
SQL Antipatterns, Volume 1

Avoiding the Pitfalls of Database Programming

by Bill Karwin

Version: P1.0 (November 2022)

Copyright © 2022 The Pragmatic Programmers, LLC.
 This book is licensed to
 the individual who purchased it. We don't copy-protect it
 because that would limit your ability to use it for your
 own purposes. Please don't break this trust—you can use
 this across all of your devices but please do not share this copy
 with other members of your team, with friends, or via
 file sharing services. Thanks.

 Many of the designations used by manufacturers and
 sellers to distinguish their products are claimed as
 trademarks. Where those designations appear in this book,
 and The Pragmatic Programmers, LLC was aware of a
 trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic
 Starter Kit, The Pragmatic Programmer, Pragmatic
 Programming, Pragmatic Bookshelf and the linking g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this book.
 However, the publisher assumes no responsibility for errors
 or omissions, or for damages that may result from the use
 of information (including program listings) contained
 herein.

About the Pragmatic Bookshelf

 The Pragmatic Bookshelf is an agile publishing company.
 We’re here because we want to improve the lives of developers.
 We do this by creating timely, practical titles, written by programmers for programmers.

 Our Pragmatic courses, workshops, and other products can
 help you and your team create better software and have more
 fun. For more information, as well as the latest Pragmatic
 titles, please visit us at http://pragprog.com.

 Our ebooks do not contain any Digital Restrictions
 Management, and have always been DRM-free. We pioneered the
 beta book concept, where you can purchase and read a book
 while it’s still being written, and provide feedback to the
 author to help make a better book for everyone. Free
 resources for all purchasers include source code downloads
 (if applicable), errata and discussion forums, all
 available on the book's home page at pragprog.com. We’re
 here to make your life easier.

New Book Announcements

 Want to keep up on our latest titles and announcements, and
 occasional special offers? Just create an account on
 pragprog.com (an email address and a password is all it takes)
 and select the checkbox to receive newsletters. You can
 also follow us on twitter as @pragprog.

About Ebook Formats

 If you buy directly from
 pragprog.com, you get
 ebooks in all available formats for one price. You can
 synch your ebooks amongst all your devices (including
 iPhone/iPad, Android, laptops, etc.) via Dropbox.
 You get free updates for the life of the edition. And, of
 course, you can always come back and re-download your books
 when needed. Ebooks bought from the Amazon Kindle store are
 subject to Amazon's polices. Limitations in Amazon's file
 format may cause ebooks to display differently on different
 devices. For more information, please see our FAQ at
 pragprog.com/#about-ebooks. To learn
 more about this book and access the free resources, go to
 https://pragprog.com/book/bksap1, the book's homepage.

 Thanks for your continued support,

 The Pragmatic Bookshelf

The team that produced this book includes: Dave Rankin (CEO)Janet Furlow (COO)Tammy Coron (Managing Editor)Jacquelyn Carter (Development Editor)Karen Galle (Copy Editor)Potomac Indexing, LLC (Indexing)Gilson Graphics (Layout)Andy Hunt and Dave Thomas (Founders)

 For customer support, please contact
 support@pragprog.com.

 For international rights, please contact
 rights@pragprog.com.

 To my wife Jan, my best supporter.

Table of Contents
	 Acknowledgments
	 Introduction	Notes on the Second Edition
	Who This Book Is For
	About This Book
	Conventions
	Online Resources

	1. What’s an Antipattern?	Types of Antipatterns
	Anatomy of an Antipattern
	Entity-Relationship Diagrams
	Example Database

	Part I. Logical Database Design Antipatterns	2. Jaywalking	Objective: Store Multivalue Attributes
	Antipattern: Format Comma-Separated Lists
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Create an Intersection Table
	Mini-Antipattern: Splitting CSV Into Rows

	3. Naive Trees	Objective: Store and Query Hierarchies
	Antipattern: Always Depend on One’s Parent
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use Alternative Tree Models
	Mini-Antipattern: It Works on My Computer

	4. ID Required	Objective: Establish Primary Key Conventions
	Antipattern: One Size Fits All
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Tailored to Fit
	Mini-Antipattern: Is a BIGINT Big Enough?

	5. Keyless Entry	Objective: Simplify Database Architecture
	Antipattern: Leave Out the Constraints
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Declare Constraints

	6. Entity-Attribute-Value	Objective: Support Variable Attributes
	Antipattern: Use a Generic Attribute Table
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Model the Subtypes

	7. Polymorphic Associations	Objective: Reference Multiple Parents
	Antipattern: Use Dual-Purpose Foreign Key
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Simplify the Relationship

	8. Multicolumn Attributes	Objective: Store Multivalue Attributes
	Antipattern: Create Multiple Columns
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Create Dependent Table
	Mini-Antipattern: Storing Prices

	9. Metadata Tribbles	Objective: Support Scalability
	Antipattern: Clone Tables or Columns
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Partition and Normalize

	Part II. Physical Database Design Antipatterns	10. Rounding Errors	Objective: Use Fractional Numbers Instead of Integers
	Antipattern: Use FLOAT Data Type
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use NUMERIC Data Type

	11. 31 Flavors	Objective: Restrict a Column to Specific Values
	Antipattern: Specify Values in the Column Definition
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Specify Values in Data
	Mini-Antipattern: Reserved Words

	12. Phantom Files	Objective: Store Images or Other Bulky Media
	Antipattern: Assume You Must Use Files
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use BLOB Data Types As Needed

	13. Index Shotgun	Objective: Optimize Performance
	Antipattern: Using Indexes Without a Plan
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: MENTOR Your Indexes
	Mini-Antipattern: Indexing Every Column

	Part III. Query Antipatterns	14. Fear of the Unknown	Objective: Distinguish Missing Values
	Antipattern: Use Null as an Ordinary Value, or Vice Versa
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use Null as a Unique Value
	Mini-Antipattern: NOT IN (NULL)

	15. Ambiguous Groups	Objective: Get Row with Greatest Value per Group
	Antipattern: Reference Nongrouped Columns
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use Columns Unambiguously
	Mini-Antipattern: Portable SQL

	16. Random Selection	Objective: Fetch a Sample Row
	Antipattern: Sort Data Randomly
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: In No Particular Order…
	Mini-Antipattern: Query for Multiple Random Rows

	17. Poor Man’s Search Engine	Objective: Full-Text Search
	Antipattern: Pattern Matching Predicates
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Use the Right Tool for the Job

	18. Spaghetti Query	Objective: Decrease SQL Queries
	Antipattern: Solve a Complex Problem in One Step
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Divide and Conquer

	19. Implicit Columns	Objective: Reduce Typing
	Antipattern: A Shortcut That Gets You Lost
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Name Columns Explicitly

	Part IV. Application Development Antipatterns	20. Readable Passwords	Objective: Recover or Reset Passwords
	Antipattern: Store Password in Plain Text
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Store a Salted Hash of the Password
	Mini-Antipattern: Storing Hash Strings in VARCHAR

	21. SQL Injection	Objective: Write Dynamic SQL Queries
	Antipattern: Execute Unverified Input As Code
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Trust No One
	Mini-Antipattern: Query Parameters inside Quotes

	22. Pseudokey Neat-Freak	Objective: Tidy Up the Data
	Antipattern: Filling in the Corners
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Get Over It
	Mini-Antipattern: Auto-Increment per Group

	23. See No Evil	Objective: Write Less Code
	Antipattern: Making Bricks Without Straw
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Recover from Errors Gracefully
	Mini-Antipattern: Reading Syntax Error Messages

	24. Diplomatic Immunity	Objective: Employ Best Practices
	Antipattern: Make SQL a Second-Class Citizen
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Establish a Big-Tent Culture of Quality
	Mini-Antipattern: Renaming Things

	25. Standard Operating Procedures	Objective: Use Stored Procedures
	Antipattern: Follow the Leader
	How to Recognize the Antipattern
	Legitimate Uses of the Antipattern
	Solution: Adopt Modern Application Architecture
	Mini-Antipattern: Stored Procedures in MySQL

	Part V. Bonus: More Foreign Key Mini-Antipatterns	26. Foreign Key Mistakes in Standard SQL	Reversing the Direction of Reference
	Referencing Tables Before They Have Been Created
	Referencing No Key of the Parent Table
	Creating Separate Constraints for Each Column in a Compound Key
	Using the Wrong Column Order
	Using Mismatched Data Types
	Using Mismatched Character Collations
	Creating Orphan Data
	Using the SET NULL Option for Non-Nullable Columns
	Making Duplicate Constraint Identifiers
	Using Incompatible Table Types

	27. Foreign Key Mistakes in MySQL	Using Incompatible Storage Engines
	Using Large Data Types
	MySQL Foreign Keys to Non-Unique Indexes
	Using Inline References Syntax
	Using Default References Syntax
	Using Incompatible Table Types in MySQL

	A1. Rules of Normalization	What Does Relational Mean?
	Myths About Normalization
	What Is Normalization?
	Common Sense

	 Bibliography

Copyright © 2022, The Pragmatic Bookshelf.

 Early praise for SQL Antipatterns, Volume 1

	A unique and brilliant book addressing the often overlooked craft of database programming. With clear examples and solid advice, the book takes the reader on a tour of antipatterns, some of which can severely impact your database performance or even your development flows. A great read and recommended for developers of all levels of experience.

	→ 	Shlomi Noach
	
	Database Engineer, PlanetScale

 You must read this book if you develop with SQL. With clarity and thoroughness, Bill explains a wealth of knowledge and solutions that will significantly advance your proficiency with SQL.

	→ 	Daniel Nichter
	
	DBA, author of Efficient MySQL Performance, Block Inc.

 I wish I had this book when I was first starting out. There are so many antipatterns in the book that had me shaking my head about my past mistakes. If only I had known.

	→ 	Samuel Mullen
	
	Senior Manager of Engineering, ActiveProspect

 Chock full of useful techniques. Whether you’re a novice or a veteran, you’re sure to learn something new from this book. I did.

	→ 	Steven Grimm
	
	Technical Lead, Terraformation

 This is a great book for SQL beginners, and it continues to be a useful reference whenever one of the antipatterns comes up. I love the “See No Evil” and “Diplomatic Immunity” chapters. They are perfect for someone trying to improve an engineering team’s practices.

	→ 	Max Tilford
	
	Senior Software Engineer, Firstup

 SQL Antipatterns by Bill Karwin is not only one of the best database books I’ve read. But also one of the best technical books I’ve read period. I have legitimately read it three times cover to cover and the things I’ve learnt from it help me everyday at work.

	→ 	Pim Brouwers
	
	Senior Software Architect, National Hockey League Player’s Association

	Bill Karwin does a great job of identifying the most common antipatterns in several aspects of working with databases, and provides clear advice for identifying these patterns and how to get away from them. If a person finds themselves designing databases or queries, that person should consider reading this book to ensure best practices are being followed.

	→ 	Alex Ostrem
	
	Database Reliability and Software Engineer, Etsy

 Even for someone who is not a trained programmer, SQL Antipatterns provides a great foundation by focusing on how and why some programming approaches fail and by giving clear, narrative explanations and specific coding examples of better solutions.

	→ 	Jennifer Pesek
	
	Reference Librarian

Acknowledgments

 Many people helped me along the path to learn enough to write this book.

 My parents recognized my passion for computer science when I was a teenager, and they sacrificed to get me a personal computer at a time when those were not common.
 Also thanks to my parents and my grandfather, I got my education at the University of California.

 Many professors showed me the traditional computer science theory and practice,
 but I want to thank two in particular: Dr. Kevin Karplus and Dr. Dan Scripture.
 They created a class I took on Technical Writing, which showed me how important it is to practice writing in a field that requires so much care to communicate complex ideas.

 I’ve been inspired by many managers and colleagues.
 Keith Reynolds gave me some early C code projects, which taught me that the practice of programming is mostly working on other people’s code.
 David Bredenberg inspired me by his example to spend time helping other software developers.
 Rhea Barron’s coaching took my technical writing to a new level.

 I’m honored that the following technical reviewers offered their time for the second edition of this book:
 Ronald Bradford,
 Jean-François Gagné,
 Steven Grimm,
 Samuel Mullen,
 Alex Ostrum,
 Jennifer Pesek,
 Max Tilford,
 and
 Pim van der Wal.
 All their feedback made the book better. Thank you!

 I also thank the numerous people who have given positive reviews and feedback since the first edition of my book was published.

 My deepest thanks to my wife Jan Dwyer, who is an accomplished writer and a database developer in her own right.
 She was the first reviewer of every draft of both editions of this book.
 Her contributions and perspective have been invaluable, but her consistent support, encouragement, and inspiration were what made me able to finish this project.

Copyright © 2022, The Pragmatic Bookshelf.

Introduction

 This book is about SQL, the popular language programmers use
 for data.
 Specifically, it’s about the worst ways to use SQL.

 Everyone makes mistakes, but experts try to learn from their
 mistakes, turning them into opportunities to improve their
 skills.
 You’ll become a better software developer by studying the most
 common errors made by other developers, and how to fix them.

 My first encounter with SQL involved turning down a job.
 I had just finished college, and I had been approached by a
 manager who worked at the university and knew me through campus
 activities.
 He had an idea for his own software startup company, and he
 wanted to develop a database management system portable between
 various UNIX platforms using shell scripts.
 He needed a programmer like me to write the code to recognize
 and execute a limited version of the SQL language.

 He said, “I don’t need to support the full language—that would
 be too much work. I need only one SQL statement: SELECT.”

 I hadn’t been taught SQL in any of my college classes.
 But I had developed complete applications in shell, and I knew
 a little about parsers and domain-specific languages.
 So, I thought about taking the job.
 How hard could it be to parse a single statement of a specialized
 language like SQL?

 As I started to read about SQL, I noticed immediately that
 this was a different sort of language from those I had used
 before.
 To call SELECT only one statement in that language is
 like calling an engine only one part of an automobile.
 Both statements are true enough, but they certainly belie the
 complexity and depth of their subjects.
 To support execution of that single SQL statement, I realized
 I would have to develop a fully functional relational database
 management system and query engine.
 I could tell it would take years for an experienced developer
 to do that, and I was still too junior to take on a big project
 like that by myself.

 I declined this opportunity to code an SQL parser and RDBMS
 engine in shell script.
 The manager had underestimated the scope of his project, perhaps
 because he didn’t understand what an RDBMS does.

 My early experience with SQL seems to be a common one.
 Most developers are self-taught in SQL, learning it out of
 self-defense when they find themselves working on a project
 that requires it.
 Whether the person is a hobbyist or a professional
 programmer or an accomplished researcher with a PhD, SQL is a
 language that tends to be used by programmers without training.
 This leads to many common mistakes being made over and over.

Notes on the Second Edition

 Since writing the first edition of this book, I’ve worked
 as an SQL consultant, trainer, developer, and database administrator.
 I’ve visited dozens of companies in all sorts of fields of
 business, all of which use SQL.
 I’ve talked with other expert developers and database administrators
 at conferences and meetups, hearing about their successes and
 failures.

 All software developers still work with data, no
 matter what language or system they use, and SQL is still
 the dominant language used for data.
 Since the software development field in general keeps growing,
 the number of software developers using SQL is always increasing,
 even as alternative database technologies are also gaining popularity.

 The second edition of SQL Antipatterns
 is updated with the latest observations about common mistakes
 of SQL and data-driven application development.
 Feedback about the first edition has been addressed.
 Internet resources are updated to reference current sites and
 the latest information.

 A number of all-new “mini-antipatterns” appear in between
 the existing chapters.
 These briefly cover all-new types of blunders and describe
 “quick wins” you can use to avoid them.

 The code examples are updated to be compatible with the latest
 versions of MySQL and Python, the most popular open source
 database and dynamic programming language in today’s technology
 market.

Who This Book Is For

 SQL Antipatterns is for any software
 developer who needs to use SQL—which is virtually all software
 developers.
 It doesn’t matter whether you’re a beginner or a seasoned
 professional.
 People at all levels of experience will benefit from the
 subjects in this book.

 You may have read a reference on SQL syntax.
 Now you know all the clauses of a SELECT statement,
 and you can get some work done.
 Gradually, you increase your SQL skills by reading code,
 books, and blogs.
 In spite of this, it’s hard to tell if you’re learning best practices,
 or another way to paint yourself into a corner.

 You may find some topics in SQL Antipatterns
 that are well known to you.
 You’ll see new ways of looking at the problems, even if you’re already
 aware of the solutions.
 It’s good to reinforce your good practices by reviewing
 widespread programmer misconceptions, and the reasons we avoid them.

 It’s not uncommon for the relationship between developers and
 database administrators to be contentious.
 If you’re a DBA, this book can help you explain good practices
 to the software developers you work with and the consequences
 of straying from that path.

About This Book

 There are plenty of books and internet resources for the
 basics of the SQL language, so this book assumes the reader
 has learned enough SQL syntax already to use the language and
 get some work done.

 Performance, scalability, and optimization are important
 topics for database-driven applications, especially on the
 web, but it’s not the main focus of this book.
 Recommended books specifically about performance and scalability include
 SQL Performance Tuning [GP03],
 High Performance MySQL, 4th Edition [BT21],
 Efficient MySQL Performance [Nic21], and
 Effective MySQL Optimizing SQL Statements [Bra11].

 Every brand of SQL database product has its own tools and
 commands, but this book is not a command reference or a
 collection of recipes.

 Data access frameworks and object-relational mapping libraries
 are helpful tools, but these aren’t the focus of this book
 either.

 Database administration and operation tasks such as server
 sizing, capacity planning, installation and configuration,
 monitoring, backups, log analysis, and security are important
 and deserve a book of their own.

Conventions

 The following sections describe some conventions in this book.

Typography

	SQL keywords are formatted in all-capitals and in a monospaced font to make them stand out from
	the text, as in SELECT.

	SQL tables, also in a monospaced font, are spelled with a capital for the initial letter of each
	word in the table name, as in Accounts or
	BugsProducts.
	SQL columns, also in a monospaced font, are spelled in lowercase, and words are separated by
	underscores, as in account_name.

	Literal strings are formatted in italics, as in bill@example.com.

Terminology

	SQL is pronounced “ess-cue-ell,” not “see-quell.”
	Both usages are common enough that everyone will know what you mean.
	In this book, the former is used.
	You will read phrases like “an SQL query,” not “a SQL query.”

	In this book, the plural of index is indexes.
	In other contexts, it may be pluralized as indices.
	Both are correct according to most dictionaries.

	In SQL, the terms query and
	statement are somewhat interchangeable, being any
	complete SQL command that you can execute.
	In this book, for the sake of clarity, query
	refers to SELECT statements and statement
	for all others.

Online Resources

 The examples and source code shown in this book are
 under the source code link on the
 Pragmatic Bookshelf website.[1]
 You can also report any errors or suggestions using the errata link
 on the same site.

 If you like this book and it serves you well, I hope that you
 will let others know about it—your reviews really do help.
 Tweets and posts are a great way to help spread the word.
 You can find me on Twitter at @billkarwin, or you can tweet
 @pragprog directly.

Bill Karwin
October 2022

Footnotes

	[1]
	
https://pragprog.com/book/bksap1

Copyright © 2022, The Pragmatic Bookshelf.

	An expert is a person who has made all the mistakes that can be made in
	a very narrow field.

Niels Bohr

 Chapter
 1
What’s an Antipattern?

 An antipattern is a technique that
 is intended to solve a problem but that often leads to other problems.
 An antipattern is practiced widely in different ways, but with a
 thread of commonality.
 People may come up with an idea that fits an antipattern independently
 or with help from a colleague, a book, or an article.
 Many antipatterns of object-oriented software design and project
 management are documented at the Portland Pattern
 Repository,[2]
 as well as in the 1998 book AntiPatterns [BMMM98].

 SQL Antipatterns describes the
 most frequent missteps software developers naively make while using
 SQL. I have talked to them in technical support and training sessions,
 worked alongside them developing software, and answered their questions
 on internet forums. Many of these blunders I’ve made myself; there’s no
 better teacher than spending many hours late at night making up for one’s
 own errors.

Types of Antipatterns

 This book has four parts for the following categories of antipatterns:

	Logical Database Design Antipatterns
	

 Before you start coding, you should decide what information you
 need to keep in your database and the best way to organize and
 interconnect your data.
 This includes planning database tables, columns, and
 relationships.

	Physical Database Design Antipatterns
	

 After you know what data you need to store, you implement
 the data management as efficiently as you can using
 the features of your RDBMS technology.
 This includes defining tables and indexes and choosing data types.
 You use SQL’s data definition
 language—statements such as
 CREATE TABLE.

	Query Antipatterns
	

 You need to add data to your database and then retrieve data.
 SQL queries are made with data manipulation
 language—statements such as
 SELECT,
 UPDATE, and
 DELETE.

	Application Development Antipatterns
	

 SQL is supposed to be used in the context of applications written
 in another language, such as C++, Java, PHP, Python, or Ruby.
 There are right ways and wrong ways to employ SQL in an application,
 and this part of the book describes some common blunders.

 There are many other antipatterns related to general software development or operations, but this book focuses on the SQL language.

 In addition, you’ll find mini-antipatterns
 throughout the book, between chapters.
 These cover other mistakes commonly made by developers using SQL.
 Mini-antipatterns are covered more briefly than the main
 antipatterns.

 Many of the antipattern chapters have humorous or evocative titles.
 It’s traditional to give both positive design patterns and antipatterns
 names that serve as a metaphor or mnemonic.

 The appendix provides practical descriptions of some relational
 database theory. Many of the antipatterns this book covers are the
 result of misunderstanding database theory.

Anatomy of an Antipattern

 Each antipattern chapter contains the following subheadings:

	Objective
	

	
	 This is the task that you may be trying to solve. Antipatterns are
	 used with an intention to provide that solution but end up causing
	 more problems than they solve.
	

	The Antipattern
	

	 This section describes the nature of the common solution and
	 illustrates the unforeseen consequences that make it an antipattern.
	

	How to Recognize the Antipattern
	

	
	 There may be certain clues that help you identify when an
	 antipattern is being used in your project. Certain types of
	 barriers you encounter, or quotes you may hear yourself or others
	 saying, can tip you off to the presence of an antipattern.
	

	Legitimate Uses of the Antipattern
	

	
	 Rules usually have exceptions. There may be
	 circumstances in which an approach normally considered an antipattern
	 is nevertheless appropriate, or at least the lesser of all evils.
	

	Solution
	

	 This section describes the preferred solutions, which solve the
	 original objective without running into the problems caused by the
	 antipattern.
	

Entity-Relationship Diagrams

 The most common way to diagram relational databases is with
 entity-relationship diagrams. Tables are shown as
 boxes, and relationships are shown as lines connecting the boxes, with
 symbols at either end of the lines describing the cardinality of the
 relationship. The following are examples of entity-relationship diagrams:

[image: images/Introduction/erd-examples.png]

Example Database

 Most of the topics in SQL Antipatterns
 are illustrated using a database for a hypothetical bug-tracking
 application.

 The following data definition language shows the tables defined in SQL.
 In some cases, choices are made for the sake of examples later in the book,
 so they might not always be the choices one would make in a real-world
 application. Examples use only standard SQL so they are applicable
 to any brand of database, but some MySQL data types also appear, such as
 SERIAL and BIGINT.

Introduction/setup.sql
	 	CREATE TABLE Accounts (
	 	 account_id SERIAL PRIMARY KEY,
	 	 account_name VARCHAR(20),
	 	 first_name VARCHAR(20),
	 	 last_name VARCHAR(20),
	 	 email VARCHAR(100),
	 	 password_hash CHAR(64),
	 	 portrait_image BLOB,
	 	 hourly_rate NUMERIC(9,2)
);
	 	
	 	CREATE TABLE BugStatus (
	 	 status VARCHAR(20) PRIMARY KEY
);
	 	
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 date_reported DATE NOT NULL DEFAULT (CURDATE()),
	 	 summary VARCHAR(80),
	 	 description VARCHAR(1000),
	 	 resolution VARCHAR(1000),
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 assigned_to BIGINT UNSIGNED,
	 	 verified_by BIGINT UNSIGNED,
	 	 status VARCHAR(20) NOT NULL DEFAULT 'NEW',
	 	 priority VARCHAR(20),
	 	 hours NUMERIC(9,2),
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (verified_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (status) REFERENCES BugStatus(status)
);
	 	
	 	
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 author BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
	 	 comment TEXT NOT NULL,
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (author) REFERENCES Accounts(account_id)
);
	 	
	 	CREATE TABLE Screenshots (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 image_id BIGINT UNSIGNED NOT NULL,
	 	 screenshot_image BLOB,
	 	 caption VARCHAR(100),
	 	 PRIMARY KEY (bug_id, image_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);
	 	
	 	CREATE TABLE Tags (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 tag VARCHAR(20) NOT NULL,
	 	 PRIMARY KEY (bug_id, tag),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);
	 	
	 	CREATE TABLE Products (
	 	 product_id SERIAL PRIMARY KEY,
	 	 product_name VARCHAR(50)
);
	 	
	 	CREATE TABLE BugsProducts(
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (bug_id, product_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

 Here is the entity-relationship diagram for the example bug database:

[image: images/Introduction/bugs-model.png]

 In some chapters, especially those in Logical Database Design Antipatterns,
 different database definitions appear, either to exhibit an antipattern
 or to show an alternative solution that avoids the antipattern.

 This chapter has introduced antipatterns and you now know their field marks.
 Next we’ll dive into studying each antipattern and the trouble they cause.

Footnotes

	[2]
	
https://wiki.c2.com/?AntiPattern

Copyright © 2022, The Pragmatic Bookshelf.

Part 1
Logical Database Design Antipatterns

	 Before you start coding, you should decide what information you
	 need to keep in your database and the best way to organize and
	 interconnect your data.
	 This includes planning database tables, columns, and
	 relationships.
	

	A Netscape engineer who shan’t be named once passed a pointer to
	JavaScript, stored it as a string, and later passed it back to C,
	killing 30.

Blake Ross

 Chapter
 2
Jaywalking

 You’re developing a feature in the bug-tracking application
 to designate a user as the primary contact for a product.
 Your original design allowed only one user to be the contact for
 each product. However, it was no surprise when you were requested to
 support assigning multiple users as contacts for a given product.

 At the time, it seemed simple to change the database to store a list of
 user account identifiers separated by commas, instead of the single
 identifier it used before.

 Soon your boss approaches you with a problem. “The engineering
 department has been adding associate staff to their projects. They tell me
 they can add five people only. If they try to add more, they get an
 error. What’s going on?”

 You nod, “Yeah, you can only list so many people on a project,”
 as though this is completely ordinary.

 Sensing that your boss needs a
 more precise explanation, “Well, five to ten—maybe a few more. It
 depends on how old each person’s account is.” Now your boss raises
 his eyebrows. You continue, “I store the account IDs for a project
 in a comma-separated list. The list of IDs has to fit in a string
 with a maximum length. If the account IDs are short, I can fit more in
 the list. So, people who created the earlier accounts have an ID of 99 or
 less, and those are shorter.”

 Your boss frowns. You have a feeling you’re going to be staying late.

 Programmers commonly use comma-separated lists to avoid creating an
 intersection table for a many-to-many relationship. This
 antipattern is called Jaywalking, because jaywalking is also an act of
 avoiding an intersection.

Objective: Store Multivalue Attributes

 When a column in a table has a single value, the design is
 straightforward: you can choose an SQL data type to represent a single
 instance of that value, for example an integer, date, or string.
 It’s not clear how you store a collection of related values in a column.

 In the example bug-tracking database, you might associate a product with a
 contact using an integer column in the Products table.
 Each account may have many products, and each product references
 one contact, so there’s a many-to-one relationship
 between products and accounts.

Jaywalking/obj/create.sql
	 	CREATE TABLE Products (
	 	 product_id SERIAL PRIMARY KEY,
	 	 product_name VARCHAR(1000),
	 	 account_id BIGINT UNSIGNED,
	 	 -- . . .
	 	 FOREIGN KEY (account_id) REFERENCES Accounts(account_id)
);
	 	
	 	INSERT INTO Products (product_id, product_name, account_id)
	 	VALUES (DEFAULT, 'Visual TurboBuilder', 12);

 As your project matures, you realize that a product might have
 multiple contacts.
 In addition to the many-to-one relationship, you also need to support a
 one-to-many relationship from products to accounts.
 One row in the Products table must be able to
 have more than one contact.

Antipattern: Format Comma-Separated Lists

 To minimize changes to the database structure,
 you decide to redefine
 the account_id column as a
 VARCHAR so you can list multiple account
 IDs in that column, separated by commas.

Jaywalking/anti/create.sql
	 	CREATE TABLE Products (
	 	 product_id SERIAL PRIMARY KEY,
	 	 product_name VARCHAR(1000),
	 	 account_id VARCHAR(100), -- comma-separated list
	 	 -- . . .
);
	 	
	 	INSERT INTO Products (product_id, product_name, account_id)
	 	VALUES (DEFAULT, 'Visual TurboBuilder', '12,34');

 This seems like a win, because you’ve created no additional tables or
 columns; you’ve changed the data type of only one column.
 However, let’s look at the performance and data integrity
 problems this table design suffers from.

Querying Products for a Specific Account

	Queries are difficult if all the foreign keys are combined into a single
	field.
You can no longer use equality; instead, you have to use a test
	against some kind of pattern. For example, MySQL lets you write
	something like the following to find all the products for account
	12:

Jaywalking/anti/regexp.sql
	 	SELECT * FROM Products WHERE account_id REGEXP '\\b12\\b';

	Pattern-matching expressions may return false matches. Performance
	is poor because the matching can’t benefit from indexes.
	Since pattern-matching syntax is different
	in each database brand, your SQL code isn’t vendor neutral.

Querying Accounts for a Given Product

 Likewise, it’s awkward and slow to join a comma-separated list to
 matching rows in the referenced table.

Jaywalking/anti/regexp.sql
	 	SELECT * FROM Products AS p JOIN Accounts AS a
	 	 ON p.account_id REGEXP '\\b' || a.account_id || '\\b'
	 	WHERE p.product_id = 123;

 Joining two tables using an expression like this one spoils any
	chance of using indexes, so again the performance will suffer.
	The query must scan through both tables,
	generate a cross product, and evaluate the regular expression for
	every combination of rows.

Making Aggregate Queries

	Aggregate queries use functions like COUNT,
	SUM, and AVG.
	However, these functions are designed to be used over groups of rows, not
	comma-separated lists.
	You have to resort to tricks, like calculating the length of the string of comma-separated values minus the length of that string with the commas removed.
	This can be used to count the elements in the list.

Jaywalking/anti/count.sql
	 	SELECT product_id,
	 	 LENGTH(account_id) - LENGTH(REPLACE(account_id, ',', '')) + 1
	 	 AS contacts_per_product
	 	FROM Products;

	Tricks like this can be clever but never clear.
	These kinds of solutions are time consuming to develop and hard to
	debug. Some aggregate queries can’t be accomplished with tricks at
	all.

Updating Accounts for a Specific Product

	You can add a new ID to the end of the list with string concatenation,
	but this might not leave the list in sorted order.

Jaywalking/anti/update.sql
	 	UPDATE Products
	 	SET account_id = account_id || ',' || 56
	 	WHERE product_id = 123;

	To remove an item from the list, you have to run two SQL queries:
	one to fetch the old list and a second to save the updated list.

Jaywalking/anti/remove.py
	 	import mysql.connector
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	 	product_id_to_search = 2
	 	value_to_remove = '34'
	 	
	 	query = "SELECT product_id, account_id FROM Products WHERE product_id = %s"
	 	cursor.execute(query, (product_id_to_search,))
	 	for (row) in cursor:
	 	 (product_id, account_ids) = row
	 	 account_id_list = account_ids.split(",")
	 	 account_id_list.remove(value_to_remove)
	 	 account_ids = ",".join(account_id_list)
	 	 query = "UPDATE Products SET account_id = %s WHERE product_id = %s"
	 	 cursor.execute(query, (account_ids, product_id,))
	 	
	 	cnx.commit()

	That’s quite a lot of code just to remove an entry from a list.

Validating Product IDs

	What prevents a user from entering invalid entries like
	banana?
Jaywalking/anti/banana.sql
	 	INSERT INTO Products (product_id, product_name, account_id)
	 	VALUES (DEFAULT, 'Visual TurboBuilder', '12,34,banana');

	Users will find a way to enter any and all variations, and your
	database will turn to mush. There won’t necessarily be database
	errors, but the data will be nonsense.

	Even if the values are at least integers, you can’t be sure they are integers that
	occur in the Accounts table. The standard way
	to ensure this is to use a foreign key constraint, but foreign keys
	can only validate the whole column, not individual elements in a list.

Choosing a Separator Character

	If you store a list of string values instead of integers, some list
	entries may contain your separator character. Using a comma as the
	separator between entries may become ambiguous. You can choose
	a different character as the separator, but you can’t guarantee that
	this new separator will never appear in an entry.

List Length Limitations

	How many list entries can you store in a VARCHAR(30) column?
	It depends on the length of each entry.
	If each entry is two characters long, then you can store ten (including
	the commas).
	If each entry is six characters, then you can store only four
	entries:

Jaywalking/anti/length.sql
	 	UPDATE Products SET account_id = '10,14,18,22,26,30,34,38,42,46'
	 	WHERE product_id = 123;
	 	
	 	UPDATE Products SET account_id = '101418,222630,343842,467790'
	 	WHERE product_id = 123;

	How can you know that VARCHAR(30) supports
	the longest list you will need in the future? How long is long enough?
	Try explaining the reason for this length limit to your boss or to
	your customers.

How to Recognize the Antipattern

 If you hear phrases like the following spoken by your project team,
 treat it as a clue that the Jaywalking antipattern is being employed:
	

	“What is the greatest number of entries this list must support?”

	This question comes up when you’re trying to choose the maximum length
	of the VARCHAR column.

	

	“Do you know how to match a word boundary in SQL?”

	If you use regular expressions to pick out parts of a string,
	this could be a clue that you should store those parts separately.

	

	“What character will never appear in any list entry?”

 You want to use an unambiguous separator character, but you should
	expect that any character might someday appear in a value in the list.

Legitimate Uses of the Antipattern

 You might improve performance for some kinds of queries by applying
 denormalization to your database organization.
 Storing lists as a comma-separated string is an example of
 denormalization.

 Your application may need the data in a comma-separated format and have
 no need to access individual items in the list. Likewise, if your
 application receives a comma-separated format from another source and you
 simply need to store the full list in a database and retrieve it later in
 exactly the same format, there’s no need to separate the values.

 Be conservative if you decide to employ denormalization. Start by using a
 normalized database organization, because it permits your application code
 to be more flexible, and it allows your database to help preserve data
 integrity.

 Some brands of SQL database products extend SQL data types with some kind of array type.
 PostgreSQL, Oracle, IBM DB2, and Informix each have some kind of array support.
 Depending on the implementation, they mitigate some of the difficulties described earlier in this chapter.
 For example you may specify the scalar data type of the array elements.
 But they won’t solve all of the problems.
 They are complex to use, and you have to study how they work in each brand of SQL.

Solution: Create an Intersection Table

 Instead of storing the account_id in the
 Products table, store it in a separate table,
 so each individual value of that attribute occupies a separate row.
 This new table Contacts implements a
 many-to-many relationship between
 Products and Accounts:

Jaywalking/soln/create.sql
	 	CREATE TABLE Contacts (
	 	 product_id BIGINT UNSIGNED NOT NULL,
	 	 account_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (product_id, account_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id),
	 	 FOREIGN KEY (account_id) REFERENCES Accounts(account_id)
);
	 	
	 	INSERT INTO Contacts (product_id, account_id)
	 	VALUES (123, 12), (123, 34), (345, 23), (567, 12), (567, 34);

 When the table has foreign keys referencing two tables, it’s
 called an intersection table.
 Some people use a join table, a many-to-many table, a mapping table, or
 other terms to describe this table. The name doesn’t matter; the concept is the same.
 This implements a many-to-many relationship between the
 two referenced tables. That is, each product may be associated through the
 intersection table to multiple accounts, and likewise each account may be
 associated to multiple products. Here’s a diagram of the entity relationship:

[image: images/Jaywalking/intersection-table.png]

 An intersection table resolves all the problems
 in the “Antipattern” section.

Querying Products by Account and the Other Way Around

 To query the attributes of all products for a given account,
 it’s more straightforward to join the Products
 table with the Contacts table:

Jaywalking/soln/join.sql
	 	SELECT p.*
	 	FROM Products AS p JOIN Contacts AS c ON (p.product_id = c.product_id)
	 	WHERE c.account_id = 34;

 Some people resist queries that contain a join, thinking that they
 perform poorly. However, this query uses indexes much better
 than the solution shown earlier in the “Antipattern” section.

 Querying account details is likewise easy to read and easy to optimize.
 It uses indexes for the join efficiently, instead of
 an esoteric use of regular expressions:

Jaywalking/soln/join.sql
	 	SELECT a.*
	 	FROM Accounts AS a JOIN Contacts AS c ON (a.account_id = c.account_id)
	 	WHERE c.product_id = 123;

Making Aggregate Queries

 The following example returns the number of accounts per product:

Jaywalking/soln/group.sql
	 	SELECT product_id, COUNT(*) AS accounts_per_product
	 	FROM Contacts
	 	GROUP BY product_id;

 The number of products per account is just as simple:

Jaywalking/soln/group.sql
	 	SELECT account_id, COUNT(*) AS products_per_account
	 	FROM Contacts
	 	GROUP BY account_id;

 Other more sophisticated reports are possible too, such as the product
 with the greatest number of accounts:

Jaywalking/soln/group.sql
	 	SELECT product_id, COUNT(*) AS accounts_per_product
	 	FROM Contacts
	 	GROUP BY product_id
	 	ORDER BY accounts_per_product DESC
	 	LIMIT 1;

Updating Contacts for a Specific Product

 You can add or remove entries in the list by inserting or
 deleting rows in the intersection table.
Each product reference is
 stored in a separate row in the Contacts
 table, so you can add or remove them one at a time.

Jaywalking/soln/remove.sql
	 	INSERT INTO Contacts (product_id, account_id) VALUES (456, 34);
	 	
	 	DELETE FROM Contacts WHERE product_id = 456 AND account_id = 34;

Validating Product IDs

 You can use a foreign key to validate the entries against a set of
 legitimate values in another table.
 You declare that Contacts.account_id
 references Accounts.account_id,
 and so you rely on the database to enforce referential integrity.
 Now you can be sure that the intersection table contains only account IDs
 that exist.

 You can also use SQL data types to restrict entries. For example, if the
 entries in the list should be valid INTEGER or
 DATE values and you declare the column using
 those data types, you can be sure all entries are legal values of that
 type (not nonsense entries like banana).

Choosing a Separator Character

 You use no separator character, since you store each entry
 on a separate row.
There’s no ambiguity if the entries
 contain commas or other characters you might have used as a
 separator.

List Length Limitations

 Since each entry is in a separate row in the intersection table, the list
 is limited only by the number of rows that can physically exist in one
 table.
 If it’s appropriate to limit the number of entries, you should enforce
 the policy in your application using the count of entries rather than
 the collective length of the list.

Other Advantages of the Intersection Table

 An index on Contacts.account_id makes
 performance better than matching a substring in a comma-separated
 list. Declaring a foreign key on a column implicitly creates an index
 on that column in many database brands (but check your documentation).

 You can also create additional attributes for each entry by adding
 columns to the intersection table.
 For example, you could record the date a contact was added for a given
 product or an attribute noting who is the primary contact vs. the
 secondary contacts.
 You can’t do this in a comma-separated list.

	
 [image: images/aside-icons/tip.png]
 	

 Store each value in its own column and row.

Mini-Antipattern: Splitting CSV Into Rows

 Assuming you’re stuck using data formatted in comma-separated
 strings, like in the Jaywalking antipattern, another challenge
 you’re likely to face eventually is expanding that comma-separated
 string of values into multiple rows, as if it had been stored
 with one value per row to begin with. You might not be at
 liberty to change the way the data is stored, because a lot of
 existing code depends on the current format, but you still need to
 change the display of the data, at least for the result of a
 specific query.

 For example, you may need the query to list the accounts one
 per row, so that the result of the query can be passed
 to some other software, such as a spreadsheet. For whatever reason,
 you need a solution in SQL to split the string, but you can’t
 count on SQL to have a convenient function to do that.

 Some brands of SQL do have a function to do this. PostgreSQL
 has a non-standard function string_to_array() that converts the
 comma-separated string into an array type. Then the array can
 be the input to the unnest() function which expands
 an array into multiple rows:

Jaywalking/mini/unnest.sql
	 	SELECT a FROM Products
	 	CROSS JOIN unnest(string_to_array(account_id, ',')) AS a;

 Microsoft SQL Server 2016 has its own non-standard operations too:

Jaywalking/mini/cross-apply.sql
	 	SELECT product_id, product_name, value
	 	FROM Products CROSS APPLY STRING_SPLIT(account_id, ',');

 Another solution is to join the comma-separated list with a predefined set of integers, one integer per row.
 For each of the resulting joined rows, use a substring expression to extract the Nth element from the comma-separated list, as shown in the following example:

Jaywalking/mini/int-table.sql
	 	SELECT p.product_id, p.product_name,
	 	 SUBSTRING_INDEX(SUBSTRING_INDEX(p.account_id, ',', n.n), ',', -1)
	 	 AS account_id
	 	FROM Products AS p
	 	JOIN Numbers AS n
	 	 ON n.n <= LENGTH(p.account_id) - LENGTH(REPLACE(p.account_id, ',', ''));

 This query is harder to understand. You need a table,
 Numbers, that has a column n
 populated with integers from 1 on up. Then join the table
 of numbers to Products so there are as
 many rows as needed to equal the number of comma-separated
 items. Calculate the number of commas by the difference
 between the length of the string and the length of the string
 without the commas. Finally, in the select-list, use MySQL’s
 SUBSTRING_INDEX() function to extract substrings up
 to the nth item, and then use the function again with a -1
 argument to keep only the last item in the list.

 You don’t always have a table with a series of integers handy.
 You might need to generate that series dynamically. You can
 do that with UNION:

Jaywalking/mini/int-union.sql
	 	SELECT p.product_id, p.product_name,
	 	 SUBSTRING_INDEX(SUBSTRING_INDEX(p.account_id, ',', n.n), ',', -1)
	 	 AS account_id
	 	FROM Products AS p
	 	JOIN (
	 	 SELECT 1 AS n UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 -- and so on
) AS n
	 	 ON n.n <= LENGTH(p.account_id) - LENGTH(REPLACE(p.account_id, ',', ''));

 Finally, you could use a recursive solution to return each
 item from the list one by one:

Jaywalking/mini/recursive.sql
	 	WITH RECURSIVE cte AS (
	 	 SELECT product_id, product_name,
	 	 SUBSTRING_INDEX(account_id, ',', 1) AS account_id,
	 	 SUBSTRING(account_id, LENGTH(SUBSTRING_INDEX(account_id, ',', 1))+2)
	 	 AS remainder
	 	 FROM Products
	 	 UNION ALL
	 	 SELECT product_id, product_name, SUBSTRING_INDEX(remainder, ',', 1),
	 	 SUBSTRING(remainder, LENGTH(SUBSTRING_INDEX(remainder, ',', 1))+2)
	 	 FROM cte
	 	 WHERE LENGTH(remainder) > 0
)
	 	SELECT product_id, product_name, account_id FROM cte;

 This task seems like it’s harder than it should be.
 Some of these solutions only work in certain brands
 or certain verions of SQL databases.
 The best solution, which works in any database, is to store
 data the way you need to use it, instead of making the mistake
 of the Jaywalking antipattern.

Copyright © 2022, The Pragmatic Bookshelf.

 If I had five minutes to chop down a tree, I’d spend the first three sharpening my axe.

Anonymous

 Chapter
 3
Naive Trees

 Suppose you work as a software developer for a famous website for
 science and technology news.

 This is a modern website, so readers can contribute comments and even
 reply to each other, forming threads of discussion that branch and extend
 deeply. You choose a simple solution to track these reply chains:
 each comment references the comment to which it replies.

Trees/intro/parent.sql
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 parent_id BIGINT UNSIGNED,
	 	 comment TEXT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Comments(comment_id)
);

 It soon becomes clear, however, that it’s hard to retrieve a long chain
 of replies in a single SQL query. You can get only the immediate children
 or perhaps join with the grandchildren, to a fixed depth. If the threads
 can have an unlimited depth, you would need to run many SQL
 queries to get all the comments in a given thread.

 The other idea you have is to retrieve all the comments
 and assemble them into tree data structures in application memory, using
 traditional tree algorithms you learned in school. Unfortunately, the publishers of
 the website have told you that they publish dozens of articles every day,
 and each article can have hundreds of comments. Sorting through millions
 of comments every time someone views the website is impractical.

 There must be a better way to store the threads of comments so you can
 retrieve a whole discussion thread simply and efficiently.

Objective: Store and Query Hierarchies

 It’s common for data to have recursive relationships.
 Data may be organized in a treelike or hierarchical way.
 In a tree data structure, each entry is called a
 node. A node may have a number of children and one
 parent. The top node, which has no parent, is called the
 root. The nodes at the bottom, which have no
 children, are called leaves. The nodes in the
 middle are simply nonleaf nodes.

 In the previous hierarchical data, you may need to query individual items,
 related subsets of the collection, or the whole collection.
 Examples of tree-oriented data structures include the following:

	Organization chart:
	
	
	 The relationship of employees to managers is the textbook example of
	 tree-structured data. It appears in countless books and articles on
	 SQL. In an organizational chart, each employee has a manager, who
	 represents the employee’s parent in a tree
	 structure. The manager is also an employee.
	

	Threaded discussion:
	
	
	 As seen earlier in this chapter, a tree structure may be used for the
	 chain of comments in reply to other comments.
	 In the tree, the children of a comment node are its replies.
	

 This chapter uses the threaded discussion example to show the
 antipattern and its solutions.

Antipattern: Always Depend on One’s Parent

 The naive solution commonly shown in books and articles is to add a
 column parent_id. This column references
 another comment in the same table, and you can create a foreign key
 constraint to enforce this relationship.

Trees/anti/adjacency-list.sql
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 author BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
	 	 comment TEXT NOT NULL,
	 	 parent_id BIGINT UNSIGNED,
	 	 FOREIGN KEY (parent_id) REFERENCES Comments(comment_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (author) REFERENCES Accounts(account_id)
);

 This design is called Adjacency List.
 The entity-relationship diagram for this kind of table is shown.

[image: images/Trees/adjacency-list.png]

 This is the most common design software developers use
 to store hierarchical data. The following figure illustrates this
 tree-structured data.

[image: images/Trees/comment-thread.png]

 And here’s the same data in a tabular format.

	comment_id
	parent_id
	author
	comment

	1
	NULL
	Fran
	What’s the cause of this bug?

	2
	1
	Ollie
	I think it’s a null pointer.

	3
	2
	Fran
	No, I checked for that.

	4
	1
	Kukla
	We need to check for invalid input.

	5
	4
	Ollie
	Yes, that’s a bug.

	6
	4
	Fran
	Yes, please add a check.

	7
	6
	Kukla
	That fixed it.

Querying a Tree with Adjacency List

	Adjacency List is a proper way to store the reference from child node
	to parent node, but developers often use the wrong approach when they
	have to do a most common task: query all descendants.

	You can retrieve a comment and its immediate
	children using a relatively simple query:

Trees/anti/parent.sql
	 	SELECT c1.*, c2.*
	 	FROM Comments c1 LEFT OUTER JOIN Comments c2
	 	 ON c2.parent_id = c1.comment_id;

	This returns only two levels of the tree.
	One characteristic of a tree is that it can extend to any depth,
	so you need to be able to query the descendents without regard to
	the number of levels.
	For example, you may need to compute the
	COUNT of comments in the thread
	or the SUM of the cost of parts
	in a mechanical assembly.

	This kind of query is awkward when you use Adjacency List, because
	each level of the tree corresponds to another join, and the number
	of joins in an SQL query must be fixed.
	The following query retrieves a tree of depth up to four but cannot
	retrieve the tree beyond that depth:

Trees/anti/ancestors.sql
	 	SELECT c1.*, c2.*, c3.*, c4.*
	 	FROM Comments c1 -- 1st level
	 	 LEFT OUTER JOIN Comments c2
	 	 ON c2.parent_id = c1.comment_id -- 2nd level
	 	 LEFT OUTER JOIN Comments c3
	 	 ON c3.parent_id = c2.comment_id -- 3rd level
	 	 LEFT OUTER JOIN Comments c4
	 	 ON c4.parent_id = c3.comment_id; -- 4th level

	This query is also awkward because it includes descendants from
	progressively deeper levels by adding more columns.
	This makes it hard to compute an aggregate such as
	COUNT.

	Another way to query a tree structure from Adjacency List
	is to retrieve all the rows in the collection, without
	trying to use SQL to fetch a subset of rows like ancestors
	or descendants.

Trees/anti/all-comments.sql
	 	SELECT * FROM Comments WHERE bug_id = 1234;

	You would be responsible for writing code in your client application to fetch these rows and build a tree data structure incrementally.
	This means you would fetch more rows than required for the subtree you need.
	Your code would discard any rows that are not part of that subtree.

	Copying a large query result set from the database to the application
	before you can analyze it is wasteful of network and computing
	resources.
	For example, your application might need only a subtree, so your query
	probably returns a lot more rows than you need.
	You might require only aggregate information about the data, such as
	the COUNT of comments.
Maintaining a Tree with Adjacency List

	Admittedly, some operations are simple to accomplish with Adjacency
	List, such as adding a new leaf node:
Trees/anti/insert.sql
	 	INSERT INTO Comments (bug_id, parent_id, author, comment)
	 	 VALUES (1234, 7, 12 /* Kukla */, 'Thanks!');

 Relocating a single node or a subtree is also easy:

Trees/anti/update.sql
	 	UPDATE Comments SET parent_id = 3 WHERE comment_id = 6;

	Deleting a node from a tree is more complex.
	If you want to delete an entire subtree, you have to issue multiple
	queries to find all descendants.
	Then remove the descendants from the lowest level up to satisfy the
	foreign key integrity.

Trees/anti/delete-subtree.sql
	 	SELECT comment_id FROM Comments WHERE parent_id = 4; -- returns 5 and 6
	 	SELECT comment_id FROM Comments WHERE parent_id = 5; -- returns none
	 	SELECT comment_id FROM Comments WHERE parent_id = 6; -- returns 7
	 	SELECT comment_id FROM Comments WHERE parent_id = 7; -- returns none
	 	
	 	DELETE FROM Comments WHERE comment_id IN (7);
	 	DELETE FROM Comments WHERE comment_id IN (5, 6);
	 	DELETE FROM Comments WHERE comment_id = 4;

	You can use a foreign key with the ON DELETE
	CASCADE modifier to automate this, as long as you know
	you always want to delete the descendants instead of promoting or
	relocating them.

	If you instead want to delete a nonleaf node and promote its
	children or move them to another place in the tree, you first need to
	change the parent_id of children and then
	delete the desired node.

Trees/anti/delete-non-leaf.sql
	 	SELECT parent_id FROM Comments WHERE comment_id = 6; -- returns 4
	 	UPDATE Comments SET parent_id = 4 WHERE parent_id = 6;
	 	DELETE FROM Comments WHERE comment_id = 6;

 These are examples of operations that require multiple steps when you
	use the Adjacency List design.
	That’s a lot of code you have to write for tasks that a database
	should make simpler and more efficient.

How to Recognize the Antipattern

 If you hear a question or a statement like the following, it’s a clue that the
 Naive Trees antipattern is being employed:
	

	 “How many levels do we need to support in trees?”
	

	 You’re struggling to get all descendants or all ancestors of a node,
	 without using a recursive query. You could compromise by supporting
	 only trees of a limited depth, but the next natural question is,
	 how deep is deep enough?
	

	

	 “I dread having to touch the code that manages the tree
	 data structures.”
	

	 You’ve adopted one of the more sophisticated solutions of managing
	 hierarchies, but you’re using the wrong one.
	 Each technique makes some tasks easier, but usually at the cost of
	 other tasks that become harder.
	 You may have chosen a solution that isn’t the best for the
	 way you need to use hierarchies in your application.
	

	

	 “I need to run a script periodically to clean up the orphaned
	 rows in the trees.”
	

	 Your application creates disconnected nodes in the tree as it deletes
	 nonleaf nodes. When you store complex data structures in a database,
	 you need to keep the structure in a consistent, valid state after any
	 change. You can use one of the solutions presented later in this
	 chapter, along with triggers and cascading foreign key constraints,
	 to store data structures that are resilient instead of fragile.

Legitimate Uses of the Antipattern

 Even if you still use a version of SQL database that doesn’t support recursive queries,
 the Adjacency List design might be just fine to support your application. If you only need to support trees of limited depth, and do not need to query all descendants,
 then Adjacency List can work well for you.

Don't Over-Engineer

	I wrote an inventory-tracking application for a computer data center.
	Some equipment was installed inside computers; for example, a caching
	disk controller was installed in a rackmount server, and extra memory
	modules were installed on the disk controller.

	I needed an SQL solution to track the usage of hierarchical collections
	easily. I also needed to track each individual piece of equipment
	to produce accounting reports of equipment utilization, amortization,
	and return on investment.

	The manager said the collections could have subcollections, and thus
	the tree could in theory descend to any depth. It took quite a few
	weeks to perfect the code for manipulating trees in the database
	storage, user interface, administration, and reporting.

	In practice, however, the inventory application never needed to create
	a grouping of equipment with a tree deeper than a single parent-child
	relationship. If my client had acknowledged that this would be enough
	to model his inventory requirements, we could have saved a lot of work.

Solution: Use Alternative Tree Models

 You can use any one of the following solutions to work with
 hierarchical data in SQL. Each has strengths and weaknesses,
 and any of them might be the right choice for a given
 application.

Recursive Queries

	Some brands of RDBMS implement SQL syntax features to support
	hierarchies stored in the Adjacency List format.
	The SQL-99 standard defines recursive query syntax using the
	WITH keyword followed by a recursive
	common table expression.
Trees/soln/cte.sql
	 	WITH RECURSIVE CommentTree
	 	 (comment_id, bug_id, parent_id, author, comment_date, comment, depth)
	 	AS (
	 	 SELECT comment_id, bug_id, parent_id, author, comment_date,
	 	 comment, 0 AS depth
	 	 FROM Comments
	 	 WHERE parent_id IS NULL
	 	 UNION ALL
	 	 SELECT c.comment_id, c.bug_id, c.parent_id, c.author, c.comment_date,
	 	 c.comment, ct.depth+1 AS depth
	 	 FROM CommentTree ct
	 	 JOIN Comments c ON (c.parent_id = ct.comment_id)
)
	 	SELECT * FROM CommentTree WHERE bug_id = 1234;

	Here is a list of the most popular SQL database brands that support
	recursive queries, and the version in which they introduced this feature:

	Oracle 11g
	MySQL 8.0
	Microsoft SQL Server 2005
	PostgresSQL 8.4

	IBM DB2 UDB 8
	SQLite 3.8.3

	Oracle 9i and 10g support the WITH clause, but
	not for recursive queries. Instead, those versions offered proprietary syntax:
	START WITH and
	CONNECT BY PRIOR.
	You can use this syntax to perform recursive queries:
Trees/legit/connect-by.sql
	 	SELECT * FROM Comments
	 	START WITH comment_id = 9876
	 	CONNECT BY PRIOR parent_id = comment_id;

	There are several alternatives to the Adjacency List model of storing
	hierarchical data, including Path Enumeration,
	Nested Sets, and Closure
	Table. The following three sections show examples using these designs to solve
	the scenario in the “Antipattern” section,
	storing and querying a tree-like collection of comments.

	These solutions take some getting used to. They may seem more complex
	than Adjacency List at first, but they make some tree operations easier
	that were very difficult or inefficient using the Adjacency List design.
	If your application needs to perform those operations, and using recursive
	queries with common table expressions seems too complex, then these designs
	are a better choice than the Adjacency List.

Path Enumeration

 One weakness of Adjacency List is that it’s expensive to retrieve
	ancestors of a given node in the tree. In Path Enumeration, this
	is solved by storing the string of ancestors as an attribute of each
	node.

	You can see a form of Path Enumeration in directory hierarchies. A
	UNIX path like
	/usr/local/lib/ is a Path Enumeration of the
	filesystem, where usr is the parent of
	local, which in turn is the parent of
	lib.

	In the Comments table, instead of the
	parent_id column, define a column called
	path as a long VARCHAR.
	The string stored in this column is the sequence of ancestors of
	the current row in order from the top of the tree down, just like
	a UNIX path. You can even choose
	/ as a separator character.

Trees/soln/path-enum/create-table.sql
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 path VARCHAR(1000),
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 author BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
	 	 comment TEXT NOT NULL,
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (author) REFERENCES Accounts(account_id)
);

	comment_id
	path
	author
	comment

	1
	1/
	Fran
	What’s the cause of this bug?

	2
	1/2/
	Ollie
	I think it’s a null pointer.

	3
	1/2/3/
	Fran
	No, I checked for that.

	4
	1/4/
	Kukla
	We need to check for invalid input.

	5
	1/4/5/
	Ollie
	Yes, that’s a bug.

	6
	1/4/6/
	Fran
	Yes, please add a check.

	7
	1/4/6/7/
	Kukla
	That fixed it.

	You can query ancestors by comparing the current row’s path to a
	pattern formed from the path of another row. For example, to find
	ancestors of comment #7, whose path is
	1/4/6/7/, do this:

Trees/soln/path-enum/ancestors.sql
	 	SELECT *
	 	FROM Comments AS c
	 	WHERE '1/4/6/7/' LIKE CONCAT(c.path, '%');

 This matches the patterns formed from paths of ancestors
	1/4/6/%,
	1/4/%, and
	1/%.

	You can query descendants by reversing the arguments of the
	LIKE predicate. To find the descendants of comment
	#4 whose path is 1/4/, use this:

Trees/soln/path-enum/descendants.sql
	 	SELECT *
	 	FROM Comments AS c
	 	WHERE c.path LIKE '1/4/%';

 The pattern 1/4/%
	matches the paths of descendants
	1/4/5/, and
	1/4/6/, and
	1/4/6/7/.

 Once you can easily select a subset of the tree or the chain of
	ancestors to the top of the tree, you can perform many other queries
	easily, such as computing the SUM of costs of
	nodes in a subtree or simply counting the number of nodes. For
	example, to count the comments per author in the subtree starting
	at comment #4, do this:
	

Trees/soln/path-enum/count.sql
	 	SELECT c.author, COUNT(*)
	 	FROM Comments AS c
	 	WHERE c.path LIKE '1/4/%'
	 	GROUP BY c.author;

 Inserting a node is similar to inserting in the Adjacency List model.
	You can insert a leaf node without needing to modify any other
	row. Copy the path from the new node’s parent,
	and append the ID of the new node to this string. If your primary key
	generates its value automatically during the insert, you may need to
	insert the row and then update the path once
	you know the ID value for the new row. For example, if you use
	MySQL, the built-in function LAST_INSERT_ID
	returns the most recent ID value generated for an inserted row
	in the current session. Get the rest of the path from the parent
	of your new node.

Trees/soln/path-enum/insert.sql
	 	INSERT INTO Comments (bug_id, author, comment)
	 	VALUES (1234, 56 /* Ollie */, 'Good job!');
	 	
	 	UPDATE Comments AS c
	 	CROSS JOIN Comments AS c7 ON c7.comment_id = 7
	 	 SET c.path = CONCAT(c7.path, LAST_INSERT_ID(), '/')
	 	WHERE c.comment_id = LAST_INSERT_ID();

	Path Enumeration has some drawbacks similar to those shown in
	Chapter 2, Jaywalking. The database can’t enforce that the
	path is formed correctly or that values in the path correspond to
	existing nodes. Maintaining the path string depends on application
	code, and verifying it is costly. No matter how long you make the
	VARCHAR column, it still has a length limit, so it
	doesn’t strictly support trees of unlimited depth.

	Path Enumeration allows you to sort a set of rows easily by their
	hierarchy, as long as the elements between the separator are of
	consistent length.
	On the other hand, this may smell too much like the Jaywalking
	antipattern, because it is a string of character-separated
	id values.
	
	
	
	
	

Nested Sets

	The Nested Sets solution stores information with each node that
	pertains to the set of its descendants, rather than the node’s
	immediate parent. This information can be represented by encoding each
	node in the tree with two numbers, which you can call
	nsleft and
	nsright.

Trees/soln/nested-sets/create-table.sql
	 	DROP TABLE IF EXISTS Comments;
	 	
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 nsleft INTEGER NOT NULL,
	 	 nsright INTEGER NOT NULL,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 author BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
	 	 comment TEXT NOT NULL,
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs (bug_id),
	 	 FOREIGN KEY (author) REFERENCES Accounts(account_id)
);

	Each node is given nsleft and
	nsright numbers in the following way:
	the nsleft number is less than the numbers of
	all the node’s children, whereas the nsright
	number is greater than the numbers of all the node’s children.
	These numbers have no relationship to the
	comment_id values.

	An easy way to calculate these values is by visiting
	all the nodes of the tree in a depth-first traversal.
	As you descend down the left side of each branch, assign
	numbers incrementally to nsleft.
	As you ascend back up the right side of the branch, assign
	numbers to nsright.
	Do the same on each of the branches, from left to right. It may be easier to visualize the pattern in the following figure:

[image: images/Trees/nested-sets.png]

	In the table, each comment is stored on a row that has an
	nsleft column and an
	nsright column. The values were
	set in the order of the depth-first traversal.

	comment_id
	nsleft
	nsright
	author
	comment

	1
	1
	14
	Fran
	What’s the cause of this bug?

	2
	2
	5
	Ollie
	I think it’s a null pointer.

	3
	3
	4
	Fran
	No, I checked for that.

	4
	6
	13
	Kukla
	We need to check for invalid input.

	5
	7
	8
	Ollie
	Yes, that’s a bug.

	6
	9
	12
	Fran
	Yes, please add a check.

	7
	10
	11
	Kukla
	That fixed it.

	Once you have assigned each node with these numbers, you can use them
	to find ancestors and descendants of any given node. For example, you
	can retrieve comment #4 and its descendants by searching for nodes
	whose numbers are between the current node’s
	nsleft and nsright.

Trees/soln/nested-sets/descendants.sql
	 	SELECT c2.*
	 	FROM Comments AS c1
	 	 JOIN Comments as c2
	 	 ON c2.nsleft BETWEEN c1.nsleft AND c1.nsright
	 	WHERE c1.comment_id = 4;

	You can retrieve comment #6 and its ancestors by searching for nodes
	whose numbers span the current node’s numbers. For example:

Trees/soln/nested-sets/ancestors.sql
	 	SELECT c2.*
	 	FROM Comments AS c1
	 	 JOIN Comments AS c2
	 	 ON c1.nsleft BETWEEN c2.nsleft AND c2.nsright
	 	WHERE c1.comment_id = 6;

 One chief strength of the Nested Sets design is that when you delete
	a nonleaf node, its descendants are automatically considered
	direct children of the deleted node’s parents. Although the right and
	left numbers of each node shown in the illustration have values
	forming a continuous series and the difference is always 1 compared to
	adjacent siblings and parents, this is not necessary for the Nested
	Sets design to preserve the hierarchy. So when gaps in the values
	result from deleting a node, there is no interruption to the tree
	structure.

	For example, you can count the depth of a given node and
	delete its parent, and then when you count the depth of the node
	again, it seems to have decreased depth by one level.

Trees/soln/nested-sets/depth.sql
	 	-- Reports depth = 4
	 	SELECT c1.comment_id, COUNT(c2.comment_id) AS depth
	 	FROM Comments AS c1
	 	 JOIN Comments AS c2
	 	 ON c1.nsleft BETWEEN c2.nsleft AND c2.nsright
	 	WHERE c1.comment_id = 7
	 	GROUP BY c1.comment_id;
	 	
	 	DELETE FROM Comments WHERE comment_id = 6;

	 	-- Reports depth = 3
	 	SELECT c1.comment_id, COUNT(c2.comment_id) AS depth
	 	FROM Comments AS c1
	 	 JOIN Comments AS c2
	 	 ON c1.nsleft BETWEEN c2.nsleft AND c2.nsright
	 	WHERE c1.comment_id = 7
	 	GROUP BY c1.comment_id;

	Some queries that are simple in the Adjacency List design,
	such as retrieving the immediate child or immediate parent, are more
	complex in the Nested Sets design. The direct
	parent of a given node c1 is an ancestor of
	that node, but no other node can exist in between them. So, you can
	use an additional outer join to search for a node that is both an
	ancestor of c1 and a descendant of the parent.
	Only if no such node is found (that is, the result of the outer join
	is null) is the ancestor truly the direct
	parent of c1.

	For example, to find the immediate parent of comment #6, do this:

Trees/soln/nested-sets/parent.sql
	 	SELECT c2.*
	 	FROM Comments AS c1
	 	 JOIN Comments AS c2
	 	 ON c1.nsleft > c2.nsleft AND c1.nsleft < c2.nsright
	 	 LEFT JOIN Comments AS c3
	 	 ON c1.nsleft > c3.nsleft AND c1.nsleft < c3.nsright
	 	 AND c3.nsleft > c2.nsleft AND c3.nsleft < c2.nsright
	 	WHERE c1.comment_id = 6
	 	 AND c3.comment_id IS NULL;

	Manipulations of the tree, inserting and moving nodes, are generally
	more complex in the Nested Sets design than they are in other models.
	When you insert a new node, you need to recalculate all the left and
	right values greater than the left value of the new node.

	This includes the new node’s right siblings, its ancestors, and the right
	siblings of its ancestors. It also includes descendants, if the new
	node is inserted as a nonleaf node. Assuming the new node is a
	leaf node, the following statement should update everything
	necessary:

Trees/soln/nested-sets/insert.sql
	 	-- make space for NS values 8 and 9
	 	UPDATE Comments
	 	 SET nsleft = CASE WHEN nsleft >= 8 THEN nsleft+2 ELSE nsleft END,
	 	 nsright = nsright+2
	 	WHERE nsright >= 7;
	 	
	 	-- create new child of comment #5, occupying NS values 8 and 9
	 	INSERT INTO Comments (nsleft, nsright, bug_id, author, comment)
	 	 VALUES (8, 9, 1234, 34 /* Fran */, 'Me too!');

	The Nested Sets model is best when it’s more important to perform
	queries for subtrees quickly and easily, rather than operations on
	individual nodes. Inserting and moving nodes is complex, because of
	the requirement to renumber the left and right values. If your usage
	of the tree involves frequent insertions, Nested Sets isn’t the
	best choice.
	
	
	
	
	
	
Closure Table

 The Closure Table solution is a simple and elegant way of
	storing hierarchies. It involves storing all paths through
	the tree, not just those with a direct parent-child relationship.

	In addition to a plain Comments table,
	create another table TreePaths, with
	two columns, each of which is a foreign key to the
	Comments table.

Trees/soln/closure-table/create-table.sql
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 author BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
	 	 comment TEXT NOT NULL,
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (author) REFERENCES Accounts(account_id)
);
	 	
	 	CREATE TABLE TreePaths (
	 	 ancestor BIGINT UNSIGNED NOT NULL,
	 	 descendant BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY(ancestor, descendant),
	 	 FOREIGN KEY (ancestor) REFERENCES Comments(comment_id),
	 	 FOREIGN KEY (descendant) REFERENCES Comments(comment_id)
);

	Instead of using the Comments table to store
	information about the tree structure, use the
 TreePaths table:
	ancestor
	descendant
	
	ancestor
	descendant
	
	ancestor
	descendant

	1
	1
	
	1
	7
	
	4
	6

	1
	2
	
	2
	2
	
	4
	7

	1
	3
	
	2
	3
	
	5
	5

	1
	4
	
	3
	3
	
	6
	6

	1
	5
	
	4
	4
	
	6
	7

	1
	6
	
	4
	5
	
	7
	7

 Store one row in this table for each pair of nodes in the tree
	that shares an ancestor/descendant relationship, even if they are
	separated by multiple levels in the tree. Also add a row for each node
	to reference itself. See the following illustration of the tree.
	

