
Refactoring
 at Scale
Regaining Control of Your Codebase

Maude Lemaire

Maude Lemaire

Refactoring at Scale
Regaining Control of Your Codebase

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07553-0

[LSI]

Refactoring at Scale
by Maude Lemaire

Copyright © 2021 Maude Lemaire. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Jeff Bleiel
Production Editor: Christopher Faucher
Copyeditor: nSight, Inc.
Proofreader: Christina Edwards

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2020: First Edition

Revision History for the First Edition
2020-10-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492075530 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Refactoring at Scale, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492075530

Table of Contents

Preface. ix

Part I. Introduction

1. Refactoring. 3
What Is Refactoring? 4
What Is Refactoring at Scale? 6
Why Should You Care About Refactoring? 8
Benefits of Refactoring 9

Developer Productivity 9
Identifying Bugs 10

Risks of Refactoring 11
Serious Regressions 11
Unearthing Dormant Bugs 12
Scope Creep 12
Unnecessary Complexity 12

When to Refactor 13
Small Scope 13
Code Complexity Actively Hinders Development 13
Shift in Product Requirements 14
Performance 14
Using a New Technology 15

When Not to Refactor 16
For Fun or Out of Boredom 16
Because You Happened to Be Passing By 16
To Making Code More Extendable 18

iii

When You Don’t Have Time 18
Our First Refactoring Example 18

Simplifying Conditionals 21
Extracting Magic Numbers 22
Extracting Self-Contained Logic 23

2. How Code Degrades. 27
Why Understanding Code Degradation Matters 28
Requirement Shifts 29

Scalability 29
Accessibility 30
Device Compatibility 30
Environmental Changes 31
External Dependencies 32
Unused Code 32
Changes in Product Requirements 33

Tech Debt 36
Working Around Technology Choices 36
Persistent Lack of Organization 39
Moving Too Quickly 40

Applying Our Knowledge 41

Part II. Planning

3. Measuring Our Starting State. 45
Why Is Measuring the Impact of a Refactor Difficult? 46
Measuring Code Complexity 47

Halstead Metrics 47
Cyclomatic Complexity 50
NPath Complexity 53
Lines of Code 55

Test Coverage Metrics 57
Documentation 60

Formal Documentation 61
Informal Documentation 62

Version Control 64
Commit Messages 64
Commits in Aggregate 65

Reputation 66
Building a Complete Picture 69

iv | Table of Contents

4. Drafting a Plan. 71
Defining Your End State 72

On the Road 72
At Work 72

Mapping the Shortest Distance 74
On the Road 74
At Work 75

Identifying Strategic Intermediate Milestones 76
On the Road 77
At Work 77

Choosing a Rollout Strategy 80
Dark Mode/Light Mode 81
Smart DNA’s Rollout 86

Cleaning Up Artifacts 87
Referencing Metrics in Your Plan 88

Interpolating Goal Metrics to Intermediate Milestones 89
Distinct Milestone Metrics 89

Estimating 90
Sharing Your Plan with Other Teams 91

Transparency 92
Perspective 92

Refined Plan 94

5. Getting Buy-In. 97
Why Your Manager Is Not Onboard 98

Managers Aren’t Coding 98
Managers Are Evaluated Differently 99
Managers See the Risk 99
Managers Need to Coordinate 100

Strategies for Making a Compelling Argument 101
Using Conversational Devices 102
Building an Alignment Sandwich 104
Relying on Evidence 107
Playing Hardball 108

Buy-In Shapes the Refactor 109

6. Building the Right Team. 111
Identifying Different Kinds of Experts 112
Matchmaking 113

Experts of Many Trades 115
Revisiting Active Contributors 115

Table of Contents | v

Biases in Our Expert List 116
Types of Refactoring Teams 117

Owners 117
Proposed Approach 119
Cleanup Crews 120

The Pitch 122
Metrics 123
Generosity 124
Opportunity 124
Bartering 125
Repeat 126

A Few Outcomes 126
Realistic Scenario 127
Worst-Case Scenario 127

Fostering Strong Teams 128

Part III. Execution

7. Communication. 131
Within Your Team 132

Stand-Ups 133
Weekly Syncs 135
Retrospectives 137

Outside Your Team 138
When Kicking Off the Project 138
During Project Execution 141

Always Iterate 146

8. Strategies for Execution. 147
Team Building 147

Pair Programming 148
Keeping Everyone Motivated 150

Keeping a Tally 152
Intermediate Metric Measurements 152
Unearthed Bugs 153
Clean-Up Items 154
Out-of-Scope Items 154

Programming Productively 155
Prototyping 155
Keep Things Small 156

vi | Table of Contents

Test, Test, Test 157
Asking the “Stupid” Question 157

Conclusion 158

9. Making the Refactor Stick. 159
Fostering Adoption 160
Education 161

Active Education 161
Passive Education 164

Reinforcement 165
Progressive Linting 165
Code Analysis Tools 166
Gates Versus Guardrails 166

Integrating Improvement into the Culture 167

Part IV. Case Studies

10. Case Study: Redundant Database Schemas. 171
Slack 101 172
Slack Architecture 101 174
Scalability Problems 177

Booting Up the Slack Client 177
File Visibility 178
Mentions 178

Consolidating the Tables 180
Gathering the Scattered Queries 181
Developing a Migration Strategy 183
Quantifying Our Progress 186
Attempting to Keep the Team Motivated 187
Communicating Our Progress 188

Tidying Up 190
Lessons Learned 192

Develop a Well-Defined, Well-Communicated Plan 192
Understand the Code’s History 193

Ensure Adequate Test Coverage 194
Keep Your Team Motivated 194
Focus on Strategic Milestones 195
Identify and Rely on Meaningful Metrics 195

Takeaways 196

Table of Contents | vii

11. Case Study: Migrating to a New Database. 197
Workspace-Sharded Data 198
Migrating channels_members to Vitess 199

Sharding Scheme 200
Developing a New Schema 201

Detangling JOINs 203
A Difficult Rollout 208

Backfill Mode 209
Dark Mode 210
Light Mode 215
Sunset Mode 216

Tidying Up 217
Lessons Learned 219

Set Realistic Estimates 219
Source the Teammates You Need 220
Plan Scope Carefully 220
Choose a Single Place for Project Communication 221
Design a Thoughtful Rollout Plan 221

Takeaways 222

Index. 223

viii | Table of Contents

Preface

While there are a number of books about refactoring, most of them deal with the
nitty-gritty of improving small bits of code one line at a time. I believe that the most
difficult part of a refactor is usually not finding the precise way to improve the code at
hand, but rather everything else that needs to happen around it. In fact, I might also
go so far as to say that for any large software project, the little things rarely matter;
coordinating complex changes is the biggest challenge of all.

Refactoring at Scale is my attempt at helping you figure out those difficult pieces. It’s
the culmination of many years of experience carrying out all sorts of refactoring
projects of various scales. During my time at Slack, many of the projects I’ve led have
allowed the company to scale dramatically; our product has gone from being able to
support customers with 25,000 employees to those with a whopping 500,000. The
strategies we developed to refactor effectively needed to tolerate explosive organiza‐
tional growth, with our engineering team growing nearly sixfold during the same
period. Successfully planning and executing on a project that affects both a significant
portion of your codebase and an increasing number of engineers is no small feat. I
hope this book gives you the tools and resources you need to do just that.

Who Should Read This Book
If you work in a large, complex codebase alongside dozens (or more) of other engi‐
neers, this book is for you!

If you’re a junior engineer seeking ways to start building more senior skills by making
a difference at your company, a large refactoring effort can be a great way to achieve
that. These kinds of projects have broad, meaningful impact extending well beyond
your individual team. (They’re also not so glamorous that a senior engineer might
snap it up right away.) They’re a great opportunity for you to acquire new professio‐
nal skills (and strengthen the ones you already have). This book will teach you how to
navigate this kind of project smoothly from start to finish.

ix

This book is also a valuable resource for highly technical senior engineers who can
code themselves out of any problem, but are feeling frustrated that others aren’t
understanding the value of their work. If you’re feeling isolated and are looking for
ways to level-up others around you, this book can teach you the strategies you need
to help others see important technical problems through your eyes.

For the technical managers seeking to help guide their team through a large-scale
refactor, this book can help you understand how to better support your team every
step of the way. There isn’t a substantial amount of technical content contained within
these pages, so if you are involved with a large-scale refactor in just about any
capacity (engineering manager, product manager, project manager), you can benefit
from the ideas herein.

Why I Wrote This Book
When I set out on my first large-scale refactor, I understood why the code needed to
change and how it needed to change, but what puzzled me most was how to introduce
those changes safely, gradually, and without stepping on everyone else’s toes. I was
eager to have cross-functional impact and didn’t pause to acknowledge the ramifica‐
tions the refactor might have on others’ work, nor how I might motivate them to help
me complete it. I simply plowed through. (You can read about this refactor in
Chapter 10!)

In the years that followed, I refactored many, many more lines of code and ended up
on the receiving end of a few ill-executed refactors. The lessons I’d learned from these
experiences felt important, so I began speaking about them at a number of conferen‐
ces. My talks resonated with hundreds of engineers, all of whom, like me, had experi‐
enced problems effectively refactoring large surface areas of code within their own
companies. It seemed clear that there was some sort of gap in our software education,
specifically around this core aspect of what it means to write software professionally.

In many ways, this book attempts to teach the important things that aren’t covered in
a typical computer science curriculum, simply because they are too difficult to teach
in a classroom. Perhaps they cannot be taught in a book either, but why not give it a
try?

x | Preface

Navigating This Book
This book is split into four parts and organized in rough chronological order of the
work required to plan and execute a large-scale refactor, outlined as follows.

• Part I introduces important concepts behind refactoring.
— Chapter 1 discusses the basics of refactoring and how refactoring at scale dif‐

fers from smaller refactors.
— Chapter 2 describes the many ways code can degrade and how this plays into

effective refactoring.
• Part II covers everything you need to know about planning a successful refactor.

— Chapter 3 provides an overview of the many metrics you can use to measure
the problems your refactor seeks to solve before any improvements are made.

— Chapter 4 explains the important components of a comprehensive execution
plan and how to go about drafting one.

— Chapter 5 discusses different approaches to get engineering leadership to sup‐
port your refactor.

— Chapter 6 describes how to identify which engineers are best suited to work
on the refactor and tips for recruiting them.

• Part III focuses on what you can do to make sure that your refactor goes well
while it is underway.
— Chapter 7 explores how best to promote good communication within your

team and with any external stakeholders.
— Chapter 8 looks at a number of ways to maintain momentum throughout the

refactor.
— Chapter 9 provides a few suggestions for how to ensure that the changes

introduced by your refactor stick around.
• Part IV contains two case studies, both pulled from projects I was involved with

while working at Slack. These refactors affected a significant portion of our core
application, truly at scale. I hope these will help illustrate the concepts discussed
in Parts I–III of the book.

This ordering is not prescriptive; just because we’ve reached a new phase doesn’t
mean we shouldn’t revisit our previous assumptions if necessary. For example, you
might be kicking off your refactor with a strong sense of the team you’ll be working
with, only to discover halfway through drafting your execution plan that you’ll need
to bring in more engineers than you had initially anticipated. That’s ok; it happens all
the time!

Preface | xi

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/qcmaude/refactoring-at-scale.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Refactoring at Scale by Maude Lem‐
aire (O’Reilly). Copyright 2021 Maude Lemaire, 978-1-492-07553-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xii | Preface

https://github.com/qcmaude/refactoring-at-scale
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/refactoring-at-scale.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Preface | xiii

http://oreilly.com
http://oreilly.com
https://oreil.ly/refactoring-at-scale
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Acknowledgments
Writing a book is not an easy task, and this one was no exception. Refactoring at Scale
would not have been possible without the contributions of many people.

First, I’d like to thank my editor at O’Reilly, Jeff Bleiel. Jeff turned an inexperienced
writer (me) into a published author. His feedback was always spot-on, helping me
organize my thoughts more cohesively, and encouraging me to cut whenever I was
being too wordy (which is something that happened quite frequently). I simply can’t
imagine working with a better editor.

Second, I want to thank the handful of friends and colleagues who read early versions
of a few chapters: Morgan Jones, Ryan Greenberg, and Jason Liszka. Their feedback
assured me that my ideas were sound and would be valuable to a wide range of read‐
ers. For the words of encouragement and thought-provoking conversations, thanks
go to Joann, Kevin, Chase, and Ben.

I’d like to thank Maggie Zhou for all her help cowriting the second case study chapter
(Chapter 11). She is one of the most thoughtful, intelligent, energetic coworkers I’ve
ever had the pleasure to work with and I’m thrilled for the world to read about our
adventures together!

A huge thank you to my technical reviewers, David Cottrell and Henry Robinson.
David has been a close friend since university and has led a number of large-scale
refactors in his many years at Google. He’s since founded his own company. Henry is
a colleague at Slack who’s made countless open-source contributions and seen explo‐
sive growth at Silicon Valley companies firsthand. They are both incredibly conscien‐
tious engineers, and the book greatly benefited from their guidance and wisdom. I am
endlessly grateful for the many hours they spent verifying its contents. Any inaccura‐
cies in the final manuscript are mistakes of my own.

Thank you to everyone who’s ever refactored something with me. There are too many
of you to name, but you know who you are. You all have had a hand in shaping the
ideas in this book.

Thank you to my family (Simon, Marie-Josée, François-Rémi, Sophie, Sylvia, Gerry,
Stephanie, and Celia) for cheering me on from the sidelines.

Finally, thank you to my husband, Avery. Thank you for your patience, for giving me
the time, space, and encouragement to write. Thank you for letting me hijack count‐
less afternoons to talk through an idea or two (or three or four). Thank you for
believing in me. This book is just as much yours as it is mine. I love you.

xiv | Preface

PART I

Introduction

CHAPTER 1

Refactoring

Someone once asked me what it was that I liked so much about refactoring. What
kept me coming back to these types of projects at work so often? I told her that there
was something addicting about it. Maybe it’s the simple act of tidying, like neatly cata‐
loging and ordering your spices; or maybe it’s the joy of decluttering and finally dep‐
recating something, like bringing a bag of forgotten clothes to Goodwill; or maybe yet
it’s the little voice in my head reminding me that these tiny, incremental changes will
amount to a significant improvement in my colleagues’ daily lives. I think it’s the
combination of it all.

There’s something in the act of refactoring that can appeal to us all, whether we’re
building new product features or working on scaling an infrastructure. We all must
strike a balance in our work between writing more or writing less code. We must
strive to understand the downstream effects of our changes, whether intentional or
not. Code is a living, breathing thing. When I think about the code that I’ve written
living on for another five, ten years, I can’t help but wince a little bit. I certainly hope
that by that time, someone will have come along and either removed it entirely or
replaced it with something cleaner and, most importantly, more suited to the needs of
the application at that time. This is what refactoring is all about.

In this chapter, we’ll start by defining a few concepts. We’ll propose a basic definition
for refactoring in the general case and build on top of it to develop a separate defini‐
tion for refactoring at scale. To frame some of the motivations of this book, we’ll dis‐
cuss why we should care about refactoring and what advantages we can bring to our
teams if we’ve honed this skill. Next, we’ll dive into some of the benefits to expect
from refactoring and some of the risks we should keep in mind when considering
whether to do it. With our knowledge of the trade-offs, we’ll consider some scenarios
when the time is right and when the time is wrong. Finally, we’ll walk through a short
example to bring these concepts to life.

3

What Is Refactoring?
Very simply put, refactoring is the process by which we restructure existing code (the
factoring) without changing its external behavior. Now if you think that this defini‐
tion is incredibly generic, don’t worry; it purposefully is! Refactoring can take many
equally effective forms, depending on the code it’s applied to. To illustrate this, we’ll
define a “system” as any defined set of code that produces a set of outputs from a set
of inputs.

Say we have a concrete implementation of such a system called S, pictured in
Figure 1-1. The system was built under a tight deadline, encouraging the authors to
cut some corners. Over time, it’s become a large pile of tangled code. Thankfully, con‐
sumers of the system aren’t exposed to the internal mess of the system directly; they
interact with S, using a defined interface and rely on it to provide consistent results.

Figure 1-1. A simple system with inputs and outputs

A few brave developers cleaned up the internals of the system, which we’ll now call S’,
picture in Figure 1-2. While it might be a tidier system, to the consumers of S’, abso‐
lutely nothing has changed.

Figure 1-2. A simple refactored system with inputs and outputs

System S could be anything; it could be a single if statement, a ten-line function, a
popular open source library, a multimillion-line application, or anything in between.
(Inputs and outputs could be equally diverse.) The system could operate on database
entries, collections of files, or data streams. Outputs aren’t limited to returned values,
but could also include a number of side effects such as printing to the console or issu‐

4 | Chapter 1: Refactoring

ing a network request. You can see how a RESTful service responsible for operating
on user entities might map to our definition of a system in Figure 1-3.

Figure 1-3. A simple application as a system

As we continue to build on our definition of refactoring and begin exploring different
aspects of the process, the best way to ensure we’re all on the same page is to connect
each idea to a single, concrete example.

Using real-world programming examples is difficult for a few reasons. Given the
breadth of experiences in our industry, choosing just one example over another
immediately gives one group of readers a leg up. On the flip side, those deeply famil‐
iar with the example might be frustrated when some concepts are simplified for brev‐
ity or when certain nuances are ignored to apply a concept more cleanly. In hopes of
establishing a level playing field, whenever we seek to illustrate a generic problem at a
high level, we’ll use as our example a business familiar to (hopefully) most of us: a dry
cleaning establishment.

Simon’s Dry Cleaners is a local dry cleaning business with a single location on a busy
street in Springfield. It’s open Monday through Saturday during regular business
hours. Customers drop off both regular laundry and dry-clean-only items. Depend‐
ing on the quantity, urgency, and difficulty of each item, the items are cleaned and
returned to the customers any time between two and six business days later.

How does this map to our definition of a system? The dry cleaning operation housed
within the business is the system itself. It processes customers’ dirty clothing as inputs
and returns them cleaned to their owners as outputs. All of the intricacies of the dry
cleaning operation are hidden from the consumer; all we need to do is drop off our
clothes and hope the cleaners are able to do their job. The system itself is quite com‐
plex; depending on the type of input (leather jacket, pile of socks, silk skirt), it may
respond by performing one or more operations to ensure the proper output (a clean
garment). There is ample opportunity for something to go wrong between drop-off
and pickup: a belt might get lost, a stain overlooked, a shirt accidentally returned to
the wrong customer. However, if the employees proactively communicate with one

What Is Refactoring? | 5

https://oreil.ly/jrk1p

another, the machines are in good condition, and the receipts are kept in order, the
system will continue to operate smoothly and it’ll be easy to fulfill orders.

Let’s say Simon’s still ran its operations using paper carbon-copy receipts. All custom‐
ers coming in to drop off their clothes would write their name and phone number on
the provided slip, and the clerk would take note of their order. If customers misplaced
their receipts, Simon’s could easily locate the copy by leafing through their recent
orders alphabetized by last name. Unfortunately, when customers are late to pick up
their dry cleaning and they’ve misplaced their receipts, the clerk has to fetch archived
slips from boxes in the back office. Although almost all orders are successfully
retrieved, it takes much more time for the customer to pick up their apparel and be
on their way again. Paper receipts are also inconvenient when the owners calculate
their earnings at the end of each month; they have to match up all transactions (both
credit card and cash) manually with completed orders. Eager to modernize and refac‐
tor their process, the team decided to upgrade their systems to use a point-of-sale sys‐
tem and erase the pain points of paper. Ta da, refactoring complete! Customers
continue to drop off their dry cleaning and retrieve it a few days later with minimal
perceived change, but now everything behind the front desk runs much more
smoothly.

What Is Refactoring at Scale?
In late 2013, amidst a tumultuous launch, all major American news outlets declared
Healthcare.gov a complete fiasco; the website was plagued with security concerns,
hours-long outages, and a slew of serious bugs. Before launch, not only had the cost
ballooned to nearly two billion dollars, the codebase had blown up to over five mil‐
lion lines of code. While much of the failure of Healthcare.gov was due to failed
development practices caught up in bureaucratic federal government policies, when
the Obama administration later announced that it was planning to invest heavily in
improving the service, the undeniable difficulty involved with rearchitecting and
refactoring overgrown software systems became mainstream news. In the subsequent
months, the teams tasked with rewriting Healthcare.gov dove headfirst into a near-
complete overhaul of the codebase, a refactor at scale.

A refactor at scale is one that affects a substantial surface area of your systems. It typi‐
cally (but not exclusively) involves a large codebase (a million or more lines of code)
powering applications with many users. As long as legacy systems exist, there will be
a need for these kinds of refactors, ones where developers need to think critically
about code structure at breadth and how it can be measurably improved effectively.
What makes refactoring multimillion-line codebases different from refactoring
smaller, more well-defined applications? While it might be easy for us to see concrete,
iterative ways to improve small, well-defined systems (think individual functions or
classes), it becomes nearly impossible to determine the effect a change might have

6 | Chapter 1: Refactoring

when applied uniformly across a sprawling, complex system. Many tools exist to
identify code smells or automatically detect improvements within subsections of
code, but we are largely unable to automate human reasoning about how to restruc‐
ture large applications in codebases that are growing at an increasingly rapid pace,
particularly at high-growth companies.

Some may argue that you can make a measured improvement to this kind of system
by continuously applying small, additive transformations. This method might begin
to tilt the scales in a positive direction, but progress is likely to drop off significantly
when most of the low-hanging fruit is gone and it becomes trickier to introduce these
changes carefully (and gradually).

Refactoring at scale is about identifying a systemic problem in your codebase, con‐
ceiving of a better solution, and executing on that solution in a strategic, disciplined
way. To identify systemic problems and their corresponding solutions, you’ll need a
solid understanding of one or more broad sections of an application. You’ll also need
high stamina to propagate the solution properly to the entire affected area.

Refactoring at scale also goes hand in hand with refactoring live systems. Many of us
work on applications with frequent deployment cycles. At Slack, we ship new code to
our users about a dozen times per day. We need to be mindful of how our refactoring
efforts fit into these cycles, to minimize risk and disruption to our users. Understand‐
ing how to deploy strategically at various points during a refactoring effort can often‐
times make the difference between a quiet rollout and a complete service outage.

What might Simon’s Dry Cleaners look like when considering scale? Say deploying a
point-of-sale system dramatically optimized the business—so much so, in fact, that it
managed to open five new locations in neighboring towns in just two years! Now that
it’s operating multiple locations, growing the scale of their business, they have a dif‐
ferent set of problems. To keep costs low, only two of their six locations have dry
cleaning equipment on-site. When customers drop off dry cleaning at one of the four
locations that do not have dry cleaning equipment on-site, the apparel must be sent to
the closest facility via the company van. The van stops at all four storefronts to pick
up clothes, dropping them off in large bins on the loading docks of the two dry clean‐
ing locations. Simon’s employees work hard to sort through the heaps of clothes,
clean them, and return them to the correct storefront. Most days, however, it’s a har‐
rowing process. Both dry cleaning locations process apparel from both their own
location and the four smaller ones. It’s not uncommon for clothes to get separated or
tangled when dropped into the processing bins by the van drivers. More urgent
orders often get lost in the heap and cleaners have to dig through the entire shipment
to identify them first.

How can Simon’s improve its operations most efficiently? Should it dedicate a specific
dry cleaning center for each location so that each facility is handling orders from a
maximum of three storefronts? If so, should it consider rerouting the vans in a

What Is Refactoring at Scale? | 7

specific way? What if it did both? Would it be cost-efficient to open yet another dry
cleaning facility if it enables the business to decrease turn-around time? How should
it set up its loading docks so that fewer clothes get tangled? Could the drivers be
taught to hang and categorize orders properly by urgency before driving off to make
another round? Should the company limit pickups to right after lunchtime and
shortly after closing to give the dry cleaning locations more time to organize the
drop-offs? There are quite a few options to consider, many of which could be com‐
bined and executed on numerous orders or simultaneously. Imagine being faced with
all of these possibilities and having to decide which lever to pull first. It’s positively
paralyzing! Turns out, refactoring large applications feels the same way.

Why Should You Care About Refactoring?
Refactoring might sound compelling in theory, but how do you know that reading the
rest of this book won’t be a waste of time? I certainly hope that all readers can walk
away from this book with a few new tools in their tool belt, but if there’s a single rea‐
son I can provide to keep you reading it’s this:

Confidence in your ability to refactor allows you to lean toward action and start
building a system sooner, well before you’ve developed a strong understanding of all
the moving pieces, pitfalls, and edge cases. If you know you’ll be able to identify
opportunities to improve components effectively throughout the development pro‐
cess, and will continue to be able to do so as the system grows more complex, you
won’t need to spend as much time architecting a program upfront. Once you’ve
honed the skills required to manipulate code effortlessly, you’ll spend less time wor‐
rying about boxing yourself in with any single design decision. While programming,
you’ll find yourself opting to write something simple that works given the current cir‐
cumstances rather than stepping back and planning your next half-dozen moves.
You’ll recognize that there is always a (sometimes tricky) path to a better solution.

Programming isn’t a game of chess. When given a board configuration and assuming
optimal opponents, the best competitive players deftly play out dozens of complete
matches within minutes. Unfortunately, in our line of work, we aren’t provided a fully
enumerated set of possible moves and there is no predetermined end state. I don’t
mean to imply that there is no value in sitting down and brainstorming a robust solu‐
tion to a problem, given a reasonable set of requirements; however, I do want to cau‐
tion you against spending any significant time ironing out the final 10 percent to 20
percent. If you’ve honed your ability to refactor, you’ll be able to evolve your solution
to handle the final specifications just fine.

8 | Chapter 1: Refactoring

Benefits of Refactoring
Refactoring can have some tangible benefits beyond the ability to start confidently
problem-solving sooner. Though it might not be the correct tool for every problem, it
can certainly have a lasting, positive impact on your application, engineering team,
and broader organization. We discuss two major benefits: increased developer pro‐
ductivity and greater ease identifying bugs. While some might contend that there are
many more benefits to refactoring than those discussed here, I argue that they all boil
down to the two themes presented here.

Developer Productivity
One of the primary goals of refactoring is yielding code that is easier to understand.
Simplifying a dense solution as you reason through it not only helps you gain a better
grasp of what the code is doing, it also helps everyone who comes after you do the
same. Code you can easily comprehend elevates absolutely everyone on your team,
no matter their tenure or experience level.

If you are a tenured engineer on the team, you tend to be very familiar with some
parts of the codebase but, as the codebase grows, more and more parts are unfamiliar
to you, and your code is increasingly likely to develop dependencies on those parts.
Imagine that you’re implementing a new feature and in weaving your solution
through the system, you venture from code you know rather well to unfamiliar terri‐
tory. If the area unknown to you is well maintained and regularly refactored to take
into account evolving product requirements and bug fixes, you’ll be able to narrow
down the ideal location for your change and intuit an effortless solution much more
quickly. If the code has instead deteriorated over time by accruing patchy bug fixes
and ballooning in length, you’ll spend exponentially more time wading through each
line, trying first to understand what the code is doing and how it’s doing it before
you’re able to spend any time reasoning through an acceptable solution. (It’s not
uncommon to drag someone else into the tortured-code rabbit-hole, whether it’s
another engineer working alongside you or one who’s intimately familiar with the
code to answer your questions.)

Evolution of Codebase Familiarity
For smaller codebases with just a handful of engineers, it’s not uncommon for most
engineers to be highly comfortable with all parts of the codebase. The familiarity will
gradually decrease over time as more modules are added and modified, and the engi‐
neers begin to specialize; eventually, the codebase reaches a critical mass where it’s
impossible for any single engineer (even the first hire!) to be familiar with everything.

Benefits of Refactoring | 9

Let’s flip the scenario. What if a colleague on another team who isn’t familiar with
your team’s code had to take a stab at reading through it. Would they have an easy
time understanding how it works? Are you more likely to expect questions and con‐
fused looks, or a request for code review?

What if you were a new engineer on the team. Perhaps this was you just recently or
maybe you recently onboarded someone to your team, whose experiences you can
pull from. They have absolutely no mental model of the codebase. Their ability to
gain confidence with any area of the code is directly proportional to the code’s legibil‐
ity. Not only will they be able to organically build up an accurate mental representa‐
tion of the relationships between different units in your codebase, they’ll be able to
reason out what the code is doing without needing to tag teammates for questions.
(It’s worth noting that knowing when and how to ask questions of your colleagues is
an incredibly important skill to hone. Learning to evaluate how much time is appro‐
priate for you to build your own understanding before seeking help is difficult but
critical to growing as a developer. Asking questions isn’t a bad thing, but if you’re the
tenured engineer on the team and you’re feeling bombarded with them, maybe it’s
time to write some documentation and refactor some code.)

We’re all prone to copying established patterns when developing something new. If
the solutions we reference are clear and concise, we’re more likely to propagate clear
and concise code. The converse is also true: if the only solutions we have as reference
are cluttered, we’ll propagate cluttered code. Ensuring that the best patterns are the
most prevalent ones is particularly crucial in establishing a positive feedback loop
with developers who are just starting out. If the code that they interact with on a reg‐
ular basis is easy to understand, they’ll emulate a similar focus in their own solutions.

Identifying Bugs
Tracking down and solving bugs is a necessary (and fun!) part of our jobs. Refactor‐
ing can be an effective tool in accomplishing both of these tasks! By breaking up com‐
plex statements into smaller, bite-sized pieces, and extracting logic into new
functions, you can both build up a better understanding of what the code is doing
and, hopefully, isolate the bug. Refactoring as you are actively writing code can also
make it easier to spot bugs early in the development process, allowing you to avoid
them altogether.

Consider the scenario in which your team deployed some new code to production a
few hours ago. A few of the changes were embedded in a handful of files that every‐
one fears modifying: the code is impossible to read and contains a minefield of bugs
waiting to happen. Unfortunately, your tests didn’t cover one of many edge cases and
someone from customer service reaches out about a pesky bug users are starting to
run into. You and your team immediately start digging in and quickly realize that the
bug is, as expected, in the scariest part of the code. Thankfully, your teammate’s able

10 | Chapter 1: Refactoring

to reproduce the problem consistently and, together, you write a test to assert the cor‐
rect behavior. Now you have to narrow down the bug. You take methodical steps to
break down the hairy code: you convert lengthy one-liners into succinct, multiline
statements and migrate the contents of a few conditional code blocks into individual
functions. Eventually, you locate the bug. Now that the code’s been simplified, you’re
able to fix it swiftly, run the test to verify that it works, and ship a fix to your custom‐
ers. Victory!

To the customer, sometimes bugs are only a minor nuisance, but other times, bugs
can prevent the customer from using your application altogether. While more disrup‐
tive bugs generally require urgent remediation, it’s imperative that your team be able
to solve bugs of all severity levels quickly to keep users happy. Working in a well-
maintained codebase can dramatically decrease the time developers need to hone in
on and fix a bug, delighting you when it’s shipped to production in record time.

Risks of Refactoring
While the benefits of refactoring might be compelling, there are some serious risks
and pitfalls to consider before setting out on a journey to improve every inch (or cen‐
timeter) of your codebase. I may be starting to sound like a broken record, but I will
reiterate it nonetheless: refactoring requires us to be able to ensure that behavior
remains identical at every iteration. We can increase our confidence that nothing has
changed by writing a suite of tests (unit, integration, end to end), and we should not
seriously consider moving forward with any refactoring effort until we’ve established
sufficient test coverage. However, even with thorough testing, there is always a small
chance that something slips through the cracks. We also must keep in mind our ulti‐
mate goal: bettering the code in a way that is clear to both you and future developers
interacting with the code.

Serious Regressions
Refactoring untested code is very dangerous and highly discouraged. Development
teams equipped with the most thorough, sophisticated testing suites still ship bugs to
production. Why? With every change, large or small, we disrupt the equilibrium of
the system in a measurable way. We strive to cause as little disruption as possible, but
whenever we alter our systems, there is a risk that it might lead to unanticipated
regression. As we refactor the exceptionally frightening, puzzling corners of our
codebase, introducing a serious regression is of particular concern. These areas of the
codebase are frequently in their current state because they’ve had plenty of time to
deteriorate. At fast-growing companies, they are also frequently both integral to how
your application works and the least tested. Attempting to detangle these files or
functions can feel like trying to walk across a minefield unscathed—it’s possible, but
very dangerous.

Risks of Refactoring | 11

Unearthing Dormant Bugs
Just as refactoring can help you identify bugs, it can unintentionally unearth dormant
bugs. Here, I classify dormant bugs as regressions that are most commonly exposed
by restructuring code. We’ll revisit Simon’s Dry Cleaners to illustrate. The business
has started ordering cleaning products in bigger batches at the same delivery cadence
to unlock a better deal from the supplier. Unfortunately, there’s not much room to
store the products in the back of the main storefront, so Simon’s decides to start
stacking boxes closer to the loading dock door. After a few weeks of rain, the team
notices that some of the boxes closest to the door are wet and falling apart. The owner
notices that the back door is poorly sealed and allows water to seep through on wet
days. Simon’s had never encountered a problem with storing supplies close to the
loading dock door because they’d simply never done it before; exercising a new stor‐
age pattern exposed a critical flaw in their infrastructure, which they might have
never discovered otherwise.

Scope Creep
Refactoring can be a little bit like eating brownies: the first few bites are delicious,
making it easy to get carried away and accidentally eat an entire dozen. When you’ve
taken your last bite, a bit of regret and perhaps a twinge of nausea kick in. Experienc‐
ing immediate, highly significant improvements when you’re making focused, local‐
ized changes is incredibly rewarding! It’s easy to get carried away and allow the
surface area of your changes to exceed reasonable bounds. What do I mean by reason‐
able bounds? Depending on the codebase, this can refer to a single functional area or
a small, interdependent set of libraries. Ideally, the refactored code is limited to a set
of changes another developer can comfortably review within a single changeset.

When mapping out a larger refactoring effort, especially one that might take several
months or more, it’s absolutely imperative to keep a tight scope. We all run into unex‐
pected quirks when refactoring small surface areas (a few lines of code, single func‐
tions); while we can sustainably chain a few enhancements to handle these new
quirks effectively, this approach becomes dangerous when tackling a significant sur‐
face area. The larger the surface area of the planned refactor, the more problems
you’ll encounter that you likely haven’t anticipated. That doesn’t make you a bad pro‐
grammer, it simply makes you human. By keeping to a well-defined plan, you
decrease the chances of causing a serious regression or running into dormant bugs,
and promote productivity. Sustained, methodical refactoring efforts are already diffi‐
cult; having a moving goalpost simply makes them unachievable.

Unnecessary Complexity
Be wary of over designing at the start and be open to modifying your initial plan. The
primary goal should be to produce human-friendly code, even at the cost of your

12 | Chapter 1: Refactoring

original design. If the laser focus is on the solution rather than the process, there’s a
greater chance your application will end up more more contrived and complicated
than it was in the first place. Refactoring at all levels should be iterative. By taking
small, deliberate steps in one direction and maintaining existing behavior at each iter‐
ation, you’re better able to maintain focus on your ultimate goal. This is much easier
to do when tackling only enough code as fits on your screen rather than three dozen
libraries at a time. When we plan a new project, most of us generally try our best to
develop a detailed specification document and execution plan. Even with a large
refactoring effort, it’s important to have a good sense of what the resulting code
should look like upon completion.

When to Refactor
It would be easy simply to say “when the benefits outweigh the risks,” but that
wouldn’t be a helpful answer. Yes, in practice, refactoring is a worthwhile effort when
the benefits outweigh the risks, but how do we properly assign weight to each piece of
the puzzle? How do we know when we’ve reached the tipping point and should con‐
sider a refactor?

In my experience, the tipping point is more of a tipping range, and it is different for
everyone and every application. Determining your upper and lower bounds for this
range is what makes refactoring a bit more of a subjective science: there is no formula
we can use to give us a decisive “yes” or “no” answer. Fortunately, we can rely on some
empirical evidence from others’ experiences to guide us in making our own decisions.

Small Scope
When looking to refactor a small, straightforward section of well-tested code, there
should be very little holding you back. Unless you’re uncertain that your refactored
solution is an objective improvement to its predecessor, or you’re fearful the change
affects too large of a surface area, it’s likely a worthwhile endeavor. Carefully craft a
few commits and get your changes rolling! We’ll see an example that clearly falls into
this category later in this chapter.

Code Complexity Actively Hinders Development
There are times when we have to venture into parts of our codebase we fear. Every
time we read over the code, our brows furrow, our hearts pound, our neurons start
firing. Then comes the moment when we have to bite the bullet, dig in, and make the
change we came to make. But developing under duress is a surefire way to inadver‐
tently cause more problems. When you’re so hyper-focused on doing precisely the
correct thing, holding the many dimensions of the problem in your head, you risk
losing sight of your actual goal. How can you execute adequately on that goal when
your mind is elsewhere?

When to Refactor | 13

If this particular section of the code hasn’t bitten us yet, we’ll often take our chances
and make it. If it’s bitten us or a fellow teammate already (sometimes more than
once), the risk involved in taking a scalpel to the code now to prevent future mistakes
might outweigh the risk of letting it linger in its current state any longer. If you’re
unsure which way the scales tilt, talk it over with your teammates and collect some
data on the number of bugs caught in the past six months that you can trace back to
this part of the codebase.

Shift in Product Requirements
Drastic shifts in product requirements can frequently map to drastic shifts in code. As
hard as we might try to write abstract, extendable solutions for each piece of func‐
tionality in our application, we can’t predict the future; and while our code might be
easy to adapt for small deviations, it is seldom perfectly adaptable to larger ones.
These shifts give us the rare business-related opportunity to go back to the drawing
board and reconsider our design.

You may be thinking that these sorts of shifts can’t possibly preserve behavior. Given
the same inputs, now we must provide different outputs! How is this an opportune
time for refactoring? If your code in its current state doesn’t lend itself well to the new
requirements, you must come up with a solution that continues to support today’s
functionality and will seamlessly support tomorrow’s. You can make a case for refac‐
toring your code first, and then (and only then!) implement the new functionality
atop it. This way, you continue to set a standard of high-quality code, cashing in all
the benefits of refactoring, all the while supporting business objectives. Again, it’s a
win, win, win!

Performance
Improving performance can be a difficult task; you must first build a deep under‐
standing of the existing behavior and then be able to identify which levers you might
be able to use to tilt the scales in a positive direction. Beginning with a clean slate (or
building one as a first step) will best enable you to do that. Properly isolating the lev‐
ers you’ve identified so that they are easier to manipulate without risk of downstream
effects is also key.

Not all developers believe that performance improvements are a
valid reason to refactor; some assert that a system’s performance is
innately part of its behavior and therefore altering it in some way
alters the behavior. I disagree. If we continue to define refactoring
by using our generic system to which we provide a set of inputs,
and continue to produce an expected set of outputs, then improv‐
ing the speed (or memory burden) required to generate these out‐
puts is a valid form of refactoring.

14 | Chapter 1: Refactoring

Refactoring for this purpose is unique in one important way: it does not ensure more
approachable code as an outcome. Sometimes we’ll be reading through a codebase
and come across a lengthy comment block warning about the code below it. In my
experience, most of these comment blocks caution the reader about one (or more)
complications: strange application behavior, temporary workarounds, and a peculiar
performance patch. Most performance improvements prefaced by these short stories
are written cleverly and leverage a deep understanding of the code base as a means of
minimizing the surface area affected. These “improvements” are more susceptible to
degradation over a shorter period and as such are not good examples of the sustaina‐
bility that refactoring is meant to foster. The worthwhile performance improvements,
the ones worthy of falling under the refactoring umbrella, are profound and far-
reaching; they are examples of effective refactoring deployed at scale. We’ll cover
these changes in greater depth in Part II.

Using a New Technology
In the world of software development, we’re regularly adopting new technologies.
Whether it’s to keep up with the newest trends in our industry, boost our ability to
scale to more users, or mature our product in a new way, we’re perpetually evaluating
new open-source libraries, protocols, programming languages, service providers, and
more. Making the decision to use something new is not something we do lightly; this
is partly due to the cost of integration within our existing codebases. If we opt to
replace an existing solution with a new one, we have to craft a deprecation plan by
identifying all affected callsites and migrating them (sometimes one at a time). If we
opt to adopt a new technology moving forward, we have to identify high-leverage
candidates for early adoption, with a plan to expand usage to all relevant use cases.

I won’t enumerate each of the ways using a new technology can affect your system
(there are many), but it’s clear from these two scenarios that each requires a careful
audit of your current system. Fortunately, an audit can reveal prime opportunities for
refactoring! I want to take the time to acknowledge that this is a somewhat controver‐
sial opinion. Because of the risks involved with adopting a new technology alone,
other developers may discourage you from making any other changes. However, I
strongly believe that the worst way to introduce something new into your system is to
stick it right in alongside a huge, tangled mess. To give it the best chance to fulfill its
purpose, I think it’s best to take the time to clean up the areas it’ll come in contact
with first.

We can easily apply this concept to Simon’s Dry Cleaners. Let’s say it just recently put
in an order for some new state-of-the-art, eco-friendly dry cleaning machinery. In
figuring out an installation plan, the owners realize that their existing floor plan has
some serious inefficiencies. Employees have to walk all the way along the line of
machines to pick up presorted garments from the racks nearly thirty feet away. If they
reorient the machinery so that employees can walk just a few feet to reach the racks,

When to Refactor | 15

they might shave a few minutes off of every cycle. They make the decision to install
the new machines in the revised configuration. Simon’s may have decreased its
impact on the environment and increased the productivity of their employees. Win,
win!

When Not to Refactor
Refactoring can be an astonishingly useful tool to a developer. Many developers
believe that time devoted to refactoring is always time well spent, but it isn’t so sim‐
ple. There is a time and a place for refactoring, and the most mature developers
understand the importance of knowing when to refactor and when not to refactor.

For Fun or Out of Boredom
Close your eyes for a minute and imagine yourself sitting in front of your computer.
You’re looking at a particularly gnarly function. It’s too long; it tries to do too many
things. Its name has long since ceased to describe its responsibility meaningfully.
You’re itching to fix it. You’d love to split it up into well-defined, succinct units com‐
plete with better variables names. It’d be fun. But is it the most important thing you
could be doing right now? Perhaps your teammate’s been waiting for your code
review for a few days or you’ve been putting off writing some tests? If you’re digging
into some crufty old code and shifting it around to keep yourself entertained, you
might be doing yourself (and your teammates) a disservice.

Chances are, if you’re refactoring for fun, you’re not focusing on the impact that your
change will have on the surrounding code, the overall system, and your coworkers.
We have different motivations when we’re refactoring for fun: we’re more likely to use
more far-fetched language features or try out a brand new pattern we’ve been wanting
to give a whirl. There is a time and place for trying new things and stretching our
programming muscles, but refactoring isn’t that time. Refactoring should be a delib‐
erate process where the focus is strictly on providing the (ideally) smallest change for
the biggest positive impact.

Because You Happened to Be Passing By
Picture this: you write some code, ship it to production, and start working on a new
feature. You come back to your code a few months later to expand on the feature.
Unfortunately, it looks nothing like what you originally wrote. A million questions
are racing through your mind. What happened here?

You may have fallen prey to the drive-by refactorer. This is a coworker who is experi‐
enced enough to have developed some well-informed opinions about how to write
code. They are someone whom other engineers consult with about design decisions.

16 | Chapter 1: Refactoring

They also have an unfortunate tendency to rewrite others’ code as they encounter it.
They think they’re doing everyone a favor by doing this.

You might be tempted to agree, but consider this: if this engineer modified code in an
area of the codebase where they are not an active contributor, it’s likely they’ve
decreased the productivity of those that are responsible for it. We are most productive
when we are familiar with the code for which we are responsible. When we’re tasked
with quickly resolving an issue, whether it is a serious incident in production or a
small bug, we use our mental model of the code to narrow a set of files, classes, or
functions where the problem might exist. If we open up our editor and find that
nothing is where we left it, we’re disoriented and unable to fix the issue as quickly.
This is incredibly costly to our employers in engineering hours, customer service
hours, and potentially lost business.

Not telling the original author about the refactor is a disservice in two distinct ways.
First, they have actively eroded the author’s trust. As much as we try to divorce our‐
selves from our code, we always leave a tiny piece of personal pride and ownership in
the code that we’ve written. I’d much prefer if someone were honest with me about
the shortcomings of my solution and shows me how to fix it rather than find out
about the problems after they’ve already been addressed. This is particularly harmful
when it comes to newer engineers. Imagine yourself just one year out of school; you
come into work one day only to find that the code that you’d taken weeks to cobble
together had been rewritten in a few hours by a much more senior engineer whom
you’ve never talked to. It doesn’t feel great.

Second, they may not be aware of the initial circumstances surrounding the code at
the time it was written. This is particularly troublesome when dealing with code that
the drive-by refactorer is not actively maintaining. Why is this important? Program‐
ming is all about trade-offs; we can write a faster solution by using a more memory-
intensive data structure or reduce our memory footprint by approximating rather
than making precise calculations. Likewise, every line of “bad” code attempted to
solve a problem. By blindly refactoring it, you may fall prey to a bug or weakness the
original authors were carefully trying to avoid.

About Original Code Authors
Unfortunately, not everyone stays at the same company for their entire working
career. The original code author may no longer be in your ranks. Fortunately, folks
tend to relay information to their team before heading off to greener pastures, so
there’s likely a team you can sync with to get more perspective on the code.

When Not to Refactor | 17

Don’t be a drive-by refactorer, be a well-intentioned refactorer. Rarely refactor code
that you are not actively maintaining, and when you do, make sure you’re doing it
with the input of those responsible for it.

To Making Code More Extendable
Many refactoring gurus advocate for refactoring as a means to render code more
readily extendable. While this can be a clear outcome of a good refactor, rewriting
code for the sake of future malleability is likely unwise. Time spent refactoring
without a clear understanding of the immediate, tangible wins might be a wasted
effort; your changes might not pay off within a reasonably short period, nor, in the
absolute worst case, within the lifetime of the code.

If you can make adequate changes to a block of code to advance your project, you
probably shouldn’t be refactoring it. Most companies have new features to develop
and bug fixes to ship. Generally speaking, these are almost always of higher priority.
Unless you have a concrete set of goals, and a compelling argument that it will
directly affect your company’s bottom line, your management chain will be uncon‐
vinced. But don’t dismay! We’ll help you build a business case for refactoring in the
coming chapters.

When You Don’t Have Time
The only thing worse than code in dire need of refactoring is code half-refactored.
Code in limbo is confusing to developers interacting with it. When there is no clear
point in time when the code will be fully refactored, it takes on semi-permanent dis‐
order. It’s often difficult for the reader to discern the direction or implementation to
follow when reading code mid-refactor, especially if the refactorer left no comments
in their wake. You might even make an incorrect assumption about which code will
be adopted long-term and implement a necessary change in a block that’s headed for
deprecation. These kinds of mistakes pile up quickly, leading to faster, more serious
erosion of the code you hoped to improve in the first place.

When setting out to refactor something, make sure you have enough time to see your
plans through to completion. If not, try to scope down your changes so that you can
still make some improvements but comfortably reach the finish line. No temporary
benefits reaped from an incomplete refactor outweigh the confusion and frustration
of future developers interacting with it.

Our First Refactoring Example
Now that we’ve built a solid foundation with which to begin understanding the goals
of refactoring and how, under the right circumstances, it can enable us to be better
programmers, let’s bring it all to life with a small example. This example is much

18 | Chapter 1: Refactoring

smaller in scope than the kinds of refactoring efforts we’ll be discussing in this book,
but it helps illustrate some of the concepts on a smaller scale so that we can get famil‐
iar with them early.

Let’s pretend we’re working at a university where we develop and support a rudimen‐
tary program that teaching assistants (TAs) use to submit assignment grades. The
TAs use the program to verify that assignment grades fall within a certain range
specified by the professor. This range is configurable because professors structure
assignments differently, so not all problem sets are graded on a 0 to 100 point scale.
Take, for example, a problem set with 10 questions. Each question is worth a maxi‐
mum of 6 points. If you answer all questions correctly, your final grade is 60 out of
60. If you don’t submit the assignment at all, you’ll get 0 points.

Professors use the same tool to ensure that the average score for a given assignment
falls within an expected range. Given our previous example, say the professor would
like the average for the problem set to be within 42 and 48 points (for a percentage
score between 70% and 80%). They can provide this expected range to the program,
which then processes the final grades and determines whether the average falls within
those bounds.

The function responsible for this logic is called checkValid and is shown in
Example 1-1.

Example 1-1. A small, confusing sample of code

function checkValid(
 minimum,
 maximum,
 values,
 useAverage = false)
{
 let result = false;
 let min = Math.min(...values);
 let max = Math.max(...values);
 if (useAverage) {
 min = max = values.reduce((acc, curr) => acc + curr, 0)/values.length;
 }

 if (minimum < 0 || maximum > 100) {
 result = false;
 } else if (!(minimum <= min) || !(maximum >= max)) {
 result = false;
 } else if (maximum >= max && minimum <= min) {
 result = true;
 }
 return result;
}

Our First Refactoring Example | 19

Right off the bat, we can spot some problems. First, the function name doesn’t fully
capture its responsibilities. We’re not entirely certain what to expect from a function
with a generic name like checkValid (especially if there isn’t any documentation atop
the function declaration). Second, it’s unclear what the inlined values (0, 100) repre‐
sent. Given what we know about the function’s expected behavior, we can deduce that
these numbers represent the absolute minimum- and maximum-allowed point values
for any assignment. Within the context, the minimum value of 0 makes sense, but
why assert an upper bound of 100? Third, the logic is difficult to follow; not only are
there quite a few conditions to reason through, the inlined logic can be complex,
making it difficult for us to reason through each case quickly. At a quick glance, it’s
nearly impossible to know whether the function contains a bug. We could spend con‐
siderable time enumerating the many issues contained within these few short lines of
code, but to keep things simple, we’ll stop here.

How could so few lines of code be so tough to understand? Code in active develop‐
ment is regularly modified to handle small, low-impact changes (bug fixes, new fea‐
tures, performance tweaks, etc.). Unfortunately, these modifications pile up,
oftentimes resulting in lengthier, more convoluted code. From the code structure, we
can identify two changes that probably occurred after the function was initially
written:

• The ability to perform range validation on the average of the provided set of val‐
ues rather than the sum of those values. I can infer that this functionality was
introduced later for two reasons; useAverage is an optional Boolean argument
with a default value of false, implying that there are existing callsites that do not
expect a fourth argument. Boolean arguments are a code smell; we’ll address that
shortly. Further, the code overwrites both min and max to reflect the single, new
average value for convenience. This indicates that the author was looking for the
easiest way to handle this requirement while modifying the least amount of code.

• Ensuring that no provided range fell below 0 nor exceeded 100. It seems strange
to disallow professors from creating assignments worth more than 100 points,
but we can assume that this was intended behavior for now. Although it isn’t a
conclusive clue, we can guess this behavior was introduced as an afterthought
because of the placement of the conditional to verify the range’s absolute limits.
Why would we not immediately verify that the provided minimum and maxi‐
mum bounds are within the acceptable range? The author of the change likely
quickly identified the series of conditionals and thought the easiest place to add a
new condition would be at the very end. We could confirm our hypothesis by
looking through the version history and hopefully finding the original commit
with a helpful commit message.

20 | Chapter 1: Refactoring

Simplifying Conditionals
First, let’s simplify some of the if statement logic. We can easily do that by returning
a result from the function early rather than evaluating every branch and returning a
final value. We’ll also return early in the case that the provided minimum and maxi‐
mum values fall outside the 0, 100 range, as shown in Example 1-2.

Example 1-2. A small sample with early returns

function checkValid(
 minimum,
 maximum,
 values,
 useAverage = false
) {

 if (minimum < 0 || maximum > 100) return false;

 let min = Math.min(...values);
 let max = Math.max(...values);

 if (useAverage) {
 min = max = values.reduce((acc, curr) => acc + curr, 0)/values.length;
 }

 if (!(minimum <= min) || !(maximum >= max)) return false;
 if (maximum >= max && minimum <= min) return true;

 return false;
}

Return early if the minimum or maximum is out of range.

Simplify the logic by returning early when we can.

Now we’re getting somewhere! Let’s see whether we can further simplify the logic by
reasoning through all of the cases for which the function would return false: there’s
the case where the calculated minimum is smaller than the provided minimum and
the case where the calculated maximum is greater than the provided maximum. We
can replace the current conditions by failing early and only returning a true result
after verifying each of these simple failure cases instead. Example 1-3 illustrates each
of these changes.

Example 1-3. A small sample with simplified logic

function checkValid(
 minimum,
 maximum,

Our First Refactoring Example | 21

 values,
 useAverage = false
) {

 if (minimum < 0 || maximum > 100) return false;

 let min = Math.min(...values);
 let max = Math.max(...values);

 if (useAverage) {
 min = max = values.reduce((acc, curr) => acc + curr, 0)/values.length;
 }

 if (min < minimum) return false;
 if (max > maximum) return false;
 return true;
}

Simplify logic by reasoning through the cases and only having one condition per
if statement.

