort of stepping stone to
working with real, more complex time zones.

 Mapping an instant to a civil date and time using UTC is simple. You’ll already
know the UTC date and time represented by the epoch (such as January 1, 1970
00:00:00), and the instant is just a duration added to that epoch. In UTC, every day is
24 hours long, every hour is 60 minutes long, and so on. There are none of the annoy-
ances of other time zones that I’ll describe in a moment. You still need to deal with
leap years, but that’s not too hard. Instants before the epoch work in the obvious way
as well; if you’re dealing with the Unix epoch and the instant has a duration of –10
seconds, then that represents December 31, 1969 23:59:50, for example.

 Once you’ve got the idea of UTC, the function that maps any instant to a civil date
and time in a time zone can be thought of as equivalent to a function that maps any

164 CHAPTER 7 Working effectively with date and time data
instant to a UTC offset—a value that tells you how far ahead or behind UTC that time
zone is at that instant.

 To give a concrete example, at the instant in time that maps to November 20, 2020,
3:53pm UTC, the UTC offset for the San Francisco time zone is –8 hours. San Fran-
cisco is said to be 8 hours behind UTC at that instant, which is why it’s 7:53 a.m. there.
In India, the UTC offset at that instant is 5 hours and 30 minutes, which is why it’s 9:23
p.m. there.

 But that mapping function from an instant to a UTC offset doesn’t have to give the
same results for all instants, and in most time zones it doesn’t. So for example, on June
20, 2020 at 3:53 p.m., the UTC offset for the time zone in Francisco would be –7 hours
instead, so it would have been 8:53 a.m. The UTC offset for India would still be 5
hours and 30 minutes—it’s used that offset constantly since the year 1945.

 While the mapping from an instant to a civil date and time is unambiguous, the
reverse isn’t true. Some civil date and time values are ambiguous (when more than
one instant maps to that civil date and time), and some are skipped (when no
instant maps to that civil date and time). For example, in the time zone for San
Francisco, the offset changed from UTC-7 to UTC-8 on November 1, 2020 at 2 a.m.
local time (9 a.m. UTC), when the fall back daylight saving change happened. That
means any San Franciscans with accurate watches could have seen the following
sequence of times:

 01:59:58
 01:59:59
 01:00:00 ← Fall back happens here
 01:00:01
 01:00:02

That means a civil date and time of 1:45 a.m. on November 1, 2020 happened twice.
Two people in San Francisco could say they were woken up by their cats at 1:45 a.m.
that night and have actually woken up an hour apart.

 On the other hand, on March 8th 2020 in San Francisco, the clocks went forward by
an hour at what would have been 2 a.m. local time (10 a.m. UTC), changing from UTC-8
to UTC-7. So this time, San Franciscans would have seen this sequence of times:

 01:59:58
 01:59:59
 03:00:00 ← Spring forward happens here
 03:00:01
 03:00:02

That means a civil date and time of 2:45 a.m. on March 8, 2020 didn’t happen at all.
Anyone in San Francisco claiming to have been woken up by their cats at 2:45 a.m.
that night would have been mistaken.

165Concepts in date and time information
 Figure 7.7 shows a graph of the UTC offsets of four time zones (Europe/Moscow,
Europe/Paris, America/Asuncion, and America/Los_Angeles) during 2020. America/
Asuncion is the time zone observed in Paraguay, and America/Los_Angeles is the
time zone observed in San Francisco. Notice how Paraguay is in the southern hemi-
sphere, so its fall back date is in March, and its spring forward date is in October.

You don’t need to learn the exact details of what happens when in which time zone.
(That’s why we have time zone databases, after all. We’ll discuss time zone databases
more later.) You do need to remember that converting from an instant to a civil date
and time in a particular time zone is unambiguous, but converting in the other direc-
tion has corner cases to think about.

WHAT ISN’T A TIME ZONE?
In the previous examples, I deliberately didn’t use the terms Pacific Standard Time or
Pacific Daylight Time for the time zone in San Francisco. While those are commonly
used as a sort of shorthand for the UTC offset, they aren’t time zones in themselves.
It’s more accurate to say that the time zone that includes San Francisco alternates
between Pacific Standard Time and Pacific Daylight Time over time. Other time zones
may also observe Pacific Standard Time sometimes as well but have different times
than San Francisco for some of the time. So Pacific Standard Time, and similar
descriptions, aren’t names of time zones, in general.

NOTE Annoyingly, the Windows time zone database does use Pacific Standard
Time as the identifier for the time zone that includes San Francisco and fol-
lows the same pattern for many other time zones as well. So you can ask for
the description of the time in Pacific Standard Time and receive a result of
Pacific Daylight Time. I would personally recommend avoiding the Windows

UTC offset

(hours)

+3

0

+2

+1

–1

–2

–3

–4

–5

–6

–7

–8

2020-03-28T03:00:00Z

Fall back to UTC-4

2020-03-29T06:00:00Z

Spring forward to UTC+2

2020-03-14T10:00:00Z

Spring forward to UTC-7

2020-11-01T09:00:00Z

Fall back to UTC-8

2020-10-03T04:00:00Z

Spring forward to UTC-3

2020-10-25T01:00:00Z

Fall back to UTC+1

Europe/Moscow

Time

(instant)

America/Asuncion

America/Los_Angeles

Europe/Paris

Figure 7.7 Four time zones with UTC offset plotted over time

166 CHAPTER 7 Working effectively with date and time data
time zone database when possible, instead using IANA time zones, which I’ll
describe later.

Given that the descriptive names for these half time zones aren’t really time zone names,
it makes sense that the abbreviations derived from them, such as PST and PDT, don’t
name time zones either. The abbreviations are even worse than the descriptive names
though because they’re more likely to be ambiguous. As one horrible example, BST is
an abbreviation for both British Summer Time and British Standard Time—the latter
being used between 1968 and 1971. Abbreviations can be useful to display to users, but
you should avoid them for every other purpose.

 Finally, UTC offsets themselves are not time zones. It’s unfortunate that even ISO-
8601 (the standard for textual date and time representations) gets this wrong. The
value that’s described as a zone designator in ISO-8601 only represents the UTC offset.
That’s important because the UTC offset at one instant in time doesn’t tell you much
about the UTC offset at another instant within the same time zone. Again, UTC offsets
can be very useful and simpler than trying to convey an actual time zone, but it’s
important to distinguish the two concepts.

 As an example, consider the date and time and offset 2021-06-19T14:00:00-04—in
other words, June 19, 2021 at 2 p.m. local time in a time zone that is 4 hours behind
UTC at that instant. What would the UTC offset be on December 19 at the same local
time? In New York, it would be –5; in Asunción (the capital of Paraguay), it would be
–3, even though both of them had a UTC offset of –4 in June. The original informa-
tion does contain a UTC offset, but it doesn’t indicate the time zone.

WHERE DOES TIME ZONE INFORMATION COME FROM?
Type in java.time: java.time.zone.ZoneRuleProvider. Types in Noda Time: Noda-
Time.DateTimeZoneProviders and NodaTime.IDateTimeZoneProvider.

 The note above mentioned the Windows time zone database, which is installed on
all Windows machines and updated via Windows update. However, that’s not the
most commonly used source of time zone information. Instead, the volunteer-run
database maintained at the Internet Assigned Numbers Authority (IANA; the time
zone database is available at https://www.iana.org/time-zones) is used by almost
every non-Windows system. Due to its long history, the IANA time zone database has
a number of other names. You might hear about Olson time zones, zoneinfo, tz, or
tzdb. These are all names for the same data source; different names have come and
gone over time.

NOTE Different development platforms take different approaches to obtain-
ing time zone data. For example, Java uses IANA time zones by default, even
when it’s running on Windows. .NET uses the platform-native time zones, so
will use IANA time zones when running on Linux or Windows time zones
when running on Windows. .NET 6 introduced improvements here. It’s
worth finding out which time zone information will be used for your code,
bearing in mind all the operating systems it will run on.

https://www.iana.org/time-zones

167Concepts in date and time information
IANA time zones are “typically identified by continent or ocean and then by the name
of the largest city within the region” (https://data.iana.org/time-zones/tz-link.html).
The time zones I’ve been using in examples so far have been:

 San Francisco: America/Los_Angeles
 Moscow: Europe/Moscow
 Paraguay: America/Asuncion
 England: Europe/London
 India: Asia/Kolkata

Time zone rules change multiple times a year. When I talk about a rule changing, I’m not
talking about the change in America/Los_Angeles from UTC-8 to UTC-7 or back again;
I’m talking about changes to the rules that govern those changes. For example, the
Energy Policy Act of 2005 changed the rules for when daylight saving time is observed
in the United States, taking effect in 2007. Time zone rules are a political matter,
decided by governments. When the group of volunteers for the IANA database
becomes aware of a change to the rules (with clear documentation that it’s actually been
ratified by the government involved, rather than just being proposed), the change is
made to the database, and it’s released. Sometimes, multiple changes are batched
together into a single release. The release names are based on the year of the release with
a letter afterward (e.g., the first release of 2020 was 2020a, followed by 2020b, and so on).

 How that change to the information reaches the computer your code is running
on can vary enormously, depending on your environment. We’ll revisit this aspect
later on in section 7.4.4, along with the impact it can have on your code.

 To recap, we’ve looked at three sets of concepts so far:

 Machine time—has instants, epochs and durations
 Civil time—has calendar systems, dates, periods, and times of day
 Time zones—UTC and UTC offsets

Other concepts can be derived from these, and good date and time libraries will often
provide a really large range of types, which allow your code to express what you mean
clearly and precisely. But before we start thinking too closely about code, I want to
briefly point out a few things I’ve left out in the descriptions above.

7.1.4 Date and time concepts that hurt my head

Most of the time, I’m a stickler for accuracy in technical books. Why would you read a
technical book you knew to be inaccurate? Well, sometimes being totally accurate gets
in the way of being useful. I’ve already mentioned a couple of the aspects of date and
time handling that aren’t going to be covered in detail in this chapter, but there’s a lit-
tle bit more information here. You can skip this section entirely; it won’t affect what
comes later. But it can be quite nice after a hard day’s work to console yourself by
thinking, “Sure, I have to deal with time zone rules changing, but at least I don’t have
to deal with relativity.” Which brings us to our first topic. . . .

https://data.iana.org/time-zones/tz-link.html

168 CHAPTER 7 Working effectively with date and time data
RELATIVITY

In one of my favorite episodes of Doctor Who, “Blink,” the Doctor says: “People assume
that time is a strict progression of cause to effect, but actually, from a nonlinear, non-
subjective viewpoint, it’s more like a big ball of wibbly-wobbly, timey-wimey . . . stuff.”
That’s roughly the level of my understanding of relativity. I understand enough to be
scared of it, particularly the concept that we (humans and machines) experience time
differently, depending on frames of reference, speed, and acceleration.

 We started with the concept of an instant in time as something we can all agree on.
Two people in different time zones and calendar systems would still give the same
answer of now when considering an instant. Relativity suggests it’s not that simple, and
perhaps, even that the concept of now doesn’t make much sense.

 Some infrastructure (such as GPS) does need to take this into account. Business
code really doesn’t, fortunately.

LEAP SECONDS

Time isn’t the only thing that’s wibbly-wobbly. The earth’s rotation is wobbly too, and
it’s slowing down very gradually. That means there’s a slight discrepancy between
“observed solar time” (which would always have the sun directly overhead at noon on
the Greenwich meridian) and the time reported by an atomic clock. Leap seconds
are the way of accounting for this. They’re inserted into (or removed from, theoret-
ically) the UTC timeline when they’re needed to keep UTC and observed solar time
close together.

 The way a leap second is inserted or removed is just to change the length of the
final minute at the end of either June or December. That means that while a minute
usually lasts 60 seconds, it could last 61 seconds or 59 seconds instead. For example,
the leap second inserted at the end of 2016 occurred at 2016-12-31 23:59:60. At the
time of this writing, there haven’t been any negative leap seconds (where a second is
removed from the timeline instead of being added), but it’s possible.

 Different systems have different ways of either reporting leap seconds or pretend-
ing they don’t exist. For example, some systems use a leap smear, which effectively dis-
tributes the extra second over a longer period of time. So near the time when a leap
second would be inserted, a second might last a bit longer than a second. Yes, I’m
aware of how ridiculous that sounds.

 If all of that isn’t hard enough to keep straight in your head, leap seconds aren’t
predictable. They’re announced six months in advance, which is significantly better
than some time zone changes, but even so, it means you need to think carefully in
terms of the validity of any data you might be storing about the future. We’ll look at
this problem in more detail in section 7.4.4. Again, some infrastructure (such as NTP)
needs to be very aware of leap seconds, but most other software doesn’t.

WHAT’S THE TIME ON MARS?
If you think it’s hard to organize a meeting with people in multiple time zones on
earth, imagine a scenario in which one attendee is on Mars (where a day is 24 hours
and 37 minutes long), another is on Jupiter (where a day is a little under 10 hours

169Preparing to work with date and time information
long), and another is on Venus (where a day is about 5,832 hours; that’s longer than a
Venusian year lasts). Once you’ve organized it, imagine at the end of the meeting
someone saying, “Same time tomorrow?”

 It has been seriously suggested that new date and time libraries should handle
nonterrestrial time. I hope to have retired by the time it becomes relevant to main-
stream software engineering.

CALENDAR SYSTEM TRANSITIONS

In Rome in 1582, October 4 was followed by October 15. In London in 1752, Septem-
ber 2 was followed by September 14. These are examples of transitioning from the
Julian calendar to the Gregorian calendar—something that happened at different
dates in different places.

 That means people from different countries who usually use the same calendar sys-
tem can disagree on dates. For example, the Battle of Lowestoft took place on June
13, 1665 . . . or June 3, 1665, depending on which side of the battle you were on.

 One notable oddity is Sweden’s transition from the Julian calendar to the Grego-
rian calendar. Sweden planned to do this gradually by skipping all the leap days from
1700 onward, until they were aligned with the Gregorian calendar. Unfortunately,
while 1700 went as planned, Sweden was distracted by the Great Northern War (1700–
1721) and forgot about the plan. It treated 1704 and 1708 as leap years, contrary to
the plan, which was then abandoned. To get back to the Julian calendar system, Swe-
den included two leap days in 1712: February 29 and February 30.

 Some date and time libraries attempt to handle calendar transitions like this,
although I’m not sure any mainstream ones model the Swedish history. It does lead to
even stranger arithmetic than normal and is generally best avoided, in my opinion.

 Those are some of the odder corner cases you almost certainly don’t need to worry
about. In the next section, we’ll look at aspects you definitely should consider as soon
as you start planning a feature—well before you start writing the code for it.

7.2 Preparing to work with date and time information
If you came to the end of the previous section anxious to finally see code, I’m afraid I’ve
got some bad news for you: there’s not much code in this section either. I promise we’ll
get there, but the structure of this chapter is designed to mirror a productive approach to
date and time handling; if you prepare carefully and think about the concepts first, the
actual code is the easy part. Now that we have some common concepts and terminology
to work with, we can think about how those concepts are applied to real-world products.

7.2.1 Limiting your scope

We’ve seen how the world of date and time information can get bewilderingly compli-
cated. The good news is that you probably don’t need all that complexity in your
application. When you start planning either a whole application or an individual fea-
ture that uses dates and times, it’s worth explicitly trying to limit the scope of your
work and documenting the decisions you make.

170 CHAPTER 7 Working effectively with date and time data
 You can probably start off by ruling out the most complex and niche aspects:

 Does your application need to deal with relativity?
 Do you need to be aware of and account for leap seconds?
 Do you need to work with dates that are sufficiently far in the past that historical

calendar system changes might be relevant?

If the answer to any of these questions is yes, then you may find that you’re limited in
terms of the libraries you can use, and you’ll definitely want to take even more care
than usual and do plenty of research into the niche you’re stuck with. I don’t have
much more specific advice than that, as I’ve never had to work in that sort of applica-
tion, but I would expect that choosing appropriate types to represent product con-
cepts is even more important than normal.

 The second level of complexity to think about relates to calendar systems and
time zones. Do you need to work with any calendar system other than the Gregorian
calendar? Most business applications can probably just use the Gregorian calendar,
but there will certainly be counterexamples, particularly if your application’s audi-
ence is a religious community that pays particular attention to a specific calendar.
Consumer applications are slightly more likely to need support for the preferred
calendar system of the user, but you probably want to weigh up the costs and bene-
fits of doing so before committing. (The benefits will be application specific, and
the costs may well be technology specific; support for non-Gregorian calendar sys-
tems varies significantly.)

 The level of complexity around time zones can vary significantly. Questions to ask
yourself here include

 Does the product need to support time zones at all? Sometimes, an entire appli-
cation can be built around the machine time concepts, which can simplify things
a lot.

 Does the product need to interoperate with time zones specified by another sys-
tem? If so, which time zone database does it use?

 Does the product need to allow users to choose time zones, or can you just rely
on detecting their default time zone?

 Does the product need to work in more than a single time zone? If so, are you
confident it will stay that way?

 Does the product need to keep absolutely up to date in terms of time zone
rules, actively keeping track of changes, or can it just use the time zone rules
that come by default with the platform or library?

 Does the product need to store any data that naturally includes time zone infor-
mation, or is any time zone interaction purely for display purposes?

 How much attention do you need to pay to time zone transitions, in terms of
skipped and ambiguous times? If you’re writing a school timetable system, for
example, it’s unlikely that pupils will have lessons at the time of a transition.

171Preparing to work with date and time information
Most applications that need to display date and time values to a user will need some
time zone awareness, but you may well be able to make your life much simpler by not
building in more flexibility than you need. There’s a tradeoff here, of course: if you
write your code with the assumption that you’ll only ever need to work with (say) the
time zone for Paris, you may well find it’s quite hard to undo the impact of that
assumption later on. It really can make a large difference in terms of simplicity
though. One way to mitigate that risk of future requirements is to make sure everyone
on the team is aware of the assumptions that are being made and reflects on when
they’re relying on them. Keeping a document of places in the system where the
assumptions are relevant can make it much easier to backtrack later on.

 This sort of scoping is usually possible before you have detailed product or feature
requirements. It would be relatively rare for a product to unexpectedly change to need-
ing to support multiple calendar systems, for example. (It’s possible, of course. That
sort of new requirement is more likely to be part of an expansion into new markets
than as part of adding a new individual feature.) The developers in the team can prob-
ably work through the questions above themselves, then document and validate the
results with the product owners.

NOTE I’m using the term product owners to represent the people who are
responsible for deciding what the product should do. Different companies
may use different names, such as product managers. Depending on your exact
development model, these may be people within the same company as the
developers, a different company, or a mixture. They may be the developers
themselves, but it’s worth treating this as a role that’s separate from deciding
how a product should be implemented.

When it comes to detailed requirements, however, the product owners must be involved.

7.2.2 Clarifying date and time requirements

I should start this section with a warning: ensuring that the product requirements
related to date and time work are clear and unambiguous is unlikely to make you pop-
ular. You’re likely to be faced with many responses of: “Isn’t it obvious?”—even if the
obvious answer for one person is different to the obvious answer for someone else.
But the effort is worth it. Once the requirements are clear, the coding is often straight-
forward. Without clear requirements, you may well find that each individual involved
in the product has different expectations, leading to chaos.

 Exactly how you decide to plan and document your requirements is up to you, of
course. There’s no particular required methodology. You may have a big, up-front
design or you may be designing individual small features as you go in a more agile
approach. It’s worth being careful in the only design what you need right now style
though; if you only need a date for a particular piece of information in the first sprint
but then find you need a date and time (and maybe time zone) by the time you reach
sprint four, that will make life significantly harder. Try to anticipate future natural

172 CHAPTER 7 Working effectively with date and time data
requirements to some extent without going too far down the rabbit hole of planning
for every possible eventuality.

 There are, broadly, two kinds of decision that should be
recorded as part of the requirements documentation: how you’re
treating each piece of date and time-related data and how you
operate on them. You’ll also need to consider representations for
storage and transmission, but those are more implementation
details than product requirements. The two kinds of decision are
related, but we’ll consider them separately.

 To try to make everything concrete, we’ll use an online
shopping scenario to start with. The TL;DR of the requirement
we’ll look at is shown in figure 7.8: Customers can return items
within 3 months. By the end of the scenario, we’ll have a set of
requirements that can be implemented and tested.

PICKING THE RIGHT CONCEPTS OR DATA TYPES

Good product requirements usually state what information is collected in a given sit-
uation and, potentially, what information is deliberately not being collected. Some-
times, this is implicit and somewhat buried within a narrative describing the user
journey, but it’s clearer if it’s called out explicitly. It’s usually easy to spot date and
time-related information, but it can be harder to decide how you’re going to treat
that data.

 As a first rule of thumb, it’s worth considering the source of the data. If you’re
recording that “something has happened,” then you should usually start off with an
instant—the instant at which the event occurred. You may also want to record a time
zone (or, more generally, a location) if that’s going to be relevant to other operations.
Recording the instant is usually straightforward—most databases and logging systems
have built-in timestamps.

NOTE You may need to consider which source of current time is important: if
you capture now in both the database and on a separate web server, the two
clocks involved may not be perfectly synchronized. Whether or not that’s
important will depend on your application.

If you’re recording a date and time value that is provided by a user, that’s a different
matter. You’re in the realm of civil time, rather than machine time, at that point—
even if they’re reporting when something happened. You almost certainly need to
bear time zone information in mind, or at least a UTC offset. You may be tempted to
convert that into an instant, but I’d encourage you to retain exactly what the user gave
you—or at least a representation that is parsed but not necessarily transformed. When
we look at some corner cases later on, we’ll see how the approach of just storing UTC
can go wrong, particularly when recording information about the future.

 For our customer returns requirement, we obviously need to capture some infor-
mation, but it’s not immediately clear what that information should be, let alone what

Customers

can return

items within

3 months

Figure 7.8 A high
level requirement that
needs more details

173Preparing to work with date and time information
representation to use. The first question to ask of the product owner is, “Customers
can return items within 3 months of what?” For example, it might be

 Within 3 months of the user clicking pay
 Within 3 months of the payment being accepted
 Within 3 months of the order being confirmed
 Within 3 months of the stock being allocated
 Within 3 months of the order being shipped
 Within 3 months of the order being received

We’ll be thinking about what 3 months means later on, but the list above shows six dif-
ferent instants in time. Even within the fifth bullet of shipped, there may be several
different instants, but for simplicity, we’ll assume we can agree on one of those
being the relevant one.

 Importantly though, these are all instants in time, and it would make sense to
record them all within the order. Some aspects may be on a per-item basis, rather than
a per-order basis, such as stock allocation or even shipping—the order may be shipped
in multiple deliveries. The product owner should be considering all of these aspects in
the context of customers can return items within 3 months.

 Let’s assume the product owner replies that for any given item, the customer can
return that item within 3 months of it shipping. (So the returns window may vary
between items, even within the same order.) Great; this is already a lot more precise.

 We’ll probably be recording various other instants, but we know we need to record
the instant at which each item was shipped. That’s still not the final solution though,
and this is where you can lean on the concepts we’ve already discussed to provoke
more questions. We know that 3 months is a period, not a duration, and you can’t add
a period to an instant. We’re going to have to derive some other information from
that instant to consider it in civil time. That means we have to consider calendar sys-
tems and time zones.

NOTE We all know that product requirements can change. The decision of
the shipping time determines the returns window could change, and so could the
decisions we ask later on. If you keep all the raw and canonical information
from the start, that allows you to change your decision later on. That means
we should record all of the instants listed earlier . . . and store them as
instants, even if we later derive more information from them.

This is related to the earlier tip about retaining what the user gave you, which is
important if the user specifies a date and/or time. The canonical information
in that case isn’t an instant as recorded by a machine clock; it’s the user input.

First, we can ask the product owner what calendar system we should be using. This is
likely to be a simple one: the Gregorian calendar system, regardless of the user. (If the
product owner gives any other answer at that point, you should probably allow for a
lot more testing time.)

174 CHAPTER 7 Working effectively with date and time data
 Second, we can ask the product owner what time zone they’re interested in. This is
where it’s useful to have a specific example to hand to keep things concrete. You
might want to give a scenario of

 a web server in Brazil;
 storing data in a database in New York;
 placing an order for a company based in California;
 shipping items from a warehouse in Texas;
 for a customer with a billing address in Berlin, Germany; or
 shipping to an address in Sydney, Australia.

The instant at which the item is considered shipped will represent different local times
and possibly even different dates in each of those places. So what’s important here?
One big hint: it almost certainly shouldn’t be the web server or database. Just about
any other answer is plausible, but products should almost never behave differently
based on the physical location of the computers involved, unless the users are sitting
in front of those computers.

 Even if the product owner thinks that’s a far-fetched situation, they should be able
to decide what the right answer is and document that decision. It also naturally forms
the starting point of an acceptance test.

 Let’s suppose the product owner answers that the relevant time zone is the one
we’re shipping to—Sydney, Australia, in this case. Fantastic. That probably doesn’t
mean we need to store any more information; we already got the location we’re ship-
ping to (from which we can derive the time zone), the instant at which the item
shipped as a canonical starting point, and the always use the Gregorian calendar decision
from earlier on. We can convert the instant into a local time at the shipping location
whenever we want to. It may be useful to store that directly in the database, but that’s
an implementation detail. With that information in hand, we can move on to the rest
of the questions about this feature.

ASKING QUESTIONS ABOUT BEHAVIOR

The broad statement of customers can return items within 3 months needs all kinds of clar-
ifications. We’ve identified the starting point of that 3 months, but there’s still a lot
more detail required before we can start implementing anything. Of course, any prod-
uct owner doing their job properly would put in a lot of that detail into the require-
ments naturally, but we’re focusing on the date and time-related details.

 Suppose the actual user journey documented is along these lines:

When viewing a completed order on the web site, any item that was shipped less than 3
months ago is displayed with an option to return the item. When the customer clicks on
that option, they are presented with a form containing the details for the return. Once they
have completed the form, the returns procedure is initiated.

There would be a lot of detail about the returns procedure, but there are two date and
time aspects that need clarifying here.

175Preparing to work with date and time information
 Firstly, should the 3 months apply to when the user viewed the completed order,
when they clicked on the option to start the returns process, or when they submitted
the returns form? Those are three different instants in time. It would be irritating for
a customer if they viewed the order when it was valid to return the item, but if they
then clicked on the returns option a minute later, the web site said it wasn’t valid any-
more. On the other hand, we don’t want a loophole where a user can leave a browser
window up for years and effectively have an unlimited returns period. The same ques-
tion could apply for completing the returns form.

 Here’s one possible set of requirements with more details:

When viewing a completed order on the web site, any item that was shipped less than 3
months ago is displayed with an option to return the item. When the customer clicks on
that option, the server checks whether the returns option was valid 5 minutes earlier and
returns an error if it wasn’t. That allows customers a delay of up to 5 minutes between
viewing the order and starting the returns process, when we guarantee to honor the
return. (It also means that if the customer waited for more than 5 minutes, but they’re
still within the returns period anyway, they can still proceed to the returns form.) If the
check passes, a returns form is presented to the customer. The form states that it must be
completed within 2 hours.

When the returns form is submitted, the server checks that the returns procedure was
started within the last 2 hours and returns an error if it wasn’t. If the check passes, the
form is submitted for processing and a confirmation screen is shown to the customer.

This has two different kinds of time limit: one that provides a sort of grace period of 5
minutes beyond the strict you must start the returns process by time x and a second, which
limits how long you can spend on the returns form itself.

 We’re now half way to a good set of requirements from a date and time perspec-
tive. There’s still the gnarly bit about less than 3 months ago, though. We’ve already
decided that the starting time of the 3 months is the instant when the order was shipped
and that the 3 months should be oriented around the time zone of the delivery
address. There’s still a bit of work to do in terms of precision, however.

 As we saw with the voting example earlier, arithmetic involving calendars doesn’t
follow the same rules as we’re used to with regular math. So in this case, we need to
differentiate between taking the shipping time and adding 3 months and taking the current
time and subtracting three months. The product owner will also need to work out what
they want to do about granularity: if something ships at 10 a.m., do they want the
three months to run out at 10 a.m. three months later? That could feel a little arbi-
trary to customers. If it’s what the product owner decides, of course, then that’s the
requirement. But here’s the sort of requirement I would probably write if I were a
product owner:

The option to return an item is based on the date on which the item was shipped in the
time zone of the delivery address. The last date on which a return is valid is calculated
by adding 3 months to the current date at the delivery location when the item is shipped.
If adding 3 months to the shipping date goes beyond the end of the month, the start of the

176 CHAPTER 7 Working effectively with date and time data
next month is used. (Example: if an item ships on November 30th, the last valid return
date is the following March 1st—not the last day of February.) The return an item
option is shown to the customer so long as the current date at the delivery location is not
later than the last valid return date.

That’s quite wordy, but it’s unambiguous. It covers

 The granularity we’re using (date—not date and time)
 The nature of the calendar arithmetic (adding to the start date)
 The nature of the check (the last date is inclusive)
 The time zone involved (the delivery address)
 The way in which the calendar arithmetic is resolved (roll over to the start of

the next month)

That last requirement may not be the simplest one to code, depending on the library
you’re using, but at least it’s clear and testable.

 I wouldn’t expect a product owner to come up with requirements like that on their
own, unless they happen to have done date and time work like this before. Until
you’re aware of the oddities of calendar arithmetic, the potential ambiguities aren’t
always obvious. But that’s where the development team can probe the requirements
until they’re precise enough. The process of going from a vague set of product require-
ments to a specific, unambiguous, testable set of requirements will vary, depending on
how your team is set up, but it’s important to get there in the end. It may require mul-
tiple rounds of asking questions involving awkward corner cases, or the development
team may be able to suggest a more concrete version of the ambiguous requirements.
The final step before you start writing code is to make sure you’re using the right tools
for the job.

7.2.3 Using the right libraries or packages

While it’s possible to write clear, readable code using poor date and time libraries, it’s
an uphill struggle. Once you’ve got a clear set of requirements, you’re in a good posi-
tion to evaluate the technologies to use to implement them.

 This is a landscape that changes over time. For example, at the time of writing, the
Temporal proposal for a new set of standard objects for working with dates and times
in JavaScript is only a draft, but if and when it’s approved, that’s likely to be an option
you’d want to consider for new JavaScript projects.

 We’re happy to provide recommendations for Java and .NET, as these are the plat-
forms the authors know best, and they’re both quite stable in terms of options. Of
course, there’s always the possibility that something new will have become available
between the time we write this text and the time you read it, but they’re at least good
starting points.

 On the Java platform, if you can use the java.time package introduced in Java 8,
you should do so. If, for some reason, you’re stuck on Java 6 or Java 7, the ThreeTen-
Backport project (https://www.threeten.org/threetenbp/) is a good alternative. The

https://www.threeten.org/threetenbp/

177Preparing to work with date and time information
main objective is to avoid using java.util.Date and java.util.Calendar, both of
which are full of traps waiting to lure the unwary developer into writing buggy code.

 On .NET, our heavily biased recommendation is to use Noda Time (https://nodatime
.org). The built-in types (DateTime, DateTimeOffset, TimeZoneInfo, TimeSpan) can
certainly be used effectively, but they don’t separate out the different logical concepts
we looked at earlier into different types. For example, there’s no type to represent a
date, and the same type is used for both the duration and time of day concepts. (Note
that some of this has changed since the release of .NET 6, but we won’t go into detail
here.) This means it’s easy to write code that looks correct but effectively performs
invalid operations on the logical data, such as adding half an hour to a date. The way
a DateTime can mean in some unspecified time zone, in the system local time zone, or in UTC
doesn’t help either.

 Beyond these specific examples though, there are more general questions you can
evaluate against any given library for your platform:

 If you need to handle non-Gregorian calendar systems, does the library support
those calendar systems?

 Does the library provide enough control of the time zone data it uses? (For
example, if you need to work with IANA time zone IDs, it’s best not to choose a
library that only supports Windows time zones.)

 Does the library support all the concepts you’ve identified in your require-
ments, providing sufficient distinctions between those concepts to help your
code express your intentions clearly?

 Does the library provide immutable types? While immutability as a general con-
cept has distinct pros and cons, as we saw in chapter 4, in the context of a date
and time library it’s almost always a good thing.

 Do your external dependencies (e.g., databases, other libraries, network APIs,
and the like) already lead in the direction of a particular library? If you need to
perform conversions between different representations, is that easy to do?

Wherever possible, it’s useful to try prototyping some of the date and time require-
ments against the candidate library, so you’ll have an idea of what your final code
will feel like. This can usually be done in a small console application or unit test
project, isolated from any existing application code. For example, with the require-
ments around item returns described earlier, I’d probably write some unit tests to
check the logic for whether or not to show the return item option. If you’re evaluat-
ing multiple libraries, you may be able to have a single set of test cases that are then
implemented using different libraries. Once you’ve got working code using all the
libraries, you can compare the implementations for readability. Once you’ve docu-
mented application-wide requirements, worked with the product owner on feature-
specific requirements, and chosen a good library to use, finally, you can start writing
your production code.

https://nodatime.org
https://nodatime.org
https://nodatime.org

178 CHAPTER 7 Working effectively with date and time data
7.3 Implementing date and time code
Even with all the right preparations in place, we still need to be disciplined with the
code itself. It’s all too easy to let things slip by taking shortcuts, and the result can be
hard to disentangle.

7.3.1 Applying concepts consistently

If we’re consistent in our use of concepts within the application, that will help avoid mis-
takes creeping in. That can be difficult when some pieces of information have different
uses in different contexts. For example, the returns policy in our ongoing scenario
revolves around an effective shipping date, but that in turn is based on an instant in
time when the it’s left the warehouse event occurred in conjunction with the time zone of
the location we’re shipping to. We can still be consistent, but we need to be clear which
of these we mean any time there’s code that deals with when an item shipped.

 Date and time information tends to exist in three different forms:

 In memory, while the code is executing—Typically, this is in the form of objects from
whatever date and time library you’re using.

 In network requests, while the information is being exchanged between machines—Typi-
cally, this is textual, particularly for web applications, and the developer may be
responsible for making sure both the sender and receiver use and expect the
same format. However, it may also be a binary protocol, which is typically
opaque, in which case we don’t need to know or care what the actual bytes are.

 In storage, such as in a JSON, CSV, or XML file or in a database—Like network
requests, we may or may not be in control of the precise format. However, we
are often able to choose the data type, whether that’s through SQL fields or
standard text format representations.

Again, consistency is incredibly helpful here. For example, if part of the application
allows a user to specify a date (without a time), then we should make sure that the
information flow respects that choice to avoid any confusion later. That might be an
HTTP request containing a textual value of 2020-12-20, which is then parsed as a
java.time.LocalDate and stored in a database in a field of type DATE. It’s absolutely
possible to write an application that works properly but uses a different date and time
concept for those three layers, but it’s very confusing. Of course, I’ve picked a really
simple example there, but life doesn’t always work that cleanly.

HANDLING IMPEDANCE MISMATCHES

When we’re using a good date and time library for the core of our application, it’s not
uncommon to find that the database doesn’t have the same rich set of types or that
the frontend code might have a slightly different rich set of types. To continue with
the example above, suppose we’re able to pass the user-selected date nicely as textual
date representation, we work with it in our code as a LocalDate, but then, we have to
store it in a database whose only date and time-related data type is a timestamp. What
should we do? There are multiple options here and no cut-and-dried right answer.

179Implementing date and time code
 The first option is to convert to the concept that is provided by the database. In
our case, we could decide to convert the LocalDate into the Instant of midnight at the
start of the given date in UTC. This has the benefit that you can use other date and time-
related functionality within the database and is easily used by other code, but it could
lead to the impression that it would be valid to start instants that don’t represent mid-
night UTC on any particular date.

 The second option is to use a text-based field instead. For example, the date could
be stored in the same way it’s being transmitted from the frontend as 2020-12-20. This
makes it clearer that it’s genuinely just a date, and if we use the ISO format shown in
the example (year-month-day), then it’s still easily sortable. On the other hand, it may
well be stored less efficiently in the database and harder to use in queries.

 The third option is to use a numeric field with a well-known meaning. For exam-
ple, you could represent the date as the number of days since January 1, 1970. This may
well be efficient in both storage and querying, but would require more complex code
in every system that uses the database directly, and also makes it hard to understand
the data with database access tools, such as SQL Server Management Studio.

NOTE Try to convert incoming data into the preferred in-memory data type
as early as you can, and convert outgoing data into the destination type as late
as you can. This minimizes how much of your code needs to deal with an
inconsistent representation. This is also somewhere that the don’t repeat your-
self (DRY) principle is important; the conversion code itself should be central-
ized to avoid any inconsistency in how the conversions take place.

This sort of impedance mismatch is reasonably common, but it’s not the only time
that effort is required in terms of converting between concepts at system boundaries.

APPLICATION-SPECIFIC CONCEPTS

Occasionally, we may find that one of the natural application concepts doesn’t map
cleanly to one of the standard concepts described earlier or represented in the library
or database we’re using. One example might be financial quarter with details that
depend on the precise accounting scheme that the company in question uses. This
sort of custom concept should be fairly rare, but it’s good to be aware of the possibility
of it happening and planning to handle it accordingly.

 As before, consistency is important here. When the new concept is identified, it’s
worth encapsulating it in a fashion that feels idiomatic to the library you’re using.
Include whatever conversions are relevant, design appropriate textual representa-
tions, and work out how you want to represent the concept within storage systems.

 There’s a tradeoff to be found in terms of how early you put this into action. The
earlier you work on encapsulating the new concept, the more flexibility you will have
in its design, and the fewer headaches you’ll have converting existing code to use the
new representation. On the other hand, if you make all the decisions based on a sin-
gle example of the concept’s use, you may find you overfit the design to that example,
resulting in a design that doesn’t meet the requirements of later use cases. One way of

180 CHAPTER 7 Working effectively with date and time data
trying to mitigate these risks is to actively look for other examples when you encoun-
ter the first one. You don’t need to design every aspect of the future features that
might use the data, but you can at least think about what operations you might need
and any constraints.

 One aspect of an effective encapsulation is to promote build testability into the
design from the start. This doesn’t just affect custom concepts though; it’s worth
thinking about testing throughout your codebase.

7.3.2 Improving testability by avoiding defaults

As we discussed earlier when thinking about our online shopping item return policy,
it’s often useful to give lots of examples within requirements documents. Those
examples are then ideal candidates to turn into unit tests but only if your code can
be tested in a reasonable fashion. Some libraries don’t make this as easy as we might
like, but this is one area where it’s easy to workaround that deficiency by maintain-
ing some discipline.

 Let’s look at one concrete example, where simple-looking code has a lot of hidden
assumptions. (This uses classes in the java.util and java.text packages; I’m pleased to
say that java.time at least addresses two of the issues here.)

String now = DateFormat.getDateInstance().format(new Date());

That one line of code hides multiple decisions because the platform designers
thought it was useful to make those decisions implicit. It’s also hard to test, presum-
ably because testability wasn’t high on the list of priorities when designing this:

 It uses the system clock, which means we can’t test what will happen at specific
instants in time.

 It converts the current instant in time into the system time zone, which makes it
hard to test how code would react in different time zones.

 It uses the default calendar system of the default locale.
 It uses the date format of the default locale.

Those assumptions do make life easier if you don’t need to test this code and you’re writ-
ing a desktop application where the current culture and time zone may well be the ones
you want to use. For any other situation, you should avoid code like this. We’ll go into the
string formatting more later on, but we’ll start by looking at the first three aspects.

USING AN EXISTING CLOCK ABSTRACTION

Modern date and time libraries often abstract the concept of a clock already, but even
if they don’t, you can do so. The java.time package has a Clock abstract class that pro-
vides a time zone as well as a current instant in time service. Noda Time has the IClock
interface with a single GetCurrentInstant() method. Both provide ways of obtaining
instances for test purposes. Any time your code needs to know the current instant, we
recommend using dependency injection to make a clock available and use that, rather
than any approaches that will always use the system clock.

181Implementing date and time code
 In case it’s not obvious why this is needed for testing, let’s look at an artificially sim-
ple example. Suppose we want to create a class that is able to tell whether the current
instant in time is within one minute of some target instant. In real code we’d normally
make the target flexible using a Duration parameter on construction, but we’ll keep it
hardcoded for simplicity for now. We can write pretty simple code that uses the system
clock, as shown in the following listing.

public final class OneMinuteTarget {
 private static final Duration ONE_MINUTE = Duration.ofMinutes(1);
 private final Instant minInclusive;
 private final Instant maxInclusive;

 public OneMinuteTarget(@Nonnull Instant target) {
 minInclusive = target.minus(ONE_MINUTE);
 maxInclusive = target.plus(ONE_MINUTE);
 }

 public boolean isWithinOneMinuteOfTarget() {
 Instant now = Instant.now();
 return now.compareTo(minInclusive) >= 0 && now.compareTo(maxInclusive) <= 0;
 }
}

But how do we test that code? I would want to test five scenarios:

1 The current instant is more than one minute before the target instant.
2 The current instant is exactly one minute before the target instant.
3 The current instant is less than a minute before and less than a minute after the

target instant.
4 The current instant is exactly one minute after the target instant.
5 The current instant is more than one minute after the target instant.

With the code above, we can’t test this cleanly. We could reasonably write code for
tests 1, 3, and 5 because we can make reasonable assumptions about how quickly our
tests will run, but we can’t make sure the system clock itself is exactly one minute
before or after the target instant. We can find out when the test starts executing, but
we don’t know how much time will pass between then and the call to Instant.now()
within the method we’re testing. If we inject a Clock in the constructor, however, the
code becomes testable, as shown in the following listing.

public final class OneMinuteTarget {
 private static final Duration ONE_MINUTE = Duration.ofMinutes(1);
 private final Clock clock;
 private final Instant minInclusive;
 private final Instant maxInclusive;

Listing 7.1 An untestable OneMinuteTarget class

Listing 7.2 A testable equivalent of listing 7.1, using java.time.Clock

This line makes
the code hard
to test.

The clock we will consult
whenever we need the
current instant

182 CHAPTER 7 Working effectively with date and time data
 public OneMinuteTarget(@Nonnull Clock clock, @Nonnull Instant target) {
 this.clock = clock;
 minInclusive = target.minus(ONE_MINUTE);
 maxInclusive = target.plus(ONE_MINUTE);
 }

 public boolean isWithinOneMinuteOfTarget() {
 Instant now = clock.instant();
 return now.compareTo(minInclusive) >= 0 && now.compareTo(maxInclusive) <= 0;
 }
}

Now, we can easily write tests for as many different situations as we want. Parameter-
ized tests are often useful in date and time work, as shown in the following listing.

class OneMinuteTargetTest {
 @ParameterizedTest
 @ValueSource(ints = {-61, 61})
 void outsideTargetInterval(int secondsFromTargetToClock) {
 Instant target = Instant.ofEpochSecond(10000);
 Clock clock = Clock.fixed(
 target.plusSeconds(secondsFromTargetToClock),
 ZoneOffset.UTC);
 OneMinuteTarget subject = new OneMinuteTarget(clock, target);
 assertFalse(subject.isWithinOneMinuteOfTarget());
 }

 @ParameterizedTest
 @ValueSource(ints = {-60, -30, 60})
 void withinTargetInterval(int secondsFromTargetToClock) {
 Instant target = Instant.ofEpochSecond(10000);
 Clock clock = Clock.fixed(
 target.plusSeconds(secondsFromTargetToClock),
 ZoneOffset.UTC);
 OneMinuteTarget subject = new OneMinuteTarget(clock, target);
 assertTrue(subject.isWithinOneMinuteOfTarget());
 }
}

Here we’ve used two separate methods: one to test times that are outside the target
interval and another to test times that are inside the target interval. Given that the
methods only differ in their parameterized values and whether they call assertFalse
or assertTrue, you could choose to have a single method, which is also parameter-
ized on the expected result. The exact design of the tests is beyond the scope of this
chapter, but the important point is that it’s easy to test code when you control the pas-
sage of time.

INTRODUCING YOUR OWN CLOCK ABSTRACTION

If you’re using a date and time library that doesn’t have a suitable abstraction already,
just create your own—ideally in a library that you can reuse throughout not only this

Listing 7.3 Testing a current-time-sensitive class using Clock.fixed

Retain the caller-provided
clock for later use.

Replace the untestable
static method with a
clock method call.

Specify the values
we want to test.

Create an arbitrary
target instant.

Construct a clock
with time relative

to the target.

183Implementing date and time code
application but any other application that uses the same date and time library. It’s up
to you whether you keep it as a pure what is the current instant? abstraction (like Noda
Time) or whether you include a time zone (like java.time). Typically, the code is split
into three types:

 The abstract class or interface that most of your code depends on.
 A singleton implementation that uses the system clock.
 A fake implementation that allows the caller to set the instant, either on con-

struction or afterwards. You may choose to expose this in a dedicated testing
package to explicitly prevent production code from taking a dependency on it.

Just to make this concrete, imagine that java.time didn’t provide a clock abstraction
or that we wanted to use one that was restricted to the current instant, instead of
including the time zone aspect. We could define our own InstantClock interface, as
shown in the following listing.

public interface InstantClock {
 Instant getCurrentInstant();
}

Then, we can implement this with a SystemInstantClock singleton.

public final class SystemInstantClock implements InstantClock {
 private static final SystemInstantClock instance =
 new SystemInstantClock();

 private SystemInstantClock() {}

 public static SystemInstantClock getInstance() {
 return instance;
 }

 public Instant getCurrentInstant() {
 return Instant.now();
 }
}

Finally, we can create a fake for testing purposes, as shown in the following listing.

public final class FakeInstantClock implements InstantClock {
 private final Instant currentInstant;

 public FakeInstantClock(@Nonnull Instant currentInstant) {
 this.currentInstant = currentInstant;
 }

Listing 7.4 Introducing our own Instant-oriented clock interface

Listing 7.5 Implementing InstantClock with a system clock singleton

Listing 7.6 Implementing InstantClock with a fake for testing purposes

Prevent instantiation
elsewhere.

Public method to
access the singleton
instance

Delegate to Instant.now(),
which uses the system
clock.

184 CHAPTER 7 Working effectively with date and time data
 public Instant getCurrentInstant() {
 return currentInstant;
 }
}

There are details you could definitely change here, of course. For example, you could
define a static method in the interface to obtain instances of the fake and system
clocks, keeping those classes themselves private within the interface. Or you could
provide the FakeInstantClock with an option to automatically advance the clock by a
particular duration each time the getCurrentInstant() method is called. The
important aspect is how you use the clock to avoid untestable production code.

 There’s little commentary in the previous code because it’s so simple. You might
be tempted to think it’s so simple that it can’t provide much benefit, but the differ-
ence in testability is enormous.

NOTE You may wonder why we’ve bothered providing a fake clock here at all.
It’s easy to mock a single-method interface, after all. We find that mocks are
very valuable for interaction testing, where you care exactly when and how
many times interface methods are called, but that’s rarely useful for clocks.
Instead, we just want to provide them with the data they should return later,
and fakes are great for that. You can use a mock for that if you want, but we
tend to find a dedicated fake implementation is simpler to use, and it decou-
ples your test code from any particular mocking library.

Having removed one implicit source of information with a clock, let’s do something
similar for time zones.

AVOIDING IMPLICIT USE OF THE SYSTEM TIME ZONE

While support for a clock abstraction in date and time libraries is somewhat variable,
I’d expect any modern date and time library to have a type representing a time zone.
However, you may find there are plenty of methods that still implicitly use the system
time zone, which leads to the same problems in testability. You really don’t want to
have to write tests that change the system time zone, run your production code, then
reset the time zone back to what it was before. It’s far better to just tell your code
which time zone it should operate in, even if you expect it to always use the system
time zone in production.

 While you can write two overloads (either of the method in question or the construc-
tor of the relevant type), one of which accepts a time zone and the other of which always
uses the system time zone, this can lead to code that has a hidden dependency on the
system time zone. By the time you’re three or four levels of indirection away from that
constructor or method, it may not be immediately obvious that you’re doing anything
that needs a time zone at all. If you’re always explicit about it, you can’t be surprised.

 That surprise aspect is something to watch out for when calling code you aren’t
responsible for, too. That might be code in the date and time library itself or another
external dependency. Again, it may take a little thought to work out that time zones

185Implementing date and time code
are even involved in a particular operation or that the code might use the system time
zone by default.

 To go back to our returns policy example, we might have a method to compute the
final return date for an item in an order. The requirements document already talks
about a time zone, so it’s obvious that one will be required, but that doesn’t mean we
need to supply it ourselves. Two pieces of information are required for the computation:

 The instant at which the item shipped from the warehouse
 The time zone of the delivery address for the item

The time zone is already determined by the context in which we’ll be performing the
operation, so we don’t need to provide it in a method that asks for an order item’s
final return date.

 When we come to write the code, however, it’s worth thinking about simplicity of
testing again. It’s easy to specify those two pieces of information in a test. It may take a
bit more effort to come up with a complete order containing items. We can simplify
our unit tests by writing a method that only takes those two parameters and then call it
with the shipping instant and the delivery time zone. We don’t want to make this
method fully public, but we just need it to be sufficiently visible for test purposes.

 That leaves us with two methods in our OrderItem class: a trivial public one and a
more complex internal one, as shown in the following listing. (We’ll come back to the
actual implementation later.)

public LocalDate getFinalReturnsDate() {
 Instant shippingTime = getShippingDetails().getWarehouseExitTime();
 ZoneId deliveryTimeZone = getOrder().getDeliveryAddress().getTimeZone();
 return getFinalReturnsDate(shippingTime, deliveryTimeZone);
}

@VisibleForTesting
static LocalDate getFinalReturnsDate(Instant shippingTime,
 ZoneId destinationTimeZone) {

}

If you wanted to put all the logic for returns in a single place, you could move the
complex one there, of course, away from the OrderItem class. Either way, the import-
ant aspect is the method signatures:

 Within the method that will use the time zone directly, we already have one, so
it’s obvious which one to use.

 Anywhere you need to call that method, you have to provide one, so it’s unlikely
that we’ll accidentally end up using the system time zone.

When it comes to spotting code that might use the system time zone by default, it’s a
good idea to keep an eye out for overloads. If you call a method that accepts a time

Listing 7.7 Simplifying testing for a complex scenario

Delegate from
public method
to internal one.

Implementation

186 CHAPTER 7 Working effectively with date and time data
zone in one of its overloads, but you’re not providing one as an argument, check care-
fully which time zone will be used by default. Even if it’s the one you want to use, your
code will be clearer if you’re explicit about it. There’s one more aspect related to sys-
tem defaults that’s worth mentioning and that will lead us into the bigger topic of tex-
tual representations.

AVOIDING IMPLICIT LOCALE OR CULTURE ASSUMPTIONS

Internationalization, localization, and globalization (sometimes called i18n, l10n, and
g11n) are huge topics, and we’re not going to cover them in detail here. For the pur-
poses of date and time work, we need to be aware that the locale of a user can affect
two aspects of code: the default calendar system and the default text format used to
represent dates and times.

 While we’ve mostly replaced the system clock for testability, rather than because we
expect it to do the wrong thing, the system locale is similar to the system time zone:
we really don’t want to assume that the locale we want to work in is the same as the
locale for the system.

 A lot of the time, we actually want to avoid doing anything culture specific. As we
discussed earlier, most business software only needs to use the Gregorian calendar sys-
tem, even if some users will talk in terms of a different calendar system in their per-
sonal life. Likewise, text formats should be irrelevant for most of our code in the same
way that we perform arithmetic with numbers without considering whether they’re hex
numbers or decimal numbers.

 We don’t have much in the way of specific coding recommendations here. It’s more
a matter of knowing the libraries you’re using well enough to be aware of any time
that you might accidentally find yourself calling culture-sensitive methods. Here, you
may want to lean on the defaults a bit more, for calendar systems at least. If the library
uses the Gregorian calendar system by default, and that’s all you need to support,
most people will probably find the code more readable to just go with that default,
rather than explicitly specifying the Gregorian calendar system everywhere. If, on the
other hand, the default is to use the default calendar for the system locale, I would
recommend being explicit in the call.

 In terms of textual representations, there’s more to consider than just cultural
assumptions. Let’s dive in.

7.3.3 Representing date and time values in text

Working with date and time data using a well-abstracted library that does all the diffi-
cult work for us and attempts to protect us from mistakes is great while we’re working
in memory, but we often need to represent date and time values as text—sometimes
for diagnostic purposes (such as logging and debugging), sometimes to transmit data
between different machines (such as Javascript in a web browser making a request to a
server), and sometimes to display to users. It’s surprisingly easy to go wrong at this
point in various different ways. Like so much of this chapter, this section is more about
providing questions for you to ask yourself than it is about one perfect approach that’s

187Implementing date and time code
appropriate in all situations. Let’s start off with a topic that sounds almost philosophi-
cal: when we have a text representation, what does that mean?

AVOIDING CONFUSION BETWEEN TEXT AND TRUTH

When we see a string with some date and time information in it, it’s not always clear
exactly what’s being represented. More worryingly, it’s not always obvious that it’s not
clear what’s being represented; we can come to incorrect conclusions simply by infer-
ring too much.

 One of the most obvious examples of this is with the java.util.Date class. We’ve
already recommended against using this class, but its text representation is a useful
teaching aid in terms of what not to do. Take this line of code:

System.out.println(new Date());

On my machine, right now, that prints out Sun Dec 27 14:21:05 GMT 2020. Leaving
aside the fact that Date is clearly a misleading name and that it’s implicitly using the
system clock, let’s see what we might infer from this.

 The value includes a not-quite-time-zone abbreviation: GMT. That suggests the
value itself is time-zone aware.

 The value includes a day of week, abbreviated month name and a year. We might
infer that the value is calendar-system aware.

 The value only goes as far as seconds. Does that mean we happened to call the
Date constructor exactly at the turn of a second, or has it lost information? We
can’t easily tell.

The first of these bullet points is the most infuriating one. There are many, many
Stack Overflow questions asking how to convert a java.util.Date to a different time
zone, and I can understand why. Really, the Date class represents an instant in time
with millisecond precision. It doesn’t have an associated time zone or calendar system.
The toString() method always uses the Gregorian calendar system and the system
default time zone, but those aren’t part of the value itself. The month and day names
are not localized.

 The use of the system default time zone causes a lot of confusion here, but even
a more sensible toString() implementation could still cause confusion. Suppose
instead it used an ISO-8601 representation, so the same value might be represented as
2020-12-27T14:21:05.123Z, and you’d get the same result on any machine in the world
(assuming the system clock reported the same value, of course). Unless you already know
what’s being represented, it’s still unclear. We don’t know the precision, and we don’t
know whether the Z means that every value will be expressed in UTC or whether the type
of data being represented can include different offsets or time zones. We don’t even
know whether the type of data being represented could use different calendar systems.

 If this all sounds like doom and gloom, please take heart. The aim isn’t to discour-
age you from ever working with text representations—it’s to encourage you to be
aware of the limitations. Most importantly, you should be aware of the type of data

188 CHAPTER 7 Working effectively with date and time data
being represented, ideally as one of the concepts listed earlier, or a combination of
those concepts (such as a “date and time with a UTC offset”). What precision is avail-
able, and is this representation meant to be lossless? What do you need to know if you
want to parse a value like this? Do you know the exact format?

 One scenario to be particularly aware of is what your debugger shows you.
Depending on the text format being used, it’s entirely possible for the debugger to
display the values of two variables as the same text representation but also show that
those values aren’t equal to each other. This isn’t unique to working in the date and
time domain—floating point numbers, and even plain strings, can suffer the same pit-
falls. Just be aware that what you can see in the debugger may not be the whole truth.
Having warned you about the perils of reading too much into text representations,
next we’ll look at some areas where conversions can creep in and cause problems
without being needed at all.

AVOIDING UNNECESSARY TEXT CONVERSIONS

This sounds obvious, but it’s worth avoiding conversions to or from text forms wher-
ever you can. I’ve seen a lot of code converting date and time values into strings to
achieve goals that aren’t fundamentally text-oriented at all:

 Including the value in a database query, either directly in the SQL or as a
parameter

 Converting between different representations, either between types in the same
library (such as getting a LocalDate from a LocalDateTime) or between differ-
ent libraries

 Deliberately losing information, such as formatting a LocalDateTime value
without including the fractions of a second, then parsing again as a way of trun-
cating to second granularity

In all of these cases, introducing text conversions has multiple downsides:

 It obscures what you’re trying to achieve by doing it in a roundabout way.
 It introduces the risk of accidental loss of precision or other bugs.
 It’s almost always slower than a more direct approach.

Whenever you find yourself performing a text conversion, it’s worth considering
whether this is inherently a text-oriented task. If it’s not, consider whether there’s a
better approach. It may take a bit more research, but it’s likely to be clearer and per-
form better once you’ve got there. Assuming we’ve already gone through this due dili-
gence step and decided we really, really want to perform a text conversion, there are
still a few pitfalls to avoid.