[image: images/Trees/closure-table.png]

 The queries to retrieve ancestors and descendants from this table
	are even more straightforward than those in the Nested Sets solution.
	To retrieve descendants of comment #4, match rows in
	TreePaths where the
	ancestor is 4:

Trees/soln/closure-table/descendants.sql
	 	SELECT c.*
	 	FROM Comments AS c
	 	 JOIN TreePaths AS t ON c.comment_id = t.descendant
	 	WHERE t.ancestor = 4;

	To retrieve ancestors of comment #6, match rows in
	TreePaths where the
	descendant is 6:

Trees/soln/closure-table/ancestors.sql
	 	SELECT c.*
	 	FROM Comments AS c
	 	 JOIN TreePaths AS t ON c.comment_id = t.ancestor
	 	WHERE t.descendant = 6;

 To insert a new leaf node, for instance a new child of comment #5,
	first insert the self-referencing row. Then add a copy of the set of
	rows in TreePaths that reference comment #5 as
	a descendant (including the row in which
	comment #5 references itself), replacing the
	descendant with the number of the new comment:

Trees/soln/closure-table/insert.sql
	 	INSERT INTO TreePaths (ancestor, descendant)
	 	 SELECT t.ancestor, 8
	 	 FROM TreePaths AS t
	 	 WHERE t.descendant = 5
	 	 UNION ALL
	 	 SELECT 8, 8;

 To delete a leaf node, for instance comment #7, delete all
	rows in TreePaths that reference comment #7 as
	a descendant:

Trees/soln/closure-table/delete-leaf.sql
	 	DELETE FROM TreePaths WHERE descendant = 7;

 To delete a complete subtree, for instance comment #4 and its
	descendants, delete all rows in TreePaths
	that reference comment #4 as a descendant,
	as well as all rows that reference any of comment #4’s descendants
	as descendants:

Trees/soln/closure-table/delete-subtree.sql
	 	DELETE t1 FROM TreePaths AS t1
	 	JOIN TreePaths AS t2 ON t1.descendant = t2.descendant
	 	WHERE t2.ancestor = 4;

	Notice that if you delete rows in TreePaths,
	this doesn’t delete the comments themselves.
	This seems odd for this example of Comments,
	but it makes more sense if you’re working with other kinds of trees,
	for instance categories in a product catalog or employees in an org
	chart.
	You don’t necessarily want to delete a node when you change its
	relationship to other nodes.
	When you store paths in a separate table, it helps make this more
	flexible.

	To move a subtree from one location in the tree to another, first
	disconnect the subtree from its ancestors by deleting rows that
	reference the ancestors of the top node in the subtree and the
	descendants of that node. For instance, to move comment #6 from its
	position as a child of comment #4 to a child of comment #3, start with
	the following deletion. Make sure not to delete comment #6’s
	self-reference.

Trees/soln/closure-table/move-subtree.sql
	 	DELETE t1 FROM TreePaths AS t1
	 	JOIN TreePaths AS t2 ON t1.descendant = t2.descendant
	 	JOIN TreePaths AS t3 ON t1.ancestor = t3.ancestor
	 	WHERE t2.ancestor = 6 AND t3.descendant = 6
	 	 AND t3.ancestor != t3.descendant;

	By selecting ancestors of #6, but not #6 itself, and descendants of #6,
	including #6, this correctly removes all the paths from #6’s
	ancestors to #6 and its descendants. In other words, this deletes the
	paths (1, 6), (1,7), (4, 6), and (4, 7). It does not delete (6, 6)
	or (6, 7).

	Then add the orphaned subtree by inserting rows matching the ancestors
	of the new location and the descendants of the subtree. You can use
	the CROSS JOIN syntax to create a Cartesian
	product, generating the rows needed to match ancestors of the new
	location to all the nodes in the subtree you need to move.

Trees/soln/closure-table/move-subtree.sql
	 	INSERT INTO TreePaths (ancestor, descendant)
	 	 SELECT supertree.ancestor, subtree.descendant
	 	 FROM TreePaths AS supertree
	 	 CROSS JOIN TreePaths AS subtree
	 	 WHERE supertree.descendant = 3
	 	 AND subtree.ancestor = 6;

 This creates new paths using the ancestors of #3, including #3,
	and the descendants of #6, including #6. So, the new paths are
	(1, 6), (2, 6), (3, 6), (1, 7), (2, 7), (3, 7). The result is that
	the subtree starting with comment #6 is relocated as a child of comment
	#3. The cross join creates all the needed paths,
	even if the subtree is moved to a higher or lower level in the tree.

	The Closure Table design is more straightforward than the Nested
	Sets design. Both have quick and easy methods for querying ancestors
	and descendants, but the Closure Table is easier to maintain the
	hierarchy information. In both designs, it’s more convenient to query
	immediate child or parent nodes than in the Adjacency List or Path
	Enumeration designs.

	You can improve the Closure Table to make queries for
	immediate parent or child nodes easier. Add a
	TreePaths.path_length attribute to the
	Closure Table design. The path_length of
	a node’s self-reference is zero, the
	path_length of its immediate child is 1, the
	path_length of its grandchild is 2, and so on.
	Finding the children of comment #4 is now straightforward:
Trees/soln/closure-table/child.sql
	 	SELECT *
	 	FROM TreePaths
	 	WHERE ancestor = 4 AND path_length = 1;

Which Design Should You Use?

	Each of the designs has its own strengths and weaknesses.
	Choose the design depending on which operations you need to be
	most efficient.

 In the table shown, some operations are marked as easy or hard with
	each respective tree design.

	Design
	Tables
	Query Child
	Query Tree
	Insert
	Delete
	Ref. Integ.

	Adjacency List
	1
	Easy
	Hard
	Easy
	Easy
	Yes

	Recursive Query
	1
	Easy
	Easy
	Easy
	Easy
	Yes

	Path Enumeration
	1
	Easy
	Easy
	Easy
	Easy
	No

	Nested Sets
	1
	Hard
	Easy
	Hard
	Hard
	No

	Closure Table
	2
	Easy
	Easy
	Easy
	Easy
	Yes

	You can also consider the following strengths and weaknesses of each design:

	

	 Adjacency List is the most conventional design, and
	 many software developers recognize it. It has the advantage over
	 the other designs that it’s normalized. In other words, it has no
	 redundancies, and it’s not possible to create conflicting data.

	

	 Recursive queries using
	 WITH or CONNECT BY PRIOR
	 make it more efficient to use the Adjacency
	 List design, provided you use a version of SQL database that
	 supports the syntax.
	

	

	

	 Path Enumeration is good for breadcrumbs in user
	 interfaces, but it’s fragile because it fails to enforce
	 referential integrity and stores information redundantly.
	

	

	

	 Nested Sets is a clever solution—maybe too clever.
	 It also fails to support referential integrity. It’s best used when
	 you need to query a tree more frequently than you need to modify
	 the tree.
	

	

	

	 Closure Table is the most versatile of the alternative
	 designs, and the only design in this chapter that allows a node to
	 belong to multiple trees. It requires an additional table to store
	 the relationships. This design also uses a lot of rows when
	 encoding deep hierarchies, increasing space consumption as a
	 trade-off for reducing computing. Like many denormalized
	 solutions, it gives good performance for certain query cases.
	
	
	

	There’s more to learn about storing and manipulating hierarchical data
	in SQL.
	A good book that covers hierarchical queries is
	Joe Celko’s Trees and Hierarchies in SQL
	for Smarties [Cel04].
	Another book that covers trees and even graphs is
	SQL Design Patterns [Tro06]
	by Vadim Tropashko. The latter book has a more formal, academic style.
	
	
	
	
	
	
	
 [image: images/aside-icons/tip.png]
 	

 A hierarchy consists of entries and relationships.
 Model both of these in a way that supports the queries you need to make against the hierarchy.

Mini-Antipattern: It Works on My Computer

	“What does this error mean? My SQL query works fine while I’m developing
	code on my machine, but I get this error when I deploy my
	application to production.”

	 Error: 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ’WITH’
	

	In this example, the cause of the error is that the developer
	wrote an SQL query that uses the WITH keyword, for
	a common table expression.
	MySQL first implemented this syntax feature in in version 8.0.
	If the code attempts to run this query on an older version
	of MySQL Server, it returns the preceding error.

	It’s easier in a development environment to update to a
	newer version of database software than in production.
	Most projects are reluctant to risk any downtime in production,
	whereas that’s not an issue on an individual developer’s
	workstation or laptop.

	Newer versions of any software have features that were not
	implemented in the earlier version.
	In the case of an SQL database, there might be enhanced SQL
	syntax, new built-in functions, or even new data types.
	New SQL features are usually quite attractive and powerful,
	but if you develop code that relies on them, you’ll be
	surprised when you deploy to production and your code doesn’t
	work the same.

	These surprises are costly and hard to debug.
	You might be forced to redesign a lot of code that was
	assuming features of the database would work like they do in
	the version of the software you use in development.

	To avoid this problem, be careful to equip your local
	development environment with the same version of database
	software that you use in production.
	The closer you can get to an exact version match the better,
	because sometimes even a minor software release contains
	new features, bug fixes, or breaks in backward compatibility.

	Database servers also have optional features, so you should
	make your development server match the production
	server as closely as possible.
	This includes:

	
	
	 Configuration options that affect data treatment or query behavior
	
	
	 Configuration options that affect global defaults
	
	
	
	
	 Database users, roles, and SQL privileges (but good security practices discourage using the same password across environments)
	

	It’s common practice to ensure the same versions are used
	in development and production when it comes to programming
	language, libraries, frameworks, and other dependencies.
	This is enforced automatically as you build and package
	your application code.
	However, in spite of the rise of popularity of containerized deployment, the database software isn’t
	typically included in a deployable package.
	
	
	
	
	
	
	

Copyright © 2022, The Pragmatic Bookshelf.

	The creatures outside looked from pig to man, and from man to pig, and
	from pig to man again; but already it was impossible to say which was
	which.

George Orwell, Animal Farm

 Chapter
 4
ID Required

 Recently I answered a question that I see frequently, from a software
 developer trying to prevent duplicate rows.
 At first I thought he must lack a primary key.
 That wasn’t his problem.

 In his content management database, he stored articles for
 publishing on a website. He used an intersection table for a
 many-to-many association between a table of articles and a table of tags.

ID-Required/intro/articletags.sql
	 	CREATE TABLE ArticleTags (
	 	 id SERIAL PRIMARY KEY,
	 	 article_id BIGINT UNSIGNED NOT NULL,
	 	 tag_id BIGINT UNSIGNED NOT NULL,
	 	 FOREIGN KEY (article_id) REFERENCES Articles (id),
	 	 FOREIGN KEY (tag_id) REFERENCES Tags (id)
);

 He was getting incorrect results from queries when counting the number of
 articles with a given tag. He knew that there were only five articles with
 the “economy” tag, but the query was telling him there were
 seven.

ID-Required/intro/articletags.sql
	 	SELECT tag_id, COUNT(*) AS articles_per_tag
	 	FROM ArticleTags WHERE tag_id = 327;

 When he queried all the rows matching that tag_id,
 he saw that the tag was associated with one particular article in
 triplicate; three rows showed the same association, although they had
 different values for id, as shown in the table.

	id
	tag_id
	article_id

	22
	327
	1234

	23
	327
	1234

	24
	327
	1234

 This table had a primary key, but that primary key didn’t prevent
 duplicates in the columns that mattered. One remedy might be to
 create a UNIQUE constraint over the other
 two columns, but given that, the id column
 isn’t needed at all.

Objective: Establish Primary Key Conventions

 The objective is to make sure every table has a primary key, but
 confusion about the nature of a primary key has resulted in
 an antipattern.

 Everyone who has been introduced to database design knows that a
 primary key is an important, even mandatory, part of
 a table. This is true; primary keys are integral to good database
 design. A primary key is guaranteed to be unique over all rows in the
 table, so this is the logical mechanism to address individual rows
 and to prevent duplicate rows from being stored. A primary key is also
 referenced by foreign keys to create table associations.

 The tricky part is choosing a column to serve as the primary key.
 The value of any attribute in most tables has the potential to belong on
 more than one row. Textbook examples such as a person’s first name and
 last name are clearly subject to having duplication. Even an email address
 or administrative identification numbers such as a United States
 Social Security number or taxpayer ID number aren’t strictly unique.

 A new column is needed in such tables to store an artificial value
 that has no meaning in the domain modeled by the table. This
 column is used as the primary key, so you can address rows uniquely
 while allowing any other attribute column to contain duplicates,
 if that’s appropriate.
 This type of primary key column is sometimes called a
 pseudokey or a surrogate key.

 To ensure rows can be given unique pseudokey values even when concurrent
 clients are inserting new rows, most databases provide a mechanism to
 generate unique integer values serially, outside the scope of
 transaction isolation.

 The following is an example of standard SQL:2003 syntax for a pseudokey (tested on PostgreSQL, but MySQL does not support this syntax):

ID-Required/obj/sql:2003.sql
	 	CREATE TABLE Bugs (
	 	 bug_id BIGINT GENERATED ALWAYS AS IDENTITY,
	 	 summary VARCHAR(80)
	 	 -- other columns...
);

 Before pseudokeys were standardized in SQL:2003, each database
 had to implement its own extension to SQL to implement them.
 Even the terminology for pseudokeys is vendor-dependent, as
 shown by the following table:

	Feature
	Supported by Database Brands

	AUTO_INCREMENT
	MySQL

	GENERATOR
	Firebird, InterBase

	IDENTITY
	DB2, Derby, Microsoft SQL Server, Sybase

	ROWID
	SQLite

	SEQUENCE
	DB2, Firebird, Informix, Ingres, Oracle, PostgreSQL

	SERIAL
	MySQL, PostgreSQL

	SQL:2003 standard
	DB2, Derby, Firebird, Ingres, Oracle, PostgreSQL

 Pseudokeys are a useful feature, but they aren’t the only solution for
 declaring a primary key.

Antipattern: One Size Fits All

 Books, articles, and programming frameworks have established a cultural
 convention that every database table must have a primary key column with
 the following characteristics:
	The primary key’s column name is id.
	Its data type is a 32-bit or 64-bit integer.
	Unique values are generated automatically.

 The presence of a column named id in every table
 is so common that this has become synonymous with a primary key.
 Programmers learning SQL get the false idea that a primary key always
 means a column defined in this manner.

ID-Required/anti/id-ubiquitous.sql
	 	CREATE TABLE Bugs (
	 	 id SERIAL PRIMARY KEY,
	 	 description VARCHAR(1000),
	 	 -- . . .
);

 Adding an id column to every table causes
 several effects that make its use seem arbitrary.

Making a Redundant Key

	You might see an id column defined as the
	primary key simply for the sake of tradition, even when another column
	in the same table could be used as the natural primary key.
	The other column may even be defined with a UNIQUE
	constraint. For example, in the Bugs table,
	the application might label bugs using a string with a mnemonic for the
	project the bug belongs to, or other identifying information.

ID-Required/anti/id-redundant.sql
	 	CREATE TABLE Bugs (
	 	 id SERIAL PRIMARY KEY,
	 	 bug_id VARCHAR(10) UNIQUE,
	 	 description VARCHAR(1000),
	 	 -- . . .
);
	 	
	 	INSERT INTO Bugs (bug_id, description, ...)
	 	 VALUES ('VIS-078', 'crashes on save', ...);

	The bug_id column in the previous example has
	similar usage to the id, in that it serves to
	identify each row uniquely.

Allowing Duplicate Rows

	A compound key consists of multiple columns.
	One typical use for a compound key is in an intersection table like
	BugsProducts.
 The primary key should ensure that a given combination of values for
	bug_id and product_id
	appears only once in the table, even though each value may
	appear many times in different pairings.

 However, when you use the mandatory id
	column as the primary key, the constraint no longer applies to
	two columns that should be unique.

ID-Required/anti/superfluous.sql
	 	CREATE TABLE BugsProducts (
	 	 id SERIAL PRIMARY KEY,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED NOT NULL,
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);
	 	
	 	INSERT INTO BugsProducts (bug_id, product_id)
	 	 VALUES (1234, 1), (1234, 1), (1234, 1); -- duplicates are permitted

	Duplicates in this intersection table cause unintended results when you
	use the table to match Bugs to
	Products.
	To prevent duplicates, you could declare a
	UNIQUE constraint over the two columns
	besides id:

ID-Required/anti/superfluous.sql
	 	CREATE TABLE BugsProducts (
	 	 id SERIAL PRIMARY KEY,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED NOT NULL,
	 	 UNIQUE KEY (bug_id, product_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

	If you need a unique constraint over those two columns anyway,
	the id column is superfluous.

Obscuring the Meaning of the Key

 The word code has a number of definitions, one of which
	is a way to communicate a message with brevity or secrecy.
	In programming, we should have the opposite goal—to make
	meaning clearer.

	The name id is so generic that it holds
	no meaning.
	This is especially important when you join two tables and they
	have the same primary key column name.

ID-Required/anti/ambiguous.sql
	 	SELECT b.id, a.id
	 	FROM Bugs b
	 	JOIN Accounts a ON (b.assigned_to = a.id)
	 	WHERE b.status = 'OPEN';

	You can’t tell the bug id from the account
	id in your application code, if you reference
	columns by name instead of by ordinal position.
	This is a problem especially when a query result is returned as an
	associative array, JSON document, or dynamic object, because the
	value of a column overwrites another with the same name. To avoid
	this, you must specify column aliases in your query.

ID-Required/anti/ambiguous.sql
	 	SELECT b.id AS bug_id, a.id AS account_id
	 	FROM Bugs b
	 	JOIN Accounts a ON (b.assigned_to = a.id)
	 	WHERE b.status = 'OPEN';

 The name of the id column doesn’t help
	make the query any clearer.
	The client would have an easier time reading the query results if the columns were named bug_id and account_id.
	A primary key addresses individual rows of a given table,
	so the column’s name should give a clue about the type of entity
	in that table.

Using USING

 You’re probably familiar with the SQL syntax for a join:
 using
	the keywords JOIN and
	ON preceding an expression to evaluate
	matching rows in the two tables:

ID-Required/anti/join.sql
	 	SELECT * FROM Bugs AS b JOIN BugsProducts AS bp ON (b.bug_id = bp.bug_id);

 SQL also supports a more concise syntax for expressing a join
	between two tables.
	You can rewrite the previous query in the following way
	if the columns have the same name in both tables:

ID-Required/anti/join.sql
	 	SELECT * FROM Bugs JOIN BugsProducts USING (bug_id);

	However, if all tables are required to define a pseudokey primary key
	named id, then a foreign key column in
	a dependent table can never use the same name as the primary key it
	references.
	Instead, you must always use the more verbose ON syntax:

ID-Required/anti/join.sql
	 	SELECT * FROM Bugs AS b JOIN BugsProducts AS bp ON (b.id = bp.bug_id);

Special Scope for Sequences

	Some people allocate a value for a new row by taking the greatest
	value currently in use and adding one.

	 	SELECT MAX(bug_id) + 1 AS next_bug_id FROM Bugs;

	This isn’t reliable when you have concurrent clients both querying
	for the next value to use.
	The same value could be used by both clients.
	This is called a race condition.

	To avoid the race condition, you have to block concurrent inserts
	while you read the current maximum value and then use it in a new row.
	To do this, you have to lock the whole table—row-level locking
	isn’t enough.
	Table locks create a bottleneck because they cause concurrent clients
	to queue up for access.

	Sequences solve this by operating outside of transaction scope.
	They never allocate the same value to multiple clients and so
	never roll back allocation of a value, whether or not you commit that
	value in a row.
	Because sequences work this way, multiple clients can generate unique
	values concurrently and be assured they won’t try to use the same
	value.

	Most databases support some function to return the last value a
	sequence generated. For example, MySQL calls this function
	LAST_INSERT_ID, Microsoft SQL Server uses
	SCOPE_IDENTITY, and Oracle uses
	SequenceName.CURRVAL.

	These functions return the value generated during the current session,
	even if other clients generate their own values concurrently.
	No race condition exists.

Compound Keys Are Hard

	Some developers refuse to use compound keys because they say these keys
	are too hard to use.
	Any expression that compares a key to another must compare all columns.
	A foreign key that references a compound primary key must itself be a
	compound foreign key.
	It requires more typing to use compound keys.

	This refusal is like a mathematician refusing to use two-dimensional
	or three-dimensional coordinates, instead performing all calculations
	as though objects exist within a one-dimensional, linear space.
	It’s true that this would make a lot of geometry and trigonometry much
	simpler, but it fails to describe real-world objects that we need to
	work with.
	
	
Do I Really Need a Primary Key?

	Some software developers claim that their table doesn’t
	need a primary key.
	Sometimes these programmers want to avoid the imagined overhead of
	maintaining a unique index, or else they have tables with no
	columns they can use for this purpose.

	A primary key constraint is important when you need to do the following:

	
	 Prevent a table from containing duplicate rows
	
	
	 Reference individual rows in queries
	
	
	 Support foreign key references
	

	Another reason to use a primary key that you might not think of:
	database replication. For example, in MySQL, as row-based updates are
	replayed on a replica database instance, the primary key is used to apply
	changes efficiently. If the table has no primary key, then every row
	updated must run a table-scan. This is very bad for performance.

	If you don’t use primary key constraints, you create a chore for
	yourself: checking for duplicate rows.

	 	SELECT bug_id FROM Bugs GROUP BY bug_id HAVING COUNT(*) > 1;

	You would have to run this check frequently, or else duplicates could
	cause problems. If you find a duplicate bug_id
	with the previous query, then you have to examine both rows with that
	bug_id, and choose which one to keep.
	What if the query finds thousands of duplicate bug_id’s?

	A table without a primary key is like organizing your music collection
	with no song titles.
	You can still listen to the music, but you can’t find the one you want
	or keep duplicates out of your collection.

How to Recognize the Antipattern

 The symptom of this antipattern is easy to recognize:
 tables use the overly generic name
 id for the primary key.
 There’s virtually no reason to prefer this column name over one
 that is more descriptive.

 The following can also be evidence of the antipattern:

	

	 “I don’t think I need a primary key in this table.”
	

	
	
	
	
	
	
	 The developer who says this is confusing the term primary key with
	 pseudokey.
	 Every table must have a primary key constraint
	 to prevent duplicate rows and identify individual rows.
	 They might want to use a natural key or a compound key instead.
	

	

	 “How did I get duplicate many-to-many associations?”
	

	
	
	
	 An intersection table for a many-to-many relationship should
	 declare a primary key constraint, or at least a unique
	 key constraint, over the set of foreign key columns.
	

	

	 “I read that database theory says I should move values to a
	 lookup table and refer to them by ID. I don’t want to do that
	 because I have to do a join every time I want the actual
	 values.”
	

	
	
	 This is a common misunderstanding of database design theory called
	 normalization, which has nothing to do with
	 pseudokeys in reality.
	 For more on this, see Appendix 1, Rules of Normalization.
	

Legitimate Uses of the Antipattern

 While there is nothing wrong with using a pseudokey, or assigning
 values from an auto-incrementing integer mechanism, not every table
 needs a pseudokey, and it’s not necessary to name every pseudokey
 id.

 Some object-relational frameworks simplify development by assuming
 convention over configuration.
 They expect every table to define its primary key in the same way:
 as an integer pseudokey column named id.
 If you use such a framework, you may want to conform to its conventions,
 because this gives you access to other desirable features of the
 framework.

 A pseudokey is a good choice as a surrogate for a natural key that’s too
 long to be practical.
 For example, for a table that records attributes of a file on the
 filesystem, the path of the file might be a good natural key, but it
 would be costly to index a string column that long.

 Likewise, when creating tables for multivalued attributes, a subordinate table that references a long compound primary key of its parent must add another column for its own primary key.
 As table references form longer “chains” of tables, the length of the primary key can become too long.
 In these cases, a pseudokey is the only practical solution.

Solution: Tailored to Fit

 A primary key is a constraint, not a data type.
 You can declare a primary key on any column or set of columns, as long as
 the data types support indexing.
 The columns of a primary key must also be declared NOT NULL, but many implementations do this for you automatically.
 You should also be able to define a column as an auto-incrementing
 integer without making it the primary key of the table.
 The two concepts are independent of each other.

 Don’t let inflexible conventions get in the way of good design.

Tell It Like It Is

	Choose sensible names for your primary key.
	The name should convey the type of entity that the primary key
	identifies.
	For example, the primary key of the Bugs table
	should be bug_id.

	Use the same column name in foreign keys where possible.
	This often means that the name of a primary key should be unique within
	your schema;
	no two tables should use the same name for their primary key, unless
	one is also a foreign key referencing the other.
	However, there are exceptions.
	Sometimes it is appropriate for a foreign key to be named differently
	from the primary key it references, for instance, to be descriptive of
	the nature of the association.

ID-Required/soln/foreignkey-name.sql
	 	CREATE TABLE Bugs (
	 	 -- . . .
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)
);

	An industry standard exists to describe naming conventions for
	metadata.
	The standard, called ISO/IEC 11179,[3]
	is a guideline for “managing classification
	schemes” in information technology systems.
	In other words, this is how you should name your tables and columns
	sensibly.
	Like most ISO standards, this document is nearly impenetrable, but Joe
	Celko applies it practically to SQL in his book SQL Programming Style [Cel05].
	
	

Be Unconventional

	Object-relational frameworks expect you to use a pseudokey named
	id, but they also allow you to override this
	and declare a different name instead.
	The following example uses Ruby on Rails:

ID-Required/soln/custom-primarykey.rb
	 	class Bug < ActiveRecord::Base
	 	 set_primary_key "bug_id"
	 	end

	Some developers think that specifying the primary key column is
	necessary only when supporting legacy databases
	where they can’t use their preferred conventions.
	In fact, supporting sensible column names is also important in new
	projects.

Embrace Natural Keys and Compound Keys

	
		
	If your table contains an attribute that’s guaranteed to be unique,	is non-null, and can serve to identify the row, don’t feel obligated to
	add a pseudokey solely for the sake of tradition.

	Practically speaking, it’s not uncommon for every attribute in a table
	to be subject to change or to be nonunique.
	Databases tend to evolve during the lifetime of a project, and
	decision makers may not respect the sanctity of a natural key.
	Sometimes a column that at first seemed like it would be a good natural
	key turns out to have legitimate duplicates.
	In cases like these, a pseudokey is the only solution.

	Use compound keys when they’re appropriate. When a row is best
	identified by the combination of multiple attribute columns, as in the
	BugsProducts table, use those columns in a
	compound primary key.

ID-Required/soln/compound.sql
	 	CREATE TABLE BugsProducts (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (bug_id, product_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);
	 	
	 	INSERT INTO BugsProducts (bug_id, product_id)
	 	 VALUES (1234, 1), (1234, 2), (1234, 3);
	 	
	 	INSERT INTO BugsProducts (bug_id, product_id)
	 	 VALUES (1234, 1); -- error: duplicate entry

	Note that a foreign key that references a compound primary key also needs
	to be compound.
	While it may seem clumsy to duplicate these columns in dependent tables,
	it can have advantages too: you might simplify a query that
	would have required a join to fetch attributes of the referenced row.
	

	
 [image: images/aside-icons/tip.png]
 	

 Conventions are good only if they are helpful.

Mini-Antipattern: Is a BIGINT Big Enough?

	“What if the auto-increment id reaches
	its maximum value?”

	If an application is very busy and inserts a lot of data
	every day into a table with an auto-increment
	id as its primary key, this makes
	developers uncertain about what happens if they use all the
	integer values.

	To relieve this uncertainty, you should do a little bit of
	math. Estimate the number of rows your application inserts
	into your table per minute on average. For example, suppose
	this is 10,000 rows per minute. Divide the maximum integer
	value by this estimated number of rows per minute.

	The maximum value of a signed 32-bit integer is 231-1, or 2,147,483,647. At a rate of
	10,000 rows per minute, assuming your id
	is incremented by 1 per row, this will run out in about
	214,749 minutes, or 149 days, 3 hours, 9 minutes. That’s
	less than half a year, so clearly a regular INT
	column isn’t big enough.

 Changing to an unsigned INT (assuming the column doesn’t need to use negative values) uses the same storage size (32-bit) but only doubles the range of values.
	Instead of running out in 149 days, it will run out in 298 days—still less than a year, at the rate of growth you had estimated.

	Is a BIGINT big enough?

	BIGINT is big. Really big. The maximum value of a
	signed 64-bit number isn’t merely twice as a large as a
	32-bit number, it’s the square of a 32-bit number.
	It’s 232 times as large.

	The maximum value of a signed 64-bit integer is
	9,223,372,036,854,775,807. Now recalculate the estimate for
	how long it will take to run out. Divide that maximum value
	by 10,000 id values per minute.
	Divide that by 60 minutes per hour, then divide by 24 hours
	per day, and then divide by 365 days per year. The result
	is 1,754,827,252 years.

	Developers have asked me what to do if a BIGINT
	runs out of values. Provided their auto-increment column
	starts at 1 and increments by 1 per row, I tell them,
	“I guarantee that a BIGINT won’t run out
	while your application is still in use.
	If I’m wrong and it happens, then you may call me for
	a refund of my consulting fee.”
	

Footnotes

	[3]
	
https://www.iso.org/standard/74570.html

Copyright © 2022, The Pragmatic Bookshelf.

	Victorious warriors win first and then go to war, while
	defeated warriors go to war first and then seek to win.

 Sun Tzu

 Chapter
 5
Keyless Entry

 “Bill, it looks like two managers have reserved the same server in
 our lab for the same days—how can this happen?”
 the testing lab manager messaged me.
 “Can you take a look into this and get it fixed?
 They’re screaming at me that they both need the equipment and that I’m
 holding up their project schedule.”

 I designed an equipment-tracking application some years ago using MySQL.
 The default storage engine for MySQL was MyISAM, which doesn’t support
 foreign key constraints.
 The database had many logical relationships but could not enforce
 referential integrity.

 As the project evolved and the application manipulated data in new
 ways, we developed a problem: when referential integrity wasn’t
 satisfied, discrepancies showed up in reports, subtotals didn’t add up,
 and schedules became double booked.

 The project manager asked me to write quality control
 scripts that we could run periodically to let us know when discrepancies
 occurred. These scripts examined the state of the database, found mistakes
 such as orphaned rows in child tables, and sent an email to report them.

 Every table relationship had to be checked by these scripts.
 As the volume of data grew larger and the number of tables increased,
 the number of quality control queries also grew, and the scripts
 took longer to run. The email reports became longer too.

 The script solution worked, of course, but it was a costly reinvention of
 the wheel.
 What I needed was a way to make the application fail
 early whenever a user submitted invalid data.
 That’s what foreign key constraints do.

Objective: Simplify Database Architecture

 Relational database design is almost as much about relationships between
 tables as it is about the individual tables themselves.
 Referential integrity is an important part of proper
 database design and operation.
 When you declare a foreign key constraint for a column or set of columns,
 the values in these columns must exist in the primary key or unique key
 columns of the parent table.
 This seems simple enough.

 However, some software developers recommend avoiding referential
 integrity constraints.
 The reasons you might hear to ignore foreign keys include
 the following:

	

	 Your data updates can conflict with the constraints.
	
	

	

	 You’re using a database design that’s so flexible it can’t support
	 referential integrity constraints (see Chapter 7, Polymorphic Associations).
	

	

	
	
	
	
	 You believe that the index the database creates for the foreign key
	 will impact performance.
	

	

	 You use a database brand that doesn’t support foreign keys.
	

	

	 You have to look up the syntax for declaring foreign keys.
	

Antipattern: Leave Out the Constraints

 Even though it seems at first that skipping foreign key constraints makes
 your database design simpler, more flexible, or speedier, you pay for
 this in other ways.
 You create more work for yourself because it’s your responsibility
 to write code to ensure referential integrity manually.
Assuming Flawless Code

	Many people’s solution for referential integrity is to write
	application code so that data relationships are always satisfied.
	Every time you insert a row, make sure that values in foreign key
	columns reference existing values in the referenced table.
	Every time you delete a row, make sure that any child tables are also
	updated appropriately.
	In other words, the popular answer is simply to make no
	mistakes.

 To avoid making referential integrity mistakes when you have no foreign
	key constraints, you’d have to run extra SELECT queries before
	you apply changes to confirm the change won’t result in broken
	references.
	For instance, to insert a new row, you’d check that the parent
	row exists:

Keyless-Entry/anti/insert.sql
	 	SELECT account_id FROM Accounts WHERE account_id = 1;

	Then you could add a bug that references it:

Keyless-Entry/anti/insert.sql
	 	INSERT INTO Bugs (reported_by) VALUES (1);

	To delete a row, you’d have to make sure no child rows exist:

Keyless-Entry/anti/delete.sql
	 	SELECT bug_id FROM Bugs WHERE reported_by = 1;

	Then you could delete the account:

Keyless-Entry/anti/delete.sql
	 	DELETE FROM Accounts WHERE account_id = 1;

	If the user with account_id 1
	sneaks in and enters a new bug in the moment after your query and
	before you delete that account, then the delete is blocked.
	This may seem unlikely, but as Gordon Letwin, architect of DOS 4,
	famously said, “One in a million is next Tuesday.”
	That still leaves a broken reference—a bug reported by an account
	that no longer exists.

	The only remedy is for you to explicitly lock the
	Bugs table while you’re checking it and unlock it
	after you have finished deleting the account.
	Any architecture that requires that kind of locking is never going to
	do well when high concurrency and scalability are required.

Checking for Mistakes

	The antisolution described in the story in this chapter uses
	developer-written scripts to report corrupted data.

	For example, in our bugs database, the
	Bugs.status column references the lookup table
	BugStatus.
	To find bugs with an invalid status value, you could use a query like
	the following:

Keyless-Entry/anti/find-orphans.sql
	 	SELECT b.bug_id, b.status
	 	FROM Bugs b LEFT OUTER JOIN BugStatus s
	 	 ON (b.status = s.status)
	 	WHERE s.status IS NULL;

	You can imagine that you’d have to write a similar query for every
	referential relationship in your database.

	If you find yourself in the habit of checking for broken
	references like this, you have to decide how often you need
	to run these checks.
	If you run them too frequently, it might impact performance
	of regular database queries.
	If you don’t run them frequently enough, then data anomalies
	creep in and might affect other work before you notice and correct them.

	When you do find a broken reference, it’s your responsibility
	to correct it.
	For instance, you might change an invalid bug status value to a
	sensible default.

Keyless-Entry/anti/set-default.sql
	 	UPDATE Bugs SET status = DEFAULT WHERE status = 'BANANA';

	Inevitably, there are other cases where you can’t synthesize data to
	correct these kinds of mistakes.
	For example, the Bugs.reported_by column should
	reference the account of the user who reported the given bug, but if
	this value is invalid, it might not be clear which user’s
	account to choose as a replacement.

“It’s Not My Fault!”

	It’s pretty unlikely that all your code touching the database is
	perfect.
	You could easily perform similar database updates in several functions
	in your application.
	When you have to change the code, it’s not easy to be sure you’ve applied
	compatible changes to every case in your application.

	You might have a database that is accessed by applications
	or scripts you didn’t write. You can’t be certain that all
	of these have made their changes correctly.

	You may also have users applying changes directly to the database,
	using an SQL query tool or using private scripts.
	It’s easy to introduce broken references through ad hoc SQL statements.
	You should assume this will happen at some point in the life of your
	application.

	You need the database to be consistent—that is,
	you need to be able to depend on references in the database being
	correct after every update.

Catch-22 Updates

	

	Many developers avoid foreign key constraints because the constraints
	make it inconvenient to update related columns in multiple tables.
	For instance, if you need to delete a row that other rows depend on,
	you have to delete the child rows first to avoid violating foreign key
	constraints:

Keyless-Entry/anti/delete-child.sql
	 	DELETE FROM BugStatus WHERE status = 'BOGUS'; -- ERROR!
	 	DELETE FROM Bugs WHERE status = 'BOGUS';
	 	DELETE FROM BugStatus WHERE status = 'BOGUS'; -- retry succeeds

	You have to execute multiple statements manually, one for each
	child table. If you add another child table to your database
	in the future, you have to fix your code to delete from the
	new table too. This problem is solvable.

	The unsolvable problem is when you UPDATE a column that child
	rows depend on.
	You can’t update the child rows before you update the parent, and you
	can’t update the parent before you update the child values that
	reference it.
	You need to make both changes simultaneously, but that’s impossible
	using two separate updates.
	It’s a catch-22 scenario.

Keyless-Entry/anti/update-catch22.sql
	 	UPDATE BugStatus SET status = 'INVALID' WHERE status = 'BOGUS'; -- ERROR!
	 	
	 	UPDATE Bugs SET status = 'INVALID' WHERE status = 'BOGUS'; -- ERROR!

	Some developers find these scenarios difficult to manage,
	so they decide not to use foreign keys at all.
	We’ll see later how foreign keys address multitable updates and
	deletes in a simple and effective way.

How to Recognize the Antipattern

 If you hear people use phrases like the following, they’re probably
 practicing the Keyless Entry antipattern:
	

	 “How do I query to check for a value that exists in
	 one table and not the other table?”
	

	 Usually this is to find orphan child rows whose parent has been
	 updated or deleted.
	

	

	 “Is there a quick way to check that a value exists in one
	 table as part of my insert to a second table?”
	

	 This is to ensure that the parent row exists.
	 A foreign key does this for you automatically and uses any index
	 on the parent table to make the check as efficient as possible.
	

	

	 “Foreign keys? I was told not to use them because they slow
	 down the database.”
	

	
	 Performance is often used as a justification for cutting corners,
	 but it usually creates more problems than it solves—it can even cause
	 performance problems.

	 Some database designs are incompatible with the use of foreign keys.
	 It should be a strong clue that you’re using another SQL antipattern
	 if you can’t use traditional referential integrity constraints.
	 For more detail, you may want to look at Chapter 6, Entity-Attribute-Value and
	 Chapter 7, Polymorphic Associations.
	

Legitimate Uses of the Antipattern

 Some SQL implementations require extra locks on a
 parent row when you update child rows that reference it.
 The purpose is to prevent a parent row from being updated or
 deleted while an update is in progress on a dependent row.
 This can surprise some software developers, and they may
 choose to drop the foreign key constraint to avoid this type
 of locking.

 Even though foreign key constraints are an effective way to
 reduce data anomalies, they might be removed to help data
 cleanup projects.
 That is, there could be known orphaned rows in a table because
 managers are still researching the data needed for the reference.

 Some other database operations can be simplified if foreign key constraints are not present.
 For example, a popular open source tool for automating MySQL table alterations, pt-online-schema-change,[4] renames tables instead of altering them.
 If the old format of the altered table is referenced by foreign keys in other tables, those references must be dropped and defined after the table renaming is done.
 This potentially results in many tables being altered, instead of just the one that needed the change.
 To avoid this step, some developers choose a policy to not use foreign key constraints.

 You might be forced to use a database brand that doesn’t support
 foreign key constraints (for example, MySQL’s MyISAM storage engine
 or SQLite prior to version 3.6.19).
 If that’s the case, then you have to find a way to
 compensate, like the quality control scripts described in this chapter’s
 story.

Solution: Declare Constraints

 The Japanese phrase poka-yoke means
 “mistake proofing.”
 Poka-yoke was coined by industrial engineer Dr. Shigeo Shingo
 in his study of the Toyota Production System.
 This term refers to a manufacturing process that helps eliminate
 product defects by preventing, correcting, or drawing attention to errors
 as they occur. This practice improves quality and decreases the need for
 correction, which more than makes up for the cost of its use.

 You can apply the poka-yoke principle to your database design by using
 foreign key constraints to enforce referential integrity.
 Instead of searching for and correcting data integrity mistakes, you can
 prevent these mistakes from entering your database in the first place.

Keyless-Entry/soln/foreign-keys.sql
	 	CREATE TABLE Bugs (
	 	 -- . . .
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 status VARCHAR(20) NOT NULL DEFAULT 'NEW',
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (status) REFERENCES BugStatus(status)
);

 Your existing code and ad hoc queries obey the same constraints, so
 there’s no way for any forgotten code or back doors to bypass
 enforcement.
 The database rejects any improper change, no matter where the change
 comes from.

 Using foreign keys saves you from writing unnecessary code and ensures
 that all your code works the same way if you change the database.
 This reduces the time to develop the code and also many hours of
 debugging and maintenance.
 The software industry average is 15 to 50 bugs per 1,000 lines of code.
 All else being equal, if you have fewer lines of code, you have
 fewer bugs.

Supporting Multitable Changes

	Foreign keys have another feature you can’t mimic using application
	code: cascading updates.
Keyless-Entry/soln/cascade.sql
	 	CREATE TABLE Bugs (
	 	 -- . . .
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 status VARCHAR(20) NOT NULL DEFAULT 'NEW',
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)
	 	 ON UPDATE CASCADE
	 	 ON DELETE RESTRICT,
	 	 FOREIGN KEY (status) REFERENCES BugStatus(status)
	 	 ON UPDATE CASCADE
	 	 ON DELETE SET DEFAULT
);

	This solution allows you to update or delete the parent row and lets the
	database take care of any child rows that reference it.
	Updates to the parent tables
	BugStatus and Accounts
	propagate automatically to child rows in
	Bugs.
	There’s no longer a catch-22 problem.

	The way you declare the ON UPDATE or
	ON DELETE clauses in the foreign key constraint
	allow you to control the result of a cascading operation.
	For example, RESTRICT for the foreign key on
	reported_by means that you can’t delete an
	account if some rows in Bugs reference it.
	The constraint blocks the delete and raises an error.
	Whereas if you delete a status value, any bugs
	with that status are automatically reset to the default status value.

	In either case, the database changes both tables atomically.
	The foreign key references remain satisfied both before and after the
	changes.

	If you add a new child table to the database, the foreign
	keys in the child table dictate the cascading behavior.
	You don’t need to change your application code.
	Neither do you need to change anything about the parent table,
	no matter how many child tables reference it.

Overhead? Not Really

	It’s true that foreign key constraints have a bit of overhead.
	In spite of this, foreign keys prove to be a lot more
	efficient than the alternative.

	

	 You don’t need to run SELECT queries to check before
	 you insert or update or delete.
	

	

	 You don’t need to lock tables to protect multitable changes.
	

	

	 You don’t need to run periodic quality control scripts to correct
	 the inevitable orphans.
	

 Foreign keys are easy to use, improve performance, and help you
 maintain consistent referential integrity during any data change,
 both simple and complex.

 For more tips on avoiding common mistakes when defining foreign keys, see Chapter 26, Foreign Key Mistakes in Standard SQL and Chapter 27, Foreign Key Mistakes in MySQL.

	
 [image: images/aside-icons/tip.png]
 	

 Make your database mistake proof with constraints.

Footnotes

	[4]
	
https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html

Copyright © 2022, The Pragmatic Bookshelf.

	If you try and take a cat apart to see how it works, the first thing
	you have in your hands is a non-working cat.

 Douglas Adams

 Chapter
 6
Entity-Attribute-Value

 “How do I count the number of rows by date?” This is an
 example of a simple task for a database programmer. This solution is
 covered in any introductory tutorial on SQL. It involves basic SQL syntax:
EAV/intro/count.sql
	 	SELECT date_reported, COUNT(*)
	 	FROM Bugs
	 	GROUP BY date_reported;

 The simple solution assumes two things:

	

	The bug date is stored only in the column named
	Bugs.date_reported on every row of the table.

	

	Values can be compared to one another so that
	GROUP BY can accurately group dates
	with equal values together.

 You can’t always rely on those assumptions.
 The date might be stored in the date_reported or
 report_date column or in any other column name.
 It might be different on each row, depending on what the software
 developers thought was the appropriate name for that attribute
 on different days.
 Dates might be stored in a variety of different formats, and
 then the computer can’t easily compare two dates.

 You may encounter these problems and others when you employ the
 antipattern known as Entity-Attribute-Value.

Objective: Support Variable Attributes

 Extensibility is frequently a goal of software projects. You would like
 to design software that can adapt fluidly to future usage with
 little or no additional programming.

 This is not a new problem; similar arguments against the inflexibility of
 relational database metadata have been made almost continuously since
 1970, when the relational model was first proposed in A Relational Model of Data for Large Shared
 Data Banks [Cod70] by E. F. Codd.

 A conventional table consists of attribute columns that are relevant for
 every row in the table, since every row represents an instance of a
 similar object.
 A different set of attributes represents a different type of object,
 so it belongs in a different table.

 In modern object-oriented programming models, however, different object
 types can be related, for instance, by extending the same base type.
 In object-oriented design, these objects are considered instances of the
 same base type, as well as instances of their respective subtypes.
 You would like to store objects as rows in a single database table to
 simplify comparisons and calculations over multiple objects.
 You also need to allow objects of each subtype to store their respective attribute
 columns, which may not apply to the base type or to other subtypes.

 Consider an example from the bugs database. A
 Bug and a Feature Request
 share some attributes in common, seen in the
 Issue base type in the following class diagram.

[image: images/EAV/bug-types.png]

 Every issue is associated with a person who reported it. It’s
 also associated with a product, and it has a priority for
 completion. A Bug has some
 distinct attributes: the version of the product in which the
 bug occurs and the severity or impact of the bug. Likewise,
 a FeatureRequest may have its own
 attributes as well. For this example, suppose a feature is
 associated with a sponsor whose budget supports that feature’s
 development.

Antipattern: Use a Generic Attribute Table

 The solution that appeals to some programmers when they need to support
 variable attributes is to create a second table, storing attributes as
 rows.
 As you can see in the following figure, it looks simpler at first because you can use two tables instead of three
 (or more, if your data model has more variations).

[image: images/EAV/eav-table.png]

 Each row in this attribute table has three columns:

	

	 The Entity.
	 Typically, this is a foreign key to a parent table that has one row
	 per entity.
	

	

	 The Attribute.
	 This is simply the name of a column in a conventional table,
	 but in this new design, you have to identify the attribute on
	 each given row.
	

	

	 The Value.
	 Each entity has a value for each of its attributes.
	

	 For example, a given bug is an entity you identify by its primary key
	 value 1234.
	 It has an attribute called status.
	 The value of that attribute for bug 1234 is
	 NEW.
	

 This design is called Entity-Attribute-Value, or
 EAV for short.
 It’s also sometimes called open schema,
 schemaless, or name-value pairs.

EAV/anti/create-eav-table.sql
	 	CREATE TABLE Issues (
	 	 issue_id SERIAL PRIMARY KEY
);
	 	
	 	INSERT INTO Issues (issue_id) VALUES (1234);
	 	
	 	CREATE TABLE IssueAttributes (
	 	 issue_id BIGINT UNSIGNED NOT NULL,
	 	 attr_name VARCHAR(100) NOT NULL,
	 	 attr_value VARCHAR(100),
	 	 PRIMARY KEY (issue_id, attr_name),
	 	 FOREIGN KEY (issue_id) REFERENCES Issues(issue_id)
);
	 	
	 	INSERT INTO IssueAttributes (issue_id, attr_name, attr_value)
	 	 VALUES
	 	 (1234, 'product', '1'),
	 	 (1234, 'date_reported', '2009-06-01'),
	 	 (1234, 'status', 'NEW'),
	 	 (1234, 'description', 'Saving does not work'),
	 	 (1234, 'reported_by', 'Bill'),
	 	 (1234, 'version_affected', '1.0'),
	 	 (1234, 'severity', 'loss of functionality'),
	 	 (1234, 'priority', 'high');

 By adding one additional table, you seem to gain the following benefits:

	
	 Both tables have few columns.
	
	
	 The number of columns doesn’t need to grow to support new attributes.
	
	
	 You avoid a clutter of columns that contain null
	 in rows where the attribute is inapplicable.
	

 This appears to be an improved design. However, the simple database
 structure doesn’t make up for the difficulty of using it.

Querying an Attribute

	Your boss needs to run a report of the bugs reported per day.
	In a conventional table design, the Issues
	table would have a simple attribute column such as
	date_reported. To query all bugs with their
	report dates, your boss could use a simple query like this:

EAV/anti/query-plain.sql
	 	SELECT issue_id, date_reported FROM Issues;

	To get the same information as the previous query using the EAV design,
	your boss needs to fetch rows from the
	IssueAttributes table that stores an attribute
	named by the string
	date_reported.
	This query is more verbose but less clear.

EAV/anti/query-eav.sql
	 	SELECT issue_id, attr_value AS "date_reported"
	 	FROM IssueAttributes
	 	WHERE attr_name = 'date_reported';

Supporting Data Integrity

	When you use EAV, you sacrifice many advantages that a conventional
	database design would have given you.
You Can’t Make Mandatory Attributes

	
	
	 To help your boss generate accurate project reports, you should
	 also require that the date_reported attribute
	 has a value. In a conventional database design, it would be simple to
	 enforce a mandatory column by declaring the column
	 NOT NULL.
	

	 In the EAV design, each attribute corresponds to a row in the
	 IssueAttributes table, not a column.
	 You would need a constraint that checks that a row exists for
	 each issue_id value, and the row must have the
	 string date_reported in its
	 attr_name column.
	

	 SQL doesn’t support a constraint that can do this.
	 So, you must write application code to enforce it.
	 You also have to write code to check if the bug has the
	 required reported date, every time it reads the entity,
	 because some other client could have saved a bug with no
	 date.
	 If you do find a bug with no reported date, you should
	 correct it (more code to write), but there’s no way to
	 know what the correct value was.
	 If you make a guess or use some default value for a missing
	 attribute, it could affect the accuracy of your boss’s
	 reports.
	
You Can’t Use SQL Data Types

	
	 Your boss tells you he is having trouble running his report because
	 people have entered dates in different formats or sometimes even
	 a string that isn’t a date. In a conventional database,
	 you can prevent this if you declared the column with the
	 DATE data type.
	
EAV/anti/insert-plain.sql
	 	INSERT INTO Issues (date_reported) VALUES ('banana'); -- ERROR!

	 In the EAV design, the data type of the
	 IssueAttributes.attr_value column is typically
	 a string to accommodate all possible attributes in a single column.
	 So, it has no way of rejecting invalid data.
	
EAV/anti/insert-eav.sql
	 	INSERT INTO IssueAttributes (issue_id, attr_name, attr_value)
	 	 VALUES (1234, 'date_reported', 'banana'); -- Not an error!

	 Some people try to extend the EAV design by defining a separate
	 attr_value column for each SQL data type,
	 leaving null in the unused columns.
	 This allows you to use data types but makes queries even worse:
	
EAV/anti/data-types.sql
	 	SELECT issue_id, COALESCE(attr_value_date, attr_value_datetime,
	 	 attr_value_integer, attr_value_numeric, attr_value_float,
	 	 attr_value_string, attr_value_text) AS "date_reported"
	 	FROM IssueAttributes
	 	WHERE attr_name = 'date_reported';

	 You would need to add even more columns to support user-defined data
	 types or domains.
	
You Can’t Enforce Referential Integrity

	

	 In a conventional database, you can restrict the range of some
	 attributes by defining a foreign key to a lookup table.
	 For example, the status attribute of a bug or
	 issue should be one of a short list of values stored in the
	 BugStatus table.
	
EAV/anti/foreign-key-plain.sql
	 	CREATE TABLE Issues (
	 	 issue_id SERIAL PRIMARY KEY,
	 	 -- other columns
	 	 status VARCHAR(20) NOT NULL DEFAULT 'NEW',
	 	 FOREIGN KEY (status) REFERENCES BugStatus(status)
);

	 In the EAV design, you can’t apply this kind of constraint on
	 the attr_value column. A referential
	 integrity constraint applies to every row in the table.
	
EAV/anti/foreign-key-eav.sql
	 	CREATE TABLE IssueAttributes (
	 	 issue_id BIGINT UNSIGNED NOT NULL,
	 	 attr_name VARCHAR(100) NOT NULL,
	 	 attr_value VARCHAR(100),
	 	 FOREIGN KEY (attr_value) REFERENCES BugStatus(status)
);

	 If you define this constraint, it would force every
	 attribute to match a value in BugStatus, not
	 just the status attribute.
	
You Can’t Make Up Attribute Names

	
	
	 Your boss’s reports are still not reliable. You find that
	 attributes are not being named consistently. One bug uses an
	 attribute named by the string
	 date_reported, but another
	 bug names the attribute by the string
	 report_date.
	 Both are clearly intended to represent the same information.
	

	 Here’s how you could count bugs per date:
	
EAV/anti/count.sql
	 	SELECT date_reported, COUNT(*) AS bugs_per_date
	 	FROM (SELECT DISTINCT issue_id, attr_value AS date_reported
	 	 FROM IssueAttributes
	 	 WHERE attr_name IN ('date_reported', 'report_date'))
	 	GROUP BY date_reported;

	 You have a risk that a given bug has stored an attribute by yet
	 another name.
	 The bug might even have stored a given attribute twice,
	 by two different names.
	 Now you have to write more code to check for this.
	

	 One remedy might be to declare a foreign key on the
	 attr_name column to a lookup table that
	 contains your approved attribute names. However, this doesn’t
	 support attributes you define on the fly for each entity.
	 That’s a common use of the EAV design.
Reconstructing a Row

	It’s natural to retrieve a row from the Issues
	table with all its attributes in columns.
	You want to fetch an issue in a single row as though it were stored in
	a conventional table.

	issue_id
	date_reported
	status
	priority
	description

	1234
	2009-06-01
	NEW
	HIGH
	Saving does not work

	Because each attribute is stored on a separate row of the
	IssueAttributes table, retrieving them
	all as part of a single row requires a join for each attribute.
	You must know all attributes at the time you write this query.
	The following query reconstructs the row shown earlier, using joins.

EAV/anti/reconstruct.sql
	 	SELECT i.issue_id,
	 	 i1.attr_value AS "date_reported",
	 	 i2.attr_value AS "status",
	 	 i3.attr_value AS "priority",
	 	 i4.attr_value AS "description"
	 	FROM Issues AS i
	 	 LEFT OUTER JOIN IssueAttributes AS i1
	 	 ON i.issue_id = i1.issue_id AND i1.attr_name = 'date_reported'
	 	 LEFT OUTER JOIN IssueAttributes AS i2
	 	 ON i.issue_id = i2.issue_id AND i2.attr_name = 'status'
	 	 LEFT OUTER JOIN IssueAttributes AS i3
	 	 ON i.issue_id = i3.issue_id AND i3.attr_name = 'priority';
	 	 LEFT OUTER JOIN IssueAttributes AS i4
	 	 ON i.issue_id = i4.issue_id AND i4.attr_name = 'description';
	 	WHERE i.issue_id = 1234;

	As the number of attributes increases, so does the number of joins,
	and the cost of this query increases exponentially.

	An alternative solution uses aggregation, grouping the rows
	with the same issue_id and picking
	each respective attribute out of the group using a CASE
	conditional expression.

EAV/anti/reconstruct-groupby.sql
	 	SELECT issue_id,
	 	 MAX(CASE attr_name WHEN 'date_reported'
	 	 THEN attr_value END) AS "date_reported",
	 	 MAX(CASE attr_name WHEN 'status'
	 	 THEN attr_value END) AS "status",
	 	 MAX(CASE attr_name WHEN 'priority'
	 	 THEN attr_value END) AS "priority",
	 	 MAX(CASE attr_name WHEN 'description'
	 	 THEN attr_value END) AS "description"
	 	FROM Issues
	 	WHERE issue_id = 1234
	 	GROUP BY issue_id;

The Inner-Platform Effect

 EAV is a textbook example of a more general antipattern:
 designing a software application to be so customizable that
 it becomes a workalike of the platform used to create it.

 It takes too much programming work to duplicate the platform
 fully.
 A mature platform represents many years of work, which is
 naturally more time than a given project can spend.

 So the “inner-platform” code must cut corners,
 implementing limited forms of the platform’s features.
 After spending a lot of time and effort, the result is
 not better than the platform the programmer started with,
 in fact it’s inferior, buggy, and more difficult to use.

How to Recognize the Antipattern

 If you hear phrases like the following spoken by your project team,
 it’s a clue that someone is employing the EAV antipattern:
	

	 “This database is totally extensible without metadata changes.
	 You can define new attributes at runtime.”
	

	 Relational databases don’t support that degree of flexibility.
	 When someone claims to have designed an arbitrarily extensible
	 database, they’re probably using the EAV design.
	

	

	 “What’s the maximum number of joins I can do in a query?”
	

	 If you need a query to support such a high number of joins that
	 you’re concerned about exceeding the database’s limits, you may have
	 a problem in your database design. It’s common for an EAV design
	 to lead to this problem.
	

	

	 “I can’t figure out how to write a report for our e-commerce
	 platform. We need to hire a consultant to do it for us.”
	

	 It seems that many turnkey database-driven software packages
	 designed for customizability use the EAV design. This makes
	 most common reporting queries very complex or even impractical.
	

Legitimate Uses of the Antipattern

 It’s hard to justify using the EAV antipattern in a relational database. You have to compromise too many features that are strengths of the
 relational paradigm.
 But that doesn’t address the legitimate need in some applications to
 support dynamic attributes.

 Most applications that need schemaless data really need it for only a few
 tables or even just one table.
 The rest of your data requirements conform to standard table designs.
 If you account for the extra work and risk of EAV in your project plan,
 it may be the lesser evil to use it sparingly.
 Keep in mind that experienced database consultants report that
 systems using EAV become unwieldy within a year.

 If you have nonrelational data management needs, the best answer is to
 use a nonrelational technology.
 This is a book about SQL, not about SQL alternatives, so the following list is only a
 sampling of these technologies:

	

	 Berkeley DB[5]
	 is a popular key-value store that’s easy to embed in a variety of applications.
	
	

	

	 DynamoDB[6]
	 is a serverless key-value database offered as a cloud service at Amazon.com.
	
	

	

	 Elasticsearch[7]
	 is a distributed search and analytics engine.
	
	

	

	 Hadoop[8]
	 and HBase
	 make up an open source DBMS inspired by Google’s MapReduce algorithm
	 for distributing queries against very large-scale semistructured
	 data stores.
	
	
	

	

	 MongoDB[9]
	 is a document-oriented database.
	
	

	

	 Redis[10]
	 is a data structure server that stores data in memory by default.
	
	

 Although these and other nonrelational projects are growing in popularity,
 the weaknesses of EAV relative to relational databases
 also apply to these alternatives.
 When metadata is fluid, it’s harder to formulate simple queries.
 Applications spend a lot of energy discovering the structure of data
 and adapting to it.

Solution: Model the Subtypes

 If EAV seems like the right design, you should take a second look before
 you implement it.
If you do some good old-fashioned analysis, you will
 probably find that your project’s data can be modeled in a traditional
 table design more easily and with greater assurance of data integrity.

 There are several ways to store such data without using EAV. Most
 solutions work best when you have a finite number of subtypes and you
 know the attribute of each subtype. Which solution is best to use
 depends on how you intend to query the data, so
 you should decide on a design on a case-by-case basis.

 Several of these designs comes from Martin Fowler’s book
 Patterns of Enterprise
 Application Architecture [Fow03].

Single Table Inheritance

	The simplest design is to store all related types in one table, with
	distinct columns for every attribute that exists in any type. Use one
	attribute to define the subtype of a given row. In this example, this
	attribute is called issue_type. Some
	attributes are common to all subtypes. Many attributes are
	subtype-specific,
	and these columns must be given a null value
	on any row storing an object for which the attribute does not apply;
	the columns with non-null values become sparse.

EAV/soln/create-sti-table.sql
	 	CREATE TABLE Issues (
	 	 issue_id SERIAL PRIMARY KEY,
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED,
	 	 priority VARCHAR(20),
	 	 version_resolved VARCHAR(20),
	 	 status VARCHAR(20),
	 	 issue_type VARCHAR(10), -- BUG or FEATURE
	 	 severity VARCHAR(20), -- only for bugs
	 	 version_affected VARCHAR(20), -- only for bugs
	 	 sponsor VARCHAR(50), -- only for feature requests
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

	As new object types are introduced, the database must accommodate the
	attributes that describe these new object types. You must alter the
	table to add more columns as you add distinct attributes for the new
	object types. You may encounter a practical limit on the number of
	columns per table.

 Another limitation of Single Table Inheritance is that there is no
	metadata to define which attributes belong to which subtypes. In your
	application, you can ignore some attributes if you know they
	don’t apply to the object subtype on a given row.
	This takes some care, because it’s your responsibility to track
	manually which attributes are applicable to each subtype. It would be
	better if you could use metadata to define this in the database.

	
	Single Table Inheritance is best when you have few subtypes and few
	subtype-specific attributes, and you need to use a single-table
	database access pattern like Active Record.
Concrete Table Inheritance

	Another solution is to create a separate table for each subtype.
	Every table contains the same attributes that are common to the base
	type, as well as the respective subtype-specific attribute.

EAV/soln/create-concrete-tables.sql
	 	CREATE TABLE Bugs (
	 	 issue_id SERIAL PRIMARY KEY,
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED,
	 	 priority VARCHAR(20),
	 	 version_resolved VARCHAR(20),
	 	 status VARCHAR(20),
	 	 severity VARCHAR(20), -- only for bugs
	 	 version_affected VARCHAR(20), -- only for bugs
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);
	 	
	 	CREATE TABLE FeatureRequests (
	 	 issue_id SERIAL PRIMARY KEY,
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED,
	 	 priority VARCHAR(20),
	 	 version_resolved VARCHAR(20),
	 	 status VARCHAR(20),
	 	 sponsor VARCHAR(50), -- only for feature requests
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

	
An advantage of Concrete Table Inheritance over Single Table
	Inheritance is that you are prevented from storing a row containing
	values for attributes that don’t apply to that row’s subtype. If you
	reference an attribute column that doesn’t exist in that table, the
	database informs you of the error automatically.

 For example, the severity column does not appear in the
	FeatureRequests table:

EAV/soln/insert-concrete.sql
	 	INSERT INTO FeatureRequests (issue_id, severity) VALUES (...); -- ERROR!

	Another advantage of Concrete Table Inheritance is that you don’t need
	an extra attribute to define the subtype on each row, as you do in the
	Single Table
	Inheritance design.

	On the other hand, there are disadvantages.
	It’s hard to tell the common attributes from subtype-specific
	attributes. Also, if you add a new attribute to the set of common
	attributes, you must alter every subtype table.

	No metadata shows that the data stored in these subtype tables belong
	to related objects. That is, if a programmer new to your project looks
	at the table definitions, he would see that some columns are common to
	all these subtype tables, but the metadata does not tell him whether
	any logical relationship exists or whether the tables have similarities
	merely by coincidence.

	If you want to search all objects regardless of their subtypes,
	this is complicated if each subtype is stored in a separate table.
	To make this query easier, define a view that is the union of the
	tables, selecting only common attributes.

EAV/soln/view-concrete.sql
	 	CREATE VIEW Issues AS
	 	 SELECT b.issue_id, b.reported_by, ... 'bug' AS issue_type
	 	 FROM Bugs AS b
	 	 UNION ALL
	 	 SELECT f.issue_id, f.reported_by, ... 'feature' AS issue_type
	 	 FROM FeatureRequests AS f;

	The Concrete Table Inheritance design is best used when you seldom need
	to query against all subtypes at once.
Class Table Inheritance

	A third solution mimics inheritance, as though tables were
	object-oriented classes. Create a single table for the base type,
	containing attributes common to all subtypes. Then for each subtype,
	create another table, with a primary key that also serves as a foreign
	key to the base table.

EAV/soln/create-class-tables.sql
	 	CREATE TABLE Issues (
	 	 issue_id SERIAL PRIMARY KEY,
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED,
	 	 priority VARCHAR(20),
	 	 version_resolved VARCHAR(20),

	 	 status VARCHAR(20),
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);
	 	
	 	CREATE TABLE Bugs (
	 	 issue_id BIGINT UNSIGNED PRIMARY KEY,
	 	 severity VARCHAR(20),
	 	 version_affected VARCHAR(20),
	 	 FOREIGN KEY (issue_id) REFERENCES Issues(issue_id)
);
	 	
	 	CREATE TABLE FeatureRequests (
	 	 issue_id BIGINT UNSIGNED PRIMARY KEY,
	 	 sponsor VARCHAR(50),
	 	 FOREIGN KEY (issue_id) REFERENCES Issues(issue_id)
);

	The one-to-one relationship is enforced by the metadata, since the
	dependent table’s foreign key is also a primary key and thus must be
	unique. This solution provides an efficient way to search against all
	subtypes, as long as your search references only the base type’s
	attributes. Once you’ve found the entries that match your search, you
	can get the subtype-specific attributes by querying against the
	respective subtype tables.

	You don’t need the base table to hold the subtype attribute.
	As long as you have a small number of subtypes, you can
	write a join against all of them at once, producing a sparse result set
	like in the Single Table
	Inheritance table. Attributes are
	null where the attribute doesn’t apply in the
	subtype for a given row.

EAV/soln/select-class.sql
	 	SELECT i.*, b.*, f.*
	 	FROM Issues AS i
	 	 LEFT OUTER JOIN Bugs AS b USING (issue_id)
	 	 LEFT OUTER JOIN FeatureRequests AS f USING (issue_id);

	This is also a good candidate for defining a
	VIEW.

	This design is best when you often need to query across all subtypes,
	referencing the columns they have in common.

 A disadvantage of this design (as well as the Concrete Table Inheritence design) is that it’s not possible to create a unique constraint across the tables.
	It’s also hard to ensure a given entity is assigned only one subtype; it may appear in more than one of the subtype tables.

Semistructured Data

	If you have many subtypes or if you must support new attributes
	frequently, you can add a column of type BLOB or related type
	to store data in a format such as XML or JSON, which encodes both
	the attribute names and their values.
 This pattern is also called the Serialized LOB.
	Many SQL databases now have a specialized JSON data type for this purpose.
	
	

EAV/soln/create-blob-tables.sql
	 	CREATE TABLE Issues (
	 	 issue_id SERIAL PRIMARY KEY,
	 	 reported_by BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED,
	 	 priority VARCHAR(20),
	 	 version_resolved VARCHAR(20),
	 	 status VARCHAR(20),
	 	 issue_type VARCHAR(10), -- BUG or FEATURE
	 	 attributes JSON NOT NULL, -- all dynamic attributes for the row
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

	The advantage of this design is that it’s completely extensible,
	but the format is more or less standard, and tools exist for deriving
	the elements of data within.
	That’s why it’s called “semistructured.”
	You can store new attributes in the semistructured column at any time.
	Every row may even potentially store a distinct set of attributes,
	so you can have as many subtypes as you have rows.

	The disadvantage is that it’s awkward to use SQL to access specific
	attributes in such a structure.
	Many SQL implementations have added built-in functions for
	searching or transforming XML or JSON, but these aren’t as
	graceful or efficient as working with the more traditional
	data types.
	SQL expressions and operators were meant to treat each
	column as a discrete, scalar data value, not a complex,
	semistructured document.

	Semistructured data is best used when you can’t limit yourself to a finite set of
	subtypes and when you need complete flexibility to define new attributes at
	any time.
Post-Processing

	Unfortunately, sometimes you’re stuck with the EAV design, such as
	if you inherited a project and can’t change it or if your company
	acquired a third-party software platform that uses EAV.
	If this is the case, familiarize yourself with the trouble areas in the
	“Antipattern” section so you can anticipate and plan for the extra work
	it takes to work with this design.

	Above all, don’t try to write queries that fetch entities as a single
	row as though data were stored in a conventional table. Instead,
	query the attributes associated with the entity and fetch them as
	a set of rows, the way that they are stored.

EAV/soln/post-process.sql
	 	SELECT issue_id, attr_name, attr_value
	 	FROM IssueAttributes
	 	WHERE issue_id = 1234;

 The result of this query might look like the following:

	issue_id
	attr_name
	attr_value

	1234
	date_reported
	2009-06-01

	1234
	description
	Saving does not work

	1234
	priority
	HIGH

	1234
	product
	Open RoundFile

	1234
	reported_by
	Bill

	1234
	severity
	loss of functionality

	1234
	status
	NEW

	This query is easier for you to write, and it’s easier for the database
	to process. It returns all the attributes associated with the issue,
	even if you don’t know how many there are when you write the query.

	To use a result in this format, you need to write application code to
	loop over the rows of the result set and set properties of an object in
	your application. See the following Python code for an example:

EAV/soln/post-process.py
	 	import mysql.connector
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	 	issue_id = 1234
	 	query = """
	 	 SELECT attr_name, attr_value
	 	 FROM IssueAttributes
	 	 WHERE issue_id = %s"""
	 	cursor.execute(query, (issue_id,))
	 	issue = {}
	 	for (row) in cursor:
	 	 (field, value) = row
	 	 issue[field] = value
	 	
	 	cnx.commit()

	This might seem like too much work, but it’s the consequence of
	a system-within-a-system like EAV.
	SQL already offers a way to identify distinct attributes—in distinct
	columns. By using EAV, you have abandoned SQL’s conventional way to manage metadata,
	so you shouldn’t be surprised that you need to write more code to
	do the work that SQL would have done for you.
	