Fail early and return true only if we’re certain that the values are valid.

Extracting Magic Numbers
Our next step will be to extract the inlined numbers (or magic numbers) into vari‐
ables with informative names. We’ll also rename values to grades for clarity. (Alter‐
natively, we could define these as constants within the same scope as the function
declaration, but we’ll keep things simple for now.) Example 1-4 demonstrates these
clarifications.

Example 1-4. A small sample with clearer variables

function checkValid(
 minimumBound,
 maximumBound,
 grades,
 useAverage = false
) {

 // Valid assignments should never allow fewer than 0 points
 var absoluteMinimum = 0;

 // Valid assignments should never exceed more than 100 possible points
 var absoluteMaximum = 100;

 if (minimumBound < absoluteMinimum) return false;
 if (maximumBound > absoluteMaximum) return false;

22 | Chapter 1: Refactoring

 let min = Math.min(...grades);
 let max = Math.max(...grades);

 if (useAverage) {
 min = max = grades.reduce((acc, curr) => acc + curr, 0)/grades.length;
 }

 if (min < minimumBound) return false;
 if (max > maximumBound) return false;
 return true;
}

Renaming the parameter to describe its role.

Magic numbers are appropriately named for added context.

Further simplifying logic by splitting up the complex conditional into two sim‐
pler if statements.

Extracting Self-Contained Logic
Next, we can extract the average calculation into a separate function, as shown in
Example 1-5.

Example 1-5. A small sample with more functions with clear responsibilities

function checkValid(
 minimum,
 maximum,
 grades,
 useAverage = false
){
 // Valid assignments should never allow fewer than 0 points
 var absoluteMinimum = 0;

 // Valid assignments should never exceed more than 100 possible points
 var absoluteMaximum = 100;

 if (minimumBound < absoluteMinimum) return false;
 if (maximumBound > absoluteMaximum) return false;

 let min = Math.min(...grades);
 let max = Math.max(...grades);

 if (useAverage) {
 min = max = calculateAverage(grades);
 }

 if (min < minimumBound) return false;

Our First Refactoring Example | 23

 if (max > maximumBound) return false;
 return true;
}

function calculateAverage(grades) {
 return grades.reduce((acc, curr) => acc + curr, 0)/grades.length;
}

Extracted average calculation into a new function.

As we iterate on our solution, it becomes more obvious that the logic to handle the
average of the set of grades seems increasingly out of place. Next, we’ll continue to
improve our function by creating two functions: one that verifies that the average of a
set of grades fits within a set of bounds and another that verifies that all grades within
a set occur within a minimum and a maximum value. We could reorganize the code
into more focused functions at this point in a number of ways. There is no right or
wrong answer so long as we’ve found a way to divorce the logic for the two distinct
cases effectively. Example 1-6 shows one such way of further simplifying our check
Valid function.

Example 1-6. A small sample with better-defined functions

function checkValid(
 minimum,
 maximum,
 grades,
 useAverage = false
){

 // Valid assignments should never allow fewer than 0 points
 var absoluteMinimum = 0;

 // Valid assignments should never exceed more than 100 possible points
 var absoluteMaximum = 100;

 if (minimumBound < absoluteMinimum) return false;
 if (maximumBound > absoluteMaximum) return false;

 let min = Math.min(...grades);
 let max = Math.max(...grades);

 if (useAverage) {
 return checkAverageInBounds(minimumBound, maximumBound, grades);
 }

 return checkAllGradesInBounds(minimumBound, maximumBound, grades);
}

function calculateAverage(grades) {

24 | Chapter 1: Refactoring

 return grades.reduce((acc, curr) => acc + curr, 0)/grades.length;
}

function checkAverageInBounds(
 minimumBound,
 maximumBound,
 grades
){
 var avg = calculateAverage(grades);
 if (avg < minimumBound) return false;
 if (avg > maximumBound) return false;
 return true;
}

function checkAllGradesInBounds(
 minimumBound,
 maximumBound,
 grades
){
 var min = Math.min(...grades);
 var max = Math.max(...grades);

 if (min < minimumBound) return false;
 if (max > maximumBound) return false;
 return true;
}

Extract logic to determine whether the average of the grades is within minimum
and maximum bounds in its own function.

Extract logic to determine whether all the grades are within minimum and maxi‐
mum bounds in a separate function.

Ta da! We’ve successfully refactored checkValid in six simple steps.

A More Refined Solution
In this case, a truly complete revision of this function would involve a few additional
changes. We’d write a new function to encapsulate the logic on lines 7 through 14.
Next, we’d call this function as a first step in both checkAverageInBounds and check
AllGradesInBounds. Finally, we’d identify all of the callsites in checkValid and
replace them with either a direct call to checkAverageInBounds if useAverage was set
to true or checkAllGradesInBounds if useAverage was either omitted or set to
false. We would no longer have to look at the function definition for checkValid to
understand what the optional Boolean parameter controls were, nor would we have
to read through the code to understand what we mean by a “valid” set of grades. We
could finally remove checkValid from the codebase entirely.

Our First Refactoring Example | 25

Our new version has some clear benefits. With just a glance, we can develop a solid
sense of what the code aims to do. We’ve also made it the slightest bit more perform‐
ant and simplified bug-prone logic by simplifying our conditions. All in all, the next
developer is more likely to be able to extend on this solution without too much trou‐
ble. This is just a sneak peak into the potentially positive impact strategic refactoring
at a microscopic level can have on your application; now imagine the impact that it
can have when applied at scale.

But before we can sit down at our keyboards and start diligently refactoring, we need
to orient ourselves properly. We need to understand the history of the code we want
to improve, and for that, we need to understand how code degrades.

26 | Chapter 1: Refactoring

CHAPTER 2

How Code Degrades

Successfully running a marathon is an impressive feat. While I’ve personally never
taken on the challenge, quite a few of my friends have. What may surprise you, how‐
ever, is that the large majority of these friends were not avid runners before deciding
to sign up for their first half or full marathon. By sticking to a regular, sustainable
training schedule, they were able to build up the necessary endurance in just a few
months.

Most of my friends were already in good physical shape, but if your goal is to run a
marathon and most of your current physical activity involves getting up from the
couch to grab a bag of chips from your pantry, you will have a much more difficult
time. Not only will you first have to build up the cardiovascular and physical endur‐
ance of a regularly active person, you’ll have to adopt new habits around habitual
exercise and eating healthy food (even when all you want to do is settle into a comfy
chair with a big, cheesy slice of pizza).

Small fluctuations in training can lead to serious setbacks. If you haven’t gotten
enough sleep or get caught off-guard by a scorching-hot day, you will tire more
quickly, compromising your ability to run your target distance. Even in peak mara‐
thon form, you have to be prepared for the unknowns on the day of the race. It might
rain; your laces might break; you might be stuck in a tight crowd of runners. You
learn to master the variables you can control but must be willing and ready to think
on your feet.

Being a programmer is a little bit like being a marathon runner. Both take sustained
effort. Both build atop preceding progress, commit by commit, mile by mile. Making
an earnest effort to maintain healthy habits can make the difference between being
able to get back into marathon-running shape or peak development pace in a matter
of weeks and having to take months to do so. Maintaining a high level of vigilance
over both your internal and external environments and adjusting accordingly is key

27

to completing the race successfully. The same can be applied to development: a high
level of vigilance over the state of the codebase and any external influences is key to
minimizing setbacks and ultimately ensuring a smooth path to the finish line.

In this chapter, we’ll discuss why understanding how code degrades is key to a suc‐
cessful refactoring effort. We’ll look at code that is either stagnant or in active devel‐
opment and describe ways in which each of these states can experience code
degradation, with a few examples pulled from both recent and early computer science
history. Finally, we’ll discuss ways in which we can detect degradation early, and how
we might prevent it altogether.

Why Understanding Code Degradation Matters
Code has degraded when its perceived utility has decreased. What this means is that
the code, while once satisfactory, either no longer behaves as well as we would like or
isn’t as easy to read or use from a development perspective. It’s for these precise rea‐
sons that degraded code is a great candidate for refactoring. That said, I firmly believe
that you cannot set out to improve something until you have a solid grasp of its
history.

Code isn’t written in a vacuum. What we might deem to be bad code today was likely
good code when it was originally written. By taking the time to understand the cir‐
cumstances under which the code was originally written, and how, over time, it might
have gone from good to bad, we can build a better awareness of the core problem, get
a sense of the pitfalls to avoid, and, thus, have a better shot at taking it from bad back
to good.

Broadly speaking, there are two ways in which code can degrade. Either the require‐
ments for what the code needs to do or how it needs to behave have changed, or your
organization has been cutting corners in an attempt to achieve more in a short
period. We’ll refer to these as “requirement shifts” and “tech debt,” respectively.

I believe it’s important not to assume that all code degradation you run into is due to
tech debt, which is why we’ll first take a look at the many ways requirement shifts can
make code appear worse over time. We all have those moments when we’ll come
across some particularly dreadful code and think, “Who wrote this? How could we let
this happen? Why has no one fixed this?” If we begin to refactor it immediately, we
risk crafting a solution that overemphasizes what we find most urgently frustrating
about the code, rather than addressing its truer, core pain points. It’s important to
build empathy for the code by asking ourselves to identify what has changed since it
was written. If we make an effort to seek the initial good, we gain an appreciation for
the pitfalls the original solution avoided, the clever ways it might have dealt with a set
of constraints, and produce a refactored result that captures all these insights.

28 | Chapter 2: How Code Degrades

Unfortunately, there are times when we simply have to do our best, given very limited
resources. When we don’t have enough time or money to create a better solution, we
start cutting corners and accruing tech debt. While the initial impact of that debt
might be minimal, its added weight on our codebases can build up significantly over
time. It’s easy to dismiss tech debt as bad code, but I challenge you to reframe it.
Sometimes the scrappiest solution is the one that gets your product or feature to mar‐
ket the fastest; if getting your product into the hands of users is critical to your com‐
pany’s survival, then the tech debt might very well be worth it.

As you read through the ways in which code can degrade, I encourage you to try to
find examples of each of these in the code you work with most regularly. You might
not be able to find an example for everything, but the process of searching for the
symptoms of code degradation might lead you to develop a new perspective on the
pieces of your application you’ve found most frustrating to work with.

Once you’ve pinpointed code you’d like to refactor you will gain
valuable insight into the how and why of the original authors’ ini‐
tial solution if you can sit down with them. Oftentimes, they’ll be
able to tell you immediately why the code degraded. If the authors
say something along the lines of, “we didn’t know that…,” or, “at
the time, we thought…,” you likely have a case of code degradation
due to requirement shifts. On the other hand, if the authors say
something like, “oh, right, that code was never any good,” or, “we
were just trying to meet a deadline,” you know that you’re probably
dealing with a standard case of tech debt.

Requirement Shifts
Whenever we write a new chunk of code, we ideally spend some time explicitly defin‐
ing its purpose and providing thorough documentation to demonstrate intended
usage. While we might try our best to anticipate any future requirements and attempt
to design nimble systems able to handle these new demands, it’s unlikely we’ll be able
to predict everything coming down the pipe. It’s only natural that the environments
around our applications will change unpredictably over time. These changes can
affect both code that is in active development and code that has been left untouched
to different degrees. In this section, we’ll discuss a few ways in which the demands
placed on our code might exceed its abilities, using examples from codebases under
active and inactive development.

Scalability
One requirement we frequently attempt to estimate is the direction and degree to
which our product needs to scale. This laundry list of requirements can get rather
lengthy and include a wide range of parameters. Take, for instance, a simple

Requirement Shifts | 29

application programming interface (API) request to create a new user entry in a sys‐
tem. We might set some guidelines around the expected latency of the request, the
number of database queries executed within the request, the total number of new user
requests allowed per second, and so on.

When launching a new product, one of our first assumptions deals with how many
users we expect to use it. We craft a solution we think will comfortably handle that
number (give or take a safe margin of error) and ship it! If our product is successful,
we can end up with exponentially more users than we initially anticipated, and while
that’s certainly an amazing situation to be in from a business perspective, our original
implementation probably won’t be able to handle this new, unanticipated load. The
code itself may not have changed, but it has effectively regressed due to a drastic shift
in scalability requirements.

Accessibility
Every application should strive to be as accessible as possible from day one. We
should use color-blind-friendly color schemes, add alternative text for images and
icons, and ensure that any interactive elements are accessible via the keyboard.
Unfortunately, teams hastening to ship a new product or feature often gloss over
accessibility in favor of a more aggressive launch date. While shipping new features
might help you retain current users and attract new ones, if these features aren’t
accessible to a subset of your anticipated user base, you risk alienating them. The sec‐
ond your product becomes inaccessible to some, its perceived utility substantially
diminishes.

Although few iterations on official best practices for web accessibility have been
developed by the Web Accessibility Initiative (WAI) since 1999, a number of impor‐
tant revisions have been standardized. With every new iteration, developers of active
websites and applications must revisit code sometimes long untouched and imple‐
ment any necessary changes to comply with the newest standards. Iterations on
accessibility standards can decrease the quality of your application.

Device Compatibility
Every year, hardware companies release new versions of their devices; sometimes,
they’ll even take things a step further and introduce an entirely new class of device.
Among smartphones, smart watches, smart cars, and smart TVs, we are constantly
playing catch-up, attempting to repackage our applications to work seamlessly on the
latest hardware. Users have grown to expect that their favorite applications work on a
variety of platforms. If you’re a developer for a popular mobile game and a major
hardware company releases a new device with a higher screen resolution, you risk
losing a significant portion of your user base unless you ship a new version of your
game built to handle the larger screen.

30 | Chapter 2: How Code Degrades

https://oreil.ly/r0376

Environmental Changes
When changes occur in a program’s environment, all sorts of unexpected behavior
can begin to manifest. Before the age of modern gaming computers loaded with pow‐
erful graphics processing limits (GPUs) and dozens of gigabytes of random-access
memory (RAM), we had humble, little gaming consoles housed in arcades and, later,
our living rooms. Game developers devised clever ways to use the limited hardware
available to them to build classics like Space Invaders and Super Mario Bros. At the
time, it was standard practice to use the central processing unit (CPU) clock speed as
a timer in the game. It provided a steady, reliable measure of time. While this wasn’t a
problem for console games, where the cartridges often weren’t compatible with
newer, more powerful iterations of the console, it became a rather serious oversight
for games running on personal computers. As clock speed on newer computers
increased, so did the speed of gameplay. Imagine having to stack Tetris pieces or
avoid a stream of Goombas at twice the normal speed; at a certain point, the game
becomes wholly unusable. In both of these examples, the requirement was that the
code was run on specific physical hardware; unfortunately, the hardware has since
changed dramatically, and as a result, the code has degraded.

These types of environmental changes are still a serious concern today. In January
2018, security researchers from Google Project Zero and Cyberus Technology, in col‐
laboration with a team at the Graz University of Technology, identified two serious
security vulnerabilities affecting all Intel x86 microprocessors, IBM POWER process‐
ors, and some Advanced RISC Machine (ARM)-based microprocessors. The first,
Meltdown, allowed rogue processes to read all memory on a machine, even when
unauthorized to do so. The second, Spectre, allowed attackers to exploit branch pre‐
diction (a performance feature of the affected processors) to reveal private data about
other processes running on the machine. You can read more about these vulnerabili‐
ties and their inner workings on the official website.

At the time of the disclosure, all devices running any but the most recent versions of
iOS, Linux, macOS, and Windows were affected. A number of servers and cloud serv‐
ices were affected, as well as the majority of smart devices and embedded devices.
Within days, software workarounds became available for both vulnerabilities, but
these came at a performance cost of 5 to 30 percent, depending on the workload. Intel
later reported it was working to find ways to help protect against both Meltown and
Spectre in its next lineup of processors. Even the things we believe to be most stable
(operating systems, firmware) are susceptible to changes in their own environments;
and when these core, underlying systems on top of which we run countless applica‐
tions are affected, we, in turn, are affected.

Requirement Shifts | 31

https://meltdownattack.com

External Dependencies
Every piece of software has external dependencies; to list just a few examples, these
can be a set of libraries, a programming language, an interpreter, or an operating sys‐
tem. The degree to which these dependencies are coupled to the software can vary.
This reliance isn’t anything new; many influential programs from the early days of
artificial intelligence research were developed in Lisp and Lisp-like research program‐
ming languages as they were actively developed in the 1960s and early 1970s.
SHRDLU, an early natural language–understanding computer program, was written
in Micro Planner on a PDP-6, using nonstandard macros and software libraries that
no longer exist today, thus suffering from irreparable software rot.

Today, we do our best to update our external dependencies to keep up to date with
the latest features and security patches. Sometimes, however, we either deprioritize or
lose track of updates, especially when it comes to code we’re not actively maintaining.
While allowing dependencies to fall a few versions behind might not be an immediate
problem, it does come at a risk. We become more susceptible to security vulnerabili‐
ties. We also open ourselves up to potentially difficult upgrade experiences at a later
date.

Say we are running a program that relies on version 1.8 of an open-source library
called Super Timezone Library. Just a few weeks after releasing version 4.0, the devel‐
opers of Super Timezone Library announce that they will no longer actively support
any versions below 3.0. We now need to upgrade to version 3.0 at the minimum to
continue to port security patches. Unfortunately, version 2.5 introduced some
backward-incompatible changes and version 2.8 deprecated functionality used widely
in our application. What could have been a small, regular investment in keeping the
library up to date over the past few years has now turned into a much more complex,
urgent investment.

Unused Code
Changes in requirements can lead to unused code. Take, for example, a publicly fac‐
ing API. Your team decides to deprecate the API and warn third-party developers of
the upcoming change. Unfortunately, after you’ve communicated the intended
change, removed the documentation from your website, and ensured that no external
systems were still relying on the endpoint, your team forgets to remove the code. A
few months later, a new engineer begins implementing a new feature, stumbles upon
the decommissioned API endpoint, and assumes, quite naturally, that it is still func‐
tional. They decide to repurpose it for their own use case. Unfortunately, they quickly
find out that the code doesn’t do quite what they intended, simply because the API
had been left in the dust and hadn’t adapted with the rest of the codebase and numer‐
ous iterations of requirement changes.

32 | Chapter 2: How Code Degrades

Unused code can also be problematic from a developer productivity perspective.
Every time we encounter code we believe to be unused, we have to determine very
carefully whether we can safely remove it. Unless we’re equipped with reliable tooling
to help us properly highlight the extent of the dead code, we might have a difficult
time pinpointing its exact boundaries. If we aren’t sure whether we can delete it, usu‐
ally we’ll just move on and hope someone else can figure it out later on. Who knows
how many engineers will come across the same piece of code and ask themselves the
same question before it’s finally removed!

Finally, unused code, if allowed to pile up, can be a hindrance to performance. If, for
example, your team works on the client-facing portion of a website, the size of the
files the JavaScript files requested by your browser directly translates to initial page
load times. Typically, the larger the file, the slower the response. Greedily requesting
bloated application code can be quite detrimental to the user experience.

Commented-Out Code
In the case of commented-out code, it’s pretty obvious that the code is unused. I
always recommend that developers who are tempted to comment-out code instead
simply delete it if the code is tracked using version control. If you need it again some‐
day, you can easily recover it by going back through your commit history.

Changes in Product Requirements
Most of the time, it’s easier to write a solution for today or tomorrow’s product
requirements, solving for the problems and constraints we understand and can easily
anticipate, than to write one for next year, attempting to solve for unknown future
pitfalls. We try to be pragmatic, weighing current concerns against future concerns,
and attempting to determine how much time we should invest in solving for either.
Sometimes, we simply don’t have a good intuition about the future.

Boolean arguments to functions are a great example of the difficulty of predicting
future product requirements in action. Most of the time, Boolean arguments are
introduced to existing functions to modify their behavior. (We saw one in “Our First
Refactoring Example” on page 18, where a Boolean flag was used to decide whether
we wanted to know whether each of the grades or the average of those grades fell in a
given range.) Adding a Boolean flag is often the smallest, simplest change you can
make when you find a function that does almost exactly what you want it to do, with
just a tiny exception. Unfortunately, this type of change can cause all sorts of prob‐
lems down the line. We can see some of those in action in Example 2-1, where we
have a small function responsible for uploading an image given a filename and a flag
denoting whether the file is a PNG.

Requirement Shifts | 33

Example 2-1. A function with a Boolean argument

function uploadImage(filename, isPNG) {
 // some implementation details
 if (isPNG) {
 // do some PNG-specific logic
 }
 // do some other things
}

What if, a few months from now, we decide to support a new image format? We
might decide to add another Boolean argument to designate isGIF, as shown in
Example 2-2.

Example 2-2. A function with two Boolean arguments

function uploadImage(filename, isPNG, isGIF) {
 // some implementation details
 if (isPNG) {
 // do some PNG-specific logic
 } else if (isGIF) {
 // do some GIF-specific logic
 }
 // do some other things
}

Introduced a new Boolean argument to designate whether the image is a GIF.

An image cannot be both a PNG and a GIF, so we’ve added an else if here.

To call this function and correctly upload a GIF, we would need to remember to set
the second Boolean argument to true. Readers who come across the code calling out
to uploadImage would likely be confused and need to refer to the function definition
to understand what role the two Boolean arguments play.

In a language with named arguments, we would be less concerned
with needing to reference the function definition to know the role
and order of arguments. Regardless of language choice, it remains
that while uploadImage(filename=filename, isPNG=true,

isGIF=true) may seem nonsensical, it is a perfectly valid function
call (and is very likely to cause bugs in the future). Example 2-3
shows an example where it might be difficult for the reader to dis‐
cern what uploadImage does given the context.

34 | Chapter 2: How Code Degrades

Example 2-3. A function uploading a GIF

function changeProfilePicture(filename) {
 // some implementation details
 if (isAnimated) {
 uploadImage(filename, false, true);
 } else {
 uploadImage(filename, true, false);
 }
 // do some other things
}

Here we are uploading a GIF.

Otherwise, we are uploading a PNG.

Not only is it difficult for developers to understand how uploadImage works when
reading through functions like changeProfilePicture, it’s an unsustainable pattern
to continue to maintain if more image formats are introduced in the future. The
developer who added the first Boolean argument to support isPNG was mostly con‐
cerned with today’s problems rather than those of tomorrow. A better approach
would be to split up the logic into distinct functions: uploadJPG, uploadPNG, and
uploadGIF, as shown in Example 2-4.

Example 2-4. Distinct functions for uploading different types of files

function uploadImagePreprocessing(filename) {
 // some implementation details
}

function uploadImagePostprocessing(filename) {
 // do some other things
}

function uploadJPG(filename) {
 uploadImagePreprocessing();
 // do JPG things
 uploadImagePostprocessing();
}

function uploadPNG(filename) {
 uploadImagePreprocessing();
 // do PNG things
 uploadImagePostprocessing();
}

function uploadGIF(filename) {
 uploadImagePreprocessing();
 // do GIF things

Requirement Shifts | 35

 uploadImagePostprocessing();
}

Now you might be wondering why adding the isPNG Boolean argument is a serious
problem if we can just refactor it later. To replace all occurrences of uploadImage
properly, we’d need to audit each callsite individually and replace it with either
uploadJPG or uploadPNG, depending on whether the Boolean argument is set to true.
Because these changes are manual but mundane, the likelihood of us making the
wrong replacement is quite high and could lead to some serious regressions. Depend‐
ing on how widespread the problem might be, and how tightly coupled it might be to
other crucial business logic, refactoring what seems like a simple Boolean argument
might be a daunting task.

Tech Debt
The most common culprits behind tech debt are limited time, limited numbers of
engineers, and limited money. Given that all technology companies are faced with
limited resources on one or more axes, each and every one of them has tech debt.
Tiny, six-month-old startups; giant, decades-old conglomerates; and every company
in between has a fair share of crufty code. In this section, we’ll take a closer look at
how these influences can lead to the accumulation of tech debt. Although it can be
easy to point a finger at the original authors of the code and admonish them for mak‐
ing decisions that appear suboptimal today, it’s important to remember that they were
operating under serious constraints. We have to acknowledge that sometimes it’s just
about impossible to write good code under tight pressure.

Working Around Technology Choices
When implementing something new, we have to make some critical decisions about
which technologies we want to use. We have to choose a language, a dependency
manager, a database, and so on. There’s a fairly long laundry list of decisions to make
well before the application becomes available to any users. Many of these decisions
are made given the engineers’ experience; if these engineers are more comfortable
using one technology over another, they’ll have an easier time getting the project up
and running quickly than if they decided to adopt a new stack.

Once the project’s been launched and found some traction, these early technology
decisions are put to the test. If a problem with a technology choice arises early
enough in the lifetime of the application, it might be easy and inexpensive to find an
appropriate alternative and pivot to it, but oftentimes the limitations of those choices
don’t become apparent until well after the application has grown past this point.

One such decision might be to develop an application by using a dynamically typed
programming language instead of a statically typed programming language.

36 | Chapter 2: How Code Degrades

Proponents of dynamically typed programming languages argue that they make the
code easier to read and understand; less indirection around strictly defined structures
and type declarations allow the reader to understand better and more readily the pur‐
pose of the code. Many also tout the quicker development cycle they provide due to
the lack of compile time.

While there are many upsides to using dynamically typed programming languages,
they become difficult to manage when applications grow beyond a critical mass.
Because types are only verified at runtime, it is the developer’s responsibility to
ensure type correctness by writing a full suite of unit tests that exercises all execution
paths and asserts expected behavior. New developers seeking to familiarize them‐
selves with how different structures interact with one another might have a difficult
time doing so if variable names do not immediately indicate which type it might be.
It’s not uncommon to end up needing to program defensively, as shown in
Example 2-5, where we assert that a value passed into a function has certain proper‐
ties and isn’t unintentionally null.

Example 2-5. Defensive programming in action

function addUserToGroup(group, user) {

 if (!user) {
 throw 'user cannot be null';
 }

 // assert required fields
 if (!user.name) {
 throw 'name required';
 }

 if (!user.email) {
 throw 'email required';
 }

 if (!user.dateCreated) {
 throw 'date created required';
 }

 // assert no empty strings or other invalid values
 if (user.name === "") {
 throw 'name cannot be empty';
 }
 if (user.email === "") {
 throw 'email cannot be empty';
 }
 if (user.dateCreated === 0) {
 throw 'date created cannot be 0';
 }

Tech Debt | 37

 group.push(user);
 return group;
}

It’s very likely the author of the code sample runs into issues regularly with invalid
users weaving their way through a callstack at runtime simply due to the dynamic
nature of JavaScript. The author just wants to be certain that they are only adding
valid users to the group, and that’s completely understandable. Unfortunately, now
addUserToGroup is primarily concerned with ensuring that the user provided is valid,
rather than adding the user to the group. As more decisions are made about what
constitutes a valid user, each of these ad hoc validations sprinkled throughout the
codebase needs to be updated. There’s also an increasing chance we might introduce a
bug by simply forgetting to update one such location. Eventually, we end up with
lengthy, convoluted, bug-prone functions everywhere.

We can introduce a new function to help mitigate code degradation. Let’s say we write
up a simple helper to encapsulate all the logic for validating a user object; we’ll call it
validateUser. Example 2-6 shows its implementation.

Example 2-6. A simple helper function to encapsulate user validation logic

function validateUser(user) {
 if (!user) {
 throw 'user cannot be null';
 }

 // assert required fields
 if (!user.name) {
 throw 'name required';
 }

 if (!user.email) {
 throw 'email required';
 }

 if (!user.dateCreated) {
 throw 'date created required';
 }

 // assert no empty strings or other invalid values
 if (user.name === "") {
 throw 'name cannot be empty';
 }
 if (user.email === "") {
 throw 'email cannot be empty';
 }
 if (user.dateCreated === 0) {
 throw 'date created cannot be 0';

38 | Chapter 2: How Code Degrades

 }

 return;
}

We can then update addUserToGroup to use our new helper function, drastically sim‐
plifying the logic, as shown in Example 2-7.

Example 2-7. Simplified addUserToGroup function without inlined validation logic

function addUserToGroup(group, user) {
 validateUser(user);
 group.push(user);
 return group;
}

Unfortunately, while it’s much easier for us to call validateUser, replacing all the
locations where we previously enumerated each check will be an easy task. First, we
have to identify each of those spots. If we’re dealing with a large codebase, that might
be a daunting task. Second, in auditing each of these locations, we’ll probably end up
finding a handful of instances where we’ve forgotten a check or two. In some cases,
this is a bug, and we can safely replace the checks with a single call to validateUser;
in other cases, this might have been intentional, and we cannot blindly replace the
existing code with our new helper at the risk of introducing a regression. As such,
easing the burden of our defensive programming requires us to plan and execute a
sizable refactor.

Persistent Lack of Organization
Maintaining an organized codebase is a little bit like maintaining a tidy home. It
seems as though there’s always something more important to do than to put away the
clothes heaped over the dresser or sort through the stack of mail accumulating on the
coffee table. But the more we accumulate, the more time we’ll spend combing
through it all when we finally get around to it. You might even allow the clutter to
build up to the point that it’s begun overflowing on to other surfaces. My parents
were onto something when they encouraged me to keep things tidy and clean up just
a little bit every day; they knew that it was always much easier to take care of a small
mess than a massive one.

Many of us fall into the same patterns when it comes to keeping our codebases organ‐
ized. Take, for instance, a codebase with a relatively flat file structure. Most of the
code is organized into two dozen or so files, with a single directory for tests. The
application grows at a steady pace, with a few new files added every month. Because
it’s easier to maintain the status quo, instead of proactively beginning to organize
related files into directories, engineers instead learn to navigate the increasingly

Tech Debt | 39

sprawling code. New engineers introduced to the growing chaos raise a warning flag
and encourage the team to begin splitting up the code, but these concerns fall on deaf
ears; managers encourage them to focus on the deadlines looming ahead, and ten‐
ured engineers shrug and reassure them that they’ll quickly figure out how to be pro‐
ductive in the disarray. Eventually, the codebase reaches a critical mass in which the
persistent lack of organization has dramatically slowed productivity across the engi‐
neering team. Only then does the team take the time to draft a plan for grooming the
codebase, at which point the number of variables to consider is far greater than it
would have been, had they made a concerted effort to tackle the problem months (or
even years) earlier.

Too Many Cooks in the Kitchen
Poorly organized code can lead to even quicker degradation when combined with
rapid hiring. Fast-growing companies might be onboarding dozens of new engineers
every month. These engineers are eager to dive in and begin committing code, but
without a well-defined structure and style, they risk perpetuating existing trouble‐
some patterns deeply rooted in the current codebase.

With too many engineers working in the same codebase, you define ergonomics not
necessarily based on what works best for the long-term health of the codebase but
rather what works best knowing you’ll have to work around other contributors. This
can lead to lengthy, defensive code, or suboptimally placed code to avoid potential
merge conflicts.

Moving Too Quickly
Rapid iteration and product development can swiftly degrade software quality if not
kept in check. When building out new product features under aggressive deadlines,
we tend to cut corners: we’ll omit a few test cases, give variables generic names, or
add a few if statements where we could have made a new function. If we do not
properly make note of the corners we’ve cut and allocate the time necessary to correct
them immediately after we’ve met our target deadline, they pile up. Soon, you end up
with exceedingly lengthy functions, littered with branching logic and little-to-no unit
test coverage sprinkled throughout your codebase. When working in more complex
applications, where multiple teams are iterating on distinct features alongside one
another, effects of moving too quickly begin to compound. Unless every team can
communicate product changes effectively with every other team, the amount of cruft
piles up. You can see an example of that compounding effect illustrated in Figure 2-1.

Many of us working on modern applications practice continuous integration and
delivery; we merge our changes back into the main branch as often as possible, where
they’re validated by running automated tests against a new build of the application.

40 | Chapter 2: How Code Degrades

We ensure that customers aren’t exposed to half-baked features and partial bug fixes
by gating these changes behind feature flags (otherwise known as feature toggles).
While these give us a good amount of flexibility during active development, they’re
easy to forget about once we’ve successfully introduced the change to all the users.

Figure 2-1. A graph of cruft accumulation over time

Every company I’ve worked for had dozens (if not hundreds) of feature flags still
being referenced in the program well after they’d been enabled for all of production.
While it might seem benign to leave a few of these checks lying around, there are
some distinct risks.

First, it causes added cognitive load on developers reading the code; if the developer
doesn’t take the time to verify the status of the feature, they might be misled into
thinking it is still under active development and only make an important change in
the nongated codepath. Second, it can be frustrating to spend time determining
whether the feature is active in production, only to find out that it’s been live to
everyone for weeks. In the severe cases where there are hundreds of essentially
defunct feature flags, this can have a very serious performance impact on the applica‐
tion. The cumulative time spent validating each feature-related conditional for a
given request or codepath can be significant. We might all see some performance
enhancements by cleaning up our obsolete flags.

Applying Our Knowledge
Code degradation is inevitable. No matter how hard we try to avoid them, there will
be shifts in requirements our applications will need to adapt to. We can try to mini‐
mize development under pressure, but sometimes we need to cut corners to ship

Applying Our Knowledge | 41

quickly and give our business the competitive advantage. If code degradation is inevi‐
table, then refactoring at scale is equally inevitable. There will always be a need for us
to address tricky, systemic problems in our codebases. If we think we’ve reached the
point that we think the degradation is just too burdensome and preventing our engi‐
neering team from developing as well as it could, then we need to put on our hard
hats and figure out both why and how we got to this point.

When we learn to see beyond code’s immediate problems and instead seek to under‐
stand the circumstances under which it was originally written, we begin to see that
code isn’t inherently bad. We build empathy and use this newfound perspective to
identify the code’s true foundational problems and hatch a plan to improve it in the
best way possible. Think of this process as just one big exercise in code archaeology!

Now that we’ve learned how code degrades, we have to learn how to quantify it prop‐
erly for others to understand. We have to use our hunch that the degradation is at a
critical point, our knowledge about why and how it got to that point, to figure out the
best way to distill the problem into a set of metrics we can use to convince others that
this is, in fact, a serious problem. The next chapter discusses a number of techniques
you can use to measure problems in your codebase and establish a solid baseline for
your refactoring effort.

42 | Chapter 2: How Code Degrades

PART II

Planning

CHAPTER 3

Measuring Our Starting State

Every spring, I take the time to clean out my closet and reevaluate all of the clothing I
own. While some opt for a Marie Kondo–like approach to cleaning out their closets,
seeing whether each item “sparks joy,” I take a more methodical one. Each year, when
I kick off the process, I know that by the end, a number of items will be in the donate
pile. What I don’t know is which pieces these will be, because it entirely depends on
how all of my clothing works together in the first place.

Before I start packing some bags for Goodwill, I take a comprehensive look at the
whole. I organize everything by clothing type: sweaters in one pile, dresses in another,
and so on, accounting for the practicality of each item of clothing as I go. Which sea‐
sons is this dress good for? How comfortable is it? How often have I worn it in the
past year? Next, I approximate how many outfits the item can be integrated with. It’s
only once I have a strong sense of everything I own, and understand the role each
item of clothing plays in my closet, that I can start to identify the clothing I can com‐
fortably donate.

The same logic applies to large refactoring efforts; only once we have a solid charac‐
terization of the surface area we want to improve can we begin to identify the best
way to improve it. Unfortunately, finding meaningful ways of measuring the pain
points in our code today is much more difficult than categorizing items of clothing in
our closets. This chapter discusses a number of techniques for quantifying and quali‐
fying the state of our code before we begin refactoring. We’ll cover a few well-known
techniques as well as a few newer, more creative approaches. By the end of the chap‐
ter, I hope you’ll have found one (or more) ways to measure the code you want to
improve in a way that highlights the problems you want to solve.

45

Why Is Measuring the Impact of a Refactor Difficult?
There are a number of ways to measure the health of a codebase. Many of these met‐
rics, however, might not move in a positive direction as a result of a large-scale refac‐
tor simply because they are orthogonal to the pain points the project aims to address.
So, in measuring the starting state of our codebase, we want to choose a metric that
we believe will summarize the problem well and accurately highlight the impact of
our refactor.

Measuring the impact of any refactoring effort is tricky, primarily because when exe‐
cuted successfully, refactoring should be invisible to users and lead to no behavioral
changes whatsoever. This isn’t a new feature we’re hoping will drive user adoption or
a tweak. We often put a great deal of effort into monitoring critical pieces of our
applications to ensure that our users are getting a reliable experience when using our
product, but because these metrics capture behavior that our users are likely to
notice, most of them remain unaffected when we’ve refactored correctly. To charac‐
terize the impact of a refactor best, we need to identify metrics that measure the pre‐
cise aspects of the code we want to improve and establish a strong baseline before
moving forward.

A Note About Refactoring to Improve Performance
Let’s say we operate a small application responsible for tracking customer orders. To
ensure that our system is running smoothly, we monitor how long it takes for our ser‐
vice to retrieve the status of an order, given its ID. After a few months, we begin to
notice that our response times are slowing and decide to invest some time in refactor‐
ing the underlying code. In this scenario, we already have our starting metric: the ini‐
tial average response time. We can easily measure whether our endeavor was
successful by comparing the initial average response time to our new average
response time once the rewritten code is deployed. Voila!

Quantifying the impact of refactoring motivated by performance is often the easiest.
We generally already have a reliable set of starting metrics readily available. It’s also
worth noting that performance-driven efforts, unlike refactoring efforts prompted by
the desire to increase developer productivity, are one of the only kinds of refactoring
that lead to clear, user-facing improvements.

Large refactoring efforts are particularly difficult to measure because they rarely take
place in the span of just a few weeks. More often than not, the work involved from
start to finish spans far beyond the typical feature development cycle, and unless
product development was completely paused while the refactoring effort was ongo‐
ing, it might be difficult to isolate its impact from the work of other developers in the
same section of the application. Reliance on a handful of distinct metrics can help

46 | Chapter 3: Measuring Our Starting State

you paint a more holistic picture of your progress and better distinguish your
changes from those introduced by other developers iterating on the product along‐
side you.

Measuring Code Complexity
Many of us are motivated to refactor as a means of boosting developer productivity,
making it easier for us to continue to maintain our applications and build new fea‐
tures. In practice, this often means simplifying complex, convoluted sections of code.
Given that our goal revolves around decreasing code complexity, we need to find a
meaningful way of measuring it. Quantifying the code’s complexity gives us a starting
point from which we can begin to assess our progress.

Measuring software complexity is easy in two main ways. First, if our code resides in
version history, we can easily travel through time and apply our complexity calcula‐
tions at any interval. Second, a vast number of open-source libraries and tools are
readily available in many programming languages. Generating a report for your
entire application can be as simple as installing a package and running a single
command.

Here, we’ll discuss three common methods of calculating code complexity.

Halstead Metrics
Maurice Halstead first proposed measuring the complexity of software in 1975 by
counting the number of operators and operands in a given computer program. He
believed that because programs mainly consisted of these two units, counting their
unique instances might give us a meaningful measure of the size of the program and
therefore indicate something about its complexity.

Operators are constructs that behave like functions, but differ syntactically or seman‐
tically from typical functions. These include arithmetic symbols like - and +, logical
operators like &&, comparison operators like >, and assignment operators like =. Take,
for instance, a simple function that adds two numbers together, as shown in
Example 3-1.

Example 3-1. A short function that adds two numbers together

function add(x, y) {
 return x+y;
}

It contains a single operator, the addition operator, +. Operands, on the other hand,
are any entities we operate on, using our set of operators. In our addition example,
our operands are x and y.

Measuring Code Complexity | 47

Given these simple data points, Halstead proposed a set of metrics to calculate a set of
characteristics:

1. A program’s volume, or how much information the reader of the code has to
absorb in order to understand its meaning.

2. A program’s difficulty, or the amount of mental effort required to re-create the
software; also commonly referred to as the Halstead effort metric.

3. The number of bugs you are likely to find in the system.

To illustrate Halstead’s ideas better, we can apply our operator and operand counting
technique to a slightly more complicated function, which calculates an integer’s prime
factors, as in Example 3-2. We’ve enumerated each of the unique operators and
operands, along with the number of times they occur in the program, in Table 3-1.

Example 3-2. Operators and operands in a short function

function primeFactors(number) {
 function isPrime(number) {
 for (let i = 2; i <= Math.sqrt(number); i++) {
 if (number % i === 0) return false;
 }
 return true;
 }

 const result = [];
 for (let i = 2; i <= number; i++) {
 while (isPrime(i) && number % i === 0) {
 if (!result.includes(i)) result.push(i);
 number /= i;
 }
 }
 return result;
}

Table 3-1. Unique operators and operands, with their frequencies

Operator Number of occurrences Operand Number of occurrences

function 2 0 2

for 2 2 2

let 2 primeFactors 1

= 3 number 7

<= 2 isPrime 2

() 4 i 12

. 3 Math 1

++ (postfix) 2 sqrt 1

48 | Chapter 3: Measuring Our Starting State

Operator Number of occurrences Operand Number of occurrences

if 2 FALSE 1

=== 2 TRUE 1

% 2 result 4

return 3 <anonymous> 1

const 1 includes 1

[] 1 push 1

while 1

&& 1

! (prefix) 1

/= 1

Unique operators: 18 Total operators: 35 Unique operands: 14 Total operands: 37

Given that our prime factorization program has 18 unique operators (n1), 14 unique
operands (n2), and a total operand count of 37 (N2), we can use Halstead’s difficulty
measure to calculate the relative difficulty associated with reading the program with
the basic equation:

D =
n1
2 ·

N2
n2

Substituting in our values, we obtain an overall difficulty score of 23.78.

D = 18
2 · 37

14

D = 23 . 78

Although 23.78 might not signify much on its own, we can gradually acquire an
understanding of how this score maps to our experiences, working with individual
sections of our code. Over time, through repeated exposure to these values alongside
their implementations, we become better able to interpret what a score of 23.78 signi‐
fies within the greater context of our application.

Each of the three distinct metrics described in this section can be
generated at different scales; they can quantify the complexity of a
single function or a complete module. You can calculate the Hal‐
stead difficulty metric for an entire file, for instance, by summing
up the difficulties of the individual functions contained within it.

Measuring Code Complexity | 49

Cyclomatic Complexity
Developed by Thomas McCabe in 1976, cyclomatic complexity is a quantitative
measure of the number of linearly independent paths through a program’s source
code. It is essentially a count of the number of control flow statements within a pro‐
gram. This includes if statements, while and for loops, and case statements in side
switch blocks.

Take, for example, a simple program with no control flow components, as shown in
Example 3-3. To calculate its cyclomatic complexity, we first assign 1 for the function
declaration, incrementing with every decision point we encounter. Example 3-3 has a
cyclomatic complexity of 1 because there is only one path through the function.

Example 3-3. Simple temperature conversion function

function convertToFahrenheit(celsius) {
 return celsius * (9/5) + 32;
}

Let’s look at a more complex example, like our primeFactors function from
Example 3-2. In Example 3-4, we reduce it and enumerate each of the control flow
points to yield a cyclomatic complexity of 6.

Example 3-4. Operators and operands in a short function

function primeFactors(number) {
 function isPrime(number) {
 for (let i = 2; i <= Math.sqrt(number); i++) {
 if (number % i === 0) return false;
 }
 return true;
 }

 const result = [];
 for (let i = 2; i <= number; i++) {
 while (isPrime(i) && number % i === 0) {
 if (!result.includes(i)) result.push(i);
 number /= i;
 }
 }
 return result;
}

50 | Chapter 3: Measuring Our Starting State

Function declaration is the first control flow point.

First for loop is our second point.

First if statement is our third point.

Second for loop is the fourth point.

while is the fifth point.

Second if is the sixth point.

When we’re reading a chunk of code, every time there is a branch (an if statement, a
for loop, etc.), we have to begin to reason about multiple states with multiple paths of
execution. We have to be able to hold more information in our heads to understand
what the code does. So, with a cyclomatic complexity of 6, we can infer that
primeFactors is probably not too difficult to read and understand.

Counting the number of decision points in a program is a simplification of McCabe’s
proposed method of calculating its complexity. Mathematically, we can calculate the
cyclomatic complexity of a structured program by generating a directed graph repre‐
senting its control flow; each node represents a basic block (i.e., a straight-line code
sequence with no branches), with an edge linking them if there is a way to pass from
one block to the other. Given this graph, its complexity, M, is defined as in the follow‐
ing equation, where E is the number of edges, N is the number of nodes, and P is the
number of connection components, where a connected component is a subgraph
where the nodes are all reachable from one another.

M = E − N + 2P

Measuring Code Complexity | 51

Figure 3-1 shows an example control flow for primeFactors.

Figure 3-1. Control flow graph for primeFactors, with blue nodes signifying nontermi‐
nal states and red nodes signifying terminal states. For this example, we have 13 edges,
11 nodes, and 2 connected components.

More Applications for Control Flow Graphs
Control flow graphs (CFGs) can be useful beyond helping us calculate complexity cal‐
culations. In practice, when trying to understand particularly complex control flows,
I’ve often taken the time to produce a CFG manually to highlight decision points.
While there are more than a handful of tools I could use to generate the CFG auto‐
matically, doing this manually requires me to read through the code and helps me
cement the flow a bit better.

These data structures can also be used to identify unreachable code effectively. Say we
produce a control flow graph from a given set of functions. If within that CFG there is

52 | Chapter 3: Measuring Our Starting State

a subgraph that is not connected from any entry point, we can safely assume that it is
unreachable and can be removed. On the other hand, if an exit block is unreachable
from the entry point, it might indicate the presence of an infinite loop.

NPath Complexity
NPath complexity was proposed as an alternative to existing complexity metrics in
1988 by Brian Nejmeh. He argues that focusing on acyclic execution paths did not
adequately model the relationship between finite subsets of paths and the set of all
possible execution paths. We can observe this limitation in the fact that cyclomatic
complexity does not consider nesting of control flow structures. A function with
three for loops in succession will yield the same metric as one with three nested for
loops. Nesting can influence the psychological complexity of the function, and psy‐
chological complexity can have a large impact on our ability to maintain software
quality.

McCabe’s metric might be easy to calculate, but it fails to distinguish between differ‐
ent kinds of control flow structures, treating if statements identically to while or for
loops. Nejmeh asserts that not all control flow structures are equal; some are more
difficult to understand use properly than others. For example, a while loop might be
trickier for a developer to reason about than a switch statement. NPath complexity
attempts to address this concern. Unfortunately, this makes it a bit more difficult to
calculate, even for small programs, because the calculation is recursive and can
quickly balloon. We’ll walk through the calculations for a few examples with if state‐
ments to get familiar with how it works. If you’d like to gain a better understanding of
how to calculate NPath complexity, given a greater range of control flow statements
(including nested control flows), I highly recommend reading Nejmeh’s paper.

Control flow metrics can help you determine the number of test
cases your code needs. Cyclomatic complexity offers a lower
bound, and NPath complexity provides an upper bound. For
instance, with primeFactors, cyclomatic complexity indicates that
we would want at least six test cases to exercise each of the decision
points.

Our base case for NPath complexity is the same as for our previous temperature con‐
verter function in Example 3-3; for a simple program with no decision points, the
NPath complexity is 1. To illustrate the multiplicative component of the metric, we’ll
take a look at a simple function with a few nested if conditions.

Example 3-5 shows a short function that returns the likelihood of receiving a speed‐
ing ticket, given a provided speed. Reading through the function, we reach a first if
statement, at which point the given speed can either be less than or greater than 45

Measuring Code Complexity | 53

km/h. There are then two possible paths: if the speed is greater than 45 km/h, we
enter the code inside the if block; if not, we simply continue. We next need to verify
whether the speed is greater than 10 km/h over the supplied speed limit, at which
point we again have two possible paths through the code. Eventually, we return our
calculated risk factor.

Example 3-5. A short function with two, sequential if statements, with different
sections annotated A, B, C, D, E, and F

function likelihoodOfSpeedingTicket(currentSpeed, limit){
 risk = 0; // A

 if (currentSpeed < 45) {
 risk = 1; // B
 } // C

 if (currentSpeed > (limit + 10)) {
 risk = 2; // D
 } // E

 return risk; // F
}

NPath complexity calculates the number of distinct paths through a function. We can
enumerate each of these paths by calling likelihoodOfSpeedingTicket with a range
of values, exercising each set of conditions. We’ll walk through one input together,
highlighting the path we traverse through the function. All other unique paths are
labeled in Table 3-2.

Table 3-2. All unique paths through likelihoodOfSpeedingTicket

Inputs Path

30, 10 A, B, D, F

30, 50 A, B, E, F

90, 50 A, C, D, F

90, 110 A, C, E, F

Unique paths: 4

Say we call likelihoodOfSpeedingTicket with a currentSpeed of 30 and limit of 0.
Our first if statement will evaluate to true, leading us to B. Our second if statement
will also evaluate to true, leading us to D. Then we reach our return statement at F.
Repeating this pattern for a variety of inputs, we determine that there are four unique
paths through the function. Therefore, our NPath score is 4.

54 | Chapter 3: Measuring Our Starting State

Downsides of NPath Complexity
NPath complexity will always provide an overestimate of the number of execution
paths through a section of code. For instance, what would the NPath complexity of
our likelihoodOfSpeedingTicket function be if we added one final check to see
whether the currentSpeed is over 135 km/h? We would have three if statements,
each with two possible outcomes, for a total of 2 x 2 x 2, or 8 total paths through the
function. However, it’s impossible for the speed to be both under 45 km/h and over
135 km/h, so one of these paths is simply impossible at execution time. It’s important
to keep in mind that while NPath complexity can be valuable in characterizing how
difficult a section of code is to reason out, it is only an estimate on the upper bound.

NPath complexity might better exemplify the behavior of distinct types of control
flow statements and effectively capture the psychological load involved with nested
decision points, but the values it generates when run on large, legacy codebases can be
massive (in the hundreds of thousands). This is mainly due to the exponential nature
of the metric. Unfortunately, this means that the value itself can quickly lose signifi‐
cance, making small improvements difficult to discern. I recommend that you use
NPath complexity to measure constrained sections of the code you are seeking to
improve, perhaps taking an average of the individual sections as your starting point.

Some easy forms of refactoring won’t have any impact on your
CFG metrics. Some complexity is unavoidable simply due to com‐
plicated business logic. You have to make each of these checks and
iterations to ensure that your application is doing what it needs to
be doing. When the code you want to refactor involves simplifying
unnecessarily complicated logic, then NPath or cyclomatic com‐
plexity are great options. If not, then I recommend using a different
set of metrics. Do be mindful, however, that even if you are detan‐
gling some spaghetti code, NPath or cyclomatic complexity should
not be your only metrics; you won’t be able to characterize the
impact of your refactoring effort holistically and properly with only
a single data point.

Lines of Code
Unfortunately, control flow graph metrics can be difficult (and sometimes expensive)
to calculate, particularly for very large codebases (which are precisely the ones we’re
looking to improve). This is where program size comes into play. Although it may not
be quite as scientific as Halstead, McCabe, or Nejmeh’s algorithms, combined with
other measurements, program size can help us locate likely pain points in our appli‐
cation. If we’re looking for a pragmatic, low-effort approach to quantifying the com‐
plexity of our code, then size-based metrics are the way to go.

Measuring Code Complexity | 55

When measuring code length, we have a few options available to us. Most developers
choose to measure only logical lines of code, omitting empty lines and comments
entirely. As with our control flow metrics, we can collect this information at a number
of resolutions. I’ve found the following few data points to be quite helpful reference
points:

LOC (lines of code) per file
Every codebase has the kind of files that look as if you might not reach the end if
you started scrolling from the beginning. Measuring the number of lines of code
for these would likely accurately capture the psychological overhead required to
understand their contents and responsibilities when a developer pops them open
in their editor.

Function length
For every endless file, there’s an endless function. (More often than not, the end‐
less functions are found in the endless files.) Measuring the length of functions or
methods within your application can be a helpful way of approximating their
individual complexities.

Average function length per file, module, or class
Depending on how your application is organized, you may want to keep track of
the average function or method length per logical unit. In object-oriented code‐
bases, you likely want to keep track of the average length of each method within a
class or package. In an imperative codebase, you might measure the average
length of each function within a file or larger module. Whatever the greater
organizational unit, knowing the average length of the smaller logical compo‐
nents contained within it can give you an indication of the relative complexity of
that unit as a whole.

A Note About Counting Lines of Comments
By and large, ignoring comments is good practice when counting lines of code. Doc‐
blocks and inlined TODOs do not affect the behavior of our programs, so including
them in our size calculations would not help us better characterize a program’s com‐
plexity. In practice, however, I’ve noticed that you can easily pinpoint some rather
perplexing sections of code by counting the number of inline comments at the func‐
tion level. In general, developers tend to leave inline code comments when the sur‐
rounding logic is difficult to follow. Whether that’s because the code is dealing with a
complicated piece of business logic or it has just become gradually more convoluted
over time, we tend to leave some pointers to others who come after us when modify‐
ing exceptionally tricky code. Therefore, we can use the quantity of inline comments
within a single function, whether short or long, as a possible warning sign.

