


React and 
React Native
Fourth Edition

Build cross-platform JavaScript applications with 
native power for the web, desktop, and mobile

Adam Boduch

Roy Derks

Mikhail Sakhniuk

BIRMINGHAM—MUMBAI



React and React Native
Fourth Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing 
cannot guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Aaron Tanna
Senior Editor: Hayden Edwards
Content Development Editor: Rashi Dubey
Technical Editor: Joseph Aloocaran
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Anamika Singh

First published: March 2017
Second edition: September 2018
Third edition: April 2020
Fourth edition: May 2022

Production reference: 1270522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-128-0

www.packt.com

http://www.packt.com


For Jason, Simon, and Kevin

– Adam Boduch

For every developer out there that needs a friend on their programming 
journey

– Roy Derks

 For my wife, Anna, and daughter, Polina

– Mikhail Sakhniuk



Contributors

About the authors
Adam Boduch has been involved in large-scale JavaScript development for nearly 15 
years. Before moving to the frontend, he worked on several large-scale cloud computing 
products using Python and Linux. No stranger to complexity, Adam has practical 
experience with real-world software systems and the scaling challenges they pose.

Thanks to the React team for providing the web with this fantastic tool.

Roy Derks is a serial start-up CTO, international speaker, and author from the 
Netherlands. He has been working with React, React Native, and GraphQL since 2016. 
You might know him from the book React Projects – Second Edition, which was released 
by Packt earlier this year. Over the last few years, he has inspired tens of thousands of 
developers worldwide through his talks, books, workshops, and courses.

Mikhail Sakhniuk is a software engineer who is highly proficient in JavaScript, React, 
and React Native. He has more than 6 years of experience in developing web and mobile 
applications. He has worked for start-ups, fintech companies, and product companies with 
more than 30 million users. Currently, Mikhail is working as a senior frontend engineer. 
In addition, he owns and maintains a number of open source projects. He also shares his 
knowledge and experience through books and articles.

I'd like to thank the entire JavaScript community for creating, maintaining, 
and using a thousand libraries and tools that make the web faster, bigger, 

and more accessible.



About the reviewers
Kirill Ezhemenskii is an experienced software engineer, frontend and mobile developer, 
solution architect, and CTO at a healthcare company. He's a functional programming 
advocate and an expert in the React Stack, GraphQL, and TypeScript. Kirill is also a React 
Native mentor.

Sunki Baek is an experienced frontend developer who primarily works with React Native 
to develop cross-platform applications. His React Native journey started in 2016, shortly 
after React Native was introduced—his first project was to create an e-commerce app with 
a chat feature. Ever since then, he has been involved in e-commerce, online-to-offline 
commerce, and food technology projects. Currently, he is working as a senior mobile 
developer in the Restaurant Live Order team at SkipTheDishes.

Andrew Baisden is a software developer who has experience working across different 
technical stacks. Primarily skilled as a JavaScript developer, he is also familiar with the 
programming languages Python and C#. He has a university degree and has spent a lot 
of time self-training to expand his knowledge and skillset. Technical writing and content 
creation are two other areas where he excels. Many of his articles have been shared across 
social media and are used as motivation and essential resources for other developers and 
aspiring developers who are trying to break into the industry. With a growing audience of 
over 5,000 members, Andrew continues to add value wherever he goes.





Table of Contents
Preface

Part 1 – React

1
Why React?

What is React? 4
React is just the view layer 4
Simplicity is good 5
Declarative UI structures 6
Data changes over time 7
Performance matters 7
The right level of abstraction 9

What's new in React 18? 10
Automatic batching 10
State transitions 11

Summary 11
Further reading 11

2
Rendering with JSX

Technical requirements 14
Your first JSX content 14
Hello JSX 14
Declarative UI structures 15

Rendering HTML 15
Built-in HTML tags 16
HTML tag conventions 17
Describing UI structures 18

Creating your own JSX elements 19
Encapsulating HTML 19

Nested elements 20
Namespaced components 23

Using JavaScript expressions 24
Dynamic property values and text 25
Mapping collections to elements 26

Building fragments of JSX 28
Using wrapper elements 29
Using fragments 30

Summary 31
Further reading 31



viii  Table of Contents

3
Component Properties, State, and Context

Technical requirements 34
What is component state? 34
What are component properties? 35
Setting component state 36
Setting initial component state 36
Creating component state 38
Merging component state 40

Passing property values 42
Default property values 42

Setting property values 44

Stateless components 46
Pure functional components 46
Defaults in functional components 48

Container components 49
Providing and consuming 
context 52
Summary 56
Further reading 56

4
Getting Started with Hooks

Technical requirements 57
Maintaining state using Hooks 58
Initial state values 58
Updating state values 59

Performing initialization and 
cleanup actions 62
Fetching component data 62
Canceling requests and resetting state 64
Optimizing side-effect actions 68

Sharing data using context 
Hooks 70
Sharing fetched data 71
Updating stateful context data 75

Using reducer Hooks to scale 
state management 80
Using reducer actions 80
Handling state dependencies 84

Summary 90

5
Event Handling, the React Way

Technical requirements 92
Declaring event handlers 92
Declaring handler functions 92
Multiple event handlers 93
Importing generic handlers 94

Using event handler context 
and parameters 96
Getting component data 96
Higher-order event handlers 99

Declaring inline event handlers 100



Table of Contents  ix

Binding handlers to elements 101
Using synthetic event objects 102
Understanding event pooling 103

Summary 105
Further reading 105

6
Crafting Reusable Components

Technical requirements 108
Reusable HTML elements 108
The difficulty with monolithic 
components 109
The JSX markup 109
Initial state 111
Event handler implementation 112

Refactoring component 
structures 115
Starting with the JSX 115
Implementing an article list component 117
Implementing an article item 

component 119
Implementing an add article 
component 121
Making components functional 123

Render props 126
Refactoring class components 
using hooks 128
Rendering component trees 133
Feature components and utility 
components 134
Summary 135
Further reading 135

7
The React Component Life Cycle

Technical requirements 138
Why components need a life 
cycle 138
Initializing properties and state 139
Fetching component data 140
Initializing state with properties 143
Updating state with properties 145

Optimizing rendering efficiency 148
To render or not to render 148
Using metadata to optimize rendering 152

Rendering imperative 
components 154
Rendering jQuery UI widgets 154

Cleaning up after components 157
Cleaning up asynchronous calls 157

Containing errors with error 
boundaries 160
Summary 165
Further reading 165



x  Table of Contents

8
Validating Component Properties

Technical requirements  168
Knowing what to expect 168
Promoting portable 
components 168
Simple property validators 169
Basic type validation 169
Requiring values 173
Any property value 176

Type and value validators 178
Things that can be rendered 178
Requiring specific types 180
Requiring specific values 183

Writing custom property 
validators 185
Summary 187
Further reading 187

9
Handling Navigation with Routes

Technical requirements 190
Declaring routes 190
Hello route 190
Decoupling route declarations 191

Handling route parameters 193
Resource IDs in routes 194

Optional parameters 199

Using link components 202
Basic linking 202
URL and query parameters 204

Summary 206
Further reading 206

10
Code Splitting Using Lazy Components and Suspense

Technical requirements 208
Using the lazy API 208
Dynamic imports and bundles 208
Making components lazy 209

Using the Suspense component 210
Top-level Suspense components 210

Simulating latency 212
Working with spinner fallbacks 213

Avoiding lazy components 214
Exploring lazy pages and routes 217
Summary 219



Table of Contents  xi

11
Server-Side React Components

Technical requirements 222
What is isomorphic JavaScript? 222
The server is a render target 222
Initial load performance 223
Sharing code between the server and 
the browser 224

Rendering to strings 224
Backend routing 227
Frontend reconciliation 231
Fetching data 234
Summary 238

12
User Interface Framework Components

Technical requirements 240
Layout and organization 240
Using containers 240
Building responsive grid layouts 242

Using navigation components 247
Navigating with drawers 247
Navigating with tabs 252

Collecting user input 255

Checkboxes and radio buttons 255
Text inputs and select inputs 257

Working with buttons 259
Working with styles and themes 261
Making styles 261
Customizing themes 263

Summary 264

13
High-Performance State Updates

Technical requirements 265
Batching state updates 266
Prioritizing state updates 270

Handling asynchronous state 
updates 274
Summary 278



xii  Table of Contents

Part 2 – React Native

14
Why React Native?

Technical requirements 282
What is RN? 282
React and JSX are familiar 284
The mobile browser experience 284

Android and iOS – different yet 
the same 285
The case for mobile web apps 285
Summary 286
Further reading 286

15
React Native  
under the Hood

Technical requirements 288
Exploring React Native 
architecture 288
The state of web and mobile apps in 
the past 288
React Native current architecture 290
React Native future architecture 295

Explaining JS and Native 
modules 296
React Navigation 297

UI component libraries 297
Splash screen 297
Icons 298
Handling errors 298
Push notifications 299
Over the air updates 299
JS libraries 299

Exploring React Native 
components and APIs 300
Summary 301

16
Kick-Starting React Native Projects

Technical requirements 303
Exploring React Native CLI tools 304
Installing and using the Expo 
command-line tool 305

Viewing your app on your 
phone 306
Viewing your app on Expo Snack 312
Summary 317



Table of Contents  xiii

17
Building Responsive Layouts with Flexbox

Technical requirements 320
Introducing Flexbox 320
Introducing React Native styles 321
Using the Styled Components 
library 324
Building Flexbox layouts 325
Simple three-column layout 325

Improved three-column layout 328
Flexible rows 332
Flexible grids 334
Flexible rows and columns 336

Summary 338
Further reading 339

18
Navigating Between Screens

Technical requirements 342
Navigation basics 342
Route parameters 347
The navigation header 352

Tab and drawer navigation 357
Summary 361
Further reading 362

19
Rendering Item Lists

Technical requirements 363
Rendering data collections 364
Sorting and filtering lists 367
Fetching list data 375

Lazy list loading 378
Implementing pull to refresh 381
Summary 382
Further reading 382

20
Showing Progress

Technical requirements 383
Understanding progress and 
usability 384

Indicating progress 384
Measuring progress 387
Exploring navigation indicators 391



xiv  Table of Contents

Step progress 393
Summary 396

Further reading 396

21
Geolocation and Maps

Technical requirements 397
Using Location API 398
Rendering the Map 400
Annotating points of interest 402

Plotting points 402
Plotting overlays 404

Summary 405
Further reading 406

22
Collecting User Input

Technical requirements 408
Collecting text input 408
Selecting from a list of options 411
Toggling between on and off 417

Collecting date/time input 419
Summary 423
Further reading 424

23
Displaying Modal Screens

Technical requirements 426
Important information 426
Getting user confirmation 426
Displaying a success confirmation 427
Error confirmation 432

Passive notifications 435
Activity modals 439
Summary 442
Further reading 442

24
Responding to User Gestures

Technical requirements 444
Scrolling with your fingers 444
Giving touch feedback 447

Using Swipeable and 
cancellable components 454
Summary 460
Further reading 460



Table of Contents  xv

25
Using Animations

Technical requirements 461
Using React Native Reanimated 462
Animated API 462
React Native Reanimated 462

Installing the React Native Reanimated 
library 463

Animating layout components  464
Animating styling components 470
Summary 472
Further reading 472

26
Controlling Image Display

Technical requirements 474
Loading images 474
Resizing images 476
Lazy image loading 480

Rendering icons 485
Summary 488
Further reading 488

27
Going Offline

Technical requirements 490
Detecting the state of the 
network 490
Storing application data 494

Synchronizing application data 498
Summary 504
Further reading 504

28
Selecting Native UI Components Using NativeBase

Technical requirements 506
Application containers 506
Headers and footers 510
Using layout components 514
Collecting input using form 
components 517

Summary 521
Further reading 521



xvi  Table of Contents

Part 3 – React Architecture

29
Handling Application State

Technical requirements 526
Organizing state in React 526
Unidirectionality 526
Synchronous update rounds 527
Predictable state transformations 527
Unified information architecture 528

Implementing Context 528
Creating Context 529

Context provider 529
Reducer functions 531
The Home component 534
Preventing unwanted re-renders 535

Managing state in mobile apps 537
Scaling the architecture 538
Summary 539
Further reading 539

30
Why GraphQL?

Approaching state with 
GraphQL 542
Understanding some verbose 
vernacular about GraphQL 543
Declarative data fetching 543

Mutating application state 547
Summary 549
Further reading 549

31
Building a GraphQL React App

Technical requirements 552
Creating a Todo app 552
Constructing a GraphQL 
schema 553
Bootstrapping the Apollo Client 554

Adding todo items 559
Rendering todo items 562
Completing todo items 564
Summary 566
Further reading 566

Index
Other Books You May Enjoy



Preface
Over the years, React and React Native has proven itself among JavaScript developers as a 
popular choice for a complete and practical guide to the React ecosystem. This fourth edition 
comes with the latest features, enhancements, and fixes to align with React 18, while also 
being compatible with React Native. It includes new chapters covering critical features and 
concepts in modern cross-platform app development with React.