DESIGNING EFFECTIVE TEXT REPRESENTATIONS

I appreciate that it may feel like we’re putting too much effort into this area. After all,
it’s easy to just call toString() or the equivalent on your platform and be done with
it. But just taking a little bit longer to consider the desired result carefully can make a
big difference.

189Implementing date and time code
 You may well want to centralize all your text handling within any given application;
decide on what you want the results to look like for each concept and each audience,
document it, write the code once, then call it everywhere. That will ensure you are
consistent throughout the application, which can avoid some frustrating diagnostic
sessions. You still need to make sure you use the right centralized option in each case,
of course, and that means being clear about the audience.

 Any time you convert a date and time value into a string, you should consider what
will read that string later. Most situations fall into one of three categories, as shown in
figure 7.9:

 Text to display to a user
 Text to be parsed by code on another system
 Text to help a developer diagnostically

These three categories have different motivations and requirements. You might
expect users and developers to be similar, but typically, developer-oriented messages
(in logs and exceptions) look more like machine-readable representations.

User-visible text should usually take the user’s locale into account, at least in terms
of preferred date format. The most obvious example of this is in the numeric date
formats used. The United States uses a month/day/year format, whereas most of
the rest of the world uses a day/month/year format. Beyond the ordering, different
locales use different date separators, different time separators, and different longer
date formats (that might include the month name, for example). It’s almost never a
good idea to try to achieve a precise format here; most libraries allow you to specify
a general format, such as short time format or long date format, and they will then do
the right thing.

 The variability here means it’s almost never a good idea to try to parse text that has
been formatted for users. It’s possible you’ll need to do that for screen-scraping pur-
poses, but that’s just one more in a long list of reasons to try to avoid screen scraping,
if possible. If you must parse user-visible text, try to find a way of specifying the locale
to whatever is creating it. If you don’t know whether 6/7/2020 is July 6, 2020 or June 7,
2020, it is very hard to do the right thing without error-prone and complex heuristics.

 Text that is machine-readable is a different matter, however. When you’re creating
text for another machine to read, you should use a standard format as far as humanly

Sample text

05/10/2021 4:30 p.m.

2021-05-10T16:30:00-05 (2021-05-10T21:30:00Z)

2021-05-10T16:30:00-05

Audience?

End user

Developer

Machine

Conceptually:

Date and time with

UTC offset

Figure 7.9 Different text for different audiences

190 CHAPTER 7 Working effectively with date and time data
possible. For date and time values, that almost always means using an ISO-8601-
compatible format. Even within ISO-8601, there are multiple formats available. For
example, a date and time value half way through June 7, 2020 at 3:54:23 p.m. could be
represented as 20200607T155423.500, 2020-06-07 15:54:23,5, or multiple other vari-
ants. When choosing between these, my general recommendations are

 Where space allows, including date and time separators (dash and colon, respec-
tively) makes values a lot easier to read. Bear in mind that colons can’t appear
in Windows filenames though, and they can be awkward in colon-separated
paths in Unix too.

 The optional T between the date and time can make the value slightly harder to
read, but it helps to keep the values together. This is particularly important if
the context contains multiple space-separated values.

 Although the fractional-second separator can be a comma or a dot, and comma
is notionally preferred in ISO-8601, the practical reality is that dot is far more
prevalent.

 Specifying fractions of a second to a fixed length can be wasteful of space, but it
can help readability if you end up with columns of multiple values. If you
choose to use a variable length, you might want to stick to millisecond, micro-
second, or nanosecond precision, using 3, 6, or 9 digits of subsecond precision,
respectively. Values with (say) 4 digits after the dot or comma look a little odd.

You may be surprised to see considerations for (human) readability here. After all,
these are values intended to be parsed by code. But reality is that developers are likely
to end up looking at text files, JSON requests, or wherever else the text ends up. You
sometimes need to balance space concerns, which affect every value with readability
concerns that might only be relevant for one value in a million—but where the cost of
hard-to-read data is very high.

 This leads to the final category of audience: developers. Typically, a developer-
oriented text representation should be culture neutral, like the machine-readable
representation, but you may want to add more information that isn’t strictly neces-
sary. I would recommend starting off with a simple ISO-8601 representation and
adding more information where necessary. For example, if you’re representing a
date and time and a UTC offset, you might want to include both the local time and
the UTC instant, so you can compare values more easily. Occasionally, the most
appropriate developer representation may have less information than normal. For
example, you might be displaying log entries for a currently-running, short-lived
app and decide not to include the date part of the instant to avoid clutter. Once
you’ve decided how you want to represent a value in text form, the final step is writ-
ing the code to do it.

LEANING ON LIBRARIES

There’s a golden rule when it comes to text handling with date and time values (and,
indeed, most other text representations): don’t do it yourself. All worthwhile date and

191Implementing date and time code
time libraries have both formatting and parsing capabilities, and they’re much more
likely to get it right than you are because that’s their job.

 There’s one exception to this, which is where you’ve got a representation that is suf-
ficiently awkward that the library can’t handle it directly without a bit of text manipu-
lation first. For example, suppose you have to parse text such as Dec 28th 2020 into a
date. That’s far from an ideal representation to parse, but sometimes you may not
have any viable alternative. Depending on the library you’re using, it may not be able
to handle the ordinal part (the th of 28th). In that situation, it’s best to perform mini-
mal manipulation to get the text into a parsable format, such as Dec 28 2020, and then
use the library to parse the value as normal.

 It’s worth reading the text handling documentation for whatever library you’re
using carefully, particularly if you need to specify a custom format. Don’t assume that
format strings mean exactly the same thing on all platforms. Most of the date and time
questions on Stack Overflow around unexplained date and time parsing problems
are due to developers not paying enough attention to their format patterns, particu-
larly around m and M (for minutes and months) or h and H (for 12-hour hour-of-day and
24-hour hour-of-day).

 As we discussed earlier, it’s generally worth centralizing at least some aspects of
your date and time text handling. If you find yourself specifying the same format
string in multiple places for the same purpose, it’s definitely a good idea to remove
that duplication. Depending on the library you’re using, the centralization could con-
sist of some mix of

 Exposing common, immutable, thread-safe formatting objects (such as java
.time.format.DateTimeFormatter in java.time or NodaTime.Text.Local-
DatePattern in Noda Time)

 Exposing methods to perform the formatting and parsing
 Exposing the format strings themselves (such as "yyyy-MM-dd'T'HH:mm:ss'Z'"

for an ISO-8601 format for an instant in time with precision down to just
a second)

The last of these is simple but not ideal in terms of type safety; you could easily end up
using the wrong format string with nothing to warn you that you’re trying to format a
date as if it’s a date and time. It’s still a lot better than writing the same format string
in multiple places though.

 For much of this section we’ve assumed that we’re able to design the text format
ourselves, leading to a useful representation of the natural concept we’re modelling.
What about when that isn’t the case?

PARSING TO THE CONCEPT IN THE TEXT FORMAT

Sometimes we don’t get to control the format of the data we receive, and sometimes
that means we have to work with some unfortunate choices. That can lead to a situa-
tion in which the semantic meaning of a value doesn’t match the format used to rep-
resent it.

192 CHAPTER 7 Working effectively with date and time data
 Let’s take a somewhat extreme example. Suppose we’re writing an alarm clock
application, and we want to integrate with a third-party service that allows users to cre-
ate alarms to be used by multiple applications. The alarms could be daily, or they
could be for a specific date. Those feel like they’re somewhat different values—one is
just a time of day (which we would want to represent in our application as a java.time
.LocalTime), and the other might be a date and time (java.time.LocalDateTime).
We might expect those to have different representations in the API, but they may not.
We may receive JSON like the following:

{
 "alarms": [
 {
 "dateTime": "2021-04-01T07:00:00",
 "type": "once",
 "label": “April Fool prank"
 },
 {
 "dateTime": "1970-01-01T06:00:00",
 "type": "daily",
 "label": "Wake up"
 }
]
}

Here the time-of-day part is represented within a full date and time, using a date of
January 1, 1970 as information that can just be thrown away, as shown in figure 7.10.

Assuming we want to represent the time-of-day as a java.time.LocalTime in our
application, there are two ways we could do this:

 We could parse the value as a LocalTime directly with a custom format that
includes a literal 1970-01-01T before the time part.

 We could parse the value as a LocalDateTime and then obtain the time-of-day
part of the value (which is trivial via the toLocalTime() method).

I would recommend using the latter approach. It separates the two operations of con-
verting the value from text to its natural representation and obtaining the representation we actu-
ally want. It also allows us to model the JSON directly as a class should we wish to with
a dateTime property of type LocalDateTime. The JSON can be parsed without worry-
ing about how much of the dateTime value will be useful, and then we can convert
into potentially different classes based on the type value. The two different conver-
sions (one JSON to object and the other object to object) can be tested independently.

1970-01-01T06:00:00

Placeholder
text

Real
information

Figure 7.10 Text values can be a
mixture of placeholder text and real
information.

193Implementing date and time code
Anyone reading the code for the JSON model and looking at some sample JSON text
will see a direct correspondence between the two.

 That’s all we’re going to say about text representations of date and time values. It’s
one of those topics where there’s always more to learn, but the guidance above should
help to approach any issues you face in a productive way. Our final topic regarding
actual code doesn’t directly impact the behavior of the code at all as far as the com-
puter is concerned, but it can make all the difference for humans.

7.3.4 Explaining code with comments

There are plenty of opinion pieces on the internet suggesting that commenting your
code (in terms of implementation) is an admission of failure. While I can see where
those views come from, they’re too extreme for me. I certainly support clarifying the
code using carefully considered variable names, refactoring to keep each method
short and so on. But that’s typically about what the code is doing rather than why.
Where there are corner cases that may not be obvious to the reader, comments can be
vital to explain why an apparently simpler approach hasn’t been taken. This is particu-
larly relevant in date and time work. Comments can also be helpful when writing tests,
explaining the purpose of each test case. Let’s go back to our getFinalReturnsDate
method, implementing it and explaining the implementation at the same time, as
shown in the following listing.

/**
 * Computes the final date on which this item can be returned in the
 * simple "click a button" workflow. This is based on the date on
 * which the item is shipped from the warehouse, from the perspective
 * of the delivery location. The returns period (currently three
 * months; see {@link #RETURNS_PERIOD}) is added to the shipping date
 * to obtain the final returns date. When adding the returns period,
 * if the day-of-month goes beyond the end of the resulting month,
 * the result should be the start of the following month.
 *
 * @param shippingTime The instant at which the item shipped from
 * the warehouse.
 * @param destinationTimeZone The time zone where the item will be
 * delivered.
 * @return The final date on which this item can be returned.
 */
@VisibleForTesting
static LocalDate getFinalReturnsDate(Instant shippingTime,
 ZoneId destinationTimeZone) {
 LocalDate shippingDateAtDestination =
 shippingTime.atZone(destinationTimeZone).toLocalDate();
 LocalDate candidateResult = shippingDateAtDestination.plus(RETURNS_PERIOD);
 // LocalDate.plus truncates if the day-of-month overflows. For example,
 // March 31st + 1 month is April 30th, not May 1st in java.time. Our
 // requirements say we need to move to the next day in such cases

Listing 7.8 Providing copious comments to explain code

194 CHAPTER 7 Working effectively with date and time data
 // instead. The simplest way of checking for this is to subtract the
 // returns period and see whether we get back to the original shipping
 // date. If we don't, we know there's been an overflow and we need
 // to add a day.
 return
 candidateResult.minus(RETURNS_PERIOD).equals(shippingDateAtDestination)
 ? candidateResult
 : candidateResult.plusDays(1);
}

Even though this is a package-private method (and would be completely private if we
didn’t want to use it directly for testing), the Javadoc is useful for giving the details of
exactly what this method does. The comment within the implementation explains why
we’re subtracting the returns period from the result: that’s how we test for the over-
flow situation.

 Obviously, tastes vary when it comes to the verbosity of comments. The comments
here could be made a bit shorter, depending on what the team involved finds clearest.
Maybe the Javadoc could just link to the public method declaration for example,
although it wouldn’t be appropriate for that to refer to the private RETURNS_PERIOD
field. If we removed the Javadoc entirely, we’d still have the requirements documents
to fall back on, but those won’t explain why the method is implemented in the way
that it is. The implementation comment is valuable information that isn’t captured
anywhere else, and I’d be wary of removing that entirely.

 Some developers who dislike comments point to tests as a way of providing infor-
mation, and I’d agree. With the right tests in place, we’d be unlikely to accidentally
break the corner case around the day-of-month overflowing. But when reading code,
you don’t really want to have to try something different and see what breaks to under-
stand why it’s been written the way it has. Speaking of the tests, let’s look at some tests
for this method in the following listing.

public class OrderItemTest {
 private static Stream<Arguments> provideGetFinalReturnsDateArguments() {
 return Stream.of(
 // Simple case: UTC to make the date obvious, and no overflow.
 Arguments.of("2021-01-01T00:00:00Z", "Etc/UTC", "2021-04-01"),
 // America/New_York is UTC-5 in winter, so shipping time is on 2020-12-31.
 Arguments.of("2021-01-01T00:00:00Z", "America/New_York", "2021-03-31"),
 // Day-of-month overflow, example specified in requirements
 //document.
 Arguments.of("2020-11-30T12:00:00Z", "Etc/UTC", "2021-03-01"),
 // Check destination time zone usage: America/New_York moves from
 // UTC-5 to UTC-4 at 2021-03-14 07:00:00Z. First test below ships
 // on 2021-03-13, and the second ships on 2021-03-15 despite being
 // exactly 24 hours apart.
 Arguments.of("2021-03-14T04:30:00Z", "America/New_York", "2021-06-13"),
 Arguments.of("2021-03-15T04:30:00Z", "America/New_York", "2021-06-15"));
 }

Listing 7.9 Providing comments in tests to explain corner cases

195Corner cases to specify and test
 @ParameterizedTest
 @MethodSource("provideGetFinalReturnsDateArguments")
 void getFinalReturnsDate(String shippingText, String zoneText,
 String expectedText) {
 Instant shippingInstant = Instant.parse(shippingText);
 ZoneId zoneId = ZoneId.of(zoneText);
 LocalDate expectedDate = LocalDate.parse(expectedText);
 LocalDate actualDate = OrderItem.getFinalReturnsDate(
 shippingInstant, zoneId);
 assertEquals(expectedDate, actualDate);
 }
}

This is a single test method with five parameterized tests. The comment above each set
of arguments for the test method describes what aspect of the method the test is inter-
ested in. We could have written five different test methods with descriptive names
instead, but parameterization tends to be more compact and versatile. In some test
frameworks, we could provide a description for each argument list that would be
reported on failure; it’s worth exploring what’s possible with the test framework you’re
using. The exact mechanism for describing the purpose of each test isn’t important,
but the presence of the description is.

 Another point to note about these tests is that they use strings for the parameters
to the test method, which are then parsed in the method. That may feel slightly odd
after all the advice in this chapter to use the most appropriate data type throughout
your code, but it makes the tests significantly simpler to specify in my experience. In
the final section in this chapter, we’ll take another look at some corner cases you
might not otherwise consider.

7.4 Corner cases to specify and test
Everything in this section has been at least mentioned earlier, but we’ve collected the
points here as a sort of checklist to think about. These are all areas that regular appli-
cations need to be aware of—we’re not in the niche landscape of leap seconds, for
example. We’ll start off with the situation we’ve just covered in our returns date exam-
ple: adding a period to a date.

7.4.1 Calendar arithmetic

If you only need to deal with the Gregorian calendar, as most applications do, you can
probably just think about four ways in which calendar arithmetic can go wrong:

 Leap years causing February 29 to only occur (roughly) once every four years
 Day-of-month overflow, such as adding a month to March 31st because April

31st doesn’t exist
 Expecting operations to be reversible; in general, (date + period) - period

doesn’t always give a result of date.
 Expecting operation simplification to work; in general, (date + period1) +

period2 doesn’t always give the same result as date + (period1 + period2).

196 CHAPTER 7 Working effectively with date and time data
Just being aware of these oddities is often enough to help you design and test for
them. The voting scenario earlier is a fairly common one in that it requires careful
consideration between the strategies of adding a period to a starting date and seeing if the
result is in the past and subtracting a period from the current date and seeing if the result is
before the starting date. Where the choice is arbitrary, I’d generally recommend perform-
ing calendar arithmetic on the fixed aspect (i.e., adding a period to a starting date), as
I find it easier to think about and implement.

 When it comes to leap years, as well as testing, I’d strongly recommend against ever
implementing “is x a leap year?” logic yourself. This is something that’s firmly in the
realm of the date and time library, which you should trust to give the right answer.
This is a more general recommendation, in fact, with leap years just being one simple
specific example: if you find yourself doing anything particularly fiddly with date and
time data, you should take some time to see whether the date and time library you’re
using already has that functionality covered.

 One final part of calendar arithmetic is to consider whether you actually need to
do it at all. Often, you can work in either instants and durations or civil dates and peri-
ods. Consider whether you’re really concerned with elapsed time (i.e., suggesting a
duration) or the dates that humans will care about (i.e., suggesting periods). All of the
rest of the corner cases in this section are around time zones, which probably doesn’t
come as much of a surprise to anyone who’s had to deal with them for significant
pieces of code.

7.4.2 Time zone transitions at midnight

How would you define midnight? There are two obvious answers: 12 o’clock in the morn-
ing, also known as 00:00, using the 24 hour clock or the time when the date changes. Those
sound like the same thing, but they’re not always.

 Most time zones that observe daylight saving time change the clocks at 1 a.m. or
2 a.m. local time—but not all. In some cases, the change can skip the hour between
12 a.m. and 1 a.m. or fall back from 1 a.m. to 12 a.m. In that case, the second defini-
tion above always occurs exactly once, but the time of 00:00 might happen twice or
not at all.

 This means if you’re trying to represent the whole of a day in a specific time zone,
you need to find out when that particular day starts in that time zone. If you assume it
will be 00:00, you could end up facing a mountain of exceptions in log files one day,
after a daylight saving transition. I learned that the hard way. Check whether the date
and time library you’re using has a specific call that provides the date and time at the
start of this date in a given time zone. If it doesn’t, you’ll need to check whether or not
00:00 is valid before you use it.

 This is just one specific example of having to worry about ambiguous or skipped
times. The solution for this case is usually to find the start of the day, but that’s not the
right approach for the general case. Let’s think about that now.

197Corner cases to specify and test
7.4.3 Handling ambiguous or skipped times

As we saw in our earlier discussion of time zones, any given civil date and time can
occur zero times, once, or twice in a specific time zone, due to changes in UTC offset.
(These are almost always daylight saving time changes, but sometimes, the standard
UTC offset of a time zone can change too.)

 This can cause a problem either when a single date and time is specified (e.g., wake
me up at 1:30 a.m. on March 28, 2021, in London) or when you’re working with a recur-
ring event (e.g., perform a backup at 1:30 a.m. every day). There’s a significant difference
between these two in terms of user interaction: if a single date and time is given by the
user, you may reasonably be able to prompt the user with more options. If you’re deal-
ing with a recurring event, you may need to decide on the action to take on your own.
In the backup example, you could decide to start the backup operation the first time
that the local time is 1:30 a.m. or later, so you’d perform it at 2 a.m. if the clock skips
from 1 a.m. to 2 a.m. or the earlier occurrence of 1:30 a.m. if the clock falls back in
the opposite direction. That’s not the only option, although it’s probably the simplest
to understand. What’s important is that you anticipate it and make a decision in the
requirements and code.

 This sort of predicament is reasonably easy to test, at least if you’re using a clock
abstraction. It’s usually worth leaving comments with details of the time zone you’re
using for testing purposes though, rather than expecting every developer reading the
code to know exactly when each time zone has transitions. I’d also recommend using
dates in the past for these tests because you, hopefully, have accurate information
about the past, whereas the future can change. Let’s dig into that now.

7.4.4 Working with evolving time zone data

Earlier, we talked about the Windows and IANA time zone databases and how they’re
updated multiple times per year, as countries change their time zone rules. To be
absolutely clear, there isn’t a database change every time a country goes from daylight
saving time to standard time or vice versa. That kind of predictable change is covered
by the rules. Instead, the database changes when the rules themselves change. Exam-
ples of changes include

 Countries deciding to stop observing daylight saving time
 Countries deciding to start observing daylight saving time
 Countries changing when the spring forward and fall back daylight saving time

transitions occur
 Countries changing their standard UTC offset

For any individual country, changes are relatively rare (at least in general). But there
are many countries in the world, so the database changes several times in a year.
Often, multiple changes are batched together, so there isn’t one database version per
change. Before we talk about the impact of time zone changes on your code, we
should pause to consider where your application gets its time zone data from.

198 CHAPTER 7 Working effectively with date and time data
SOURCES OF TIME ZONE DATA

The time zone data source varies based on which platform you’re using and which
library you’re using. For example, if you’re using java.time, then the Java platform
you’re using comes with a built-in version of the time zone database, and that can be
updated using the TZUpdater tool. Other time zone rule providers can be registered
using the java.time.zone.ZoneRulesProvider class. Many other platforms will load
their time zone data from the operating system, possibly with a way of manually pro-
viding a specific version of the data.

 If you’re writing client-side code that runs in the browser, then the time zone
data will be obtained from your users’ browsers, unless you use a library that allows
you to load a specific set of rules. That can lead to a situation where different users
may have different versions of time zone data at the same time, which can obviously
complicate matters.

 It’s well worth researching—and then documenting—the sources of time zone
data for your application, remembering that each platform you use may have a differ-
ent source. (If some of your code runs on a user’s browser, some in a serverless Node
function, and some in a .NET service, for example, then you need to document all of
those sources separately.) How are updates to that data applied, and how much con-
trol do you have over that process? Once you’ve got that context, you can think about
how it impacts the data in your application.

STORING DATA THAT IS SENSITIVE TO TIME ZONE CHANGES

Earlier, we talked about discussing the source of any data in your system. It’s worth
repeating that to limit the scope of this section, partly because that may provide an
element of relief. Any timestamps recorded in your system should be recorded as
instants in time, and those don’t depend on time zones. The instant at which a data-
base record was committed, an order was placed, or a user was deleted doesn’t depend
on any time zone. (It probably does depend on the accuracy of the clock on the sys-
tem running the code, but that’s a separate matter.) In many systems, that accounts
for the bulk of date and time data.

 You may well convert those instants into local times in a particular time zone else-
where in your code, but the value that’s stored as an instant doesn’t need to change.
That should remain your source of truth, even if other derived data is stored.

 The opposite is often true for user-entered data though, particularly when that
data is in the future. Here, the source of truth is the local date and time that the user
entered, along with their location or time zone. I frequently see recommendations
to store all date and time data in UTC, effectively converting everything into instants.
For data that’s inherently instant-based, that’s fine, but it can cause problems in other
situations.

 The simplest example of this is if a user schedules an event in a particular location.
At the time of writing, France still observes daylight savings of an hour in summer,
so Paris has an offset of UTC+1 in the winter and UTC+2 in the summer. It’s entirely
possible—even likely—that in the near future, France will drop daylight saving time

199Corner cases to specify and test
entirely and stay on UTC+2 all year round. Let’s consider an example with the follow-
ing timeline, where a user in France is scheduling a meeting:

 January 10, 2021: user schedules a meeting for Friday, December 1, 2023 at
9 a.m. in the gallery Le Coin des Arts in central Paris.

 September 1, 2021: the French government declares that from March 27, 2022
at 1 a.m. UTC, the local time in France will become UTC+2 permanently. (This
is the currently-planned date of the spring forward—all later transitions are
effectively cancelled.)

 November 27, 2023: our user looks at his schedule for the coming week in the
application.

What should the user see? This is something that the product owner should decide, but
I suspect that in almost all applications, the user would expect to see the meeting as
they originally scheduled it: in Paris, on December 1 at 9 a.m. For the rest of this
thought experiment, let’s assume that’s what we want. (It’s important not to skip the
question in your own application though; this isn’t a one-size-fits-all situation.)

 Suppose when the user schedules the meeting, the application converts the date
and time to UTC, as so many developers advise. In 2021, the time zone data maps
2023-12-01T09:00 in Paris to 2023-12-01T08:00Z (where Z indicates UTC). When the
user checks their calendar on November 27, 2023, the application has to perform the
reverse mapping, but according to the up-to-date time zone data, it then maps 2023-
12-01T08:00Z to 2023-12-01T10:00 in Paris, so the user is led to believe their meeting
is at 10 a.m. This sequence of events is shown in figure 7.11.

 My recommendation is that if you want to preserve what the user told you (the local
date and time in Paris), then you should store what the user told you (the local time in
Paris). I’m aware that sounds trite, but it goes against the often-accepted wisdom.

592784654

Meeting in gallery

Le Coin des Arts, Paris

December 1st 2023

09:00

Title:User interface
(in 202)1

Database record

User interface
(in 2023, after
the rules have
changed)

Location:

Date:

Time:

Eventid Title Time zoneld Start time

Meet in gallery Europe/Paris 2023-12-01T08:00Z

Event created successfully!

Meeting in gallery

Le Coin des Arts, Paris

December 1st 2023

10:00

Title:

Location:

Dtae:

Time:

Upcoming events :

Figure 7.11 Converting to UTC for storage can have negative consequences

200 CHAPTER 7 Working effectively with date and time data
Now, just because you store what the user told you doesn’t mean that has to be the
only thing you store. It’s often really, really useful to store UTC values because then,
you can sort records in a global ordering of when things happen around the world.
(For example, if you’ve stored UTC values, you can tell that 5 a.m. in California hap-
pens after 9 a.m. in Paris, on the same date.) This requires you to differentiate
between source-of-truth data (what the user told you) and derived data (some other
form of the data that is computed from the source-of-truth data to make some use
cases simpler).

 When you have this distinction between source-of-truth data and derived data, you
can recalculate the derived data whenever you want, such as when the time zone data
changes. This introduces another aspect of data, of course: the version of the time
zone data you’re using. IANA data is versioned in a simple year-based way: 2020a,
2020b, etc. Windows time zone data isn’t versioned as transparently.

 If this sounds like it’s adding a lot of complexity to things, I agree. We’re now stor-
ing the local date and time, the time zone ID, the UTC date and time, and the time
zone data version, and we need to write an update process to run every time the time
zone data changes. It’s entirely possible that for many applications, particularly those
that usually store data in the past and only occasionally data in the future, the tradeoff
between effort and accuracy suggests not worrying too much about this. But it should
be a conscious decision with documented reasons.

In the above discussion, I’ve deliberately obscured source-of-truth data and derived
data distinction. Did you spot it? We started talking about in Paris (because the gallery
is in Paris), but we then stored a time zone ID. What about locations that change time
zones over time? That may sound far-fetched, but new time zones do come into being
sometimes, often because of wars. If a country is split in two due to a civil war, for
example, the resulting two countries may well choose to observe different local times,
so two places that used to be in the same time zone no longer are.

 Applying the same guidance as above, we should treat the time zone ID as derived
data and make sure we store the location as source-of-truth data. Then, when the map-
ping of location to time zone ID changes, the derived data in the database can change
too. Knowing when that mapping changes may be a more nuanced process than
detecting a simple change to the IANA time zone data, and the details are likely to
depend on what technology you use to perform the mapping in the first place. Going
back to tradeoffs, most applications may well decide that handling this sort of change

Countering the myth of store everything in UTC
The idea that you should store all date and time data in UTC is a very frequently-
repeated myth, even among seasoned developers. Most developers don’t consider
the possibility of time zone rules changing. You may well hear this in your own con-
versations, whether in person or on social media. Please play a part in raising aware-
ness about the problems with this approach.

201Summary
is out of scope. The time zone mapping changes less often than the rules associated
with each time zone.

 Speaking of problems that don’t happen terribly often, and at the risk of scaring
you somewhat, let’s combine this section with the previous one. We talked about
recomputing UTC values from local values when the time zone data changed, and ear-
lier, we talked about some options when it comes to local-to-UTC mapping in situa-
tions where the local value is skipped or ambiguous. I happily talked about prompting
the user for more information if they entered a difficult date and time. Oh, what a sim-
ple world that is . . . one where we have the user’s attention and can ask them ques-
tions. What if we’re in a situation in which the user enters an unambiguous date and
time in terms of the time zone data when they enter it, but that same date and time becomes
skipped or ambiguous later due to time zone data changes? You then need to make a
decision without the user’s input. Maybe you could send them an email to ask them for
clarification, but that’s a lot of effort for a rare corner within an already-rare corner
case. At least you are now aware of the challenge and can decide what’s right for you.

Summary
 Working with date and time information is complex, but is manageable if you

apply discipline and the right set of tools.
 Date and time data broadly falls into culture-insensitive machine time concepts of

instants and durations, and civil time concepts of calendar systems, dates, times-
of-day, and time zones.

 Calendar arithmetic (such as adding a month to a date) can behave in unex-
pected ways; it doesn’t have the same properties as simple integer addition.

 Most applications don’t need to deal with advanced concepts, such as leap sec-
onds and relativity. Scoping your requirements before you start can save a lot
of work.

 Date and time product requirements are often ambiguously specified. Pin
down exactly how the product should behave with plenty of examples, includ-
ing corner cases.

 Many developer platforms have multiple date and time libraries available. Take
some time to pick one that meets all your requirements and lets you write clear,
unambiguous code.

 Apply concepts consistently in your code base, converting between representa-
tions only at system boundaries.

 Use a clock abstraction to make code that uses the current date and time testable.
 Avoid implicitly depending on the system time zone or the system culture; where

you want to use these, be explicit about it or inject them as dependencies.
 Date and time values can be represented as text in different ways, depending on

the context. Consider the audience for the information, and design the text
representation accordingly.

202 CHAPTER 7 Working effectively with date and time data
 It can sometimes be hard to understand why date and time code is written in a
particular way. When you’re satisfied that code achieves its goals in the clear-
est way possible, but it’s not obvious why a simpler approach would fail (for
example in corner cases), don’t be afraid to use comments to explain the why
of the code.

 Time zone transitions (such as for daylight saving time) lead to local date and
time values that are either skipped or ambiguous. Think about (and document
and test) how you want to handle problematic values like this.

 Time zone rules change over time. Consider how your application should use
updated information and how that can affect existing data, particularly data
that refers to the future.

 Converting local values to UTC according to time zone information prior to
storage is sometimes appropriate, but it can lose information due to rules
changes. Be careful, and don’t assume this is a silver bullet!

Leveraging data
locality and memory

of your machines
With both streaming and batch processing in big data applications, we often need
to use data from multiple sources to get insights and business value. The data local-
ity pattern allows us to move computation to data. Our data can live in the database
or the filesystem, and this situation is simple as long as our data fits into the disk or
memory of our machines. Processing can be local and fast, but in big data applica-
tions, it is not feasible to store large amounts of data on one machine. We need to
employ techniques such as partitioning to split the data into multiple machines.
Once the data is on multiple physical hosts, it gets harder to gain insights from data
that is distributed in locations that are reachable via the network. Joining data in
such a scenario is not a trivial task and needs careful planning.

 We will follow the process of joining data in such a big data scenario. Before we
delve into that though, let’s start our chapter by gaining understanding of the main
concepts related to big data: data locality.

This chapter covers
 Data locality in big data processing

 Optimizing join strategies with Apache Spark

 How to reduce shuffling

 Memory vs. disk usage in big data processing
203

204 CHAPTER 8 Leveraging data locality and memory of your machines
8.1 What is data locality?
Data locality plays a crucial role in processing a nontrivial amount of data. To under-
stand why this concept solves many problems, we will look at a simple system that does
not use data locality. Let’s imagine we have a /getAverageAge HTTP endpoint that
returns the average age of all users managed by the service. Figure 8.1 shows how we
can move this data to computation.

When the client executes this HTTP call, the service fetches all the data from an
underlying data store. This can be a database, file, or anything persistent. Once all the
data is transferred to the service, it executes the logic of calculating an average by add-
ing all ages for each person, counting the number of persons, and dividing the sum by
the number of persons. Such a value is returned to the end user. It’s important to note
that only one number is returned.

 We can describe this scenario as moving data to computations. There are a cou-
ple of important observations to make here. The first one is that we need to fetch all
the data, which can be tens of gigabytes. As long as this data fits in the machine’s
memory that calculates the average, there is no problem. The problem starts when
operating on big data sets that can have terabytes or petabytes of data. For such a
scenario, transferring all the data to the machine may be complex or not feasible.
We could, for example, use a splitting technique and process data in batches. The
second important observation to make is that we will need to send and retrieve a lot
of data via the network. The I/O operations are the slowest ones in data processing.
It involves filesystem reads and blocking because we are transferring a substantial
amount of data. There is a nonnegligible probability that some of the network pack-
ets will get lost, and we will need to retransmit parts of the data. Finally, we can see
that the end user is not interested in any data besides the result or the computation,
which is an average.

 One of the pros of this solution is its simplicity from the programming perspective,
assuming the amount of data we want to process fits in machine memory. Those obser-
vations and drawbacks are the main reasons why processing in such a scenario is
inverted, and we are moving computations to data.

Fetches all data and

calculates the average

Person: name, age

Mike, 20

Tomas, 30

Andrew, 40

....

/getAverageAge Figure 8.1 Moving data
to computation for the
/getAverageAge
HTTP endpoint

205What is data locality?
8.1.1 Moving computations to data

At this point, we know that sending data to computations has a lot of drawbacks, and
this may not be feasible for big data sets. Let’s solve the same problem presented in
the previous section by using a data locality technique.

 In this scenario, the end user sees the same /getAverageAge HTTP endpoint
responsible for calculating an average. The underlying processing changes a lot. The
calculation of an average is simple logic, but still, it involves some coding. We need to
extract the age field from every person, add this data, and divide by the count. Big
data processing frameworks expose an API that allows engineers to code such trans-
formations and concatenation easily.

 Let’s assume that we want to use the Java language to code this logic (however, it
can be any other language). The logic responsible for such a computation is created
in the service, but we need a way to transfer it to the machine that has the actual data.
Figure 8.2 illustrates the processing of moving this data.

The first step that needs to be done is to serialize the CalculateAverage.java file to
bytes. We need this form of representation to be able to send the data easily via a net-
work. The data node (a machine that stores data) needs to have a running process
responsible for retrieving the serialized logic.

 Next, we transform the bytes (deserialize them) into a form that can be executed
on the data node. Most big data frameworks, such as Apache Spark or Hadoop, pro-
vide a mechanism for serializing and deserializing the logic. Once the logic is deserial-
ized, it is executed on the data node itself. From the calculated average function’s
perspective, the logic operates on the data that resides on the local filesystem. There is
no need to send any person’s data to the service that exposes the HTTP endpoint.
When the logic calculates the average successfully, only the resulting number is trans-
ferred to the service. The service then returns the data to the end user.

Serialize

to bytes

CalculateAverage.java

/getAverageAge

CalculateAverage
bytes

Person: name, age

Return result

Deserialize

action and

execute

Mike, 20

Tomas, 30

Andrew, 40

....

Figure 8.2 Moving computation to data and returning a result

206 CHAPTER 8 Leveraging data locality and memory of your machines
 Again, there are important observations to make in this scenario. First, the
amount of data we need to transform via a network is small. We need to transform
only the serialized function and the resulting number. Because the network and I/O
is a bottleneck in such processing, this solution performs substantially better: we
turned the processing that was I/O bound into processing that is CPU bound. If we
have to speed up the average calculation, we can, for example, increase the number
of cores on the data node. For this use case (moving the data to computation), it’s
harder to speed up the processing because increasing network throughput is not
always feasible.

 The solution that uses data locality is more complex because we need logic for seri-
alizing processing. Such logic may get complicated for more advanced processing.
Also, we need a dedicated process that runs on the data node. This process needs to
be able to deserialize the data and execute the logic. Fortunately, both steps are imple-
mented and provided by big data frameworks, such as Apache Spark.

 Some readers may notice that the same data locality pattern is applied for data-
bases. If you want to calculate the average, you issue a query (e.g., with SQL) that is
transferred to a database. Next, the database deserializes the query and executes the
logic that uses data locality. These solutions are similar, but big data frameworks give
you more flexibility. You can execute the logic on data nodes that contain all kinds of
data: Avro, JSON, Parquet, and any other format. You are not tied to a database-specific
execution engine.

8.1.2 Scaling processing using data locality

Data locality plays a crucial role in big data processing because it allows us to scale and
parallelize the processing easily. Imagine a scenario in which our data stored on the
data node doubled. Thus, the total amount of data does not fit the disk space of one
node. We cannot store all the data on one physical machine, so we decide to split it
into two machines (how the data is split will be covered in the next section).

 If we used the technique of moving data to computations, the amount of data we
need to transfer via the network would double. It will slow the processing substantially
and get even worse if we have more than two data nodes. Figure 8.3 shows how our
data would look after splitting our data on two machines.

 Scaling and parallelizing the processing while using data locality is fairly easy to
achieve. Instead of sending the serialized processing to one data node, we send it to
two data nodes. Each of the data nodes will have the process responsible for deserial-
ization of logic and running the processing. Once the processing is complete, the
resulting data is sent to the service that coalesces it and returns it to end users.

 At this point, we know the benefits of data locality. Next, we need to understand
how to split big data into N data nodes. This is essential to understand if we want to
operate on big data and gain business value. We will discuss this in the next section.

207Data partitioning and splitting data
8.2 Data partitioning and splitting data
In the previous section, we saw that scaling big data processing is easier if we can use
the data locality technique. In real-world big data applications, the amount of data we
need to store and process can be often counted in the hundreds of terabytes or peta-
bytes. It is not feasible to store such an amount of data on one physical node. We need
a way to split that data into N data nodes. The technique for splitting the data we’ll
look at in this section is called data partitioning, but there are many techniques to par-
tition your data.

 For online processing sources (like a database), you can pick some ID (for instance,
user ID), and store a range of users on a dedicated node. For example, assuming that
you have 1,000 user IDs and 5 data nodes, the first node can store IDs from 0 to 200,
the second node can store data from 201 to 400, and so on.

 When picking the partitioning scheme, you need to be careful not to introduce
data skew. Such a situation can occur when most of the data is produced by an ID or a
group of IDs that belong to the same data node. For example, let’s assume that the

CalculateAverage.java

/getAverageAge

CalculateAverage
bytes

Data node 1

Return result

Deserialize

action and

execute

Data node 2

Deseralize

action and

execute

Return result

Person: name, age

Mike, 20

Tomas, 30

Andrew, 40

....

Person: name, age

John, 20

Josh, 10

Zack, 30

....

CalculateAverage
bytes

Figure 8.3 Scaling processing to two machines using data locality

208 CHAPTER 8 Leveraging data locality and memory of your machines
user ID 10 is responsible for 80% of our traffic and generates 80% of the data. There-
fore, this means that 80% of the data is stored on the first data node, so our partition-
ing will not be optimal. In the worst case, this user’s amount of data may be too big to
store on the given data node. It is important to note that for online processing, parti-
tioning is optimized for reading or writing data access patterns.

8.2.1 Offline big data partitioning

We will focus now on the offline big data processing partitioning. For big data systems,
we often need to store the historical data (cold data) for an indefinite amount of time.
It is crucial to store the data for as long as we can. When the data is produced, we may
not be aware of the business value that it can bring.

 For example, we may save all user’s request data with all the HTTP headers, but
when the data is saved, there may be no use case for these HTTP headers. In the future,
however, we may decide to build a tool that profiles our users by the type of device (e.g.,
Android, iOS, etc.) they use. Such information is propagated in the HTTP headers. We
can execute our new profiling logic based on the historical data because we stored it in
the raw data. It is important to note here that the data was not needed for a long time.

 Now, suppose we need to store a lot of information and save it for later. Thus, our
storage needs to contain a lot of data stored in cold storage. In big data applications,
this often means data is saved to a Hadoop distributed filesystem (HDFS). This also
means the data should be partitioned in a fairly generic way. We cannot optimize for
read patterns because we cannot anticipate how those read patterns will look.

 For these reasons, the most common data partitioning scheme for big data offline
processing is based on dates. Let’s assume we have a system that saves user’s data on
the /users filesystem path and clickstream data in the /clicks filesystem path. We
will analyze the first data set that stores the user’s data. We assume that the number of
records we store is equal to 10 billion. We started collecting the data in the year 2017,
and it’s been collected since then.

 The partitioning scheme that we pick is based on the date. It means that our par-
tition identifier starts with the year, so for example, we will have 2017, 2018, 2019,
and 2020 partitions. If we have smaller data requirements, partitioning by year may
be enough. In such a scenario, the filesystem path for our user’s data would be
/users/2017, /users/2018, and so on (as figure 8.4 illustrates), and it will be analogi-
cal for clicks: /clicks/2017, /clicks/2018, and so on.

 By using this partitioning, the user’s data will have four partitions. This means we can
split the data into up to four physical data nodes. The first node will store the data for the
year 2017, the second node for 2018, and so forth. Nothing prevents us from keeping all
of those partitions on the same physical node. We may be OK with storing the data on
one physical node, as long as we have enough disk space. Once the disk space runs out,
we can create a new physical node and move some of the partitions to the new node.

 In practice, such a partitioning scheme is too coarse-grained. Having one big parti-
tion for all data in one year is hard from both a read and write perspective. When you

209Data partitioning and splitting data
read such data and are interested only in events from a particular date, you need to
scan the whole year’s data! This is not only time-consuming, it’s inefficient. It is also
problematic from the writing perspective because if your disk space runs out, there is
no easy way to split the data further. You won’t be able to perform a successful write.

 Because of that reason, offline big data systems tend to partition the data in a more
fine-grained fashion. The data is partitioned by year, month, and day. For example, if
you are writing data for January 2, 2020, you can save the event in a /users/2020/
01/02 partition. Such partitioning gives you a lot of flexibility on the read side as well.
If you want to analyze events for a specific day, you can directly read the data from the
partition. If you want to perform some higher-level analysis (for example, analyze the
whole month’s data), you can read all the partitions within a given month. The same
pattern applies if you want to analyze a whole year’s worth of data. To sum up, our 10
billion records will be partitioned, as figure 8.5 demonstrates.

Partition 1

/users/2017

Data node 1

Partition 3

/users/2019

Data node 3

Partition 4

/users/2020

Data node 4

Partition 2

/users/2018

Data node 2

Figure 8.4 Four data partitions for a
partitioning scheme based on the date

FEB

MARCH

JAN

2017

2018

2019

2020

10B

250K

400K

200K

600K

100K

1

4

3

2

5

2B

3B

2B

3B

10M

10M

35M

Figure 8.5 Date-based data
partitioning by year, then by
month, then by day

210 CHAPTER 8 Leveraging data locality and memory of your machines
You can see that the initial 10 billion records are partitioned into year, month, and,
finally, a specific day of the month. In the end, each day’s partition contains 100,000
records. Such an amount of data can easily fit into the disk space for one machine. It
also means that we have 365 or 366 partitions per year. The upper number of data
nodes on which we can partition the data is equal to the number of days times the
number of years we store the data. If your one-day data does not fit into one machine
disk space, you can easily partition your data further by hours, minutes, seconds, and
so on.

8.2.2 Partitioning vs. sharding

Assuming we have our data partitioned by the date, we can split that data into multi-
ple nodes. In such a scenario, we put a subset of all partition keys in a physical node.

 Say our user’s data is partitioned into N partitions (logical shards). Let’s assume
our partition granularity is one month. In that case, the data for the year 2020 has 12
partitions that can be split horizontally into N physical nodes (physical shards). It is
important to note that N is less than or equal to 12. In other words, the maximum
level of physical shards is 12. This architecture pattern is called sharding.

 Now, let’s assume we have three physical nodes.
In that case, we can say our user’s data for the year
2020 is partitioned into 12 partitions. Next, the data
is assigned to three shards (nodes). Each of the
nodes stores four partitions for the year 2020 (12 par-
titions ÷ 3 nodes = 4 partitions per node), as figure 8.6
shows.

 In the figure, the physical shard is the same as the
physical node. The partition keys (logical shards) are
distributed evenly to physical shards. In case a new
node is added to a cluster, each physical shard needs
to reassign one of its logical shards to a new physi-
cal node.

 There are a variety of algorithms for shard assignments. These also need to handle
shard redistribution in case of adding or removing a node (failure or scaling down).
This technique is used by most big data technologies and data stores, such as HDFS,
Cassandra, Kafka, Elastic, and others, and the details how they perform sharding vary
depending on the implementation.

8.2.3 Partitioning algorithms

The previously described technique is called range partitioning, where data is divided
into ranges based on the dates when data was produced. Depending on the read pat-
tern, we may decide to partition data differently.

 Let’s assume we want to fetch all events saved for a specific user ID. Assuming we
have a range partitioning, this is tough to achieve. To retrieve all users for a given ID,

Physical shard 1

1

3 4

2

Physical shard 2

5

7 8

6

Physical shard 3

9

11 12

10

Figure 8.6 Sharding for 3 physical
nodes and 12 partitions

211Data partitioning and splitting data
we need to scan all partitions that may live on different physical nodes and then filter
the data that we need. We won’t be able to use the data locality. All partitions must be
scanned because we don’t know upfront when the specific user_id action was exe-
cuted. It can be in any date’s partition.

 Let’s assume that we need to partition our data based on the user_id. We want to
distribute N keys into M physical nodes evenly. The proven technique for achieving
this would be the hash partitioning algorithm. First, we need to hash the user_id
using some hashing algorithm (e.g., MurmurHash), which returns a number. Next,
we need to execute a modulo, M, operation on that number (M is a number of
nodes). This will assure us that N partitions keys will be evenly split into M nodes. Ide-
ally, every node should contain N ÷ M partitions. We can skip the hash operation and
execute modulo directly on the user ID, as long as the ID is a number. However, to
make this algorithm work for any type of partition key (e.g., for a String), we apply
the hashing to transform the nonnumber value into a numeric one. Figure 8.7 depicts
this usage.

In our example, we have two nodes (M = 2). Let’s assume that node’s IDs are 0 and 1.
When the first event for user_id 1 arrives, we apply a hash function on this ID, and

Node id 0

user_id
= 2

Node id 1

user_id
= 1

user_id = 1

data:

Send to 1Send to 0

Partitioner:

hash(user_id) % 2

user_id = 2

data:

user_id = 1

data:

user_id
= 1

Figure 8.7 Hash partitioning used to partition our data based on the user_id

212 CHAPTER 8 Leveraging data locality and memory of your machines
then we do modulo 2 on the result. For the user_id 1, the result will be 1. As a result,
this event will be sent to a node ID 1 and saved there. When another event, but this
time for user_id 2, arrives, our partitioning algorithm assigns it to node 0 and saves it
there. Next, another event for user_id 1 arrives. Our partitioning determines that it
should land on node ID 1.

 Because of this behavior, there is a guarantee that every event for user_id 1 will be
stored in the same node. Due to that, we can easily apply operations by user_id that
use data locality. The data for this user is already on the same node. By using this algo-
rithm, all N users_id will be split evenly into two nodes.

 The presented solution shows an excellent example for understanding the parti-
tioning but has a couple shortcomings. The main problem with this approach is when
we decide to add a new node to a cluster. The same problem is when one of the nodes
is removed (on purpose or by failure).

 Let’s consider a situation where we add a new node (see figure 8.8). Suddenly, our
partitioning algorithm changes because we need to execute modulo 3 (the number
of nodes).

Let’s assume that the first three events are sent when we have two data nodes (so the
partition’s assignment is the same as in the previous example). This is our state T 0
(time 0). Next, at the time T1, a new node is added to the cluster. It changes the parti-
tion’s assignment because suddenly, we need to calculate modulo 3. When the
user_id 2 arrives, the new partitioning algorithm calculates a partition for this ID to
be equal to 2. This results in sending this new event to a new node. It is clear to see

Node id 0

user_id
= 2

Send to 1Send to 0
Send to 2

Partitioner:

T0 hash(user_id) % 2

change to

T1 % 3hash(user_id)

Node id 1

user_id
= 1

user_id = 2

data:

user_id = 1

data:

user_id = 1

data:

user_id = 2

data:

T1 adding a new node (id 2)

Node id 2

user_id
= 1

user_id
= 2

Figure 8.8 Adding a new node

213Join big data sets from multiple partitions
that we are losing our data locality. The events for the same user id (2) are now on
two physical nodes. Our partitioning is broken from the perspective of what we
wanted to achieve.

 How do we alleviate this problem? We could transfer all events for user_id = 2 to a
new node that is an ID owner. However, with our naive way of calculating a partition
assignment based on the number of nodes, the number of such operations will be sub-
stantial. It will involve a lot of data movement that is costly. Let’s calculate that for 10
event IDs. When calculating modulo 2 for these, the IDs 1, 3, 5, 7, and 9 will land on
node ID 1, and the values 2, 4, 6, 8, and 10 will land on node ID 0.

 How does this change if we add a new node (modulo 3)? The IDs 3, 6, and 9 will
land on node 0. Ids 1, 4, 7, and 10 will land on node 1, and the rest of the IDs (2, 5,
and 8) will land on node 2. Only IDs 3, 6, and 9 have the same physical node location.
The rest of the IDs (70% of the data) need redistribution.

 In a real-world cluster, this effect will be multiplied by the number of nodes. The
more nodes we have, the more data movement we may need. When our nodes store
a lot of data, such a redistribution process may not be feasible in a sane amount of
time. What’s worse, this may impact the online application that saves data to such a
data store.

 To reduce this effect, we may consider using a consistent hashing algorithm (http://
mng.bz/Yg9B). This solves our problem by introducing virtual slots that are assigned
to M nodes. When a new node is added, only a small portion of virtual slots needs
redistribution. Different variants of this algorithm are used in many production
systems.

 Now that we know about data locality principles and know how to partition the data,
let’s try to solve the problem of joining data sets from multiple partitions residing on dif-
ferent physical machines. The next section presents a solution for this problem.

8.3 Join big data sets from multiple partitions
We will dive into three separate business use cases that require different join strate-
gies. Each of those strategies uses the data locality at some level. We will analyze those
use cases conceptually without delving into implementation details yet. Those will be
covered in the next section.

 Let’s start by understanding the structure of stored data. As you remember, we
divided our data into partitions based on dates, and we have two data sources. The first
data source stores the user’s data. Each partition (for example, users/2020/04/01),
contains N files with N number of users rows. The data can be stored in any format:
textual or binary.

 For example, if we pick the binary AVRO format, a batch of records will be serial-
ized to this format and saved to a file on the HDFS. One partition can contain N files.
Each of those files will contain its part of the data for the given partition. Typically,
one file will occupy at most the maximum block size of the filesystem. For the HDFS,
this value is equal to 128 MB.

http://mng.bz/Yg9B
http://mng.bz/Yg9B
http://mng.bz/Yg9B

214 CHAPTER 8 Leveraging data locality and memory of your machines
 If, for example, we have 200 MB data for users/2020/04/01, we will have two
files: users_part1.avro and users_part2.avro, as figure 8.9 shows. Each of those
files will contain the user’s data. Let’s assume that each user has multiple values (e.g.,
age and name). Most importantly, the users have a user_id identifier that identifies
a user uniquely. We will use that field when performing a join operation with other
data sets.

The same situation happens for the clicks partition. We will have N files within a parti-
tion responsible for a specific date. For example, clicks/2020/01/20 might contain
files with rows for this given partition. For our join use case, it is important to note that
the clicks data contains the user_id field as well. It allows us to correlate clicks with a
specific user from the user’s data set. We will use this relationship when performing
joins on those two big data sets.

8.3.1 Joining data within the same physical machine

The first business use case we need to solve is joining clicks and user data for the same
date. In other words, we need to get all clicks for the user’s visit within a given day.

 This is a common business use case: joining data generated by different systems for
the same user IDs. We can imagine that the user’s data contains information about the
payments, transactions, and other things users do. It could be collected by services
responsible for making payments and finalizing users’ actions. On the other hand, the
clicks data contains less strict information; each click on the website is collected and
saved by the clicks service. This information can be used to track the usage patterns
and activity of a given user. Our goal is to correlate the clicks with the actual users’
actions. Does the click lead to a specific transaction? Did users click a lot of times but
abandon the product and not make the purchase? By joining this data, we can infer
more meaning from it and provide a business value for our company.

 For example, let’s assume we need to join the users and clicks data for the whole
year 2020. We can parallelize the processing to a maximum factor of 366 (days). The
reason for this is we have that many partitions for this year. Our process needs to go

users_part_1.avro

user_id_1, Tom, 30

user_id_2, Mike, 40

......

Users/2020/04/01

users_part_2.avro

user_id_1000, Zack, 30

user_id_1001, Doug, 40

......

Figure 8.9 User’s
partition data

215Join big data sets from multiple partitions
through all rows for a given user’s partition, find the corresponding data in the clicks
partition, and join the data using the user_id identifier.

 Let’s assume the same physical machine carries the same data for the same date
partition for both users and clicks data. For example, when we join the data for
2020/01/01, the data for both clicks and users will be local to a process. We will be
able to use data locality. There is no need to fetch data from a remote location. Every
piece of data needed for performing joins is present on the data node.

Let’s assume all partitions for a specific month live on the same physical data node.
When we perform a join for January 2020, clicks for the month’s first day are present
locally. The user’s data is also present locally. Joining the data in the big data ecosys-
tem can be described as transforming two data sets into one final data set. When such a
transformation does not require any data movement, we call this a narrow transforma-
tion. In other words, we can transform our data (perform a join) fully, using data
locality. Next, we will look at a business use case that requires a join operation involv-
ing data movement.

8.3.2 Joining that requires data movement

The next business use case we need to solve requires joining data between partitions
(figure 8.11). Let’s assume we need to find all unique users for the year 2020. This
means we need to join data from all month’s partitions using user_id. Once we join
the data, we need to keep only one value per user’s ID, removing the duplicates. The
final user ID is returned.

 It’s important to note that we need to process all user events for every user’s parti-
tion. For example, let’s consider a case for joining data for user_id 1. First, we need to

2020/01/01

2020/02/01

2020/03/01

Figure 8.10 Narrow
transformation with no
data movement involved
when joining two data sets

216 CHAPTER 8 Leveraging data locality and memory of your machines
filter the users with this ID on every data node. All days partitions for 2020/01 can
execute the filtering logic using data locality. This operation needs to be executed on
every date partition. Once we filter the data, it needs to be sent to a data node that
processes the given user_id 1. We still have the assumption that each month’s data
resides on the dedicated data node. This means that data from all 12 months for the
year 2020 need to be sent to a data node that performs a join operation for our user
ID. In reality, every data node will process a range of IDs.

 Our join logic requires substantial data movement at the second stage. Although we
are using data locality at the filter stage, the second stage requires network usage. Such a
transformation that requires data movement is called wide transformation. The process of
exchanging the data between data nodes is called data shuffling. The more data shuffling
our big data processing has, the slower it is. As you may remember from the data locality
chapter, operations that require substantial network usage are far from optimal.

User_id:

1-100

User_id:
101-201

User_id:

N-X-N

Date partitions
Data nodes collecting

user_ids

2020/01

2020/02

2020/03

Figure 8.11 Wide transformation, where we move data between partitions

217Join big data sets from multiple partitions
 Some optimizations can reduce the data shuffling when performing joins. How-
ever, they strongly depend on the business use case and data characteristics. When you
join the data, it’s often the case that one of the data sets is smaller, while the other is
huge. In such a case, we can implement a hybrid solution that uses data locality as
much as it can. On the other hand, the data also requires shuffling, but this can be
reduced to a minimum.

8.3.3 Optimizing join leveraging broadcasting

Let’s now consider a use case that allows us to implement a useful join optimization.
Our business use case states that we need to get only clicks for one month of user’s data.

 This is needed because we want to find a correlation between one of the user’s cli-
ents and the user’s data change that happened recently. By recent, we mean the current
day of processing.

 Such a process runs every day to match the clicks for the current day for all users.
We will run the join process for users within the current year. To demonstrate the opti-
mization, we will make one additional change to our initial example. It turns out that
clicks and user’s data take up too much disk space, and we need to move both data
sources to a separate physical machine. This means there is no more data locality
between users and clicks. All operations that require joining these data sources
require data movement.

 There is one important observation we should focus on. The clicks data we need
to join has only one day of data, meaning that the size of this data set is relatively
small. The user’s data we need to join, however, is relatively huge. We need a whole
month of user data to fulfill our business use case. This gives us a scenario in which
one data set is orders of magnitude smaller than the other dataset needed to per-
form a join.

 When doing joins, our main goal is to reduce data shuffling, leveraging data local-
ity as much as possible. We can achieve both of these goals by sending the smaller data
set (clicks) to a data node that contains the larger data set (users), so in this scenario,
we retrieve those clicks and propagate them to all the data nodes that carry the 2020
year’s user data (figure 8.12). Remember, we have a dedicated physical machine for
each month. This means that we need to propagate the clicks data to 12 machines.