	
	
	
	
	
	
	
	
	
 [image: images/aside-icons/tip.png]
 	

 Use metadata for metadata.

Footnotes

	[5]
	
https://www.oracle.com/database/technologies/related/berkeleydb.html

	[6]
	
https://aws.amazon.com/dynamodb/

	[7]
	
https://www.elastic.co/elasticsearch/

	[8]
	
https://hadoop.apache.org/

	[9]
	
https://www.mongodb.org/

	[10]
	
https://redis.io/

Copyright © 2022, The Pragmatic Bookshelf.

 When you come to a fork in the road, take it!

 Yogi Berra

 Chapter
 7
Polymorphic Associations

 Let’s allow users to make comments on bugs.
 A given bug may have many comments, but any given comment must pertain to a
 single bug.
 So, there’s a one-to-many relationship between Bugs and
 Comments.
 The entity-relationship diagram for this kind of simple association is shown
 in the following diagram.

[image: images/Polymorphic/simple-diagram.png]

 The following SQL shows how you would create this table:
Polymorphic/intro/comments.sql
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 author_id BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME NOT NULL,
	 	 comment TEXT NOT NULL,
	 	 FOREIGN KEY (author_id) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

 However, you might have two tables you want to comment on.
 Bugs and FeatureRequests are
 similar entities, although you might store them as separate tables (see
 Concrete Table Inheritance).
 You’d like to store Comments in a single table
 regardless of whether they pertain to either type of issue—a bug or a
 feature—but you can’t declare a foreign key that references multiple
 parent tables. The following declaration is nonsense:

Polymorphic/intro/nonsense.sql
	 	 ...
	 	 FOREIGN KEY (issue_id)
	 	 REFERENCES Bugs(issue_id) OR FeatureRequests(issue_id)
);

 Developers also try to write invalid SQL to query multiple tables,
 such as the following:

Polymorphic/intro/nonsense.sql
	 	SELECT c.*, i.summary, i.status
	 	FROM Comments AS c
	 	JOIN c.issue_type AS i USING (issue_id);

 You can’t join to a different table per row in SQL.
 SQL syntax requires that all the tables are named at the
 time you submit the query. The tables can’t vary during the query.
 There’s something wrong with this picture.

Objective: Reference Multiple Parents

 At first, it seems like a natural and intuitive concept that the child table Comments can reference either of those parent tables.
 The foreign key on a given row is either a reference to Bugs, or a reference to FeatureRequests.
 Somehow the column must carry information about which table it references on a row-by-row basis.

Antipattern: Use Dual-Purpose Foreign Key

 A solution for these cases has become popular enough to be given
 a name, Polymorphic Associations. This is also
 sometimes called a promiscuous association,
 because it references multiple tables.

Defining a Polymorphic Association

	To make Polymorphic Associations work, you must add an extra string
	column alongside the foreign key on issue_id.
	The extra column contains the name of the parent table referenced by
	the current row.

 In this example, the new column is called
	issue_type, and contains a string value, either
	Bugs or
	FeatureRequests,
	corresponding to the names of the two possible parent tables in this
	association.

Polymorphic/anti/comments.sql
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 issue_type VARCHAR(20), -- "Bugs" or "FeatureRequests"
	 	 issue_id BIGINT UNSIGNED NOT NULL,
	 	 author BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME,
	 	 comment TEXT,
	 	 FOREIGN KEY (author) REFERENCES Accounts(account_id)
);

	You see one difference immediately: the foreign key declaration
	for issue_id is missing.
	In fact, since a legitimate foreign key constraint must specify exactly one table, a
	Polymorphic Association means that you can’t declare this with SQL constraint syntax.
	As a result, there is no enforcement of data integrity to ensure that
	the value in Comments.issue_id matches a value
	in the parent table.

	Likewise, no metadata ensures that the string in
	Comments.issue_type corresponds to a table that
	exists in this database.

Diagramming a Polymorphic Association

	Entity-relationship diagrams don’t have an official way to represent this relationship.
	Developers who want to use this design have to make up their own diagram style.
	You might see a diagram like the following:

[image: images/Polymorphic/polymorphic-association.png]

	This diagram shows a foreign key that
	“forks,” so a given row in the Comments
	table matches either one or the other parent table.
	The curved line that spans the fork is a convention that is sometimes used in these diagrams, but since this is an unofficial type of diagram, you shouldn’t expect to see any style consistently.

Querying a Polymorphic Association

	The issue_id value in the
	Comments table may occur in the primary key
	column of both parent tables, Bugs and
	FeatureRequests. Or the value may occur in
	one parent table but be missing in the other parent table. It’s
	therefore crucial to use the issue_type
	correctly when joining the child table to the parent table. You
	must not match an issue_id value to the
	FeatureRequests table if it was intended to be
	matched to the Bugs table.

	For example, this will retrieve comments for a given bug by its primary key
	value 1234:

Polymorphic/anti/select.sql
	 	SELECT *
	 	FROM Bugs AS b JOIN Comments AS c
	 	 ON (b.issue_id = c.issue_id AND c.issue_type = 'Bugs')
	 	WHERE b.issue_id = 1234;

	Although the previous query works if bugs are stored in the single table
	Bugs, you run into a problem when
	Comments is associated with both tables
	Bugs and
	FeatureRequests.
	In SQL, you must specify all tables in a join;
	you can’t join Comments to two separate
	tables, switching between them row by row, depending on the value in
	the Comments.issue_type column.
	

	To retrieve either a bug or a feature given a specific comment, you need
	to run a query with an outer join to both parent
	tables. Only one of the parent tables will satisfy its join, since
	part of the join condition relies on the value in the
	Comment.issue_type column. Using an
	outer join means that fields from
	the table that does not match contain null
	in the result set.

Polymorphic/anti/select.sql
	 	SELECT *
	 	FROM Comments AS c
	 	 LEFT OUTER JOIN Bugs AS b
	 	 ON (b.issue_id = c.issue_id AND c.issue_type = 'Bugs')
	 	 LEFT OUTER JOIN FeatureRequests AS f
	 	 ON (f.issue_id = c.issue_id AND c.issue_type = 'FeatureRequests');

 The result may look something like this:

	c.comment_id
	c.issue_type
	c.issue_id
	c.comment
	b.issue_id
	f.issue_id

	6789
	Bugs
	1234
	It crashes!
	1234
	NULL

	9876
	Feature…
	2345
	Great idea!
	NULL
	2345

Non-Object-Oriented Example

	In the example of Bugs and
	FeatureRequests, these two parent tables are
	meant to model related subtypes. Polymorphic Associations may
	also be used when the parent tables are completely unrelated to each
	other.
	The following figure shows tables you might
	see in an ecommerce database.
	The two tables Users and
	Orders may be associated with
	Addresses.
	Again, the entity-relationship diagram must be improvised.
	

[image: images/Polymorphic/order-addresses.png]
Polymorphic/anti/addresses.sql
	 	CREATE TABLE Addresses (
	 	 address_id SERIAL PRIMARY KEY,
	 	 parent VARCHAR(20), -- "Users" or "Orders"
	 	 parent_id BIGINT UNSIGNED NOT NULL,
	 	 address TEXT
);

	In this case, the Addresses table contains a
	polymorphic column that names either
	Users or
	Orders as the parent table
	for a given address. Notice that you have to choose one or the other.
	You can’t associate a given address with both a user and an order,
	even an order placed by that user, to ship merchandise to himself.

	Also, if a user has a shipping address as well as a billing address, you need
	some way to make this distinction in the Addresses
	table; likewise, any other parents need to note the special usage of
	addresses in the Addresses table. These notes
	propagate like weeds.
Polymorphic/anti/addresses.sql
	 	CREATE TABLE Addresses (
	 	 address_id SERIAL PRIMARY KEY,
	 	 parent VARCHAR(20), -- "Users" or "Orders"
	 	 parent_id BIGINT UNSIGNED NOT NULL,
	 	 users_usage VARCHAR(20), -- "billing" or "shipping"
	 	 orders_usage VARCHAR(20), -- "billing" or "shipping"
	 	 address TEXT
);

How to Recognize the Antipattern

 If you hear statements like the following, it’s a clue that the
 Polymorphic Associations antipattern is being employed:
	

	 “This tagging schema allows you to associate a tag (or other
	 attribute) with any other resource in the
	 database.”
	

	 As in EAV, you should be suspicious of any claims of unlimited
	 flexibility, because it likely means that it
	 breaks some rules.
	

	

	 “You can’t declare foreign keys in our database design.”
	

	 This is another red flag. Foreign keys are a fundamental feature of
	 relational databases, and a design that can’t work with proper
	 referential integrity has a lot of problems.
	

	

	 “What’s the entity_type column for?
	 Oh, that tells you which thing this other column points to.”
	

	 Any foreign key must reference the same table on all rows.
	

 The Ruby on Rails framework supports Polymorphic Associations by
 declaring Active Record classes with the :polymorphic attribute.[11]
 For example, you could associate Comments to
 Bugs and FeatureRequests
 as follows:

Polymorphic/recog/commentable.rb
	 	class Comment < ActiveRecord::Base
	 	 belongs_to :commentable, :polymorphic => true
	 	end
	 	
	 	class Bug < ActiveRecord::Base
	 	 has_many :comments, :as => :commentable
	 	end
	 	
	 	class FeatureRequest < ActiveRecord::Base
	 	 has_many :comments, :as => :commentable
	 	end

 The Hibernate framework for Java supports inheritance relationships between entities using
 a variety of schema declarations.[12]

Mixing Data with Metadata

 You might have noticed a similar characteristic between the
 Polymorphic Associations antipattern and the Entity-Attribute-Value
 antipattern described in the previous chapter.
 In both antipatterns, the name of a metadata object is stored as a
 string value.
 In EAV, the name of an attribute column is stored as a string in the
 attr_name column.
 In Polymorphic Associations, the names of the parent tables are stored
 in the issue_type column.
 This is sometimes called mixing data with metadata.
 This concept appears in another form in
 Chapter 8, Multicolumn Attributes.

Legitimate Uses of the Antipattern

 You should avoid the Polymorphic Associations antipattern—use constraints like foreign keys to ensure referential integrity.
 Polymorphic Associations often relies too much on application code instead
 of metadata.

 You may find that this antipattern is unavoidable if you use an
 object-relational programming framework such as Hibernate. Such a
 framework may mitigate the risks introduced by Polymorphic Associations
 by encapsulating application logic to maintain referential integrity.

 If you choose a mature and reputable framework, then you have some
 confidence that its designers have written the code to implement the
 association without error.
 However, if you are implementing Polymorphic Associations from scratch
 without the aid of a framework, you’re reinventing the wheel.

Solution: Simplify the Relationship

 It’s better to redesign your database to avoid the weaknesses of
 Polymorphic Associations but still support the data modeling you need.
 The following sections describe a few solutions that accommodate
 the data relationship but make better use of metadata to enforce
 integrity.

Reverse the Reference

	One solution to this antipattern is simple once you see the nature of
	the problem: Polymorphic Associations are backward.
Creating Intersection Tables

	 A foreign key in the child table Comments can’t
	 reference multiple parent tables, so instead, use multiple foreign
	 keys to reference the Comments table.
	 Create a separate intersection table for each parent table, and in
	 each intersection table include a foreign key to
	 Comments, as well as a foreign key to the
	 respective parent table.
	 This is shown in the following diagram.
	
[image: images/Polymorphic/reverse-reference.png]
Polymorphic/soln/reverse-reference.sql
	 	CREATE TABLE BugsComments (
	 	 issue_id BIGINT UNSIGNED NOT NULL,
	 	 comment_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (issue_id, comment_id),
	 	 FOREIGN KEY (issue_id) REFERENCES Bugs(issue_id),
	 	 FOREIGN KEY (comment_id) REFERENCES Comments(comment_id)
);

	 	CREATE TABLE FeaturesComments (
	 	 issue_id BIGINT UNSIGNED NOT NULL,
	 	 comment_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (issue_id, comment_id),
	 	 FOREIGN KEY (issue_id) REFERENCES FeatureRequests(issue_id),
	 	 FOREIGN KEY (comment_id) REFERENCES Comments(comment_id)
);

	 This solution removes the need for the
	 Comments.issue_type column.
	 Now the metadata enforces data integrity, instead of relying on
	 application code to manage the associations without error.
	
Putting Up Traffic Lights

	
		
	 A potential weakness of this solution is that it permits associations
	 that you might not want to be permitted. Intersection tables usually
	 model many-to-many associations, so this would allow a given comment
	 to be associated with multiple bugs or multiple feature requests.
	 However, you probably want each comment to pertain to only one bug or
	 one feature request. Enforce at least part of this rule by
	 declaring a UNIQUE constraint on the
	 comment_id column of each intersection table.
	
Polymorphic/soln/reverse-unique.sql
	 	CREATE TABLE BugsComments (
	 	 issue_id BIGINT UNSIGNED NOT NULL,
	 	 comment_id BIGINT UNSIGNED NOT NULL,
	 	 UNIQUE KEY (comment_id),
	 	 PRIMARY KEY (issue_id, comment_id),
	 	 FOREIGN KEY (issue_id) REFERENCES Bugs(issue_id),
	 	 FOREIGN KEY (comment_id) REFERENCES Comments(comment_id)
);

	
	 This ensures that a given comment can be referenced only once in the
	 intersection table, which naturally prevents it from being associated
	 with multiple bugs or multiple feature requests.
	 However, the metadata doesn’t prevent a given comment from being
	 referenced once in both intersection tables, associating the comment
	 with both a bug and a feature request.
	 This is probably not what you want, but ensuring against it remains
	 the responsibility of your application code.
	
Looking Both Ways

	
	 You can query the comments for a specific bug or feature request simply
	 by using the intersection table.
	
Polymorphic/soln/reverse-join.sql
	 	SELECT *
	 	FROM BugsComments AS b
	 	 JOIN Comments AS c USING (comment_id)
	 	WHERE b.issue_id = 1234;

	
	
	 Query the matching bug or feature request based on an instance
	 of a comment by using an outer join to both intersection tables.
	 You have to name all the possible parent tables, but that’s no more
	 complex than the query you had to use in the Polymorphic Associations
	 antipattern.
	 Also, you can depend on referential integrity when using intersection
	 tables, whereas with Polymorphic Associations you couldn’t.
	
Polymorphic/soln/reverse-join.sql
	 	SELECT *
	 	FROM Comments AS c
	 	 LEFT OUTER JOIN (
	 	 BugsComments JOIN Bugs AS b USING (issue_id)
) USING (comment_id)
	 	 LEFT OUTER JOIN (
	 	 FeaturesComments JOIN FeatureRequests AS f USING (issue_id)
) USING (comment_id)
	 	WHERE c.comment_id = 9876;

Merging Lanes

	
	
	 Sometimes you need to make the result of a query against multiple
	 parent tables appear as if you had stored the parents in a single table
	 (see Single Table Inheritance).
	 You can do this in either of two ways.
	

		
		
	 First look at the following query using
	 UNION:
	
Polymorphic/soln/reverse-union.sql
	 	SELECT b.issue_id, b.description, b.reporter, b.priority, b.status,
	 	 b.severity, b.version_affected,
	 	 NULL AS sponsor
	 	 FROM Comments AS c
	 	 JOIN (BugsComments JOIN Bugs AS b USING (issue_id))
	 	 USING (comment_id)
	 	 WHERE c.comment_id = 9876;
	 	
	 	UNION
	 	 SELECT f.issue_id, f.description, f.reporter, f.priority, f.status,
	 	 NULL AS severity, NULL AS version_affected,
	 	 f.sponsor
	 	 FROM Comments AS c
	 	 JOIN (FeaturesComments JOIN FeatureRequests AS f USING (issue_id))
	 	 USING (comment_id)
	 	 WHERE c.comment_id = 9876;

	 This query should be guaranteed to return a single row if your
	 application has associated each comment with exactly one parent
	 table.
	 Since query results can be combined with
	 UNION only if their columns are the same
	 in number and data type, you must provide null placeholders for
	 columns that are unique to each parent table.
	 You must list the columns in the same order in both queries involved
	 in the UNION.
	

	
	 Alternatively, look at the following query using the SQL
	 COALESCE function.
	 This function returns its first non-null argument.
	 Since you are using an outer join in the query, a comment that
	 pertains to a feature request and has no matching row in
	 Bugs would return all fields in
	 b.* as null.
	 Likewise, all fields in f.* would be null if
	 the comment pertains to a bug instead of a feature request.
	 List the fields specific to one parent table or the other in a simple
	 manner; if they are irrelevant to the matching parent table, they are
	 returned as null.
	
Polymorphic/soln/reverse-coalesce.sql
	 	SELECT c.*,
	 	 COALESCE(b.issue_id, f.issue_id) AS issue_id,
	 	 COALESCE(b.description, f.description) AS description,
	 	 COALESCE(b.reporter, f.reporter) AS reporter,
	 	 COALESCE(b.priority, f.priority) AS priority,
	 	 COALESCE(b.status, f.status) AS status,
	 	 b.severity,
	 	 b.version_affected,
	 	 f.sponsor
	 	
	 	FROM Comments AS c
	 	 LEFT OUTER JOIN (BugsComments JOIN Bugs AS b USING (issue_id))
	 	 USING (comment_id)
	 	 LEFT OUTER JOIN (FeaturesComments JOIN FeatureRequests AS f USING (issue_id))
	 	 USING (comment_id)
	 	WHERE c.comment_id = 9876;

	 Both of these queries are pretty complex, so they’re good candidates
	 for a database view, and you can use them more simply in your
	 application.
Create a Common Super-Table

	In object-oriented polymorphism, two subtypes can be referenced
	similarly because they implicitly share a common supertype.
	In SQL, the Polymorphic Associations antipattern leaves out that
	crucial entity: the common supertype.
	Fix that by creating a base table that all of your parent
	tables extend (see Class Table Inheritance).
	Add the foreign key in the child Comments table
	to reference the base table.
	You don’t need an issue_type column.
	The diagram and code shown shows how you can implement this.

[image: images/Polymorphic/super-table.png]
Polymorphic/soln/super-table.sql
	 	CREATE TABLE Issues (
	 	 issue_id SERIAL PRIMARY KEY
);
	 	
	 	CREATE TABLE Bugs (
	 	 issue_id BIGINT UNSIGNED PRIMARY KEY,
	 	 FOREIGN KEY (issue_id) REFERENCES Issues(issue_id),
	 	 . . .
);
	 	
	 	CREATE TABLE FeatureRequests (
	 	 issue_id BIGINT UNSIGNED PRIMARY KEY,
	 	 FOREIGN KEY (issue_id) REFERENCES Issues(issue_id),
	 	 . . .
);
	 	
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 issue_id BIGINT UNSIGNED NOT NULL,
	 	 author BIGINT UNSIGNED NOT NULL,
	 	 comment_date DATETIME,
	 	 comment TEXT,
	 	 FOREIGN KEY (issue_id) REFERENCES Issues(issue_id),
	 	 FOREIGN KEY (author) REFERENCES Accounts(account_id),
);

	Note that the primary keys of Bugs
	and FeatureRequests are also foreign keys.
	They reference the surrogate key value generated in the
	Issues table, instead of generating a new
	value for themselves.

	Given a specific comment, you can retrieve the referenced bug or
	feature request using a relatively simple query. You don’t have
	to include the Issues table in that query
	at all, unless you defined attribute columns in that table.
	Also, since the primary key value of the Bugs
	table and its ancestor Issues table are the
	same, you can join Bugs directly to
	Comments.
	You can join two tables even if there is no foreign key constraint
	linking them directly, as long as you use columns that represent
	comparable information in your database.

Polymorphic/soln/super-join.sql
	 	SELECT *
	 	FROM Comments AS c
	 	 LEFT OUTER JOIN Bugs AS b USING (issue_id)
	 	 LEFT OUTER JOIN FeatureRequests AS f USING (issue_id)
	 	WHERE c.comment_id = 9876;

 Given a specific bug, you can retrieve its comments just as easily.

Polymorphic/soln/super-join.sql
	 	SELECT *
	 	FROM Bugs AS b
	 	 JOIN Comments AS c USING (issue_id)
	 	WHERE b.issue_id = 1234;

	The point is that if you use an ancestor table like
	Issues, you can rely on the enforcement of
	your database’s data integrity by foreign keys.
	
	
	
	
	
	
	
	
 [image: images/aside-icons/tip.png]
 	

 In every table relationship, there is one referencing table
 and one referenced table.

Footnotes

	[11]
	
https://guides.rubyonrails.org/association_basics.html#polymorphic-associations

	[12]
	
https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#entity-inheritance

Copyright © 2022, The Pragmatic Bookshelf.

	The sublime and the ridiculous are often so nearly related
	that it is difficult to class them separately.

 Thomas Paine

 Chapter
 8
Multicolumn Attributes

 I can’t count the number of times I have created a table to store people’s
 contact information. Always this kind of table has commonplace columns
 such as the person’s name, salutation, address, and probably company name.

 Phone numbers are a little trickier. People use multiple numbers:
 a home number, a work number, a fax number, and a mobile number are common.
 In the contact information table, it’s easy to store these in four columns.

 Users in this contact table are likely to have additional numbers.
 The person’s assistant, second mobile phone, or field office
 have distinct phone numbers, and there could be other unforeseen
 categories.
 You could create more columns for the less common cases, but
 that seems clumsy because it adds seldom-used fields to data
 entry forms.
 It’s unclear how many columns would be needed to store all
 potential variations.

Objective: Store Multivalue Attributes

 This is the same objective as in Chapter 2, Jaywalking:
 an attribute seems to belong in one table, but the attribute has multiple
 values. Previously, it was shown that combining multiple values into a
 comma-separated string makes it hard to validate the values, hard to read
 or change individual values, and hard to compute aggregate expressions
 such as counting the number of distinct values.

 Let’s use a new example to illustrate this antipattern. You want the
 bugs database to allow tags so you can categorize
 bugs. Some bugs may be categorized by the software
 subsystem that they affect, for instance
 printing,
 reports, or
 email.
 Other bugs may be categorized by the nature of the defect; for
 instance, a crash bug could be tagged
 crash,
 while you could tag a report of slowness with
 performance,
 and you could tag a bad color choice in the user interface with
 cosmetic.

 The bug-tagging feature must support multiple tags, because tags are
 not necessarily mutually exclusive. A defect could affect multiple
 systems or could affect the performance of printing.

Antipattern: Create Multiple Columns

 You still have to account for multiple values in the attribute, but
 the new solution must store only a single value in each column.
 It might seem natural to create multiple columns in this table, each
 containing a single tag.

Multi-Column/anti/create-table.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 description VARCHAR(1000),
	 	 tag1 VARCHAR(20),
	 	 tag2 VARCHAR(20),
	 	 tag3 VARCHAR(20)
);

 As you assign tags to a given bug, you’d put values in one of these three
 columns. Unused columns remain null.

Multi-Column/anti/update.sql
	 	UPDATE Bugs SET tag2 = 'performance' WHERE bug_id = 3456;

	bug_id
	description
	tag1
	tag2
	tag3

	1234
	Crashes while saving
	crash
	NULL
	NULL

	3456
	Increase performance
	printing
	performance
	NULL

	5678
	Support XML
	NULL
	NULL
	NULL

 Tasks you could do easily with a normal
 attribute are now more complex.

Searching for Values

	When searching for bugs with a given tag, you must search all three
	columns, because the tag string could occupy any of these columns. For
	example, to retrieve bugs that reference
	performance, use
	a query like this one:

Multi-Column/anti/search.sql
	 	SELECT * FROM Bugs
	 	WHERE tag1 = 'performance'
	 	 OR tag2 = 'performance'
	 	 OR tag3 = 'performance';

	You might need to search for bugs that reference both tags,
	performance and
	printing.
	To do this, use a query like the following one. Remember to
	use parentheses correctly, because OR has lower
	precedence than AND.

Multi-Column/anti/search-two-tags.sql
	 	SELECT * FROM Bugs
	 	WHERE (tag1 = 'performance' OR tag2 = 'performance' OR tag3 = 'performance')
	 	 AND (tag1 = 'printing' OR tag2 = 'printing' OR tag3 = 'printing');

	The syntax required to search for a single value over multiple columns
	is lengthy and tedious to write. You can make it more compact by using
	an IN predicate in a slightly untraditional manner:

Multi-Column/anti/search-two-tags.sql
	 	SELECT * FROM Bugs
	 	WHERE 'performance' IN (tag1, tag2, tag3)
	 	 AND 'printing' IN (tag1, tag2, tag3);

Adding and Removing Values

	Adding and removing a value from the set of columns presents its own
	issues. Simply using UPDATE to change one of the
	columns isn’t safe, since you can’t be sure which column is unoccupied,
	if any. You might have to retrieve the row into your application
	to see.

Multi-Column/anti/add-tag-two-step.sql
	 	SELECT * FROM Bugs WHERE bug_id = 3456;

	In this case, for instance, the result shows you that
	tag2 is null.
	Then you can form the UPDATE statement.

Multi-Column/anti/add-tag-two-step.sql
	 	UPDATE Bugs SET tag2 = 'performance' WHERE bug_id = 3456;

	You face the risk that in the moment after you query the table and
	before you update it, another client has gone through the same steps of
	reading the row and updating it. Depending on who applied
	their update first, either you or he risks getting an update conflict
	error or having his changes overwritten by the other. You can avoid
	this two-step query by using complex SQL expressions.

	The following statement uses the NULLIF
	function to make each column null if it equals a specific
	value. NULLIF is a standard SQL function
	that returns null if its two arguments are equal.

Multi-Column/anti/remove-tag.sql
	 	UPDATE Bugs
	 	SET tag1 = NULLIF(tag1, 'performance'),
	 	 tag2 = NULLIF(tag2, 'performance'),
	 	 tag3 = NULLIF(tag3, 'performance')
	 	WHERE bug_id = 3456;

	The following statement adds the new tag
	performance to the
	first column that is currently null. However, if
	none of the three columns is null, then the
	statement makes no change to the row, and the new tag value is not
	recorded at all. Also, constructing this statement is laborious.
	Notice you must repeat the string
	performance six times.

Multi-Column/anti/add-tag.sql
	 	UPDATE Bugs
	 	SET tag1 = CASE
	 	 WHEN 'performance' IN (tag2, tag3) THEN tag1
	 	 ELSE COALESCE(tag1, 'performance') END,
	 	 tag2 = CASE
	 	 WHEN 'performance' IN (tag1, tag3) THEN tag2
	 	 ELSE COALESCE(tag2, 'performance') END,
	 	 tag3 = CASE
	 	 WHEN 'performance' IN (tag1, tag2) THEN tag3
	 	 ELSE COALESCE(tag3, 'performance') END
	 	WHERE bug_id = 3456;

Ensuring Uniqueness

	You probably don’t want the same value to appear in multiple columns,
	but when you use the Multicolumn Attributes antipattern, the database
	can’t prevent this. In other words, it’s hard to prevent the
	following statement:

Multi-Column/anti/insert-duplicate.sql
	 	INSERT INTO Bugs (description, tag1, tag2, tag3)
	 	 VALUES ('printing is slow', 'printing', 'performance', 'performance');

Handling Growing Sets of Values

	Another weakness of this design is that three columns might not be
	enough. To keep the design of one value per column, you must define as
	many columns as the maximum number of tags a bug can have. How can you
	predict, at the time you define the table, what that greatest number
	will be?

	One tactic is to guess at a moderate number of columns and expand
	later, if necessary, by adding more columns. Most databases allow you
	to restructure existing tables, so you can add
	Bugs.tag4, or even more columns, as you
	need them.

Multi-Column/anti/alter-table.sql
	 	ALTER TABLE Bugs ADD COLUMN tag4 VARCHAR(20);

	However, this change is costly in three ways:

	

	 Restructuring a database table that already contains data may
	 require locking the entire table, blocking access for other
	 concurrent clients.
	
	
	

	

	 Some databases implement this kind of table restructure by defining
	 a new table to match the desired structure, copying the data from
	 the old table, and then dropping the old table. If the table in
	 question has a lot of data, this transfer can take a long time.
	

	

	
	 When you add a column in the set for a multicolumn attribute, you
	 must revisit every SQL statement in every application that uses
	 this table, editing the statement to support new columns.
	
Multi-Column/anti/search-four-columns.sql
	 	SELECT * FROM Bugs
	 	WHERE tag1 = 'performance'
	 	 OR tag2 = 'performance'
	 	 OR tag3 = 'performance'
	 	 OR tag4 = 'performance'; -- you must add this new term

	 This is a meticulous and time-consuming development task.
	 If you forget to revise any of the queries that work with these tags columns, it will cause bugs that
	 are difficult to detect.

How to Recognize the Antipattern

 If the user interface or documentation for your project describes an
 attribute to which you can assign multiple values but is limited to
 a fixed maximum number of values, this might indicate that the
 Multicolumn Attributes antipattern is in use.

 Admittedly, some attributes might have a limit on the number of
 selections on purpose, but it’s more common that there’s no such limit.
 If the limit seems arbitrary or unjustified, it might be because of this
 antipattern.

 Another clue that the antipattern might be in use is if you hear
 statements such as the following:

	

	 “How many is the greatest number of tags we need to support?”
	

	 You need to decide how many columns to define in the table for a
	 multivalue attribute like tag.
	

	

	 “How can I search multiple columns at the same time in
	 SQL?”
	

	 If you’re searching for a given value across multiple columns,
	 this is a clue that the multiple columns should really be stored as
	 a single logical attribute.

Patterns Among Antipatterns

 The Jaywalking and
 Multicolumn Attributes antipatterns
 have a common thread:
 these two antipatterns are both solutions for the same objective:
 to store an attribute that may have multiple values.

 In the Jaywalking antipattern, the examples related to
 many-to-many relationships.
 In this chapter, a simpler one-to-many relationship is shown.
 Be aware that both antipatterns are sometimes used for both types of
 relationships.

Legitimate Uses of the Antipattern

 In some cases, an attribute may have a fixed number of choices, and
 the position or order of these choices may be significant. For example,
 a given bug may be associated with several users’ accounts, but the
 nature of each association is unique. One is the user who reported
 the bug, another is a programmer assigned to fix the bug, and another
 is the quality control engineer assigned to verify the fix. Even though
 the values in each of these columns are compatible, their significance
 and usage actually makes them logically different attributes.

 It would be valid to define three ordinary columns in the
 Bugs table to store each of these three
 attributes. The drawbacks described in this chapter aren’t as important,
 because you are more likely to use them
 separately. Sometimes you might still need to query over all three
 columns, for instance to report everyone involved with a given bug.
 You can accept this complexity for a few cases in exchange for greater
 simplicity in most other cases.

 Another way to structure this is to create a dependent table for multiple
 associations from the Bugs table to the
 Accounts table and give this new table an
 extra column to note the role each account has relative to that bug.
 However, this structure might lead to some of the problems described in
 Chapter 6, Entity-Attribute-Value.

Solution: Create Dependent Table

 As in Chapter 2, Jaywalking,
 the best solution is to create a dependent table with
 one column for the multivalue attribute. Store the multiple values in
 multiple rows instead of multiple columns. Also, define a foreign key
 in the dependent table to associate the values to its parent row
 in the Bugs table.

Multi-Column/soln/create-table.sql
	 	CREATE TABLE Tags (
	 	 bug_id BIGINT UNSIGNED NOT NULL
	 	 tag VARCHAR(20),
	 	 PRIMARY KEY (bug_id, tag),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);
	 	
	 	INSERT INTO Tags (bug_id, tag)
	 	 VALUES (1234, 'crash'), (3456, 'printing'), (3456, 'performance');

 When all the tags associated with a bug are in a single column, searching
 for bugs with a given tag is more straightforward.

Multi-Column/soln/search.sql
	 	SELECT * FROM Bugs JOIN Tags USING (bug_id)
	 	WHERE tag = 'performance';

 Even more complex searches, such as a bug that relates to two
 specific tags, are easy to read.

Multi-Column/soln/search-two-tags.sql
	 	SELECT * FROM Bugs
	 	 JOIN Tags AS t1 USING (bug_id)
	 	 JOIN Tags AS t2 USING (bug_id)
	 	WHERE t1.tag = 'printing' AND t2.tag = 'performance';

 You can add or remove an association more easily than with the
 Multicolumn Attributes antipattern—just insert or delete a row
 from the dependent table. There’s no need to inspect multiple
 columns to see where you can add a value.

Multi-Column/soln/insert-delete.sql
	 	INSERT INTO Tags (bug_id, tag) VALUES (1234, 'save');
	 	
	 	DELETE FROM Tags WHERE bug_id = 1234 AND tag = 'crash';

 The PRIMARY KEY constraint ensures that no
 duplication is allowed. A given tag can be applied to a given bug only
 once. If you attempt to insert a duplicate, SQL returns a duplicate key
 error.

 You’re not limited to three tags per bug, as you were when the
 Bugs table had three
 tagN columns. Now you can
 apply as many tags per
 bug as you need.
	
 [image: images/aside-icons/tip.png]
 	

 Use a single column, over multiple rows, to store values with the same meaning.

Mini-Antipattern: Storing Prices

	Usually, relational database design discourages storing
	redundant data. It’s better to follow rules of normalization
	(see Appendix 1, Rules of Normalization), and these rules
	guide us to store a column in only one table. A given fact
	is represented by a row of data, and should be stored only
	once. If the same fact is represented in more than one
	place in a database, there’s a risk that the two instances
	will disagree, and then it’s not clear which is really the
	correct information. Is there any exception to this rule?

	Take for example a table Orders that
	stores a record of a customer buying a product in a commerce
	database. This example includes a column price,
	which is the result of multiplying the unit price times the
	quantity the customer bought.

Multi-Column/mini/orders.sql
	 	CREATE TABLE Orders (
	 	 order_id SERIAL PRIMARY KEY
	 	 order_date DATE NOT NULL,
	 	 customer_id INT NOT NULL,
	 	 merchandise_id INT NOT NULL,
	 	 quantity INT NOT NULL
	 	 price NUMERIC(9,2) NOT NULL
);

	We can assume the unit price of that product is already
	stored in another table, Merchandise.
	Is it then redundant to store the total order price
	in the Orders table? They should be
	the same.

	Consider that prices can change. The price the customer
	paid on one day might not be the price for the same merchandise
	the next month, or even the next day. Besides that, the
	merchandise might have been on sale the day the customer
	bought it, so the price was lower. Or the customer may have
	qualified for a discount as a senior, or a veteran, or
	through some membership with the store.
	There are many legitimate reasons why a price in the
	Orders table isn’t the same as
	the current price for the same item in the
	Merchandise table.

	It’s not really a violation of the rule that each fact must
	be stored only once.
	The column in the Orders table represents
	a different fact than the column in the
	Merchandise table: the price in
	Orders is the price that customer paid
	on the date they bought it and after all discounts were
	calculated.

	This example is about prices, but the same principle could
	apply in other scenarios.
	The members of a sports team change every year, and you
	need to know who was on the team every year or even every
	game to analyze their past performance.
	An actor might change their name, so they are credited
	differently in some of their films.

	These scenarios have something in common: they are all
	intersection tables for a many-to-many relationship
	(Orders is between customers and
	merchandise; Lineup is between sports
	players and games; Cast is between
	actors and films).
	The fact stored in the intersection table is about a given
	association between two (or more) entities.
	If one of the attributes had a different value on that
	occasion than it does today, it’s necessary to store the
	value it had at that time, and it’s appropriate to make
	that an attribute in the association table.
	
	
	
	
	

Copyright © 2022, The Pragmatic Bookshelf.

 Why then, can one desire too much of a good thing?

William ShakespeareAs You Like It

 Chapter
 9
Metadata Tribbles

 My wife worked for years as a programmer in Oracle PL/SQL and Java.
 She described a case that showed how a database design that was intended
 to simplify work instead created more work.

 A table, Customers, used by the Sales division at her
 company kept data such as customers’ contact information, their business
 type, and how much revenue had been received from that customer:

Metadata-Tribbles/intro/create-table.sql
	 	CREATE TABLE Customers (
	 	 customer_id NUMBER(9) PRIMARY KEY,
	 	 contact_info VARCHAR(255),
	 	 business_type VARCHAR(20),
	 	 revenue NUMBER(9,2)
);

 The Sales division needed to break down the revenue by year so they
 could track recently active customers. They decided to add a series of
 new columns, each column’s name indicating the year it covered:

Metadata-Tribbles/intro/alter-table.sql
	 	ALTER TABLE Customers ADD (revenue2002 NUMBER(9,2));
	 	ALTER TABLE Customers ADD (revenue2003 NUMBER(9,2));
	 	ALTER TABLE Customers ADD (revenue2004 NUMBER(9,2));

 Then they entered incomplete data, only for customers they thought were
 interesting to track.
 On most rows, they left null in those revenue columns.
 The programmers started wondering whether they could store other information in
 these mostly unused columns.

 Each year, they needed to add one more column.
 A database administrator was responsible for managing Oracle’s tablespaces.
 So each year, they had a series of meetings, scheduled a data
 migration to restructure the tablespace, and added the new column.
 Ultimately they wasted a lot of time and money.

Objective: Support Scalability

 Performance degrades for any database query as the volume of data goes up.
 Even if a query returns results promptly with a few thousand rows, the
 tables naturally accumulate data to the point where the same query may
 not have acceptable performance.
 Using indexes intelligently helps, but nevertheless the tables grow, and
 this affects the speed of queries against them.

 The objective is to structure a database to improve the performance of
 queries and support tables that grow steadily.

Antipattern: Clone Tables or Columns

 In the television series Star Trek
 (“Star Trek” and related marks are trademarks of CBS Studios Inc.),
 “tribbles” are small furry animals kept as pets.
Tribbles
 are very appealing at first, but soon they reveal their tendency to
 reproduce out of control, and managing the overpopulation of tribbles
 becomes a serious problem.

 The tribble population outgrows every space, and no one wants to take
 responsibility for them.
 Eventually, Captain Kirk discovers that his ship and crew can’t
 function, and he has to order his crew to make it top priority to
 remove the tribbles.

 Database tables or columns can become like the tribbles,
 multiplying out of control, if your database design is to
 create new tables or columns for each successive data value.

 We know from experience that querying a table with few rows is quicker
 than querying a table with many rows, all other things being equal.
 This leads to a common fallacy that we must make every table contain
 fewer rows, no matter what we have to do.
 This leads to two forms of the antipattern:

	

	 Split a single long table into multiple smaller tables, using table
	 names based on distinct data values in one of the table’s attributes.
	

	

	
	
	 Split a single column into multiple columns, using column names based
	 on distinct values in another attribute.
	

 You can’t get something for nothing;
 to meet the goal of having few rows in every table, you have to
 either create tables that have too many columns
 or else create a greater number of tables.
 In both cases, you find that the number of tables or columns continues
 to grow, since new data values can make you create new schema objects.

Spawning Tables

	To split data into separate tables, you’d need some policy for which
	rows belong in which tables.
	For example, you could split them up by the year in the
	date_reported column:

Metadata-Tribbles/anti/create-tables.sql
	 	CREATE TABLE Bugs_2019 (. . .);
	 	CREATE TABLE Bugs_2020 (. . .);
	 	CREATE TABLE Bugs_2021 (. . .);

	As you insert rows into the database, it’s your responsibility to
	use the correct table, depending on the values you insert:

Metadata-Tribbles/anti/insert.sql
	 	INSERT INTO Bugs_2021 (..., date_reported, ...)
	 	VALUES (..., '2021-06-01', ...);

	Fast forward to January 1 of the next year.
	Your application starts getting an error from all new bug reports,
	because you didn’t remember to create the
	Bugs_2023 table.

Metadata-Tribbles/anti/insert.sql
	 	INSERT INTO Bugs_2022 (..., date_reported, ...)
	 	VALUES (..., '2022-02-20', ...);

	This means that introducing a new data value can cause a
	need for a new metadata object. This is not usually the
	relationship between data and metadata in SQL.

Managing Data Integrity

	Suppose your boss is trying to count bugs reported during the year,
	but his numbers don’t add up. After investigating, you discover
	that some 2022 bugs were entered in the Bugs_2021
	table by mistake. The following query should always return an empty
	result, so if it doesn’t, you have a problem:

Metadata-Tribbles/anti/data-integrity.sql
	 	SELECT * FROM Bugs_2021
	 	WHERE date_reported NOT BETWEEN '2021-01-01' AND '2021-12-31';

	There’s no way to limit the data relative to the name of
	its table automatically, but you can declare a CHECK
	constraint in each of your tables:

Metadata-Tribbles/anti/check-constraint.sql
	 	CREATE TABLE Bugs_2021 (
	 	 -- other columns
	 	 date_reported DATE CHECK (EXTRACT(YEAR FROM date_reported) = 2021)
);
	 	
	 	CREATE TABLE Bugs_2022 (
	 	 -- other columns
	 	 date_reported DATE CHECK (EXTRACT(YEAR FROM date_reported) = 2022)
);

	Remember to adjust the value in the CHECK constraint when you
	create Bugs_2023.
	If you make a mistake, you could create a table that rejects the rows
	it’s supposed to accept.

Synchronizing Data

	One day, your customer support analyst asks to change a bug report
	date. It’s in the database as reported on 2022-01-03, but the customer
	who reported it actually sent it a week earlier, on 2021-12-27.

 You could change the date with a simple UPDATE:

Metadata-Tribbles/anti/anomaly.sql
	 	UPDATE Bugs_2012
	 	SET date_reported = '2021-12-27'
	 	WHERE bug_id = 1234;

	Unfortunately, this correction makes the row an invalid entry in the
	Bugs_2022 table.
	You would need to remove the row from one table and insert it into the
	other table, in the infrequent case that a simple UPDATE
	would cause this anomaly.

Metadata-Tribbles/anti/synchronize.sql
	 	INSERT INTO Bugs_2021 (bug_id, date_reported, ...)
	 	 SELECT bug_id, date_reported, ...
	 	 FROM Bugs_2022
	 	 WHERE bug_id = 1234;
	 	
	 	DELETE FROM Bugs_2022 WHERE bug_id = 1234;

Ensuring Uniqueness

	You should make sure that the primary key values are unique across all
	the split tables. If you need to move a row from one table to another,
	you need some assurance that the primary key value doesn’t
	conflict with another row.

	If you use a database that supports sequence objects, you can use a
	single sequence to generate values for all the split tables.
	For databases
	that support only per-table ID uniqueness, this may be more awkward.
	You have to define one extra table solely to produce primary key values:

Metadata-Tribbles/anti/id-generator.sql
	 	CREATE TABLE BugsIdGenerator (bug_id SERIAL PRIMARY KEY);
	 	
	 	INSERT INTO BugsIdGenerator (bug_id) VALUES (DEFAULT);
	 	ROLLBACK;
	 	
	 	INSERT INTO Bugs_2022 (bug_id, . . .)
	 	 VALUES (LAST_INSERT_ID(), . . .);

Querying Across Tables

	Inevitably, your boss needs a query that references multiple tables.
	For example, he may ask for a count of all open bugs regardless of
	the year they were created. You can reconstruct the full set of bugs
	using a UNION of all the split tables and
	query that as a derived table:

Metadata-Tribbles/anti/union.sql
	 	SELECT b.status, COUNT(*) AS count_per_status FROM (
	 	 SELECT * FROM Bugs_2020
	 	 UNION
	 	 SELECT * FROM Bugs_2021
	 	 UNION
	 	 SELECT * FROM Bugs_2022) AS b
	 	GROUP BY b.status;

	As the years go on and you create more tables such as
	Bugs_2023, you need to keep your application
	code up-to-date to reference the newly created tables.

Synchronizing Metadata

	Your boss tells you to add a column to track the hours of work
	required to resolve each bug.

Metadata-Tribbles/anti/alter-table.sql
	 	ALTER TABLE Bugs_2021 ADD COLUMN hours NUMERIC(9,2);

	If you’ve split the table, then the new column applies only to the
	one table you alter.
	None of the other tables contains the new column.

 If you use a UNION query across your split tables as in
	the previous section, you stumble upon a new problem:
	you can combine tables using UNION if they have the same
	columns.
	If they differ, then you have to name only the columns that all tables have
	in common, without using the * wildcard.

Managing Referential Integrity

	If a dependent table like Comments
	references Bugs, the dependent table cannot
	declare a foreign key. A foreign key must specify a single table,
	but in this case the parent table is split into many.

Metadata-Tribbles/anti/foreign-key.sql
	 	CREATE TABLE Comments (
	 	 comment_id SERIAL PRIMARY KEY,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs_????(bug_id)
);

 The split table may also have problems being a dependent instead
	of a parent. For example, Bugs.reported_by
	references the Accounts table. If you want to
	query all bugs reported by a given person regardless of year, use a query like this:

Metadata-Tribbles/anti/join-union.sql
	 	SELECT * FROM Accounts a
	 	JOIN (
	 	 SELECT * FROM Bugs_2019
	 	 UNION ALL
	 	 SELECT * FROM Bugs_2020
	 	 UNION ALL
	 	 SELECT * FROM Bugs_2021
) t ON (a.account_id = t.reported_by)

Identifying Metadata Tribbles Columns

	Columns can be Metadata Tribbles, too.
	You can create a table containing columns that are bound to propagate
	by their nature,
	as we saw in the story at the beginning of this chapter.

	Another example we might have in our bugs database is a table that
	records summary data for project metrics, where individual columns store
	subtotals.
	For instance, in the following table, it’s only a matter of time before you
	need to add the column bugs_fixed_2022:
	
Metadata-Tribbles/anti/multi-column.sql
	 	CREATE TABLE ProjectHistory (
	 	 bugs_fixed_2019 INT,
	 	 bugs_fixed_2020 INT,
	 	 bugs_fixed_2021 INT
);

Mixing Metadata with Data

	Notice that by appending the year onto the base table name,
	we’ve combined a data value with a metadata identifier.

	This is the reverse of mixing data with metadata
	that we saw earlier in the Entity-Attribute-Value and Polymorphic
	Associations antipatterns. In those cases, we stored metadata
	identifiers (a column name and table name) as string data.

	In Multicolumn Attributes and Metadata Tribbles, we’re making a data
	value into a column name or a table name.
	If you use any of these antipatterns, you create more problems than
	you solve.

How to Recognize the Antipattern

 The following phrases may indicate that the Metadata Tribbles antipattern is growing in
 your database:
	

	 “Then we need to create a table (or column) per...”
	

	 When you describe your database with phrases using
	 per in this way, you’re splitting tables by
	 distinct values in one of the columns.
	

	

	 “What’s the maximum number of tables (or columns) that the
	 database supports?”
	

	 Most brands of database can handle many more tables and columns
	 than you would need, if you used a sensible database design.
	 If you think you might exceed the maximum, it’s a strong sign
	 that you need to rethink your design.
	

	

	 “We found out why the application failed to add new data this
	 morning: we forgot to create a new table for the new year.”
	

	 This is a common consequence of Metadata Tribbles.
	 When new data demands new database objects, you need to define those
	 objects proactively or else risk unforeseen failures.
	

	

	 “How do I run a query to search many tables at once?
	 All the tables have the same columns.”
	

	 If you need to search many tables with identical structure,
	 you should have stored them together in a single table, with one
	 extra attribute column to distinguish the rows.
	

	

	 “How do I pass a parameter for a table name? I need to query a
	 table name appended with the year number dynamically.”
	

	 You wouldn’t need to do this if your data were in one table.
	

Legitimate Uses of the Antipattern

 One good use of manually splitting tables is for
 archiving—removing historical data from day-to-day
 use.
 Often the need to run queries against historical data is greatly reduced
 after the data is no longer current.

 If you have no need to query current data and historical data together,
 it’s appropriate to copy the older data to another location and delete it
 from the active tables. Archiving keeps the data in a compatible table
 structure for occasional analysis but allows queries against current
 data to run with greater performance.

Sharding Databases at WordPress.com

	At a MySQL Conference & Expo, I had lunch with
	Barry Abrahamson,
	database architect for WordPress.com, a popular hosting service
	for blogging software.

	Barry said when he started out hosting blogs, he hosted all his
	customers together in a single database.
	The content of a single blog site really wasn’t that much, after all.
	It stood to reason that a single database is more manageable.

	This did work well for the site initially, but it soon grew to very
	large-scale operations.
	Now it hosts 7 million blogs on 300 database servers.
	Each server hosts a subset of their customers.

	When Barry adds a server, it would be very hard to separate data within
	a single database that belongs to an individual customer’s blog.
	By splitting the data into a separate database per customer, he made
	it much easier to move any individual blog from one server to another.
	As customers come and go and some customers’ blogs are busy
	while others go stale, his job to rebalance the load over multiple
	servers becomes even more important.

	It’s easier to back up and restore individual databases of moderate
	size than a single database containing terabytes of data.
	For example, if a customer calls and says their data got SNAFU’d because of
	bad data entry, how would Barry restore one customer’s data if all
	the customers share a single, monolithic database backup?

	Although it seems like the right thing to do from a data modeling
	perspective to keep everything in a single database, splitting the
	database sensibly makes database administration tasks easier after the
	database size passes a certain threshold.

Solution: Partition and Normalize

 There are better ways to improve performance if a table gets too large,
 instead of splitting the table manually. These include horizontal
 partitioning, vertical partitioning, and using dependent tables.

Using Horizontal Partitioning

 You can gain the benefits of splitting a large table without the
	drawbacks by using a feature that is called either horizontal
	partitioning or sharding.
	You define a logical table with some rule for separating rows
	into individual partitions, and the database manages the rest.
	Physically, the table is split, but you can still execute SQL
	statements against the table as though it were whole.

	You have flexibility in that you can define the way each individual
	table splits its rows into separate storage. For example, using the
	partitioning support in MySQL, you can specify partitions
	as an optional part of a CREATE TABLE statement.

Metadata-Tribbles/soln/horiz-partition.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 -- other columns
	 	 date_reported DATE
) PARTITION BY HASH (bug_id)
	 	 PARTITIONS 4;

 The previous example achieves a partitioning similar to that which
	we saw earlier in this chapter, separating rows based on the year
	in the date_reported column. However, its
	advantages over splitting the table manually are that rows are never
	placed in the wrong split table, even if the value of
	date_reported column is updated, and you can
	run queries against the Bugs table without
	the need to reference individual split tables.

 The number of separate physical tables used to store the rows is
	fixed at four in this example. When you have rows spanning more than
	four years, one of the partitions will be used to store more than one
	year’s worth of data. This will continue as the years go on. You
	don’t need to add new partitions unless the volume of data becomes
	so great that you feel the need to split it further.

 Partitioning is not defined in the SQL standard, so each brand of
	database implements it in their own nonstandard way. The terminology,
	syntax, and specific features of partitioning vary between brands.
	Nevertheless, some form of partitioning is now supported by every major
	brand of database.
Using Vertical Partitioning

 Whereas horizontal partitioning splits a table by rows, vertical
	partitioning splits a table by columns. Splitting a table by
	columns can have advantages when some columns are bulky or seldom
	needed.

	BLOB and TEXT columns have variable size, and they may
	be very large.
	For efficiency of both storage and retrieval, many database brands
	automatically store columns with these data types separately from the
	other columns of a given row.
	If you run a query without referencing any BLOB or
	TEXT columns of a table, you can access the other columns more
	efficiently.
	If you use the column wildcard * in your query, the
	database retrieves all columns from that table, including any
	BLOB or TEXT columns.

	For example, in the Products table of our bugs
	database, we might store a copy of the installation file for the
	respective product.
	This file is typically a self-extracting archive with an extension such as
	.exe on Windows or .dmg on a
	Mac.
	The files are usually very large, but a BLOB column can store
	binary data of enormous size.

	Logically, the installer file should be an attribute of the
	Products table.
	But in most queries against that table, you wouldn’t need the
	installer.
	Storing such a large volume of data in the
	Products table, which you use infrequently, could
	lead to inadvertent performance problems if you’re in the habit of
	retrieving all columns using the * wildcard.

	The remedy is to store the BLOB column in another table,
	separate from but dependent on the Products table.
	Make its primary key also serve as a foreign key to the
	Products table to ensure there is at most
	one row per product row.

Metadata-Tribbles/soln/vert-partition.sql
	 	CREATE TABLE ProductInstallers (
	 	 product_id BIGINT UNSIGNED PRIMARY KEY,
	 	 installer_image BLOB,
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

	The previous example is extreme to make the point, but it shows the
	benefit of storing some columns in a separate table.
	For example, in MySQL’s MyISAM storage engine, querying a table is most
	efficient when the rows are of fixed size.
	VARCHAR is a variable-length data type, so the presence of a
	single column with that data type in a table prevents the table from
	gaining that advantage.
	If you store all variable-length columns in a separate table, then
	queries against the primary table can benefit (if even a little bit).

Metadata-Tribbles/soln/separate-fixed-length.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY, -- fixed length data type
	 	 summary CHAR(80), -- fixed length data type
	 	 date_reported DATE, -- fixed length data type
	 	 reported_by BIGINT UNSIGNED, -- fixed length data type
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)
);
	 	
	 	CREATE TABLE BugDescriptions (
	 	 bug_id BIGINT UNSIGNED PRIMARY KEY,
	 	 description VARCHAR(1000), -- variable length data type
	 	 resolution VARCHAR(1000), -- variable length data type
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

Fixing Metadata Tribbles Columns

	Similar to the solution we saw in Chapter 8, Multicolumn Attributes,
	the best remedy for Metadata Tribbles columns is to create a
	dependent table.
Metadata-Tribbles/soln/create-history-table.sql
	 	CREATE TABLE ProjectHistory (
	 	 project_id BIGINT,
	 	 year SMALLINT,
	 	 bugs_fixed INT,
	 	 PRIMARY KEY (project_id, year),
	 	 FOREIGN KEY (project_id) REFERENCES Projects(project_id)
);

	Instead of one row per project with multiple columns for each year,
	use multiple rows, with one column for bugs fixed.
	If you define the table in this way, you don’t need to add new columns
	to support subsequent years.
	You can store any number of rows per project in this table as time goes
	on, and your queries won’t need to be changed each year.
	
	
	
	
	
	
	
	
 [image: images/aside-icons/tip.png]
 	

 Don’t let data spawn metadata.

Copyright © 2022, The Pragmatic Bookshelf.

Part 2
Physical Database Design Antipatterns

	 After you know what data you need to store, you implement
	 the data management as efficiently as you can using
	 the features of your RDBMS technology.
	 This includes defining tables and indexes and choosing data types.
	 You use SQL’s data definition
	 language—statements such as
	 CREATE TABLE.
	

	10.0 times 0.1 is hardly ever 1.0.

 Brian Kernighan

 Chapter
 10
Rounding Errors

 Your boss asks you to produce a report of the cost of programmer
 time for the project, based on the total work to fix each bug. Each
 programmer in the Accounts table has a different
 hourly rate, so you record the number of hours
 required to fix each bug in the Bugs table, and you
 multiply it by the hourly_rate of the programmer
 assigned to do the work.
Rounding-Errors/intro/cost-per-bug.sql
	 	SELECT b.bug_id, b.hours * a.hourly_rate AS cost_per_bug
	 	FROM Bugs AS b
	 	 JOIN Accounts AS a ON (b.assigned_to = a.account_id);

 To support this query, you need to create new columns in the
 Bugs and Accounts tables.
 Both columns should support fractional values, because you need to
 track the costs precisely. You decide to define the new columns as
 FLOAT, because this data type supports
 fractional values.

Rounding-Errors/intro/float-columns.sql
	 	ALTER TABLE Bugs ADD COLUMN hours FLOAT;
	 	
	 	ALTER TABLE Accounts ADD COLUMN hourly_rate FLOAT;

 You update the columns with information from the bug work logs and
 the programmers’ rates, test the report, and call it a day.

 The next day, your boss shows up in your office with a copy of the
 project cost report. “These numbers don’t add up,” he
 tells you through gritted teeth. “I did the calculation by hand
 for comparison, and your report is inaccurate—slightly, by only a few
 dollars.”
 You start to perspire with worry about how you will explain what went
 wrong with such a simple calculation.

Objective: Use Fractional Numbers Instead of Integers

 The integer is a useful data type, but it stores only whole numbers
 like 1 or 327 or -19. It can’t represent fractional values like 2.5.
 You need a different data type if you need numbers with more precision
 than an integer. For example, sums of money are usually represented by
 numbers with two decimal places, like $19.95.

 So, the objective is to store numeric values that aren’t whole numbers
 and to use them in arithmetic computations. There is an additional
 objective, although it ought to go without saying: the results of
 arithmetic computations must be correct.

Antipattern: Use FLOAT Data Type

 Most programming languages support a data type for real numbers, called
 float or double.
 SQL supports a similar data type of the same name. Many programmers
 naturally use the SQL FLOAT data type
 everywhere they need fractional numeric data, because they are accustomed
 to programming with the float data type.

 The FLOAT data type in SQL, like
 float in most programming languages, encodes a
 real number in a binary format according to the IEEE 754 standard. You
 need to understand some characteristics of floating-point numbers in
 this format to use them effectively.

Rounding by Necessity

	Many programmers are not aware of a characteristic of this
	floating-point format: not all values you can describe in decimal can
	be stored in binary. Out of necessity, some numbers must be rounded
	to a value that is very close.

	To give some context for this rounding behavior, compare with
	rational numbers such as one-third, represented by a repeating decimal
	number like 0.333…. The true value cannot be represented in
	decimal, because you would need to write an infinite number of digits.
	The number of digits is the precision of the number, so a repeating
	decimal number would require infinite precision.

	The compromise is to use finite precision,
	choosing a numeric value as close as possible to the original value,
	for example 0.333. However, this means that the value isn’t exactly
	the same number we intended.

	
	 1/3 +
	 1/3 +
	 1/3
	
	= 1.000

	0.333 + 0.333 + 0.333
	= 0.999

	Even if we increase the precision, we still can’t add three of these
	approximations of one-third to get a true value of 1.0. This is the
	necessary compromise of using finite precision to represent numbers
	that may have repeating decimals.

	
	 1/3 +
	 1/3 +
	 1/3
	
	= 1.000000

	0.333333 + 0.333333 + 0.333333
	= 0.999999

	This means some legitimate numbers that you can imagine cannot be
	represented with finite precision. You might think this is OK,
	because you can’t really type a number with infinite digits anyway, so
	naturally you assume any number you can type has finite precision and should be
	stored precisely. Unfortunately, this is not the case.

	IEEE 754 represents floating-point numbers in a base-2 format.
	The values that require infinite precision in binary are different
	values from those that behave this way in decimal. Some values that
	only need finite precision in decimal, for instance 59.95, require
	infinite precision to be represented exactly in binary. The
	FLOAT data type can’t do this, so it
	uses the closest value in base-2 it can store, which is equal
	to 59.950000762939 in base-10.

	Coincidentally, some values can be represented with finite precision in both formats.
	In theory, if you understand the details of storing numbers in the
	IEEE 754 format, you can predict how a given decimal value is
	represented in binary. In practice, most people won’t do this
	computation for every floating-point value they use. You can’t
	guarantee that a FLOAT column in the
	database will be given only values that are cooperative, so your
	application should assume that any value in this column may have been
	rounded.

	Some databases support related data types called
	DOUBLE PRECISION and
	REAL. The precision that these data types
	and FLOAT support varies by database
	implementation, but they all represent floating-point values with a
	finite number of binary digits, so they all have similar rounding
	behavior.

Using FLOAT in SQL

	Some databases can compensate for the inexactness and display the
	intended value.

Rounding-Errors/anti/select-rate.sql
	 	SELECT hourly_rate FROM Accounts WHERE account_id = 123;

 Returns: 59.95

	The actual value stored in the FLOAT
	column may not be exactly this value. If you magnify the value by a
	billion, you see the discrepancy:

Rounding-Errors/anti/magnify-rate.sql
	 	SELECT hourly_rate * 1000000000 FROM Accounts WHERE account_id = 123;

 Returns: 59950000762.939

	You might expect the magnified value returned by the previous query to be
	59950000000.000. This shows that the value 59.95 has been rounded to a
	value that can be represented in the finite precision offered by the
	IEEE 754 binary format. In this case, the value is within 1
	ten-millionth, which is close enough for many calculations.

	However, it’s not close enough for some other kinds of calculations
	to be accurate. One example is using a
	FLOAT in an equality comparison.

Rounding-Errors/anti/inexact.sql
	 	SELECT * FROM Accounts WHERE hourly_rate = 59.95;

	Result: empty set; no rows match.

	We saw before that the value stored in
	hourly_rate is actually slightly more than
	59.95. So even though you assigned the value 59.95 to this column for
	account_id 123, now the row fails to match the
	previous query.

 One common workaround for this issue is to treat floating-point values
	as “effectively equal” if they are close within a small
	threshold.
	Subtract one value from the other, and use SQL’s absolute value function
	ABS to strip the sign from the difference. If
	the result is zero, then the two values were exactly equal. If the
	result is small enough, then the two values can be treated as
	effectively equal. The following query succeeds in finding the row:

Rounding-Errors/anti/threshold.sql
	 	SELECT * FROM Accounts WHERE ABS(hourly_rate - 59.95) < 0.000001;

	However, the difference is still large enough that a comparison of
	finer precision fails:

Rounding-Errors/anti/threshold.sql
	 	SELECT * FROM Accounts WHERE ABS(hourly_rate - 59.95) < 0.0000001;

	The appropriate threshold varies, because the absolute difference
	between the base-10 value and the rounded base-2 value varies.

	Another example of the inexact nature of
	FLOAT causing accuracy problems is when you
	calculate aggregates of many values. For example, if you use
	SUM to add up the floating-point values in a
	column, the sum accumulates the discrepancy caused by rounding all
	the values.

Rounding-Errors/anti/cumulative.sql
	 	SELECT SUM(b.hours * a.hourly_rate) AS project_cost
	 	FROM Bugs AS b
	 	JOIN Accounts AS a ON (b.assigned_to = a.account_id);

 The cumulative impact of inexact floating-point numbers is even
	more severe when calculating the aggregate product of a set of numbers
	instead of the sum. The difference seems small, but it compounds.
	For example, if you multiply the value 1 by a factor of exactly 1.0,
	the result is always 1. It doesn’t matter how many times you apply
	this factor. However, if the factor is actually 0.999, this has a
	different result. If you multiply a value of one by 0.999 a thousand
	times in succession, you get a result of about 0.3677. The more times
	you multiply, the more the discrepancy grows.

	A good example of applying a multiplication many times in succession
	is to calculate compounding interest in a financial application.
	Using inexact floating-point numbers introduces an error that seems
	tiny but grows as it compounds on itself. So, using exact values
	in financial applications is important.

Meet the IEEE 754 Format

 The proposals for a standard binary format for floating-point numbers
 dates back to 1979. It was formally made a standard in 1985, and it
 is now widely implemented in software, most programming languages, and
 microprocessors.

 The format has three fields to encode a floating-point value:
 a field for a fraction portion of the value,
 a field for the exponent to which to raise
 the fraction, and a single-bit sign field.

 One advantage of IEEE 754 is that by using the exponent, it can
 represent fractional values that are both very small and very large.
 The format not only supports real numbers, but the range of values it
 supports is greater than integers in fixed-point format.
 The double-precision format supports an even greater range of values.
 So, these formats are useful for scientific applications.

 The most common use of fractional numeric values is probably to
 represent quantities of money. There’s no need to use IEEE 754 for
 money, because the scaled decimal format described in this chapter can
 handle money values just as easily and more accurately.

 Good references for learning more about this format are the
 Wikipedia article on IEEE 754[13]
 or David Goldberg’s article,
 What Every Computer Scientist Should Know About Floating-Point
 Arithmetic. [Gol91]

How to Recognize the Antipattern

 Virtually any use of FLOAT,
 REAL, or DOUBLE PRECISION data types is suspect.
 Most applications that use floating-point numbers don’t require the range
 of values supported by IEEE 754 formats.

 It seems natural to use FLOAT data types in
 SQL, because it shares its name with a data type found in most
 programming languages. However, there’s a better choice for the data type.

Legitimate Uses of the Antipattern

 FLOAT is a good data type when you need real
 number values with a greater range than INTEGER
 or NUMERIC data types support. Scientific applications are often the best use of a FLOAT.
 For example, if you store daily temperature data in a database,
 the fractional values will vary, and will seldom be a whole
 degree. It’s okay to store a temperature value with a billionth
 of a degree, because the common use of those data is to make
 aggregate calculations, like MIN(), MAX(),
 or AVG(). You might also search for rows where the
 temperature is in a range of values, and a query using
 inequality or BETWEEN will work fine with inexact
 numerics. But you’re not likely to search for the row where
 the temperature is exactly equal to some specific value.

 Oracle uses the FLOAT data type to mean an
 exact scaled numeric, whereas the BINARY_FLOAT
 data type is an inexact numeric, using the IEEE 754 encoding.

Solution: Use NUMERIC Data Type

 Instead of FLOAT or its siblings, use the
 NUMERIC or DECIMAL
 SQL data types for fixed-precision fractional numbers.

Rounding-Errors/soln/numeric-columns.sql
	 	ALTER TABLE Bugs ADD COLUMN hours NUMERIC(9,2);
	 	ALTER TABLE Accounts ADD COLUMN hourly_rate NUMERIC(9,2);

 These data types store numeric values exactly, up to the
 precision you specify in the column definition.
 Specify precision as an argument to the data type, similar to the syntax
 you would use for the length of a VARCHAR data
 type. The precision is the total number of decimal digits you can use in
 a value in this column. A precision of 9 means that you can store a
 value like 123456789, but you may not be able to store
 1234567890.

 You may also specify a scale in a second argument
 to the data type. The scale is the number of digits to the right of the
 decimal point. These digits are included in the precision digits, so a
 precision of 9 with a scale of 2 means you can store a value like
 1234567.89, but not 12345678.91 or 123456.789.

 The precision and scale you specify applies to the column on all rows in
 the table. In other words, you can’t store values with scale 2 on some
 rows and scale 4 on other rows. It’s ordinary in SQL that a column’s
 data type applies uniformly on all rows (just as a column defined as
 VARCHAR(20) would allow a string of that
 length on every row).

 The advantage of NUMERIC and DECIMAL are
 that they store rational numbers without rounding.
 After you set a value to 59.95, you can depend on that value
 being stored exactly.
 When you compare it for equality to a literal value 59.95,
 the comparison succeeds.

Rounding-Errors/soln/exact.sql
	 	SELECT hourly_rate FROM Accounts WHERE hourly_rate = 59.95;

 Returns: 59.95

 Likewise, if you scale up the value by a billion, you get the expected
 value:

Rounding-Errors/soln/magnify-rate-exact.sql
	 	SELECT hourly_rate * 1000000000 FROM Accounts WHERE hourly_rate = 59.95;

 Returns: 59950000000

 The data types NUMERIC and
 DECIMAL behave identically; there should be no
 difference between them. DEC is also a
 synonym for DECIMAL.

 You still can’t store values that require infinite precision, such as
 one-third. At least we’re more familiar with values that have this
 restriction in decimal format.

 If you need exact decimal values, use the
 NUMERIC data type.
 The FLOAT data type is unable to represent
 many decimal rational numbers, so they should be treated as inexact
 values.

	
 [image: images/aside-icons/tip.png]
 	

 If I had a dime for every time I’ve seen someone use FLOAT to store currency,
 I’d have $1000.0000000001588.

Footnotes

	[13]
	
https://en.wikipedia.org/wiki/IEEE_754

Copyright © 2022, The Pragmatic Bookshelf.

	Science is feasible when the variables are few and can be enumerated;
	when their combinations are distinct and clear.

Paul Valéry

 Chapter
 11
31 Flavors

 In a personal contact information table, the
 salutation is a good example of a column that can
 have only a few values. Once you support
 Mr.,
 Mrs.,
 Ms.,
 Dr., and
 Rev., you’ve accounted for virtually everyone.
 You could specify this list in the column definition,
 using a data type or a constraint, so that no one can accidentally enter an
 invalid string into the salutation column.

31-Flavors/intro/create-table.sql
	 	CREATE TABLE PersonalContacts (
	 	 -- other columns
	 	 salutation VARCHAR(4)
	 	 CHECK (salutation IN ('Mr.', 'Mrs.', 'Ms.', 'Dr.', 'Rev.')),
);

 That should settle it—you assume there are no other salutations
 to support.