From the basics of React to popular components such as Hooks, GraphQL, and NativeBase, this 
definitive guide will help you become a professional React developer in a step-by-step manner.

You'll begin by learning about the essential building blocks of React components. As you 
advance through the chapters, you'll work with higher-level functionalities in application 
development and then put your knowledge to work by developing user interface components 
for the web and native platforms. In the concluding chapters, you'll learn how to bring your 
application together with robust data architecture.

By the end of this book, you'll be able to build React applications for the web and React 
Native applications for multiple platforms - web, mobile, and desktop with confidence.

Who this book is for
This book is for any JavaScript developer who wants to start learning how to use React and 
React Native for mobile and web application development. No prior knowledge of React is 
required; however, working knowledge of JavaScript is necessary to be able to follow along 
with the content covered.

What this book covers
Chapter 1, Why React?, describes what React is and why you want to use it to build your 
application.

Chapter 2, Rendering with JSX, teaches the basics of JSX, the markup language used by 
React components.

Chapter 3, Context Properties, State, and Context, introduces the core mechanisms of 
passing data around your React application.



ii     Preface

Chapter 4, Getting Started with Hooks, shows how React Hooks can be used to extend the 
behavior of components.

Chapter 5, Event Handling, the React Way, gives an overview of how events are handled by 
React components.

Chapter 6, Crafting Reusable Components, guides you through the process of refactoring 
components by example.

Chapter 7, The React Component Life Cycle, describes the various phases that React 
components go through and why it's important for React developers.

Chapter 8, Validating Component Properties, shows you how to ensure that React 
component property values are as expected.

Chapter 9, Handling Navigations with Routes, provides plenty of examples of how to set up 
routing for your React web app.

Chapter 10, Code Splitting Using Lazy Components and Suspense, introduces code-splitting 
techniques that result in smaller, more efficient applications.

Chapter 11, Server-Side React Components, teaches you how to use Next.js to build large-
scale React applications that render content on a server and a client.

Chapter 12, User Interface Framework Components, gives an overview of how to get started 
with MUI, a React component library for building UIs. 

Chapter 13, High-Performance State Updates, goes into depth on the new features in React 
18 that allow for efficient state updates and a high-performing application.

Chapter 14, Why React Native?, describes what the React Native library is and the 
differences between native mobile development.

Chapter 15, React Native under the Hood, gives an overview of the architecture of  
React Native.

Chapter 16, Kick-Starting React Native Projects, teaches you how to start a new React 
Native project.

Chapter 17, Building Responsive Layouts with Flexbox, describes how to create a layout and 
add styles.

Chapter 18, Navigating between Screens, shows the approaches to switching between 
screens in an app.

Chapter 19, Rendering Item Lists, describes how to implement lists of data in an application.



Preface     iii

Chapter 20, Showing Progress, shows you how to handle process indications and 
progress bars.

Chapter 21, Geolocation and Maps, guides you on how to track geolocation and add a map 
to an app.

Chapter 22, Collecting User Input, teaches you how to create forms.

Chapter 23, Displaying Modal Screens, teaches you how to create dialog modals.

Chapter 24, Responding to User Gestures, provides examples of how to handle user gestures.

Chapter 25, Using Animations, describes how to implement animations in an app.

Chapter 26, Controlling Image Display, gives an overview of how to render images in a 
React Native app.

Chapter 27, Going Offline, shows how to deal with an app when a mobile phone doesn't 
have an internet connection.

Chapter 28, Selecting Native UI Components Using NativeBase, teaches you how to create 
an application using the NativeBase UI library.

Chapter 29, Handling Application State, shows you how to handle application state for both 
web and mobile apps.

Chapter 30, Why GraphQL?, describes what GraphQL is and how to use it.

Chapter 31, Building a React GraphQL App, shows how to handle GraphQL in React and 
React Native apps.

To get the most out of this book
This book assumes you have a basic understanding of the JavaScript programming language. 
It also assumes that you'll be following along with the examples, which require a command-
line terminal, a code editor, and a web browser.

The requirements for learning React Native are the same as for React development, but to 
run an app on a real device, you will need an Android or iOS smartphone. In order to run 
iOS apps in the simulator, you will need a Mac computer.



iv     Preface

Each chapter has its own folder in the code repository, and each example runs independently 
of the others. Generally speaking, you can use npm install and npm start to run each 
example. Check the README files in each folder for more specific instructions pertaining to 
each specific example.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/React-and-React-Native-4th-Edition. 
If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803231280_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "You have the actual routes declared as <Route> elements."

A block of code is set as follows:

export default function First() {

  return <p>Feature 1, page 1</p>;

}

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803231280_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803231280_ColorImages.pdf


Preface     xxi

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

export default function List({ data, fetchItems, refreshItems, 
isRefreshing }) {

  return (

    <FlatList

      data={data}

      renderItem={({ item }) => <Text style={styles.
item}>{item.value}</Text>}

      onEndReached={fetchItems}

      onRefresh={refreshItems}

      refreshing={isRefreshing}

    />

  );

}

Any command-line input or output is written as follows:

npm install @react-navigation/bottom-tabs @react-navigation/
drawer

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "The 
Container Component will typically contain one direct child."

Tips or Important Notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of your 
message.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book, we would be grateful if 
you would report this to us. Please visit www.packtpub.com/support/errata 
and fill in the form.

http://customercare@packtpub.com
http://www.packtpub.com/support/errata


xxii     Preface

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

http://copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com


Part 1 – React

In this part, we will cover the fundamentals of React tools and concepts, applying them to 
build high-performance web apps.

In this part, we will cover the following chapters:

• Chapter 1, Why React?

• Chapter 2, Rendering with JSX 

• Chapter 3, Context Properties, State, and Context

• Chapter 4, Getting Started with Hooks

• Chapter 5, Event Handling, the React Way

• Chapter 6, Crafting Reusable Components

• Chapter 7, The React Component Life Cycle

• Chapter 8, Validating Component Properties

• Chapter 9, Handling Navigations with Routes

• Chapter 10, Code Splitting Using Lazy Components and Suspense

• Chapter 11, Server-Side React Components

• Chapter 12, User Interface Framework Components

• Chapter 13, High-Performance State Updates





1
Why React?

If you're reading this book, you probably know what React is. If not, don't worry. I'll do 
my best to keep philosophical definitions to a minimum. However, this is a long book 
with a lot of content, so I feel that setting the tone is an appropriate first step. Yes, the goal 
is to learn React and React Native. But it's also to put together a lasting architecture that 
can handle everything we want to build with React today and in the future.

This chapter starts with a brief explanation of why React exists. Then, we'll think about 
the simplicity of React and how it is able to handle many of the typical performance issues 
faced by web developers. Next, we'll go over the declarative philosophy of React and the 
level of abstraction that React programmers can expect to work with. Finally, we'll touch 
on some of the major features of React.

Once you have a conceptual understanding of React and how it solves problems with UI 
development, you'll be better equipped to tackle the remainder of the book. This chapter 
will cover the following topics:

• What is React?

• React features

• What's new in React 18?



4     Why React?

What is React?
I think the one-line description of React on its home page (https://reactjs.org/) 
is concise and accurate:

"A JavaScript library for building user interfaces."
It's a library for building User Interfaces (UIs). This is perfect because, as it turns out, this 
is all we want most of the time. I think the best part about this description is everything 
that it leaves out. It's not a mega framework. It's not a full-stack solution that's going to 
handle everything from the database to real-time updates over WebSocket connections. 
We might not actually want most of these prepackaged solutions. If React isn't  
a framework, then what is it exactly?

React is just the view layer
React is generally thought of as the view layer in an application. You might have used  
a library such as Handlebars or jQuery in the past. Just as jQuery manipulates UI elements 
and Handlebars templates are inserted into a page, React components change what the 
user sees. The following diagram illustrates where React fits in our frontend code:

Figure 1.1 – The layers of a React application

This is all there is to React – the core concept. Of course, there will be subtle variations to 
this theme as we make our way through the book, but the flow is more or less the same. 
We have some application logic that generates some data. We want to render this data to 
the UI, so we pass it to a React Component, which handles the job of getting the HTML 
into the page.

You may wonder what the big deal is; React appears to be yet another rendering 
technology. We'll touch on some of the key areas where React can simplify application 
development in the remaining sections of the chapter.

https://reactjs.org/


What is React?     5

Simplicity is good
React doesn't have many moving parts to learn about and understand. Internally, there's  
a lot going on, and we'll touch on these things throughout the book. The advantage of having 
a small API to work with is that you can spend more time familiarizing yourself with it, 
experimenting with it, and so on. The opposite is true of large frameworks, where all of your 
time is devoted to figuring out how everything works. The following diagram gives you  
a rough idea of the APIs that we have to think about when programming with React:

Figure 1.2 – The simplicity of the React API

React is divided into two major APIs:

• The React Component API: These are the parts of the page that are rendered by the 
React DOM.

• React DOM: This is the API that's used to perform the rendering on a web page.

Within a React component, we have the following areas to think about: 

• Data: This is data that comes from somewhere (the component doesn't care where) 
and is rendered by the component.

• Lifecycle: This consists of methods or Hooks that we implement to respond to the 
component's entering and exiting phases of the React rendering process as they 
happen over time – for example, one phase of the life cycle is when the component 
is about to be rendered.

• Events: These are the code that we write for responding to user interactions.

• JSX: This is the syntax of React components used to describe UI structures.

Don't fixate on what these different areas of the React API represent just yet. The takeaway 
here is that React, by nature, is simple. Just look at how little there is to figure out! This 
means that we don't have to spend a ton of time going through API details here. Instead, 
once you pick up on the basics, we can spend more time on nuanced React usage patterns 
that fit in nicely with declarative UI structures.



6     Why React?

Declarative UI structures
React newcomers have a hard time getting to grips with the idea that components mix in 
markup with their JavaScript in order to declare UI structures. If you've looked at React 
examples and had the same adverse reaction, don't worry. Initially, we're all skeptical of 
this approach, and I think the reason is that we've been conditioned for decades by the 
separation of concerns principle. This principle states that different concerns, such as logic 
and presentation, should be separate from one another. Now, whenever we see things 
mixed together, we automatically assume that this is bad and shouldn't happen.