Clicks for

today

2020/02/012020/03/01 2020/01/01

Broadcast

Clicks for

today

Clicks for

today

Clicks for

today
Figure 8.12 Using
broadcast with joins

218 CHAPTER 8 Leveraging data locality and memory of your machines
The clicks for today’s data set is broadcast to all data nodes that contain the user’s
data. Thus, it is called a broadcast data set. The network consumption (data shuffling) is
required only to send the smaller data set to nodes where the bigger data set resides.
Because the join process runs locally on the machines with the user’s data, the process
will examine all days’ partitions for 2020/01 and join the data with clicks for today.
The same operation is repeated for all months in the year 2020.

 With this technique, we can leverage the user’s data set data locality. Only a small
portion of clicks data needs to be sent over the network. There is one important
caveat here we need to be careful about though. This optimization technique only
works properly as long as the smaller data set can fit into data node memory. Once the
data is in memory, we can access it orders of magnitude faster than data on disk or
data that needs to be transferred via the network. The next section describes the
tradeoffs between big data processing that utilizes memory (e.g., Apache Spark) ver-
sus an older disk-based approach (e.g., Hadoop).

 Note that, although we use Spark, the techniques described are common to most
big data processing frameworks. Regardless of the API that big data frameworks
expose, they tend to implement the MapReduce paradigm underneath. Therefore,
the optimization we discuss next can be applied to all of those frameworks. Let’s see
how that impacts our join operation’s performance.

8.4 Data processing: Memory vs. disk
So far, we have learned how we can leverage data locality in joins. This allows us to
reduce our processing time by lowering the amount of data that needs to be sent over
the network. However, even if we have the data local to our processing, we need to
load that data into the big data framework that performs the join.

 Let’s elaborate more on the example given in the previous section. As you remem-
ber, we joined the smaller data set (i.e., clicks) with the larger one (i.e., users). The
clicks data set was sent over the network to the node that does the processing and that
contains the user’s data. Next, it was kept in the data node’s memory.

8.4.1 Using disk-based processing

Let’s now consider what will happen with the user’s data. We are assuming that the
user’s data does not fit into the machine’s memory, so it needs to be accessed from the
disk as the processing progresses. We can solve this problem in two ways.

 The first solution reads segments of files lazily. Let’s assume that the user’s data
takes 100 GB, split into 1,000 parts. Each of those parts has 100 MB and has a dedi-
cated file. When the join process finishes the first chunk of the file, it writes the result
into an intermediate file. Then, it continues the processing by loading the next part of
the data, performing another join, and saving it again. This process is repeated until
all data is processed, as figure 8.13 shows.

 This is, in fact, how the standard MapReduce Hadoop-based big data processing
works. Hadoop processing is built around access to the disk, and it’s the filesystem.

219Data processing: Memory vs. disk
The main integration point between stages in big data processing is a file. Every stage
that produces results saves those results into an HDFS (file system). The next Hadoop
task takes the data and processes it.

 Such an approach has a couple pros. It allows engineers to write their processing
independently. Every processing stage produces immutable results that shouldn’t be
modified. Each stage in the processing takes the path to the filesystem as an input.
Then, it produces files in a different location as output. Unfortunately, disk-based big
data processing has one huge con—it’s incredibly slow.

8.4.2 Why do we need MapReduce?

The main idea behind MapReduce is data locality. To understand why we need the
map and reduce phases and how it leverages the data locality, let’s explain how the
famous word count problem can be solved. We will solve it using the MapReduce par-
adigm and try to understand why it is the best solution for big data sets.

 Let’s assume we have N text files split into M data nodes in our cluster. Each text
file is a big data set and occupies N GB. Our task is to calculate the occurrences of
every word in every text file. What’s important is that all the data sets (M nodes × N GB
per file) cannot fit the memory in one machine. Therefore, we need to distribute our
processing somehow.

 Let’s focus on the first stage of our processing that is local with data locality. All
operations are executed in the context of a node where the data originates. Figure 8.14
shows the first stage in this process.

 In this scenario, we have three data nodes. On the left side of figure 8.14, we can
see that each of the nodes has a big data file with some text in it. Each of those files is
so big that it is not possible to send all of those to one node and do our calculations
there. First, we split the text file into N words. For each word, the map phase creates a
key-value pair: the key is a word, and the value is the number of occurrences of the
given word. At the first stage of processing, the value is always equal to 1.

 At first glance, this stage seems naive and unneeded. However, the main point of
doing this is to create a partition key for every record. Our partition key is just a word
for which we do a word count. All pairs with the same partition key will eventually be
sent to the same data node. We will get back to this shortly.

 Once our data is partitioned, we can execute a local reduce. This means that all pairs
with the same key (word) will be coalesced and reduced to a new pair, where the key is

MapReduce processing

Iteration 1 Iteration 2

Disk read Disk readDisk write Disk write

Figure 8.13 Disk-based big data processing

220 CHAPTER 8 Leveraging data locality and memory of your machines
the same as before. However, the count will change for some of our words. The reduce
operation on data node 1 reduces two occurrences of the pairs (first, 1) to one occur-
rence (first, 2). This is the first stage of our word count, which is executed locally on
each node. Once we reduce all pairs locally, we are ready to execute the second stage.

 The second stage (figure 8.15) involves moving data over a network (data shuf-
fling). According to the partitioning algorithm, the data is distributed into N nodes.
What’s important here is that the data for the same partition key (word) always lands
in the same data node.

 We can see that the first data node processes pairs for the partition key we’ve
named first: all pairs with this partition key must be sent to the first data node. The
(first, 2) pair stays on the same data node, so it does not involve data shuffling. How-
ever, the third data node has a (first, 1) pair to send over the network to a first data
node. Once the data movement completes, the last reduce step can be executed.

 What’s important at this stage of processing is that we can be sure all the data for
the same partition key is on the same data node. Therefore, we can execute yet
another reduce that uses data locality. The reduce operations can be executed in par-
allel per partition key, speeding up our computations.

 Finally, as shown in figure 8.16, the results of our processing produces one pair for
every analyzed word. The result can be saved to a filesystem, database, queue, etc., for
further processing.

 It is important to note that this solution will have problems in case of data skew.
Let’s assume we have one partition key that contains most of the data we need to

First second first file . . .

Second file . . .

Third first file . . .

Map stage:

(first,1)
(first,1)
(second,1)
(file,1)

Map stage:

(second,1)
(file,1)

Map stage:

(third,1)
(first,1)
(file,1)

Data node 1

Data node 2

Data node 3

Reduce:

(first,2)
(second,1)
(file,1)

Reduce:

(second,1)
(file,1)

Reduce:

(third,1)
(first,1)
(file,1)

Figure 8.14 Word count: First phase on a local machine using data locality

221Data processing: Memory vs. disk
First second first file . . .

Second file . . .

Third first file . . .

Map stage:

(first,1)
(first,1)
(second,1)
(file,1)

Map stage:

(second,1)
(file,1)

Map stage:

(third,1)
(first,1)
(file,1)

Data node 1

Data node 2

Data node 3

(First, 2)

(Second, 1)

(File, 1)

Reduce:

(first,2)
(second,1)
(file,1)

(Second,1)

(File,1)

Reduce:

(second,1)
(file,1)

(Third, 1)
(file,1)

(First, 1)

Reduce:

(third,1)
(first,1)
(file,1)

Data node 1

Data node 2

Data node 3

(irst, 2)f
(first,1)

(hird,1)t
(file,1)
(file,1)
(file,1)

(econd,1)s
(second,1)

Figure 8.15 Word count: Second phase with data shuffling

(irst,3)f

Data node 1

(econd,2)s

Data node 2

(hird,1) (ile,3)t f

Data node 3

(irst,2)f
(irst,1)f

(econd,1)s
(econd,1)s

(hird,1)t
(ile,1)f
(ile,1)f
(ile,1)f Figure 8.16 Word count: Last

phase with the final reduce

222 CHAPTER 8 Leveraging data locality and memory of your machines
process. In such a situation, we would send all of this data to the same data node. If
this data does not fit this data node disk space/memory, we won’t be able to reduce
the data for this particular partition key. Yet again, the partitioning of our data and its
distribution turns out to be very important.

 The MapReduce solution has a lot of complexities compared to approaches that
work in a one-node scenario. However, when we execute our processing in the context
of big data (meaning that it is impossible to fit all data to one node), we need to live
with these complexities if we want to solve our problems.

 Let’s now calculate how slow the disk-based MapReduce is compared to processing
that’s based on memory access. We will also compare MapReduce to the data that
needs to be fetched via the network and see why data locality is so essential.

8.4.3 Calculating access times

Let’s say we need to process 100 GB of data, and the data is split into 1,000 files. We
want to calculate the time required to send 100 GB of data over the network (data
shuffling). Next, we want to calculate the same for reading data from disk (both HDD
and SSD). Finally, we will compare results to a situation where the data is in memory.

 We expect that RAM access times will be the fastest. (The SSD is a bit slower,
whereas the HDD is orders of magnitude slower.) If you don’t want to dig into the
math behind this, feel free to skip this section.

 We will use well-proven numbers for our calculations (http://mng.bz/GGov).
They may be a little outdated, but the order of magnitude between these numbers is
still relevant. Once the data is in main memory, it can be accessed fast: read 1 MB
sequentially from memory: 250,000 ns 250 µs.

 We need to remember that, for the memory use case, we need to load the data
upfront—but only once. Comparing this to disk (both SSD and HDD), the difference
is huge: read 1 MB sequentially from SSD: 1,000,000 ns 1,000 µs (1 ms ~1 GB ÷ sec
SSD, 4X memory). Read 1 MB sequentially from disk: 20,000,000 ns 20,000 µs (20 ms
80x memory, 20X SSD).

 Finally, the network read, including request and response, is: send packet CA ->
Netherlands -> CA: 150,000,000 ns 150,000 µs 150 ms.

 Of course, our data center shouldn’t send the data between continents when
doing big data processing. However, even in a local data center, sending data over the
network will be a couple of times slower than accessing local data from disk. For the
network data, the difference becomes enormous.

 Let’s calculate the total time that our big data processing should be dedicated to
loading the data, depending on the approach where the data lives. Operating on 100
GB of the data that already lives in the RAM takes: 250,000 ns × 1000 (MB) × 100 (GB)
= 25,000,000,000 ns = 25 s.

 For SSD disk it is: 1,000,000 ns × 1000 (MB) × 100 (GB) = 100,000,000,000 ns =
100 s. And finally, for HDD disk it is: 20,000,000 ns × 1000 (MB) × 100 (GB) =
2,000,000,000,000 ns = 2000 s = ~33 min.

http://mng.bz/GGov

223Data processing: Memory vs. disk
 We can see that, even if we were able to use an SSD disk for all big data, the data
loading is four times slower than operating on RAM. In reality, when we need to store
terabytes of data, we will store it on the standard HDD because it’s more cost efficient.
In that case, the processing based on the HDD disk is 80 times slower! When writing
this, the HDD cost per GB is $0.050, whereas the price per GB for SSD is twice that
much: $0.10. We can, thus, conclude that storing the SSD data is 100% more expen-
sive than storing the data on HDD. Table 8.1 sums up our findings.

We saw that Hadoop big data processing is based on disk access. Because of this slow-
ness, and because memory has gotten cheaper, the new approach based on memory
access is now more popular. We will look at this approach next.

8.4.4 RAM-based processing

As the RAM gets cheaper, the new big data processing tools started changing their
architecture to use it fully. It is not uncommon to see a cluster of processing nodes
that has terabytes of RAM. This allows engineers to create data pipelines that fetch as
much data as possible into memory. Once the data is there, big data processing can
access it substantially faster than the disk-based approach. One of the most well-known
and production-proven big data processing frameworks is Apache Spark, which uses
memory as the main integration point between processing stages (figure 8.17).

The entry point for big data processing requires loading the data from some filesys-
tem. Assuming data locality, this requires loading data from the local disk. With RAM-
based processing, the data is loaded into the machine’s memory. When the current
stage of processing finishes, the results are not written to disk (contrary to Hadoop-
based big data processing). The data stays in the memory of the node that does the

Table 8.1 Disk vs. memory read access

Resource type Size (GB) Time (seconds) Time (minutes)

RAM 100 25 0.25

SSD disk 100 100 ~1.66

HDD disk 100 2000 ~33

Spark processing

Iteration 1 Iteration 2

Disk read Disk write
Memory Memory

Figure 8.17 RAM-based big data processing with Apache Spark

224 CHAPTER 8 Leveraging data locality and memory of your machines
processing. When the next stage of processing (transformation, join) starts, it doesn’t
need to load the disk data again. The cost of loading disk data is removed for subse-
quent stages. Only the first stage needs to load this data. When the final processing
stage produces results, they can be saved to disk to make them persistent.

 When calculating disk versus memory times, we saw that even in the best case
(using SSD), Hadoop-based processing is four times slower. When using Spark-based
processing, we need to pay this cost only two times—the first time when the data is
loaded and the second time when the results are persisted to disk. The same pro-
cessing flow that involves only two iterations over data (transformation) requires two
times disk reads and two times disk writes. In the best case of using SSD everywhere,
Hadoop-based processing will be eight times slower than Spark-based processing
because Hadoop-based SSD: 100 s × 2 reads + 100 s × 2 writes = 400 s; and Spark-based:
25 s × 1 read + 25 s × 1 write = 50 s. Then, 400 ÷ 50 = 8.

 In practice, writing to disk is often slower than reading from it. Because of this, the
differences between Spark and Hadoop will get even higher. Also, real-world big data
pipelines tend to have more stages than only two iterations (transformations). There
could be pipelines that involve 10 or more stages before the end result is produced.
For such a big data pipeline, we would need to multiply our calculations by the num-
ber of stages.

 It’s easy to notice that the more stages we have, the more significant the difference
between RAM and disk-based processing will be. Lastly, as I mentioned earlier, the
HDD disk is still used because of its cost efficiency. Let’s calculate the total processing
time for disk-based processing that uses HDD disks underneath: Hadoop-based HDD:
33 minutes seconds × 2 reads + 33 min × 2 writes = 132 min = 2 h and 12 min. You can
see that the difference between RAM-based and HDD-based processing is huge. It is
50 seconds versus more than 2 hours!

 I hope those numbers convince you that when creating modern big data process-
ing pipelines, you should consider building them based on memory-based tools, such
as Apache Spark. In the next section, we will implement our join using Apache Spark.

8.5 Implement joins using Apache Spark
Before we start implementing our logic, let’s take a look at the Apache Spark basics. It
is a Scala-based library for big data processing that allows us to store intermediate
memory results. As I mentioned earlier, there are situations in which it is not possible
to store all data in RAM. Spark allows us to specify what to do in such cases.

 Spark also provides the StorageLevel setting that allows us to state if the data
should be kept in memory only or spilled up to disk if the memory is full. If we pick
the former, the process will fail fast, signaling that there is not enough memory. We
can consider splitting our data to fit it into a machine’s memory. If we pick the latter,
the data is stored on disk without the process failing. Our processing will finish, but it
will take a lot more time to complete. From this, we can see that Spark lets us create
memory-based processing. What about data locality?

225Implement joins using Apache Spark
 To understand how data locality can be achieved using Spark, we need to take a
look at its architecture, as illustrated in Figure 8.18.

Spark works in a master-worker architecture. Each one of the Spark processes works
on nodes that contain data that we want to process. Assuming we have three data
nodes, two of them will be Spark executors and one the Spark master. The spark mas-
ter is a special process that is responsible for coordinating our processing and sending
the computation to data.

 In this section, the program we will write using Spark is submitted to a master
node. The master node serializes the program (similarly to what we learned in the
first section) and sends the program to executor nodes. The executor nodes run on
the data nodes, which contain the data we want to process. We can then build the pro-
cessing that uses data locality. In this case, the executor processes its local data in the
partitions that are stored on this node. The second executor processes the partitions
that are stored on the second node.

 If we map this to our clicks with the users join example, the executor will process
data for some part of the users. The second executor lives on the node where the rest
of the users are stored. The cache component on the Spark executors is our RAM.
The processing data is fetched from disk or via the network and stored in RAM.

 The smaller clicks data set taking part in the join process is sent to all executors.
The driver component on the master node fetches the clicks data from the data node
that contains those clicks. It is important to note that the driver process needs to have
enough memory to store the clicks data. Next, the clicks data is sent to all executors.
This is stored in the cache (RAM). Thus, the memory available to these processes also
needs to be big enough to hold the data.

Cluster manager

Spark context

Master node

Driver program

Task

Task

Cache

Cache

Worker node (executor 1)

Worker node (executor 2)

Figure 8.18 Spark’s architecture

226 CHAPTER 8 Leveraging data locality and memory of your machines
8.5.1 Implementing a join without broadcast

Let’s start with the use case in which we want to join the clicks and users data, but we
will not make any assumptions about the size of both data sets. We will use a simple
join operation without any optimizations. Next, we will analyze the execution plan,
which will show us how the Spark engine interprets and executes that.

 The code examples in this section are written in Scala because it allows us to create
fluent and readable Big data processing. Also, Scala is Spark’s native language. The
following listing shows the simple data model for our example.

case class UserData(userId: String, data: String)

case class Click(userId: String, url: String)

Both of the users and clicks data sets contain the user ID that we will use to join the
data. The user has a data field associated with it. The click is executed in the context
of a specific url. This field is therefore present in its data model.

 For this, we will use the Spark Dataset API (http://mng.bz/zQKB), which allows us
to use SQL-like syntax. It is a higher-level API that encapsulates RDD (http://mng
.bz/0wpN).

 To test the data, we will mock the clicks and user data. In real-world applications,
you will load the data from the filesystem using readers. The following listing shows
how to read the Avro data (http://mng.bz/KBQj) from some HDFS path.

val usersDF = spark.read.format("avro").load("users/2020/10/10/users.avro")

For the sake of simplicity, let’s now mock the two data sets. The following listing shows
how this is done.

 import spark.sqlContext.implicits._
 val userData =
 spark.sparkContext.makeRDD(List(
 UserData("a", "1"),
 UserData("b", "2"),
 UserData("d", "200")
)).toDS()

 val clicks =
 spark.sparkContext.makeRDD(List(
 Click("a", "www.page1"),
 Click("b", "www.page2"),
 Click("c", "www.page3")
)).toDS()

Listing 8.1 Data model

Listing 8.2 Reading Avro data

Listing 8.3 Mocking the users and clicks data sets

http://mng.bz/zQKB
http://mng.bz/0wpN
http://mng.bz/0wpN
http://mng.bz/0wpN
http://mng.bz/KBQj

227Implement joins using Apache Spark
Here, we are filling the userData with the rows for the IDs a, b, and d. Finally, the
RDD is transformed to a Dataset using the toDS() function, as listing 8.3 demon-
strates. We want to operate on the data set because it provides a better API and optimi-
zations atop of the RDD API.

 The actual join logic is simple but hides a lot of information. In the following list-
ing, we join the user data with the clicks data.

val res: Dataset[(UserData, Click)]
 = userData.joinWith(clicks, userData("userId") === clicks("userId"), "inner")

We are joining the userData with clicks. The join is performed on the userId field
from both the user data and clicks data sets using an inner join. Because of that, when
we execute the query we will have two results, as the following listing shows.

res.show()
assert(res.count() == 2)

+-----+-------------+
| _1| _2|
+-----+-------------+
|[b,2]|[b,www.page2]|
|[a,1]|[a,www.page1]|
+-----+-------------+

Notice that the result is presented in a table. The left side contains the user’s data, and
the right side contains the clicks data. The user data for userId d is not included
because it does not have a matching click. The same situation happens for the click
data with userId c.

 The join hides a lot of complexity underneath. We can reason about this by
extracting the actual physical plan of the query. This shows us what join strategy was
picked. To extract the physical plan, execute the explain() method, as the following
listing shows. The method returns a detailed physical plan.

res.explain()
== Physical Plan ==
*SortMergeJoin [_1#10.userId], [_2#11.userId], Inner
:- *Sort [_1#10.userId ASC], false, 0
: +- Exchange hashpartitioning(_1#10.userId, 200)
: +- *Project [struct(userId#2, data#3) AS _1#10]
: +- Scan ExistingRDD[userId#2,data#3]
+- *Sort [_2#11.userId ASC], false, 0
 +- Exchange hashpartitioning(_2#11.userId, 200)
 +- *Project [struct(userId#7, url#8) AS _2#11]
 +- Scan ExistingRDD[userId#7,url#8]

Listing 8.4 Joining without assumptions

Listing 8.5 Two results from the inner join

Listing 8.6 Getting the physical plan of the query

228 CHAPTER 8 Leveraging data locality and memory of your machines
We can see that both data sets are treated in the same way. First, both are sorted in
ascending order. Once the data is sorted, the hash partitioning algorithm is used.
There are no assumptions about the data. This plan corresponds to the use case that
requires data shuffling. One of the data sets will need to be transferred to the execu-
tor that contains other parts of the data.

 Because the data is sorted, the Spark query engine can apply some optimizations,
such as moving only some range of the data. The optimizations are intelligent, and
sometimes, they may behave better than the optimization that we impose on the query
engine. Still, it is essential to measure your solution and compare it with another one.
It may turn out that your custom hand-crafted optimization performs worse than the
standard Spark query optimizer logic. Let’s now take a look at a join plan that uses the
broadcast technique we discussed in section 8.3.3.

8.5.2 Implementing a join with broadcast

Next, let’s implement the joining behavior that broadcasts one of the data sets (we will
do it for clicks) to all data nodes. To achieve that, we need to modify our join logic by
wrapping the data set we want to broadcast into the broadcast() function. We will do
this for the clicks data set. Let’s take a look at the full test suite in the following listing.

 test("Should inner join two DS whereas one of them is broadcast") {
 import spark.sqlContext.implicits._
 val userData =
 spark.sparkContext.makeRDD(List(
 UserData("a", "1"),
 UserData("b", "2"),
 UserData("d", "200")
)).toDS()

 val clicks =
 spark.sparkContext.makeRDD(List(
 Click("a", "www.page1"),
 Click("b", "www.page2"),
 Click("c", "www.page3")
)).toDS()

 //when
 val res: Dataset[(UserData, Click)]
 = userData.joinWith(broadcast(clicks), userData("userId") ===

clicks("userId"), "inner")

 //then
 res.explain()
 res.show()
 assert(res.count() == 2)

The data returned by this query is the same as the previous one because we didn’t
change any logic. What is interesting for us is the physical query plan. Let’s take a look
at it in the following listing.

Listing 8.7 Joining with broadcast

229Summary
 * == Physical Plan ==
 * *BroadcastHashJoin [_1#234.userId], [_2#235.userId], Inner, BuildRight
 * :- *Project [struct(userId#225, data#226) AS _1#234]
 * : +- Scan ExistingRDD[userId#225,data#226]
 * +- BroadcastExchange HashedRelationBroadcastMode(List(input[0,

struct<userId:string,url:string>, false].userId))
 * +- *Project [struct(userId#230, url#231) AS _2#235]
 * +- Scan ExistingRDD[userId#230,url#231]

Did you notice that the physical plan changed substantially? First, the data isn’t sorted
anymore. The Spark execution engine removed this step because we didn’t need to
send parts of one of the data sets. Therefore, it doesn’t need to be split. The Broadcast-
Exchange step is responsible for sending the clicks data to all data nodes. Once this
data is present on all data nodes, Spark executes the Scan step that uses the hash to
find the matching data.

 Achieving those results is one part of the story. In real life, you should measure
both solutions. As I mentioned before, it may turn out that the standard Spark query
engine will perform better.

 When broadcasting your data to data nodes, you need assurance that this data fits
your machine’s RAM. If the data you are broadcasting grows in an uncontrolled man-
ner, you should strongly reconsider using the broadcast strategy. In the next chapter,
we’ll look at strategies for picking third-party libraries used in our code.

Summary
 Moving data to computations is easier but expensive. It becomes infeasible for big

data sets. This happens because we need to move too much data via the network.
 Data locality can be fully leveraged by sending computations to data. It is more

complex, but it is worth the effort for big data sets because we don’t need to
move so much data. Therefore, our processing will be substantially faster.

 Processing that uses data locality can be parallelized and scaled more easily
than processing without data locality.

 In the big data ecosystem, we need to split data into multiple machines by using
partitioning.

 Offline and online data partitioning provides us with different characteristics.
Online partitioning can optimize for query patterns, although offline partition-
ing needs to be more generic because we often don’t know the access pattern
up front.

 Offline partitioning based on dates is commonly used and gives us more flexibility.
 Some types of joins can use full data locality if we perform the joins on the same

physical machine. Other types of joins that require wider data need data shuffling.
 We can reduce data shuffling by reducing the partitions needed for our join

operations.

Listing 8.8 Viewing the physical query plan with broadcast

230 CHAPTER 8 Leveraging data locality and memory of your machines
 If we can make assumptions about the data, we can use a broadcast join strategy.
 Disk-based big data processing is more mature but provides worse performance

than RAM-based processing. Hadoop implements the former strategy; Spark
uses the latter.

 We can use Apache Spark API to implement joins.
 Analyzing physical plans allows us to reason about the query. For example, we

can use the broadcasting technique and then see how it is used by the query
execution engine.

 We should know our data to analyze the tradeoffs of different joining strategies.

Third-party libraries:
Libraries you use
become your code
When building our software systems, we have time and budget limitations. Because
of those limitations, it is not feasible to write every piece of code that your software
uses. Almost every application needs to interact with the underlying operating sys-
tem, filesystem, and external I/O. For those interactions, we usually don’t reimple-
ment the logic. We pick the libraries that are already present and provide that
functionality for us. We call those libraries third party because our team or company
does not create them. They could be developed by an open source community or
other companies specializing in a specific part of the system’s design. For example,
when sending data to an external HTTP system, we often pick an existing HTTP cli-
ent implementation.

 When we choose an existing third-party library and use it in our codebase, we
take full responsibility for this piece of software—the software we didn’t develop
and produce. Our end users don’t care if we picked one library over another. They

This chapter covers
 Taking responsibility for the libraries you import

 Analyzing third-party libraries for testability,
stability, and scalability

 Making decisions about reimplementing logic vs.
importing code you don’t own
231

232 CHAPTER 9 Third-party libraries: Libraries you use become your code
don’t know if we implemented a specific part of the code or used a code created by
someone else. As long as our system works as expected, there is no problem. When a
failure happens, users will notice that, however. The failure can be caused by a bug in
the third-party software. That means we didn’t test the third-party code well enough or
had a false assumption about it.

 In this chapter, you will learn how to pick a robust third-party library for your appli-
cation. You will learn about the most common mistakes and how to validate your
assumptions about the code you don’t own.

9.1 Importing a library and taking full responsibility
for its settings: Beware of the defaults
Some libraries and frameworks, such as Spring (https://spring.io/), favor convention
over configuration. Such a pattern allows potential users to start using a specific
library right away without any necessary configuration. It trades off explicit settings for
the simplicity of UX. As long as an engineer is aware of this tradeoff and its limita-
tions, there is no real danger.

 The prototyping and experimentation phase is a lot easier and faster when using
software components that do not require a substantial configuration upfront. Those
frameworks are built using best practices and patterns, and they should be good
enough for you as long as you are aware of their drawbacks and problems.

NOTE Those framework and library concepts are often used interchangeably.
A framework provides a skeleton for building an application, but the actual
logic is implemented in the application. You need to provide the logic to the
framework somehow: it can be an inheritance, composition, listeners, etc.
(e.g., a dependency injection framework). On the other hand, a library
already implements some logic, and we only call it from our code. It can be,
for example, an HTTP client library providing the way to call HTTP services.

The fact that the majority of all configuration is based on convention has some draw-
backs as well. When we use a third-party library, it’s tempting not to dig deeper into all
its configuration options. If we leave the defaults unset, we rely on the configuration
that is shipped within a library. The values that become defaults are usually picked log-
ically, based on some research. However, even if the defaults are a good fit, in most
contexts they may not be good enough for your use case.

 Let’s consider a simple scenario where we want to use a third-party library that is
responsible for HTTP calls. We will pick the OkHttp library (https://square.github
.io/okhttp/) for demonstration purposes. We want to query the data that is available
under the /data endpoint of the service. For testing, we will mock this HTTP endpoint
using the WireMock library (http://wiremock.org/). We will stub the /data endpoint
that returns the OK status code and some entity’s body data. The following listing
shows this code.

https://square.github.io/okhttp/
https://square.github.io/okhttp/
https://square.github.io/okhttp/
https://spring.io/
http://wiremock.org/

233Importing a library and taking full responsibility for its settings: Beware of the defaults
private static WireMockServer wireMockServer;
private static final int PORT = 9999;
private static String HOST;

@BeforeAll
public static void setup() {
 wireMockServer = new WireMockServer(options().port(PORT));
 wireMockServer.start();
 HOST = String.format("http:/ /localhost:%s", PORT);
 wireMockServer.stubFor(
 get(urlEqualTo("/data"))
 .willReturn(aResponse()
 .withStatus(200)
 .withBody("some-data")));
}

The OkHttp client logic for querying the service and getting the response is straight-
forward. In listing 9.2, we build the URL based on the HOST variable. Next, we will
build the OkHttp client using the builder and executing the call. Finally, we will assert
that the response is 200, and the content matches that stubbed by WireMock.

@Test
public void shouldExecuteGetRequestsWithDefaults() throws IOException {
 Request request = new Request.Builder().url(HOST + "/data").build();

 OkHttpClient client = new OkHttpClient.Builder().build();
 Call call = client.newCall(request);
 Response response = call.execute();

 assertThat(response.code()).isEqualTo(200);
 assertThat(response.body().string()).isEqualTo("some-data");
}

Note that the HTTP client is created as a builder, but no explicit setting is speci-
fied. The code looks simple, and it’s fast to start development using it. Unfortu-
nately, it shouldn’t be used in production in this form. Remember that once you
import the third-party library to your codebase, you need to start treating it as your
own code. Because this section focuses on the defaults, let’s see which settings may
be problematic.

 When analyzing the third-party library settings, you need to understand their main
configurations. In the context of every HTTP client, timeouts play a crucial role. It
impacts the performance and SLA of your service. For example, if your service SLA is
100 ms, and you are executing the call to other services to fulfill the request, the other
call must complete faster than your service SLA. Choosing a proper timeout is crucial
if you want to keep your SLA.

Listing 9.1 Mocking the HTTP service

Listing 9.2 Building the HTTP client with defaults

Starts the
WireMock
server on a
dedicated
PORT

Saves the location
to a HOST variable

Mocks the HTTP response
with status code 200 and
some data

234 CHAPTER 9 Third-party libraries: Libraries you use become your code

 High timeouts are also dangerous in the microservices architecture. To deliver
business functionality in this architecture, there is often a need to make multiple net-
work calls. For example, one microservice may need to call multiple others. Some of
those others may need to contact the following microservices and so on. In such a sce-
nario, when one of the services hangs on the request processing, it may cause cascad-
ing failure to other services that are calling it. The higher the timeout is, the longer it
may take to process a single request, then there is a higher probability of cascading
failure. Such a failure may be worse than breaking your SLA because it involves a risk
that the system will crash and stop working.

 Let’s see how our client will behave if we query an endpoint that takes a long
time to execute. We will test it for 5 seconds (5,000 milliseconds). We can simulate
the scenario in WireMock by using the withFixedDelay() method, as the following
listing shows.

wireMockServer.stubFor(
 get(urlEqualTo("/slow-data"))
 .willReturn(aResponse()
 .withStatus(200)
 .withBody("some-data")
 .withFixedDelay(5000)));

The new endpoint can be queried using the /slow-data URL. We will execute the
query using the same logic, but we will measure the time it takes to execute the HTTP
requests, as the following listing shows.

Request request = new Request.Builder()
 ➥ .url(HOST + "/slow-data").build();

OkHttpClient client = new OkHttpClient.Builder().build();
Call call = client.newCall(request);

long start = System.currentTimeMillis();
Response response = call.execute();
long totalTime = System.currentTimeMillis() - start;

assertThat(totalTime).isGreaterThanOrEqualTo(5000);
assertThat(response.code()).isEqualTo(200);
assertThat(response.body().string()).isEqualTo("some-data");

Did you notice that the request took at least 5,000 milliseconds? That happens
because the WireMock HTTP server introduces that kind of delay. If our code that
needs to fulfill the request within 100 ms calls this endpoint, it will be slow enough to
break the SLA.

 Instead of seeing a response in 100 ms (whether the response is success or failure),
our clients will be blocked on the wait for 5,000 ms. It also means that the thread that

Listing 9.3 Emulating a slow endpoint

Listing 9.4 Measuring an HTTP client’s request time

Executes a
request for
the /slow-data
endpoint

Measures the total
execution time

Validates that the request
took at least 5,000 ms

235Importing a library and taking full responsibility for its settings: Beware of the defaults
executes these requests may be blocked for that long. One thread that is supposed to
execute ~50 requests (5000 ÷ 100 ms) will be blocked. Thus, this thread won’t serve
any other request for that amount of time, impacting the overall performance of our
service. This problem may not appear if only one thread waits too long. However, we
will start noticing performance problems if all or the majority of allocated threads are
blocked for too long.

 It turns out that the default timeout settings cause this situation. Our client should
fail the request if we need to wait for more than our service’s SLA (100 ms). If the
request is failed, the client can retry it instead of waiting for the 5,000 ms for any
response. If you look at the read timeout of the OkHTTP (http://mng.bz/9KP7), you
will notice it’s set to 10 seconds by default!

NOTE Checking the defaults is important not only for third-party libraries but
also for the standard development toolkits (SDKs). For example, when using
the HttpClient that ships with the Java JDK (http://mng.bz/jylr), the default
timeout is set to infinite!

This means every HTTP request can block the caller’s execution for up to 10 seconds.
Such a situation is far from ideal. In a real-world system, you should configure the tim-
eouts according to your SLA.

 We are assuming our code must execute the call to a slow-data endpoint with up to
100 ms. We are also assuming that the service that we are calling has a defined SLA in
the 99 percentile equal to 100 ms. This means that 99 out of 100 requests will be exe-
cuted within 100 ms. There could be some outliers that take longer to execute. We
can simulate such an outlier that takes 5,000 ms to execute.

 Let’s execute the HTTP request once again, but this time let’s provide an explicit
setting for the read timeout instead of relying on the default. Note the readTimeout()
method in the following listing, which is used to specify the timeout.

@Test
public void shouldFailRequestAfterTimeout() {
 Request request = new Request.Builder().url(HOST + "/slow-data").build();

 OkHttpClient client = new OkHttpClient
 .Builder()
 .readTimeout(Duration.ofMillis(100)).build();
 Call call = client.newCall(request);

 long start = System.currentTimeMillis();
 assertThatThrownBy(call::execute).isInstanceOf(SocketTimeoutException.class);
 long totalTime = System.currentTimeMillis() - start;

 assertThat(totalTime).isLessThan(5000);

}

Listing 9.5 Executing an HTTP request with an explicit timeout

Sets the read
timeout to 100 ms

The request fails fast
and takes less time
than 5,000 ms

http://mng.bz/jylr
http://mng.bz/9KP7

236 CHAPTER 9 Third-party libraries: Libraries you use become your code
Calling the execute method triggers the actual HTTP request. The request will fail
after around 100 ms because this is the new timeout that we specified with read-
Timeout(). After this time, an exception is propagated to the caller. Therefore, the
SLA of our service is not impacted. Next, the request can be retried (if it’s idempo-
tent), or we can save the information about the failure. Most importantly, the HTTP
service’s slow response does not block the thread for a long time. Thus, it will not
impact the performance of our service.

 When you import any third-party library, you should be aware of its settings and
parameters. Implicit settings can be suitable for prototyping, but explicit and well-
tuned settings for your context are must-haves for production systems. In the next sec-
tion, we will look at concurrency models and the scalability of libraries that we may use
in our codebase.

9.2 Concurrency models and scalability
We are adding third-party libraries to our codebase because we want to order them to
do some job. This means we need to call the API, wait for the execution, and (option-
ally) get the result. This simple flow hides some complexity regarding the processing
execution model. When we call code we don’t own, we need to be careful about its
concurrency model.

 The first scenario that we will consider is quite simple. We have a program that
works in a sequential, blocking manner. Figure 9.1 illustrates this program.

In our program, method1() executes a third-party library method. The latter method
is blocking, meaning the method1() caller thread will block until the third-party
library method returns. Once this method returns, the caller flow continues, and it
progresses by calling method2().

 The situation gets more complicated when we have an async, nonblocking process-
ing flow. Some web frameworks (such as Node.js, Netty, Vert.x, and more) base their
processing on the event-loop model (figure 9.2).

 When operating in this context, every request or piece of work that needs to be
processed is put in to a queue. For example, when the web server needs to process an
HTTP request, the worker thread that accepts the request does not do the actual

Figure 9.1 A program with a
blocking call from our codebase

Calls

Continues processing

method1()
Blocks and waits

third-party party

library method

method2()

237Concurrency models and scalability
processing. It puts the data that needs to be processed in the queue. Next, the thread
from the thread pool responsible for processing takes the queue’s data and does the
actual processing. When you execute any method call from code that cannot block,
you need to be careful about calling the code you don’t own (figure 9.3).

In such a scenario, everything is executed within the same worker thread. The async
flow accepts the data and can do some preprocessing such as deserializing it from

Figure 9.2 The event-loop processing model

Worker process

event cycle

Tasks queueNew task

Thread pool

Completed tasks

Figure 9.3 A blocking call from
nonblocking code

Calls

Put data

Async flow Blocks and waits
third-party

library method

Incoming requests

Queue

Worker thread

238 CHAPTER 9 Third-party libraries: Libraries you use become your code
bytes. Next, it puts the data information in to a queue. This operation must be fast
and nonblocking to not stall the processing of incoming requests. If we call the code
that we don’t own from such a code, we risk blocking the main processing. Therefore,
we will be degrading the overall performance of our application.

 For those reasons, we must know the execution of the code that we call. Does it
block? Is it async or sync? Next, let’s see how to use a third-party library that offers
both models.

9.2.1 Using async and sync APIs

Let’s consider a situation where we are integrating with a third-party library to save
and load an entity. The API is blocking, meaning that we should not call it from the
async code. The following listing shows the code for this scenario.

public interface EntityService {
 Entity load();
 void save(Entity entity);
}

The caller thread will block whether it calls the load or save method, but this is prob-
lematic and limits the ways you can use this API. For example, it will be hard to plug
this blocking processing into an async code you already have. Also, your application
threading model may not allow any blocking (e.g., when using Vert.x).

 What can we do if we still want to leverage the third-party library, even if it is block-
ing? The easiest and most obvious way is to create a wrapper around the blocking code,
as listing 9.7 shows. The wrapper delegates the actual processing to the external library,
and it provides the methods that can be used in an async way. Both methods can return
the CompletableFuture entity, a promise that will be fulfilled in the future. The async
code that does not allow blocking calls only the nonblocking versions of those methods.

public CompletableFuture<Entity> load() {
 return CompletableFuture.supplyAsync(entityService::load, executor);
}

public CompletableFuture<Void> save(Entity entity) {
 return CompletableFuture.runAsync(() -> entityService.save(entity), executor);
}

Note that the load() method returns the promise of Entity, which can be fulfilled at
any time. The caller can chain async operations without blocking the caller’s thread.

 At first sight, it seems that the solution is easy. However, wrapping the blocking
code into async is not always simple. We need to execute the async actions in a sepa-
rate thread. For that purpose, we need to create a dedicated thread pool that this

Listing 9.6 Blocking API

Listing 9.7 Wrapping a blocking call into async

239Concurrency models and scalability
code will use. The thread pool needs to be monitored and fine-tuned. We need to
pick the proper number of threads and also a queue for incoming operations, as the
following listing shows.

public WrapIntoAsync(EntityService entityService) {
 this.entityService = entityService;
 executor = new ThreadPoolExecutor(1, 10, 100, TimeUnit.SECONDS, new

LinkedBlockingDeque<>(100));
}

Finding the optimal configuration for the code we don’t own may not be an easy task.
We need to learn about its expected traffic and conduct performance tests. Also, if the
library is written in a blocking way, its performance may be worse than the code that is
written in an async way. Wrapping the blocking code may only postpone the scalability
problem without solving it.

 If performance is crucial, and there is no existing third-party library that does
the job in an async way, you may consider implementing parts of it on your own.
Let’s consider a situation where we are picking an external library that provides the
async API out of the box. The following listing shows how our entity service API
would look.

public interface EntityServiceAsync {
 CompletableFuture<Entity> load();

 CompletableFuture<Void> save(Entity entity);
}

All methods of this component are returning a promise, denoting that the processing
is async. It means that the internals of the library that we are integrating with is written
in an async way. We don’t need to implement any translation layer from the sync to the
async world with such an approach. This often means that the thread pool that we use
for performing this async task is encapsulated within the library. It may be already
fine-tuned for most of our use cases. However, as you may remember from the first
section of this chapter, you need to be aware of the defaults.

 The fact that a thread pool is encapsulated within the library does not mean it
does not create threads. The code is called from our application. The threads cre-
ated internally for the purpose of the library we are calling will still occupy
resources in our application. If you have a blocking, synchronous flow in your
application, it is easier to call the async code than when the flow is async and needs
to call the blocking code.

 The only thing you need to do is get the underlying value from returned
CompletableFuture. You also need to be aware that this is blocking, so passing a

Listing 9.8 Creating an executor

Listing 9.9 Creating an async API

Takes corePoolSize, maximumPoolSize,
keepAliveTimeout and tasks queue

240 CHAPTER 9 Third-party libraries: Libraries you use become your code
reasonable timeout to that action is advised. However, if your application flow is already
blocking, it won’t be problematic for you. The following listing shows this approach.

public class AsyncToSync {
 private final EntityServiceAsync entityServiceAsync;

 public AsyncToSync(EntityServiceAsync entityServiceAsync) {
 this.entityServiceAsync = entityServiceAsync;
 }

 Entity load() throws InterruptedException, ExecutionException,
TimeoutException {

 return entityServiceAsync.load().get(100, TimeUnit.MILLISECONDS);
 }
}

If you choose to pick a library that exposes async or sync API, it is often more reason-
able to choose the async version. Even if your application flow is blocking today, you
may want to convert your application to asynchronous processing to increase its scal-
ability and performance.

 If you are already using a library that provides the asynchronous APIs, it will be eas-
ier to migrate to the new flow. However, if you are using a library that was written in a
blocking way, the migration won’t be as simple. You will need to provide a translation
layer and manage the thread pool. Moreover, the code that was not written as an async
call in the first place is often implemented differently. Wrapping the calls into a prom-
ise API would provide a fast workaround.

 A library’s performance that is written in an async way from the beginning will
often be better than the blocking version. You may observe this, especially if your
whole processing flow is async. Let’s now look at how our application’s scalability may
be limited by the library that is not written in a way that can scale out.

9.2.2 Distributed scalability

When your application is executed in a distributed environment, it is crucial to under-
stand the scalability of the third-party libraries you want to use. Let’s consider a library
that provides scheduling capabilities for our application (similar to the cron job). Its
primary responsibility is to check whether the task should be executed and to run it
when a time threshold is met.

 The third-party library needs a persistence layer to store its tasks. Every task has a
date and time when it should be executed. Once it is executed, the scheduling library
updates its status. It could be Success, Failed, or None, if the task is not yet processed.
Figure 9.4 shows the scheduling library.

 The tasks that are due to be executed are stored in the database and fetched by
the application at some interval. When developing such a feature, we may be tempted to
start thinking and designing for a one node use case. Our integration tests may validate

Listing 9.10 A nonblocking to blocking flow

The translated
method
returns the
Entity.

Blocks the async call, getting the value

241Concurrency models and scalability
the behavior of the scheduling library with the embedded database. However, we may
not observe any problem when data is queried from the database in such a case.

 The situation can radically change when we operate in a distributed context. The
application that needs scheduling capabilities can be deployed to multiple nodes, and
the same scheduling task cannot be duplicated. This means that when our application
is deployed to multiple nodes, they need to agree on which of those nodes should pro-
cess each of those tasks. In other words, the same task cannot be processed by more
than one node.

 Such a requirement means that the state of jobs needs to be globally synchronized
or partitioned. If the scheduling library we picked does not have a proper scalability
logic implemented, we risk severe performance, or even correctness, problems.

 Let’s assume we want to deploy our application to three nodes. Each of those
nodes has a scheduling library, as figure 9.5 illustrates.

 If the scheduling library we use is not implemented in a way that can scale, all of
those nodes will contend for the job record in the database, as demonstrated in fig-
ure 9.5. The correctness of those changes could be achieved via using transitions or a
global lock on a specific record. But both of those solutions may impact the perfor-
mance of our library substantially.

 This problem can be addressed if the scheduling library supports partitioning. For
example, the first node could be responsible for tasks in a given minute range, the
other node for a different time period, and so on. What’s important is that the library
we use should be designed in a way that can scale out. Often, this is a nontrivial task
and requires careful planning and engineering. Not all libraries are designed to work
in such a context. Therefore, when picking a library we know will be executed in a dis-
tributed environment (on multiple nodes), we should analyze it carefully to deter-
mine whether it can run in a distributed context.

Figure 9.4 Application with
a scheduling library

App with

scheduling library

job: 1, 21.02.20 20:00,

execution_status: SUCCESS

job: 2, 21.02.20 21:00

execution_status: FAILED

job: 3, 21.02.20 21:30

execution_status: NONE

242 CHAPTER 9 Third-party libraries: Libraries you use become your code
Another solution for the scheduling library that we may apply is the leader–followers
architecture. In this approach, all schedule requests are executed by a leader. In the
background, the replicas will synchronize their databases with the leader. However,
they will not execute any actual logic. If the leader node crashes, one of the follower
nodes will become the new leader and will start executing cron jobs. However, the
scheduling library needs to be designed to work in a multinode context up-front.

 Understanding the scalability model and knowing if it requires a global state allows
us to scale our application without the hard to fix problems. When the library is not
designed to work in a distributed environment, we are risking scalability and correct-
ness problems. Such problems may often appear when we deploy our applications to
N nodes, where N is a higher than usual number of nodes. Such situations often hap-
pen when we have a surge in traffic to our application. What’s worse, most often, you
will see a surge in traffic when there is a high business opportunity for your product. It
can happen, for example, during holidays. This is not a time when we want to learn
that our application relies on a library that does not scale.

 Once again, the code that we use becomes our code, and this will be obvious to our
customers when they notice an outage. In the next section, we will look at the testabil-
ity of third-party libraries to mitigate these concerns.

9.3 Testability
When picking a library with code that we didn’t design and develop, we should always
have limited trust in it. We should assume almost nothing. However, when we pick a
proven and widely used library, the quality and correctness are often good enough. In
those cases, testing will likely validate our assumptions about the library, rather than
its correctness. The best form of experimenting and validating a third-party library
that we consider to use in our code is via testing. However, testing code that we don’t

Figure 9.5 Scheduling library
scalability on multiple nodes

Node 1 Node 2 Node 3

job: 3, 21.02.20 21:30,

execution_status: NONE

Tries to get job 3
Tries to get job 3

Tries to get job 3

243Testability
influence is a bit different than testing our own code. The main reason for this is we
cannot change this code easily, if at all.

 When we want to test a component from our codebase, and it turns out that our
code does not allow us to impact some behavior, this is relatively easy to change. For
example, if our code initializes an internal component without giving the caller the
possibility to inject the fake or mock value, we can refactor the code without huge
problems. On the other hand, when we use a third-party library, impacting the code-
base may be hard or not feasible. Even if we submit the change, the time from change
to deployment can be substantial. Because of that, before choosing a third-party
library, we should validate its testability.

 Let’s start from the first checkpoint on our testability list. This is: does the third-
party library provide a testing library that allows us to test it?

9.3.1 Testing library

When importing a library that provides some complex capabilities, we should be able
to test its code reasonably easy, and testing should be straightforward. Let’s consider a
situation where we want to implement reactive processing in our application. For that
purpose, we need to choose between a couple libraries that provide this functionality.

 We start by implementing a processing skeleton that serves as a prototype for more
advanced logic (see listing 9.11). We want to sum all incoming numbers within a 10
second window. The logic operates on a stream, meaning that as the events arrive,
they are windowed, and then processing continues.

public static Flux<Integer> sumElementsWithinTimeWindow(Flux<Integer> flux) {
 return flux
 .window(Duration.ofSeconds(10))
 .flatMap(window -> window.reduce(Integer::sum));
}

This reactive processing is concise and looks clear. This aspect of the library is very
positive. However, we should also consider its testability and validate how easy it is to
test the defined processing. Let’s start with a naive approach when we write the testing
logic from scratch. This example will demonstrate a couple of problems and will high-
light the need for a dedicated testing library.

 Let’s construct a stream of three values: 1, 2, 3, as listing 9.12 shows. Next, we sleep
for 10 seconds before we validate the windowing logic. Note that using the
Thread.sleep() method in a test is a bad pattern, but shortly, we will see how to
improve this. Finally, we assert that the resulting value is equal to 6.

// given
Flux<Integer> data = Flux.fromIterable(Arrays.asList(1, 2, 3));
Thread.sleep(10_000);

Listing 9.11 Reactive processing

Listing 9.12 Testing reactive processing: A native approach

244 CHAPTER 9 Third-party libraries: Libraries you use become your code
// when
Flux<Integer> result = sumElementsWithinTimeWindow(data);

// then
assertThat(result.blockFirst()).isEqualTo(6);

Unfortunately, our logic has a couple problems. First, we are using a thread sleep that
increases the time needed for this unit test. In a real-world system, we would need to
test a lot more processing and scenarios. This increases the time needed for all unit
tests to an unacceptable threshold. Second, using this testing approach is hard to vali-
date in more complex scenarios. For example, how do we verify that the value after 10
seconds is not taken into account? We would need to emit another value, wait some
more time, and then validate the results. By examining this simple use case, we can see
that using even a well-written library without the testing infrastructure would be pain-
ful and sometimes not feasible.

 Fortunately, the library we are using in this chapter provides a testing library. For
the reactive testing code, we’ll use the reactor-test library (http://mng.bz/8lPz). This
allows us to simplify the tests and enable the testing of more advanced scenarios.

 For our test, we will use a TestPublisher class that allows us to provide data to the
reactive flow (see listing 9.13). It will also allow us to simulate delays without actually
causing any slowdown in the overall test execution time. There is no sleep needed, so
our tests will finish almost instantaneously. This TestPublisher is passed to a Step-
Verifier. Both of those classes are provided by the reactive testing library that is com-
patible with the reactive production library.

final TestPublisher<Integer> testPublisher = TestPublisher.create();

Flux<Integer> result = sumElementsWithinTimeWindow(testPublisher.flux());

StepVerifier.create(result)
 .then(() -> testPublisher.emit(1, 2, 3))
 .thenAwait(Duration.ofSeconds(10))
 .then(() -> testPublisher.emit(4))
 .expectNext(6)
 .verifyComplete();

The StepVerifier class allows us to emit values, await for a specific time without
blocking, and emit values again. For our test scenario, we emit 1, 2, 3 values, once
again. However, after emitting those values, we simulate a delay of 10 seconds, which is
equal to a time window span. After the delay, we emit another value. Finally, we assert
that the first produced value is equal to 6. This means the value emitted after the win-
dow span was not included in the first window.

 Using this approach, we can test any scenario we need to think about. Also, the fact
that we are testing the delay does not mean that the unit test takes longer. Our tests

Listing 9.13 Testing reactive processing using a testing library

http://mng.bz/8lPz

245Testability
will be fast, so we will be able to create many unit tests to cover the logic that is imple-
mented using a reactive library.

TIP Many of the libraries out there provide a testing library for our use.
Often, this is a sign of high quality and easier development.

Let’s now take a look at the second aspect of testability for third-party libraries. This is
how to inject fakes or mocks.

9.3.2 Testing with fakes (test double) and mocks

The other important aspect that we should focus on when considering using a third-
party library is the ability to inject a user-provided object for the purpose of testing.
The object can be a mock that allows us to simulate and validate a specific behavior. It
can also be a fake object (test double) that allows us to provide data or context to a
tested code. Often, libraries hide too many internals from the callers guarding against
potential overuse by the user. However, this can make the library hard to test.

 If you can take a look at the library’s codebase, look for the new instance creation.
If there is no way to inject the alternative implementation for testing purposes, it may
signal future testing problems. If we are using a proprietary library that does not
expose its source code, it may be impossible to analyze the code. In such cases, exper-
imenting via tests and validating our assumptions gets even more important. The rea-
son for this is that we cannot look into its source code.

 We will now look at the testability of a third-party library, whether it provides the
possibility to inject the caller’s provided test double or not. Let’s assume we want to
pick a third-party library that provides cache functionality to our app. One of the most
important use cases of a cache is the possibility to evict old entries. Eviction can be
based on either the size of the cache or the amount of time the entry was in the cache.
It can also be based on both conditions. When evaluating a new library, we should test
the expected behavior to validate our assumptions about it.

 We’ll start our experiments by building a simple cache that takes a key and returns
it to the uppercase version. The production system will have a more complicated
cache loader behavior, but the more straightforward example presented here is good
enough for us.

 We want to validate the behavior of the library based on our assumptions. In the
following listing, we construct a new cache with an expiration after write equal to
DEFAULT_EVICTION_TIME. The CacheLoader gets the value for a user’s provided key.

public class CacheComponent {
 public static final Duration DEFAULT_EVICTION_TIME = Duration.ofSeconds(5);
 public final LoadingCache<String, String> cache;

 public CacheComponent() {
 cache =

Listing 9.14 Initial cache use

246 CHAPTER 9 Third-party libraries: Libraries you use become your code
 CacheBuilder.newBuilder()
 .expireAfterWrite(DEFAULT_EVICTION_TIME)
 .recordStats()
 .build(
 new CacheLoader<String, String>() {
 @Override
 public String load(@Nullable String key) throws Exception {
 return key.toUpperCase();
 }
 });
 }

 public String get(String key) throws ExecutionException {
 return cache.get(key);
 }
}

The logic seems straightforward, but still, we need to test our assumptions about its
behavior. We didn’t write the code for this library, so it can surprise us.

 We want to test the eviction strategy of the underlying cache. To test it, we need to
simulate a delay between the insertion of the cache’s element and validation of the
eviction process. Because of that, we need to wait for a time equal to the eviction time.
For the use case, it was equal to 5 seconds. However, in a real-world system, the evic-
tion time can be substantially longer (even hours or days). The following listing shows
an initial, naive approach of testing that requires the use of the Thread.sleep(),
which also requires a wait equal to DEFAULT_EVICTION_TIME.

// given
CacheComponent cacheComponent = new CacheComponent();

// when
String value = cacheComponent.get("key");

// then
assertThat(value).isEqualTo("KEY");

// when
Thread.sleep(CacheComponent.DEFAULT_EVICTION_TIME.toMillis());

// then
assertThat(cacheComponent.get("key")).isEqualTo("KEY");
assertThat(cacheComponent.cache.stats().evictionCount()).isEqualTo(1);

Note that the eviction is done on the load (the get method) operation. To trigger
this, we need to call the accessor method. This is one of the things that may surprise
us and doesn’t align with our assumptions about this library. Without the proper unit
test, we would not be able to catch that behavior. As I mentioned, if our component’s
eviction time is too high, it may not be feasible to test our cache component. At this

Listing 9.15 Testing without injection

247Testability
point, we need to think about, and possibly look at, the source code of the third-party
library to find the component that influences the testing behavior.

 After a quick investigation, we find that the LoadingCache, when doing a get oper-
ation, uses a ticker to find if the value should be evicted or not. The following listing
provides the evidence.

V get(K key, int hash, CacheLoader<? super K, V> loader) throws
ExecutionException {

...
long now = this.map.ticker.read();
...
}

Indeed, this listing shows that the third-party cache library we are using encapsulates
the time logic in a ticker component. The last thing we need to do to improve our
unit test for this library is to check if the user can inject this component. This allows us
to provide a fake implementation and influence the milliseconds returned by it. By
doing so, we can simulate time progression without the need for waiting. Fortunately,
the LoadingCache builder has a method for providing such a component from the
outside, as the following listing shows.

public CacheBuilder<K, V> ticker(Ticker ticker) {
 Preconditions.checkState(this.ticker == null);
 this.ticker = (Ticker)Preconditions.checkNotNull(ticker);
 return this;
}

We can use this method in our unit test, passing a user-provided ticker via the builder.
The first step is to implement the Ticker interface the cache builder accepts. The fact
that this interface is well-designed and simple makes it easier to create a fake for it. If
the third-party component allows you to inject your own implementation but requires
you to implement an interface or extend a class with lots of methods, the fake behav-
ior may be harder to achieve. We would need to know a lot about its internal compo-
nents, state, and the methods that we need to fake.