56 | Chapter 3: Measuring Our Starting State

LOC might vary wildly, depending on the language of a program or programming
style, but if we’re comparing apples to apples, we shouldn’t be too concerned. When
refactoring at scale, we’re generally concerned with improving code within a single,
large codebase. In my experience, the vast majority of developers working with these
codebases have invested in establishing style guides, defining a set of best practices,
and often enforcing these rules with autoformatters. Some variation is inevitable
across teams and components, but broadly speaking, the application as a whole tends
to look similar enough that two sets of LOC metrics from distinct sections of the
codebase should still be comparable.

Test Coverage Metrics
When we’re developing new features, there are a few testing philosophies we can
adopt. We can opt for a test-driven development (TDD) approach, writing a thor‐
ough suite of tests first and then iterating on an implementation until the tests pass;
we can write our solution first, followed by the corresponding tests; or we can decide
to alternate between the two, incrementally building an implementation, pausing to
write a handful of tests with each iteration. Whatever our approach, the desired out‐
come is the same: a new feature, fully backed by a quality set of tests.

Refactoring is a different beast. When we’re working to improve an existing imple‐
mentation, whatever the extent of our endeavor, we want to be sure that we’re cor‐
rectly retaining its behavior. We can safely assert that our new solution continues to
work identically to the old by relying on the original implementation’s test suite.
Because we are relying on the test coverage to warn us about potential regressions, we
need to verify two things before beginning our refactoring effort: first, confirm that
the original implementation has test coverage and, second, determine whether that
test coverage is adequate.

Say we want to refactor our primeFactors function in Example 3-2. Before we con‐
sider making any changes, we need to measure whether it has test coverage and, if it
does, whether that test coverage is sufficient. Verifying that the implementation has
test coverage is easy. We can just pop open the corresponding test file and take a peek
at what it contains. For our example, we find just one test, shown in Example 3-6.

Example 3-6. A simple test for primeFactors

describe('base cases', () => {
 test('0', () => {
 expect(primeFactors(0)).toStrictEqual([]);
 });
});

Test Coverage Metrics | 57

Determining whether that test coverage is adequate, however, is a trickier task. We
can evaluate it in two ways: quantitatively and qualitatively. Quantitatively, we can
calculate a percentage representing the proportion of code that is executed when the
test suite is run against it. We can collect metrics for both the number of functional
lines of code and the number of execution paths tested by our simple unit test, yield‐
ing 40 percent and 35.71 percent, respectively. Example 3-7 shows the test output
generated with the Jest unit testing framework.

Example 3-7. Jest test coverage output for primeFactors, given our single test case

-----------------|---------|----------|---------|---------|-------------------
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 35.71 | 0 | 50 | 40 |
 primeFactors.js | 35.71 | 0 | 50 | 40 | 3-6,11-13
-----------------|---------|----------|---------|---------|-------------------
Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total

Now, we have to decide whether this is adequate test coverage. Neither metric fills me
with great confidence that primeFactors is particularly well-tested; after all, this indi‐
cates that over three-fourths of the function is not being exercised by our current
suite. Test coverage is primarily useful in two ways:

• Helping us identify untested paths in our program
• Serving as a ballpark measure of whether we have tested enough

If you are looking for strategies for testing legacy software, I rec‐
ommend picking up a copy of Working Effectively with Legacy Code
by Michael Feathers. He discusses a bevy of options for how to
introduce unit tests retroactively by capitalizing on seams in the
code, strategic places where you can change the behavior of your
program without modifying the code itself.

To improve the test coverage for our example, we can add one more test case, as
shown in Example 3-8. If we recalculate our coverage (see Example 3-9), we notice
that with just one additional test case, we can achieve near-perfect coverage. Does this
mean that our test coverage is adequate? Quantitatively it might appear to be suffi‐
cient; qualitatively it might not be. Peeking back at our implementation for
primeFactors, we can easily identify a few missing test cases, such as providing a
negative number, or the number 2.

58 | Chapter 3: Measuring Our Starting State

Example 3-8. A simple test for primeFactors

describe('base cases', () => {
 test('0', () => {
 expect(primeFactors(0)).toStrictEqual([]);
 });
});

describe('small non-prime numbers', () => {
 test('20', () => {
 expect(primeFactors(0)).toStrictEqual([2, 5]);
 });
});

Example 3-9. Jest test coverage output for primeFactors, given our two test cases

-----------------|---------|----------|---------|---------|-------------------
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 100 | 83.33 | 100 | 100 |
 primeFactors.js | 100 | 83.33 | 100 | 100 | 12
-----------------|---------|----------|---------|---------|-------------------
Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total

In my experience, thoughtfully written code generally has between 80 and 90 percent
test coverage. This shows that the majority of the code is tested. Be forewarned, how‐
ever, that test coverage alone is not an indication of how well-tested something is. It’s
easy to write low-quality unit tests to reach perfect or near-perfect test coverage. If
high test coverage is incentivized by management, you will typically find that a signif‐
icant portion of your unit tests make little effort to assert the corresponding code’s
important behavior.

From a qualitative standpoint, determining whether test coverage is sufficient is not
so simple. There is a great deal of thoughtful writing about this already, most of which
goes beyond the scope of this book, but at a high level, I think suitable test quality has
been attained if the following points hold true:

• The tests are reliable. From one run to the next, they consistently produce pass‐
ing results when run against unchanged code and catch bugs during
development.

• The tests are resilient. They are not so tightly coupled to implementation that
they stifle change.

• A range of test types exercise the code. Having unit, integration, and end-to-end
tests can help us assert that our code is functioning as intended with different lev‐
els of fidelity.

Test Coverage Metrics | 59

If we have asserted that the test coverage and test quality is substantial enough, then
we should be confident in moving forward with our refactoring effort. If tests are
lacking either in coverage or quality, we need to spend the requisite time writing
more, and better, tests up front. Measuring the test quantity and quality of each of the
sections of code we intend to refactor is an important step in helping us determine
how much additional work we need to commit to before we begin refactoring.

Type Coverage
We briefly discussed some of the advantages and disadvantages of dynamically typed
programming languages in Chapter 2. Developers working in large, dynamically
typed codebases might consider adopting a gradually typed language to enable the
introduction of static types. Static types can catch errors earlier in the development
process by warning us about mismatched types; they can ease the mental burden of
programming by automatically tracking information we would otherwise have to
remember. TypeScript for JavaScript, Cython or mypy for Python, Hacklang, and
PHP (as of v7.0) are all examples of gradually typed programming languages.

If you are in the process of adding types to your codebase, you will likely want to
measure your progress by keeping track of type coverage. We calculate type coverage
as the percentage of code that has type information. (This is deliberately vague as it
depends on how static typing is implemented in each distinct language. The metric
can even differ, depending on the language version.) Similar to test coverage, low type
coverage scores can be used to locate code effectively that could benefit from a bit
more attention. Reaching 100 percent type coverage is likely impossible, but in my
experience working in a gradually typed codebase, I feel most confident working with
code that is as highly typed as possible. If you are able to achieve a score of over 95
percent across your application, you’re in good shape.

Documentation
Before we start refactoring something, we should take stock of any existing documen‐
tation about it. Reading through the documentation may help us gain valuable, addi‐
tional context on the code. While documentation is not a great source of numerical
metrics we can use to measure our starting state, it is a critical source of evidence we
can use to describe the current problems we seek to improve. We’ll discuss two forms
of documentation we should be concerned about when trying to understand and
quantify our starting point in anticipation of a large refactoring effort. These are for‐
mal and informal forms of documentation.

60 | Chapter 3: Measuring Our Starting State

Formal Documentation
Formal documentation is everything you most likely think of as documentation. This
doesn’t have to follow any official, industry-level standard (like Unified Modeling
Language [UML]). Rather, what makes it formal is that it was deliberately authored
(and, in many cases, is actively maintained) to inform the reader about your system.
Technical specs, architecture diagrams, style guides, onboarding materials, and post‐
mortems are a few examples of formal documentation.

We can use things like technical specs as evidence that our refactor is necessary or use‐
ful by referencing design decisions, assumptions, or other designs considered or
rejected. Say, for instance, you work on a subsection of your application responsible
for processing all user-related actions within your product. The current implementa‐
tion requires developers writing new features to remember and enumerate every kind
of event that needs to be fired and propagated to sibling subsystems when a user
modifies their profile. If your team has a history of writing technical design specs for
each of their features, you can locate the original specification document for event
propagation. This document describes the current implementation, its limitations,
and any alternative approaches.

The limitations section states that while it might be convenient to trigger each
required event individually at every location, if the team introduces a substantial
number of new events, it might become clumsy and burdensome. Today, your system
is experiencing that exact problem. It handles more than a dozen event types and
your team is struggling to keep track of the sprawl. With every new feature, your
team fears forgetting to trigger a critical event type and potentially introducing a
pesky bug. You’ve done your best to assert the desired behavior with tests but decide
that refactoring how these events are handled is the best solution to taming the chaos
of repetitive logic.

Technical specs can be very helpful in supporting your hypothesis of exactly what
needs to be improved and how. Occasionally, these documents outline alternative
approaches considered but not ultimately chosen. You may be able to explore one of
these suggestions with your refactoring effort.

Maintainers of style guides and onboarding materials can sometimes leave traces of
their experiences in the documentation they produce. If they’ve recently made an
unexpected discovery about how something works and sought to improve the docu‐
mentation as a result of that experience, you might be able to catch a glimpse of that
in their writing. You might find warnings in large, bolded text of exactly what not to
do. It’s also not uncommon to see a disproportionate amount of content devoted to
particularly complex pieces of the codebase in these kinds of documents; more people
across the company will have devoted more time to trying to steer readers in the right
direction, away from the pitfalls they themselves fell into. If the code you want to
refactor is documented in these sources and follows these patterns, it might be good

Documentation | 61

evidence that it can be measurably improved. Think about the ideal tone and content
of the documentation for your target code and use that as inspiration.

Postmortems can serve as great supporting evidence. If your team follows the PagerD‐
uty incident response process and has been doing so for some time, then you likely
have access to dozens of postmortem documents detailing the what, where, when,
why, and how of every instance where your application wasn’t behaving as expected.

When building a case for code that is worth refactoring, I search for postmortems
summarizing incidents I believe directly involved that code. Then I read through two
sections: “Contributing Factors” and “What Didn’t Go So Well?” When I suspect that
the complexity of the code had a direct impact on the time to resolution or perhaps
even caused the incident in the first place, these two sections will likely confirm it. A
count of the number of incidents that list the area you want to refactor as a problem
makes a valuable metric.

It’s also important to take note of third-party or publicly facing
documentation. While refactoring is not meant to modify the
behavior for consumers of your application, this documentation
can be particularly useful for bolstering your understanding of the
code you’re intending to rewrite.

Informal Documentation
Alongside our formal documentation, we produce a wide range of informal docu‐
mentation. These are the kinds of written artifacts that we don’t consider to be proper
documentation simply because they don’t typically occur in document form. In my
experience, I’ve found more speckled throughout informal sources than in any formal
documentation.

Finding these sources is all about thinking outside the box. I’ll enumerate a few here
but keep your eyes peeled for other sources around you. You just might surprise
yourself!

Chat and email transcripts can provide insightful information about the code you’re
seeking to refactor. Best of all, these often grant a good deal of context, both historical
and organizational pieces of information. Say, for instance, you want to refactor how
asynchronous jobs are structured in your application. The job queue system currently
accepts a dynamic set of arguments of arbitrary size to maximize flexibility for its
consumers. Unfortunately, this has led to quite a bit of confusion around its actual
limitations, putting the system at risk of running out of memory when processing
jobs with extremely large argument payloads, or crashing abruptly when it is unable
to parse malformed inputs.

62 | Chapter 3: Measuring Our Starting State

https://oreil.ly/T966e
https://oreil.ly/T966e

You want to be certain that your experience with the system’s ambiguity is not anec‐
dotal to you and your team. To measure how troublesome writing new jobs is, you
search your company’s Slack (or other messaging solution) for a set of keywords that
relate to job queue arguments. Unsurprisingly, you come across a number of mes‐
sages where someone was surprised or concerned that their job didn’t work as
intended. Developers across the company are asking whether they should provide
raw or opaque IDs. Why one over the other? Do we log these job arguments? If so, do
we need to be careful about including personally identifiable information? How much
data can we send via these arguments? Are we able to serialize entire objects and sup‐
ply these to the job queue system?

You create a document that points to each of these messages, with a short description
of the context around each. (This should be easy to do with a short backscroll
through the conversation.) Now you can reference these instances to demonstrate the
difficulty that developers are currently running into.

Chat history gives you the unique ability to peek into conversations that occurred
long before your arrival. You might be surprised to see people spread across a variety
of engineering teams talking about the problems you’re eager to fix months or years
before your first day on the job. You might encounter others asking the same question
at a regular cadence. When this happens, not only is it extremely validating to your
endeavor, but you may get some valuable allies by reaching out to the folks on those
teams and asking them about their experience with the code you want to improve.
Quantitatively, you can use these conversations to approximate how many engineer‐
ing hours are lost due to confusion about the code you want to improve and answer
questions about it.

Depending on your engineering team’s project management tools of choice, you may
be able to gather some important metrics related to the code you want to refactor by
searching for related bugs in your bug tracking system. You might also be able to esti‐
mate the amount of time other teams or individual developers have spent investigat‐
ing and fixing bugs or implementing changes related to your target code.

Say the code around a particular feature or feature set has been gaining complexity
over time. You want to invest effort in tidying it up so that your team can develop at a
quicker pace. If you suspect that your team’s velocity has decreased, you can use your
project management software to confirm it. Note that this is a very coarse metric (and
as with all of our other metrics, only quantifies a single aspect of the overall problem).
You will probably need intimate knowledge of how your team organizes its develop‐
ment cycles and confidently remove outliers in your data to be able to tease out a
compelling metric here, but for some teams, it can be an indisputable one!

Documentation | 63

Technical program managers at some companies can be a great
resource for helping you collect, filter, and disseminate these kinds
of metrics. They are often whizzes at navigating project manage‐
ment tools and locating hard-to-find documents. Who knows, you
might even make a new friend!

At this point, this may all sound like an excessive amount of investigatory work to
quantify a given problem. That’s okay! It’s up to you to decide which metrics will have
the most impact in communicating the severity of the problem and the potential ben‐
efit of fixing it. You may not want or need to spend the time digging through hun‐
dreds of tasks or postmortems, but if this information is easy to consume and search,
it might be worthwhile. These metrics can especially come in handy when trying to
convince management and leadership teams that are highly removed from the code
that refactoring is worthwhile.

Version Control
We primarily think of version control as a tool to manage changes to our applica‐
tions. We use it to move forward incrementally, allowing for the development of mul‐
tiple features at once, and progressive shipment of those features. Sometimes, we use
it to refer to previous versions of our code to track down a bug or locate someone
who might know about the section of code we’re reading. We rarely think of version
control as a source of information about our team’s development patterns when ana‐
lyzed in aggregate. Turns out, we can glean quite a bit about the problems our engi‐
neering team is facing when we take a look at our commits from a different
perspective.

Commit Messages
Although not everyone makes writing descriptive commit messages part of their
development method, if you work on a team where a majority of developers do, these
short descriptions can provide a glimpse into the issues that they might be running
into. We can identify patterns either by searching for a set of keywords or by isolating
commit messages associated with changes to a set of files we’re interested in.

Let’s say we’re looking at our job queue system problem from earlier. We know that
engineers regularly forget to sanitize their arguments before enqueueing jobs, result‐
ing in logging personally identifiable information (PII). We can search through our
commit messages and identify commits where the corresponding messages include
words like “job,” “job handler,” or “PII.” From this result set, we might find a substan‐
tial set of commits that either introduced a new job responsible for leaking PII or
fixed a job already leaking it. Alternatively, if our job handlers are conveniently
organized into distinct files, we could narrow our search to include only commits

64 | Chapter 3: Measuring Our Starting State

with modifications to these files and comb through the derived set for similar
patterns.

Some development teams relate their commits or changesets to their project manage‐
ment tools by highlighting bug or ticket numbers in the commit message or branch
name. If this information is available to us, we can link the changeset back to our pre‐
vious collection of metrics on development velocity and bug count. It all comes full
circle!

Commits in Aggregate
In his book, Software Design X-Rays, Adam Tornhill proposes a set of techniques for
teasing out important development patterns from version history. He hypothesizes
that these development behaviors can help you identify which sections of your appli‐
cation you should prioritize when refactoring, illustrate how the complexity of certain
functions have changed over time, and highlight any tightly coupled files or modules.
I highly recommend reading his research to comprehend fully the psychology behind
why these measurements are so enlightening, but I’ll summarize the basic techniques
here so that you might consider them ahead of your next big refactor.

Change frequencies are the number of commits made to each file over the complete
version history of your application. You can easily generate these data points by
extracting file names from your commit history, aggregating them, and ordering
them from most to least frequent. In practice, Tornhill noticed that these frequencies
tended to follow a power distribution, where a disproportionate number of changes
occur in a small subset of core files. Knowing the files that are committed to most
often tells us exactly which files need to be the easiest to understand and navigate for
developers and, therefore, which files we should spend the most effort maintaining,
from a developer productivity perspective.

We can apply the same concept of change frequencies to files as well. By looking at
individual commits, we can carefully attribute changes to respective functions within
individual files, producing total frequency numbers for each of them. By combining
this data with one of our earlier complexity metrics, lines of code, we can map com‐
plexity changes over time across the entire codebase. This information shows us
potential hotspots ripe for improvement. We can later regenerate these metrics once
we’ve completed our refactor to confirm that not only the complexity of these hot‐
spots decreased, but hopefully their change frequency had as well.

Tornhill also describes a method for pinpointing tightly coupled modules in your
program by looking at sets of files modified within the same commit. To depict this
idea, let’s say we have three files, superheroes.js, supervillains.js, and sidekicks.js. In a
subset of our commits, we have the following changes: commit one modifies both
superheroes.js and sidekicks.js; commit two modifies all three files; commit three again
modifies superheros.js and sidekicks.js; and commit four only touches superheroes.js.

Version Control | 65

From this subset of our version history, depicted in Table 3-3, we notice that of four
commits, three of them modified both superheroes.js and sidekicks.js. This insinuates
that some kind of coupling between these two files exists. Certainly not all coupling is
bad (as is the case for changes in source code and the corresponding unit test files),
but in some cases these patterns can indicate an erroneous abstraction, copy-pasted
code, or sometimes both. Once we’ve pinpointed these problems, we can work to fix
them and then rerun the analysis sometime later to confirm that they no longer exist.

Table 3-3. Files modified per commit

Commit # superheroes.js supervillains.js sidekicks.js
1 x x

2 x x x

3 x x

4 x

As with each of our quantitative metrics in this chapter, there are some caveats to this
kind of measurement. Different developers have different practices around commit‐
ting changes. Some programmers will make a large quantity of tiny commits; others
will make large commits, including dozens of changes across multiple files, into a sin‐
gle changeset. Moreover, it’s entirely likely this analysis will reveal some outliers (con‐
figuration files frequently changed or hotspots in autogenerated code). We have to be
vigilant about these anomalies when poring over the data to mitigate the risk of find‐
ing problems where there might not be any.

Code Authorship
Tornhill also derives data about code authorship from version control. Files or mod‐
ules that have a large number of distinct minor authors are at higher risk of defects.
While the research he cites does not explain why that is, he posits that it is likely due
to the increased need for coordination among authors combined with inexperience
with the implementation. You may be curious to explore the implications of author‐
ship in your own code and derive additional metrics from them.

Reputation
Whether we’re aware of it or not, each of the many sections of our software systems
have distinct reputations. Some reputations are stronger than others; some are posi‐
tive, some are deeply negative. Whatever the reputation, however, it is slowly built up
over time, spreading across the engineering organization as more and more engineers
interact with the code. Word of the most disastrous codebases sometimes even travels
outside of your company and into the wider industry, discussed over dinner among

66 | Chapter 3: Measuring Our Starting State

friends and on internet forums. Whether these reputations continue to hold true or
not, they can tell us plenty about some of the most troublesome pieces of our applica‐
tions and just how desperately they need our attention.

A simple, low-effort means of collecting reputation data is to interview fellow devel‐
opers. Let’s assume you work on an application that charges customers for a monthly
service and you want to improve your application’s billing code. You set up some
interviews with developers that fall into a few categories: those who work directly
with the billing code on a regular basis, and those who have worked with it on occa‐
sion. For each of these two sets, you’ll want to speak to developers who have a range
of tenures on their current team and within the company; the experiences of those
who have worked integrally with the billing code for years are probably pretty differ‐
ent from those of an engineer who was hired six months ago.

We then derive a set of questions that will help us characterize their experience. We
begin with a few questions to frame their background and then delve into their
thoughts about the code. A few are suggested in Table 3-4 to get you started.

Given your experience with the billing code, when you were evaluating which files
could benefit the most from a thorough refactor, you immediately thought of charge‐
CustomerCard.js+. You decide to ask your interviewees about the file to see what sort
of reaction it elicits. If the second you mention chargeCustomerCard.js, your inter‐
viewee grimaces, whether they have intimate knowledge of the inner workings of that
file or not, that’s a strong indication that the file could probably use a little bit of love.

If we want to solicit feedback from a larger group of engineers or are tight for time on
establishing our starting metrics, we can rephrase our interview questions to fit a
standard set of answers. This will make aggregating the responses easier and allow us
to derive conclusions from them faster. Be warned, however, that by reducing your
fellow developers’ thoughts to a set of scores, you’ll be stripping away some of the
nuance that you might have been able to glean from an in-person (or virtual)
interview.

From experience, interviews tend to give you more flexibility to explore ideas and
topics that bubble up candidly. It’s often the back and forth banter that brings out the
best aha! moments. If we sent around a developer survey with long-form interview-
like questions, not only would we not be able to ask the respondents in real time to
provide more details about their answers, but we would likely get fewer responses.
I’m very guilty of opening up a survey, noticing that it is a series of half-a-dozen
open-ended questions, and almost immediately setting myself a reminder to do it
later. If you want to solicit feedback from engineers in survey form, keep it short; this
way, you have a better chance of getting a high response rate.

Reputation | 67

Table 3-4. Suggested developer interview and survey questions

Interview question Survey question Notes
How long have you been working
with X code?

Select the option that best describes the amount
of time you have spent working with X code: > 6
months; 6 months to 1 year; more than one year.

Note that in the survey question
version, you should choose time
ranges that make the most sense
for your engineering organization.
At high-growth, younger
companies, the ranges are probably
on the order of months; at larger,
more established companies, the
ranges could be on the order of
years.

If you could change one thing
about working with X code, what
would it be? Why?

If you could choose only one of the listed options
to improve your experience working with X code,
which one would it be?

For the survey question, choose
some options that you think would
make the most impact and
optionally provide a write-in field.
If the code doesn’t have any tests,
add an option that states that the
code is fully tested. If a large
proportion of the code is contained
within a few functions that are
hundreds of lines long, add an
option that states that the code is
split up into small, modular
functions.

Tell me about a bug you recently
had to fix that involved X code.
What would have made it easier
to solve?

Of the Y options listed below, what about X code
makes it the most difficult to fix bugs efficiently?

Have you strategically avoided
working in X code before (i.e.,
fixing a bug at a level above or
below the problem area)? Tell me
about that experience.

On a scale from 1 to 5, 1 being not likely at all and
5 being very likely, how likely are you to find a
way to avoid making changes to X code?

How does the complexity of X
code hinder your ability to develop
new features?

With 1 being strongly disagree and 5 being
strongly agree, rate the following statement: The
complexity of X code is a significant contributor to
the time it takes for me to develop new features.

How does the complexity of X
code hinder your ability to test
and/or debug your code?

With 1 being strongly disagree and 5 being
strongly agree, rate the following statement: The
complexity of X code is a significant contributor to
the difficulty to test and/or debug my code.

How does the complexity of X
code hinder your ability to review
other developers’ changes to the
code?

With 1 being strongly disagree and 5 being
strongly agree, rate the following statement: The
complexity of X code is a significant contributor to
the time and difficulty involved for me to review
other developers’ changes to the code.

68 | Chapter 3: Measuring Our Starting State

Reputation can also hinder a team’s ability to hire and retain engineers. Say the billing
code is known to be particularly treacherous at your company. While the team proba‐
bly has a handful of developers who are committed to their roles, working in a frus‐
tratingly complex codebase can take a toll on morale. Organizations don’t like to
admit that they’ve lost engineers due to code quality and development practices, but
it happens all the time. If you’re able to collect information on engineers’ reasons for
leaving the team and tie those back to code complexity, it can be an incredibly com‐
pelling metric for dedicating some much-needed resources to refactoring.

Building a Complete Picture
Now that we’ve familiarized ourselves with a wide range of potential metrics, we have
to choose which ones to use. To build the most comprehensive view of the current
state of the world, you must identify the metrics that best illustrate the specific prob‐
lems you want to address. None of these metrics alone can quantify the many unique
aspects of a large refactoring effort, but combined, you can build a multifaceted char‐
acterization of the problem.

I recommend picking one metric from every category. Find a way to approximate
code complexity in a way that makes the most sense given the nature of your problem
and the tools you have already available to you. Generate some test coverage metrics to
make sure you start off on the right foot. Identify a source of formal documentation
you can use to illustrate the problems your refactor aims to solve; back it up with
some informal documentation as well. Gather information about your hotspots and
programming patterns by slicing and dicing version control data. Last, consider the
code’s reputation by chatting with your colleagues.

If you find that most of these metrics can help you quantify the current state of the
code you are aiming to refactor and the impact it has on your organization, consider
choosing the subset that has the greatest chance of showing significant improve‐
ments. These are the metrics that will make the most compelling case to your team‐
mates and, ultimately, management. In the end, you’ll have to make a convincing
argument to those you report to that the time and energy you and your teammates
are ready to devote to the refactor will pay off.

We’ve successfully gathered evidence to help us properly characterize the problem
we’re experiencing, but setting the stage is only one piece of the puzzle. Next, we have
to use the data we’ve collected to assemble a concrete execution plan.

Building a Complete Picture | 69

CHAPTER 4

Drafting a Plan

One day, I plan to complete the 4,500-kilometer drive between Montreal and Vancou‐
ver. The drive takes about 48 hours from start to finish, with the fastest route cover‐
ing most of the length of the border between Canada and the United States. The
fastest route isn’t necessarily the most rewarding route, however, and if I add a stop to
see Parliament Hill in Ottawa, the iconic CN Tower in Toronto, and the Sleeping
Giant Provincial Park, I lengthen my trip by a few hours and about 600 kilometers.

Now anyone setting out on this journey knows driving it nonstop from start to finish
is both impractical and dangerous. So, before I head out, I should map out a rough
outline for the roadtrip. I should figure out how much time I’m comfortable driving
on the road-heavy days, and which cities I might want to pop in to do some sightsee‐
ing. In total, I estimate the trip might take between seven and 10 days depending on
how long I spend sightseeing. The flexibility allows for a few unexpected twists,
whether I decide to sightsee an extra day or get stranded on the side of the road and
need to call for assistance.

How do you know whether you’ve had a successful roadtrip beyond actually reaching
your final destination? If you set a budget for your trip, you might have achieved your
goal if your next credit card bill falls within range. Maybe you wanted to eat a burger
at every stop along the way. Probably, you just wanted to see something new, spend
some quality time with friends or family, and make a few new memories. As tacky as
it might sound, the roadtrip is just as much about the journey as it is about the
destination.

Any large software endeavor can look quite a bit like a roadtrip across the country. As
developers, we decide on a set of milestones we want to accomplish, a rough set of
tasks we want to complete in between each of these milestones, and an estimate for
when we think we might reach our destination. We keep track of our progress along

71

the way, ensuring that we stay on task and within the time we’ve alloted ourselves. By
the end, we want to see a measurable, positive impact, achieved in a sustainable way.

We’ve taken the time to understand our code’s past, first by identifying how our code
has degraded, then by characterizing that degradation. Now, we’re ready to map out
its future. We’ll learn how to split up a large refactoring effort into its most important
pieces, crafting a plan that is both thorough and precise in scope. We’ll highlight
when and how to reference the metrics we carefully gathered to characterize the cur‐
rent problem state in Chapter 3. We’ll discuss the importance of shopping your plan
around to other teams and wrap things up by emphasizing the value in continuously
updating it throughout the whole process.

Everyone takes a different approach to building out an execution plan. Whether your
team calls them technical specs, product briefs, or requests for comments (RFCs),
they all serve the same purpose: documenting what you intend to do and how you
intend to do it. Having a clear, concise plan is key to ensuring the success of any soft‐
ware project, regardless of whether it involves refactoring or building out a new fea‐
ture; it keeps everyone focused on the important tasks at hand and enforces
accountability for their progress throughout the endeavor.

Defining Your End State
Our first step is to define our end state. We should already have a strong understand‐
ing of where we currently are; we spent considerable time in Chapter 3 measuring
and defining the problem we want to solve. Now that we’ve grounded ourselves, we
need to identify where we want to land.

On the Road
We’re kicking off our roadtrip in Montreal, where we currently live. Of the hundreds
of towns and cities speckled along that shore, we have to pick just one to aim for. So,
after a bit of research, we decide to aim for Vancouver.

Next, we need to familiarize ourselves with the highways leading directly into the city
and decide where we might want to stay upon arrival. We reach out to friends who’ve
either lived in Vancouver or who travel there frequently for recommendations. We
land on Yaletown, a neighborhood known for its old warehouse buildings by the
water. Now that your trip has a well-defined destination, we can start figuring out
precisely how to get there.

At Work
To illustrate the many important concepts in this chapter, we’ll be using an example of
a large-scale refactor at a 15-year-old biotechnology company we’ll call Smart DNA,
Inc. Most of its employees are research scientists, contributing to a complex data

72 | Chapter 4: Drafting a Plan

pipeline comprising hundreds of Python scripts across a few repositories. The scripts
are deployed to and executed in five distinct environments. All of these environments
rely on a version of Python 2.6. Unfortunately, Python 2.6 has long since been depre‐
cated, leaving the company susceptible to security vulnerabilities and preventing it
from updating important dependencies. While relying on outdated software is incon‐
venient, the company has not prioritized upgrading to a newer Python version. It’s a
massive, risky undertaking, given the very limited testing in place. Simply put, this
was the biggest piece of technical debt at the company for many years.

The research team has recently grown concerned about its inability to use newer ver‐
sions of core libraries. Given that the upgrade is now important to the business, we’ve
been tasked with figuring out how to migrate each of the repositories and environ‐
ments to use Python 2.7.

The research team manages its dependencies by using pip. Each repository has its
own list of dependencies, encoded in a requirements.txt. Having these distinct
requirements.txt files has made it difficult for the team to remember which dependen‐
cies are installed on a given project when switching between projects. It also would
require the software team to audit each file and upgrade it to be compatible with
Python 2.7 independently. As a result, the software team decided that although it was
not necessary, it would make the Python 2.7 upgrade easier for them (and simplify
the researchers’ development process) to unify the repositories and thus unify the
dependencies.

Our execution plan should clearly outline all starting metrics and target end metrics,
with an optional, albeit helpful, additional column to record the actual, observed end
state. For the Python migration, the starting set of metrics was clear: each repository
had a distinct list of dependencies, with each environment running Python 2.6. The
desired set of metrics was equally simple: have each of the business’s environments
running Python 2.7, with a clear, succinct set of required libraries managed in a single
place. Table 4-1 shows an example where we’ve listed Smart DNA’s metrics.

Table 4-1. Chart to compare the metrics at the start of the project, the goal metrics, and their
observed value at project completion

Metric description Start Goal Observed
Environment 1 Python 2.6.5 Python 2.7.1 -

Environment 2 Python 2.6.1 Python 2.7.1 -

Environment 3 Python 2.6.5 Python 2.7.1 -

Environment 4 Python 2.6.6 Python 2.7.1 -

Environment 5 Python 2.6.6 Python 2.7.1 -

Number of distinct lists of dependencies 3 1 -

Defining Your End State | 73

Feel free to provide both an ideal end state and an acceptable end
state. Sometimes, getting 80 percent of the way there gives you 99
percent of the benefit of the refactor, and the additional amount of
work required to get to 100 percent simply isn’t worthwhile.

Mapping the Shortest Distance
Next, we want to map the most direct path between our start and end states. This
should give us a good lower-bound estimate on the amount of time required to exe‐
cute our project. Building on a minimal path ensures that your plan stays true to its
course as you introduce intermediate steps along the way.

On the Road
So, for our roadtrip, we do a quick search to see what the most direct route between
Montreal and Vancouver looks like (Figure 4-1). Presuming minimal traffic, it
appears to take 47 hours if we were to leave Montreal and drive nonstop westward.

Figure 4-1. The most direct route between our address in Montreal and the Yaletown
neighborhood in Vancouver

We can determine a more reasonable lower bound for our trip by deciding how many
hours we’re comfortable driving per day and splitting that up evenly over the approxi‐
mate 47 hours. If we want to commit to eight hours of driving, it’ll take us just about
six days.

Now that we’ve mapped the shortest possible path between the two points, we can
start to pick out any major complications or overarching strategies we want to
change. One peculiarity of the direct route is that the vast majority of it travels across
the United States, not Canada. If we want to restrict our drive to the area north of the
49th parallel, we’d be adding an extra hour or two to the trip. However, because it
does reduce the overall complexity of the trip (no need to carry our passport or worry
about time wasted at a border crossing), we’ll opt to stay in Canada (Figure 4-2).

74 | Chapter 4: Drafting a Plan

Figure 4-2. A slightly slower route restricted to Canadian roads

At Work
Unfortunately, Google Maps for software projects doesn’t exist quite yet. So how do
we determine the shortest path from now to project completion? We can do this in a
couple of ways:

• Open a blank document and for 15 to 20 minutes (or until you’ve run out of
ideas), write down every step you can come up with. Set the document aside for
at the very least a few hours (ideally a day or two), then open it up again and try
to order each step in chronological order. As you begin to order the steps, con‐
tinue to ask yourself whether each is absolutely required to reach the final goal. If
not, remove it. Once you have an ordered set of steps, reread the procedure. Fill
in any glaring gaps as they arise. Don’t worry if any steps are terribly ill-defined;
the goal is only to produce the minimum set of steps required to complete your
project. This won’t be the final product.

• Gather a few coworkers who are either interested in the project or you know will
be contributing. Set aside an hour or so. Grab a pack of sticky notes and a pen for
each of you. For 15 to 20 minutes (or until everyone’s pens are down), write
down every step you think is required, each on individual sticky notes. Then,
have a first person lay out their steps in chronological order. Subsequent team‐
mates go through each of their own sticky notes and either pair them up with
their duplicates or insert them into the appropriate spot within the timeline.
Once everyone’s organized all of their notes, go through each step and ask the
room whether they believe that the step is absolutely required in order to reach
the goal. If not, discard it. The final product should be a reasonable set of mini‐
mal steps. (You can easily adapt this method for distributed teams by combining
all individually brainstormed steps into a jointly shared document. Either way,
the final output of the exercise should be a written document that is easy to dis‐
tribute and collaboratively improve.)

If neither of these options works for you, that’s all right! Use whatever method you
find most effective. As long as you are able to produce a list of steps you believe

Mapping the Shortest Distance | 75

model a direct path to achieving your goal, no matter how ill-defined they might be,
you’ve successfully completed this critical step.

The team at Smart DNA gathered into a conference room for a few hours to brain‐
storm the steps required to get all services using a newer version of Python. On a
whiteboard, they started out by drawing a timeline. On the far left was their starting
point and, on the far right, their goal. Teammates alternated listing important steps
along the way, slotting them in along the line. A subset of the brainstormed steps are
as follows:

• Build a single list of all the packages across each of the repositories manually.
• Narrow the list to just the necessary packages.
• Identify which version each package should be upgraded to in Python 2.7.
• Build a Docker container with all the required packages.
• Test the Docker container on each of the environments.
• Locate tests for each repository; determine which tests are reliable.
• Merge all the repositories into a single repository.
• Choose a linter and corresponding configuration.
• Integrate the linter into continuous integration.
• Use the linter to identify problems in the code (undefined variables, syntax

errors, etc.).
• Fix problems the linter identified.
• Install Python 2.7.1 on all environments and test.
• Use Python 2.7 on a subset of low-risk scripts.
• Roll out Python 2.7 to all scripts.

We can see from our subset that some can be parallelized, or reordered, and others
should be broken down into further detail. At this point in the process, our focus is
on getting a rough sense of the steps involved; we’ll refine the process throughout the
chapter.

Identifying Strategic Intermediate Milestones
We’ll next use the procedure we derived to come up with an ordered list of intermedi‐
ate milestones. These milestones do not need to be of similar size or evenly dis‐
tributed, as long as they are achievable within a timescale that feels comfortable. We
should focus on finding milestones that are meaningful in and of themselves. That is,
either reaching the milestone is a win on its own, or it defines a step we could com‐
fortably stop at if necessary (or both). If you can identify milestones that are both

76 | Chapter 4: Drafting a Plan

meaningful and showcase the potential impact of your refactoring effort early, then
you’re doing great!

On the Road
For the stretch of the trip between Winnipeg and Vancouver, we ask some friends and
family for recommendations of sights to see and things to do. After weighing their
suggestions with our own interests, we come up with a rough itinerary, which
includes everything from camping to museum visits, tasty pitstops, and a few visits to
extended family (Figure 4-3). But at no point do any of these points of interest take us
radically off course.

Figure 4-3. Our rough itinerary

At Work
We can apply similar tactics to narrow in on our milestones for our refactoring effort.
For each of the steps we brainstormed previously, we can ask ourselves these
questions:

1. Does this step feel attainable in a reasonable period?
Let’s refer back to our previous example, outlined in “At Work” on page 72. A logical,
feasible milestone might be to combine each of the distinct repositories into a single
repository for convenience. The software team at Smart DNA anticipates that it’ll take
six weeks to merge the repositories properly, without disrupting the research team’s
development process. Because the software team is accustomed to shipping at a
quicker pace, and the members are concerned about morale if they set out to merge
the repositories too early in the migration, they decide on a simpler initial milestone:
generating a single requirements.txt file to encompass all package dependencies for
each of the repositories. By taking the time to reduce the set of dependencies early,
they are simplifying the development process for the research team, taking a substan‐
tial step toward enabling the merging of the repositories, and all of that well before
the migration to Python 2.7 is complete.

Identifying Strategic Intermediate Milestones | 77

2. Is this step valuable on its own?
When choosing major milestones, we should optimize for steps that demonstrate the
benefits of the refactor early and often. One way to do that is to focus on steps that,
upon completion, derive immediate value for other engineers. This should hopefully
increase the morale of both your team and other engineers affected by your changes.

When scoping out the Python migration, we noticed that none of the repositories
used any continuous integration to lint for common problems in the proposed code
changes. We know that linting the existing code could help us pinpoint problems we
risk encountering when executing it in Python 2.7. We also know that enabling a sim‐
ple, automatic linting step could promote better programming practices for the entire
research team for years to come. In fact, it seems so valuable that under different cir‐
cumstances, instituting an automatic linting step might have been a project all on its
own. This indicated to us that it was a meaningful, significant intermediate step.

3. If something comes up, could we stop at this step and pick it back up easily later?
In a perfect world, we wouldn’t have to account for shifts in business priorities, inci‐
dents, or reorganizations. Unfortunately, these are all a reality of working, regardless
of the industry. This is why the best plans account for the unexpected. One way of
accounting for disruptive changes is by dividing our project into distinct pieces that
can stand alone in the unlikely event that we need to pause development.

With our Python example, we could comfortably pause the project after fixing all
errors and warnings the linter highlighted, but before beginning to run a subset of
scripts by using the new version. Depending on how we tackled the refactor, pausing
halfway through could risk confusing the researchers actively working in the reposi‐
tory. If the refactor needed to be paused for whatever reason, pausing immediately
before we started running a subset of scripts using Python 2.7 would be safe; we
would still have made considerable progress toward our overall goal and have a clean,
easy place to pick things back up when we were next able to.

After taking the time to highlight strategic milestones, we reorganized our execution
plan to highlight these steps and grouped subtasks accordingly. The more refined
plan is as follows:

• Create a single requirements.txt file.
— Enumerate all packages used across each of the repositories.
— Audit all packages and narrow down the list to only required packages with

corresponding versions.
— Identify which version each package should be upgraded to in Python 2.7.

• Merge all the repositories into a single repository.
— Create a new repository.

78 | Chapter 4: Drafting a Plan

— For each repository, add to the new repository using git submodules.
• Build a Docker image with all the required packages.

— Test the Docker image on each of the environments.
• Enable linting through continuous integration for the mono repository

(monorepo).
— Choose a linter and corresponding configuration.
— Integrate the linter into a continuous integration.
— Use the linter to identify logical problems in the code (undefined variables,

syntax errors, etc.).
• Install and roll out Python 2.7.1 in all environments.

— Locate tests for each repository; determine which tests are reliable.
— Use Python 2.7 on a subset of low-risk scripts.
— Roll out Python 2.7 to all scripts.

Hopefully, after you’ve identified key milestones, you have a procedure that feels bal‐
anced, achievable, and rewarding. It’s important to note, however, that this isn’t a per‐
fect science. It can be quite difficult to weigh required steps against one another
according to the effort they involve and their relative impact. We’ll see an example of
how we decided to weigh each of these considerations when strategically planning a
large-scale refactor in both of our case study chapters, Chapters 10 and 11.

Repeatable Steps
One way that you can break up your refactoring project into meaningful milestones is
to choose single, logical portions of the code in which to apply it. This acts as a sort of
mini-refactor, where you can illustrate the overarching goal of the refactor on a
smaller scale. When taking this approach, you can either choose the part of the code‐
base that is in most urgent need of the refactor, or one for which your changes will
require relatively low effort but model the improvements well.

You can repeat this process, one piece at a time, throughout the target surface area.
This gives you the ability to focus on well-defined portions of the codebase one at a
time and coordinate with the teams that might be affected by your changes in
sequence. With each finished portion, you’ll have taken a solid step toward your goal,
all while leaving the overall codebase in limited flux. If your codebase is well-
sectioned, you minimize the chance that someone working in a single portion of it
will be subjected to a refactor in progress for a long period.

For example, the team at Smart DNA could split up the repository merging process
into a few individual, repeatable steps for each repository. First, merge the repository’s
requirements.txt file into the global requirements.txt file. Next, add the repository to

Identifying Strategic Intermediate Milestones | 79

the larger repository using git submodule. Finally, test that the scripts are runnable.
Simply repeat for all remaining repositories.

If it’s worthwhile, find a way to abstract out your change first.
Move all the logic that you want to improve behind some sort
of abstraction. This will further minimize the risk that other
developers will be subjected to multiple implementations (and
their details) at any given point. Once you’ve built the abstrac‐
tion, you can focus on doing the hard work of changing the
necessary logic.

Finally, once we have our end state and our key milestones, we want to interpolate
our way through the intermediate steps between our end state and each of our strate‐
gic intermediary milestones. This way, we maintain focus on the most critical pieces,
all while building out a detailed plan.

This is where we can spend some time figuring out whether certain portions of the
refactor are order-agnostic; that is, whether they can be completed at any point, with
very few or no prerequisites. For example, let’s say you’ve identified a few key mile‐
stones for your project; we’ll call them A, B, C, and D. You notice that you need to
complete A before tackling B or C, and B needs to be completed before you tackle D.
You have three options concerning C: you could parallelize development on C at the
same time as D, complete C and then D, or complete D followed by C.

If you have a hunch that B is going to be a difficult, lengthy milestone and D looks
just as challenging, you might want to break things up by putting milestone C
between B and D. This should help boost morale and add some pep to the team’s
momentum as you work through a long refactor. On the other hand, if you think that
you can comfortably parallelize work on milestone C and D, and wrap up the project
a little bit sooner, then that might be a worthwhile option as well.

It all comes down to balancing the time and effort associated with each requisite step,
all the while considering their impact on your codebase and the well-being of your
team.

Choosing a Rollout Strategy
Having a thoughtful rollout strategy for your refactoring effort can make the differ‐
ence between great success and utter failure. Therefore, it is absolutely critical to
include it as part of your execution plan. If your refactor involves multiple distinct
phases, each with its own rollout strategy, be certain to outline each of these among
the concluding steps of each phase. Although teams of all kinds use a great variety of

80 | Chapter 4: Drafting a Plan

deployment practices, in this section, we’ll only discuss rollout strategies specific to
teams that perform continuous deployment.

Typically, product engineering teams that employ continuous deployment will begin
development on a new feature, testing it both manually and in an automated fashion
throughout the process. When all the boxes have been checked, the feature is care‐
fully, incrementally rolled out to live users. Before the final rollout phase, many teams
will deploy the feature to an internal build of their product, giving themselves yet
another opportunity to weed out problems before kicking off deployment to users.
Measuring success in this case is easy; if the feature works as expected, great! If we
find any bugs, we devise a fix, and depending on the implications of that fix, either
repeat the incremental rollout process or push it out to all users immediately.

It’s common practice in continuous deployment environments to
use feature flags to hide, enable, or disable specific features or code
paths continually at runtime. Good feature flag solutions allow
development teams the flexibility to assign groups of users to spe‐
cific features (sometimes according to a number of different
attributes). If you work on a social media application, for instance,
you might want to release a feature to all users within a single geo‐
graphic area, a random 1 percent of users globally, or all users who
are over the age of 40.

With refactoring projects, while we most certainly want to test our changes early and
frequently, and very carefully roll it out to users, it’s quite a bit trickier to determine
whether everything is working as intended. After all, one of the key success metrics is
that no behavior has changed. It is much more difficult to ascertain a lack of change
than to discover even the smallest change. So, one of the easiest ways we can ascertain
that the refactor hasn’t introduced any new bugs is by programmatically comparing
pre-refactor behavior with post-refactor behavior.

Dark Mode/Light Mode
We can compare pre-refactor and post-refactor behavior by employing what we’ve
coined at Slack as the light/dark technique. Here’s how it works.

First, implement the refactored logic separately from the current logic. Example 4-1
depicts this step on a small scale.

Example 4-1. New and old implementations, perhaps in different files

// Linear search; this is the old implementation
function search(name, alphabeticalNames) {
 for(let i = 0; i < alphabeticalNames.length; i++) {
 if (alphabeticalNames[i] == name) return i;

Choosing a Rollout Strategy | 81

 }
 return -1;
}

// Binary search; this is the new implementation
function searchFaster(name, alphabeticalNames) {
 let startIndex = 0;
 let endIndex = alphabeticalNames.length - 1;

 while (startIndex <= endIndex) {
 let middleIndex = Math.floor((startIndex+endIndex)/2);
 if (alphabeticalNames[middleIndex] == name) return middleIndex;

 if (alphabeticalNames[middleIndex] > name) {
 endIndex = middleIndex - 1;
 } else if (alphabeticalNames[middleIndex] < name) {
 startIndex = middleIndex + 1;
 }
 }

 return -1;
}

Then, as shown in Example 4-2, relocate the logic from the current implementation
to a separate function.

Example 4-2. Old implementation moved to a separate function

// Existing function now calls into relocated implementation
function search(name, alphabeticalNames) {
 return searchOld(name, alphabeticalNames);
}

// Linear search logic moved to a new function.
function searchOld(name, alphabeticalNames) {
 for(let i = 0; i < alphabeticalNames.length; i++) {
 if (alphabeticalNames[i] == name) return i;
 }
 return -1;
}

// Binary search; this is the new implementation
function searchFaster(name, alphabeticalNames) {
 let startIndex = 0;
 let endIndex = alphabeticalNames.length - 1;

 while (startIndex <= endIndex) {
 let middleIndex = Math.floor((startIndex+endIndex)/2);
 if (alphabeticalNames[middleIndex] == name) return middleIndex;

 if (alphabeticalNames[middleIndex] > name) {

82 | Chapter 4: Drafting a Plan

 endIndex = middleIndex - 1;
 } else if (alphabeticalNames[middleIndex] < name) {
 startIndex = middleIndex + 1;
 }
 }

 return -1;
}

Then, transform the previous function into an abstraction, conditionally calling
either implementation. During dark mode, both implementations are called, the
results are compared, and the results from the old implementation are returned. Dur‐
ing light mode, both implementations are called, the results are compared, and the
results from the new implementation are returned. As can be seen in Example 4-3,
repurposing the existing function definition allows us to modify as little code as pos‐
sible. (Though not depicted in our example, to prevent performance degradations as
part of the light/dark process, both the old and new implementations should be exe‐
cuted concurrently.)

Example 4-3. Existing interface used as an abstraction for calling both new and old
implementations

// Existing function now an abstraction for calling into either implementation
function search(name, alphabeticalNames) {
 // If we're in dark mode, return the old result.
 if (darkMode) {
 const oldResult = searchOld(name, alphabeticalNames);
 const newResult = searchFaster(name, alphabeticalNames);

 compareAndLog(oldResult, newResult);

 return oldResult;
 }

 // If we're in light mode, return the new result.
 if (lightMode) {
 const oldResult = searchOld(name, alphabeticalNames);
 const newResult = searchFaster(name, alphabeticalNames);

 compareAndLog(oldResult, newResult);

 return newResult;
 }

 return search(name, alphabeticalNames);
}

// Linear search logic moved to a new function.
function searchOld(name, alphabeticalNames) {

Choosing a Rollout Strategy | 83

 for(let i = 0; i < alphabeticalNames.length; i++) {
 if (alphabeticalNames[i] == name) return i;
 }
 return -1;
}

// Binary search; this is the new implementation
function searchFaster(name, alphabeticalNames) {
 let startIndex = 0;
 let endIndex = alphabeticalNames.length - 1;

 while (startIndex <= endIndex) {
 let middleIndex = Math.floor((startIndex+endIndex)/2);
 if (alphabeticalNames[middleIndex] == name) return middleIndex;

 if (alphabeticalNames[middleIndex] > name) {
 endIndex = middleIndex - 1;
 } else if (alphabeticalNames[middleIndex] < name) {
 startIndex = middleIndex + 1;
 }
 }

 return -1;
}

function compareAndLog(oldResult, newResult) {
 if (oldResult != newResult) {
 console.log(`Diff found; old result: ${oldResult}, new result: ${newResult}`);
 }
}

Once the abstraction has been properly put in place, start enabling dark mode (i.e.,
dual code path execution, returning the results of the old code). Monitor any differ‐
ences being logged between the two result sets. Track down and fix any potential bugs
in the new implementation causing those discrepancies. Repeat this process until
you’ve properly handled all discrepancies, enabling dark mode to broader groups of
users.

Once all users have been opted in to dark mode, starting with the lowest-risk envi‐
ronments, begin enabling light mode to small subsets of users (i.e., start returning
data from the new code path). Continue logging any differences in the result sets; this
can be useful if other developers are actively working on related code and risk intro‐
ducing a change to the old implementation that is not reflected in the new implemen‐
tation. Continue to opt broader groups of users into light mode, until everyone is
successfully processing results from the new implementation.

Finally, disable execution of both code paths, continuing to monitor for any reported
bugs, and remove the abstraction, feature flags, and conditional execution logic and,
once the refactor has been live to users for an adequate period (whatever that might

84 | Chapter 4: Drafting a Plan

be for your use case), remove the old logic altogether. Only the new implementation
should remain where the old implementation once was. See Example 4-4 for an
example.

Example 4-4. New implementation inside the old function definition

// Binary search; this is the new implementation
function search(name, alphabeticalNames) {
 let startIndex = 0;
 let endIndex = alphabeticalNames.length - 1;

 while (startIndex <= endIndex) {
 let middleIndex = Math.floor((startIndex+endIndex)/2);
 if (alphabeticalNames[middleIndex] == name) return middleIndex;

 if (alphabeticalNames[middleIndex] > name) {
 endIndex = middleIndex - 1;
 } else if (alphabeticalNames[middleIndex] < name) {
 startIndex = middleIndex + 1;
 }
 }

 return -1;
}

As with any approach, there are some downsides to be mindful of. If the code you are
refactoring is performance-sensitive, and you’re operating in an environment that
does not enable true multi-threading (PHP, Python, or Node), then running two ver‐
sions of the same logic side by side might not be a great option. Say you’re refactoring
code that involves making one or more network requests; assuming those dependen‐
cies do not change with the refactor, you’ll be executing double the number of net‐
work requests, serially. You must weigh the ability to audit your changes at a high
fidelity against a corresponding increase in latency. One trade-off might be to run the
dual code paths and subsequent comparison at a sampled rate; if this path is hit very
frequently, running a comparison just 5 percent of the time might accumulate ample
data about whether your solution is working as expected without compromising too
heavily on performance.

We also have to be mindful of any additional load we’ll be subjecting to downstream
resources. This can include anything from a database, to a message queue, to the very
systems we are using to log differences across the codepaths we’re comparing. If we
are refactoring a high-traffic path, and we want to run the comparison often, we need
to be certain that we won’t accidentally overburden our underlying infrastructure. In
my experience, comparisons can unearth a swarm of unexpected differences (particu‐
larly when refactoring old, complex code). It’s safer to take a slow, incremental
approach to ramping up dual execution and comparison than to risk overloading

Choosing a Rollout Strategy | 85

your logging system. Set a small initial sample rate, address any high-frequency dif‐
ferences as they creep up, and repeat, increasing the sample rate step by step until you
reach either 100 percent or a stable state at which you are confident no more discrep‐
ancies should arise.