The syntax used by React components is called JSX (JavaScript XML). A component 
renders content by returning some JSX. The JSX itself is usually HTML markup, mixed 
with custom tags for React components. The specifics don't matter at this point;  
we'll go into detail in the coming chapters. What's groundbreaking about the declarative 
JSX approach is that we don't have to perform little micro-operations to change the 
content of a component.

Important Note
Although I won't be following the convention in this book, some React 
developers prefer the .jsx extension instead of .js for their components.

For example, think about using something such as jQuery to build your application. 
You have a page with some content on it, and you want to add a class to a paragraph 
when a button is clicked. Performing these steps is easy enough. This is called imperative 
programming, and it's problematic for UI development. While this example of changing 
the class of an element is simple, real applications tend to involve more than three or four 
steps to make something happen.

React components don't require you to execute steps in an imperative way. This is why 
JSX is central to React components. The XML-style syntax makes it easy to describe what 
the UI should look like – that is, what are the HTML elements that this component is 
going to render? This is called declarative programming and is very well suited for UI 
development. Once you've declared your UI structure, you need to specify how it changes 
over time.



What is React?     7

Data changes over time
Another area that's difficult for React newcomers to grasp is the idea that JSX is like  
a static string, representing a chunk of rendered output. This is where time and data come 
into play. React components rely on data being passed into them. This data represents the 
dynamic parts of the UI – for example, a UI element that's rendered based on a Boolean 
value could change the next time the component is rendered. Here's a diagram illustrating 
the idea:

Figure 1.3 – React components changing over time

Each time the React component is rendered, it's like taking a snapshot of the JSX at that 
exact moment in time. As your application moves forward through time, you have an 
ordered collection of rendered UI components. In addition to declaratively describing 
what a UI should be, re-rendering the same JSX content makes things much easier for 
developers. The challenge is making sure that React can handle the performance demands 
of this approach.

Performance matters
Using React to build UIs means that we can declare the structure of the UI with JSX.  
This is less error-prone than the imperative approach of assembling the UI piece by piece. 
However, the declarative approach does present a challenge –performance.

For example, having a declarative UI structure is fine for the initial rendering because 
there's nothing on the page yet. So, the React renderer can look at the structure declared 
in JSX and render it in the DOM browser.

Important Note
The Document Object Model (DOM) represents HTML in the browser after 
it has been rendered. The DOM API is how JavaScript is able to change content 
on a page.



8     Why React?

This concept is illustrated in the following diagram:

Figure 1.4 – How JSX syntax translates to HTML in the browser DOM

On the initial render, React components and their JSX are no different from other 
template libraries. For instance, Handlebars will render a template to HTML markup 
as a string, which is then inserted into the browser DOM. Where React is different 
from libraries such as Handlebars is when data changes and we need to re-render 
the component. Handlebars will just rebuild the entire HTML string, the same way it 
did on the initial render. Since this is problematic for performance, we often end up 
implementing imperative workarounds that manually update tiny bits of the DOM.  
We end up with a tangled mess of declarative templates and imperative code to handle  
the dynamic aspects of the UI.

We don't do this in React. This is what sets React apart from other view libraries. 
Components are declarative for the initial render, and they stay this way even as they're 
re-rendered. It's what React does under the hood that makes re-rendering declarative UI 
structures possible.

React has something called the virtual DOM, which is used to keep a representation of the 
real DOM elements in memory. It does this so that each time we re-render a component, 
it can compare the new content to the content that's already displayed on the page. Based 
on the difference, the virtual DOM can execute the imperative steps necessary to make 
the changes. So, not only do we get to keep our declarative code when we need to update 
the UI but React will also make sure that it's done in a performant way. Here's what this 
process looks like:

Figure 1.5 – React transpiles JSX syntax into imperative DOM API calls



What is React?     9

Important Note
When you read about React, you'll often see words such as diffing and patching. 
Diffing means comparing old content with new content to figure out what's 
changed. Patching means executing the necessary DOM operations to render 
the new content.

As with any other JavaScript library, React is constrained by the run-to-completion 
nature of the main thread. For example, if the React internals are busy diffing content 
and patching the DOM, the browser can't respond to user input. As you'll see in the last 
section of this chapter, changes were made to the internal rendering algorithms in React 
16 to mitigate these performance pitfalls. With performance concerns addressed,  
we need to make sure that we're confident that React is flexible enough to adapt to 
different platforms that we might want to deploy our apps to in the future.

The right level of abstraction
Another topic I want to cover at a high level before we dive into React code is abstraction.

In the preceding section, you saw how JSX syntax translates to low-level operations 
that update our UI. A better way to look at how React translates our declarative UI 
components is via the fact that we don't necessarily care what the render target is. The 
render target happens to be the browser DOM with React, but it isn't restricted to the 
browser DOM.

React has the potential to be used for any UI we want to create, on any conceivable device. 
We're only just starting to see this with React Native, but the possibilities are endless.  
I personally will not be surprised if React Toast becomes a thing, targeting toasters that 
can singe the rendered output of JSX onto bread. The abstraction level with React is at the 
right level, and it's in the right place.

The following diagram gives you an idea of how React can target more than just  
the browser:

Figure 1.6 – React abstracts the target rendering environment from the components that we implement



10     Why React?

From left to right, we have React Web (just plain React), React Native, React Desktop, 
and React Toast. As you can see, to target something new, the same pattern applies:

• Implement components specific to the target.

• Implement a React renderer that can perform the platform-specific operations 
under the hood.

This is, obviously, an oversimplification of what's actually implemented for any given React 
environment. But the details aren't so important to us. What's important is that we can use 
our React knowledge to focus on describing the structure of our UI on any platform.

Important Note
React Toast will probably never be a thing, unfortunately.

Now that you understand the role of abstractions in React, let's see what's new in React 18.

What's new in React 18?
The examples in this book are based on React 18. This release doesn't introduce sweeping 
API changes the way React 16 did. There are, however, two notable changes that we'll 
cover in more depth in Chapter 13, High-Performance State Updates.

Automatic batching
Batching state updates together drastically improves the performance of React 
applications because it reduces the number of renders to be performed. React has always 
had the ability to batch multiple state updates into one state update, but it was limited by 
where this could happen. Specifically, you could only batch state updates together inside 
event handler functions. The problem here is that most of our state update code runs in an 
asynchronous way that prevents automatic batching from happening.

React 18 removes this barrier and allows for automatic state update batching to happen 
anywhere. In Chapter 13, High-Performance State Updates, you'll see examples that 
compare how this worked prior to React 18 and what you can expect now.



Summary     11

State transitions
React 18 introduces the notion of a state transition. The idea with state transitions is  
that the less important state updates that take place in your application should have  
lower priority than state updates that should happen immediately. In Chapter 13,  
High-Performance State Updates, we'll explore the new APIs that make setting state update 
priority a reality in React 18.

It might not seem like much has changed in React 18, but the two major areas that  
we'll cover have far-reaching consequences for how React applications are implemented 
going forward. Existing React APIs for this version have mostly been left unchanged so  
that the React community can quickly adopt this latest major version upgrade without  
any friction.

Summary
In this chapter, you were introduced to React at a high level. React is a library, with a small 
API, used to build UIs. Next, you were introduced to some of the key concepts of React. 
We discussed the fact that React is simple because it doesn't have a lot of moving parts. 
Next, we looked at the declarative nature of React components and JSX. Then, you learned 
that React takes performance seriously and that this is how we're able to write declarative 
code that can be re-rendered over and over. Next, you learned about the idea of render 
targets and how React can easily become the UI tool of choice for all of them. Lastly,  
I gave you a rough overview of what's new in React 18.

That's enough introductory and conceptual stuff for now. As we make our way toward the 
end of the book, we'll revisit these ideas. For now, let's take a step back and nail down the 
basics, starting with JSX.

Further reading
Take a look at the following links for more information:

• React: https://reactjs.org/

• React 18: https://reactjs.org/blog/2021/06/08/the-plan-for-
react-18.html

https://reactjs.org/ 
https://reactjs.org/blog/2021/06/08/the-plan-for-react-18.html
https://reactjs.org/blog/2021/06/08/the-plan-for-react-18.html




2
Rendering with JSX

This chapter will introduce you to JSX. JSX is the XML/HTML markup syntax that's 
embedded in your JavaScript code and used to declare your React components. At the 
lowest level, you'll use HTML markup to describe the pieces of your UI. Building React 
applications involves organizing these pieces of HTML markup into components. When 
you create a component, you add new vocabulary to JSX beyond basic HTML markup. 
This is where React gets interesting – when you have your own JSX tags that can use 
JavaScript expressions to bring your components to life. JSX is the language used to 
describe UIs built using React.

In this chapter, we'll cover the following:

• Your first JSX content

• Rendering HTML

• Describing the UI structure

• Creating your own JSX elements

• Using JavaScript expressions

• Fragments of JSX



14     Rendering with JSX

Technical requirements
The code for this chapter can be found in the following directory of the accompanying 
GitHub repository: https://github.com/PacktPublishing/React-and-
React-Native-4th-Edition/tree/main/Chapter02.

Your first JSX content
In this section, we'll implement the obligatory "Hello, World" JSX application. At this 
point, we're just dipping our toes in the water; more in-depth examples will follow. We'll 
also discuss what makes this syntax work well for declarative UI structures.

Hello JSX
Without further ado, here's your first JSX application:

import * as React from "react";

import * as ReactDOM from "react-dom";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <p>

    Hello, <strong>JSX</strong>

  </p>

);

Let's walk through what's happening here. 

The render() function takes JSX as an argument and renders it to the DOM node 
passed to ReactDOM.createRoot().

The actual JSX content in this example renders a paragraph with some bold text inside. 
There's nothing fancy going on here, so we could have just inserted this markup into the 
DOM directly as a plain string. However, the aim of this example is to show the basic 
steps involved in getting JSX rendered onto the page. Now, let's talk a little bit about the 
declarative UI structure.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter02


Rendering HTML     15

Important Note
JSX is transpiled into JavaScript statements; browsers have no idea what JSX 
is. I would highly recommend downloading the companion code for this 
book from https://github.com/PacktPublishing/React-
and-React-Native-4th-Edition and running it as you read along. 
Everything transpiles automatically for you; you just need to follow the simple 
installation steps.

Declarative UI structures
Before we move forward with more in-depth code examples, let's take a moment to 
reflect on our "Hello, World" example. The JSX content was short and simple. It was also 
declarative because it described what to render, not how to render it. Specifically, by 
looking at the JSX, you can see that this component will render a paragraph and some 
bold text within it. If this were done imperatively, there would probably be some more 
steps involved, and they would probably need to be performed in a specific order.

Important Note
I find it helpful to think of declarative as structured and imperative as ordered. 
It's much easier to get things right with a proper structure than to perform 
steps in a specific order.

The example we just implemented should give you a feel for what declarative React is all 
about. As we move forward in this chapter and throughout the book, the JSX markup will 
grow more elaborate. However, it's always going to describe what is in the UI.

The render() function tells React to take your JSX markup and transform it into 
JavaScript statements that update the UI in the most efficient way possible. This is how 
React enables you to declare the structure of your UI without having to think about 
carrying out ordered steps to update elements on the screen; an approach that often leads 
to bugs. Out of the box, React supports the standard HTML tags that you would find 
on any HTML page. Unlike static HTML, React has unique conventions that should be 
followed when using HTML tags.