 In listing 9.18, the FakeTicker uses AtomicLong for returning nanoseconds. It is
important to use a proper unit, as defined by the third-party library contract. This fake
allows us to advance a time on any unit in the future or in the past.

public class FakeTicker extends Ticker {
 private final AtomicLong nanos = new AtomicLong();

 public FakeTicker advance(long nanoseconds) {
 nanos.addAndGet(nanoseconds);

Listing 9.16 Investigating the Cache library testability

Listing 9.17 Injecting a user-provided component

Listing 9.18 Improving testability with a user-provided fake

248 CHAPTER 9 Third-party libraries: Libraries you use become your code
 return this;
 }

 public FakeTicker advance(Duration duration) {
 return advance(duration.toNanos());
 }

 @Override
 public long read() {
 return nanos.get();
 }
}

Because we can use the FakeTicker in our tests, we no longer need to use Thread
.sleep(), so our unit tests can be fast and cover a lot of use cases. We can use this new
mechanism (as the following listing shows) to validate a wider range of our assump-
tions about this library.

// given
FakeTicker fakeTicker = new FakeTicker();
CacheComponent cacheComponent = new CacheComponent(fakeTicker);

// when
String value = cacheComponent.get("key");

// then
assertThat(value).isEqualTo("KEY");

// when
fakeTicker.advance(CacheComponent.DEFAULT_EVICTION_TIME);

// then
assertThat(cacheComponent.get("key")).isEqualTo("KEY");
assertThat(cacheComponent.cache.stats().evictionCount()).isEqualTo(1);

Our test improves substantially. We can simulate the time movement using the
advance() method. Even if our eviction time were days long, our unit test would fin-
ish instantaneously.

 Imagine a scenario in which the third-party library we’re validating does not
expose the ability to inject the internally used Ticker component. In that case, we
wouldn’t be able to validate some of our assumptions. If we decide to choose this
library, it will be problematic because we won’t be able to test some of its behaviors.
For that reason, we will probably select a different library.

 Almost every third-party library we may use has some internal state. If the library
allows us to inject a different implementation, that is a significant advantage of a
library regarding its testability.

Listing 9.19 Improved test with fake

249Testability
NOTE If the third-party library we are testing has some hard-to-test dependen-
cies, we may consider using Mockito, Spock, or other testing frameworks.
They may simplify the testing of some of those edge cases.

Up to this point, we looked at unit testing third-party libraries. Let’s now look at the
possibilities to perform integration testing of third-party code. It may also impact our
decision about choosing one library over another.

9.3.3 Integration testing toolkit

Once we are sure the third-party library we plan to use provides a way to unit test it,
we can focus on the next layer: integration tests. Suppose the library we are import-
ing provides functionality that can be isolated from other components. In that case,
it may be enough for us to unit test it and rely on integration tests that do not need
to know about the actual implementation. The idea behind integration tests is they
should test higher-level components without worrying too much about lower-level
details. However, we tend to build our applications based on frameworks that pro-
vide a lot of functionalities. In the JVM world, we can use Spring, Dropwizard,
Quarkus, OSGi, or Akka, to name a few. Such frameworks may have multiple depen-
dent components providing an API layer (HTTP), a data-access layer, a dependency
injection framework, and so forth.

 It is also worth noting that those components can have their own lifecycle. Starting
an application with a given framework should be relatively easy, but we still need to
create proper components and inject them. Moreover, sometimes the configuration
of our application may differ for integration tests versus the normal application run.
For example, we may have a different connection string to a database, different user-
names, different passwords, and so on.

 When we start building an application based on some framework, we should assert
that the framework allows us to easily spin up the application in the integration tests.
For example, the Spring framework allows us to start the application in integration
tests via an @SpringBootTest annotation (http://mng.bz/ExPd) and SpringRunner
(http://mng.bz/NxPn), as the following listing shows.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
@ActiveProfiles("integration")
public class PaymentServiceIntegrationTest {

 @Value("${local.server.port}")
 private int port;

 private String createTestUrl() {
 return "http:/ /localhost:" + port + suffix;
 }

Listing 9.20 Spring integration test

Injects the
assigned port

http://mng.bz/ExPd
http://mng.bz/NxPn

250 CHAPTER 9 Third-party libraries: Libraries you use become your code
 // ...
}

The Spring framework provides a couple of options to run our tests. In listing 9.20, we
use testing from a Spring Boot library with all required annotations. If your applica-
tion is based on this framework, the @SpringBootTest will find all components and
start them using a proper lifecycle. We don’t need to worry about the actual starting
procedure. Moreover, if you want to test the HTTP API, it will spin up the embedded
HTTP web server with a free port. The port will be injected once the server is running.
(We don’t need to worry about picking a free port either. It will be taken care of by the
Spring testing library.) Finally, we can execute normal HTTP requests to a localhost
endpoint created by the createTestUrl() method.

 Also note that we can activate different profiles for our integration tests. This is
useful when we want to have a different configuration of components initialized for
integration tests. When using the Spring testing library, the possibility for picking dif-
ferent profiles in test executions is built-in and provided for us.

 Starting an HTTP embedded server and exposing HTTP endpoints may not sound
too problematic. However, in real life, our applications tend to be more involved. We
will have data access layers with repositories, integration with other services, and many
other components. If the framework provides an integration testing library, we can
experiment and reason about the library faster and more easily. In the next section,
we will focus on the problem of too many dependencies in third-party libraries that
can seriously impact our application.

9.4 Dependencies of third-party libraries
Every library or framework we import and use in our code is written by engineers who
may need to make a similar decision: should we implement a small part of the logic
ourselves or use another library that provides that functionality for us? It is obvious
that when we import a library that provides, for example, HTTP client functionality, it
should not rely on yet another library providing the same functionality. The situation
is a bit different when engineers who create a library are not working on its core func-
tionality. For example, the HTTP client library may provide out-of-the box JSON seri-
alization and deserialization capabilities, as figure 9.6 shows.

JSON processing is not a trivial task, and the designers of the HTTP client library
may not be experts in that. Because of that reason, perhaps they chose to use other

Figure 9.6 HTTP client with JSON processing

Uses Uses
Our application HTTP client library

JSON processing

library

251Dependencies of third-party libraries
third-party libraries to provide this functionality. It is a reasonable decision, but it cre-
ates a couple of problems for our application.

 The situation gets complicated if our application needs to use JSON processing
capabilities in our logic, unrelated to the HTTP client library. We need to remember
that every class that is shipped with the HTTP client (including their dependencies)
will be visible to our application’s code. Because of that, we can use the JSON process-
ing library via transitive dependency that the HTTP client library uses. However, this is
a bad idea for a couple reasons.

 Mainly, we will tightly couple our application code to the library used by the third-
party library. The HTTP client library may decide to change the JSON processing
library in the future. In that case, our code will have problems because this library will
no longer expose the original JSON library and its classes.

9.4.1 Avoiding version conflicts

The other (better) solution is to create a direct dependency from our application to
a JSON processing library that we want to use (see figure 9.7). Unfortunately, this
also has a problem because we might have a version clash between two JSON librar-
ies. This will happen if the HTTP client and our application use a different version
of the JSON library.

For our example, it is important to note that real-world applications often depend on
many third-party dependencies. Each of those dependencies may bring its own depen-
dencies. It may get unmanageable pretty fast. We may have multiple versions of multi-
ple libraries used in our one and only app.

 All the classes the JSON library provides are exposed under the com.fasterxml
.jackson package. For example, if we want, we can use the com.fasterxml.jackson
.databind.ObjectMapper. This means both versions of this class, one from the
HTTP client and one from our application, are accessible via this package. For that
reason, a build tool needs to pick one of those classes. This may create a variety of
problems like method not found, method signature changed, and similar, as we’ll
discuss in chapter 12.

Figure 9.7 Our application uses HTTP and JSON libraries directly

Uses

Uses

Our application
Uses

HTTP client library
JSON processing

library

JSON processing

library

252 CHAPTER 9 Third-party libraries: Libraries you use become your code
Fortunately, this problem can be solved in the third-party library that we import. This
technique is called shading. We will explain it based on the HTTP library client exam-
ple. Let’s consider a situation where the JSON library that it uses is a FasterXml Jack-
son (https://github.com/FasterXML/jackson).

 If the HTTP client use the shading technique for its JSON dependency, it can
rewrite all the package names and put them under a different prefix. For example,
the HTTP client may expose all its classes under the com.http.client. In that case, after
shading, all the JSON library classes from the HTTP client library will be accessible
under the com.http.client.com.fasterxml.jackson package name.

 This technique allows the HTTP client to hide the JSON processing library classes
from our application. They are still reachable, but we would still be able to use the
independent Jackson version in our application. We would not need to worry about
the dependencies brought by the third-party HTTP client library.

 The shading technique is powerful, but it requires substantial maintenance over-
head from the third-party libraries’ engineers. The shading process that rewrites the
classes would need to be done for every third-party library it needs to hide. This is
done during the build phase of a library. Therefore, it complicates the build process
because it may require defining shading behavior for multiple libraries. In case the
third-party library that is shaded changes its package scheme, we would need to adapt
the shading plug-in configuration.

 When evaluating a library we are considering, we should examine all the library’s
dependencies. If it uses the shading technique, it means it hides its third-party depen-
dencies from our application. By doing so, it will not pollute our application. There-
fore, this may be a significant advantage over other competitive libraries that provide
the same functionality but do not hide its third-party dependencies (those that do not
use shading). It can also signal that the third-party library we are using is well-designed
and carefully thought out.

9.4.2 Too many dependencies

We need to be aware that almost every library needs to use other libraries to provide
noncore functionality. Because of that, we should examine the number of libraries it
brings. There is a big difference between importing other libraries for hard-to-write,

Semantic versioning and compatibility
Most libraries have adopted semantic versioning with a version string consisting of
three parts: major, minor, and patch. Any breaking change should be indicated by a
change to the major part of the version string. We’ll look at this in much greater detail
in chapter 12, but the impact here is that if the complete set of dependencies only
uses the same major version for the JSON library, we should be able to just use the
latest of those versions everywhere. If there are multiple major versions involved, we
need them to be effectively independent dependencies.

https://github.com/FasterXML/jackson

253Choosing and maintaining third-party dependencies
complex functionality and for simple tasks that can be easily achieved and implemented
from scratch.

 We need to remember that every library that we import impacts our application. It
is often not feasible for library creators to perform shading for all dependencies, as it
requires too much time and effort.

 Every dependency that is imported into our appli-
cation influences our target application. The most
common method of deploying an application is by
building a self-contained package (fat jar, also known
as uber-jar) that contains all the required dependen-
cies, as figure 9.8 illustrates.

 Assuming that our application code takes 20 MB,
we still need to package the Java runtime environ-
ment and all third-party libraries we are using. The
target file will be a self-contained runnable applica-
tion. In our example, it will take 120 MB.

 When an application is deployed as a fat jar, it
allows running the application straightforwardly, every-
where, without any external dependencies. This is get-
ting even more popular in containerized environments (e.g., Kubernetes and Docker).

 It means that the produced file with our application will grow for every depen-
dency it has. If it includes all third-party dependencies and dependencies used by
those third-party libraries. For that reason, we should seriously take into account the
number of dependencies our application has. The fewer the dependencies there are,
the smaller our app will be. The smaller our app is, the faster it will start, and also, it
will be easier to deploy and manage.

 The runtime overhead will also be lower because the built application needs to be
loaded in the machine’s RAM that runs it. This is gaining more attention, as the
serverless approach is getting more popular. In the serverless environment, applica-
tions have a limited environment (e.g., CPU and RAM). Also, the startup time in the
serverless environment is highly important.

 In the Java ecosystem, the Maven-shade-plugin (https://maven.apache.org/plugins/
maven-shade-plugin/) simplifies the build process of the fat jar. It also provides a way
to perform shading using the renaming technique. In the next section, we will con-
sider how to choose third-party code in your application, along with options for how
you use it.

9.5 Choosing and maintaining third-party dependencies
Choosing a library our code will use always introduces some coupling between our
code and the third-party library. We can hide the third-party library behind an
abstraction layer and expose methods called from our code, but this requires some

Figure 9.8 The makeup of a fat jar

HTTP library

10 mb

Cache library

20 mb

Java

runtime

environment

70mb

Our

application

20mb

Our-application-fat-jar.jar

120 mb

https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/

254 CHAPTER 9 Third-party libraries: Libraries you use become your code
maintenance overhead. Yet, it is feasible. Libraries we use have their own develop-
ment lifecycle.

9.5.1 First impressions

When we first consider adopting a library and including it as part of our application,
there are various aspects to check fairly quickly before doing a deep dive to deter-
mine technical suitability. This is generally easier to do if the library is open source,
but most of the following questions should still be answerable for commercial librar-
ies. Of course, the aspects covered in the previous sections should be considered in
detail too.

 How stable is the library? If it doesn’t yet have a stable release, are you convinced it
will have one before you need to ship your own code?

 Is the library under active development? If the library solves a well-constrained prob-
lem, it may be OK if it’s effectively done and doesn’t required any updates for a
while, but it’s worth ensuring that it hasn’t been abandoned.

 Is the library popular in the rest of the community? It’s a lot easier to get help if
there’s an active ecosystem, and that’s typically a good indicator of the quality of
the code as well.

 What does the team behind the library look like? A library authored by multiple peo-
ple, possibly backed by a large company that uses it themselves, is less of a risk
than the hobby project of a single developer.

 Is the library clearly documented? Look for API reference documentation, concep-
tual documentation, and tutorials or quick-starts.

While these are reasonable indicators, they’re definitely not simple yes or no answers.
Large enterprises can still walk away from libraries they’ve developed for years, lone
developers can diligently maintain projects for decades, and sometimes you can make
do with quite sparse documentation. These are all just aspects to consider consciously.
Let’s look in a bit more detail at some more aspects, starting with options for how you
adopt the third-party code within your codebase.

9.5.2 Different approaches to reusing code

Up to this point, we can see that picking a library is not a trivial task. We need to con-
sider many factors, such as their configuration, concurrency, scalability models, test-
ability, number of dependencies, development lifecycle, and versioning. If the task
you are expecting the library to do is complex, and you plan to use a variety of its fea-
tures, using the third-party library will justify all those tradeoffs and maintenance
costs. However, if, for example, you need a particular and small feature, such as properly
formatting a string or having more utility methods on collections, you may consider
implementing a specific method in your codebase. The third-party library method you
would like to use, on the one hand, may simplify your code a little bit. However, it will
bring all the maintenance problems and complexity to your codebase.

255Choosing and maintaining third-party dependencies
 Depending on the license of the third-party library you are considering, you may
be able to copy the needed method into your codebase, add the unit test for it, and
take full ownership of this code. It will allow you to use existing production-proven
code without the need to import the library with all its APIs and methods. This may be
a rational solution if you need to use small parts of the third-party library. Of course, it
has its disadvantages because you need to be responsible for its bug fixes. However, if
the code that you are porting is small and you understand it fully, there shouldn’t be
many problems with it.

 You can also fork the original library and develop needed functionalities if it’s
impossible or hard to change the original code. This also comes with many mainte-
nance problems. For example, you need to keep the fork up to date to include the
bug fixes from the original codebase. Also, after some time, both code versions may
diverge, making it impossible or hard to keep them consistent.

9.5.3 Vendor lock-in

It is important to be aware that, regardless of the popularity of the given library and
the company that backs it, the solution we use may be deprecated and, finally,
removed—whether it is some cloud service that gets replaced with a better version or
proprietary software we bought, but the company behind it was acquired, and the
product changed. Also, a third-party open source library might be popular, so we
choose it to use in our application. However, after some time, a new library is devel-
oped. The new one solves the same problem faster and more cleanly, so people start
migrating to this new solution. The solution we used has lost its traction and, after
some time, is in maintenance mode—no longer developed.

 Architectures evolve, new patterns are created, and software gets deprecated.
When we start using a new library or service, we should be aware that there may be a
need to migrate to a new solution in the future. The probability of such an event is not
the same for all software components we use. We should hide the integration points
with those libraries (or services) behind an abstraction layer if we know that this prob-
ability is high. Then when there’s a need to switch the implementation, the change
will not propagate to a lot of places in our code. Instead, it will be encapsulated within
the abstraction, and a code change will be needed only there.

 When starting with a new library, we should observe how it impacts our application
and architecture. The more invasive the integration is, the harder it will be to change
the vendor in the future. It is hard (or impossible) to hide every possible library and
service integration point behind abstraction in the real world. Some level of vendor
lock-in is also hard to alleviate, but we may strive to minimize it by picking libraries
that do not require tight coupling with our applications.

9.5.4 Licensing

When deciding on using the code from another library, you need to consider its
license. For example, let’s suppose you want to use a library that has a GNU General

256 CHAPTER 9 Third-party libraries: Libraries you use become your code
Public License. If you’re going to use its code in your project, you may need to make
your project source code public as well. This may be a blocker for many internal proj-
ects for which you don’t want to expose your code. Decisions about licensing are com-
plicated, and the cost of a mistake could be high. For that reason, if you have any
doubts about it, I recommend consulting with a legal department that can give you
proper guidelines for your questions.

9.5.5 Libraries vs. frameworks

Often, when starting out with a library in our codebase, we can abstract it away with-
out a substantial cost. For example, all calls to the HTTP service using a specific
library can be hidden in our custom service class. Next, all the interaction between
the HTTP library and our application code can be done via this service class and not
directly via the HTTP library. However, we need to be careful not to leak anything spe-
cific to a library that we are using, including exceptions (as we learned in chapter 3)
and configurations (as we learned in chapter 6). Once we do that, it is easier to
change the decision later. We can switch a library for another implementation without
a considerable cost. We can also decide to implement it ourselves and remove the
dependency on this library.

 The situation changes a lot when we are using frameworks. Frameworks tend to
impact the code of our applications substantially. Some frameworks are invasive and
require us to use their constructs throughout our application. We can easily see that
by looking at our codebase imports. The more framework imports are in our code-
base, the more tightly coupled it is to our application. It is significantly more difficult
to change the framework to something else during the lifecycle of our application
compared to a library. Due to that fact, we should be more careful and do a thorough
investigation before choosing a framework for our application (compared to the
choice of a library).

9.5.6 Security and updates

The last, but not least, aspect we will focus on is the security impact of third-party
libraries on our software. As we know, every piece of software can contain bugs. Those
bugs not only impact correctness and performance but also the overall security of our
application. For that reason, we should perform security tests before deploying a new
release of our application. Our codebase’s automatic security scan can also find issues,
but we cannot forget that the libraries we use become our code.

 Every third-party dependency we use evolves and can also contain its security
vulnerabilities. When a new security vulnerability is found in the third-party library,
it should be treated by the library’s authors with top priority. Most often, it results
in a new version being published soon after the vulnerability is found. Once it is
fixed, we should update the offending library in our codebase as quickly as possi-
ble. The longer we wait, the more time there is for the potential attacker to exploit
that vulnerability.

257Choosing and maintaining third-party dependencies
 How can we find out if the third-party dependency had a security problem? We
can, for example, check a variety of websites with security vulnerabilities (e.g.,
https://www.cvedetails.com/) and look for the library we use. These sites contain
updates regarding security problems of different products and libraries. However,
checking the website manually can be tedious and time-consuming. Fortunately, we
can automate security checks that scan all third-party libraries and notify us when
there is a problem. Some of those tools (e.g., https://dependabot.com/) can even
automatically upgrade the version of the offending library and submit a change (e.g.,
a pull request using Git) to our codebase.

 Security updates are the most important thing to consider, but it’s worth keeping
an eye on other updates for the library. If there’s a new major version, you may want to
plan to investigate how much has changed and consider upgrading sometime in the
near future, particularly if the older version only has a limited support lifetime.

 Minor versions should be easier to adopt if the library follows semantic versioning
properly, and you may find that some of your code can be simplified due to new fea-
tures. It’s also worth checking out which bugs have been fixed in new releases, too.
Sometimes you may find your application has been suffering from a problem without
you even being aware of it.

9.5.7 Decision checklist

If you need to use a third-party library with more of its functionalities (or the solution
with copying code is not possible), consider following the checklist of things to vali-
date from this chapter. This checklist may alleviate a lot of your application’s problems
in the future.

 Configurability and its defaults—Can we provide (and override) all critical settings?
 Concurrency model, scalability, and performance—Does it provide an async API if

our applications workflow is async as well?
 Distributed context—Can it be safely run in a distributed context (multi-node)?
 Investigating reliability—Are we choosing a framework or a library? If it’s a frame-

work, we need to do a more thorough investigation.
 Testing via unit and integration tests to check assumptions about the library—How

hard it is to test the code that uses this library? Does the library provide its own
testing toolkit?

 Dependencies—What does the library depend on? Is it self-contained and iso-
lated? Or does it download a lot of external dependencies, impacting the size
and complexity of your app?

 Versioning—Does the library follow semantic versioning? Is it evolving in a back-
ward-compatible way?

 Maintenance—Is it popular and actively maintained?
 Integration—How invasive is the integration with this library? How much do we

risk being locked into a single vendor?

https://dependabot.com/
https://www.cvedetails.com/

258 CHAPTER 9 Third-party libraries: Libraries you use become your code
 Licensing—Is the license of the third-party library that you are using allowing
the usage in your context?

 Security and updates—Is it frequently upgrading the downstream components to
address their security vulnerabilities?

Summary
 The majority of libraries we use need some configuration. Beware of the defaults

that may impact your production code.
 Convention over configuration simplifies the prototyping and development

phase but may hide some problems that will manifest in the production traffic.
 Our application should use third-party libraries that provide a similar concur-

rency model. This allows us to create applications that have better performance.
 In Java, it is easier to use the async API in the sync context rather than wrapping

the async API in a sync abstraction, which is straightforward. Creating an async
wrapper around sync API adds substantial complexity to our application.

 Picking a library with the synchronous design may limit our scalability in the
future if we choose to change the execution model.

 Third-party libraries’ scalability may differ substantially between a one node use
case and the distributed system with N nodes. We should validate our assump-
tions about the library’s scalability models that we consider using before it will
be too costly to change.

 We should validate our assumptions about the code we don’t own via testing.
 Testability of the third-party library we want to use should be essential when

choosing one over another. This also manifests the overall quality of the code
that we want to use.

 Unit and integration testing toolkits that ship with libraries allow us to test the
code much more easily and quickly.

 Every third-party dependency brings its own dependencies. We should be aware
of them and examine them before importing the code into our application.

 The size of our application gets more critical in containerized and serverless
environments. The smaller the application is, the faster it can be deployed.

 We should keep the third-party libraries up to date to leverage all bug, security,
and performance fixes of those libraries. Semantic versioning should be imple-
mented by any library we use. It will simplify the update process.

 Semantic versioning gives us a lot of information about the cycle and develop-
ment activity of third-party libraries. When the major version changes, it gives
us information that upgrading won’t be simple. However, when a minor or
patch version changes, the upgrade should be straightforward.

Consistency and atomicity
in distributed systems
If we want our application to scale and run in a distributed environment, we need
to design our code for that. Having a consistent view of the system is important and
relatively easy to achieve if our application is deployed to one node and uses a stan-
dard database that works in a primary–secondary architecture. In such a context, a
database transaction guarantees the atomicity of our operations. However, in real-
ity, our applications need to be scalable and elastic.

 Depending on our traffic patterns, we want to be able to deploy our services to N
nodes. Once we deploy the application to N nodes, we may notice scalability problems
on the lower layer—the database. In such a case, there is often a need to migrate the

This chapter covers
 Traffic flow between microservices deployed

to N nodes and a distributed database

 Applications that work correctly in a one-node
scenario and evolving them to work properly
on N nodes

 Differences between atomicity and consistency in
your application’s environment
259

260 CHAPTER 10 Consistency and atomicity in distributed systems
data layer to a distributed database. By doing so, we are able to distribute the incoming
traffic handling to N microservices, which, in turn, distribute the traffic to M database
nodes. In such an environment, our code needs to be designed in an entirely different
way. This chapter focuses on the decisions and changes we need to perform to make our
application logic consistent and atomic in such a distributed environment.

 Let’s start by understanding a simple architecture with multiple services, where
each service is deployed to only one node. We’ll learn and understand the traffic char-
acteristics in such a context. Next, we will gradually progress to more complex archi-
tectures and see how our system design assumptions evolve.

10.1 At-least-once delivery of data sources
It is tempting to have a simplified view of our application deployed to one node that
uses a nondistributed, standard SQL database. However, it is important to realize that
even if our service has a straightforward deployment model and is not designed for
scalability, it can (and probably will) operate in a distributed environment. The reason
for that is if our system provides some business functionality, there is a high probabil-
ity that it needs to call a different service. Every time we call an external service, a net-
work call is performed. This means our service needs to execute a request that
reaches out via the network and waits for the response.

10.1.1 Traffic between one-node services

Let’s assume that our application A, which is deployed to one node, needs to perform
a call to a mail service. When the service receives the request, it sends an email to the
end user. In this case, we are operating in a distributed environment.

 It’s important to remember that every network request can fail (see figure 10.1).
The failure can be caused by an error from the service we are calling.

At first glance, this is a simple situation. However, this is not simple to reason about from
the caller’s perspective (application A). In reality, application A may be an e-commerce
service, a marketing automation service, a payment confirmation service, or others. The

Application A

Failure

Mail service

Calls

Figure 10.1
A request to the
mail service that
fails due to a
failure in the
service

261At-least-once delivery of data sources
mail service’s failure may happen after or before it sends an email. If there is a failure
when sending an email, and the mail service is able to respond reasonably (with a status
code denoting there is a maintenance break, for example), application A can conclude
that the email was not sent. However, if application A gets a generic error without rea-
son, we cannot safely assume that the mail was not already delivered.

 This situation can get even more complicated when considering a network failure.
There could be a situation in which we call the mail service, which results in a success-
fully sent email. The mail service responds to application A with a status denoting that
everything went well. However, we need to remember that the request and response
are sent via a network. As mentioned, every network call can fail for an arbitrary num-
ber of reasons. For example, some routers, switches, or hubs that are on the network
path may break. There could also be a network partition preventing the package deliv-
ery (of the response), as figure 10.2 illustrates.

When there is a network failure, the caller of application A cannot reason about the out-
come of the operation. Application A will observe a timeout, denoting that the response
was not sent within some time-bound limit. For that reason, the caller ends up in an
inconsistent state: it does not have a complete view of the system. The mail may or may
not have been sent.

10.1.2 Retrying an application’s call

When application A does not receive a successful response, it may retry the initial
request as one solution for this problem. If there was a temporary network partition,
there’s a high probability the retry will succeed. In that case, the caller application has
a (mostly) consistent view of the system again.

 However, in our system’s architecture, retries are problematic. It can happen that
we need to retry more than once. In such a situation, there is a chance that the mail
service will send more than one duplicated email, as figure 10.3 shows. Let’s consider

Calls
Application A

Response

Mail service

Network

partition

Figure 10.2 A network
failure when sending a
response to application A

262 CHAPTER 10 Consistency and atomicity in distributed systems
a situation in which the first request fails, then the retry fails, and the request is retried
yet again. In such a case, there is a possibility that the given email will be sent up to
three times! The reason for this is that we don’t know if the previous call (before the
retries) failed before or after the mail was sent.

Let’s explain all the steps in figure 10.3. At the first stage of processing, application A
sends a request to the mail service called via some protocol. Next, the mail service suc-
cessfully sends the email. After it sends the email, it returns a response to the caller
(application A). Unfortunately, during the response, there is a network partition.
From application A’s perspective, this will be observed as a failure. The caller applica-
tion doesn’t get the response and fails with the timeout. If the caller decides to retry in
such a situation, it will call the mail service again. From the mail service’s perspective,
the retry is just another request that needs to be handled. For that reason, it sends the
same email again. This time, the response is delivered to the caller application A suc-
cessfully, so there is no retry. Unfortunately, the email was sent twice.

 In real-world systems’ architectures, we may need to integrate with more than one
external service. Retries for sending email in this case may not be problematic,
although it may result in sending emails to a customer’s spam folder. We may have
more significant problems if, for example, our system needs to make a payment. Mak-
ing a payment is also an external call, and retrying a payment is problematic because
we may debit the user’s account twice (or more).

 When we retry an operation to the mail service, it will offer an at-least-once deliv-
ery semantically. If application A retries the operation until it succeeds, the mail will
be delivered once or more. There could be a duplicated delivery, but there is no way
that there will be no delivery at all (besides some critical failure of the whole mail ser-
vice). We will discuss the different delivery semantics in detail in the next chapter. For
the purpose of this chapter, we only need to know that our architecture works in an at-
least-once delivery approach, resulting in duplicates at the mail service side when
application A sends retries.

1. Calls

4. Retry and calls

Application A

2. Response

Sends

Sends a

duplicate

Mail service

3.

Network

partition

Mail-1

Mail-1

Figure 10.3 Retrying a
request from application A
that end ups with duplicate
emails

263At-least-once delivery of data sources
10.1.3 Producing data and idempotency

Retrying an operation that has side effects is usually not safe. That’s the case in our
current architecture. But how do we decide if a retry operation is safe or not? The
idempotency characteristic of the system answers this question. An operation is idem-
potent if it results in the same outcome, regardless of the number of invocations.

 For example, getting information from a database is idempotent (assuming that
the underlying data hasn’t changed between attempts). All get operations, such as get-
ting the data from an HTTP endpoint, should also be idempotent. If our service
needs to retrieve data from a different service, it may retry the get operation multiple
times. This is assuming that none of the get operation executions modify any state. It
is safe to get the value, retrying as many times as needed.

 As another example, deleting the record for a given ID is also idempotent. It gives the
same outcome, regardless of the number of times it is executed. If we remove an entry
with a specific ID and retry it, that is idempotent. Let’s assume the entry was removed by
the first operation. If there is a retry of removing an element that was already removed, it
does nothing. Regardless of the number of invocations, the outcome is the same.

 On the other hand, producing data is most often a nonidempotent operation. Send-
ing mail is not idempotent. When we issue a sent operation, the mail is sent. In the archi-
tecture presented in the previous section, this is a side effect that cannot be rolled back.
Retrying such an operation results in another send, so this is yet another side effect.

 It is worth noting that some producing actions can be idempotent. If we properly
design our business entities, this operation may be idempotent. For example, let’s
assume a situation in which we have a cart service that sends the events with the user’s
products status on an e-commerce site. These events can be consumed by other ser-
vices interested in the cart state.

 In this section, we will design an event in two ways: one will be idempotent and one
will be nonidempotent. The most straightforward approach is to send an event denot-
ing that a product was added to a cart each time an item is added. For example, if the
user adds a new book A to a cart, a new event with quantity one is sent. Next, the users
add the same book to the cart again, so quantity two is sent as figure 10.4 depicts.

Adds to cart

User

Send event_1

Send event_2

Cart

Book :event_1
Title: A

Quantitiy: 1 Book events

consumer service

User’s cart state

Title: A

Quantity: 2

Book :event_2
Title: A

Quantitiy: 1

Figure 10.4 Nonidempotent entities that produce data in a shopping cart for a book service

264 CHAPTER 10 Consistency and atomicity in distributed systems
The book event’s consumer service builds its own view of the cart’s state, based on the
sent events. Such an event-based architecture is often used to build a system that fol-
lows the command query responsibility segregation (CQRS) pattern. This allows inde-
pendent scaling of the writes (the cart service) and the read parts of our system. For
our scenario, the events from the cart service are sent to some queue, and multiple
independent consumer services can consume those events. Every service can build its
database model optimizing it for its read traffic. Moreover, adding more read-side ser-
vices does not impact the write performance of cart service. (We will look at this pat-
tern more in depth in the following section.)

 The problem with the presented business model is that it is not idempotent. If the
cart service needs to retry the send for any cart event, there will be a duplicate state
delivered to the book events consumer service. Because the consumer service needs to
recreate the cart view based on events, it will increment the quantity of the item in the
cart in case of one duplicated event. The resulting quantity will be equal to 3. The
view will then be inconsistent and broken. It is clear to see that such a business model
is nonidempotent. How can we rework it to be idempotent?

 Instead of sending an event with every modification, the cart service can send an
event with a full view of its cart. With this improved architecture, every time the new item
is added to a user’s cart, the new aggregated event is sent to an external service. The first
time the user adds book A to a cart, the event with quantity one is sent. However, the sec-
ond time book A is sent, a new event will contain a quantity equal to two. Because of that,
all cart event consumer services will get the full view of the cart. They will not need to rec-
reate the local view that can become inconsistent in case of retry. The cart service can
now retry send of such an event without the danger of introducing an inconsistent state.

 There is one more caveat we need to be careful about. In the case of a retry, the cart
service can still emit a duplicate. Because the cart’s full state is propagated, the more
recent event sent to the customers can override the older cart state for the user. However,
in the case of a retry, the ordering of events may get mixed, as figure 10.5 shows.

Let’s assume that the first operation at time T1 fails and the retry operation is sched-
uled to be executed after some time. In the meantime, the later operation at time T 2

Sends at time T1

Sends at time T2

Retries at time T3

Failure

Success

Book events

consumer service

Cart service

Success

Book :event_1
Title: A

Quantitiy: 1

Book :event_1
Title: A

Quantitiy: 1

User’s cart state

Title: A

Quantity: 1

Book :event_2
Title: A

Quantitiy: 2

Figure 10.5 Out-of-order retry

265At-least-once delivery of data sources
successfully finishes. Then, the scheduled retry operation is executed at time T 3, and
it will override the state propagated by book event_1. The event’s customer service
will end up with an inconsistent state. Because of that, we need to be careful when
doing retries for the same user. This problem can be solved by ordering the events at
the customer side or ordering the event’s send at the cart service side. We should also
not mix the ordering by retries.

 Usually, we don’t need to have a global ordering of events: the cart is created and
owned by a specific user. Every user has a unique ID. Therefore, we can propagate the
user_id of the user to which the cart belongs. By having that information, we only need
to order events for this specific ID. If the cart events are ordered within a user_id, the
services that consume events can recreate the cart per user_id without worrying about
overriding behavior. We can say that cart data is partitioned by user_id, and that order-
ing is guaranteed within a partition. The queue frameworks that are widely used (e.g.,
Apache Kafka and Pulsar) provide a way to achieve an order within a partition.

 Propagating the full state of a view also has some drawbacks. If the state gets bigger,
we need to transfer more data over the network every time the event is sent. It also means
that the serialization and deserialization logic will need to perform more work. However,
in a real systems, the idempotency of such a business model often justifies those tradeoffs.

 As we can see from this example, making the non-get operations idempotent is
complex, fragile, and sometimes even impossible. The problems will be multiplied
when we operate in a distributed architecture, such as CQRS, with many components.

10.1.4 Understanding Command Query Responsibility Segregation
(CQRS)

To understand CQRS more, let’s assume we need to build two services that consume
users’ cart data. The existing cart service is responsible for writing the user’s event to a
persistent queue. This is the writing model commands (C) of our architecture. On the
other hand, we may have N services consuming the users’ events asynchronously
(sometime in the future). For that, let’s assume we have two services: a user profile ser-
vice and a relational analysis service, as figure 10.6 shows.

 The first user profile service needs to optimize its read model for faster data
retrieval via the user_id. We may pick some distributed database and use the user_id
as a partition key. Next, the customers of the user profile can then query the service
via user_id, using the read-optimized data model. The other relational analysis ser-
vice data model is optimized for totally different use cases. It also reads the users’ data,
but it builds a different read model optimized for offline analysis, and it allows differ-
ent query patterns optimized for batch queries. It may, for example, save those events
to a distributed file system, such as HDFS. Both user profile and relational analysis ser-
vices are the Query (Q) part of our CQRS architecture.

 This architecture gives us a couple essential benefits. First, the data producers and
consumers are decoupled from each other. Second, the service that produces the events
does not need to guess all possible future uses for its data. It saves the events in the data

266 CHAPTER 10 Consistency and atomicity in distributed systems
store that is optimized for writing. The consumer’s responsibility is to fetch this data and
transform it into its database model optimized for the specific use case. Teams develop-
ing consuming services can work independently, creating a business value based on the
commonly available data. When using CQRS, the data is a first-class citizen. Consumer
services can consume different sources of data and use them for their own purpose.

 However, this pattern has a lot of drawbacks. First, the data will be duplicated in
N places. The more read model services we need, the more duplication there will
be. Also, this architecture requires a lot of data movement. There will be many
requests sent from both write model services (to save the initial data) and read
model services. Any of those requests can fail, so all the problems discussed previ-
ously (such as retries, at-least-once-delivery, network partition, and idempotency of
operation) will influence the state of our system. In fact, they will be even more
apparent: the more services we have, the more things may go wrong. An out-of-sync
state can occur between reading model services if we are not guarding against such
problems properly. One nonidempotent duplicate sent to one of the two services
can make the state of the whole system diverge.

 How do we design a fault-tolerant system (meaning that it retries the failed
actions) that works in a distributed environment (in reality, this is almost every pro-
duction system) and assure ourselves that we have a consistent view of the system?
The well-proven pattern for this is a deduplication logic implemented on the con-
sumer side. When a service that performs a nonidempotent action (one that can-
not be retried) implements deduplication logic, it effectively changes its behavior
to be idempotent for all callers. In the next section, we’ll implement deduplication
logic in a library.

User eventCart

service

Read
users data

Read
users data

Users queue

Database

partitioned by

user_id

User profile

service

Graph

database

Relation

analysis

service

Figure 10.6 Using CQRS with two read models

267A naive implementation of a deduplication library
10.2 A naive implementation of a deduplication library
We will try to make the mail service send out idempotent. This can be achieved by
implementing a deduplication logic in the mail service. When a new request arrives at
this service, it checks if it was delivered before. If the request was not delivered, it
means that it’s not a duplicate, and it can safely process the request.

 It is important to note that every event needs to have a unique identifier to make
deduplication work. The caller service (application A) will generate the UUID that
uniquely identifies each request. When the request is sent again, the same UUID is
used. By using this information, the mail service, which receives an event, can validate
whether it was received previously. If we have an architecture where a request (or
event) can travel through multiple services, all of those services can use the same
unique ID of that request. Usually, the unique ID is generated at the producer side
(the first service that executes a request or event) and can be used for deduplication
along the way by multiple services.

 The information about whether or not the ID was processed must be persistent.
Because of that, the ID needs to be saved in the database that provides the per-
sistence. The database is a new component that needs to be used by our system.
There is a good chance your service uses some database already, so adding a new
dedicated table for deduplication may be straightforward. Figure 10.7 shows the
deduplication logic.

Let’s consider the same situation that caused mail duplicates. The first request in fig-
ure 10.7 with ID 1234 (in real life, it will be a UUID) is sent. When the request arrives
at the mail service, it first checks if the request with the given ID was processed. It does
that by executing a database query. If there was not a processed event with the given

1. Calls

6. Retry and calls

Application A

4. Response

2. Check that it is not a

duplicate and saves id

7. Retry is a duplicate,

no send-out

Mail service

5. Network partition

Request with

Id : 1234

Request with

Id : 1234
Id: 1234

Deduplication_table

3. Sends

Mail-1

Figure 10.7 Deduplication logic in the mail service

268 CHAPTER 10 Consistency and atomicity in distributed systems
ID, it adds that record to the database. Then, it continues processing by sending the
mail to the end user. Next, the mail service sends information (at step 4) that the data
was correctly processed, and unfortunately, the network partition happens (step 5).

 Application A does not know if the mail was sent or not, so it retries the request
with the same ID. When the retried request arrives at the mail service, it checks
whether it is a duplicate. If the request was already processed, it does not process
this request.

 The solution looks robust, but it has one problem. What happens if there is a
failure after the mail service saves the ID of processed request information but
before actually sending the mail? Let’s consider this situation now, as demonstrated
in figure 10.8.

If our deduplication service checks and saves the ID of the event before the send-
ing, we are risking a partial failure. It is possible that after the request is marked as
processed, the mail sent process fails. A response with failure will be sent to the
caller application. The caller application will retry as expected with the same
request id. However, the mail service has the given ID marked as already processed.
Therefore, the request will not be processed, and the mail will not be sent. The
most straightforward approach for implementing this would be to split the dedupli-
cation service into two stages and to insert the mail send action between those
stages. Figure 10.9 shows this process.

 First, the new approach will try to get the record from a database for a given ID.
When the ID is not present, it should execute any action provided by the caller. For
our use case, it will be the mail sent action. Once the send finishes successfully
(returned without exception), we can insert a new record with the request id. List-
ing 10.1 shows the code for such logic.

Id: 1234

Deduplication_table

Send failure

Mail-1

Checks if it is a duplicate

and saves idMail

service

Request with

id: 1234

Figure 10.8 Partial failure send out

269A naive implementation of a deduplication library
public class NaiveDeduplicationService {

 private final DbClient dbClient = new DbClient();

 public void executeIfNotDuplicate(String id, Runnable action) {
 boolean present = dbClient.find(id);
 if (!present) {
 action.run();
 dbClient.save(id);
 }
 }
}

The DbClient is responsible for the interaction with an underlying database back-
end. The provided Runnable is our mail send process. The dbClient.find(id) call
is the first stage of our processing. This tries to find if the record is present in the
database. If it is not present, the actual processing is executed. The last stage saves
a new ID record to the database. If the record for an ID is present in the database,
such a request is ignored.

 The provided solution seems to behave properly for both failure scenarios we are
discussing. When there is a network partition after the successful mail send, the
request id is already persisted in the database (it is after the dbClient.save() method
call). In this case, retrying requests will be caught as a duplication.

 The second scenario we are considering (when there is a failure during the mail
send) will fail the Runnable processing. This will, in turn, cause no save of request-id
to the database. When retrying the request, it will be properly reprocessed because
the request id is not saved.

 However, we need to remember that our mail service operates in a distributed
environment. Because this is an inherently concurrent environment, the discussed

Listing 10.1 Implementing a naive deduplication service

If not

Checks if id is present

in the database

Executes business

logic

It’s a duplicate dose

not process

Saves id into

duplicates table Figure 10.9 Deduplication
with three stages

270 CHAPTER 10 Consistency and atomicity in distributed systems
solution will not provide idempotency for all use cases. Let’s consider why the solution
is not atomic and how we can do it in an atomic way.

10.3 Common mistakes when implementing deduplication
in distributed systems
Let’s consider our naive implementation from the previous section in two contexts.
The first context assumes that the mail service and application A, which sends the
data to it, are deployed to only one node. The second one adds some complexity: the
mail service will be deployed to multiple nodes. The latter use case is more realistic
because it’s how services are deployed in the microservices architecture, which is fault-
tolerant and scalable. Having more than one node gives us fault tolerance because, in
case one node fails, another node (or nodes) will start handling its traffic. We will ana-
lyze how this context affects the consistency of our deduplication logic.

10.3.1 One node context

Let’s see how our deduplication logic performs in the context of one application A
service and one mail service. Both services are deployed to only one node. Figure 10.10
illustrates this context.

Let’s analyze a retry for a given unique ID. The first call executed by application A is
executed at time 1 (T1). We will assume that it fails, and the retry is executed after it
fails at time 2 (T 2). Again, we will assume there is a happens-previously relationship
before the first request and the retry action. In this case, our current deduplication
logic is not atomic. It is split into three stages:

 Stage 1—Searches for the request-id in the database
 Stage 2—Executes the mail service logic if the request-id is not found
 Stage 3—Saves the request-id in the database

For simplicity, we’ll consider the only failure at stage 2, but in a real-world application,
the failure can happen at any stage. This makes it even more tricky and complex to
analyze. Our analysis focuses on the main functionality of this component: preventing
duplicate email sends.

 If the first request (T1) fails at stage 2, the response is returned to the caller’s
application. Because request fails at stage 2, the stage 3 action is not executed. The
retry at T2 will be executed, and the mail send action succeeds. There is no possibility

Calls at T1
Application A Mail service

Retries at T2 Figure 10.10 One service
context for both application A
and the mail service

271Common mistakes when implementing deduplication in distributed systems
for a duplicate send in that case, even if our executeIfNotDuplicate() method, as
shown in the following listing, is not atomic.

public void executeIfNotDuplicate(String id, Runnable action) {
 boolean present = dbClient.find(id);
 if (!present) {
 action.run();
 dbClient.save(id);
 }
}

Let’s consider what happens if the email send action executes for a long time. In the
listing, the email send action is blocking, and it involves yet another remote call (send-
ing an actual email). This call can block the processing of our code. It can also fail
during the response because of the network partition; this is the same situation as in
section 10.1.2, but this time it’s applied to the mail external network call.

 As we know from chapter 9, every network request
should have configured a reasonable timeout to prevent
the blocking of threads and resources. Let’s assume that
application A defines the timeout as equal to 10 seconds,
but the mail service sends out blocks for twice as long (20
seconds). In such a situation, the request at T1 fails after
10 seconds. However, it does not mean that the mail send
fails. It may succeed but only after 10 seconds more. Fig-
ure 10.11 shows this depiction.

 Both requests will interleave. From the perspective of
application A, the first request at T1 fails (times out). How-
ever, the main action is blocked for 20 seconds, and after
that time, it will succeed. Next, the application will just
save its request-id to a database. Unfortunately, in the
meantime, application A retries the request at T 2 because
it observed a failure. The retried request will arrive at a
mail service before it saves its request-id from T1 as an
already-processed request. Due to that fact, T 2 is treated
as a new, nonduplicated request. This causes an email to
be sent. In the meantime, the request at T1 completes and
also causes the mail to be sent. Because the duplicate was
sent, our nonatomic deduplication service causes an incon-
sistency in our system.

 This is only one of the failure scenarios that can cause a duplicate in the one node
context. However, when designing a robust component, even one use case where the
requirements are broken should be enough to consider changing a design. Before we
do that, let’s analyze the same scenario in a multi-node context.

Listing 10.2 Blocking email send actions

Blocks send actions
for N seconds.

Application A

Mail service

Sends mail Sends mail

Retries

at T2

Calls at T1 and

fails after

10 seconds

After

20 seconds

After > 10

seconds

Figure 10.11 One service
context with a duplicate send

272 CHAPTER 10 Consistency and atomicity in distributed systems
10.3.2 Multiple nodes context

Let’s analyze the consistency and correctness of our deduplication logic in the multi-
node context by looking at a situation in which the mail service is deployed to multi-
ple nodes. It is common to deploy a service to more physical machines (nodes) to
increase its overall performance and fault tolerance.

 When the mail service is deployed to multiple nodes, its API is exposed via Load
Balancer. Every service is reachable via its IP address. We will assume this offers dynamic
scalability, meaning that new mail service instances can be added or removed, depend-
ing on the traffic. Because of this, the mail service instance IPs are hidden from appli-
cation A. The request executed by application A is sent to a load balancing service.
The load balancing service captures the request and redirects it to a specific backend
for the mail service.

 The actual implementation of load balancing is abstracted away from the application
A service. When the new mail service is deployed, it registers itself with the load balanc-
ing service. From that point, the load balancing service routes the traffic to the newly
added node. Figure 10.12 illustrates the load balancer’s role in a multi-node context.

Application A

Mail service

instance 1

Load

balancer

Database with

processed

request-ids

Mail service

instance 2

Mail service

instance N

Send request

Figure 10.12 One service context

273Common mistakes when implementing deduplication in distributed systems
In this scenario, the mail service must be stateless; it should be able to process any
arriving request. All needed state, including the table with the already processed
request-ids, is kept in a separate database. For the simplicity of our analysis, we will
assume that the database is not distributed and keeps all its state on one node (it can
be a primary–secondary architecture if you like). In a real-life application, however,
the scalable application (which achieves that by adding or removing nodes) should
probably use a distributed database, so the request-id data is partitioned into N
nodes. This also allows the data layer to scale horizontally by adding or removing
nodes. However, the failure scenarios we are discussing will be present when using
both (distributed and nondistributed) database types.

 Let’s assume our load balancer component works simply by doing a round-robin
on a request to an underlying backend for the mail service. The first request will be
routed to mail service 1, the second request to mail service 2, and so on. Note that
load balancing algorithms widely use the round-robin strategy because it’s simple to
implement and easy to understand. It also tends to perform well for a lot of use cases.
There are other load balancing algorithms that, for example, can take the latency of the
nodes into account. One of the most widely used is the power of two choices algorithm
(http://mng.bz/DxPR). The specific algorithm used by the load balancing service,
however, does not influence our analysis.

 Unfortunately, our current deduplication logic will not work correctly in such an
environment. Let’s consider a scenario when application A retries a request in the
multi-node context, as figure 10.13 shows.

 In step 1, application A sends the request for a mail send. The request flows
through the load balancer and, in step 2, is routed to the first mail service backend.
In step 3, the mail service checks whether the request-id is in the database. It is
not, so it continues processing. Unfortunately, this step results in a timeout that is
returned to application A in step 4. Application A issues a retry in step 5, and this
retry request is routed to a second mail backend in step 6. In step 7, the mail service
checks whether the request id was processed already. If it turns out it was not pro-
cessed, it continues with the send. In the meantime, the first mail service backend
completes the mail send request and, in step 8, saves the request id to a database.
Then, in step 9, the second backend finishes its execution and saves the request id
to the database, overriding the previous save operation that the first mailing backend
issued. This also means that both mail service instances didn’t observe a duplicate
when our deduplication logic started and resulted in a duplicate execution of logic
that sends the actual email.

 In a real-life scenario, the situation may get even worse. Application A triggers the
mail send based on some logic. It may turn out that the logic is triggered by yet
another external call from another service. This is not uncommon in microservices
architecture (especially event based). The business flow may span multiple services.
Also, assuming that our applications are stateless, application A may also receive dupli-
cated requests. For that reason, our deduplication logic is not atomic and may result

http://mng.bz/DxPR

274 CHAPTER 10 Consistency and atomicity in distributed systems
in more mail duplication. A consistent view of our system will be strongly impacted
because it’s possible there will be a lot of duplicates. At this point of our analysis, it is
clear to see that our deduplication logic needs improvement. Let’s next see how to
make it atomic in single- and multi-node contexts.

10.4 Making your logic atomic to prevent race conditions
Let’s recap our current deduplication logic. We have three stages:

 Stage 1—Searches for the request-id in the database
 Stage 2—Executes the mail service logic if the request-id is found
 Stage 3—Saves the request-id in the database

It is worth noting that all discussed failure scenarios will break our system’s consis-
tency, regardless of whether we have stage 2 in our logic or not. Let’s simplify our

5. Retries

request

Application A

3. Checks request-id - not a duplicate

8. Saves request-id

7. Checks request—not a duplicate

9. Saves request-id

4. Timeout

Mail service

instance 1

2. Route request

to instance 1

6. Route request

to instance 2

Database with

processed

request-ids

1. Send

request

Mail service

instance 2

Load

balancer

Figure 10.13 Retrying send requests in the multi-node context

275Making your logic atomic to prevent race conditions
example and assume that our deduplication logic has only stage 1 and stage 3. Our
deduplication logic will look like this now:

 Stage 1—Searches for the request-id in the database
 Stage 2—Saves the request-id in the database

There is still a possibility to send a duplicate email because both calls to retrieve and
save the data from or to the database can also fail because those are remote calls exe-
cuted in a distributed system. There could also be a network partition when a success-
ful response from the database is sent via a deduplication logic.

 All failure scenarios that we discussed in the context of application A apply to data-
base calls as well. For example, when calling the save request-id operation (stage 3),
the operation may throw an exception denoting a timeout. As we know, a timeout
does not give the caller a lot of information. There could be a situation in which the
client-side timeout is triggered, but the operation on the server side is still executing.
From application A’s perspective, this means the action fails, returning an error to the
client. The retry may happen before the request-id is inserted into a table by service
instance 1. Therefore, the request will be routed to the second service instance. This
situation is almost the same as discussed in the previous section. Figure 10.14 shows
how this can lead to a race condition.

find(request-id-1)

save(request-id-1)

Thread 1

find(request-id-1)

save(request-id-1)

Thread 2Time

Figure 10.14 Find and save in two operations yielding a race condition

276 CHAPTER 10 Consistency and atomicity in distributed systems
The find and save action can interleave, making the system inconsistent. For example,
the find operation on one thread (or node) can be executed after it is executed on
another node. The find operation can take an arbitrary amount of time. Therefore,
we cannot make any strong assumptions here. For both find calls, it will return false,
so the logic continues, and finally, a save will be called twice. Because of that, our
deduplication logic does not work correctly.

 To achieve the atomicity of our deduplication logic, we need to reduce the number
of stages required to only one stage. We also need to check whether the given request is
a duplicate and save the request-id in one operation. This should be one external call
without any intermediate steps. Every time the process needs to retrieve a value, do
some action, and save another value, there is a potential for a race condition.

 This is true when executed in a multithreaded environment. We can synchronize all
calls to our deduplication component, but that would mean this component’s concur-
rency level is equal to one. In other words, the service processes only one request at a
time. Such a solution is unusable in real-life applications that need to handle N requests
per second. The more requests the system needs to handle, the higher the contention
and number of threads will be. This increases the likelihood of intermediate failures
that will make our deduplication logic inconsistent sooner rather than later.

 Fortunately, most distributed databases that will be used the most often in a hori-
zontally scaling architecture expose a way to perform our task in a single atomic oper-
ation. (The standard SQL database also allows us to execute atomic operations.)

 We need to execute a save action that inserts a new record only if it is not present.
Moreover, it needs to return a Boolean, denoting if the insert was successful or not.
Such an operation gives us all the information that we need to implement a robust
deduplication logic. This is called an upsert; the save action inserts a value only if it is
not present and returns the outcome. Figure 10.15 illustrates this concept. You need
to find out if your database of choice exposes such a method. Upsert should be
atomic, meaning that the database should execute it as a single operation.

Time

Thread 1

Insert if absent and

return the outcome

Insert if absent and

return the outcome

—it is already inserted

Thread 2

Figure 10.15 Atomic upsert that
inserts a value only if it is not present
and returns the outcome

277Making your logic atomic to prevent race conditions
Because upsert is atomic, there is no way for a race condition between two interleav-
ing operations. All logic is executed at the database side, and the outcome is
returned to the caller.

 Let’s see now how the implementation of deduplication service changes when using
an upsert. Most importantly, the DbClient will expose a method that allows us to insert
data if missing and return the outcome. The following listing shows this method.

public boolean findAndInsertIfNeeded(String id);

We need to ensure that the implementation we use is atomic. This should try to insert
an entry with a given ID. If the entry is already present in the database, it returns false.
If the insert is performed, it returns true (the upsert operation). The following listing
shows the new isDuplicated() method that returns true or false, depending on
whether the given ID is a duplicate.

@Override
public boolean isDuplicate(String id) {
 boolean wasInserted = dbClient.findAndInsertIfNeeded(id);
 if (wasInserted) {
 return false;
 } else {
 return true;
 }
}

When findAndInsertIfNeeded() returns true, it denotes that the given ID was inserted
in the database. This means that it was not previously present there. What is important
is that this method will insert the given ID into the database. We don’t need to imple-
ment stage 2, which was needed before. When the method findAndInsertIfNeeded()
returns false, the ID is a duplicate. It also means the upsert didn’t insert a new ID
because the value was already present.

 Our logic is atomic now and, therefore, is not prone to a race condition. We need
to note that using an atomic operation that both inserts and checks if a value is pres-
ent does not allow us to execute a custom action between those stages. However, we
saw that such an approach was faulty. Currently, the deduplication logic is responsible
only for finding duplicates. It does not try to assure that the request was successfully
executed in an end-to-end fashion. The new deduplication logic has one functionality,
and it performs that in an atomic and correct way.

 When using this new deduplication component in the mail service without
another mechanism that checks the correctness of sending mail, we are risking a
chance that mail will not be delivered. Let’s consider a situation where the deduplica-
tion logic marks the request as processed at the time when the request arrives at the

Listing 10.3 Using upsert for deduplication

Listing 10.4 Implementing atomic deduplication logic

278 CHAPTER 10 Consistency and atomicity in distributed systems
mail system. If the failure of processing happens after that, the application request
retry does not take effect because this request is marked as already processed.

 On the other hand, if the duplicate is marked after successful processing, there is
no mechanism preventing duplicate send again. Due to that fact, we should use
atomic deduplication at the entry to a system. However, we should use it with other
mechanisms that verify the system’s correctness, such as transaction logs or rollback
(removal) of the processed ID in case of a failure. All of those techniques have their
complexities and tradeoffs and should be analyzed separately.

 The example presented in this chapter demonstrates that executing and reasoning
about the actions in a distributed system is challenging and complex. If you can
design your processing to be idempotent, your system will be more fault-tolerant and
robust. However, not every processing service can be idempotent, and we need to
design a mechanism that guards our system against retrying an action that should not
be retriable. If you don’t want to design a complex deduplication logic, every request
failure will be critical from your application’s perspective because you are not able to
retry. Only manual action by the system administrator can reconcile the data. This is
not ideal if you want to make your system fault tolerant and reliable.

 For that reason, we may decide to implement mechanisms, such as deduplication
with retries, to address those problems. However, we need to be careful because imple-
menting such mechanisms in a distributed system may generate different characteris-
tics than what we expected. Implementing a system that is supposed to be consistent
but works differently is dangerous. We may risk introducing hard-to-debug errors and
losing money when executing duplicate transactions. For those reasons, we should
analyze all incoming and outgoing traffic in the context of correctness and delivery
semantics. In the next chapter, we will dive deeper into delivery semantics and data
flow between our applications.