 Unfortunately, your boss tells you that your company is opening a
 subsidiary in France.
 You need to support the salutations
 M.,
 Mme., and
 Mlle.
 Your mission is to alter your contact table to permit these values.
 This is a delicate job and may not be possible without interrupting
 availability of that table.

 You also thought your boss mentioned that the company is trying to open
 an office next month in Brazil.

Objective: Restrict a Column to Specific Values

 Restricting a column’s values to a fixed set of values is very useful.
 If we can ensure that the column never contains an invalid entry, it
 can simplify use of that column.
 For example, in the Bugs table of our example
 database, the status column indicates whether
 a given bug is NEW,
 IN PROGRESS,
 FIXED, and so on. The significance of each
 of these status values depends on how we manage bugs in our project, but
 the point is that the data in the column must be one of these values.

 Ideally, we need the database to reject invalid data:

31-Flavors/obj/insert-invalid.sql
	 	INSERT INTO Bugs (status) VALUES ('NEW'); -- OK
	 	
	 	INSERT INTO Bugs (status) VALUES ('BANANA'); -- Error!

Antipattern: Specify Values in the Column Definition

 Many people choose to specify the valid data values when they define
 the column.
 The column definition is part of the metadata—the
 definition of the table structure itself.

 For example, you could define a check constraint on
 the column. This constraint disallows any insert or update that
 would make the constraint false.

31-Flavors/anti/create-table-check.sql
	 	CREATE TABLE Bugs (
	 	 -- other columns
	 	 status VARCHAR(20) CHECK (status IN ('NEW', 'IN PROGRESS', 'FIXED'))
);

 MySQL supports a nonstandard data type called ENUM
 that restricts the column to a specific set of values.

31-Flavors/anti/create-table-enum.sql
	 	CREATE TABLE Bugs (
	 	 -- other columns
	 	 status ENUM('NEW', 'IN PROGRESS', 'FIXED'),
);

 In MySQL’s implementation, you declare the values as strings, but
 internally the column is stored as the ordinal number of the string in
 the enumerated list.
 The storage is thus compact, but when you sort a query by
 this column, the default order of the result is by the ordinal value, not
 alphabetically by the string value. You may not expect this behavior.

 Other solutions include domains and
 user-defined types (UDTs).
 You can use these to restrict a column to a specific set of values and
 conveniently apply the same domain or data type to several columns within
 your database.
 Unfortunately, these features are not supported in a standard way among brands of RDBMSs yet.

 Finally, you could write a trigger that contains the set of permitted
 values and raises an error unless the status
 matches one of these values.

 All of these solutions share some disadvantages. The following
 sections describe some of these problems.

Baskin-Robbins “31 Flavors” Ice Cream

	In 1953, this famous chain of ice cream parlors offered one flavor
	for each day of the month. The chain used the slogan
	31 Flavors for many years.

	Today, more than sixty years later, Baskin-Robbins offers
	twenty-one classic flavors, twelve seasonal flavors, sixteen regional flavors,
	as well as a variety of Bright Choices and Flavors of the Month.
	Even though its ice cream flavors were once an immutable set that
	defined its brand, Baskin-Robbins expanded its choices and
	made them configurable and variable.

	The same thing could happen in the project for which you’re
	designing a database—in fact, you should count on it.

What Was the Middle One?

	Suppose you’re developing a user interface
	so a user can edit bug reports. To make it guide the
	user to pick one of the valid status values,
	you choose to fill a drop-down menu control with these values.
	You need to query the database for an enumerated list of
	values that are currently allowed in the
	status column.

	Your first instinct might be to query all the values currently in use,
	with a simple query like the following one:

31-Flavors/anti/distinct.sql
	 	SELECT DISTINCT status FROM Bugs;

	However, if all the bugs are new, the previous query returns only
	NEW. If you use this result to populate a
	user interface control for the status of bugs,
	you could create a chicken-and-egg situation; you can’t change a
	bug to any status other than those currently in use.

	To get the complete list of permitted status
	values, you need to query the definition of that column’s metadata.
 Most SQL databases support system views for these
	kinds of queries, but using them can be complex.
	For example, if you used MySQL’s ENUM data
	type, you can use the following query to query the
	INFORMATION_SCHEMA system views:

31-Flavors/anti/information-schema.sql
	 	SELECT column_type
	 	FROM information_schema.columns
	 	WHERE table_schema = 'bugtracker_schema'
	 	 AND table_name = 'bugs'
	 	 AND column_name = 'status';

	You can’t simply get the discrete enumeration values from the
	INFORMATION_SCHEMA in a conventional result set.
	Instead, you get a string containing the definition of the check
	constraint or ENUM data type.
	For example, the previous query in MySQL returns a column of type
	LONGTEXT, with the value
	ENUM(’NEW’, ’IN PROGRESS’, ’FIXED’),
	including the parentheses, commas, and single quotes.
	You must write application code to parse this string and extract the
	individual quoted values before you can use them to populate a user
	interface control.

	The queries needed to report check constraints, domains, or UDTs are
	progressively more complex.
	Most people choose the better part of valor and manually maintain a
	parallel list of values in application code.
	This is an easy way for bugs to affect your project as application
	data becomes out of sync with the database metadata.

Adding a New Flavor

	The most common alterations are to add or remove one of the permitted
	values.
	There’s no syntax to add or remove a value from an
	ENUM or check constraint;
	you can only redefine the column with a new set of values.
	The following is an example of adding DUPLICATE as
	one new status value in the MySQL
	ENUM:

31-Flavors/anti/add-enum-value.sql
	 	ALTER TABLE Bugs MODIFY COLUMN status
	 	 ENUM('NEW', 'IN PROGRESS', 'FIXED', 'DUPLICATE');

	You need to know that the previous definition of the column allowed
	NEW,
	IN PROGRESS, and
	FIXED.
	This leads you back to the difficulty of querying the current set of
	values as described earlier.

	Some database brands can’t change the definition of a column unless the
	table is empty.
	You might need to dump the contents of the table, redefine the table,
	and then import your saved data, making the table inaccessible in the
	meantime.
	This work is common enough that it has a name: ETL
	for “extract, transform,
	and load.”
	Other brands of database support restructuring a populated table
	with ALTER TABLE commands, but it can
	still be complex and expensive to perform these changes.

	As a matter of policy, changing metadata—that is, changing the
	definition of tables and columns—should be infrequent and with
	attention to testing and quality assurance.
	If you need to change metadata to add or remove a value from an
	ENUM, then you either have to skip the
	appropriate testing or spend a lot of software engineering
	effort on short notice to make the change.
	Either way, these changes introduce risk and destabilize your project.

Old Flavors Never Die

	If you make a value obsolete, you could upset historical data.
	For example, you change your quality control process to replace
	FIXED with two stages,
	CODE COMPLETE and
	VERIFIED:

31-Flavors/anti/remove-enum-value.sql
	 	ALTER TABLE Bugs MODIFY COLUMN status
	 	 ENUM('NEW', 'IN PROGRESS', 'CODE COMPLETE', 'VERIFIED');

	If you remove FIXED from the enumeration,
	you need to decide what to do with bugs whose status was
	FIXED.
	One possible change is to update all FIXED bugs
	to VERIFIED.
	Another option is set obsolete values to null or a default value.
	Unfortunately, ALTER TABLE can’t guess which one of these changes you want.

	You may have to keep an obsolete value that old rows reference.
	You can’t know only from the column definition
	which values are obsolete, so you exclude them from your
	user interface.
	Someone could still choose one of those values.

Portability Is Hard

	Check constraints, domains, and UDTs are not supported uniformly
	among brands of SQL databases.
	The ENUM data type is a proprietary feature
	in MySQL.
	Each brand of database may have a different limit on the length of the
	list you can give in a column definition.
	Trigger languages vary as well.
	These variations make it hard to choose a solution if you need to
	support multiple brands of database.

How to Recognize the Antipattern

 The problems with using ENUM or a check
 constraint arise when the set of values is not fixed. If you’re
 considering using ENUM, first ask yourself
 whether the set of values are expected to change or even whether they
 might change. If so, it’s probably not a good time to
 employ an ENUM.

	

	 “We have to take the database offline so we can add
	 a new choice in one of our application’s menus.
	 It should take no more than thirty minutes, if all goes well.”
	

	 This is a sign that a set of values is baked into the definition
	 of a column. You should never need to interrupt service for a
	 change like this.
	

	

	 “The status column can have one of the
	 following values. We shouldn’t need to revise this list.”
	

	 Shouldn’t need to are weasel words, and this says
	 something quite different from can’t.
	

	

	 “The list of values in the application code got out of sync
	 with the business rules in the database—again.”
	

	 This is a risk of maintaining information in two different places.

Legitimate Uses of the Antipattern

 As we discussed, ENUM may cause fewer problems
 if the set of values is unchanging. It’s still difficult to query the
 metadata for the set of values, but you can maintain a matching list of
 values in application code without getting out of sync.

 ENUM is most likely to succeed when it would
 make no sense to alter the set of permitted values, such as when a column represents an either/or choice with two
 mutually exclusive values:
 LEFT/RIGHT,
 ACTIVE/IN-ACTIVE,
 ON/OFF,
 INTERNAL/EXTERNAL, and so on.

 Check constraints can be used in many ways other than simply to implement
 an ENUM-like mechanism, such as checking that a time interval’s
 start is less than its end.

Solution: Specify Values in Data

 There’s a better solution to restrict values in a column: create a
 lookup table with one row for each value you allow
 in the Bugs.status column.
 Then declare a foreign key constraint on
 Bugs.status referencing the new table.

31-Flavors/soln/create-lookup-table.sql
	 	CREATE TABLE BugStatus (
	 	 status VARCHAR(20) PRIMARY KEY
);
	 	
	 	INSERT INTO BugStatus (status) VALUES ('NEW'), ('IN PROGRESS'), ('FIXED');
	 	
	 	CREATE TABLE Bugs (
	 	 -- other columns
	 	 status VARCHAR(20),
	 	 FOREIGN KEY (status) REFERENCES BugStatus(status)
	 	 ON UPDATE CASCADE
);

 When you insert or update a row in the Bugs table,
 you must use a status value that exists in the
 BugStatus table.
 This enforces the status values like the ENUM
 or a check constraint, but there are several ways this solution offers
 more flexibility.

Querying the Set of Values

	The set of permitted values is now stored in data, not metadata as it
	was with the ENUM data type.
	You can query data values from a lookup table with
	SELECT, just like any other table.
	This makes it much easier to retrieve the set of
	values as a data set to present in your user interface.
	You can even sort the set of values the user can choose from.

31-Flavors/soln/query-canonical-values.sql
	 	SELECT status FROM BugStatus ORDER BY status;

Updating the Values in the Lookup Table

	When you use a lookup table, you can add a value to the set
	with an ordinary INSERT statement.
	You can make a change like this without interrupting access to the
	table.
	You don’t need to redefine any columns, schedule downtime, or perform
	an ETL operation.
	You also don’t need to know the current set of values in the lookup
	table to add or remove a value.

31-Flavors/soln/insert-value.sql
	 	INSERT INTO BugStatus (status) VALUES ('DUPLICATE');

 You can also rename a value easily. If you declared the foreign key
	with the ON UPDATE CASCADE option, then updating
	the name in the lookup table BugStatus automatically
	updates any foreign key references to it in other tables.

31-Flavors/soln/update-value.sql
	 	UPDATE BugStatus SET status = 'INVALID' WHERE status = 'BOGUS';

Supporting Obsolete Values

 You can’t DELETE a row from the lookup table
	if it’s referenced by a row in Bugs.
	The foreign key on the status column enforces
	referential integrity, so the value must exist in the lookup table.

	However, you can add another attribute column to the lookup table to
	designate some values as obsolete. This allows you to maintain
	historical data in the Bugs.status column,
	while distinguishing between the obsolete values and values that are
	eligible to appear in your user interface.

31-Flavors/soln/inactive.sql
	 	ALTER TABLE BugStatus ADD COLUMN active
	 	 ENUM('INACTIVE', 'ACTIVE') NOT NULL DEFAULT 'ACTIVE';

	Use UPDATE instead of
	DELETE to make a value obsolete:

31-Flavors/soln/update-inactive.sql
	 	UPDATE BugStatus SET active = 'INACTIVE' WHERE status = 'DUPLICATE';

	When you retrieve the set of values to show in a user interface
	for users to pick, restrict the query to status values that are
	ACTIVE:

31-Flavors/soln/select-active.sql
	 	SELECT status FROM BugStatus WHERE active = 'ACTIVE';

	This gives you more flexibility than an ENUM
	or a check constraint, because those solutions don’t support extra
	attributes per value.

Portability Is Easy

	Unlike the ENUM data type, check
	constraints, or domains or UDTs, the lookup table solution
	relies only on the standard SQL feature of declarative referential
	integrity using foreign key constraints. This makes the solution more
	portable.

	You can also keep a virtually unlimited number of values in your lookup
	table, since you store each value on a separate row.
	
	
	
	
	
	
 [image: images/aside-icons/tip.png]
 	

 Use metadata when validating against a fixed set of values.
 Use data when validating against a fluid set of values.

Mini-Antipattern: Reserved Words

	“What does this error mean? I’ve checked my syntax against
	the reference documentation and I’m sure it’s correct. I’ve
	used a similar query on other tables with no error.”

	 ERROR 1064: You have an error in your SQL syntax; check
	 the manual that corresponds to your MySQL server version
	 for the right syntax to use near ’order’.
	

	The query that resulted in this error is following:

31-Flavors/mini/query-order.sql
	 	SELECT * FROM Bugs WHERE order = 123;

	It’s true there is nothing wrong with the syntax, if
	order is a column identifier.
	But it’s not—ORDER has meaning as an SQL reserved
	keyword, introducing an ORDER BY clause.
	SQL is case-insensitive by default, so order and
	ORDER are treated as the same keyword.

	SQL must treat some keywords differently from identifiers,
	because if a word can be either an identifier or a keyword,
	then some queries might be ambiguous, and this would confuse
	the parser.

	It’s normal for programming languages to have reserved keywords.
	For example, in Java you aren’t allowed to use
	class or while or try, or a few
	dozen other words as the name of your methods, variables,
	constants, or other identifiers.
	Other languages have their own lists of reserved keywords, and SQL does too.

	Some languages, such as PHP or Perl, use a
	sigil character, such as $,
	before a variable name, to distinguish it from the reserved
	keywords. You can’t name a function while(), but
	you can name a variable $while.

	SQL doesn’t use sigils, but it does allow you to use
	delimiters around any word to make it clear it is an
	identifier. The standard SQL identifier delimiters are double quotes:

31-Flavors/mini/query-order-doublequotes.sql
	 	SELECT * FROM Bugs WHERE "order" = 123;

	MySQL uses backticks by default as the identifier delimiter:

31-Flavors/mini/query-order-backticks.sql
	 	SELECT * FROM Bugs WHERE `order` = 123;

	Microsoft SQL Server uses square brackets by default for the same purpose:

31-Flavors/mini/query-order-brackets.sql
	 	SELECT * FROM Bugs WHERE [order] = 123;

	SQLite recognizes all three styles of delimited identifiers,
	for the convenience of programmers who are used to other
	brands of SQL database.

	Delimited identifiers also allow you to do some things that you
	can’t do in most other languages: spell identifiers with
	whitespace or punctuation characters.

31-Flavors/mini/query-special.sql
	 	SELECT * FROM Bugs WHERE "the order" = 123;
	 	
	 	SELECT * FROM Bugs WHERE "the-order" = 123;

	You can use reserved keywords as identifiers, but it’s your
	responsibility to help the SQL parser by making it clear
	that you mean them to be an identifier.

	In the preceding examples, order is the keyword.
	This may be the most common keyword that software developers
	accidentally choose, not realizing they are reserved.
	Other keywords that typically cause confusion include:
	by,
	default,
	from,
	rows,
	row_number,
	table,
	to,
	or
	year_month.
	It’s not hard to imagine someone trying to use these words
	or other reserved keywords for a table name or a column name.

	Finally, be careful when you upgrade the version of your
	RDBMS software.
	As new software often includes new features with new SQL
	syntax, new words need to be added to the list of reserved
	keywords.
	You may find that an identifier that you had used in your
	database for years needs to be delimited before you can
	upgrade the database.
	
	
	
	
	
	
	
	
	
	
	
	
	

Copyright © 2022, The Pragmatic Bookshelf.

	Whenever a theory appears to you as the only possible one, take this as
	a sign that you have neither understood the theory nor the problem
	which it was intended to solve.

Karl Popper

 Chapter
 12
Phantom Files

 Catastrophe strikes your database server. While relocating a rack full
 of hard drives, the rack tipped over and crashed. Fortunately, no one was
 hurt, but the massive hard drives shattered. Even the raised floor
 was broken where they fell. Fortunately, the IT department is prepared:
 they make good backups of every important system every day, and they
 quickly deploy a new server and restore your database.

 It doesn’t take long during smoke testing to notice a problem: your
 application associates graphic images with many database entities, but
 all the images are missing! You call the IT technician immediately.

 “We restored the database and verified it’s complete as of the last
 backup,” the technician says. “Where were the images
 stored?”

 You remember now that in this application, images are stored outside the
 database, and ordinary files are stored on the filesystem. The database stores
 the path to the image, and the application opens each image file at that
 path. “The images were stored as files. They were on the
 /var filesystem, same as the databases.”

 The technician shakes his head. “We don’t back up files on the
 /var filesystem unless you specifically told us which
 ones. We back up any databases, of course, but other files on
 /var are usually just logs, cache data, or other
 temporary files. By default, they don’t get backed up.”

 Your heart sinks. There were more than 11,000 images used in your product
 catalog database. Most of them probably exist in other places, but
 tracking them all down, reformatting them, and generating thumbnail
 versions for web searches will take weeks.

Objective: Store Images or Other Bulky Media

 Images and other media are used in most applications these days.
 Sometimes media are associated with entities stored in the database.
 For example, you may allow a user to have a portrait or avatar that
 is displayed when he posts a comment. In our bugs database, bugs often
 need a screenshot to illustrate the circumstances of the defect.

 The objective described in this chapter is to store images and associate
 them with database entities, such as user accounts or bugs. When we
 query these entities from the database, we need the capability to
 retrieve the associated images in the application.

Antipattern: Assume You Must Use Files

 Conceptually, an image is an attribute in a table. For example, the
 Accounts table may have a
 portrait_image column.

Phantom-Files/anti/create-accounts.sql
	 	CREATE TABLE Accounts (
	 	 account_id SERIAL PRIMARY KEY,
	 	 account_name VARCHAR(20),
	 	 portrait_image BLOB
);

 Likewise, you can store multiple images of the same type in a dependent
 table. For example, a bug may have multiple screenshots that
 illustrate it.

Phantom-Files/anti/create-screenshots.sql
	 	CREATE TABLE Screenshots (
	 	 image_id SERIAL NOT NULL,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 screenshot_image BLOB,
	 	 caption VARCHAR(100),
	 	 PRIMARY KEY (image_id, bug_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

 That much is straightforward, but choosing the data type for an image
 is a subject of controversy. Raw binary data for an image can be stored
 in a BLOB data type, as shown previously.
 However, many people instead store the image as a file on the filesystem
 and store only the path to this file as a VARCHAR.

Phantom-Files/anti/create-screenshots-path.sql
	 	CREATE TABLE Screenshots (
	 	 image_id SERIAL NOT NULL,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 screenshot_path VARCHAR(100),
	 	 caption VARCHAR(100),
	 	 PRIMARY KEY (image_id, bug_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

 Software developers argue passionately about this issue.
 There are good reasons for both solutions, but some
 programmers are opinionated that images must always be stored
 external to the database.
 However, there are several real risks to this design, described
 in the following sections.

Files Don’t Obey DELETE

	The first problem is one of garbage collection. If your images are
	outside the database and you delete the row that contains the path,
	there is no way for the file named by that path to be removed
	automatically.

Phantom-Files/anti/delete.sql
	 	DELETE FROM Screenshots WHERE bug_id = 1234 and image_id = 1;

	Unless you design your application to remove these
	“orphaned” image files as you delete the database row that
	references them, they will accumulate.

Files Don’t Obey Transaction Isolation

	Normally, when you update or delete data, these changes
	aren’t visible to other clients until you finish your transaction with
	COMMIT.

	However, any change you make to files outside the database don’t work
	this way. If you remove a file, it is immediately inaccessible to
	other clients. And if you change the contents of the file, other
	clients see those changes immediately, instead of seeing the previous
	content of the file while your transaction is still uncommitted.

Phantom-Files/anti/transaction.py
	 	import mysql.connector
	 	import os
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	
	 	cursor = cnx.cursor()
	 	
	 	query = "DELETE FROM Screenshots WHERE bug_id = %s AND image_id = %s"
	 	cursor.execute(query, (1234, 1,))
	 	
	 	os.unlink('screenshot1234-1.jpg');
	 	
	 	# At this time, other clients still see the row in the database,
	 	# but not the image file.
	 	
	 	cnx.commit()

	In practice, these kinds of anomalies may be infrequent. Also, the
	impact is minor in this example; a missing image is hardly rare in a
	web application. In other scenarios, the consequences could be
	unfortunate.

Files Don’t Obey ROLLBACK

 It’s normal to roll back transactions in case of errors, or even
	if the logic of your application requires that changes be canceled.

	For example, suppose you remove a screenshot file as you execute a
	DELETE statement to remove the corresponding
	row in the database. If you roll back this change, the deletion of the
	row in the database is reversed, but the file is still gone.

Phantom-Files/anti/rollback.py
	 	import mysql.connector
	 	import os
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	
	 	cursor = cnx.cursor()
	 	
	 	query = "DELETE FROM Screenshots WHERE bug_id = %s AND image_id = %s"
	 	cursor.execute(query, (1234, 1,))
	 	
	 	os.unlink('screenshot1234-1.jpg');
	 	
	 	cnx.rollback()

	The row in the database is restored but not the image file.

Files Don’t Obey Database Backup Tools

	Most database brands provide a client tool to assist in backing up a
	database that is in use. For example,
	MySQL provides mysqldump,
	Oracle provides rman,
	PostgreSQL provides pg_dump,
	SQLite provides the .dump command,
	and so on.
	Using a backup tool is important because if other
	clients are making changes concurrently, your backup could contain
	partial changes, potentially breaking referential integrity or even
	making the backup corrupt and useless for recovery.

	A backup tool doesn’t know how to include files referenced by pathname
	in a VARCHAR column of a table. So when you
	back up a database, you need to remember a two-step process: use the
	database backup tool, and then use a filesystem backup tool for the
	collection of external image files.

	Even if you include the external files with the backup,
	it’s hard to ensure that copies of these files are in sync with
	the transaction you used to back up the database. Applications may
	add or change image files at any time, perhaps only a moment after you
	began your database backup.

Files Don’t Obey SQL Access Privileges

	External files circumvent any privileges that you assign with
	the GRANT and
	REVOKE SQL statements. SQL privileges
	manage access to tables and columns, but they don’t apply to external
	files named by strings in the database.

Files Are Not SQL Data Types

	The path stored in screenshot_path is merely
	a string. The database doesn’t verify that the string is a valid
	pathname, nor can the database verify that the file exists at the
	path you name. If the file is renamed, moved, or deleted, the database
	doesn’t update the string in the database automatically. Any logic
	that treats this string as a pathname depends on code you write in your
	application.

Phantom-Files/anti/file-get.py
	 	import mysql.connector
	 	import os
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	
	 	cursor = cnx.cursor()
	 	
	 	query = "SELECT image_path FROM Screenshots WHERE bug_id = %s AND image_id = %s"
	 	cursor.execute(query, (1234, 1,))
	 	row = cursor.fetchone()
	 	cursor.close()
	 	
	 	if row:
	 	 image_path = row[0]
	 	 with open(image_path) as image_file:
	 	 image_content = image_file.read()

 One advantage of using a database is that it helps us preserve
	data integrity. When you put some of your data in external files,
	you circumvent this advantage, and you have to write application code
	to perform checks that should be handled by the database.
	
	
	

How to Recognize the Antipattern

 The signs of this antipattern require a little investigation. If the
 project has any documentation to guide software administrators or if you
 have the opportunity to interview the programmers who designed it (even
 if that’s you), look for explanations of how the system handles
 tasks like the following:

	

	 Backing up and restoring data, including the images and file attachments
	

	

	 Verifying the data after restoring it on a different server
	 than where the backup was made
	

	

	 Removing images once they are no longer referenced by any rows
	 in the database
	

	

	 Granting the users of the application access to view images,
	 as well as the reverse: preventing users from viewing images
	 they don’t have privileges to view
	

	

	 Editing or replacing images, including canceling such a change.
	 Restoring the original image after canceling a change
	

 Projects that are guilty of the antipattern typically fail to think
 through some or all of these questions.
 Not every application needs robust transaction management or SQL access
 control for image files.
 You might find that taking a database offline during backups is a fair
 trade-off.
 If these answers are unclear or not forthcoming, it could indicate that
 the project designed their use of external files carelessly.

Legitimate Uses of the Antipattern

 There are good reasons to store images or other large objects in files
 outside the database:
	

	 The database is much leaner without images, because images tend to be
	 large compared to simple datatypes like integers and strings.
	

	

	 Backing up the database is faster and the result is smaller if images
	 are not included. You must copy images from the filesystem as a
	 separate backup step, but this can be more manageable than a huge
	 database backup.
	

	

	 If images are in files external to the database, it’s easier to do ad
	 hoc image previewing or editing. For example, if you need to apply
	 a batch edit to all your images, it’s especially good to keep images
	 external to the database.
	

 If these advantages of storing images in files are important and the
 issues described earlier are not deal-breakers, you may decide that it’s
 the right thing to do in this project.

 Some database brands support special SQL
 data types that do reference external files more or less transparently.
 Oracle calls this data type BFILE,
 while SQL Server 2008 calls it
 FILESTREAM.

Don't Rule Out Either Design

	I designed an application that stored images outside a database for a
	contract project. My employer was hired to develop a
	registration application for a technical conference. As conference
	attendees arrived, a video camera took their picture, added it to their
	registration record, and printed it on their conference badge.

 My application was fairly simple. Each image could be inserted
	and updated only by one client application (if the person blinked or
	didn’t like their photo, we could replace it during registration).
	There was no requirement for sophisticated transaction handling,
	concurrent access from multiple clients, or rollback. We were not
	using SQL access privileges. Previewing the images was simpler
	without having to fetch them from the database.

	I worked on this project at a time when the practical limits of
	applications and databases were much lower than what today’s technology
	can handle. It made sense given these constraints to store images in
	a collection of directories and manage them with application code.

 You need to plan how your application uses images to know whether the
 issues described in the “Antipattern” section would affect you. Make an
 informed decision, instead of listening to generalizations from
 programmers who believe that storing images in external files is always the best
 solution.

Solution: Use BLOB Data Types As Needed

 If any of the issues described in the “Antipattern” section of this
 chapter apply to you, you should consider storing images inside the
 database instead of in external files. All database brands support
 the BLOB data type, which you can use to store any
 binary data.

Phantom-Files/soln/create-screenshots.sql
	 	CREATE TABLE Screenshots (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 image_id BIGINT UNSIGNED NOT NULL,
	 	 screenshot_image BLOB,
	 	 caption VARCHAR(100),
	 	 PRIMARY KEY (bug_id, image_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

 If you store an image in this way in a BLOB column,
 all the issues are solved:

	

	 The image data is stored in the database. There is no extra
	 step to load it. There’s no risk that the file’s pathname is
	 incorrect.
	

	

	
	 Deleting a row deletes the image automatically.
	

	

	 Changes to an image are not visible to other clients until you
	 commit the change.
	

	

	
	 Rolling back a transaction restores the previous state of the image.
	

	

	
	
	 Updating a row creates a lock, so no other client can update
	 the same image concurrently.
	

	

	
	 Database backups include all the images.
	

	

	
	 SQL privileges control access to the image as well as the row.
	

 The maximum size for a BLOB varies by database brand,
 but it’s enough to store most images. All databases should support
 BLOB or something akin to it. MySQL, for example,
 provides data types MEDIUMBLOB and LONGBLOB that store
 up to 16 megabytes or 4 gigabytes, respectively. Oracle supports
 data types called LONG RAW or
 BLOB, with capacity up to 2 or 4 gigabytes,
 respectively. Similar data types are available in other database brands.

 Images usually exist in a file to begin with, so you need some way to
 load them into a BLOB column in the database.
 Some databases provide functions to load external files. For example,
 MySQL has a function called LOAD_FILE you can
 use to read a file, typically to store the content in a
 BLOB column.

Phantom-Files/soln/load-file.sql
	 	UPDATE Screenshots
	 	SET screenshot_image = LOAD_FILE('images/screenshot1234-1.jpg')
	 	WHERE bug_id = 1234 AND image_id = 1;

 You can also save the contents of a BLOB
 column to a file. For example, MySQL has an optional clause of the
 SELECT statement to store the result of
 a query verbatim, without any formatting to denote column or row
 termination.

Phantom-Files/soln/dumpfile.sql
	 	SELECT screenshot_image
	 	INTO DUMPFILE 'images/screenshot1234-1.jpg'
	 	FROM Screenshots
	 	WHERE bug_id = 1234 AND image_id =1;

 You can also fetch the image data from the
 BLOB and output it directly. The response of a web
 request can be binary content such as an image, if you set the content type appropriately.
 Following is an example Python Flask web application that returns the screenshot image.

Phantom-Files/soln/binary-content.py
	 	import mysql.connector
	 	from flask import Flask, Response
	 	
	 	app = Flask(__name__)
	 	
	 	@app.route('/')
	 	def screenshot():
	 	 cnx = mysql.connector.connect(user='scott', database='test')
	 	
	 	 cursor = cnx.cursor()
	 	 query = """
	 	 SELECT screenshot_image FROM Screenshots
	 	 WHERE bug_id = %s AND image_id = %s"""
	 	 cursor.execute(query, (1234, 1,))
	 	 row = cursor.fetchone()
	 	 cursor.close()
	 	
	 	 if row:
	 	 screenshot_image = row[0]
	 	 return Response(screenshot_image, mimetype='image/jpeg')
	 	 else:
	 	 return Response(status=404)
	 	
	 	if __name__ == '__main__':
	 	 app.run()

 Before following a convention that images or other content
 belong in files outside the database, think about whether it
 would make your code simpler and more mistake proof to use a
 BLOB column to store that data.

	
 [image: images/aside-icons/tip.png]
 	

 If you break the relationship between the data and the database,
 then you take on the burden of managing that data yourself.

Copyright © 2022, The Pragmatic Bookshelf.

	Whenever any result is sought by its aid, the question will then
	arise—By what course of calculation can these results be arrived at
	by the machine in the shortest time?

 Charles Babbage,
 Passages from the Life of a Philosopher (1864)

 Chapter
 13
Index Shotgun

 “Hey! You got a minute? I could use your help,”
 the Oklahoman accent on the phone is shouting over the data center ventilation.
 It’s the lead database administrator for your company.

 “Sure,” you answer, a little unsure what he could want.

 “The thing is, you’ve got a database here that’s pretty much taken
 over the server,” the DBA continues.
 “I got in there to take a look, and I see the problem.
 You’ve got no indexes on some tables and every index in the world on some
 other tables.

 We’ve got to get this worked out or give you a server all to yerself,
 because nobody else can get any time!”

 “I’m sorry—actually, I don’t know that much about databases,”
 you reply, trying to calm down the DBA.
 “We did our best to guess at the optimization, but obviously that’s
 what an expert like you can do.
 Isn’t there some database tuning you can do?”

 “Son, I tuned everything I can; that’s why we’re still running
 down here at all,” the DBA answers.
 “The only option left is to throttle your app, and I don’t
 think you want that.
 We’ve got to stop guessing and start getting some answers on what your
 app needs the database to do.”

 You can tell this is getting over your head.
 Warily you ask, “What do you have in mind?
 I told you, we don’t have expert database knowledge in our team.”

 “That’s no problem,” the DBA laughs.
 “You do know your application, right?
 That’s the part that counts—and the part I can’t help with.
 I’ll get one of my team to set you up with the right tools,
 and then we’ll fix your bottleneck.
 You just need a little mentoring. You’ll see.”

Objective: Optimize Performance

 Performance is the single most common concern from database
 developers.
 Just look at the talks scheduled at any technical conference:
 they’re full of tools and techniques to squeeze more work out of
 your database.
 When I give a talk about a way to structure a database or write SQL
 to give better reliability, security, or correctness, I’m not surprised
 when the first question (or perhaps the only question) from
 the audience is, “OK, but how does that affect performance?”

 The best technique for improving performance in your database is to use
 indexes well.
 An index is a data structure that the
 database uses to correlate values to the rows where these values occur
 in a given column.
 An index provides an easy way for the database to find values more
 quickly than the brute-force method of searching the whole table from
 top to bottom.

 Software developers typically don’t understand how or when to
 use an index.
 Documentation and books about databases rarely or never contain a clear
 guide for when to use an index.
 Developers can only guess at how to use indexes effectively.

Antipattern: Using Indexes Without a Plan

 When we choose our indexes by guessing, we inevitably make some wrong
 choices.
 Misunderstandings about when to use indexes leads to mistakes in
 one of these three categories:

	
	 Defining no indexes or not enough indexes
	
	
	 Defining too many indexes or indexes that don’t help
	
	
	
	 Running queries that no index can help
	

	

No Indexes

	We commonly read that a database incurs overhead as it keeps an
	index up-to-date.
	Each time we use INSERT, UPDATE, or DELETE,
	the database has to update the index data structures for that table to
	be consistent so that our subsequent searches use these indexes
	to find the right set of rows reliably.

	We’re trained to think that overhead means waste.
	So when we read that the database incurs overhead to keep an index
	updated, we want to eliminate that overhead.
	Some developers conclude that the remedy is to eliminate the indexes.
 This advice is common, but it ignores the fact that indexes have
	benefits that justify their overhead.

	Not all overhead is waste.
	Does your company employ administrative staff, legal professionals,
	accountants, and pay for facilities, even though those expenses don’t
	directly contribute to generating revenue?
	Yes, because those people contribute to the success of your company
	in important ways.

	In a typical application, you’ll run hundreds of queries against
	a table for every one update.
	Every time you run a query that uses an index, you win back the
	overhead that went into maintaining that index.

	An index can also help an UPDATE or DELETE
	statement by finding the desired rows quickly.
	The index on the bug_id primary key
	helps the following statement:

Index-Shotgun/anti/update.sql
	 	UPDATE Bugs SET status = 'FIXED' WHERE bug_id = 1234;

	A statement that searches an unindexed column has to perform a full
	table scan to find matching rows.

Index-Shotgun/anti/update-unindexed.sql
	 	UPDATE Bugs SET status = 'OBSOLETE' WHERE date_reported < '2000-01-01';

Indexes Aren't Standard

	Did you know that the ANSI/ISO SQL standard says nothing about indexes?
	The implementation and optimization of data storage is not specified by
	the SQL language, so every brand of database is free to implement
	indexes differently.

	Most brands have similar CREATE INDEX syntax, but each brand
	has flexibility to innovate and add their own proprietary technology.
	There’s no standard for index capabilities.
	Likewise, there is no standard for index maintenance, automatic query
	optimization, query plan reporting, or commands like
	EXPLAIN.

	To get the most out of indexes, you have to study the documentation for
	your brand of database.
	The specific syntax and features of indexes vary greatly, but the
	logical concepts apply across the board.

Too Many Indexes

	You benefit from an index only if you run queries that use that index.
	There’s no benefit to creating indexes that you don’t use.
	Here are some examples:

Index-Shotgun/anti/create-table.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 date_reported DATE NOT NULL,
	 	 summary VARCHAR(80) NOT NULL,
	 	 status VARCHAR(10) NOT NULL,
	 	 hours NUMERIC(9,2),
	①	 INDEX (bug_id),
	②	 INDEX (summary),
	③	 INDEX (hours),
	④	 INDEX (bug_id, date_reported, status)
);

	In the previous example, there are several useless indexes:

	
	 ①
	
	
bug_id:
	 Most databases create an index automatically for a primary
	 key, so it’s redundant to define another index.
	 There’s no benefit to it, and it could just be extra overhead.
	 Each database brand has its own rules for when to create an index
	 automatically.
	 You need to read the documentation for the database you use.
	
	
	

	
	 ②

	
	
 summary:
	 An index for a long string datatype like VARCHAR(80)
	 is larger than an index for a more compact data type.
	 Also, you’re not likely to run queries that search or sort by
	 the full summary column.
	

	
	 ③

	
	
 hours:
	 This is another example of a column in which you’re probably not going to
	 search for specific values.
	

	
	 ④

	
	
 bug_id,
	 date_reported,
	 status:
	 There are good reasons to use compound indexes, but many people
	 create compound indexes that are redundant or seldom used.
	 Also, the order of columns in a compound index is important;
	 you should use the columns left-to-right in search criteria,
	 join criteria, or sorting order.
	
	
	
	
	
	

	

When No Index Can Help

	The next type of mistake is to run a query that can’t use any index.
	Developers create more and more indexes, trying to find some magical
	combination of columns or index options to make their query run
	faster.

	Think of a database index using an analogy to a telephone book.
	If you’re asked to look up everyone in the telephone book whose
	last name is Charles, it’s an easy task.
	All the people with the same last name are listed together, because
	that’s how the telephone book is ordered.

Index-Shotgun/anti/indexable.sql
	 	CREATE INDEX LastNameFirstName ON TelephoneBook(last_name, first_name);
	 	
	 	SELECT * FROM TelephoneBook WHERE last_name = 'Charles'; -- OK

	However, if you’re asked to look up everyone in the telephone book
	whose first name is Charles, this doesn’t
	benefit from the order of names in the book.
	Anyone can have that first name, regardless of their last name,
	so you have to search through the entire book line by line.

Index-Shotgun/anti/not-indexable.sql
	 	SELECT * FROM TelephoneBook WHERE first_name = 'Charles'; -- NOT indexable

	The telephone book is ordered by last name and then by first name,
	just like a compound database index on
	last_name, first_name.
	This index doesn’t help you search by first name.

	The following examples show more index definitions and queries that can’t use the indexes shown:

Index-Shotgun/anti/not-indexable.sql
	 	CREATE INDEX LastNameFirstName ON Accounts(last_name, first_name);
	 	
	 	SELECT * FROM Accounts ORDER BY first_name, last_name;

	This query shows the telephone book scenario.
	If you create a compound index for the columns
	last_name followed by
	first_name (as in a telephone book),
	the index doesn’t help you sort primarily by
	first_name.

Index-Shotgun/anti/not-indexable.sql
	 	CREATE INDEX DateReported ON Bugs(date_reported);
	 	
	 	SELECT * FROM Bugs WHERE MONTH(date_reported) = 4;

	Even if you create an index for the
	date_reported column,
	the order of the index doesn’t help you search by month.
	The order of this index is based on the entire date,
	starting with the year.
	Each year has a fourth month, so the rows where the month
	is equal to 4 are scattered through the index.

	Some databases support indexes on expressions, or indexes on
	generated columns, as well as indexes on plain columns.
	You have to define the index prior to using it, and that
	index helps only for the expression you specify in its definition.

Index-Shotgun/anti/not-indexable.sql
	 	CREATE INDEX LastNameFirstName ON Accounts(last_name, first_name);
	 	
	 	SELECT * FROM Accounts WHERE last_name = 'Charles' OR first_name = 'Charles';

	We’re back to the problem that rows with that specific first name
	are scattered unpredictably with respect to the order of the index
	we defined.
	The result of the previous query is the same as the result of
	the following:

Index-Shotgun/anti/not-indexable.sql
	 	SELECT * FROM Accounts WHERE last_name = 'Charles'
	 	UNION
	 	SELECT * FROM Accounts WHERE first_name = 'Charles';

	The index shown in the example helps to find that last name,
	but it doesn’t help find that first name.

Index-Shotgun/anti/not-indexable.sql
	 	CREATE INDEX Description ON Bugs(description);
	 	
	 	SELECT * FROM Bugs WHERE description LIKE '%crash%';

	Because the pattern in this search predicate could occur
	anywhere in the string, there’s no way the sorted index data
	structure can help.

Low-Selectivity Indexes

 Selectivity is a statistic about a database index.
 It’s the ratio of the number of distinct values in the index to the
 total number of rows in the table:

	 	SELECT COUNT(DISTINCT status) / COUNT(status) AS selectivity FROM Bugs;

 The lower the selectivity ratio, the less effective an index is.
 Why is this? Consider an analogy.

 This book has an index of a different type: each entry in a book’s
 index lists the pages where the entry’s words appear.
 If a word appears frequently in the book, it may list many page
 numbers.
 To find the part of the book you’re looking for, you have to turn
 to each page in the list one by one.

 Indexes don’t bother to list words that appear on too many pages.
 If you have to flip back and forth from the index to the pages of the
 book too much, then you might as well just read the whole book cover to
 cover.

 Likewise in a database index, if a given value appears on many rows in
 the table, it’s more trouble to read the index than simply to scan the
 entire table.
 In fact, in these cases it can actually be more expensive to use that
 index.

 Ideally your database tracks the selectivity of indexes and shouldn’t
 use an index that gives no benefit.

How to Recognize the Antipattern

 The following are symptoms of the Index Shotgun antipattern:

	

	 “Here’s my query; how can I make it faster?”
	

	 This is probably the single most common SQL question,
	 but it’s missing details about table description, indexes,
	 data volume, and measurements of performance and optimization.
	 Without this context, any answer is just guesswork.
	

	

	 “I defined an index on every field; why isn’t it faster?”
	

	 This is the classic Index Shotgun antisolution.
	 You’ve tried every possible index—but you’re shooting in the dark.
	

	

	 “I read that indexes make the database slow,
	 so I don’t use them.”
	

	 Like many developers, you’re looking for a one-size-fits-all
	 strategy for performance improvement.
	 No such blanket rule exists.
	

Legitimate Uses of the Antipattern

 If you need to design a database for general use, without knowing
 what queries are important to optimize, you can’t be sure of which
 indexes are best.
 You have to make an educated guess.
 It’s likely that you’ll miss some indexes that could have given benefit.
 It’s also likely that you’ll create some indexes that turn out to be
 unneeded.
 You have to make the best guess you can.

The Database Isn't Always the Bottleneck

 Common wisdom in software developer communities is that the database is
 always the slowest part of your application and the source of
 performance issues.
 However, this isn’t true.

 For example, in one application I worked on, my manager asked me to
 find out why it was so slow, and he insisted it was the fault of the
 database.
 After I used a profiling tool to measure the application code, I found
 that it spent 80 percent of its time parsing its own HTML output to find form
 fields so it could populate values into forms.
 The performance issue had nothing to do with the database queries.

 Before making an assumption about the cause of the performance
 problem, try to use software measuring tools to identify the
 code that is taking too long.
 Otherwise, you could be practicing premature optimization.

Solution: MENTOR Your Indexes

 The Index Shotgun antipattern is about creating or dropping indexes
 without reason, so you need a methodology to analyze a database and
 find good reasons to include indexes or omit them.

 You can use the mnemonic MENTOR to describe a
 checklist for analyzing your database for good index choices:
 Measure,
 Explain,
 Nominate,
 Test,
 Optimize, and
 Rebuild.

Measure

 You can’t make informed decisions without information.
	Most databases provide some way to log the time to execute SQL queries
	so you can identify the operations with the greatest cost.
	For example:

	

	 Microsoft SQL Server and Oracle both have
	 SQL Trace facilities and tools to report
	 and analyze trace results.
	 Microsoft calls this tool the SQL Server
	 Profiler,
	 and Oracle calls it TKProf.
	
	
	
	
	

	

	 MySQL and PostgreSQL can log queries that take longer to execute
	 than a specified threshold of time.
	 MySQL calls this the slow query log,
	 and its long_query_time configuration parameter defaults
	 to 10 seconds.
	 PostgreSQL has a similar configuration variable,
	 log_min_duration_statement.
	
	
	
	
	
	

	Once you know which queries account for the most time in your
	application, you know where you should focus your optimizing attention
	for the greatest benefit.
	You might even find that all queries are working efficiently except
	for one single bottleneck query.
	This is the query you should start optimizing.

	The area of greatest cost in your application isn’t necessarily the
	 most time-consuming query, if that query is run only rarely.
	Other simpler queries might be run frequently, more often than you
	would expect, so they account for more total time.
	Giving attention to optimizing these queries gives you more bang for
	your buck.

	Disable any query result caching while you’re measuring query
	performance.
	This type of cache is designed to bypass query execution and index
	usage, so it won’t give an accurate measurement.

	You can get more accurate information by profiling your
	application after you deploy it.
	Collect aggregate data of where the code spends its time when real
	users are using it, and against the real database.
	You should monitor profiling data from time to time to be sure you
	haven’t acquired a new bottleneck.

	Remember to disable or reduce the reporting rate of
	profilers after you’re done measuring, because these tools cause
	some overhead.

Explain

	Having identified the query that has the greatest cost, your next
	step is to find out why it’s so slow.
	Every database uses an optimizer to pick indexes for your query.
	You can get the database to give you a report of its analysis,
	called the query execution plan (QEP).

	The syntax to request a QEP varies by database brand, as you
	can see in the table shown.
	
	
	
	
	
	
	
	
	
	

	Database Brand
	QEP Reporting Solution

	IBM DB2
	
	 EXPLAIN,
	 db2expln command, or
	 Visual Explain

	
	Microsoft SQL Server
	
	 SET SHOWPLAN_XML, or
	 Display Execution Plan

	
	MySQL
	
	 EXPLAIN

	
	Oracle
	
	 EXPLAIN PLAN

	
	PostgreSQL
	
	 EXPLAIN

	
	SQLite
	
	 EXPLAIN

	

	There’s no standard for what information a QEP report includes
	or the format of the report.
	In general, the QEP shows you which tables are involved in a query,
	how the optimizer chooses to use indexes, and what order it will access
	the tables.
	The report may also include statistics, such as the number of rows
	generated by each stage of the query.

	Look at a sample SQL query and request a QEP report:

Index-Shotgun/soln/explain.sql
	 	EXPLAIN SELECT Bugs.*
	 	FROM Bugs
	 	JOIN (BugsProducts JOIN Products USING (product_id))
	 	 USING (bug_id)
	 	WHERE summary LIKE '%crash%'
	 	 AND product_name = 'Open RoundFile'
	 	ORDER BY date_reported DESC;

 Take a look at this MySQL QEP report:

[image: images/Index_Shotgun/explain-qep.png]

	The key column shows that this query makes
	use of only the primary key index BugsProducts.
	Also, the extra notes in the last column indicate that the query will
	sort the result in a temporary table, without the benefit of an index.

	The LIKE expression forces a full table scan in
	Bugs, and there is no index on
	Products.product_name.
	We can improve this query if we
	create a new index on product_name and
	also use a full-text search solution (see Chapter 17, Poor Man’s Search Engine).

 The information in a QEP report is vendor-specific.
	In this example, you should read the MySQL manual page
	“Optimizing Queries with EXPLAIN” to
	understand how to interpret the report.[14]

Nominate

	Now that you have the optimizer’s QEP for your query, you should
	look for cases where the query accesses a table without using an index.

	Some databases have tools to do this for you, collecting query
	trace statistics and proposing a number of changes, including creating
	new indexes that you’re missing but would benefit your query.

	
 For example:

	IBM DB2 Design Advisor
	Microsoft SQL Server Database Engine Tuning Advisor
	MySQL Enterprise Query Analyzer
	Oracle Automatic SQL Tuning Advisor

	Even without automatic advisors, you can learn how to
	recognize when an index could benefit a query.
	You need to study your database’s documentation to interpret
	the QEP report.

Covering Indexes

	If an index provides all the columns we need, then the query doesn’t need
	to read data from the table at all.

	Imagine if telephone book entries contained only a page number;
	after you looked up a name, you would then have to turn to the page it
	referenced to get the actual phone number.
	It makes more sense to look up the information in one step.
	Looking up a name is quick because the book is ordered, and it would be best
	to get other attributes you need from that entry, such as the
	phone number and perhaps also an address.

	This is how a covering index works.
	You can define the index to include extra columns, even though they’re
	not otherwise necessary for searching or sorting.

	 	CREATE INDEX BugCovering ON Bugs
	 	 (status, bug_id, date_reported, reported_by, summary);

	If your query references only the columns included in the index
	data structure, the database generates your query results by
	reading only the index.

	 	SELECT status, bug_id, date_reported, summary
	 	FROM Bugs WHERE status = 'OPEN';

	You can’t use covering indexes for every query, but when you
	can, it’s usually a great win for performance.

Test

 This step is important: after creating indexes, profile your
	queries again.
	It’s important to confirm that your change made a difference
	so you know that your work is done.

	You can also use this step to impress your boss and justify the work
	you put into this optimization.
	You don’t want your weekly status to be like this:
	“I’ve tried everything I can think of to fix our performance
	issues, and we’ll just have to wait and see….”
	Instead, you should have the opportunity to report this:
	“I determined we could create one new index on a high-activity
	table, and
	I improved the performance of our critical queries
	by 38 percent.”

Optimize

	Indexes are compact, frequently used data structures, which makes them
	good candidates for keeping in cache memory.
	Reading indexes in memory improves performance an order of magnitude
	greater than reading indexes via disk I/O.

	Database servers allow you to configure the amount of system
	memory to allocate for caching. The specific options are
	different in each brand of database product. For example,
	in MySQL the most important option for this purpose is
	innodb_buffer_pool_size.

	Most database products set the default cache buffer size
	pretty low to ensure that the database works even on a
	low-powered laptop computer. When you deploy your database
	to a real server, you should probably increase the size of
	the cache.

	How much memory should you allocate to cache?
	There’s no universal answer to this, because it depends on
	the size of your database, the types of queries you run,
	and how much system memory you have available.
	A common recommendation is to monitor the rate of disk I/O
	requests; increasing the cache size slightly each day
	while doing that results in lower I/O activity.
	Don’t allocate more memory than the system is equipped
	with, and leave some free for other processes and uses of
	the memory.

Rebuild

	Indexes provide the most efficiency when they are
	balanced.
	Over time, as you update and delete rows, the indexes may become
	progressively imbalanced, similar to how filesystems become
	fragmented over time.
	In practice, you may not see a large difference between an index
	that is optimal vs. one that has some imbalance.
	You want to get the most out of indexes, so it’s worthwhile to
	perform maintenance on a regular schedule.

	Like most features related to indexes, each database brand uses
	vendor-specific terminology, syntax, and capabilities.
	
	
	
	
	
	
	
	
	
	
	
	

	Database Brand
	Index Maintenance Command

	IBM DB2
	
	
	 REORG INDEX
	

	
	Microsoft SQL Server
	
	
	 ALTER INDEX ... REORGANIZE,
	 ALTER INDEX ... REBUILD, or
	 DBCC DBREINDEX
	

	
	MySQL
	
	 OPTIMIZE TABLE

	
	Oracle
	
	
	 ALTER INDEX ... REBUILD
	

	
	PostgreSQL
	
	
	 VACUUM or ANALYZE
	

	
	SQLite
	
	
	 VACUUM
	

	

	How frequently should you rebuild an index?
	You might hear generic answers such as “once a week,”
	but in truth there’s no single answer that fits all applications.
	It depends on how frequently you commit changes to a given table that
	could introduce imbalance. It also depends on how large the table is
	and how important it is to get optimal benefit from indexes for this
	table.
	Is it worth spending hours rebuilding indexes for a large but
	seldom-used table if you can expect to gain only an extra 1 percent
	performance?
	You’re the best judge of this, because you know your data and your
	operation requirements better than anyone else does.

 A lot of the knowledge about getting the most out of indexes is
 vendor specific, so you’ll need to research the brand of database you use.
 Your resources include the database manual, books and magazines,
 blogs and mailing lists, and also lots of experimentation on your own.
 The most important rule is that guessing blindly at indexing isn’t
 a good strategy.

	
 [image: images/aside-icons/tip.png]
 	

 Know your data, know your queries, and MENTOR your indexes.

Mini-Antipattern: Indexing Every Column

	Some people create indexes on every column—and every
	combination of columns—when they don’t know which indexes will
	benefit their queries.
	In Too Many Indexes, you saw an example.

	In fact, creating every index that potentially could be
	used is much harder than creating an index on every column.
	It isn’t just an index on every column that might be
	useful to some queries.
	Queries might need compound indexes, to optimize
	searches on multiple columns, or ORDER BY or
	GROUP BY, or even extra columns to make it a
	covering index.
	The order of columns in an index is also important.
	So, to make all potential indexes, you must make as
	many indexes as the number of permutation
	of columns in the table.

	
	

Index-Shotgun/mini/permutations.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 date_reported DATE NOT NULL,
	 	 summary VARCHAR(80) NOT NULL,
	 	 status VARCHAR(10) NOT NULL,
	 	 INDEX (bug_id, date_reported, summary, status),
	 	 INDEX (date_reported, bug_id, summary, status),
	 	 INDEX (summary, date_reported, bug_id, status),
	 	 INDEX (bug_id, date_reported, summary, status),
	 	 INDEX (summary, bug_id, date_reported, status),
	 	 INDEX (bug_id, summary, date_reported, status),
	 	 INDEX (date_reported, bug_id, summary, status),
	 	 INDEX (summary, date_reported, bug_id, status),
	 	 INDEX (status, date_reported, bug_id, summary),
	 	 INDEX (date_reported, status, bug_id, summary),
	 	 ...
);

	The number of indexes needed to form all permutations is
	actually the factorial of the number of columns in the table.
	That is, for four columns, the number of indexes would be
	four times three times two, or 24.
	If you had five columns, it would require 120 indexes to make
	all permutations.
	Some SQL database implementations don’t allow that
	many indexes in a given table.

	Each index increases the storage required for the table,
	and the cost of updates.
	If you create a database table with too many indexes, you
	incur a lot of overhead with no assurance of payoff.

	Create only the indexes needed to support queries you
	currently execute.
	If you need a different query in the future, then you should
	analyze the queries at that time to determine if you need
	to add a new index.
	
	
	
	
	

Footnotes

	[14]
	
https://dev.mysql.com/doc/refman/en/using-explain.html

Copyright © 2022, The Pragmatic Bookshelf.

Part 3
Query Antipatterns

	 You need to add data to your database and then retrieve data.
	 SQL queries are made with data manipulation
	 language—statements such as
	 SELECT,
	 UPDATE, and
	 DELETE.
	

	As we know, there are known knowns; there are things we know we know.
	We also know there are known unknowns; that is to say we know there are
	some things we do not know. But there are also unknown unknowns—the
	ones we don’t know we don’t know.

Donald Rumsfeld

 Chapter
 14
Fear of the Unknown

 In the example bugs database, the Accounts table has
 columns first_name and
 last_name. You can use an expression to format the
 user’s full name as a single column using the string concatenation
 operator:
Fear-Unknown/intro/full-name.sql
	 	SELECT first_name || ' ' || last_name AS full_name FROM Accounts;

 Suppose your boss asks you to modify the database to
 add the user’s middle initial to the table
 (perhaps two users have the same first name and last name,
 and the middle initial is a good way to avoid confusion). This is a
 pretty simple alteration. You also manually add the middle initials for a
 few users.

Fear-Unknown/intro/middle-name.sql
	 	ALTER TABLE Accounts ADD COLUMN middle_initial CHAR(2);
	 	
	 	UPDATE Accounts SET middle_initial = 'J.' WHERE account_id = 123;
	 	UPDATE Accounts SET middle_initial = 'C.' WHERE account_id = 321;
	 	
	 	SELECT first_name || ' ' || middle_initial || ' ' || last_name AS full_name
	 	FROM Accounts;

 Suddenly, the application ceases to show any names. Actually, on a second
 look, you notice it isn’t universal. Only the names of users who have
 specified their middle initial appear normally; every else’s name is now
 blank.

 What happened to everyone else’s names? Can you fix this before your boss
 notices and starts to panic, thinking you’ve lost data in the database?

Objective: Distinguish Missing Values

 It’s inevitable that some data in your database has no value.
 Either you need to insert a row before you have discovered the values
 for all the columns, or else some columns have no meaningful value
 in some legitimate circumstances. SQL supports a special null value,
 corresponding to the NULL keyword.

 There are many ways you can use a null value productively in SQL tables
 and queries:

	

	 You can use null in place of a value that is not available at the
	 time the row is created, such as the date of termination for an
	 employee who is still working.
	

	

	 A given column can use a null value when it has no applicable value
	 on a given row, such as the fuel efficiency rating for a car
	 that is fully electric.
	

	

	 A function can return a null value when given invalid inputs, as in DAY(’2021-12-32’).
	

	

	 An outer join uses null values as placeholders for the columns of an
	 unmatched table in an outer join.
	

 The objective is to write queries against columns that contain null.

Antipattern: Use Null as an Ordinary Value, or Vice Versa

 Many software developers are caught off-guard by the behavior of null in
 SQL. Unlike in most programming languages, SQL treats null as a special
 value, different from zero, false, or an empty string.
 This is true in standard SQL and most brands of database. However,
 in Oracle and Sybase, null is exactly the same as a string of zero length.
 The null value follows some special behavior, too.

Using Null in Expressions

	One case that surprises some people is when you perform arithmetic on a
	column or expression that is null. For example, many programmers would
	expect the result to be 10 for bugs that have been given no
	estimate in the hours column, but instead the
	query returns null.

Fear-Unknown/anti/expression.sql
	 	SELECT hours + 10 FROM Bugs;

	Null is not the same as zero. A number ten greater than an unknown is
	still an unknown.

	Null is not the same as a string of zero length.
	Combining any string with null in standard SQL returns null
	(despite the behavior in Oracle and Sybase).

	Null is not the same as false. Boolean expressions with
	AND, OR, and
	NOT also produce results that some people
	find confusing.

Searching Nullable Columns

	The following query returns only rows where
	assigned_to
	has the value 123, not rows with other values or rows where the column is null:

Fear-Unknown/anti/search.sql
	 	SELECT * FROM Bugs WHERE assigned_to = 123;

	You might think that the next query returns the complementary set of
	rows, that is, all rows not returned by the previous
	query:

Fear-Unknown/anti/search-not.sql
	 	SELECT * FROM Bugs WHERE NOT (assigned_to = 123);

	However, neither query result includes rows where
	assigned_to is null. Any comparison to null
	returns unknown, not true or false.
	Even the negation of null is still null.

	It’s common to make the following mistakes searching for null values
	or non-null values:

Fear-Unknown/anti/equals-null.sql
	 	SELECT * FROM Bugs WHERE assigned_to = NULL;
	 	
	 	SELECT * FROM Bugs WHERE assigned_to <> NULL;

	The condition in a WHERE clause is satisfied
	only when the expression is true, but a comparison to
	NULL is never true; it’s unknown.
	It doesn’t matter whether the comparison is for equality or inequality; it’s
	still unknown, which is certainly not true.
	Neither of the previous queries return rows where
	assigned_to is null.

Using Null in Query Parameters

	It’s also difficult to use null in a parameterized SQL expression as if
	the null were an ordinary value.

Fear-Unknown/anti/parameter.sql
	 	SELECT * FROM Bugs WHERE assigned_to = ?;

	The previous query returns predictable results when you send an ordinary
	integer value for the parameter, but you can’t use a literal
	NULL as the parameter.

Avoiding the Issue

	If handling null makes queries more complex, many software developers
	choose to disallow nulls in the database. Instead, they choose an
	ordinary value to signify “unknown” or
	“inapplicable.”

“We Hate Nulls!”

	 Jack, a software developer, described to me his client’s
	 request that he avoid using any null values in their
	 database. Their explanation was simply, “we hate nulls,”
	 and that the presence of nulls would lead to errors in
	 their application code. Jack asked me what other value
	 he should use to represent a missing value.
	

	 I told Jack that representing a missing value is the exact
	 purpose of null. No matter what other value he chose to
	 signify a missing value, he would have needed to modify
	 the application code to treat that value as special.
	

	 Jack’s client’s attitude about null was wrong; similarly, a
	 client could have said that they don’t like writing code
	 to prevent division by zero errors, but that wouldn’t
	 make it a good choice to prohibit all instances of the
	 value zero.
	

	What exactly is wrong with using a non-null value in place of NULL?
	In the following example, declare the previously nullable columns
	assigned_to and hours as
	NOT NULL:

Fear-Unknown/anti/special-create-table.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 -- other columns
	 	 assigned_to BIGINT UNSIGNED NOT NULL,
	 	 hours NUMERIC(9,2) NOT NULL,
	 	 FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id)
);

	You might try to use -1 to represent an unknown value.

Fear-Unknown/anti/special-insert.sql
	 	INSERT INTO Bugs (assigned_to, hours) VALUES (-1, -1);

	The hours column is numeric, so you’re restricted to a numeric value to
	mean “unspecified.”
	It has to have no meaning in that column, so you chose a negative
	value.
	Unfortunately, the value -1 would throw off
	calculations such as SUM or
	AVG.
	You have to exclude rows with this value, using special-case
	expressions, which is what you were trying to avoid by prohibiting
	null.

Fear-Unknown/anti/special-select.sql
	 	SELECT AVG(hours) AS average_hours_per_bug FROM Bugs
	 	WHERE hours <> -1;

	In another column, the value -1 might be significant, so
	you have to choose a different value on a case-by-case basis for each
	column. You also have to remember or document the special values used
	by each column. This adds a lot of meticulous and unnecessary work to
	a project.

	Now look at the assigned_to column.
	It’s a foreign key to the Accounts table.
	When a bug has been reported but not assigned yet, what non-null value
	can you use? Any non-null value must reference a row in
	Accounts, so you need to create a placeholder row
	in Accounts, meaning “no one” or
	“unassigned.” It seems ironic to create an account to
	reference, so you can represent the absence of a reference to a real
	user’s account.

	When you declare a column as NOT NULL,
	it should be because it would make no sense for the row to exist
	without a value in that column. For example, the
	Bugs.reported_by column must have a value, because
	every bug was reported by someone. However, it’s okay for a bug to exist without having
	been assigned yet. Missing values should be null.
	
	

How to Recognize the Antipattern

 If you find yourself or another member of your team describing issues
 like the following, it could be because of improper handling of nulls:

	

	 “How do I find rows where no value has been set in the
	 assigned_to (or other) column?”
	

	
	
	
	 You can’t use the equality operator for null.
	 We’ll see how to use the IS NULL predicate later
	 in this chapter.
	

	

	 “The full names of some users appear blank in the application
	 presentation, but I can see them in the database.”
	

	 The problem might be that you’re concatenating strings with null,
	 which produces null.
	

	

	 “The report of total hours spent working on this project
	 includes only a few of the bugs that we completed! Only those for
	 which we assigned a priority are included.”
	

	 Your aggregate query to sum the hours probably includes an expression
	 in the WHERE clause that fails to be true when
	 priority is null.
	 Watch out for unexpected results when you use not equals
	 expressions.
	 For example, on rows where priority is null,
	 the expression priority <> 1 will fail.
	

	

	 “It turns out we can’t use the string we’ve been using to
	 represent unknown in the Bugs
	 table, so we need to have a meeting to discuss what new special
	 value we can use and estimate the development time to migrate
	 our data and convert our code to use that value.”
	

	 This is a likely consequence of assigning a special flag value
	 that could be a legitimate value in your column’s domain.
	 Eventually, you may find you need to use that value for its literal
	 meaning instead of its flag meaning.
	

 Recognizing problems with your handling of nulls can be elusive.
 Problems may not occur during application testing, especially if
 you overlooked some edge cases while designing sample data for tests.
 However, when your application is used in production, data can take
 many unanticipated forms.
 If a null can creep into the data, you can count on it happening.

Are Nulls Relational?

 There is some controversy about null in SQL.
 E. F. Codd, the computer scientist who developed relational theory,
 recognized the need for null to signify missing data.
 However, C. J. Date has shown that the behavior of null as defined in the
 SQL standard has some edge cases that conflict with relational logic.

 The fact is that most programming languages are not perfect
 implementations of computer science theories.
 The SQL language supports null, for better or for worse.
 We’ve seen some of the hazards, but you can learn how to account for
 these cases and use null productively.

Legitimate Uses of the Antipattern

 Using null is not the antipattern; the antipattern is using null like an
 ordinary value or using an ordinary value like null.

 One situation where you need to treat null as an ordinary value is when
 you import or export external data.
 In a text file with comma-separated fields, all values must be
 represented by text.
 For example, in MySQL’s mysqlimport
 tool for loading data from a text file,
 \N represents a null.

 Similarly, user input cannot represent a null directly.
 An application that accepts user input may provide a way to map some
 special input sequence to null.
 For example, Microsoft .NET 2.0 and newer supports a
 property called ConvertEmptyStringToNull for
 web user interfaces. Parameters and bound fields with this property
 automatically convert an empty string value (“”) to null.

 Finally, null won’t work if you need to support several distinct
 missing-value cases. Suppose you want to distinguish between a bug
 that has never been assigned and a bug that was previously assigned to a
 person who has left the project—you have to use a distinct value for
 each state.

Solution: Use Null as a Unique Value

 Most problems with null values are based on a common misunderstanding of
 the behavior of SQL’s three-valued logic. For programmers accustomed to
 the conventional true/false logic implemented in most other languages,
 this can be a challenge. You can handle null values in SQL queries with
 a little study of how they work.

Null in Scalar Expressions

	Suppose Stan is thirty years old, while Oliver’s age is unknown. If you
	ask whether Stan is older than Oliver, the only possible answer is
	“I don’t know.” If you ask whether Stan is the same age as
	Oliver, the answer is also “I don’t know.” If you ask
	what is the sum of Stan’s age and Oliver’s age, the answer is the
	same.

	Charlie’s age is also unknown. If you ask whether Oliver’s
	age is equal to Charlie’s age, the answer is still “I don’t
	know.” This shows why the result of a comparison like
	NULL = NULL is also null.

	The following table describes some cases where programmers expect one
	result but get something different.

	Expression
	Expected
	Actual
	Because

	NULL = 0
	TRUE
	NULL
	Null is not zero.

	NULL = 12345
	FALSE
	NULL
	Unknown if the unspecified value is equal to a given value.

	NULL <> 12345
	TRUE
	NULL
	Also unknown if it’s unequal.

	NULL + 12345
	12345
	NULL
	Null is not zero.

	NULL || ’string’
	’string’
	NULL
	Null is not an empty string.

	NULL = NULL
	TRUE
	NULL
	Unknown if one unspecified value is the same as another.

	NULL <> NULL
	FALSE
	NULL
	Also unknown if they’re different.

	Of course, these examples apply not only when using the
	NULL keyword but also to any column or
	expression whose value is null.

Null in Boolean Expressions

 Null is neither true nor false. A
	null value certainly isn’t true, but it isn’t the same as
	false. If it were, then applying NOT to a null value
	would result in true. However, that’s not the way it works;
	NOT (NULL) results in another null. This confuses
	some people who try to use boolean expressions with null.

	The following table shows some some additional cases where programmers expect one
	result but get something different.
	
	
	
	

	Expression
	Expected
	Actual
	Because

	NULL AND TRUE
	FALSE
	NULL
	Null is not false.

	NULL AND FALSE
	FALSE
	FALSE
	Any truth value AND FALSE is false.

	NULL OR FALSE
	FALSE
	NULL
	Null is not false.

	NULL OR TRUE
	TRUE
	TRUE
	Any truth value OR TRUE is true.

	NOT (NULL)
	TRUE
	NULL
	Null is not false.

The Right Result for the Wrong Reason

	Consider the following case, where a nullable column may behave in
	a more intuitive way by serendipity.

	 	SELECT * FROM Bugs WHERE assigned_to <> 'NULL';

	Here the nullable column assigned_to is
	compared to the string value ’NULL’ (notice the quotes),
	instead of the actual NULL
	keyword.

	Where assigned_to is null, comparing it to the
	string ’NULL’ is not true. The row is excluded from the
	query result, which is the programmer’s intent.

	The other case is that the column is an integer compared to the
	string ’NULL’. The integer value of a string like
	’NULL’ is zero in most brands of database. The integer
	value of assigned_to is almost certainly
	greater than zero. It’s unequal to the string, so the row
	is included in the query result.

	Thus, by making another common mistake, that of putting quotes around
	the NULL keyword, some programmers may
	unwittingly get the result they wanted. Unfortunately, this
	coincidence doesn’t hold in other searches, such as WHERE
	assigned_to = ’NULL’.

Searching for Null

	
	
	
	Since neither equality nor inequality return true when comparing one
	value to a null value, you need some other operation if you are
	searching for a null. Older SQL standards define the
	IS NULL predicate, which returns true
	if its single operand is null. The opposite,
	IS NOT NULL, returns false if its
	operand is null.