Smart DNA’s Rollout
With the refactor at Smart DNA, the greater risk was in migrating each of the reposi‐
tories’ many dependencies to versions compatible with Python 2.7, not with running
the existing code itself, using the newer Python version. The software team decided
that they would first perform a few preliminary tests, setting up a subset of the data
pipeline in an isolated environment, installing both versions of Python, and running
a few jobs, using the new dependency file in the 2.7 environment. When they were
confident with the results of their preliminary tests, they would slowly, carefully
introduce usage of the new set of dependencies in production.

To limit the risk involved, the team audited the jobs that make up the researchers’
data pipeline and grouped them according to their importance. Then the engineers
chose a low-risk job with the fewest downstream dependencies to migrate first. They
worked with the research team to identify a good time to swap the configuration to
point to the new requirements.txt file and new Python version. Once the change had
been made, the team planned to monitor logs generated by the job to catch any
strange behavior early. If any problems crept up, the configuration would be swapped
back to its original version while the software team worked on a fix. When the fix was
ready, the team would repeat the experiment. As part of their rollout plan, the team
required the configuration change to sit in production for a few days, allowing for the
job to run successfully on a dozen occasions before moving on to a second job.

After the second job was successfully migrated, the software team would opt-in all
low-risk jobs to the new configuration. They would then repeat the process for the
medium-risk jobs. Finally, for the most critical jobs, the team decided to migrate each
of these individually, due to their importance. Again, they would wait a few days
before repeating the process for the next job, and so on. In all, the team determined it
would take nearly two months to migrate the entire data pipeline to the new environ‐
ment. While this might sound like a grueling process, both the software and research
teams agreed that it was necessary to reduce the risk sufficiently. It gave everyone
adequate opportunity to weed out problems by small increments early, ensuring that
the pipeline remained as healthy as possible throughout the entire process.

86 | Chapter 4: Drafting a Plan

Cleaning Up Artifacts
In Chapter 1, I mentioned that you shouldn’t embark on a refactor unless you have
the time to execute to completion. No refactor is complete unless all remaining tran‐
sitional artifacts are properly cleaned up. Following is a short, not-exhaustive list of
the kinds of artifacts we generate during the refactoring process.

Feature flags
Most of us are guilty of leaving one or two feature flags behind. It’s not so bad to
forget to remove a flag for a few days (or even a few weeks), but a tangible risk is
associated with failing to clean these up. First, verifying whether a feature flag is
enabled adds complexity. Engineers reading code gated by a feature flag need to
consider the behavior if the flag is enabled or disabled. This is necessary over‐
head for feature development in a continuous deployment environment, but we
should prioritize removing it soon after we are able to do so. Second, stale feature
flags can pile up. A single flag won’t weigh down your application, but hundreds
of stale flags certainly might. Practice good feature flag etiquette; add authors and
expiration dates, and follow up with those engineers once those dates have
passed.

Abstractions
We can attempt to shield our refactor from other developers by building abstrac‐
tions to hide the transition. In fact, we might have written one to use the deploy‐
ment method outlined in “Dark Mode/Light Mode” on page 81. Once we’ve
finished refactoring, however, these abstractions are generally no longer mean‐
ingful and can further confuse developers. When our abstractions still contain
some meaningful logic, we should strive to simplify them so that engineers read‐
ing them in the future have no reason to suspect that they were written for the
purpose of smoothly refactoring something.

Dead code
When we’re refactoring something, particularly when we’re refactoring some‐
thing at large scale, we typically end up with a sizable amount of dead code fol‐
lowing rollout. Although dead code isn’t dangerous on its own, it can be
frustrating for engineers down the line trying to determine whether it is still
being used. Recall “Unused Code” on page 32, where we discussed the downsides
of keeping unused code in the codebase.

Comments
We leave a variety of comments when executing on a refactor. We warn other
developers of code in flux, maybe leave a handful of TODOs, or make note of
dead code to be removed once the refactor is finished. These comments should
be deleted so as not to mislead anyone. On the off chance that we come across

Cleaning Up Artifacts | 87

any stray, unfinished TODOs, we’ll be even more gratified that we took the time
to tidy up our work.

Unit tests
Depending on how we’re executing the refactor, we may have written duplicative
unit tests alongside existing ones to verify the correctness of our changes. We
need to clean up any newly superfluous tests so that we don’t confuse any devel‐
opers referencing them later. (Redundant unit tests also aren’t great if your team
wants to maintain a speedy unit testing suite.)

A few years ago, a teammate of mine ran an experiment to deter‐
mine how much time we were spending calculating feature flags.
For the average request to our backend systems, it amounted to
nearly 5 percent of execution time. Unfortunately, a great deal of
the feature flags we were spending time calculating had already
been enabled to all production workspaces and could have been
removed entirely. We built some tooling to urge developers to clean
up their expired flags and within just a few weeks had dramatically
reduced the time spent processing them. Feature flags really do
add up!

If there’s a common thread for why we should clean up each of the kinds of transi‐
tional artifacts we produce, it’s to minimize developer confusion and frustration.
Artifacts add additional complexity, and engineers encountering them risk wasting a
considerable amount of time understanding their purpose. We can save everyone
ample frustration by cleaning them up!

As you execute on your refactoring effort, choose a tag that your
team can use to label any artifacts you’ll need to clean up. It can be
something as simple as leaving an inline comment like TODO:
project-name, clean up post release. Whatever it is, make it
easy to search for so that once you’re in the final stages of the
project, you can quickly locate all the places that could use a final
polish.

Referencing Metrics in Your Plan
In Chapter 3, we discussed a wide variety of ways we could characterize the state of
the world before we began forming a plan of action. We talked about how these
metrics should make a compelling case in support of your project to your teammates
and management alike. At the start of this chapter, we also described the importance
of using these metrics to define an end state (see “Defining Your End State” on page
72). Now, we need to complement the intermediate steps we identified earlier (see

88 | Chapter 4: Drafting a Plan

“Identifying Strategic Intermediate Milestones” on page 76), with their own metrics.
These will be useful for you and your team to determine whether you’re making the
progress you expected to see, and course-correct early if your trajectory appears off.

Execution plans are also one of the first glimpses management (whether that’s your
team’s product manager, your skip-level, or your Chief Technology Officer [CTO])
will have of a project. For them to support the initiative, not only does your problem
statement need to be convincing with clear success criteria, your proposal also needs
to include definitive progress metrics. Showing that you have a strong direction
should ease any concerns they might have about giving the go-ahead on a lengthy
refactor.

Interpolating Goal Metrics to Intermediate Milestones
Recall Table 4-1, where we showed our starting metrics alongside our final goal met‐
rics. For each of our milestones, if the start and end metrics are applicable to our
intermediate stages, we can add an entry highlighting which metrics we expect to
change and by how much if our metrics lend themselves well to intermediate meas‐
urements during the refactor.

End-goal metrics that might lend themselves better to intermediate measurements
include complexity metrics, timings data, test coverage measurements, and lines of
code. Be warned, however, that your measurements might trend worse before they
trend better again! Consider the approach detailed in “Dark Mode/Light Mode” on
page 81, for instance; having two code paths, both of which do the same thing, will
definitely lead to a tangible uptick in complexity and lines of code.

Unfortunately, with our Python migration example, the language version remains the
same throughout most of the project. Only once the team has reached the stage of
rolling out the new version to each of the company’s environments can we start to see
our metrics change. To measure progress, we will need to come up with a different set
of metrics to track throughout development.

Distinct Milestone Metrics
As the previous section showed, not all end-goal metrics will lend themselves well to
showing intermediate progress. If that happens to be the case, we’ll still need at least
one helpful metric to indicate momentum. The metrics we choose might not directly
correlate to our final goal, but they’re important guideposts along the way.

There are a number of simple options. Say at Smart DNA we’ve set up continuous
integration and enabled the linter to warn of undefined variables. We can use the
number of warnings remaining as a metric to measure their progress within the scope
of that step. Table 4-2 shows each of the major milestones we brainstormed in “Iden‐
tifying Strategic Intermediate Milestones” on page 76 with their corresponding

Referencing Metrics in Your Plan | 89

metric. (Note that the starting value for the linting milestone is an approximation.
The team provided an estimate here by running pylint, with the default configura‐
tion running across the three repositories and summing up the number of warnings
generated.

Table 4-2. Chart of milestone metrics for Smart DNA’s Python migration

Milestone description Metric description Start Goal Observed
Create a single requirements.txt file Number of distinct lists of dependencies 3 1 -

Merge all the repositories into a single
repository

Number of distinct repositories 3 1 -

Build a Docker image with all the required
packages

Number of environments using new
Docker image

0 5 -

Enable linting through continuous integration
for the monorepo

Number of linter warnings approx.
15,000

0 -

Install and roll out Python 2.7.1 on all
environments

Number of jobs running on Python 2.7.1
with new requirements.txt file

0 158 -

Estimating
After taking the time to associate metrics with our most important milestones, I rec‐
ommend starting to make estimates. Our plan isn’t in its final stages quite yet, so our
estimates should not be terribly specific (e.g., on the order of weeks or months rather
than days) but, most importantly, should be generous.

Going back to our cross-Canada roadtrip, we’ve set some general guidelines for when
and where we want to stop for food and a good night’s sleep along our trip from
Montreal to Vancouver. The longest drive we plan to do is the stretch between
Regina, SK, and Calgary, AB; just under 800 km of highway for roughly a 7.5-hr
drive. By making sure that we’re never driving more than eight hours per day, we’re
giving ourselves plenty of time to pack up in the morning from our starting point and
decide how to distribute our day. What’s important is that we’ve given ourselves
enough time to enjoy the journey; we still intend to make some serious strides every
day, but not so serious that we’ll be burnt out by the time we reach Vancouver.

Most teams have their own guidelines and processes around deriving estimates, but if
you don’t have one already (or don’t quite know how to go about estimating a partic‐
ularly large software project), here’s a simple technique. Go through each of the mile‐
stones and assign a number from 1 to 10, where 1 denotes a relatively short task and
10 denotes a lengthy task. Estimate how long your lengthiest milestone might take.
Now imagine what is most likely to go wrong during that milestone and update your
estimate to account for it. (Don’t overdo it! It’s important to be reasonable with the
amount of buffer we add to our estimates; otherwise, leadership might ultimately
decide our refactor is not a worthwhile endeavor.) Now, measure each shorter

90 | Chapter 4: Drafting a Plan

milestone against this lengthier one. If you anticipate that your longest milestone will
take 10 weeks to complete, and your second-longest milestone should take almost as
much time, then maybe nine weeks is a good estimate. Keep going down the list until
you’ve given everything a rough estimate.

From a refactoring perspective, setting generous estimates is important for two main
reasons. First, it gives your team wiggle room for when you run into the inevitable
roadblock or two. The larger the software project, the greater the chance something
won’t go quite to plan, and refactoring is no exception to that rule. Building a reason‐
able buffer into your estimates will give your team a chance to hit important dead‐
lines while accounting for a few pesky bugs and incidents along the way.

Large-scale refactoring efforts tend to affect multiple teams, so there’s a reasonable
chance that your project might end up unexpectedly butting heads with another
team’s project. Setting generous estimates allows you to navigate those situations
more smoothly; you’ll be more level-headed going into negotiations with the other
team, knowing you have sufficient time to hit your next milestone. You’re more likely
to come up with creative solutions to the impasse. If your team needs to pause work
on the current milestone, maybe you can pivot quickly, shifting your focus to a differ‐
ent portion of the refactor, and come back to the current work later.

Second, these estimates will help you set expectations with stakeholders (product
managers, directors, CTOs) and teams that risk being affected by your refactor. We’ll
ask them for their perspective on our plan next, and if we’re careful to build ample
buffers into the estimates we provide, we’ll have some room to negotiate. The next
section deals more closely with how to best navigate these conversations.

Remember that you can give the overall project a greater estimate than the sum of
each of its parts. Unless your organization is stringent about how to estimate software
projects, no rule states that the anticipated project completion date should precisely
line up with the completion of its individual components.

Sharing Your Plan with Other Teams
Large refactoring projects typically affect a large number of engineering groups of all
disciplines. You can determine just how many (and which ones) by stepping through
your execution plan and identifying any teams you think might be most closely affec‐
ted by your refactor at each stage. Brainstorm with your team (or a small group of
trusted colleagues) to make sure you’ve covered a variety of disciplines and depart‐
ments. If your company is small enough, consider going through a list of all engineer‐
ing departments and for each group decide whether they might appreciate the
opportunity to provide input on your plan. Many companies put together technical
design committees, to which you can submit a project proposal to be critiqued by
engineers of different disciplines from across the company. Take advantage of these

Sharing Your Plan with Other Teams | 91

committees if you can; you’re likely to learn a great deal of useful information well
before your kick-off meeting.

There are two primary reasons for sharing your execution plan with other teams. The
first, and perhaps most important reason, is to provide transparency. The second is to
gather perspective on your plan to strengthen it further before seeking buy-in from
management.

Transparency
Transparency helps build trust across teams. If you’re upfront with other engineers at
the company, they’re more likely to be engaged and invested in your effort. It should
go without saying, but if your team drafts a plan and starts executing on a refactor
that affects a number of groups without warning, you risk dangerously eroding that
relationship.

You must be mindful of the fact that your proposed changes could drastically change
code that they own or affect important processes they maintain. With Smart DNA’s
Python migration, we’re combining three repositories into one. This is a significant
change for any developer or researcher working in any of these repositories. The
affected teams should be adequately forewarned that their development process is
going to change.

The refactor also risks affecting other teams’ productivity. For instance, if we’re pro‐
posing to combine all required packages into a single, global requirements.txt file, we
may need other teams’ help getting their changes reviewed and approved. We might
even inquire about borrowing engineers from other teams to help out with the refac‐
tor (see Chapter 6 for a more in-depth look at how to recruit teammates).

Similarly, you have to make sure that your plans align with affected teams. If you’re
planning to modify code owned by another team just as they are planning to kick off
development on a major feature (or perhaps their own hefty refactor), you will need
to coordinate to make sure you aren’t stepping on each other’s toes.

Perspective
The second reason to share your plan with other teams is to get their perspective.
You’ve done the research to define the problem and draft a comprehensive plan, but
are the teams that risk being affected by your proposed changes supportive of your
effort? If they do not believe that the benefits of your refactor outweigh the risks and
inconvenience to their team, you may need to reconsider your approach. Perhaps you
could convey the benefits in a more convincing manner, or find a way to reduce the
level of risk associated with the current plan. Work with the team to figure out what
would make them more comfortable with your plan. (You can use some of the techni‐
ques outlined in the next chapter to help out.)

92 | Chapter 4: Drafting a Plan

If you’re working to refactor a complex product, there are likely a number of edge
cases you haven’t considered. Just getting that second (and third and fourth) set of
eyes can make a huge difference. Let’s say that while auditing the packages used by the
research team at Smart DNA, we fail to notice that some researchers have been man‐
ually updating a requirements.txt file on one of the machines directly, rather than
making their changes in version history and deploying the new code. When we share
our plan with the researchers, they’ll point out that they typically update their depen‐
dencies on the machine itself and that the software team should verify the version
there rather than the one checking into their repository. That insight would have
saved our software team a great deal of pain and embarrassment had we started exe‐
cuting on the project without consulting the researchers first.

Remember that while it’s important to get stakeholders’ opinions about your plan
before kicking off execution, nothing is set in stone at this stage. Your plan will likely
change throughout the duration of the refactor; you’ll run into an unexpected edge
case or two, maybe spend more time than anticipated solving a pesky bug, or realize
part of your initial approach simply won’t work. At this stage, we are seeking out
other perspectives mostly as a means of ensuring transparency with others and weed‐
ing out the blatantly obvious problems early. We’ll discuss how to keep these stake‐
holders engaged and informed as our plan evolves in Chapter 7.

Avoid Scope Creep
While other teams’ ideas and outlooks are incredibly helpful in finalizing our execu‐
tion plan, we have to continue to focus on our ultimate goal so as not to introduce any
additional scope accidentally. There might be a handful of small, new steps we need to
add to our plan to handle an edge case or two properly that we hadn’t previously con‐
sidered; however, we should be careful to add only what is absolutely necessary to
ensure that we can reach our desired end state while maintaining our major
milestones.

Be cautious of conversations in which colleagues say something like, “While we’re at it
we could…” or “I’ve always wanted X to also handle…”. Unless you’re well-versed in
the art of saying “no,” you might end up agreeing to do more than you originally
anticipated. We all want our refactor to address as many pain points and please as
many engineers as possible. Unfortunately, going into a large refactoring effort with
that mindset almost guarantees that it won’t be sustainable; there’ll always be another
problem to address or engineer to appease. We should strive to plan and execute on a
refactor we are confident we can deliver on in a reasonable amount of time. It likely
won’t fix everything, but at the very least it’ll fix the right things.

Sharing Your Plan with Other Teams | 93

Refined Plan
At Smart DNA, the software team worked diligently to build a comprehensive execu‐
tion plan for its migration from Python 2.6 to 2.7. After stepping through each of the
steps we’ve outlined, defining a goal state, identifying important milestones, choosing
a rollout strategy, and so on, the team had a plan it was confident about, as follows:

• Create a single requirements.txt file.
— Metric: Number of distinct lists of dependencies; Start: 3; Goal: 1
— Estimate: 2–3 weeks
— Subtasks:

— Enumerate all packages used across each of the repositories.
— Audit all packages and narrow the list to only the required packages with

corresponding versions.
— Identify which version each package should be upgraded to in Python 2.7.

• Merge all the repositories into a single repository.
— Metric: Number of distinct repositories; Start: 3; Goal: 1
— Estimate: 2–3 weeks
— Subtasks:

— Create a new repository.
— For each repository, add to the new repository, using git submodules.

• Build a Docker image with all the required packages.
— Metric: Number of environments using new Docker image; Start: 0; Goal: 5
— Estimate: 1–2 weeks
— Subtasks:

— Test the Docker image on each of the environments.
• Enable linting through continuous integration for the monorepo.
• Metric: Number of linter warnings; Start: approx. 15,000; Goal: 0

— Estimate: 1–1.5 months
— Subtasks:

— Choose a linter and corresponding configuration.
— Integrate the linter into continuous integration.
— Use the linter to identify logical problems in the code (undefined vari‐

ables, syntax errors, etc.).
• Install and roll out Python 2.7.1 on all environments.

94 | Chapter 4: Drafting a Plan

— Metric: Number of jobs running on Python 2.7.1 with new requirements.txt
file; Start: 0; Goal: 158

— Estimate: 2–2.5 months
— Subtasks:

— Locate tests for each repository; determine which tests are reliable.
— Use Python 2.7 on a subset of low-risk scripts.
— Roll out Python 2.7 to all scripts.

If you use project management software (like Trello or JIRA) to
keep track of your team’s projects, I recommend creating some top-
level entries for the large milestones. While some of the nitty-gritty
details of the refactor might change throughout development, the
strategic milestones you defined in this chapter are less likely to
shift dramatically.
For the individual subtasks, you should consider creating entries
for the first one or two milestones you’re planning to undertake.
You can figure out smaller tasks your team needs to tackle at a
more regular cadence throughout the development process. Later
milestones are more likely to be affected by earlier work, and the
specifics of their individual subtasks risk changing. Create entries
for the subtasks of subsequent milestones only as you kick them
off.

We’ve done the preliminary work required to understand and comprehensively char‐
acterize the work involved with our large-scale refactor, and successfully crafted an
execution plan we’re confident will lead us to the finish line smoothly. Now, we need
to get the necessary buy-in from our manager (and other important stakeholders) to
support the refactor before we can confidently forge ahead.

Refined Plan | 95

CHAPTER 5

Getting Buy-In

By my junior year of high school, I decided I needed a cellphone. Not only did nearly
every one of my friends have one, they were no longer interested in having me use
theirs to call my parents every time I needed to inform them of my whereabouts.
With each text costing roughly 10 cents, and each call costing them precious minutes,
I was dishing out dimes and quarters to nearly a half-dozen friends for months. Car‐
rying a pocketful of change wherever I went, hoping I could borrow someone’s
phone, was no longer my cup of tea.

Because my parents weren’t proponents of their daughter having a cellphone, con‐
vincing them to get one was going to be an uphill battle. “Everyone else has one” was
not going to cut it. My parents would need to be presented with a strong set of
evidence-backed arguments. So, I put some together. I formulated an argument
around owning a cellphone for safety reasons. Having recently obtained my driver’s
license, I needed to be able to call someone in case of an emergency. I calculated a
rough estimate of the number of hours per week I spent driving to give the argument
a bit more weight. Next, I compared device and plan costs, comparing these to the
amount of money I’d distributed to friends over the last six months. I’d recently
started building websites to make a bit of money on the side and knew I could afford
to buy a basic flip phone and pay the monthly bill.

In response to my arguments, my parents said they didn’t think it was a necessity. I
could borrow my mother’s phone when leaving the house. After pointing out that I
was spending three to four hours per week driving both myself and my little brother
around, they decided that maybe it wasn’t a luxury after all. They were sufficiently
convinced that the convenience of having a cellphone outweighed its cost. I got a
hand-me-down flip phone with a number of my own a few days later.

Today, this experience serves me well when I have to convince others about the bene‐
fits of beginning a refactoring project. One of the complaints I hear most often from

97

fellow engineers is that they have a strong desire to refactor something but they sim‐
ply don’t know how to convince anyone to let them do it. They’ve spent the time
identifying the circumstances under which the problem arose, found evidence and
metrics to characterize the problem so that they might better understand it, and care‐
fully crafted a plan for how to solve it. They’re certain that the problem needs to be
solved and are ecstatic about their solution, but are met with skepticism when pre‐
senting their ideas to either their manager or tech lead.

This chapter will kick things off by explaining why your manager might not be on
board, and help you understand their perspective so that you can craft a compelling
argument. Next, we’ll cover a few different approaches you can take for garnering the
support of your management team, with some specific strategies you can use to get
them rallying behind you. Finally, we’ll look at some of the forms buy-in can take,
and how these can affect both your execution plan and the team you end up putting
together.

Why Your Manager Is Not Onboard
Your manager might be hesitant (or outright opposed) to a large refactor for a few
distinct reasons. First, they are typically well-removed from the code and unlikely to
understand its pain points intimately. Second, they are evaluated on their team’s abil‐
ity to ship effective product features on time. Third, the worst-case outcomes associ‐
ated with a large refactor are generally much more serious than the worst-case
outcomes associated with a new product feature. Finally, large-scale refactors typi‐
cally require much more coordination with stakeholders outside of your immediate
team.

Managers Aren’t Coding
Most engineering managers are rarely coding, and hardly partaking in code reviews.
In fact, someone hired directly into a management position at a new company might
never even see the code their team works on. Because your manager isn’t intimately
familiar with the problems you and your team are frequently encountering during
development, it shouldn’t be a surprise that they are skeptical of your proposal. Imag‐
ine trying to explain to a dinner guest why you want to replace all of the rickety door
knobs in your home; they might be able to understand the frustration logically, but
they don’t know the extent to which such door knobs are irritating on a daily basis.

Maybe your manager understands the difficulties your refactor aims to improve, but
they fail to see why these should be fixed now. After all, if these problems are not new,
the company must have been handling them (and is continuing to handle them) just
fine. Your manager is weighing the potential upside of building something new
against fixing a set of lingering problems.

98 | Chapter 5: Getting Buy-In

Managers Are Evaluated Differently
Managers tend to be evaluated on their team’s ability to hit deadlines and help achieve
business objectives. These tend to include things like building features that help
retain and acquire more users, or unlocking new revenue streams. Because managers
have these incentives, they’re more likely to prioritize work that has a high impact-to-
effort ratio—that is, work that is relatively low-effort but offers a high impact. Manag‐
ers are also more likely to set more aggressive deadlines in hopes of getting these
changes out to customers sooner.

These goals are sometimes at odds with those of the engineers on the team. Engineers
tend to seek out projects that solve interesting problems and often prioritize building
a more robust solution over one that’s quick to ship. (Not all engineers fit into this
mold, but in my experience, this sums up quite a few of them.) A large refactor, while
perhaps a meaningful, worthwhile endeavor by you and your teammates, is at the
bottom of your manager’s potential projects list. At-scale refactors are usually lengthy,
and because they are deliberately invisible to users, result in little to no immediate
positive impact to the business. If your manager is looking to move up the ladder (or
if they’re concerned about their upcoming review), they will probably be less than
eager to support your plan.

Even if your manager is convinced that the refactor is worthwhile,
they might be risking good standing by giving you the go-ahead.
Just as your manager is evaluated on your team’s ability to build
and deliver on time, their own manager is equally evaluated on the
impact that their organization can have on the business. It can be
difficult for your manager to convince their own manager that a
refactor is a valuable investment of engineering time and resources.

Managers See the Risk
There are a handful of ways feature development can go awry. Your team might run
into a handful of roadblocks and ship a bit later than initially anticipated, or maybe
the feature makes it into the hands of users, only to reveal an abundance of pesky
bugs. However, the likelihood of a catastrophic outage during the development of a
new feature is relatively low because new features tend to be relatively well-scoped,
with relatively well-defined boundaries.

The stakes are much greater when executing on a large-scale refactor. The team risks
introducing regressions across a large surface area, and the likelihood of a disastrous
outage is not nearly as negligible. When untangling old, crufty code, there’s a much
greater chance your team will unearth unexpected bugs; the risk of being pulled head
first into a rabbit hole in an attempt to fix them can significantly delay your deadlines.

Why Your Manager Is Not Onboard | 99

Each and every one of the risks we highlighted in Chapter 1 is alarmingly obvious to
your manager.

Managers Need to Coordinate
Most companies organize engineering teams around individual portions of their
product (or products). Say you work for a music streaming application called Rad‐
Tunes. RadTunes might have a team responsible for playlist creation, and another for
managing search. When a team sets out to build a new feature, it typically is operat‐
ing within an area of the codebase that it owns. It’d be surprising to see the Search
team build a new feature allowing users to create collaborative playlists; the more
obvious choice would be for the Playlist team to do so.

Now imagine that you are on the Playlist team and the team is struggling with the
song object model. You’ve come up with a plan for improving it, but it involves modi‐
fying code nearly every one of the teams at the company works with regularly. You
and your manager will need to coordinate with every one of these teams at the onset
to solicit support, and continue to coordinate throughout the refactor to make sure
everyone is properly aligned. When you pitch your refactor to your manager, they are
seeing the colossal amount of work required to keep everyone organized for the com‐
plete duration of the project. It’s only normal that they might be hesitant to support it.

What Buy-In Can Look Like
Before we jump into strategies for persuading your manager, we have to understand
what buy-in looks like in practice. Buy-in happens on a spectrum. Management can
either buy in completely, not at all, or anything between. Most of the time, it ends up
somewhere in the middle. The decision to move forward with a large-scale refactor
often comes down to two questions:

Is this the right time for the refactor?
Large-scale refactors can be an expensive investment in terms of development
time. Because they can be quite costly (and we want to be certain to budget
enough time to see the project to completion), we need to be confident that we’re
kicking it off at the right time for the company. This means taking into consider‐
ation when any ongoing projects are set to complete, and which projects the
company (your team specifically) was aiming to ship during upcoming quarters.

Before pitching the project to your manager, figure out when you believe the
team should begin work on the refactor and precisely why that is an optimal
time. For instance, is it the right time to fund this project because the problems
the refactor aims to solve haven’t yet reached a critical point, giving your team
ample time to implement an ideal solution? Or perhaps it’s the right time because
executing on the refactor now could significantly help the team in its upcoming

100 | Chapter 5: Getting Buy-In

projects. Each of these considerations will be helpful context for your manager
when seeking their support.

How many resources (most often in terms of engineers) should be allocated to it?
Refactoring can also be an expensive investment in terms of resourcing. Depend‐
ing on the level of buy-in you’re able to secure from your manager, you may or
may not be able to build the ideal team, which we’ll take a longer look at in Chap‐
ter 6. Note that resourcing can be directly affected by the time at which you
anticipate starting the refactor and vice versa.

This chapter assumes your manager is a no-go on all aspects of the refactor.
However, if your manager is partially bought-in and you are seeking more sup‐
port, you can use any of the techniques described to nudge your manager in the
right direction.

Strategies for Making a Compelling Argument
Now that we understand why our manager might not be onboard, we can focus on a
few helpful strategies for assuaging their fears and constructing a robust case to con‐
vince them that the refactor is worthwhile. This section assumes you’ve already had
an initial investigatory conversation with your manager about your project. If you
haven’t had that conversation yet, “Initial Conversation” on page 101 is a good start‐
ing point. This conversation is important for two reasons. First, it helps you under‐
stand which factors are weighing most heavily on your manager. Second, it gives you
a sense of whether your manager might be more readily convinced by an emotional
or logical argument. This conversation will give you the preliminary context you need
to choose the most effective strategies to convince your manager.

Initial Conversation
Instead of steamrolling your manager with all of the information you’ve gathered to
date, consider asking them for their opinion first. It can be as simple as kicking off a
conversation during your one-on-one with, “I’ve been thinking about how X is affect‐
ing our ability to do Y and I wanted to know whether you had any thoughts about it.”
By soliciting their opinion, you’re indicating to your manager that you value their
point of view. You’re giving them an important opportunity to be honest with you.

If your manager is familiar with the problem, you can use the conversation to discern
early whether they would be supportive of a refactor. If your manager sounds hesitant
to pursue a refactor, use what you learned about their perspective as a manager to try
pinpointing what they are most concerned about.

Strategies for Making a Compelling Argument | 101

If your manager is unfamiliar with the problem, give them a basic, unbiased overview.
A good manager will seek to understand why you’re concerned and ask the questions
they need answered to characterize the problem properly for themselves.

Taking the time to listen during this conversation is absolutely critical. Too many of
us spend our time thinking about what we want to say next rather than making the
genuine effort to process what someone is saying. Take notes during your conversa‐
tion. These can either be mental or written; simply choose the medium that works
best for you. (I tend to forget in-person conversations quite quickly, so it’s important
that I write everything down.)

Consider asking a question instead of offering a counterpoint. For example, instead of
saying, “That won’t work because of X,” consider asking, “Have you thought about
X?” or, “What’s your plan for X?” This continues to show your manager that you care
more about their perspective and gives them a welcome opportunity to respond
rather than showing them that you care about being right.

I recommend having this conversation either in person or via
video conferencing instead of over email or in chat. Your man‐
ager’s facial expressions and overall tone when attempting to
assess their attitude about a potential refactor are really
important.

Once you’ve had that initial conversation with your manager, you can zero in on the
persuasion techniques you might want to use. We’ll outline four simple, distinct tech‐
niques here, but know that this is not an exhaustive list. Different strategies will work
best with different managers, depending on what motivates them the most (e.g., their
growth trajectory at the company), or the degree to which they are opposed to the
refactor (e.g., they are generally in agreement that the problem exists but are uncon‐
vinced it should be fixed imminently). Ultimately, the most effective way to nudge
your manager into giving the go-ahead is to use a combination of techniques: opting
for those you believe will have the most impact and are most comfortable using. If
you are confident and well-prepared, you might just get the “yes” you’ve been
seeking.

Using Conversational Devices
Some of our colleagues can walk into a meeting full of stubborn engineers and within
a half hour have everyone persuaded of their opinion. Unfortunately, I am not one of
those people. If this isn’t you either, not to worry! There are a few easy (and honest)
conversational tricks we can use to express ourselves in a more convincing manner.

102 | Chapter 5: Getting Buy-In

Compliment their thought process
Very few of us are immune to flattery, your manager included. If at any point during
your conversation, you and your manager agree on something, highlight it with a
compliment. For example, you and your manager agree that the refactor would be
beneficial, but your manager would prefer reevaluating in six months. You can shift
the focus back to the benefits of the refactor by saying, “You’ve made some really
great points about the potential benefits of a refactor. It’s pretty clear you have a
nuanced understanding of the problems we’ve been experiencing.” Your manager will
be reminded of the benefits they identified and inclined to weigh them more heavily
against the potential downsides.

Present the counter-argument
Not only should you be prepared for any counter-arguments from your manager, you
might even consider bringing up the counter-arguments for them. It may sound a bit
odd, but a number of psychological studies have shown that two-sided arguments are
more convincing than one-sided arguments. There are a few benefits to presenting
counter-arguments directly:

• By demonstrating to your manager that you’ve seriously considered the down‐
sides of a large-scale refactor, you’re further demonstrating your thoughtfulness
and thoroughness around the effort.

• You’re reaffirming your manager’s concerns; while you might not be outright
complimenting them on their ability to reason about the drawbacks of a large-
scale refactor, you are confirming that their apprehension is legitimate. Your
manager will be more open to hearing about your ideas if they feel that their own
ideas are well understood.

Now the trick to using counter-arguments in your favor is to refute them carefully.
Let’s refer back to our RadTunes example, “Managers Need to Coordinate” on page
100. Your manager is planning for the Playlist team to spend most of the upcoming
quarter building collaborative playlists. You’re proposing for the team to spend cru‐
cial time rewriting the application’s representation of a song before kicking off devel‐
opment on a new feature.

You could tell your manager, “If we began refactoring songs next quarter, we’d have to
put off work on collaborative playlists for a few months. That would certainly be dis‐
appointing to our customers who have been requesting this feature for the past few
years.” You can immediately address the issue by following up with a rebuttal: “How‐
ever, I’m confident that if we rewrite our songs implementation, we’ll be able to shave
several weeks off of collaborative playlist development and unblock the Search team
on surfacing better results by genre.”

Strategies for Making a Compelling Argument | 103

You can even introduce a counter-argument your manager hasn’t brought up yet or
one you doubt they’ll bring up at all. This sounds counter-productive, but it will
boost your trustworthiness and strengthen your stance, assuming you successfully
knock down the counter-argument.

While this is not a book you’d typically find on a programmer’s
shelf, I highly recommend grabbing a copy of Dale Carnegie’s How
to Win Friends and Influence People. It was published over 80 years
ago, but most of its lessons continue to hold true today. The skills it
teaches will be helpful to you not only when trying to secure buy-in
for your projects, but in all aspects of your life!

Building an Alignment Sandwich
If you are uninterested in playing office politics to your advantage, that’s perfectly all
right, and you are welcome to skip ahead to “Metrics” on page 123. On the other
hand, if you are interested in leveraging the organizational landscape to your benefit,
there are a number of levers you can pull to effectively compel your manager into giv‐
ing the go-ahead on a large-scale refactor. You can build an alignment sandwich,
securing the support of your teammates along with the support of upper manage‐
ment, sandwiching your manager between the two.

This approach only works if you have ample support from both sides of the sandwich.
If your manager only feels pressure from your team, then they’ll still be on solid foot‐
ing to turn down the refactor, knowing there’ll be little flak (if any) from their superi‐
ors. If your manager only feels pressure from above, and your team is not vocally
supportive (or worse, your team is vocally opposed), they’re unlikely to move forward
with the project knowing they risk harming team morale.

Be mindful that this strategy can backfire. Given your previous conversation, your
manager is aware that you’re interested in pursuing this refactor. If they are
approached by upper management or other influential individuals at your company
about moving forward with the refactor, there’s a chance they’ll put two and two
together and deduce that you’ve been seeking external influence. If you have a ten‐
uous relationship with your manager, this could lead to some backlash. Regardless of
the strength of your relationship with your manager, try being upfront with them
about having sought out external opinions; then, instead of having these allies reach
out to your manager directly, consider setting up a meeting with the three of you to
discuss your perspectives.

104 | Chapter 5: Getting Buy-In

Rallying your teammates
Before reaching out to upper management about your refactor, you should take the
time get your teammates on the same page. Chances are, you’ve probably discussed
aspects of the refactor with some of your teammates throughout prior investigatory
stages (collecting metrics to characterize the problem, drafting an execution plan) to
gather their feedback. For the teammates who haven’t yet gotten a glimpse of your
thought process, take some time to fill them in. This doesn’t have to be anything for‐
mal; shoot them a message or ask to grab a coffee.

Your ultimate goal is to get them to vouch for the refactor either in a public setting
where your manager is present (in a meeting, in a public chat, in an email), or in their
own one on one with your manager. You may want to coordinate with your team‐
mates so that not all of them bring it up in their one-on-ones the same week; the trick
is to make everyone’s interest appear organic, not prepared. Once you’ve secured suf‐
ficient backing from your teammates, you’ll have built up the bottom slice of your
sandwich.

Skip-level
If your manager isn’t interested in pursuing a large-scale refactor, perhaps your man‐
ager’s manager (referred to as skip-level) will be. Upper-level management tends to
have an expansive view of the organization’s objectives as well as its current and
future projects. Given this broader perspective, your skip-level might be more sympa‐
thetic than your manager to a refactor spanning a large surface area because they are
better able to visualize the scope of its benefits.

Some companies have strict hierarchies where going directly to
your skip-level is seen as a huge faux-pas. Be mindful of how a con‐
versation with your manager’s manager might be perceived before
booking time with them. At the very least, be careful not to put
down your manager during your meeting; focus on building inter‐
est and alignment in your refactor instead.

If you have a preexisting relationship with your skip-level, and you have reason to
believe that they would be supportive of your effort, schedule a meeting with them.
Your initial conversation should be similar to the one you had with your manager
(see “Initial Conversation” on page 101). This exchange should help you discern
whether your skip-level is likely to advocate for your proposed refactor. If you deter‐
mine that they aren’t a strong supporter, then you’ll want to seek the support of other
influential individuals at your company to act as the top slice of bread in your align‐
ment sandwich. If they appear supportive, however, schedule a second meeting. You
can discuss the details of your execution plan, align on the resources you’ll need, and
determine how they can help you get the approval of your manager.

Strategies for Making a Compelling Argument | 105

Having a strong relationship with your skip-level can be quite ben‐
eficial regardless of refactoring aspirations. In fact, I highly recom‐
mend holding quarterly (or even monthly) one-on-ones with your
skip-level if at all possible. Upper management can be a valuable
resource if you’re looking to expand your reach as an engineer; if
you need to grow your skills by leading an effective project in your
part of the organization, they’ll be able to identify the right project
for you. If you’re seeking mentorship, they can connect you with
other senior engineers at the company. Having an established rela‐
tionship with your skip-level can also help you navigate difficulties
in your relationship with your direct manager, if they ever arise.

Departments
Within every company, there are typically a handful of departments that have consid‐
erable authority over the business. When their input is required, their decision is the
final say, whether that’s a decision on how a new feature should be designed, a new
process should operate, or a bug should be resolved. In many industries (the financial
services industry, healthcare, human resources), this is the legal and compliance
department. If you’ve been at your current company for several months, you likely
have an inkling of which department that might be. If you’re not quite certain, ask
your peers; they might have a story or two about the security department’s involve‐
ment with an incident or the sales team’s input on a new feature.

In some cases (not all), these departments might have a vested interest in your refac‐
tor. Take, for instance, the compliance team at Smart DNA, our biotechnology com‐
pany from “At Work” on page 72. Above all else, the team is responsible for ensuring
that the sequenced DNA of its customers remains safe at all times. Having most of the
company’s systems using an outdated version of Python would likely be an area of
concern for them, given that security patches can no longer be applied. If the research
team at Smart DNA had not been in support of updating their Python dependencies,
the software team could have reached out to the company’s compliance team and
enumerated the many ways running an unsupported version of Python is a vulnera‐
bility. The compliance team would then put pressure on the necessary engineering
managers to prioritize the migration, giving the software team its top slice of bread
for a completed sandwich.

Tapping into influential engineers
Every company has a handful (or two) of highly influential engineers; these engineers
are a combination of extremely senior members of your technical staff (think princi‐
pal and distinguished engineers), have been at the company for a significant length of
time, or, in some cases, both. Many of them, if not most, are still knee-deep in the
code. If they’re familiar with the surface area you want to improve, not only will they
immediately understand the problems your refactor addresses, but they’ll also have

106 | Chapter 5: Getting Buy-In

valuable insights to contribute to your plan to date. Securing their support can be
crucial in legitimizing your effort to your manager. At some companies, there is no
greater stamp of approval than that of a senior engineer. If you can garner their
thumbs-up, your alignment sandwich will have a sturdy top slice.

If you can rally the support of multiple upper-level influences (your skip-level, critical
business departments, highly influential engineers), that’s even better! Your alignment
sandwich doesn’t need to be perfectly balanced; leaning a little bit top-heavy only
makes the approach more powerful.

Rewarding Refactoring
If you have healthy relationships with management (middle management and upper
management alike), and you want to ensure that refactoring and other software main‐
tenance work is prioritized at your company, you can leverage these relationships to
build systems that reward it. At an individual contributor level, no engineer should be
told that refactoring is equivalent to career suicide; instead, work with engineering
promotion committees and human resources to include (and encourage) code main‐
tenance. At a managerial level, no manager, regardless of their position in the hierar‐
chy, should elicit a culture of generating tech debt. Some companies have had success
reducing tech debt by requiring managers to include maintenance efforts in their
quarterly planning, even going so far as highlighting code quality and upkeep on their
management career ladders. After all, management is not just about making sure
your team is efficient, happy, and shipping quality features on time; it’s also about
doing the unglamorous work of maintaining and improving existing code, so that it
continues to scale to accommodate changing circumstances.

Relying on Evidence
If your manager is partial to logical arguments, then you should use the evidence you
gathered in Chapter 3 to bolster your position. Set up some time with your manager
to continue your initial conversation. Tell them that you’ve given the refactor more
thought, and that you’ve spent time characterizing the problem so they might better
appreciate its value (and, hopefully, its urgency).

Ahead of your meeting, prepare your evidence. If you’ve gathered an abundance of
evidence, focus on the two or three most startling pieces. Some metrics are better
communicated in visual form, so consider putting together a graph or two to better
illustrate the points you want to emphasize. Taking the time to synthesize this infor‐
mation into a medium that’s easy for your manager to consume is beneficial for a few
reasons. First, it’ll give you a comprehensive document you can circulate to other
interested individuals at the company. This can be useful when garnering support
cross-functionally or recruiting teammates, which we’ll cover in Chapter 6. Second,

Strategies for Making a Compelling Argument | 107

you’ll have something you can reference during your meeting. For those of us who
aren’t confident in their ability to persuade others, having a clear set of topic points
you can reference throughout your discussion can make all the difference.

For engineers who are a bit more timid and haven’t yet built the
social capital necessary to lean on influential colleagues or play
hardball with their manager, I recommend relying heavily on the
metrics argument. Facts are easy to prepare, easy to memorize, and
usually difficult to refute.

Playing Hardball
If you are exceedingly confident that your refactor is critical to the business and your
manager is unwilling to budge, there are a few more severe options you can consider.
Presenting these severe options is often referred to as playing hardball. A word of
caution: either of these approaches can seriously jeopardize your relationship with
your manager and fellow colleagues. When successful, however, they can be really
effective, and, if your refactor proves successful (which it most definitely will be,
given you are reading this book), can catapult your career forward.

It’s important to note that not everyone is in a strong enough position (either in their
role at their current company or financially) to play hardball with their manager, and
that’s okay! You need to have built up quite a bit of clout and established a long his‐
tory of good performance in your current role to be able to pull this off.

One final note before we dive in: with both of these tactics, you must be willing to
follow through. If your manager calls your bluff and remains unconvinced, not only
does it risk eroding your relationship, it diminishes your ability to take a similar
approach successfully when another important project comes along.

Stop doing unrewarded maintenance work
When there is a serious need to refactor something at a large scale, it usually indicates
that there is an amount of nontrivial work going on behind the scenes to keep things
operational. Management is typically unaware of this work, or, if they are, they do not
recognize its importance. If you are actively, regularly finding ways to mitigate the
problem your refactor aims to solve, you can warn your manager that you no longer
plan to do this work. The idea is to stop doing any invisible work that is preventing
management at your company from seeing the problem your refactor aims to solve.

Take our Python migration at SmartDNA, for instance. Before Python 2.7 was rolled
out to all environments, whenever a security patch was was made available, your team
needed to spend valuable time porting the patch to the outdated Python 2.6 systems.
Because security patches cannot be anticipated, any time a new vulnerability was dis‐
covered, your team had to pause all feature work and divert its energy to porting the

108 | Chapter 5: Getting Buy-In

patch. This kind of maintenance work was extremely time-consuming and high-risk,
but necessary under the circumstances. Unfortunately, management was unwilling to
recognize this operational cost of running outdated software.

In this scenario, you could put pressure on your manager to prioritize the Python
upgrade by suggesting that the team would no longer port any new security patches
as they become available. Tell your manager that you are trying to set appropriate
boundaries for the team; given that your team is primarily focused on feature devel‐
opment, you can assert that supporting legacy software run by the research team is
not strictly a responsibility. If during your quarterly or yearly planning process, your
manager does not properly account for the work involved with porting a new patch
on a regular basis, make a point to highlight that.

Yes, you are drawing a hard line. You might even feel guilty for no longer doing
important maintenance work (which most developers believe is a critical part of their
job). That’s completely normal. I’ve made this argument before and worried about
being irresponsible, letting the company down. What I came to realize was that by
holding my ground, I was doing just the opposite; I was showing the business where
it had an important blindspot, and the significance of that blindspot. By redefining
expectations with your manager, you are shedding light on the pervasiveness of the
work involved to keep your systems operational without a substantial refactor.

Giving an ultimatum
If all else fails, you can suggest to your manager that if they continue to oppose the
refactor, you’ll either transfer to another team or outright quit the company. If you
want to stay at the same company and are able to switch teams, identify a team you
are interested in joining before bringing it up with your manager; better yet, try to
find a manager who is supportive of the refactor elsewhere at the company and is
interested in having you join their team. If switching teams isn’t on the table, you
might threaten to quit. You should thoughtfully consider this decision, and seriously
examine whether you have the necessary financial stability to do so before speaking
to your manager.

This is not an easy conversation to have with your manager. First, bring up that you’re
concerned that the company isn’t taking the problems you’ve identified more seri‐
ously. If your manager is eager to keep you on their team, they might reassess and
allow the refactor to move forward.

Buy-In Shapes the Refactor
Even though securing buy-in happens well before a single line of code is written, it
can be one of the most difficult aspects of refactoring at scale. Managers can be
apprehensive to kicking off a lengthy, engineering-focused endeavor with good rea‐
son; they have their own sets of constraints and incentives within an engineering

Buy-In Shapes the Refactor | 109

organization. That said, each of us has the ability to learn and master techniques to
convince them that the effort is worthwhile despite any misgivings. We can discover
how to lean effectively on our teammates and colleagues in the broader organization
to give us the additional support we need.

After the dust has settled, depending on the degree of buy-in you’ve obtained, you
may or may not be able to execute on your refactor. If your manager remains skepti‐
cal, consider shelving the project for now. You can continue to accrue supporting evi‐
dence, waiting for a more opportune moment to reintroduce the subject. For
instance, if your company suffers from an incident caused by a problem your refactor
seeks to solve, this might be a good time to revive the conversation with your man‐
ager. The next time your team enters its long-term planning phase, consider propos‐
ing the refactor once more. Keep a watchful eye and an ear to the ground for any
opportunities to shed new light on your refactor.

If you’ve acquired buy-in, whether that’s an enthusiastic yes or a lukewarm nod, you’ll
need to leverage that support to garner resources for your project. You’ll need to
determine which engineers are required to give the refactor its greatest chance of suc‐
cess, and at which stages their expertise will be needed. We’ll discuss everything you
need to know to make these decisions in Chapter 6.

110 | Chapter 5: Getting Buy-In

CHAPTER 6

Building the Right Team

Ocean’s 11 is one of those heist films that shows up on everyone’s list of favorites. It
starts off with Danny Ocean getting released from prison. He meets up with his part‐
ner in crime and friend Rusty Ryan to propose a heist. The plan is to steal
$150,000,000 from three Las Vegas casinos: the Bellagio, the Mirage, and the MGM
Grand. The two thieves know they can’t pull off the heist alone, so they start gather‐
ing a crew of criminals, including a former casino owner, a pickpocket, a con man, an
electronics and surveillance expert, an explosives professional, and an acrobat.

The team splits up into two groups: the first group gets to know the ins and outs of
the Bellagio, learning the routines of the staff and gathering details on how the casino
operates; the second group builds a replica of the casino vault to practice maneuver‐
ing past its challenging security system. Within a few days, the group hatches a plan.
High jinks ensue, hurdles are dodged, and (spoiler alert!) the team eventually escapes
with the cash.

Ocean and Ryan could never have robbed the Bellagio alone. Not only would they
have needed months to gather the financial resources required to prepare for the
heist, it’s unlikely that they could have concocted a reasonable plan to bypass the casi‐
no’s defensive measures by only the two of them. By assembling a team just the right
size with just the right skills, they cut down on their execution time and increased
their chances of success.

To execute on a large refactoring effort successfully, we need our own Ocean’s 11.
Danny spent months iterating on his heist while locked up in New Jersey; from his
blueprint, he derived a list of skills and expertise he needed, along with the names of
potential candidates with these abilities. In this chapter, we’ll learn how to assemble
different kinds of teams, depending on the kind of expertise we require to execute on
our refactoring effort most effectively. As technical leads, we’ll learn how to narrow
our list of potential teammates and convince them to join us on our journey. Finally,

111

we’ll discuss how to make the best of an unfortunate situation: needing to execute on
the project alone.

Identifying Different Kinds of Experts
In Chapter 4, we learned how to draft an effective plan of action. We learned how to
capture and synthesize the important complexity of our refactoring effort in a few
concise, top-level milestones with a handful of critical subtasks.

Because most of us work on a team with a few other engineers, there’s a strong likeli‐
hood that our plan was derived cooperatively and we intend to execute it as a team.
When executing a large-scale refactor, however, we almost always need some help
from colleagues on different teams across the company. On the other hand, there are
times when we scope out and plan a refactoring effort either alone or with just one or
two other engineers. In either case, we can use our plan to figure out precisely which
engineers we’ll need and when.

We can start by rereading our plan. As we go through each step, we try to visualize
the code we’ll need to interact with. Can we conjure it up easily? Can we confidently
identify the changes we need to make and reason through the potential impact or
downstream effects of those changes? Do we understand the pitfalls we might run
into in the given area of the codebase? Do we understand the potential product impli‐
cations of the changes we want to make? Are we deeply familiar with the technologies
we’ll either be directly or indirectly interfacing with? If so, great! We’re probably in a
good position to make those changes ourselves. If not, then we’ll need someone else’s
help. We can enlist someone for help in one of two ways, either as an active contribu‐
tor or as a subject matter expert.

An active contributor is heavily involved with the project, ideally from day one. They
are actively contributing to the effort by writing code alongside you. Active contribu‐
tors should be consulted for input on the execution plan early and through each of its
revisions.

Subject matter experts, or SMEs for short, are not active contributors to your effort.
They’ve agreed to be available to talk through solutions with you, answer questions,
and maybe do some code review. While their contributions can be very meaningful,
their time commitment to the project is minimal. Their primary focus remains on
other projects distinct from yours.

Let’s make this a bit more concrete by working through an example project. Your
company’s monitoring and observability team is migrating from one metrics-
collection system to another (maybe StatsD to Prometheus). They’ve built up the
infrastructure, provisioned some nodes, and are now ready to start accepting traffic
from your application. The team needs one or two developers who are intimately
familiar with how the application uses StatsD to help with the transition. Being one of

112 | Chapter 6: Building the Right Team

those people, you’ve decided to lend a hand by writing a new internal library to inter‐
face with the new solution and ultimately replace the current library. You’ll need to
ensure that the Prometheus library offers feature parity with the current one and a
clean, intuitive API. Your final task will be to establish best practices for using the
new library and encourage its adoption across the engineering organization.

You don’t need to have intimate knowledge of how the new metrics-collection system
works to do your job proficiently. You can lean on the monitoring team when needed
and it can lean back on you if it notices something odd about the integration process
with your application. In this example, you’re an active contributor collaborating with
the monitoring team.

While auditing uses of the StatsD library, you notice that another product develop‐
ment team is using it in a way that is distinct from most other teams. You want to
understand why the team is using the library in this way, and whether this behavior
absolutely needs to be replicated in the new system. If this behavior is necessary, you
have to make sure that Prometheus can accommodate it. You reach out to a few folks
on the team to see whether they might have time to answer your questions. One team
member, let’s call them Frankie, eagerly agrees to meet with you. After a quick chat,
you come to the conclusion that the behavior should be supported in the new Prome‐
theus library, and Frankie’s agreed to review your code as you build out the function‐
ality. Frankie, in this scenario, is a SME.

You might need a number of types of expertise to execute your refactoring effort suc‐
cessfully. With our metrics-collection example, we needed the monitoring team’s
technology expertise with StatsD and Prometheus, Frankie’s product expertise with a
specific set of use cases, and our own expertise with how the codebase uses the
metrics-gathering libraries at large. We might even want to consult with someone
from the security team to confirm that no sensitive customer data ends up flowing
through the new system (and if it does, we have measures in place to contain it
swiftly).

When enumerating each of the kinds of expertise you’ll likely need, keep an eye out
for a range. Refactoring at scale typically affects a large surface area, so it shouldn’t be
surprising if you end up with a lengthy list. Don’t worry, we’ll learn just how to nar‐
row that list down next.