Summary
 If your application executes any network call, you are operating in a distributed

systems environment. Remember that every network call can fail.
 Every external call can fail for a variety of reasons, such as network failure or

the actual target application failure, but we can analyze and reason about
those failures.

 Retry mechanisms allow us to design fault-tolerant applications.
 Idempotent operations allow us to retry actions without worrying about

duplication.
 We can design our business domain to be more idempotency friendly. The

more operations that are idempotent, the more autonomous and fault tolerant
our system will be.

 Besides idempotency, we need to be careful about the ordering of requests.
We can analyze the impact of idempotency on the retry strategies used in our
application.

279Summary
 When implementing a logic that operates in a distributed context (such as a dedu-
plication library), we need to analyze edge cases and failure scenarios carefully.

 It is complex and sometimes not possible to have atomicity in our system if the
processing that is supposed to be atomic is split into N stages. We can rework the
nonatomic solution into an atomic one by using the correct database operations.

 When splitting an action that should be consistent into N remote calls, we risk
losing our system’s consistency.

 All systems have guarantees that we can use from our code. If the interaction
between them requires an external call, every one of those calls can fail.

 When using a system designed to work in a distributed environment, chances
are great that the problem we want to solve is already solved. For example, a lot
of atomic operations that may be hard to achieve at first sight can be imple-
mented using the upsert method. This improves the consistency of our system.

Delivery semantics
in distributed systems
In the previous chapter, we learned about fault tolerance, retries, and idempotence
of operations in the context of a relatively straightforward system architecture. In
real life, our systems consist of multiple components responsible for different parts
of our business domain and infrastructure. For example, we may have a service that
is responsible for collecting metrics. Another service may be responsible for collec-
tion logs and so on. Besides that, we need applications that provide the primary
business use cases of our domain. This can be a payment service or a database that
is responsible for persistence. In those architectures, services need to connect with
each other to be able to exchange information.

 The more components our system has, the more points where failure can occur.
Every network request can fail, and we need to decide if an action should be retried
or not. If we want to create a fault-tolerant architecture, we need to build handling

This chapter covers
 Publish–subscribe and producer–consumer

models in data-intensive applications

 Delivery guarantees and their impact on
resilience and fault tolerance

 Building fault-tolerant systems leveraging
delivery semantics
280

281Architecture of event-driven applications
failure into the system. Then, every component needs to provide precise delivery
semantics when producing the data. On the other hand, consumption of data should
also follow expected delivery semantics.

 In this chapter, we will learn how to build such architectures, allowing us to create
loosely coupled and fault-tolerant systems. We call this architecture event driven. We
will use Apache Kafka as the main component in our system. This will allow us to learn
about delivery semantics: at-most-once, (effectively) exactly once, and at-least-once, in
practice. Finally, we will build fault tolerance into a system, leveraging a system that
offers expected delivery guarantees. Let’s start by understanding event-driven archi-
tectures of data-intensive applications and their pros and cons.

11.1 Architecture of event-driven applications
Why do we need to be concerned about implementing a system that follows an event-
driven architecture? Let’s start with a simple design and see how it evolves in the con-
text of tight coupling and fault tolerance. Then, we will see how it can be improved by
reworking our architecture to be event-driven.

 Suppose we have two frontend applications. We can think of both as separate
microservices that run on different nodes. They both produce metrics that need to
be sent to a metrics server responsible for persisting metric values. Figure 11.1 shows
this scenario.

It also means there are direct connections between our frontend service 1 and the
frontend service 2 to the metrics service. This is a standard request–response pro-
cess. The frontend service sends a request (it can be HTTP or another protocol),
waits for the response, and finishes. In reality, sending the metrics may be an inten-
sive task, so each of the frontend services will need to have a pool of threads that will
send the requests.

 There will be two times the number of frontend service connections to keep from
the metrics service perspective. In case of a metrics service failure, both frontend ser-
vices won’t be able to send any data. This may mean that failure of the metrics service
will cascade to all of its clients. Fault tolerance in such a solution is not ideal, as the
metrics service becomes a single point of failure.

Metrics server

Frontend

server 1

Frontend

server 2

Application

metrics

Application

metrics

Figure 11.1 Sending data from
two frontends to one server

282 CHAPTER 11 Delivery semantics in distributed systems
 In reality, this may get a lot more complicated. We may need to have N different
metrics services with each specialized for a given use case. For example, we may have a
metrics service that exposes a UI dashboard. For offline metrics analytics, we may have
a different service that processes the data. The most critical metrics may need to be
sent to yet another metrics service that is specialized for on-call purposes.

 Moreover, our architecture may grow in the number of services that need to be
monitored. Besides our frontend services, we may have databases that need special
monitoring. If our business provides value for our users, we may need to handle our
users’ payments and accounts. All of those services need to send the metrics data, as
figure 11.2 demonstrates.

With the current architecture, such a situation causes an explosion of connections
between services. Each of the metrics producer service needs to send data to N metrics
services. In case of failure in a metrics service, all of those producer services will fail as
well. Every connection is direct, and our architecture is tightly coupled. It’s hard to
keep the SLA if the producer service needs to send data via an unreliable medium
(network) in a synchronous way. Fortunately, the event-driven architecture solves
these problems, providing decoupling and fault tolerance.

 In this section, we introduce a new component in an improved approach that pro-
vides an indirection layer between producer and consumer applications. We can call
this a publish–subscribe (pub–sub) system or event queue. The event queue is the
only integration point between producer and consumer applications.

 For example, when a service needs to send a metric, it no longer sends it directly
to the target metrics service. Let’s assume it’s necessary to send a single metric to the
metrics dashboard, metrics offline analytics, and on-call monitoring services, as fig-
ure 11.3 shows.

 In the previous solution, the frontend service needed to connect to three different
services (dashboard, offline analytics, and on-call monitoring). Failure of any of those
services will propagate to the caller service.

Frontend

server 1

NoSQL

database

SQL

database

Payment

service

Accounts

service

Beckend

server

Database

monitoring

Metrics

offline analytics

Metrics

dashboard

On call

monitoring

Frontend

server 2

Figure 11.2 Multiple services, multiple metrics

283Architecture of event-driven applications
Currently, the frontend service is connected to only one component: the pub–sub sys-
tem. All consumer applications that are interested in the specific metric produced by
the frontend service will subscribe to events emitted to the queue. Once the emitted
event is there, all consumer services will get this event.

 It is important to note that our architecture shifted from synchronous to asynchro-
nous; there is no direct connection between producer and consumer applications. In
case of a failure of any of the metrics services, the frontend (producer) application is
not impacted. The events are still emitted to a queue (this is our metrics pub–sub sys-
tem). The queue can persist the events for a finite (or infinite) time and resume send-
ing to the metrics application when it is back online.

 By using this mechanism, we built fault tolerance into our system. However, to
implement such a mechanism, we need to properly understand the delivery semantics
and implement both producer and consumer logic. We will learn how to do that later
in this chapter. For now, some readers may notice that the current architecture has a
new problem. The queue component is a single point of failure in our system. In case
of its failure, our system won’t be able to operate.

 That is true; fortunately, the production-proven queue systems, such as Apache
Kafka or Pulsar, are implemented in a way that allows incredibly high SLA and avail-
ability. In fact, depending on our use case, we may tweak those systems to favor avail-
ability or consistency. The availability can be improved by increasing the number of
servers (Kafka brokers) and/or the replication factor of topics. The more brokers we
have, the more failures we can tolerate. If your data is replicated to N brokers (where
N > 1), and there is a failure of one of the Kafka servers, the system may still be avail-
able. This is because the other broker can start handling the traffic in case of failure in
the first broker.

 The other solution we can implement to improve our system’s fault tolerance,
availability, and loose coupling is to deploy and maintain N-independent queues. In

Frontend

server 1

NoSQL

database

SQL

database

Payment

service

Accounts

service

Beckend

server

Database

monitoring

On call

monitoring

Metrics

offline analytics

Metrics

dashboard

Metrics

pub–sub

Frontend

server 2

Figure 11.3 Event-driven architecture with an indirection layer between producer and consumer apps

284 CHAPTER 11 Delivery semantics in distributed systems
such a setup, we might have a dedicated queue that is responsible for metrics, another
that is responsible for logging, and yet another that collects tracking events from our
applications as figure 11.4 shows.

In such a setup, we no longer have a single point of failure. The eventual failure of
one of the queue systems does not impact clients of the other systems. For exam-
ple, in case of a failure of the events pub–sub, the caller applications are still able
to send metrics and logging, as each pub–sub deployment can be configured differ-
ently. If, for example, the metrics collection is critical to our architecture, we can
tweak the system to be more available. We can do this by investing more money into
infrastructure, deploying more servers and keeping the copy of data in more loca-
tions. On the other hand, we may decide that collecting tracking data is not so crit-
ical and trade the possibility of some unavailable data for cost. (We spent less
money on the events pub–sub, but we are tolerating some data loss.) By splitting
the queue functionality into N-independent systems, we can have the best of both
worlds—loose coupling, asynchronously fault-tolerant systems, and no single point
of failure.

 In case of a failure of the events pub–sub, the caller application may decide to buf-
fer (or not) send events for some small amount of time. Such a pattern is called a cir-
cuit breaker. Therefore, our architecture will still be operational. Before we start to
understand delivery semantics in such an event-driven architecture, let’s start by
understanding the basics of Apache Kafka.

NoSQL

database

Events

pub–sub

Logging

pub–sub

Log

full-text

search

Memory

analysis

Patterns

finder

Frontend

server 1

Frontend

server 2

SQL

database

Payment

service

Accounts

service

Beckend

server

Database

monitoring

On call

monitoring

Metrics

offline

analytics

Metrics

dashboard

Metrics

pub–sub

Figure 11.4 Multiple independent pub–sub systems designed to avoid a single point of failure

285Producer and consumer applications based on Apache Kafka
11.2 Producer and consumer applications based
on Apache Kafka
Before we start analyzing delivery guarantees from the consumer and producer side,
let’s understand Apache Kafka architecture’s basics. The main construct used by both
producer and consumer sides is a topic. The topic is a distributed, append-only data
structure. The distribution is achieved via the topic’s partitioning. A topic can be split
into N partitions; the more partitions it has, the more distributed processing it will
have. Let’s assume we have a topic with topicName and four partitions (figure 11.5).
Partitions are numbered from 0 upward.

Each partition has its own offset that identifies precisely one record in the append-
only structure. When the producers send a new record to a topic, the producer first
calculates the partition to which the record should be routed. Each record consists of
a key–value pair.

 The key determines the partitioning for a given record. It can, for example, con-
tain only the user_id. When partitioned by user_id, Kafka guarantees that all events
for a single user are sent to the same partition. Because of that, the ordering of events
for a specific user_id will be kept. In real pub–sub systems, we can have a lot of topics.
One topic can have account data, another can have information about payment, and
so forth.

 When the producer writes its message, it appends it to the end of the given parti-
tion. For example, if the partitioning algorithm determines that the event should be
sent to partition 0, it will be appended to the end of this log. The offset of the new
record will be equal to 13. It’s worth noting that we may end up in a situation where
one partition processes too much data in the case of partition skew. This means the key
we are using for partitioning is too narrow. We may decide to add additional data to a
Kafka key to improve the partition’s distribution.

Topic topicName

0 1 2 3 4 5 6 7 8 9 10 11 12Partition 0 13

0 1 2 3 4 5 6 7 8 9Partition 1

Partition 3

Partition 2 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12

11

Message writes

Figure 11.5 Topic structure as a distributed, append-only log

286 CHAPTER 11 Delivery semantics in distributed systems
11.2.1 Looking at the Kafka consumer side

The producer is decoupled from the consumer, and the data-consuming part is done
in an asynchronous way. The consumer is a process that reads the data from a Kafka
topic. As you may remember, topics are partitioned. Due to that, the consumer needs
to know about all partitions for a given topic. We may have a single consumer that
reads the data from all partitions. However, in real life, our applications are structured
to be more parallelizable.

 Let’s assume that we have a topic with four partitions again. We have an applica-
tion that needs to fetch data from those four partitions. In such a setup, depending on
the performance requirement, we may deploy up to four consumers. Each consumer
will be responsible for reading the events from a single partition. In case we have
more consumers than partitions, the additional consumers will be idle. That’s because
all topic’s partitions are already assigned to a consumer.

 Let’s assume a bit more complex situation. Our topic still has four partitions, but we
don’t need to have four consumer applications (see figure 11.6). After our performance
tests, it turns out that three consumer processes are enough for our throughput.

Such a situation is totally feasible. In this setup, one of the consumer processes (con-
sumer 1) gets two partitions. On the other hand, consumer 0 and consumer 2 pro-
cess a single partition. Consumer 1 will process both partitions 1 and 2. Please also
note that the assignment of partitions to consumers may be different in a real-life
use case. However, in the discussed scenario, every consumer will have at least one
partition assigned.

 It is important to note that the additional partition processing cannot be distrib-
uted among N nodes. This would break the ordering guarantees within a partition.
Multiple consumers would get the same partition key events, and there will be no way

Topic topicName

0 1 2 3 4 5 6 8 9 10 11 12Partition 0 13

0 1 2 3 4 5 7 8 9Partition 1

Partition 3

Partition 2 0 1 2 3 4 5 6 7 9 10

0 1 2 3 4 5 6 7 8 9 10 12

11

Consumer group

Consumer 2

Consumer 1

Consumer 07

6

8

11

Figure 11.6 Assignment for a consumer group with multiple consumers

287Producer and consumer applications based on Apache Kafka
to assure the ordering in such a setup. Therefore, such a situation is not possible in
Apache Kafka.

 The described solution (four partitions and three consumers) is problematic
because one of the consumers will process twice as many events as the other consum-
ers. For that reason, in a real-life setup, we should consider picking an even number of
consumers. If we have four partitions, creating two consumers results in two consum-
ers that process the same amount of traffic. If we need higher throughput, we may
decide to have four consumers.

NOTE It is important to pick the number of partitions upfront when creating
a topic. Thus, you should be careful to select a number that is backed by per-
formance tests and empirical data.

Let’s assume it turns out that we picked a number of partitions that are too low for
processing our traffic. In this case, we would need to create a new topic with more par-
titions and migrate the old topic to the new one. This operation is resource intensive
and time-consuming, however.

 One of the most important benefits of using Apache Kafka is the ability to deploy
N-independent consumer applications. Every application is called a consumer group
in Kafka. Each of those consumer groups can have N consumers. This allows for the
use case described in the pub–sub section.

 We may have multiple applications consuming the same topic. Each application
can consume the data from the same topic independently at its own pace. For exam-
ple, if the metrics dashboard application (which has a dedicated customer_group)
does not have high throughput requirements, it can run on one physical node with
one Kafka consumer process. On the other hand, the on-call monitoring application
may be more critical and performance sensitive. This consumer group can have N
consumers that will process the data faster.

11.2.2 Understanding the Kafka brokers setup

Let’s finally analyze the full setup of Apache Kafka deployed to N brokers. We will look
at the simplest use case, where Kafka is deployed to two physical machines. Each of
those machines has one Kafka broker. We will analyze a topic called T that has two par-
titions. It means the producer and consumer sides’ maximum parallelism is equal to
two (number of partitions). Besides that, the topic T replication factor is set to two, so
every event is (eventually) saved to both brokers.

 We assume the described setup has only one producer and one consumer. We can
have up to two producers and up to two times the number of consumers per each con-
sumer group in practice. However, simplifying the setup to one producer and one
consumer allows us to reason about the Kafka broker setup easily. Figure 11.7 shows
the setup for our use case.

 The topic T has two partitions. Each of those partitions is replicated to both bro-
kers because this topic’s replication factor is set to 2. If it is set to 1, each partition is

288 CHAPTER 11 Delivery semantics in distributed systems
kept on only one broker. The partition works in a leader–follower model. Only one
broker is a leader for a given partition. In our setup, broker 1 is the leader for topic T,
partition 0, and broker 2 is the leader for topic T, partition 1.

 We need to remember that the higher the replication factor is, the more resources
our cluster needs. For example, when the replication factor is set to 2, we need twice
as much disk capacity compared to a replication factor set to 1. The reason for this is
that the data needs to be saved to two physical locations. For a replication factor equal
to 3, we need three times as much disk space. Also, saving data to more brokers requires
more network traffic and more CPU consumption. When replicating data, it needs to
be sent to more brokers via the network.

 When the producer sends the data to a topic’s partition, it sends it to a leader for
this given partition. Next, the data is replicated to a follower broker that stores the
data in case of a crash. If broker 1 crashes, broker 2 can start serving a leadership role
for this partition. The consumer process needs to keep a list of leaders for all topic’s
partitions. Because of that, it can consume the data from a proper partition. In case of
a broker failure, the rebalancing process updates the consumer’s leaders for all parti-
tions. Now that we understand how Kafka works, let’s analyze the producer’s delivery
semantics.

11.3 The producer logic
Let’s start by looking at the Kafka producer logic. Apache Kafka’s producer (http://
mng.bz/lad2) will be our main entry point for sending data to a Kafka topic. The Kafka

Producer Consumer

Topic T

partition 0

Kafka cluster

Broker 1

Broker 2

Leader

Leader

Replicate

T/0

Replicate

T/1

Messages

from T/0

Messages

from T/0

Messages

from T/1

Messages

from T/1

Topic T

partition 1

Topic T

partition 0

Topic T

partition 1

Figure 11.7 Multiple Kafka brokers

http://mng.bz/lad2
http://mng.bz/lad2
http://mng.bz/lad2

289The producer logic
producer can be configured with a variety of settings (http://mng.bz/BxP1). How-
ever, there are three required settings we need to specify.

 The first setting is a list of Kafka brokers called bootstrap-servers. These should con-
tain a list of the Kafka brokers in a cluster. The producer uses them to determine where
the events should be sent. In addition, every Kafka record has a key–value pair. We need
to specify serializers for both of these. Serializers provide the logic to transform a Java
object (e.g., String) to an array of bytes sent to the Kafka topic. The following listing
shows an example Kafka producer configuration that uses the Spring Kafka library
(http://mng.bz/dojo).

@Configuration
public class SenderConfig {

 @Value("${kafka.bootstrap-servers}")
 private String bootstrapServers;

 @Bean
 public Map<String, Object> producerConfigs() {
 Map<String, Object> props = new HashMap<>();
 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,

IntegerSerializer.class);
 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

StringSerializer.class);
 return props;
 }

 @Bean
 public ProducerFactory<Integer, String> producerFactory() {
 return new DefaultKafkaProducerFactory<>(producerConfigs());
 }

 @Bean
 public Producer<Integer, String> producer() {
 return producerFactory().createProducer();
 }

 @Bean
 public KafkaTemplate<Integer, String> kafkaTemplate() {
 return new KafkaTemplate<>(producerFactory());
 }

 @Bean
 public Sender sender() {
 return new Sender();
 }
}

The producer logic uses the previously created Producer to send data to a Kafka topic.
Because the logic is asynchronous, the Producer’s action is nonblocking, which returns

Listing 11.1 Creating a Kafka producer configuration

The map of
Kafka’s producer
settings

The Producer
processes an Integer
key and String value.

The Sender is a Spring
abstraction atop of a
raw Kafka producer.

http://mng.bz/BxP1
http://mng.bz/dojo

290 CHAPTER 11 Delivery semantics in distributed systems

a
on

i

a Future. It is worth pointing out that it is safe to share one instance of the Producer
between multiple threads to send data to multiple topics. The Producer takes the
topic, partition key, and actual value as arguments. Based on the partition key, it will
route the request to the appropriate topic’s partition, as the following listing shows.

@Autowired private Producer<Integer, String> producer;

public Future<RecordMetadata> sendAsync

➥ (String topic, String data, Integer partitionKey) {
 LOGGER.info("sending data=‘{}’ to topic=‘{}’", data, topic);
 try {
 return producer.send(
 new ProducerRecord<>(topic, partitionKey, data),
 (recordMetadata, e) -> {
 if (e != null) {
 LOGGER.error("error while sending data:" + data, e);
 }
 });
 } finally {
 producer.flush();
 }
}

The send operation is asynchronous, and we can register a callback that is executed
when the send finishes. Our callback checks whether the exception is not null. If it is
not null, there was a failure with the send.

 This simple send() logic hides a lot of complexity. Let’s recap the logic by analyz-
ing the diagram in figure 11.8 with the producer’s flow.

 First, a ProducerRecord is created. It contains a topic, key, and value. We can pro-
vide the partition, and if it is not, it is calculated from the key value. If we don’t pro-
vide the key (it’s null), messages are distributed using the round-robin algorithm.
Next, the data is serialized to a byte array. Then, the partitioner determines the parti-
tion to which the record should be sent.

 It is important to note that the records are batched on the producer side per the
topic’s partition. It means that one batch can contain N records for the same parti-
tion. When the send finishes successfully, it returns the metadata for every sent
record. It contains, for example, an offset within a partition where the data was sent. If
there is a failure, the send is retried. The retries parameter (http://mng.bz/VlXy)
configures this. If there are more retries, the batch of records is retried. If there are
no more retries, an exception is propagated to a caller.

 It’s worth noting that retrying a batch for a given partition may break the ordering
guarantees within a partition. If the first request fails and is scheduled for a retry, the
second request may succeed before the scheduled retry. In that case, the batches will

Listing 11.2 Creating the Kafka producer

Returns a Future The Producer
accepts the topic,
partition key, and
actual data to
send.

Passes the
ProducerRecord
directly to the
Kafka producer

Executes the
sync callback
ce the record
s successfully

sent

http://mng.bz/VlXy

291The producer logic
interleave (a behavior similar to what we discussed in the previous chapter). This results
in out-of-order events within a partition.

 If the retries behavior is enabled (and it’s enabled by default), there is a possibility
of duplication. The producer that works in this mode offers at-least-once delivery
guarantees—the same record can be sent once or more times. If we want our pro-
ducer’s logic to be fault tolerant and robust, retries play a crucial role.

11.3.1 Choosing consistency vs. availability for the producer

The other important tradeoff we need to make on the producer side is to choose the
consistency of data versus its availability. Let’s assume we have a cluster with two bro-
kers and topic A is replicated to both brokers. For simplicity, let’s assume that topic A
has only one partition (the behavior will be the same for N partitions). When the pro-
ducer sends the data to this topic, we have three options regarding the brokers’ number
of acknowledged responses (http://mng.bz/xvQd). Each of these options offers dif-
ferent consistency and availability characteristics. Let’s start by inspecting the acks
parameter set to all, as figure 11.9 displays.

 If the topic is created with a replication factor equal to 2, the record needs to be
successfully saved and acknowledged by all brokers (in our use case, 2). For our topic

Partitioner

Serializer

Kafka broker

Fail?

Retry?

Topic

[Partition]

[Key]

Value

Producer record

Send()

Topic A

partition 0

Topic B

partition 1

Batch 0

Batch 1 Batch 1

Batch 0

Yes

Yes

Return

metadata

on success
Throw

exception

if cannot retry

Figure 11.8 Kafka producer
flow for a send operation

http://mng.bz/xvQd

292 CHAPTER 11 Delivery semantics in distributed systems
A and partition 0, broker 1 is the leader. The producer sends the data to this broker.
Because the acks parameter is set to all, the leader propagates the record to broker 2
(the follower). Once the data is successfully saved on the follower, the leader gets the
response from its return success to the producer.

 If one broker fails, the data will be consistent. This guarantees that the same data
for topic 1 is on both brokers. However, in this case (one broker failing), the replica-
tion factor that is set to 2 cannot be fulfilled. When this happens, our system will not
be available. We’ve sacrificed the consistency of our data over the availability of the
whole system.

 In a real-life setup, we should have more brokers. If we had three brokers and the
replication factor is set to 2, one broker’s failure will not make our system unavailable.
As long as two brokers are up, we can successfully send the data.

 Picking the number of brokers and replication factor of topics is dependent on
your use case. To determine that, first find the maximum number of requests per sec-
ond (also the MB/s) that your cluster needs to handle. Once you have that informa-
tion, you can performance test one broker to find its maximum throughput. You can
also use resources available online (e.g., http://mng.bz/Axwo), but beware that your
maximum throughput may differ depending on the type of machine that you use.
Disk speed, number of CPUs and RAM size all influence the throughput.

 Once you have the maximum throughput per broker, you can calculate the num-
ber of brokers that you need for your traffic. However, for high availability and consis-
tency in your Kafka system, you should increase your topic’s replication factor. The
replication factor depends on your individual needs and should be picked carefully.
The more replicated the topic is, the more throughput your cluster needs to handle.
For example, when setting the replication factor to 2, your network traffic will double.
Because the two Kafka brokers need to store the data, you would need twice as much
disk space.

2. Replicate data

3. Respond with success

1. Send, ACK = ALL

Kafka producer

4. Record replicated

to both brokers,

return success

Broker 1 Broker 2

Topic-A,

Partition 0

Leader

Topic-A,

Partition 0

Follower

Figure 11.9 When acks=all, we
are choosing consistency over
availability (the producer does
wait for an acknowledgment from
the server).

http://mng.bz/Axwo

293Consumer code and different delivery semantics
NOTE Creating a production-ready Kafka cluster is a complex topic, so I
advise you to do more experiments and reading to find your optimal setup.

Let’s consider a situation in which the acks parameter is set to 1. In such a case, the
producer waits for only one broker (leader) acknowledgment of the saved data. Fig-
ure 11.10 depicts this configuration.

In this scenario, the data is still replicated to the number of brokers equal to a replica-
tion factor of topic A. However, the replication process is done in an asynchronous
way. Once the leader successfully saves the producer record, it immediately returns
success to the caller.

 In the background, the data is synced to the follower. However, there is a possibility
that the failure can happen before the follower saves the data. In such a scenario, the
data is not replicated to the second broker. Because the producer waits for only one
acknowledgment, it does not know that there is a background failure. If broker 1 fails
and broker 2 doesn’t have all topic A data up to date, we risk losing the data. On the
other hand, even if only one broker is functioning in the cluster, the producer still
sends the data to topic A. In this scenario, we traded the availability of topic A over its
consistency.

 There is a third value that can be passed to the acks parameter. We can set it to 0.
In this case, the producer does not wait for any acknowledgment from the Kafka bro-
ker. This is a fire-and-forget situation and has limited production use cases. There is a
high possibility of losing your data without even noticing.

 Now that we understand the producer side, let’s delve into the Kafka consumer
side. We will implement consuming logic with different delivery semantics.

11.4 Consumer code and different delivery semantics
Once the data is successfully saved into the topic’s append-only log, the Kafka con-
sumer code can fetch it. Because we can configure a retention time for the topics,
events with the oldest offsets are removed after this time. The retention time can be

3. Replicate

data async

4. Respond

with success

1. Send, ACK = 1

Kafka

producer

2. Record replicated

to one broker,

return success

Broker 1 Broker 2

Topic-A,

Partition 0

Leader

Topic-A,

Partition 0

Follower

Figure 11.10 When acks=1,
you’ve picked availability over
consistency.

294 CHAPTER 11 Delivery semantics in distributed systems
infinite, meaning the old events won’t be removed at all. Let’s start by looking at an
example consumer’s code.

 When configuring the consumer, we also need to pass a list of Kafka brokers. As
you may recall, the producer part needs to use a serializer to transform the object into
an array of bytes. The consumer needs to do a contrary transformation: from bytes to
objects. Therefore, we need to provide the key–value deserializer classes. Every con-
sumer works within a consumer group, so we also need to pass the group ID this con-
sumer will use.

 It is important to be aware that the Kafka topic’s offsets are tracked by the specific
consumer group. This means that when the consumer fetches the batch of events
from a topic, it should commit the offset, denoting that the events were properly pro-
cessed. In case of a failure, another consumer from this consumer group can resume
processing from the last committed offset.

 The way we commit and resume processing impacts the delivery semantics pro-
vided by our consumer application. Let’s start with the simplest case, where the Kafka
consumer commits the offsets automatically for us. We can achieve this by setting
the enable.auto.commit (http://mng.bz/ZzgR) to true, as the following listing shows.

@Bean
public Map<String, Object> consumerConfigs() {
 Map<String, Object> props = new HashMap<>();

 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

IntegerDeserializer.class);
 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

StringDeserializer.class);
 props.put(ConsumerConfig.GROUP_ID_CONFIG, "receiver");
 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
 return props;
}

We can use this configuration to construct a Kafka consumer. The consumer can work
for N topics, and it can be shared between threads. We only need to remember to sub-
scribe to a topic we want to consume, as the next listing shows.

public KafkaConsumerAutoCommit(Map<String, Object> properties, String topic) {
 consumer = new KafkaConsumer<>(properties);
 consumer.subscribe(Collections.singletonList(topic));
}

public void startConsuming() {
 try {

Listing 11.3 Configuring the Kafka consumer

Listing 11.4 Creating a Kafka consumer with autocommit

The consumer
receives events
from the
subscribed topic.

http://mng.bz/ZzgR

295Consumer code and different delivery semantics
 while (true) {
 ConsumerRecords<Integer, String> records =

consumer.poll(Duration.ofMillis(100));
 for (ConsumerRecord<Integer, String> record : records) {
 LOGGER.debug(
 "topic = {}, partition = {}, offset = {}, key = {}, value = {}",
 record.topic(),
 record.partition(),
 record.offset(),
 record.key(),
 record.value());
 logicProcessing(record);
 }
 }
 } finally {
 consumer.close();
 }
}

The startConsuming() method invokes the consumer’s poll() method in a loop and
waits 100 ms for the result. This method returns a batch of records that should be pro-
cessed. Every record contains keys and values as well as tracking information, such as
topic and partition. The offset() method returns the exact offset of the specific
record in the given topic’s partition. Finally, we iterate over a batch of records and
process each of those.

 When a consumer is working in autocommit mode, it commits the offsets in the
background every N ms, as specified by the auto.commit.interval.ms setting (http://
mng.bz/REnZ), which is 5 s by default.

 Imagine our application processes 100 events per second, as figure 11.11 illus-
trates. Let’s assume they arrive in five batches. In such a scenario, the offset is commit-
ted after 500 events are processed. If an application fails before 5 s, the offset is not
committed. The last known offset for this processing is then equal to 0.

Iterates
over the
processing
in a while
loop

Polls all records available,
waiting at most 100 ms

Returns a batch
that can contain

records for all
subscribed topics

100

events

Topic offsets 0 100 200 300 400 500

Commits

offset 500

Consumer

last offset = 0

Kafka

broker

100

events

100

events

100

events

100

events

Figure 11.11 Consumer
autocommit for a process
with 100 events per second

http://mng.bz/REnZ
http://mng.bz/REnZ
http://mng.bz/REnZ

296 CHAPTER 11 Delivery semantics in distributed systems
If another consumer in this consumer group resumes processing due to a failure, it
observes that the last committed offset is equal to 0. It will poll 500 events that the pre-
viously failed consumer may have already processed, meaning that there is a possibility
of processing 500 duplicated events. This is a case of at-least-once-delivery semantics.
Our consumer can receive the event once in case of a successful commit. However, if
the commit is unsuccessful, another consumer reprocesses the data.

11.4.1 Committing a consumer manually

We can improve the previous situation by using manual commits. First, we need to dis-
able the autocommit behavior by setting it to false, as the following listing demonstrates:

props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");

From that point, the consumer no longer commits offsets automatically. It becomes
our responsibility. The most important decision we need to make now is whether we
should commit offsets at the entry to our system or after processing. If we want to keep
the at-least-once delivery semantic, we should commit the offset after the processing
logic. By doing this, we can be sure the message is marked as committed after it was
successfully processed. The following listing shows this process.

public void startConsuming() {
 try {
 while (true) {
 ConsumerRecords<Integer, String> records =

consumer.poll(Duration.ofMillis(100));
 for (ConsumerRecord<Integer, String> record : records) {
 logicProcessing(record);
 try {
 consumer.commitSync();
 } catch (CommitFailedException e) {
 LOGGER.error("commit failed", e);
 }
 }
 }
 } finally {
 consumer.close();
 }
}

In listing 11.6, we use the commit() method to achieve our goal. It commits offsets for
all partitions assigned to this specific consumer. It is important to note that the
commit() method is blocking. This means that the processing will not progress until
offsets are committed. Although this provides safety, the overall performance of the
new solution may be impacted, so the commit() operation may be costly.

Listing 11.5 Disabling autocommit

Listing 11.6 Synchronous commit

The only difference in
this consuming code is
a manual commit.

297Consumer code and different delivery semantics
 If cost is an issue, we may decide to use the commitAsync() method that does not
block the processing thread. However, when committing in an asynchronous way, we
need to be careful about error handling because exceptions are not propagated to the
main caller thread. The following listing shows the implementation of commitAsync().

consumer.commitAsync(
 (offsets, exception) -> {
 if (exception != null) LOGGER.error(

➥ "Commit failed for offsets {}", offsets, exception);
 });

Sometimes we may observe that an async commit fails, but the commit for the subse-
quent batch of events passes. In such a scenario, our system is not impacted because
the correct offset committed by the subsequent action was saved.

 Let’s consider a situation in which we want to commit offsets before the logic pro-
cesses the events. In such a case, a failure in the processing logic goes unnoticed by
the Kafka broker. The offset is already committed, so when the consumer logic
resumes its processing, the previous batch won’t be reprocessed.

 If the logicProcessing() method doesn’t finish successfully, some events aren’t
processed. In this case, there is a risk of losing events. Such a system will have at-most-
once delivery guarantees. The same event will be processed once (but there is also a
possibility that it will be processed zero times).

11.4.2 Restarting from the earliest or latest offsets

There is a second aspect that influences the delivery guarantees of our consumer
applications. Let’s consider a scenario in which we have a topic with 10 records (and
therefore 10 offsets). Our customer application fetches all the records from the batch.
The batch can contain from 1 to 10 events and commits an offset equal to N, which
can be any number from 0 to 10 and equals the number of events in a batch. Unfortu-
nately, during the commit phase our application crashes. In that case, we don’t know
how many events the consumer application processed. This can be influenced by
many factors, such as consumer pool timeout, batch size, and so forth. When the app
restarts, we have two ways to resume processing.

 In such a scenario, both strategies to resume processing are controlled by the
auto.offset.reset strategy (http://mng.bz/2jqg). When setting it to the earliest, resum-
ing processing of events will start from the last committed offset for the topic’s parti-
tions (if it is present). If the offset is not present, reprocessing all events starts from
the beginning. Figure 11.12 illustrates this strategy.

 In this situation, the consumer application may get duplicates. This is because a
crash of the consumer logic may happen at any time during processing of subsequent
records. In fact, we may get up to 20 duplicates if we have one restart (2 × 10 events).
This offset reset strategy offers the at-least-once delivery semantics.

Listing 11.7 Committing asynchronously

http://mng.bz/2jqg

298 CHAPTER 11 Delivery semantics in distributed systems
We can observe this strategy in an integration test. In this test, we pass the OffsetReset-
Strategy.EARLIEST to the Kafka consumer, as the following listing shows.

// given
ExecutorService executorService = Executors.newSingleThreadExecutor();
String message = "Send unique message " + UUID.randomUUID().toString();

KafkaConsumerWrapper kafkaConsumer =
 new KafkaConsumerWrapperCommitOffsetsOnRebalancing(
 KafkaTestUtils.consumerProps(
 "group_id" + UUID.randomUUID().toString(),
 "false",
 AllSpringKafkaTests.embeddedKafka),
 CONSUMER_TEST_TOPIC,
 OffsetResetStrategy.EARLIEST);

// when
sendTenMessages(message);
executorService.submit(kafkaConsumer::startConsuming);
sendTenMessages(message);

// then
executorService.awaitTermination(4, TimeUnit.SECONDS);
executorService.shutdown();
assertThat(kafkaConsumer.getConsumedEvents()
 ➥ .size()).isGreaterThanOrEqualTo(20);

After sending 10 events, starting the consumer, and sending 10 events again, we can
validate the number of events received. Here the consumer receives all 20 events the
producer published before the consumer was created.

 The other strategy we can choose is the latest offset. With this strategy, resuming
processing after failure when there is no offset for a given topic starts from the latest
offset on this topic. For our scenario, our app will start from offset 10 or later. The
later situation occurs if the producer appends new events. Figure 11.13 shows this
strategy.

Listing 11.8 Testing the earliest offset reset strategy

0 1 2 3 4 5 6 7 8 9 10

Consumer app

commits offset: N

App restarting

resuming from the

beginning,

offset: 0

Figure 11.12 Restarting
from the earliest offset

Passes the
earliest offset
reset strategy

Calls
startConsuming()
after 10 records
were sent

Receives all
20 records

299Consumer code and different delivery semantics
In this scenario, the application may lose some events that were delivered before the
crash. They may be delivered but not processed. In this scenario, we won’t get dupli-
cates, but we may also lose events. Using the latest offset strategy offsets the at-most-
once delivery guarantee.

 The testing logic is similar to the previous example. First, we’ll create the Kafka
consumer with OffsetResetStrategy.LATEST, as listing 11.9 shows. We don’t need to
pass this parameter because it’s a default in Kafka; we pass it here to be explicit and
clear. The consumer is created for a random group ID (to start from a nonexisting off-
set), and the offsets are not committed automatically. Next, we’ll send 10 messages to
a Kafka topic. After the messages are sent, we can start the Kafka consumer. Once it is
started, the next 10 messages are sent.

// given
ExecutorService executorService = Executors.newSingleThreadExecutor();
String message = "Send unique message " + UUID.randomUUID().toString();

KafkaConsumerWrapper kafkaConsumer =
 new KafkaConsumerWrapperCommitOffsetsOnRebalancing(
 KafkaTestUtils.consumerProps(
 "group_id" + UUID.randomUUID().toString(),
 "false",
 AllSpringKafkaTests.embeddedKafka),
 CONSUMER_TEST_TOPIC,
 OffsetResetStrategy.LATEST);

// when
sendTenMessages(message);

executorService.submit(kafkaConsumer::startConsuming);

sendTenMessages(message);

// then
executorService.awaitTermination(4, TimeUnit.SECONDS);
executorService.shutdown();
assertThat(kafkaConsumer.getConsumedEvents().size()).isLessThanOrEqualTo(10);

Listing 11.9 Testing the latest offset reset strategy

0 1 2 3 4 5 6 7 8 9 10

Consumer app

commits offset: N

App restarting

resuming from

latest offset: 10

Figure 11.13 Restarting
from the latest offset

Generates the
consumer group
dynamically to avoid
risking a clash with
other consumer
tests

Passes the
latest strategy

The consuming logic
starts after the first
10 records were sent.

300 CHAPTER 11 Delivery semantics in distributed systems
You may have observed that the Kafka consumer fetched our 10 events. The events that
were published before the consumer started are not taken into account by this consumer.

 The integration test is similar to the previous one. Both situations have their pros
and cons and their own use cases. If we have a latency-specific domain that needs to
react to recent events, we may be OK with resuming from the latest offset. For example,
an alert system may not be interested in events that were delivered minutes ago. React-
ing to the outdated data doesn’t give us much value. On the other hand, if we have a sys-
tem that needs to offer correctness, we should process all the events and guard against
duplicates. For example, if a payment system crashes, we need to resume the processing
from the point it crashed and process all pending payments.

11.4.3 (Effectively) exactly-once semantic

Building a system that offers an exactly-once guarantee is hard. Up to this point, we
saw two possible delivery semantics: at-least-once and at-most-once. If our system logic
is nonidempotent, and we cannot lose any event, we need a form of exactly once.

 In practice, systems that offer effectively exactly-once are often built atop the at-
least-once delivery semantics. As we learned in the previous chapter, implementing
the deduplication logic may offer us a form of effective exactly-once semantics. We say
effective because, at some layer, the events can be duplicated. For example, they may be
duplicated by the retry logic on the producer side. In that case, those duplicates are
hidden from the system that is expecting exactly-once delivery.

 Apache Kafka builds an effective exactly-once semantics by implementing a form
of distributed transactions. In the Kafka architecture, we can have duplicates at both
producer and consumer levels. By default, the producer retries requests that were not
successfully performed. The consumer can also get duplicates in case of restarts
because of the committing offset behavior described in the section 11.4.

 To alleviate that problem, Apache Kafka implements transactions. The transaction
starts on the producer side before a new event is sent to a Kafka topic. It uses the
transactional_id (http://mng.bz/1jPX) to provide effectively exactly-once seman-
tics within a transaction. Every record gets a transaction ID. In the case of a failed
send, the operation is rolled back, so Kafka guarantees the given record won’t be pres-
ent in the Kafka topic. We may decide to retry again with a different transaction. How-
ever, the transaction only spans the logic within that given Kafka producer. If the
service production logic is based on an external event (received from another Kafka
cluster or from HTTP), we may still get a duplicate.

 The event that triggers the producer send can be delivered with at-least-once guar-
antee semantics (see figure 11.14). If the system that uses Kafka transactions does not
guard against such duplicates, those events are treated by the producer as two inde-
pendent events.

 Let’s assume that the client application does not implement transactions and
offers at-least-once delivery semantics. It can retry a request in case of failure. The
application that based its logic on this client event uses Kafka producer transactions to

http://mng.bz/1jPX

301Leveraging delivery guarantees to provide fault tolerance
provide an effectively exactly-once semantic. It is important to note that this does not
guard against duplicates.

 From the perspective of the Kafka producer application, both requests are differ-
ent. If a deduplication mechanism is not implemented, there is no way to determine if
those requests are duplicates. Next, the requests are both delivered using transactions,
and both are delivered in the effectively exactly-once guarantee. However, from the
logical perspective of the system, the same event was sent to Kafka twice (both events
are duplicates). Therefore, it is logically an at-least-once delivery guarantee.

 It is clear to see that effectively exactly-once semantics can work but only if all compo-
nents that create the business flow of your application offer this semantic. In practice,
we may have N stages of processing, communicating, and exchanging data via a pub–sub
system, HTTP protocol, or something else. This would mean the whole pipeline needs
to be enclosed in one transaction. Such a solution may be fragile and not fault tolerant.
In case of a failure in any of the stages, our business flow might not be able to progress
without the operator’s manual intervention to fix the broken transaction.

 If you want to use the effectively exactly-once semantic in your application, you
should be careful about your system’s performance and availability. The decision
about whether to use this mechanism should be backed by substantial performance
and chaos tests of your solution. In the next section, we will see how we can use
Kafka’s delivery semantics to improve our system’s fault tolerance.

11.5 Leveraging delivery guarantees to provide
fault tolerance
Let’s consider a scenario in which we have two systems that work in an event-based way,
and the only integration point between those is a Kafka topic. Let’s say our checkout ser-
vice produces a payment event using Kafka’s asynchronous producer logic. Then, our
billing service consumes the data from the topic and processes it, as figure 11.15 shows.

Request
Kafka

producer

(exactly-once)

Request-A
Client

application

(at-least-once)
Kafka topic

Request-A retry Request

At-least-once

Figure 11.14 Exactly once in at-least-once context

Send

payment eventCheckout

service

Consume

payment eventApache Kafka

topic

Billing

service

Figure 11.15 Billing and checkout service that work as event-based processes

302 CHAPTER 11 Delivery semantics in distributed systems
Let’s assume that the checkout service sends 50 requests per second on average. The
billing service SLA guarantees it can process up to 100 requests per second, as fig-
ure 11.16 shows. Now consider a situation in which the billing service fails or stops
during the deployment of a new version. The billing service cannot consume events
from the Kafka topic during that time. The decoupling between those two services
gives us fault tolerance at the checkout service level.

The payment events can still be produced even if the billing service does not work.
However, those events will persist in the Kafka topic. Let’s assume that the billing ser-
vice is restarted and starts operating normally after 5 seconds. During that time, the
checkout service sends 250 events to the Kafka topic (50 req/s × 5 s). Those events are
buffered and persisted in the Kafka topic. The consumer application can resume pro-
cessing buffered events when it’s back online.

 It is important to note that the resuming of processing from the latest processed
event can be done if the billing service works in at-least-once delivery guarantees. It
means the consumer needs to commit offsets properly (after the successfully pro-
cessed logic), and the reset offset strategy should be set to the earliest. The 250 events
that are buffered in the topic need to be consumed alongside the regular traffic from
the checkout service; otherwise, the billing service will not be able to keep up with the
incoming traffic.

 As we know, the billing service can process 100 requests per second. Besides that, it
needs to consume 50 events per second during its regular work. In this scenario, the
billing service will need an additional 2.5 seconds to process the buffered events.
During that time, we may observe a processing latency of 2.5 s or more. This is
because the billing service needs to process the buffered events before it starts pro-
cessing the incoming traffic, but the checkout service producer is still emitting events.
After some time, all buffered events will be consumed, and the whole business flow of
our two applications will continue processing with its typical latency and traffic.

 The same solution can apply with an unexpected surge of traffic. Let’s assume a sit-
uation when the checkout service starts producing its 200 events per second. The bill-
ing service won’t be able to keep up with this traffic because it offers the 100 req/s
SLA. However, as long as this situation is transient, the additional events will be buff-
ered in the Kafka topic. When the traffic goes back to normal, the billing service will be
able to process the additional traffic and, after some time, return to its regular traffic.

50 req/sCheckout

service

Can process

100 req/s Billing

service
50 50 50 50 50

Figure 11.16 Buffering events in the Kafka topic

303Summary
 We can build this fault tolerance into our systems as long as we have a pub–sub
architecture and a component that can buffer the traffic. Besides that, we need to be
able to reason about the delivery guarantees of those components. We then need to
pick the proper delivery semantic according to our needs.

 The second aspect that is crucial for this solution is the consumer’s ability to pro-
cess additional traffic. If the SLA of the consumer is not substantially higher than the
producer, the time for resuming the processing will be long. The consumer needs to
be able to process the buffered traffic alongside its normal incoming traffic. Other-
wise, it won’t be able to keep up with the traffic once there was a partial failure. Let’s
now sum up what we learned in this chapter.

Summary
 The pub–sub architecture allows us to create loosely coupled, asynchronous sys-

tems, improving fault tolerance with proper delivery guarantees.
 An event queue provides the capabilities to create event-driven architectures.

The more services communicate with each other, the more gain we will get
from this architecture.

 We can reason about and control delivery semantics at both the producer and
the consumer sides.

 We can fine-tune consistency versus availability in distributed systems.
 We can implement our consumer code with Kafka’s at-least-once and at-most-

once delivery guarantees:
– Fine-grained commits can reduce the number of duplicates in the at-least-

once guarantee on the consumer side.
– At-most-once imposes a risk of not processing all the events in case of a failure.

 When splitting a queue functionality into N-independent systems, our systems
can be both loosely coupled and asynchronously fault-tolerant with no single
point of failure.

 The effective exactly-once is possible when using transactions. However, it starts
getting more complex or nonfeasible when we have more complex architec-
tures with more services in the pipeline.

Managing versioning
and compatibility
There are a few topics that are almost guaranteed to cause groans from experi-
enced engineers. If you bring up localization, merge conflicts, or time zones in con-
versation, be prepared for a frosty reception. Versioning falls into that category too.
It’s a fact of life, but many of us put off working out how we’ll handle it for far too
long—partly because it can feel like a waste of time. You’ll hear very few positive
comments when a product, library or API gets versioning right, but it can be a major
source of complaints when it’s done badly.

 In this chapter we’ll offer some perspectives on versioning that can help you
design an appropriate versioning strategy for the product you’re working on. We’ll
provide some concrete guidance and suggestions, but ultimately, it will be up to
you to balance competing concerns and technical challenges.

 The most specific piece of advice is easy to give right from the start, however;
don’t close your eyes and hope that versioning will turn out to be unnecessary.

This chapter covers
 Thinking about versioning in the abstract

 Planning versioning strategies for libraries

 Designing APIs for evolution

 Working effectively with storage schemas
304

305Versioning in the abstract
Unless you’re really expecting to throw code away almost immediately, you should
plan for how it will evolve and what consequences there might be. Let’s review what
we mean by versioning and why it exists at all before diving into specific details of
libraries, network APIs (such as web services), and data storage.

12.1 Versioning in the abstract
Things change. If you’re looking for a life where you never need to deal with new
challenges or requirements, software is probably not a good fit for you. That change
comes in many forms; the most obvious, perhaps, is the changing set of requirements
for any particular piece of code, but the reality is that almost every aspect of what we
use (hardware, operating system, developer platform, programming language, deploy-
ment model—you name it) changes over time. All of that change leads to complexity
and unpredictability.

 Versioning attempts to tame that complexity, communicating expectations between
different people and systems. Different versioning schemes are adapted to different
requirements and expectations, and in this section, we’ll look at what they have in
common and what distinguishes them.

12.1.1 Properties of versions

Versions are applied to lots of different entities: applications, libraries, protocols, books,
programming languages, and more. Different versioning schemes have different prop-
erties though, and it’s worth thinking about the axes on which versions can vary.

MEMORABILITY

Many versioning schemes are designed to be memorable and readable; it’s easy to remem-
ber that you’re using, for example, Ubuntu 20.04 or that you’re reading the first edition
of this book. A few versioning schemes are really unmemorable—most obviously, git hashes.
Somehow I doubt I’d ever remember af257385d785f597fc8be67c84f2cf714fbe4203
correctly, and even just remembering af25738 (the leading seven characters, as dis-
played by GitHub, Bitbucket, and the like) is going to be somewhat taxing if you need
to remember several commits.

IMMUTABILITY

Often (but not always), versions we depend on in software are quite precise and
immutable. If someone depends on the exact version 3.0.4 of the NodaTime NuGet
package from the nuget.org feed, that package will always consist of the exact same
bytes. The package feed prevents an existing version being overwritten.

 Git hashes are more intrinsically immutable: the hash is derived from the content,
so if the content changes, the hash must change (barring the astronomically unlikely
event of a hash collision).

 That’s a really useful property to help software systems to be predictable. It’s gener-
ally less human-friendly though—when describing which operating system they’re using,
you’re more likely to get an answer of Windows 10 than Windows 10 build 19042.867.
Immutability and memorability aren’t diametrically opposite, but there’s a certain

http://nuget.org

306 CHAPTER 12 Managing versioning and compatibility
amount of tension between them, as immutable version numbers typically consist of
more detailed information.

IMPLICIT RELATIONSHIPS BETWEEN VERSIONS

Many versioning systems try to convey important information within a very small
amount of data (the text of the version number). We’ll look at the most obvious exam-
ple of that in section 12.1.3 when we consider semantic versioning, but there are
plenty of other examples. Visual Studio uses year-based marketing versions: Visual Stu-
dio 2019 is clearly later than Visual Studio 2017, for example.

 Some versions don’t convey any kind of ordering or relationships between each
other. Again, the obvious example here is git hashes. If I give you two git hashes, with-
out access to the repository itself, you can’t tell whether one is in the history of
another, whether they’re independent branches, or whether they even come from the
same repository.

 Finally, some versioning schemes sound like they give information, but you need to
be really careful. Which would you expect to come first: the Xbox or the Xbox One?
And when would you expect the Xbox 360? Likewise, the .NET version history is inter-
esting but not necessarily a model you’d want to follow.

 When designing your own versioning schemes, or picking from existing ones, con-
sider what information you’re trying to convey and what information the consumer of
your versioning scheme might infer without you wanting them to.

 An important part of the information that many versioning schemes try to provide
within the version text is a guarantee of compatibility (or a suggestion of incompatibil-
ity). Let’s look at what we mean by compatibility.

12.1.2 Backward and forward compatibility

Broadly speaking, the topic of compatibility is interested in the question of what hap-
pens when code that’s aware of one version of something has to work with a different
version. That’s a deliberately fuzzy description because the concept can be applied in
so many different ways.

 Backward compatibility is the property where a new version can work with informa-
tion from an old version. Forward compatibility is the property where an old version can
work with information from a new version.

 Concrete examples of these concepts include

 As a language, Java maintains backward compatibility. Code written in Java 7 can
be compiled with a Java 17 compiler. It does not maintain forward compatibility;
code written in Java 17 may well use features that would cause a compilation
error using a Java 7 compiler.

 Libraries are usually written with backward compatibility in mind; code written
against NodaTime version 2.3 will still work with NodaTime version 2.4. We’ll look
at library versioning in a lot more detail in section 12.2. Patch versions within
semantic versioning provide forward compatibility, as we’ll see in the next section.

307Versioning in the abstract
 Web services usually maintain backward compatibility; a JSON-encoded web ser-
vice request written against the service definition on January 10, 2021 should
still work on April 1, 2021, even if the service definition has changed. The call-
ing code may need to consider how to handle expected data in the response,
however (which comes back to data compatibility). We’ll look at network API
versioning in more detail in section 12.3.

 Some data formats, such as Google Protocol Buffers and Apache Avro, are
designed to enable both backward and forward compatibility, allowing old code
to work with newer data stores without losing data written by new code. We’ll
look at data versioning in section 12.4.

In some situations, the terms backward and forward end up being more confusing
than helpful and can lead to people talking past each other in meetings. I find it
useful to talk in terms of specific examples; instead of talking about a later version of
the client, give some specific version numbers. They don’t have to be the actual ver-
sion numbers for software you’ve released or are planning to release, they can just
be hypothetical. But making the situation concrete can help avoid confusion. Just
like the given then when pattern of acceptance testing, these scenarios start by defin-
ing characteristics of particular versions, envisage a particular set of interactions,
and then try to play out the results. We’ll see some examples of this over the course
of the chapter.

12.1.3 Semantic versioning

Semantic versioning (commonly known as SemVer) has become the most common
approach to versioning within the library ecosystems for most platforms—at least in
theory. Full adherence to semantic versioning is variable to say the least, and we’ll see
some good reasons for that in section 12.2.4.

RULES FOR STABLE VERSIONS

A version number following semantic versioning always has three integer parts: major,
minor, and patch. In Figure 12.1, the major number is 2, the minor number is 13, and
the patch number is 4.

The basic rules of semantic versioning (when applied to the same entity, such as a
library) are

 If two versions have different major numbers, there are no guarantees of com-
patibility at all. For example, versions 2.13.4 and 3.0.2 could be entirely
incompatible.

2.13.4

Minor

Major Patch

Figure 12.1 Example of
a semantic version

308 CHAPTER 12 Managing versioning and compatibility
 If two versions have the same major number but different minor numbers, then
the version with the larger minor number must be backward compatible with
the version with the smaller minor number. For example, version 2.13.4 must
be backward compatible with 2.5.3.

 If two versions have the same major and minor numbers, they must be back-
ward and forward compatible with each other. For example, versions 2.13.4 and
2.13.1 must be compatible in both directions.

These rules are designed to allow efficient communication of when consumers can
change which version they’re using:

 If you change major versions, all bets are off. Proceed with care, perform rigor-
ous testing, and allow plenty of time for the upgrade.

 If you upgrade from one minor version to a later one, everything should be okay.
(Sometimes that expectation can be confounded, despite best intentions, as
we’ll see later.)

 If you upgrade or downgrade between patch versions in the same minor version,
everything should be okay. The caveat here is that patch versions usually exist to
fix bugs, and it’s possible you were depending on that buggy behavior. (You
might have a workaround that’s broken by the bug being fixed, for example.) It
should be fine to downgrade again afterward.

When discussing particular versions, it’s common to use x or y as placeholders for any
number. For example, you might say that 1.3.x must be backward compatible with
1.2.y.

SPECIFYING UNSTABLE VERSIONS

Semantic versioning also provides two mechanisms for specifying unstable versions. The
first is to use a major number of 0 for initial development. The normal expectations of
semantic versioning do not apply when the major number is 0; version 0.2.0 can be
entirely incompatible with version 0.1.0, for example. There isn’t even any need for
patch level version number changes (e.g., 0.1.0 to 0.1.1) to maintain compatibility.

 The second way of indicating an unstable version number is to use a prerelease
label. In this case, the regular semantic version has a suffix of a hyphen followed by a
dot-separated sequence of identifiers.

In figure 12.2, the major.minor.patch part of the version is 1.4.5, but there’s also a pre-
release label of beta.1. A prerelease label can have as many dot-separated identifiers as
you wish, but typically, they have between one and three identifiers. Each identifier
must consist of characters that are either alphanumeric ASCII or hyphens.

1.4.5-beta.1

Major.minor.patch Pre-release label
Figure 12.2 Example of a semantic
version with a prerelease label

309Versioning in the abstract
 While there are no guarantees of compatibility with prereleases, typically, the ver-
sion indicates a movement toward the version indicated by the major.minor.patch
part, which would suggest compatibility with other versions. For example, a version of
1.5.0-alpha.1 would usually be backward-compatible with 1.4.x.

BUILD METADATA

Semantic versioning also allows build metadata to be specified after either a stable or
prerelease version with a + suffix. The build metadata consists of a dot-separated
sequence of identifiers, similar to prerelease labels. Build metadata is intended to be
purely informational. For example, you might include a timestamp or a commit hash
in the build metadata.