Fear-Unknown/soln/search.sql
	 	SELECT * FROM Bugs WHERE assigned_to IS NULL;
	 	
	 	SELECT * FROM Bugs WHERE assigned_to IS NOT NULL;

	In addition, the SQL-99 standard defines another comparison predicate,
	IS DISTINCT FROM. This works like
	an ordinary inequality operator <>, except that it
	always returns true or false, even when its operands are
	null.

	This relieves you from writing tedious expressions that must test
	IS NULL before comparing to a value.
	The following two queries are equivalent:

Fear-Unknown/soln/is-distinct-from.sql
	 	SELECT * FROM Bugs WHERE assigned_to IS NULL OR assigned_to <> 1;
	 	
	 	SELECT * FROM Bugs WHERE assigned_to IS DISTINCT FROM 1;

	You can use this predicate with query parameters to which you want to
	send either a literal value or NULL:

Fear-Unknown/soln/is-distinct-from-parameter.sql
	 	SELECT * FROM Bugs WHERE assigned_to IS DISTINCT FROM ?;

	Support for IS DISTINCT FROM is
	inconsistent among database brands.
	PostgreSQL, IBM DB2, and Firebird do support it, whereas
	Oracle and Microsoft SQL Server don’t support it yet.
	MySQL offers a proprietary operator <=> that works like
	IS NOT DISTINCT FROM.

Declare Columns NOT NULL

	It’s recommended to declare a NOT NULL
	constraint on a column for which a null would break a policy in your
	application or otherwise be nonsensical. It’s better to allow the
	database to enforce constraints uniformly rather than rely on
	application code.

	For example, it’s reasonable that any entry in the
	Bugs table should have a non-null value for
	the date_reported,
	reported_by, and status
	columns.
	Likewise, rows in child tables like Comments
	must include a non-null bug_id, referencing an
	existing bug.
	You should declare these columns with the
	NOT NULL option.

	Some people recommend that you define a DEFAULT for every
	column, so that if you omit the column in an INSERT statement,
	the column gets some value instead of null.
	That’s good advice for some columns but not for other columns.
	For example, Bugs.reported_by should not be null.
	It should be the account id of the user who reported it, but it’s not possible to declare this as a default.
	It’s valid and common for a column to need a NOT NULL
	constraint yet have no logical default value.
	

Dynamic Defaults

	In some query results, you may need to force a column or expression to be
	non-null for the sake of simplifying the query logic, but you don’t
	want that value to be stored in the table.
	You need a way to set a non-null value to be used if
	a given expression would return a null result.
	For this you should use the COALESCE function.
	This function accepts a variable number of arguments and returns its
	first non-null argument.

	In the story about concatenating users’ names in the
	opening of this chapter, you could use COALESCE
	to make an expression that uses a single space in place of the middle
	initial, so a null-valued middle initial doesn’t make the whole
	expression become null.

Fear-Unknown/soln/coalesce.sql
	 	SELECT first_name || COALESCE(' ' || middle_initial || ' ', ' ') || last_name
	 	 AS full_name
	 	FROM Accounts;

	COALESCE is a standard SQL function.
	Some database brands support a similar function by another name, such
	as NVL or ISNULL.
	
	

	
 [image: images/aside-icons/tip.png]
 	

 Use null to signify a missing value for any data type.

Mini-Antipattern: NOT IN (NULL)

	If the logic of null isn’t confusing enough, there are edge
	cases where it’s even harder to avoid getting lost in the
	boolean rules.

	You may have mastered the logic enough to understand that
	the following two queries are equivalent:

Fear-Unknown/mini/in-null.sql
	 	SELECT * FROM Bugs WHERE status IN (NULL, 'NEW');
	 	
	 	SELECT * FROM Bugs WHERE status = NULL OR status = 'NEW';

	You know that comparing a value equals null is unknown, and
	that’s not true, so the first term of that comparison will
	never be satisfied.
	That’s okay, because the query still matches rows with “NEW”.

	This gets really interesting when the search is negated.

Fear-Unknown/mini/not-in-null.sql
	 	SELECT * FROM Bugs WHERE status NOT IN (NULL, 'NEW');

	You might think this simply matches the complement of
	the set of rows matched by the previous query.
	That is, all rows except those with status “NEW”.
	In fact, none of the rows match. Why?

	The query with the NOT IN predicate can be rewritten
	as either of the following:

Fear-Unknown/mini/not-in-null.sql
	 	SELECT * FROM Bugs WHERE NOT (status = NULL OR status = 'NEW');
	 	
	 	SELECT * FROM Bugs WHERE NOT (status = NULL) AND NOT (status = 'NEW');

	The first rewrite looks familiar, as an IN predicate
	is equivalent to equality comparisons to each respective
	value, as terms of OR operations. Then the negation
	NOT is applied to the expression. You know by
	now that comparing a column equal to null is unknown, and
	the negation of unknown is still unknown.

	The second rewrite is an application of DeMorgan’s law,
	a boolean algebra transformation. The negation of an expression
	negates each term in the expression, as it converts OR
	to AND or vice versa.

	Now you should see that NOT (status = NULL) will
	still be unknown, and using AND to combine that
	with the other term makes the whole expression unknown
	for any row evaluated.
	So, the SQL query always fails to match any rows,
	regardless of any value in the status
	column.
	
	
	
	

Copyright © 2022, The Pragmatic Bookshelf.

	 Intellect distinguishes between the possible and the impossible;
	 reason distinguishes between the sensible and the senseless.
	 Even the possible can be senseless.

Max Born

 Chapter
 15
Ambiguous Groups

 Suppose your boss needs to know which projects in the bugs database are
 still active and which projects have been abandoned. One report he asks
 you to generate is the latest bug reported per product. You write a query
 using the MySQL database to calculate the greatest value in the
 date_reported column per group of bugs sharing
 a given product_id. The report looks like this:
	product_name
	latest
	bug_id

	Open RoundFile
	2010-06-01
	1234

	Visual TurboBuilder
	2010-02-16
	3456

	ReConsider
	2010-01-01
	5678

 Your boss is a detail-oriented person, and he spends some time looking up
 each bug listed in the report. He notices that the row listed as the most
 recent for “Open RoundFile” shows a
 bug_id that isn’t the latest bug.
 The full data shows the discrepancy:

	product_name
	date_reported
	bug_id
	

	Open RoundFile
	2009-12-19
	1234
	This bug_id…

	Open RoundFile
	2010-06-01
	2248
	doesn’t match this date

	Visual TurboBuilder
	2010-02-16
	3456

	Visual TurboBuilder
	2010-02-10
	4077

	Visual TurboBuilder
	2010-02-16
	5150

	ReConsider
	2010-01-01
	5678

	ReConsider
	2009-11-09
	8063

 How can you explain this problem? Why does it affect one product
 but not the others? How can you get the desired report?

Objective: Get Row with Greatest Value per Group

 Most programmers who learn SQL get to the stage of using
 GROUP BY in a query, applying
 some aggregate function to groups of rows, and getting a result with one
 row per group. This is a powerful feature that makes it easy to get a
 wide variety of complex reports using relatively little code.

 For example, a query to get the latest bug reported for each product
 in the bugs database looks like this:

Groups/anti/groupbyproduct.sql
	 	SELECT product_id, MAX(date_reported) AS latest
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

 A natural extension to this query is to request the ID of the specific
 bug with the latest date reported:

Groups/anti/groupbyproduct.sql
	 	SELECT product_id, MAX(date_reported) AS latest, bug_id
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

 However, this query results in either an error or an unreliable answer.
 This is a common source of confusion for programmers using SQL.

 The objective is to run a query that not only reports the greatest
 value in a group (or the least value or the average value) but also
 includes other attributes of the row where that value is found.

Antipattern: Reference Nongrouped Columns

 The root cause of this antipattern is simple, and it reveals a common
 misconception that many programmers have about how grouping queries
 work in SQL.
The Single-Value Rule

	The rows in each group are those rows with the same value in the column
	or columns you name after GROUP BY.
	For example, in the following query, there is one row group for each
	distinct value in product_id.

Groups/anti/groupbyproduct.sql
	 	SELECT product_id, MAX(date_reported) AS latest
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	Every column in the select-list of a query must have a single value row
	per row group. This is called the Single-Value
	Rule.
	Columns named in the GROUP BY clause
	are guaranteed to be exactly one value per group, no matter how many
	rows the group matches.

	The MAX expression is also guaranteed to
	result in a single value for each group: the highest value found in the
	argument of MAX over all the rows in the
	group.

	However, the database server can’t be so sure about any other column
	named in the select-list. It can’t always guarantee that the
	same value occurs on every row in a group for those other columns.

Groups/anti/groupbyproduct.sql
	 	SELECT product_id, MAX(date_reported) AS latest, bug_id
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	In this example, there are many distinct values for
	bug_id for a given
	product_id, because the
	BugsProducts table associates multiple bugs to a
	given product. In a grouping query that reduces to a single row per
	product, there’s no way to represent all the values of
	bug_id.

	Since there is no guarantee of a single value per group in the
	“extra” columns, the database assumes that they violate the
	Single-Value Rule. Most brands of database report an error if you try
	to run any query that tries to return a column other than those columns
	named in the GROUP BY clause or as
	arguments to aggregate functions.

	MySQL and SQLite have different behavior from other brands of database,
	which we’ll explore in Legitimate Uses of the Antipattern.

Do-What-I-Mean Queries

	The common misconception that programmers have is that SQL can guess
	which bug_id you want in the report, based on
	the fact that MAX is used in another column.
	Most people assume that if the query fetches the greatest value, then
	other columns named will naturally take their value from the same row
	where that greatest value occurs.

	Unfortunately, SQL can’t make this inference in several cases:

	

	 If two bugs have the exact same value for
	 date_reported and that is the greatest
	 value in the group, which value of bug_id
	 should the query report?
	

	

	
	
	 If you query for two different aggregate functions, for example
	 MAX and MIN,
	 these probably correspond to two different rows in the group.
	 Which bug_id should the query return for
	 this group?
	
Groups/anti/maxandmin.sql
	 	SELECT product_id, MAX(date_reported) AS latest,
	 	 MIN(date_reported) AS earliest, bug_id
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	

	
	
	
	 If none of the rows in the table matches the value returned by
	 the aggregate function, what is the value of
	 bug_id? This is commonly true for the functions
	 AVG, COUNT, and
	 SUM.
	
Groups/anti/sumbyproduct.sql
	 	SELECT product_id, SUM(hours) AS total_project_estimate, bug_id
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	These are examples of why the Single-Value Rule is important. Not
	every query that fails to follow this rule would produce an ambiguous
	result, but many do. It would be clever if the database could tell an
	ambiguous query from an unambiguous one and produce an error only when
	the data contains ambiguity. That’s not good for
	application reliability; it would mean that the same query might
	be valid or invalid, depending on the state of data.
GROUP BY and DISTINCT

	SQL supports a query modifier called
	DISTINCT that reduces the rows of the query
	result so that every row is unique. For example, the following query
	reports who reported bugs and which days they reported bugs, but only
	one row per date and person:

	 	SELECT DISTINCT date_reported, reported_by FROM Bugs;

	A grouping query can achieve the same result by omitting any aggregate
	function. The query result is reduced to one row for each distinct
	pair of values in the column named in the
	GROUP BY clause:

	 	SELECT date_reported, reported_by FROM Bugs
	 	GROUP BY date_reported, reported_by;

	Both queries produce the same result and should be optimized and
	executed similarly.
	In this example, it’s more appropriate to use DISTINCT because the query has no aggregate functions.

How to Recognize the Antipattern

 In most brands of database, writing a query that violates the
 Single-Value Rule should elicit an error immediately as you prepare the
 query. The following are examples of error messages given by some
 brands of database:

	

	IBM DB2:
	
	 	An expression starting with "BUG_ID" specified in a SELECT clause,
	 	HAVING clause, or ORDER BY clause is not specified in the GROUP BY
	 	clause or it is in a SELECT clause, HAVING clause, or ORDER BY clause
	 	with a column function and no GROUP BY clause is specified.

	

	Microsoft SQL Server:
	
	 	Column 'Bugs.bug_id' is invalid in the select list because it is not
	 	contained in either an aggregate function or the GROUP BY clause.

	

	MySQL, since version 5.7, enables the ONLY_FULL_GROUP_BY SQL mode
	by default, to prevent ambiguous queries.
	
	 	ERROR 1055 (42000): Expression #3 of SELECT list is not in GROUP BY
	 	clause and contains nonaggregated column 'test.Bugs.bug_id'
	 	which is not functionally dependent on columns in GROUP BY clause;
	 	this is incompatible with sql_mode=only_full_group_by

	

	Oracle:
	
	 	not a GROUP BY expression

	

	PostgreSQL:
	
	 	column "bp.bug_id" must appear in the GROUP BY clause or be
	 	used in an aggregate function

 In SQLite, and in MySQL if the ONLY_FULL_GROUP_BY SQL mode is not enabled,
 ambiguous columns may contain unexpected and unreliable values.
 In MySQL, the value returned is from the first row in the group, where
 first corresponds to physical storage.
 SQLite gives the opposite result: the value is from the
 last row in the group.
 In both cases, the behavior is not documented, and these databases aren’t
 obligated to work the same in future versions.
 It’s your responsibility to notice these cases and to design your
 queries to avoid ambiguity.

Legitimate Uses of the Antipattern

 As we’ve seen, MySQL and SQLite can’t guarantee a reliable result for a
 column that doesn’t fit the Single-Value Rule. There are cases when you
 can take advantage of the fact that these databases enforce the rule less
 strictly than other brands.

Groups/legit/functional.sql
	 	SELECT b.reported_by, a.account_name
	 	FROM Bugs b JOIN Accounts a ON (b.reported_by = a.account_id)
	 	GROUP BY b.reported_by;

 In the previous query, the account_name column
 technically violates the Single-Value Rule, since it’s named neither
 in the GROUP BY clause nor in an
 aggregate function. Nevertheless, there is only one value possible
 for account_name in each group; the groups
 are based on Bugs.reported_by, which is a foreign
 key to the Accounts table. So, the groups
 correspond one-to-one with rows in the Accounts
 table.

 In other words, if you know the value of
 reported_by, then you know the value
 of account_name unambiguously, like if you
 had queried by the primary key of the Accounts
 table.

 This kind of unambiguous relationship is called a functional
 dependency.
 The most common example of this is between the primary key of a table and
 the table’s attributes: account_name is a
 functional dependency of its primary key,
 account_id.
 If you group a query by a table’s primary key column(s), then the groups
 correspond to a single row of that table, and so all other columns
 of the same table must have a single value per group.

 Bugs.reported_by has a similar relationship with the
 dependent attributes of the Accounts table, because
 it references the primary key of the Accounts table.
 When the query groups by the reported_by column,
 which is a foreign key, the attributes of the
 Accounts table are functionally dependent, and the
 query result contains no ambiguity.

 However, most brands of database still return an error.
 Not only is this the behavior required by the SQL standard, but it’s
 difficult for software to detect functional dependencies in all cases.
 If you use MySQL or SQLite and you’re careful to query only
 functionally dependent columns, you can use this kind of grouping query
 and still avoid problems of ambiguity.

Solution: Use Columns Unambiguously

 The sections that follow describe several ways you can resolve this
 antipattern and write unambiguous queries.
Query Only Functionally Dependent Columns

	The most straightforward solution is to eliminate ambiguous columns
	from the query.

Groups/anti/groupbyproduct.sql
	 	SELECT product_id, MAX(date_reported) AS latest
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	The query reveals the date of the latest bug per product, even though
	it doesn’t report the bug_id corresponding to
	that latest bug. Sometimes this is enough, so don’t overlook a simple
	solution.

Using a Window Function

	Modern SQL products implement window functions,
	which you can use to filter for the first (or last) row in a group.
	Review the documentation for your database to make sure you
	use a version that supports these functions. For example,
	MySQL 8.0 is required to get support for these functions.

Groups/soln/window-function.sql
	 	SELECT t.product_id, t.date_reported, t.bug_id
	 	FROM (
	 	 SELECT bp.product_id, b.date_reported, b.bug_id,
	 	 ROW_NUMBER() OVER (PARTITION BY bp.product_id
	 	 ORDER BY b.date_reported DESC) AS rownum
	 	 FROM Bugs b JOIN BugsProducts bp USING (bug_id)
) AS t
	 	WHERE t.rownum = 1;

	The rownum column returned by the
	subquery starts numbering over at 1 for each partition,
	that is, each group of rows by product_id.
	The condition in the outer query ensures that only the first
	row of each partition is included in the result.

Using a Correlated Subquery

 A correlated subquery contains a reference to the outer query
	and so produces different results for each row of the outer query.
	We can use this to find the latest bug per product by running a
	subquery to search for bugs with the same product and a greater date.
	When the subquery finds none, the bug in the outer query is the latest.

Groups/soln/notexists.sql
	 	SELECT bp1.product_id, b1.date_reported AS latest, b1.bug_id
	 	FROM Bugs b1 JOIN BugsProducts bp1 USING (bug_id)
	 	WHERE NOT EXISTS
	 	 (SELECT * FROM Bugs b2 JOIN BugsProducts bp2 USING (bug_id)
	 	 WHERE bp1.product_id = bp2.product_id
	 	 AND b1.date_reported < b2.date_reported);

	This is a simple solution that is readable and easy
	to code. However, keep in mind that this solution isn’t likely to be
	the best for performance, because correlated subqueries are executed
	once for each row of the outer query.

Using a Derived Table

 You can use a subquery as a derived table,
	producing an interim result that contains only the
	product_id and the corresponding greatest bug
	report date for each product. Then use this result to join against
	the tables so that the query result contains only bugs with the latest
	date per product.

Groups/soln/derived-table.sql
	 	SELECT m.product_id, m.latest, b1.bug_id
	 	FROM Bugs b1 JOIN BugsProducts bp1 USING (bug_id)
	 	 JOIN (SELECT bp2.product_id, MAX(b2.date_reported) AS latest
	 	 FROM Bugs b2 JOIN BugsProducts bp2 USING (bug_id)
	 	 GROUP BY bp2.product_id) m
	 	 ON (bp1.product_id = m.product_id AND b1.date_reported = m.latest);

	product_id
	latest
	bug_id

	1
	2010-06-01
	2248

	2
	2010-02-16
	3456

	2
	2010-02-16
	5150

	3
	2010-01-01
	5678

	Notice that you can get multiple rows per product if the
	latest date returned by the subquery
	matches multiple rows.
	If you need to ensure a single row per
	product_id, you can use another grouping
	function in the outer query:

Groups/soln/derived-table-no-duplicates.sql
	 	SELECT m.product_id, m.latest, MAX(b1.bug_id) AS latest_bug_id
	 	FROM Bugs b1 JOIN
	 	 (SELECT product_id, MAX(date_reported) AS latest
	 	 FROM Bugs b2 JOIN BugsProducts USING (bug_id)
	 	 GROUP BY product_id) m
	 	 ON (b1.date_reported = m.latest)
	 	GROUP BY m.product_id, m.latest;

	product_id
	latest
	latest_bug_id

	1
	2010-06-01
	2248

	2
	2010-02-16
	5150

	3
	2010-01-01
	5678

	Use the derived table solution as a more scalable alternative to
	the correlated subquery. The derived table is noncorrelated, so
	most database brands should be able to execute the subquery once.
	However, the database must store the interim result set in a temporary
	table, so this solution still isn’t the best for performance.

Using a JOIN

	You can create a join that tries to match against a set of rows that
	may not exist. This type of join is called an outer
	join. Where the matching rows don’t exist,
	null is used for all columns in that
	nonexistent row. So, where the query finds
	null, we know no such row was found.

Groups/soln/outer-join.sql
	 	SELECT bp1.product_id, b1.date_reported AS latest, b1.bug_id
	 	FROM Bugs b1 JOIN BugsProducts bp1 ON (b1.bug_id = bp1.bug_id)
	 	LEFT OUTER JOIN
	 	 (Bugs AS b2 JOIN BugsProducts AS bp2 ON (b2.bug_id = bp2.bug_id))
	 	 ON (bp1.product_id = bp2.product_id
	 	 AND (b1.date_reported < b2.date_reported
	 	 OR b1.date_reported = b2.date_reported AND b1.bug_id < b2.bug_id))
	 	WHERE b2.bug_id IS NULL;

	product_id
	latest
	bug_id

	1
	2010-06-01
	2248

	2
	2010-02-16
	5150

	3
	2010-01-01
	5678

	It takes a few minutes of gazing at this query, and perhaps some
	doodles on notepaper, for most people to see how it works. Once
	you do, this technique can be an important tool.

	Use the JOIN solution when the scalability of
	the query over large sets of data is important. Although it’s a
	tougher concept to grasp and thus more difficult to maintain,
	it often scales better than a subquery-based solution. Remember to
	measure the performance of several query forms, instead of assuming
	that one performs better than the other.

Using an Aggregate Function for Extra Columns

	You can make the extra column comply with the Single-Value Rule by
	applying another aggregate function to it.

Groups/soln/extra-aggregate.sql
	 	SELECT product_id, MAX(date_reported) AS latest,
	 	 MAX(bug_id) AS latest_bug_id
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	Use this solution only when you can rely on the latest
	bug_id being the bug with the latest date, in other words, if bugs are guaranteed to be reported in chronological
	order.

Concatenating All Values per Group

	Finally, you can use another aggregate function on
	bug_id to avoid violating the Single-Value Rule.
	MySQL and SQLite support a function GROUP_CONCAT that
	concatenates all the values in the group into one value. By default,
	this is a comma-separated string.

Groups/soln/group-concat-mysql.sql
	 	SELECT product_id, MAX(date_reported) AS latest
	 	 GROUP_CONCAT(bug_id) AS bug_id_list,
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	product_id
	latest
	bug_id_list

	1
	2010-06-01
	1234,2248

	2
	2010-02-16
	3456,4077,5150

	3
	2010-01-01
	5678,8063

 This query doesn’t reveal which bug_id
	corresponds to the latest date; the
	bug_id_list includes all
	bug_id values in each group.

	Another disadvantage of this solution is that it isn’t standard SQL,
	and other brands of database don’t support this function.
	Some brands of database support custom functions and custom
	aggregate functions. For example, here’s the solution for PostgreSQL:

Groups/soln/group-concat-pgsql.sql
	 	CREATE AGGREGATE GROUP_ARRAY (
	 	 BASETYPE = ANYELEMENT,
	 	 SFUNC = ARRAY_APPEND,
	 	 STYPE = ANYARRAY,
	 	 INITCOND = '{}'
);
	 	
	 	SELECT product_id, MAX(date_reported) AS latest,
	 	 ARRAY_TO_STRING(GROUP_ARRAY(bug_id), ',') AS bug_id_list
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	Some other brands of database don’t support custom functions, so
	the solution may require writing a stored procedure to loop over
	a nongrouped query result, concatenating values manually.

	Use this solution when you expect the extra column to have a single
	value per group but the column still violates the Single-Value Rule.
Using Proprietary Solutions

	MySQL has another nonstandard function called
	ANY_VALUE, which allows you to query a
	column that would violate the Single-Value Rule. This function suppresses
	the check for an ambiguous column, so it returns the column’s
	value from an arbitrary row in the group.

Groups/soln/extra-aggregate-any.sql
	 	SELECT product_id, MAX(date_reported) AS latest,
	 	 ANY_VALUE(assigned_to) AS any_developer
	 	FROM Bugs JOIN BugsProducts USING (bug_id)
	 	GROUP BY product_id;

	You can use this function if the column in fact has only
	one value per group, but MySQL can’t infer the functional
	dependency.
	Another case when you might use this function is if you simply
	don’t care which value it returns, as long as it’s a value
	in the respective group.

	It’s best to write queries that are logically predictable
	and unambiguous, because query results that depend on
	arbitrary behavior might change unexpectedly.

	
 [image: images/aside-icons/tip.png]
 	

 Follow the Single-Value Rule to avoid ambiguous query results.

Mini-Antipattern: Portable SQL

	Not all brands of SQL databases implement SQL the same way.
	SQL is a standard language, described by a detailed technical
	specification, but the language specification allows “levels”
	of compliance. Any company that produces an SQL database
	product can choose to implement subsets of the features in
	the specification. Different companies choose different
	subsets of features described in the language.

	Software developers try to write so-called ”portable” SQL
	code, by restricting themselves to use only the features
	common to all implementations of SQL database software.
	They want to make sure that whatever SQL code they develop
	will work the same even if the database is changed.

	This causes at least two problems:

	First, you deny yourself the opportunity to use any proprietary
	features of any database product. In addition to standard SQL
	language features, all vendors add their own extended features
	that are their own inventions. Some of these are quite useful,
	even though they aren’t strictly part of the standard SQL
	language. If you use only standard SQL syntax supported
	in all implementations, then you can’t use extensions.

	Second, it won’t work. Vendors don’t implement even the
	standard features of SQL the same way. They fib slightly
	about their compliance with the specification. Or they
	interpret the specification differently. The standard is
	detailed, but it’s still written in English, which can’t be
	as precise as a code implementation. The result is that even
	if you try to write queries using only standard SQL language
	features, you might still see your query work differently on
	another database product.

	Years ago I developed a database class for a PHP framework,
	intending to make a single interface to support SQL code
	for six RDBMS products: MySQL, PostgreSQL, Microsoft
	SQL Server, IBM DB2, Oracle, and SQLite. I was surprised
	that even for a core SQL feature like standard data types,
	none of the data types was implemented exactly the same way
	in all six.

	These issues make it difficult to adhere to portable SQL.
	Even if it were possible, you’d lose the opportunity to use
	the value-added features of any given implementation.

	Instead, design your code to use the Adapter design pattern (see Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95])
	so you have alternative implementations for each of the
	brands of SQL databases you need to support.

Copyright © 2022, The Pragmatic Bookshelf.

	The generation of random numbers is too important to be left to chance.

Robert R. Coveyou

 Chapter
 16
Random Selection

 You’re writing a web application that displays advertisements.
 You’re supposed to choose a random ad on each viewing so that all your
 advertisers have an even chance of showing their ads and so that readers
 don’t get bored seeing the same ad repeatedly.

 Things go well for the first few days, but the application gradually
 becomes more sluggish.
 A few weeks later, people are complaining that your website is too slow.
 You discover it’s not just psychological; you can measure a real
 difference in the page load time.
 Your readership is starting to lose interest, and traffic is declining.

 Learning from past experiences, you first try to find the performance
 bottleneck using profiling tools and a test version of your database with
 a sample of the data.
 You measure the time to load a web page, but curiously, there are no problems
 with the performance in any of the SQL queries used to produce the page.
 Yet the production website is getting slower and slower.

 Finally, you realize that the database on your production website
 is much greater than the sample in your tests.
 You repeat your tests with a database of similar size to the production
 data and find that it’s the ad-selection query.
 With a greater number of ads to choose from, the performance of that query
 drops sharply.
 Identifying the culprit query is an important first step.

 How can you redesign the query that chooses random ads before your website
 loses its audience and thus loses your sponsors?

Objective: Fetch a Sample Row

 It’s surprising how frequently we need an SQL query that returns a
 random result. This seems to go against the principles of repeatability
 and deterministic programming. However, it’s ordinary to ask for a
 sample from a large data set. The following are some examples:

	
	 Displaying rotating content, such as an advertisement
	 or a news story
	
	
	 Auditing a subset of records
	
	
	 Assigning incoming calls to available operators
	
	
	 Generating test data
	

 It’s better to query the database for this sample, as an alternative to
 fetching the entire data set into your application just so you can pick a
 sample.

 The objective is to write an efficient SQL query that returns only a
 random sample of data. Mathematicians and computer scientists
 make a distinction between truly random and
 pseudorandom. In practice, computers
 can produce only pseudorandom values.

Antipattern: Sort Data Randomly

 The most common SQL trick to pick a random row from a query is to
 sort the query randomly and pick the first row.
 This technique is easy to understand and easy to implement:

Random/anti/orderby-rand.sql
	 	SELECT * FROM Bugs ORDER BY RAND() LIMIT 1;

 Although this is a popular solution, it quickly shows its weakness.
 To understand this weakness, let’s first compare it to conventional
 sorting, in which we compare values in a column and order the rows
 according to which row has a greater or lesser value in that column.
 This kind of sort is repeatable, in that it produces the same results
 when you run it more than once.
 It also benefits from an index, because an index is essentially a
 presorted set of the values from a given column.

Random/anti/indexed-sort.sql
	 	SELECT * FROM Bugs ORDER BY date_reported;

 If your sorting criteria is a function that returns a random value per
 row, this makes it random whether a given row is greater or less than
 another row. So, the order has no relationship to the values in each row.
 The order is also different each time you sort in this way.
 So far so good—this is the result we want.

 Sorting by a nondeterministic expression (RAND)
 means the sorting cannot benefit from an index.
 There is no index containing the values returned by the random function.
 That’s the point of them being random: they are different and
 unpredictable each time they’re selected.

 This is a problem for the performance of the query, because using an index
 is one of the best ways of speeding up sorting. The consequence of not
 using an index is that the query result set has to be sorted by the
 database “manually.” This is called a table
 scan, and it often involves saving the entire result as a
 temporary table and sorting it by physically swapping rows. A table scan
 sort is much slower than an index-assisted sort, and the performance
 difference grows with the size of the data set.

 This problem is unnoticeable when you run the query against a
 small number of rows, so during development and testing it may appear
 to be a good solution. Unfortunately, as the volume in your database increases
 over time, the query fails to scale well.

How to Recognize the Antipattern

 The technique shown in the antipattern is straightforward, and many
 programmers use it, either after reading it in an article or coming up
 with it on their own. Some of the following quotes are clues that
 your colleague is practicing the antipattern:

	

	 “In SQL, returning a random row is really slow.”
	

	 The query to select a random sample worked well against trivial data
	 during development and testing, but it gets progressively slower as
	 the real data grows.
	 No amount of database server tuning, indexing, or caching can improve
	 the scalability.
	

	

	 “How can I increase memory for my application? I need to
	 fetch all the rows so I can randomly pick one.”
	
	

	 You shouldn’t have to load all the rows into the application, and
	 it’s wildly wasteful to do this. Besides, the database tends to grow
	 larger than your application memory can handle.
	

	

	 “Does it seem to you like some entries come up more
	 frequently than they should? This randomizer doesn’t seem very
	 random.”
	

	
	 Your random numbers are not synchronized with the gaps in primary
	 key values in the database
	 (see Choose Next Higher Key Value).
	

Legitimate Uses of the Antipattern

 The inefficiency of the sort-by-random solution is tolerable if
 your data set is bound to be small.

 For example, you could use a random method for assigning a programmer to
 fix a given bug. It’s safe to assume that you’ll never have so many
 programmers that you need to use a highly scalable method for choosing a
 random person.

 Another example could be selecting a random US state from a list of the
 50 states, which is a list of modest size and not likely to grow during
 our lifetimes.

Solution: In No Particular Order…

 The sort-by-random technique is an example of a query that’s bound to
 perform a table scan and an expensive manual sort. When you design
 solutions in SQL, you should be on the lookout for inefficient queries
 like this. Instead of searching fruitlessly for a way to optimize an
 unoptimizable query, rethink your approach.
 You can use one of the alternative techniques shown in the following sections
 to query a random row from a query result set.

Choose a Random Key Value Between MIN and MAX

	

	One technique that avoids sorting the table is to choose a random value
	between the least primary key value and the greatest primary key value.

Random/soln/rand-min-to-max.sql
	 	SELECT MIN(bug_id), MAX(bug_id) INTO @min_bug_id, @max_bug_id FROM Bugs;
	 	
	 	SELECT * FROM Bugs
	 	WHERE bug_id = ROUND(RAND() * (@max_bug_id - @min_bug_id)) + @min_bug_id;

	This solution assumes
	that primary key values are contiguous. That is, there are no
	values unused between the least value and the greatest value.
	If there are gaps, a randomly chosen value may not match
	a row in the table.

Choose Next Higher Key Value

	This is similar to the preceding solution, but if you have gaps
	of unused values between the least and the greatest key value,
	this query matches the first key value it finds that is greater
	than or equal to the random value.

Random/soln/rand-next-greater.sql
	 	SELECT MIN(bug_id), MAX(bug_id) INTO @min_bug_id, @max_bug_id FROM Bugs;
	 	
	 	SELECT * FROM Bugs
	 	WHERE bug_id >= ROUND(RAND() * (@max_bug_id - @min_bug_id)) + @min_bug_id;
	 	ORDER BY bug_id LIMIT 1;

This solves the problem of a random number that fails to match any
	key value, but it means that a key value that follows a gap
	of unused values is chosen more often. All the random values
	have a roughly equal chance of being chosen, but
	bug_id values aren’t equally
	distributed. The larger the gap is preceding a given primary
	key value, the greater the number of randomly chosen values
	that map to it.

[image: images/Random/next-higher.png]

	Use this solution if it’s not important for key values
	to be chosen with equal frequency.

Get a List of All Key Values, Choose One at Random

	You can use application code to pick one value from the primary keys in
	the result set.
	Then query the full row from the database using that primary key. This technique is shown in the following Python code:

Random/soln/rand-key-from-list.py
	 	import mysql.connector
	 	import random
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	 	cursor.execute("SELECT bug_id FROM Bugs")
	 	bug_ids = cursor.fetchall()
	 	rand_bug_id = random.choice(bug_ids)[0]
	 	
	 	cursor.execute("SELECT * FROM Bugs WHERE bug_id = %s", (rand_bug_id,))
	 	for bug in cursor:
	 	 print(bug)
	 	
	 	cnx.commit()

	This avoids sorting the table, and the chance of choosing each key
	value is approximately equal, but this solution has other costs:

	

	 Fetching all the bug_id values from the
	 database might return a list of impractical
	 size. It can even exceed application memory resources.
	
	

	

	 The query must be run twice: once to produce the list of
	 primary keys and a second time to fetch the random row.
	 If the query is too complex and costly, this is a problem.
	

	Use this solution when you’re selecting a random row from a
	simple query with a moderately sized result set. This solution
	is good for choosing from a list of noncontiguous values.

Choose a Random Row Using an Offset

 Still another technique that avoids problems found in the preceding
	alternatives is to count the rows in the data set and return a
	random number between 0 and the count. Use this
	number as an offset.

Random/soln/rand-limit-offset.py
	 	import mysql.connector
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	 	cursor.execute("SELECT ROUND(RAND() * (SELECT COUNT(*) FROM Bugs))")
	 	for row in cursor:
	 	 offset = int(row[0])
	 	cursor.execute("SELECT * FROM Bugs LIMIT 1 OFFSET %s", (offset,))
	 	for bug in cursor:
	 	 print(bug)
	 	
	 	cnx.commit()

	The preceding solution relies on the nonstandard
	LIMIT clause, supported by
	MySQL, PostgreSQL, and SQLite.
	The following alternative uses the standard
	ROW_NUMBER
	window function:

Random/soln/rand-row-number.py
	 	import mysql.connector
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	 	cursor.execute("SELECT 1 + ROUND(RAND() * COUNT(*)) FROM Bugs")
	 	for row in cursor:
	 	 offset = row[0]
	 	
	 	cursor.execute("""
	 	 WITH NumberedBugs AS (
	 	 SELECT *, ROW_NUMBER() OVER (ORDER BY bug_id) AS rownum FROM Bugs
)
	 	 SELECT * FROM NumberedBugs WHERE rownum = %s""", (offset,))
	 	for bug in cursor:
	 	 print(bug)
	 	
	 	cnx.commit()

	Use this solution when you can’t assume contiguous key values and you
	need to make sure each row has an even chance of being selected.

Proprietary Solutions

	Any given brand of database might implement its own solution for
	this kind of task. For example, Microsoft SQL Server 2005 added a
	TABLESAMPLE clause:

Random/soln/tablesample-sql2005.sql
	 	SELECT * FROM Bugs TABLESAMPLE (1 ROWS);

	Oracle uses a slightly different SAMPLE clause, for example,
	to return 1 percent of the rows in the table:

Random/soln/sample-oracle.sql
	 	SELECT * FROM (SELECT * FROM Bugs SAMPLE (1)
	 	ORDER BY dbms_random.value) WHERE ROWNUM = 1;

	Read the documentation for the proprietary solution
	in your brand of database to learn about limitations or other
	options.

Reduce, Recycle, Reuse

	You might be able to reuse a random choice multiple times.
	In the example of a web page displaying an advertisement
	described at the start of this chapter, the same random ad
	may be shown to all visitors for five minutes, then a new
	random ad is chosen for the next time period.

	The following Python Flask app uses a function decorator
	@lru_cache that makes a function cache its result.
	The next time the function is called, it skips the code in
	that function, and instead just returns the cached
	advertisement.

Random/soln/rand-cached.py
	 	import mysql.connector
	 	from flask import Flask, Response, jsonify, request
	 	from functools import lru_cache
	 	
	 	app = Flask(__name__)
	 	
	 	@app.route('/advert')
	 	def advert():
	 	 if request.args.get("reset"):
	 	 get_random_advert.cache_clear()
	 	 return jsonify(get_random_advert())
	 	
	 	@lru_cache(maxsize=1)
	 	def get_random_advert():
	 	 cnx = mysql.connector.connect(user='scott', database='test')
	 	 cursor = cnx.cursor()
	 	 cursor.execute("SELECT * FROM Adverts ORDER BY RAND() LIMIT 1")
	 	 columns = [col[0] for col in cursor.description]
	 	 advert = dict(zip(columns, cursor.fetchone()))
	 	 cnx.commit()
	 	 return advert
	 	
	 	if __name__ == '__main__':
	 	 app.run()

	This web page checks if an optional request parameter “reset”
	is present. If so, the cache is emptied, and then
	the function runs the SQL query to choose a new random
	advertisement. The web page owner runs a script
	to reset the cache every five minutes. Then only that
	script will experience a slower page load.

	
 [image: images/aside-icons/tip.png]
 	

 Some queries cannot be optimized; take a different approach.

Mini-Antipattern: Query for Multiple Random Rows

 The solutions in this chapter focus on returning a single
 random row from a table, but some applications may need
 a set of multiple rows selected randomly. The solutions for
 this can be more difficult to optimize.

 The naive solution is to fall back to the expensive query
 at the start of this chapter, but increase the LIMIT:

	 	SELECT * FROM Bugs ORDER BY RAND() LIMIT 5;

 That’s a simple and straightforward query, but it’s still
 too costly if the table has many rows. An alternative is
 to use any of the solutions shown previously, which each
 choose a single random row, then simply run that query
 repeatedly, until you have the number of rows you need.
 Running a well-optimized query five times might still be
 superior to running the poorly optimized query once.

 There are caveats to this practice.

 Selecting a single random row repeatedly might choose a
 given row more than once.
 If you need a specific number of rows chosen randomly but
 with no duplicates, you would need code to check the result
 and continue to repeat the query until you get enough
 distinct results.

 If the table is too small, re-trying could cause an infinite loop.
 You’ll be waiting a long time before you get five distinct
 rows from a table that has only four rows.
 You would need to include logic to check for such a case.

 This is solved clearly in the naive solution using
 ORDER BY RAND() LIMIT 5. It’s up to you to
 choose between the solution that runs with better performance
 vs. the solution that requires you to write less code.

Copyright © 2022, The Pragmatic Bookshelf.

	Some people, when confronted with a problem,
	think “I know, I’ll use regular expressions.” Now they have two problems.

Jamie Zawinski

 Chapter
 17
Poor Man’s Search Engine

 I was working in a technical support job in 1995, at a time when companies
 were just starting to adopt the web as a way to provide information to
 their customers.
 I had a collection of short documents describing solutions to common
 support questions, and I wanted to put them on the web in a knowledge base
 application.

 As the collection grew, it needed to be
 searchable, because customers didn’t want to browse through hundreds
 of articles to find their answers.
 One strategy would be to organize the articles in categories, but even
 these groups were too large, and many articles belonged in multiple groups.

 The most flexible and straightforward interface was to allow the customer
 to enter any set of words and show them the articles in which those words
 appear.
 An article was weighted higher if it matched the search terms more fully.
 Also, the search solution should allow matching word forms.
 For example, a search for the word crash should also match
 crashed,
 crashes, and
 crashing.
 Of course, the search had to work in a growing collection
 of documents quickly enough to be useful in a web application.

 If that careful description sounds superfluous to you, that shouldn’t be
 surprising.
 Searching through text online has become so common that it’s hard to
 recall the time before it was available.
 Unfortunately, using SQL to search by keywords, while also making the solution both
 fast and accurate, is deceptively difficult.

Objective: Full-Text Search

 Any application that stores text needs to search for words or phrases
 within that text. Databases store more textual data
 than ever, and at the same time users demand to be able to search for
 matching text at greater speeds. Web applications especially need
 high-performance and scalable database techniques for searching text.

 One fundamental principle of SQL (and relational theory from which SQL is
 derived) is that a value in a column is atomic.
 That is, you can compare a value to another value, but you always compare
 the whole value when you do that. Comparing substrings is
 bound to be inefficient or inaccurate in SQL.

Antipattern: Pattern Matching Predicates

 SQL provides pattern-matching predicates for comparing strings, and this
 is the first solution most programmers use when searching for keywords.
 The most widely supported of these is the LIKE
 predicate.

 The LIKE predicate supports a wildcard
 (%) that matches zero or more characters. Using this wildcard
 before and after a keyword matches any string that contains that word.
 The first wildcard matches any text preceding the word, and the second
 wildcard matches any text following the word.

Search/anti/like.sql
	 	SELECT * FROM Bugs WHERE description LIKE '%crash%';

 Regular expressions are also supported
 by many database brands. You
 don’t need wildcards, because conventionally, regular expressions
 match the pattern against any substring anyway. Although
 SQL-99 defines the predicate SIMILAR TO for
 matching regular expressions, most brands of SQL database
 still use nonstandard syntax. Here’s an example using MySQL’s
 regular expression predicate:

Search/anti/regexp.sql
	 	SELECT * FROM Bugs WHERE description REGEXP 'crash';

 The most important disadvantage of pattern-matching operators is that
 they have poor performance. They can’t benefit from a conventional
 index, so they must scan every row in a table. Since matching a
 pattern against a string column is an expensive operation (relative
 to, for instance, comparing two integers for equality), the total cost of
 a table scan for this search is very high.

 A second problem of simple pattern matching using
 LIKE or regular expressions is that it can
 find unintended matches.

Search/anti/like-false-match.sql
	 	SELECT * FROM Bugs WHERE description LIKE '%one%';

 The previous example matches text that contains the words
 one, but it also matches strings
 money, prone,
 lonely, and so on.
 Searching for a pattern with the keyword delimited by spaces doesn’t
 match occurrences of the word with punctuation or occurrences of the word at the start or end of
 the text.
 The regular expressions supported by your database might support a special
 pattern for a word boundary to solve this issue in MySQL 8.0:

Search/anti/regexp-word.sql
	 	SELECT * FROM Bugs WHERE description REGEXP '\\bone\\b';

 Given the problems of performance and scalability and the gymnastics
 you have to do to prevent irrelevant matches, simple pattern matching
 is a poor technique for searching for keywords.

How to Recognize the Antipattern

 Some questions like the following commonly indicate that the Poor Man’s
 Search Engine antipattern is being employed:

	

	 “How do I insert a variable in between two wildcards in a
	 LIKE expression?”
	

	 The question usually comes up when the programmer wants to do a
	 pattern-matching search using input from a user.
	

	

	 “How can I write a regular expression to check that a string
	 contains multiple words, that the string doesn’t
	 contain a certain word, or that the string contains any form of
	 a given word?”
	

	 If a complex problem seems too hard to solve with a regular
	 expression, it probably is.
	

	

	 “The search feature of our website has become unusably slow
	 as we’ve added more documents to the database.
	 What’s wrong?”
	

	 As the volume of data goes up, the antipattern solution shows poor
	 scalability.
	

Legitimate Uses of the Antipattern

 The expressions shown in the antipattern section are legal SQL queries,
 and they have a straightforward and simple usage. That counts for a lot.

 Performance is often important, but some queries are run so infrequently
 that it doesn’t make sense to invest a lot of resources to optimize them.
 Maintaining indexes to benefit a rarely used query could be just as
 costly as running that query in an inefficient manner.
 If the nature of the query is ad hoc, there’s no guarantee that the
 index you defined would benefit that given query anyway.

 It’s hard to use pattern-matching operators for complex queries, but
 if you design the patterns for simple cases, they can help you get the
 right results with a minimum of fuss.

Solution: Use the Right Tool for the Job

 It’s best to use a specialized search engine technology instead of plain
 SQL pattern-matching conditions.

 The following sections describe some of the technologies offered as
 built-in extensions by different database brands and technologies
 offered by independent projects.
 Also, you’ll see a solution that uses standard SQL but is more
 efficient on average than substring matching.

Vendor Extensions

	Every major brand of database has invented their own answer to the
 	common requirement of full-text search.
	If you use a single brand (or are willing to use vendor-dependent
	features), these features are the best way to get high-performance
	text search, with the greatest integration with SQL queries.

	The following are brief descriptions of full-text search
	features in several brands of SQL database.
	You should note from these examples that the solution
	provided by each brand uses different syntax and has different
	features from the solutions of other brands.
	Learning one doesn’t help much to know the others.
	In addition, the examples shown here are minimal.
	Each brand’s full-text search solution has many options,
	so you should read the current documentation for the brand
	of database you use.

Full-Text Index in MySQL

	
	
	
	
	
	 MySQL provides a simple full-text index type.
	 You can define a full-text index over columns of type
	 CHAR, VARCHAR,
	 or TEXT. Here’s an example that defines a
	 full-text index that includes content from the bug
	 summary and description
	 columns:
	
Search/soln/mysql/alter-table.sql
	 	ALTER TABLE Bugs ADD FULLTEXT INDEX bugfts (summary, description);

	
	 Use the MATCH function to search for a
	 keyword among the indexed text.
	 The columns you name as arguments to the MATCH
	 function must be the same columns, in the same order that you used
	 when creating the index.
	
Search/soln/mysql/match.sql
	 	SELECT * FROM Bugs WHERE MATCH(summary, description) AGAINST ('crash');

	
	 You can also use a simple boolean expression notation in
	 the pattern. This example demonstrates how to search for rows that contain
	 the word “crash” but do not contain the word “save”:
	
Search/soln/mysql/match-boolean.sql
	 	SELECT * FROM Bugs WHERE MATCH(summary, description)
	 	 AGAINST ('+crash -save' IN BOOLEAN MODE);

Text Indexing in Oracle

	
	
	 Oracle has supported text-indexing features since Oracle 8 in 1997,
	 when it was part of a data cartridge called ConText. The technology
	 has been updated several times, and the feature is now integrated
	 into the database software.
	

 The text indexing in Oracle is complex
	 and rich, so here is a greatly simplified summary:
	
	

	 CONTEXT
	

	 Create an index of this type for a single text column.
	 Use the CONTAINS operator to search
	 using this index.
	 The index doesn’t stay consistent with changes to data unless you define the index with
	 PARAMETERS (’SYNC (ON COMMIT)’).
	
	
	
	
Search/soln/oracle/create-index.sql
	 	CREATE INDEX BugsText ON Bugs(summary) INDEXTYPE IS CTXSYS.CONTEXT;
	 	
	 	SELECT * FROM Bugs WHERE CONTAINS(summary, 'crash') > 0;

	

	 CTXCAT
	

	 This index type is specialized for short text samples such
	 as those used in online catalogs, along with other structured
	 columns from the same table. The index stays consistent as
	 transactions update the indexed data.
	
	
Search/soln/oracle/ctxcat-create.sql
	 	CTX_DDL.CREATE_INDEX_SET('BugsCatalogSet');
	 	CTX_DDL.ADD_INDEX('BugsCatalogSet', 'status');
	 	CTX_DDL.ADD_INDEX('BugsCatalogSet', 'priority');
	 	
	 	CREATE INDEX BugsCatalog ON Bugs(summary) INDEXTYPE IS CTXSYS.CTXCAT
	 	 PARAMETERS('BugsCatalogSet');

	 The CATSEARCH operator takes two
	 arguments for searching the text column and the structured
	 column set, respectively.
	
	
Search/soln/oracle/ctxcat-search.sql
	 	SELECT * FROM Bugs
	 	WHERE CATSEARCH(summary, '(crash save)', 'status = "NEW"') > 0;

	

	 CTXXPATH
	

	 This index type is specialized for searching an XML document
	 with the existsNode operator.
	
	
	
	
Search/soln/oracle/ctxxpath.sql
	 	CREATE INDEX BugTestXml ON Bugs(testoutput) INDEXTYPE IS CTXSYS.CTXXPATH;
	 	
	 	SELECT * FROM Bugs
	 	WHERE testoutput.existsNode('/testsuite/test[@status="fail"]') > 0;

	

	 CTXRULE
	

	 Suppose you have a large collection of documents in your
	 database and you need to classify them based on their content.
	
	

	 With the CTXRULE index, you can design
	 rules to analyze documents and report their classification.
	 Alternatively, you can provide a sample set of documents with
	 your idea of their classifications and have Oracle design the
	 rules to apply to the rest of the document collection.
	 You can even fully automate the process, letting Oracle analyze
	 your document collection and come up with a set of rules and
	 classifications for identifying them.
	
	

	 Examples using CTXRULE indexes
	 are beyond the scope of this book.
	

	

	 Oracle 12 introduced syntax to create a kind of text index for JSON data.
	 Suppose your table has a JSON column called properties
	 to store dynamic attributes.
	
	
Search/soln/oracle/create-index-json.sql
	 	CREATE SEARCH INDEX BugsJson ON Bugs(properties) FOR JSON;
	 	
	 	SELECT * FROM Bugs
	 	WHERE json_textcontains(properties, '$.summary', 'crash');

Full-Text Search in Microsoft SQL Server

	
	
	 SQL Server 2000 and later support full-text searching, with
	 complex configuration options for languages, a thesaurus, and
	 automatic synchronization with data changes. SQL Server provides
	 a series of stored procedures for creating full-text indexes,
	 and you can use the CONTAINS operator
	 in queries to employ the full-text index.
	

	 To perform the familiar example of searching for bugs that include
	 the word crash, first enable the
	 full-text feature, and define a catalog in your database:
	
	
Search/soln/microsoft/catalog.sql
	 	CREATE FULLTEXT CATALOG BugsCatalog;

	 Next, define a full-text index on the Bugs
	 table, add columns to the index, and activate the index:
	
Search/soln/microsoft/create-index.sql
	 	CREATE FULLTEXT INDEX ON Bugs(summary, description)
	 	 KEY INDEX bug_id ON BugsCatalog
	 	 WITH CHANGE_TRACKING AUTO;

	 Finally, run a query using the CONTAINS
	 operator or FREETEXT operator:
	
	
Search/soln/microsoft/search.sql
	 	SELECT * FROM Bugs WHERE CONTAINS(summary, 'crash');
	 	
	 	SELECT * FROM Bugs WHERE FREETEXT(summary, 'crash bug error');

Text Search in PostgreSQL

	
	
	
	
	 PostgreSQL provides a sophisticated and highly configurable way
	 of converting text into a searchable collections of lexical elements
	 and matching these documents against patterns.
	 Keeping text indexes in sync became easier in PostgreSQL 12, by using generated columns.
	
Search/soln/postgresql/create-table.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 summary VARCHAR(80),
	 	 description TEXT,
	 	 ts_bug_text TSVECTOR GENERATED ALWAYS AS (to_tsvector('english',
	 	 COALESCE(summary, '') || COALESCE(description, ''))) STORED
	 	 -- other columns
);

	
	
	
	 You should also create a generalized inverted
	 index (GIN) index on the
	 TSVECTOR column:
	
Search/soln/postgresql/create-index.sql
	 	CREATE INDEX bugs_ts ON Bugs USING GIN(ts_bug_text);

	 After this, you can use the PostgreSQL text search operator
	 @@ to search efficiently, aided by the
	 full-text index:
	
Search/soln/postgresql/search.sql
	 	SELECT * FROM Bugs WHERE ts_bug_text @@ to_tsquery('crash');

	 There are many other options for customizing searchable content,
	 search queries, and search results.
	
	
Full-Text Search (FTS) in SQLite

	
	
	
	
	 Standard tables in SQLite don’t support efficient full-text searches,
	 but you can use an optional extension for SQLite to store
	 searchable text in a virtual table
	 specialized for searching text.
	 The implementation of this extension has changed several
	 times.
	 FTS1 and FTS2 are obsolete.
	 You can use FTS3 in SQLite 3.5.0 and later,
	 or FTS4 in SQLite 3.7.4 and later.
	

	 FTS extensions are not typically enabled in a default build of
	 SQLite, so you need to build it from source with the FTS
	 extensions enabled. Enabling FTS3 implicitly enables FTS4.
	 Add the following options when you run configure.
	
Search/soln/sqlite/configure
	 	CPPFLAGS="-DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_FTS3_PARENTHESIS" ./configure

	 Once you have a version of SQLite with FTS enabled, you can
	 create a virtual table for the searchable text.
	 Any data type, constraints, or other column options are ignored.
	
Search/soln/sqlite/create-table.sql
	 	CREATE VIRTUAL TABLE BugsText USING fts4(summary, description);

	
	
	 If you are indexing text from another table (as in this example
	 using the Bugs table), you must copy the
	 data into the virtual table. The FTS virtual table always contains
	 a primary key column called docid, so you can
	 correlate rows to those in a source table.
	
Search/soln/sqlite/insert.sql
	 	INSERT INTO BugsText (docid, summary, description)
	 	 SELECT bug_id, summary, description FROM Bugs;

	
	
	 Now you can query the FTS virtual table BugsText
	 using the efficient full-text search predicate
	 MATCH, and you can join matching rows to the
	 source table Bugs. Using the name of the FTS
	 table as a pseudocolumn matches the pattern against any column.
	
Search/soln/sqlite/search.sql
	 	SELECT b.* FROM BugsText t JOIN Bugs b ON (t.docid = b.bug_id)
	 	WHERE BugsText MATCH 'crash';

	
	 The matching pattern also supports limited boolean expressions.
	
Search/soln/sqlite/search-boolean.sql
	 	SELECT * FROM BugsText WHERE BugsText MATCH 'crash -save';

Third-Party Search Engines

 If you need to search text in a way that works the same regardless of
	which database brand you use, you need a search engine that
	runs independently from the SQL database. This section briefly
	describes two such products, Sphinx Search and Apache Lucene.

Sphinx Search

	 Sphinx Search[15]
	 is an open source search engine technology that integrates well
	 with MySQL and PostgreSQL.
	
	
	

	
	 Indexing and searching is fast in Sphinx Search, and it supports
	 distributed queries as well. It’s a good choice for high-scale
	 searching applications that have data that updates infrequently.
	

	 You can use Sphinx Search to declare a search index with
	 multiple fields using a configuration file
	 sphinx.conf. The index has fields
	 which are searchable, and optionally other attribute
	 fields.
	
Search/soln/sphinx/sphinx.conf
	 	searchd
	 	{
	 	 log = ./data/searchd.log
	 	 pid_file = ./data/searchd.pid
	 	}
	 	
	 	index bugs
	 	{
	 	 type = rt
	 	 path = ./data/bugs
	 	 rt_field = summary
	 	 rt_field = description
	 	 stored_fields = summary, description
	 	}

	 Once you declare this configuration in
	 sphinx.conf, any client that can
	 connect to a MySQL instance can connect to Sphinx Search,
	 because Sphinx Search implements a service that mimics
	 the MySQL client/server protocol.
	
Search/soln/sphinx/mysql-client.sh
	 	mysql -h 127.0.0.1 -P 9306

	 You can insert data into the index as if it’s an SQL table:
	
Search/soln/sphinx/insert.sql
	 	INSERT INTO Bugs (id, summary, description)
	 	 VALUES (1234, 'crash when I save', '...');

	 Then you can search the index using a limited SQL language:
	
Search/soln/sphinx/search.sql
	 	SELECT * FROM Bugs WHERE MATCH('crash');

	 Sphinx Search also has a daemon process and an API with
	 which to invoke searches from any programming language
	 that has client interface for MySQL.
	
Apache Lucene

	
	
	
	 Lucene[16]
	 is a mature search engine for Java applications.
	

	 Lucene builds an index in its proprietary format for a collection
	 of text documents.
	 The Lucene index doesn’t stay in sync with the source data it
	 indexes. If you insert, delete, or update rows in the database,
	 you must apply matching changes to a Lucene index.
	

	 Using the Lucene search engine is a bit like using a car engine;
	 you need quite a bit of supporting technology around it to make it
	 useful.
	 Lucene doesn’t read data collections from an SQL database directly;
	 you have to write documents in the Lucene index. For example, you
	 could run an SQL query and, for each row of the result, create one
	 Lucene document and save it to the Lucene index.
	 You can use Lucene through its Java API.
	

	
	 Fortunately, Apache also offers a complementary project called Solr.[17]
	 Solr is a server that provides a gateway to a Lucene index.
	 You can add documents to Solr and submit search queries using a
	 REST-like interface so you can use it from any programming language.
	

	
	 Solr has tools for importing data in XML or CSV format,
	 or for indexing document formats such as Microsoft Word,
	 PDF, or other proprietary formats.
	 You can also direct Solr to connect to an SQL database,
	 run a query, and index the query results using Solr’s
	 DataImportHandler tool.
	
Elasticsearch and OpenSearch

	
	
	 Like Apache Solr, both
	 Elasticsearch[18]
	 and
	 OpenSearch[19]
	 utilize the Apache Lucene engine.
	

	
	
	
	
	 Elasticsearch has many additional features for analytics
	 and visualization.
	 It is combined with Logstash, a tool for importing a stream
	 of data to the search engine, and Kibana, a graphical
	 user interface for searching data stored in Elasticsearch.
	 These products were developed by the company Elastic, Inc.,
	 and called the ELK stack.
	 Originally developed as open source software, in 2021
	 Elastic changed the license for future versions of the
	 ELK stack products, to encourage users to use only Elastic’s
	 own managed service.
	

	
	 In response, Amazon forked the technology of Elasticsearch
	 7.10.2 and Kibana 7.10.2, the last versions available
	 under the open source Apache License. Amazon’s product
	 is called OpenSearch.
	 You can use either Logstash or other Amazon data-streaming
	 services to import data into an OpenSearch index.
	

	 Undoubtedly, both Elastic and Amazon will continue to
	 develop their respective products.
	 Expect future versions to diverge with new features,
	 and eventually become incompatible.
	 This is a natural outcome when a technology is forked.
	 If you need to choose one of these products, then you
	 should try both, evaluate which one has the features most
	 useful to your needs, and decide which vendor you want
	 to do business with.
	
Roll Your Own

	Suppose you don’t want to use proprietary search features, nor do you
	want to install an independent search engine product. You need an
	efficient, database-independent solution to make text searchable.
	This section shows a design called an inverted
	index. Basically, an inverted index is a list of all words
	one might search for. In a many-to-many relationship, the index associates these words with the text entries that contain
	the respective word. That is, a word
	like crash can appear in many bugs, and
	each bug may match many other keywords. This section shows how to
	design an inverted index.

	First, define a table Keywords to list the keywords
	for which users will search, and define an intersection table
	BugsKeywords to establish a many-to-many
	relationship:

Search/soln/inverted-index/create-table.sql
	 	CREATE TABLE Keywords (
	 	 keyword_id SERIAL PRIMARY KEY,
	 	 keyword VARCHAR(40) NOT NULL,
	 	 UNIQUE KEY (keyword)
);
	 	
	 	CREATE TABLE BugsKeywords (
	 	 keyword_id BIGINT UNSIGNED NOT NULL,
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (keyword_id, bug_id),
	 	 FOREIGN KEY (keyword_id) REFERENCES Keywords(keyword_id),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

	Next, add a row to BugsKeywords for every keyword
	that matches the description text for a given bug.
	A substring-match query determines these matches using
	LIKE or regular expressions.
	This is just as costly as the naive searching method described in the
	“Antipattern” section, but you only need to perform the search once.
	If the result is saved in the intersection table, all
	subsequent searches for the same keyword are much faster.

 Next, write a MySQL stored procedure to make it easier to search for
	a given keyword.
	If the word has already been searched, the query is faster
	because the rows in BugsKeywords are a list
	of the documents that contain the keyword.
	If no one has searched for the given keyword before, you need to search
	the collection of text entries the hard way.

Search/soln/inverted-index/search-proc.sql
	 	CREATE PROCEDURE BugsSearch(IN p_keyword VARCHAR(40))
	 	BEGIN
	 	 DECLARE v_keyword_id BIGINT UNSIGNED;
	 	
	 	 SELECT MAX(keyword_id) INTO v_keyword_id FROM Keywords
	①	 WHERE keyword = p_keyword;
	 	
	 	 IF (v_keyword_id IS NULL) THEN
	②	 INSERT INTO Keywords (keyword) VALUES (p_keyword);
	 	
	③	 SELECT LAST_INSERT_ID() INTO v_keyword_id;
	 	
	 	 INSERT INTO BugsKeywords (bug_id, keyword_id)
	 	 SELECT bug_id, v_keyword_id FROM Bugs
	 	 WHERE summary REGEXP CONCAT('\\b', p_keyword, '\\b')
	④	 OR description REGEXP CONCAT('\\b', p_keyword, '\\b');
	 	 END IF;
	 	
	 	 SELECT b.* FROM Bugs b
	 	 JOIN BugsKeywords k USING (bug_id)
	⑤	 WHERE k.keyword_id = v_keyword_id;
	 	END

	
	 ①
	
	

	 Search for the user-specified keyword. Return either the integer
	 primary key from Keywords.keyword_id or
	 null if the word has not been seen previously.
	

	
	 ②
	
	

	 If the word was not found, insert it as a new word.
	

	
	 ③
	
	

	 Query for the primary key value generated in
	 Keywords.
	

	
	 ④
	
	

	 Populate the intersection table by searching
	 Bugs for rows containing the new keyword.
	

	
	 ⑤
	
	

	 Finally, query the full rows from Bugs
	 that match the keyword_id, whether the
	 keyword was found or had to be inserted as a new entry.
	

 Now you can call this stored procedure and pass the desired keyword.
	The procedure returns the set of matching bugs, whether it has to
	calculate the matching bugs and populate the intersection table for a
	new keyword or whether it simply benefits from the result of an earlier search.

Search/soln/inverted-index/search-proc.sql
	 	CALL BugsSearch('crash');

	There’s another piece to this solution: you need a trigger
	to populate the intersection table as each new bug is inserted.
	If you need to support edits to bug descriptions, you may also have
	to write a trigger to reanalyze text and add or delete rows in the
	BugsKeywords table.

Search/soln/inverted-index/trigger.sql
	 	CREATE TRIGGER Bugs_Insert AFTER INSERT ON Bugs
	 	FOR EACH ROW
	 	BEGIN
	 	 INSERT INTO BugsKeywords (bug_id, keyword_id)
	 	 SELECT NEW.bug_id, k.keyword_id FROM Keywords k
	 	 WHERE NEW.description REGEXP CONCAT('\\b', k.keyword, '\\b')
	 	 OR NEW.summary REGEXP CONCAT('\\b', k.keyword, '\\b');
	 	END

	The keyword list is populated naturally as users perform
	searches, so you don’t need to fill the keyword list with
	every word found in the knowledge base articles.
	On the other hand, if you anticipate words that users are
	likely to search for, you can run a search for them, thus
	bearing the initial cost of being the first to search for
	each keyword so that doesn’t fall on your users.

	I used an inverted index for my knowledge base application that I
	described at the start of this chapter. I also enhanced the
	Keywords table with an additional column
	num_searches. I incremented this column each
	time a user searched for a given keyword so I could track which
	searches were most in demand.

	Today, you can use a variety of text-indexing tools, either
	indexing features built into the SQL database you use,
	or one of the complementary software products that specialize
	in text search.
	There isn’t any solution that is clearly best for all
	projects, so you need to try several and evaluate their
	strengths and limits against the needs of your project
	before choosing one.

	
 [image: images/aside-icons/tip.png]
 	

 SQL treats a column as an atomic value. If you need to optimize
 searching for a substring, then you need to use an extension
 to SQL or a complementary technology.

Footnotes

	[15]
	
https://sphinxsearch.com/

	[16]
	
https://lucene.apache.org/

	[17]
	
https://lucene.apache.org/solr/

	[18]
	
https://www.elastic.co/elasticsearch/

	[19]
	
https://aws.amazon.com/elasticsearch-service/the-elk-stack/what-is-opensearch/

Copyright © 2022, The Pragmatic Bookshelf.

	Entia non sunt multiplicanda praeter necessitatem
	(Latin, “entities must not be multiplied beyond necessity”).

Irish Franciscan philosopher John Punch, 1639

 Chapter
 18
Spaghetti Query

 Your boss is on the phone with his boss, and he waves to you to come over.
 He covers his phone receiver with his hand and whispers to you,
 “The executives are in a budget meeting, and we’re going to have
 our staff cut unless we can feed my VP some statistics to
 prove that our department keeps a lot of people busy. I need to know how
 many products we work on, how many developers fixed bugs, the average bugs
 fixed per developer, and how many of our fixed bugs were reported by
 customers. Right now!”

 You leap to your SQL tool and start writing. You want all the answers
 at once, so you make one complex query, hoping to do the least amount of
 duplicate work and so produce the results faster.

Spaghetti-Query/anti/complex-report.sql
	 	SELECT COUNT(bp.product_id) AS how_many_products,
	 	 COUNT(dev.account_id) AS how_many_developers,
	 	 COUNT(b.bug_id)/COUNT(dev.account_id) AS avg_bugs_per_developer,
	 	 COUNT(cust.account_id) AS how_many_customers
	 	FROM Bugs b JOIN BugsProducts bp ON (b.bug_id = bp.bug_id)
	 	JOIN Accounts dev ON (b.assigned_to = dev.account_id)
	 	JOIN Accounts cust ON (b.reported_by = cust.account_id)
	 	WHERE cust.email NOT LIKE '%@example.com'
	 	GROUP BY bp.product_id;

 The numbers come back, but they seem wrong.
 How did we get dozens of products? How can the average bugs fixed be
 exactly 1.0? And it wasn’t the number of customers; it was the number of
 bugs reported by customers that your boss needs. How can all the numbers
 be so far off? This query will be a lot more complex than you thought.

 Your boss hangs up the phone. “Never mind,” he sighs.
 “It’s too late. Let’s clean out our desks.”

Objective: Decrease SQL Queries

 One of the most common places where SQL programmers get stuck is when
 they ask, “How can I do this with a single query?” This question is asked for virtually any task.
 Programmers have been trained that one SQL query is difficult,
 complex, and expensive, so they reason that two SQL queries must be
 twice as bad.
 More than two SQL queries to solve a problem is generally out of the
 question.

 Programmers can’t reduce the complexity of their tasks, but they
 want to simplify the solution.
 They use terms like “elegant” or
 “efficient,” and they think they’ve achieved those
 qualities by solving the task with a single query.

Antipattern: Solve a Complex Problem in One Step

 SQL is a very expressive language—you can accomplish a lot in a single
 query or statement. That doesn’t mean it’s mandatory or even a good
 idea to aim to solve every problem in one
 line of code. Do you have this habit with any other programming language
 you use? Probably not.

Unintended Products

	One common consequence of producing all your results in one query is a
	Cartesian product. This happens when two of the
	tables in the query have no condition restricting their relationship.
 Without such a restriction, the join of two tables pairs each
	row in the first table to every row in the other table.
	Each such pairing becomes a row of the result set, and you end up with
	many more rows than you expect. For example, suppose you want to query the bugs database to count the tags used to label a given bug, and also count the products the bug affects.
	Some programmers would try to use a query like the following:

Spaghetti-Query/anti/cartesian.sql
	 	SELECT b.bug_id,
	 	 COUNT(t.tag) AS count_tags,
	 	 COUNT(bp.product_id) AS count_products
	 	FROM Bugs b
	 	LEFT OUTER JOIN Tags t ON (t.bug_id = b.bug_id)
	 	LEFT OUTER JOIN BugsProducts bp ON (bp.bug_id = b.bug_id)
	 	WHERE b.bug_id = 1234
	 	GROUP BY b.bug_id;

 The result immediately looks wrong, given what you know about your database.

	bug_id
	count_tags
	count_products

	1234
	8
	8

	How can the count of products be 8, when you know there are only 3 different products currently in the database?
	It seems unusual that a bug would be given 8 tags.
	Isn’t it an odd concidence that this bug has a count of 8 for both products and tags?