Matchmaking
We’ve now successfully drafted a list of types of expertise we want available to us
while we execute our refactoring effort; for our metrics-collection refactor, we need a
technology expert, a product expert, and, finally, a security expert. Alongside each of
the kinds of expertise, we denote the major project milestone at which point that
expertise will be needed; if the expertise is needed throughout multiple milestones,

Matchmaking | 113

simply note the earliest milestone when that help will be needed. Our final step before
beginning to brainstorm potential experts is to label whether we think we’ll need an
SME or an active contributor for each expertise. We can pencil this in for now,
because the role we anticipate the expert to have might change as we meet with
potential candidates and work out their involvement with the project.

Finally, we have to match each expertise with one or more people. Start from the
beginning of the list and, for each item, write the first few names of either individuals
or teams that come to mind.

If you work at a large company or haven’t gotten to know folks across different engi‐
neering teams, you may have a difficult time coming up with experts for each exper‐
tise. That’s okay! You can start off by identifying a department. If you have access to
an updated organization chart, use it to try to locate the best team within the depart‐
ment you identified. Do not be afraid to leverage your manager to help you generate
and subsequently reduce the list of experts. Part of their job is to make sure that the
team has all the resources it needs to execute projects efficiently, and they likely have
much better insight about which teams across the organization are well suited to help
out.

If you don’t have access to an updated organization chart but your
engineering team has on-call rotations and uses a service like Pag‐
erDuty to alert engineers about incidents, you might be able to find
the right experts by referencing these rotations. Look for the fea‐
ture or infrastructural component for which you’re seeking an
expert and find the team with the corresponding on-call rotation.
Voila!

Continue to jot down names until you’ve run out of items. Table 6-1 shows an exam‐
ple list we came up with for the metrics-gathering migration.

Table 6-1. A list of expertise types and potential experts

Knowledge area Milestone Role Expert
Understand how the order fulfillment code uses StatsD (distinct
from most other product features)

1 SME Frankie, Mackenzie, Order
Processing Team

Automated end-to-end testing between library and Prometheus 2 active
contributor

Jesse, Automated Testing
Team

Monitoring application traffic to Prometheus as teams begin to
adopt it

3 SME Monitoring Team

How our application deployment pipeline will affect Prometheus
nodes

1 SME Jesse, Release & Deploy
Team

Security implications of gathering metrics about customers;
security-conscious customers we should be particularly careful
about monitoring

1 SME Product Security Team

114 | Chapter 6: Building the Right Team

Experts of Many Trades
Next, highlight any names that pop up more than once. There isn’t much overlap in
our example set, but we notice that Jesse might be a good candidate for two of the five
items. Your company may have a number of senior engineers with a wide breadth of
expertise that could be helpful to your refactor. Conferring with someone who hap‐
pens to be an expert on multiple relevant topics can be helpful on many fronts.

First, it can help us decrease the total number of people we’ll need to coordinate with
to complete our project. Coordinating a large project with a single team can be diffi‐
cult, never mind coordinating a large project involving multiple developers across a
number of teams. Each contributor not only has to be pitched on the effort and
brought up to speed, but they must also adapt to your team’s development process
(i.e., weekly or daily stand-ups, monthly retrospectives, etc.). It can take a considera‐
ble amount of time and effort before everyone is well-aligned and operating at a good
pace.

Second, experts who happen to have a deep understanding of multiple important
aspects of the project likely have a strong perspective on how these pieces work
together. This can be valuable insight shared by few other engineers at the company.
Given our sample list of experts in Table 6-1, Jesse is likely one of those individuals.
From our conversations with them, we know that they’ve worked closely with the
release & deploy team over several months to help it build a percentage-based release
system for two important services at the company. We also know that after that
project Jesse moved to the internal tools team, where they worked to improve the
availability of automated testing environments. Jesse is just one of those engineers
who’s been at the company for a while, worked on a laundry list of projects, and has
keen insight into how each of these pieces works together.

Unfortunately, people like Jesse can be quite busy (probably because they’re providing
input on a number of projects as an SME, in addition to leading a few of their own).
If they are not available to help in a regular capacity but you believe their unique
knowledge is critical to the refactoring effort, offer to have them review your execu‐
tion plan. I’ve found their input particularly helpful in verifying my least-confident
time estimates. If you’re looking for an expert to be actively involved in your project,
they’ll be able to suggest another expert or two to replace them.

If very few names (or none at all) overlap and your list of required types of expertise
is quite lengthy, not to worry! You can still successfully execute a large-scale refactor
with just a handful of resourceful individuals.

Revisiting Active Contributors
For me, a good rule of thumb is to limit the number of active contributors to the size
of team you’ve been most comfortable working with in the past. If you’ve been on

Matchmaking | 115

successful product engineering teams of six, then limit your team to six active con‐
tributors. Everyone’s experience working with different teams at different companies
is a little bit different; you know yourself and your preferred working conditions best,
so go with what you know to be most effective. Large refactoring projects are plenty
complex enough from both process and technical standpoints; don’t let your team be
yet another potential curveball.

If your list of active contributors feels too long, review your list and see whether there
is any expertise for which you can instead seek out the help of an SME. Coordinating
with SMEs comes at a much lower coordination cost because they are only consulted
on an ad hoc basis. We’ll cover some strategies for effectively communicating with
SMEs in Chapter 7.

Biases in Our Expert List
If we happen to know someone who could be a valuable expert on one or more of the
items on our list, we might ask them for their help directly. Chances are, they’ll be
more than happy to help out. After all, asking someone you know is probably the
most convenient option. If you’ve worked together previously, you’ll be able to estab‐
lish a cadence that works well for both of you pretty quickly and begin making some
salient progress early.

Asking a colleague for help directly can have its drawbacks, however. Software engi‐
neers are notoriously bad at estimating how much time and effort a task will take.
This is often a consequence of the relentless optimism that being a software engineer
requires. When something seems like a small request, sometimes our colleagues can
be a little too quick to say yes, not taking much time to scope the commitment prop‐
erly. They may only realize well after the project’s kicked off that they’ve said yes to a
few too many things and are now struggling to juggle it all. (I’ve been that person and
trust me when I say that saying yes to too many things is just as unhelpful as saying
no to everything.)

Another problem with asking a colleague for help directly is that you might overlook
others who are better suited for the role. We all suffer from a number of biases we
must consciously work to counteract. One such bias is recency bias, when we tend to
recall things we’ve seen more recently more quickly. We are more likely to list a col‐
league as a good potential expert if we’ve heard their name or spoken to them more
recently. We need to be mindful of that bias before we finalize our expert list, and take
a minute to question whether each expert truly is the best one for the job or if we just
happened to see their name copied on an email a few days ago. If we think a more
qualified candidate might be available, we should do our research and consider con‐
tacting a team rather than an individual. Managers of expert teams can vet your
request for help to each of their developers and gauge interest. Great managers will
identify those on their team who could contribute meaningfully but also would

116 | Chapter 6: Building the Right Team

benefit the most from the visibility and career growth of contributing to your refac‐
toring effort.

It’s also important not to confuse expertise with seniority. Frankie might not be the
engineer with the most industry experience or have the longest tenure at the com‐
pany, but they’ve made significant contributions over the past few months and you’re
confident they can answer your questions and offer valuable insights in code reviews.
Sometimes, the most senior person might not be the best collaborator; oftentimes
these developers are very busy leading demanding projects of their own and their
time is more valuable elsewhere. Your project might also be a prime opportunity for
someone to get valuable exposure and visibility beyond their immediate team. Refac‐
toring (particularly refactoring at scale) can be a tricky endeavor, but it’s not one that
engineers with just a year’s (or even some months’) experience can’t meaningfully
contribute to and learn from.

If you’ve highlighted a team as being a good set of expert candi‐
dates, I recommend talking with their manager directly so that they
can vet your request to their team, gauge interest, and help identify
a number of potential candidates. Asking the manager for their
input in choosing one or two experts from their team can help you
minimize the biases you bring to the recruitment process.

Types of Refactoring Teams
We’ve spent quite a bit of time in this chapter talking about forming a team. But what
about your existing team? Are you the best-suited group to take on the proposed
refactoring effort? To set yourself up for success as a technical lead for your team, you
have to understand why your team is best positioned within the context of your orga‐
nization to take the project on. There are generally three kinds of teams that under‐
take large-scale refactoring projects.

Owners
This kind of team owns a particular piece of the product and is refactoring code that
it primarily owns or is responsible for. This code interfaces with other teams’ code at
some number of boundaries. At those boundaries, they must figure out whether to
make the changes themselves or coordinate with the engineers whose code they are
interfacing with to make the necessary changes.

Types of Refactoring Teams | 117

Say, for instance, you work at a company with three broad engineering groups: devel‐
oper productivity, infrastructure, and product engineering. You are on the team
responsible for testing libraries and tooling for your application in the developer pro‐
ductivity group. While it’s always great that engineers across the organization are
writing more unit tests, you’re worried that the amount of time required to run them
all has begun to hinder everyone’s ability to ship code quickly. With performance in
mind, you start tracking timings for individual unit tests, gathering metrics on how
long certain operations like setting up a complex mock state take. Your team decides
to kick off a refactor, focusing their efforts on speeding up the mock setup process.
Although benchmarks for the new version show a drastic improvement, existing unit
tests will need to be migrated to use the new setup logic to benefit from the speedup.
There are two main ways to go about the migration:

Option 1: One team migrates all tests
The first option is for your team to migrate everyone’s tests for them. This approach
has some distinct advantages. Your team is the most familiar with how best to migrate
a test from the old to the new mocking logic; you know which kinds of tests lend
themselves to easy migrations, the pitfalls to avoid with trickier tests, and how to
maximize usage of the new mocking system to reap the most performance improve‐
ments. Your team is likely also the most motivated to execute the migration. As own‐
ers of the testing framework, you’ve decided that this is a top priority. You’ve likely set
some quarterly objectives around decreasing the amount of time required to run the
full testing suite. Knowing you’ll be evaluated on whether your team achieved that
goal is very motivating (especially when nearing the end of the quarter).

On the flip side, there are thousands of tests to migrate. Your team might develop a
clever way to use code modification tools to migrate some of the easiest migration
automatically, but that would only get you a small percentage of the way to comple‐
tion. If you divvied up the remaining callsites evenly across your team, it might still
take you weeks of manual, repetitive work to move everything over to the new sys‐
tem. Your team is also not intimately familiar with what each of these tests is actually
testing. As much as we’d like to assume that the tests treat the current mocking system
as a black box, we can’t always predict how tightly coupled the tests might be to the
behavior of the existing implementation. There is a strong chance that we will eventu‐
ally need some context for what (and how) the test is attempting to test functionality
to adapt it to use the new mocking system properly.

Option 2: Teams update their own tests
The second option is for the teams in the product engineering group to migrate the
tests related to the features that they own themselves. With this approach, your team
no longer needs to tackle thousands of tests alone. By distributing the work across the
engineering organization, there’s a strong chance that the positive impact of the

118 | Chapter 6: Building the Right Team

migration will be experienced much more quickly. Engineers on your team also don’t
need to worry about deciphering how some of the trickier tests work on their own.
With each team tasked with updating its own tests, it can do a much more effective
job of retaining the intended behavior of the test. (As an added bonus, teams partici‐
pating in the effort are given a great opportunity to review their current test coverage
critically and maybe even improve it beyond shedding a few seconds at runtime.)

This approach comes with a few drawbacks of its own. While you should produce
documentation for how to best upgrade a test, regardless of which option your team
chooses, the initial quality of (and timely updates to) the documentation becomes
much more important with this approach. Engineers actively migrating their tests will
rely heavily on your team to answer questions and be available for code reviews. Even
if you have an exceedingly thorough document of frequently asked questions readily
available, you’ll probably still have to answer the same handful of questions more
than once.

Although you hope to convince enough engineers that the performance improve‐
ments of the new system are worth the effort, there will probably be a number of
teams that fail to take the bait. A few teams might commit to the migration but ulti‐
mately fail to complete it because building new features was of higher priority. When
encouraging other teams to participate in a refactor, even when everyone agrees that
the benefits are tangible and significant, be mindful that unless these teams have
committed equally, setting quarterly objectives for its completion, your project will be
one of the first to be pushed aside.

Striking a balance
Neither option is perfect, but the one you choose will have an impact on your ability
to achieve your team’s short- and long-term goals as well as on your relationship with
other engineering teams. If possible, I recommend mixing the two strategies to mini‐
mize the downsides of either approach and maximize your chances of completing the
refactor successfully. With our test scenario, for example, here are a few steps I would
recommend.

Proposed Approach
1. Have your team identify a few simple tests that might benefit the most from the

migration. Reach out to the product engineering teams to get additional context
on which tests they deem to have the most impact.

2. Start with Option 1 (see “Option 1: One team migrates all tests” on page 118).
Begin migrating the tests manually and document the process thoroughly. (If the
tests are clearly owned by a specific team, either give that team a heads up or
work with it to complete the migration.)

Types of Refactoring Teams | 119

3. For the migrated test files, run benchmarks to demonstrate the performance
impact clearly. Document those, too.

4. Develop a code modification tool to migrate a few simple cases automatically.
Run the modification tool on small, logical subsections of the testing suite until
all candidate tests have been migrated.

5. Kick off Option 2 (see “Option 2: Teams update their own tests” on page 118).
Evangelize the new mocking system by highlighting the benefits and pointing
engineers to sample migrations. Spin up office hours to answer questions and
troubleshoot with engineers in person. Consider organizing regular jam sessions,
when engineers across the organization can join with your team to crank out a
few migrations.

6. Work with teams to set quarterly objectives for improving the performance of
their tests; if they’ve committed to being evaluated on their participation in the
effort, the chances are better that the tests will get done.

Cleanup Crews
Some larger engineering organizations have teams dedicated to improving developer
productivity. The range of the kind of work that these teams take on can be quite
wide: they provision and manage development environments; they write editor
extensions and scripts to automate repetitive tasks; they build tooling to help devel‐
opers understand the performance implications of their proposed code changes bet‐
ter; they maintain and expand upon the core libraries all product engineers depend
on (including logging, monitoring, feature flags, etc.). More often than not, the devel‐
oper productivity teams that continue to work alongside product developers within
the boundaries of the application end up taking on the role of the cleanup crew.

Cleanup crews take on the important (but often thankless) work of identifying and
shedding cruft and antipatterns from a codebase and establishing better, more sus‐
tainable patterns in their stead. These teams are usually made up of engineers who
care deeply about code health and want their fellow product engineers to have an easy
time developing, testing, and ultimately shipping new features. Seeing other develop‐
ers at the company use (and appreciate) their libraries and tools is what gives them
the greatest satisfaction.

Typically, these teams take on hefty refactors for two reasons. First, the teams’
breadth of knowledge of the codebase is unparalleled. Because these crews are owners
of core, functional libraries, they tend to have at least some exposure to almost every
corner of an application. This is especially true of teams that work inside monolithic
codebases. Second, the teams value developing ergonomic solutions that are accessi‐
ble to everyone, regardless of team or seniority; they have valuable experience think‐
ing about what kinds of interfaces strike the right balance between extensible and
practical. If the main driving motivation behind the project is to boost developer

120 | Chapter 6: Building the Right Team

productivity (and keep it there), then this is the perfect team. A third, implicit reason,
is that by having the cleanup crew map out and execute the refactor, product develop‐
ment teams can continue to focus on feature development relatively undisturbed.

Unfortunately, cleanup crews are not sustainable. When these groups are productive,
other engineering teams, typically feature-development teams, feel less of a responsi‐
bility to commit to doing important maintenance work. Over time, the cleanup crews
accrue an insurmountable amount of work, slowly burning out their team members.
As a result, these teams are usually short-lived or have high turnover. Furthermore,
the teams shirking maintenance work gradually lose the muscle memory associated
with supporting features long term. Throwing another large-scale refactor their way
might not be a viable option.

Tiger Team
A tiger team refers to a team of technical specialists, selected for their experience and
energy, assigned to achieve a specific goal. (Just like Ocean’s 11!) The term was first
coined in a 1964 paper titled Program Management in Design and Development, in
which tiger teams were suggested as an effective method for improving the reliability
of aeronautic and spacecraft systems. One particularly well-known tiger team was
assembled after the Apollo 13’s service module malfunctioned and exploded in an
effort to return the astronauts safely to Earth. The group later received the Presiden‐
tial Medal of Freedom for their efforts in the mission.

When engineering organizations encounter crises (a sudden, lengthy outage; serious
performance problems for an important customer; a sharp decrease in reliability),
leadership might ask a cross-functional set of expert engineers to drop whatever
they’re currently working on and go all-in to solve the problem at hand. Generally,
these groups work under some sort of time pressure, whether it is “we need this fixed
before X happens” or “we need this fixed as soon as possible,” so they tend to be
short-lived. Because the focus tends to be on brainstorming and developing a mini‐
mum viable solution, large-scale refactoring efforts are not usually the focus of tiger
teams, but there are always exceptions. If you’re able to make a convincing case to
management that your effort solves a problem that is critical to the success of the
business, and the scale of the work that needs to be completed is relatively large in
comparison to the amount of time available before the problem becomes dire, then a
tiger team could be your best option.

Types of Refactoring Teams | 121

The Pitch
Now that we’ve gained context on the kind of relationship our team has with our
refactoring project, determined the expertise we’ll need, and brainstormed a list of
corresponding experts we hope to recruit, we come to the hard part: convincing them
to help us. While we might not be able to offer one eleventh of the 150 million dollars
contained inside the Bellagio safe, we can try to make a convincing argument that
contributing to the refactor is well worth their time and effort. Different individuals
respond differently to a number of techniques, so we’ll outline a few here.

Do not be afraid to deploy multiple tactics for a single expert (whether that’s a team
or an individual). The busiest or the most skeptical experts will likely need more than
just a single reason to agree to embark on the journey with you, and rightfully so! As
a collaborating expert in any role, you are agreeing to allocate a (maybe significant)
portion of your valuable time and energy to the project. If the refactor comes with
significant risks (and most do), you are opening yourself up to involvement with inci‐
dents. If it’s likely to drag on for a while, you may have to pass up other opportunities
as they arise. Getting involved with a sizable refactor does not come without its risks.
You should not try to minimize those risks; instead, aim to make the experts see that
the benefits decisively outweigh them.

Finally, persistence can be a technique on its own. If you’ve spoken to each of the
potential experts for a given expertise on your list and haven’t gotten anyone to bite,
loop back around. The first few candidates will have had more time to consider the
opportunity and you’ll probably have a few more tricks up your sleeve from the many
other conversations you’ll have had to date.

Appealing to an engineer is a different experience from appealing to a team’s man‐
ager. Engineers are much closer to the code; they experience the pain points your
refactor wants to address much more concretely, acutely, and frequently. In my expe‐
rience, you very rarely have to spend considerable (if any) time convincing engineers
that the problem you perceive is an actual problem; they often know exactly why the
pain points you’re seeking to fix are so important to fix because they’ve experienced
the exact pain on multiple occasions themselves. With engineers, you’ll probably be
able to use most of the pitching techniques outlined in the upcoming sections suc‐
cessfully (maybe combining a few).

Managers, on the other hand, might only feel the pain from a secondary perspective;
for example, they might notice a gradual increase in time estimates suggested by engi‐
neers during sprint planning due to an equal increase in complexity of the code. In
one-on-ones, some engineers might express frustration with frequent incidents due
to brittle, poorly tested code. Managers also often have no incentive to prioritize
refactoring over feature development. This is usually because managers are measured
on their team’s productivity in shipping net new product innovations at a regular

122 | Chapter 6: Building the Right Team

cadence. Spending a quarter or two improving the code the team is responsible for so
that they can subsequently speed up their development velocity in future quarters is a
difficult sell for upper management, so managers don’t put up a fight unless there is a
dire need for code cleanup. Of the techniques proposed next, I recommend leaning
heavily on the metrics and bartering pieces.

You can ensure that managers are motivated to prioritize code
health and quality on their team(s) by explicitly evaluating them on
their ability to define measurable goals around it and supporting
the team in achieving those goals. It’s not always easy to get upper
management to buy into adding this as an important evaluation
metric, but if you can, it can make a world of difference in how
your engineering organization builds and maintains software.

Metrics
In Chapter 3 we explored a variety of ways in which we could quantify the current
state of the application before embarking on our refactoring journey. Chapter 4 dis‐
cussed how to develop a thorough plan of action, complete with a solid set of success
metrics determined from the initial measurements taken using the methods outlined
in Chapter 3. These metrics can help you build a convincing argument for getting
help with your refactoring endeavor.

Typically, these kinds of pitches are most effective with the more skeptical experts
and those who are most data-driven in their regular work. These are the engineers
who are always asking questions; they actively monitor the p95 response times of
APIs their team is responsible for maintaining; they’re the first ones to notice an
uptick in the average number of database operations hitting a specific shard. Appeal
to their analytical side with your own metrics and you might secure yourself a new
expert.

First, articulate why the metrics you’ve chosen are good indicators of the problem.
Take the time to explain the relationship carefully among the problems you hope to
fix, how you choose to quantify them, and the initial statistics you’ve gathered.
Choose simple metrics first, and then augment your case with additional supporting
data points. If you’ve acquired or generated any visuals that help illustrate the prob‐
lem, reference them; even those coworkers we think of as numbers people appreciate
an explanatory graph or chart every so often.

Juxtapose the starting metrics with your defined success metrics, starting with the
desired end state. Afterward, you can walk the expert through the evolution of the
metrics throughout the effort, from start to finish. Emphasize that your success met‐
rics decisively show that the refactor would be successful and that they are sufficiently
ambitious but achievable.

The Pitch | 123

Generosity
There’s an odd cognitive dissonance known as the Benjamin Franklin effect: you have
a better chance at getting someone to like you if you ask them for a favor than by
doing a favor for them. To give an example, say Charlie asks a favor of Dakota.
Dakota happily obliges. The phenomenon follows that Dakota is more likely to do
another favor for Charlie than if Charlie had done one for them. The idea is that peo‐
ple help others because they like them, even if they actually don’t, because their minds
struggle to maintain logical consistency between their actions and perceptions.

Engineers working closely with the code you aim to improve are more likely to
understand its pain points. They probably know at least a handful of other engineers
(either on their immediate team or in the organization at large) that experience these
same pain points regularly. If this expert is the kind of coworker that has a finger on
the pulse when it comes to the health of the codebase and the engineering morale
surrounding it, there is a strong chance that they have a great deal of empathy for
their teammates and you can successfully appeal to their inner altruist.

Ask the expert about the things they’ve heard their teammates complain about. Make
a mental (or written) note of the specific pain points that the refactor intends to fix.
Once you’ve commiserated on the difficulties of the code in its current state, list each
of the problems they mentioned and walk through your proposed solution. There
might be a few problems that you don’t yet have an explicit solution for, and that’s
perfectly all right! In fact, this is precisely why you reached out to this expert; you
seek their perspective on the problems you’re trying to solve. Make it clear to them
that these are the kinds of insights that they could provide to the project. Finally,
emphasize that their contributions would concretely make their coworkers’ lives (at
least a little bit) more pleasant and more productive. Point to the expected benefits of
the refactor and summarize the success metrics (because a multifaceted pitch is ulti‐
mately a stronger pitch).

Opportunity
If the expert you’re pitching is looking for a good career advancement opportunity or
a chance to be more visible to other parts of the engineering organization, a large-
scale refactoring project can be the perfect line item on their resume. Earlier in the
chapter, we mentioned that some managers might want to identify team members
who might both be an asset to the project and gain valuable visibility within the
broader engineering organization; if they’ve provided you with a few names, make
sure to have a conversation with them about what kind of growth and visibility these
individuals need to get to the next level.

When you sit down with the expert, have a conversation about what types of growth
opportunities they’re looking for. Hopefully the engineer and their manager are
aligned on what behaviors they need to exemplify or projects they need to drive to

124 | Chapter 6: Building the Right Team

grow in their career, but that is not always the case. If you want to convince the engi‐
neer decisively to join you, all the while setting them up for success, taking the time
to coalesce the manager’s expectations with those of the engineer is the best approach.
From the combined input, take the time to identify a few key portions of the refactor
that this expert could contribute to in a way that demonstrates the key characteristics
they’re looking for. When you meet with them, walk them through each of the mile‐
stones and highlight the contributions they can make. Describe how you hope each of
these contributions can help them achieve their goals. Be careful to keep an open dia‐
logue, and be open to their input. You’re not in their shoes, nor are you their man‐
ager, so their perspective on how they can best be set up for success might differ from
your own.

Bartering
If all else fails, be ready to barter. Bartering can be a great way to acquire the resources
you need to finish your project successfully, with some sort of commitment in return.
Typically, bartering doesn’t happen between you and another engineer but rather
between your own manager and the manager of the team you’re seeking help from.
The promise you make in return can vary; it’s all about finding what the other man‐
ager values most and finding an adequate alternative you’re happy to provide in
exchange. Here are just a few examples:

• Say your team has an open headcount and the team you want to recruit experts
from is in desperate need of additional headcount. If your organization allows it,
and you are comfortable giving up some of your available headcount, you could
provide the team with the headcount it needs in exchange for one or two engi‐
neers to contribute actively to the refactoring effort.

• On the off-chance that your teams have compatible feature ownership, you could
barter taking additional ownership of some components the other team has been
wanting to shed. Oftentimes when teams have unclear or debated boundaries,
areas tend to become entirely unowned or tossed between the two teams fre‐
quently (which essentially leads them to be unowned). In exchange for help, your
team could agree to own those features or components decisively for a set period
of time (a few quarters or a year).

• If your engineering organization has communal responsibilities (completing a
certain number of hours of customer support or participating in interviews), you
can offer for your team to take on some (or all) of the expert team’s responsibili‐
ties for a defined period after the refactoring effort has wrapped up. (Ideally, you
agree for the exchange to kick off only after the project has finished or when it is
near completion, because any time taken away from it will only make it drag on,
to the detriment of everyone involved.)

The Pitch | 125

When bartering takes place between two engineers, normally it’s an
exchange of subject matter expertise; that is, the expert you’re
recruiting as an SME wants you to contribute as an SME on an
ongoing or future project. I’ve also seen engineers agree to trade
code review, take on additional on-call shifts if they share a rota‐
tion, or agree to document and facilitate a certain number of post‐
mortems on the expert’s behalf.

Be aware that with bartering, either party can fall through on their promise if priori‐
ties shift within the duration of the refactoring effort. Reorganizations at companies
of any size can render these agreements void due to shifts in management or feature
ownership. Managers or engineers leaving the company or switching teams can also
have an impact on any prearranged agreements. The longer the refactor goes on, the
greater the chance the agreement might fall through for whatever reason.

Repeat
If you cannot convince the first name for each type of expertise, don’t worry! This is
why brainstorming multiple names early on is important. Ideally, you can secure an
expert for each kind of expertise, and if you have trouble coming up with more candi‐
dates, consider reaching out to those who’ve turned down the opportunity for any
additional recommendations; they might be able to give you a name or two.

If you cannot secure an expert for a skill that you won’t need initially, consider paus‐
ing the search and picking it back up once you reach the stage when it becomes nec‐
essary. Experts who were previously on the fence might be convinced to join if they
see sufficient progress and maybe the hint of a positive shift in the initial metrics.
Refactoring can be a little bit like snowballs rolling down a snow hill; as it gains
momentum, it affects greater and greater surface area, gathering up more and more
resources as it nears completion.

A Few Outcomes
If all the stars align, we might manage to convince everyone we’ve pitched and assem‐
ble the absolute best team for the job. Congratulations! Unfortunately, the ideal out‐
come is quite unlikely. There’s a strong chance you won’t be able to assemble your
perfect dream team, and that’s all right. We can figure out a way to work effectively
with the resources we can secure and deliver a quality refactor! Before we close out
the chapter, we’ll spend some time exploring what a realistic scenario might look like
and how to make the most of it. We’ll also briefly discuss how to handle the worst-
case scenario: having to go it alone.

126 | Chapter 6: Building the Right Team

Realistic Scenario
The most realistic scenario is one in which you end up with a small handful of com‐
mitted experts and teammates. At smaller companies experiencing a great deal of
growth, everyone wears more than one hat and every engineer has a full plate, so it’s
unlikely you’ll be able to get an expert to fill each of your desired kinds of expertise.
At larger, more stable companies, you might have a difficult time getting folks from
other teams to commit to helping you out simply due to organizational boundaries
and priorities; just because someone is an expert in something you’ll need context on
to complete your refactor successfully doesn’t mean that it is that expert’s or that
expert’s management chain’s top priority.

Regardless of who you were able to convince before kicking off development, you’re
in a good spot if you’ve managed to gather a core team of at least a few engineers for
the earliest portions of the project. After all, the team you start with might not be the
team you end with, because the support and expertise you need to complete the first
few milestones aren’t necessarily the support you’ll need for the remainder of the
project. You might very well be able to encourage others to join you once you’ve
shown some tangible progress and the benefits of the refactor become more visible to
fellow engineers.

Worst-Case Scenario
The absolute worst-case scenario is if you aren’t able to secure any additional help
and need to execute the project alone. Now before we start exploring how to make
the best of this situation, I want to take a moment to acknowledge that if your only
option is to execute a large, cross-functional refactor alone, you may want to consider
not doing it at all. If the engineering organization is not sufficiently convinced by
your proposal to allocate staffing properly, and the expert engineers you’ve reached
out to are unconvinced as well, maybe it’s time to go back to the drawing board and
strengthen your case. Otherwise, maybe it’s time to consider that perhaps now is not
the right time to execute on this project.

In the event that your manager, teammates, and a number of other engineers believe
in the importance of the effort, but there simply aren’t enough resources to go
around, you may consider moving forward alone. Be forewarned, however, that it is
not an easy path. Working alone can be terribly isolating. Because it’s just you, slowly
making progress one step at a time, it can feel like you aren’t making significant pro‐
gress. You rarely have the chance to bounce ideas off other people who have substan‐
tial context on the state of the project and don’t need to be brought up to speed every
time you need a second opinion.

On the plus side, you don’t have to coordinate with anyone else; you hopefully know
the sequence of steps you need to take, and you can execute them serially. Not need‐
ing to coordinate with anyone else can also be a serious downside. You have to keep

A Few Outcomes | 127

very, very good track of everything you are doing and make that information avail‐
able publicly so that others who are invested in your effort but unable to contribute
can gauge where you are on the project.

One or two incidents are nearly inevitable when making expansive changes to a code‐
base. While postmortems should be blameless, when there is only a single individual
responsible for a given project, it can feel as though the burden of responsibility and
subsequent remediation falls solely on you instead of on a group of folks.

I highly recommend taking a look at Etsy’s postmortem process
developed by John Allspaw if you haven’t already. Their approach
to incident response is quite thorough and promotes deliberate,
focused growth within an engineering organization, all the while
preserving individual engineers’ psychological safety.

I recommend that you find a buddy, maybe someone else who has also been tasked to
be the sole owner of a significant project. This person is there to keep you accounta‐
ble and motivated, similar to how you might regularly meet up with a friend for yoga:
you know that they’ll be there because you’ll be there, and vice versa. You can estab‐
lish a regular cadence for meeting up and talking through the progress you’ve made
to date on your respective projects. You can help each other brainstorm solutions to
the tough problems, and, on occasion, review each other’s code. Either way, having
someone there to keep you company on the tough road ahead is absolutely critical to
staying on track.

Fostering Strong Teams
You’ll need to hone one important skill throughout the entire team-formation process
to build an effective team: communication. The best communicators can assemble the
best teams by convincing the right engineers to join and setting clear expectations of
their involvement from day one. Each contributor, whether they are an active team‐
mate or a subject matter expert, is well aware of their role and responsibilities within
the larger effort and feels confident in their ability to deliver on the stated
expectations.

Communication continues to be of utmost importance throughout the remainder of
your refactoring effort, especially as you begin to make changes to your codebase. In
the next chapter, we’ll discuss the importance of frequent, thorough updates and
explore techniques for establishing and maintaining a free flow of information
between your team and those affected by your changes.

128 | Chapter 6: Building the Right Team

https://oreil.ly/DFSh_

PART III

Execution

CHAPTER 7

Communication

A friend of mine, we’ll call her Elise, recently embarked on a house-building journey.
Over a period of several months, Elise became intimately involved with every step of
the process. She coordinated with plumbers, electricians, carpenters, tile-layers, and
countless crews cycling in and out of her build site. Each of these professionals
worked in tight-knit teams, bringing her home to life, piece by piece.

Every so often, some of Elise’s friends, like me, would ask her how the house was
coming along. She’d launch into an epic tale about the bathroom tiles, pulling out pic‐
tures of samples she considered, detailing the many phone calls required to replace
the original batch when most of them arrived cracked. Then she’d realize she hadn’t
told me about the plans for the second bathroom and pivot to a new set of anecdotes.

I did love hearing about how her house was coming along, but Elise’s nonlinear story‐
telling, coupled with the grueling detail, was a bit too much for me (and many of her
other friends). So, after a few conversations, we asked her to start a blog. There, she
could document the progress, complete with pictures and arduous detail, and we
could periodically check in and casually browse at our leisure. We’d found a way of
keeping up with the construction in a medium that worked for everyone.

Elise has a direct, detail-oriented approach in her everyday communication with the
construction crews, and more of a big-picture approach in her blog. With a large
refactoring project, you have to manage communication hurdles from two distinct
perspectives as well: first, within your own team (Elise with her construction crew),
and second, with external stakeholders (Elise with her friends). In this chapter, we’ll
discuss communication techniques you can use to keep both groups informed and
aligned. We’ll look at important habits you should establish for your team, and some
tactics for fostering a productive team. Then we’ll look at what measures you should
be taking to keep individuals outside of your team in the loop. We’ll also discuss some

131

strategies for coping with stakeholders that are either too hands-on or not hands-on
enough.

The ideas in this chapter are meant to give you a blueprint for developing strong
communication habits on your team. Your company might already have well-
established practices around the way large, cross-functional software projects are
coordinated, tracked, and reported on. Your manager, product manager, or technical
program manager may also have their own ideas of how best to set up your team for
success. I recommend listening to these individuals, reading the ideas that follow, and
piecing together something that you believe will work best for everyone. Hopefully by
the end of this chapter, you’ll have a new set of tools ready to use for your next large
refactoring project.

Within Your Team
Communication within your team is hopefully already low-friction and frequent. If
so, your team is probably participating in a number of exchanges during a regular
workday. You’re pair-programming, reviewing each other’s code, and debugging
together. Your team might also have daily stand-up and weekly sync meetings. Many
of us don’t think about how we’re communicating when we’re partaking in these
interactions. They simply feel like a routine part of our job, as they should. However,
some of these interactions could be made a little bit more deliberate to support
longer-term, technically complex projects better (like a large-scale refactor.)

A Note About Regular Communication
If your team is not already communicating effectively on a frequent basis, maybe you
should consider delaying a large refactoring project until after your team has taken
the time to iron out its difficulties. Your team might be suffering from a number of
problems. Maybe you’re working with a team with conflicting egos, or teammates
who spend more time talking than listening. Whatever you’re struggling with, your
team won’t be able to execute well (if at all) on a crucial project without addressing its
communication issues. Quite a few resources are available on how to improve team
communication, but I recommend picking up a copy of Marshall Rosenberg’s Nonvio‐
lent Communication.

If your team is relatively new or has been formed for the explicit purpose of executing
a refactor (as is the case for most tiger teams), spend some time doing one or two
team-building exercises first. It’s important for the team to feel comfortable with one
another going into this sort of project for a few reasons. First, everyone will likely
ship one or two bugs at some point. You want your team to be supportive and help
you rectify the mistake quickly rather than criticize you for your mistake. Second, you
will need to be able to solve tricky problems together; being able to check your ego at
the door will help you reach a good solution faster if you aren’t worried about which

132 | Chapter 7: Communication

one of you has the best idea. Third, large-scale refactors can drag on for a while. You’ll
need to be able to give your fellow engineers honest feedback throughout the project
so that you can continue to work together effectively. No one wants to grow increas‐
ingly irritated with a teammate to the point that they can no longer work with them.
Trust me, I’ve made that mistake.

To keep your team moving forward, free from misunderstandings and other mishaps,
there are a few communication habits you should consider implementing from the
very start. Some of these concepts will be familiar to those who practice Agile, even
minimally. We’ll look at both high-frequency habits (i.e., on a daily or weekly basis)
and low-frequency habits (i.e., on a monthly or quarterly basis) that are important for
taking a critical look back at what you’ve accomplished to date and what still lies
ahead.

If possible, I recommend instituting a policy of no laptops and
minimal phone usage during meetings. Ideally, the only people
who should be using a laptop during a meeting are those actively
participating by either taking notes, or sharing content on their
screen. If a meeting attendee is on call or actively contributing to
incident remediation, having a laptop out is more than fine. This
policy might sound a bit rigid, but I truly believe that it can benefit
everyone. I find that I maintain much better focus during meetings
I attend without my computer; I listen more attentively, offer better
ideas, and more often leave the meeting feeling that it was produc‐
tive. If you’re curious to give it a try, start out by instituting the pol‐
icy for just one or two meetings. You might find that they’re more
productive and, on occasion, end earlier!

Your team is probably communicating pretty frequently in a number of unique ways.
During your typical workday, you’re probably chatting, pair-programming, reviewing
code, and debugging together. There are some more regular, structured means of
communication that can be meaningful to make sure that everyone is checking in at a
good cadence. We’ll outline a few here and describe how they can be valuable.

Stand-Ups
Stand-ups are a great habit for keeping everyone on the team aligned at regular inter‐
vals. They can be a good forcing function for you and your teammates to update the
status of your tasks within your project planning tool. Stand-ups are also a great
opportunity to reflect back on the past 24 hours; have you made sufficient progress or
should you reach out to a teammate for a helping hand? Given what you learned yes‐
terday, what do you plan to do today?

Within Your Team | 133

Every team has a different approach to stand-ups. Some folks prefer an in-person
meeting where everyone gathers around their desks and recites their progress from
the day prior. Requiring everyone to be present for stand-ups at a regular time every
day has its advantages. They provide engineers with a daily anchor point around
which they can plan their work.

When working on large software projects, having a designated time when you can
take stock of the progress you’ve made, however small, is crucial. Sometimes the
scope of the effort can seem overwhelming, and being able to focus on incremental
steps forward can make it feel more achievable. Daily, in-person stand-ups also pro‐
vide a forum for everyone to get important face time with one another. As monoto‐
nous as stand-ups might seem, if the majority of your team spends a significant
portion of its time programming independently, daily stand-ups might be one of the
few face-to-face interactions it has.

When I use the words “in-person,” I’m referring to any face-to-face
medium. That can be physically in person in the same office or
scattered throughout the world and meeting over video conference.
The important piece is that everyone is taking the time to see and
listen to one another away from distractions.

Other teams prefer an asynchronous way of catching up, relying instead on their
main collaboration platform (whether that’s Slack, Discord, or a similar tool) to post a
summary of their previous workday. One downside of in-person stand-ups is that
they require everyone to be available at precisely the same time every day. For highly
distributed teams, in-person stand-ups are either very inconvenient or nearly impos‐
sible amid a wide array of time zones. They can also awkwardly break up engineers’
mornings or afternoons and diminish the amount of time they have to focus deeply
on a task at hand.

Effectively refactoring code usually takes acute concentration; you are trying to deci‐
pher what the current implementation is doing (by reading through it or running the
corresponding unit tests) and then, from that understanding, determine the best way
to improve it, and then, finally, craft the improved implementation, replicating the
precise behavior of the initial solution. Most programmers need several consecutive
hours of uninterrupted time to get into the headspace required to make measurable
progress toward a difficult task. If an engineer gets into work at nine o’clock only to
be interrupted by a stand-up at 10:30, they might not even bother to start on a task,
knowing that they won’t make much progress.

134 | Chapter 7: Communication

To best simulate a stand-up meeting, asynchronous stand-up usu‐
ally requires the participants to provide an update by a certain
time. Say, for instance, your team provides updates asynchronously
by 10:30 a.m. every weekday. If you’re an early bird and typically
get in to the office at 8 a.m., you might provide your update imme‐
diately and dive headfirst into your next task. Your fellow team‐
mates submit their updates as they begin working. By 10:30 a.m., if
anyone on the team hasn’t written anything yet, they might get a
gentle nudge from your manager until everyone’s given an update.

You can continue to hold daily stand-ups when working on a large-scale refactor, but
you may want to revisit their frequency throughout its execution. For example, if
your team has entered a milestone with highly parallelized workstreams, updating
one another on these distinct, loosely related streams on a daily basis might not be a
good use of time. If your updates are highly technical and detail-oriented, most of
your teammates won’t have the granular context needed to appreciate them. Instead
of a daily stand-up, you could consider providing more comprehensive updates twice
a week or during a weekly sync.

Weekly Syncs
Daily stand-ups are meant to convey a quick snapshot of everyone’s progress; they are
not a one-size-fits-all means of regular communication with your team. Think about
the half-hour stand-up. If your team members are spending a considerable amount of
time discussing at great depth their tasks and the problems they’re solving during the
stand-up, you should consider two options. The first is to ask them to continue their
discussion after the stand-up; if the conversation does not involve a significant por‐
tion of your team, that should work just fine. Your second option is to begin hosting a
weekly sync. This forum should give your team more dedicated time to dig into the
topics most top of mind for them.

With large refactoring efforts, because the affected surface area can be quite substan‐
tial, a range of engineers from across the organization will typically be involved.
When the team is highly cross-functional, with not all members devoting 100 percent
of their time to the refactor, a weekly sync is usually a better option than a daily
stand-up. With a weekly half-hour or one-hour meeting, the team members can focus
on discussing only the updates that are pertinent to the refactor.

I would recommend budgeting about an hour for a weekly sync. You can structure a
weekly sync as you would a stand-up, with a few tweaks. For the first half of the meet‐
ing, have everyone take turns sharing what they’ve accomplished in the refactor over
the previous week. If you expected to make more progress, you should hypothesize
about why that is: Did you run into roadblocks? Did other, nonrefactor work take
center stage? It’s just as important for the team to know what’s holding up the project

Within Your Team | 135

as it is to know what everyone’s working on. This way, if work needs be redistributed
to keep the project moving forward, the team can spot it right away and pivot accord‐
ingly. As you go around the room, make note of any topics that folks might want to
discuss at greater length.

For the second half of the meeting, take the time to discuss any important topics. You
can gather these topics throughout the week and come to the weekly sync with a
complete agenda. Maybe, for example, a teammate discovered a new edge case during
testing. Although this was probably discussed in a stand-up at some point, you may
want to discuss the edge case further during the weekly sync and give the team a
chance to amend the rollout approach to make sure similar edge cases are properly
handled.

You can also gather discussion topics during everyone’s updates, keeping an ear open
for any intriguing subjects. For instance, a teammate might have mentioned spending
time prototyping a way to automate the more repetitive portions of the refactor. Oth‐
ers on the team might benefit from learning more about this prototype and how they
can leverage it themselves. As always, practice good meeting etiquette and make sure
that everyone has an opportunity to share their thoughts.

Strong teams are built through strong connections, and strong connections are built
through meaningful in-person interactions. Weekly syncs are the perfect forum for
solidifying your relationship with your teammates. Why is building a strong team so
important? Having a team that supports one another can be particularly helpful when
the going gets tough. For example, if someone on the team ships a change that causes
a serious regression, knowing that the team has their back and one or two teammates
will be happy to jump in to help resolve the issue can substantially reduce their anxi‐
ety and, in the long run, prevent burnout. Being able to show up for one another is
also really important when the work starts to drag.

Most large-scale refactors have sizable milestones consisting of tedious, repetitive
work. (All of the examples in this book to date have one or two lengthy, monotonous
steps.) These milestones tend not to be exceptionally challenging or engaging; they’re
dull but necessary. When the team needs to execute these stages, usually the project
starts to feel as though it has slowed to a crawl. Teammates can be more prone to
burnout during these stages, but having a group of individuals you can lean on, with
which you can share your frustrations, can make a world of difference. If someone on
the team is having a difficult time finding the energy to continue, maybe someone
else with a bit more capacity can step in and lend a helping hand.

136 | Chapter 7: Communication

Be certain to take notes during your weekly sync so that you have a
record of everything that was discussed (and any conclusions
drawn by the team). These notes, combined with the tasks you’ve
been tracking in your project management software, will be helpful
when you need a quick reference of everything that’s been achieved
by the team for your next retrospective.

Weekly syncs can be combined with stand-ups, or replace stand-ups entirely. In my
experience, I’ve found that even with daily or twice-a-week stand-ups, having a
weekly team sync is incredibly beneficial because it gives everyone an open forum to
discuss the week’s most important topics in greater depth. I would especially recom‐
mend holding a weekly sync if your team opts for asynchronous stand-ups; this way,
everyone has an opportunity to interact in person on a regular basis. Try out different
variations of stand-ups (asynchronous or in-person, daily or every other day), com‐
bined with a weekly sync, and see what works best for your team.

Retrospectives
Retrospectives are just as beneficial to teams executing on a large-scale refactor as
they are to Agile product development teams. They give your team an important
opportunity to reflect on the latest iteration cycle, highlight opportunities for
improvement, and identify any actions you can take moving forward. Setting time
aside to discuss what went well, what could have gone better, and what you plan to
change is an essential part of growing a team as a unit and as individuals.

The vast majority of Agile development teams participate in regular retrospectives at
different cadences. Some product-focused teams will hold a retrospective (a retro)
after the launch of a new feature or after a set number of development cycles. Teams
working on longer-term projects might hold a retro once a month or once a quarter.
Large, at-scale refactors typically benefit most from retrospectives at the end of major
milestones. These are usually lengthy enough to have substantial content to consider,
but not so large that the team has trouble remembering everything that’s unfolded
since the last retrospective. On occasion, smaller subtasks within a single milestone
may feel notable enough to justify a retro of their own; there is no perfect, one-size-
fits-all answer for all teams and all refactors. If you’re inclined to think a retrospective
is worthwhile, simply ask your team whether it agrees. If it does, schedule one; if it
doesn’t, simply wait until the team’s completed the next substantial set of work.

If you aren’t confident in your ability to run a good retrospective, there are plenty of
publicly available resources to help you. Atlassian has quite a few articles and blog
posts on its website, outlining best practices and exploring original ideas for spicing
up your retros.

Within Your Team | 137

https://oreil.ly/kgz9y

Outside Your Team
As with any large-scale software project, a fair share of individuals outside your team
will have an interest in your progress. This could include upper management, engi‐
neers on affected teams, or senior technical leaders. Upper management will want to
check in on the project to ensure that the refactor is progressing at the expected pace
and producing the expected results. From its perspective, large refactoring efforts can
easily turn into money pits: valuable, expensive engineering time is spent rewriting
functionality that already exists, and if the project strays, the time and financial
investment only increases. There’s also the matter of opportunity cost, as we discussed
in Chapter 5, when managers have to weigh the refactor against further feature devel‐
opment. Upper management will want to be reassured regularly that its decision to
invest in the refactor was a good one, and if at any point it determines otherwise, it
will likely hatch plans for either pausing or stopping the refactor altogether. You can
make sure that it continues to support your effort by honing your communication
skills when providing updates outside of your team.

Managers and engineers on teams affected by the refactor will want to keep track of
each stage of the project to gauge when they risk bearing its effects. They’ll want to
know precisely when the team expects to roll out relevant changes and how long it
anticipates it will take. Meanwhile, senior technical leaders will be on the lookout for
any setbacks as an opportunity to help steer the project back in the right direction.
Typically, these individuals play an important role in shaping the company’s technical
vision and are responsible for ensuring that complex, important technical endeavors
succeed, including any large-scale refactors.

In this section, we’ll discuss how you can ensure that all your external stakeholders
stay up to date with the latest progress on your refactor. We’ll first look at some work
you can do upfront to set good habits early, and then we’ll look at how you can keep
up with external communication throughout the project’s execution.

When Kicking Off the Project
There are some important preliminary decisions you’ll want to make about how you
plan to communicate with your external stakeholders when you kick off your refac‐
tor. By making these decisions early, you’ll help your team save valuable time when
coordinating with colleagues outside of your team and decrease the overall likelihood
of any miscommunication with external parties.

Choosing a single source of truth
Even the smallest companies use a number of tools for the same set of tasks. Your
company might use both GSuite and Office 365, with some departments preferring
one product over another. Even within your own engineering organization, you may

138 | Chapter 7: Communication

have documents speckled across GSuite, GitHub, and an internal wiki. As someone
searching for information about a product feature or in-flight project, having to
search half a dozen platforms for disjointed pieces of information is aggravating. It
can be even more frustrating when pertinent information is in more than one loca‐
tion, and the information doesn’t agree.

When you kick off your refactor, choose a platform your team enjoys using to collect
all documentation related to the project. Because you’ll be regularly creating new
documents and updating existing ones, you’ll want to choose the solution that has all
your favorite bells and whistles. If you’re annoyed every time you need to add some‐
thing new, you’ll be less likely to do it, and the documentation will fall out of date.

Within your chosen platform, create a directory to house all pertinent documenta‐
tion; this will serve as your single source of truth. Documentation can include techni‐
cal design specifications, the execution plan you developed in Chapter 4, meeting
notes, postmortems, and so on. Wherever other engineers look for documentation,
either link to your directory or, better yet, link to a specific document within it. If
your colleagues have muscle memory from searching GitHub for technical documen‐
tation but you prefer writing in Notion, create an entry for your documentation in
GitHub and link it directly to your Notion entry. This way, not only will your docu‐
mentation be easy to find, you’ll be certain that there aren’t any outdated copies float‐
ing around.

As your team generates documentation throughout the execution of the project,
make sure that it all lands in your project directory (with updated external links from
other widely used document sources).

Setting expectations
Next, you’ll want to set expectations with external stakeholders. Many of these stake‐
holders will regularly check in with you, polling for new information. Unfortunately,
this model can become quite bothersome the more stakeholders you have. If you or
your manager receives an email or message every time someone in upper manage‐
ment has a question about how the refactor is progressing, before long, you’ll end up
spending quite a bit of time answering these requests. On the other hand, there may
be some stakeholders that you wish would check in periodically but unfortunately do
not. When this is the case, your team must push information out. Consistently need‐
ing to propagate information proactively out to numerous stakeholders can get irri‐
tating, particularly if the receiving party doesn’t acknowledge that they’ve read the
information you provided.

Instead of either answering each request or contacting each stakeholder individually,
spend some time determining how you intend to communicate progress and setting
up expectations with your stakeholders early about where and with what frequency
they should expect these communications. When stakeholders break from the

Outside Your Team | 139

patterns you’ve established (e.g., you get a ping from your skip-level), instead of pro‐
viding the information directly, simply reply with a gentle reminder of where they can
find what they need.

When you kick off the refactor, take some time to draft a rough communication plan.
This plan should include information about the following:

Where stakeholders can find information about the current stage of the refactor
There are a number of places where you can make this information easily accessi‐
ble to external parties. If your team uses Slack, you can create a channel to house
conversations pertinent to the refactor and set the channel’s topic to a short
description of the current stage of the project. At the end of the week, post a
weekly round-up message detailing the progress made over the past few days. (If
you hold weekly sync meetings, you can draft this message immediately after‐
ward and link to your meeting notes.) If your team uses JIRA, provide a link to
the project board. For stakeholders who need regular, high-level updates, con‐
sider adding a summary field that the team updates weekly on the top-level
project.

Where stakeholders can find a high-level project timeline
You can include a high-level project timeline at the root of your project docu‐
mentation directory, directly within the communication plan itself, or as a sub‐
section to your execution plan. Make sure to keep this timeline updated if any
dates end up shifting as the project progresses.

Where engineers can expect to find technical information about the refactor
Here, you can link to the directory where your team intends to draft documenta‐
tion related to the refactor. Provide a short summary of the kinds of documents
the team plans to aggregate there.

Where stakeholders can ask questions
There will be instances when individuals across the company will either not be
able to find the information they need in the provided resources, or prefer asking
the question directly rather than locate the information for themselves. When
that happens, you’ll want to make sure that they know where to go. If your team
uses Discord, either direct them to the project channel or set up a channel exclu‐
sively for questions. If your team relies on email and it has an email group, have
the members send an email to the team as a whole rather than to an individual. If
your team is cross-functional, set up an email group for everyone involved and
direct questions to that group.

When affected teams should expect to hear from you
When coordinating with teams that risk being affected by the refactor, you want
to maintain a high level of transparency. You want to make sure that no one on
these teams is surprised or set back by the work your group is doing. To make

140 | Chapter 7: Communication

sure that everyone is on the same page, provide a list of guidelines you intend to
follow when interacting with other teams’ code. This could include tagging one
or more individuals from that team for code review when modifying code for
which their team is responsible or attending their stand-up to provide updates on
the refactor when pertinent to their team.

During Project Execution
There are a few communication habits your team should consider adopting during
the project’s execution. These strategies can help everyone at the company stay
informed of your progress while minimizing the amount of proactive outward com‐
munication your team needs to do. We’ll also discuss how best to engage with engi‐
neers external to the team when seeking out their expertise about the project.