 In figure 12.3, the major.minor.patch part of the version is 1.2.3, the prerelease
label is beta.1, and the build metadata part is 20210321.af25738. That build metadata
happens to be a date and a commit hash, but semantic versioning doesn’t attach any
significance to that.

VERSION PRECEDENCE

Semantic versioning specifies precedence between versions, to be used by tooling to
determine compatibility, where possible, and suggested upgrades. In general, they
work as you’d expect them to:

 1.2.3 precedes 2.0.0
 1.2.3 precedes 1.3.0
 1.2.3 precedes 1.2.4
 1.3.0-alpha.5 precedes 1.3.0-beta.1

Choosing between 0.x.y or prerelease labels
While the use of 0.x.y version numbers has been historically common, it does come
with a significant downside; it only really works for the first stable version (1.0.0). If
your initial sequence of version numbers is 0.8.0, 0.9.0, 1.0, then you might be
tempted to try to use 1.8, 1.9, 2.0 for the second major version. In most cases that
would violate semantic versioning rules because the purpose of going to 2.0 is usu-
ally to introduce incompatible changes.

I would recommend using prerelease labels from the very first public release. You can
then be consistent between the release sequence for the first major version (e.g.,
1.0.0-alpha.1, 1.0.0-beta.1, 1.0.0-beta.2, 1.0.0) and for the second major version
(e.g., 2.0.0-alpha.1, 2.0.0-alpha.2, 2.0.0-beta.1, 2.0.0). I would reserve 0.x.y for very
early prototyping—or avoid such version numbers entirely.

1.2.3-beta.1+20210321.af25738

Major.minor.patch Prerelease label Build metadata
Figure 12.3 Example of a semantic version
with a prerelease label and build metadata

310 CHAPTER 12 Managing versioning and compatibility
 1.3.0-beta.8 precedes 1.3.0-beta.10 (note the numerical comparison)
 1.3.0-beta.2 precedes 1.3.0

The exhaustive and precise precedence rules are beyond the scope of this book, but
they are specified at https://semver.org. Finally for this section, let’s move from the
precisely-specified world of semantic versioning to the other extreme: marketing.

12.1.4 Marketing versions

Semantic versioning is designed to convey technical information in a compact way. It’s
not designed to entice customers to buy new things. That’s what marketing versions
are for. The only reason to mention them in this chapter at all is to highlight the dif-
ference between marketing versioning and semantic versioning.

 In many cases, there’s no need for a marketing version at all. They’re usually
reserved for products, rather than libraries, protocols, file formats, or schemas. Where
there is a need for a marketing version, there’s often a more technical version number
as well, primarily used for support purposes. That’s typically more precise and long-
winded and may or may not relate to semantic versioning. It may even sound quite
contradictory to the marketing version; you might release Awesome Game with a final
technical version number of 2.3.1 but then release Awesome Game 2 with an initial tech-
nical version number of 1.0.0.

 The main lesson here is that these are different versioning schemes that serve very
different purposes. Try not to confuse the two, either when you’re looking at someone
else’s versions or when you’re designing your own versioning schemes.

 So far, we’ve only looked at versioning in the abstract, although semantic version-
ing is primarily applied to libraries. We’ll dig into library versioning in more detail in
the next section.

12.2 Versioning for libraries
For many developers, libraries are by far the most important domain for versioning.
That said, if you only consume libraries, you’re in a relatively simple situation—or at
least, you might be. Working with multiple versions of multiple libraries is inherently
complex and can be immensely frustrating. Even if all the developers of all the librar-
ies you use are following the conventions for your platform (typically, SemVer), that’s
no guarantee that you’ll escape incompatibility issues. However, you have relatively
few decisions to make.

 Most of this section is devoted to developers who are publishing libraries. That
involves far more decisions, many of which are balancing acts based on educated
guesswork. Even the concept of publishing a library has nuance to it; there are differ-
ent considerations for publishing a library to a package manager, such as Maven Cen-
tral or NuGet, versus publishing it to a company-internal artifact repository or simply
updating the library source code to be consumed by other source code.

 There are no easy solutions, but the guidance here should help you ask the right
questions for your context and reach the least-worst available answers. Given that a

https://semver.org

311Versioning for libraries
lot of library versioning is about compatibility, let’s start by thinking about what
that means.

12.2.1 Source, binary, and semantic compatibility

In this section, we’ll address one overall situation: we want to publish a new version of
a library, and we need to know whether it’s backward compatible with an old version
of the same library. We’ll assume we don’t know anything about code that is consum-
ing our library and turn each example into a sort of challenge: can we come up with
some hypothetical consumer code that would be broken by our change? We can then
consider the nature of that breakage.

NOTE Any time the text in this section refers to consumer code, that means
code within an application (or another library) that depends on the library
we’re talking about. Often that means it is calling functions provided by the
library, but that’s not always the case. The consumer code might just be imple-
menting an interface provided by the library, for example.

Spoiler alert: for almost every change you can imagine, it’s possible to come up with
consumer code that would be broken by that change. As an extreme example, con-
sumer code could take a hash of your library and throw an exception if it wasn’t exactly
as expected. You couldn’t modify the library at all without breaking that consumer.

 Fortunately, most consumer code is more reasonable than that, but you may still
discover cases in which a change will break consumer code in a possible but very
obscure situation. Should you consider that to be a breaking change, accepting the
associated costs for other consumers, or deem that obscure case to be out of scope?
That’s the sort of decision you’ll need to make once you’ve worked out what code
could be broken by any particular change.

 For compiled languages, there are three kinds of compatibility you should con-
sider: source compatibility, binary compatibility, and semantic compatibility. The con-
cept of binary compatibility doesn’t generally apply to languages that aren’t compiled
ahead of time, where the library is published as source code, effectively. This is the
case for JavaScript libraries, such as React and jQuery, for example. All of the exam-
ples below are provided in Java, but rules for compatibility are highly language spe-
cific; the aim is really to demonstrate the thought process rather than focus on the
particular changes shown.

 Most examples show library code, both before and after the change, and some
consumer code that uses the library. Let’s start with source compatibility.

SOURCE COMPATIBILITY

One library version has source compatibility (or is source compatible) with an older version if
consumer source code that works against the earlier version also works with the later
version. In Java, that includes recompiling the consumer code against the newer library.
Let’s start with an obvious example of an incompatible change: renaming a method,
even just by changing the case of a single letter, as shown in the following listing.

312 CHAPTER 12 Managing versioning and compatibility
Library before
public static User getByID(int userId) {
 …
}

Library after
public static User getById(int userId) {
 …
}

Consumer code
int userId = request.getUserId();
User user = User.getByID(userId);

After the change in the library, the consumer code fails to compile with an error of
cannot find symbol for User.getByID. Renaming anything public (such as a package,
field, interface, class, or method) is a breaking change. But not every breaking change
is that obvious. Consider changing a parameter from one type to a supertype—for
example, String to Object, as shown in the following listing.

Library before
public void displayData(String data) {
 …
}

Library after
public void displayData(Object data) {
 …
}

Any code calling the method should still be fine. Even a method reference conversion
in the consumer code should still work. But consumer code can do more than call
the method.

Consumer code
public class ConsumerClass extends LibraryClass {
 @Override
 public void displayData(String data) {
 …
 }
}

That’s fine with the original code but fails with a compilation error with the modified
library code. Now, if the class containing the method had been marked as final, that
would have prevented subclassing, so maybe this change would have been source

Listing 12.1 Changing a method name

Listing 12.2 Changing a parameter type (source compatibility)

313Versioning for libraries
compatible in that case. You should generally be wary of any situation where the
public API surface is being changed, and you’re not quite sure whether it’s compati-
ble or not.

NOTE Although we’ve been looking at examples in Java, the broad concept of
compatibility applies to other languages. It’s important not to assume that a
change that is source or binary compatible in one language is also compatible
in another. For example, renaming a method parameter is a backward com-
patible change in Java but not in C#, due to the named arguments feature of
C#. To add even more complexity, the rules about what changes are back-
ward-compatible can change over time. (For example, C# didn’t always have
named arguments, and Java might gain that feature in the future.)

In most cases adding something new is considered a compatible change, even though
it can often theoretically break consumer source code by introducing naming collisions.
One important counterexample to this is adding methods to interfaces; unless you
provide a default method implementation, that’s a breaking change, as any consumer
declaring they implement the interface now won’t be fully implementing it. The same
goes for adding an abstract method to an existing abstract class.

 So far, we’ve considered the situation in which the library is modified, and then
the consumer code is recompiled. What happens if we can’t recompile the consumer
code? Compatibility in this situation is called binary compatibility.

BINARY COMPATIBILITY

Before diving into details of what changes might be binary compatible or not, it’s
worth mentioning why it’s important. After all, we’re generally happy to recompile
our applications when we need to, right? While that’s fine at an application level, it’s
typically less feasible for other dependencies. We’ll look at the complexities involved
in dependency graphs in section 12.2.2, but imagine the following situation:

 Your application depends on LibraryA and LibraryB
 LibraryA also depends on LibraryB

This situation is shown graphically in figure 12.4, where each arrow represents a
dependency. If LibraryB makes a change that is only backward compatible after
recompilation, you’d need to use a recompiled version of LibraryA as well, and that
could be tricky.

Binary compatibility can be harder to reason about than source compatibility because
it involves a layer of abstraction developers can usually ignore. Most Java developers

Application

LibraryA LibraryB
Figure 12.4 Simple application with
two dependencies on LibraryB

314 CHAPTER 12 Managing versioning and compatibility
don’t need to know the bytecode generated for any particular piece of code, for
example. Fortunately, for Java specifically, the language specification has a whole sec-
tion on what changes are and are not binary compatible. Don’t expect every language
to have that level of documentation though!

 Some examples of binary incompatible changes are obvious: removing or renam-
ing methods or types is obviously going to cause problems. In other cases it’s less clear.
Let’s revisit our earlier example of changing the type of a method parameter from
String to Object. Ignoring the override problem we noted earlier, source compatibil-
ity is achievable because there’s an implicit conversion from String to Object. That’s
a conversion that the compiler knows about though. At execution time, the JVM expects
the method signature to stay the same. Let’s look at a concrete example.

Library before
public void displayData(String data) {
 …
}

Library after
public void displayData(Object data) {
 …
}

Consumer code
public class Program {
 public static void main(String[] args) {
 new LibraryClass().displayData("Hello");
 }
}

If we try to run the consumer code that was compiled against the original library code,
recompiling just the modified library code, an error is thrown at execution time:

java.lang.NoSuchMethodError: 'void LibraryClass.displayData(java.lang.String)'

There are two aspects that make binary incompatibility particularly nasty:

 You only see the problem at execution time. Developers working with compiled lan-
guages are used to the compiler catching this kind of problem (the method you
expected not being present) at compile time.

 You’ll only see the problem if execution goes down a code path that makes the JVM look for
the missing method. This is particularly worrying, as the code paths that aren’t typ-
ically tested quite as thoroughly are the ones involving error handling, leading
to a double whammy of errors.

As we’ve seen, some API surface changes can be source compatible but binary incom-
patible. Changes like adding a new class can be binary compatible but technically

Listing 12.3 Changing a parameter type (binary compatibility)

315Versioning for libraries
source incompatible (due to naming collisions). Other changes are either source and
binary compatible or source and binary incompatible.

 All of this has, so far, just been about the public API though; we haven’t worried
about the implementation details. But there’s a difference between the code compiles
and all the methods are found and everything works as it did before. The final kind of com-
patibility we’ll consider is semantic compatibility.

SEMANTIC COMPATIBILITY

Binary compatibility is fairly cut-and-dried. Source compatibility has a bit more
nuance; you need to decide whether you’ll count the possibility of naming collisions
as a breaking change, for example. It’s still usually clear though. Semantic compatibil-
ity is around the behavior of the code, and you simply don’t know what people will
depend on. This is expressed in Hyrum’s Law (after Google software engineer Hyrum
Wright; see https://www.hyrumslaw.com/):

With a sufficient number of users of an API,
it does not matter what you promise in the contract:
all observable behaviors of your system
will be depended on by somebody.

Taking this to one extreme, every release of a library would have a new SemVer major
version. At the other extreme, we could take a stance of, “If you don’t like the new
behavior, don’t use the library” and treat any change that didn’t affect the public API
surface as a nonbreaking change. Of course, neither extreme is a sensible position.

 Most implementation changes you’ll want to make don’t change the behavior in
huge ways, of course. There are three classes of change that are worth looking out
for though:

 Parameter validation
 Inheritance
 Performance changes

Parameter validation changes generally fall into two subcategories. Either an
expected-to-be-invalid input was accidentally permitted and you want to tighten up
the validation to reject it (as a bug fix), or you want to allow previously-rejected input
(as a feature). As an example of the latter case, consider this simple Person class that
captures a person’s legal name and their casual name (whether that’s a nickname, an
abbreviated form, or something else). Initially, both forms are required, as shown in
the following listing.

public class Person {
 private final String legalName;
 private final String casualName;
 public Person(String legalName, String casualName) {
 this.legalName = Objects.requireNonNull(legalName);

Listing 12.4 Initial Person class with two nonnullable parameters

https://www.hyrumslaw.com/

316 CHAPTER 12 Managing versioning and compatibility
 this.casualName = Objects.requireNonNull(casualName);
 }
}

Now, suppose we find that in practice, most users don’t want to specify a separate
casual name. They end up passing the same value in for both the legal name and the
casual name, and occasionally, that makes the code more convoluted. We could change
the library to allow null, defaulting to using the same value for both fields.

public class Person {
 private final String legalName;
 private final String casualName;
 public Person(String legalName, String casualName) {
 this.legalName = Objects.requireNonNull(legalName);
 this.casualName = casualName == null ? casualName : legalName;
 }
}

In some senses, that’s a compatible change. But if any consumer was relying on the
validation of the casualName parameter, they’re now broken. More alarmingly, they
may be silently broken. Consider the following consumer method, which happens to
print to the screen but could easily be creating HTML for a web page or similar:

public static void createUser(String legalName, String casualName) {
 Person person = new Person(legalName, casualName);
 System.out.println("Welcome, " + casualName);
 ...
}

This code will now print Welcome, null if the casualName parameter to the createUser
method is null, instead of throwing an exception, as it did previously. The parameter
may be used in other places in the method, propagating a null value, where it wasn’t
previously expected. This code could itself be in a library, documented to validate
casualName and relying on the Person constructor to perform that validation.

 In this case, an alternative and backward compatible approach would be to add a
constructor accepting only one name (which is then used for both the legal name and
the casual name). If you find yourself considering loosening (or tightening) valida-
tion, adding an alternative path (whether that’s via an overload or a new method) can
help to avoid silently breaking changes.

 Inheritance can cause semantic changes when what might look like an implemen-
tation detail is effectively exposed because methods can be overridden. Listing 12.6
shows Player and Position classes that might appear in the source code for a game.

Listing 12.5 Person class constructor change to permit null casual name

Throw an exception if
casualName is null.

Allow casualName
to be null, using

legalName if it is.

Expect casualName
to be validated as
nonnull by here.

Use Person for
further operations.

317Versioning for libraries
public final class Position {
 private final int x;
 private final int y;
 public Position(int x, int y) {
 this.x = x;
 this.y = y;
 }
 …
}
public class Player {
 private Position position;
 public void moveTo(int x, int y) {
 moveTo(new Position(x, y));
 }
 public void moveTo(Position position) {
 this.position = position;
 }
 …
}

Suppose a subclass of Player wants to limit the player’s movement to a particular
bounded area. It can do so by just overriding the moveTo(Position) method, deter-
mining the bounded position, and then calling super.moveTo(actualPosition) to
finish the operation. However, the author of the Player class might decide they want
to avoid creating Position objects all the time, instead dealing with the x and y values
directly. They expect to make a backward-compatible change by simply swapping the
delegation in the moveTo methods, as shown in listing 12.7.

public class Player {
 private int x;
 private int y;
 public void moveTo(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public void moveTo(Position position) {
 moveTo(position.getX(), position.getY());
 }
}

At this point, the subclass only behaves correctly if the moveTo(Position) overload is
called. That will still limit the input and call the implementation in Player, which will
then delegate to the moveTo(int, int) overload. But if a user calls moveTo(int, int)
directly, the limiting code will be bypassed.

 If the Player class or the moveTo methods were final, this would be fine. But inher-
itance and the possibility of some methods being inherited effectively exposes the
implementation detail of which overload calls the other.

Listing 12.6 Initial Player and Position classes

Listing 12.7 Modified Player class with swapped overload delegation

Delegate to the
Position-accepting
method.

Real change is in the
Position-accepting
method.

Coordinates are stored
directly as integers.

Coordinate-wise method
becomes main implementation.

Delegate to the
coordinate-wise
method.

318 CHAPTER 12 Managing versioning and compatibility
 This example leads on to the final category of semantic change that is worth con-
sidering carefully: performance. (Whether this is truly semantic or not is arguable. It’s
an observable behavior change, even though the behavior isn’t as simple as inputs and
outputs.) To continue with the Player class, we noted that the original change was to
avoid creating lots of Position objects. However, depending on how the class is used,
it could have the opposite effect. Suppose our Player class has accessors for both the
position and the components of the position. These could be implemented in two
ways, as shown in the following listing.

Accessors before
public int getPositionX() {
 return position.getX();
}
public int getPositionY() {
 return position.getY();
}
public Position getPosition() {
 return position;
}

Accessors after
public int getPositionX() {
 return x;
}
public int getPositionY() {
 return y;
}
public Position getPosition() {
 return new Position(x, y);
}

Does the Player class have better performance before or after the change? That entirely
depends on how it’s used. Code that has calls moveTo(int, int), getPositionX(), and
getPositionY() will definitely see fewer allocations, but code that calls getPosition()
will see more allocations. Effectively, the best way to use the library has changed: a pre-
viously allocation-efficient usage pattern has become inefficient, and vice versa. If the
library is intended to be performance sensitive, you may well wish to consider that to
be breaking, as calling code needs to change.

 So now that you can evaluate the extent to which any given change is backward
compatible or not, does that mean we’re done? You might come to the conclusion that
all we need to do for our library is follow the rules of semantic versioning based on the
results of checking each change. You might say to yourself, “When we want to make a
breaking change, that’s fine. We’ll just bump the major version, and all our consumers
will be aware of what that means.” If every application only ever consumed libraries
with no further dependencies, it really would be that simple. Making a breaking change

Listing 12.8 Position accessors within Player

319Versioning for libraries
would put some burden on consumers (checking that the breaking change doesn’t affect
their code or making any necessary changes), but it wouldn’t be a huge deal.

 Unfortunately, life doesn’t work that way. Let’s take a look at what happens when
lots of libraries are involved, using sprawling dependency graphs.

12.2.2 Dependency graphs and diamond dependencies

I should warn you that this topic can be quite alarming. Sometimes, after looking at a
particularly large dependency graph, I’m astonished that we manage to rely so heavily
on software working and continuing to work as it evolves. The problems in this section
are very real, and anyone who has had to battle with dependency collisions will come
away with scars to prove it. Yet, somehow, we seem to manage most of the time. The
duct tape just about manages to hold everything together.

NOTE This section includes a bunch of version numbers for libraries as exam-
ples. We’re going to assume that all the libraries in question follow semantic
versioning. If there are libraries anywhere in the dependency graph that don’t
follow semantic versioning, that doesn’t fundamentally change the topic—it
just makes it much, much harder to reason about.

So far we’ve considered examples in which an application depends on a single library,
and we haven’t considered any dependencies that single library might have. Now,
we’ll consider situations in which an application depends on multiple libraries, and
each of which may have multiple dependencies that may, in turn, have multiple
dependencies. We’ll show these as directed graphs, where each node in the graph rep-
resents a single library (across all versions), and each arrow in the graph represents a
dependency relationship and is labeled with the version of that dependency.

NOTE Some tools (including Maven) represent dependencies using trees
instead of graphs. Each node of the tree consists of an artifact and its version
number, instead of the edge within a graph showing the dependency version.
Both forms represent the same amount of information, but I find it easier to
spot diamond dependencies when using graphs.

If all of that sounds complicated and mathematical, don’t worry: it’s quite easy to
understand pictorially. (The problem with large dependency graphs isn’t an easy
problem to solve, but understanding the graph itself shouldn’t be too bad.)

 Let’s take a hypothetical example. We have an application that needs to read some
JSON files, and it also uses a message queue and a database. As it happens, the mes-
sage queue library also has JSON functionality. The dependencies might be some-
thing like the following:

 Application depends on JsonLib version 1.2.0.
 Application depends on MQLib version 2.1.2.
 Application depends on DbLib version 3.5.0.
 MQLib depends on JsonLib version 1.1.5.

320 CHAPTER 12 Managing versioning and compatibility
From the perspective of the application, the last of these is a transitive dependency. It’s
an indirect dependency, which is only present because the application depends on
MQLib. Transitive dependencies can include libraries that the main application
doesn’t depend on directly.

 The graph for this set of dependencies could be represented in figure 12.5.

Although this hypothetical example is much simpler than many real applications,
where the total set of dependencies can run into hundreds or thousands of libraries, it
still contains a potential problem, due to JsonLib: one consumer of JsonLib (the
application) expects to use version 1.2.0, whereas the other consumer (MQLib)
expects to use version 1.1.5. This is one example of a diamond dependency problem. The
origin of the name diamond dependency is when the two consumers of the common
library are themselves libraries. Suppose the application didn’t depend on JsonLib at
all, but DbLib did. We would end up with the situation shown in figure 12.6, which is
more obviously diamond shaped.

Both of these are diamond dependencies, really. Depending on your language and
package manager, direct dependencies from the application may have slightly differ-
ent rules applied to them, but the main problem we’ll be looking at in this section is
the same either way.

Transitive dependency complexity
For the sake of simplicity, we’ve ignored one aspect of the dependency graphs here:
typically, different versions of libraries will have different transitive dependencies. So
JsonLib 1.1.5 might depend on CommonLib 1.2.0, but JsonLib 1.2.0 might depend
on CommonLib 1.3.0.

Application

JsonLib

1.2.0 2.1.2

1.1.5

3.5.0

MQLib DbLib
Figure 12.5 Dependency graph
for a simple application

Application

JsonLib

1.2.0

2.1.2

1.1.5

3.5.0

MQLib DbLib

Figure 12.6 Dependency graph with
a classic diamond dependency

321Versioning for libraries
The key question is: what version of JsonLib is used? Do we have to use a single version
at all?

SHARED VS. ISOLATED DEPENDENCIES

Different platforms, languages, and library/package managers have different approaches
to dependencies. These different approaches have different benefits and drawbacks,
and each approach will also have its own specific details. The most important initial
categorization is whether the dependencies are shared across the whole application
or isolated.

 If a dependency is shared, the whole application uses a single version of the library.
If a dependency is isolated, each dependency has its own separate copy of the library,
including any library-wide state.

 Shared dependencies are generally more efficient than isolated dependencies and
can be more convenient too:

 Multiple copies of the code take up more memory (and potentially more disk
space for deployment) and can incur more optimization costs (such as each
copy of the bytecode being JIT-compiled separately).

 Any singletons of expensive-to-initialize resources or caches provide their effi-
ciency benefits across the whole application.

 Objects can be passed between different components in the application
transparently.

There are two big drawbacks, however:

 If the shared state isn’t designed carefully, components can interfere with each
other in unexpected ways. (For example, if two components each expect to be
the only user of a library-wide cache, their assumptions could be violated by
each other.)

 If different components expect different and incompatible versions of the same
library, no single shared version will satisfy both.

The aspect of objects being passed between different components is particularly import-
ant. In the classic diamond dependency shown in figure 12.6, suppose the three librar-
ies have the following classes and methods:

public class JsonObject { … }
public class MQTopic {
 public JsonObject readJsonMessage() { … }
}
public class DbTable {
 public void writeJsonValue(string columnName, JsonObject value) { … }
}

That’s potentially really convenient for the application: it can read a JsonObject from
a message queue and write it into the database without having to perform any conver-
sions. That only works when the JsonObject types in the two method signatures (the

Class within JsonLib

Class within MQLib

Class within DbLib

322 CHAPTER 12 Managing versioning and compatibility
return type of readJsonMessage and the second parameter of writeJsonValue) are
actually the same type or at least compatible types.

NOTE In statically typed languages, such as Java and C#, different types that
happen to have the same name but come from different libraries are typically
regarded as incompatible types. In dynamically typed languages, the seman-
tics are usually somewhat looser. Isolated dependencies don’t prohibit this
sort of object passing as much in dynamically typed languages as they do in
statically typed languages. This doesn’t solve the problem of different incom-
patible library versions, however. It may even complicate things more, as
object passing may work in one direction but not in the other within the same
major version if the component creating the object uses an earlier minor ver-
sion than the component consuming the object.

If the dependency of one component is used as a purely internal implementation
detail (so objects from the dependency are never returned or accepted by the compo-
nents public API), then isolating that dependency can be a very robust approach,
aside from the potential inefficiencies mentioned earlier.

 The choice between shared or isolated dependencies doesn’t have to be the same
throughout an application. For example, the Maven package management system
offers the option of creating a fat jar, containing all the dependencies of a library in an
isolated way. This could be used for one library with others sharing dependencies.

THE PAIN OF MAJOR VERSIONS

With the background context of shared and isolated dependencies in place, we can
consider the implications of incompatible versions of libraries. Let’s update our origi-
nal dependency graph to require incompatible versions of JsonLib, indicated by dif-
ferent major version numbers (see figure 12.7).

Now, the application depends on JsonLib version 2.0.0, whereas MQLib still depends
on JsonLib version 1.1.5. Is that a problem? Maybe . . .

 If the application uses isolated dependencies, it may be fine. If the application is
written in a dynamically typed language and JsonLib objects are being passed between
the application and MQLib, it could cause some new incompatibilities, but it should
otherwise work.

 If the application uses shared dependencies, the first question is which version will
be shared between the two. There are three possibilities here:

Application

JsonLib

2.0.0 2.1.2

1.1.5

3.5.0

MQLib DbLib
Figure 12.7 Dependency graph
with incompatible dependencies

323Versioning for libraries
 Both the application and MQLib use 2.0.0.
 Both the application and MQLib use 1.1.5.
 The dependency manager rejects the dependency graph as invalid, as there’s

no single version that can expect to be compatible.

The most likely option here is the first. Is that okay? Well, that depends on what break-
ing changes occurred between version 1.1.5 and 2.0 of JsonLib. It’s entirely possible
that MQLib doesn’t use anything that’s been broken, in which case all is well. That’s a
reasonable argument for dependency managers not failing hard on dependency
graphs like this. The problem is, it can be very hard to know whether a breaking
change does affect you or not, particularly if the potential for breakage is within
another library. Even if tooling can help you detect that nothing is broken in terms of
binary or source compatibility, it can’t tell you about semantic compatibility. (This is
not to discount the value of tooling that can check whether a combination of library
versions will work together in terms of all the required members being present.
Where such tooling is available, we recommend its use. Just do not expect it to spot
every possible kind of breakage.)

NOTE Different languages and package managers may make different deci-
sions. It’s worth taking the time to learn the rules and conventions of the con-
text you’re working in, as both a library producer and a library consumer.

The more intertwined dependencies the application uses, the greater the likelihood
there will be this sort of major version inconsistency somewhere. Likewise, the more
dependencies that are involved for any one library, the greater the likelihood there is
that the inconsistency will cause genuine breakage. This is particularly true for very com-
monly-used libraries, such as Apache Commons libraries in Java or Newtonsoft.Json in
.NET. (Despite being at version 13.0.1 at the time of writing, Newtonsoft.Json has a very
good track record of backward compatibility.)

 Even if everything works out, a library publishing a new major version has a signifi-
cant cost. Any other library that depends on it and wants to upgrade to the new major
version would need to carefully consider whether that would require a major version
bump on their part too, as it could break anyone depending on the older version.
(How dependency versions affect the versioning options of the code with the depen-
dency is a whole can of worms in its own right.) Any application that depends on the
library may need to make code changes to adopt the new version and may well need
to contend with diamond dependencies and an inconsistent dependency graph.

NOTE As a library author, you need to be aware of the costs to the whole eco-
system and think carefully before taking a breaking change.

I don’t want to suggest you should never make a breaking change. Designing the API
of a library is very much a chicken-and-egg situation: you often can’t be confident in
your decisions or learn from your mistakes until you’ve got users who are invested in
your library. At that point, fixing the mistakes requires breaking those same users.

324 CHAPTER 12 Managing versioning and compatibility
However, you can still set yourself up for a better chance of success by putting in some
thought from the start.

12.2.3 Techniques for handling breaking changes

This section is a bit of a grab bag of ideas, which you can dip into in any order. The
general takeaway is to be deliberate about versioning.

KNOW YOUR CONTEXT: LANGUAGE, PLATFORM, AND COMMUNITY

This chapter is full of caveats that language-specific details matter. As an example,
remember that renaming a parameter in Java isn’t a breaking change, but it is in C#.
These contextual details go well beyond what counts as a breaking change. They also
include how package managers resolve dependency graphs, community expectations,
and even what techniques are available to avoid breaking changes.

 As an example, default methods in Java and default interface implementations in C# both
allow you to add new methods to an interface without taking a breaking change—at
least if you are in a position to provide a reasonable default implementation. (If there
isn’t really a sensible default implementation, providing a no-op implementation can
give the illusion of this being a nonbreaking change, while actually breaking any code
that calls the default method.) That can influence your design in terms of whether
you provide interfaces or abstract classes within your library. While versioning is obvi-
ously not the only factor that should influence your library design, it’s important to bear
in mind the impact of the options available in terms of future versions of the library.

 Another example where this can be important is in constructor and method
parameters: if you find yourself with a list of parameters that keeps expanding each
time you want to add a new feature, consider whether those parameters could be
encapsulated into their own type to provide more flexibility.

 Again, the precise design patterns you use will depend heavily on the language you’re
coding in and may be further constrained by the platforms you target. (Default interface
implementations in C# aren’t available in older versions of .NET, for example.)

LIMIT YOUR PUBLIC API SURFACE

If you accidentally declare a public class called Costumer instead of Customer and
release a version of the library with that present, fixing the typo would be a breaking
change. On the other hand, if you’d kept that class internal to your library to start
with, you could rename it in a new patch version, and no users would be any the wiser.

 Every public class, method, property, or interface in your library is a potential
headache in the future. On the other hand, if you didn’t make anything public, your
users wouldn’t be able to use your code at all, so there’s a tradeoff.

NOTE Often, it’s possible to provide quite a restrictive API surface initially—for
example, with default options. Once users have been able to explore the basic
functionality, you’re likely to receive useful feedback for what additional flexi-
bility is required. That can avoid locking the library into a specific design, which
doesn’t meet the needs of users and can’t evolve to do so in a compatible way.

325Versioning for libraries
One aspect of limiting your public API surface isn’t as obvious as not making classes
public unless users need them. We saw earlier that changing implementation details
of how one method calls another within the same class can be a breaking change
when inheritance is permitted but can be changed more flexibly when those methods
can’t be overridden.

NOTE Sometimes, there are practical reasons why you need to expose more
of an API surface than you would really like to, and then you want to be able
to make breaking changes in those API surfaces. If you make it clear that reg-
ular users shouldn’t touch these types—for example, by putting them in a
package or namespace ending with internal or similar—that’s a practical
approach, even if it’s not ideal.

Likewise, sometimes you may wish to expose functionality within a generally-
stable release, where just part of the API surface is still unstable. The Guava
library has an annotation of @Beta for precisely this purpose. It’s not ideal—it
can be easy to miss annotations and names—but sometimes, the benefits are
worth the risks.

Inheritance can be a wonderful tool, but it has sharp edges that can be difficult to rea-
son about. I favor Josh Bloch’s guidance: “Design for inheritance, or prohibit it.”
Where you do design for inheritance, and where one overridable method will call
another, it’s worth documenting that it’s no longer an implementation detail—it’s
effectively part of the public contract.

BE CAUTIOUS WITH YOUR OWN DEPENDENCIES

In the previous section we saw how version changes can ripple through an ecosystem.
The more shared dependencies your library takes on, the more your users will be
impacted by changes to those dependencies. This is not a general encouragement to
reinvent the wheel, of course. It’s wonderful to be able to use reliable, well-tested
third-party components. You just need to be aware of the impact of taking on those
dependencies.

 If you want to change your decision later (e.g., moving from one JSON parsing
library to another), then that can be a breaking change, and it certainly will be if
you use any of the types of the dependency within your public API. Changing a
dependency in a tool or application is generally easier than changing a dependency
in a library.

 It’s well worth looking at the history of a project before deciding to use it as a
dependency in a library. How much of the dependency code are you using? What’s
their versioning policy? How responsive are they to bug reports and feature requests?
Is the project in good health?

 If you isolate your dependencies, this ripple effect is much more limited, but there
can still be an impact, so it’s best to think carefully before adding a new dependency. By
all means, depend on other libraries, but do so deliberately and with an appreciation of
the potential ongoing costs involved for both you and your library’s consumers.

326 CHAPTER 12 Managing versioning and compatibility
DECIDE WHAT YOU CONSIDER TO BE BREAKING

In section 12.2.1 we saw how breaking isn’t always a binary attribute of any given change.
Some changes are very obviously breaking for anyone using that piece of code; others
will only break customers who are using your library in an unusual way.

 When you’re considering making a change and need to evaluate whether it would
count as breaking or not, try to work out the most likely consumer code that would be
broken by it. If a consumer would have to use some particularly obscure language fea-
ture for it to cause them problems, it’s probably best to only increase the minor ver-
sion instead.

NOTE It can be tempting to take an approach of when in doubt, assume the
change is breaking. That sounds like a cautious approach, but it’s actually a very
expensive one due to the propagation of new major versions. Occasionally,
you may want to make a change, which is clearly breaking in theory but which
you have solid evidence to believe won’t actually break any users. In that case,
the best course of action may well be to make the change and just bump the
minor version. If you decide to violate SemVer like this, don’t try to hide it—
instead, make your reasons for doing so public and transparent.

One gray area we haven’t discussed yet in terms of breaking changes is deprecation.
Most languages have the notion of deprecating a class or a method, which normally
leads to a warning. Does introducing a new warning count as breaking a consumer?
What if they have treat warnings as errors turned on in their build? Personally, I view this
as an active decision on the consumer’s part: they wanted to be alerted to breaking
changes, and we’re just alerting them ahead of time. As we’ll see shortly, deprecation
can be a powerful tool for helping users to migrate to new versions.

 All of these decisions involve judgement calls. While tooling can advise you about
breaking changes in some cases, that tooling is built with judgement calls built in,
such as deeming adding a new class to be a nonbreaking change, even though it could
cause a naming collision. (It’s very unlikely to be able to advise you about semantic
breaking changes, too.) Where possible, it’s good to document what your library
deems to be a breaking change to avoid surprising consumers.

BE CONSIDERATE WHEN BUMPING MAJOR VERSIONS

Finally, how should you handle a breaking change when it inevitably happens? Firstly,
I’d advise keeping a document of all the breaking changes you want to make from the
start. Every major version is costly, so it’s worth batching the changes together, so you
don’t break users more often than you really need to. Again, there’s no hard-and-fast
rule about how often it’s reasonable to release a new major version, and it will
depend on your library and your users. The more users you have—and in particular,
the more libraries you have depending on yours—the more painful any major ver-
sion bump will be.

 Next, it’s worth being as clear as you can in documentation. Ideally, you’ll have a
version history document anyway, but that’s particularly important for major version

327Versioning for libraries
changes. Document every breaking change you’re aware of, even subtle ones, and ide-
ally, write up a migration guide to help users.

 Speaking of migration, in some cases there are ways you can help users transition
more easily using a minor version as a bridging release. I’ll use NodaTime as a con-
crete example here. In NodaTime 1.0 to 1.3, the IClock interface was declared, as
shown in the following listing.

public interface IClock
{
 Instant Now { get; }
}

This was a mistake; it’s too similar to DateTime.Now that returns a system-local time,
and it really shouldn’t be a property. We fixed that in NodaTime 2.0, as shown in the
following listing.

public interface IClock
{
 Instant GetCurrentInstant();
}

If we’d just done that, it would have provided users with no indication of what was
wrong or how to fix it. Instead, shortly after releasing 2.0.0 we released 1.4.0, which
made the Now property obsolete but introduced an extension method, as shown in the
following listing.

public interface IClock
{
 [Obsolete("Use the GetCurrentInstant() extension [...]")]
 Instant Now { get; }
}
public static class ClockExtensions
{
 public static Instant GetCurrentInstant(
 this IClock clock)=> clock.Now;
}

Version 1.4.0 was entirely source and binary compatible with 1.3.0, barring the warn-
ings. If a user wanted to ignore the warnings, that was fine. Alternatively, they could
start transforming their code to get it ready for the transition to 2.0.0. Some changes
couldn’t be handled this way, but most could.

Listing 12.9 IClock interface in NodaTime 1.0–1.3

Listing 12.10 IClock interface in NodaTime 2.0

Listing 12.11 IClock migration encouragement in NodaTime 1.4

Existing uses of IClock.Now
are marked as obsolete.

Extension method to look
like the 2.0 IClock method

328 CHAPTER 12 Managing versioning and compatibility
 This may not be the right process for all libraries, but every library author can
attempt the same goal of minimizing the cost of breaking changes. Maybe you provide
tools to migrate config files or even rewrite source code. Maybe you provide analysis
tools. Maybe all you’ve got is documentation, but it’s really clear and goes through a
worked example. Empathy is a wonderful thing: if you were consuming this library and
were faced with the major version bump, what would you want to see? Our final subject
on the topic of library versioning is on a slightly different tangent but addresses a sce-
nario that faces a significant proportion of developers: internal-only libraries.

12.2.4 Managing internal-only libraries

Every company I’ve worked at has had slightly different practices around how internal
libraries are versioned. Even the term internal may mean different things to different
people: if your product is an application that is broken up into several libraries, but
you don’t expect anyone else to use them, and you always upgrade the whole system in
one go, are those libraries internal or not? They almost certainly don’t need to follow
the same rules as regular libraries.

 Likewise, you may have genuinely internal libraries where the binaries themselves
never reach customer machines—they just power your web site or network API, for
example. Do those internal libraries even have versions, as such? What are the rules for
making breaking changes to those libraries?

NOTE Questions about whether a particular change will break anyone become
more concrete when you can find all the code that uses it. If your overall
codebase is tens of millions of lines of code, it can still be a daunting and,
potentially, infeasible exercise. Still, you’re in a much stronger position than
an Open Source library where there is often no way of telling how it’s used.

Even when it’s feasible to make breaking changes fairly freely—for example, leaving a
note saying, “When the payments team update to the next version of their library, they’ll
need to change their code”—I’d generally encourage a more measured approach, if
possible. Aim to evolve the consumer code and the library code together, so every-
thing will always keep working but the classes or methods you want to remove (or
break) are gradually less widely used, so eventually you can remove them with no
impact. Even then, I’d suggest having a sort of cooling off period before removing any-
thing, so if any recent changes need to be rolled back, you’re still in a good position.

 Sometimes, this gradual approach won’t be feasible or will be more effort than it’s
worth, it’s analogous to data schema migrations, where sometimes, the cost of a small
amount of downtime is lower than the cost and risk of an online migration. It’s con-
text-sensitive though: some systems have regular maintenance windows, and others
are extremely sensitive to even small amounts of downtime.

 One thing is for sure: making any change is much, much harder if your internal sys-
tems don’t have a clear versioning strategy. Maybe that’s live at head, where all compo-
nents build against the latest versions of all other components. Maybe it’s independently

329Versioning for network APIs
versioned modules in an internal package manager. Maybe it’s a hybrid approach with
some core versioned modules and common source control for other components.
Whatever has been chosen, everyone on the team needs to understand the system and
the implications of how changes to your code can affect colleagues.

NOTE As we mentioned at the start of this section, companies vary signifi-
cantly in their practices. Sometimes, teams are set up to be as independent as
possible from one another—potentially, even with independent source con-
trol systems and limited visibility. That definitely affects how easy it is to safely
evolve internal systems via breaking changes, while being more feasible than
with a system that’s fully open to the public. It’s worth taking the time to con-
sider—and then document—what kind of process can be used to make this
sort of change without breaking other teams or compromising other aspects
of the company’s engineering culture.

We’re now going to shift gears significantly, changing the source of complexity from
lots of libraries all running in the same application to lots of clients all calling the same network
API. There are definitely some common concerns between the two, but they require
different ways of thinking.

12.3 Versioning for network APIs
Before we start discussing network API versioning, we should probably define what we
mean by network API. While there can be all kinds of variations, we’ll set the scope to a
request–response service accessed over a network. There can be variations, such as webhook
APIs, where it’s the service that makes the request to the user’s code, rather than vice
versa, but it will be simpler to limit the discussion to the case where the user makes a
request, and the service issues a response. I’ve personally had the most experience
with plain HTTP services using JSON for the data and gRPC services using Protocol
Buffers, but the questions you should ask yourself are broadly applicable across all
kinds of services. (Protocol Buffers are Google’s binary serialization format, which
were initially internal but then made public in 2008. We’ll look at them in more detail
in section 12.4.) The answers may be very different though, so it’s worth being con-
scious of any bias you may have towards reusing answers from a different context.

12.3.1 The context of network API calls

When we publish a library, we generally have very little information about how it’s
used, beyond what the users decide to tell us via bug reports, feature requests, ques-
tions on Stack Overflow, and the like. We generally expect it to be used in a single eco-
system—for example, I haven’t had any questions about how the NodaTime library
interoperates with Perl. The ecosystem may be fairly large and diverse, covering multi-
ple languages, but we shouldn’t have to deal with too many shocks.

 With network APIs (at least ones we host ourselves), we have much more informa-
tion in terms of how the API is used directly because we can see the incoming
requests. But we usually have no idea of the context in which that API call is being

330 CHAPTER 12 Managing versioning and compatibility
made. That flexibility is one of the powerful features of network APIs, but it also
makes it hard to reason about the impact of changes.

 While Figure 12.8 shows a diversity of contexts in terms of the kinds of application
and device that may be making requests, there’s further diversity within that. You
could receive requests from applications written in multiple different programming
languages—some handcrafting those requests and others using dedicated client librar-
ies. There could even be multiple client libraries targeting the same platform.

When discussing libraries and dependency graphs, we considered applications, which
depended on libraries, which each depended on a different version of a common

Assumptions about client libraries
Client libraries can make the lives of your users much simpler, but they can also be
hard to do well, particularly if you need to scale to target multiple languages and mul-
tiple APIs. Beyond a certain size, you’re likely to need to generate at least large parts
of the libraries, either with existing tooling for an API description format, such as
OpenAPI, or your own code generator. This introduces further complexity in terms of
compatibility: there are some changes you might want to make in the API, which are
compatible in terms of the requests and responses but may generate incompatible
new libraries. It’s up to you to decide whether that’s acceptable (via a new major ver-
sion of the libraries) or not.

Even if you provide client libraries, you should avoid assuming that all requests will
be generated via client libraries, unless this is enforced in some way (such as the
library providing cryptographic signatures). Most APIs do not need this and, generally,
feel less friendly than an API which is easy to experiment with using tools such as
Postman (https://www.postman.com/).

Desktop web
browser

Native desktop
app

Server

API server

loT device

Mobile app

Figure 12.8 APIs can be called
by many different devices.

https://www.postman.com/

331Versioning for network APIs
dependency. There’s no direct equivalent in network APIs, but there are similar con-
cerns around a mixture of old and new versions being in play:

 While deploying across services, both old and new servers will be running at the
same time. Modern services should generally be designed with no downtime
required when updating the servers to a new version.

 The same data may be accessed by two clients—one of which is only aware of an
old version, and the other of which is aware of the new version.

We’ll go into more detail about the implications of this shortly, but it’s worth starting to
get into the mindset of considering a broad spectrum of clients and an eventually-
consistent set of servers. Before that though, let’s explore goals from a customer
perspective.

12.3.2 Customer-friendly clarity

As with so many things, when you start thinking about versioning for APIs, it’s tempt-
ing to dive straight into technical solutions and strategies. But without explicitly deter-
mining the requirements beforehand, you can either come up with a simple strategy
that doesn’t satisfy anyone or a complex strategy that is too hard to understand. (Or,
worse, a complex strategy that is hard to understand, doesn’t meet customer needs,
and is hard to extract yourself from.)

 Questions you should probably ask yourself include

 Is your API designed to be used typically from a particular context? (While, in
general, APIs are available in multiple contexts, you may design things differ-
ently for an API where 99% of the clients are in other servers, versus an API
where 99% of the clients are IoT devices that may never be updated and may be
very sensitive to the size of responses.) This is reminiscent of the traffic patterns
described in chapter 5 and application of the Pareto principle.

 Do you have a clear communication channel with all users to warn them of any
upcoming changes that require attention?

 Do you expect to collaborate with customers on the API surface, leading to
some API versions which have looser stability requirements?

 How rapidly do you expect the API to evolve, and how quickly do you expect
customers to want to update to the latest-and-greatest version?

 How long are you willing to support old versions, and does that meet customer
expectations?

 Are you able to keep track of the usage of your API in terms of versions, client
libraries, and individual elements, such as RPCs?

Some of these are questions it makes sense to answer even for simple standalone
libraries, but network APIs involve more ongoing interaction. As an example, if a
user wants to keep on using a library long after the supplier has dropped support
for it, they can probably do so (at their own risk, of course). With a network API, if

332 CHAPTER 12 Managing versioning and compatibility
the supplier turns off the endpoints that were serving the API, that user is immedi-
ately impacted.

NOTE All of the above questions can impact your versioning strategy, but one
thing is constant: customers appreciate clear and comprehensive documenta-
tion about versioning. This provides confidence to the business side of their
organization about how safe it is to rely on your API and confidence to the
developer side of their organization about how to plan their client code. Like
most documentation, this is an area that is, unfortunately, often neglected,
but the public-facing documentation should be considered one of the deliver-
ables of your versioning strategy.

With that background, we’ll look at two broad approaches that are frequently used.

12.3.3 Common versioning strategies

Different organizations have come up with many different approaches to versioning
over the years. The most common approach seems to be: let’s hope this isn’t actually a
problem and make it up as we go along. That’s definitely not one I’d recommend though.

 There are two more deliberate approaches that can still go horribly wrong and can
still be painful to implement well but at least have a decent chance of success. I tend
to think of them as client-controlled versioning and server-controlled versioning. Those are
both somewhat woolly terms, but they’re described in more detail below.

 In both cases, though, the client specifies a version of some form when making a
request. Exactly how that is specified doesn’t do much to affect the rest of the decision-
making. For example, in an HTTP request the version could be present as

 A header
 A query parameter
 Part of the path in the URL

With other protocols, it might appear in other places. There will be pros and cons to
the choice of where you ask the client to specify a version, but the details are beyond
the scope of this book. Instead, we’re going to focus on how that version number
affects the API. Let’s start with the situation in which the client can be quite specific
about the API version they’re prepared to handle.

CLIENT-CONTROLLED VERSIONING

With client-controlled versioning, the version specified by the client determines the
precise API surface that code knows about. For example

 The client shouldn’t specify a request field that isn’t in that version, even if the
field appears in a different version.

 The server shouldn’t respond with a field that isn’t in the client-requested
version.

 The server shouldn’t modify resources in a way that assumes knowledge of
fields that aren’t present in the client-requested version.

333Versioning for network APIs
To make various examples concrete, let’s imagine a very simple API that revolves
around a Person resource, which, in version 1.0, has fields id and name. (This is really
staggeringly simplified, so we’re able to focus on just the versioning. There are all
kinds of other concerns, such as the nature of IDs, who gets to create the IDs. See
Manning’s API Design Patterns by J. J. Geewax for much more detail on general API
design [Manning, 2021].) In version 1.1, we introduce a new field: occupation. Our
API has methods of CreatePerson and UpdatePerson (where the request is the per-
son resource) and GetPerson (where the request is the ID of the person to fetch).
Table 12.1 shows some sample requests and responses with client-controlled version-
ing. These first examples only involve the CreatePerson and GetPerson methods;
we’ll look at UpdatePerson shortly.

The format of the version number itself is flexible. It’s useful to separate the major
number and minor number in a SemVer-like way, but it’s usually not worth including a
patch number, as SemVer patch differences are about implementation (or com-
ments), rather than API. The minor version can be a regular incrementing integer
(creating versions of 1.0, 1.1, 1.2, etc.), but it can also be useful to make it an 8-digit
date, leading to version sequences, such as 1.20200619, 1.20201201, 1.20210504. The
date-based versions take longer to read but provide useful information without having
to consult a complete version history.

Table 12.1 Sample API requests and responses with client-controlled versioning

Client request Server response Notes

Version: 1.0
Method: CreatePerson
Body: id=1, name="Jane"

OK

Version: 1.1
Method: CreatePerson
Body: id=2, name="Erik",
occupation="Accountant"

OK Occupation can be specified in a
version 1.1 request.

Version: 1.0
Method: GetPerson
Body: id=2

OK
id=2, name="Erik"

Although the resource has an
occupation, it’s not returned in a
version 1.0 response.

Version: 1.0
Method: CreatePerson
Body: id=3, name="Kara",
occupation="Engineer"

Bad request Occupation can’t be specified in a
version 1.0 request.

Cost and value of patch numbers
For some niche APIs where absolute API stability is crucial, you could include patch
numbers, where a client requesting a specific version will get the same behavior con-
sistently even if that behavior is incorrect. For example, a prime number API could have

334 CHAPTER 12 Managing versioning and compatibility
Client-controlled versioning can be costly to implement, as the server needs to be
aware of all of the different versions that have ever been published, or at least all the
versions you still want to support. Turning down an old version number will break all
existing clients of that version. The exact nature of how the clients will be broken
depends on how you communicate errors—both for requested versions which have
never been valid, and for versions which were valid but are no longer supported. How
you do so is beyond the scope of this chapter but should be included in your design
from the start.

 One downside of client-controlled versioning is that the implementation needs to
store details of every minor version, so it knows how to validate the request and which
fields to include in the response. As the request is propagated through the system, the
client-specified version number will need to be propagated too. It’s worth automating
this process of validating requests and removing fields that shouldn’t be in the client-
specified version right from the start.

 In theory, client-controlled versioning allows APIs to evolve rapidly without breaking
clients. For example, if you make a spelling mistake in a field name in version 1.0, you
can just launch a 2.0 with the spelling mistake fixed and transform both requests into an
internal request format, which is then processed in a version-neutral way. The internal
response format can then be transformed back into the version-specific response for-
mat. While that’s fine for the existing 1.0 users while they’re using 1.0, it still comes at a
cost when they want to upgrade to 2.0 in terms of making code changes.

NOTE The major version number is only really present for humans; as each
minor version is effectively independent, neither the server code nor the cli-
ent code needs to care that 1.0 to 1.1 is a backward-compatible change, but
1.1 to 2.0 is a breaking change. Humans care when they update their applica-
tion to use the new version—they know whether to expect to need to modify
the code due to breaking changes.

Client-controlled versioning has a useful side effect in terms of read–modify–write
cycles, which comes from the final bullet point listed at the beginning of the current
section. Let’s revisit our API with a Person resource, which in version 1.0 has fields id
and name. In version 1.1, we introduce a new field of occupation. Our API might have
an UpdatePerson method, accepting a Person, which basically sets all of the fields of
that request to the values in the request. If a field isn’t present, it’s cleared.

(continued)

version 1.2.0, which incorrectly claims that 1 is a prime number, and that could be fixed
(with no API surface changes) in 1.2.1. Clients specifying a version of 1.2.0 would still
get the incorrect result. This means having to maintain every implementation, which is
a complex business. Most APIs don’t need this level of absolute consistency.

335Versioning for network APIs
 Without considering the fields that the client knows about, this can have danger-
ous consequences. Consider the simplified code in the following listing for updating a
person’s name.

public void updateName(String id, String newName) {
 Person person = client.getPerson(id);
 person.setName(newName);
 client.updatePerson(person);
}

That seems harmless enough, but what if the client only knows about version 1.0, and
the person being updated has an occupation that was set by another client? Table 12.2
shows a sequence of requests that loses information in our example API if the server
has not implemented versioning correctly.

In this example, the server is at fault for its handling of the UpdatePerson method.
Although the method is expected to receive a complete resource, it can only be com-
plete from the perspective of what the client understands. Just because the client
hasn’t specified an occupation doesn’t mean the client wants to remove any existing
occupation; it means the client isn’t aware of the concept of an occupation in the
Person resource.

 Fortunately, the server can be smarter than this. It can take into account that the
client has specified version 1.0 and knows to only update the fields that were present
in that version. That in itself can lead to some tricky decisions if new fields are added
that ought to be validated against the existing fields, but in many cases it’s good
enough. With a well-implemented server, the client can issue full updates without

Listing 12.12 Simple code to update a name

Table 12.2 Read–modify–write implemented incorrectly and losing data

Client request Server response Notes

Version: 1.1
Method: CreatePerson
Body: id=2, name="Erik",
occupation="Accountant"

OK

Version: 1.0
Method: GetPerson
Body: id=2

OK
id=2, name="Erik"

The occupation isn’t returned because
the 1.0 client wouldn’t understand it.

Version: 1.0
Method: UpdatePerson
Body: id=2, name="Eric"

OK The 1.0 client provides all the fields it
knows about.

Version: 1.1
Method: GetPerson
Body: id=2

OK
id=2, name="Eric"

The occupation has been lost!

336 CHAPTER 12 Managing versioning and compatibility
worrying that it will trample on data it isn’t even aware of. This ignores the need for
concurrency validation, which is a different aspect of avoiding data loss. But the two
causes of data loss are effectively orthogonal, and concurrency isn’t particularly
related to API versioning (it’s more about resource versioning). Implementing this
server-side is not always simple but can usually be done in a reasonably generic auto-
mated way.

 Let’s now look at server-controlled versioning. It doesn’t quite give servers a free
hand, but it certainly provides more leeway.

SERVER-CONTROLLED VERSIONING

In server-controlled versioning, there’s no concept of minor numbers. The API can
only evolve in a backward-compatible way within the same major version, and clients
should just ignore any response information they get back that they don’t understand.

 In server-controlled versioning, there should still be a major version number, spec-
ified by the client. That might be specified in a URL, the IP address, or a header, but it
has to be somewhere. Without that level of negotiation, it would be impossible to ever
create any breaking changes without breaking existing clients.

 Server-controlled versioning feels rather more dynamic and less precise than cli-
ent-controlled versioning. It’s typically easier for servers to implement because they
only need to maintain as many implementations as there are major versions, instead
of ensuring that every minor version is supported separately. The same approach of
adapting requests and responses to and from an internal format works for server-
controlled versioning; there are just fewer adapters involved.

 The fact that the server can respond with more information than expected can
be an issue for some clients. For example, if an IoT device were to request informa-
tion on a book, expecting to get just a few hundred bytes of summary information,
but instead, the API started also including a sample in the form of the first chapter
that could cause the device to run out of memory, while processing the response. It’s
not an insoluble problem, and there are API patterns to limit the information
returned where a client knows it’s only interested in specific parts, but it’s worth
bearing in mind.

 The read–modify–write cycle we considered earlier is more of a problem in server-
controlled versioning, as the server doesn’t have any way of knowing what set of fields
the client is aware of. Update methods accepting a whole resource and uncondition-
ally copying fields can easily lose data, so a patch-based approach is preferred, where
the API is designed to accept a list of fields that should be updated, along with the
data for those fields. We’ll change our example API to have a PatchPerson method,
which accepts the resource but also a list of fields. Table 12.3 shows a similar sequence
of events as those shown in table 12.2 but using server-controlled versioning. The
information about whether the client was written against version 1.0 or 1.1 isn’t part of
the request anymore, and there may not even be a specific version 1.1; it’s just the v1
API at the time of code generation.

337Versioning for network APIs
An API using client-controlled versioning can still provide patch semantics as well for
the sake of efficiency; it just doesn’t have to in order to avoid losing data because it has
the extra information about which fields the client should be aware of. In an API using
server-controlled versioning, patch semantics are critical for all but the simplest cases.

These two approaches to versioning are both completely valid. They have different
implications for client library versioning, documentation, server-side implementation,
and even the design of the API itself, as we’ve seen for resource updates. It’s up to you
to decide which strategy makes the most sense for you, which could be something else
entirely, although I’d recommend thinking very carefully before venturing too far
from either of these schemes.

 There are a few additional considerations that have roughly the same implications
across both of these strategies. These end up bleeding into implementation consider-
ations for data storage, which we’ll move onto as the final section of the chapter.

Table 12.3 Read–modify–write using patch semantics

Client request Server response Notes

Version: 1 (client 1.1)
Method: CreatePerson
Body: id=2, name="Erik",
occupation="Accountant"

OK

Version: 1
Method: GetPerson
Body: id=2

OK
id=2, name="Erik",
occupation="Accountant"

The occupation is returned
because only the major
version is specified. The
client can discard informa-
tion it doesn’t understand.