Rendering HTML
At the end of the day, the job of a React component is to render HTML into the DOM 
browser. This is why JSX has support for HTML tags out of the box. In this section, we'll 
look at some code that renders a few of the available HTML tags. Then, we'll cover some 
of the conventions that are typically followed in React projects when HTML tags are used.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition


16     Rendering with JSX

Built-in HTML tags
When we render JSX, element tags reference React components. Since it would be tedious 
to have to create components for HTML elements, React comes with HTML components. 
We can render any HTML tag in our JSX, and the output will be just as we'd expect. 

Now, let's try rendering some of these tags:

import * as React from 'react';

import * as ReactDOM from 'react-dom';

 

const root =

  ReactDOM.createRoot(document.getElementById('root'))

 

root.render(

  <div>

    <button />

    <code />

    <input />

    <label />

    <p />

    <pre />

    <select />

    <table />

    <ul />

  </div>  

);

Don't worry about the formatting of the rendered output for this example. We're making 
sure that we can render arbitrary HTML tags, and they render as expected, without any 
special definitions and imports.

Important Note
You may have noticed the surrounding <div> tag, grouping together all of the 
other tags as its children. This is because React needs a root element to render. 
Later in the chapter, you'll learn how to render adjacent elements without 
wrapping them in a parent element.

HTML elements rendered using JSX closely follow regular HTML element syntax with a 
few subtle differences regarding case-sensitivity and attributes.



Rendering HTML     17

HTML tag conventions
When you render HTML tags in JSX markup, the expectation is that you'll use lowercase 
for the tag name. In fact, capitalizing the name of an HTML tag will fail. Tag names are 
case-sensitive and non-HTML elements are capitalized. This way, it's easy to scan the 
markup and spot the built-in HTML elements versus everything else.

You can also pass HTML elements any of their standard properties. When you pass them 
something unexpected, a warning about the unknown property is logged. Here's an 
example that illustrates these ideas:

import * as React from "react";

import * as ReactDOM from "react-dom";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <button title="My Button" foo="bar">

    My Button

  </button>

);

 

root.render(<Button />);

When you run this example, it will fail to compile because React doesn't know about the 
<Button> element; it only knows about <button>.

Important Note
Later on in the book, I'll cover property validation for the components that you 
make. This avoids silent misbehavior, as seen with the foo property in this 
example.

You can use any valid HTML tags as JSX tags, as long as you remember that they're case-
sensitive and that you need to pass the correct attribute names. In addition to simple 
HTML tags that only have attribute values, you can use HTML tags to describe the 
structure of your page content.



18     Rendering with JSX

Describing UI structures
JSX is capable of describing screen elements in a way that ties them together to form 
a complete UI structure. Let's look at some JSX markup that declares a more elaborate 
structure than a single paragraph:

import * as React from 'react';

import * as ReactDOM from 'react-dom';

 

const root =

  ReactDOM.createRoot(document.getElementById('root'));

 

root.render(

  <section>

    <header>

      <h1>A Header</h1>

    </header>

    <nav>

      <a href="item">Nav Item</a>

    </nav>

    <main>

      <p>The main content...</p>

    </main>

    <footer>

      <small>&copy; 2021</small>

    </footer>

  </section>

);

This JSX markup describes a fairly sophisticated UI structure. Yet, it's easier to read than 
imperative code because it's XML, and XML is good for concisely expressing a hierarchical 
structure. This is how we want to think of our UI when it needs to change – not as an 
individual element or property, but the UI as a whole.



Creating your own JSX elements     19

Here is what the rendered content looks like:

Figure 2.1 – Describing HTML tag structures using JSX syntax

There are a lot of semantic elements in this markup describing the structure of the UI. 
For example, the <header> element describes the top part of the page where the title 
is, and the <main> element describes where the main page content goes. This type of 
complex structure makes it clearer for developers to reason about. But before we start 
implementing dynamic JSX markup, let's create some of our own JSX components.

Creating your own JSX elements
Components are the fundamental building blocks of React. In fact, components are the 
vocabulary of JSX markup. In this section, we'll see how to encapsulate HTML markup 
within a component. We'll build examples that nest custom JSX elements and learn how to 
namespace components.

Encapsulating HTML
We create new JSX elements so that we can encapsulate larger structures. This means 
that instead of having to type out complex markup, you can use your custom tag. The 
React component returns the JSX that goes where the tag is used. Let's look at the 
following example:

import * as React from "react";

import * as ReactDOM from "react-dom";

 

class MyComponent extends React.Component {

  render() {

    return (

      <section>

        <h1>My Component</h1>

        <p>Content in my component...</p>

      </section>

    );



20     Rendering with JSX

  }

}

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(<MyComponent />);

Here's what the rendered output looks like:

Figure 2.2 – A component rendering encapsulated HTML markup

This is the first React component that we've implemented, so let's take a moment to 
dissect what's going on here. We created a class called MyComponent, which extends the 
Component class from React. This is how we create a new JSX element. As you can see in 
the call to render(), you're rendering a <MyComponent> element.

The HTML that this component encapsulates is returned by the render() method. 
In this case, when the JSX is rendered by react-dom, it's replaced by a <section> 
element and everything within it.

Important Note
When React renders JSX, any custom elements that you use must have their 
corresponding React component within the same scope. In the preceding 
example, the MyComponent class was declared in the same scope as the 
call to render(), so everything worked as expected. Usually, you'll import 
components, adding them to the appropriate scope. You'll see more of this as 
you progress through the book.

HTML elements such as <div> often take nested child elements. Let's see whether we can 
do the same with JSX elements, which we create by implementing components.

Nested elements
Using JSX markup is useful for describing UI structures that have parent-child relationships. 
Child elements are created by nesting them within another component: the parent. For 
example, a <li> tag is only useful as the child of a <ul> tag or a <ol> tag—you're probably 
going to make similar nested structures with your own React components. For this, you 
need to use the children property. Let's see how this works. Here's the JSX markup:



Creating your own JSX elements     21

import * as React from "react";

import * as ReactDOM from "react-dom";

 

import MySection from "./MySection";

import MyButton from "./MyButton";

 

const root = 

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <MySection>

    <MyButton>My Button Text</MyButton>

  </MySection>

);

You're importing two of your own React components: MySection and MyButton. 

Now, if you look at the JSX markup, you'll notice that <MyButton> is a child of 
<MySection>. You'll also notice that the MyButton component accepts text as its child, 
instead of more JSX elements. 

Let's see how these components work, starting with MySection:

import * as React from "react";

 

class MySection extends React.Component {

  render() {

    return (

      <section>

        <h2>My Section</h2>

        {this.props.children}

      </section>

    );

  }

}

 

export default MySection;



22     Rendering with JSX

This component renders a standard <section> HTML element, a heading, and then 
{this.props.children}. It's this last piece that allows components to access nested 
elements or text, and to render them.

Important Note
The two braces used in the preceding example are used for JavaScript 
expressions. I'll touch on more details of the JavaScript expression syntax found 
in JSX markup in the following section.

Now, let's look at the MyButton component:

import * as React from "react";

 

class MyButton extends React.Component {

  render() {

    return <button>{this.props.children}</button>;

  }

}

 

export default MyButton;

This component uses the exact same pattern as MySection; it takes the {this.
props.children} value and surrounds it with markup. React handles the details for 
you. In this example, the button text is a child of MyButton, which is, in turn, a child 
of MySection. However, the button text is transparently passed through MySection. 
In other words, we didn't have to write any code in MySection to make sure that 
MyButton got its text. Pretty cool, right? Here's what the rendered output looks like:

Figure 2.3 – A button element rendered using child JSX values

We can further organize our components by placing them within a namespace.



Creating your own JSX elements     23

Namespaced components
The custom elements that you've created so far have used simple names. A namespace 
provides an organizational unit for your components so that related components can share 
the same namespace prefix. Instead of writing <MyComponent> in your JSX markup, you 
would write <MyNamespace.MyComponent>. This makes it clear that MyComponent 
is part of MyNamespace.

Typically, MyNamespace would also be a component. The idea of namespacing is to have 
a namespace component render its child components using the namespace syntax. Let's 
take a look at an example:

import * as React from "react";

import * as ReactDOM from "react-dom";

import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <MyComponent>

    <MyComponent.First />

    <MyComponent.Second />

  </MyComponent>

);

This markup renders a <MyComponent> element with two children. Instead of writing 
<First>, we write <MyComponent.First>, and the same with <MyComponent.
Second>. We want to explicitly show that First and Second belong to MyComponent 
within the markup.

Now, let's take a look at the MyComponent module:

import * as React from "react";

 

class First extends React.Component {

  render() {

    return <p>First...</p>;

  }

}

 



24     Rendering with JSX

class Second extends React.Component {

  render() {

    return <p>Second...</p>;

  }

}

 

class MyComponent extends React.Component {

  render() {

    return <section>{this.props.children}</section>;

  }

}

 

MyComponent.First = First;

MyComponent.Second = Second;

 

export default MyComponent;

export { First, Second };

This module declares MyComponent as well as the other components that fall under 
this namespace (First and Second). It assigns the components to the namespace 
component (MyComponent) as class properties. There are a number of things that you 
could change in this module. For example, you don't have to directly export First and 
Second since they're accessible through MyComponent. You also don't need to define 
everything in the same module; you could import First and Second and assign them 
as class properties. Using namespaces is completely optional, and, if you use them, you 
should use them consistently.

You now know how to build your own React components that introduce new JSX tags in 
your markup. The components that we've looked at so far in this chapter have been static. 
That is, once we rendered them, they were never updated. JavaScript expressions are the 
dynamic pieces of JSX and are what cause React to update components.

Using JavaScript expressions
As you saw in the preceding section, JSX has a special syntax that allows you to embed 
JavaScript expressions. Any time React renders JSX content, expressions in the markup are 
evaluated. This is the dynamic aspect of JSX, and in this section, you'll learn how to use 
expressions to set property values and element text content. You'll also learn how to map 
collections of data to JSX elements.



Using JavaScript expressions     25

Dynamic property values and text
Some HTML property or text values are static, meaning that they don't change as JSX 
markup is re-rendered. Other values, the values of properties or text, are based on data 
that is found elsewhere in the application. Remember, React is just the view layer. Let's 
look at an example so that you can get a feel for what the JavaScript expression syntax 
looks like in JSX markup:

import * as React from 'react';

import * as ReactDOM from 'react-dom';

 

const enabled = false;

const text = 'A Button';

const placeholder = 'input value...';

const size = 50;

 

const root = 

  ReactDOM.createRoot(document.getElementById('root'))

 

root.render(

  <section>

    <button disabled={!enabled}>{text}</button>

    <input placeholder={placeholder} size={size} />

  </section>

);

Anything that is a valid JavaScript expression, including nested JSX, can go in between the 
braces: {}. For properties and text, this is often a variable name or object property. Notice, 
in this example, that the !enabled expression computes a Boolean value. Here's what 
the rendered output looks like:

Figure 2.4 – Dynamically changing the property value of a button

Important Note
If you're following along with the downloadable companion code, which I 
strongly recommend doing, try playing with these values and seeing how the 
rendered HTML changes.



26     Rendering with JSX

Primitive JavaScript values are straightforward to use in JSX syntax. But what if you have 
an object or array that you need to transform into JSX elements?

Mapping collections to elements
Sometimes, you need to write JavaScript expressions that change the structure of your 
markup. In the preceding section, you learned how to use JavaScript expression syntax to 
dynamically change the property values of JSX elements. What about when you need to 
add or remove elements based on JavaScript collections?