Progress announcements
Progress announcements are not only important to let everyone know that you’ve
completed another milestone (and unlocked any number of benefits as a result), they
are also crucial in continuing to make your team feel productive and boost their
morale. Large-scale refactors can feel daunting for teams, even for teams accustomed
to working on lengthy projects. Celebrating each milestone as it wraps up helps
everyone feel a sense of achievement throughout the duration of the project.

However your company announces the launch of new features, whether that’s a
department-wide email or a message in a Slack channel, inquire about providing
important progress updates for the refactor. Your team will get important recognition
for their hard work and demonstrate to a wide audience that refactoring is a valued
engineering investment.

Execution plan
In Chapter 4, we learned how to draft an effective execution plan for our large-scale
refactor. We can go beyond using this plan as a simple road map and use it as a place
to document our work throughout the project’s progression. Make a copy of the orig‐
inal execution plan. The original version should remain relatively untouched beyond
light updates to estimates and milestone metrics as necessary. The copy will serve as a
living version of the original document and should be progressively updated as the
project develops. (Enabling version history will give you the ability to easily go back
in time and compare your initial values with your latest updates.) This could include
anything from strange bugs encountered, unexpected edge cases uncovered, or diver‐
sions in the plan. This second version of your original execution plan should give any
stakeholders a much more nuanced view into your progress and help your team keep
better track of the work it has achieved to date.

Outside Your Team | 141

For instance, in our example from Chapter 4, the software team at Smart DNA was
tasked with migrating all Python 2.6 environments to Python 2.7. We’ve copied over
the first milestone of the team’s execution plan as follows:

• Create a single requirements.txt file.
— Metric: Number of distinct lists of dependencies; Start: 3; Goal: 1
— Estimate: 2–3 weeks
— Subtasks:

— Enumerate all packages used across each of the repositories.
— Audit all packages and narrow list to only required packages with corre‐

sponding versions.
— Identify which version each package should be upgraded to in Python 2.7.

As the software team begins making progress on the migration, it might start filling
in the copy of its original plan with more context on its findings. We can see some of
those additional details in the plan that follows:

• Create a single requirements.txt file.
— Metric: Number of distinct lists of dependencies; Start: 3; Goal: 1
— Estimate: 2–3 weeks
— Subtasks:

— Enumerate all packages used across each of the repositories. When we
started combing through all of the packages used by the first of the three
repositories, we were surprised that the code relied on six additional
dependencies that weren’t explicitly listed in the respective require‐
ments.txt file. The researchers were able to provide an updated list for the
first repository as well as in the 10 other dependencies missing from the
requirements.txt files for the other two repos.

— Audit all packages and narrow list to only required packages with cor‐
responding versions. Thankfully, 80 percent of the packages used by the
three repos were the same. Of that set, only eight of those packages had
different versions that needed to be reconciled.

— Identify which version each package should be upgraded to in Python
2.7. This was tricky for seven of the packages in the final, combined set.
For these packages, their 2.7-compatible versions deprecated a number of
APIs and features that the researchers actively used in two of the three
repos. We worked with the research team to gradually migrate away from
using these deprecated features before continuing with the refactor.

142 | Chapter 7: Communication

Updating the execution plan as you go means that others can reference it throughout
the project’s lifetime to get more context on the specific work the team is doing dur‐
ing each of its many stages. Any SMEs joining the project at a later milestone (or any
new teammates being onboarded partway through the refactor) can ramp up on
everything the team’s worked on to date just by reading through the execution plan. If
you’re anything like me, sometimes you forget why you made a certain decision sev‐
eral months ago; by keeping a verbose account of everything you’ve encountered and
the conclusions you’ve reached along the way, you can easily go back and remind
yourself of precisely what happened and why.

A detailed account of the team’s experience can also be helpful for engineers and
managers referencing the refactor well after it’s completed. Engineers seeking to
understand how the codebase has evolved over time may want to read your detailed
plan. For the engineers involved with your refactor seeking a promotion, having con‐
crete documentation pointing to the highly technical problems they solved at each
step can be incredibly valuable. Elsewhere at the company, engineers looking to kick
off their own large-scale refactor might look to your documentation for an example
of how to execute a substantial refactor successfully.

Seeking feeback from senior engineers
All of us seek advice from peers and experienced colleagues when solving difficult
problems. While we might be eager to request feedback from senior engineering lead‐
ers (and benefit greatly from it), getting and retaining their attention can be notably
difficult. Whether they’ve been engaged with the refactor from day one as SMEs (see
Chapter 6), or are just getting up to speed, they’ll likely be slower to respond to your
inquiries simply because they are unusually busy with many responsibilities across a
multitude of projects. Ideally, if you are able to communicate your expectations
appropriately, none of these individuals should become bottlenecks.

The term “senior engineer” here refers to the most experienced
individual contributors within a team, department, or company at
large, not to be confused with the title, Senior Engineer, held by
many professionals in the industry. These are usually the folks with
much bigger titles like Senior Staff, Principle, or Distinguished
Engineer. Sometimes, these are simply the folks who have been at
the company the longest.

When soliciting feedback from these senior engineer leaders, we must first decide the
scope of the feedback we’re looking for. This is helpful for two main reasons. First,
explicitly defining which aspects of the problem or solution we want our colleague to
evaluate ensures that we won’t get unexpected, frustrating feedback on pieces we’ve
already nailed down. Second, they’ll be able to focus immediately on just the essential

Outside Your Team | 143

pieces, saving them a great deal of time and energy they would have otherwise spent
assessing a much greater problem.

Next, we have to determine how crucial their feedback is to the momentum of the
project; that is, can you continue to make progress without their input? If you believe
you can continue to make progress without their opinion, be explicit about it. This
way, the engineer can properly prioritize giving you the feedback you need against
similar requests they might be juggling from other engineers across the company. If
you believe their input is required for your team to continue making progress, letting
them know that they are now a blocker should give them adequate urgency to get
back to you quickly. Regardless of the urgency, you should set some clear expectations
for when you need their feedback by so that no one is left twiddling their thumbs.

If you’ve let a senior engineer know that their insights are a blocker,
set expectations for when you’d like to have heard from them, and
if you are still waiting for a reply, it’s time to get assertive. If their
calendar isn’t flooded with meetings, book some time with them
one on one to discuss the item at hand. (Be certain that your meet‐
ing description has all the pertinent details!) If you just need a few
minutes of their time, try stopping by their desk and seeing
whether they’re available to chat, or catch them on their way out of
a meeting. It’s much more difficult to put off talking to someone
when you’re face to face.

We also need to consider how crucial the senior engineer leader believes their own
feedback is to the momentum of the project. If you both agree that their input is not a
blocker, great! But if there’s a chance that they’ll be surprised and disgruntled if you
move forward without taking their opinion into consideration, you need to be aware
of it so that everyone’s expectations are properly aligned.

To illustrate this in action, let’s say you’re working on a prototype for a new library
you’re building as part of a large refactor. Your prototype defines some basic inter‐
faces, with a handful of temporary, incomplete implementations. You put up your
changes for code review, complete with a short description and links to a design
document your team developed. You want some feedback from a senior engineer, so
you tag them and a few other teammates for review. Unfortunately, you forget to tell
the senior engineer that you’re looking for feedback on the interfaces (not the imple‐
mentations) and are hoping to merge these changes within the next week.

A few days pass with comments from your teammates but nothing from the senior
engineer. You send them a message asking whether they’ve had a chance to take a
look at the code review. They assure you that they saw the request and that they
intend to get to it by the end of the week. After some back and forth with your

144 | Chapter 7: Communication

teammates, you decide to merge the prototype and continue iterating on it in subse‐
quent code reviews.

A day later, the senior engineer opens up your code review and begins to read
through it. They immediately begin commenting on the implementation details,
becoming increasingly alarmed as they realize that the code has already been merged.
Now everyone’s irritated: you’re irritated that the senior engineer took too long to
review your changes and ultimately focused on the wrong aspect of the code; they’re
irritated that they left comments on what turned out to be temporary code and that
you’ve merged your changes without waiting for their input. All of the disappoint‐
ment and miscommunication could have been avoided had the right expectations
been set from the start.

Working Alone
In the unfortunate circumstance when you’ve been tasked with executing a refactor
alone, you need your external communication to be much more frequent and deliber‐
ate than if you were working with a team. Why? When you’re working by yourself, it’s
far too easy to forget that others are concerned with your progress. You might forgo
using any project management software, relying instead on a series of sticky notes
strewn across your desk. You might still be required to participate in broader team
rituals such as a daily stand-up or weekly sync but feel a strong disconnect when
engaging in these tasks, given that your colleagues have limited context on your work.

Even if your manager is supportive of your work, you need to find a way to make it
accessible to a broader set of colleagues; this includes fellow teammates, engineers in
other parts of the organization, and upper management. To put it bluntly, everyone
but you is an external stakeholder. You should consider using all the techniques out‐
lined in “Outside Your Team” on page 138 and modifying the techniques from
“Within Your Team” on page 132. Here are a few ideas:

• If you are still required to participate in daily stand-ups with colleagues not
engaged with the refactor, consider jotting down your updates somewhere that is
easily accessible to external stakeholders. If not, you could host your own asyn‐
chronous stand-up, writing about what you achieved yesterday and what you
hope to achieve today; if you find project management tools useful, you might
use this time to update your tasks, using whatever lightweight process works best
for you.

• If your team is still hosting weekly syncs and encourages everyone to submit
agenda items, hold yourself to adding at least one topic every week. This will help
keep everyone on your team aware of the work you’re doing and will hopefully
give you some exposure to different perspectives on the problems you’re solving.
If you don’t have weekly syncs, consider blocking out an hour regardless. You can
use this time to review your work to date and update any documentation. (I find

Outside Your Team | 145

that I have a much easier time keeping documents up to date when I specifically
allocate time for it.) You might also consider writing a weekly summary and
posting it somewhere others can readily consume it.

• Host office hours when any external stakeholders (including engineers from
affected teams) can come ask questions about the refactor or talk through a prob‐
lem with you. The best cadence for these will depend on how often you’re mak‐
ing changes to others’ code and how engaged these engineers are with the
refactor; you can probably start off with twice a month and decrease or increase
the frequency as needed.

Always Iterate
If there’s only one thing you take away from this chapter, it should be this: there is no
single correct communication strategy. Every refactor needs different communication
strategies, and these strategies can change throughout the lifetime of the project. The
habits you establish should be molded by each of the facets that makes the refactor
unique: the team you’ve gathered, the engineering groups affected by the changes,
and the level of involvement of external stakeholders.

If at any point you find that your habits are no longer serving you well, shake things
up! In the best case, great communication habits can keep your team working effec‐
tively at a sustainable, steady pace. In the worst case, bad communication habits can
hold your team back and actively prevent the project from moving forward. If some‐
thing isn’t working, you’re much better off attempting to change it than sticking with
habits that could slow you down.

Our next chapter continues with the theme of establishing patterns that help you and
your team execute in a productive way. We’ll highlight an assortment of ideas (both
technical and nontechnical) your team might want to try throughout the refactor’s
development.

146 | Chapter 7: Communication

CHAPTER 8

Strategies for Execution

Opened in 1904, the New York City subway is among the world’s oldest and most-
used public transit systems, serving just under six million riders on an average week‐
day. Those of us who are intimately familiar with the sprawling network have
developed dozens of tiny optimizations that make riding the subway second nature.
We listen for announcements to changes in service late at night on a Tuesday. We
know the precise force and angle with which to scan our MetroCards through the
turnstiles. For newcomers to the city, we can share some of these small but mighty
tips to make their first few trips a bit less hectic.

Think of this chapter as like the friendly New Yorker giving you advice as you set out
to navigate the city’s subway system. It contains a medley of tips for promoting
smooth execution throughout a refactor. We’ll first touch on good team-building
practices. There are a handful of ways we can go beyond establishing regular commu‐
nication habits to keep our teammates productive and happy. Next, we’ll cover a few
items you should be keeping track of during the refactor to make sure that you’re
staying on course and know precisely what to attend to when you’ve reached the final
stages of the refactor. Finally, we’ll discuss a few coding strategies to keep sturdy reins
on the refactor as you’re implementing it.

Team Building
In Chapter 6, we examined a few reasons having a strong team is important within
the context of large software projects, including ambitious refactors. We mostly
focused on the benefits of having reliable teammates during difficult times (e.g., when
the project reaches a mundane stage or hits a new roadblock). What we didn’t men‐
tion is that teams that work well together are more creative, learn more from one
another, and ultimately solve problems better and faster. To that goal, it’s vital for you
and your teammates to prioritize regularly participating in team-building activities.

147

The options outlined here are not exhaustive, but I believe that they are some of the
most useful habits to develop to strengthen your relationship with your teammates.
Once you’ve built up the muscle memory around them, they’ll become second nature
and will surely make the refactor fly by smoothly.

Pair Programming
Pair programming is a great team-building tool. Working on a problem together
gives the participants a great opportunity to learn each other’s strengths (and weak‐
nesses) in a collaborative, low-stakes environment. If your team hasn’t had much
experience working together yet, consider encouraging them to pair upon a handful
of tasks at the onset of the project. Starting early is important; not only does a new
project give you the unique opportunity to set good habits from the very start, under‐
standing your teammates’ abilities early can help the project start off on the right foot
and continue to make forward progress efficiently.

More practically, pair programming can also be a great way to transfer knowledge
from one teammate to another. Engineers who are alone in understanding one or
more pieces of a given system are a liability to your project and, not infrequently,
your company as whole. In many cases, these engineers may feel that they are unable
to take time off or completely disconnect from work for a few days out of fear that
they’ll be needed in the event of an emergency with the part of the system only they
know. To ensure that no single developer on your team is a knowledge island, you can
set up pairing sessions as a means of transferring their expertise to others on the
team. Evenly distributing knowledge across each of your team members lightens the
load on any single developer if problems arise with any aspect of the refactor.

Pairing can also be a great way to debug or solve a difficult or abstract problem. We
say two heads are better than one for a reason: by having two engineers thinking
through the same problem, you’re more likely to come up with a greater variety of
solutions, landing on one that works well sooner. The active back and forth helps you
address disagreements head-on, refining your solution more effectively. As you navi‐
gate through the problem together, you’ll end up making fewer mistakes; in fact,
research out of the University of Utah shows that code written in pairs results in
about 15 percent fewer bugs. Finally, you’re less likely to get distracted; because you’re
both committing the time and energy to solving a problem together, reasoning
through the problem out loud, the temptation to check your email or shoot someone
a message decreases.

Refactoring in pairs can be particularly effective because while one person is typing,
the other is freer to think about the bigger picture. When refactoring, it’s easy to get
stuck in the weeds trying to untangle what often tends to be confusing, legacy code.
Your pair can help you regain focus on the greater goal and, by thinking through the

148 | Chapter 8: Strategies for Execution

https://oreil.ly/yA75W

problem a few steps further, point out any pitfalls you may run into earlier in the
development process.

Pair programming isn’t without its downsides, however. When it comes to scoping
out a problem or learning something new (e.g., using a framework, adopting a tool,
learning a programming language), some engineers, including me, prefer to do so on
their own. I find that I’m able to retain important concepts better if I stumbled
through learning them the first time around. For problems that are well-defined and
relatively straightforward to solve, pairing isn’t a particularly productive approach;
while there is a slight chance you might solve the task more quickly and produce a
less buggy outcome, tying up two engineers’ time on a simple task is not always the
best use of resources on your team.

Pairing can also be a draining task for the duo. Needing to articulate your thinking
process over a sustained period of time takes up quite a bit more energy than quietly
working on your own, reasoning through the problem internally. By the end of a
pairing session, you might need to take a break and switch gears to recharge. For
developers who aren’t great verbal communicators, pairing can be especially challeng‐
ing, making any pair programming exercise feel like a chore. This is why it’s impor‐
tant to be mindful of every one of the team’s abilities and preferences when
advocating for pairing.

In being mindful of drawbacks, here are a few recommendations for how to institute
pairing on your team:

Encourage pairing, but do not make it mandatory
There’s a strong chance that some members of your team are great proponents of
pair programming and others are not. By highlighting its benefits and underscor‐
ing your support for the practice, you’ll hopefully convince those who are on the
fence (or have never tried it before) to give it a go. (And hopefully, after having
tried it, they’ll be eager to repeat the exercise.) On the other hand, forcing those
who are uncomfortable to pair can be a recipe for disaster; they may grow to
resent the team and the project, leading them to seek a way out.

Pair engineers with similar levels of experience
Unless you’re using pair programming as a tool to teach something specific to
someone more junior, you’re better off pairing like-skilled engineers. When
working through a difficult problem or debugging an issue, developers who are
at a similar level are less likely to be frustrated by the other’s lack of experience.
You’ll more effectively bounce ideas off of one another if you’re at comparable
levels in your technical ability.

Timebox the session
Because pair programming can be taxing, it’s important to give the session a well-
defined cut-off (with breaks as needed). Start with an hour, and if you come to

Team Building | 149

the end of the time and you have the energy (and time) to keep going, extend
your session by another hour. Give each other an opportunity to call it a day; you
don’t want the pairing to stretch beyond either of your capacities and risk need‐
lessly decreasing the efficiency of the session.

Keeping Everyone Motivated
In Chapter 4, we discussed building a focused, properly balanced execution plan that
gives the team enough flexibility to prevent exhaustion. We can further ensure that
our teams stay motivated throughout a long at-scale refactor by taking the time to
recognize our teammates and celebrate our achievements along the way. Your team
doesn’t need a massive budget for branded mugs or access to coveted off-site activities
to build meaningful connections across the team or highlight the group’s contribu‐
tions. There are a number of simple but effective ways to keep everyone’s morale up.

Motivating individuals
First, we’ll consider how we can keep individuals motivated. One of the more com‐
pelling ways we can boost a teammate’s drive is by giving them the opportunity to
contribute to the refactor in a way that best leverages their unique skills and abilities.
Your teammates will be much happier (and likely more productive) if they are work‐
ing on pieces of the refactor that they find to be the most rewarding. If your team‐
mates are looking for opportunities to grow, whether by developing a new technical
skill or by overseeing a more significant portion of the project, do your best to make
these opportunities available to them. Remember how you pitched this teammate the
idea of joining your effort in Chapter 6 by offering them the opportunity for greater
visibility or responsibility (and perhaps even a promotion.)

If possible, give your teammates the flexibility to choose when, where, and how they
work. Not everyone is cut out to work from 9 a.m. to 5 p.m. with a half hour for
lunch at noon every day. Some might prefer to come in to the office at the crack of
dawn and head out in the early afternoon. Others might only log on midmorning,
pick up their children midafternoon, and wrap up after dinner. If you can accommo‐
date your teammates’ assorted schedules while continuing to maintain good commu‐
nication practices (see Chapter 7), they will be not only be thankful, but likely even
more productive overall!

Recognizing individual teammates for their distinct contributions is a great way to
keep them motivated. By showing them that you and the rest of your team appreciate
their hard work, you’re reaffirming that they are doing the right thing, encouraging
them to keep going, and fostering a sense of belonging on the team. Recognition can
take just about any shape: it can be through a formalized department- or company-
wide program, or can be as simple as crafting a handwritten note. Be mindful of your
teammates’ preferred way of being recognized. Although some enjoy hearing their

150 | Chapter 8: Strategies for Execution

name called out at an all-hands, others shy away from public praise. Recognition in
the wrong form is at best not very effective, and at worst a total fiasco. Sometimes, a
thoughtful email or glowing peer review is more than enough.

Your manager can be a great asset for helping you set up ways to
recognize your team as a whole. (You’ll probably need their sup‐
port if you’re hoping to get a budget for whatever you’re planning
to put together.) That said, there is unique value in having the team
recognize its peers.
You could, for example, put together a lightweight “Win of the
Week” tradition. To kick it off, the team acquires a small trophy (or
any item clearly visible from a teammate’s desk) and chooses some‐
one to recognize for excellent work done over the previous week.
This could be anything from stepping in to help resolve a tricky
bug, or crafting a great description for a given patch. The following
week, the winner chooses the next winner, passing on the trophy.
The tradition continues until the project wraps up or until the team
chooses to retire it.

Motivating teams
Next, we’ll take a look at helpful methods for keeping your team motivated as a
whole. A near foolproof way to get everyone excited about doing great work is to turn
it into a game. By gamifying the more mundane portions of the refactor, you may
find your teammates eager to complete tasks and progressing toward milestones
more quickly. A good example might be a simple game of Bingo. Identify small but
important contributions your team can make during the refactor’s current milestone
and plop them into a Bingo game sheet generation tool. These can be as simple as
pairing with someone on a difficult problem or completing 10 code reviews. You can
print out the boards and distribute them to your team and offer a small prize for
winners.

When gamifying any number of tasks, be mindful not to incite too much competi‐
tion. While it can be a great motivator, if it gets out of hand you’ll risk sparking con‐
flict and seeing morale and teamwork deteriorate. Incorporate aspects of teamwork
into the game deliberately; this will encourage everyone to pull up those around them
and further solidify your team. With a large-scale refactor, there is very little room (if
any) for sloppy execution, so you’ll also want to be careful to chiefly incentivize the
quality of the work rather than its completion. If you put emphasis on reaching the
finish line, your teammates might cut some corners in an attempt to get there faster.

Team Building | 151

When planning estimates for smaller subtasks within larger project
milestones, consider gamifying part of the process. Have each
member of the team submit their best guess of when you’ll hit a
target metric, following The Price is Right rules (i.e., closest without
going over). When you reach the metric, recognize the winner with
a drumroll reveal at your next team meeting. Everyone will get a
kick out of trying to hit the nail on the head and your estimates
might get better over time!

Finally, remember to celebrate your team’s achievements with a gathering or two
speckled throughout the project, particularly after concluding significant milestones.
Moments of celebration help create sustained engagement and maintain good morale.
If the team never has the opportunity to hit pause and commemorate each other’s
efforts, your refactor will begin to feel like an endless rat race. Carve out some time to
bring everyone together whichever way works best, whether that’s a team potluck
lunch or a midafternoon coffee toast. You’ll all be thankful to have taken a moment to
reflect on your accomplishments.

Keeping a Tally
As you’re executing your refactor, it’s important to check on your progress frequently
and maintain a running tally of important findings. By measuring and reflecting
often, you’ll be more confident that the project is headed in the right direction and
decrease the likelihood that your team forgets something important in the final stages
of the refactor. Be certain to continue to update the living version of your execution
plan, discussed in “Execution plan” on page 141, with your midproject updates.

Intermediate Metric Measurements
In Chapter 3, we examined a number of distinct ways to characterize the problems we
aim to fix with our refactor. We later used those metrics to inform our execution plan,
and further broke down the project into individual milestones, each with its own set
of metrics. We shouldn’t lose sight of these goals while actively executing the refactor
at the risk of veering off course. With every ambitious software project, there is a sig‐
nificant and dangerous opportunity for scope creep at every turn.

By measuring the team’s progress toward each intermediate metric on a weekly (or
biweekly) basis, you are holding yourselves responsible for moving the needle for‐
ward on the goals you’ve identified as the most important. With frequent check-ins,
the team is less likely to give in to the temptation to embark on any tangential side
quests, allowing for the project scope to increase. Periodic check-ins also give you the
ability to assess your velocity. If everyone is focused on the right tasks, but there is
little positive change in the metrics for several weeks in a row, something is clearly
amiss. Perhaps the team is struggling to make substantial progress because it

152 | Chapter 8: Strategies for Execution

continues to encounter a number of difficult bugs, or the metrics are not ideal candi‐
dates for conveying your team’s contributions. Whatever the underlying dilemma,
you’ll know you successfully solved it when you begin to notice a good change in
your metrics once more.

Unearthed Bugs
Regardless of whether your refactor is motivated by the desire to surface and fix sys‐
temic bugs, you are bound to encounter a handful of defects throughout the
endeavor. For each bug, no matter what you decide to do about it (fix it or not), you
should document when in the project it was uncovered, the conditions under which
it arises (for easy reproduction), and what actions were taken as a result. There are
typically two options when confronting a bug within the context of a refactor; the
first is to fix the bug, and the other is to reimplement it.

Consider the case in which your team fixes the bug. If the fix is easy and clean as a
result of the refactor, having an example you can quickly reference to demonstrate its
efficacy is convenient to show it to stakeholders or share it with peers. Sometimes,
just one or two thorny, well-documented bugs can convince anyone who was initially
on the fence about the refactor that it is well worthwhile. On the other hand, if your
team ports the bug into the refactor, you’ll need to know precisely where to find it
and how to reproduce it either to fix it or to hand it off to the appropriate team to
patch.

To Fix or Not to Fix
There are a number of factors to consider when deciding whether to fix a bug
encountered during a refactor. First, it is far easier to verify that the refactor accu‐
rately replicates the original behavior if it is copied exactly, bugs and all. By fixing a
bug while refactoring a section of code, we are decisively deviating from the reference
behavior. Not only do we now have to consider the fixed bug when doing thorough
regression testing of any kind, we also open ourselves up to introducing entirely new
bugs or unexpected behaviors as a result of the bug fix.

When refactoring at scale, we often find ourselves knee-deep in unfamiliar code.
What we might consider to be a bug might very well not be. Even if we consult with
the team responsible for the feature, and it confirms that there is a defect, we may not
have the necessary context to fix it, and the team responsible may not be comfortable
diving headfirst into the refactor. That said, fixing the bug now brings joy to your
users sooner and makes your refactored solution more correct. There is a certain
amount of convenience that comes with actively fixing issues as they arise.

My recommendation is to write failing unit tests highlighting the bug. Get in touch
with the team responsible for the affected feature and share your tests with them. Talk
to the team about the conditions for reproducing the bug. If the team believes it is

Keeping a Tally | 153

expected behavior, scrap the tests and continue with the refactor. If the defect is legiti‐
mate, have the team decide the priority of the fix. If it’s of high priority, have the team
fix the bug first, using the unit tests you wrote to confirm that the behavior now
works as intended. Then, once the bug fix has landed and the unit test now passes,
incorporate the fix into the remainder of the refactored code.

Clean-Up Items
In “Cleaning Up Artifacts” on page 87, we looked at the importance of including a
distinct phase in our execution plan for cleaning up artifacts produced during the
refactor. Every refactor should prioritize leaving the codebase in an orderly state for
other developers; after all, usually a substantial motivation for a large refactor is to
improve the ergonomics of your codebase. While we might have a modest intuition
about the kinds of artifacts we’ll be generating throughout the project well before we
write our first line of code, there will undoubtedly be an assortment of them we create
on the fly.

Keep track of everything that’ll need tidying, whether you plan to tackle the clutter at
the end of your current milestone or only in the final stages of the project. Updating
your list immediately as you render a section of code obsolete is critical; this way,
you’ll be certain to remove each relevant artifact once you’ve reached the cleanup
phase. The engineers who interface with the newly refactored code will be grateful for
an orderly experience.

Just as a cook would recommend cleaning pots and pans as you use
them when preparing a meal, I recommend continually cleaning up
as a refactor progresses. It is far easier (and safer) to remove pieces
of code soon after rendering them unnecessary. At this stage, the
myriad of interactions between the newly obsolete code and the
remainder of the refactor is fresh in your mind, and you risk mak‐
ing fewer mistakes extricating it.

Out-of-Scope Items
Nearly every engineer on your team will encounter a few opportunities to add scope
to the refactor during its lifetime. Obviously, your project will have a better chance at
hitting its important deadlines if everyone resists the temptation, but these opportune
extensions should not be outright ignored. Consider keeping a list of the opportuni‐
ties you encounter to expand on the project. Having a succinct set of spin-off projects
can demonstrate the versatility of your refactor; if there is a broad number of distinct
ways to capitalize on the project’s momentum to continue to improve the codebase,
your stakeholders (and peers alike) will be more likely to believe the refactor was a
valuable endeavor. If your own team (or any other team at the company) wants to

154 | Chapter 8: Strategies for Execution

build upon the foundation established by the refactor and continue making incre‐
mental improvements to the codebase following its completion, they could scope out
a few projects from this list and kick them off immediately.

Programming Productively
There is a handful of useful strategies you can adopt to make a lengthy refactor much
more pleasant for both yourself and your team members. Large software projects are
not always tricky to develop; in fact, when writing something entirely new, there
might be only a handful of difficult maneuvers, most of which are necessary only
when embedding the feature into the existing codebase. On the other hand, when a
significant amount of code needs to be written for a refactor, the majority of it a copy
of existing behavior, it needs to be carefully designed and delicately integrated with its
original implementation. There are considerably more opportunities for the painstak‐
ing process to fail. Hopefully, you can learn to navigate the refactoring development
process successfully by following the techniques described in this section.

Prototyping
When we set out to draft a plan for our refactor in Chapter 4, we aimed to strike the
right level of detail. We wanted the plan to be approachable for important stakehold‐
ers who might not be intimately familiar with the technical details, but sufficiently
specific that we could properly inform a team about the project and begin execution
without ambiguity. Where the plan remained deliberately vague is a perfect opportu‐
nity for prototyping.

Prototyping early and often helps your team ultimately move faster if you abide by
two important principles:

Know that your solution will not be perfect
Focus on crafting a solution that works well overall, being mindful about not
spending too much time perfecting the details. Remember that even if we spent
hours attempting to devise the ideal solution, a future change in requirements
might render it obsolete. (We saw a few concrete examples of this in Chapter 2.)
A great solution is one that solves the most important problems well and allows
for a fair amount of flexibility down the line.

Be willing to throw code away
If we spend a week or two writing a solution that simply doesn’t deliver, take the
pieces that work, throw the rest away, and start again. Prototyping is all about
trying something, learning from that experience, and starting again.

Let’s consider a refactor in which your team wants to split up a bloated class into a
few distinct components. Your team came up with a preliminary design that divides
its primary responsibilities into three new classes, but there are a number of minor,

Programming Productively | 155

albeit important, responsibilities that have yet to be assigned to any one of them.
Instead of committing wholeheartedly to a solution early in the process, you decide to
prototype a few options, trying out the ergonomics of the new classes in just a few
illustrative sections of the codebase. Given the prototypes, your team is able to decide
what works and what doesn’t, and iron out a solution that should integrate well with
the remainder of the codebase.

Keep Things Small
When making sweeping changes across a large surface area, it’s easy to get carried
away. Say, for instance, we need to migrate all callsites of one function,
pre_refactor_impl, to a new one, post_refactor_impl. There are about 300 instan‐
ces of pre_refactor_impl throughout the codebase, spanning just over 80 files. You
could do a simple find and replace, lump the changes into a single commit, and put
the patch up for review by a teammate. If the migration is fairly straightforward,
although creating just a single set of changes might appear to be more convenient,
there are a few severe disadvantages.

First, committing small, incremental changes makes it much easier to author great
code. By pushing bite-sized commits, you can get relevant feedback early and often
from your tooling (e.g., integration tests running on a server through continuous
integration). If you push a wide breadth of changes infrequently, you risk needing to
wade through and fix a heap of test failures. More modifications per commit leads to
a greater likelihood of cascading test failures; fixing one error only reveals another.
Keeping tight commits ultimately enables you to understand their impact better and
fix any failing tests faster. The same applies when manually verifying changes.

Second, reverting a small commit is much easier than reverting a big one. If some‐
thing goes wrong, whether during development or well after the code has been
deployed, reverting a small commit allows you to carefully extract only the offending
change.

Third, because concise commits tend to be sufficiently focused, you’ll also be able to
write better, more precise commit messages. With better commit messages, not only
will you be able to locate a specific set of changes faster, your teammates will under‐
stand them better when scanning through the version history at a later date. (Tiny
commits typically get reviewed and approved much, much faster, too!)

Finally, it is nearly impossible for a teammate to review the entirety of the modified
code adequately. Although organizations should not rely on code review to catch
bugs (relying instead on thorough and earnest testing), if there is insufficient test cov‐
erage, the burden of catching potential mistakes falls to the reviewer. Superficially, the
changes may seem easy to verify, but after auditing just a few of them, unless we
retain a steadfast focus, our ability to spot discrepancies wanes. Large changesets are
far easier to review if split up into logically organized, pithy commits.

156 | Chapter 8: Strategies for Execution

When refactoring, you want to maintain the original version his‐
tory as much as possible. Consider using operations like git mv to
move files around rather than deleting them and adding them
back. Make it clear in your commit descriptions that the change is
part of a larger refactor, so that engineers know to dig deeper into
the commit history when looking for a potential code owner. Be a
thoughtful teammate when writing descriptions for your team‐
mates reviewing your code. Write a thorough description, outlining
what the review should expect to find in the changeset, along with
any necessary context.

Test, Test, Test
Because refactors involve gradually reimplementing existing behavior, we need to
ascertain that the changes are not modifying the intended behavior. In practice, it is
typically much more difficult to verify that nothing has changed than the opposite,
making it particularly important to test incrementally and repeatedly when refactor‐
ing. By frequently rerunning unit tests, integration tests, or walking through manual
tests, we can either confirm that everything has remained unaffected or pinpoint the
precise moment at which the behavior diverged.

Before you begin modifying any section of code, verify that there
are neat, distinct unit tests for it. There might already be a handful
of tests to assert the behavior, but you should take the time to
determine whether any additional cases are missing. If the tests are
too coarse (e.g., only testing the flow for a top-level function,
without any tests for any of the individual helper functions), split
them up. Granular tests, just like granular commits, will help you
narrow down issues early.

Asking the “Stupid” Question
We’ve all been in that meeting: the meeting where we sit with a bunch of senior engi‐
neers, talking about a technology or a product feature we don’t understand very well.
At first, it seems as though everyone’s following along, nodding as a select few lead
the discussion. We’re confused, but we’re too worried that we’ll look unprepared to
ask any clarifying questions. There are two directions this meeting usually ends up
taking. The first is the one in which we continue to sit quietly and spend the rest of
the meeting trying to piece everything together, unable to contribute meaningfully to
the conversation. The second is the one in which someone else interjects, politely ask‐
ing the very same question we were too embarrased to ask. We’re thankful for our
teammate’s curiosity (thankful we weren’t alone), and we’re able to get back on track
with everyone else pretty quickly.

Programming Productively | 157

We can’t always count on our inquisitive teammates to have the same questions, nor
should we be content to waste time sitting in a meeting or reading an email thread,
continuing to wonder what is being discussed. So, I propose a third direction, in
which you stand up and simply ask the “stupid” question. By prioritizing clarity over
maintaining an illusion of omniscience, you are modeling important behavior for
your team. You’re affirming that no question is, in fact, a stupid question, and that
above all else, it’s important to make sure that everyone is on the same page. You’ll
have more productive discussions and fewer misunderstandings, and get to work
solving the right problems more quickly.

When refactoring something at scale, because the surface area of the changes can be
quite vast, there is a distinct chance that you will come in contact with portions of the
codebase you’re unfamiliar with. Being unafraid to seek out the experts in these areas
and ask for guidance is crucial. Whether you need a short explanation or a more in-
depth walkthrough, it’s imperative to build a strong understanding of the code you’re
seeking to modify. Not only will you save on development time, and introduce fewer
bugs as you refactor it, you’ll also have the insight necessary to refactor it in a way
that best suits the code.

Conclusion
Once you’ve pushed the final few commits and tidied everything up, you’re ready to
take on one last, vital task. You need to find ways to make all your efforts persist long-
term. Our next chapter will take a look at a few important steps your team can take to
ensure that your codebase does not slowly regress to its previous state.

158 | Chapter 8: Strategies for Execution

CHAPTER 9

Making the Refactor Stick

A little over a year ago, a friend of mine named Tim decided to stop consuming sugar
altogether to help him shed a few pesky pounds and regain more energy. The first
week was tough; he felt lethargic and craved anything sweet, but by the end of the
third week, the sugar withdrawal had abated and he began to feel peppy again.
Shortly afterward, the benefits of the new diet began to creep in: he felt more alert
throughout the workday, and he lost a few pounds.

After that, sticking to the diet was his biggest challenge. Tim had seen his friends try
and fail to stick to a diet, so he knew that he needed to set realistic expectations for
himself. To eliminate the temptation, he banished any sweet food from his apartment.
He kept a regular food journal to keep himself accountable, but allowed himself the
occasional treat when meeting up with friends. Two months into his journey, his part‐
ner joined him on the sugar-free journey, and together they were able to better sup‐
port and encourage one another. Today, Tim is in much better health and his energy
levels are only rivaled by his puppy.

Refactoring is a bit like taking up a new diet and sticking with it. Although it might
seem like the greatest challenge is figuring out the change to make and implementing
it, equally significant effort is required to ensure that the change lasts. In this chapter,
we’ll look at a variety of tools and practices we can adopt to ensure that the improve‐
ments we made with our at-scale refactor are as long-lasting as possible. We’ll exam‐
ine how to encourage engineers across the organization to embrace the patterns
established by the refactor and how to use continuous integration to continue to pro‐
mote their adoption. We’ll talk about the importance of educating fellow engineers by
doing a post-refactor roadshow. Finally, we’ll touch on how to integrate incremental
improvement into the engineering culture so that, hopefully, fewer large, at-scale
refactors are needed in your near future.

159

Fostering Adoption
Quite often, a large number of engineers will need to interact with your refactor. You
need these engineers’ support for the refactor and the patterns it established for two
reasons.

The first is to ensure that the changes it introduced persist long-term. Expansive
refactors can be polarizing; frequently, within any company of more than just a few
individuals, there are both avid supporters and opponents of the chosen design. If the
opponents of the design refuse to write new code following the new design/patterns,
they’ll find ways to avoid doing so and generate new cruft at the boundary between
the changes made by your team and their own code. Ultimately, this build-up could
render nearly all the benefits of the refactor meaningless.

Even if you plan and execute a quality refactor, not everyone will understand or agree
with your vision. For newcomers to the engineering team, the problems the refactor
attempted to solve may not be abundantly clear. When fellow engineers do not have
the necessary context to properly appreciate the outcome of a refactor, they may
struggle when working at its perimeter. They risk incorrectly implementing the new
patterns it introduces, or fail to use them at all in situations when the code would
greatly benefit from them.

The second reason you need engineers’ support is to enable the further permeation of
the patterns established by the refactor throughout the codebase. You not only want
the changes you introduced to remain, you also want them to inform future decisions
made by engineers working in the codebase for months, perhaps years to come. Con‐
sider a simple analogy: a refactor is just like weeding an overrun vegetable garden,
turning over the soil, and planting a few scallions. Maintaining the scallions would be
our first goal, and encouraging our family members to plant other vegetables of their
own into the newly replenished soil would be our secondary goal.

For example, a team refactoring the primary logging library used throughout its
extensive codebase, after more than a few mishaps with engineers accidentally leaking
personally identifiable information (PII) into their data processing pipelines, rewrote
the library’s primary interface to refuse arbitrary strings. If developers wanted to log a
new field or create a new log type, they now had to register it in the logging library
and then use it accordingly. Instead of replacing each individual callsite in the exist‐
ing logging library, the team decided to scope down the refactor and simply modify
the logic of the existing library to call into the new one.

Some engineers at the company were reticent to lose the flexibility that comes with
being able to log arbitrary strings. Engineers coming from previous companies with
more flexible logging might also be confused about why a new logging framework
would purposefully introduce these limitations. Without properly communicating
your motivations to these engineers, and working with them to address their

160 | Chapter 9: Making the Refactor Stick

frustrations, you risked them finding inventive ways of working around the safe‐
guards built into the new logging library, thus further increasing the risk that PII
would be leaked into your data processing pipelines once more.

Even if engineers accept the changes brought about by the refactor, they may not be
in favor of actively converting existing callsites to use the new library directly. They
may also be apathetic about adding new log fields and types to the new library, choos‐
ing instead to use existing fields and types for a broader range of logs, thereby dimin‐
ishing their specificity. By making it extremely easy to extend the logging library, and
then teaching engineers how to do so, you’ll ease their transition and, hopefully,
increase overall usage of the new library throughout the codebase.

While there a number of ways we can encourage adoption of the refactor across our
engineering organizations, the following methods are the ones that work best in my
experience. The first is to build ergonomic interfaces for engineers to use when inter‐
acting with the newly refactored code. These interfaces should be defined early in the
project’s execution and be further refined throughout development. You should be
gathering feedback from both your teammates and trusted peers across the engineer‐
ing organization on how the boundary between the refactor and the remainder of the
codebase could be made more ergonomic. If you’ve wrapped up the refactor and
haven’t sufficiently vetted your interfaces with their future users, set up a workshop
with a few engineers from distinct product areas and work with them to iterate on the
interfaces.

The methods we’ll look at more closely in this chapter are most effective post-
refactor. These include teaching engineers about the refactor using the documentation
you’ve crafted, and finally, carefully reinforcing usage of any new patterns introduced
by the refactor to encourage continued adoption.

Education
There are two primary methods of educating others about your refactor. The first is
active; this includes planning and leading workshops or similar training to engage
actively with engineers. The second is passive; this includes step-by-step tutorials
engineers can walk through on their own, or short online courses through your com‐
pany’s learning platform.

Active Education
An active educational component is most important when the refactor affects a criti‐
cal portion of the codebase that is used frequently by other engineers from a range of
teams. Engineers who are accustomed to an existing set of patterns will need to famil‐
iarize themselves with a whole new way of doing things.

Education | 161

Workshops
One of the best ways to ensure that engineers can work effectively with the refactored
code is to engage with them in a forum that requires them to work interactively
through code samples and ask questions as they learn how to interface with the refac‐
tor. A significant advantage of holding workshops is that it encourages busy engineers
to deliberately set aside time to get up to speed; some of us are involved in so many
different tasks that we would otherwise never manage to prioritize informing our‐
selves about the refactor.

The time to educate engineers actively about how to interface with the refactor is
once it’s been newly completed. You don’t want engineers coming in to learn new
code and patterns when there’s a risk that it might still be in flux or it hasn’t yet been
fully cleaned up and prepared for use by individuals who aren’t intimately familiar
with the details of the refactor. Take the time to verify that everything is in order
before scheduling your first workshop. Better yet, do a dry run of the workshop with
your team to iron out any kinks before opening it up to your peers.

These sessions shouldn’t be held in perpetuity. Ideally, within a few months, most of
the engineers most significantly affected by the refactor should be well acquainted
with it. At that point, the refactored code becomes the new normal, and demand for
help understanding it should dramatically decrease. Consider holding just two or
three workshops, and keep an eye on the interest level and subsequent attendance.
Live trainings, as engaging as they might be, are incredibly time consuming for your
team and should be held only a handful of times. If demand continues after more
than just a handful of sessions, you may want to invest in improving your documen‐
tation and leaning on it more heavily.

In practice, because just about every engineer uses logging in their regular workflow,
our previous example would a perfect candidate for a training session. Here’s how it
could be structured:

1. Give a quick overview of the goals of the refactor. To communicate its impact
effectively and excite your coworkers to take advantage of it, talk through the
most compelling examples. With the logging library, for instance, you might
show a few misleading log statements responsible for leaking PII over the past
few months; then, demonstrate how to use the new logging library to prevent this
information from being leaked altogether.

2. Next, to cement these concepts, pair up the attendees and ask them to migrate
the same simple log statement to use the new library. Answer any questions as
they arise. There may be more than one solution here; if there is, have the pairs
explain their distinct solutions.

162 | Chapter 9: Making the Refactor Stick

3. Finally, have the pairs choose a more complex log statement to migrate, ideally
one that requires extending the log library (by either adding a new log type or
field type). Check in with each group and answer any questions they might have.

Office hours
Office hours can be an equally helpful forum for actively educating your colleagues.
They give engineers an open opportunity to drop by and ask you and your team
questions about the refactor and its adoption in their specific use cases. Not everyone
who will interact with your refactor will have time (or interest) to attend a workshop;
having office hours when they can have your team’s undivided attention will make
them more likely to have a positive experience adopting the changes implemented by
the refactor. Furthermore, previous workshop attendees can drop by and get addi‐
tional guidance if necessary.

One of the advantages of hosting office hours is that it enables your team to time-box
the amount of time they spend answering questions pertaining to the refactor. Your
team may start to get bombarded with requests from colleagues across the company
as soon as the refactor wraps up. If you aren’t judicious with your time, these ques‐
tions could easily monopolize your attention (not to mention disrupt your day with
frequent context-switching.) By diverting all nonurgent requests to your office hours,
you are protecting your team’s time and focus.

Keep track of the questions and concerns your team addresses during these office
hours and use these to write an FAQ. This document will help save your team valua‐
ble time repeatedly answering the same questions both during office hours and
beyond.

Engineering gatherings
Many engineering groups host regular open forums (e.g., Thursday afternoon Drinks
and Demos, or bi-weekly Lunch and Learn) where engineers can present about the
work they’re spearheading. Large refactoring projects often come with a number of
interesting stories: the mind-boggling, load-bearing bug the team uncovered, the ter‐
rifying encounter with code last modified 15 years ago, the deploy gone wrong. Most
of us genuinely enjoy hearing one another’s stories about our experiences in the code
we share, and we tend to vividly remember the particularly good ones.

Sign up to give a short talk to your peers about a compelling portion of the refactor to
make them aware of the project and curious to learn more about its motivations and
how they might benefit from it in their areas of the codebase. Sometimes, a little bit of
great storytelling is all the publicity you need to garner the support of your fellow
engineers.

Education | 163

Passive Education
In Chapter 7, we discussed the importance of documentation: not only the impor‐
tance of producing thorough documentation throughout the refactoring process, but
also the importance of choosing a medium and organization scheme that works well
for your team. Once you’ve reached the final stages of the refactor, your team should
prioritize crafting documentation describing the intent of the refactor and how it can
benefit fellow engineers working within the same codebase. Per our discussion in
Chapter 7, any documentation you or your team produces should be added to your
source-of-truth directory.

This documentation can take a number of forms: it can be an FAQ, a short README
providing a high-level summary of the project’s goals, or a tutorial. Having documen‐
tation you can point curious engineers to helps your team save time answering ques‐
tions. As previously mentioned in “Office hours” on page 163, your team will likely
need to answer a multitude of questions from peers throughout the company. Instead
of answering everyone individually, your team can instead point them to prepared
documentation.

If you intend to write a how-to guide on navigating the codebase post-refactor, I rec‐
ommend writing it from a historical perspective; that is, ground it in the story of the
refactor, starting from the very beginning and concluding with the current state of
the world. By discussing the refactor from such a perspective, you can prevent your
documentation from immediately becoming outdated. Whenever possible, add dates
to give readers appropriate context (even something as broad as a year may suffice).
Let’s illustrate this, using our logging example.

1. Start by giving readers the insight that you and your team acquired by spending
the time understanding why the code had degraded before you sought to
improve it (see Chapter 2). In the case of our logging library, begin by giving an
overview of the initial design and the decisions that informed that design. Talk
about how the authors wanted the library to be lightweight and easy to use, and
allow anyone to (carefully) log just about anything conveniently.

2. Discuss how that as the product became more complex, and more engineers
joined the team, the risk of leaking PII increased. List recent, serious instances
when leaks occurred, demonstrating a growing frequency in recent months.

3. Describe your solution and how it inhibits PII from being leaked. Compare and
contrast the same log statement, using both the previous and new logging libra‐
ries. Try to avoid using words like “now,” “currently,” or “today.” Although you
may be outlining how the code presently functions from your perspective, there
is a strong chance that the code will continue to evolve. By prefacing your
explanations with something like “as of September 2020,” instead of “today,” you
are future-proofing your documentation.

164 | Chapter 9: Making the Refactor Stick

Reinforcement
Positive reinforcement is a powerful tool. Regardless of proximity to the project,
developers across the company will need to be reminded of the patterns established
by it (and probably more than once). Here, we have two broader options. You can
employ many of the motivational tactics we described in “Motivating individuals” on
page 150 to recognize engineers who are doing a great job of adopting the patterns
established in your refactor. Seeing your coworkers being publicly praised for their
contributions can lead to a rapid increase in adoption by developers far and wide.

A second option is to automate reinforcement in the development process with con‐
tinuous integration. With continuous integration, we can kick off a number of pro‐
cesses when an author pushes a new commit, indicates that their code is ready for
review, or prepares to merge their changes with the main development branch. A typ‐
ical setup will verify changes by running a series of tests alongside lints and code
analysis tools. We’ll look at both linting and code analyzers and then consider the
ways in which you can configure these tools to effectively free your team from need‐
ing to actively encourage and monitor adoption.

Progressive Linting
Progressive linting allows you to improve a codebase gradually by only enforcing
rules on newly written or modified code. This enables developers to address prob‐
lems slowly as they arise rather than requiring one or two engineers to patch every
instance where the rule would be violated. If your team is replacing one pattern with
another, writing a new (progressive) linter rule is an easy way to nudge developers to
use the newer pattern and prevent propagation of the deprecated pattern.

For example, as part of the logging library refactor, your team wants to eradicate ref‐
erences to logEvent, which allows for arbitrary strings to be ingested, in favor of
logEventType, which only logs specific, non-PII pieces of data. Your team could write
a new linter rule that bans any new usage of logEvent, with an error message inform‐
ing engineers that the function is deprecated and encouraging them to use logEvent
Type instead.

Some engineers are very sensitive about encountering unexpected linter failures. Be
certain to adequately communicate the goal of the new linter rule and when it will
come into effect so that no one is surprised. Add as much context to the error mes‐
sage as possible so that engineers hitting the error don’t need to pull up any additional
documentation to fix it.

Reinforcement | 165

Not all languages have extensible linters that allow for developers
to write custom rules, and even fewer have progressive linting
capabilities built in. Some engineering teams invest in building
these tools internally (and, in some cases, later open-source their
solutions). If you are using an extensible linter, and are able to
write custom rules, a quick way to introduce progressive linting is
by running the linter either only on modified files in a given com‐
mit or only on the code difference itself.

Code Analysis Tools
Many of the metrics covered in Chapter 3 can be monitored over time, using out-of-
the-box code analysis tools triggered at integration time. There is a wide range of
both free and paid open-source solutions that will automatically calculate code com‐
plexity at different scales (individual functions, classes, files, etc.) and generate test
coverage statistics. Many of these solutions are easily extendable so that your team
can develop and hook in its own metrics calculations and assert new rules as time
goes on.

For example, say your team wants to ensure that no function in the codebase exceeds
500 lines. Your team could configure your chosen code analysis tool to warn or throw
an error whenever a change causes a function to cross that threshold. If an engineer
comes along and adds a few lines to an existing function, increasing its line count
from 490 to 512, they’d be nudged to split up the function into smaller subfunctions
before merging their changes.

Gates Versus Guardrails
Each verification step configured in our integration flow can either be a gate, prevent‐
ing the changes from continuing to move forward, or a guardrail, producing a warn‐
ing for the code author to consider before proceeding.

Too many gates can be detrimental to an engineering organization: they slow down
development and can frustrate engineers (especially if they are unexpected). Say your
organization has configured 10 blocking test suites. When a developer is ready to put
their code up for review, the test suites kick off in parallel. Unfortunately, about half
of these suites take just over 10 minutes to run, and a few of them regularly produce
flaky results. Engineers are spending valuable time waiting for their code to clear each
of these 10 gates.

Now suppose that instead of setting up gates, the organization instead institutes
guardrails; that is, instead of having each of these test suites block progress, the team
decides which two or three are truly business-critical premerge, and labels the others
as optional. Engineers are now responsible for determining which suites they believe
to be most important to their changes, and if the results are flaky, they can choose to

166 | Chapter 9: Making the Refactor Stick

ignore them. Of course opting for more guardrails comes with its own risks, and per‐
haps more bugs may make it out into production, but by and large, I’m of the opinion
that we should be trusting our fellow engineers more.

Ownership
Many engineers at larger companies (including me) are often pinged with questions
about code they are listed as having last modified. As someone who has refactored a
significant breadth of code as a result of multiple large-scale refactors, I try to main‐
tain version history as much as possible, but my name often pops up via git blame
deep in the depths of functions I’m only vaguely familiar with. As a result, I’ve been
brought into incidents, tagged on JIRA tickets, and assigned to code reviews with very
little context, only to disappoint the individuals seeking my help. Fortunately, we can
frequently correctly identify the team responsible for the code at hand. Unfortunately,
every so often, the code is not owned by anyone, and no one is eager to claim it.

Unowned code is a thorny problem that nearly every company with a sizable engi‐
neering team faces. We will not attempt to solve it here, but I do want to provide you
with some defenses in case you or your team is pulled in by virtue of a git blame.
While you might be happy to help, be careful not to set a precedent of cordially
accepting to solve problems pertaining to unowned code. Before you know it, not
only will you have cemented yourself as the de facto owner of that code, but others
may come knocking, requesting your help with unrelated instances of unowned code.

Let the individual reaching out to you know that your team is not responsible for the
given code. Offer to work with them (or ask your manager work to with them) to
identify a better candidate. If the ask is short-term (e.g., a simple bug fix) and rela‐
tively urgent, you may have better luck identifying someone who has the time and
sufficient context to prioritize it. Hopping through version history to find a viable
temporary owner prior to your own changes or identifying the developer (and from
there, the team) with the most recent commits in the same file are both good options.