Version: 1
Method: PatchPerson
Body:
 resource={id=2, name="Eric"}
 fields="name"

OK The client specifies the
fields it wants to modify.
(That may be all the ones
it’s aware of or just a
subset.)

Version: 1
Method: GetPerson
Body: id=2

OK
id=2, name="Eric",
occupation="Accountant"

The occupation is still
present because only
the specified fields were
modified.

Preserving unknown fields
Some serialization formats are able to preserve unknown fields when parsing a
response and reproduce the same information if that response data is used in
another request. Protocol Buffers supports this behavior, for example. It can still be
brittle, however: if the response data is deserialized into some other object model,
then the unknown fields are likely to be lost at that point. Being explicit about which
fields you want to modify is still the more robust approach.

338 CHAPTER 12 Managing versioning and compatibility
12.3.4 Further versioning considerations

A complete analysis of every possible aspect of network API versioning is beyond the
scope of this book, and would indeed be a reasonably-sized book in its own right.
However, there are some final areas that are worth mentioning briefly, mostly to
prompt you to think about them further in your own API-specific context.

PRERELEASE VERSIONING

API design is hard. It’s often underappreciated; after all, the API surface contains no
logic in itself. You might expect the implementation to be the hard part. While that’s
the case for some APIs, for many, the design is the part that requires a mixture of engi-
neering and artistry. You’re unlikely to know exactly how the API will be used (and,
indeed, that’s part of the joy of API work), which means you’re designing with very
incomplete information. Combine that with the restrictions on API iteration due to
compatibility concerns, and it’s a miracle if you get it right. That’s where prereleases
come in.

 By providing potential users of your API with an early version of it—or an early ver-
sion of a new feature being added to an existing API—you can get feedback before it’s
too late to change the final API surface. While you can always release a new major ver-
sion of the API to correct any problems, it will make you unpopular with users who
then need to change their code. Figure 12.9 shows how prerelease iterations can
work—both before and after the first stable API release.

Table 12.4 shows a hypothetical sequence of releases for an API. The form of the ver-
sion string here isn’t intended to be prescriptive; all the earlier discussions around
client-controlled versus server-controlled versioning are still relevant. The table is
intended to give a flavor of how you can use customer feedback to improve your API
design without breaking customers who require stability.

Prerelease

pre-1.0

Stable release

Prerelease

post-1.0

Stabilize new

features

Add features

(unstable)

Figure 12.9 Iteration of an API
with prerelease versions

339Versioning for network APIs
Prerelease API versions aren’t just regular API versions given to a select set of custom-
ers. They come with different expectations, both in terms of the API surface and the
stability and performance of the implementation. It’s important to make sure that cus-
tomers share those expectations, so no one is surprised.

 Again, there are different ways of handling prereleases, but questions you should
answer for yourself are

 How are prereleases gated, so customers don’t accidentally use features that
aren’t stable?

 Should each request indicate that it expects to use prerelease functionality?
 Do you run prerelease API versions completely independently of stable ver-

sions, or can one API server handle both kinds of traffic?
 What guarantees, if any, do you provide to customers about the stability and

availability of the API? For example, if each request indicates the preview API
version that is being used, how long do you have to keep each version running
for? Can you make breaking changes abruptly, or do you have a short depreca-
tion period?

Table 12.4 Possible API release sequence

Version Release date Notes

1.0-alpha.1 2023-01-10 First draft of the API for customer feedback. Some parts may not
be implemented or may perform awfully.

1.0-beta.1 2023-02-15 Changes based on alpha feedback, and better implementation—
but still no guarantees on the stability of the API surface or avail-
ability of the service.

1.0-beta.2 2023-02-25 Some breaking changes based on feedback from 1.0-beta.1. This
could be announced as a release candidate if we’re confident
enough.

1.0 2023-04-05 First stable release with guarantees of API surface stability and
service availability.

1.1-beta.1 2023-04-08 Prerelease for two new features (X and Y).

1.1-beta.2 2023-05-05 Update based on feedback from 1.1-beta.1; feature X has break-
ing changes in the API surface.

1.1 2023-05-30 Stable release containing feature Y but not feature X, as customer
feedback suggests there’s still more work to do.

1.2-beta.1 2023-05-30 Simultaneous release with 1.1, so customers trying feature X
(which is still unstable) can use a wider stable API surface, includ-
ing feature Y. Introduces feature Z.

1.3 2023-07-14 Stable release containing features X and Z. No need for a simulta-
neous beta release, as there are no outstanding unstable fea-
tures. (In a large API, this may never happen. It’s fine for there
always to be some unstable features.)

340 CHAPTER 12 Managing versioning and compatibility
 How do you make prereleases available to customers, and are there client
libraries for them?

 How do you document prereleases?
 Are all your prereleases publicly visible, are they all private, or do you have

some of each?
 Do you need customer-specific prereleases?
 What internal tools and processes are needed to support the answers to all of

these questions?

If you try to bolt prereleases onto a versioning strategy that has been developed with-
out considering them, you’re likely to have a hard time and leave some rough edges
for customers. Even if you don’t implement prereleases from the start, it’s worth plan-
ning for them.

SERVER DEPLOYMENT

This may sound like a statement of the obvious, but it’s very likely you’ll have multiple
servers for your API. (Indeed, we’d be worried if that weren’t the case for any API
that’s intended for production use.) That means that at any one time, there can be a
mixture of API versions in production. Depending on the versioning strategy and how
the client-specific version is expressed within a request, you could potentially route
public requests based on the version, but it’s usually simpler to make sure that all serv-
ers can handle all requests for the currently-published version, then make sure you
only make details of the updated API public once the deployment is complete.

 Deployment rollout may well be a sequence of steps something like this:

 Deploy to a set of canary servers.
 Monitor those canary servers for errors.
 Run any tests for new API features against those canary servers.
 Deploy to the remainder of the servers (potentially across several hours or even

multiple days, depending on the size of the server set).
 Run any tests for new API features against a random selection of servers.
 Publish new API details.

You’ll need to be prepared to roll back at any point, which means considering what
will happen to any resources modified with new API changes during testing. If you
need to roll back after making the new API public, you may need to handle a larger
(and more sensitive) set of resources, which have new fields populated—along with
communicating the rollback to clients, of course.

CROSS-VERSION RESOURCE HANDLING

We’ve talked about using major versions (sparingly!) to allow an API to make breaking
changes occasionally. Most APIs work with persistent resources, and usually, you’ll
want clients using different major versions to be able to access the same resources.
There are exceptions to this, of course: you may decide to retire some resources when
moving from v1 to v2, and it’s certainly reasonable that some resource types may only

341Versioning for data storage
be available in later major versions. But most resources in v1 should be accessible via
v2, and without some kind of gate that means once a resource has been accessed by a
v2 client, v1 clients can no longer access it.

 This has implications for how resources are addressed; the resource identifier itself
should not include an API version number. It also comes with restrictions when it
comes to how you design new major versions and how they’re implemented. While
you might want to start with a clean slate for v2, the need to still serve v1 clients means
that complete conceptual rewrites are tricky. It’s worth being consciously aware that
this is not about how developers of v1 clients migrate to v2, although that’s also a fac-
tor to consider. It’s more about the implications for server-side implementation. You
may have only a handful of customers on v1, and they may never want to migrate to v2
(so you don’t need to worry about the upgrade path), but if they need to access the
same resources as v2 clients, you may find grand ideas are frustrated. This doesn’t
mean that ground-up redesigns are impossible; it just means they come with signifi-
cantly more implementation cost than you might expect.

 Some of that cost may well be determined by the functionality within the storage
system you’re using. This brings us to the last section in this chapter: designing data
storage in a version-flexible way.

12.4 Versioning for data storage
We live in an era of big data. In decades past, it would have been safe to assume that
most of this data would be stored in SQL databases, and there are countless articles
and book chapters dedicated to evolving SQL schema. In this section we’ll discuss
data evolution in a more general sense. We’ll use Protocol Buffers as the format for
the examples, but the lessons aren’t specific to that format. There are plenty of other
formats available, such as Avro and Thrift—each with their own subtleties around ver-
sioning. This section does not try to replace the format-specific documentation, but it
suggests areas of documentation you’ll want to pay particular attention to, whichever
format you choose to use. This applies to SQL as well, although the choices may well
be specific to the SQL variant you’re using too.

 Although this section is dedicated to storage, many of the formats we’re talking
about can also be used for network APIs, and format-specific considerations about
breaking changes are relevant when you’re considering how you design and version
your API. The previous section was deliberately agnostic on that front, staying at a
higher level, but once you’ve designed your high-level API versioning strategy, the
details in this section are relevant in day-to-day work. Let’s start with a very brief tuto-
rial on Protocol Buffers—just enough to explain the rest of the section.

12.4.1 A brief introduction to Protocol Buffers

Protocol Buffers (also known as protobuf) are a serialization format invented at and
used extensively within Google but increasingly used in the wider ecosystem, particu-
larly with the gRPC RPC Framework. Protocol Buffers are designed primarily for effi-
cient binary storage but now also support a JSON representation.

342 CHAPTER 12 Managing versioning and compatibility
 Protobuf schema files are known as protos, conventionally using a .proto file exten-
sion. These should be stored in source control and treated as carefully as any other
source artifact. They consist of some options at the start of the file, and a sequence of
elements to define the schema:

 Messages—The main part of most proto files and are roughly similar to defining
a type within most programming languages. A message consists of fields and
can also include nested messages and enums.

 Enums—Define named integer mappings.
 Services—Used to define RPCs. While gRPC and Protocol Buffers are very often

used together, it’s entirely possible to design an RPC framework using Protocol
Buffers but not gRPC or to use gRPC with non-protobuf data. We won’t look at
services in detail here.

Each field within a message has three main aspects to it:

 Type—Can be one of the primitive types (integers, floating point numbers, byte
strings, or text strings), an enum, or a message. The type can also indicate a
repeated field, which is effectively a list.

 Name—Used in generated code and when encoding messages as JSON.
 Number—Used in the binary serialization format.

There are some additional concepts within Protocol Buffers, such as extensions, one-
ofs, maps, and optional fields. (A oneof is a set of fields, where only one field within the
oneof can be set at a time.) More information is available in the documentation at
https://developers.google.com/protocol-buffers, but the details are beyond the scope
of this chapter, which focuses on the more general considerations of compatibility.

 Typically, protobuf schemas are run through the protobuf compiler tool (protoc)
to generate code used in libraries and applications. While it’s theoretically possible to
write code that uses the binary serialization format directly, it’s very rare to not use a
schema. (In some languages, it’s also possible to write the code for the data model and
annotate it to indicate protobuf field numbers and types).

 Let’s take a brief example of what a proto file for part of a role-playing game might
look like, just to make things more concrete. We want to represent a character the
user is able to control, including the character’s name, profession, health informa-
tion, and what they’re carrying (their inventory). The following listing shows what the
proto schema might look like for that to enable us to store the data.

syntax = "proto3";
message Character {
 string name = 1;
 bytes icon_png = 2;
 Profession profession = 3;
 repeated Item inventory = 4;
 // The maximum number of slots available before the

Listing 12.13 Sample proto schema for a role-playing game character

https://developers.google.com/protocol-buffers

343Versioning for data storage
 // inventory is full.
 int32 inventory_slots = 5;
 int32 health = 5;
 int32 max_health = 6;
}
message Item {
 string name = 1;
 // How many slots this takes up in the inventory.
 int32 slots = 2;
}
enum Profession {
 PROFESSION_UNKNOWN = 0;
 MAGE = 1;
 THIEF = 2;
 WARRIOR = 3;
}

We won’t go into much more detail than that, but we’ll use this proto to discuss poten-
tial changes over time and their impact. Just to reiterate, this section is not intended
to be a reference for every detail of protocol buffers; it’s intended to show the kind of
detail you need to be aware of for whichever storage format you use. We’ll start by con-
sidering what kind of change can cause problems.

12.4.2 What is a breaking change?

Just as Hyrum’s law suggests that any code change can break someone, any storage
schema change that is detectable could cause a problem if users are working with the
data in a particularly brittle way. But when it comes to schema changes for internal
storage, any given change can be breaking in some subset of scenarios—none of
which you may care about. It’s a little like source compatibility and binary compatibil-
ity but with far more variation to consider than just those two aspects.

 For example

 Protobuf has multiple types representing signed 32-bit integers, which have dif-
ferent serialization formats. Changing a field type from int32 to sint32 will
change the meaning of any stored data but won’t change the API of generated
code.

 Changing a field name from health to hit_points won’t affect the stored data
at all but will be a breaking change in generated code for all users.

 The Java and C# code generators for protobuf apply Camel-casing to field
names when generating methods and properties. This means that changing a
field name from inventory_slots to inventorySlots won’t affect the stored
data or the generated code for Java and C# but will affect the generated code
for most other languages.

 Adding a value to an enum (e.g., a new profession of ARCHER) won’t cause any
build failures or storage failures, but all code that tries to use a character’s pro-
fession needs to either take specific action with the new value or handle it in a
generic (i.e., I don’t know what this value means, but I’ll just preserve it) way.

344 CHAPTER 12 Managing versioning and compatibility
 Removing a field will break any code that still tries to use it but won’t otherwise
cause any problems, even if the field is still present in stored data.

 Adding a field shouldn’t break any code, even if you have a mixture of old code
and new code deployed at the same time with the old code reading data con-
taining the new field.

The last of these examples depends on the way protocol buffers handle unknown
fields, which we’ve mentioned in the context of API responses. We’ll look at that in a
little more detail shortly.

 I should note that all of the above statements assume we’re only storing data using
the binary protobuf representation. If we also store data using the JSON format,
changing the name of a field will break the stored data as well: in the JSON format,
the field number is ignored, but the JSON property name is derived from the field
name. If you’re working with a data format that has multiple representations, you
need to take account of that when considering any changes.

 If your storage is entirely internal, so you can find and change all the code that
uses it in a controlled way, you may find that making breaking changes in terms of
code generation is feasible and, potentially, even simple. It very much depends on the
versioning strategy you’re using for your internal code. Making changes that break the
storage format is a much more difficult business and not to be taken on lightly. Typi-
cally, this is achievable via data migration, but that requires considerable planning.
Let’s look at an example.

12.4.3 Migrating data within a storage system

It’s important to start off by recognizing there are many different kinds of data migra-
tion. Sometimes it can be from one system to a radically different system and other
times it can be to a different schema in the same system, for example. We’re going to
look at the case in which we’re making a change to an existing schema in a way that
would be a breaking change if we did it in a single step.

 Let’s suppose we want to change how we handle the icon we display for a character
to allow for multiple sizes and uses. We might want a large icon when displaying a sin-
gle character’s profile but a small icon when displaying a list of characters, for exam-
ple. Currently, we just have a single field called icon_png. While we could just add
more fields to the Character message, that can become hard to manage after a while
and also makes it harder to reuse any logic for icon handling if we have similar situa-
tions for other entities (e.g., items or locations). Instead, we want to introduce an
IconCollection message to improve opportunities for reuse both in the schema and
in code.

NOTE The approach of doing the simplest thing that works can be very help-
ful when prototyping, but it can be dangerous when applied to aspects that
are hard to change later, such as data storage. It’s impossible to envisage every
possible scenario, and there are downsides involved in introducing more

345Versioning for data storage
flexibility than you’ll ever need, but often, when you specify a primitive field
in a schema, it’s worth at least considering whether introducing a message is
worthwhile, even if that message starts off with just a single field in it.

Our IconCollection message could end up being quite complex, but we’ll keep it
simple here.

message IconCollection {
 message Icon {
 bytes data_png = 1;
 int32 width = 2;
 int32 height = 3;
 }
 repeated Icon icons = 1;
}

Our eventual aim is to replace the current bytes icon_png = 2 field in the Character
message with this new one: IconCollection icons = 7. We want to be able to do this
without breaking any of our current clients in the process. Note that the field number
is different; that’s critical to enabling the data migration.

 We now need to take a sequence of steps to migrate the data:

1 Write a plan with the rest of these steps, and make sure all stakeholders are
happy with it.

2 Add the new IconCollection message to the schema and the icons field in
Character.

3 Modify all server code that reads from the existing icon_png field:
– If the Character.icons field is present and the repeated field within it has at

least one element, use the first element.
– Otherwise, use the old icon_png field.

4 Modify all server code that writes to the existing field:
– Set the Character.icons field to a new IconCollection message with a sin-

gle element in the repeated field.
– Set the old icon_png field to the new icon data as well.

5 Deploy the new server code.
6 Wait until we’re confident that we won’t need to roll the deployment back.
7 Run a migration tool that checks every Character in the system. If the icon_png

field is populated, but the icons field isn’t, copy the data into a new Icon-
Collection in the icons field.

8 Modify all server code to remove any reference to the icon_png field.
9 Deploy the new server code.

10 Wait until we’re confident we won’t need to roll the deployment back.

Listing 12.14 Sample proto for an icon collection

346 CHAPTER 12 Managing versioning and compatibility
11 Run a migration tool that checks every character in the system and clears the
icon_png field if it’s populated (so we don’t have stale data serving no purpose).

12 Replace the icon_png field with a reserved 2 line in the schema.

The final step ensures that we never accidentally reuse field number 2 later. While in
many cases it would be harmless to do so, it’s an extra safety measure just in case we
later find some old data we forgot to migrate—we don’t want to misinterpret the old
icon data as something else.

 Figure 12.10 shows the steps above graphically. The left column of text describes
the state of the schema and stored data at each step, and the right column of text
describes the changes required to get there. Each step must be taken carefully with a

Initial schema

No code changes yet

message Character { }
message IconCollection {..}

message Character { }
message IconCollection {..}

message Character {
...
reserved 2;
IconCollection icons = 7;

}
message IconCollection {..}

message Character {
...
bytes icon_png = 2 ;

}

message Character {
...
bytes icon_png = 2 ;
IconCollection icons = 7 ;
}

message IconCollection {..}

Code changes to read and
write to both fields

Run migration tool to populate
icons field for all stored data.

Remove all references to
icon_png from server code.

New unused field
and message

Same schema as before,
but all fields are now used.
Some stored data will have
icons field populated and
some won’t.

Same schema as before,
but icons field is always
populated.

The icon_png field is gone.
Field tag 2 is reserved
to prevent future
reuse.

Figure 12.10 Graphical representation of storage migration steps

347Versioning for data storage
suitable pause before the next step to avoid having to roll back. There should be a
plan for rolling back if absolutely necessary, but it should be avoided if possible.

 At this point, all the code has moved to the new field, and we can start implement-
ing new features, which may in turn require multiple careful steps as we move from
there’s only ever one icon to there may be multiple icons per character. The steps for waiting
until we’re confident we won’t need to roll back a deployment are crucial. Data migra-
tion like this can only work if we know what code is accessing the data. It’s inevitable
that we’ll need to tread carefully, so two different code versions can work on the same
data storage concurrently. (This is assuming that downtime is unacceptable. If you can
take down the system completely for migration, lots of things become simpler. That’s
rarely an option in modern systems.) Reasoning about three or more different code
versions accessing the same data becomes much trickier, and it’s almost always better
to just take the process slowly and steadily. In our example, we had three different
server versions in total:

 The original version that only knew about icon_png
 The migration version that knew about icon_png and icons and ensures they’re

consistent
 The final version that only knows about icons

If all three versions of these had been running at the same time, then any icon
changes stored by the first code version wouldn’t have been seen by the third code
version, and vice versa. It’s also important that we’re aware of all the code that might
be accessing the data: if it turned out there was one service that didn’t get the memo
around the new field, that could cause significant problems after the migration was
theoretically complete. That’s why the very first step is to agree a plan with all the
stakeholders.

 The steps listed above are reasonably common, but more complex migrations may
well have many more steps or more bulky steps, perhaps migrating multiple fields at a
time. Every migration comes with elements of risk and cost, and when considering a
complex migration, you should consider the costs and risks associated with splitting
the migration into multiple smaller migrations (e.g., more steps and taking a longer
time overall) versus the costs and risks of doing it in as few steps as possible (where
each step has more risk associated with it and needs more careful validation).

 One of the key assumptions in the migration steps above is that the original code is
able to safely read a Character message that contains the icons field, despite that
field not being present in the schema when the original code was deployed. Let’s look
at what that means for how you write code.

12.4.4 Expecting the unexpected

Let’s be honest: none of us are very good at predicting the future. We don’t want this
section to be misinterpreted as either a suggestion that you massively overengineer
your code to be ready for any new requirement that might be thrown at you or a rec-
ommendation to nail down requirements for the next ten years before you write the

348 CHAPTER 12 Managing versioning and compatibility
first line of code. Neither of those approaches will work. Instead, we’d like to suggest
that we can design software and data schema that have a certain amount of natural
flexibility with an eye to the future without it adding too much complexity to the
implementation of our current requirements. We’ve already looked at one way in
which we can plan for the future by using open-ended schema representations, start-
ing off with a single-field message instead of just using a primitive field.

NOTE Our Character message contains several other primitive fields. Should
we have created an Inventory message instead of keeping the contents of the
inventory and the number of inventory slots available as separate fields? What
about the health-related fields? Usually, multiple fields addressing the same
concern are at least a hint toward encapsulation—just as they are in code.
There are no hard and fast rules though, and the tipping point in a storage
schema can be different than the equivalent in code.

Even that approach assumes our code is able to handle new fields being added
though. Modern big data formats are typically designed around that expectation, but
you’ll need to find out exactly what is supported in the format you’re using. In partic-
ular, it may well constrain you in terms of transformations into different representa-
tions. In protobuf, unknown fields (fields that are received as part of parsing data, but
weren’t known about when the code was generated from the original schema) are
preserved in the binary representation but can’t then be represented in a textual rep-
resentation, such as JSON, because the field names aren’t part of the binary serializa-
tion format.

 Storage–format–provided cloning operations may preserve data, but what happens
if you’ve got manually written code to transform one schema message into another? If
you don’t know the meaning of a particular piece of data, it’s very hard to know how it
should participate in a transformation. Whenever you write transformation code, it’s
worth bearing in mind the impact that has on your ability to introduce a new field,
and whenever you introduce a new field, you should consider the transformations that
are already being performed on that message.

ADDING ENUM VALUES

While adding a field generally doesn’t interfere with existing logic, so long as that
logic is able to propagate the new value without understanding it, enums can be
slightly harder to reason about.

 It’s easy to think of an enum as a set of all known values for a particular context,
but we sometimes forget that all known values really means all known values at the time we
generated the code (or the equivalent). It’s all the values your code happens to know
about, but they may not be all the values that will ever be known about.

 Some enums are obviously fixed; if you’re writing an app for traditional card
games, it would be entirely reasonable to have a Suit enum with values of HEARTS,
CLUBS, DIAMONDS, SPADES. Those are easy to work with, and it’s reasonable to write
code that fails with an exception if it’s given a value that isn’t one of those.

349Versioning for data storage
 Some enums are obviously designed to be extended, such as our Profession
enum in the role-playing game. If you have code that definitely needs to be able to
handle every profession, you need to make sure that’s updated and deployed before it
will ever come into contact with a new profession, and that’s worth noting as you dis-
cover the requirement. Other code may well be able to ignore enum values it doesn’t
understand, so long as they’re still preserved. (In Protocol Buffers, unknown enum
values are preserved in terms of their numeric value, when deserializing and serializ-
ing using the binary format.)

 Finally, some enums might feel like they’re fixed but turn out to need extending
later on. For example, you might have an enum of all the states within the USA. That
enum has been stable for a very long time, but it’s possible that you’ll need to react to
new values being added (or even removed) at some point. You probably don’t need to
have a detailed plan for this, but it’s worth thinking just far enough to convince your-
self that such a change won’t require a complete rewrite of your application.

 The subtleties involved in versioning enums might make you reconsider the use of
enums at all in some cases. In particular, where there’s an industry standard string rep-
resentation for the kind of value you’re considering, such as a MIME type or an ISO-
3166 country code, it’s often better just to store the string value instead.

 In the last few pages, we’ve been considering storage representations under the
assumption that you have control over all the code that interacts with the stored data.
Let’s take a moment to consider that assumption.

12.4.5 Separating API and storage representations

Some common best practices take a little while to get to grips with but then make your
day-to-day life simple, and you rarely give them a second thought. I’m afraid the key
piece of advice from this section isn’t one of those. It introduces day-to-day repetition
and tedious coding (or complex infrastructure), and it’s generally annoying. How-
ever, the benefits are overwhelming when you need to evolve your system.

KEEP YOUR NETWORK API SCHEMA AND YOUR STORAGE SCHEMA SEPARATE

It’s very common to create a system that stores data and also has a network API that
accepts and returns the data being stored. Almost every system with an API has some
element like this, unless it’s purely about transient information, such as “the current
time.”

 Once you’ve carefully designed your storage schema, it’s very tempting to just pub-
lish that as your network API schema as well, assuming you’re using the same overall
data format for both aspects. Store exactly what you receive, send back exactly what
you’ve stored, and life is simple. In some cases it’s a reasonable first prototype, before
you need to start caring about stability. Unfortunately, it achieves great initial velocity
at the cost of long-term flexibility.

 If you compare the recommendations in this chapter around network API version-
ing and storage versioning, they’re quite different because they deal with different
contexts. With network APIs, you usually have to assume that, at any one time, there

350 CHAPTER 12 Managing versioning and compatibility
will be clients using the API schema as it was published at multiple points in time, and
making a breaking change to that schema has an enormous cost. While you can
encourage customers to change their code to accommodate changes, you have very
little control over the timescale without becoming actively hostile. (It’s technically pos-
sible to give customers a very short time in which to migrate to a new major version,
but it’s likely to lose you customers, particularly if you do this frequently. Technically
possible and practically possible are quite different here.) Long-lived systems tend to ben-
efit from the ability to evolve their storage schema, and it’s worth recognizing that and
building it into the design from the start.

 The exact way in which you separate the two schemas will depend on the storage
format you’re using and what tooling is available to work with it. At its core, separating
the API schema from the storage scheme requires two kinds of transformation:

 How do you transform your storage schema into your API schema?
 How do you transform data between the two schemas?

Notice how I’ve deliberately started with the storage schema here: that will almost
always be the real source of truth. There will always be a relationship between the stor-
age schema and the API schema, but it may be hard to express that in a machine-
readable way. It’s particularly difficult to do that early in a system’s life, when you
don’t have much time to invest in tooling, and you don’t have much understanding of
what transformations you’ll need anyway.

MANUAL TRANSFORMATIONS

The simplest way of transforming a storage schema into a network API schema is to
copy, paste, and edit. You may not even need to edit much to start with, beyond poten-
tially changing a package name or namespace. When you make changes to the storage
schema, you can copy and paste those changes straight into the network API schema
too—so long as you think while you’re doing it.

 Transforming the data at execution time (e.g., transforming the data in a request, so
it can be stored or transforming a resource fetched from storage into a response) can be
more laborious. The technically simplest option is usually to just create a method to per-
form the conversion in each direction for each schema type. This is tedious, laborious,
and error prone. It’s fairly easy to make a change to the storage API and copy it to the
network API but forget to make the change in the conversion methods. Still, that should
usually be picked up quickly in API integration tests. (Comprehensive API integration
tests are vital for all kinds of reasons—well beyond versioning.)

 If all of this sounds like a terrible idea and leaves a bad taste in the mouth, I com-
pletely understand. It’s grungy work that no one wants to do. It does have its benefits
though. If you can keep the discipline of thinking while you make the cascading changes
beyond the original storage schema change, you may end up spotting problems or
opportunities. Sometimes the most appropriate storage representation of a new feature
isn’t the most appropriate API representation. As an example, there may be benefits to
using an enum in the storage schema (to keep a concrete set of currently-supported

351Versioning for data storage
values), while using a string in the network API to keep things more open for future
changes. You may use different levels of granularity and denormalization, too. Remem-
ber the different contexts of these schemas and give yourself the option to make different
decisions. As your schema grows larger and you get more confident in the transforma-
tions you need to perform, you may want to consider automating some of the work.

AUTOMATED TRANSFORMATIONS

If manually maintaining separate API and storage schemas becomes too monoto-
nous to bear, you should look at the tooling options available. While there may be
some tools available off the shelf, you may find you need to write the tools you need
yourself. That provides a greater degree of flexibility, but of course, there is more
code to maintain.

 I would be wary of automating until you already have significant experience doing
the same steps manually. That helps you to discover corner cases and oddities in the
relatively simple environment of just editing files. If you’re expecting to automate
the transformation later on, it’s worth noting down these corner cases, how you’ve
resolved them, and why as you go along. That will help to guide the automation pro-
cess and provide a good set of test cases.

 When designing the automation tools, in my experience it’s also useful to provide
yourself with escape hatches along the way: if a particular aspect of your schema is sig-
nificantly different between the storage and API representations, it may well be sim-
pler to manually craft that part and opt it out of the automation, rather than trying to
add features to the tooling, until it can do absolutely anything but is too complicated
to use and maintain for simple tasks.

 Finally, on the topic of schema transformation, I’d advise a careful manual review
of the output of the tooling, at least for the first several schema changes. Once you’ve
reached the stage where the tooling hasn’t thrown up any surprises for a long time,
then you can start removing reviews from the process.

 Data transformation is trickier to review but generally easier to test. Again, the
tooling that comes with whatever storage format you use may well provide a good
starting point. For example, the Protocol Buffers libraries provide a reflection API,
which allows dynamic access to message data and is a great starting point for automat-
ing transformations. The places where you need escape hatches for schema transfor-
mations are likely to need manual code for the data transformation, so again, it’s
worth considering how you’ll add that manual code while you’re designing the auto-
mation—even if you don’t need to do anything special immediately.

 You may be worried about the performance implications of transforming the data,
particularly when I mentioned the word reflection in the previous paragraph. As ever
with performance issues, it’s definitely worth measuring the cost involved and compar-
ing the impact of manual versus automated transformations, but in my experience,
this rarely becomes a significant cost in terms of the overall time taken per API call.
The impact is more likely to be felt in terms of memory and CPU usage; again, careful
benchmarking is the key to wise decision-making.

352 CHAPTER 12 Managing versioning and compatibility
 With so many aspects of your day-to-day work depending on your choice of storage
format, it’s clearly a significant decision. Let’s review some of the questions you should
ask yourself as part of that decision.

12.4.6 Evaluating storage formats

It’s not the place of this book to recommend any one specific storage format or tech-
nology. There are lots of inputs into the decisions around what storage to use, many of
which are unrelated to versioning, but as the focus of this chapter is compatibility, the
list below provides some questions you should investigate when you’re evaluating dif-
ferent storage options.

 Does it support schemas of some form, even if it also supports schemaless
storage?

 Does it provide out-of-the-box support for schema evolution? For example,
Apache Avro has been designed with this in mind from the start and has com-
patibility rules and tooling to enforce them.

 How does it handle unexpected values, such as fields or enum values that
weren’t present in the schema used by the client?

 How would you include schema changes into your build process? It may be
helpful to go through a few planning exercises, including writing up a sequence
of steps for a hypothetical data migration.

 If you plan on using generated code, does this affect your internal code version-
ing strategy? What would your policy be on schema changes that didn’t break
storage but did break existing code?

 Do you want to use the same format for both storage and API representation? If
so, ask yourself some follow-up questions:
– Is there tooling—or at least support for you to write your own tools—for

schema transformation?
– Is there tooling or support for data transformation between different schemas?
– How does this fit in with your planned API versioning strategy?

It’s worth reflecting on the fact that this list of questions isn’t a checklist of yes or no
answers. Many storage technologies will have enough features to support whatever you
want to do; these questions are intended to help you evaluate how easy or painful
they’ll make those tasks. Don’t forget that when you’re evaluating the storage options
for a system, you’re not trying to determine the best storage format in the world:
you’re choosing the one that is most appropriate for your system, in your context.

Summary
 Versioning is all about how something changes over time. Version numbers

communicate important information about those changes in a compact form.
 Backward and forward compatibility describe how new and old pieces of code

and information can interoperate with each other.

353Summary
 Semantic Versioning encodes compatibility information into a major.minor.patch
format:
– A breaking change prompts a new major version.
– A backward-compatible change prompts a new minor version.
– A backward- and forward-compatible change prompts a new patch version.
– Additional information, such as prerelease status and build metadata, can be

included after the major.minor.patch number.
 Compatibility in library code has different forms of compatibility to consider,

primarily divided into source compatibility (i.e., will existing code build against
the new version?), binary compatibility (i.e., will existing binaries run against the
new version?), and semantic compatibility (i.e., will existing code behave the
same way?).

 Dependency graphs can introduce diamond dependencies, where different
parts of the same application expect different versions of the same dependency.
Breaking changes between versions of the dependency may make it infeasible
to find a complete set of dependencies to run the application successfully.

 Major versions ripple through an ecosystem via dependency graphs; popular
libraries should expect to make breaking changes via new major versions very,
very rarely.

 Internal code can generally absorb breaking changes more easily than public
code, but you still need to take care and plan for rollbacks.

 API versioning is generally more complex than library versioning, and there are
multiple approaches:
– Client-controlled versioning allows the client to provide a very specific ver-

sion, and responses should never include more information.
– Server-controlled versioning allows the client to provide a major version, and

responses may include more information than the client understands.
 Prerelease versions can be used to allow users to experiment with a planned

change before you commit to it. It should be very clear that this is not a stable
API surface.

 Different storage formats have different characteristics around schema evolution.
 Designing code to anticipate changes in the storage schema can be challenging,

but it’s worth considering from the start.
 Separating your API schema from your storage schema provides much more

flexibility, although it incurs additional costs, either in terms of manual chores
or potentially-complex automation.

 While you may not be able to predict every kind of versioning change you’ll
ever need, time spent planning a versioning strategy from the start pays off in
the long run.

Keeping up to date
with trends vs. cost of

maintenance of your code
With software engineering, new libraries or concepts emerge regularly (indeed,
almost every week). As soon as you adapt your application or architecture to a
brand new shiny framework or pattern, another one is developed and popularized.
We have microservices, reactive programming, serverless applications, and so on.
Each of those patterns offers many benefits, such as loose coupling, better perfor-
mance, or less resource consumption. However, each of those patterns and libraries
comes with its own complexities.

 For example, let’s assume that we decide to change our whole application pro-
cessing from thread per request to the asynchronous reactive pattern. If our deci-
sion is mainly based on programming trends and popularity, we might have
problems. It may turn out that the time investment, and the new model does not
suit our application processing model.

 Before picking a new framework or pattern that promises to solve a lot of prob-
lems, we should first understand and measure whether we have those problems. If

This chapter covers
 Dependency injection frameworks

 Reactive programming and processing data

 Functional programming in your code

 Lazy versus eager evaluation
354

355When to use dependency injection frameworks
the new framework we are using in our application solves some complex problem, it
also has additional complexity hidden somewhere. Let’s assume it turns out that the
main problem the given framework solves is not our primary stumbling block. In that
case, we would use a solution that increases the complexity of our application and not
see the new solution’s benefits. For this reason, we should carefully investigate the
pros and cons of a new approach and its framework before we start using it. It’s possi-
ble that the additional complexity and costs associated with a migration to a new
framework are not justified in our context.

 This chapter will show us some of the well-known and proven solutions for better
software engineering, such as dependency injection and reactive programming. We
will analyze when it’s worth following software engineering trends and whether to use
them. We will also see when it’s better to wait and choose a simpler, less-trendy solu-
tion. Let’s start with the proven dependency injection pattern and frameworks that
implement it.

13.1 When to use dependency injection frameworks
The main idea behind a dependency injection (DI) framework is straightforward.
Our components, such as services, data access layers, or configurations, should not
construct their own dependencies. Instead, all dependencies needed by the specific
component should be injected from the outside, but the outside is not well defined.
This can be any caller that provides an implementation, and the injection can be
done at any level.

 Let’s assume we have a method that needs to perform an operation using compo-
nent A. We can easily inject this component via the method argument that the follow-
ing listing shows.

public void doProcessing(ComponentA componentA){
 // processing
}

The caller injects the component. The doProcessing() method does not know any-
thing about the origin of the ComponentA because it is provided from the outside, and
the doProcessing() method does not create a new instance of it internally. However,
this can make testing such a method a lot easier.

 We can pass a mock (or alternate implementation) to a method and test every-
thing explicitly. If ComponentA is instead created in the doProcessing() method
internally, it would be harder to test this method. We wouldn’t be able to alter the
implementation for our testing purpose. For example, the default implementation
of the ComponentA may need to connect to a live API of another service. If we can
inject a stub of this component, we can easily stub the call to a live API with some
fake data.

Listing 13.1 Injection via a method argument

356 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
 The other benefit of this injection is that the doProcessing() method does not
need to be concerned about the lifecycle of ComponentA. The creation and deletion of
this component are outsourced and can be handled by the caller.

 The argument injection is a valid technique. However, in object-oriented program-
ming languages, we tend to construct more complex objects that use other objects.
For that reason, injecting components in every method call is not an ideal solution.
Passing components to every method call makes our code verbose and hard to read.

 The solution for this situation is to inject components at a higher level using con-
structor injection. When using this technique, the caller provides all dependent compo-
nents when constructing a new instance of the object. It then assigns those components
to fields. Finally, all methods on the object will use the previously injected components
via field reference.

13.1.1 Do-it-yourself (DIY) dependency injection

Let’s look at an example for setting up dependency injection, as figure 13.1 shows.
We’ll assume that our application consists of four components:

 DbConfiguration contains the database configuration.
 InventoryConfiguration contains the inventory configuration.
 InventoryDb is the data access layer that has a dependency on DbConfiguration.
 InventoryService, the main entry point for our application, has a dependency

on InventoryDb and InventoryConfiguration.

DbConfiguration InventoryConfiguration

InventoryDb

InventoryService

Figure 13.1 Components in our dependency injection pattern

357When to use dependency injection frameworks
Because we want to build our application using the dependency injection pattern, we
cannot create a new instance of any of those components in any other component. In
our app, we would also like to use the constructor dependency injection. This means
that we need to have a dedicated place where the services and configurations are cre-
ated and injected when that’s needed. And after we create a graph of dependencies,
we want to call the prepareInventory() method on the InventoryService.

 For this scenario, we create an Application class, which is the entry point for
our app. All the dependencies will be created there and injected where needed.
The following listing shows the process for creating our Application class with
dependency injection.

public class Application {

 public static void main(String[] args) {
 // construct dependencies
 DbConfiguration dbConfiguration = loadDbConfig();
 InventoryConfiguration inventoryConfiguration = loadInventoryConfig();
 InventoryDb inventoryDb = new InventoryDb(dbConfiguration);
 InventoryService inventoryService = new InventoryService(inventoryDb,
 inventoryConfiguration);
 inventoryService.prepareInventory();
 }

Note that all the services and configurations are created in this one dedicated place.
None of the components initialize any other component internally, so we can quickly
test any of those classes in isolation. For example, if we want to test the Inventory-
Service in isolation, we can inject any InventoryDb and InventoryConfiguration
when constructing it in our test. Also, the lifecycle of all the components is in one
place. For example, we can easily close or stop any service once our application fin-
ishes processing after the prepareInventory() call.

 Let’s assume we need to inject a specialized implementation of the InventoryDb.
The following listing shows how to set this up.

public class SpecializedInventoryDb extends InventoryDb {
 public SpecializedInventoryDb(DbConfiguration dbConfiguration) {
 super(dbConfiguration);
 }
}

Then, we can easily create a different object in our main method, where all our com-
ponents are initialized. The following listing shows this change.

Listing 13.2 DIY dependency injection

Listing 13.3 Creating a specialized service

358 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
public class Application {

 public static void main(String[] args) {
 // construct dependencies
 DbConfiguration dbConfiguration = loadDbConfig();
 InventoryConfiguration inventoryConfiguration = loadInventoryConfig();
 InventoryDb inventoryDb =

➥ new SpecializedInventoryDb(dbConfiguration);
 InventoryService inventoryService =

➥ new InventoryService(inventoryDb, inventoryConfiguration);
 inventoryService.prepareInventory();
 }

The DIY DI solution is straightforward; however, it has some missing features. For
example, let’s assume that the InventoryService is not thread-safe, but our appli-
cation uses multiple threads. In that case, we should create an instance of the
InventoryService for each thread (or per request if that’s not possible). Our DIY
DI solution does not provide this functionality. For that reason, let’s assume we
decide to use one of the dependency injection frameworks instead of implement-
ing this functionality ourselves.

13.1.2 Using a dependency injection framework

There are a few production-proven dependency injection frameworks, such as Spring,
Dropwizard, and Guice. Let’s assume we pick the Spring framework because it’s the
most popular and allows us to construct a service per request.

 The dependency injection framework uses a DI container to manage the lifecycle
of all its components. Spring calls those components beans. The DI container allows us
to register a new bean on the bean producer side. It also allows us to get the bean
from the container on the consumer side. A lot is going on between producing and
consuming the bean.

 We can pick a different scope per bean (http://mng.bz/0w86). It can be created
once per the application lifetime (the singleton pattern). This can be per request, per
session, and so forth. The DI framework can also add additional logic before the bean
methods are called. For example, it can intercept the calls (using a proxy) and log the
parameters. The number of supported features is substantial.

 Let’s rework our application to use this Spring DI framework. First, both configu-
ration classes will be annotated with the @Configuration annotation (http://mng
.bz/KBJ0), as the following listing shows.

@Configuration
public class DbConfiguration {}

@Configuration
public class InventoryConfiguration {}

Listing 13.4 Changing the DI initialization

Listing 13.5 Implementing a Spring DI @Configuration

Creates the new Specialized-
InventoryDb instance

Injects InventoryDb into
InventoryService

http://mng.bz/KBJ0
http://mng.bz/KBJ0
http://mng.bz/KBJ0
http://mng.bz/0w86

359When to use dependency injection frameworks
Next, InventoryDb registers itself as an @Service annotation (http://mng.bz/9Kx1).
The following listing shows this implementation.

@Service
public class InventoryDb {
 private final DbConfiguration dbConfiguration;

 @Autowired
 public InventoryDb(DbConfiguration dbConfiguration) {
 this.dbConfiguration = dbConfiguration;
 }
}

In listing 13.6, note that InventoryDb provides both producer and consumer. The
InventoryDb also needs to have the DbConfiguration injected before it is constructed
as a component. The @Autowired annotation tells Spring it needs to inject the depen-
dent component before creating it. The DI framework handles the initialization
ordering of all its components.

 Finally, InventoryService is registered as @Service. This specifies its scope is equal
to the request. Every time a new request arrives, a new instance of the Inventory-
Service is created and injected. The DI framework also handles this, as the next listing
demonstrates.

@Service
@Scope("request")
public class InventoryService {

 private final InventoryDb inventoryDb;
 private final InventoryConfiguration inventoryConfiguration;

 @Autowired
 public InventoryService(InventoryDb inventoryDb, InventoryConfiguration

inventoryConfiguration) {
 this.inventoryDb = inventoryDb;
 this.inventoryConfiguration = inventoryConfiguration;
 }

 public void prepareInventory() {
 System.out.println("Preparing inventory");
 }
}

Let’s look at how our Application class (the previous entry point where all compo-
nents were initialized) changed. First, we get rid of all logic regarding creating new
instances. We can still create new instances of those classes manually; however,
when doing so, they won’t be managed by the Spring DI. Because of that, we would

Listing 13.6 Creating a Spring DI @Service

Listing 13.7 Defining a service with custom scope

http://mng.bz/9Kx1

360 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
have two mechanisms for creating components. That’s not ideal and is error-prone
because we are relying on Spring DI exclusively. The following listing shows the
changed Application class.

@SpringBootApplication
public class Application {
 @Autowired private InventoryService inventoryService;

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @PostConstruct
 public void useService() {
 inventoryService.prepareInventory();
 }
}

The main() method changed compared to the previous solution. Also, we need to
delegate the start to the Spring Application class annotated with @SpringBoot-
Application. It scans all the beans’ annotations and handles the injections of all
components where needed. Only after all components are ready, the final prepare-
Inventory() method is called.

 There are a couple of important observations to make. First, the actual creation,
lifecycle, and ordering of initialization are hidden from us. Everything is handled
internally by the Spring DI framework. As long as everything works as expected, we
will be fine. However, as we continue developing our application, we observe some
lifecycle problems. They may be a lot harder to debug because all the logic is implicit.
Previously, we had control over everything, and we used the code that we own for it.
Debugging such code is substantially easier.

 The second aspect that we should take into account is the tight coupling with the
Spring framework. Because of the annotation-driven DI, all our classes and compo-
nents will be polluted by the Spring framework classes (or annotations). Besides that,
our application is no longer a simple main() function. We now need to delegate the
starter logic to Spring. This is also hidden from us, and we need to rely on this mecha-
nism if we want to use the DI.

 Finally, previously, all the components initialization logic was in one place. Now,
the initialization is distributed among our codebase. It is not easy to see the whole pic-
ture of components’ lifecycle without analyzing a substantial amount of code.

 Let’s get back to the main argument for why we decided to change the DIY solu-
tion to Spring DI. We started using the @Scope("request") in the InventoryService
to achieve one service per request behavior. However, there is one big caveat here.
The new InventoryService will indeed be initialized per request as long as we use
the Spring DI-compatible web framework. In practice, this means we end up using

Listing 13.8 The changed Spring DI application

Automatically injects
the InventoryService
by the Spring DI

Once everything is constructed,
invokes prepareInventory()

361When to use reactive programming
Spring REST. This is yet another dependency, so we need to adapt our application
to work with it. Once we implemented the first step of using the Spring DI, we were
forced to take a second step and migrate our web controllers to a Spring-compatible
framework. The more such steps we take, the more tightly coupled our application
and the given framework become. Also, more complexity will be imported to our
application.

 It is important to note that both Spring web and DI are well-proven and high-qual-
ity frameworks. However, if your use case is simple or you strive to have a limited num-
ber of external dependencies (for a variety of reasons, see chapter 9), picking some
specific DI framework over a simple DIY solution may not be a good decision.

 Instead of trying to solve an initial problem with some third-party framework, we
can rework small parts of our DIY solution. For example, we could build an Inventory-
ServiceFactory that creates a new instance of the actual service every time it’s called.
We can call it from the place where the new request arrives at our web service. Just
because everyone is using some specific framework does not mean we should use it
without taking the complexity and other factors into account. On the other hand, if
we need the proven framework features, we should consider using a third-party solu-
tion, despite some of its shortcomings.

 This concludes our analysis of dependency injection as an approach to changing
our applications’ structure. In the next section, we will look at reactive programming.

13.2 When to use reactive programming
The main idea behind reactive programming is to make it easier and more efficient to
process incoming data. Usually, the reactive flow transforms the data and then emits
the results. The results can be saved somewhere (to a sink) or consumed by other
code interested in those results. The reactive model is nonblocking, meaning the pro-
cessing needs to be done asynchronously, and the results can be emitted sometime in
the future. Also, reactive processing can work on an infinite stream of data and pro-
cesses it on demand as the data arrives (or when the consumer requests it).

 Reactive programming gives us functional, data-driven processing that works in a
nonblocking way. It allows us to highly parallelize our processing. The parallelization
is achieved by splitting the work into multiple threads. However, the thread model is
decoupled from the processing. We cannot make any hard assumptions about thread-
ing and which thread will process which parts of our processing.

 One of the essential characteristics of reactive processing is its back-pressure sup-
port. When we have a stream of events emitted by a producer, it is expected that the con-
sumer may not be able to process all the emitted events simultaneously. This can be
caused by some intermittent consumer problems. If the producer keeps emitting the
events at the same speed, when the consumer cannot process them, the events need to
be buffered somewhere. As long as the buffer fits in memory, this is not problematic.
When the consumer resumes processing at a normal speed, it may process the buffered

362 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
events and get back to normal. Unfortunately, if the buffer is filled, or there is a failure
in a node, we are also risking a failure in processing and will lose some events.

 In such a case, reactive processing offers a mechanism called back pressure. The con-
sumer can communicate the need for more events to process. The producer receives
the signal, and it emits the number of requested events. This workflow is pull based.
The consumer pulls events from the producer only if it can process them. This pro-
vides a natural back pressure mechanism.

 As we can see, the reactive model offers a lot and solves many complex problems.
However, this comes with a cost. The reactive API is not easy to learn and reason
about. It may look easy for simple use cases, but for custom processing, it gets com-
plex. It’s not a one-solution-fits-all use case approach. To understand that, let’s imple-
ment a data processing pipeline and evolve it to a reactive one.

13.2.1 Creating single-threaded, blocking processing

Let’s start by implementing a processing workflow, where each user ID first executes
the blocking HTTP GET. This is our I/O operation that will involve blocking, waiting
for the response to come. The second step of our processing is a CPU-intensive task,
which performs some advanced arithmetic calculation on the number returned by the
blockingGet() method. The final response is returned to the caller. Figure 13.2 shows
this use case.

Let’s say our first try to implement this processing is simple. We will use a Java Stream
API to chain those processing operations one after another. (There are APIs similar to
the Java Stream API on other platforms, such as LINQ on .NET.) The following listing
shows this initial processing.

public List<Integer> calculateForUserIds(List<Integer> userIds) {
 return userIds.stream()
 .map(IOService::blockingGet)

Listing 13.9 Creating our initial processing

User_id

I/O call

Pass

number
BlockingGet()

Returns

number

External service

Calculated

resultCPU intensive

calculations

Figure 13.2 I/O and CPU-intensive tasks

363When to use reactive programming
 .map(CPUIntensiveTask::calculate)
 .collect(Collectors.toList());
}

Once all userIds are processed, the results are returned to the caller. It is important
to note that the implemented logic is blocking. That means when the caller calls this
method directly (without wrapping it in an asynchronous action), it will need to wait
until the method finishes. Both IOService and CPUIntensiveTask log the thread on
which the operations are executed, as the following listing shows.

public class CPUIntensiveTask {

 public static Integer calculate(Integer v) {
 System.out.println("CPUIntensiveTask from: " +

Thread.currentThread().getName());
// ...
}

public class IOService {

 public static Integer blockingGet(Integer userId) {
 System.out.println("IOService from: " +

Thread.currentThread().getName());
// ...
}

Let’s write a unit test for our logic. We create a list of 10 elements using the Int-
Stream.rangeClosed generator. Next, we pass all the data to the calculateFor-
UserIds() method. Finally, we assert that it returns 10 elements. The following listing
shows this approach.

@Test
public void shouldCalculateNElements() {
 // given
 CalculationService calculationService = new CalculationService();
 List<Integer> input = IntStream.rangeClosed(1,

10).boxed().collect(Collectors.toList());
 // when
 List<Integer> result = calculationService.calculateForUserIds(input);

 // then
 assertThat(result.size()).isEqualTo(10);
}

What’s more important here is that, when running this test, we would be able to
observe the thread on which the processing is executed. The following listing shows
the expected output.

Listing 13.10 Logging the operation’s threads

Listing 13.11 Unit Testing for the processing logic

364 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
IOService from: main
CPUIntensiveTask from: main
IOService from: main
CPUIntensiveTask from: main

All the processing is executed in the context of the caller thread. This test confirms
our processing is blocking and also single-threaded. This means our processing is
not parallel.

13.2.2 Using CompletableFuture

We can solve both aspects, blocking and single-threaded, by reworking our flow to use
asynchronous abstraction available with the Java class: CompletableFuture. There’s
also a high probability that the language of your choice offers a promise–future API
that lets you submit an action without blocking its results.

 By using this pattern, we can submit N tasks in parallel. Each of those tasks can
execute on a different thread or set of threads from a thread pool. We will use the
CompletableFuture API that is built into the Java SDK because it is available out-of-
the-box without the need for any external library.

 Let’s see how our method from the previous section will change. For every user
ID we get, we start a nonblocking task that is executed on a separate thread (the
noncaller thread). We achieve this by using the supplyAsync() method and invok-
ing the first I/O blocking operation on it. Next, we need to chain a subsequent
CPU-intensive operation. However, it should be called only when the first method
(blockingGet()) finishes. We can achieve that using the thenApply() method, as
the following listing shows.

public List<CompletableFuture<Integer>> calculateForUserIds(List<Integer>
userIds) {

 return userIds.stream()
 .map(
 v ->
 CompletableFuture.supplyAsync(() -> IOService.blockingGet(v))
 .thenApply(CPUIntensiveTask::calculate))
 .collect(Collectors.toList());
}

It is important to note that the CPU-intensive task is executed after the I/O intensive
task finishes. This means both stages for the same ID cannot be parallelized. Also, the
supplyAsync() method has a variant that accepts the executor service explicitly. This
allows us to provide our own thread pool. If not passed explicitly, then the common
fork–join pool is used.

Listing 13.12 Viewing the log from our initial processing

Listing 13.13 Async implementation using the CompletableFuture

365When to use reactive programming
 The CalculationService works now in an async and concurrent way. It returns
the list of CompletableFuture tasks that contains the results we’ll see sometime in the
future. However, it is up to the caller to decide whether to wait on the result and block
or chain subsequent async actions. For example, the caller may invoke the get()
method on all operations and collect results to a list. The following listing provides
the code to test this.

@Test
public void shouldCalculateNElementsAsync()

➥ throws ExecutionException, InterruptedException {
 // given
 CalculationService calculationService = new CalculationService();
 List<Integer> input = IntStream.rangeClosed(1,

10).boxed().collect(Collectors.toList());

 // when
 List<CompletableFuture<Integer>> resultAsync =

calculationService.calculateForUserIds(input);
 List<Integer> result = new ArrayList<>(resultAsync.size());

 for (CompletableFuture<Integer> asyncAction : resultAsync) {
 result.add(asyncAction.get());
 }

 // then
 assertThat(result.size()).isEqualTo(10);
}

It is important to note that the transformation between async and sync API can be done
quite easily. Let’s assume the new async implementation of the calculateForUserIds()
method is called in multiple places in our code. In that case, we do not impose on all
callers to use the async CompletableFuture abstraction. If the caller’s code works in a
blocking way, it can easily extract the values from the list of CompletableFuture and
continue using the blocking API. We achieved concurrency in our component, but we
are not imposing the async workflow on all callers. If we run the test in listing 13.14, we
may notice an output similar to what the following listing presents.

IOService from: ForkJoinPool.commonPool-worker-9
IOService from: ForkJoinPool.commonPool-worker-2
.....
IOService from: ForkJoinPool.commonPool-worker-1
CPUIntensiveTask from: ForkJoinPool.commonPool-worker-2
CPUIntensiveTask from: ForkJoinPool.commonPool-worker-9
...
CPUIntensiveTask from: ForkJoinPool.commonPool-worker-1

Listing 13.14 Creating an async implementation test

Listing 13.15 Viewing threads output of the async processing

Waits for the results
in a blocking way

366 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
Note that the actions are executed in multiple threads. Even if the caller blocks the
results, the actual calculations are performed concurrently. Suppose we want to
achieve thread affinity—the behavior when both I/O- and CPU-intensive tasks are exe-
cuted in the same nonmain thread. In that case, we can pass the single-threaded exec-
utor to the supplyAsync() method.

 The approach we currently have is relatively straightforward. We are using a Java
API that’s available to all potential callers. We have a direct influence over the thread-
ing model, and we can customize the behavior quite easily. We are also not imposing
on our callers the need to implement all processing in an async way. It is effortless to
wrap and to transform the CompletableFuture to a blocking workflow.

13.2.3 Implementing a reactive solution

Let’s assume we want to make our code more up to date, and we decide to rework it to a
reactive approach. Our processing executes transformations on N input elements, so
the reactive approach seems to fit it well. We still want it to be asynchronous and concur-
rent as in our previous approach. We choose to use the Reactive API that gives us the
Flux abstraction (http://mng.bz/jyMP). This is a reactive stream of N events. Other
platforms provide other libraries and frameworks for reactive programming. The
https://reactivex.io/ website provides options for several different platforms.

 Let’s see how the new processing looks. Our flow is split into N steps. Each action
from the map is executed after the previous step finishes, as the code in the following
listing shows.

public Flux<Integer> calculateForUserIds(List<Integer> userIds) {
 return Flux
 .fromIterable(userIds)
 .map(IOService::blockingGet)
 .map(CPUIntensiveTask::calculate);
}

We construct the Flux from a list of elements by using the fromIterable() method.
In real-life reactive processing, the Flux is created from external sources and con-
sumes emitted events as they arrive into our system. The events will likely be emitted
constantly without a way to stop them (a hot datasource). The reactive stream is an
abstraction that allows us to model such behavior.

 As you can see, we return the Flux from our method. The caller of our method
needs to use this API when interacting with our code. Returning the Flux from our
method signals the caller that the data can be emitted indefinitely (in a streaming way).
Due to that fact, all the Flux consumers need to migrate their flow to be reactive as
well. This is not easy, and it’s not safe to transform the Flux elements into a blocking
abstraction. When using a potentially infinite data producer, we may risk blocking
indefinitely as well.