 A coworker suggests to filter the results to the distinct values before counting them.
	Then the results appear more like what you expect.

Spaghetti-Query/anti/cartesian-distinct.sql
	 	SELECT b.bug_id,
	 	 COUNT(DISTINCT t.tag) AS count_tags,
	 	 COUNT(DISTINCT bp.product_id) AS count_products
	 	FROM Bugs b
	 	LEFT OUTER JOIN Tags t ON (t.bug_id = b.bug_id)
	 	LEFT OUTER JOIN BugsProducts bp ON (bp.bug_id = b.bug_id)
	 	WHERE b.bug_id = 1234
	 	GROUP BY b.bug_id;

	bug_id
	count_tags
	count_products

	1234
	4
	2

	Counting only distinct values won’t work for other queries, if it’s expected that the data have multiple matches with the same value.
	It would be better to understand what caused the counts to be multiplied, so you can avoid it.
	You can try to query without the GROUP BY to see what the result set would have looked like without using aggregation.

Spaghetti-Query/anti/cartesian-no-group.sql
	 	SELECT b.bug_id, t.tag, bp.product_id
	 	FROM Bugs b
	 	LEFT OUTER JOIN Tags t ON (t.bug_id = b.bug_id)
	 	LEFT OUTER JOIN BugsProducts bp ON (bp.bug_id = b.bug_id)
	 	WHERE b.bug_id = 1234;

	bug_id
	tag
	product_id

	1234
	crash
	1

	1234
	crash
	3

	1234
	save
	1

	1234
	save
	3

	1234
	v3.0
	1

	1234
	v3.0
	3

	1234
	windows
	1

	1234
	windows
	3

 Even though the query looked like it correctly joins Bugs and Tags,
	and correctly joins Bugs and BugsProducts,
	there’s a Cartesian product “hiding” in the query, because no join condition applies between the Tags and BugsProducts.
	In other words, the results are multiplied because each row in Tags
	matches every row in BugsProducts.

[image: images/Spaghetti/cartesian-product.png]

	It’s all too easy to produce a Cartesian product unintentionally
	when you try to make a query do double-duty like this.
	If you try to do another unrelated join in the same query
	without a condition restricting the results, the total could
	be multiplied yet again, producing another Cartesian
	product.

As Though That Weren’t Enough…

 Besides the fact that you can get the wrong results, it’s important to
	consider that these queries are simply hard to write, hard to modify,
	and hard to debug.
	You should expect to get regular requests for incremental enhancements
	to your database applications.
	Managers want more complex reports and more fields in a user interface.
	If you design intricate, monolithic SQL queries, it’s more costly and
	time consuming to make enhancements to them.
	Your time is worth something, both to you and to your project.

	There are runtime costs, too. An elaborate SQL query that has to use
	many joins, correlated subqueries, and other operations will be harder for
	the SQL engine to optimize and execute quickly than a more
	straightforward query would have been.
	Programmers have an instinct that the fewer SQL queries, the better
	the performance.
	This may be true, but only if the SQL queries in question are of equal
	complexity.
	The cost of a single monster query can increase
	exponentially, until it’s more economical to use several simpler
	queries.

How to Recognize the Antipattern

 If you hear the following statements from members of your project,
 it could indicate a case of the Spaghetti Query antipattern:
	

	 “Why are my sums and counts impossibly large?”
	

	 An unintended Cartesian product has multiplied two
	 joined data sets.
	

	

	 “I’ve been working on this monster SQL query all day!”
	

	 SQL isn’t this difficult—really. If you’ve been struggling with
	 a single query for too long, you should reconsider your approach.
	 This advice applies to any other programming language, too.
	 If a tasks seems too difficult, then break it into smaller tasks.
	 Take a step back and
	 question the assumptions in your application design.
	 Could a different algorithm or a different data model
	 make the task easier?
	

	

	 “We can’t add anything to our database report, because it will
	 take too long to figure out how to recode the SQL query.”
	

	 The person who coded the query will be responsible for maintaining
	 it forever, even if they have moved on to other projects.
	 That person could be you, so don’t write overly complex SQL that
	 no one else can maintain!
	

	

	 “Try putting another DISTINCT into
	 the query.”
	

	
	 Compensating for the explosion of rows in a Cartesian product,
	 programmers reduce duplicates using the
	 DISTINCT keyword as a query modifier or
	 an aggregate function modifier. This hides the evidence of the
	 malformed query but causes extra work for the RDBMS to generate the
	 interim result set only to sort it and discard duplicates.
	

 Another clue that a query might be a Spaghetti Query is simply that it
 has an excessively long execution time.
 Poor performance could be symptomatic of other causes, but as you
 investigate such a query, you should consider that you may be trying to
 do too much in a single SQL statement.

Legitimate Uses of the Antipattern

 The most common reason that you might need to run a complex task with a
 single query is that you are using a programming framework or a visual
 component library that connects to a data source and presents
 data in an application.
 Simple business intelligence and reporting tools also fall into this
 category, although more sophisticated BI software can merge results
 from multiple data sources.

 A component or reporting tool that assumes its data source is a single
 SQL query may have a simpler usage, but it encourages you
 to design monolithic queries to synthesize all the data for your report.
 If you use one of these reporting applications, you may be forced to
 write a more complex SQL query than if you had the opportunity to write
 code to process the result set.

 If the reporting requirements are too complex to be satisfied by a
 single SQL query, it might be better to produce multiple reports.
 If your boss doesn’t like this, remind him or her of the relationship
 between the report’s complexity and the hours it takes to produce it.

 Sometimes, you may want to produce a complex result in one
 query because you need all the results combined in sorted order.
 It’s easy to specify a sort order in an SQL query. It’s usually
 more efficient for the database to do it, and less work for you than writing custom
 code in your application to sort the results of several queries.
Is there a legitimate use for a Cartesian product?

 You might wonder why SQL allows joins without conditions.
 Surely it would be better to prevent Cartesian products if they cause so much trouble.

 SQL supports Cartesian products with CROSS JOIN syntax.
 You might run this type of join deliberately to generate every possible combination between two sets of rows.

 For example, suppose you want a quick way to generate a set of integers from 0 to 99 using SQL.
 You can do this by creating a small table with ten rows, integers from 0 to 9.
 Then generate a Cartesian product query by joining the table to itself twice.
 Each number in that table is joined to all ten numbers, giving the result set 10 * 10 rows.
 Use an expression that adds the number from the first table to the number from the second table, times ten.
 The result is 100 rows, with numbers from 0 to 90+9, or 99.

Spaghetti-Query/soln/cartesian-good.sql
	 	CREATE TABLE integers (
	 	 num INT PRIMARY KEY
);
	 	
	 	INSERT INTO integers (num) VALUES (0), (1), (2), (3), (4), (5), (6), (7), (8), (9);
	 	
	 	SELECT 10*digit10.num + digit1.num AS num
	 	FROM integers AS digit1
	 	CROSS JOIN integers AS digit10;

 If you need numbers from 0 to 999, then make another cross join to the same table.
 Use its numbers as the hundreds place in the values returned by the expression.

Spaghetti-Query/soln/cartesian-good.sql
	 	SELECT 100*digit100.num + 10*digit10.num + digit1.num AS num
	 	FROM integers AS digit1
	 	CROSS JOIN integers AS digit10
	 	CROSS JOIN integers AS digit100;

 This is just one example.
 There are other good uses for CROSS JOIN.
 They’re uncommon, but when you need one, it’s handy that SQL supports syntax for it.

Solution: Divide and Conquer

 The quote at the beginning of this chapter is similar to
 the law of parsimony:

The Law of Parsimony

	When you have two competing theories that make exactly the same
	predictions, the simpler one is the better.

 What this means to SQL is that when you have a choice between two queries
 that produce the same result set, choose the simpler one.
 We should keep this in mind when straightening out instances of this
 antipattern.

One Step at a Time

	If you can’t see a logical join condition between the tables involved
	in an unintended Cartesian product, that could be because there simply
	is no such condition.
	To avoid the Cartesian product, you have to split up a Spaghetti
	Query into several simpler queries.

	In the simple example shown earlier, you need only two queries:

Spaghetti-Query/soln/split-query.sql
	 	SELECT b.bug_id, COUNT(t.tag) AS count_tags
	 	FROM Bugs b
	 	LEFT OUTER JOIN Tags t ON (b.bug_id = t.bug_id)
	 	WHERE b.bug_id = 1234
	 	GROUP BY b.bug_id;
	 	
	 	SELECT b.bug_id, COUNT(bp.product_id) AS count_products
	 	FROM Bugs b
	 	LEFT OUTER JOIN BugsProducts bp ON (b.bug_id = bp.bug_id)
	 	WHERE b.bug_id = 1234
	 	GROUP BY b.bug_id;

	The counts reported by these two queries are 4 and 2, as expected.

	bug_id
	count_tags

	1234
	4

	bug_id
	count_products

	1234
	2

	You may feel slight regret at resorting to an “inelegant”
	solution by splitting this into multiple queries, but this should
	be replaced by relief as you realize this has advantages
	for development, maintenance, and performance:

	

	 The query doesn’t produce an unwanted Cartesian product, as shown
	 in the earlier examples, so it’s easier to be sure the query is
	 giving you accurate results.
	

	

	 When new requirements are added to the report, it’s easier to
	 add another simple query than to integrate more calculations into
	 an already-complicated query.
	

	

	 The SQL engine can usually optimize and execute a simple query more
	 easily and reliably than a complex query. Even if it seems like
	 the work is duplicated by splitting the query, it may nevertheless
	 be a net win.
	

	

	 In a code review or a teammate training session, it’s easier to
	 explain how several straightforward queries work than to explain
	 one intricate query.
	

Solving Your Boss’s Problem

	How could you have solved the urgent request for statistics about your
	project?
	Your boss said,
	“I need to know how many products we work on, how many developers
	fixed bugs, the average bugs fixed per developer, and how many of our
	fixed bugs were reported by customers.”

	The best solution is to split up the work:

	

	 How many products:
	
Spaghetti-Query/soln/count-products.sql
	 	SELECT COUNT(*) AS how_many_products
	 	FROM Products;

	

	 How many developers fixed bugs:
	
Spaghetti-Query/soln/count-developers.sql
	 	SELECT COUNT(DISTINCT assigned_to) AS how_many_developers
	 	FROM Bugs
	 	WHERE status = 'FIXED';

	

	 Average number of bugs fixed per developer:
	
Spaghetti-Query/soln/bugs-per-developer.sql
	 	SELECT AVG(bugs_per_developer) AS average_bugs_per_developer
	 	FROM (SELECT dev.account_id, COUNT(*) AS bugs_per_developer
	 	 FROM Bugs b JOIN Accounts dev
	 	 ON (b.assigned_to = dev.account_id)
	 	 WHERE b.status = 'FIXED'
	 	 GROUP BY dev.account_id) t;

	

	 How many of our fixed bugs were reported by customers:
	
Spaghetti-Query/soln/bugs-by-customers.sql
	 	SELECT COUNT(*) AS how_many_customer_bugs
	 	FROM Bugs b JOIN Accounts cust ON (b.reported_by = cust.account_id)
	 	WHERE b.status = 'FIXED' AND cust.email NOT LIKE '%@example.com';

	Some of these queries are tricky enough by themselves.
	Trying to combine them all into a single pass would be a nightmare.
		
	

Writing SQL Automatically—with SQL

	When you split up a complex SQL query, the result may be many similar
	queries, perhaps varying slightly depending on data values.
	Writing these queries is a chore, so it would be a good place to use
	code generation.

	Code generation is the technique of writing code
	whose output is new code you can compile or run. This can be
	worthwhile if the new code is laborious to write by hand.
	A code generator can eliminate repetitive work for you.

Multitable Updates

	 During a consulting job, I was called to solve an urgent SQL problem
	 for a manager.
	

	 I went to the manager’s office and found a harried-looking fellow who
	 was clearly at the end of his rope. We had barely exchanged
	 greetings when he began sharing with me his woes. “I sure hope
	 you can solve this problem quickly; our inventory system has been
	 offline all day.” He was no amateur with SQL, but
	 he told me he had been working for hours on a statement that could
	 update a large set of rows.
	

	 His problem was that he couldn’t use a consistent SQL expression in
	 his UPDATE statement for all values of
	 rows. In fact, the change he needed to apply was different on each row.
	 His database tracked inventory for a computer lab and the usage of each
	 computer. He wanted to set a column called last_used
	 to the most recent date each computer had been used.
	

	 He was too focused on solving this complex task in a single SQL
	 statement, another example of the Spaghetti Query antipattern.
	 In the hours he had been struggling to write the perfect
	 UPDATE, he could have made the changes
	 manually.
	

	 Instead of writing one SQL statement to solve his complex update,
	 I wrote a script to generate a set of simpler SQL statements
	 that had the desired effect:
	
Spaghetti-Query/soln/generate-update.sql
	 	SELECT CONCAT('UPDATE Inventory '
	 	 ' SET last_used = ''', MAX(u.usage_date), '''',
	 	 ' WHERE inventory_id = ', u.inventory_id, ';') AS update_statement
	 	FROM ComputerUsage u
	 	GROUP BY u.inventory_id;

	 The output of this query is a series of
	 UPDATE statements, complete with
	 semicolons, ready to run as an SQL script:
	
	update_statement

	UPDATE Inventory SET last_used = ’2002-04-19’ WHERE inventory_id = 1234;

	UPDATE Inventory SET last_used = ’2002-03-12’ WHERE inventory_id = 2345;

	UPDATE Inventory SET last_used = ’2002-04-30’ WHERE inventory_id = 3456;

	UPDATE Inventory SET last_used = ’2002-04-04’ WHERE inventory_id = 4567;

	…

	 With this technique, I solved in minutes what that manager had been
	 struggling with for hours.
	

	Executing so many SQL queries or statements may not be the most
	efficient way to accomplish a task. You should balance the
	goal of efficiency against the goal of getting the task done.
	
	
	

	
 [image: images/aside-icons/tip.png]
 	

 Although SQL seems powerful enough to solve a complex
 problem in a single query, don’t be tempted to build
 a house of cards.

Copyright © 2022, The Pragmatic Bookshelf.

 How can I tell what I think till I see what I say?

E. M. Forster

 Chapter
 19
Implicit Columns

 A PHP programmer asked for help troubleshooting the confusing result of a
 seemingly straightforward SQL query against his library database:

Implicit-Columns/intro/join-wildcard.sql
	 	SELECT * FROM Books b JOIN Authors a ON (b.author_id = a.author_id);

 This query returned all book titles as null. Even stranger, when he
 ran a different query without joining to the Authors,
 the result included the real book titles as expected.

 The cause of his trouble was that
 the PHP database extension he was using returned each row resulting from
 the SQL query as an associative array.
 For example, he could access the Books.isbn column
 as $row["isbn"].
 In his tables, both Books and
 Authors had a column called
 title (the latter was for titles like
 Dr. or
 Rev.).
 A single-result array element $row["title"] can store only one
 value; in this case, Authors.title occupied that
 array element.
 Most authors in the database had no title, so the result was that
 $row["title"] appeared to be null.
 When the query skipped the join to Authors, no
 conflict existed between column names, and the book title occupied the
 array element as expected.

 The solution was to declare a column alias to
 give one or the other title column a different name
 so that each would have a separate entry in the array.

Implicit-Columns/intro/join-alias.sql
	 	SELECT b.title, a.title AS salutation
	 	FROM Books b JOIN Authors a ON (b.author_id = a.author_id);

 His second question was, “How do I give one column an alias
 but also request other columns?” He wanted to continue using the
 wildcard (SELECT *) but apply an alias to one
 column covered by the wildcard.

Objective: Reduce Typing

 Software developers don’t like to type, which in a
 way makes their choice of career ironic, like the twist ending in an
 O. Henry story.

 One example that programmers cite as requiring too much typing
 is when writing all the columns used in an SQL query:

Implicit-Columns/obj/select-explicit.sql
	 	SELECT bug_id, date_reported, summary, description, resolution,
	 	 reported_by, assigned_to, verified_by, status, priority, hours
	 	FROM Bugs;

 It’s no surprise that software developers gratefully use the SQL
 wildcard feature.
 The * symbol means every column,
 so the list of columns is implicit rather than explicit.
 This helps make queries more concise.

Implicit-Columns/obj/select-implicit.sql
	 	SELECT * FROM Bugs;

 Likewise, when using INSERT,
 it seems smart to take advantage of the default: the values
 apply to all the columns in the order they’re defined in the table.

Implicit-Columns/obj/insert-explicit.sql
	 	INSERT INTO Accounts (account_name, first_name, last_name, email,
	 	 password, portrait_image, hourly_rate)
	 	VALUES ('bkarwin', 'Bill', 'Karwin', 'bill@example.com',
	 	 SHA2('xyzzy', 256), NULL, 49.95);

 It’s shorter to write the statement without listing the columns.

Implicit-Columns/obj/insert-implicit.sql
	 	INSERT INTO Accounts
	 	VALUES (DEFAULT, 'bkarwin', 'Bill', 'Karwin', 'bill@example.com',
	 	 SHA2('xyzzy', 256), NULL, 49.95);

 If you use INSERT statement with implicit columns,
 the VALUES clause must include
 the same number of values as the number of columns in the
 table.
 You can use the DEFAULT keyword in the VALUES
 clause to set a column to its default value in the new row.

Antipattern: A Shortcut That Gets You Lost

 Although using wildcards and unnamed columns satisfies the goal
 of less typing, this habit creates several hazards.

Breaking Refactoring

 Suppose you need to add a column to the Bugs
	table, such as date_due for scheduling
	purposes.

Implicit-Columns/anti/add-column.sql
	 	ALTER TABLE Bugs ADD COLUMN date_due DATE;

	Your INSERT statement now results in an
	error, because you listed eleven values instead of the twelve the table
	now expects.

Implicit-Columns/anti/insert-mismatched.sql
	 	INSERT INTO Bugs
	 	VALUES (DEFAULT, CURDATE(), 'New bug', 'Test T987 fails...',
	 	 NULL, 123, NULL, NULL, DEFAULT, 'Medium', NULL);
	 	
	 	-- SQLSTATE 21S01: Column count doesn't match value count at row 1

	In an INSERT statement that uses implicit
	columns, you must give values for all columns in the same order that
	columns are defined in the table. If the columns change, the statement
	produces an error—or even assigns values to the wrong columns.

	Suppose you run a SELECT * query, and since you don’t know
	the column names, you reference columns based on their ordinal
	position:

Implicit-Columns/anti/ordinal.py
	 	import mysql.connector
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	 	query = "SELECT * FROM Bugs WHERE bug_id = %s"
	 	cursor.execute(query, (1234,))
	 	for (row) in cursor:
	 	 print(row[10])

	Unknown to you, another person on the team dropped a column:

Implicit-Columns/anti/drop-column.sql
	 	ALTER TABLE Bugs DROP COLUMN verified_by;

	The hours column is no longer at position 10.
	Your application is using the value in another column by mistake.
	As columns are renamed, added, or dropped, your query
	result could change in ways your code doesn’t support. You can’t
	predict how many columns your query returns if you use a wildcard.

	These errors can propagate through your code, and by the time you
	notice the problem in the output of the application, it’s hard to trace
	back to the line where the mistake occurred.

Hidden Costs

	The convenience of using wildcards in queries can harm performance and
	scalability. The more columns your query fetches, the more data must
	travel over the network between your application and the database
	server.

	You probably have many queries running concurrently in your production
	application environment. They compete for access to the same network
	bandwidth. Even a very high-bandwidth network can be saturated by a hundred
	application clients querying for thousands of rows at a time.

 Object-relational mapping (ORM) techniques such as
	Active Record often use SELECT * by default to
	populate the fields of an object representing a row in a database.
	Even if the ORM offers the means to override this behavior, most
	programmers don’t bother.

You Asked for It, You Got It

	“Is there a shortcut to request all columns, except a few
	that I don’t want?”
	This is a common questions from programmers using the SQL
	wildcard.
	Perhaps these programmers are trying to avoid the resource
	cost of fetching bulky TEXT columns that they don’t
	need, but they do want the convenience of using a wildcard.
	Or else they have so many columns in a given table that
	they think it would be easier to specify the columns to
	exclude.

	The answer is no, SQL does not support any syntax, which means,
	“all the columns I want but none that I don’t want.”
	Either you use the wildcard to request all columns from a table, or
	else you have to list the columns you want explicitly.

	Imagine what it would look like, if there were SQL query
	syntax to request all columns with the * wildcard,
	except specific columns to exclude. This syntax doesn’t exist
	in SQL, but hypothetically, it might look like the following:

Implicit-Columns/anti/wildcard-except-fake.sql
	 	SELECT * EXCEPT reported_by, assigned_to, verified_by, priority, hours
	 	FROM Bugs;

	SQL can’t guess which columns you don’t want.
	You would have to name them explicitly.
	So it wouldn’t save you much typing after all.
	In fact, it could require more typing,
	if your typical query needs fewer than half the columns.

	Any other developer who reads your code would naturally
	have the question, “if those columns are excluded, what
	columns are returned by this query?”
	Or they might overlook the EXCEPT keyword, and mistakenly
	think the columns named are to be included, instead of excluded.

How to Recognize the Antipattern

 The following scenarios may indicate that your project is using
 implicit columns inappropriately, and it’s causing trouble:
	

	 “The application broke because it’s still referencing columns
	 in the database result set by the old column names.
	 We tried to update all the code, but I guess we missed some.”
	

	 You’ve changed a table in the database—adding, deleting, renaming,
	 or changing the order of columns—but you failed to change your
	 application code that references the table. It’s laborious
	 to track down all these references.
	

	

	 “It took us days to track down our network bottleneck, and we
	 finally narrowed it down to excessive traffic to the database server.
	 According to our statistics, the average query fetches more than 2MB
	 of data but displays less than a tenth of that.”
	
	

	 You’re fetching a lot of data you don’t need.

Legitimate Uses of the Antipattern

 A well-justified use of wildcards is in ad hoc SQL when you’re writing
 quick queries to test a solution or as a diagnostic check of current
 data. A single-use query benefits less from maintainability.

 The examples in this book use wildcards to save space and to avoid
 distracting from the more interesting parts of the example queries.
 In production application code, you should avoid using SQL wildcards.

 If your application needs to run a query that adapts when columns
 are added, dropped, renamed, or repositioned, you may find it best to
 use wildcards. Be sure to plan for the extra work it takes to
 troubleshoot the pitfalls.

 You can use wildcards for each table individually in a join query.
 Prefix the wildcard with the table name or alias.
 This allows you to specify a short list of specific columns you need from
 one table, while using the wildcard to fetch all columns from the other
 table. For example:

Implicit-Columns/legit/wildcard-one-table.sql
	 	SELECT b.*, a.first_name, a.email
	 	FROM Bugs b JOIN Accounts a
	 	 ON (b.reported_by = a.account_id);

 Keying in a long list of column names can be time-consuming.
 For some people, development efficiency is more important than runtime
 efficiency.
 Likewise, you might place a priority on writing queries that are shorter
 and more readable.
 Using wildcards does reduce keystrokes and result in a shorter query,
 so if this is your priority, then use wildcards.

 Some developers assume that a long SQL query passing from the
 application to the database server causes too much network overhead.
 In theory, query length could make a difference in some cases.
 It’s more common that the rows of data that your query returns use
 much more network bandwidth than your SQL query string.
 Use your judgment about exception cases, but don’t sweat the small stuff.

Solution: Name Columns Explicitly

 Always spell out all the columns you need, instead of relying on
 wildcards or implicit column lists.
Implicit-Columns/soln/select-explicit.sql
	 	SELECT bug_id, date_reported, summary, description, resolution,
	 	 reported_by, assigned_to, verified_by, status, priority, hours
	 	FROM Bugs;

Implicit-Columns/soln/insert-explicit.sql
	 	INSERT INTO Accounts (account_name, first_name, last_name, email,
	 	 password_hash, portrait_image, hourly_rate)
	 	VALUES ('bkarwin', 'Bill', 'Karwin', 'bill@example.com',
	 	 SHA2('xyzzy'), NULL, 49.95);

 All this typing seems burdensome, but it’s worth it in several ways.

Mistake Proofing

	Remember poka-yoke, the
	practice from the Japanese manufacturing industry of designing mistake-proof
	systems (Chapter 5, Keyless Entry)?
	You make your SQL queries more resistant to the errors and confusion
	described earlier when you specify the columns in the select-list of
	the query.

	

	 If a column has been repositioned in the table, it doesn’t change
	 position in a query result.
	

	

	 If a column has been added in the table, it doesn’t appear in
	 the query result.
	

	

	
	 If a column has been dropped from the table, your query raises
	 an error—but it’s a good error, because you’re led directly to
	 the code that you need to fix, instead of left to hunt for the root
	 cause.
	

	You get similar benefits when you specify columns in
	INSERT statements. The order of columns
	you specify overrides the order in the table definition, and values are
	assigned to the columns you intend. Newly added columns you haven’t
	named in your statement are given default values or null. If you
	reference a column that has been deleted, you get an error, but
	troubleshooting is easier.

	This is an example of the fail early principle.

You Ain’t Gonna Need It

 If you’re concerned about the scalability and throughput of your
	software, you should look for possible wasteful use of network
	bandwidth. The bandwidth of an SQL query can seem harmless during
	software development and testing, but it bites you when your production
	environment is running thousands of SQL queries per second.

	Once you abandon the SQL wildcard, you’re naturally motivated
	to think about which columns you really need in a given query,
	and leave out the columns you don’t need.
	This helps you to type less, and promotes more efficient use of
	bandwidth too.

Implicit-Columns/soln/yagni.sql
	 	SELECT date_reported, summary, description, resolution, status, priority
	 	FROM Bugs;

You Need to Give Up Wildcards Anyway

 When you buy a bag of candies from the vending machine,
	the wrapper is a convenience, making it easy to carry the package of
	candies back to your desk. Once you open the bag, however,
	you need to treat the candies as individuals. They roll, slide, and
	bounce all over the place. If you’re not careful, some may fall under
	your desk and attract bugs. But there’s no way to eat one until you
	tear open the bag.

	In an SQL query, if you need to use a function or expression
	in the select-list, or use a column alias, or exclude
	columns, you need to break open the “container” provided
	by the wildcard.
	You lose the convenience of treating the collection of
	columns as a single package, but you gain access to all of
	its contents.

Implicit-Columns/soln/select-expr.sql
	 	SELECT bug_id, SUBSTRING(summary FROM 1 FOR 16) AS summary_shortened, ...
	 	FROM Bugs;

	You inevitably need to treat columns individually.
	If you avoid using wildcards from the beginning, it’ll
	be easier to change your query later.
	
	
	
	
	
	
	
	
	
	
	
 [image: images/aside-icons/tip.png]
 	

 Take all you want, but eat all you take.

Copyright © 2022, The Pragmatic Bookshelf.

Objective: Recover or Reset Passwords

 It’s a sure bet that in any application that has passwords, a user will
 forget their password. Most modern applications handle this by giving the
 user a chance to recover or reset their password through email or SMS.
 This requires the user to have access to the email or mobile device
 associated with the user profile in the application.

Part 4
Application Development Antipatterns

	 SQL is supposed to be used in the context of applications written
	 in another language, such as Python, Java, C, C++, C#, JavaScript, Elixir, and so on.
	 There are right ways and wrong ways to employ SQL in an application,
	 and this part of the book describes some common blunders.
	

 The enemy knows the system.

Shannon’s maxim

 Chapter
 20
Readable Passwords

 Suppose you receive a phone call from a man using one of the applications
 you support. The caller is having trouble logging in.

 “This is Pat Johnson in Sales. I must have forgotten my password.
 Can you just look it up and tell me what it is?” Pat sounds a bit
 sheepish but also strangely in a hurry.

 “I’m sorry, I’m not supposed to do that,” you answer. “I
 can reset your account, and that’ll send an email to the address you
 registered for your account. You can use the instructions in that email to
 set a new password.”

 The man becomes more impatient and assertive. “That’s
 ridiculous,” he says. “At my last company the support staff
 could look up my password. Are you unable to do your job? Do you want
 me to call your manager?”

 Naturally, you want to preserve a smooth relationship with your users,
 so you run an SQL query to look up the plain-text password for Pat Johnson’s
 account and read it to him over the phone.

 The man hangs up. You comment to your co-worker, “That was a close
 call. I almost had an escalation from Pat Johnson. I hope he doesn’t
 complain.”

 Your co-worker looks puzzled. “He? Pat Johnson in Sales
 is a woman. I think you just gave her password to a con artist.”

Antipattern: Store Password in Plain Text

 The frequent mistake in these kinds of password-recovery solutions is
 that the application allows the user to request an email containing their
 password in clear text. This is a dire security flaw related to the
 database design, and it leads to several security risks that could allow
 unauthorized people to gain privileged access to the application.

 Let’s explore these risks in the following sections, assuming our example
 bug-tracking database has a table Accounts,
 where each user’s account is stored as a row in this table.

Storing Passwords

	A password is typically stored in the
	Accounts table as a string attribute column:

Passwords/anti/create-table.sql
	 	CREATE TABLE Accounts (
	 	 account_id SERIAL PRIMARY KEY,
	 	 account_name VARCHAR(20) NOT NULL,
	 	 email VARCHAR(100) NOT NULL,
	 	 password VARCHAR(30) NOT NULL
);

	You can create an account simply by inserting one row and specifying
	the password as a string literal:

Passwords/anti/insert-plaintext.sql
	 	INSERT INTO Accounts (account_id, account_name, email, password)
	 	 VALUES (123, 'billkarwin', 'bill@example.com', 'xyzzy');

	It’s not secure to store a password in clear text or even to pass
	it over the network in the clear. If an attacker can read the SQL
	statement you use to insert a password, they can see the password
	plainly. This is also true for SQL statements to change a password
	or verify that user input matches a stored password. Hackers have
	several opportunities to steal a password, including the following:

	

	
	
	 Intercepting network packets as the SQL statement is sent from
	 the application client to the database server when not encrypting communications with TLS.
	 This is easier than it sounds; free software tools such as Wireshark[20]
	 or tcpdump[21]
	 allow a third party to “wiretap” TCP/IP, and read
	 packets between your client and the server.
	

	

	
	
	
	 Searching SQL query logs on the database server. The attacker
	 may need access to the database server host, but assuming they have
	 that, they can access log files that include a record of
	 SQL statements executed by that database server.
	

	

	
	
	 Reading data from database backup files on the server
	 or on backup
	 media. Backup media is sometimes even easier to hack
	 than the database itself, because owners don’t enforce
	 secure access to the backups as strictly as they do for
	 the database.
	

	Hackers use techniques like these to acquire information
	about your password system, so you must take care to block
	not only their access to your database, but also to your
	network, logs, and backups.

Authenticating Passwords

	Later, when the user tries to log in, your application compares
	the user’s input to the password string stored in the database.
	This comparison is done as plain text, since the password itself
	is stored in plain text. For example, you can use a query like
	the following to return a 0 (false) or 1 (true), indicating
	whether the user’s input matches the password in the database:

Passwords/anti/auth-plaintext.sql
	 	SELECT CASE WHEN password = 'opensesame' THEN 1 ELSE 0 END
	 	 AS password_matches
	 	FROM Accounts
	 	WHERE account_id = 123;

	In this example,
	the password the user entered,
	opensesame, is incorrect, and the query
	returns a zero value.

	Like in the previous section on storing passwords, interpolating the
	user’s input string into the SQL query in plain text exposes it to
	discovery by an attacker.

	Many programmers design an authentication query with conditions for
	both the account_id and
	password columns in the
	WHERE clause:

Passwords/anti/auth-lumping.sql
	 	SELECT * FROM Accounts
	 	WHERE account_name = 'bill' AND password = 'opensesame';

	This query lumps two different cases together: it returns
	an empty result set if the account doesn’t exist or if the
	user tried to log in with the wrong password.
	You might want to treat these two reasons for failed
	authentication differently.

	For example, you may want to lock an account temporarily
	if you detect many failed password guesses in a row, because
	this might indicate an attempted intrusion. However, you
	can’t detect this pattern if you can’t tell the difference
	between a wrong account name and a wrong password.

Sending Passwords in Email

	Since the password is stored in plain text in the database, retrieving
	the password in your application is simple:

Passwords/anti/select-plaintext.sql
	 	SELECT account_name, email, password
	 	FROM Accounts
	 	WHERE account_id = 123;

	Your application can then send to a user’s email address on request.
	You’ve probably seen one of these emails as part of the password
	reminder feature of any number of websites you use. An example
	of this kind of email is shown here:

Example of Password Recovery Email:
	 	From: daemon
	 	To: bill@example.com
	 	Subject: password request
	 	
	 	You requested a reminder of the password for your account "bill".
	 	Your password is "xyzzy".
	 	
	 	Click the link below to log in to your account:
	 	
	 	https://www.example.com/login

	Sending an email with the password in plain text is a serious security
	risk. Email can be intercepted, logged, and stored in multiple ways
	by hackers. It’s not good enough that you use a secure protocol to
	view mail or that the sending and receiving mail servers are managed
	by responsible system administrators. Since email is routed across the
	Internet, it can be intercepted at other sites. Secure protocols for
	email aren’t necessarily widespread or under your control.

How to Recognize the Antipattern

 Any application that can recover your password and send it to you must be
 storing it in plain text or at least with some reversible encoding. This is
 the antipattern.

 It’s not just about sending passwords in email.
 Any form of password recovery reveals that the password is stored in an inappropriate way.
 If your application can read a password for a
 legitimate purpose, then it’s possible that a hacker can read the
 password illicitly.

Legitimate Uses of the Antipattern

 Your application may need to use a password to access another third-party
 service—that is, your application can be a client.
 In this case, you must store that password in a readable format.
 Preferably, you use some encoding that your application can reverse,
 instead of using plain text in the database.

 You can make a distinction between identification
 and authentication. A user can identify themself as
 anyone they want, but authentication is proving they are who they say they are.
 Passwords are the most common way of doing this.

 If you can’t enforce security strong enough to defeat skilled and
 determined attackers, then you effectively have an identification
 mechanism but not a reliable authentication mechanism. This isn’t
 necessarily a deal-breaker.

 Not every software application is at risk for attack, and not every
 application contains sensitive information that must be protected.
 For example, an intranet application may be accessed by only a few
 people who are known to be honest and cooperative. In this case,
 an identification mechanism may be enough for the application to work,
 and in those informal environments, a simpler login design may be
 adequate. The additional work necessary to create a strong
 authentication system may not be justified.

 Be careful, though—applications have a tendency to evolve beyond
 their original environment or role. Before you make your quaint little
 intranet application available outside your company firewall, you should
 get a qualified security expert to evaluate it.
Ethics of Software Development

 If you’re developing an application that supports passwords and you’re
 asked to design a feature to recover users’ passwords, you should push back
 respectfully, warn the project decision makers about the risks,
 and offer an alternative solution that provides similar value:
 password reset, instead of password recovery.

 Just as an electrician should recognize and correct a wiring design
 that poses an unsafe fire risk, it’s your responsibility as a software
 engineer to be aware of safety issues and to promote safer software.

 A good book you should read is 24
 Deadly Sins of Software Security [HLV09].
 Another good resource is the Open Web Application Security Project.[22]

Solution: Store a Salted Hash of the Password

 The chief problem in this antipattern is that the original form of the
 password is readable. Instead, you should authenticate the user’s input against
 a password without reading it. This section describes how to implement
 this kind of secure password storage in an SQL database.

Understanding Hash Functions

	Encode the password using a one-way cryptographic hash
	function. This transforms its input string
	into a new string, called the hash, that is
	unrecognizable. Even the length of the original string is obscured,
	because the hash returned by a hash function is a fixed-length string.
	For example, the SHA-256 algorithm converts
	our example password, xyzzy,
	to a 256-bit string of bits, usually represented as a 64-character
	string of hexadecimal digits:

Passwords/soln/sha256.py
	 	import hashlib
	 	
	 	m = hashlib.sha256()
	 	m.update(b'xyzzy')
	 	print(m.hexdigest())
	 	
	 	# Output:
	 	# 184858a00fd7971f810848266ebcecee5e8b69972c5ffaed622f5ee078671aed

	Another characteristic of a cryptographic hash is that it’s not reversible.
	You can’t recover the input string from its hash because the hashing
	algorithm is designed to “lose” some information about the
	input. A good hashing algorithm should take as much work to crack as
	it would to simply guess the input through trial and error.

	A popular algorithm in the past has been
	SHA-1, but researchers have proved this
	160-bit hashing algorithm has insufficient cryptographic strength;
	bad guys can infer the input from a hash string. This
	technique is very time-consuming but nevertheless takes less time than
	it would take to guess the password by trial and error.

	The National Institute of Standards and Technology (NIST)
	phased out SHA-1 as an approved
	secure hashing algorithm after 2010 in favor of these stronger
	variants: SHA-224,
	SHA-256, SHA-384, and
	SHA-512.[23]
	Then, in 2015, NIST approved the SHA3 family of hash algorithms.
	Whether you need to comply with NIST standards or not, it’s a good idea
	to use at least SHA-256 for passwords.

	MD5 is another popular hash function,
	producing hash strings of 128 bits. MD5
	has also been shown to be cryptographically weak, so you shouldn’t use
	it for encoding passwords. Weaker algorithms still have uses, but not
	for sensitive information like passwords.

Using a Hash in SQL

	The following is a redefinition of the Accounts table.
	The SHA-256 password hash is always 64
	characters long, so define the column as a fixed-length
	CHAR column of that length.

Passwords/soln/create-table.sql
	 	CREATE TABLE Accounts (
	 	 account_id SERIAL PRIMARY KEY,
	 	 account_name VARCHAR(20),
	 	 email VARCHAR(100) NOT NULL,
	 	 password_hash CHAR(64) NOT NULL
);

	Hashing functions aren’t part of the standard SQL language, so you may
	need to rely on your database brand to support hashing as an extension.
	For example, MySQL 5.5 with SSL support includes a function
	SHA2.

Passwords/soln/insert-hash.sql
	 	INSERT INTO Accounts (account_id, account_name, email, password_hash)
	 	 VALUES (123, 'billkarwin', 'bill@example.com', SHA2('xyzzy', 256));

	You can validate a user’s input by applying the same hash function to
	it and comparing the result to the value stored in the database.

Passwords/soln/auth-hash.sql
	 	SELECT CASE WHEN password_hash = SHA2('xyzzy', 256) THEN 1 ELSE 0 END
	 	 AS password_matches
	 	FROM Accounts
	 	WHERE account_id = 123;

	Suppose a user’s account needs to be disabled, if they must
	be locked out of the system.
	Ideally, the authentication system should use a separate attribute to mark an account as disabled.
	If this feature is not supported,
	you can disable an account by changing its password.
	There is a chance that the user could guess the new
	password,
	but if you change the string stored as the password hash
	to a string that the hash function could never produce,
	then no password input could be validated against it.
	For example, the string noaccess contains
	letters that aren’t hexadecimal digits.

Adding Salt to Your Hash

 If you store hashes instead of passwords and the attacker gains
	access to your database (by searching your trash for backup storage media,
	for example), they can still attempt to guess passwords by trial and
	error. Guessing each password may take a long time, but they can
	prepare their own database of hashes of likely passwords against which to
	compare the hash strings they find in your database. If only one user
	chose a password that is a word in the dictionary, it’s easy
	for an attacker to find it by searching your password database for
	hashes that match his prepared table of hashes. They can
	even do this with SQL:

Passwords/soln/dictionary-attack.sql
	 	CREATE TABLE DictionaryHashes (
	 	 password VARCHAR(100),
	 	 password_hash CHAR(64)
);
	 	
	 	SELECT a.account_name, h.password
	 	FROM Accounts AS a JOIN DictionaryHashes AS h
	 	 ON a.password_hash = h.password_hash;

	One way to defeat this kind of “dictionary attack”
	is by including a salt in your
	password-encoding expression. A salt is a string of meaningless bytes
	you concatenate with the user’s password, before passing the resulting
	string to the hash function. Even if the user chose a word in the
	dictionary as their password, the hash produced from a salted password
	won’t match the hash in the attacker’s hash database. For example, if
	the password is “xyzzy”, you can see
	that the hash of this word is different from a hash of the word with a
	few random bytes appended:

Passwords/soln/sha256-salt.py
	 	import hashlib
	 	
	 	m = hashlib.sha256()
	 	m.update(b'xyzzy')
	 	print(m.hexdigest())
	 	
	 	# Output:
	 	# 184858a00fd7971f810848266ebcecee5e8b69972c5ffaed622f5ee078671aed
	 	
	 	# append the salt to the previous password content, so the hex digest
	 	# is the hash of both strings concatentated.
	 	m.update(b'-0xT!sp9')
	 	print(m.hexdigest())
	 	
	 	# Output:
	 	# 741b8aabe2e615e1c12876e66075199d602116ffb40b822dd5596baa7dafd40e

	Each password should use a different salt value to make an
	attacker have to generate a new dictionary table of hashes
	for each password. Then they’re back to square one, because
	cracking passwords in your database takes as much time as
	guessing them with trial and error.
	The following code is an example of storing a salt value
	and combining it with the password before hashing, then
	validating a password input by combining it with the same salt.

Passwords/soln/salt.sql
	 	CREATE TABLE Accounts (
	 	 account_id SERIAL PRIMARY KEY,
	 	 account_name VARCHAR(20),
	 	 email VARCHAR(100) NOT NULL,
	 	 password_hash CHAR(64) NOT NULL,
	 	 salt BINARY(8) NOT NULL
);
	 	
	 	INSERT INTO Accounts (account_id, account_name, email,
	 	 password_hash, salt)
	 	 VALUES (123, 'billkarwin', 'bill@example.com',
	 	 SHA2(CONCAT('xyzzy', '-0xT!sp9'), 256), '-0xT!sp9');
	 	
	 	SELECT (password_hash = SHA2(CONCAT('xyzzy', salt), 256))
	 	 AS password_matches
	 	FROM Accounts
	 	WHERE account_id = 123;

	A good salt is at least 8 bytes long, generated
	randomly for each password. The previous examples show a salt string
	containing printable characters, but you can (and should) make a salt using
 printable and unprintable bytes.

	A related, and more
	sophisticated, technique to recover passwords from their
	hashes is called a rainbow table.
	Employing a salt defends against this technique too.

Hiding the Password from SQL

 Now that you’re using a strong hashing function to encode the password
	before you store it and you use a salt to thwart dictionary attacks,
	you would think this is enough to ensure security. Unfortunately, the password
	still appears in plain text in the SQL expression, which means that
	it’s readable if an attacker can intercept network packets or if
	SQL queries are logged and the log files fall into the wrong hands.

	You can protect against this kind of exposure if you don’t put the
	plain-text password into the SQL query. Instead, compute the hash in
	your application code, and use only the hash in the SQL query. It does
	an attacker little good to intercept the hash, because they can’t reverse
	it to get the password.

	You do need the salt before you can compute the hash.

	The following Python example gets a salt, computes a hash,
	and runs a query to validate the password against
	the salted hash stored in the database:

Passwords/soln/auth-salt.py
	 	import mysql.connector
	 	import hashlib
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	 	# For the sake of simplicity in this code example, the name and password
	 	# are fixed values. In a real application, they would be inputs.
	 	name = 'bill'
	 	password = 'xyzzy';
	 	
	 	query = "SELECT password_hash, salt FROM Accounts WHERE account_name = %s"
	 	cursor.execute(query, (name,))
	 	for (row) in cursor:
	 	 stored_hash = row[0]
	 	 # salt is stored as binary bytes, so it must be decoded to a string.
	 	 salt = row[1].decode()
	 	
	 	# Concatenate the input password with the stored salt, and produce a hash.
	 	m = hashlib.sha256()
	 	m.update(f"{password}{salt}".encode('utf-8'))
	 	input_hash = m.hexdigest()
	 	
	 	# Compare the hash of the input against the hash stored in the database.
	 	if input_hash == stored_hash:
	 	 print("match successful!")

	In web applications, attackers can also intercept data on the
	network, between the user’s browser and the web
	server. When the user submits a login form, the browser sends
	his password in plain text to the server.
	It’s a good defense against network interceptors if you use a secure HTTP connection whenever sending a password from the browser to the application.
	Some developers also hash the password using browser-side code before sending the HTTP request, as a defense-in-depth technique.

Resetting the Password Instead of Recovering the Password

	Now that the password is stored in a more secure way, you still need
	to solve the original objective: help users who have forgotten their
	password. You can’t recover their password, because now your database
	stores a hash instead of the password. Even though you cannot reverse the hash any
	more easily than an attacker could, you can allow a user access
	in other ways. Two sample implementations are described here.

	The first alternative is that when a user who has forgotten their
	password requests help, instead of emailing their password, your
	application can send an email with a temporary password generated by
	the application. The password reset code in your application knows the
	plaintext password, so it can send it in an email. Only the
	hashed version of that password is stored in the database.

	For additional security, the application may expire
	the temporary password after a short time, so if the email is intercepted,
	it’s more likely that it will not allow unauthorized access.

Example of Email with a System-Generated Temporary Password
	 	From: daemon
	 	To: bill@example.com
	 	Subject: password reset
	 	
	 	You requested to reset your password for your account.
	 	
	 	Your temporary password is "p0trz3b1e".
	 	This password will cease to allow access after one hour.
	 	
	 	Click the link below to log in to your account and
	 	set your new password:
	 	
	 	https://www.example.com/login

 In a second alternative, instead of including a new temporary password in an
	email, the user’s reset request is logged in a database table and assigned a unique
	token as an identifier:

Passwords/soln/reset-request.sql
	 	CREATE TABLE PasswordResetRequest (
	 	 account_id BIGINT UNSIGNED PRIMARY KEY,
	 	 token CHAR(32) NOT NULL,
	 	 expiration TIMESTAMP NOT NULL,
	 	 FOREIGN KEY (account_id) REFERENCES Accounts(account_id)
);
	 	
	 	SET @token = MD5('billkarwin' || CURRENT_TIMESTAMP || RAND());
	 	
	 	# Use REPLACE instead of INSERT in MySQL, so the statement overwrites
	 	# any existing row for the given account_id.
	 	REPLACE INTO PasswordResetRequest (account_id, token, account_id, expiration)
	 	 VALUES (123, @token, CURRENT_TIMESTAMP + INTERVAL 1 HOUR);

	Then you include the token in an email.
	You could also send the token in some other message, such as SMS,
	as long as it’s sent to an address that’s already associated with the
	account requesting a password reset.
	That way, if a stranger requests a password reset illicitly, it
	sends a spurious email only to the actual owner of the account.

Example of Email with a Temporary Link to a Password Reset Page
	 	From: daemon
	 	To: bill@example.com
	 	Subject: password reset
	 	
	 	You requested to reset your password for your account.
	 	
	 	Click the link below within one hour to change your password.
	 	After one hour, the link below will no longer work and your
	 	password will remain unchanged.
	 	
	 	https://www.example.com/reset_password?token=f5cabff22532bd0025118905bdea50da

	When the application receives a request for the special
	reset_password screen, the value in the
	token parameter
	must match a row in the PasswordResetRequest
	table, and the expiration timestamp on this
	row must still be upcoming, not past. The
	account_id on this row references the
	Accounts table, so the token is restricted to
	enable a password reset of only one specific account.

	With either of the two previous methods, the user must be
	forced to change their password before they are allowed to
	do any other action on the website. Once they have changed
	their password, then only they know it, because only the
	hash is stored in the database, not the plaintext password.

 The state of cryptography is constantly advancing, trying
 to stay ahead of attack technology.
 The techniques in this chapter are still relevant regardless of the type of cryptographic hash algorithm you use,
 but you should use current recommended algorithms such as the following:

	

	 Argon2[24]
	 is a password hashing algorithm that won the Password
	 Hashing Competition (PHC) in 2015.
	

	

	 PBKDF2[25]
	 is a widely used key strengthening standard.
	
	
	
	

	

	 Bcrypt[26]
	 implements an
	 adaptive hashing function.
	
	
	
	

 This list will eventually become outdated too.
 If you’re responsible for implementing an authentication system, then you should keep yourself up to date on the latest NIST standards for recommended algorithms.

	
 [image: images/aside-icons/tip.png]
 	

 If you can read passwords, so can a hacker.

Mini-Antipattern: Storing Hash Strings in VARCHAR

 “What data type should I use to store a hash?”

	The result of a hash is commonly stored as a string of
	hexadecimal digits, and most developers default to using
	VARCHAR to store any string.
	If they don’t know how much space the string requires, they
	choose VARCHAR(255) because that is greatest length
	supported by the most implementations of SQL.

	Each hash algorithm is different, but they have the
	property that no matter what the length of the input, all
	inputs return the same length result for a given hash
	algorithm.
	This determines the length of storage you need to store the
	hash.
	You don’t need to use a VARCHAR, since the length
	is fixed.
	Instead, use a fixed-length CHAR column.

	A string of hexadecimal digits can be stored as
	binary bytes in half the space.
	For example, the hexadecimal value FF uses two
	characters when stored as a string, but the same value
	occupies one binary byte.
	So, each fixed-length hash string can be stored either
	in a CHAR column, or a BINARY column of
	half the length.
	Every programming language should have a built-in function
	for converting between a string of hexadecimal digits and
	the binary form.

 Another choice is to encode the same bytes in base64 format.
	Whereas hexadecimal encodes three bytes of binary data using six characters, base64 encodes the same three bytes using four characters.
	This means base64 is 50% more compact than hexadecimal.
	Base64 is more friendly to human readers than binary, because base64 uses only printable characters.

 Using binary or base64 reduces storage space used both by data storage and any index on that data.

	Algorithm	Bits	Type for Hex Digits	Type for Base64	Type for Bytes
	MD5
	128
	CHAR(32)
	CHAR(22)
	BINARY(16)

	SHA-1
	160
	CHAR(40)
	CHAR(27)
	BINARY(20)

	SHA-256
	256
	CHAR(64)
	CHAR(43)
	BINARY(32)

	SHA-512
	512
	CHAR(128)
	CHAR(86)
	BINARY(64)

	Password-hashing functions like Argon2, PBKDF2, or Bcrypt
	have options that result in minor differences in output format.
	The format encodes the options you choose, and also the salt used.
	Here is an example of using the Argon2 command-line tool.
	It returns a string of 84 characters, so given these options,
	use a CHAR(84) to store this string.

	 	echo "mypassword" | argon2 "salt1234" -e
	 	
	 	$argon2i$v=19$m=4096,t=3,p=1$c2FsdDEyMzQ$61QNJTDZzd7eL6u5HDE0jCyhoLrGmH...

	The result follows the PHC format, with five fields separated
	by $ characters: the algorithm, version,
	options, the base-64 encoded salt, and the base-64 encoding
	of the 256-bit hash result.
	Normally you don’t need to inspect this string; you would just
	validate a new input password by hashing it, and comparing
	the result to the stored result.
	
	
	
	
	
	
	
	

Footnotes

	[20]
	
https://www.wireshark.org/

	[21]
	
https://www.tcpdump.org/

	[22]
	
https://owasp.org/

	[23]
	
https://csrc.nist.gov/projects/hash-functions

	[24]
	
https://www.argon2.com/

	[25]
	
https://tools.ietf.org/html/rfc2898

	[26]
	
https://en.wikipedia.org/wiki/Bcrypt

Copyright © 2022, The Pragmatic Bookshelf.

	Quote me as saying I was misquoted.

Groucho Marx

 Chapter
 21
SQL Injection

 In March 2010, a serial computer hacker was convicted and sentenced to 20 years in US federal prison for
 his role in the largest identity theft in history.[27]
 He acquired an estimated 130 million credit and debit card
 numbers by hacking into ATM machines and payment systems,
 using a technique called SQL injection.

 SQL injection vulnerabilities are reported in popular software products and websites regularly, and any one report may refer to a breach of millions of records of personal information.
 For example, the WordPress blogging platform or one of its plugins has an urgent SQL security patch several times per year.[28]
 Every operating system, database brand, and programming language has been the subject of SQL injection vulnerabilties.

 SQL injection was first publicly identified in 1998, so why does this flaw still affect so many software products and websites today?
 The answer is that it’s not really a bug in vendor software—it’s a programming mistake, committed every day by many of the estimated 24.3 million software developers worldwide (as of 2021).[29]

 Computer science education seldom trains developers in secure coding practices (except in classes specifically about code security).
 This is a skill they are expected to learn on the job.
 Robert C. Martin, author of Clean Code [Mar08], claims the population of programmers doubles about every five years, which means at any given time, at least half of working software developers have less than five years of experience.[30]
 If many software development shops employ mostly junior programmers, then those programmers may get no mentoring for good security habits.
 Employers are more concerned with releasing software as quickly as possible, not time-consuming code reviews or “nice to have” security testing.
 Both businesses and programmers often prioritize repairing vulnerabilities only after getting hacked.

 SQL injection attacks remain an easy target for hackers, because enough software developers don’t understand the nature of the vulnerability and they keep creating the vulnerability in new code.

Objective: Write Dynamic SQL Queries

 SQL is intended to be integrated with application code.
 When you build SQL queries as strings and combine application
 variables into the string, this is commonly called dynamic SQL.
 In the following example, a variable is interpolated into a Python f-string.
 By the time the database receives the query, the value of
 bugid is part of the query.

SQL-Injection/obj/dynamic-sql.py
	 	bugid = 1234
	 	query = f"SELECT * FROM Bugs WHERE bug_id = {bugid}";
	 	cursor.execute(query)

 Dynamic SQL queries are a natural way to get the most out of a database.
 When you use application data to specify how you want to query
 a database, you’re using SQL as a two-way language. Your application
 is having a kind of dialogue with the database.

 It’s not too hard to make your software do tasks that you want
 it to do—the harder challenge is making your software
 prevent actions that you don’t want it to do.
 SQL injection flaws are examples of the latter.

Antipattern: Execute Unverified Input As Code

 SQL injection happens when you interpolate some content into an SQL query
 string and the content modifies the syntax of your query in ways you
 didn’t intend.
 In the classic example of SQL injection, the value you interpolate into
 your string finishes the SQL statement and executes a second complete
 statement.
 For instance, if the value of bugid is
 1234; DELETE FROM Bugs,
 the resulting SQL shown earlier would look like this:

SQL-Injection/anti/delete.sql
	 	SELECT * FROM Bugs WHERE bug_id = 1234; DELETE FROM Bugs

 This type of SQL injection can be spectacular
 (cartoon by Randall Munroe,[31]
 used with permission).

[image: images/SQL_injection/exploits_of_a_mom.png]

 Usually these flaws are more subtle, but still dangerous.

Accidents May Happen

	Suppose you are writing a web interface to view the bugs database and
	one page allows you to view a project based on its name.
	The following example shows this implemented with Python and Flask.

SQL-Injection/anti/ohare.py
	 	import mysql.connector
	 	import json
	 	from flask import Flask, Response, request
	 	
	①	app = Flask(__name__)
	 	
	②	cnx = mysql.connector.connect(user='scott', database='test')
	 	cursor = cnx.cursor()
	 	
	③	@app.route('/products', methods = ['GET'])
	④	def get_products():
	⑤	 product_name = request.args.get("name")
	 	
	 	 # UNSAFE!
	⑥	 sql = f"SELECT * FROM Products WHERE product_name = '{product_name}'"
	 	
	⑦	 cursor.execute(sql)
	 	 return json.dumps(cursor.fetchall())
	 	
	 	if __name__ == '__main__':
	⑧	 app.run()

	①
	

	 Create an instance of a Flask web application.
	

	②
	

	 Open a connection to the MySQL database on the local host.
	

	③
	

	 Define a route so http GET requests to the web application at the named path are handled by the function that follows.
	

	④
	

	 Define a request handler function.
	

	⑤
	

	 Assign the value of the GET request parameter name to a variable.
	

	⑥
	

	 Format a string containing an SQL query, using a Python f-string to interpolate the variable.
	

	⑦
	

	 Execute the string as an SQL query.
	

	⑧
	

	 Start the Flask web application when the Python script is invoked.
	

	The trouble begins when your team is hired to develop software for
	O’Hare International Airport in Chicago. You naturally give the project
	a name like “O’Hare.”
	You might use a request like the following to view the project in your web application:

	http://bugs.example.com/project/view?name=O’Hare

	Your code interpolates the value of that request parameter
	into the SQL query, but it produces an invalid query:

SQL-Injection/anti/ohare.sql
	 	SELECT * FROM Products WHERE product_name = 'O'Hare'

	Because a string is terminated by the first quote character it finds,
	the resulting expression contains a short string, ’O’,
	followed by some extra characters, Hare’,
	which cause the database to return a syntax error.
	This is an honest accident. The risk of anything bad happening is
	low, because a statement with a syntax error can’t execute.
	The greater risk is that the statement executes without error but
	does something you didn’t intend.

One of the Top Web Security Threats

	SQL injection becomes a greater threat when an attacker can use this
	to manipulate your SQL statements.
	For example, your application may allow a user to change their
	password:

SQL-Injection/anti/set-password.py
	 	def set_password():
	 	 userid = request.form["userid"]
	 	 password = request.form["password"]
	 	
	 	 # UNSAFE!
	 	 query = f"""UPDATE Accounts
	 	 SET password_hash = SHA2('{password}', 256)
	 	 WHERE account_id = {userid}"""
	 	
	 	 cursor.execute(query)
	 	 cnx.commit()
	 	 return "OK"

	A clever attacker who can guess how the request parameters are used
	in your SQL statement can post a carefully chosen string to exploit it:

	password=xyzzy&userid=123 OR TRUE

	After interpolating the string from the userid parameter into
	your SQL expression, the string has changed the syntax of the statement.
	Now it changes the password for every account in the
	database, not for one specific account:

SQL-Injection/anti/set-password.sql
	 	UPDATE Accounts SET password_hash = SHA2('xyzzy', 256)
	 	WHERE account_id = 123 OR TRUE;

	SQL injection works by changing the syntax of the SQL statement before the statement is parsed.
	As long as you insert dynamic portions to the statement before it’s parsed, you have a risk of SQL injection.

	There are countless ways a maliciously chosen string can alter the
	behavior of your SQL statements. It’s limited only by the imagination
	of the attacker and your ability to protect your SQL statements.

The Quest for a Cure

	Now that you know the threat of SQL injection, the next natural question
	is, what do you need to do to protect code from being exploited?
	You may have read a blog or an article that described some single
	technique and claimed it’s the universal remedy against SQL injection.
	In reality, none of these techniques is proof against all forms
	of SQL injection, so you need to use all of them in different cases.

Escaping Values

	
	
	
	
	 The oldest way to protect SQL queries from accidental unmatched quote
	 characters is to escape any quote characters
	 to prevent them from becoming the end of the quoted string.
	 In standard SQL, you can use two quote characters to make one
	 literal quote character:
	
SQL-Injection/anti/ohare-escape.sql
	 	SELECT * FROM Products WHERE product_name = 'O''Hare'

	
	
	 Most brands of database also support the backslash to escape the
	 following quote character, just like most other programming languages
	 do:
	
SQL-Injection/anti/ohare-escape.sql
	 	SELECT * FROM Products WHERE product_name = 'O\'Hare'

	 The idea is that you transform application data before you
	 interpolate it into SQL strings. Most SQL programming interfaces
	 provide a convenience function.
	 The Python connector for MySQL provides a function called escape for this purpose.
	 The following example shows how this function is used:
	
	
	
SQL-Injection/anti/ohare-escape.py
	 	def get_products():
	 	 product_name = cnx.converter.escape(request.args.get("name"))
	 	
	 	 # SAFE!
	 	 sql = f"SELECT * FROM Products WHERE product_name = '{product_name}'"
	 	
	 	 cursor.execute(sql)
	 	 return json.dumps(cursor.fetchall())

	 This technique reduces the risk of SQL injection resulting from
	 unmatched quote characters within the dynamic content.
	 However, it’s an extra step to remember to escape the input every time you need to interpolate a variable into an SQL query, and it’s an easy step to forget.
	

	 It’s also useful only for values in quoted string literals in SQL.
	 The following example shows using the escape function to protect the string input,
	 but escaping special characters doesn’t work for a variable that is used as a numeric literal.
	
SQL-Injection/anti/set-password-escape.py
	 	def set_password():
	 	 userid = request.form["userid"]
	 	 password = cnx.converter.escape(request.form["password"])
	 	
	 	 # STILL UNSAFE!
	 	 query = f"""UPDATE Accounts
	 	 SET password_hash = SHA2('{password}', 256)
	 	 WHERE account_id = {userid}"""
	 	
	 	 cursor.execute(query)
	 	 cnx.commit()
	 	 return "OK"

	 If the userid input has malicious content, the query could still run as if it had been written like the following:
	
SQL-Injection/anti/set-password-escape.sql
	 	UPDATE Accounts SET password_hash = SHA2('xyzzy', 256)
	 	WHERE account_id = 123 OR TRUE

	
	
	
	 You can’t compare a numeric column directly to a string containing
	 digits in all brands of database. Some databases may implicitly
	 cast the string to a sensible numeric equivalent, but in standard
	 SQL you have to use the CAST function
	 deliberately to convert a string to a numeric data type.
	

	 There are also obscure corner cases where strings in non-ASCII
	 character sets can pass through a function intended to escape
	 the quote characters but leave unescaped quote characters
	 intact.[32][33]
	
Query Parameters

	
	
	 The solution most frequently cited as a panacea to SQL injection is
	 to use query parameters.
	 Instead of interpolating dynamic values into your SQL string,
	 leave parameter placeholders in the string
	 as you prepare the query.
	 Then provide a parameter value as you execute the prepared query.
	

	
	
	
	
	 The MySQL Connector for Python uses %s as placeholders in the following example.
	 That connector also supports the %(name)s placeholder format if the parameter values are provided in a Python dict (a dict in Python is a set of key/value pairs, similar to a Hash in Ruby or Perl, or a HashMap in Java).
	
SQL-Injection/anti/parameter.py
	 	name = request.args.get("name")
	 	cnx.execute("SELECT * FROM Products WHERE product_name = %s", [name])

	 Many programmers recommend this solution because you don’t have to
	 escape dynamic content or worry about flawed escaping functions.
	 In fact, query parameters are a very strong defense against
	 SQL injection.
	 Unfortunately, parameters aren’t a universal solution because the value of a
	 query parameter is always interpreted as a single literal value.
	 The following list describes cases where dynamic SQL cannot use a parameter.
	
	A list of values cannot be a single parameter:
	SQL-Injection/anti/parameter.py
	 	bugid_list = "1234,3456,5678"
	 	cnx.execute("SELECT * FROM Bugs WHERE bug_id IN (%s)", [bugid_list])

	 This works as though you provided a single string value composed
	 of digits and commas, which doesn’t work the same as a series
	 of integers:
	
	
SQL-Injection/anti/parameter.sql
	 	SELECT * FROM Bugs WHERE bug_id IN ('1234,3456,5678')

	A table identifier cannot be a parameter:
	SQL-Injection/anti/parameter.py
	 	table = "Bugs"
	 	cnx.execute("SELECT * FROM %s WHERE bug_id = 1234", [table])

	 This works as though you had entered a string literal in place
	 of the table name, which is simply a syntax error:
	
	
SQL-Injection/anti/parameter.sql
	 	SELECT * FROM 'Bugs' WHERE bug_id = 1234

	A column identifier cannot be a parameter:
	SQL-Injection/anti/parameter.py
	 	column = "date_reported"
	 	cnx.execute("SELECT * FROM Bugs ORDER BY %s", [column]);

	 In this example, the sort is a no-op, because the expression is a
	 constant string, the same on every row:
	
	
SQL-Injection/anti/parameter.sql
	 	SELECT * FROM Bugs ORDER BY 'date_reported';

	An SQL keyword cannot be a parameter:
	SQL-Injection/anti/parameter.py
	 	keyword = "DESC"
	 	cnx.execute("SELECT * FROM Bugs ORDER BY date_reported %s", [keyword]);

	 The parameter is interpreted as a literal string, not an SQL
	 keyword. In this example, the result is a syntax error.
	 	

	
SQL-Injection/anti/parameter.sql
	 	SELECT * FROM Bugs ORDER BY date_reported 'DESC'

What Was My Complete Query?

	
	 Many people think that using SQL query parameters is a way to quote
	 values into an SQL statement automatically.
	 This isn’t accurate, and thinking about query parameters this way
	 leads to misunderstanding about how they work.
	

	 The RDBMS server parses your SQL as you
	 prepare the query.
	 After this, nothing can change the syntax of that SQL query.
	

	 You provide values as you execute a prepared
	 query. Each value you provide is used for each placeholder,
	 one for one.
	

	 You can execute a prepared query again, substituting new parameter
	 values for the old values. So, the RDBMS must keep track of the
	 query and the parameter values separately. This is good for security.
	

	 This means that if you retrieve the prepared SQL query string,
	 it doesn’t contain any parameter values.
	 It would be handy to see the SQL statement including
	 parameter values if you’re debugging or logging queries,
	 but these values are never combined with the query in its
	 human-readable SQL form.
	

	
	
	
	 Debug your dynamic SQL by logging both
	 the query with parameter placeholders and
	 the parameter values separately.
	

Stored Procedures

	
	 Use of stored procedures is another method that many software
	 developers claim is proof against SQL injection vulnerabilities.
	 Typically, stored procedures contain fixed SQL statements, parsed
	 when you define the procedure.
	

	 However, it’s possible to use dynamic SQL unsafely in stored procedures.
	 In the following example, the input_userid
	 argument is interpolated into the SQL query verbatim, which is
	 unsafe.
	
SQL-Injection/anti/procedure.sql
	 	CREATE PROCEDURE UpdatePassword(
	 	 IN input_password VARCHAR(20),
	 	 IN input_userid VARCHAR(20))
	 	BEGIN
	 	 SET @sql = CONCAT('UPDATE Accounts
	 	 SET password_hash = SHA2(', QUOTE(input_password), ', 256)
	 	 WHERE account_id = ', input_userid);
	 	 PREPARE stmt FROM @sql;
	 	 EXECUTE stmt;
	 	END

	 Using dynamic SQL in a stored procedure is no
	 more and no less safe than using dynamic SQL in application code.
	 The input_userid argument can contain harmful content
	 and produce an unsafe SQL statement:
	
SQL-Injection/anti/set-password.sql
	 	UPDATE Accounts SET password_hash = SHA2('xyzzy', 256)
	 	WHERE account_id = 123 OR TRUE;

Data Access Frameworks

	
	 You might see advocates of data access frameworks claim that their
	 library protects your code from SQL injection risks. This is a false
	 claim for any framework that allows you to write SQL statements as
	 strings.
	 This gives the wrong idea that merely using the framework means that unsafe coding habits magically become safe.
	

	 No framework can force you to write safe SQL code.
	 A framework typically provides convenience functions to help you, but it’s up to you to use them.
	 It’s easy to bypass these functions and use common string interpolation
	 to build an SQL statement unsafely.

How to Recognize the Antipattern

 Practically every database application builds SQL statements dynamically.
 If you build any portion of an SQL statement by concatenating strings
 together or interpolating variables into strings, then the statement
 potentially exposes your application to SQL injection attacks.

 SQL injection vulnerabilities are so common that you should assume that
 you have some in any application that uses SQL, unless you’ve just
 completed a code review specifically to find and correct these issues.

Legitimate Uses of the Antipattern

 This antipattern is different from most of the others in this book,
 in that there aren’t any legitimate reasons for allowing your application
 to have a security vulnerability because of SQL injection.
 It’s your responsibility as a software developer to write code
 defensively and to help your peers to do so as well.
 Software is only as secure as its weakest link—make sure you’re not
 responsible for that weakest link!

Solution: Trust No One

 There is no single technique for securing your SQL code.
 You should learn all of the following techniques and use them in
 appropriate cases.

Filter Input

	Instead of wondering whether some input contains harmful content, you should
	strip away any characters that aren’t valid for that input.

 For example, if you need an integer, use a function like int() for simple cases like numbers:

SQL-Injection/soln/casting.py
	 	def get_products():
	 	 bugid = int(request.args.get("bugid"))
	 	
	 	 # SAFE!
	 	 sql = f"SELECT * FROM Bugs WHERE bug_id = {bugid}"
	 	
	 	 cursor.execute(sql)
	 	 return json.dumps(cursor.fetchall())

	Another type of filtering is to use regular expressions to match safe substrings.
	If the input doesn’t match the regular expression, then don’t use that input.
	Either transform the input, use a default value in place of the input, or else return an error.
SQL-Injection/soln/regexp.py
	 	def get_bugs():
	①	 o = request.args.get("order")
	 	
	②	 if re.search('^\w+$', o):
	 	 sortorder = o
	 	
	 	 else:
	③	 sortorder = "date_reported"
	 	
	 	 # SAFE!
	④	 sql = f"SELECT * FROM Bugs ORDER BY {sortorder}"
	 	
	 	 cursor.execute(sql)
	 	 return json.dumps(cursor.fetchall())

	①
	

	 Assign the value of the GET request parameter order to a variable.
	