Once you’ve identified someone who is able to handle the immediate request, ask
your manager to work with their peers to locate a longer-term home. These conversa‐
tions may result in a long, frustrating game of hot potato, but hopefully, at this point,
you’ve successfully exfiltrated yourself from the equation.

Integrating Improvement into the Culture
There will always be a need for large-scale refactors, as long as none of us can predict
how shifts in technologies or requirements will continue to affect our systems. How‐
ever, I do believe that some large-scale refactors are avoidable, and that we should do
our best to prevent them when possible. As we conclude this chapter, I want to leave
you with some thoughts on how to build a culture of continuous improvement. By

Integrating Improvement into the Culture | 167

perpetually pinpointing and taking advantage of opportunities for tangibly improving
our code, we can hopefully ward off ambitious, disruptive refactors for a while longer.

First and foremost, one of the best ways to maintain a healthy codebase is simply to
continue deliberately refactoring small, well-contained portions of code as you
encounter the opportunity. We do not want to become drive-by refactorers (see
“Because You Happened to Be Passing By” on page 16), but instead focus on incre‐
mentally improving areas of the codebase owned and maintained by our own team.
There are always plenty of opportunities for us to tidy up in our own neighborhood.
When we encounter an opportunity for another team to improve their code, we can
reach out, leaning toward asking questions to understand their problems better,
rather than immediately proposing a solution. Work together to craft a cleaner
implementation.

We should encourage and facilitate design conversations on our team frequently,
seeking others’ feedback early rather than forging ahead on our own. Code reviews
are not only an opportunity for someone to double-check our work, but also a chance
for an open discussion about how we can make our solution just that much better. As
code authors, we should consider annotating our code reviews with specific questions
for our reviewers. As reviewers, we should be just as analytical when reviewing our
peers’ code as we are when we are writing code ourselves.

Finally, hold inclusive design reviews early in the feature development process. This
means inviting engineers from all backgrounds to evaluate your designs and ask
questions. Your reviewers should span all experience and seniority levels; they should
include individuals from a wide range of backgrounds. The more diverse perspectives
you are able to gather, the more likely you’ll be able to spot fatal flaws early and, ulti‐
mately, the more likely you’ll be able to architect a far superior solution.

Whenever you next sit down to work, think critically about how what you do today
might or might not lead to a large-scale refactor later. Sometimes, all we need is a lit‐
tle reminder of the potential long-term consequences of our decisions to steer us back
in the right direction.

168 | Chapter 9: Making the Refactor Stick

PART IV

Case Studies

Before I dive into our case studies, let me set the stage by telling you a little bit about
Slack: the history of the product, the company, and its early influences.

Slack was developed as an internal tool at a small gaming company based out of Van‐
couver called Tiny Speck. The team, a mash-up of engineers, designers, and product
people from Flickr, sought to build a fantastical, massively mulitplayer online game
focused on community building. They called it Glitch.

Because everyone was distributed across North America, Tiny Speck began to rely
heavily on internet relay chat (IRC) to communicate. Before long, the team realized
that it needed something a bit more powerful: a tool that enabled it to keep in touch
asynchronously, search through message history, and send files. The members set out
to build it.

The game ultimately shut down in 2012, and the company laid off most of its employ‐
ees, but Tiny Speck had one final trick up its sleeve. In an unlikely pivot, the few
remaining employees chose to commercialize their internal communications tool.
They polished the experience and branded it Slack: searchable log of all conversation
and knowledge.

The Tiny Speck crew contacted friends and past colleagues to test out its new tool.
With each new batch of users, the team collected feedback, fixed bugs, and built new
functionality. By May 2013, the product was ready for a preview release, available to a
select few who requested invitations. Just nine months later, Slack launched publicly.

Usage skyrocketed. Within a year, the tool went from having just under 15,000 daily
active users to 500,000. By the time the product hit its two-year anniversary, more
than 2.3 million users were using Slack every day. In late 2019, nearly six years from
launch, that number exceeded 12 million, with more than 1 billion messages sent
every week.

Many of Slack’s early technology and design decisions were informed by the founders’
experience building Flickr and Glitch. The usage of PHP and MySQL, for instance,
was a logical one, given their experience building the photosharing website in 2004.
In fact, much of Slack’s basic server functionality has its roots in Flamework, a PHP
web-application framework, borne out of the processes and house style developed at
Flickr; you can find it on GitHub. Much of the real-time messaging infrastructure
was derived directly from Tiny Speck’s IRC-like internal tool.

In early 2016, Slack began to look at some alternatives to the Zend Engine II inter‐
preter for PHP. There were two main contenders: upgrade to PHP 7 and use Zend
Engine III, or try Facebook’s HipHop Virtual Machine (HHVM). After some deliber‐
ation, leadership decided to roll out the HHVM runtime to its web servers. Once the
rollout proved successful, the engineering team began to adopt the Hack program‐
ming language, a gradually typed dialect of PHP developed to run atop HHVM. At
the time of publication, the portion of Slack’s codebase that was once written in PHP
is now written in Hack.

Both of the case studies in this section will focus on large refactoring efforts carried
out on the portion of the codebase written in PHP and, later, Hack. To convey the
nature of each problem as well as possible, the code samples in these sections will be
in Hack. But don’t worry! While the snippets help provide small, concrete examples
of the problem we were tackling, they are not the focus of the story. Refactoring at
scale is primarily about the process and the people involved rather than the code
itself, and I hope that these case studies help illustrate exactly that. If you’re still con‐
cerned about being able to parse the code samples, let me reassure you that at the
time, Hack code still looked quite a bit like PHP. For those who aren’t comfortable
with either Hack or PHP, we’ll walk through each snippet in detail so that you can get
your bearings.

I’d like to draw attention to one final observation before we move on. At the time of
publication, Slack has only been publicly available for six years. The code, the prod‐
uct, and the company are all relatively young. The code has had to scale rapidly to
handle increasing customer usage as well as a growing number of engineers develop‐
ing the product. Many of the large refactoring efforts that have begun throughout the
company over the years have been in response to hypergrowth, both external due to
high adoption and internal due to hiring.

https://oreil.ly/IRayS

CHAPTER 10

Case Study: Redundant Database Schemas

For the first of our two case study chapters, we explore a refactor I carried out with a
few other members of my team during my first year at Slack. The project centered on
consolidating two redundant database schemas. Both schemas were tightly coupled to
our increasingly unwieldy codebase, and we had very few unit tests to rely on. In
short, this project is a great example of a realistic, large-scale refactor at a relatively
young, high-growth company with a modest number of engineers and an increas‐
ingly unwieldy codebase.

This project was successful primarily because we remained hyperfocused on our ulti‐
mate goal of consolidating the redundant database tables. We drafted a simple but
effective execution plan (Chapter 4), thoughtfully weighing risk and speed of execu‐
tion to deliver on our solution promptly. We opted for a lightweight approach to
gathering metrics (Chapter 3), choosing a narrow focus on just a few key data points.
We proactively communicated our changes widely, across the entirety of the engi‐
neering team, whenever we completed a new milestone (Chapter 7). We built tooling
to ensure that our changes would persist (Chapter 9). Finally, we successfully demon‐
strated the value of the refactor by seamlessly shipping a new feature built atop the
newly consolidated schema just weeks after its completion. This enabled us to get fur‐
ther buy-in to kick off further refactors (Chapter 5).

Although the refactor yielded the performance improvements we sought, we took a
few missteps along the way. Due to significant pressure from our most important cus‐
tomers, we rushed to start making headway; we did not investigate why the schemas
had converged, nor commit our plan to writing for other teams to consume easily
(Chapter 4). We didn’t seek broader, cross-functional support (Chapter 5), leaving the
bulk of the work to our small team. Even then, we struggled to keep up the momen‐
tum, and the refactor dragged in its final few weeks (Chapter 8).

171

Before we dive into the refactor itself, however, it’s imperative to understand what
Slack does and the basics of how it works. If you aren’t familiar with the product, I
strongly recommend giving this section a thorough read. If you’re a regular Slack
user, feel free to skip ahead to “Slack Architecture 101” on page 174.

Slack 101
Slack is first and foremost a collaboration tool for companies of all sizes and indus‐
tries. Typically, a business will set up a Slack workspace and create user accounts for
each employee. As an employee, you can download the application (on your desktop
machine, your mobile phone, or both) and immediately begin communicating with
your teammates.

Slack organizes topics and conversations into channels. Let’s say that you’re working
on a new feature that enables your users to upload files into your application faster.
We’ll call the project “Faster Uploads.” You can create a new channel name, #feature-
faster-uploads, where you can coordinate development with fellow engineers, your
manager, and product manager. Anyone at the company curious to know how devel‐
opment is going on “Faster Uploads” can navigate to #feature-faster-uploads and read
through the recent history or join the conversation and ask a question to the team
directly.

You can see a simple example of what the Slack interface looked like during the first
half of 2017, around the time of this first case study, in Figure 10-1.

Here, our example user is Matt Kump, an employee of Acme Sites. You can see the
name of the workspace we’re currently viewing at the top left, and Matt’s name imme‐
diately below it.

The leftmost sidebar contains all of Matt’s channels. We’ll ignore the starred section
for now and focus on the Channels section first. We can see from this list that Matt is
involved in conversations about accounting costs (#accounting-costs), brainstorming
(#brainstorming), business operations (#business-ops), and a handful of others. Each
of these channels is public, meaning that anyone with an account at Acme Sites can
discover the channel, view its contents, and join it.

You might have noticed that the #design-chat channel has a little lock where the oth‐
ers have the # symbol. This indicates that the channel is private. Only users who are
members of the private channel can discover it and view its contents. To join a private
channel, you must be invited by someone who is already a member.

172 | Chapter 10: Case Study: Redundant Database Schemas

Figure 10-1. Slack interface circa January 2017

Farther down the sidebar is Matt’s list of Direct Messages. We can see that he’s in a
number of direct, one-on-one conversations with fellow teammates like Brandon,
Corey, and Fayaz. He is also in a group conversation with both Lane and Pavel; these
work just like direct messages, but with a handful of teammates rather than just one.

Understanding the distinction between public and private channels
becomes important when we start discussing some of the key prob‐
lems this case study refactor sought to solve.

You may have noticed that some of the channels in the sidebar appear bolded in
bright white. This indicates that they contain new messages you haven’t read yet. If
Matt were to select #brainstorming, he would find some new content to read, and the
channel in the sidebar would fade to match the others.

While there’s much, much more to Slack, this covers the basics you’ll need to under‐
stand before we dive into the historical context leading up to this case study.

Slack 101 | 173

Slack Architecture 101
Now let’s explore a few basic components of Slack’s architecture that are at the core of
our study. It’s important to note that some of these components have changed signifi‐
cantly beyond the refactoring effort outlined in this chapter, so the details provided
here do not accurately reflect how Slack is architected today.

Let’s take a look at a simple request to fetch message history for a given channel. I’ll
boot up my Slack instance and pop open one of my favorite channels, #core-infra-
sourdough (shown in Figure 10-2), where a handful of infrastructure engineers dis‐
cuss sourdough baking.

Figure 10-2. Reading the latest bread-baking advice in #core-infra-sourdough

If I monitored network traffic, I would have seen a GET request to the Slack API for
channels.history with the channel ID for #core-infra-sourdough. The request
would first hit a load balancer to reach an available web server. Next, the server would
verify a few things about the request. This includes confirming that the provided
token is valid and that I have access to the channel I want to read. If I had access, the
server would fetch the most recent messages from the appropriate database, format
them, and return them to my client. Voila! In just a few milliseconds, I could fetch the
most recent content for the channel I selected.

How did the server know which database to reach out to in order to locate the correct
messages? Within the product, everything belonged to a single workspace. All mes‐
sages were contained within channels, and all channels were contained within a
workspace. Having everything map to a single, logical unit gave us a convenient way
of horizontally distributing our data.

Every workspace was assigned to a single database shard, where all of its relevant
information was stored. If a user was a member of a workspace and wanted to get a
list of all the public channels available, our servers would make an initial query to
find out which shard contained the workspace’s data and then query that shard for
the channels.

If a large customer grew and began to occupy more space within a shard that it
shared with other companies, we redistributed these other companies to different
shards, giving the growing customer more wiggle room. If a customer was the sole

174 | Chapter 10: Case Study: Redundant Database Schemas

occupant of their shard and they continued to grow, we upgraded the shard’s hard‐
ware to accommodate the growth. All in all, our database structure looked as pictured
in Figure 10-3.

Figure 10-3. Some workspaces distributed across shards

Next, we’ll take a peek at how we stored a few key pieces of information in each work‐
space shard. Specifically, we’ll look at channels and channel membership. At the start of
2017, Slack had a few tables responsible for storing information about channels. We
had a table that stored information for public channels, called teams_channels. We
had another table, groups, which stored information for private channels and group
direct messages (messages among more than one user). Each of these tables con‐
tained basic information about the channel, things like the name of the channel,
when it was created, and who created it. Figure 10-4 illustrates a few sample rows of
two tables we used to store channel information.

Figure 10-4. Simplified table schema for teams_channels and groups

We stored information about members of those channels on teams_channels_mem
bers and groups_members, respectively. For each member, we would store a row

Slack Architecture 101 | 175

uniquely identified by the combination of workspace ID, channel ID, and user ID. We
additionally stored some key pieces of information regarding that user’s membership
such as the date that they joined the channel and the time, as a Unix epoch time‐
stamp, at which they last read content in that channel. Figure 10-5 demonstrates that
these two tables were nearly identical.

Figure 10-5. Simplified table schema for teams_channels_members and
groups_members

Finally, for direct messages, we had a single table called teams_ims (shown in
Figure 10-6) to store information about both the channel itself and its membership.

Figure 10-6. Simplified table schema for teams_ims

176 | Chapter 10: Case Study: Redundant Database Schemas

In total, we had three distinct tables to store information about channels, and three
distinct tables to store information about channel membership. Figure 10-7 illustrates
the role of each table as it relates to the kind of channel it dealt with.

Figure 10-7. Chart designating the tables responsible for storing channel and respective
membership information, depending on its kind (public, private, group DM, or DM)

Scalability Problems
Now that we have a better understanding of Slack’s basic architecture and, more
specifically, how channels and channel membership were represented, we can dive
into the problems that arose as a result. We’ll describe three of the most serious prob‐
lems we encountered, as they were experienced by our largest customer at the time,
which we’ll refer to as Very Large Business, or VLB for short, for the remainder of the
chapter.

VLB was eager for all of its 350,000 employees to use Slack. It had begun using the
product slowly at first but began ramping up its usage aggressively during the first
few months of 2017. By April, it had just over 50,000 users on the platform, nearly
double that of our second-largest customer. VLB started hitting the limitations of
nearly every piece of our product. At the time, I was part of the team responsible for
Slack’s performance with our biggest customers. For several weeks, our team shared a
rotation whereby two of us needed to be at our desks in our San Franciso headquar‐
ters at 6:30 a.m. to be ready to respond to any immediate issues during VLB’s peak
log-in time on the East Coast. As our team scrambled quickly to patch problems left
and right, we began to notice that each of them was exacerbated by the fact that we
had redundant database tables for storing channel membership.

Booting Up the Slack Client
Every weekday morning, starting at 9 a.m. eastern time, VLB employees would start
logging on to Slack. As more people began their workday, more load began to pile up
on VLB’s database shard. Our existing instrumentation showed us that the culprit was
most likely one of the most crucial APIs we called on startup, rtm.start.

This API returned all the necessary information to populate a user’s sidebar; it
fetched all the public and private channels the user was a member of, fetched all the
group and direct messages they had open, and determined whether any of those
channels contained messages that they hadn’t yet read. The client would then parse

Scalability Problems | 177

the result and populate the interface with a tidy list of bolded and unbolded
conversations.

From the server perspective, this was an incredibly expensive process. To determine a
user’s memberships, we needed to query three tables: teams_channels_members,
groups_members, and teams_ims. From each set of memberships, we extracted the
channel_id and fetched the corresponding teams_channels or groups row to display
the channel name. We also queried the messages table to fetch the timestamp of its
most recent message, which we compared to the user’s last_read timestamp to
determine whether they had any unread messages. We executed the vast majority of
these queries individually, incurring network roundtrip costs each time.

File Visibility
Sporadically throughout the day, we noticed spikes in expensive queries to the data‐
base. Our dashboards surfaced a few potential candidate callsites, including the func‐
tion responsible for calculating file visibility at the core of most of our files-related
APIs. Popping open the target function, we yet again came face to face with a set of
complex queries.

When a user uploads a file to Slack, the servers write a new row to the files table
denoting the file’s name, its location on our remote file server, and a handful of other
relevant pieces of information. Whenever a file is shared to a channel, we write a new
entry to the files_share table, denoting the file ID and the ID of the channel to
which it was shared. When a file is shared to a public channel, it becomes visible to
any user on the workspace and is denoted as publicly discoverable by setting the
is_public column to true on its files row. Thus, in the simplest case, the file is pub‐
lic, we know it is quickly, and we can reveal it to the user.

When a file isn’t public, however, the logic becomes a little bit more complicated. We
have to cross-reference all channels that the user is a member of with all the channels
where the file was shared. As is the case for rtm.start, to determine a user’s complete
set of channel memberships, we had to query three distinct tables. We then combined
those results with those from the files_shares table for the target file. If we found a
match, we could show the file to the user; if not, we returned an error to the client.

Mentions
The query that caused the most consistent amount of load on VLB’s shard for the full
duration of the workday was the query responsible for determining whether a user
(or the topics they subscribe to) were mentioned in a channel and hadn’t yet read
those messages. A mention can be any number of things within Slack. It can be a user‐
name or a username prefixed with the @ symbol. It can be a highlight word for which
the user has enabled notifications within their user preferences. The client would

178 | Chapter 10: Case Study: Redundant Database Schemas

then use that data to populate badges with the number of unread mentions to the
right of the corresponding channel name in the sidebar. You can see one of the many
complex mentions-related queries in its 40-line glory in Example 10-1.

This query, yet again, required fetching a user’s memberships across the three mem‐
bership tables. The tricky part was when we needed to exclude any memberships for
which the associated channels were deleted or archived, requiring us to join the
membership results with their corresponding channel row on either groups or
teams_channels.

Example 10-1. Query to determine whether to notify a user of a mention; % symbolizes
substitution syntax

SELECT
 tcm.channel_id as channel_id,
 'C' as type,
 tcm.last_read
from
 teams_channels tc
 INNER JOIN teams_channels_members tcm ON (
 tc.team_id = tcm.team_id
 AND tc.id = tcm.channel_id
)
WHERE
 tc.team_id = %TEAM_ID
 AND tc.date_delete = 0
 AND tc.date_archived = 0
 AND tcm.user_id = %USER_ID
UNION ALL
SELECT
 gm.group_id as channel_id,
 'G' as type,
 gm.last_read
from
 groups g
 INNER JOIN groups_members gm ON (
 g.team_id = gm.team_id
 AND g.id = gm.group_id
)
WHERE
 g.team_id = %TEAM_ID
 AND g.date_delete = 0
 AND g.date_archived = 0
 AND gm.user_id = %USER_ID
UNION ALL
SELECT
 channel_id as channel_id,
 'D' as type,
 last_read
FROM

Scalability Problems | 179

 teams_ims
WHERE
 team_id = %TEAM_ID
 AND user_id = %USER_ID

Consolidating the Tables
Now that we have sufficient background on the problem we aimed to solve, we can
begin to discuss the refactor. I wish I could say that consolidating teams_chan
nels_members and groups_members into a single table was a well-planned and
smartly executed project, but that would not be true. In fact, the more chaotic por‐
tions of the refactor are what inspired and informed a great deal of the ideas in this
book. We kicked things off with a sense of urgency, didn’t keep great tabs on progress
as we went along, and in the end, although we knew we had decreased the load across
most of our database tier, we could only point to a single metric to demonstrate
roughly by how much. What ultimately made the project a success was the smart,
dedicated set of individuals who helped us cross the finish line. Although our largest
customers stood to benefit the most from the refactor, all of our customers ultimately
benefited from the project.

We started the project somewhat immediately and without a written plan. Our top
priority was to get the consolidation of the tables just to the point where we could
migrate the one query that was hammering our database shards the most: the men‐
tions query.

Although we knew that a great many queries would equally benefit from the consoli‐
dated table, their migration was strictly secondary. In Chapter 1, I strongly suggested
that you not embark on a large-scale refactor unless you are confident that you can
finish it. In this case, we certainly intended to finish the table consolidation; we just
didn’t know whether other, more pressing performance issues might creep up and
need to be prioritized over the refactor. We were willing to take the risk, given the
urgency of the problem at hand, fully aware of the consequences if we failed to finish
the migration.

First, we created a new table, channels_members. We combined the schemas of the
membership tables, completed with the same indices, and introduced a new column
to denote whether a row originated from teams_channels_members or groups_mem
bers, both to ease the migration and ensure that we could respect any business-logic
dependencies around the initial tables. Figure 10-8 shows our goal state as compared
to Figure 10-7, our starting state.

180 | Chapter 10: Case Study: Redundant Database Schemas

Figure 10-8. Our goal state

Gathering the Scattered Queries
Rewriting our queries to target a single new table would not be easy. Slack’s codebase
was written in a very imperative style, with everything from short functions to long
functions, distributed across hundreds of loosely namespaced files. Its original
authors had stuck to what they knew well and steered clear of object-oriented pat‐
terns due to performance concerns with PHP. They preferred writing individual
queries inline rather than relying on an object-relational mapping library and risk
bloating the codebase early.

One-off queries to either teams_channels_members or groups_members were strewn
across 126 files. Many of the queries hadn’t been touched since well before the prod‐
uct launched. To top it off, we knew much of the code that contained these queries
didn’t have great unit test coverage. To give you a sense of what these might have
looked like, I dug up some old code, which you can see in Example 10-2.

Example 10-2. An inlined SQL query to teams_channels_members

function chat_channels_members_get_display_counts(
 $team,
 $user,
 $channel
){
 // Some business logic

 $sql = "SELECT
 COUNT(*) as display_counts,
 SUM(CASE
 WHEN (is_restricted != 0 OR is_ultra_restricted != 0)
 THEN 1
 ELSE 0
 END) as guest_counts
 FROM
 teams_channels_members AS tcm
 INNER JOIN users AS u ON u.id = tcm.user_id
 WHERE
 tcm.team_id = % team_id
 AND tcm.channel_id = % channel_id
 AND u.deleted = 0";

Consolidating the Tables | 181

 $ret = db_fetch_team($team, $sql, array(
 'team_id' => $team['id'],
 'channel_id' => $channel['id']));

 // A bit more business logic

 return $counts;
}

Business logic code surrounding these queries would index directly into the resulting
columns, cementing a tight coupling between our database schemas and the code.
Whenever we introduced new columns, we had to update corresponding code to take
it into consideration. Say we had a column on the files table called is_public to
denote whether the file was public. If we later introduced additional logic that
required us to check an additional property to determine whether the file was public,
any code that relied on a simple check of if ($file['is_public']) would need to
be updated to accommodate for that change properly.

To consolidate teams_channels_members and groups_members into channels_mem
bers, we needed to identify all the queries to either table scattered across the code‐
base. A quick grep of the codebase and we were able to extract a list of all the
locations where we queried groups_members or teams_channels_members. We plug‐
ged the list of files and line numbers directly into a shared Google Sheets file, shown
in Figure 10-9.

Figure 10-9. Google Sheets file to track queries to teams_channels_members and
groups_members

182 | Chapter 10: Case Study: Redundant Database Schemas

We decided to create a single file where we could house all the queries related to
channel membership. Our effort to revive our struggling membership queries con‐
veniently arose around the same time engineers had begun having conversations
about centralizing our queries. We were a growing team, trying to execute quickly,
and needing to remember to update queries in haphazard corners of the codebase
every time we altered a table was getting tedious. A few proposals had been shopped
around, with engineers in favor of storing all queries to a given table in a single file.
While some wanted an approach that would allow them to generate queries, given a
set of parameters, leading us to build a more complex data access layer, others wanted
to continue to be able to read the queries inline. We decided that with this project,
we’d prototype minimal query generation as a means of limiting the number of indi‐
vidual functions in our new file. We decided to call this new pattern unidata, or ud
for short, thus naming our target file ud_channel_membership.php.

Developing a Migration Strategy
Now that we had a table and a set of queries to migrate, we could get started. We
needed to identify each of the queries from our initial grep, which inserted rows,
updated values, or deleted rows. For each query, we created a corresponding function
in our unidata library containing a copy. Each function would take a parameter to
indicate whether to execute the query on teams_channels_members or groups_mem
bers, alongside some logic to execute the same query conditionally against our new
table, channels_members. The general idea is shown in Example 10-3.

Example 10-3.

function ud_channel_membership_delete(
 $team,
 $channel_id,
 $user_id,
 $channel_type
){

 if ($channel_type == 'groups'){
 $sql = 'DELETE FROM groups_members WHERE team_id=%team_id AND
 group_id=%channel_id AND user_id=%user_id';
 }else{
 $sql = 'DELETE FROM teams_channels_members WHERE team_id=%team_id AND
 channel_id=%channel_id AND user_id=%user_id';
 }

 $bind = array(
 'team_id' => $team['id'],
 'channel_id' => $channel_id,
 'user_id' => $user_id,
);

Consolidating the Tables | 183

 $ret = db_write_team($team, $sql, $bind);

 if (feature_enabled('channel_members_table')){
 $sql = 'DELETE FROM channels_members WHERE team_id=%team_id AND
 channel_id=%channel_id AND user_id=%user_id';
 $double_write_ret = db_write_team($team, $sql, $bind);

 if (not_ok($double_write_ret)){
 log_error("UD_DOUBLE_WRITE_ERR: Failed to delete row for
 channels_members for {$team['id']}-{$channel_id}-{$user_id}");
 }
 }

 return $ret;
}

Once we had successfully moved over all write operations, we wrote a backfill script
to copy all existing data from both membership tables onto our new table. Note that
we migrated write operations before starting a backfill to ensure that the data in the
new table would be accurate. We then backfilled all membership data for our own
workspace, followed promptly by VLB during off-hours to prevent any unnecessary
load during their workday. We tripled-checked that no errant writes to either table
remained outside of our new library, but given that the engineering organization was
moving quickly, there was a nonzero chance we had missed one or two queries. We
had not yet put any mechanisms in place to prevent an engineer on a different team
from adding a new query without alerting us, so to ensure that the backfilled data
remained consistent with the live data, we warned our engineering team about our
process (see Figure 10-10) and wrote a script we could manually kick off to identify
any inconsistencies and optionally patch them if desired.

In some of the screenshots included in this chapter, you might see
some references to TS. TS is short for Tiny Speck, the previous
name of the company before Slack, the product, was launched pub‐
licly in 2014. If you see a reference to something being “enabled to
TS,” this just means that we’re enabling the change to our own
workspace.

184 | Chapter 10: Case Study: Redundant Database Schemas

Figure 10-10. Announcement that we’ve started double-writing to the new table

After enabling double-writing for VLB, we watched its database health carefully;
teams_channels_members and groups_members rows were updated very frequently.
Whenever a user read a new message, the client issued a request to the servers to
update the user’s last_read timestamp on their membership row. Now, with the
addition of channels_members, we were issuing double the number of writes. We
spent a day monitoring traffic to gain confidence that the workspace had enough
bandwidth to handle the additional load.

Now that our tables were in sync and we were double-writing updates, we could exe‐
cute on our most important milestone: migrating the mentions query. Whenever we
were ready to give something a try in production, we first rolled it out to our own
team. This was (and still is) the typical strategy for testing our work in production,
whether it’s a new feature, a new piece of infrastructure, or, in our case, a perfor‐
mance enhancement. We typically would have rolled out to free workspaces next,
slowly working our way up the payment tiers, leaving our largest, most performance-
sensitive customers last; but with this particular endeavor, we wanted to ease the load
on those top-tier customers first. So we flipped our strategy on its head.

We enabled optimized mentions to our team. Because we didn’t have much automa‐
ted testing and our unit testing framework was unable to test the query properly, we
relied on folks internally to spot any regressions before we enabled the query to any
other customers. We carefully monitored channels where employees typically
reported bugs. We later enabled this behavior for VLB.

Consolidating the Tables | 185

Quantifying Our Progress
We knew that our databases were overloaded. We measured their health by looking at
what percentage of their CPU was idle. Typically, this would hover at about 25 per‐
cent but would regularly dip to 10 percent and below. This was troubling because the
more time it spent at less than 25 percent idle, the less likely it would be able to han‐
dle a sudden increase in load. VLB was putting our product through its paces, and we
never knew which part of the product would lead to an unexpected uptick in database
usage next.

When we began the consolidation effort, we already had multiple other projects run‐
ning in parallel to help address the load. Among the range of ongoing workstreams,
the added load due to double-writing, recurrent fluctuations, and product engineer‐
ing continuing to build out new features, we couldn’t rely on our database usage data
to confirm that the refactor was effective. Besides, our monitoring data disappeared
after about a week, so unless we had chosen a quiet day to capture some screenshots
and record a series of data points, the data wouldn’t have been available to us upon
completion to serve as a good baseline.

Instead, we chose to rely primarily on query timings data. We instrumented each
query with timing metrics, allowing us to confirm whether the new query was in fact
more performant. EXPLAIN plans can be quite insightful, but nothing beats having
actual metrics to track the time spent executing a query from the server’s perspective.
In an abundance of caution, instead of enabling the new treatment to all VLB users
immediately, we randomly assigned incoming requests to either query. We first veri‐
fied that the feature flag was enabled for the workspace and then randomly dis‐
tributed the traffic 50-50. This enabled us to be a little bit more careful with our
introduction of the change and confirmed that the new query was in fact more per‐
formant with a customer as large as VLB.

We waited a few hours before taking a look at our data. We needed to make sure that
the new query was consistently faster, meaning it needed to be faster both when the
database was under average load and when it was at peak usage. Thankfully, the data
looked promising across the board with a 20 percent speed-up! You can see the origi‐
nal data we pulled in Figure 10-11. The first query joined across both teams_chan
nels_members and groups_members and on average completed in about 4.4 seconds.
The second query read from channels_members alone and on average completed in
about 3.5 seconds. We managed to shed nearly a second by using the consolidated
membership table. (Both queries were too long to show in full, so only the first few
lines are visible in the timings chart.)

186 | Chapter 10: Case Study: Redundant Database Schemas

Figure 10-11. Timings data on one of the mentions queries for VLB

With the confirmation that our refactor did the trick for our most important use case,
we could justify moving forward with the remainder of the consolidation. We
referred back to our Google Sheet tracker and began divvying up the remainder of
the read queries to engineers on our team.

Attempting to Keep the Team Motivated
Unfortunately, it was difficult to get the help we needed to finish the migration. Given
so many fires to put out, everyone on our team was parallelized across distinct reme‐
diation efforts. It was tough to get anyone else to take a few hours out of their day to
carefully extract a handful of queries. To top it off, most of the code surrounding the
remaining queries was untested, making what should have been a simple, straightfor‐
ward change quite dangerous. Spending an afternoon migrating queries was simply
not enticing.

I considered reaching out to other teams in the Enterprise engineering team for their
help and tapping a handful of other performance-minded developers across the com‐
pany but, ultimately, decided to keep trudging through on my own, with the occa‐
sional help from my immediate teammates. Because the work was risky and not

Consolidating the Tables | 187

particularly intellectually stimulating, I thought it might be too much of an uphill bat‐
tle to convince a wider circle of engineers to contribute. In hindsight, I think I could
have found a way to make the effort more compelling, distributed the work more
evenly, and likely shaved off a few weeks.

When progress slowed to a crawl just a few weeks later, I attempted to bribe the team
with cookies, which you can see in Figure 10-12. While there is a number of more
traditional options for getting engineers motivated to help out (see Chapter 8), some‐
times food is the best incentive of all.

Figure 10-12. An attempt at bribery

Communicating Our Progress
Although our team was widely distributed across a number of projects, we still
needed each other’s support. We relied on one another for code reviews, talking
through tough bugs, and the occasional gut check. To make sure we could be effective
in those roles while remaining highly focused on our own endeavor, we would regu‐
larly debug performance problems in public channels (oftentimes our own team
channel) and hold in-person weekly meetings to discuss progress and blockers. For
me, that meant a regular avenue to call out what percentage of queries were still

188 | Chapter 10: Case Study: Redundant Database Schemas

littered across the codebase and talk through any bugs or inconsistencies I’d spotted
in the data.

Whenever we reached a meaningful milestone, like enabling double-writes to our
own workspace, or enabling the new mentions query to VLB, we’d announce the
change in both our team channel and in a few engineering-wide channels for added
visibility. The more engineers that were aware of the changes we were making, the
better! It meant that an engineer on another team was less likely to introduce a new
query against either table we were actively deprecating without referring to our new
library. It also meant that as we triaged incoming customer bugs, any engineer could
isolate and solve a related problem much more effectively.

Stumbling upon the Inevitable Bug
No large refactoring effort would be complete without one or two pesky bugs, and
this one was no exception. About a month into moving read queries into our new
library, we began to notice a small but significant number of membership rows on the
new table that were slightly out of date. After a day or so of poking around, we real‐
ized that sometimes we were successfully issuing a write to either teams_chan
nels_members or groups_members, but failing to double-write to channels_members.
Because our write functions returned whether the first write to the old table was a
success and ignored whether the second write went through, callers of the function
would assume everything was fine and continue executing.

We made the necessary change to return a failure if either write encountered a prob‐
lem, but weren’t sure whether there might have been another, more nefarious bug at
play. To verify that we had fixed the one (and only) bug, we decided to repopulate
channels_members for our own workspace from a clean slate. We initiated another
backfill, pruning the table of all its contents and then populating it with copies of data
from teams_channels_members and groups_members.

This should have been fine, except that I forgot at the time that our team was exclu‐
sively reading membership information from the new table. Just a few seconds after
the script began, all my channels disappeared. Everyone across the entire company
was booted out of all their channels. It took me a few minutes to flip the feature flag
so that our team once again fetched its memberships from the original tables. Thank‐
fully, most folks at the company had gone home by then and weren’t closely monitor‐
ing their client, but I definitely gave some fellow employees a pretty serious scare.

Consolidating the Tables | 189

Tidying Up
Once no more entries were left in our tracker, we slowly began enabling all other
teams beyond our own (and VLB) to read from the new table. We let the changes sit
for two weeks before deciding it was safe to stop double-writing data to the old tables.
We wanted to be certain that our database tier responded well to the new table, that
its data was consistently correct, and that no new bugs related to the refactor were
logged. Had double-writing not been expensive from both a load and monetary per‐
spective, we might have allowed the changes to bake a bit longer, but we were eager to
remove the overhead.

Finally, we stopped double-writing, first for our own team, then for VLB, and finally
for the remainder of our customers. As with every important step of our refactor, we
communicated it broadly, as shown in Figure 10-13. We then quickly tidied up our
new library by removing all references to teams_channels_members and groups_mem
bers. We wrote some new linter rules, preventing engineers from writing new queries
against either deprecated table and enforcing all new queries against the chan
nels_members table to be properly located in our new centralized library. We wanted
to prevent confusion among engineers about how far along we were with the refactor.
Not everyone reads all announcements in cross-functional channels, especially if they
are out on vacation or leave, so it’s important to make sure you don’t rely on those
announcements alone for engineers across your organization to know what to do
when they come across code that has been changed as part of your refactor.

Figure 10-13. Announcing we were no longer double-writing for our own workspace

190 | Chapter 10: Case Study: Redundant Database Schemas

Here’s a close-up of the graph in Figure 10-13’s Slack message:

Of course, we didn’t forget the most important final step: celebrating! As was tradi‐
tion for much of the engineering team in San Francisco, we ordered a cake
(Figure 10-14) adorned with the name of our new table to commemorate the comple‐
tion of the project.

Figure 10-14. Funfetti cake to celebrate our refactor!

Tidying Up | 191

The project’s complete trajectory is shown in Figure 10-15, highlighting the number
of queries executed against each table on a daily basis from May to September 2017.

Figure 10-15. Query volume for teams_channels_members, groups_members, and
channels_members throughout the refactor

Lessons Learned
There are a number of lessons to be learned from this case study, both from what
went well and what could have gone better. We’ll start with where the project strug‐
gled, describing the pitfalls of not having a written execution plan, forgoing under‐
standing of how the code had degraded, skimping on the number of tests we wrote,
and failing to motivate teammates. Then we’ll discuss what went well, highlighting
our sharp focus on dynamic milestones and a well-defined set of metrics.

Develop a Well-Defined, Well-Communicated Plan
Because the whole project began so fast, we didn’t have much of a written plan. Our
team was familiar with the process involved for migrating data from one table to
another. We knew the mentions query was our top priority and that we would com‐
plete only as much of the migration as was necessary to do so; we would reevaluate
later. The only time the process appeared in written form was when we posted
updates in our team channel (rather than in a channel dedicated to the project); even
then, these were only pertinent subsets of the overall plan.

The fact that we never deliberately wrote down each of the steps involved from start
to finish meant that we were more likely to forget something critical along the way.

192 | Chapter 10: Case Study: Redundant Database Schemas

Perhaps most worrisome of all was the fact that we never shopped our plan around to
other teams across the company to ensure that everyone had a chance to verify
whether they might be affected by the change and voice their concerns if that was the
case. We simply plowed through, on the assumption that performance was the most
important thing we could be doing to improve our relationship with our largest cus‐
tomer (and, by extension, the most important thing we could be doing for the com‐
pany). We also believed that we could implement the change in a way that would
disrupt as few other engineering teams as possible.

This assumption proved to be wrong on multiple fronts. First, when a handful of
inevitable bugs crept up and we hadn’t adequately socialized the change, engineers
responding to those bugs were unpleasantly surprised. Second, we overlooked a team
altogether that would bear an acute impact from the change. About a month before
we finished migrating the final few membership queries, a teammate reminded me
that we should probably warn the data engineering team about the changes we were
making. By moving membership onto a new table, and nearing the stage at which we
would disable writes to the old tables, we risked disrupting most of their pipelines,
including pipelines responsible for calculating important usage metrics. We were for‐
tunate that the data engineering team was quick to respond and update the necessary
pipelines, and a serious crisis was averted.

These mishaps show just how important it is to develop and vet a thorough execution
plan. We were lucky that we recovered from these oversights quickly, but why leave to
chance what could have been addressed more deliberately during the early planning
stages? As was highlighted in Chapters 4 and 7, having a concrete plan is crucial to
uncovering gaps early and minimizing cross-functional communication gaps.

Understand the Code’s History
I highly recommend developers begin their code archeology expedition before they
begin to execute their refactoring effort, because the added context can give a differ‐
ent shape and direction to the project. Unfortunately, due to the urgency of our work,
we skipped the deliberate process of understanding and empathizing with the existing
code and went right to execution. It was only well after we had begun migrating quer‐
ies that I started to wonder why we’d made a distinction between teams_chan
nels_members and groups_members in the first place.

As the weeks passed and there were still dozens of queries to migrate, I grew frustra‐
ted with the redundant tables and the way our SQL queries were strewn about. The
more frustrated I became, the longer the project seemed to take (and the more tempt‐
ing it became to cut corners in an attempt to reach the finish line faster).

After we had completed the refactor, I contacted a few of our early engineers to get
some insight into why these tables had been distinct. I learned that keeping private

Understand the Code’s History | 193

and public channel information on separate tables isolated them from one another
and served as a security precaution. Product history played a role as well; public
channels and private channels felt like vastly different concepts in the early days of
Slack. As the two concepts gradually converged, so did the table schemas.

Gaining this perspective proved helpful for subsequent refactors, informing how we
went about consolidating teams_channels and groups into their own unified table. It
gave me a newfound appreciation for decisions made early in Slack’s history, and a
more positive attitude toward refactoring as an opportunity to improve something
that had probably served us well for some time but no longer could, rather than as an
opportunity to improve “bad” code. This experience is precisely why in Chapter 2 I
recommend that engineers take the time to understand where the code they seek to
improve came from, and how circumstances may have led it to degrade over time. If
we have more empathy for the code, we stand to keep a more open mind and be more
patient throughout the refactor.

Ensure Adequate Test Coverage
In Chapter 1, I asserted that it’s important to have adequate test coverage before refac‐
toring, to ensure that the application’s behavior is properly maintained at every step.
In this project, the vast majority of the code we were modifying had been written
early in Slack’s development and, due to the push to get the product to market
quickly, much of it lacked adequate tests. The refactor to consolidate the channel
membership tables was under significant time pressure as well; performance for our
largest customer was a growing concern, so we did our best to make the necessary
changes carefully, opting to write tests for only the most critical untested codepaths.

This decision led us to ship a handful of bugs throughout the refactor, each of which
could have been prevented had we taken the time to write the requisite tests. We
arguably spent more time recovering from the regressions we introduced than we
would have writing the tests in the first place. Having adequate test coverage is essen‐
tial for a smooth refactor, preventing your customers from experiencing bugs and
your team from spending time solving them.

Keep Your Team Motivated
Rather than continuing to plow through alone, I should have found a better way to
get other engineers involved more seriously at the outset and again when progress
slowed a few weeks later. The last 10 percent of queries took about the same amount
of time to migrate as the first 50 percent. Once we had successfully improved the
mentions query for VLB, we began to lose the sense of urgency we had experienced at
the start of the project. With every new bug or inconsistency in our data, we lost a
little steam. By the time the project was nearly complete, everything about it felt like
pushing a boulder up a mountain.

194 | Chapter 10: Case Study: Redundant Database Schemas

What we had not considered was soliciting help from engineers outside our own
team. We could have been more strategic about asking for help from those on other
product engineering teams, asking them to migrate the queries within their own fea‐
tures. We could have sold them on the effort by demonstrating the performance
boost they stood to gain. Distributing the work could have allowed us to halve the
amount of time it took to complete.

If momentum on your refactor starts to slow, seek ways to give it a boost early, before
progress slows further. Slow refactors are more likely to lose priority, leaving behind a
significant amount of code stuck between two states, which, as was pointed out in
Chapter 1, poses its own set of problems. Chapter 8 covered a number of ways to keep
your team motivated; do not hesitate to ask for more support if you need it!

Focus on Strategic Milestones
We had preliminary data in the form of query EXPLAIN plans to support our hypothe‐
sis that combining the two membership tables would improve query performance.
We needed further confirmation of that hypothesis during the early stages of the
refactor so that we could pivot if the consolidation proved insufficient. By focusing
on making only the changes necessary to enable the migration of the mentions query
for VLB, we secured the confirmation we needed within just a few weeks and success‐
fully alleviated load from the VLB database shard, buying us more time to see the
remainder of the refactor through.

Proving your refactor’s effectiveness early ensures that your team does not waste any
time continuing to execute a lengthy project that may not yield the desired results. By
focusing on strategic milestones, those meant to benefit from the refactor can reap
those benefits sooner; this can help your team, further bolstering support for the
effort while it is still underway. For more details on how to identify strategic mile‐
stones, refer to Chapter 4.

Identify and Rely on Meaningful Metrics
We had a specific set of metrics that enabled us to show conclusively that our project
was successful for both our intermediate milestones and, once we’d completed the
rollout, to all customers. By collecting EXPLAIN plans for queries before and after the
consolidation, we were able to document progress as we migrated each of the more
complex membership queries. By instrumenting the mentions query with timings
metrics, we could monitor its performance in real time and immediately see the posi‐
tive impact.

Keeping a close eye on your metrics helps you prove that your refactor is tilting the
needle in the right direction throughout its development. If at any point the metrics
stop improving (or worse, start regressing), you can dig in immediately, addressing

Understand the Code’s History | 195

problems as soon as they arise, rather than at the project’s conclusion. Refer to Chap‐
ter 3 for suggestions on how to measure your refactor.

Takeaways
Here are the most important takeaways from our refactor to consolidate Slack’s chan‐
nel membership tables.

• Develop a thorough written plan and share it broadly.
• Take the time to understand the code’s history; it might help you see it in a new,

more positive light.
• Ensure that there is adequate test coverage for the code you’re seeking to

improve. If there isn’t, commit to writing the missing test cases.
• Keep your team motivated. If you’re losing momentum, find creative ways to

boost it back up.
• Focus on strategic milestones to prove the impact of your refactor early and

often.
• Identify and rely on meaningful metrics to guide your efforts.

196 | Chapter 10: Case Study: Redundant Database Schemas

CHAPTER 11

Case Study: Migrating to a New Database

Cowritten with Maggie Zhou,
Staff Infrastructure Engineer, Slack Technologies, Inc.

For the second of our two case study chapters, we’ll explore a refactor carried out by a
group of engineers from the product engineering team and infrastructure teams at
Slack. The project was built on the consolidation of our channel membership tables
discussed in the previous chapter. If you haven’t read through the first case study yet,
I recommend you do so; there’s important context you’ll want to understand to get
the most out of this chapter.

Unlike the previous case study, which was primarily motivated by performance, this
one was chiefly driven by Slack’s need to enable greater flexibility in the product.
Having channel memberships tied to distinct workspace shards made it difficult for
us to build more complex features stretching beyond single workspaces. We wanted
to enable complex organizations with multiple workspaces to collaborate seamlessly
within the same set of channels and facilitate communication between distinct Slack
customers, allowing companies to coordinate with their vendors directly within the
application. To unlock this ability, we needed to reshard channel membership data by
user and channel rather than by workspace. This refactor illustrates the many chal‐
lenges that come with large-scale database migrations, multi-quarter projects, and
heavily cross-functional engineering efforts.

The refactor was successful because we had a strong understanding of the problem
we needed to solve and how our evolving product strategy had led us to outgrow past
architectural decisions (Chapter 2). We planned the project thoughtfully, choosing to
juggle a few more variables than were strictly necessary, knowing it would render the
refactor even more worthwhile (Chapter 4). We derived a careful rollout strategy,
developing tooling that enabled us to carry it out as reliably as possible (Chapter 8).
Finally, throughout the entire effort, we maintained a simple communication strategy.

197

Although the refactor ultimately gave us the ability to stretch our product in new and
interesting ways, it took nearly double the time we had initially estimated to com‐
plete. We were too optimistic in our estimates (Chapter 4); it took over a year to fin‐
ish what we had originally anticipated would take only six months. We
underestimated the product implications of the refactor and only learned to leverage
the expertise of product engineers after spending several months making little pro‐
gress (Chapter 6).

As with the previous case study, we’ll start off with some important context, including
a brief overview of why the way we distributed our data was becoming a bottleneck,
and the motivations behind our adoption of a new database technology, Vitess. Once
we’ve established a solid foundation and the motivations for our refactor, we’ll
describe our solution and walk through each phase of the project.

Workspace-Sharded Data
To appreciate the problems we sought to solve with this refactor, we need to describe
how our data was distributed across our databases in MySQL. Before we kicked off
our refactor, the vast majority of our data was sharded by workspace, where a work‐
space is a single Slack customer. We touched on this in the previous case study under
“Slack Architecture 101” on page 174; you can see an illustration of how different
customers’ data was distributed across different shards in Figure 10-3.

While this worked just fine for a number of years, this sharding scheme grew increas‐
ingly inconvenient for two reasons.

First, we struggled to support our biggest workspace shards from an operational per‐
spective. The shards housing our largest, fastest-growing customers suffered from
frequent, problematic hotspots. These customers, already occupying isolated shards,
were quickly approaching the data size at which we would no longer be able to
upgrade their hardware space. With no simple mechanisms by which we could hori‐
zontally split their data, we were stuck.

Second, we were making important changes in our product that were actively leading
us to break down the barriers between workspaces we had long upheld, both in the
way our code was written and in how our data was structured. We had built features
enabling our biggest customers to bridge together multiple workspaces and launched
the ability for two distinct Slack customers to communicate directly within a channel
they shared.

198 | Chapter 11: Case Study: Migrating to a New Database

The mismatch between our product vision and the way our systems were architected
meant that our application grew ever more complex. This was a perfect example of
code degradation due to shift in product requirements (as you might recall from
Chapter 2!). To illustrate this problem more concretely, in the year leading up to this
case study, we sometimes needed to query three distinct database shards to locate a
channel and its memberships successfully. This was confusing for our developers,
who needed to remember the correct set of steps to fetch and manipulate channel-
related data.

To address our operational concerns with MySQL and our difficulty scaling, we
started evaluating other storage options. After weighing multiple solutions, the team
decided to adopt Vitess, a database clustering system built at YouTube that enables
horizontal scaling of MySQL. With the migration to Vitess, we would finally be able
to shard our data by something other than workspace, giving us the opportunity to
free up space on our busiest shards and distribute our data in a way that made it eas‐
ier for our engineers to reason out!

Migrating channels_members to Vitess
Given these circumstances, we decided to migrate the channel membership table,
channels_members, to Vitess. Because this was one of our most high-traffic tables,
resharding it would free up considerable space and load from our busiest workspace
shards. The migration would also substantially simplify business logic around fetch‐
ing memberships for channels that existed across workspace boundaries.

The project was spearheaded out of the Vitess infrastructure team, with help from a
handful of product engineers who had intimate knowledge of our application query
patterns against the channels_members table. We knew it would be a winning combi‐
nation. The infrastructure engineers would contribute deep knowledge of the data‐
base system so that we could avoid any pitfalls during the migration and efficiently
debug database-related issues as they arose; because they had the most expertise with
table migrations to date, they’d be best suited to lead the project, with Maggie at the
helm. The product engineers, including me, would provide crucial insight as to the
new schema and sharding scheme and help with rewriting application logic to query
the migrated data correctly.

We kicked things off in earnest by creating a new channel, #feat-vitess-channels,
where we could easily bounce ideas off one another and coordinate workstreams. We
invited everyone to join and jumped right into our first task.

Migrating channels_members to Vitess | 199

https://vitess.io

Sharding Scheme
Before we could begin migrating channel membership data to Vitess, we needed to
decide how it would be distributed (i.e., which keys to use to reshard the table). Here,
we had two options:

• by channel (channel_id), to locate all memberships associated with a channel
easily by querying a single shard

• by user (user_id), to find all of a user’s memberships by querying a single shard

Having recently completed the consolidation of our membership tables per our first
case study, my impression was that the majority of queries dealt with fetching mem‐
bership for a given channel rather than for a given user. Many of these queries were
crucial to the application, powering important features like Search, and the ability to
mention everyone in a channel (via @channel or @here).

At the time (and still today), we logged a sample of all database queries to our data
warehouse to keep tabs on our MySQL usage across requests to our production sys‐
tems. To confirm my intuition that most of the traffic to channels_members relied on
channel_id, I ran a few queries against this data, looking at sampled membership
queries executed over a month-long period, and brought it to the team. The results
are shown in Figure 11-1.

Figure 11-1. Number of queries run against channels_members filtered by channel_id

One of the product engineers working with us, who had more experience with Vitess,
pointed out that sharding by user might be a better bet. Pulling from the same set of
query logs, he showed us the top 10 most frequent queries hitting the table filtered by
user_id. The results are shown in Figure 11-2. If we wanted our application to per‐
form well, we would need to account for this behavior.

200 | Chapter 11: Case Study: Migrating to a New Database

Figure 11-2. Top 10 most frequent queries against channels_members and whether they
filtered the data by user_id

We weighed both options, doing some back-of-the-napkin math to determine the
database querying capacity required to support either option. We ultimately decided
to compromise, denormalizing the membership into two tables, one sharded by user,
the other sharded by channel, double-writing for both use cases. This way, point
queries would be cheap for both.

Developing a New Schema
Next, we needed to take a hard look at our existing workspace-sharded table schema
and determine whether we wanted to modify it for both our user- and channel-
sharded use cases. Although we could have migrated our existing schema to both
sharding schemes, this refactor gave us a unique opportunity to rethink some of the
decisions we’d made with the original table design. We’ll take a closer look at the
schema we derived for each, starting with the user shard. Example 11-1 shows the
schema on the workspace shards, before the migration.

Migrating channels_members to Vitess | 201

Example 11-1. CREATE TABLE statement showing the existing channels_members table,
sharded by workspace

CREATE TABLE `channels_members` (
 `user_id` bigint(20) unsigned NOT NULL,
 `channel_id` bigint(20) unsigned NOT NULL,
 `team_id` bigint(20) unsigned NOT NULL,
 `date_joined` int(10) unsigned NOT NULL,
 `date_deleted` int(10) unsigned NOT NULL,
 `last_read` bigint(20) unsigned NOT NULL,
 ...
 `channel_type` tinyint(3) unsigned NOT NULL,
 `channel_privacy_type` tinyint(4) unsigned NOT NULL,
 ...
 `user_team_id` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`user_id`,`channel_id`)
)

User-sharded membership table
For the user-sharded case, we decided to maintain the majority of the original
schema, with one exception: we made a significant change to how we stored user IDs.
To understand the motivations behind this decision, we’ll give a brief overview of the
two kinds of user IDs we stored and how they came about.

At the start of the chapter, we briefly mentioned that Slack sought to enable complex
businesses, split into multiple workspaces according to department or business unit,
to collaborate more easily. Without any centralization, not only did employees have
difficulty communicating across departments, it was also difficult for the company to
manage each individual workspace properly. To this end, we enabled our biggest cus‐
tomers to bring together their many workspaces under a single umbrella.