Important Note
Throughout the book, when I refer to a JavaScript collection, I'm referring to 
both plain objects and arrays. Or, more generally, anything that's iterable.

The best way to dynamically control JSX elements is to map them 
from a collection.  
Let's look at an example of how this is done:

import * as React from "react";

import * as ReactDOM from "react-dom";

 

const array = ["First", "Second", "Third"];

 

const object = {

  first: 1,

  second: 2,

  third: 3,

};

 

const root = 

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <section>

    <h1>Array</h1>

    <ul>

      {array.map((i) => (

        <li key={i}>{i}</li>

      ))}



Using JavaScript expressions     27

    </ul>

 

    <h1>Object</h1>

    <ul>

      {Object.keys(object).map((i) => (

        <li key={i}>

          <strong>{i}: </strong>

          {object[i]}

        </li>

      ))}

    </ul>

  </section>

);

The first collection is an array called array, populated with string values. Moving down 
to the JSX markup, you can see the call to array.map(), which returns a new array. The 
mapping function is actually returning a JSX element (<li>), meaning that each item in 
the array is now represented in the markup.

Important Note
The result of evaluating this expression is an array. Don't worry – JSX knows 
how to render arrays of elements.

The object collection uses the same technique, except you have to call Object.keys() 
and then map this array. What's nice about mapping collections to JSX elements on the 
page is that you can control the structure of React components based on the collected 
data. This means that you don't have to rely on imperative logic to control the UI.

Here's what the rendered output looks like:

Figure 2.5 – The result of mapping JavaScript collections to HTML elements



28     Rendering with JSX

JavaScript expressions bring JSX content to life. React evaluates expressions and updates 
the HTML content based on what has already been rendered and what has changed. 
Understanding how to utilize these expressions is important because they're one of the 
most common day-to-day activities of any React developer. Now it's time to learn how to 
group together JSX markup without relying on HTML tags to do so.

Building fragments of JSX
React 16 introduced the concept of JSX fragments. Fragments are a way to group together 
chunks of markup without having to add unnecessary structure to your page. For 
example, a common approach is to have a React component return content wrapped in a 
<div> element. This element serves no real purpose and adds clutter to the DOM.

Let's look at an example. Here are two versions of a component. One uses a wrapper 
element, and one uses the new fragment feature:

import * as React from "react";

import * as ReactDOM from "react-dom";

 

import WithoutFragments from "./WithoutFragments";

import WithFragments from "./WithFragments";

 

const root = 

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <div>

    <WithoutFragments />

    <WithFragments />

  </div>

);

The two elements rendered are <WithoutFragments> and <WithFragments>. 
Here's what they look like when rendered:

Figure 2.6 – Fragments help render fewer HTML tags without any visual difference



Building fragments of JSX     29

Let's compare the two approaches now.

Using wrapper elements
The first approach is to wrap sibling elements in <div>. Here's what the source looks like:

import * as React from "react";

 

class WithoutFragments extends React.Component {

  render() {

    return (

      <div>

        <h1>Without Fragments</h1>

        <p>

          Adds an extra <code>div</code> element.

        </p>

      </div>

    );

  }

}

 

export default WithoutFragments;

The essence of this component is the <h1> and <p> tags. Yet, in order to return them from 
render(), you have to wrap them with <div>. Indeed, inspecting the DOM using your 
browser dev tools reveals that <div> does nothing but add another level of structure:

Figure 2.7 – Another level of structure in the DOM

Now, imagine an app with lots of these components—that's a lot of pointless elements! 
Let's see how to use fragments to avoid unnecessary tags.



30     Rendering with JSX

Using fragments
Let's take a look at the WithFragments component, where we have avoided using 
unnecessary tags:

import * as React from "react";

 

class WithFragments extends React.Component {

  render() {

    return (

      <>

        <h1>With Fragments</h1>

        <p>Doesn't have any unused DOM elements.</p>

      </>

    );

  }

}

 

export default WithFragments;

Instead of wrapping the component content in <div>, the <> element is used. This is a 
special type of element that indicates that only its children need to be rendered. You can see 
the difference compared to the WithoutFragments component if you inspect the DOM:

Figure 2.8 – Less HTML in the fragment

With the advent of fragments in JSX markup, we have less HTML rendered on the 
page because we don't have to use tags such as <div> for the sole purpose of grouping 
elements together. Instead, when a component renders a fragment, React knows to render 
the fragment's child element wherever the component is used.

So, fragments enable React components to render only the essential elements; no more 
elements that serve no purpose will appear on the rendered page.



Summary     31

Summary
In this chapter, you learned about the basics of JSX, including its declarative structure, 
which leads to more maintainable code. Then, you wrote some code to render some 
basic HTML and learned about describing complex structures using JSX; every React 
application has at least some structure.

Next, you spent some time learning about extending the vocabulary of JSX markup by 
implementing your own React components, which is how you design your UI as a series 
of smaller pieces and glue them together to form the whole. Then, you learned how to 
bring dynamic content into JSX element properties, and how to map JavaScript collections 
to JSX elements, eliminating the need for imperative logic to control the UI display. 
Finally, you learned how to render fragments of JSX content using the new React 16 
functionality, which prevents unnecessary HTML elements from being used.

Now that you have a feel for what it's like to render UIs by embedding declarative XML 
in your JavaScript modules, it's time to move on to the next chapter, where we'll take a 
deeper look at component properties and state.

Further reading
Refer to the following links for more information:

• Introducing JSX: https://reactjs.org/docs/introducing-jsx.html

• Fragments: https://reactjs.org/docs/fragments.html

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/fragments.html




3
Component 

Properties, State, 
and Context

React components rely on JavaScript XML (JSX) syntax, which is used to describe the 
structure of the UI. JSX will only get you so far—you need data to fill in the structure of 
your React components. The focus of this chapter is on component data, which comes in 
two main varieties: properties and state. Another option for passing data to components 
is via a context.

I'll start things off by defining what is meant by properties and state. Then, I'll walk 
through some examples that show you the mechanics of setting component state and 
passing component properties. Toward the end of this chapter, we'll build on your 
newfound knowledge of properties and state and introduce functional components and 
the container pattern. Finally, you'll learn about context and when it makes a better choice 
than a property for passing data to components.



34     Component Properties, State, and Context

In this chapter, we'll cover the following topics:

• What is component state?

• What are component properties?

• Setting a component state

• Passing property values

• Stateless components

• Container components

• Providing and consuming context

Technical requirements
The code for this chapter can be found here: https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter03.

What is component state?
React components declare the structure of UI elements using JSX. However, components 
need data if they are to be useful. For example, your component JSX might declare a <ul> 
element that maps a JavaScript collection to <li> elements. Where does this collection 
come from?

State is the dynamic part of a React component. You can declare the initial state of a 
component, which changes over time.

Imagine that you're rendering a component where a piece of its state is initialized to 
an empty array. Later on, this array is populated with data using setState(). This is 
called a change in state, and whenever you tell a React component to change its state, 
the component will automatically re-render itself, calling render(). The process is 
visualized here:

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter03


What are component properties?     35

Figure 3.1 – The component state lifecycle

The state of a component is something that either the component itself can set, or other 
pieces of code can set, outside of the component. Now we'll look at component properties 
and explain how they differ from component state.

What are component properties?
Properties are used to pass data into your React components. Instead of calling a method 
with a new state as the argument, properties are passed only when the component is 
rendered, that is, you pass property values to JSX elements.

Note
In the context of JSX, properties are called attributes, probably because that's 
what they're called in XML parlance. In this book, properties and attributes are 
synonymous with one another.

Properties are different than state because they don't change after the initial render of the 
component. If a property value has changed, and you want to re-render the component, 
then we have to re-render the JSX that was used to render it in the first place. The React 
internals make sure that this is done efficiently. Here's a diagram of rendering and 
re-rendering a component using properties:

Figure 3.2 – The cycle of rendering components as properties



36     Component Properties, State, and Context

This looks a lot different than a stateful component. The real difference is that with 
properties, it's often a parent component that decides when to render the JSX. The 
component doesn't actually know how to re-render itself. As you'll see throughout this book, 
this type of top-down flow is easier to predict than state that changes all over the place.

Let's make sense of state and properties by writing some code, starting with setting the 
state of your components.

Setting component state
In this section, you're going to write some React code that sets the state of components. 
First, you'll learn about the initial state—that is, the default state of a component. Next, 
you'll learn how to change the state of a component, causing it to re-render itself. Finally, 
you'll see how a new state is merged with an existing state.

Setting initial component state
The initial state of a component isn't actually required, but if your component uses state, 
it should be set. This is because if the component expects certain state properties to be 
there and they aren't, then the component will either fail or render something unexpected. 
Thankfully, it's easy to set the initial component state.

The initial state of a component should always be an object with one or more properties. 
For example, you might have a component that uses a single array as its state. This is fine, 
but just make sure that you set the initial array as a property of the state object. Don't use 
an array as the state. The reason for this is simple: consistency. Every React component 
uses a plain object as its state.

Let's turn our attention to some code now. Here's a component that sets an initial  
state object:

import * as React from "react";

 

class MyComponent extends React.Component {

  state = {

    first: false,

    second: true,

  };

 

  render() {

    const { first, second } = this.state;



Setting component state     37

 

    return (

      <main>

        <section>

          <button disabled={first}>First</button>

        </section>

        <section>

          <button disabled={second}>Second</button>

        </section>

      </main>

    );

  }

}

 

export default MyComponent;

If you look at the JSX that's returned by render(), you can actually see the state values 
that this component depends on—first and second. Since you've set these properties 
up in the initial state, you're safe to render the component, and there won't be any 
surprises. For example, you could render this component only once, and it would render 
as expected thanks to the initial state set in MyComponent in the preceding code listing:

import * as React from "react";

import * as ReactDOM from "react-dom";

import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(<MyComponent />);

Here's what the rendered output looks like:

Figure 3.3 – Rendering two buttons



38     Component Properties, State, and Context

Setting the initial state isn't very exciting, but it's important nonetheless. Let's make the 
component re-render itself when the state is changed.

Creating component state
Let's create a component that has some initial state. You'll then render this component and 
update its state. This means that the component will be rendered twice. Let's take a look at 
the component:

import * as React from "react";

 

class MyComponent extends React.Component {

  state = {

    heading: "React Awesomesauce (Busy)",

    content: "Loading...",

  };

 

  constructor() {

    super();

 

    setTimeout(() => {

      this.setState({

        heading: "React Awesomesauce",

        content: "Done!",

      });

    }, 3000);

  }

 

  render() {

    const { heading, content } = this.state;

 

    return (

      <main>

        <h1>{heading}</h1>

        <p>{content}</p>

      </main>



Setting component state     39

    );

  }

}

 

export default MyComponent;

The JSX of this component depends on two state values—heading and content. The 
component also sets the initial values of these two state values, which means that it can be 
rendered without any unexpected gotchas. The component is first rendered with its default 
state. However, the interesting spot in this code is the setTimeout() call. After three 
seconds, it uses setState() to change the two state values. Sure enough, this change is 
reflected in the UI. Here's what the initial state looks like when rendered:

Figure 3.4 –The UI while loading

Here's what the rendered output looks like after the state change:

Figure 3.5 – The UI when loading is complete

This example highlights the power of having declarative JSX syntax to describe the 
structure of the UI component. You declare it once and update the state of the component 
over time to reflect changes in the application as they happen. All the DOM interactions 
are optimized and hidden from view.

In this example, you replaced the entire component state—that is, the call to 
setState() passed in the same object properties found in the initial state. But what if 
you only want to update part of the component state?