	②
	

	 Use a regular expression to check that the value is a string of one or more characters that are alphanumeric or _.
	 If it does match that pattern, assign it to the sortorder variable.
	

	③
	

	 If the value does not match the regular expression pattern, assign a default value to sortorder.
	

	④
	

	 Format a string containing an SQL query, using a Python f-string to interpolate the variable.
	 By this time, you know that the string is safe to use as a column name, because it’s either the default value, or else at least it contains no quotes or other special characters.
	

Rule #31: Check the Back Seat

	If you like to watch monster movies, you know that creatures like to hide
	behind the driver seat of your car and grab you after you get in.
	The lesson is that you shouldn’t assume there’s no danger inside a
	familiar space like your car.

	SQL injection can take indirect forms.
	Any string could contain special characters, and thus be unsafe to use as-is in an SQL query.
	In the following example, a name is queried from the Accounts table, then interpolated into a fulltext search function.

SQL-Injection/anti/second-order.py
	 	sql1 = "SELECT last_name FROM Accounts WHERE account_id = 123"
	 	cursor.execute(sql1)
	 	
	 	for row in cursor:
	 	 # UNSAFE!
	 	 sql2 = f"SELECT * FROM Bugs WHERE MATCH(description) AGAINST ('{row["last_name"]}')"
	 	 cursor.execute(sql2)
	 	 print(cursor.fetchall())

	This could cause a problem in the previous query if the user had spelled their name
	as O’Hara.
	Just because the string was stored in your database doesn’t “bless” it—the string could cause an error if you use it as part of a subsequent SQL query.

	This type of SQL injection flaw is called second-order SQL injection.
	It usually only results in errors, but it has been used by malicious attackers too.

Parameterize Dynamic Values

	
	When the dynamic parts of your query are simple values,
	you should use query parameters, as mentionedhere.

SQL-Injection/soln/parameter.py
	 	def set_password():
	 	 userid = request.form["userid"]
	 	 password = request.form["password"]
	 	
	 	 # SAFE!
	 	 sql = """UPDATE Accounts
	 	 SET password_hash = SHA2(%s, 256)
	 	 WHERE account_id = %s"""
	 	
	 	 cursor.execute(sql, [password, userid])
	 	 cnx.commit()
	 	 return "OK"

	The examples in the “Antipattern” section showed a parameter can
	substitute only for a single value, after the RDBMS has parsed the SQL statement.
	So, no attempted SQL injection attack can change the syntax in a parameterized query.
	Even if an attacker tries to use a malicious parameter value
	such as 123 OR TRUE,
	the RDBMS interprets the parameter as a single string value. At worst, the query
	fails to apply to any rows; it’s not likely to apply to the wrong rows.

 The malicious value would result in a relatively safe SQL statement
	equivalent to the following:

SQL-Injection/soln/parameter.sql
	 	UPDATE Accounts SET password_hash = SHA2('xyzzy', 256)
	 	WHERE account_id = '123 OR TRUE'

 It looks strange to compare the account_id to a string, but it does no harm.
	Because account_id is a numeric column, the string is cast to its numeric value, based on the leading digits 123.
	The remaining characters are ignored.

	You should use query parameters when you need to combine application
	variables as literal values in SQL expressions.

Quoting Dynamic Values

	
	
	Query parameters are usually the best solution, but in rare cases a
	query with parameter placeholders causes the query optimizer to
	make odd decisions about which indexes to use.

	For example, suppose you have a column in the
	Accounts table called
	is_active.
	This column stores a true value for 99 percent of the rows, giving it an
	uneven distribution of values.
	A query that searches for is_active = false would benefit from
	an index, but it would be a waste to read the index for a query
	searching for is_active = true. However, if you used a
	parameter in the expression is_active = %s, the optimizer
	can’t know which value you will supply when you execute the prepared
	query, so it’s liable to choose the wrong optimization plan.

 It can be tricky to know when this optimizer variation happens.
	If you suspect the query is too slow (that is, you observed unsatisfactory performance in your application),
	then test the query execution plan with EXPLAIN (see Explain), with both common and uncommon values, and see if the plan is different.

	In exotic cases like this, it could be better to interpolate values
	directly into the SQL statement, in spite of the general recommendation
	to use query parameters.
	If you do this, you should quote the strings carefully.

SQL-Injection/soln/interpolate.py
	 	def get_account():
	 	 account_name_escaped = cnx.converter.escape(request.args.get("name"))
	 	
	 	 # SAFE!
	 	 sql = f"""SELECT * FROM Accounts
	 	 WHERE account_name = '{account_name_escaped}'"""
	 	
	 	 cursor.execute(sql)
	 	 return json.dumps(cursor.fetchall())

	Make sure you use a function that is mature and well tested against
	obscure SQL security issues.
	Most data access libraries include such a string-quoting function.
	Don’t try to implement your own quoting function unless you have
	studied the security risks thoroughly.
	Don’t use functions that are irrelevant to SQL, for example, HTML entity encoding.
Parameterizing an IN() Predicate

	We’ve seen that you can’t pass a comma-separated string in a single
	parameter.
	You need as many parameters as the number of items in your list.

	For example, say you need to query six bugs by their primary keys:

SQL-Injection/soln/in-predicate.py
	 	bug_list = [123, 234, 345, 456, 567, 678]
	 	sql = "SELECT * FROM Bugs WHERE bug_id IN (%s, %s, %s, %s, %s, %s)"
	 	cursor.execute(sql, bug_list)

	This works only if you have exactly six items in bug_list,
	matching the number of parameter placeholders.
	You should build the SQL IN predicate
	dynamically, using a number of placeholders equal to the
	number of items in bug_list.

	The following example produces an array of placeholders the same length as
	bug_list and then joins that array with commas
	before using it in the SQL expression.

SQL-Injection/soln/in-predicate.py
	 	bug_list = [123, 234, 345, 456, 567, 678]
	 	placeholders = ",".join(["%s"] * len(bug_list))
	 	sql = f"SELECT * FROM Bugs WHERE bug_id IN ({placeholders})"
	 	cursor.execute(sql, bug_list)

Isolate User Input from Code

	
	
	
	 Query parameters and escaping techniques help you combine literal
	 values into SQL expressions, but they don’t help with other parts
	 of a statement, such as table or column identifiers or SQL keywords.
	 You need another solution to make these parts of a query dynamic.
	

	 Suppose your users want to choose how to sort lists of bugs,
	 for instance by status or by date created.
	 They also want to choose the direction of sorting.
	
SQL-Injection/soln/orderby.sql
	 	SELECT * FROM Bugs ORDER BY status ASC;
	 	
	 	SELECT * FROM Bugs ORDER BY date_reported DESC;

	 In the following example, a Python script accepts request parameters
	 order and dir,
	 and the code naively uses interpolation to use these inputs in the SQL query
	 as a column name and a keyword.
	
SQL-Injection/soln/mapping.py
	 	def get_bugs_unsafe():
	 	 sortorder = request.args.get("order")
	 	 direction = request.args.get("dir")
	 	
	 	 # UNSAFE!
	 	 sql = f"SELECT * FROM Bugs ORDER BY {sortorder} {direction}"
	 	
	 	 cursor.execute(sql)
	 	 return json.dumps(cursor.fetchall())

	 The script assumes that the request input order contains the name of a column
	 and that dir contains either ASC or DESC.
	 This is not a safe assumption, because a user can send any parameter values in a web request.
	

	 Instead, you should look up the values of the inputs in a map, and then use the respective mapped values in your SQL query.
	 The following code shows an example of this.
	
SQL-Injection/soln/mapping.py
	 	def get_bugs_safe():
	①	 sortorders = {"status": "status", "date": "date_reported"}
	②	 directions = {"up": "ASC", "down": "DESC"}
	 	
	③	 s = request.args.get("order")
	 	 if s in sortorders:
	 	 sortorder = sortorders[s]
	 	 else:
	 	 sortorder = "bug_id"
	 	
	④	 d = request.args.get("dir")
	 	 if d in directions:
	 	 direction = directions[d]
	 	 else:
	 	 direction = "ASC"
	 	
	 	 # SAFE!
	⑤	 sql = f"SELECT * FROM Bugs ORDER BY {sortorder} {direction}"
	 	
	 	 cursor.execute(sql)
	 	 return json.dumps(cursor.fetchall())

	①
	

	 Declare a Python dict sortorders, to map valid user choices as keys and SQL column names as values.
	

	②
	

	 Declare a Python dict directions, to map valid user choices as keys and SQL keywords ASC and DESC as values.
	

	③
	

	 If the user’s choices match array keys in sortorders, then use the corresponding values.
	 Otherwise use a default value.
	

	④
	

	 Likewise, if the user’s choices match array keys in directions, then use the corresponding values.
	 Otherwise use a default value.
	

	⑤
	

	 Now the sortorder and direction variables are safe to use in your SQL query, because they can contain only values you declared explicitly in your code.
	
	

	 This technique has several advantages:
	
	

	 You never combine user input with your SQL query, so you reduce
	 the risk of SQL injection.
	

	

	 You can make any part of an SQL statement dynamic,
	 including identifiers, SQL keywords, and even entire expressions.
	

	

	 You have an easy and efficient way to validate user choices.
	

	

	 You decouple the internal details of your queries from the user interface.
	

	 The choices are hard-coded in your application, but this is
	 appropriate for table names, column names, and SQL keywords.
	 Allowing arbitrary input is typical for data values, but not for identifiers or keywords.
Isn't It Harder to Use Query Parameters?

	
 You’ve probably seen many code examples and tutorials that use string concatenation or variable interpolation for SQL queries.
	A score of programming books and blogs can’t be wrong, right?
	Old habits die hard.

	Using SQL query parameters is usually easier than the traditional code.
	The following old-school PHP example shows how an escaping function can be more trouble than it’s worth, and how query parameters can improve it.

SQL-Injection/soln/concat.php
	 	$sql = "INSERT INTO Accounts (account_id, account_name, email, password)
	 	 VALUES (".intval($account_id).","
	 	 .mysqli_real_escape_string($conn, $account_name)."', '"
	 	 .mysqli_real_escape_string($conn, $email)."' SHA256('"
	 	 .mysqli_real_escape_string($conn, $password).", 256)";
	 	mysqli_query($sql);

	There are two missing quotes, a missing comma, and a missing parenthesis in the preceding example.
	How long does it take you find them?
 They’re hard to spot because the SQL syntax is laced with PHP expressions.
	The double quotes open and close a PHP string repeatedly, and within the string, single quotes open and close SQL string literal syntax repeatedly.
	You might spend hours debugging code like this example.
	Compare with the following equivalent PHP code using query parameters.

SQL-Injection/soln/parameter-mysqli.php
	 	$sql = "INSERT INTO Accounts (account_id, account_name, email, password)
	 	 VALUES (?, ?, ?, SHA256(?, 256))";
	 	$stmt = mysqli_prepare($conn, $sql);
	 	mysqli_stmt_bind_param($stmt, "isss", $account_id, $account_name, $email, $password);
	 	mysqli_stmt_execute($stmt);

 This is much easier to write, easier to read, and easier to debug.
	You don’t need quotes around the parameter placeholders, so you can’t miss one.
	You can see mistyped commas and parentheses quickly.
	Another programmer who reads your code can understand the logic of the query more easily, too.

	PHP’s PDO extension makes using query parameters even more streamlined.

SQL-Injection/soln/parameter-pdo.php
	 	$sql = "INSERT INTO Accounts (account_id, account_name, email, password)
	 	 VALUES (?, ?, ?, SHA256(?, 256))";
	 	$stmt = $pdo->prepare($sql);
	 	$stmt->execute([$account_id, $account_name, $email, $password]);

 Learning to use query parameters takes only a little effort, and once you do, it will make you more productive many times over.
	The reliable protection from SQL injection is only one of the benefits.

Get a Buddy to Review Your Code

 The best way to catch flaws is to get another pair of eyes to look
	at it. Ask a teammate who is familiar with SQL injection risks to
	help you inspect your code. Don’t let pride or ego keep you from doing
	the right thing—you may be embarrassed now over missing a coding
	mistake, but would you rather have to admit responsibility later for a
	security flaw that allowed hackers to exploit your website?

	In an inspection for SQL injection, use the following guidelines:

	

	 Find SQL statements that are formed using application variables,
	 string concatenation, or replacement.
	
	

	

	 Trace the origin of all dynamic content used in your SQL
	 statements. Find any data that comes from an external source,
	 such as user input, files, environment, web services,
	 third-party code, or even a string fetched from the database.
	

	

	 Assume any external content is potentially hazardous.
	 Use filters, validators, and mapping arrays to transform
	 untrusted content.
	

	

	 Combine external data into your SQL statements using query
	 parameters or robust escaping functions.
	

	

	 Don’t forget to inspect your stored procedures and other places
	 where you may find dynamic SQL statements.
	

	Code inspection is the most accurate and economical way to find SQL
	Injection flaws.
	You should budget your time for this and treat it as a mandatory activity.
	You can also return the favor by inspecting your teammates’ code.

	You may also use an SQL query log or an application performance monitoring (APM) technology to watch for unexpected SQL queries, which could be the result of SQL injection attacks.

	
 [image: images/aside-icons/tip.png]
 	

 Let users input values, but never let users input code.

Mini-Antipattern: Query Parameters inside Quotes

	
 “Why does my query fail to find any data when I use a parameterized query?
	When I interpolate a variable into the SQL string, it works."

 A common mistake is to put the query parameter placeholder inside quotes (the following example uses ? as the placeholder, the default for MySQL):

	 	SELECT * FROM Bugs WHERE bug_id = '?'

	This treats the question mark symbol as a string literal,
	not a parameter placeholder.
	The bug_id, being an integer, is compared to the
	numeric value of the string literal, which is zero.
	In this table, the bug_id values start at 1, so a
	value of zero will not match any row.

	If you think about it, it must do this, because otherwise
	there would be no way to use a plain question mark character
	in a string.

	 	SELECT * FROM Bugs WHERE summary = 'Is this a bug?'

	This also comes up when programmers want to combine a query parameter with some literal text.
	The following example shows a case where the intent is to add the % wildcards before and after the query parameter placeholder, for a pattern-matching expression with LIKE:

	 	SELECT * FROM Bugs WHERE summary LIKE '%?%'

	You must treat the parameter placeholder as its own token in the query syntax.
	It behaves as if it were a string literal.
	You can use it in an expression, such as string concatenation:

	 	SELECT * FROM Bugs WHERE summary LIKE CONCAT('%', ?, '%')

 Alternatively, you could use a placeholder alone in the query, and pass a parameter value that is the result of a string formatting expression in your client application code.
	The following Python example uses an f-string to sandwich a variable with % wildcards before and after, then passes the resulting string as the query parameter.

	 	query = "SELECT * FROM Bugs WHERE summary LIKE %s"
	 	pattern = f"%{word}%"
	 	cursor.execute(query, [pattern])

 Notice the placeholder in the query is not inside single quotes.

Footnotes

	[27]
	
https://www.justice.gov/opa/pr/leader-hacking-ring-sentenced-massive-identity-thefts-payment-processor-and-us-retail

	[28]
	
https://www.bleepingcomputer.com/news/security/wordpress-related-vulnerabilities-saw-a-30-percent-uptick-in-2018/

	[29]
	
https://www.developernation.net/developer-reports/de20

	[30]
	
https://www.youtube.com/watch?v=BHnMItX2hEQ

	[31]
	
https://xkcd.com/327/

	[32]
	
https://bugs.mysql.com/bug.php?id=8378

	[33]
	
https://shiflett.org/blog/2006/addslashes-versus-mysql-real-escape-string

Copyright © 2022, The Pragmatic Bookshelf.

	Those who matter don’t mind, and those who mind don’t matter.

Bernard Baruch (on seating arrangements for his dinner party guests)

 Chapter
 22
Pseudokey Neat-Freak

 Your manager approaches you, holding two report printouts.
 “The bean counters are saying we have discrepancies between this
 quarter’s report and last quarter’s. I’m looking at them, and they’re
 absolutely right. Most of the later assets have disappeared.
 What happened?”

 You look at the reports, and the pattern of discrepancies rings a bell.
 “No, everything is still there.
 You asked me to clean up the rows in the database so there are no missing
 rows. You said the accountants kept asking you questions about
 missing assets, because of gaps in the numbering.

 “So, I renumbered some of the rows to make them all fit into the
 places where there were missing rows before. There aren’t any missing
 rows now—every number between 1 and about 12,340 is used.
 They’re all still there, but some have just changed number and moved
 up. You told me to do this.”

 Your manager shakes his head.
 “But that’s not what I want.
 The accountants have to track depreciation by the asset numbers.
 The number for each piece of equipment has to stay the same in each
 quarterly report. Besides, all the asset ID numbers are printed on labels
 on each piece. It’d take weeks to relabel everything in the company.
 Can you please change all the ID numbers back to their original
 values?”

 You want to be cooperative, so you turn back to your keyboard to start
 working, but suddenly you think of a new problem.
 “What about new assets we bought this month, after I consolidated
 the asset IDs? The new assets have been assigned ID values that were in
 use before I did the renumbering.
 If I change the asset IDs back to their old values,
 what should I do about the duplicates?”

Objective: Tidy Up the Data

 There’s a certain type of person who is unnerved by a gap in
 a series.

	bug_id
	status
	product_name

	1
	OPEN
	Open RoundFile

	2
	FIXED
	ReConsider

	4
	OPEN
	ReConsider

 On one hand, it’s understandable to be concerned, because it’s unclear
 what happened to the row with bug_id 3.
 Why didn’t the query return that bug? Did the database lose it?
 What was in that bug? Was the bug reported by one of our important
 customers? Am I going to be held responsible for the lost data?

 The objective of one who practices the Pseudokey
 Neat-Freak antipattern is to resolve these troubling
 questions. This person is accountable for data integrity issues, but
 typically they don’t have enough understanding of, or confidence in, the
 database technology to feel confident of the report results.

Antipattern: Filling in the Corners

 There are two ways you might fill the perceived gap.
Assigning Numbers Out of Sequence

	Instead of allocating a new primary key value using the automatic
	pseudokey mechanism, you might want to make any new row
	use the first unused primary key value. This way, as you insert
	data, you naturally make gaps fill in.

	bug_id
	status
	product_name

	1
	OPEN
	Open RoundFile

	2
	FIXED
	ReConsider

	4
	OPEN
	ReConsider

	3
	NEW
	Visual TurboBuilder

	However, you have to run an unnecessary self-join query to find the
	lowest unused value:

Neat-Freak/anti/lowest-value.sql
	 	SELECT b1.bug_id + 1
	 	FROM Bugs b1
	 	LEFT OUTER JOIN Bugs AS b2 ON (b1.bug_id + 1 = b2.bug_id)
	 	WHERE b2.bug_id IS NULL
	 	ORDER BY b1.bug_id LIMIT 1;

	Earlier in the book, we looked at a concurrency issue when you
	try to allocate a unique primary key value by running a query such as
	SELECT MAX(bug_id)+1 FROM Bugs
	(see Special Scope for Sequences).
	This has the same flaw when two applications may try to find
	the lowest unused value at the same time. As both try to use the same
	value as a primary key value, one succeeds, and the other gets an error.
	This method is both inefficient and prone to errors.

Renumbering Existing Rows

 You might find it’s more urgent to make the primary key values be
	contiguous, and waiting for new rows to fill in the gaps won’t fix the
	issue quickly enough.
	You might think to use a strategy of updating the key values of
	existing rows to eliminate gaps and make all the values contiguous.
	This usually means you find the row with the highest primary key value
	and update it with the lowest unused value.
	For example, you could update the value 4 to 3:

Neat-Freak/anti/renumber.sql
	 	UPDATE Bugs SET bug_id = 3 WHERE bug_id = 4;

	bug_id
	status
	product_name

	1
	NEW
	Open RoundFile

	2
	FIXED
	ReConsider

	3
	DUPLICATE
	ReConsider

	To accomplish this, you need to find an unused key value using a method
	similar to the previous one for inserting new rows.
	You also need to run the UPDATE statement to
	reassign the primary key value.
	Either one of these steps is susceptible to concurrency issues.
	You need to repeat the steps many times to fill a wide gap in the
	numbers.

	You must also propagate the changed value to all child records that
	reference the rows you renumber.
	This is easiest if you declared foreign keys with the ON UPDATE
	CASCADE option, but if you didn’t, you would have to disable
	constraints, update all child records manually, and restore the
	constraints.
	This is a laborious, error-prone process that can interrupt service
	in your database, so if you feel you want to avoid it, you’re right.

	Even if you do accomplish this cleanup, it’s short lived.
	When a pseudokey generates a new value, the value is greater than the
	last value it generated (even if the row with that value has since been
	deleted or changed), not the highest value currently in
	the table, as some database programmers assume.
	Suppose you update the row with the greatest
	bug_id value 4 to the lower unused
	value to fill a gap. The next row you insert using the default
	pseudokey generator will allocate 5, leaving a new gap at
	4.

Manufacturing Data Discrepancies

	The story at the beginning of this chapter describes some hazards
	of renumbering primary key values. If another system external to your
	database depends on identifying rows by their primary keys, then your
	updates invalidate the data references in that system.

	It’s not a good idea to reuse the row’s primary key value, because a
	gap could be the result of deleting or rolling back a row for a good
	reason.
	For example, suppose a user with account_id 789
	is barred from your system for sending offensive emails.
	Your policies require you to delete the offender’s account, but if you
	recycle primary keys, you would subsequently assign 789 to another
	user.
	Since some offensive emails are still waiting to be read by some
	recipients, you could get further complaints about account
	789. Through no fault of his own, the poor user who now has
	that number catches the blame.

	Don’t reallocate pseudokey values just because they seem to be
	unused.
	

How to Recognize the Antipattern

 The following quotes can be hints that someone in your organization is
 about to use the Pseudokey Neat-Freak antipattern.

	

	 “How can I reuse an autogenerated identity value after
	 I roll back an insert?”
	

	
	
	 Pseudokey allocation doesn’t roll back; if it did, the RDBMS would
	 have to allocate pseudokey values within the scope of a transaction.
	 This would cause either race conditions or blocking when multiple
	 clients are inserting data concurrently.
	

	

	 “What happened to bug_id 4?”
	

	 This is an expression of misplaced anxiety over unused numbers in the
	 sequence of primary keys.
	

	

	 “How can I query for the first unused ID?”
	

	 The reason to do this search is almost certainly to reassign the ID.
	

	

	 “What if I run out of numbers?”
	

	 This is used as a justification for reallocating unused ID values.
	 See Mini-Antipattern: Is a BIGINT Big Enough?.
	

Solution: Recover from Errors Gracefully

 Anyone who enjoys dancing knows that missteps are inevitable.
 The secret to remaining graceful is to know how to recover.
 Give yourself a chance to notice the cause of the mistake.
 Then you can react quickly and seamlessly, getting back into
 rhythm before anyone has noticed your gaffe.

Maintain the Rhythm

	Checking return status and exceptions from database API calls
	is the best way to ensure that you haven’t missed a step.
	The following example shows code that checks the status after
	each call that could cause an error:

See-No-Evil/soln/check.py
	 	import mysql.connector
	 	from mysql.connector import errorcode
	 	
	 	try:
	 	 cnx = mysql.connector.connect(user='scott', database='test')
	 	
	①	except mysql.connector.Error as err: # check for errors
	 	 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
	 	 print("Something is wrong with your user name or password")
	 	 elif err.errno == errorcode.ER_BAD_DB_ERROR:
	 	 print("Database does not exist")
	 	 else:
	 	 print(err)
	 	
	 	cursor = cnx.cursor()
	 	
	 	try:
	 	 query = '''SELECT bug_id, summary, date_reported FROM Bugs
	 	 WHERE assigned_to = %s AND status = %s'''
	 	
	 	 parameters = (1, 'NEW')
	 	
	 	 cursor.execute(query, parameters)
	 	
	②	except mysql.connector.Error as err:
	 	 print(err)

	The code at ① catches the exception
	that is thrown if a database connection fails, and outputs the
	exception message. It’s even better to log the SQL exception for the
	developer to inspect, and show a more friendly message to the user
	instead.
	Likewise, you should handle exceptions for the query execution,
	as shown at ②.

Retrace Your Steps

 It’s also important to use the actual SQL query to debug a problem,
	instead of the code that produces an SQL query.
	Many simple mistakes, such as misspellings or imbalanced quotes or
	parentheses, are apparent instantly, even though they’re obscure and
	puzzling otherwise.

	

	 Build your SQL query in a variable, instead of building
	 it ad hoc in the arguments of the API method to prepare the query.
	 This will give you the opportunity to examine the variable
	 before you use it.
	
	
	

	

	
	
	
	 Choose a place to output SQL that is not part of your application
	 output, such as a log file, an IDE debugger console,
	 or a browser extension to show diagnostic output.
	

	

	
	 Do not print the SQL query within HTML comments of a web
	 application’s output. Any user can view your page source.
	 Reading the SQL query gives hackers a lot of knowledge about
	 your database structure.
	

	Using an object-relational mapping (ORM) framework that builds and
	executes SQL queries transparently can make debugging harder,
	because the SQL query is generated on the fly by the ORM code.
	Some ORM frameworks solve this by sending generated SQL to a log.
	A common example for most web application languages is that the
	code errors are output to the http server error log.
	You should learn which log is used by your language in your
	code environment, and watch the log while you are debugging.

	Finally, most database brands provide their own logging mechanism on
	the database servers instead of in application client code.
	If you can’t enable SQL logging in the application, you can still
	monitor queries as the database server executes them.

	
 [image: images/aside-icons/tip.png]
 	

 Assume any line of code will fail, instead of assuming it will work.
 You need to collect information about the nature and cause of the failure before you can troubleshoot it.

Legitimate Uses of the Antipattern

 There’s no reason to change the value of a pseudokey, since the value
 should have no significance anyway. If the values in the primary key
 column carry some meaning, then this column is a natural
 key, not a pseudokey. It’s not unusual to change values in
 a natural key.

Solution: Get Over It

 The values in any primary key must be unique and non-null so you can use
 them to reference individual rows, but that’s the only rule—they don’t
 have to be consecutive numbers to identify rows.

Numbering Rows

	Pseudokey generators return numbers that look almost like row
	numbers, because they’re monotonically increasing
	(each successive value is one greater than the preceding
	value), but this is only a coincidence of their implementation.
	Generating values in this way is a convenient way to ensure uniqueness.

	Don’t confuse row numbers with primary keys. A primary key identifies
	one row in one table, whereas row numbers identify rows in a result set.
	Row numbers in a query result set don’t correspond to primary key
	values in the table, especially when you use query operations like
	JOIN, GROUP BY, or ORDER BY.

	There are good reasons to use row numbers, for example, to return a
	subset of rows from a query result. This is often called
	pagination, like a page of an Internet search.
	To select a subset in this way, use true row numbers that
	are increasing and consecutive, regardless of the form of
	the query.

	SQL:2003 specifies window functions including
	ROW_NUMBER, which returns consecutive numbers
	specific to a query result set. A common use of row numbering is to
	limit the query result to a range of rows:

Neat-Freak/soln/row_number.sql
	 	SELECT t1.* FROM
	 	 (SELECT a.account_name, b.bug_id, b.summary,
	 	 ROW_NUMBER() OVER (ORDER BY a.account_name, b.date_reported) AS rn
	 	 FROM Accounts a JOIN Bugs b ON (a.account_id = b.reported_by)) AS t1
	 	WHERE t1.rn BETWEEN 51 AND 100;

	These functions are now supported by nearly every popular brand of
	SQL database.

Using GUIDs

	You could also generate random pseudokey values, as long as you don’t
	use any number more than once.
	Some databases support a globally unique
	identifier (GUID) for this purpose.

	A GUID is a pseudorandom number of 128 bits
	(usually represented by at least 32 hexadecimal digits).
	For practical purposes, a GUID is unique, so you can use it to
	generate a pseudokey.

	The following example uses Microsoft SQL Server 2005 syntax:

Neat-Freak/soln/uniqueidentifier-sql2005.sql
	 	CREATE TABLE Bugs (
	 	 bug_id UNIQUEIDENTIFIER DEFAULT NEWID(),
	 	 -- . . .
);
	 	
	 	INSERT INTO Bugs (bug_id, summary)
	 	VALUES (DEFAULT, 'crashes when I save');

	This creates a row like the following:

	bug_id
	summary

	0xff19966f868b11d0b42d00c04fc964ff
	Crashes when I save

	Using GUIDs has at least two advantages over pseudokey generators:

	

	 You can generate pseudokeys on multiple database servers
	 concurrently without using the same values.
	

	

	 No one will complain about gaps—they’ll be too busy complaining
	 about typing thirty-two hex digits for primary key values.
	

	The latter point leads to some of the disadvantages:

	

	 The values are long and hard to type.
	

	

	 The values are random, so you can’t infer any pattern or rely on
	 a greater value indicating a more recent row.
	

	

	
	
	 Storing a GUID requires at least 16 binary bytes. This takes more space
	 and runs more slowly than using a typical 4-byte integer
	 pseudokey.
	

The Most Important Problem

 Now that you know the problems caused by renumbering pseudokeys
	and some alternative solutions for related goals, you still have
	one big problem to solve: how do you fend off an order from a boss
	who wants you to tidy up the database by closing the gaps in a
	pseudokey?
	This is a problem of communication, not technology.
	Nevertheless, you might need to manage your
	manager to defend the data integrity of your database.
	

	

	 Explain the technology.
	 Honesty is usually the best policy.
	 Be respectful and acknowledge the request.
	 For example, tell your manager this:
	

	 “The gaps do look strange, but they’re harmless.
	 It’s normal for rows to be skipped, rolled back, or deleted
	 from time to time.
	 We allocate a new number for each new row in the database,
	 instead of writing code to figure out which old numbers we can
	 reuse safely.
	 This makes our code cheap to develop, makes it faster to run, and
	 reduces errors.”
	

	

	 Be clear about the costs.
	 Changing the primary key values seems like a trivial task, but
	 you should give realistic estimates for the work to
	 calculate new values,
	 write and test code to handle duplicate values,
	 cascade changes throughout the database,
	 investigate the impact to other systems,
	 and train users and administrators to manage the new procedures.
	
	

	 Most managers prioritize based on cost of a task, and they should
	 back down from requesting frivolous, micro-optimizing work when
	 they’re confronted with the real cost.
	

	 If the manager still wants you to do this, then ask them
	 if this should delay your other assignments.
	 Remind them of the other tasks you would need to postpone,
	 and ask if your manager still thinks renumbering pseudokeys
	 rises to the top of that list.
	

	

	 Use natural keys.
	 If your manager or other users of the database insist on
	 interpreting meaning in the primary key values, then let there be
	 meaning.
	 Don’t use pseudokeys—use a string or a number that encodes some
	 identifying meaning. Then it’s easier to explain any gaps
	 within the context of the meaning of these natural keys.
	

	

	 You can also use both a pseudokey and another attribute column
	 you use as a natural identifier. Hide the pseudokey from reports
	 if gaps in the numeric sequence make readers anxious.

	
 [image: images/aside-icons/tip.png]
 	

 Use pseudokeys as unique row identifiers; they’re not row numbers.

Mini-Antipattern: Auto-Increment per Group

 “I need an auto-increment column, but it must start over at 1 for each subgroup of rows.”

 This request takes many forms.
	Rankings of sports players per team, or per year.
	Invoices per customer.
	Regardless of the reason for it, there are a few problems
	with this requirement.

 First, allocating new incremental values becomes more complex.
	Inserting a row needs to check the most recent value generated
	for the same subgroup, which means blocking concurrent inserts
	while it examines the current set of rows.
	This can result in a bottleneck and hinder fast inserts.

	An alternative is that inserts must create new sequence
	generators on the fly, for each new subgroup.
	This might lead to an explosion in the number of sequence
	generators.
	If the subgroups each have just one row, then there will
	be as many sequence generators as rows in the table itself.

	Second, numbering rows per subgroup sounds like it will serve as
	an ordinal ranking.
	Remember that pseudokeys are intended to be unique, but
	it’s more difficult to ensure they use consecutive values.
	If rows are deleted, or transactions rolled back, the
	consecutive values must be reassigned, possibly for many rows.

 A better solution is to number rows when you query them,
	which is easy to do with the ROW_NUMBER() window function.
	This ensures that you get a sequence of ordinal integers with no gaps,
	restarting for each subgroup defined by the PARTITION BY
	option.
	
	
	

	 	SELECT bug_id, author, comment,
	 	 ROW_NUMBER() OVER (PARTITION BY bug_id
	 	 ORDER BY comment_date) AS comment_number
	 	FROM Comments;

Copyright © 2022, The Pragmatic Bookshelf.

 It is a capital mistake to theorize before you have all the evidence.

Sherlock Holmes

 Chapter
 23
See No Evil

 “I found another bug in your product,”
 the voice on the phone said.

 I got this call while working as a technical support engineer for an
 SQL RDBMS product.
 We had one customer who was well known for making spurious reports
 against our database.
 Nearly all of his reports turned out to be simple mistakes on his part,
 not bugs.

 “Good morning, Mr. Davis. Of course, we’d like to fix any problem
 you find,” I answered. “Can you tell me what happened?”

 “I ran a query against your database, and nothing came back.”
 Mr. Davis said sharply.
 “But I know the data is in the database—I can verify it in a test script.”

 “Was there any problem with your query?” I asked.
 “Did the API return any error or warning?”

 Davis replied, “Why would I look at the return value of an API
 function? The function should just run my SQL query.
 If it returns an error, that indicates your product has a bug in it.
 If your product didn’t have bugs, there would be no errors.
 I shouldn’t have to work around your bugs.”

 I was stunned, but I had to let the facts speak for themselves.
 “OK, let’s try a test. Copy and paste the exact
 SQL query from your code into the query tool, and run it.
 What does it say?” I waited for him.

 “Syntax error at SELCET.”
 After a pause, he said, “You can close this issue,”
 and he hung up abruptly.

 Mr. Davis was the sole developer for an air traffic control company,
 writing software that logged data about international airplane flights.
 We heard from him every week.

Objective: Write Less Code

 Everyone wants to write elegant code.
 That is, we want to do cool work with less code.
 The cooler the work is and the less code it takes us,
 the greater the ratio of elegance.
 If we can’t make our work cooler, it stands to reason that
 at least we can improve the elegance ratio (the ratio of
 coolness to code volume) by doing the same work in fewer lines of code.

 That’s a superficial reason, but there are better reasons to
 write concise code:

	
	 We’ll finish coding a working application more quickly.
	
	
	 We’ll have less code to test, to document, or to have peer reviewed.
	
	
	 We’ll have fewer bugs if we have fewer lines of code.
	

 It’s therefore an instinctive priority for programmers to
 eliminate any code they can, especially if that code fails to increase
 coolness.

Antipattern: Making Bricks Without Straw

 Developers commonly practice the See No Evil antipattern in two forms:
 first, ignoring the return values of a database API,
 and second, reading fragments of SQL code interspersed with application
 code.
 In both cases, developers fail to use information that is easily
 available to them.

Diagnoses Without Diagnostics

 The following code example contains errors, but no error checking.

See-No-Evil/anti/no-check.py
	 	import mysql.connector
	 	
	①	cnx = mysql.connector.connect(user='scottt', database='test')
	 	
	 	cursor = cnx.cursor()
	 	
	 	query = '''SELCET bug_id, summary, date_reported FROM Bugs
	 	 WHERE assigned_to = %s AND status = %s'''
	 	
	 	parameters = (1, 'NEW')
	 	
	②	cursor.execute(query, parameters)
	 	
	 	for row in cursor:
	 	 print(row)

	This code is concise, but there are several places in this code where
	status values returned from functions could indicate a problem.
	You’ll never know about it if you ignore the return values.

 Probably the most common error from a database API occurs when you
	try to create a database connection, for example at
	①.
	You could accidentally mistype the database name or server hostname
	or you could use the wrong user or password, or the database server
	could be down or unreachable.
	Depending on the language and database connector, such an
	accident may throw an exception, which would terminate the
	example script.
	In other languages, exceptions are not thrown, but the result of the
	connection is an invalid object.

	The mistake in the username used in the previous Python example
	results in an error like the following:

	 	mysql.connector.errors.ProgrammingError: 1045 (28000):
	 	Access denied for user 'scottt'@'localhost'

	If you fix the misspelled username, then the call to
	execute at
	② could throw an exception if you
	have a simple syntax error caused by a typo, an imbalanced
	parenthesis, or a misspelled column name.

	 	mysql.connector.errors.ProgrammingError: 1064 (42000):
	 	You have an error in your SQL syntax;
	 	check the manual that corresponds to your MySQL server version
	 	for the right syntax to use near 'SELCET bug_id, ...

	Programmers with attitudes like Mr. Davis aren’t uncommon.
	They may feel that checking return values and exceptions adds nothing
	to their code, because those cases aren’t supposed to happen anyway.
	Also, the extra code is repetitive and makes an application ugly and
	hard to read.
	Checking errors definitely adds no coolness, but it does add
	lines of code, so unfortunately it reduces the ratio of
	coolness to lines of code.

	Users don’t see the code; they only see the output.
	When a fatal error goes unhandled, the user may see an
	incomprehensible exception message, or a blank white
	screen:

[image: images/See_No_Evil/fatal-error.png]

	When this happens, it’s no consolation that the code is tidy and concise.

Lines Between the Reading

	Another common bad habit that fits the See No Evil antipattern is
	to debug by staring at application code that builds an SQL query
	as a string. This is difficult because it’s hard to visualize the
	resulting SQL string after you build it with application logic,
	string concatenation, and extra content from application variables.

 Trying to debug in this way is like trying to solve a jigsaw
	puzzle without looking at the photo on the box.

	For a simple example, let’s look at a type of question I see
	frequently from developers. The following code builds a query
	conditionally by concatenating a WHERE clause if the
	script needs to search for a specific bug instead of a collection
	of bugs.

See-No-Evil/anti/white-space.py
	 	import mysql.connector
	 	
	 	bug_id = int(input() or '0')
	 	
	 	cnx = mysql.connector.connect(user='scott', database='test')
	 	
	 	cursor = cnx.cursor()
	 	
	 	query = '''SELECT * FROM Bugs'''
	 	
	 	parameters = tuple()
	 	
	 	if bug_id > 0:
	 	 query = query + '''WHERE bug_id = %s'''
	 	 parameters = parameters + (bug_id,)
	 	
	 	cursor.execute(query, parameters)
	 	
	 	for row in cursor:
	 	 print(row)

	Why would the query in this example give an error? The answer is
	clearer if you look at the full query string resulting
	from the concatenation:

See-No-Evil/anti/white-space.sql
	 	SELECT * FROM BugsWHERE bug_id = 1234

	There’s no whitespace between Bugs and WHERE,
	which gives the query invalid syntax, as though it were reading
	a table called BugsWHERE, followed by an SQL
	expression in an invalid context.
	The code has concatenated the strings with no space between them.

	Developers waste an unbelievable amount of time and energy trying
	to debug problems like this by looking at the code that builds the
	SQL, instead of looking at the SQL itself.

How to Recognize the Antipattern

 Though you might think that it’s difficult to spot code when it is missing,
 modern IDE products highlight code when it ignores a function’s
 return value, or neglects to handle a checked exception.
 You might also recognize the See No Evil antipattern from the
 following phrases:

	

	 “My program crashes after I query the database.”
	

	 Often the crash happens because your query failed, and you tried
	 to use the result in an illegal manner, such as calling a
	 method on a nonobject or dereferencing a null pointer.
	

	

	 “Can you help me find my SQL error? Here’s my code...”
	

	 First, start by looking at the SQL, not the code that builds it.
	

	

	 “I don’t bother cluttering up my code with error handling.”
	

	
	
	 Some computer scientists have estimated that up to 50 percent
	 of the lines of code in a robust application are devoted to
	 handling error cases.
	 This may seem like a lot, unless you think of all the steps
	 that you could include under error handling: detecting,
	 classifying, reporting, and compensating.
	 You can also get a feel for the variety of errors by examining your automated tests, and counting how many unit test cases are required to validate handling of all the potential error cases.
	 It’s important for any software to be able to do all that.
	

Legitimate Uses of the Antipattern

 You can omit error checking when there’s really nothing
 for you to do in response to the error. For example, the
 close function for a database connection
 returns a status, but if your application is about to finish and
 exit anyway, it’s likely that the resources for that connection
 will be cleaned up regardless.

 Exceptions in object-oriented languages allow you to trigger an
 exception without being responsible for handling it.
 Your code trusts that whatever code called yours is the code that’s
 responsible for handling the exception. Your code can then allow
 the exception to pass back up the calling stack.

Mini-Antipattern: Reading Syntax Error Messages

	In the case of SQL syntax errors, MySQL provides useful
	information:
	exactly what part of the SQL query followed the part where
	the syntax parser got confused or was expecting something
	different.

	In Mini-Antipattern: Reserved Words, you saw how a query that
	uses a reserved keyword in an unexpected position can result
	in a syntax error.
	Other types of syntax errors can be caused by missing keywords,
	extra keywords, or mistakes using punctuation.

	The following should use the ORDER BY syntax, but
	the keyword BY is missing.

	 	SELECT * FROM Bugs ORDER date_reported;
	 	 ^ error starts here

	 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ’date_reported’ at line 1
	

	The following shows a misunderstanding about how to write
	an expression in a WHERE clause; the WHERE
	keyword should appear only once, followed by a boolean expression.

	 	SELECT * FROM Bugs WHERE status = 'NEW' AND WHERE assigned_to = 123;
	 	 ^ error starts here

	 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ’WHERE assigned_to = 1’ at line 1
	

	The next example shows the syntax parser got confused at the
	very end of the query, because it ended without closing the
	parentheses. Since the error occurs at the end of the
	query, what follows is an empty string.
	You saw in the previous example that the excerpt following the mistake is shown between single quotes.
	Since the excerpt after the end of a query is an empty string, the following error message shows two single quotes with nothing inside.

	 	SELECT * FROM Bugs WHERE (status = 'NEW';
	 	 ^ error starts here

	 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ” at line 1
	

	In each case, you should inspect the query carefully at the
	point where the error message indicates, and you’ll have a
	lead on what part you need to fix.

 Error messages are often hard to understand.
	Some are worse than others (for example, Oracle’s error
	messages are famously bad),
	but you should try to learn what you can from them.
	
	
	
	
	
	
	
	

Copyright © 2022, The Pragmatic Bookshelf.

 If it’s not written down, it didn’t happen.

 common aphorism

 Chapter
 24
Diplomatic Immunity

 One of my earliest jobs gave me a lesson in the importance of using
 software engineering best practices, after a tragic accident left me
 responsible for an important database application.

 I interviewed for a contract job at Hewlett-Packard to develop and
 maintain an application on UNIX, written in C with HP ALLBASE/SQL.
 The manager and staff interviewing me told me sadly that their programmer
 who had worked on that application was killed in a traffic accident.
 No one else in their department knew how to use UNIX or anything about the
 application.

 After I started the job, I found that the developer had never written
 documentation or tests for this application, and he never used a version
 control system for his code, or even code comments.
 All his code resided in a single directory, including code that was part of
 the live system, code that was under development, and code that was no
 longer used.

 This project had high technical debt—a consequence
 of using shortcuts instead of best practices.
 echnical debt causes risk
 and extra work in a project until you pay it off
 by refactoring, testing, and documenting.

 I worked for six months to organize and document the code for what was
 really a fairly modest application, because I had to spend a lot of my time
 supporting its users and continuing development.

 There was obviously no way that I could ask my predecessor to help me come
 up to speed on the project.
 The experience really demonstrated the impact of letting
 technical debt get out of control.

Objective: Employ Best Practices

 Professional programmers strive to use good software engineering habits
 in their projects, such as the following:

	

	 Keeping application code under version control using tools
	 such as Git or Subversion.
	
	
	 	
	 	

	

	

	 Developing and running automated unit tests or functional
	 tests for applications.
	
	
	
	

	

	
	
	 Writing code with documentation, specifications, comments, and consistent code style to support
	 the requirements, implementation strategies, operation, and maintenance of an application.
	

 The time you take to develop software using best practices is a net win,
 because it reduces a lot of needless or repetitive work.
 Most experienced developers know that sacrificing these practices
 for the sake of expediency is a recipe for failure.

Antipattern: Make SQL a Second-Class Citizen

 Even among developers who accept best practices when developing
 application code, there’s a tendency to think of database code as exempt
 from these practices.
 This antipattern is called Diplomatic Immunity
 because it assumes that the rules of application development don’t apply
 to database development.

 Developers make this assumption for a variety of reasons:

	

	
	 The role of software engineer and database administrator are separate
	 in some companies.
	 The DBA typically works with several teams of programmers, so there’s
	 a perception that they’re not a full-time member of any one of these
	 teams.
	 They’re treated like a visitor, and they’re not subject to the same
	 responsibilities as the software engineers.
	

	

	 The SQL language used for relational databases differs from
	 conventional programming.
	 Even the way you invoke SQL statements as a specialized language
	 within application code suggests a kind of guest-like status.
	

	

	 Advanced IDE tools are popular for application code languages, making
	 editing, testing, and version control quick and painless.
	 But tools for database development are not as advanced, or at least
	 not as widely used.
	 Developers can code applications with best practices easily,
	 but applying these practices to SQL feels clumsy by comparison.
	 Developers tend to find other things to do.
	

	

	 In IT, it’s ordinary for knowledge and operation of the database
	 to be focused on one person—the DBA.
	 Because the DBA is the only one who has access to the database
	 server, they serve as a living knowledge base and version control
	 system.
	

 The database is the foundation of an application, and quality matters.
 You know how to develop application code with high quality, but you may
 be building your application on top of a database that has failed to
 solve the needs of the project or that no one understands.
 The risk is that you’re developing an application only to find that
 you have to scrap it.

How to Recognize the Antipattern

 You might think it’s hard to show evidence of not doing something,
 but that isn’t always true.
 The following are some telltale signs of cutting corners:

	

	 “We are adopting the new engineering process—that is, a
	 lightweight version of it.”
	

	 Lightweight in this context means that the team
	 intends to skip some tasks that the engineering process calls for.
	 Some of these may be legitimate to skip, but it could also be a
	 euphemism for not following important best practices.
	

	

	 “We don’t need the DBA staff to attend training for our new
	 version control system, since they don’t use it anyway.”
	

	 Excluding some technical team members from training (and probably
	 access) ensures that they won’t use those tools.
	

	

	 “How can we track which tables and columns contain
	 personally identifiable information (PII) or sensitive personal information (SPI)?
	 We have to prove that we are handling sensitive
	 data correctly, to comply with audits and privacy laws.”
	

	
	
	
	 Data privacy is now a very important topic even for small
	 businesses.
	 If you don’t keep accurate and current documentation for
	 your database schema, you have to resort to treating
	 all the data as sensitive. This makes your project more costly,
	 because it adds continual work and expense for
	 ensuring compliance and paying for storage to retain data.
	

	

	 “Is there a tool to compare two database schemas, report
	 the differences, and create a script to alter one to reconcile with the
	 other?”
	

	 If you don’t follow a process of deploying changes to database
	 schema, they can get out of sync, and then it’s a complicated task to
	 bring them back into order.
	

	

	 “My code is self-documenting.”
	

	
	 This is often given as an excuse for absent documentation or code comments.
	 This has become a cliché, but it’s hardly ever true.
	

Legitimate Uses of the Antipattern

 While documentation, tests, and version control
 are good habits for any code you want to use more than once,
 you may also write code that is truly ad hoc,
 such as a one-time test of an API function, or code you write
 as a proof of concept or to teach a colleague some technique.

 A quick test for whether code is really temporary is to delete it
 immediately after you’ve used it.
 If you can’t bring yourself to do that, then it’s probably worth keeping.
 If it’s worth keeping, then you should commit it in a version control repository
 and write at least some brief notes about what the code is for and
 how to use it.

 As a compromise, some developers have the habit of storing ad hoc code in a “gist,” or a special repository for code or notes for which they haven’t found a more official home.

Solution: Establish a Big-Tent Culture of Quality

 Quality is simply testing to most software developers, but that’s
 only quality control—just a part of the story.
 The full life cycle of software engineering involves
 quality assurance,
 which includes three parts:

	Specify project requirements and deliverables clearly and in writing.
	Design and develop a solution for your requirements.
	Validate and test that your solution matches the requirements.

 You need to do all three of these to perform QA correctly, although
 in some software methodologies, you don’t necessarily have to do them in
 that order.

	
	
	
 You can achieve quality assurance in database development by following
 best practices in documentation,
 source code version control, and
 testing.

Exhibit A: Documentation

 There’s no such thing as self-documenting code.
	Although it’s true that a skilled programmer can decipher most
	code through a combination of careful analysis and experimentation,
	this is laborious (if code were readable, one wouldn’t call it code).
	Also, code can’t tell you about missing features or unsolved problems.

	You should document the requirements and implementation of a database
	just as you do application code.
	Whether you’re the original designer of the database
	or you’re inheriting a database designed by someone else,
	use the following checklist to document a database:

	Entity-relationship diagram:
	

	 The single most important piece of documentation for a database
	 is an ER diagram showing the tables and their relationships.
	 Several chapters in this book use a simple form of ER diagrams.
	 More complex ER diagrams have notation for columns, keys, indexes,
	 and other database objects.
	
	
	

	 Some diagramming software packages include elements for ER diagram
	 notation.
	 Some tools can even reverse-engineer an SQL script or a live
	 database and produce an ER diagram.
	

	 One caveat is that databases can be complex and have so many tables
	 that it’s impractical to use a single diagram.
	 In this case, you should decompose it into several diagrams.
	 Usually you can choose natural subgroups of tables so each diagram
	 is readable enough to be useful and not overwhelming to the reader.
	

	Tables, columns, and views:
	

	 You also need written documentation for your database,
	 because an ER diagram isn’t the right format to describe
	 the purpose and usage of each table, column, and other object.
	
	
	
	

	 Tables need a description of what type of entity the table models.
	 For example, Bugs,
	 Products, and Accounts
	 are pretty clear, but what about a lookup table like
	 BugStatus
	 or an intersection table like BugsProducts
	 or a dependent table like Comments?
	 Also, how many rows do you anticipate each table to have?
	 What queries against this table do you expect?
	

	 Columns each have a name and a data type, but that doesn’t tell the
	 reader what the column’s values mean, or
	 what values make sense in that column (it’s probably not every
	 value allowed for the data type).
	 For columns storing a quantitative value, the unit of
	 measurement should be clear.
	 Does the column allow nulls or not, and why?
	

	 Views store frequently used queries against one or more tables.
	 What made it worthwhile to create a given view?
	 What application or user is expected to use the view?
	 Was the view intended to abstract a complex relationship of tables?
	 Was it intended to allow unprivileged users to run prescribed queries?
	 Is the view updatable?
	

	Relationships:
	

	 Referential integrity constraints implement dependencies between
	 tables, but this might not tell everything that you intend the
	 constraints to model.
	 For example, Bugs.reported_by is not nullable,
	 but Bugs.assigned_to is nullable.
	 Does that mean a bug can be fixed before it’s assigned?
	 If not, when must the bug be assigned?
	
	
	

	 In some cases, you may have implicit relationships but no
	 constraints for them. Without documentation, it’s hard to know
	 where these relationships exist.
	

	Triggers:
	

	 Data validation, data transformation, and logging database changes
	 are examples of tasks for a trigger.
	 What business rules are you implementing in triggers?
	
	

	Stored procedures:
	

	 Document your stored procedures like an API.
	 What problem is the procedure solving?
	 Does a procedure perform any changes to data?
	 What are the data types and meanings of the input and output
	 parameters?
	 Do you intend the procedure to replace a certain type of
	 query to eliminate a performance bottleneck?
	 Do you use the procedure to grant unprivileged users access
	 to privileged tables?
	 	
	

	SQL Security:
	

	 What database users do you define for applications to use?
	 What access privileges do each of these users have?
	 What SQL roles do you provide, and which users can use them?
	 Are any users designated for specific tasks, such as
	 backups or reports?
	 What system-level security provisions do you use, such as
	 if the client must reach the RDBMS server via SSL?
	 What measures do you take to detect and block attempts at illicit
	 authentication, like brute-force password guessing?
	 Have you done a thorough code review for SQL Injection
	 vulnerabilities?
	
	

	Database infrastructure:
	

	 This information is chiefly used by IT staff and DBAs, but
	 developers need to know some of it too.
	 What RDBMS brand and version do you operate?
	 What is your database server hostname?
	 Do you use multiple database servers, replication, clusters,
	 proxies, and so on?
	 What is your network organization and the port number used by
	 the database server?
	 What connection options do client applications need to use?
	 What are the database user passwords?
	 What are your database backup policies?
	 	
	

	Object-relational mapping:
	

	 Your project may implement some database-handling logic in
	 application code, as part of a layer of ORM-based code classes.
	 What business rules are implemented in this way?
	 Data validation, data transformation,
	 logging, caching, or profiling?
	 	
	

	Developers don’t like to maintain engineering documentation.
	It’s hard to write, it’s hard to keep up-to-date, and it’s
	dispiriting when few people read what you do write. But
	even battle-hardened, extreme programmers know that they
	need to document the database, even if they document no
	other part of their software.

No Code Documentation, Except for the Database

	
	
	 Joel Spolsky is a co-founder of the popular programmer help site Stack Overflow.
	 In the Stack Overflow podcast #80,[34]
	 he said he saw little value in documenting code.
	

	 Joel: There is definitely a feeling among
	 programmers that there’s never enough documentation of
	 the code they’ve been told to go work on, ever. And there’s
	 also a pretty clear reluctance to ever write any
	 documentation, because documentation in and of itself
	 almost never gets written.
	

	 He feels documentation that is not updated to match code changes
	 fails to be helpful, and if documentation is not helpful, then other
	 developers usually don’t bother to read it, and so
	 there’s no purpose to writing it at all.
	 A moment later in the same podcast, Spolsky
	 makes an exception. He says that documenting
	 at least the database is important.
	

	 Joel: I found that if you have a database,
	 and you don’t carefully document every column, that after
	 a year or two you start to have a really, really brittle
	 world.
	

Trail of Evidence: Source Code Control

	
	
	
	If your database server failed completely, how would you recreate a
	database? What’s the best way to track a complex upgrade to your
	database design? How would you back out a change?

	You are accustomed to using a version control system to manage application
	code, solving similar problems of software development.
	A project under version control should include everything
	you need to rebuild and redeploy the project.
	Source control also serves as a history of changes and an incremental
	backup so you can reverse any of these changes.

	You should also use version control with your database code and get similar
	benefits for development.
	Check into the repository the files related to your
	database development, including the following:

	Data definition scripts:
	

	 All brands of database provide ways to execute
	 SQL scripts containing
	 CREATE TABLE and other statements that define the
	 database objects.
	
	
	
	

	

	Triggers and procedures:
	

	 Many projects supplement application code with routines stored
	 in the database.
	 Your application probably won’t work without these routines,
	 so they count as part of your project’s code.
	
	
	

	Bootstrap data:
	

	 Lookup tables may contain some set of data that represents an
	 initial state of your database, before any users enter new data.
	 You should keep bootstrap data to help if you need to recreate a
	 database from your project source.
	 Also called seed data.
	
	
	
	

	ER diagrams and documentation:
	

	 These files aren’t code, but they’re closely tied to the code,
	 describing database requirements, implementation, and integration
	 with the application.
	 As the project evolution results in changes to both the database
	 and the application, you should keep these files up-to-date.
	 Make sure the documents describe the current designs.
	 	
	
	

	DBA scripts:
	

	 Most projects have a collection of data-handling jobs that run
	 outside the application.
	 These include tasks for import/export, synchronization, reporting,
	 backups, validation, testing, and so on.
	 	
	
	
	

	Make sure your database code files are associated with the
	application code that uses that database.
	Part of the benefit of using version control is that if you
	check out your
	project from the repository given a certain revision number, date, or
	milestone, the files should work together.
	Use the same repository for both application code and database code.

Schema Evolution Tools

	Your code is under version control, but your database isn’t.
	Ruby on Rails popularized a technique called
	migrations to manage upgrades to a database
	instance under version control.
	Migrations automate most of the work of
	synchronizing a database instance with the structure expected
	in a given revision of your code under version control.

	To develop a migration for a database schema change,
	you write a script with code
	to upgrade a database by one step, based on Rails’ abstract class
	for making database changes.
	Also write a downgrade function that reverses the changes from those in
	the upgrade function.

	 	class AddHoursToBugs < ActiveRecord::Migration
	 	 def self.up
	 	 add_column :bugs, :hours, :decimal
	 	 end
	 	
	 	 def self.down
	 	 remove_column :bugs, :hours
	 	 end
	 	end

	The Rails tool that runs migrations automatically creates
	a table to record the revision or revisions that apply to
	your current database instance.
	For example, if you need to change your database to version 5,
	then you would specify that as an argument to the migration tool.

	 	$ rake db:migrate VERSION=5

	You accumulate a set of these migration scripts; each one can
	upgrade or downgrade the database schema one step.

	There’s a lot more to learn about Rails migrations in Agile Web Development with Rails 7 [Rub22]
	or Alembic migrations in Essential SQLAlchemy [MC15].

	Other development frameworks, such as Liquibase or Flyway
	for Java, Doctrine for PHP, SqlAlchemy for Python, or
	Microsoft ASP.NET, support features similar to Rails’
	migrations.

Burden of Proof: Testing

	
	 	
	
	
 The final part of quality assurance is quality control—validating
	that your application does what it set out to do.
	Most professional developers are familiar with techniques to write
	automated tests to validate application code behavior.
	One important principle of testing is isolation,
	testing only one part of the system at a time so that if a defect
	exists, you can narrow down where it exists as precisely as possible.

	You can extend the practice of isolation testing to the database
	by validating the database structure and behavior independently
	from your code.
	The following example shows a unit test script in Python:

Diplomatic_immunity/DatabaseTest.py
	 	import unittest
	 	import mysql.connector
	 	
	 	class TestDatabase(unittest.TestCase):
	 	
	 	 def setUp(self):
	 	 self.cnx = mysql.connector.connect(user='scott', database='test')
	 	 self.cursor = self.cnx.cursor()
	 	
	 	 def test_table_bugs_exists(self):
	 	 query = '''SELECT true FROM Bugs LIMIT 1'''
	 	 self.cursor.execute(query)
	 	
	 	 def test_table_bugs_column_bugid_exists(self):
	 	 query = '''SELECT bug_id FROM Bugs LIMIT 1'''
	 	 self.cursor.execute(query)
	 	
	 	 # the issue_id column was removed, so this should fail
	 	 def test_table_bugs_column_issueid_not_exists(self):
	 	 with self.assertRaises(mysql.connector.errors.ProgrammingError) as e:
	 	 query = '''SELECT issue_id FROM Bugs LIMIT 1'''
	 	 self.cursor.execute(query)
	 	
	 	
	 	if __name__ == '__main__':
	 	 unittest.main()

 	
 	
	You can use the following checklist for tests that validate your
	database:

	Tables, columns, views:
	

	 You should test that tables and views you expect to exist in the
	 database do exist.
	 Each time you enhance the database with a new table, view, or
	 column, add a new test that confirms that the object is present.
	 You can also use negative tests to confirm
	 that a table or column you removed in the current revision of your
	 project is in fact no longer present.
	 	
	
	
	
	
	

	Constraints:
	

	 This is another use of negative testing.
	 Try to execute INSERT, UPDATE, or DELETE
	 statements that should result in an error because of a constraint.
	 For example, try to violate not-null, unique constraints, or
	 foreign keys.
	 If the statement doesn’t return an error, then your constraint
	 isn’t working.
	 You can catch many bugs early by identifying these failures.
	
	
	

	Triggers:
	

	 Triggers can enforce constraints too.
	 Triggers can perform cascading effects, transform values, log
	 changes, and so on.
	 You should test these scenarios by executing a statement that
	 spawns the trigger and then querying to confirm that the trigger
	 performed the action you intended.
	
	

	Stored procedures:
	

	 Testing procedures in the database is closest to conventional
	 unit testing of application code.
	 A stored procedure has input parameters, which could throw errors
	 if you try to pass values outside the range of valid input.
	 Logic within the body of the procedure could allow multiple
	 execution paths.
	 The procedure could return a single value or a query result set,
	 depending on the inputs and the state of data in the database.
	 Also, the procedure could have side effects
	 in the form of updating the database.
	 You can test all of these features of procedures.
	
	
	
	
	
	
	

	Bootstrap data:
	

	 Even a supposedly empty database typically needs some initial
	 data, such as in lookup tables. You can run queries to
	 validate that the initial data is present.
	
	
	

	Queries:
	

	 Application code is laced with SQL queries.
	 You can execute queries in a test environment to validate syntax
	 and results.
	 Confirm that the result set includes the column names and data
	 types you expect, just like testing tables and views.
	
	

	ORM classes:
	

	 Like triggers, ORM classes contain logic, including validation,
	 transformation, or monitoring.
	 You should test your ORM-based database abstraction code as you
	 would any other application code.
	 Confirm that these classes do the expected actions with input
	 and also that they reject invalid input.
	 	 	
	 	
	

	If any of your tests fail, your application could be using the wrong
	database instance.
	For example, you may have intended to connect to a staging database,
	but you accidentally have the tests configured to connect
	to the production database, or a replica database instance,
	or a test database where the schema changes have not been
	fully executed yet.
	Double-check your configuration, correct it if needed, and try again.
	If you’re sure you’re connection is proper but you need to alter the
	database, then you can run a migration script
	(see Schema Evolution Tools)
	to synchronize this database instance to match what your application
	expects.
	
	
	
	

Case Load: Working in Multiple Branches

	While you develop your application, you could work on multiple
	revisions of the code.
	You might even work on different revisions in the same day.
	For example, you could fix an urgent bug in the branch of the
	application currently deployed and then moments later resume working
	on long-term development in the main branch.

	The database your application uses isn’t under revision control.
	It’s not practical to set up and tear down a database on a
	moment’s notice, even if the database brand you use is relatively
	agile and easy to use.

	Ideally, create a separate instance of your database
	for each revision of the application you need to develop, test,
	stage, or deploy.
	Also, each developer in your project team needs a separate database
	instance so they can work without interfering with the rest of the
	team.

	Make your application support a configurable means to specify
	database connection parameters so that whichever application revision you
	work on, you can specify which database to use without overwriting
	code.

	Today every RDBMS brand, both commercial and open source, offers a
	free solution for development and testing.
	Cloud services or containerization technology such as Docker
	allow every developer to launch a virtual server at very
	low cost, and use it for testing.
	There is no reason that software developers can’t develop and test in a
	fully functional environment that matches the production environment.
	
	
 [image: images/aside-icons/tip.png]
 	

 Use software development best practices, including
 documentation, testing, and version control, for your database as
 you do for your application code.

Mini-Antipattern: Renaming Things

	If you want to rename a table that is already in use,
	then you have a chicken-and-egg problem.

	If you change a table name in the database first, the
	application will get an error, because it’s still querying
	by the old table name.
	You realize you need to update the code to use the new name,
	and then redeploy the application—but you can’t do this
	with split-second timing.
	Deployment usually takes a few minutes, during which time
	the application continues to generate errors.
	Conversely, if you update and deploy the code first, then
	you must change the table name in the database, also with
	sensitive timing.

	If your application is deployed to multiple servers, code
	updates will deploy on each server independently, so multiple
	versions of your application can be active on different
	servers.

	If you have the freedom to interrupt service for your
	application until both the table rename and the code
	change can be done in tandem, then you have no problem.
	However, modern businesses expect applications to run without
	downtime as much as possible.

	When confronted with this level of complexity, many developers
	realize that changing the names of tables or columns is even
	harder than adding tables or adding columns or indexes to
	a table in use.
	They might even decide that changing names is not worth the
	work and the risk of downtime.

	Sometimes there’s a legitimate and important reason to
	change names. It’s not just personal preference or style.

	

	 The old table name is offensive, and continuing to use
	 sensitive words creates a legal liability for the
	 business.
	

	

	 The old table name refers to a name for a technology,
	 a partner company, or a corporate brand that is no
	 longer used.
	 After a corporate acquisition, there might
	 be a need to change references to the old name.
	

	

	 The old table name conflicts with a trademarked name,
	 and the owners of that trademark require their name stop
	 being used in an unauthorized way.
	

	

	 The old name is too close to a different word used within
	 the project or company.
	 For example, an application named “Raffle” had to be
	 renamed, because a different application named “Rattle”
	 existed in the same company, and using both names
	 is confusing.
	

 Changing column names has similar considerations.
	There are potential solutions to change a table name or a
	column name while minimizing downtime for the application.
	Each of the solutions has to be done with careful planning
	and testing.

 The first solution is to rename the table or column in
	a new table, then gradually transition the application code
	to use it.
	This allows code deployments to happen independently,
	without downtime.

	

	 Create a table with the changed table name or column name.
	

	

	 Change the code to apply every write to both the
	 old and the new table, but query only the old table,
	 which is the only one with completely up-to-date data.
	 Deploy this code.
	

	

	 Gradually copy all old data from the old table to the
	 new table.
	

	

	 Change the code to read from the new table, while still
	 applying writes to both tables.
	 Deploy this code.
	

	

	 Change the code to stop writes to the old table.
	 Deploy this code.
	

	

	 Drop the old table.
	

	A second alternative is to use a view.
	Rename the table to the new name you want, then nearly
	simultaneously, create a view using the old name, that
	serves as a kind of “alias” for the new table name.
	Your application should be able to use the view for most
	types of queries, even INSERT or UPDATE.
	You need to test carefully to make sure your queries work
	against the view as well as they did against the base table.
	After the name switch is successful, you may change the
	application code at your convenience to use the table by
	its new name.
	
	
	
	
	
	
		
	
	

Footnotes

	[34]
	
https://stackoverflow.blog/2010/01/21/podcast-80/

Copyright © 2022, The Pragmatic Bookshelf.

 Humans are allergic to change. They love to say, “We’ve always done it this way.” I try to fight that.
 That’s why I have a clock on my wall that runs counterclockwise.

Rear Adm. Grace Murray Hopper

 Chapter
 25
Standard Operating Procedures

 I visited a startup company as an SQL performance consultant.
 They were telling me about the software developer team and application design.
 They had made an effort to hire the best PHP developers in their city.
 Their architecture used a dozen load-balanced PHP application servers, and another server dedicated to hosting a MySQL database.

 The performance problem they asked me to solve was that their database server was overloaded, while the servers running their PHP code were practically idle.
 Their application was often waiting for the database.
 The business owners wanted me to improve the performance of the database server.

 The first thing I did was examine the database query log to identify the queries that were running most frequently, so we could optimize them.
 What I saw in the query log was that most queries in the log were executing stored procedures with statements like CALL ListCustomersProc();
 These calls were taking too long.
 The application needed them to take no more than 50 milliseconds, but they were taking 20 times that long, often well over a full second.

 I asked if I could examine the code for the stored procedures.
 “Sure,” the manager said, “I’ll ask the lead developer to explain the code for one of our stored procedures, because he’s the only one who understands it.
 We’ve struggled with developing and optimizing stored procedure code in MySQL.”

 The stored procedures they had developed used a lot of complex and inefficient code, building queries from fragments, and executing them as dynamic SQL.

 “The code you’ve written in your procedures is the cause of the performance problems,” I explained.
 “You should do more of the logic to build queries in PHP.
 This would spread the workload out over your multiple application servers instead of forcing it all to run on the database server in these stored procedures,
 and since your team is more expert with PHP than with the MySQL stored procedure language, they’ll probably write the code more quickly, write unit tests more easily, and also develop efficiencies like helper functions to generate similar queries.”

 “But we decided at the start of the project that all the SQL code should be implemented in stored procedures,” the developer said.

 “Why?” I asked.
 “Your team is full of expert PHP developers, and your PHP application layer has many servers that can scale out.
 Why would you make them write code in an unfamiliar language, and run it on only a single server?”