Unfortunately, in grouping workspaces, we needed a way to keep users in sync. Let’s
illustrate how this works with a simple example.

Acme Corp. is a large corporation. It has a number of departments, each with its own
workspace, including one for its engineering team and customer experience depart‐
ment. As an employee of Acme Corp., you have a single, organization-level user
account. If you happen to be an engineer, you are a member of the Engineering work‐
space to collaborate with your teammates, and the Customer Experience workspace
to help the support team troubleshoot customer issues.

What appeared to be a single account at Acme Corp., however, was actually multiple
accounts under the hood. At the organization level, a user had a canonical user ID.
The same user had distinct local user IDs for each workspace they were a member of.
This means that if you were a member of the Engineering and Customer Experience
workspaces, you had three unique user IDs, or, to generalize, n + 1 IDs, where n was
the number of workspaces of which you were a member.

202 | Chapter 11: Case Study: Migrating to a New Database

As you might imagine, translating between these IDs quickly became exceedingly
complicated and bug-prone. Within a year of launching this feature, a number of
product engineers hatched a plan for replacing all local user IDs with canonical user
IDs. Because most of the data stored in Slack’s systems refer to a user ID of some kind
(authoring a message, uploading a file, etc.), a high degree of complexity was involved
with correctly (and invisibly) rewriting these IDs.

The workspace-sharded channels_members table stored local user IDs in the user_id
column. Because a project was already underway to replace all local user IDs with
canonical user IDs, we decided to collaborate with them and ensure that we stored
canonical user IDs across all user ID columns.

Channel-sharded table schema
Beyond our concerns with user IDs, we had some unease about the write bandwidth
to the secondary, channel-sharded membership table. We examined the queries we
planned to send to these shards to try to identify ways we could decrease write traffic.
During that process, we noticed that most of the columns on the original table were
entirely unused by their consumers, including the ones that were updated most often,
like a user’s last read position in the channel. For example, if we queried for all the
memberships associated with a given channel, the application logic would usually
only use the user_id and user_team_id columns. By omitting these unnecessary col‐
umns in our new schema, we could dramatically decrease the write frequency, giving
our channel shards a bit more breathing room. Example 11-2 shows the table schema
for the channel-sharded membership table.

Example 11-2. CREATE TABLE statement for the second of our new channels_members
tables, sharded by channel

CREATE TABLE `channels_members_bychan
 `user_id` bigint(20) unsigned NOT NULL,
 `channel_id` bigint(20) unsigned NOT NULL,
 `user_team_id` bigint(20) unsigned NOT NULL,
 `channel_team_id` bigint(20) unsigned NOT NULL,
 `date_joined` int(10) unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`channel_id`,`user_id`)
)

Renamed team_id to channel_team_id

Detangling JOINs
We next needed to update our application logic to accommodate the changes to our
schemas and point to the Vitess cluster. Thankfully, most of these changes were

Detangling JOINs | 203

straightforward and before we knew it, we’d updated the majority of our application
logic accordingly.

Where the migration became more difficult was with complex queries involving
JOINs with other tables in our MySQL cluster. Because we were moving the table to
an entirely new cluster, we could no longer support these queries and had to split
them up into smaller point queries, performing the JOIN directly in the application
code.

We knew at the project’s outset that we would likely need to split up a handful of JOIN
queries. What we did not anticipate was that most of them powered core Slack fea‐
tures and had been carefully hand-tuned for performance over a number of years. By
splitting up these queries, we risked anything from slowing down notifications, to
introducing data leaks, to bringing down Slack entirely. We were pretty nervous, but
we needed to push on.

We put the day-to-day migrations on pause and compiled a list of the queries we were
most concerned about, of which there were 20. Poring through the set, we worried
that we didn’t have the product expertise required to adequately detangle each and
every one. We estimated that without any additional help from product engineering,
we’d need months to detangle each of the JOINs successfully. Fortunately, a number of
product engineers responded to our call for help and together we developed a simple
process that we could apply to split up each query safely.

To illustrate each step, we’ll walk through how we split up the query shown in
Example 11-3, which was responsible for deciding whether a user had permission to
see a specific file.

Example 11-3. A sample JOIN we needed to detangle; % symbolizes substitution syntax

SELECT COUNT(*)
FROM files_shares s
LEFT JOIN channels_members g
 ON g.team_id = s.team_id
 AND g.channel_id = s.channel_id
 AND g.user_id = %USER_ID
 AND g.date_deleted = 0
WHERE
 s.team_id = %TEAM_ID
AND s.file_id = %FILE_ID
LIMIT 1

We first needed to identify the smallest subset of data we could fetch earliest; this
would help us minimize the intersection of data we needed to work with as early as
possible.

204 | Chapter 11: Case Study: Migrating to a New Database

With the file visibility query, we knew from typical usage patterns that the number of
places where a file was shared was usually much smaller than the number of channels
that a user was in. (We could also verify this assumption by looking at a query’s car‐
dinality.) So, instead of first querying for a user’s channel memberships and cross-
referencing those with the channels where the file was shared, we fetched the
locations where the file was shared first and then determined whether the user was in
any of these channels. You can see an example of the query split up into its two com‐
ponents in Example 11-4.

Example 11-4. The JOIN with files_shares split into two queries

SELECT DISTINCT channel_id
FROM files_shares
WHERE team_id=%TEAM_ID AND file_id=%FILE_ID

...

SELECT COUNT(*)
FROM channels_members
WHERE
 team_id=%TEAM_ID
 AND user_id=%USER_ID
 AND channel_id IN (%list:CHANNEL_IDS)
LIMIT 1

We then verified that the test coverage was sufficient. If it wasn’t, we would write a
few additional test cases to verify the results of the original query. Once we were satis‐
fied, we wrapped the new logic in an experiment to enable a gradual rollout and give
us the ability to rollback quickly in an emergency. We ran our tests against both
implementations, fixed any bugs that crept up, and repeated the process until we felt
confident with our new logic. Finally, we instrumented both calls with some timings
metrics to track the execution time of both the JOIN and its detangled version.
Example 11-5 provides a rough outline for what the file visibility check looked like
with both query implementations and corresponding instrumentation.

For the riskier query splits (including file visibility), we worked
with the quality assurance team to manually verify the change in
both our development environments and production before rolling
it out to more users. The majority of the JOINs we sought to detan‐
gle dealt with critical Slack functionality, so we wanted to be partic‐
ularly careful that our changes perfectly replicated intended
behavior.

Detangling JOINs | 205

Example 11-5. Function for determining whether a user can see a specific file

function file_can_see($team, $user, $file): bool {

 if (experiment_get_user('detangle_files_shares_query')) {
 $start = microtime_float();

 # First, we want to find all of the channels where
 # the file was shared. Because we can share a file to the
 # same channel multiple times, we may find multiple files_shares
 # rows with the same channel ID but different timestamps
 # at which it was shared.
 $channel_ids =
 ud_files_shares_get_distinct_channel_ids(
 $team,
 $file['id']
);

 # Next, we want to find the intersection of the channels
 # the file was shared in ($channel_ids) and the channels the
 # user is in.
 $membership_counts =
 ud_channels_members_get_counts(
 $team,
 $user['id'],
 $channel_ids
);

 $end = microtime_float() - $start;

 # If there is at least one membership row, then the user
 # can see the file. If not, the user cannot see the file.
 _files_can_see_unjoined_histogram()->observe($end);
 return ($membership_counts['count'] > 0);
 }

 $start = microtime_float();
 $sql .= "SELECT 1 FROM files_shares s
 LEFT JOIN channels_members g
 ON g.team_id = s.team_id
 AND g.channel_id = s.channel_id
 AND g.user_id = %USER_ID
 AND g.date_deleted=0
 WHERE s.team_id = %TEAM_ID
 AND s.file_id = %FILE_ID
 AND (g.user_id > 0) LIMIT 1";

 $bind = [
 'file_id' => $file['id'],
 'user_id' => $user['id'],
 'team_id' => $team['id']
];

206 | Chapter 11: Case Study: Migrating to a New Database

 $ret = db_fetch_team($team, $sql, $bind);
 $end = microtime_float() - $start;
 _files_can_see_join_histogram()->observe($end);

 return (bool)db_single($ret);
}

We enabled the new implementation to our own internal Slack instance before rolling
it out to real customers. This was an important step to confirm that we were properly
ingesting timings metrics and further ensure that we had not unintentionally intro‐
duced a bug.

Slack’s workspace has all sorts of quirks, and our usage patterns don’t always match
those of our customers. While it often makes for a decent litmus test for catching
bugs early, the workspace was not a suitable candidate to help us determine whether
the added latencies of the detangled queries were acceptable. For a subset of the
JOINs, performance of the detangled queries was particularly aggravated on our own
workspace, and as we continued the rollout to free teams, followed by larger paying
customers, the metrics stabilized.

We repeated the process for nearly every JOIN, gingerly slicing queries apart, instru‐
menting them, and gradually rolling them out to customers. The only exception was
two pesky mentions queries, which we left untouched for several months. Unfortu‐
nately, these queries posed a number of unique challenges, including JOINs against
tables that were undergoing their own Vitess migration. We decided to defer on their
migration until all their subcomponents had properly fallen into place. Overall, five
of us took about six weeks on and off, with our time split between the refactor and
other commitments, to finish migrating the majority of the JOINs.

It’s often the case that refactors don’t go entirely according to plan;
we encounter hurdles that require us to reshuffle priorities or, in
some cases, stop partway through a given step in favor of coming
back to it later. Although it feels deeply unsatisfying to hit pause
and shift gears, it can sometimes make a huge difference in our
ability to deliver the overall project in a timely manner.
For this effort, had we waited for the remainder of the migrations
we were depending on to land, it would have set the refactor back
by several months. By instead choosing to move forward with the
vast majority of the channels_members queries we had successfully
rewritten, we were able to continue making headway, uncovering
issues as they crept up; when the time finally came to revisit the
mentions queries again, we were in a much stabler place to do so.

Detangling JOINs | 207

A Difficult Rollout
When we began our migration of channels_members, approximately 15 percent of
our total queries per second (QPS) was powered by Vitess. We’d already migrated and
resharded critical workloads, such as notifications-related tables, and the teams table
responsible for listing each Slack customer instance. We had built reliable techniques
and tooling to facilitate nearly 20 migrations, complete with dashboards and a frame‐
work for efficiently comparing data sets across the old and new clusters.

The channels_members migration was unique, however, in that it alone accounted for
nearly 20 percent of our total query load, nearly doubling the QPS we had learned to
manage on Vitess to date. Because of the scale, we were nervous about running into
unexpected issues during the migration. That said, we were highly motivated to move
these more sizable workloads off of MySQL, because it was struggling under the load
of our largest customers. We were stuck between a rock and a hard place.

Our best bet was to lean heavily on the migration tooling we’d built during previous
Vitess migrations. We hoped it would be stable enough for this table as well.

The rollout process we had developed for enabling migrations consisted of four high-
level modes:

1. Backfill
During this stage, we double-wrote queries to both the new cluster (with the new
sharding scheme) and to the old cluster. This mode further allowed us to backfill
our new cluster with existing data from the old cluster.

2. Dark
This mode sent read traffic to both clusters and compared the results, logging any
discrepancies in the data retrieved from the new Vitess cluster. Consumers of the
read traffic were provided with results retrieved from the old cluster.

3. Light
This mode sent read traffic to both clusters, again comparing results and logging
any discrepancies as they arose. However, instead of returning results from the
old cluster, Vitess results were returned to the application.

4. Sunset
During this stage, we continued to double-write to both clusters but send read
requests strictly to the Vitess cluster. This mode allowed us to discontinue the
expensive process of reading from two distinct data sources, all the while ena‐
bling any downstream consumers to continue to rely on data stored in the old
clusters until they were updated to read from Vitess. (This included systems such
as our data warehouse.) At this stage, if any problems were uncovered, the only
option was to fix forward; there was no easy or safe way to go back to consuming
data from the legacy data source.

208 | Chapter 11: Case Study: Migrating to a New Database

Fast, simple configuration deployments enabled us to swap easily between modes as
well as ramp up and down within a single mode. The system also provided us with
rather granular controls, whereby we could swiftly opt tiers of customers and users
into distinct modes. We took advantage of being able to tweak these settings to ramp
up and back down rapidly when we encountered any issues.

Backfill Mode
Every migration began with Backfill mode. In this mode, there were two primary
goals. The first goal was to set the stage for running a complete backfill of the data
from the old cluster in preparation for the migration of read queries. For the majority
of our previous migrations, this phase was quite simple; the write queries for the new
cluster would be identical (or nearly so) to the corresponding write queries to the old
cluster. Because we were actively changing the data model, we ended up having to
rewrite many of our application’s SQL queries to conform to our new schema (includ‐
ing propagating the share_type correctly and translating local user IDs to their can‐
onical counterparts). Luckily, thanks to the prior consolidation discussed in
Chapter 10, we were able to readily identify each query requiring a rewrite.

The second goal was to unveil any performance problems associated with write load
to the new cluster. For most of these migrations, we considered the Backfill and Dark
modes to have relatively little (if any) performance impact on the application in pro‐
duction. This was primarily because:

• We used Hacklang’s async cooperative multitasking mode to send queries to both
clusters concurrently. We set a short, one-second (1s) time-out on the query hit‐
ting the new cluster in Vitess, so that in the very worst case, the performance
penalty for these queries would be 1s minus the time it took to execute the query
from the old cluster.

• We were not yet returning the results to the application from the Vitess cluster!
This would occur in Light mode.

Again, our assumptions proved wrong with this migration. The user-sharded Vitess
database cluster to which we were moving channels_members was already populated
with highly used production data (including saved messages and notifications). As we
ramped up Backfill mode, we began saturating database resources on Vitess, leading
to time-outs and errors for queries to the critical tables already residing on the clus‐
ter. Digging in, we discovered that we had a number of update and delete queries
lacking our sharding key (user_id), thus scattering them across every shard in the
cluster. We made a configuration change so that these could run more efficiently, and
then tentatively kicked off a second gradual ramp-up of Backfill mode. We quickly
reached 100 percent and began the next stage, Dark mode!

A Difficult Rollout | 209

Dark Mode
We entered the Dark mode portion of the refactor in earnest, having carefully rewrit‐
ten most of the channels_members queries (including many of the troublesome
JOINs) to read from Vitess, and successfully completed the backfill process in just
over three months. Because our migration system enabled us to opt subsets of queries
into different phases (i.e., one query could be in Dark mode while another was in
Light mode), in an effort to parallelize as much of the refactor as possible, we began to
ramp up Dark mode before we’d rewritten all our queries to read from the Vitess clus‐
ter properly.

Dark mode, as with Backfill mode, had two primary goals. Once again, one of our
objectives was to reveal any potential performance problems associated with the read
traffic being sent to the new cluster.

Performance
As we began ramping up traffic to read from Vitess concurrently with our legacy sys‐
tem, we noticed that a handful of queries with high QPS returned an alarming num‐
ber of rows. The combination of high QPS with the large number of rows returned
made the overall rows returned per second the largest in our cluster. Figure 11-3
shows that at peak, we were returning about 9,000 rows per second from a single
shard’s channels_members table. In fact, these queries were so frequent and memory-
intensive that they caused out-of-memory errors (OOMs) to flood the database host
itself! During the days following our ramp-up, we saw 1/256 of our hosts running out
of memory every day.

At first, we believed that our cloud provider was at fault; perhaps something was
wrong with the way we had provisioned our largest database cluster. Eventually, we
realized that it wasn’t a configuration mishap or random bad luck, and we swiftly
ramped down to start isolating the source of the OOMs.

210 | Chapter 11: Case Study: Migrating to a New Database

Fi
gu

re
 1

1-
3.

 R
ow

s r
et

ur
ne

d
fro

m
 +

ch
an

ne
ls_

m
em

be
rs

+
on

 a
 si

ng
le

sh
ar

d

A Difficult Rollout | 211

Figure 11-4 shows our surprise with the OOMs during our weekly status update.

Figure 11-4. Weekly project status reporting on OOMs

The refactor was a high-priority project both within the infrastructure and among
engineering organizations at large. From a database reliability perspective, moving
channels_members to Vitess was an important step in continuing to develop our mus‐
cle memory around operating the new system, so when the OOMs proved particu‐
larly elusive, we began working with the entire database team at Slack, debugging
from all angles directly in the channel we had set up to coordinate the effort, #feat-
vitess-channels. We attempted to resize the memory allocation for our MySQL pro‐
cesses, digging into memory fragmentation and allocation at both the MySQL and
operating system levels. During this process, we upgraded minor versions of MySQL
to have access to a new setting that allowed us to specify the nonuniform memory
access (NUMA) interleave policy for the buffer pool! Meanwhile, we continued to
split up more JOINs, and began ramping up more Dark mode query load. Each time,
we thought we might stop encountering OOMs, only to be disappointed as we kept
encountering them as we ramped up more load.

At this point, the project had just surpassed the six-month mark, obliterating our ini‐
tial estimate; the whole team very much felt as through we were consistently taking
two steps forward and one step back. After weeks of trial and error, we discovered
that other storage systems at Slack (including our monitoring cluster and Search clus‐
ter) had hit problems with a restrictively small value for min_free_kbytes, a low-
level kernel setting responsible for controlling how aggressively the kernel decides to
free memory. The larger the value, the more breathing room the kernel will give itself
by shedding more data held in RAM. With the substantial number of queries return‐
ing a large number of rows at high QPS, we would sporadically hit spikes of requests
that required a sudden allocation of a large amount of RAM, leading to OOMs,
because the kernel couldn’t free RAM quickly enough to return results. Bumping this
min_free_kbytes to a higher value enabled our hosts to manage the memory pres‐
sure associated with these queries better and finally resolved our OOMs.

212 | Chapter 11: Case Study: Migrating to a New Database

We spent eight whole months in the Dark mode phase; not only did we spend more
time in this phase alone than we had initially anticipated spending on the project as a
whole, it accounted for nearly two-thirds of the entire endeavor once we’d completed
it. What happened?

Data discrepancies
Given our configuration changes, we were comfortable ramping up 100 percent of
the traffic to the Vitess cluster without the risk of affecting site-wide performance. At
this point, nearly all JOINs were detangled, with all point queries updated to read
from the Vitess cluster as well. During this second step, our primary goal was to
reveal any discrepancies in the data sets returned from the new queries. We could
easily compare the two sets side by side because we concurrently ran our queries
against both the new and old clusters and logged diffs as we encountered them (using
results from the existing query against our legacy data source as the source of truth).
We aggregated discrepancies in a number of ways so that we could get a broad sense
of the scope of the problems we needed to address, in addition to logging primary
keys whenever a pair returned different results.

We spent a few weeks in this phase, meticulously combing through the diffs. Because
our user-sharded schema incorporated more information than the original,
workspace-sharded channels_members table, we were juggling many more variables
during the rewrite process than we might have otherwise. We sought to improve the
developer experience for engineers working with shared channels and Enterprise
Grid, requiring us to consider tricky product logic thoughtfully with each query we
migrated. This meant that the potential for mistakes was much greater than had we
done a one-to-one migration (as was the case with every table we had moved to Vit‐
ess to date).

Large portions of the differences in the data sets were due to single problems; fixing a
single instance would often lead to a large reduction in the volume of diffs logged.
For example, if on the legacy system we were selecting a different set of columns than
on Vitess, every query would return mismatched results, logging a diff. As we
reported on in Figure 11-5, finding and fixing the discrepancies to ignore mis‐
matched columns decreased the number of diffs logged against the channel-sharded
table from 10 percent of all queries to just 0.01 percent.

A Difficult Rollout | 213

Figure 11-5. Reducing diffs on the channel-sharded channels_members table

Here’s a close-up of the graph in Figure 11-5’s Slack message:

Alas, not all diffs were as easy to fix. Reading through the differences in data sets, we
uncovered a few spots where our logic for shared channels was not quite right, and a
few others where we had made mistakes in our backfill. It was tedious work and, due
to the product implications, oftentimes required a profound understanding of the
inner workings of our application. Although our manipulations were hidden between
feature flags and experiments, the changes we were making had real ramifications for
our production systems, and we had to proceed with real caution. Given these factors
and the fact that the project was progressing at a slow crawl, we asked for more
resources from product engineering.

Bringing new folks onboard brought new life to the project. Those of us who had
been involved for many months were eager to get new perspectives on the many
problems we’d been facing. We used pairing to ramp up new engineers quickly,

214 | Chapter 11: Case Study: Migrating to a New Database

joining forces to debug a small set of data discrepancies. It was the perfect context
from which to demonstrate the Vitess migration tooling and the phased rollout pro‐
cess, and to talk through the new schemas. The work was tedious, but with a bigger
arsenal of engineers at our disposal, we managed to boost our momentum drastically
and banish the final few discrepancies. We did not get down to zero diffs, but settled
for feeling good at 99.999 percent correctness. Since we knew that each channels_mem
bers row could change quite rapidly as a user read messages in Slack, moving their
last_read cursor state, we felt comfortable with some amount of discrepency that
could be attributed to rapid read-after-write situations. Digging into the remain‐
ing .001 percent of differences, when we examined rows directly in the database after
a diff occurred, we noticed that the rows would converge to the same state.

Wrapping up the Dark phase was significant. Knowing that 100 percent of chan
nels_members traffic could run in a performant way on Vitess and return correct
results was absolutely crucial to the overall success of the refactor. Although we
weren’t quite finished yet, being able to close the book on Dark mode was a relief to
everyone. Finally, we were ready to ramp up to Light mode for a small subset of beta
users within the company.

Light Mode
During Light mode, we wanted to test-drive the data retrieved from executing queries
against the Vitess cluster, certifying that swapping over traffic to our new tables
would not introduce any user-facing regressions. We were fairly confident that there
would be relatively few bugs, in great part because of the work completed during the
previous phases to address data discrepancies. However, because channel member‐
ship is at the core of Slack, if there were any bugs at all, they risked being quite seri‐
ous. So we started our Light mode ramp-up carefully, starting off with a small group
of volunteers at Slack, with the eventual goal to enable it to our entire customer base.

Most things worked fine, but we quickly ran into a problem when sometimes, after
joining a channel, users would be unable to send messages. We immediately ramped
down the experiment and dug into query logs, which we kept on all database hosts
for up to two hours. These logs allowed us to debug easily, grepping for any modifica‐
tions to the user’s membership row in the given channel and the callers responsible
for them.

We quickly identified the culprit: a background process, triggered after any Grid user
joined a workspace-level channel they’d previously been a member of, which would
locate and replace membership rows that had a canonical user ID with the user’s local
user ID. This was a problem because our new database schema in Vitess intentionally
used canonical user IDs; after the process had rewritten the user ID, we could no
longer locate the user’s membership row, thereby preventing them from sending
messages.

A Difficult Rollout | 215

We were puzzled about why this process existed and curious to understand whether
we needed to preserve this strange behavior or had uncovered a more nefarious prob‐
lem. A journey into Slack conversations and git history from years prior revealed that
the code was written to paper over a problem specific to an Enterprise Grid feature,
where we sometimes wrote placeholder membership rows with canonical user IDs
and updated them once users rejoined those channels.

This issue did not manifest itself in the discrepancies we inspected during the Dark
mode phase, nor did it appear during several rounds of manual quality assurance
(QA) and in the unit tests we wrote, because it only arose under precise, highly
uncommon circumstances. Fortunately, we determined that we no longer needed this
process and deleted it entirely. Problem solved!

From start to finish, we spent one month ramping up Light mode to all customers.
Once we’d gained confidence in the overall correctness of the data in the Vitess clus‐
ter with our small set of volunteers, we continued the ramp-up. We began with our
own Slack instance and then went on to teams on the free tier, followed by paying
customers, and finally our largest Enterprise customers. During the ramp-up, we
noticed that our customer with the greatest number of shared channels was seeing
time-outs on the API called when viewing a channel (conversations.view). We
quickly noticed that one of the Vitess channels_members queries executed during the
API call was timing out. Unfortunately, because the query was relatively low volume,
we hadn’t been alerted to the problem during the Dark mode phase. We immediately
rolled back Light mode for the customer, fixed the query, and ramped right back up.

Sunset Mode
A mere three days after successfully opting all customers into Light mode, we began
the final stage, Sunset mode. During this phase, although we continued to double-
write to both data sources, we only routed read traffic to the new Vitess clusters. By
enabling Sunset mode to our users, we decreased the query load on our overloaded
legacy systems by 22 percent, giving them much-needed breathing room. Figure 11-6
shows the dip in query volume we observed across our workspace shards.

216 | Chapter 11: Case Study: Migrating to a New Database

Figure 11-6. Removing read queries from the legacy workspace-sharded clusters

Tidying Up
After Sunset mode, a handful of important tasks remained. Namely, once our data
warehouse dependencies had been properly migrated to consume channel member‐
ship data from Vitess, we needed to drop the old workspace-sharded channels_mem
bers tables. We bade them farewell roughly a month later. We then spent the
following weeks tidying the channel membership unidata library, carefully unwinding
any feature flags and removing double-writing logic.

Dropping writes from the legacy shards was a huge, timely win. We removed 50 per‐
cent of writes and completely eliminated replication lag on the enterprise shard for
our largest customer (VLB from Chapter 10), just as it was beginning to struggle
under the pressure of the incessant write traffic. In the days leading up to dropping
the table, the shard had been experiencing replication lag upward of 20 minutes.
Figure 11-7 shows the steep drop in write traffic to VLB’s enterprise shard.

Figure 11-7. Removing writes from VLB’s shard

Tidying Up | 217

Figure 11-8 shows a distinct lack of spikes in replication lag following the removal of
the write load.

Figure 11-8. No more replication lag!

Here’s a close-up of the graph in Figure 11-8’s Slack message:

Unfortunately, just as we were finishing up, the coronavirus was beginning to spread,
and our offices around the world shut down, with Slack’s entire workforce transition‐
ing to working from home. With the global shift to remote work, Slack saw a sharp
increase in demand; we were acquiring new customers at a breakneck pace, and our
existing customers were sending more messages than ever before. The entire infra‐
structure team, including those of us winding down the channels_members

218 | Chapter 11: Case Study: Migrating to a New Database

migration, urgently shifted their focus to scaling our systems to unprecendented lev‐
els. Although we were relieved to bring the refactor to a close, we were never given
the proper opportunity to revel in our achievement.

With this project at a close, other engineers at Slack started scheming about ways to
take advantage of the newly resharded table. Quickly, prototypes of new features
started emerging even when we were in SUNSET mode, and many following projects
were staffed on multiple teams quickly to take advantage of the new data model and
simplify other queries around both Grid and shared channels.

Lessons Learned
As with our previous case study, there are a number of important lessons to be
learned from our migration of channels_members to Vitess. We’ll start with ways the
project might have gone better, describing how we might have set more realistic esti‐
mates and sourced the right teammates sooner. Then we’ll discuss ways it succeeded,
detailing our decision to increase project scope carefully at the outset and the merits
of our simple communication strategy.

Set Realistic Estimates
By the time we started our migration of the channels_members table to Vitess, we had
done a number of Vitess migrations already. We had built and refined tooling to
improve the process, making it easier and safer with every iteration. We based our
initial estimates on our experience with our most recent migrations, which had been
decidedly quicker than the first few. We optimistically assumed that this migration
would be no more difficult than the last.

We should have known, however, that channels_members would be a different beast
for a number of reasons. First, the query load far exceeded any of our previous migra‐
tions. Second, we decided to shard the data across two keys, user and channel, rather
than just one. Finally, we chose to use canonical user IDs and make meaningful
changes to the schema to improve developer productivity, thereby further increasing
the complexity of the project. Our estimates should have reflected these important
decisions and their implications.

The team took a morale hit when we surpassed our original estimate, and engineer‐
ing leadership turned a more watchful eye on the project. Fortunately, we were able to
secure more resources and move forward with the refactor, but our estimate certainly
did not set the expectations it should have at the start.

Setting unrealistic estimates can have much more serious consequences: the refactor
might lose priority, and engineering leadership might lose faith in your ability to
drive large software projects. Your career risks taking a hit. Had we taken the time to
brainstorm each of the potential pitfalls and leaned on the strategies discussed in

Lessons Learned | 219

Chapter 4, we might have set better expectations for both ourselves and our stake‐
holders at the start of the refactor.

Source the Teammates You Need
When we started the project, we assumed that the majority of the work would be best
handled by infrastructure engineers. We could reach out to product engineers as nec‐
essary, asking questions or seeking code review on an ad hoc basis. Only once we ran
into difficulties detangling the JOINs did we ask for more significant resourcing from
product engineering. It was at that point that we realized that we could work faster by
working alongside engineers who were intimately familiar with the queries we were
migrating. Their involvement was crucial throughout the lengthy Dark mode phase,
during which we debugged a number of data discrepancies that led to strange behav‐
iors in the product. Had they been more present from the beginning, we might have
migrated queries more quickly and more correctly (including the JOINs), cutting
down on the time spent in later phases.

As discussed in Chapter 5, sometimes the teammates you have are not the ones best
suited for the job. Because large-scale refactors have far-reaching impact, they often
involve engineers from different teams and disciplines. The team you identify at the
start of your project is very rarely set in stone. If you believe your team is no longer
the right one, figure out who it is missing and seek out those individuals. If you think
you need more resources than you had initially anticipated, ask for them.

Plan Scope Carefully
An important decision we made early in the refactor was to use canonical user IDs
for all user ID–related columns in the Vitess channels_members schemas. We knew
that Slack was aiming to adopt canonical user IDs throughout, but the first few pha‐
ses of the project were unlikely to conclude before our table migration was complete.

By choosing to adopt canonical user IDs, we intentionally increased the scope of the
refactor. We could have spent the time canonicalizing user IDs on our legacy
workspace-sharded clusters first, only migrating to Vitess once the data had been
properly updated. Likewise, we could have migrated the table without canonicalizing
the IDs and initiated the process once it had safely landed in Vitess. We believed that
by doing both at the same time, we would save both time and effort. (While we had
no great way of measuring this, we do believe it turned out to be true!)

In Chapter 4, we learned that keeping a moderate scope is important to ensure that a
refactor is completed within a reasonable amount of time and does not affect more
surface area than is necessary. However, there are circumstances when adding some
additional scope is worthwhile and will ultimately make the effort more successful. Be
mindful of these opportunities during the project planning stage and make a deliber‐
ate decision to take advantage of them well before the project is in full swing. This

220 | Chapter 11: Case Study: Migrating to a New Database

way, when you communicate your plan more broadly, stakeholders will have an
opportunity to voice an opinion about the additional scope, and everyone’s expecta‐
tions should be appropriately aligned.

Choose a Single Place for Project Communication
Throughout the refactor, we leaned heavily on our project channel, #feat-vitess-
channels, to collaborate, coordinate, and provide important updates. Because it
served as our central point of contact, everyone kept up to date with new messages. It
was a great place to ask questions or post code for review; you were sure to get a
response within a few minutes. On several occasions, teammates would debug issues
in threads for others to chime in or catch up on later. During the Light mode portion
of the refactor, users who had volunteered to be opted in to the new queries would
come to #feat-vitess-channels to report bugs and other strange behavior they’d
encountered. If it was related to moving channels_members to Vitess, you could find
it in this channel.

Most importantly, #feat-vitess-channels was a place for us to keep each other motiva‐
ted. As the refactor dragged on, with engineers cycling on and off and Dark mode
continuing to throw us a number of curveballs, it became increasingly difficult to stay
optimistic about our progress. Engineers from across the company would occasion‐
ally pop in with an encouraging “You got this!” or a series of emoji reactions to a
weekly status update. Small, thoughtful acts of support can go a long way to boost
team morale, and having a convenient place where colleagues could share their
encouragement helped make it a common occurrence.

By keeping all communication pertaining to the project in a single place, it’s easy for
everyone involved with the refactor to stay on the same page. Teammates can join
and leave the effort without extensive knowledge transfers. External stakeholders can
check in on the latest progress without pinging you directly. Perhaps most impor‐
tantly, it can be a place of support and encouragement. For ideas on how to establish
good communication habits, refer to Chapter 7.

Design a Thoughtful Rollout Plan
The migration of the channel membership table to Vitess had a well-defined rollout
strategy split into four concrete phases. At each stage, we had a strong vision of when
we should opt different groups of users into our changes (i.e., users at the company
first, followed by customers on the free tier, regular paid customers, and our largest
customers last). On top of this procedure, we used highly reliable tooling built explic‐
itly for the Vitess migration use case, which enabled us to quickly ramp up (and
down) each of the different modes to distinct slices of users at our preferred pace.

Each of these factors helped us move forward quickly, but perhaps the most effective
piece was our ability to roll back immediately if we began to notice a detrimental

Lessons Learned | 221

impact to our users. Having that power at our fingertips meant that we weren’t afraid
to move forward aggressively. It was particularly useful when we entered the Light
mode phase as we used volunteers within the company to read data from the Vitess
cluster.

Even the most thoughtfully planned, meticulously executed refactor will lead to a
handful of bugs, and it is often impossible to identify them all before beginning a roll‐
out. If you can control who is opted in to your changes at important milestones, and
can roll back swiftly, you’ll be able to make progress much more nimbly, surfacing
potentially terrible regressions well before they become a serious incident.

Takeaways
Here are the most important takeaways from our refactor to migrate channels_mem
bers from our workspace-sharded clusters to user- and channel-sharded clusters in
Vitess.

• Set realistic estimates. Optimism is great, but missed deadlines can have serious
ramifications.

• Source the teammates you need; the ones available to you or currently on your
team may not be the ones best suited for the job. Don’t be afraid to ask for new
(or more) resources if you need them.

• Plan project scope carefully. Any added scope should be accounted for during the
planning phase to set expectations appropriately.

• Choose a single place for project communication and stick to it.
• Design a thoughtful rollout plan and invest in building the tooling you need to

make ramp up (and down) as easy as possible.

222 | Chapter 11: Case Study: Migrating to a New Database

Index

A
abstractions, cleaning up, 87
accessibility, as pertains to code degradation, 30
active contributors, 112, 115
active education, 161-163
adoption, fostering, 160
aggregate, commits in, 65
Agile development teams, 137
alignment sandwich strategy, 104-107
Allspaw, John, 128
alone, working, 145
API (application programming interface), 29,

32
architecture (Slack), 174-177
arithmetic symbols, 47
ARM (Advanced RISC Machine)-based micro‐

processors, 31
artifacts, cleaning up, 87-88, 154
assignment operators, 47
async cooperative multitasking mode, 209
Atlassian, 137

B
Backfill mode, 208-209
bartering, in pitches, 125
Benjamin Franklin effect, 124
bias, 116
Boolean arguments, 33-36
boredom, refactoring out of, 16
bugs

dormant, as a risk of refactoring, 12
fixing, 153
handling, 153
identifying, 10-11

in redundant database schemas case study,
189

buy-in, 97-110
about, 97
managers and, 98-101
refactoring and, 109-110
strategies achieving, 101-109

C
Carnegie, Dale

How to Win Friends and Influence People,
104

case statement, 50
case studies, 169-222

about, 169
migrating to a new database, 197-222
redundant database schemas, 171-196

CFGs (Control Flow Graphs), 52
change frequencies, 65
changes, keeping them small, 156
channel-sharded table schema, 203
channels, public versus private, 173
channels_members, migrating to Vitess,

199-203
chat transcripts, 62
checkValid function, 19, 25
clean-up items, 154
cleaning up

artifacts, 87-88, 154
in migrating to a new database case study,

217-219
in redundant database schemas case study,

190
cleanup crews, as a team type, 120

223

code
analysis tools for, 166
authorship of, 17, 66
commented-out, 33
dead, 87
extending, 18
half-refactored, 18
history of, in redundant database schemas

case study, 193-196
lines of, 55-57
measuring complexity of, 47-57
ownership of, 167
unused, as pertains to code degradation, 32

code degradation, 27-42
about, 27
importance of, 28
requirement shifts, 29-36
tech debt, 36-41

codebases
complexity of, 13
defined, 9
engineers and, 40

commented-out code, 33
comments, 56, 87
commit messages, 64
commits, 65, 156
communication, 131-146

about, 131
choosing a single place for, 221
during project execution, 141-145
importance of good, 192
of progress, 188
outside teams, 138-146
regular, 132
retrospectives, 137
stand-ups, 133-135
weekly syncs, 135-137
when kicking off projects, 138-141
within teams, 132-137
working alone, 145

comparison operators, 47
compatibility, of devices, 30
complexity

measuring for code, 47-57
of code, 13
unnecessary, as a risk of refactoring, 12

conditionals, simplifying, 21
consolidating tables, 180-189
continuous deployment environments, 81

conversation, initial, 101
conversational devices, 102-104
coordination, from managers, 100
counter-arguments, presenting, 103
CREATE TABLE statement, 201
culture, integrating improvement into the, 167
Cyberus Technology, 31
cyclomatic complexity, 50-53

D
Dark mode, 81-86, 208, 210-215
data discrepancies, 213-215
data, workspace-sharded, 198
dead code, cleaning up, 87
departments, buy-in and, 106
dependencies, external, as pertains to code deg‐

radation, 32
detangling JOINs, 203-207
developer productivity, 9
devices, 30, 102-104
documentation

about, 60
consistency with location of, 138
formal, 61
informal, 62-64

drafting plans, 71-95
about, 71
choosing rollout strategies, 80-86
cleaning up artifacts, 87-88
defining end state, 72-74
estimating, 90
identifying strategic intermediate mile‐

stones, 76-80
mapping path between start and end state,

74-76
referencing metrics, 88-90
refining, 94-95
sharing with other team members, 91

drive-by refactorer, 16, 168

E
education

about, 161
active, 161-163
passive, 164

email transcripts, 62
end state

defining your, 72-74
ideal versus acceptable, 74

224 | Index

mapping path between start state and, 74-76
engineering gatherings, 163
engineers

influence of, 106
seeking feedback from senior, 143-145
soliciting feedback from, 67

environmental changes, as pertains to code
degradation, 31

ergonomic interfaces, 161
estimates, 90, 219
Etsy, 128
evidence, relying on, 107
execution plan, 141-143
execution strategies, 147-158

about, 147
keeping a tally, 152-155
productive programming, 155-158
team building, 147-152

expectations, setting, 139-141
experts, identifying types of, 112
EXPLAIN plans, 195
external dependencies, as pertains to code deg‐

radation, 32
extracting

magic numbers, 22
self-contained logic, 23-26

F
Facebook, 170
factoring, 4
Feathers, Michael

Working Effectively with Legacy Code, 58
feature flags/toggles, 40, 81, 87
feedback, seeking from senior engineers,

143-145
files, visibility of, 178
fixing bugs, 153
Flamework, 170
Flickr, 169
for loop, 50, 53
formal documentation, 61
fun, refactoring out of, 16
functions, length of, 56

G
gates, guardrails versus, 166
generosity, in pitches, 124
Glitch, 169
Google Project Zero, 31

Graz University of Technology, 31
guardrails, gates versus, 166

H
Hack, 170
Hacklang, 209
Halstead Metrics, 47-49
Halstead, Maurice, 47
Healthcare.gov, 6
HHVM (HipHop Virtual Machine), 170
How to Win Friends and Influence People

(Carnegie), 104

I
IBM POWER processors, 31
if statement, 50, 53
"in-person", 134
individuals, motivating, 150
informal documentation, 62-64
initial conversation, 101
inlined numbers, extracting, 22
Intel x86 microprocessors, 31
interfaces, ergonomic, 161
iteration, speed of, 40

J
JIRA, 95
JOINs, detangling, 203-207

L
lessons learned

in migrating to a new database case study,
219-222

in redundant database schemas case study,
192

Light mode, 81-86, 208, 215
light/dark technique, 81-86
Lisp programming language, 32
LOC (lines of code), 55-57
local user IDs, 203
logical operators, 47

M
magic numbers, extracting, 22
maintenance, 159-168

about, 159
education, 161-164
fostering adoption, 160

Index | 225

integrating improvement into the culture,
167

reinforcement, 165-167
maintenance work, 108
managers, buy-in from, 98-101
mapping path between start state and end state,

74-76
matchmaking, 113-117
McCabe, Thomas, 50
measuring

code complexity, 47-57
impact of refactor, 46
intermediate metrics, 152

meetings, use of technology during, 133
Meltdown security vulnerability, 31
mentions, 178
metrics

importance of, 195
in pitches, 123
intermediate measurements of, 152
referencing in plans, 88

migrating to a new database case study,
197-222
about, 197, 222
Backfill mode, 209
channels-members to Vitess, 199-203
choosing single places for communication,

221
cleaning up, 217-219
Dark mode, 210-215
designing thoughtful rollout plans, 221
detangling JOINs, 203-207
developing new schemes, 201-203
lessons learned, 219-222
Light mode, 215
migrating channels_members to Vitess,

199-203
planning scope, 220
rollout, 208-216
setting realistic estimates, 219
sharding scheme, 200
sourcing teammates, 220
Sunset mode, 216
workspace-sharded data, 198

migration strategies, developing, 183-185
milestones

distinct metrics for, 89
focusing on strategic, 195
identifying strategic intermediate, 76-80

interpolating goal metrics to intermediate,
89

motivating teams, 150-152, 187, 194
MySQL, 199

N
Nejmeh, Brian, 53
Nonviolent Communication (Rosenberg), 132
NPath complexity, 53-55
NUMA (nonuniform memory access) inter‐

leave policy, 212

O
office hours, 163
onboarding materials, 61
OOMs (out-of-memory errors), 210
operands, in Halstead Metrics, 47-57
operators, in Halstead Metrics, 47-57
opportunity, in pitches, 124
organization, lack of, 39
out-of-scope items, 154
owners, as a team type, 117-120
ownership, of code, 167

P
PagerDuty, 62, 114
pair programming, 148-150
passive education, 164
performance

Dark mode and, 210-213
refactoring and, 14
refactoring for improved, 46

perspective, in teams, 92
PHP, 170
PII (personally identifiable information), 160
pitches, 122-126
plans, drafting (see drafting plans)
playing hardball strategy, 108
positive reinforcement, 165
postmortems, 62, 128
primeFactors function, 57
private channels, 173
product development, speed of, 40
product requirements, 14, 33-36
productivity, developer, 9
Program Management in Design and Develop‐

ment, 121
programming

226 | Index

choosing languages for, 36
productive, 155-158

progress, 186, 188
progress announcements, 141
progressive linting, 165
project management software, 63
Prometheus, 112
prototyping, 155
public channels, 173

Q
quantifying progress, 186
queries, gathering scattered, 181-183

R
range validation, 20
realistic scenario, 127
recency bias, 116
redundant database schemas case study,

171-196
about, 171, 196
cleaning up, 190
code history, 193-196
consolidating tables, 180-189
lessons learned from, 192
scalability problems, 177-179
Slack, 172-177
Slack architecture, 174-177

refactoring
about, 3-6
at scale, 6-8
benefits of, 9-11
buy-in and, 109-110
drive-by, 16, 168
example of, 18-26
for fun, 16
for improved performance, 46
importance of, 8
measuring (see starting state)
new technology and, 15
out of boredom, 16
performance and, 14
rewarding, 107
risks of, 11-13
scope and, 13
when not to use, 16-18
when to use, 13-16

regressions, as a risk of refactoring, 11
reinforcement, of refactoring, 165-167

reliability, of tests, 59
repeatable steps, in plan, 79
repeating, in pitches, 126
reputation, 66-69
resiliency, of tests, 59
RESTful service, 5
retrospectives, 137
risks, of refactoring, 11-13, 99
rollout strategies, 80-86, 221
Rosenberg, Marshall

Nonviolent Communication, 132

S
scalability, 29, 177-179
scale, refactoring at, 6-8
scenarios, 127
schemas, developing new, 201-203
scope, 13, 220
scope creep, 12, 93
scope, reasonable, as a risk of refactoring, 12
self-contained logic, extracting, 23-26
senior engineers, seeking feedback from,

143-145
sharing plans with teammates, 91-93
SHRDLU programming language, 32
simplifying conditionals, 21
skip-level, 105
Slack, 7, 169, 172-177
Smart DNA, 76, 79, 86, 106, 142
SMEs (subject matter experts), 112
Software Design X-Rays (Tornhill), 65
Spectre security vulnerability, 31
stand-ups, 133-135
starting state, 45-69

about, 45, 69
difficulty of measuring refactoring impact,

46
documentation, 60-64
mapping path between end state and, 74-76
measuring code complexity, 47-57
reputation, 66-69
test coverage metrics, 57-60
version control, 64-66

StatsD, 112
strategies

for achieving buy-in, 101-109
migration, 183
rollout, 80-86, 221

strength, of teams, 128

Index | 227

style guides, 61
Sunset mode, 208, 216
switch blocks, 50
syncs, weekly, 135-137
system, 4

T
tables, consolidating, 180-189
tally, keeping a, 152-155
TDD (test-driven development), 57
team building

about, 147
motivating everyone, 150-152
pair programming, 148-150

teams, 111-128
about, 111
fostering strong, 128
identifying experts, 112
matchmaking, 113-117
motivating, 187, 194
outcomes, 126-128
pitch, 122-126
rallying teammates, 105
sourcing teammates, 220
tiger, 121
types of, 117-121

tech debt
lack of organization, 39
speed of iteration and product development,

40
technology choices and, 36-39

technical program managers, 64
technical specs, 61
technology

choices in, 36-39
refactoring and new, 15
use of during meetings, 133

test coverage, 57-60, 194
tests

importance of, 157
reliability of, 59
resiliency of, 59
types of, 59

thought process, complimenting, 103

tiger team, 121
Tiny Speck, 169, 184
tools, for code analysis, 166
Tornhill, Adam

Software Design X-Rays, 65
trades, experts of many, 115
transparency, in teams, 92
Trello, 95
types, 60

U
ultimatums, 109
UML (Unified Modeling Language), 61
unit tests, cleaning up, 88
University of Utah, 148
unused code, as pertains to code degradation,

32
useAverage argument, 20, 25
user-sharded membership table, 202

V
validateUser function, 38
version control

about, 64
commit messages, 64
commits in aggregate, 65

visibility, of files, 178
Vitess, migrating channels_members to,

199-203

W
WAI (Web Accessibility Initiative), 30
weekly syncs, 135-137
while loop, 50, 53
Working Effectively with Legacy Code (Feath‐

ers), 58
workshops, 162
workspace-sharded data, 198
worst-case scenario, 127

Z
Zend Engine II/III, 170

228 | Index

About the Author
Maude Lemaire is an engineer at Slack Technologies, Inc., where she works to scale
the product to support some of the world’s largest organizations. She spends most of
her time chasing down people, making network calls in a loop, refactoring unwieldy
chunks of code, consolidating redundant database schemas, and building tools for
other developers. Maude cares deeply about the developer experience and has actively
sought out simpler, more efficient ways to structure code in each of her roles, at dif‐
ferent levels of the stack.

Maude obtained a BSc. in Honours Software Engineering from McGill University.

Colophon
The animals on the cover of Refactoring at Scale are walruses (Odobenus rosmarus),
large marine mammals found in the Arctic and subarctic regions of the North Pole.

Walruses are well known for their long, sharp tusks that aid them in breaking ice,
climbing out of the water, establishing dominance in a herd, and defending them‐
selves from predators. Short fur sparsely covers the walrus’s thick skin, which ranges
in color from gray to a yellow-brown. A much thicker layer of blubber provides
warmth and stored energy, allowing them to survive in harsh conditions.

These slow-moving carnivores prefer to live in areas of ice and shallow water to allow
easy access to food and will migrate seasonally to find ice of optimal thickness. Short
front flippers and larger hind flippers propel this one-ton (on average) creature
through the water, while its whiskers, more so than its eyes, are used for navigation
and food identification. Walruses mostly consume large amounts of mollusks and
other shellfish, but have been known to occasionally eat larger animals such as sea‐
birds and even seals.

Global climate change and human predation have caused the walrus’s conservation
status to be listed as Vulnerable. Many of the animals on O’Reilly covers are endan‐
gered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Natural History of Animals by Vogt & Specht. The cover fonts are Gilroy Semi‐
bold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Introduction
	Chapter 1. Refactoring
	What Is Refactoring?
	What Is Refactoring at Scale?
	Why Should You Care About Refactoring?
	Benefits of Refactoring
	Developer Productivity
	Identifying Bugs

	Risks of Refactoring
	Serious Regressions
	Unearthing Dormant Bugs
	Scope Creep
	Unnecessary Complexity

	When to Refactor
	Small Scope
	Code Complexity Actively Hinders Development
	Shift in Product Requirements
	Performance
	Using a New Technology

	When Not to Refactor
	For Fun or Out of Boredom
	Because You Happened to Be Passing By
	To Making Code More Extendable
	When You Don’t Have Time

	Our First Refactoring Example
	Simplifying Conditionals
	Extracting Magic Numbers
	Extracting Self-Contained Logic

	Chapter 2. How Code Degrades
	Why Understanding Code Degradation Matters
	Requirement Shifts
	Scalability
	Accessibility
	Device Compatibility
	Environmental Changes
	External Dependencies
	Unused Code
	Changes in Product Requirements

	Tech Debt
	Working Around Technology Choices
	Persistent Lack of Organization
	Moving Too Quickly

	Applying Our Knowledge

	Part II. Planning
	Chapter 3. Measuring Our Starting State
	Why Is Measuring the Impact of a Refactor Difficult?
	Measuring Code Complexity
	Halstead Metrics
	Cyclomatic Complexity
	NPath Complexity
	Lines of Code

	Test Coverage Metrics
	Documentation
	Formal Documentation
	Informal Documentation

	Version Control
	Commit Messages
	Commits in Aggregate

	Reputation
	Building a Complete Picture

	Chapter 4. Drafting a Plan
	Defining Your End State
	On the Road
	At Work

	Mapping the Shortest Distance
	On the Road
	At Work

	Identifying Strategic Intermediate Milestones
	On the Road
	At Work

	Choosing a Rollout Strategy
	Dark Mode/Light Mode
	Smart DNA’s Rollout

	Cleaning Up Artifacts
	Referencing Metrics in Your Plan
	Interpolating Goal Metrics to Intermediate Milestones
	Distinct Milestone Metrics

	Estimating
	Sharing Your Plan with Other Teams
	Transparency
	Perspective

	Refined Plan

	Chapter 5. Getting Buy-In
	Why Your Manager Is Not Onboard
	Managers Aren’t Coding
	Managers Are Evaluated Differently
	Managers See the Risk
	Managers Need to Coordinate

	Strategies for Making a Compelling Argument
	Using Conversational Devices
	Building an Alignment Sandwich
	Relying on Evidence
	Playing Hardball

	Buy-In Shapes the Refactor

	Chapter 6. Building the Right Team
	Identifying Different Kinds of Experts
	Matchmaking
	Experts of Many Trades
	Revisiting Active Contributors
	Biases in Our Expert List

	Types of Refactoring Teams
	Owners
	Proposed Approach
	Cleanup Crews

	The Pitch
	Metrics
	Generosity
	Opportunity
	Bartering
	Repeat

	A Few Outcomes
	Realistic Scenario
	Worst-Case Scenario

	Fostering Strong Teams

	Part III. Execution
	Chapter 7. Communication
	Within Your Team
	Stand-Ups
	Weekly Syncs
	Retrospectives

	Outside Your Team
	When Kicking Off the Project
	During Project Execution

	Always Iterate

	Chapter 8. Strategies for Execution
	Team Building
	Pair Programming
	Keeping Everyone Motivated

	Keeping a Tally
	Intermediate Metric Measurements
	Unearthed Bugs
	Clean-Up Items
	Out-of-Scope Items

	Programming Productively
	Prototyping
	Keep Things Small
	Test, Test, Test
	Asking the “Stupid” Question

	Conclusion

	Chapter 9. Making the Refactor Stick
	Fostering Adoption
	Education
	Active Education
	Passive Education

	Reinforcement
	Progressive Linting
	Code Analysis Tools
	Gates Versus Guardrails

	Integrating Improvement into the Culture

	Part IV. Case Studies
	Chapter 10. Case Study: Redundant Database Schemas
	Slack 101
	Slack Architecture 101
	Scalability Problems
	Booting Up the Slack Client
	File Visibility
	Mentions

	Consolidating the Tables
	Gathering the Scattered Queries
	Developing a Migration Strategy
	Quantifying Our Progress
	Attempting to Keep the Team Motivated
	Communicating Our Progress

	Tidying Up
	Lessons Learned
	Develop a Well-Defined, Well-Communicated Plan

	Understand the Code’s History
	Ensure Adequate Test Coverage
	Keep Your Team Motivated
	Focus on Strategic Milestones
	Identify and Rely on Meaningful Metrics

	Takeaways

	Chapter 11. Case Study: Migrating to a New Database
	Workspace-Sharded Data
	Migrating channels_members to Vitess
	Sharding Scheme
	Developing a New Schema

	Detangling JOINs
	A Difficult Rollout
	Backfill Mode
	Dark Mode
	Light Mode
	Sunset Mode

	Tidying Up
	Lessons Learned
	Set Realistic Estimates
	Source the Teammates You Need
	Plan Scope Carefully
	Choose a Single Place for Project Communication
	Design a Thoughtful Rollout Plan

	Takeaways

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