40     Component Properties, State, and Context

Merging component state
When you set the state of a React component, you're actually merging the state of the 
component with the object that you pass to setState(). This is useful because it means 
that you can set part of the component state while leaving the rest of the state as it is. Let's 
look at an example now. First, let's implement a component that has some initial state set 
on it:

class MyComponent extends React.Component {

  state = {

    first: "loading...",

    second: "loading...",

    third: "loading...",

    fourth: "loading...",

    doneMessage: "finished!",

  };

 

  constructor() {

    super();

 

    setTimeout(() => {

      this.setState({ first: "done!" });

    }, 1000);

 

    setTimeout(() => {

      this.setState({ second: "done!" });

    }, 2000);

 

    setTimeout(() => {

      this.setState({ third: "done!" });

    }, 3000);

 

    setTimeout(() => {

      this.setState((state) => ({

        ...state,

        fourth: state.doneMessage,

      }));

    }, 4000);



Setting component state     41

  }

 

  render() {

    return (

      <ul>

        {Object.keys(this.state)

          .filter((key) => key !== "doneMessage")

          .map((key) => (

            <li key={key}>

              <strong>{key}: </strong>

              {this.state[key]}

            </li>

          ))}

      </ul>

    );

  }

This component renders the keys and values of its state—except for doneMessage. Each 
value defaults to loading. To iterate over objects, we have to use Object.keys(), 
which returns an array of the object keys. Next, filter() is used to return a new array 
of object keys but without the doneMessage value. Finally, we can call map() to map 
each object key to an <li> element. The value that corresponds to the key is looked up on 
the state object, like so: state[key].

The takeaway from this example is that you can set individual state properties on 
components. It will efficiently re-render itself. Here's what the rendered output looks like 
for the initial component state:

Figure 3.6 – The UI while data is loading



42     Component Properties, State, and Context

Here's what the output looks like after three of the setTimeout() callbacks have run:

Figure 3.7 – The UI when all async operations are complete

The fourth call to setState() looks different from the first three. Instead of passing a 
new object to merge into the existing state, you can pass a function. This function takes a 
state argument—the current state of the component. This is useful when you need to base 
state changes on current state values. In this example, the doneMessage value is used to 
set the value of fourth. The function then returns the new state of the component. It's up 
to you to merge existing state values into the new state. You can use the spread operator to 
do this (...state).

Components with state usually have an initial state. You can then change the initial values 
by calling setState(). If you only need to change part of the state, you can pass an 
object with only the values that you want to change and React will take care of merging 
the values into the overall state of the component.

Now that we've looked at the state of a component that changes over time, it's time to 
learn about properties that never change.

Passing property values
Properties are like state data that gets passed into components. However, properties 
are different from state in that they're only set once, which is when the component is 
rendered. In this section, you'll learn about default property values. Then, we'll look at 
setting property values. After this section, you should be able to grasp the differences 
between component state and properties.

Default property values
Default property values work a little differently than default state values. They're set as 
a class attribute called defaultProps. Let's take a look at a component that declares 
default property values:

import * as React from "react";

 

class MyButton extends React.Component {



Passing property values     43

  static defaultProps = {

    disabled: false,

    text: "My Button",

  };

 

  render() {

    const { disabled, text } = this.props;

 

    return <button disabled={disabled}>{text}</button>;

  }

}

 

export default MyButton;

Why not just set the default property values as an instance property, like you would with 
default state? The reason is that properties are immutable, and there's no need for them to 
be kept as an instance property value. State, on the other hand, changes all the time, so the 
component needs an instance-level reference to it. You can see that this component sets 
default property values for disabled and text. These values are only used if they're not 
passed in through the JSX markup used to render the component.

Let's go ahead and render this component without any properties, to make sure that the 
defaultProps values are used:

import * as React from "react";

import * as ReactDOM from "react-dom";

import MyButton from "./MyButton";

 

const root = 

  ReactDOM.createRoot(document.getElementById("root"));

root.render(<MyButton />);

The same principle of always having a default state applies to properties too. We want to be 
able to render components without having to know in advance what the dynamic values 
of the component are. In this example, the MyButton component renders a <button> 
element using the default disabled and text property values.

Now, let's write some code that passes new property values to components that will 
override any default value for a given property.



44     Component Properties, State, and Context

Setting property values
React component properties are set by passing JSX attributes to the component when it 
is rendered. In Chapter 8, Validating Component Properties, I'll go into more detail about 
how to validate the property values that are passed to components. Now let's create a 
couple of components that expect different types of property values:

import * as React from "react";

 

class MyButton extends React.Component {

  render() {

    const { disabled, text } = this.props;

    return <button disabled={disabled}>{text}</button>;

  }

}

 

export default MyButton;

This simple button component expects a Boolean disabled property and a string text 
property. Let's create one more component that expects an array property value:

import * as React from "react";

 

class MyList extends React.Component {

  render() {

    const { items } = this.props;

 

    return (

      <ul>

        {items.map((i) => (

          <li key={i}>{i}</li>

        ))}

      </ul>

    );

  }

}

 

export default MyList;



Passing property values     45

You can pass just about anything you want as a property value via JSX, just as long as it's a 
valid JavaScript expression. The MyList component accepts an items property, an array 
that is mapped to <li> elements.

Now, let's write some code to set these property values:

import * as React from "react";

import * as ReactDOM from "react-dom";

import MyButton from "./MyButton";

import MyList from "./MyList";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

const appState = {

  text: "My Button",

  disabled: true,

  items: ["First", "Second", "Third"],

};

 

function render(props) {

  root.render(

    <main>

      <MyButton text={props.text} 

        disabled={props.disabled} />

      <MyList items={props.items} />

    </main>

  );

}

 

render(appState);

 

setTimeout(() => {

  appState.disabled = false;

  appState.items.push("Fourth");

 

  render(appState);

}, 1000);



46     Component Properties, State, and Context

The render() function looks like it's creating new React component instances every 
time it's called. React is smart enough to figure out that these components already exist, 
and that it only needs to figure out what the difference in output will be with the new 
property values. In this example, the call to setTimeout() causes a delay of 1 second. 
Then, the appState.disabled value is changed to false and the appState.
items array has a new value added to the end of it. The call to render() will re-render 
the components with new property values.

Another takeaway from this example is that you have an appState object that holds 
on to the state of the application. Pieces of this state are then passed into components as 
properties when the components are rendered. State has to live somewhere and, in this 
case, it's outside of the component. I'll build on this topic in the next section, where you 
will learn how to implement stateless functional components.

Stateless components
The components you've seen so far in this book have been classes that extend the base 
Component class. It's time to learn about functional components in React. In this section, 
you'll learn what a functional component is by implementing one. Then, you'll learn how 
to set default property values for stateless functional components.

Pure functional components
A functional React component is just what its name suggests—a function. Picture the 
render() method of any React component that you've seen. This method, in essence, is 
the component. The job of a functional React component is to return JSX, just like a class-
based React component. The difference is that this is all a functional component can do.  
It has no state and no lifecycle methods.

Why would you want to use functional components? It's a matter of simplicity more than 
anything else. If your component renders some JSX and does nothing else, then why 
bother with a class when a function is simpler?

A pure function is a function without side effects. That is to say, called with a given set 
of arguments, the function always produces the same output. This is relevant for React 
components because, given a set of properties, it's easier to predict what the rendered 
content will be. Functions that always return the same value with given argument values 
are easier to test as well.



Stateless components     47

Let's look at a functional component now:

import * as React from "react";

 

export default ({ disabled, text }) => (

  <button disabled={disabled}>{text}</button>

);

Concise, isn't it? This function returns a <button> element, using the properties passed 
in as arguments (instead of accessing them through this.props). This function is pure 
because the same content is rendered if the same disabled and text property values 
are passed.

Now, let's see how to render this component:

import * as React from "react";

import * as ReactDOM from "react-dom";

import MyButton from "./MyButton";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

function render({ first, second }) {

  root.render(

    <main>

      <MyButton text={first.text} 

        disabled={first.disabled} />

      <MyButton text={second.text}

        disabled={second.disabled} />

    </main>

  );

}

 

render({

  first: {

    text: "First Button",

    disabled: false,

  },



48     Component Properties, State, and Context

  second: {

    text: "Second Button",

    disabled: true,

  },

});

There's zero difference between the class-based and function-based React components 
from a JSX point of view. The JSX looks exactly the same whether the component was 
declared using the class or function syntax.

The convention is to use the arrow function syntax to declare functional React 
components. However, it's perfectly valid to declare them using a traditional JavaScript 
function syntax if that's better suited to your style.

Here's what the rendered HTML looks like:

Figure 3.8 – Two buttons, one of which is disabled

Functional components rely on property values being passed to them for anything 
dynamic. For example, if a component renders a functional component, it usually passes 
in property values, and these values can change each time it is rendered. But what about 
default property values for functional components?

Defaults in functional components
Functional components are lightweight; they don't have any state or lifecycle. They do, 
however, support some metadata options. For example, you can specify the default 
property values of functional components the same way you would with a class 
component.

Here's an example of what this looks like:

import * as React from "react";

 

const MyButton = ({ disabled, text }) => (

  <button disabled={disabled}>{text}</button>



Container components     49

);

 

MyButton.defaultProps = {

  text: "My Button",

  disabled: false,

};

 

export default MyButton;

The defaultProps property is defined on a function instead of a class. When React 
encounters a functional component with this property, it knows to pass in the default 
properties if they're not provided via JSX.

Functional components are an important part of React applications because they're highly 
focused on taking property values and rendering markup that uses these values. The term 
pure function is used to indicate that a function, in our case, a React component, doesn't 
have any side effects. As long as you give it the same property values, the same output is 
rendered. Functional components can also have default property values, just as their class-
based counterparts can.

You might have noticed a pattern at this point: some components have state that changes 
over time. These components then pass state values to other components as properties. 
These stateful components are called container components.

Container components
In this section, you're going to learn about the concept of container components. This is 
a common React pattern, and it brings together many of the concepts that you've learned 
about state and properties.

The basic premise of container components is simple: don't couple data fetching with 
the component that renders the data. The container is responsible for fetching the 
data and passing it to its child component. It contains the component responsible for 
rendering the data.

The idea is that you should be able to achieve some level of substitutability with this 
pattern. For example, a container could substitute its child component. Or a child 
component could be used in a different container.



50     Component Properties, State, and Context

Let's look at the container pattern in action, starting with the container itself:

import * as React from "react";

import MyList from "./MyList";

 

function fetchData() {

  return new Promise((resolve) => {

    setTimeout(() => {

      resolve(["First", "Second", "Third"]);

    }, 2000);

  });

}

 

class MyContainer extends React.Component {

  state = { items: [] };

 

  componentDidMount() {

    fetchData().then((items) => this.setState({ items }));

  }

 

  render() {

    return <MyList {...this.state} />;

  }

}

 

export default MyContainer;

The job of this component is to fetch data and to set its state. Any time the state is set, 
render() is called. This is where the child component comes in. The state of the 
container is passed to the MyList component as properties.

Let's take a look at the MyList component next:

import * as React from "react";

 

export default ({ items }) => (

  <ul>

    {items.map((i) => (



Container components     51

      <li key={i}>{i}</li>

    ))}

  </ul>

);

MyList is a functional component that expects an items property. Let's see how the 
container component is actually used:

import * as React from "react";

import * as ReactDOM from "react-dom";

import MyContainer from "./MyContainer";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(<MyContainer />);

Container component design will be covered in more depth in Chapter 6, Crafting 
Reusable Components. The idea of this example is to give you a feel for the interplay 
between state and properties in React components.