 “We were told that’s the way to develop database applications,” the developer replied.
 “The company founder said he did that on other projects using Oracle PL/SQL or Microsoft SQL Server T-SQL.”

Objective: Use Stored Procedures

 Stored procedures are a feature of SQL that developers can use to put custom code into the database itself, and call those procedures from their client application.

 The following example shows a MySQL stored procedure that closes any outstanding bugs for a specified product.
 This is implemented in a procedure so that we can run this as an update, but in a prescribed way:
 only bugs that currently have a status of NEW or OPEN are closed by this action.
 If the application had direct access to update the bugs table, they might change the status of the wrong bugs.

Procedures/anti/close-bugs.sql
	 	CREATE PROCEDURE CloseUnresolvedBugsForProduct(
	 	 IN given_product_id BIGINT UNSIGNED)
	 	BEGIN
	 	 START TRANSACTION;
	 	 UPDATE Bugs JOIN BugsProducts USING (bug_id)
	 	 SET status = 'WONTFIX'
	 	 WHERE product_id = given_product_id
	 	 AND status IN ('NEW', 'OPEN');
	 	 COMMIT;
	 	END

 The developer of a client application only needs to call the procedure, and pass one product id as an argument.
 They don’t need to know how to write the SQL to update the bugs in the proper way.

Procedures/anti/close-bugs.sql
	 	CALL CloseUnresolvedBugsForProduct(1234);

 In the early days of SQL databases, software engineering was done differently than it is today.
 Because of the languages and programming paradigms used then, it was desirable to consolidate database-related business logic into a single callable interface, to avoid code duplication.
 It made sense to store the routines implementing this business logic in the database, to be invoked by any client application.
 This way there was some assurance against each client implementing the logic differently.

 Besides this, the database administrator may have been the only member of the team who was expert in writing efficient SQL queries, and they were given the work of implementing the queries in the stored procedures.
 Then all clients would call those procedures with the right arguments, and trust that the database-related work was done efficiently and consistently.

 The SQL procedure language used by database administrators at that time became known as PL/SQL.
 It resembled legacy procedural languages like Algol or Pascal, more than the object-oriented, functional, or scripting languages that are more popular today.

 This isn’t necessarily a good software development model for modern projects.
 Projects probably don’t have a database administrator specialist who has more experience at writing efficient SQL queries than the other software developers.
 Code duplication is less of a risk factor, because it’s common to use object-oriented frameworks or functional programmer frameworks to implement a data access layer (DAL).

 Using stored procedures isn’t an objective or a goal; it’s an implementation choice.
 Yet some software development teams still make the assumption that one must use stored procedures because “we’ve always done it this way.”

Antipattern: Follow the Leader

 The real antipattern in this chapter is not the use of stored procedures.
 The antipattern is to use any technology feature—stored procedures is just a good example—because it was done before you.
 Just because stored procedures were right in some prior project doesn’t necessarily make it a good choice for your current project.

 Stored procedures (or more broadly, stored routines, which also includes functions, triggers, and packages) are a traditional part of application development if you use one of the major commercial SQL database platforms such as Oracle, Microsoft SQL Server, IBM DB2, Informix, or Sybase.
 However, there are several hidden costs to using stored procedures.

Procedure Language

 Despite the fact that ANSI/ISO SQL defines a standard stored procedure language, each brand of SQL database implements the syntax differently, making procedures not portable.
	For example, if you develop a procedure for Microsoft SQL Server, and then your project switches to MySQL (or vice versa), you will need to rewrite each procedure.
	Developers need to know the specific syntax supported by both brands of database, as well as built-in functions and other procedure code idioms.
	They need to painstakingly analyze the intended logic of each procedure, and think of how best to implement equivalent logic in the procedure language of the other brand.

	Many SQL brands implement extensions to the standard stored procedure language to give it support for object-oriented features, packages, libraries of built-in functions, or data types for arrays or collections.
	Unfortunately, they implement these features in non-standard ways, so each implementation is different.

Development and Deployment

 Today, developers enjoy many sophisticated code editors and IDE products.
	Some are open source, such as IntelliJ Community Edition, Eclipse, NetBeans, or Microsoft Visual Studio.
	Some are commercial developer tools, such as Apple’s Xcode, or the various JetBrains products.

	Developers who use a debugger for client languages like Java or Python are used to being able to set breakpoints and inspect the content of variables dynamically.
	Few of the most popular IDE’s for application programming support SQL stored procedures.
	To develop and debug stored procedures, you need to use a more specialized code tool, such as Oracle SQL Developer, Microsoft SQL Server Management Studio, or Toad by Quest Software.
	
	
	
	

	Deploying stored procedures is different from deploying applications.
	Deploying a procedure looks about the same as creating a procedure using CREATE PROCEDURE.
	To deploy a code change later, different brands use different statements:
	Oracle, IBM DB2, Informix, or PostgreSQL use CREATE OR REPLACE PROCEDURE;
	Microsoft SQL Server uses CREATE OR ALTER PROCEDURE.

	Deploying a project that has a strict requirement for high availability has special challenges.
	You can deploy client applications with no downtime, because applications are provisioned on multiple application servers.
	As you deploy them, you can restart one instance of the application at a time, while allowing the other instances to continue serving requests.
	For a single database implementation, there are no redundant instances.
	Using CREATE OR REPLACE PROCEDURE to modify the code of a procedure on a busy database server must wait for any clients currently executing the procedure to finish, and meanwhile it blocks any further calls to the procedure.
	If the procedure execution takes long enough, it can make clients wait, and it seems like the whole database has locked up.

 As described in Schema Evolution Tools, some applications organize their database changes using migration tools.
	The application framework typically supports a special configuration format or API for defining tables, columns, and indexes, to help developers create database objects without making syntax mistakes.
	Unfortunately, most migration tools don’t support stored procedure syntax in this way.
	At best, they delegate stored procedures to a general feature for executing an SQL script, and the developer must code the CREATE PROCEDURE statements in the SQL script.
	Likewise, migration tools provide a path to reverse or “downgrade” changes to tables, columns, or indexes, but not for stored procedures.

Performance and Scalability

 Running code uses resources on the server where it runs.
	The database server must parse and execute SQL queries, and that requires resources too.
	Stored procedures also run in the database server, and the more complex the code, the more CPU resources it demands on that server.
	If you implement a lot of complex code in stored procedures, and clients run procedures frequently, then the CPU on the database server could become overloaded, and cause all the concurrent procedure calls and queries to execute more slowly.

	Meanwhile, the clients who called those procedures are idle, waiting for the procedures to finish and return their results.
	While the clients are waiting, the CPU resources on the application servers are underutilized.
	Those servers have ample computing power that could be used, but instead they’re just waiting.
	The illustration depicts several application servers with low activity (indicated by the gauge leaning to the left), connected to a single database server that is overloaded.
	With such high load, the database server is now a bottleneck for the whole system, because it can’t take on any further increase in load.

[image: images/Procedures/load-imbalanced.png]

 An exception in the case of Oracle is that PL/SQL routines may run on an application server, as part of Oracle Forms.
	Otherwise, PL/SQL routines are executed in the database server.

 Some SQL implementations provide a compiler for stored procedures, so they execute more efficiently.
	The procedure may be called many times by different clients before the next time you change it.
	You need to recompile the procedure after changing its code (in this way, it’s similar to any other compiled language such as Java or C++).
	If indexes or data change in a way that could affect the query optimizer, then the procedure may need to be recompiled.
	It can be confusing to know when to recompile a procedure, and if it is not done properly, it can lead to poorly optimized queries.

 Depending on the brand of SQL database product, syntax errors in procedure code may be reported immediately when you try to define the procedure.
	Other brands don’t check syntax until the first time you execute the procedure.
	This difference can be confusing.
	If you don’t remember to test procedures, you won’t know about the error until later, perhaps after you deploy the procedure to production.
	You must learn habits for developing and testing stored procedures in the database brand you use.

	Scalability is a concern too.
 A database may grow large enough that it needs to be split, so shards of the data are distributed over multiple servers.
	But a stored procedure executes within a single database server, so it can only access data on the same server.
	PostgreSQL, Oracle, and Microsoft SQL Server support features called foreign data wrapper, Database Link, or Linked Server, so a procedure or query running in one server can access data that resides on a remote server. However this takes configuration to link servers, there are some limitations for SQL queries and transactions, and there’s an increased risk of connectivity problems between the servers.

How to Recognize the Antipattern

 The following are examples of things you might hear others saying during a database development project,
 or you might even say them yourself.

	

	 “Why do I get a syntax error in DECLARE when I am creating my stored procedure?”
	

	 Differences in syntax and usage of stored procedure statements between brands can be confusing.
	 For example, developers who use MySQL after having learned on other brands often get confused because DECLARE can be used only at the top of the procedure’s main BEGIN...END block, and local variables declared in this way do not use the @ symbol.
	 You need to study the documentation of both brands carefully to understand how to translate procedure code between brands.
	 	
	
	
	
	

	

	 “What tool can I use to migrate 500 or more stored procedures from T-SQL to MySQL?”
	

	

	 The developer incorrectly assumes that such a tool exists that can rewrite any arbitrary T-SQL procedure as a MySQL procedure (the same is true of any other pair of SQL database brands).
	

	

	 “We always use procedures because they give better performance.”
	

	 It’s not a good idea to make such unequivocal policies, because few features provide better performance in all cases.
	 To truly optimize, developers need to evaluate the architecture on a case by case basis, instead of following arbitrary rules.
	

Legitimate Uses of the Antipattern

 As mentioned earlier, stored procedures per se are not an antipattern.
 This is true especially in SQL database brands whose implementation is more mature, featureful, and high performance than that of MySQL.

 Edge cases occur where you can use a stored procedure as the best solution for a given task.
 For example, if you have a slow network between the client application and the database server, and your task involves several individual steps of running SQL queries to get interim results, implementing code in a stored procedure eliminates at least the latency caused by the network round-trips.

 Tasks which are run infrequently, or run with no client application, are another good candidate for a stored procedure.
 Procedures are sometimes used for database administration tasks like auditing privileges, emptying caches or logs, measuring performance or resource usage, or running scheduled tasks.

 Encapsulating SQL queries that require elevated privileges is another good use of stored procedures.
 The database administrator can grant privileges to the procedure itself, and then grant users the privilege to run the procedure.
 That allows users to be more self service, by running a procedure that performs a sensitive operation in a prescribed way.
 Working with sensitive data (PII or SPI) in a stored procedure avoids any risk of attackers intercepting network traffic.

Solution: Adopt Modern Application Architecture

 Client programming languages have come a long way since SQL introduced stored procedures.
 Preferring a language such as Java, Python, or Go to run queries resolves the disadvantages mentioned earlier.
 Developers are undoubtedly more familiar and productive with their favorite language than with any database’s stored procedure language.
 Advanced code editors, debuggers, and testing frameworks allow developers to work the way they’re used to working on code.
 For example, writing tests with mocking techniques makes your tests faster and more stable.
 A modern deployment architecture uses multiple application servers, so you can deploy in a round robin or blue/green manner, using a dynamic load balancer to avoid sending to each application instance while it is restarting.
 This allows the deployment of changes to an application with no downtime.

 Developers should implement more logic in application code to distribute the load better by making use of computing resources on the application servers.
 The SQL queries themselves still need to run centrally on the database server, but all the code that runs in between SQL queries, for example, to format queries and process query results, is better run on the application servers.

 The illustration shows the application servers and database server shown earlier in this chapter, with the load on each server distributed more evenly.
 All of the servers are giving good value, they have better performance on average, and they can handle occasional bursts of load without becoming a bottleneck.

[image: images/Procedures/load-balanced.png]

 The illustration shows a client/server architecture, but you might also use a more complex, multi-tier architecture.
 The benefit is the same: it’s easier to scale out the workload over multiple servers, instead of concentrating the workload in stored procedures on the database server.

 The case of using stored procedures is just one example of a software development habit.
 Instead of forming habits or traditions, it’s better to validate assumptions, approach software architecture choices like an engineer, and make choices to use the best tools and technology for a given project.

	
 [image: images/aside-icons/tip.png]
 	

 If the only tool you have is a hammer, then every problem looks like a nail.
 It’s better to expand your toolbox and use the right tool for the job.

Mini-Antipattern: Stored Procedures in MySQL

 MySQL’s implementation of stored procedures was introduced in version 5.0 in 2005.
 There wasn’t much demand for improvements, because most developers who used MySQL during that time preferred to execute SQL queries from application code or ORM classes, instead of using stored procedures.
 Because of this history, using procedures in MySQL has some additional challenges, beyond those described in the preceding chapter.
 Even a developer who is accustomed to using stored procedures in other brands of SQL products should read the following points before deciding to use procedures extensively in MySQL.

Using Packages

	MySQL’s stored procedures don’t have any support for packages, modules, or object-oriented features.
	This makes it more clumsy and difficult to organize large collections of procedures, or to deploy sets of procedures from multiple sources.

Debugging

	Other brands of SQL databases have specialized development tools, but there is no IDE or developer tool for MySQL that supports debugging a stored procedure.
	Developers can’t set breakpoints or inspect local variables directly.
	Some editors have tried to simulate debugging, by inserting lines of code into a procedure to log the state of variables, but this trick has to modify the code, which affects all clients who call the procedure.

Testing

	
 Unit-testing code is done by isolating that code from other software components and executing it in a controlled environment.
	The code under test may call other functions, so mock objects are used to ensure the called functions are simulated and the function calls are tested for.
	MySQL stored procedures have no way to be run in a controlled environment; they are only run in the database server.
	They also have no support for calling the functions through mock interfaces; if they use SQL statements, those statements can only access real tables or procedures.
	Effectively, there is no standard support for unit-testing MySQL stored procedures; you have to develop those testing tools yourself.
	You can still perform system testing by calling stored procedures, but you need to do this in a real MySQL Server instance, and the procedures access real data during testing.

Compiling

	MySQL does not save a compiled version of any procedure.
	Each session compiles a procedure the first time it uses it, but this compiled version isn’t used by other sessions.
	When the client ends their session, the compiled versions of procedures they called are discarded.
	This implementation results in a lot of overhead to using procedures when sessions are short-lived, as they are in typical web applications.

Deploying

	There is no support in MySQL for updating the code of a procedure without a risk of downtime.
	To deploy a change to a stored procedure, the developer must first DROP PROCEDURE, then CREATE PROCEDURE with the changed code.
	These steps can’t be done atomically; there is a moment in between these two steps when the procedure is dropped, and the database returns an error to a client that tries to call it in that moment.
	This means that deploying a procedure is bound to cause at least brief downtime when using a single database server.
	If the procedure is called infrequently, the procedure might be dropped and recreated quickly enough that no one will notice.
	But if the application calls procedures during every request, the procedure call might fail hundreds of times, even if great care is taken to create the new procedure as quickly as possible.

Using Sharded Architecture

	MySQL has limited support for tables accessed via a Linked Server (it requires a special storage engine called FEDERATED), so it’s awkward to run stored procedures in a sharded architecture.
	One possible workaround is that the client knows in advance which server holds the shard of data they need, and calls the procedure using a session connected to the respective database server.
	Another workaround is that the client must call the same procedure on all of the shards, just in case partial data exists on some of the shards. The client then fetches results from all of these calls, some of which may be empty results.

 Some projects implement distributed queries using a proxy middleware.
	Those middleware products are designed for queries against tables.
	They might not support calling stored procedures.
	For example, PlanetScale Vitess 14 is a great technology to supporting sharded architecture with MySQL, but it has does not support stored procedures that query sharded keyspaces.[35]

 In general, developers using MySQL should write code in their client application to execute individual queries instead of using stored procedures.
 The exception case is when you need to reduce the impact of network latency between the application and the database when running many queries in rapid succession, but usually it’s a better choice to run your application colocated with the database server on a fast network.

Footnotes

	[35]
	
https://vitess.io/docs/14.0/reference/compatibility/mysql-compatibility/

Copyright © 2022, The Pragmatic Bookshelf.

Part 5
Bonus: More Foreign Key Mini-Antipatterns

	 I’ve fielded a surprisingly large variety of questions about foreign keys.
 As a result, I’ve identified quite a few additional mini-antipatterns,
 and we decided to offer them here in their own part, as a bonus.
 They are divided into two chapters: mini-antipatterns about using foreign keys in general and
 mini-antipatterns specifically about using foreign keys in MySQL.

	Many of life’s failures are people who did not realize how close they were to success when they gave up.

Thomas A. Edison

 Chapter
 26
Foreign Key Mistakes in Standard SQL

 Foreign keys are part of the ANSI/ISO SQL standard, so many types of foreign key mistakes will be mistakes regardless of the specific brand of SQL database you use.
 This chapter is a collection of mini-antipatterns about those types of foreign key constraints,
 based on questions asked frequently by developers on public internet forums.

 Each incorrect example is followed by the error returned by MySQL 8.0.
 The error message may be different in another version of MySQL, or in other brands of SQL databases.
 Following the description of the error and other consequences of the mistake, the correct way to implement the foreign key is shown or described.

 In the following examples, a row in the Parent table may have zero, one, or many related rows in the Child table.
 A row in the Child table must be related to exactly one row in the Parent table.
 So, the tables have a one-to-many relationship (the many may also be zero or one).
 These tables aren’t meant to model real-life family relationships, which are usually more complex.

Reversing the Direction of Reference

 It might be hard to understand which table should have the foreign key constraint.
 If the developer is thinking of one-to-many relationships as “Parent can have many Children,” they could assume the foreign key should be defined in the Parent table.

Foreign-Key-Checklist/has-many-reversed.sql
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY,
	 	 child_id INT NOT NULL,
	 	 FOREIGN KEY (child_id) REFERENCES Child(child_id)
);

 This is a misunderstanding.
 A given row in Parent can only have one value in the child_id column, so defining the foreign key constraint in the Parent table means that a given row in Parent can have only one Child, but zero, one, or many Parents can reference the same Child.
 That’s the opposite of the intended relationship.
 No error is returned, but you can’t use this design to store data with the relationship you need.

 It might help to visualize the one-to-many relationship instead as “Child belongs to Parent,” and define the foreign key in the Child table.
 This allows the Parent to be referenced by zero, one, or many children, whereas each Child row must reference exactly one Parent.

Foreign-Key-Checklist/has-many-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

 Remember: the foreign key constraint should be defined in the table that is the “many” side of the one-to-many relationship.

Referencing Tables Before They Have Been Created

 If the foreign key references a table before you have created that table, then you get an error.

Foreign-Key-Checklist/table-order-error.sql
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);
	 	
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);

 The following error is returned as the first CREATE TABLE statement fails, before the second statement is run.

	ERROR 1824 (HY000): Failed to open the referenced table ’Parent’

 The order in which you create the tables is important.
 You must create the Parent table before you define a foreign key to reference it.

Foreign-Key-Checklist/table-order-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

 If both tables have a foreign key that references the other (for example, the Child table references a Parent, and the Parent references its single favorite Child), then you must use three data definition statements instead of two.
 Create the first table without its foreign key constraint,
 then create the second table,
 then add the foreign key constraint to the first table with ALTER TABLE.

Foreign-Key-Checklist/table-order-mutual.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY,
	 	 favorite_child_id INT
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);
	 	
	 	ALTER TABLE Parent
	 	 ADD FOREIGN KEY (favorite_child_id) REFERENCES Child(child_id);

 If a table contains a self-referential foreign key, you may define the foreign key in the CREATE TABLE statement.

 As you get more tables, it becomes more complex to create the tables in the right order.
 You could create tables in a careful order, starting with those tables that themselves have no foreign key constraint.
 You could consider these tables “root” tables in an entity-relationship diagram.
 Then add tables that reference the root tables, and so on.
 This is not possible if there are any cycles of foreign key references among your set of tables, so an alternative is to create all the tables first, with no foreign key constraints, and then add the constraints after all tables exist.

Referencing No Key of the Parent Table

 If referenced columns in the Parent table are not a PRIMARY KEY or UNIQUE KEY, then you get an error.

Foreign-Key-Checklist/no-key-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT NOT NULL -- not a PRIMARY KEY or UNIQUE KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

	ERROR 1822 (HY000): Failed to add the foreign key constraint. Missing index for constraint ’child_ibfk_1’ in the referenced table ’Parent’

 Notice the name of the constraint child_ibfk_1 is mentioned in the error message.
 An SQL constraint has a name, just like tables, indexes, and columns have names.
 The code examples in this chapter don’t specify the constraint name, so MySQL generates a unique name automatically.

 The column(s) referenced by the foreign key must be the PRIMARY KEY or a UNIQUE KEY of the Parent table.

Foreign-Key-Checklist/no-key-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

Creating Separate Constraints for Each Column in a Compound Key

 If the primary key in the Parent table has multiple columns, but the foreign key is split into a separate constraint for each column, then you get an error.

Foreign-Key-Checklist/multi-column-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id1 INT,
	 	 parent_id2 INT,
	 	 PRIMARY KEY (parent_id1, parent_id2)
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id1 INT NOT NULL,
	 	 parent_id2 INT NOT NULL,
	 	 FOREIGN KEY (parent_id1) REFERENCES Parent(parent_id1),
	 	 FOREIGN KEY (parent_id2) REFERENCES Parent(parent_id2)
);

	ERROR 1822 (HY000): Failed to add the foreign key constraint. Missing index for constraint ’child_ibfk_2’ in the referenced table ’Parent’

 If the primary key in the Parent table has multiple columns, then you must create one foreign key that references both columns.

Foreign-Key-Checklist/multi-column-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id1 INT,
	 	 parent_id2 INT,
	 	 PRIMARY KEY (parent_id1, parent_id2)
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id1 INT NOT NULL,
	 	 parent_id2 INT NOT NULL,
	 	 FOREIGN KEY (parent_id1, parent_id2)
	 	 REFERENCES Parent(parent_id1, parent_id2)
);

Using the Wrong Column Order

 If the primary key in the Parent table has multiple columns, but the foreign key references them in the wrong order, then you don’t get an error (provided the column data types are compatible), but you may not be able to add rows of data, because the columns are not referencing the correct columns in the Parent table.

Foreign-Key-Checklist/multi-column-order-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id1 INT,
	 	 parent_id2 INT,
	 	 PRIMARY KEY (parent_id1, parent_id2)
);
	 	
	 	INSERT INTO Parent (parent_id1, parent_id2) VALUES (1234, 5678);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id1 INT NOT NULL,
	 	 parent_id2 INT NOT NULL,

	 	 FOREIGN KEY (parent_id2, parent_id1)
	 	 REFERENCES Parent(parent_id1, parent_id2)
);
	 	
	 	INSERT INTO Child (child_id, parent_id1, parent_id2) VALUES (1, 1234, 5678);

	ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails (‘test‘.‘child‘, CONSTRAINT ‘child_ibfk_1‘ FOREIGN KEY (‘parent_id2‘, ‘parent_id1‘) REFERENCES ‘parent‘ (‘parent_id1‘, ‘parent_id2‘))

 The columns in the foreign key constraint must be in the same order they are defined in the PRIMARY KEY or UNIQUE KEY in the Parent table.

Foreign-Key-Checklist/multi-column-order-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id1 INT,
	 	 parent_id2 INT,
	 	 PRIMARY KEY (parent_id1, parent_id2)
);
	 	
	 	INSERT INTO Parent (parent_id1, parent_id2) VALUES (1234, 5678);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id1 INT NOT NULL,
	 	 parent_id2 INT NOT NULL,
	 	 FOREIGN KEY (parent_id1, parent_id2)
	 	 REFERENCES Parent(parent_id1, parent_id2)
);
	 	
	 	INSERT INTO Child (child_id, parent_id1, parent_id2) VALUES (1, 1234, 5678);

Using Mismatched Data Types

 You must define the foreign key columns in the Child table using the same data types as the respective columns they reference in the Parent table.
 If the data types don’t match, then you get an error.

Foreign-Key-Checklist/data-type-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

	ERROR 3780 (HY000): Referencing column ’parent_id’ and referenced column ’parent_id’ in foreign key constraint ’child_ibfk_1’ are incompatible.

 The difference between a signed and unsigned integer is enough to make the columns incompatible.

Foreign-Key-Checklist/data-type-int-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT UNSIGNED NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

	ERROR 3780 (HY000): Referencing column ’parent_id’ and referenced column ’parent_id’ in foreign key constraint ’child_ibfk_1’ are incompatible.

 The best choice is to make sure the data types are identical.

Foreign-Key-Checklist/data-type-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

 However, as with most rules, there’s an exception that seems to break the rule.
 Variable-length string columns may have different maximum lengths, but they’re still compatible for purposes of foreign key references.

Foreign-Key-Checklist/data-type-length-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(20) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

 If the foreign key column in the Child table has a shorter maximum length than the column in the Parent table it references, that’s not an error, but then the rows in Child can only reference rows in Parent with a string value that is as short as the string in the Child row.
 So it’s possible to store a long string in the Parent table that can’t be matched in any row in the Child table.
 It’s not an error for a row to exist in Parent that is referenced by no rows in the Child table.

 Likewise, the column in the Parent table may have a shorter maximum length than the referencing column in the Child table.
 That’s not an error either.
 The strings in the Child table must reference a string in the Parent table, so you can insert only short strings into the Child table.

Using Mismatched Character Collations

 This is related to the previous rule about data types.
 You might have string columns that seem to have identical types, except for the collation.
 If the referenced column has a different collation, then you get an error.

Foreign-Key-Checklist/collation-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
) CHARSET utf8mb4 COLLATE utf8mb4_unicode_ci;
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
) CHARSET utf8mb4 COLLATE utf8mb4_general_ci;

	ERROR 3780 (HY000): Referencing column ’parent_id’ and referenced column ’parent_id’ in foreign key constraint ’child_ibfk_1’ are incompatible.

 To understand this problem, keep in mind what character sets and collations are.
 A character set is the way characters are encoded into bytes.
 A collation is the definition of how characters in that character set compare to each other; whether each pairing of characters compares as equal, less than, or greater than.
 The rules for character comparison in a foreign key column and the key column it references must be the same.

 Make sure string columns have compatible character sets and collations (practically, this means the collations must be identical).

Foreign-Key-Checklist/collation-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
) CHARSET utf8mb4 COLLATE utf8mb4_unicode_ci;
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
) CHARSET utf8mb4 COLLATE utf8mb4_unicode_ci;

Creating Orphan Data

 If you add a foreign key to a Child table that already contains data, you must be certain that every row in the Child table has a matching row in the Parent table.

Foreign-Key-Checklist/orphan-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	INSERT INTO Parent (parent_id)
	 	VALUES (1234);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL
);
	 	
	 	INSERT INTO Child (child_id, parent_id)
	 	VALUES (1, 1234), (2, 5678);

 In the preceding example, the Child table has a second row, which has no matching row in the Parent table.
 If there are any such orphans in your Child table, then adding the foreign key fails, and you get an error.

Foreign-Key-Checklist/orphan-error.sql
	 	ALTER TABLE Child
	 	 ADD FOREIGN KEY (parent_id) REFERENCES Parent(parent_id);

	ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails (‘test‘.‘child‘, CONSTRAINT ‘child_ibfk_1‘ FOREIGN KEY (‘parent_id‘) REFERENCES ‘parent‘ (‘parent_id‘))

 Every value in the foreign key column(s) must match a value in the columns referenced.
 Use a query like the following to check for orphans:

Foreign-Key-Checklist/orphan-check.sql
	 	SELECT CASE COUNT(*)
	 	 WHEN 0 THEN 'Ready to add foreign key'
	 	 ELSE 'Do not add foreign key, because orphan rows exist'
	 	 END AS `check`
	 	FROM Child
	 	LEFT OUTER JOIN Parent ON Child.parent_id = Parent.parent_id
	 	WHERE Parent.parent_id IS NULL;

 This query is a generic example; substitute your table names and column names.

 If you have orphan values in the Child table, then you can’t add a foreign key to the table.
 First you must fix the data with one or more of the following:

	

	 INSERT new rows to the Parent table until the none of the rows in the Child table have orphan values.
	

	

	UPDATE the rows in the Child table and set the orphan values either to NULL or a value that matches an existing value in the referenced column(s) of the Parent table.
	

	

	 DELETE the rows from the Child table until none have orphan values.
	

Using the SET NULL Option for Non-Nullable Columns

 You may add actions to the foreign key constraint, to execute if the values in the referenced column(s) of the Parent table change or if the referenced row in the Parent table is deleted.
 One of these optional actions is to SET NULL, so the values in the Child table become NULL instead of becoming orphaned.

 If the columns of a foreign key are defined NOT NULL, and you try to define a foreign key constraint with the ON UPDATE SET NULL or ON DELETE SET NULL options, then you get an error.

Foreign-Key-Checklist/set-null-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
	 	 ON DELETE SET NULL
);

	ERROR 1830 (HY000): Column ’parent_id’ cannot be NOT NULL: needed in a foreign key constraint ’child_ibfk_1’ SET NULL

 The column(s) in the foreign key must be nullable if you want them to be set to NULL in the event of referential actions.

Foreign-Key-Checklist/set-null-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
	 	 ON DELETE SET NULL
);

Making Duplicate Constraint Identifiers

 Foreign key constraints may optionally have identifiers, so you can use them later if you need to drop the constraint.
 Constraint identifiers must be unique within a whole schema.
 In other words, if two or more constraints in the same schema are given the same identifier, then you get an error.

Foreign-Key-Checklist/identifier-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child1 (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 CONSTRAINT c1 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);
	 	
	 	CREATE TABLE Child2 (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 CONSTRAINT c1 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

	ERROR 1826 (HY000): Duplicate foreign key constraint name ’c1’

 Make sure each constraint identifier is unique if you specify them.

Foreign-Key-Checklist/identifier-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child1 (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 CONSTRAINT c1 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);
	 	
	 	CREATE TABLE Child2 (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 CONSTRAINT c2 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

 If you choose to name the constraints, you should establish a naming convention that helps you to form unique constraint names.
 If you don’t specify constraint names, typically unique names are are generated automatically.

Using Incompatible Table Types

 In standard SQL, the Child table and the Parent table must be of the same table type.
 That is, both must be persistent base tables, or both must be global temporary tables, or both must be local temporary tables.
 See also Using Incompatible Table Types in MySQL.

	
 [image: images/aside-icons/tip.png]
 	

 Use this chapter as a checklist to resolve errors you experience while creating foreign keys in any brand of SQL database.

Copyright © 2022, The Pragmatic Bookshelf.

 Success does not consist in never making mistakes but in never making the same one a second time.

Josh Billings

 Chapter
 27
Foreign Key Mistakes in MySQL

 All implementations of SQL have enhancements and limitations, so there are a few types of foreign key mistakes that apply specifically to MySQL.
 This chapter is a collection of mini-antipatterns about those types of foreign key constraints,
 based on questions asked frequently by developers on public internet forums.

 Each incorrect example is followed by the error returned by MySQL 8.0, and then the correct way to implement the foreign key.

Using Incompatible Storage Engines

 MySQL supports multiple storage engines.
 When two tables are related by a foreign key constraint, they must use the same storage engine, and the storage engine must support foreign keys.

 MySQL’s default storage engine, InnoDB, supports foreign keys.
 Most other storage engines don’t support foreign keys.
 If you try to define a foreign key in an InnoDB table, but the referenced table is not an InnoDB table, then you get an error.

Foreign-Key-Checklist/storage-engine-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
) ENGINE=MyISAM;
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
) ENGINE=InnoDB;

	ERROR 1824 (HY000): Failed to open the referenced table ’Parent’

 There’s a variation of this mistake:
 if the Child table’s storage engine doesn’t support foreign key constraints, it simply ignores the foreign key constraint.
 No error or warning is returned, but the resulting table will have no foreign key constraint.

Foreign-Key-Checklist/storage-engine-myisam.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
) ENGINE=InnoDB;
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
) ENGINE=MyISAM;

 The reason MySQL has this behavior is that in the early days, its designers wanted to allow importing SQL definition files from other brands of database, even if MySQL hadn’t implemented all features of SQL yet.

 Make sure both the Parent table and the Child table use the InnoDB storage engine.
 If you create a table without specifying the engine, then it should default to InnoDB.

 You can check the storage engine of a table with the statements SHOW CREATE TABLE TableName, or by running a query against metadata tables such as the following:

Foreign-Key-Checklist/storage-engine-check.sql
	 	SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
	 	WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?;

 In the preceding example query, substitute your schema name and table name for the “?” placeholders.

 The NDB storage engine in MySQL Cluster also supports foreign keys.
 A similar restriction applies: if one table in the relationship uses the NDB storage engine, then the other table must also use NDB.

Using Large Data Types

 In standard SQL, you can’t define a PRIMARY KEY, UNIQUE KEY, or a foreign key on a BLOB, CLOB, TEXT, JSON, or ARRAY column.

 In MySQL as well, it’s not supported to define a key or an index for these large, variable-size columns, because an indexed data type must be no more than 3072 bytes (or 767 bytes in older versions).
 You can create a prefix index to make a key or index on the leading bytes of an indexed column.
 Even though this allows you to create a PRIMARY KEY or UNIQUE KEY on part of a long column, MySQL can’t create a foreign key that references a prefix index, and you get an error.

Foreign-Key-Checklist/text-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id TEXT NOT NULL,
	 	 UNIQUE KEY (parent_id(40))
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id TEXT NOT NULL,
	 	 KEY (parent_id(40)),
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

	ERROR 1170 (42000): BLOB/TEXT column ’parent_id’ used in key specification without a key length

 Such a long column can’t be a foreign key itself.
 A workaround in MySQL 5.7 or later is to create a generated column as a hash of the long column, and define a foreign key on that column.
 The generated column must use the STORED option to be referenced by a foreign key.
 The following example shows a definition of a stored, generated column to implement this workaround.

Foreign-Key-Checklist/text-workaround.sql
	 	CREATE TABLE Parent (
	 	 parent_id TEXT NOT NULL,
	 	 parent_id_crc INT UNSIGNED AS (CRC32(parent_id)) STORED,
	 	 UNIQUE KEY (parent_id_crc)
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id_crc INT UNSIGNED,
	 	 FOREIGN KEY (parent_id_crc) REFERENCES Parent(parent_id_crc)
);

 There is a small risk that two distinct texts result in the same hash value, and thus cause a duplicate error in the unique index.
 You might be able to use a hash function with a greater space, like MD5 or SHA1, but the risk of collisions will never be eliminated.
 It would be better to use a pseudokey intead of a column with such long content as the unique key of a table.

MySQL Foreign Keys to Non-Unique Indexes

 In standard SQL, the columns referenced by a foreign key must be the PRIMARY KEY or a UNIQUE KEY of the Parent table.
 InnoDB supports a non-standard feature: a foreign key does not have to include the whole set of columns in the referenced key.
 The foreign key is also allowed to reference a non-unique index in the parent table, instead of a PRIMARY KEY or UNIQUE KEY.
 The only rule is that the columns referenced by the foreign key must be the left-most columns of a key or index.
 Otherwise you get an error that tells you no index was found in the Parent table with those columns as the left-most columns.

Foreign-Key-Checklist/non-unique-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id1 INT,
	 	 parent_id2 INT,
	 	 parent_id3 INT,
	 	 PRIMARY KEY (parent_id1, parent_id2, parent_id3)
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id2 INT NOT NULL,
	 	 parent_id3 INT NOT NULL,
	 	 FOREIGN KEY (parent_id2, parent_id3)
	 	 REFERENCES Parent(parent_id2, parent_id3)
);

	ERROR 1822 (HY000): Failed to add the foreign key constraint. Missing index for constraint ’child_ibfk_1’ in the referenced table ’Parent’

 The columns of the foreign key must reference the left-most subset of columns of the key or index.

Foreign-Key-Checklist/non-unique-left-subset.sql
	 	CREATE TABLE Parent (
	 	 parent_id1 INT,
	 	 parent_id2 INT,
	 	 parent_id3 INT,
	 	 PRIMARY KEY (parent_id1, parent_id2, parent_id3)
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id1 INT NOT NULL,
	 	 parent_id2 INT NOT NULL,
	 	 FOREIGN KEY (parent_id1, parent_id2)
	 	 REFERENCES Parent(parent_id1, parent_id2)
);

 Even though referencing a non-unique index or a subset of key columns is allowed, it’s not recommended.

 A foreign key that references a non-unique index or subset of key columns allows a given row in the Child table to reference values that can occur on multiple rows in the referenced Parent table.
 This leads to strange and ambiguous logical relationships, such as the following:

	

	 Should the Child row be considered orphaned if one but not all of its Parent rows is deleted?
	

	

	 If the foreign key is defined with the ON DELETE RESTRICT option, should it be an error to delete any Parent row, or only the last Parent row?
	
	

	

	

	 If the foreign key is defined with the ON UPDATE CASCADE option, and you update the referenced value on one row of the Parent table, should it cascade the change to the Child row?
	
	

 Any answers to these types of questions are subjective.
 They might be desired in one application, but not in another application.
 It’s best to avoid these situations, by defining foreign keys only in the standard way.
 That is, the foreign key columns should reference the full set of columns of a PRIMARY KEY or UNIQUE KEY, so a Child row must reference only one row in the Parent table.

Foreign-Key-Checklist/non-unique-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id1 INT,
	 	 parent_id2 INT,
	 	 parent_id3 INT,
	 	 PRIMARY KEY (parent_id1, parent_id2, parent_id3)
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id1 INT NOT NULL,
	 	 parent_id2 INT NOT NULL,
	 	 parent_id3 INT NOT NULL,
	 	 FOREIGN KEY (parent_id1, parent_id2, parent_id3)
	 	 REFERENCES Parent(parent_id1, parent_id2, parent_id3)
);

Using Inline References Syntax

 Standard SQL and most implementations support syntax to define a foreign key for a single column on the same line as the column.
 However, MySQL doesn’t support inline foreign key syntax.
 If you try to define a foreign key this way, you get no error, but the foreign key is not added to the table.[36]

Foreign-Key-Checklist/inline-ignored.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL REFERENCES Parent(parent_id)
);

 If you subsequently view the table definition by running SHOW CREATE TABLE Child, you see the foreign key constraint is missing, as if you had not defined it at all.

Foreign-Key-Checklist/inline-ignored.sql
	 	CREATE TABLE `Child` (
	 	 `child_id` int NOT NULL,
	 	 `parent_id` varchar(10) NOT NULL,
	 	 PRIMARY KEY (`child_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

 You must define a foreign key only with the table-level constraint syntax.

Foreign-Key-Checklist/inline-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

Using Default References Syntax

 Standard SQL and most implementations allow a foreign key REFERENCES clause to omit the names of referenced columns, and they default to the primary key column(s) of the referenced table.
 However, MySQL doesn’t support syntax for implicit referenced columns.[37]

Foreign-Key-Checklist/implicit-columns-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent
);

	ERROR 1239 (42000): Incorrect foreign key definition for ’foreign key without name’: Key reference and table reference don’t match

 You can define a foreign key only by naming the referenced columns explicitly.

Foreign-Key-Checklist/implicit-columns-correct.sql
	 	CREATE TABLE Parent (
	 	 parent_id VARCHAR(10) PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id VARCHAR(10) NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

Using Incompatible Table Types in MySQL

 In MySQL, neither the Parent table nor the Child table can be a
 TEMPORARY table or a PARTITIONED table.

Foreign-Key-Checklist/partition-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
) PARTITION BY HASH(child_id) PARTITIONS 11;

	ERROR 1506 (HY000): Foreign keys are not yet supported in conjunction with partitioning

Foreign-Key-Checklist/temp-error.sql
	 	CREATE TABLE Parent (
	 	 parent_id INT PRIMARY KEY
);
	 	
	 	CREATE TEMPORARY TABLE Child (
	 	 child_id INT PRIMARY KEY,
	 	 parent_id INT NOT NULL,
	 	 FOREIGN KEY (parent_id) REFERENCES Parent(parent_id)
);

	ERROR 1215 (HY000): Cannot add foreign key constraint

 You must use non-temporary, non-partitioned tables for both tables.

	
 [image: images/aside-icons/tip.png]
 	

 Use this chapter as a checklist to resolve errors you experience while creating foreign keys in MySQL.

Footnotes

	[36]
	
https://bugs.mysql.com/bug.php?id=4919

	[37]
	
https://bugs.mysql.com/bug.php?id=35522

Copyright © 2022, The Pragmatic Bookshelf.

	Young man, in mathematics you don’t understand things.
	You just get used to them.

John von Neumann

 Appendix
 1
Rules of Normalization

 Relational database design isn’t arbitrary or mysterious.
 You can use a number of well-defined rules to design a
 data storage strategy that avoids redundancy and helps make your
 application mistake proof, like the poka-yoke
 ideas mentioned earlier in this book.
 You’ve probably heard other metaphors for the same idea, such as
 defensive design or fail early.

 The rules of normalization aren’t complicated, but they are subtle.
 Developers often misunderstand how they work, perhaps because they
 expect the rules to be harder than they are.

 Another possibility is that people are turned off by
 having to follow rules at all.
 Rules are the bête noire of developers who value newness, creativity, and
 innovation.
 Rules are, in a way, the opposite of freedom.

 Software
 developers continually make trade-offs between simplicity and flexibility.
 You can make a lot of work for yourself by reinventing the wheel and
 developing custom data management software for every application.
 Or you can take advantage of existing knowledge and technology if you can
 conform to a relational design when you use a relational database.

 The antipatterns in this book are described using their own merits
 (or faults) to avoid being too academic or theoretical.
 In this appendix, you’ll see that theory can also be practical.

What Does Relational Mean?

 This term relational doesn’t refer to relationships
 between tables. It refers to the table itself,
 or rather, the relationship between columns within a table.

 Mathematicians define a relation as the combination
 of two sets of values from different domains, with some condition applied
 that gives a subset of all the possible combinations.

 For example, one set is the names of baseball teams, and the other
 set is cities.
 The combination of every team to every city is a long list of pairings.
 The relation has a particular subset of this list:
 the teams paired with their home city.
 Valid pairs include
 Chicago/White Sox,
 Chicago/Cubs, or
 Boston/Red Sox,
 but not
 Miami/Red Sox.

 The word relation is used in two ways:
 as a rule (“this city is the home city of that
 team”)
 and as the subset of pairings that comply with the rule.
 In SQL, you can store that result in a table with two columns, and one
 row per pair.

 Of course, relations support more than two columns.
 You can combine any number of domains, one per column, into a relation.
 Also, you can use domains like the set of 32-bit integers
 or the set of text strings of a specific length.

 Before you can begin normalizing tables, you need to be sure that they are
 proper relations.
 They have to meet the following criteria.

Rows Have No Order from Top to Bottom

	In SQL, a query returns results in an unpredictable order, unless you
	use an ORDER BY clause to specify the order.
	Regardless of the order, the set of rows is considered to be the same.

Columns Have No Order from Left to Right

 Whether we ask a developer to verify the product Open RoundFile against bug 1234, or whether we need to know if bug 1234 can be verified in product Open RoundFile by that developer, the result should be the same.

	This is related to the antipattern in
	Chapter 19, Implicit Columns, where columns are referenced
	by their position instead of by their name.

Duplicate Rows Are Not Allowed

	Once you know a fact, stating it again doesn’t make it any more true.
	Given the name of a baseball team, your data dictates the city.
	In this way, the city depends on the team name.

	To prevent duplicates, you have to be able to tell one row from
	another and to address individual rows.
	To ensure this in SQL, declare a primary key constraint for a
	column or set of columns, whatever is needed to uniquely identify
	rows.
	You may alternatively declare a unique key constraint, if the column(s) named in the constraint are NOT NULL.

	There might be duplication among non-key columns—for example, there are two teams
	in the city of Boston—but the row as a whole is still unique because
	the team names are different.

Every Column Has One Type, and One Value per Row

	A relation has a header that defines the names
	and data types of the columns.
	Every row must have the same columns as those in the header,
	and a given column must have the same meaning on all rows.

	You saw an antipattern break this rule in two ways in
	Chapter 6, Entity-Attribute-Value.
	First, the EAV table models an entity that can have a custom set of
	attributes for every instance, so the entity is not bound by any
	header that defines its attributes.

	Second, the EAV attr_value column contains
	all the entity’s attributes, such as the bug’s date reported,
	 the bug’s status, the account the bug is assigned to, and so on.
	A given value like 1234 in this column may be valid for two different
	attributes but mean something totally different.

	The antipattern in Chapter 7, Polymorphic Associations also breaks
	this rule, because a given value like 1234 references the primary
	key of any of the multiple parent tables. You can’t say 1234 on one
	row means the same thing as 1234 on another row.

Rows Have No Hidden Components

	Columns contain data values, not physical storage indicators
	such as row IDs or object IDs.
	Chapter 22, Pseudokey Neat-Freak established that primary keys
	are unique, but they aren’t row numbers.

	Some databases bend this rule, giving you access to internal
	storage details with extensions to SQL
	(for example, the ROWNUM pseudocolumn in Oracle or OID in
	PostgreSQL).
	However, these values aren’t properly part of the relation.
	

Myths About Normalization

 It’s hard to find a subject that is so widely misunderstood,
 despite having a precise definition.
 You are practically guaranteed to encounter developers who express
 with complete confidence untruths such as these:

	

	 “Normalization makes a database slower.
	 Denormalization makes a data- base faster.”
	

	 False.
	 It’s true that you may need to use a join to retrieve attributes
	 from separate tables after you apply normalization.
	 If you denormalize data, you can avoid some joins.
	
	

	
	 For example, the comma-separated list in
	 Chapter 2, Jaywalking stores products for a given bug.
	 What if you also need a list of bugs for a given product?
	 Denormalization usually helps convenience or performance for one
	 type of query, but at great cost for other types of queries.
	

	

	 While there are legitimate uses for denormalization,
	 you should model your database in normal forms first, before
	 deciding to use denormaliziation.
	 The MENTOR guide for indexing in
	 Chapter 13, Index Shotgun applies to denormalization too:
	 be sure you measure performance both before and after you implement
	 a change for the sake of efficiency.
	

	

	 “Normalization says to push the data out to child tables and
	 reference it using a pseudokey.”
	
	
	

	 False.
	 You can use pseudokeys for the goal of convenience, performance, or
	 storage efficiency, and those reasons are legitimate.
	 However, it has nothing to do with normalization.
	

	

	 “Normalization is where you separate attributes as much as
	 possible, such as in the Entity-Attribute-Value design.”
	

	

	 False.
	 It’s common for developers to use the word
	 normalization inaccurately,
	 implying that it makes data less human-readable or less
	 convenient to query.
	 In fact, the opposite is true.
	

	

	 “No one needs to normalize past the third normal form.
	 The other normal forms are so esoteric that
	 you’ll never encounter them.”
	

	 False.
	 One study showed that more than 20 percent of business databases contain
	 designs that satisfy the first three normal forms but violate
	 the fourth normal form.
	 This is a minority, but it’s far from insignificant.
	 If you learn of a bug that potentially results in data loss and
	 occurs in 20 percent of your applications, wouldn’t you want to fix it?
	

What Is Normalization?

 The following are the objectives of normalization:

	
To represent facts about the real world in a way that can be understood

	
To reduce storing facts redundantly and to prevent anomalous or
	inconsistent data

	
To support integrity constraints
	
	

 Notice that improving database performance is not on this list.
 Normalization will help you store data correctly
 and avoid getting into trouble when using SQL to query your data.
 It’s practically inevitable that a database that is not normalized
 becomes a mess.
 You may have to develop a lot more code to clean up inconsistent or
 duplicate data.
 You will experience delays and expenses to the business from faulty data.
 If you include these scenarios, the benefits to performance from
 normalizing a database become clearer.

 When a table satisfies rules of normalization, the table is
 in normal form.
 There are five traditional normal forms, describing progressive levels
 of normalization.
 Each normal form eliminates a specific type of redundancy or anomaly
 when you design a relation.
 Generally, if your table satisfies a normal form,
 the table also satisfies all the preceding normal forms.
 There are three additional normal forms that researchers have described.
 The progression of normal forms is shown here:

[image: images/Normalization/Normal_Forms.png]
First Normal Form

	The most fundamental requirement for first normal form is that
	the table must be a relation.
	If it doesn’t meet the criteria for a relation described in the
	first section, then your table can’t be in first normal form or
	any of the subsequent normal forms.

	The next requirement is that the table must not have any
	repeating groups.
	Remember that each row in a relation is a combination between several
	sets, choosing one value from each set.
	A repeating group means that one row may have multiple values from
	the given set.

 It also causes trouble to design a table with a set of similar columns, when these columns should be a single column on multiple rows.
	This design is sometimes informally called an example of repeating groups.
	It’s not strictly the same as a repeating group, since each column contains a single value, but it leads to similar problems.

	Two antipatterns in this book break first normal form:
	

	

	 Multiple values from the same domain across multiple columns,
	 in Chapter 8, Multicolumn Attributes
	

	

	 Multiple values within a single column,
	 in Chapter 2, Jaywalking
	

	These antipatterns result in sparsely populated columns or comma-separated strings, like the following illustrations:

[image: images/Normalization/1NF-anti.png]

	The proper design that satisfies first normal form is to create a separate table, so each value is on its own row, in a single column.

[image: images/Normalization/1NF-soln.png]

	In the preceding example, you can support multiple tags by inserting as many rows as needed.

Second Normal Form

 The second normal form is identical to the first normal form, unless
	your table has a compound primary key.
	In the tagging example, keep track of which user chose to apply
	each given tag to a bug.
	The table also has an attribute to identify the user who first coined a given tag.

Normalization/2NF-anti.sql
	 	CREATE TABLE BugsTags (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 tag VARCHAR(20) NOT NULL,
	 	 tagger BIGINT UNSIGNED NOT NULL,
	 	 coiner BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (bug_id, tag),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (tagger) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (coiner) REFERENCES Accounts(account_id)
);

	You can see that the identity of the coiner is stored
	redundantly (the following figure uses names instead of ID numbers
	for the user identities).

[image: images/Normalization/2NF-anti.png]

	This means someone might create an anomaly by
	changing the identity of the coiner on one row for a given tag
	(crash) without changing all rows for
	the same tag.

	To satisfy second normal form, store the coiner for a given
	tag only once.
	That means you have to define another table, Tags,
	where the tag is the primary key, so there’s bound to be only one row
	per distinct tag.
	Then you can store the coiner of that tag in this new table instead of
	in BugsTags and prevent anomalies.

Normalization/2NF-normal.sql
	 	CREATE TABLE Tags (
	 	 tag VARCHAR(20) PRIMARY KEY,
	 	 coiner BIGINT UNSIGNED NOT NULL,
	 	 FOREIGN KEY (coiner) REFERENCES Accounts(account_id)
);
	 	
	 	CREATE TABLE BugsTags (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 tag VARCHAR(20) NOT NULL,
	 	 tagger BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (bug_id, tag),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (tag) REFERENCES Tags(tag),
	 	 FOREIGN KEY (tagger) REFERENCES Accounts(account_id)
);

 The following illustrates that each tag has only one user named as its coiner, so anomalies can’t appear.

[image: images/Normalization/2NF-soln.png]
Third Normal Form

 In the Bugs table, you might want to store the
	email of the engineer assigned to work on the bug.

Normalization/3NF-anti.sql
	 	CREATE TABLE Bugs (
	 	 bug_id SERIAL PRIMARY KEY,
	 	 -- . . .
	 	 assigned_to BIGINT UNSIGNED,
	 	 assigned_email VARCHAR(100),
	 	 FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id)
);

	However, the email is an attribute of the assigned engineer’s
	account; it’s not strictly an attribute of the bug.
	It’s redundant to store the email in this way, and you risk anomalies
	like in the table that fails second normal form.

	In the example for second normal form, the offending column is related
	to at least part of the compound primary key.
	In the following example, which violates third normal form, the offending column
	doesn’t correspond to the primary key at all.

[image: images/Normalization/3NF-anti.png]

	To fix this, put the email address into the
	Accounts table.
	You can separate the column from the Bugs
	table, like this:

[image: images/Normalization/3NF-soln.png]

	That’s the right place, because the email corresponds directly to the
	primary key of that table, without redundancy.

Boyce-Codd Normal Form

	A slightly stronger version of third normal form is called
	Boyce-Codd normal form.
	The difference between these two normal forms is that in third
	normal form, all non-key attributes must depend on the key of the table.
	In Boyce-Codd normal form, both key columns and non-key columns are subject to this rule.
	This would come up only when the table has multiple sets of columns
	that could serve as the table’s key.
	These are called candidate keys.
	Some tables have multiple candidate keys, but only one of the candidate keys will become the primary key of that table.

	For example, suppose you have three tag types:
	tags that describe the impact of the bug,
	tags for the subsystem the bug affects,
	and tags that describe the fix for the bug.
	Each bug must have at most one tag of each type.
	The candidate key could be the two columns
	bug_id and tag,
	but it could also be the two columns bug_id and
	tag_type.
	Either pair of columns would be specific enough to address every row
	individually, so these are both candidate keys for the table.

	The following illustrates an example of a table
	that is in third normal form but not Boyce-Codd normal form.

[image: images/Normalization/BCNF-anti.png]

 To fix this table, refactor the tag_type attribute into the Tags table, like in the following illustation:

[image: images/Normalization/BCNF-soln.png]

 When the tag type is an attribute of the Tags table, anomalies are prevented.
	The table is now in Boyce-Codd Normal Form.
	

Fourth Normal Form

 Now alter the database to allow each bug to be reported by
	multiple users, assigned to multiple development engineers, and
	verified by multiple quality engineers.
	A many-to-many relationship deserves an additional
	table:

Normalization/4NF-anti.sql
	 	CREATE TABLE BugsAccounts (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 reported_by BIGINT UNSIGNED,
	 	 assigned_to BIGINT UNSIGNED,
	 	 verified_by BIGINT UNSIGNED,
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (verified_by) REFERENCES Accounts(account_id)
);

	You can’t use bug_id alone as the primary key.
	You need multiple rows per bug to support multiple accounts in
	each column.
	You also can’t declare a primary key over the first two or the first
	three columns, because that would still fail to support multiple
	values in the last column.
	So, the primary key would need to be over all four columns.
	However, assigned_to and
	verified_by should be nullable, because bugs
	can be reported before being assigned or verified,
	All primary key columns standardly have a NOT NULL
	constraint.

	Another problem is that the table may have redundant values when any column
	contains fewer accounts than some other column.
	The redundant values are shown in the illustration.

[image: images/Normalization/4NF-anti.png]

	All the problems shown previously are caused by trying to create an
	intersection table that does double-duty—or triple-duty in this case.
	When you try to use a single intersection table to represent multiple
	many-to-many relationships, it violates fourth normal form.

	You can solve this by splitting the table into
	one intersection table for each type of many-to-many
	relationship.
	This solves the problems of redundancy and mismatched numbers of values
	in each column.

Normalization/4NF-normal.sql
	 	CREATE TABLE BugsReported (
	 	 bug_id BIGINT NOT NULL,
	 	 reported_by BIGINT NOT NULL,
	 	 PRIMARY KEY (bug_id, reported_by),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (reported_by) REFERENCES Accounts(account_id)
);
	 	
	 	CREATE TABLE BugsAssigned (
	 	 bug_id BIGINT NOT NULL,
	 	 assigned_to BIGINT NOT NULL,
	 	 PRIMARY KEY (bug_id, assigned_to),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id)
);
	 	
	 	CREATE TABLE BugsVerified (
	 	 bug_id BIGINT NOT NULL,
	 	 verified_by BIGINT NOT NULL,
	 	 PRIMARY KEY (bug_id, verified_by),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (verified_by) REFERENCES Accounts(account_id)
);

 Separating each many-to-many relationship into its own table would look like the following:

[image: images/Normalization/4NF-soln.png]

 Fourth normal form doesn’t seem so exotic now, and it’s clear why it’s important.

Fifth Normal Form

	Any table that meets the criteria of Boyce-Codd normal form and does
	not have a compound primary key is already in fifth normal form.
	To understand fifth normal form, consider the following scenario.

 Some engineers work only on certain products.
	You should design the database so you know the facts of who works
	on which products and which bugs, with a minimum of redundancy.
	Your first try at supporting this is to add a column to the
	BugsAssigned table to show that a given engineer
	works on a product:

Normalization/5NF-anti.sql
	 	CREATE TABLE BugsAssigned (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 assigned_to BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (bug_id, assigned_to),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

	This doesn’t tell you which products may be assigned to the engineer
	to work on;
	it only lists which products the engineer is currently assigned
	to work on.
	It also stores the fact that an engineer works on a given product
	redundantly.
	This is caused by trying to store multiple facts about independent
	many-to-many relationships in a single table, similar to the problem
	in the fourth normal form.
	The redundancy is illustrated in the figure (the
	figure uses names instead of ID numbers for the products).

[image: images/Normalization/5NF-anti.png]

 The solution is to isolate each relationship into
	separate tables, as shown in the following code:

Normalization/5NF-normal.sql
	 	CREATE TABLE BugsAssigned (
	 	 bug_id BIGINT UNSIGNED NOT NULL,
	 	 assigned_to BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (bug_id, assigned_to),
	 	 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
	 	 FOREIGN KEY (assigned_to) REFERENCES Accounts(account_id)
);
	 	
	 	CREATE TABLE EngineerProducts (
	 	 account_id BIGINT UNSIGNED NOT NULL,
	 	 product_id BIGINT UNSIGNED NOT NULL,
	 	 PRIMARY KEY (account_id, product_id),
	 	 FOREIGN KEY (account_id) REFERENCES Accounts(account_id),
	 	 FOREIGN KEY (product_id) REFERENCES Products(product_id)
);

 The same change is shown in the following illustration:

[image: images/Normalization/5NF-soln.png]

	Now you can record the fact that an engineer is available to work on
	a given product, even if the engineer is not currently working on a given bug for that product.

Further Normal Forms

	Domain-Key normal form (DKNF) says that every
	constraint on a table is a logical consequence of the table’s domain
	constraints and key constraints.
	Normal forms three, four, five, and Boyce-Codd normal form are all
	encompassed by DKNF.

	For example, you may decide that a bug that has a status of
	NEW or
	DUPLICATE has resulted in no work,
	so there should be no hours logged, and also it
	makes no sense to assign a quality engineer in the
	verified_by column.
	You might implement these constraints with a trigger or a
	CHECK constraint.
	These are constraints between non-key columns of the table, so they
	don’t meet the criteria of DKNF.

	Sixth normal form seeks to eliminate all join
	dependencies.
	It’s typically used to support a history of changes to attributes.
	For example, the Bugs.status changes over time,
	and you might want to record this history in a child table, as well as
	annotations about the change, such as when the change occurred, who made the change, and perhaps other
	details.

	You can imagine that for Bugs to support sixth
	normal form fully, nearly every column may need a separate accompanying
	history table.
	This leads to an overabundance of tables, and it makes writing SQL queries laborious, because you have to join many tables back together to get the simplest result set.
	Sixth normal form is overkill for most applications, but some
	data warehousing techniques, for example Anchor Modeling,[38]
	use this form to implement temporal databases.
	You could use this form to query any data as it existed at a specific time in the past, or you could analyze how it changes over time.

Common Sense

 Rules of normalization aren’t esoteric or complicated.
 They’re really just a technique resulting from common sense, to reduce
 redundancy and improve consistency of data.

 You can use this brief overview of relations and normal forms
 as a quick reference
 to help you design better databases in future projects.

Footnotes

	[38]
	
https://en.wikipedia.org/wiki/Anchor_modeling

Copyright © 2022, The Pragmatic Bookshelf.

Bibliography

	[BMMM98]
	William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and Thomas J. Mowbray. AntiPatterns. John Wiley & Sons, New York, NY, 1998.
	[Bra11]
	Ronald Bradford. Effective MySQL Optimizing SQL Statements. McGraw-Hill, Emeryville, CA, 2011.
	[BT21]
	Silvia Botros and Jeremy Tinley. High Performance MySQL. O’Reilly & Associates, Inc., Sebastopol, CA, 4th edition, 2021.
	[Cel04]
	Joe Celko. Joe Celko’s Trees and Hierarchies in SQL for Smarties. Morgan Kaufmann Publishers, San Francisco, CA, 2004.
	[Cel05]
	Joe Celko. Joe Celko’s SQL Programming Style. Morgan Kaufmann Publishers, San Francisco, CA, 2005.
	[Cod70]
	Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM. 13[6]:377--387, 1970, June.
	[Fow03]
	Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Longman, Boston, MA, 2003.
	[GHJV95]
	Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, 1995.
	[Gol91]
	David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Comput. Surv.. 5--48, 1991, March.
	[GP03]
	Peter Gulutzan and Trudy Pelzer. SQL Performance Tuning. Addison-Wesley, Boston, MA, 2003.
	[HLV09]
	Michael Howard, David LeBlanc, and John Viega. 24 Deadly Sins of Software Security. McGraw-Hill, Emeryville, CA, 2009.
	[Mar08]
	Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, Englewood Cliffs, NJ, 2008.
	[MC15]
	Jason Myers and Rick Copeland. Essential SQLAlchemy. O’Reilly & Associates, Inc., Sebastopol, CA, Second edition, 2015.
	[Nic21]
	Daniel Nichter. Efficient MySQL Performance. O’Reilly & Associates, Inc., Sebastopol, CA, 2021.
	[Rub22]
	Sam Ruby. Agile Web Development with Rails 7. The Pragmatic Bookshelf, Raleigh, NC, 2022.
	[Tro06]
	Vadim Tropashko. SQL Design Patterns. Rampant Techpress, Kittrell, NC, 2006.

Copyright © 2022, The Pragmatic Bookshelf.

Thank you!

 How did you enjoy this book? Please let us know. Take a moment and email us at support@pragprog.com with your feedback. Tell us your story and you could win free ebooks. Please use the subject line “Book Feedback.”

 Ready for your next great Pragmatic Bookshelf book? Come on over to https://pragprog.com and use the coupon code BUYANOTHER2022 to save 30% on your next ebook.

 Void where prohibited, restricted, or otherwise unwelcome. Do not use ebooks near water. If rash persists, see a doctor. Doesn’t apply to The Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf itself. Side effects may include increased knowledge and skill, increased marketability, and deep satisfaction. Increase dosage regularly.

 And thank you for your continued support.

 The Pragmatic Bookshelf

[image: images/Coupon.png]

You May Be Interested In…
Select a cover for more information
A Common-Sense Guide to Data Structures and Algorithms, Second Edition
[image:]

 If you thought that data structures and algorithms were all just theory, you’re missing out on what they can do for your code. Learn to use Big O notation to make your code run faster by orders of magnitude. Choose from data structures such as hash tables, trees, and graphs to increase your code’s efficiency exponentially. With simple language and clear diagrams, this book makes this complex topic accessible, no matter your background. This new edition features practice exercises in every chapter, and new chapters on topics such as dynamic programming and heaps and tries. Get the hands-on info you need to master data structures and algorithms for your day-to-day work.

Jay Wengrow
(506 pages) ISBN: 9781680507225 $45.95

Design and Build Great Web APIs
[image:]

 APIs are transforming the business world at an increasing pace. Gain the essential skills needed to quickly design, build, and deploy quality web APIs that are robust, reliable, and resilient. Go from initial design through prototyping and implementation to deployment of mission-critical APIs for your organization. Test, secure, and deploy your API with confidence and avoid the “release into production” panic. Tackle just about any API challenge with more than a dozen open-source utilities and common programming patterns you can apply right away.

Mike Amundsen
(330 pages) ISBN: 9781680506808 $45.95

Seven Databases in Seven Weeks, Second Edition
[image:]

 Data is getting bigger and more complex by the day, and so are your choices in handling it. Explore some of the most cutting-edge databases available—from a traditional relational database to newer NoSQL approaches—and make informed decisions about challenging data storage problems. This is the only comprehensive guide to the world of NoSQL databases, with in-depth practical and conceptual introductions to seven different technologies: Redis, Neo4J, CouchDB, MongoDB, HBase, Postgres, and DynamoDB. This second edition includes a new chapter on DynamoDB and updated content for each chapter.

Luc Perkins, Jim Wilson, Eric Redmond
(358 pages) ISBN: 9781680502534 $47.95

Programming Ecto
[image:]

 Languages may come and go, but the relational database endures. Learn how to use Ecto, the premier database library for Elixir, to connect your Elixir and Phoenix apps to databases. Get a firm handle on Ecto fundamentals with a module-by-module tour of the critical parts of Ecto. Then move on to more advanced topics and advice on best practices with a series of recipes that provide clear, step-by-step instructions on scenarios commonly encountered by app developers. Co-authored by the creator of Ecto, this title provides all the essentials you need to use Ecto effectively.

Darin Wilson and Eric Meadows-Jönsson
(242 pages) ISBN: 9781680502824 $45.95

Pythonic Programming
[image:]

 Make your good Python code even better by following proven and effective pythonic programming tips. Avoid logical errors that usually go undetected by Python linters and code formatters, such as frequent data look-ups in long lists, improper use of local and global variables, and mishandled user input. Discover rare language features, like rational numbers, set comprehensions, counters, and pickling, that may boost your productivity. Discover how to apply general programming patterns, including caching, in your Python code. Become a better-than-average Python programmer, and develop self-documented, maintainable, easy-to-understand programs that are fast to run and hard to break.

Dmitry Zinoviev
(150 pages) ISBN: 9781680508611 $26.95

Data Science Essentials in Python
[image:]

 Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-organized dataset with this quick reference for the busy data scientist. Understand text mining, machine learning, and network analysis; process numeric data with the NumPy and Pandas modules; describe and analyze data using statistical and network-theoretical methods; and see actual examples of data analysis at work. This one-stop solution covers the essential data science you need in Python.

Dmitry Zinoviev
(224 pages) ISBN: 9781680501841 $29

Modern Front-End Development for Rails, Second Edition
[image:]

 Improve the user experience for your Rails app with rich, engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and Stimulus. You can add great front-end flair without much extra complication. Use React to build a more complex set of client-side features. Structure your code for different levels of client-side needs with these powerful options. Add to your toolkit today!

Noel Rappin
(408 pages) ISBN: 9781680509618 $55.95

Build a Binary Clock with Elixir and Nerves
[image:]

 Want to get better at coding Elixir? Write a hardware project with Nerves. As you build this binary clock, you’ll build in resiliency using OTP, the same libraries powering many commercial phone switches. You’ll attack complexity the way the experts do, using a layered approach. You’ll sharpen your debugging skills by taking small, easily verified steps toward your goal. When you’re done, you’ll have a working binary clock and a good appreciation of the work that goes into a hardware system. You’ll also be able to apply that understanding to every new line of Elixir you write.

Frank Hunleth and Bruce A. Tate
(106 pages) ISBN: 9781680509236 $29.95

OEBPS/Images/BCNF-anti.png

OEBPS/Images/dzpythonic.jpg

OEBPS/Images/4NF-soln.png

OEBPS/Images/2NF-soln.png

OEBPS/Images/dzpyds.jpg

OEBPS/Images/next-higher.png

OEBPS/Images/cartesian-product.png

OEBPS/Images/tip.png

OEBPS/Images/eav-table.png

OEBPS/Images/super-table.png

OEBPS/Images/2NF-anti.png

OEBPS/Images/1NF-anti.png

OEBPS/Images/nrclient2.jpg

OEBPS/Images/closure-table.png

OEBPS/Images/Coupon.png

OEBPS/Images/4NF-anti.png

OEBPS/Images/explain-qep.png

OEBPS/Images/adjacency-list.png

OEBPS/Images/nested-sets.png

OEBPS/Images/bugs-model.png

OEBPS/Images/wmecto.jpg

OEBPS/Images/5NF-soln.png

OEBPS/Images/maapis.jpg

OEBPS/Images/polymorphic-association.png

OEBPS/Images/Normal_Forms.png

OEBPS/Images/load-imbalanced.png

OEBPS/Images/simple-diagram.png

OEBPS/Images/cover.jpg

OEBPS/Images/3NF-soln.png

OEBPS/Images/5NF-anti.png

OEBPS/Images/BCNF-soln.png

OEBPS/Images/jwdsal2.jpg

OEBPS/Images/fatal-error.png

OEBPS/Images/3NF-anti.png

OEBPS/Images/pwrdata.jpg

OEBPS/Images/comment-thread.png

OEBPS/Images/exploits_of_a_mom.png

OEBPS/Images/thnerves.jpg

OEBPS/Images/bug-types.png

OEBPS/Images/intersection-table.png

OEBPS/Images/erd-examples.png

OEBPS/Images/load-balanced.png

OEBPS/Images/order-addresses.png

OEBPS/Images/reverse-reference.png

OEBPS/Images/1NF-soln.png