Listing 13.16 Implementing the reactive flow

http://mng.bz/jyMP
https://reactivex.io/

367When to use reactive programming
 Such a change is quite invasive. Suddenly, the redesign of our component and the
fact that it uses the reactive approach leaks to all callers. The reactive processing
should be implemented from the producer to the last consumer. It does not play well
if we want to use it for parallelizing only small parts of our code.

 Our goal is to have a method that doesn’t block the main thread and parallelize
computations. When we run our new reactive code, we will notice a weird behavior, as
the following listing shows.

IOService from: main
CPUIntensiveTask from: main
IOService from: main
CPUIntensiveTask from: main

All the processing is executed from the main caller thread! Although we are using the
reactive API, our processing is single-threaded, and it blocks the caller because it uses
the main thread. How do we alleviate that problem?

 We can use the publishOn() method to specify the executor on which the specific
part of the reactive workflow is executed. However, we need to remember that the
blockingGet() method contains a blocking I/O call. According to the reactive spec-
ification, the actions used in the reactive workflow shouldn’t be blocking. If this is
necessary to invoke the blocking action, we may use a particular executor for it:
boundedElastic(). It is designed for working with blocking calls. Unfortunately, it does
not perform well when executing CPU-intensive calls that use the thread for a substan-
tial amount of time. For that reason, we should use the parallel() executor optimized
for our CPU-intensive use case. The following listing shows this implementation.

 public Flux<Integer> calculateForUserIds(List<Integer> userIds) {
 return Flux.fromIterable(userIds)
 .publishOn(Schedulers.boundedElastic())
 .map(IOService::blockingGet)
 .publishOn(Schedulers.parallel())
 .map(CPUIntensiveTask::calculate);
 }

The following listing shows the output when we run this code. In the listing, note that
now both I/O- and CPU-bound tasks use different threads. The actions are interleav-
ing, meaning we have achieved some level of parallelism.

IOService from: boundedElastic-1
IOService from: boundedElastic-1
CPUIntensiveTask from: parallel-1

Listing 13.17 Output from a reactive single-threaded processing

Listing 13.18 Reactive concurrency

Listing 13.19 Viewing the reactive processing threads output

368 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
IOService from: boundedElastic-1
CPUIntensiveTask from: parallel-1

When following the reactive threading guidelines, it is hard to achieve thread affinity.
If using both I/O- and CPU-intensive tasks, these both should be executed on sepa-
rate thread pools. Therefore, it is not feasible to execute them on the same thread, as
we can do using CompletableFuture and single-threaded executors.

 We achieved our goal, but the current approach has a couple drawbacks. First, the
configuration of threads is implicit. We are able to pass the parallelism levels to both
schedulers, but this is not easy to tweak and configure. Our performance analysis and
tests should back it up. Moreover, the threading model in the Flux API is not simple.
Once we expose this API from our component, we are imposing that everyone who uses
this API needs to understand the reactive API. When exposing Flux, we don’t influence
the way it’s used. The caller can impact our processing by using the subscribeOn()
method to change the thread pool used by our code.

 Also, the caller cannot change the thread and chain a subsequent blocking action
directly on the Flux returned by calculateForUserIds(). Such an action would be exe-
cuted using the parallel() thread-pool, impacting the execution of CPU-intensive tasks.

 Those are the only problems that can arise when using the Flux API. Of course,
they all can be solved, but we need to ensure that all team members know the reactive
API. If our goal is to parallelize only a small part of processing, reworking the whole
application to reactive API may be too invasive. On the other hand, if we plan to
rework the whole application workflow to reactive, we should tackle this problem in
an end-to-end fashion instead of reworking one subcomponent to this API. In the
next section, we will analyze functional programming usage.

13.3 When to use functional programming
The functional programming approach has many benefits, such as an easier concur-
rency model (due to the immutable state), more concise code, and easier testing (no
side effects and no global state). However, overusing functional programming
approaches in languages (such as Java) that are optimized for object-oriented devel-
opment may be problematic in some situations. Let’s consider some of those prob-
lems when trying to write 100% functional code in a mainly object-oriented language.

 Java was created as an object-oriented language. Fortunately, in recent years, some
functional programming constructs were added to the language, such as lambda func-
tions and the Stream API. Although those concepts are well-known in functional pro-
gramming, they are only a small subset of functional language constructs. It may be
tempting to write all your logic in a functional way because those constructs are avail-
able. However, Java is still an object-oriented language at its core.

 There are a lot of traps we can fall into when trying to write purely functional code
using an object-oriented language. Let’s assume we want to write a reduce() function
using recursion. In the next section, we will use an object-oriented language for that.

369When to use functional programming
13.3.1 Creating functional code in a nonfunctional language

Our goal is to write a reduce() function that should take a list of values, apply the
reducer function from all of those values, and return the caller’s result. This function
should be generic, meaning it should work for any type of argument.

 Also, let’s assume we are inspired by functional programming, and we want to
implement this logic in a functional way. We can use recursion and list decomposition.
Every list can be presented as a head and tail, as figure 13.3 illustrates. The head is the
first element of the list, whereas the tail is the rest of the values.

Once we get (and remove) the head from the list, we can apply the reducer function
to this element. Next, we can pass the tail to the same function again. The list decom-
position happens again, and we get the head, apply an operation, and pass the tail fur-
ther. This logic is repeated (recursed) as long as the tail is not empty. Once the list is
empty, we return the final value from our recursive function. Let’s see how to imple-
ment this logic in the Java programming language with the method signature that the
following listing shows.

 public static <T> T reduce(List<T> values, BinaryOperator<T> reducer,
T accumulator){

 return reduceInternal(values, reducer, accumulator);
}

This reducer function takes the current aggregated value as an argument and the
head of the list. For the first iteration, we don’t have the aggregate value yet, so the

Listing 13.20 Creating the reduce() method

Apply

for head

Recurse

Recurse

1 2 3

TailHead

Reducer

Apply

for head
2 3

TailHead

Reducer

Apply

for head
3

Head

Reducer

Head equals

null so return

Head

Reducer

Recurse

Figure 13.3 List
decomposition with
recursion

370 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
caller needs to provide the initial value as the accumulator parameter. The reduce()
method delegates the actual implementation to the reduceInternal() method. It is
called recursively, so we should start from the end condition, which specifies when the
function should return.

 For our case, we want to return the accumulator when the values list is empty.
Without this condition, the function will never return and will recurse indefinitely.
Next, we decompose the list, extracting its head and tail, as the following listing shows.
This is delegated to separate methods that we’ll see in a moment.

private static <T> T reduceInternal

➥ (List<T> values, BinaryOperator<T> reducer, T accumulator) {
 if (values.isEmpty()) {
 return accumulator;
 }
 T head = getHead(values);
 List<T> tail = getTail(values);
 T result = reducer.apply(head, accumulator);
 return reduceInternal(tail, reducer, result);
}

Once we have extracted the head, we can invoke the reducer function, passing the
head and the accumulator values. Lastly, we invoke the method again (recurse).

 The head and tail extraction methods are relatively straightforward. The following
listing shows this implementation.

private static <T> List<T> getTail(List<T> values) {
 if (values.size() == 1) {
 return Collections.emptyList();
 }
 return values.subList(1, values.size());
}

private static <T> T getHead(List<T> values) {
 return values.get(0);
}

The getTail() method returns an empty list if the values have only one element
(head). Otherwise, it returns all elements, except the first element. The getHead()
method returns the first element of the list.

 Let’s implement a unit test that verifies our functional reduce() implementation,
which we will use for summing up all elements in the list of values. The following list-
ing shows the code for this.

Listing 13.21 Implementing the Java reducer, reduceInternal()

Listing 13.22 Extracting the head and tail

371When to use functional programming
@Test
public void shouldReduceTenValues() {
 // given
 List<Integer> input = IntStream.range(1,

10).boxed().collect(Collectors.toList());

 // when
 Integer result = Reduce.reduce(input, (value, accumulator) -> value +

accumulator, 0);

 // then
 assertThat(result).isEqualTo(45);
}

The reducer function takes the accumulator and the head value and sums them. The
initial accumulator is equal to zero because we start the addition from this value.

 At this stage, we can be perfectly happy with our implementation. We were able to
implement the functional construct using a functional approach (recursion) in a non-
functional language. However, our approach has one big problem. We can catch that
problem by writing a unit test that operates on a higher number of values. For exam-
ple, when running our logic for 100,000 elements, as the following listing shows, we
will observe that our code throws a StackOverflowError.

@Test
public void shouldStackOverflowForALotOfValues() {
 // given
 List<Integer> input = IntStream.range(1,

100_000).boxed().collect(Collectors.toList());

 // when
 assertThatThrownBy(() -> Reduce.reduce(input, Integer::sum, 0))
 .isInstanceOf(StackOverflowError.class);
}

What’s the reason for this StackOverflowError? It turns out that recursion is not well
optimized and suited for the Java language. Every recursive call needs to allocate a
frame on the call stack. For the 100,000 elements to process, this requires the same
amount of stack frames allocated. Every stack trace occupies some memory. The
upper limit of elements in the stack trace is limited by the memory available to our
program. Therefore, the stack trace can have limited depth. If our code involves too
many calls, we will end up with the exception signaling the problem.

 This is one of the functional programming edge cases in a nonfunctional program-
ming language. The reduce() function can be implemented in an imperative way,
using the standard for loop, and we should favor such an approach in object-oriented
languages.

Listing 13.23 Creating a Java reduce unit test

Listing 13.24 Testing the reduce() throwing StackOverflowError

372 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
 Note that the reduce() method is available in the Java Stream API, so it can be
safely used from Java. The reason for this is that it is implemented in the imperative
(for loop) and not in a recursive way. We implemented our own reduce() function to
demonstrate one of the common functional programming problems (recursion)
when writing the code in an object-oriented language, such as Java.

13.3.2 Tail recursion optimization

If we use a fully functional language, the problem with recursive implementation can
be easily solved. For example, Scala language implements tail recursion optimization.

 This compiler-level optimization allows it to unwind the recursion. This can hap-
pen only if the recursive call that we use is the last call of our method. In such a case,
the recursion is changed to a for loop by the compiler. We can still write the recursive,
fully-functional code without worrying about the stack growing too much. To see how
simple the implementation of a functional recursive reduce() method in a fully func-
tional language (Scala, in this case) is, let’s see the implementation that the following
listing shows.

@tailrec
def reduce[T] (values: List[T],

➥ reducer: (T, T) => T, accumulator:T): T = values match {
 case Nil => accumulator
 case head :: tail => reduce(tail, reducer, reducer(head, accumulator))
}

Our code is more concise and perfectly safe for running with a huge number of input
values now. The concise part is achieved by yet another functional programming con-
struct: pattern matching with decomposition. The head and tail list decomposition is
achieved by simply issuing head :: tail. Note that the reduce() method is annotated
with @tailrec (http://mng.bz/W7J1). This tells the compiler to check whether the
given method can be optimized into a look (tail recursion optimization). If this can-
not be done, the compiler returns an error. But for our case, it can be done because
the recursive call is the last statement in our method.

 By analyzing this example and looking at both Scala and Java implementations, we
can conclude it is important to pick the proper language and tools for the specific pro-
gramming task. Functional programming provides many benefits. However, when using
all its techniques and patterns blindly, we risk many potential problems. On the one
hand, we should strive to adopt the best ideas from functional programming languages.
On the other hand, we should also be careful when using functional programming con-
structs in a not purely functional language. By applying the best patterns, we can expose
an API that plays well with functional programming (e.g., Stream.reduce()) but is
implemented in the imperative way underneath.

Listing 13.25 Implementing reduce() in Scala

http://mng.bz/W7J1

373When to use functional programming
13.3.3 Leveraging immutability

Immutability is a powerful concept, but it comes with a cost. The immutable object,
once it’s created, cannot be modified in any way. In the Java language, we can create
an object that is immutable by making all of its fields final. However, the final refer-
ence states only that the reference cannot be reassigned.

 The object can be changed if it is created in a way that allows modification. It is
possible to create an immutable object, but it requires careful design of your classes.
All the ways to modify it need to be hidden from the callers. If we use an API construct
that allows modifications (e.g., List), we need to wrap the mutable structure into an
immutable wrapper. Once it is wrapped, we need to prohibit calls to all methods allow-
ing the modification of the underlying object.

 Once our object is immutable, we can safely share it between components without
worrying about thread safety. The object can only be accessed, so all threads will have
the same visibility. Therefore, we don’t need any synchronization when accessing the
object. This impacts the performance of our code.

 It is also easier to write such code and reason about it, so it’s easier to write code with-
out bugs. It is essential that the object state is filled at the construction time—no later.

 In reality, even if the object is immutable, we sometimes need to alter its state. In
the functional approach, this is done by creating a new object, copying the state of the
original one, and altering what’s needed. Once the copy is created, it needs to follow
the same approach as the original object, however. It cannot be modified in any way.
At this point, we can see that such an approach results in creating a lot of objects.
Each object is allocating some memory space. The more deep copies of the original
object we make, the more memory we will need. Therefore, the functional approach
of writing our code may result in more memory pressure and a more costly garbage
collection. The number of created objects and their impact over garbage collection
should be carefully measured.

 In practice, the number of copied objects can be reduced. For example, let’s consider
an immutable List implementation. The whole list is immutable, and it consists of nodes
connected via pointers. Let’s assume we have a list1 reference that points to a list with
two nodes. Next, we want to create a new list2 that is based on the immutable list1 but
has one additional node with value C. Figure 13.4 shows this implementation.

We could copy all the nodes from list1 and add an additional node, but it will
occupy space for three additional nodes. Instead of that, we can create one new node

B Alist1

list2 C
Figure 13.4 Designing an immutable list

374 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
and point it to the head of list1. After that operation, we will have two immutable
lists: list1 has two nodes, and list2 has three nodes. However, we only need a mem-
ory space for three nodes instead of five (the original list1 has 2 nodes, and the new
list2 has 3 nodes). We can use patterns similar to this to reduce the memory over-
head for other immutable structures and objects.

 Functional programming is a complex topic and deserves a more profound under-
standing. The purpose of this section was to show only one aspect of it and analyze it
in the context of an object-oriented language. If you want to learn more about func-
tional programming, I recommend the book, Functional Programming in Java (http://
mng.bz/8lVw) by Pierre-Yves Saumont (Manning, 2017). In the next section, we will
look at two initialization approaches: lazy and eager.

13.4 Using lazy vs. eager evaluation
Our applications tend to interact with multiple
components. Let’s consider a web application
that needs to connect to a database (opening
the session) and populates the cache with the
most recent user ID data. In an environment
where we can have N instances of the service, all
those tasks need to be executed on every node,
as figure 13.5 illustrates.

 We can choose to perform both operations
lazily or eagerly. There is a recent trend of try-
ing to make the application startup as fast as
possible. This can be achieved by moving the
time-consuming operations, such as initializing
the database connection in a later stage of the
application lifecycle. In such a pattern, the database connection is created lazily. This
means that when we start the application, the connection is not initialized. By making
it lazy, we postpone the initialization logic to be executed on the users’ first request.
However, it also means that the first user will pay the cost of initializing the connection
on their first request. Figure 13.6 shows what lazy initialization might look like.

Web application

Db

Populate

cache

Other

service

Create

connection

Figure 13.5 Application with two
downstream components

4. Respond

Web application
Db

1. Execute request

User

3. Execute request

2. Create connection

Figure 13.6 Using lazy initialization when connecting to a database

http://mng.bz/8lVw
http://mng.bz/8lVw
http://mng.bz/8lVw

375Using lazy vs. eager evaluation
If we use the eager approach, initialization is paid once at the startup of the applica-
tion. In this scenario, the first end-user request uses an already present connection
without the need for initializing it. The connection is created at the application
startup time (and kept in the connection pool). The first request takes this connec-
tion from the connection pool and uses it for executing the request. Figure 13.7 shows
what eager initialization would look like.

In real-life applications, this effect will be even more noticeable. Often, there are N
connections to the underlying system, and we keep a pool of N connections. The pool
may grow dynamically, but it starts with some stable number of open connections. If
we decide to have lazy initialization for all connections, the cost of initialization is paid
with N requests, where N is equal to the number of connections in the pool.

 We need to choose between increased startup time versus increased first (or more)
request handling time. Assuming that our SLA has a hard limit and cannot exceed a
specific request handling time, the lazy initialization may be problematic. On the
other hand, if we need to start the application as quickly as possible, moving all the
time-consuming logic to a later stage may be justified.

 There is also a potential problem with eager initialization that may impact our
application. Let’s assume that we need to choose when to populate the cache. We can
do this eagerly and prepopulate our app at startup, or we can do it lazily and populate
the cache during the request execution. This decision obviously impacts the same
aspect as the previous example: a time expense will be paid at startup or during the
first N requests.

 We should also be aware that there could be a problem with the external call. For
example, the external call may fail due to an outage of a service. Therefore, there
could be a situation when the other service used to populate the cache has some prob-
lems. Also, we may introduce some programming bugs when fetching this data.

 When using the lazy approach of initialization, any initialization problem will be
detected at our application’s run time. It can also be a lot later after application
startup. In such a scenario, we may deploy an application and observe that everything
works as expected. Only when the application starts serving the traffic would we notice
problems. This delay is caused by the lazy initialization and postponing the logic to a

4. Respond

Web application

2. Uses connection

from the already-

initialized pool

Db

1. Execute request

User

3. Execute request

Figure 13.7 Using eager initialization when connecting to a database

376 CHAPTER 13 Keeping up to date with trends vs. cost of maintenance of your code
later time. If our application chooses to perform those actions eagerly (at startup), we
can detect potential problems faster.

 In case programming errors are introduced, we can detect them immediately
when the new node with a new version is deployed. Having that information, we can
rollback deployment faster. It can even be unnoticed by end users if we perform a roll-
ing deployment, where the old version of the application is not deleted until the new
nodes are up and running. With the lazy approach, the failure may go unnoticed
during the deployment time. Only once all nodes are deployed, we (and our end-
users) may start to notice a problem. Table 13.1 sums up our findings.

As you can see, lazy initialization offers faster startup time. However, this time over-
head does not disappear, and it will be paid for by the first N request to our service.
Also, the potential errors are detected later when the service is operational.

 The eager initialization moves the time expense to startup. Therefore, the startup
of an application that does initialization eagerly is slower, and because this cost is
already paid, the first N request is not impacted. Also, some of the potential errors can
be detected during the deployment process.

 The decision whether to move initialization of your application to eager or lazy
stages should take these factors into consideration. You may also choose a hybrid
approach, where some actions are executed in an eager and some in a lazy way.

Summary
 With dependency injection, all dependencies needed by a specific component

should be injected from the outside and can be done at any level. In this chapter,
we learned when to use DIY versus existing solutions to implement this pattern.
– Although the method injection pattern is a valid technique, it is not well

suited in object-oriented languages, such as Java. A solution for this is to
inject components at a higher level using constructor injection.

– There are a few production-proven dependency injection frameworks, such
as Spring, Dropwizard, or Guice. These provide a lot of possibilities, but
they also rely on implicit assumptions and introduce tight coupling in our
codebase.

 Reactive programming gives us functional data-driven processing that works in
a nonblocking way, which allows us to parallelize our processing. However, the
parallelization is achieved by splitting the work into multiple threads.

Table 13.1 Lazy vs eager initialization

Initialization
phase

Startup time
Time for first N

requests
Error detection

Lazy Faster Impacted; slower Later, when the service is operational

Eager Slower Not impacted During deployment

377Summary
– Using a single-threaded processing as an example, we evolved it to work in
an async and concurrent way. This allows us to parallelize our processing and
handle higher throughput.

– Based on the recent trends, we reworked our solution to a reactive flow, as
this seemed to fit our execution of transformations on N input elements.

– Learning about the threading model of all solutions, we can better analyze
the pros and cons of this approach.

 The functional programming approach has many benefits, such as an easier
concurrency model, more concise code, and easier testing, but using functional
programming approaches blindly in languages that are optimized for object-
oriented programming may be problematic.
– We were able to implement a functional construct with Java using recursion

as a functional approach. We then compared this approach with tail recur-
sion in Scala.

– Immutability is a powerful concept, but it comes with a cost. Once we create
the immutable object, it cannot be modified in any way. As an example, we
implemented an immutable list.

 Because our applications tend to interact with multiple components, we learned
about lazy and eager initialization and their tradeoffs: initialization time, request
handling time, and detection of errors.

index
A

accumulator parameter 370
acks parameter 291, 293
advance() method 248
anti-patterns, in exception handling 51–55

closing resources in case of errors 52–54
controling application flow 54–55

Apache Kafka
Kafka brokers setup 287–288
Kafka consumer side 286–287

Apache Spark, implementing joins using
224–229

with broadcast 226, 228–229
without broadcast 227–228

APIs
best patterns for exception handling

checked exceptions in public API 48–49
unchecked exceptions in public API

49–51
creating performance tests using Gatling

111–114
designing with inheritance, to reduce

duplication 34–41
extracting base request handler 35–38
inherent and incidental duplication 40–41
inheritance and tight coupling 38–39
tradeoffs between inheritance and

composition 39–40
flexibility analysis of API vs. cost of

maintenance 94–95
network API versioning 329–341
promise API, async workflow with 61–63
providing extensibility

via hooks 83–89
via listeners 90–94

robust, not extensible 76–80
designing new components 76
starting with most straightforward code

77–80
separating API and storage

representations 349–352
simplicity vs. cost of maintenance 126–151
sync and async 238–240

Application class 110, 357, 359–360
application flow, controling 54–55
architecture design patterns 11–15

complexity of microservices 14–15
development speed 13
scalability and elasticity 12

async APIs 238–240
asyncExternalCall() method 62
async workflow 61–63
atomicity

common mistakes when implementing
deduplication 270–274

multiple nodes context 272–274
one node context 270–271

making logic atomic to prevent race
conditions 274–278

/auth endpoint 25–26
authenticate() method 130
auth section 132, 136–138, 143
AuthStrategy interface 130
AutoCloseable interface 53
automated transformations 351–352
@Autowired annotation 359

B

back pressure 362
base request handlers, extracting 35–38
379

INDEX380
BaseTraceRequestHandler class 35–36
batchSize parameter 135
batch tool

adding new setting to 142–143
configuring 136–138
removing setting from 146–148

binary compatibility 313–315
blockingGet() method 362, 364, 367
bootstrap-servers 289
boundedElastic() method 367
breaking changes 324–328

caution with own dependencies 325
consideration when bumping major

versions 326–328
deciding what is breaking 326
knowing context 324
limiting public API surface 324–325
versioning for data storage 343–344

broadcast data set 218
BroadcastExchange step 229
broadcasting

implementing joins using Apache Spark
226–228

optimizing joins by leveraging
broadcasting 217–218

bufferSize parameter 32, 38

C

calculateForUserIds() method 363, 365, 368
calendar arithmetic 195–196
calendar systems

overview 157–159
transitions 169

casualName parameter 316
catch blocks 45–47, 70
catch clause 45
catch pattern 69
check() method 52
civil time 157–162, 167

calendar systems 157–159
periods 160–162
time of day 159

clear() method 92
client-controlled versioning 332–336
clock abstractions

creating 182–184
using existing 180–182

Clock class 180–181
close() method 53–54
cloud client library

adding new setting for 141–145
adding new setting to batch tool 142–143
adding new setting to streaming tool 143–144
comparing both solutions 144–145

deprecating/removing setting in 145–150
comparing both solutions 149–150
removing setting from batch tool

146–148
removing setting from streaming tool

148–149
cloud service client, creating 128–129
CloudServiceClientBuilder constructor 133
CloudServiceClient component 129
CloudServiceConfiguration class 131
codebases

common code between duplication and
17–21

adding new business requirement 18–19
evaluating results 20–21
implementing new business requirement

19–20
libraries and sharing code between 21–24

creating shared libraries 23–24
tradeoffs and disadvantages of shared

libraries 22–23
code design patterns 6–11
code duplication 16–41

API design with inheritance to reduce 34–41
extracting base request handler 35–38
inherent and incidental duplication 40–41
inheritance and tight coupling 38–39
tradeoffs between inheritance and

composition 39–40
common code between codebases and

17–21
adding new business requirement 18–19
evaluating results 20–21
implementing new business requirement

19–20
improving loose coupling via 30–34
separate microservices 24–30
shared libraries 21–24

creating 23–24
tradeoffs and disadvantages of 22–23

code extraction, to separate microservices
24–30

Command Query Responsibility Segregation
(CQRS) 265–266

comments, explaining code with 193–195
commit() method 296
commitAsync() method 297
CompletableFuture 61, 64, 238, 364–366
complexCalculations() method 3
complexity, balancing with flexibility 75–96
composition, tradeoffs between inheritance

and 39–40
concepts 153
concurrency models 236–242
@Configuration annotation 358

INDEX 381
consistency 259–279
at-least-once delivery of data sources 260–266

CQRS 265–266
producing data and idempotency 263–265
retrying application calls 261–262
traffic between one-node services 260–261

common mistakes when implementing
deduplication 270–274

multiple nodes context 272–274
one node context 270–271

making logic atomic to prevent race
conditions 274–278

naive implementation of deduplication
library 267–270

Costumer class 324
CQRS (Command Query Responsibility

Segregation) 265–266
create() method 134
createPayload() method 33–35, 37–38
createPersonInfo() method 55–57
createTestUrl() method 250
createUser method 316
cross-version resource handling 340–341
Customer class 324

D

/data endpoint 232
data locality 204–206

moving computations to data 205–206
scaling processing using data locality 206

data partitioning 207–213
joining big data sets from multiple

partitions 213–218
joining data within same physical

machine 214–215
joining that requires data movement

215–217
optimizing joins by leveraging

broadcasting 217–218
offline big data partitioning 208–210
partitioning algorithms 210–213
partitioning vs. sharding 210

data processing 218–224
calculating access times 222–223
disk-based processing 218–219
MapReduce 219–222
RAM-based processing 223–224

data shuffling 216
data storage, versioning for 341–352

breaking changes 343–344
evaluating storage formats 352
expecting unexpected issues 347–349
migrating data within storage system

344–347

Protocol Buffers 341–343
separating API and storage representations

349–352
date and time data 152–202

applying concepts consistently 178–180
concepts in 153–169

calendar system transitions 169
civil time 157–162
leap seconds 168
machine time 154–157
nonterrestrial time 168–169
relativity 168
time zones 163–167

corner cases to specify and test 195–201
ambiguous or skipped times 197
calendar arithmetic 195–196
evolving time zone data 197–201
time zone transitions at midnight 196

explaining code with comments 193–195
improving testability 180–186

avoiding implicit locale or culture
assumptions 186

avoiding implicit use of system time
zone 184–186

creating clock abstractions 182–184
using existing clock abstractions 180–182

preparing to work with 169–177
asking questions about behavior 174–176
clarifying date and time requirements

171–176
limiting scope 169–171
picking right concepts or data types 172–174
using right libraries or packages 176–177

representing values in text 186–193
avoiding confusion between text and

truth 187–188
avoiding unnecessary text conversions 188
designing effective text representations

188–190
parsing to concept in text format 191–193
relying on libraries 190–191

Date class 187
Date constructor 187
DateTimeOffset type 177
DateTime type 177
dbClient.find(id) method 269
dbClient.save() method 269
decimal numbers 186
deduplication

common mistakes when implementing
270–274

multiple nodes context 272–274
one node context 270–271

naive implementation of library 267–270
deep copy 93

INDEX382
delivery semantics 280–303
architecture of event-driven applications 281–284
consumer code and different delivery

semantics 293–301
committing consumer manually 296–297
exactly-once semantic 300–301
restarting from earliest or latest offsets

297–300
leveraging delivery guarantees to provide fault

tolerance 301–303
producer and consumer applications based on

Apache Kafka 285–288
Kafka brokers setup 287–288
Kafka consumer side 286–287

producer logic 288–293
dependencies, of third-party libraries 250–253

avoiding version conflicts 251–252
choosing and maintaining 253–258
too many 252–253

dependency graphs 319–324
dependent libraries

directly exposing settings of 134–138
streaming service that abstracts settings of

138–141
DI (dependency injection) frameworks 355–361

DIY dependency injection 356–358
using 358–361

diamond dependencies 319–324
pain of major versions 322–324
shared vs. isolated dependencies 321–322

disk-based processing 218–219
distributed scalability 240–242
distributed systems

consistency and atomicity in 259–279
delivery semantics in 280–303

doProcessing() method 355–356
DRY (don’t repeat yourself) principle 16
Duration parameter 181
durations 156–157
Duration type 157

E

elapsed time 156
elasticity 12
enum values, adding 348–349
epochs 155–156
Error class 44
error handling 42–74

anti-patterns in exception handling 51–55
closing resources in case of errors 52–54
controling application flow 54–55

best patterns for exception handling 48–51
checked exceptions in public API 48–49
unchecked exceptions in public API 49–51

exceptions from third-party libraries 55–58
exceptions in multithread environments 58–63
functional approach with Try 63–70

in production code 67–69
mixing with code that throws exceptions

69–70
hierarchy of exceptions 43–48
performance comparison of exception-handling

code 70–73
Error monad 64
event driven architecture 281
Exception class 44, 46
exception handling 42–74

anti-patterns in exception handling 51–55
closing resources in case of errors 52–54
controling application flow 54–55

best patterns for exception handling 48–51
checked exceptions in public API 48–49
unchecked exceptions in public API 49–51

exceptions from third-party libraries 55–58
exceptions in multithread environments 58–63
functional approach with Try 63–70

in production code 67–69
mixing with code that throws exceptions

69–70
hierarchy of exceptions 43–48
performance comparison of exception-handling

code 70–73
execute() method 58, 60
executeAction() method 9
executeIfNotDuplicate() method 271
executeWithRetry() method 83
explain() method 227
extensibility

providing via hooks 83–89
guarding against unpredictable usage 85–87
performance impact 87–89

providing via listeners 90–94
immutability of design 92–94
listeners vs. hooks 90–92

robust API lacking 76–80
designing new component 76
starting with most straightforward code

77–80
extractStringBody() method 68

F

fakes (test doubles), testing with 245–249
fault tolerance, leveraging delivery guarantees to

provide 301–303
FileAlreadyExistsException exception 45
FileExistsException class 57
finally block 54
findAndInsertIfNeeded() method 277

INDEX 383
flexibility 75–96
allowing clients to provide their own metrics

framework 80–83
code duplication vs. 16–41
flexibility analysis of API vs. cost of

maintenance 94–95
providing extensibility of APIs via hooks 83–89

guarding against unpredictable usage 85–87
performance impact 87–89

providing extensibility of APIs via listeners
90–94

immutability of design 92–94
listeners vs. hooks 90–92

robust but not extensible API 76–80
designing new component 76
starting with most straightforward code

77–80
for loop 70
fromIterable() method 366
functional programming 368–374

creating functional code in nonfunctional
language 369–372

leveraging immutability 373–374
tail recursion optimization 372

Future instance 58
Future object 61

G

Gatling, creating API performance tests
using 111–114

get() method 59, 365
/getAverageAge endpoint 205
GetCurrentInstant() method 180, 184
getFinalReturnsDate method 193
getHead() method 370
getId() method 68
getInstance() method 6–7
getOrElse() method 65–66, 68
getOrElseThrow() method 68
getPersonInfo() method 55–57
getTail() method 370
getWordOfTheDay() method 107
GraphTrace class 31, 38
GraphTrace object 31
GraphTraceRequestHandler class 37–39

H

HDFS (Hadoop distributed filesystem) 208
hex numbers 186
hooks, providing extensibility via 83–89

guarding against unpredictable usage 85–87
listeners vs. hooks 90–92
performance impact 87–89

hot paths 97–125
detection of 111–116

creating API performance tests using
Gatling 111–114

measuring code paths using
MetricRegistry 114–116

in code 103–107
configuring number of concurrent users

(threads) for given SLA 106–107
Pareto principle 105–106

performance improvements 117–125
creating JMH microbenchmark for existing

solution 117–118
modifying performance tests to have more

input words 124–125
optimizing word exists using caches 118–123

premature optimization 98–103
based on false assumptions 100–101
benchmarking 101–103
creating accounts processing pipeline 98–99

word service with potential 107–111
exposing WordsService using HTTP

service 110–111
getting word of day 107–109
validating if word exists 109–110

HttpClientExecution component 88
HttpPost() method 85
HttpPost object 85
HTTP service, exposing WordsService using

110–111

I

IANA (Internet Assigned Numbers Authority) 166
IClock interface 180, 327
idempotency 263–265
immutability

functional programming 373–374
providing extensibility via listeners 92–94
versioning 305–306

impedance mismatches 178–179
incidental duplication 40–41
inherent duplication 40–41
inheritance, reducing duplication with 34–41

extracting base request handler 35–38
inherent and incidental duplication 40–41
inheritance and tight coupling 38–39
tradeoffs between inheritance and

composition 39–40
inputs 318
instant 172
Instant.now() method 181
instants 154–155
integration testing, proportions of 4–6
InterruptedException exception 45

INDEX384
int type 31
io.dropwizard.Application class 110
isDuplicated() method 277
isFailure() method 66
isSuccess() method 65–66
isTraceEnabled() method 34, 37

J

java.time.ZoneId type 163
java.time.ZoneOffset type 163
java.time.zone.ZoneRuleProvider type 166
java.time.zone.ZoneRulesProvider class 198
java.util.Date class 187
JMH microbenchmarks, creating for existing

solution 117–118
joins

implementing using Apache Spark 224–229
with broadcast 228–229
without broadcast 226–228

joining big data sets from multiple
partitions 213–218

joining data within same physical
machine 214–215

joining that requires data movement
215–217

optimizing joins by leveraging
broadcasting 217–218

JsonObject types 321

L

leap seconds 168
leap smear 168
leap year 159
libraries 153

adding new setting for cloud client library
141–145

adding new setting to batch tool 142–143
adding new setting to streaming tool

143–144
comparing both solutions for UX friendliness

and maintainability 144–145
base, used by other tools 127–134

creating cloud service client 128–129
exploring authentication strategies 129–130
understanding configuration

mechanism 130–134
date and time data 176–177, 190–191
deduplication, naive implementation of

267–270
deprecating/removing setting in cloud client

library 145–150
comparing both solutions for UX friendliness

and maintainability 149–150

removing setting from batch tool 146–148
removing setting from streaming tool

148–149
directly exposing settings of dependent

libraries 134–138
streaming service that abstracts settings of

dependent libraries 138–141
third-party 231–258

concurrency models and scalability
236–242

dependencies of 250–258
exceptions from 55–58
importing and responsibility for settings

232–236
testability 242–250

versioning for 310–329
binary compatibility 313–315
dependency graphs and diamond

dependencies 319–324
managing internal-only libraries 328–329
semantic compatibility 315–319
source compatibility 311–313
techniques for handling breaking

changes 324–328
listeners,providing extensibility via 90–94

immutability of design 92–94
listeners vs. hooks 90–92

live at head 328
load() method 238
loadData() method 129, 131, 138
LoadingCache builder 247
LocalDate.now() method 108
logicProcessing() method 297
loose coupling, improving via code

duplication 30–34

M

machine time 154–157
durations 156–157
epochs 155–156
instants 154–155

main() method 360
maintenance costs

flexibility analysis of API vs. 94–95
simplicity vs. 126–151
trends vs. 354–377

manual transformations 350–351
map() method 66
MapReduce 219–222
mapTry() method 67
marketing versions 310
maxNumberOfRetries parameter 79
maxTimeMs setting 138
memorability 305

INDEX 385
memory
data partitioning and splitting data 207–213

offline big data partitioning 208–210
partitioning algorithms 210–213
partitioning vs. sharding 210

data processing 218–224
calculating access times 222–223
disk-based processing 218–219
MapReduce 219–222
RAM-based processing 223–224

implementing joins using Apache Spark
224–229

with broadcast 228–229
without broadcast 226–228

joining big data sets from multiple
partitions 213–218

joining data within same physical
machine 214–215

joining that requires data movement
215–217

optimizing joins by leveraging
broadcasting 217–218

methodA() method 24
methodThatThrowsUncheckedException()

method 48
MetricRegistry, measuring code paths using

114–116
MetricRegistry class 78
metrics frameworks, allowing clients to provide

their own 80–83
MetricsProvider interface 81–82
microservices 24–30

complexity of 14–15
tradeoffs and disadvantages of separate 27–30

deployment process 27–28
maintenance 30
performance 29–30
resource consumption 28
versioning 28

mocks, testing with 245–249
multithread environments, exceptions in 58–63

N

negative interval 157
negative leap second 168
network APIs, versioning for 329–341

client-controlled versioning 332–336
context of network API calls 329–331
cross-version resource handling 340–341
customer-friendly clarity 331–332
prerelease versioning 338–340
server-controlled versioning 336–337
server deployment 340

NodaTime.DateTimeZoneProviders type 166

NodaTime.DateTimeZone type 163
NodaTime.IDateTimeZoneProvider type 166
NodaTime.Offset type 163
nonterrestrial time 168–169
Now property 327

O

Object method parameter 314
offset() method 295
one-node services

implementing deduplication 270–271
traffic between 260–261

onFailure() method 66, 68
onSuccess() method 66
Option construct 66
OrderItem class 185
outputs 318

P

parallel() method 102, 367–368
parallelStream() method 100, 102–103
Pareto principle 105–106
partition key 219
password setting 140
PatchPerson method 336
/payment endpoint 17, 19
performance tests

creating using Gatling 111–114
modifying to have more input words

124–125
periods 160–162
PersonCatalog component 56
/person endpoint 17, 20
poll() method 295
premature optimization 98–103

based on false assumptions 100–101
benchmarking 101–103
creating accounts processing pipeline

98–99
prepareInventory() method 357, 360
prerelease versioning 338–340
processRequest() method 34, 37–38
processRequests() method 53–54
producer and consumer applications

based on Apache Kafka 285–288
Kafka brokers setup 287–288
Kafka consumer side 286–287

consumer code and different delivery
semantics 293–301

committing consumer manually 296–297
exactly-once semantic 300–301
restarting from earliest or latest offsets

297–300

INDEX386
producer logic 288–293
Protocol Buffers 341–343
publicApiMethod() method 3
publishOn() method 367

R

RAM-based processing 223–224
reactive programming 361–368

CompletableFuture 364–366
creating single-threaded, blocking

processing 362–364
implementing reactive solution 366–368

readTimeout() method 235–236
reduce() method 368–372
reduceInternal() method 370
relativity 168
Request class 128, 135
Request object 138
requests.failure metric 76
requests.retry metric 76
requests.success metric 76
RetryStatus class 91
return an item option 176
robustness 76–80

designing new components 76
starting with most straightforward code

77–80
RuntimeException 47

S

scalability
architecture design patterns 12
distributed 240–242

Scanner class 108
Scan step 229
semantic compatibility 315–319
semantic versioning 307–310

build metadata 309
rules for stable versions 307–309
version precedence 309–310

send() method logic 290
server-controlled versioning 336–337
@Service annotation 359
set() method 9
sharding 210
Simulation class 112
SLAs (service level agreements) 29, 86, 106–107
/slow-data endpoint 234
source compatibility 311–313
startConsuming() method 295
StepVerifier class 244
StorageLevel setting 224
stream() method 103

streaming tool
adding new setting to 143–144
configuring 139–141
removing setting from 148–149

String method parameter 314
String type 68
submit() method 58
subscribeOn() method 368
Suit enum 348
supplyAsync() method 61, 364, 366
sync APIs 238–240
SystemComponent object 9–10
SystemInstantClock singleton 183

T

tail recursion optimization 372
testability, of third-party libraries 242–250

integration testing toolkit 249–250
testing libraries 243–245
testing with fakes and mocks 245–249

test doubles, testing with 245–249
TestPublisher class 244
text, representing date and time values in 186–193

avoiding confusion between text and truth
187–188

avoiding unnecessary text conversions 188
designing effective text representations

188–190
parsing to concept in text format 191–193
relying on libraries 190–191

thenApply() method 364
third-party libraries 231–258

concurrency models and scalability 236–242
async and sync APIs 238–240
distributed scalability 240–242

dependencies of 250–253
avoiding version conflicts 251–252
choosing and maintaining 253–258
decision checklist 257–258
different approaches to reusing code

254–255
first impressions 254
libraries vs. frameworks 256
licensing 255–256
security and updates 256–257
too many 252–253
vendor lock-in 255

importing and responsibility for settings
232–236

testability 242–250
integration testing toolkit 249–250
testing libraries 243–245
testing with fakes (test doubles) and

mocks 245–249

INDEX 387
thread affinity 366
ThreadLocal class 8
ThreadLocal instance 8
Thread.sleep() method 243, 246, 248
Throwable type 43
throw-catch approach 72
throwCatch average operation 72
Ticker component 248
Ticker interface 247
tight coupling 38–39
time of day 159
timeouts section 141–143
TimeSpan type 177
TimeZoneInfo type 177
time zones 163–167

avoiding implicit use of system time zone
184–186

evolving data 197–201
sources of data 198
storing data that is sensitive to time zone

changes 198–201
non-time zones 165–166
origin of time zone information 166–167
transitions at midnight 196

toDS() function 227
toEntity() method 68
token strategy 146
toLocalTime() method 192
toString() method 187–188
Trace class 31, 37
Trace object 31
TraceRequest class 34–38
TraceRequestHandler class 37
transitive dependency 320
Try, exception handling with 63–70

in production code 67–69
mixing with code that throws exceptions

69–70
Try abstraction 65
tryAddEntry() method 39
try-catch block 66, 86
Try construct 69
Try monad 63–65, 67–72
Try type 64–69

U

unit testing
decisions 3–4
proportions of 4–6

Unix epoch 155
unknown fields 348
UpdatePerson method 333–335
user_id action 211

user_id identifier 214–215
UsernamePasswordAuthStrategy class 134
UsernamePasswordHashedAuthStrategy

strategy 149
username-password-hashed strategy 147
username-password strategy 146–147
username setting 140
UTC 163–165

risks of storing just UTC 197–201
UUID class 101

V

versioning 304–353
backward and forward compatibility

306–307
for data storage 341–352

breaking change 343–344
evaluating storage formats 352
expecting unexpected issues 347–349
migrating data within storage system

344–347
Protocol Buffers 341–343
separating API and storage

representations 349–352
for libraries 310–329

binary compatibility 313–315
dependency graphs and diamond

dependencies 319–324
managing internal-only libraries

328–329
semantic compatibility 315–319
source compatibility 311–313
techniques for handling breaking

changes 324–328
for network APIs 329–341

client-controlled versioning 332–336
context of network API calls 329–331
cross-version resource handling

340–341
customer-friendly clarity 331–332
prerelease versioning 338–340
server-controlled versioning 336–337
server deployment 340

marketing versions 310
microservices 28
properties of versions 305–306

immutability 305–306
implicit relationships between versions 306
memorability 305

semantic versioning 307–310
build metadata 309
rules for stable versions 307–309
version precedence 309–310

INDEX388
W

@Warmup annotation 101
wide transformation 216
Windows time zone database 166
withFixedDelay() method 234
withInitial() method 9
wordExists() method 107, 109–110, 115,

117–118, 121
/word-exists endpoint 110, 115–116
/word-of-the-day endpoint 110, 112,

114
word query parameter 112
Words application 112
/words endpoint 114

word service
optimizing word exists using caches 118–123
with potential hot path 107–111

exposing WordsService using HTTP
service 110–111

getting word of day 107–109
validating if word exists 109–110

WordsService,exposing using HTTP service 110–111

Y

YAMLFactory class 133

Z

zero point 155

Core concepts

Top warnings in this book

Top warning Page number Section

Using inheritance may sometimes introduce tight coupling that limits the flexibility and
possibility to evolve our system.

38 2.5.2

The exception types thrown by your API are part of your contract. Beware leaking them. 55 3.4

Designing highly extensible code often increases the overall complexity of our solution. 94 4.5

Using an API (stream) without a complete understanding of its methods may lead to sub-
stantial performance degradation of our processing.

98 5.1.1

The lack of downstream components encapsulation allows us to deliver quicker at the
beginning but limits the possibilities of evolution in the long term.

139 6.3.1

The idea that you can just store everything as UTC, and you'll never have time zone
issues is a common myth. Storing UTC is fine in many cases, particularly timestamps,
but loses important data in other cases. Don’t accept it as a silver bullet.

197 7.4.4

Our data partitioning may impact the possible ways of how we use the data. In the most
serious cases, it may make some big data processing logic impossible to implement.

215 8.3.2

Some of the unchanged defaults of the library that you use can critically impact your
application.

232 9.1

Some tools that work correctly in a one-node context may break its correctness in the
multi-node environment.

270 10.3.1

Even if one of the systems in the pipeline offers effectively exactly-once, if our processing
involves N remote system calls, those guarantees will not be held.

300 11.4.3

Breaking changes in a library incur cost throughout a community, even when properly ver-
sioned using Semantic Versioning. Consider the impact on consumers of the library—
both direct and indirect.

319 12.2.2

Not all functional patterns should be used in a language that provides functional pro-
gramming patterns, but is not a functional language from the ground up.

369 13.3.1

Lelek ● Skeet

ISBN-13: 978-1-61729-920-9

E
very step in a software project involves making tradeoff s.
When you’re balancing speed, security, cost, delivery time,
features, and more, reasonable design choices may prove

problematic in production. Th e expert insights and relatable
war stories in this book will help you make good choices as
you design and build applications.

Software Mistakes and Tradeoffs explores real-world scenarios
where the wrong tradeoff decisions were made and illuminates
what could have been done diff erently. In it, authors Tomasz
Lelek and Jon Skeet share wisdom based on decades of soft-
ware engineering experience, including some delightfully
instructive mistakes. You’ll appreciate the specifi c tips and
practical techniques that accompany each example, along with
evergreen patterns that will change the way you approach your
next projects.

What’s Inside
● How to reason about your software systematically
● How to pick tools, libraries, and frameworks
● How tight and loose coupling aff ect team coordination
● Requirements that are precise, easy to implement,
 and easy to test

For mid- and senior-level developers and architects who make
decisions about software design and implementation.

Tomasz Lelek works daily with a wide range of production
services, architectures, and JVM languages. A Google engineer
and author of C# in Depth, Jon Skeet is famous for his many
practical contributions to Stack Overfl ow. .

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

Software Mistakes and Tradeoffs

SOFTWARE ENGINEERING

M A N N I N G

“Great book that I wish
I had earlier in my career.
Many hard-learned lessons

 contained in these pages.”—Dave Corun, Avanade

“Clear and to-the-point
summation of years of real-life

experience in software
engineering. A must-read for
all newcomers to the software

 engineering world.”—Rafael Avila Martinez
Mastercard

“Shines a light on the intrinsic
confl icts of the programming
process and how they impact

 the code you write.”—Roberto Casadei
Università di Bologna

“Summarizes the main pain
points for every software
developer and presents
solutions in a clear and

 didactic way.”
—Nelson González, General Electric

See first page

	Software Mistakes and Tradeoffs
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	liveBook discussion forum

	about the authors
	Tomasz Lelek
	Jon Skeet

	about the cover illustration
	1 Introduction
	1.1 Consequences of every decision and pattern
	1.1.1 Unit testing decisions
	1.1.2 Proportions of unit and integration tests

	1.2 Code design patterns and why they do not always work
	1.2.1 Measuring our code

	1.3 Architecture design patterns and why they do not always work
	1.3.1 Scalability and elasticity
	1.3.2 Development speed
	1.3.3 Complexity of microservices

	Summary

	2 Code duplication is not always bad: Code duplication vs. flexibility
	2.1 Common code between codebases and duplication
	2.1.1 Adding a new business requirement that requires code duplication
	2.1.2 Implementing the new business requirement
	2.1.3 Evaluating the result

	2.2 Libraries and sharing code between codebases
	2.2.1 Evaluating the tradeoffs and disadvantages of shared libraries
	2.2.2 Creating a shared library

	2.3 Code extraction to a separate microservice
	2.3.1 Looking at the tradeoffs and disadvantages of a separate service
	2.3.2 Conclusions about separate service

	2.4 Improving loose coupling by code duplication
	2.5 An API design with inheritance to reduce duplication
	2.5.1 Extracting a base request handler
	2.5.2 Looking at inheritance and tight coupling
	2.5.3 Looking at the tradeoffs between inheritance and composition
	2.5.4 Looking at inherent and incidental duplication

	Summary

	3 Exceptions vs. other patterns of handling errors in your code
	3.1 Hierarchy of exceptions
	3.1.1 Catch-all vs. a more granular approach to handling errors

	3.2 Best patterns to handle exceptions in the code that you own
	3.2.1 Handling checked exceptions in a public API
	3.2.2 Handling unchecked exceptions in a public API

	3.3 Anti-patterns in exception handling
	3.3.1 Closing resources in case of an error
	3.3.2 Anti-pattern of using exceptions to control application flow

	3.4 Exceptions from third-party libraries
	3.5 Exceptions in multithread environments
	3.5.1 Exceptions in an async workflow with a promise API

	3.6 Functional approach to handling errors with Try
	3.6.1 Using Try in production code
	3.6.2 Mixing Try with code that throws an exception

	3.7 Performance comparison of exception-handling code
	Summary

	4 Balancing flexibility and complexity
	4.1 A robust but not extensible API
	4.1.1 Designing a new component
	4.1.2 Starting with the most straightforward code

	4.2 Allowing clients to provide their own metrics framework
	4.3 Providing extensibility of your APIs via hooks
	4.3.1 Guarding against unpredictable usage of the hooks API
	4.3.2 Performance impact of the hook API

	4.4 Providing extensibility of your APIs via listeners
	4.4.1 Using listeners vs. hooks
	4.4.2 Immutability of our design

	4.5 Flexibility analysis of an API vs. the cost of maintenance
	Summary

	5 Premature optimization vs. optimizing the hot path: Decisions that impact code performance
	5.1 When premature optimization is evil
	5.1.1 Creating accounts processing pipeline
	5.1.2 Optimizing processing based on false assumptions
	5.1.3 Benchmarking performance optimization

	5.2 Hot paths in your code
	5.2.1 Understanding the Pareto principle in the context of software systems
	5.2.2 Configuring the number of concurrent users (threads) for a given SLA

	5.3 A word service with a potential hot path
	5.3.1 Getting the word of the day
	5.3.2 Validating if the word exists
	5.3.3 Exposing the WordsService using HTTP service

	5.4 Hot path detection in your code
	5.4.1 Creating API performance tests using Gatling
	5.4.2 Measuring code paths using MetricRegistry

	5.5 Improvements for hot path performance
	5.5.1 Creating JMH microbenchmark for the existing solution
	5.5.2 Optimizing word exists using a cache
	5.5.3 Modifying performance tests to have more input words

	Summary

	6 Simplicity vs. cost of maintenance for your API
	6.1 A base library used by other tools
	6.1.1 Creating a cloud service client
	6.1.2 Exploring authentication strategies
	6.1.3 Understanding the configuration mechanism

	6.2 Directly exposing settings of a dependent library
	6.2.1 Configuring the batch tool

	6.3 A tool that is abstracting settings of a dependent library
	6.3.1 Configuring the streaming tool

	6.4 Adding new setting for the cloud client library
	6.4.1 Adding a new setting to the batch tool
	6.4.2 Adding a new setting to the streaming tool
	6.4.3 Comparing both solutions for UX friendliness and maintainability

	6.5 Deprecating/removing a setting in the cloud client library
	6.5.1 Removing a setting from the batch tool
	6.5.2 Removing a setting from the streaming tool
	6.5.3 Comparing both solutions for UX friendliness and maintainability

	Summary

	7 Working effectively with date and time data
	7.1 Concepts in date and time information
	7.1.1 Machine time: Instants, epochs, and durations
	7.1.2 Civil time: Calendar systems, dates, times, and periods
	7.1.3 Time zones, UTC, and offsets from UTC
	7.1.4 Date and time concepts that hurt my head

	7.2 Preparing to work with date and time information
	7.2.1 Limiting your scope
	7.2.2 Clarifying date and time requirements
	7.2.3 Using the right libraries or packages

	7.3 Implementing date and time code
	7.3.1 Applying concepts consistently
	7.3.2 Improving testability by avoiding defaults
	7.3.3 Representing date and time values in text
	7.3.4 Explaining code with comments

	7.4 Corner cases to specify and test
	7.4.1 Calendar arithmetic
	7.4.2 Time zone transitions at midnight
	7.4.3 Handling ambiguous or skipped times
	7.4.4 Working with evolving time zone data

	Summary

	8 Leveraging data locality and memory of your machines
	8.1 What is data locality?
	8.1.1 Moving computations to data
	8.1.2 Scaling processing using data locality

	8.2 Data partitioning and splitting data
	8.2.1 Offline big data partitioning
	8.2.2 Partitioning vs. sharding
	8.2.3 Partitioning algorithms

	8.3 Join big data sets from multiple partitions
	8.3.1 Joining data within the same physical machine
	8.3.2 Joining that requires data movement
	8.3.3 Optimizing join leveraging broadcasting

	8.4 Data processing: Memory vs. disk
	8.4.1 Using disk-based processing
	8.4.2 Why do we need MapReduce?
	8.4.3 Calculating access times
	8.4.4 RAM-based processing

	8.5 Implement joins using Apache Spark
	8.5.1 Implementing a join without broadcast
	8.5.2 Implementing a join with broadcast

	Summary

	9 Third-party libraries: Libraries you use become your code
	9.1 Importing a library and taking full responsibility for its settings: Beware of the defaults
	9.2 Concurrency models and scalability
	9.2.1 Using async and sync APIs
	9.2.2 Distributed scalability

	9.3 Testability
	9.3.1 Testing library
	9.3.2 Testing with fakes (test double) and mocks
	9.3.3 Integration testing toolkit

	9.4 Dependencies of third-party libraries
	9.4.1 Avoiding version conflicts
	9.4.2 Too many dependencies

	9.5 Choosing and maintaining third-party dependencies
	9.5.1 First impressions
	9.5.2 Different approaches to reusing code
	9.5.3 Vendor lock-in
	9.5.4 Licensing
	9.5.5 Libraries vs. frameworks
	9.5.6 Security and updates
	9.5.7 Decision checklist

	Summary

	10 Consistency and atomicity in distributed systems
	10.1 At-least-once delivery of data sources
	10.1.1 Traffic between one-node services
	10.1.2 Retrying an application’s call
	10.1.3 Producing data and idempotency
	10.1.4 Understanding Command Query Responsibility Segregation (CQRS)

	10.2 A naive implementation of a deduplication library
	10.3 Common mistakes when implementing deduplication in distributed systems
	10.3.1 One node context
	10.3.2 Multiple nodes context

	10.4 Making your logic atomic to prevent race conditions
	Summary

	11 Delivery semantics in distributed systems
	11.1 Architecture of event-driven applications
	11.2 Producer and consumer applications based on Apache Kafka
	11.2.1 Looking at the Kafka consumer side
	11.2.2 Understanding the Kafka brokers setup

	11.3 The producer logic
	11.3.1 Choosing consistency vs. availability for the producer

	11.4 Consumer code and different delivery semantics
	11.4.1 Committing a consumer manually
	11.4.2 Restarting from the earliest or latest offsets
	11.4.3 (Effectively) exactly-once semantic

	11.5 Leveraging delivery guarantees to provide fault tolerance
	Summary

	12 Managing versioning and compatibility
	12.1 Versioning in the abstract
	12.1.1 Properties of versions
	12.1.2 Backward and forward compatibility
	12.1.3 Semantic versioning
	12.1.4 Marketing versions

	12.2 Versioning for libraries
	12.2.1 Source, binary, and semantic compatibility
	12.2.2 Dependency graphs and diamond dependencies
	12.2.3 Techniques for handling breaking changes
	12.2.4 Managing internal-only libraries

	12.3 Versioning for network APIs
	12.3.1 The context of network API calls
	12.3.2 Customer-friendly clarity
	12.3.3 Common versioning strategies
	12.3.4 Further versioning considerations

	12.4 Versioning for data storage
	12.4.1 A brief introduction to Protocol Buffers
	12.4.2 What is a breaking change?
	12.4.3 Migrating data within a storage system
	12.4.4 Expecting the unexpected
	12.4.5 Separating API and storage representations
	12.4.6 Evaluating storage formats

	Summary

	13 Keeping up to date with trends vs. cost of maintenance of your code
	13.1 When to use dependency injection frameworks
	13.1.1 Do-it-yourself (DIY) dependency injection
	13.1.2 Using a dependency injection framework

	13.2 When to use reactive programming
	13.2.1 Creating single-threaded, blocking processing
	13.2.2 Using CompletableFuture
	13.2.3 Implementing a reactive solution

	13.3 When to use functional programming
	13.3.1 Creating functional code in a nonfunctional language
	13.3.2 Tail recursion optimization
	13.3.3 Leveraging immutability

	13.4 Using lazy vs. eager evaluation
	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