When you load the page, you'll see the following content rendered after the three seconds 
it takes to simulate an HTTP request:

Figure 3.9 – The rendered list of text

Containers are an important concept in React applications, as they help to separate the 
work of getting data and using data to render markup. You'll encounter many variations 
of this pattern in any given React code base. The basic idea is that the container does the 
work to get the data, and then passes it as properties to the component responsible for 
rendering visual elements.

Over time, you might end up with a lot of container components in your app that all share 
similar state that needs to be passed to child components. This amounts to lots of code to 
pass property values around. For data that is truly global in your application, we can use 
context to access it.



52     Component Properties, State, and Context

Providing and consuming context
As your React application grows, it will use more components. Not only will it have more 
components, but the structure of your application will change so that the components are 
nested more deeply. The components that are nested at the deepest level still need to have 
data passed to them. Passing data from a parent component to a child component isn't 
a big deal. The challenge is when you have to start using components as indirection for 
passing data around your app.

For data that needs to make its way to any component in your app, you can create and 
use a context. There are two key concepts to remember when using contexts in React— 
providers and consumers. A context provider creates data and makes sure that it's 
available to any React components. A context consumer is a component that uses this data 
within the context.

You might be wondering whether or not context is just another way of saying global data 
in a React application. Essentially, this is exactly what contexts are used for. Using the 
React approach to wrap components with a context works better than creating global data 
because you have better control of how your data flows down through your components. 
For example, you can have nested contexts and a number of other advanced use cases. But, 
for now, let's just focus on simple usage.

Let's say that you have some application data that determines permissions for given 
application features. This data could be fetched from an API, or it could be hardcoded.  
In either case, the requirement is that you don't want to have to pass all of this permission 
data through the component tree. It would be nice if the permission data were just there 
for any component that needs it.

Starting at the very top of the component tree, let's look at index.js:
import * as React from "react";

import * as ReactDOM from "react-dom";

import { PermissionProvider } from "./PermissionContext";

import App from "./App";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <PermissionProvider>

    <App />

  </PermissionProvider>

);



Providing and consuming context     53

The <App> component is the child of the <PermissionProvider> component. This 
means that the permission context has been provided to the <App> component and any 
of its children, all the way down the tree.

Let's take a look at the PermissionContext.js module where the permission context 
is defined:

import * as React from "react";

 

const { Provider, Consumer } =

  React.createContext("permissions");

 

class PermissionProvider extends React.Component {

  state = {

    first: true,

    second: false,

    third: true,

  };

 

  render() {

    return <Provider

      value={this.state}>{this.props.children}</Provider>;

  }

}

 

const PermissionConsumer = ({ name, children }) => (

  <Consumer>{(value) => value[name] && children}</Consumer>

);

 

export { PermissionProvider, PermissionConsumer };

The createContext() function is used to create the actual context. The return value is 
an object containing two components—Provider and Consumer. Next, there's a simple 
abstraction for the permission provider that's to be used throughout the app. The state 
contains the actual data that components might want to use. In this example, if the value 
is true, the feature should be displayed as normal. If it's false, then the feature doesn't 
have permission to render.



54     Component Properties, State, and Context

Here, the state is only set once; however, since our component is a regular React 
component, you could set the state in the same way you would set the state on any other 
component. The value that's rendered is the <Provider> component. This provides any 
children with context data, set via the value property.

Next, there's a small abstraction for permission consumers. Instead of having every 
component that needs to test for permissions implement the same logic over and 
over, the PermissionConsumer component can do it. The child of the component 
is always a function that takes the context data as an argument. In this example, the 
PermissionConsumer component has a name property for the name of the feature. 
This is compared with the value from the context and, if it's false, nothing is rendered.

Now let's look at the App component:

import * as React from "react";

import First from "./First";

import Second from "./Second";

import Third from "./Third";

 

export default () => (

  <>

    <First />

    <Second />

    <Third />

  </>

);

This component renders three components that are features and each needs to check 
for permissions. Without the context functionality of React, you would have to pass this 
data as a series of properties to each of these components through this component. If 
<First> had children or grandchildren that needed to check permissions, the same 
property-passing mechanism can get quite messy.



Providing and consuming context     55

Now let's take a look at the <First> component (the <Second> and <Third> 
components are almost exactly the same):

import * as React from "react";

import { PermissionConsumer } from "./PermissionContext";

 

export default () => (

  <PermissionConsumer name="first">

    <div>

      <button>First</button>

    </div>

  </PermissionConsumer>

);

This is where the PermissionConsumer component is put to use. You just need 
to supply it with a name property, and the child component is the component that is 
rendered if the permission check passes. The <PermissionConsumer> component can 
be used anywhere, and there's no need to pass data in order to use it.

Here's what the rendered output of these three components looks like:

Figure 3.10 – The second button is hidden because it doesn't have the necessary permissions

The second component isn't rendered because its permission in the 
PermissionProvider component is set to false. Context should be used sparingly 
because it can lead to confusion about where data comes from and which components 
throughout your application rely on it. Often, you'll start out using state to manage data 
and then, later on, discover that you're passing this state to every component in your app.

To avoid this, you can refactor data that's shared by every component from state into 
context. Remember, context should be used sparingly. If you rely on context for accessing 
data too much, it's a good indication that your app has too much global data and should 
be revised. For the data that must be global, context is a good way to avoid too much 
property-passing code.



56     Component Properties, State, and Context

Summary
In this chapter, you learned about state and properties in React components. We started 
off by defining and comparing the two concepts. Then, we implemented several React 
components and manipulated their state, allowing you to dynamically update what the 
user sees on the screen. Next, you learned about properties by implementing code that 
passed property values from JSX to the component, in cases where the component only 
needs to display values instead of changing them.

Next, you were introduced to the concept of a container component, which is used to 
decouple data fetching from rendering content, leading to a clear separation of concerns. 
Finally, you learned about the new context API in React 16 and how to use it to avoid too 
many repetitive properties when you have global application data.

In the following chapter, you'll learn about the new React Hooks API and how it supports 
using functional components for everything, including state and lifecycle management.

Further reading
Visit the following links for more information:

• Instance Properties: https://reactjs.org/docs/react-component.
html#instance-properties-1

• Setting the Initial State: https://reactjs.org/docs/react-
without-es6.html#setting-the-initial-state

• Context: https://reactjs.org/docs/context.html

• Spread syntax: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Spread_syntax

https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-component.html#instance-properties-1
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/react-without-es6.html#setting-the-initial-state
https://reactjs.org/docs/context.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax


4
Getting Started  

with Hooks
One of the most anticipated new features of React is Hooks, an API that allows your 
functional components to "hook" into React functionality. The overarching motivation for 
this feature is to simplify your components. For example, forcing React developers to use 
classes to define their components leads to the overuse of wrapper components to pass 
state around their apps. With Hooks, you can stick with simple functions to implement 
your components and have a clear picture of how everything fits together.

In this chapter, we'll cover the following topics:

• Maintaining state using Hooks

• Performing initialization and cleanup actions

• Sharing data using context Hooks

• Using reducer Hooks to scale state management

Technical requirements
The code present in this chapter can be found at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter04.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter04


58     Getting Started with Hooks

Maintaining state using Hooks
The first React Hook API that we'll look at is called useState(), which enables your 
functional React components to be stateful. Before Hooks were introduced to React, our 
only option for creating stateful components was to use a class so that we could access 
the setState() method. In this section, you'll learn how to initialize state values and 
change the state of a component using Hooks.

Initial state values
When our components are first rendered, they probably expect some state values to be set. 
This is called the initial state of the component, and we can use the useState() Hook to 
set the initial state. Let's take a look at an example:

import * as React from "react";

 

export default function App() {

  const [name] = React.useState("Adam");

  const [age] = React.useState(35);

 

  return (

    <>

      <p>My name is {name}</p>

      <p>My age is {age}</p>

    </>

  );

}

The App component is a functional React component, a function that returns JSX 
markup. But it's also now a stateful component, thanks to the useState() Hook. This 
example initializes two pieces of state, name and age. This is why there are two calls to 
useState(), one for each state value.

You can have as many pieces of state in your component as you need. The best practice is 
to have one call to useState() per state value. You could always define an object as the 
state of your component using only one call to useState(), but this complicates things 
because you have to access state values through an object instead of directly. Updating 
state values is also more complicated using this approach. When in doubt, use one 
useState() Hook per state value.



Maintaining state using Hooks     59

When we call useState(), we get an array returned to us. The first value of this array 
is the state value itself. Since we've used array-destructuring syntax here, we can call the 
value whatever we want; in this case, it is name and age. Both of these constants have 
values when the component is first rendered because we passed the initial state values for 
each of them to useState(). Here's what the page looks like when it's rendered:

Figure 4.1 – Rendered output using values from state Hooks

Now that you've seen how to set the initial state values of your components, let's learn 
about updating these values.

Updating state values
React components use state for values that change over time. The state values used by 
components start off in one state, as we saw in the previous section, and then change in 
response to some event – for example, the server responds to an API request with new 
data, or the user has clicked a button or changed a form field.

With functional components that use the useState() Hook, state values are updated 
differently to class components that rely on the setState() method. Instead of using 
setState() to update every piece of component state, you have individual functions 
to set each state value. The useState() Hook returns an array. The first item is the 
state value and the second is the function used to update the value. Let's take a look at 
an example:

import * as React from "react";

 

function App() {

  const [name, setName] = React.useState("Adam");

  const [age, setAge] = React.useState(35);

 

  return (

    <>

      <section>

        <input

          value={name}

          onChange={(e) => setName(e.target.value)}



60     Getting Started with Hooks

        />

        <p>My name is {name}</p>

      </section>

      <section>

        <input

          type="number"

          value={age}

          onChange={(e) => setAge(e.target.value)}

        />

        <p>My age is {age}</p>

      </section>

    </>

  );

}

 

export default App;

Just like the example from the Initial state values section, the App component in this 
example has two pieces of state – name and age. Unlike the previous example, this 
component uses two functions to update each piece of state. These are returned from the 
call to useState(). Let's take a closer look:

const [name, setName] = React.useState("Adam");

const [age, setAge] = React.useState(35);

Now, we have two functions – setName() and setAge() – that can be used to update the 
state of our component. Let's take a look at the text input field that updates the name state:

<section>

  <input

    value={name}

    onChange={(e) => setName(e.target.value)}

  />

  <p>My name is {name}</p>

</section>



Maintaining state using Hooks     61

Whenever the user changes the text in the <input> field, the onChange event is 
triggered. The handler for this event calls setName(), passing it e.target.value as 
an argument. The argument passed to setName() is the new state value of name. The 
succeeding paragraph shows that the text input is also updated with the new name value 
every time the user changes the text input.

Next, let's look at the age number input field and how this value is passed to setAge():

<section>

  <input

    type="number"

    value={age}

    onChange={(e) => setAge(e.target.value)}

  />

  <p>My age is {age}</p>

</section>

The age field follows the exact same pattern as the name field. The only difference is that 
we've made the input a number type. Any time the number changes, setAge() is called 
with the updated value in response to the onChange event. The following paragraph shows 
that the number input is also updated with every change that is made to the age state.

Here is what the two inputs and their two corresponding paragraphs look like when 
they're rendered on the screen:

Figure 4.2 – Using Hooks to change state values

In this section, you learned about the useState() Hook, which is used to add state 
to functional React components. Each piece of state uses its own Hook and has its own 
value variable and its own setter function. This greatly simplifies accessing and updating 
state in your components. Any given state value should have an initial value so that the 
component can render correctly the first time. To re-render functional components that 
use state Hooks, you can use the setter functions that useState() returns to update 
your state values as needed.



62     Getting Started with Hooks

The next Hook that you'll learn about is used to perform initialization and cleanup 
actions.

Performing initialization and cleanup actions
Often, our React components need to perform actions when the component is created. 
For example, a common initialization action is to fetch API data that the component 
needs. Another common action is to make sure that any pending API requests are 
canceled when the component is removed. In this section, you'll learn about the 
useEffect() Hook and how it can help you with these two scenarios. You'll also learn 
how to make sure that the initialization code doesn't run too often.

Fetching component data
The useEffect() Hook is used to run "side-effects" in your component. Another way to 
think about side-effect code is that functional components have only one job – returning 
JSX content to render. If the component needs to do something else, such as fetching 
API data, this should be done in a useEffect() Hook. For example, if you were to just 
make the API call as part of your component function, you would likely introduce race 
conditions and other difficult-to-fix buggy behavior.

Let's take a look at an example that fetches API data using Hooks:

import * as React from "react";

 

function fetchUser() {

  return new Promise((resolve) => {

    setTimeout(() => {

      resolve({ id: 1, name: "Adam" });

    }, 1000);

  });

}

 

function App() {

  const [id, setId] = React.useState("loading...");

  const [name, setName] = React.useState("loading...");

 

  React.useEffect(() => {

    fetchUser().then((user) => {



Performing initialization and cleanup actions     63

      setId(user.id);

      setName(user.name);

    });

  });

 

  return (

    <>

      <p>ID: {id}</p>

      <p>Name: {name}</p>

    </>

  );

}

 

export default App;

The useEffect() Hook expects a function as an argument. This function is called after 
the component finishes rendering, in a safe way that doesn't interfere with anything else 
that React is doing with the component under the covers. Let's look at the pieces of this 
example more closely, starting with the mock API function:

function fetchUser() {

  return new Promise((resolve) => {

    setTimeout(() => {

      resolve({ id: 1, name: "Adam" });

    }, 1000);

  });

}

The fetchUser() function returns a promise. The promise resolves a simple object 
with two properties, id and name. The setTimeout() function delays the promise 
resolution for 1 second, so this function is asynchronous, just as a normal fetch() call 
would be.

Next, let's look at the Hooks used by the App component:

const [id, setId] = React.useState("loading...");

const [name, setName] = React.useState("loading...");

 

React.useEffect(() => {



64     Getting Started with Hooks

  fetchUser().then((user) => {

    setId(user.id);

    setName(user.name);

  });

});

As you can see, we're using two Hooks in this component – useState() and 
useEffect(). Combining Hook functionality like this is powerful and encouraged. 
First, we set up the id and name states of the component. Then, useEffect() is used 
to set up a function that calls fetchUser() and sets the state of our component when 
the promise resolves.

Here is what the App component looks like when it's first rendered, using the initial state 
of id and name:

Figure 4.3 – Displaying the loading text until the data arrives

After 1 second, the promise returned from fetchUser() is resolved with data from 
the API, which is then used to update the ID and name states. This results in App being 
rerendered:

Figure 4.4 – The state changes, removing the loading text and displaying returned values

There is a good chance that your users will navigate around your application while an 
API request is still pending. The useEffect() Hook can be used to deal with canceling 
these requests.

Canceling requests and resetting state
There's a good chance that, at some point, your users will navigate your app and cause 
components to unmount before responses to their API requests arrive. When this 
happens, an error occurs because the component will attempt to update the state values of 
a component that has been removed.



Performing initialization and cleanup actions     65

Thankfully, the useEffect() Hook has a mechanism to clean up things such as 
pending API requests when the component is removed. Let's take a look at an example of 
this in action:

import * as React from "react";

import { Promise } from "bluebird";

 

Promise.config({ cancellation: true });

 

function fetchUser() {

  return new Promise((resolve) => {

    setTimeout(() => {

      resolve({ id: 1, name: "Adam" });

    }, 1000);

  });

}

 

function User() {

  const [id, setId] = React.useState("loading...");

  const [name, setName] = React.useState("loading...");

 

  React.useEffect(() => { 

    const promise = fetchUser().then((user) => {

      setId(user.id);

      setName(user.name);

    });

 

    return () => {

      promise.cancel();

    };

  });

 

  return (

    <>

      <p>ID: {id}</p>

      <p>Name: {name}</p>

    </>



66     Getting Started with Hooks

  );

}

 

export default User;

This looks a lot like the component from the fetching component data example. It has the 
same state, it fetches data inside useEffect(), and it renders the same output. There 
are a couple of important differences though. Let's start by taking a closer look at the 
useEffect() Hook:

useEffect(() => {

  const promise = fetchUser().then((user) => {

    setId(user.id);

    setName(user.name);

  });

 

  return () => {

    promise.cancel();

  };

});

Just like in the fetching component data example, this effect creates a promise by 
calling the fetchUser() API function. It also returns a function, which React 
runs when the component is removed. In this example, the promise that is created by 
calling fetchUser() is canceled by calling promise.cancel(). This prevents the 
component from trying to update its state after it has been removed.

Another important difference compared with the preceding example is that here, we're 
using the Bluebird library for promises since they support cancellation. There are many 
other ways that you can "cancel" asynchronous operations in the function returned by the 
useEffect() Hook, but I found Bluebird to be well worth the added dependency for 
this added capability.

Now, let's look at the App component, which renders and removes the User component:

import * as React from "react";

import User from "./User";

 

const ShowHideUser = ({ show }) => (show ? <User /> :

  null);



Performing initialization and cleanup actions     67

 

function App() {

  const [show, setShow] = React.useState(false);

 

  return (

    <>

      <button onClick={() => setShow(!show)}>

        {show ? "Hide User" : "Show User"}

      </button>

      <ShowHideUser show={show} />

    </>

  );

}

 

export default App;

The App component renders a button that is used to toggle the show state. This state 
value determines whether or not the User component is rendered but by using the 
ShowHideUser convenience component. If show is true, <User> is rendered; 
otherwise, User is removed, triggering our useEffect() cleanup behavior.

Here's what the screen looks like when it first loads:

Figure 4.5 – A button used to initiate the state change

The User component isn't rendered because the show state of the App component is 
false. Try clicking on the show user button. This will change the show state and render 
the User component:

Figure 4.6 – Displays the loading text when first clicked



68     Getting Started with Hooks

The loading... strings are the two initial state values for the id and name states. These will 
be updated when the API promise resolves after 1 second:

Figure 4.7 – The loading strings are eventually replaced with new state data

You can click on the Hide User button once more to remove the User component.  
Now, click on the Show User button, and then click on Hide User before it finishes 
loading. Without the cleanup code that we added to useEffect(), this will trigger an 
error. In fact, you can test this by commenting out the call to promise.cancel().

Effects are run by React after every render. This might not be what you want, especially if 
your effect is something that is relatively slow, such as an asynchronous network request. 
Instead, we want to call the API after the first render, and that's it. We'll take a look at how 
to do this next.

Optimizing side-effect actions
By default, React assumes that every effect that is run needs to be cleaned up. This 
typically isn't the case. For example, you might have specific property or state values that 
require cleanup when they change. You can pass an array of values to watch as the second 
argument to useEffect() – for example, if you have a resolved state that requires 
cleanup when it changes, you would write your effect code like this:

const [resolved, setResolved] = useState(false);

useEffect(() => {

  // ...the effect code...

  return () => {

    // ...the cleanup code that depends on "resolved"

  }

}, [resolved]);



Performing initialization and cleanup actions     69

In this code, the cleanup function will only ever run if the resolved state value changes. 
If the effect runs and the resolved state hasn't changed, then the cleanup code will 
not run. Another common case is to never run the cleanup code, except for when the 
component is removed. In fact, this is what we want to happen in the example from the 
previous section. Right now, the cleanup code runs after every render. This means that 
we're repeatedly fetching the user API data when all we really want is to fetch it once when 
the component is first mounted.

Let's make some modifications to the User component from the canceling requests 
example:

import * as React from "react";

import { Promise } from "bluebird";

 

Promise.config({ cancellation: true });

 

function fetchUser() {

  console.count("fetching user");

  return new Promise((resolve) => {

    setTimeout(() => {

      resolve({ id: 1, name: "Adam" });

    }, 1000);

  });

}

 

function User() {

  const [id, setId] = React.useState("loading...");

  const [name, setName] = React.useState("loading...");

 

  React.useEffect(() => {

    const promise = fetchUser().then((user) => {

      setId(user.id);

      setName(user.name);

    });

 

    return () => {

      promise.cancel();

    };



70     Getting Started with Hooks

  }, []);

 

  return (

    <>

      <p>ID: {id}</p>

      <p>Name: {name}</p>

    </>

  );

}

 

export default User;

We've added a second argument to useEffect(), an empty array. This tells React that 
there are no values to watch and that we only want to run the cleanup code when the 
component is removed. We've also added console.count('fetching user') 
to the fetchUser() function. This makes it easier to look at the browser dev tools 
console and make sure that our component data is only fetched once. If you remove the 
[] argument that is passed to useEffect(), you'll notice that fetchUser() is called 
several times.

In this section, you learned about side effects in React components. Effects are an 
important concept, as they are the bridge between your React components and the outside 
world. One of the most common use cases for effects is to fetch data that the component 
needs, when it is first created, and then clean up after the component when it is removed.

Now, we're going to look at another way to share data with React components – context.

Sharing data using context Hooks
React applications often have a few pieces of data that are global in nature. This means that 
several components, possibly every component in an app, share this data – for example, 
information about the currently logged-in user might be used in several places. In cases 
like this, it makes sense to provide a context where this data can be easily accessed by 
components that are rendered in this context.

In this section, you'll learn how to consume context data using Hooks.



Sharing data using context Hooks     71

Sharing fetched data
Most of our components will directly fetch data that they and their children need.  
In other cases, our app has some API endpoint with data that is used by several 
components throughout the application. To share global data like this, you can use the 
React context API. As the name suggests, components that are rendered within a context 
are able to access the data provided by the context.

Let's build an example to help clarify what this means and how it relates to Hooks. Here is 
the UserContext context and the UserProvider component:

import * as React from "react";

 

export const UserContext = React.createContext();

 

function fetchUser() {

  return new Promise((resolve) => {

    setTimeout(() => {

      resolve({ id: 1, name: "Adam" });

    }, 1000);

  });

}

 

export function UserProvider({ children }) {

  const [user, setUser] = React.useState({ name: "..." });

 

  React.useEffect(() => {

    fetchUser().then((user) => {

      setUser(user);

    });

  }, []);

 

  return (

    <UserContext.Provider value={user}>

      {children}

    </UserContext.Provider>

  );

}



72     Getting Started with Hooks

First, we have the UserContext object, created by calling the createContext() 
React API. Next, we have the mock API function, fetchUser(). Finally, we have the 
UserProvider component. The job of this component is to call the fetchUser() 
API and set the user state as the response from the API when it arrives. To do this, we're 
using the useState() and useEffect() Hooks.

This component renders the <UserContext.Provider> component, passing 
in any children it receives. The value property is then made available to any child 
components of UserProvider. In this case, the value is the state that is set by calling 
the fetchUser() API. We've set ourselves up to be able to pass the user value to 
any component of our application. Let's see how this is done by creating a simple App 
component with three pages on it:

import * as React from "react";

import { UserProvider } from "./UserContext";

import { Page1, Page2, Page3 } from "./Pages";

 

function ChoosePage({ page }) {

  const Page = [Page1, Page2, Page3][page];

  return <Page />;

}

 

function App() {

  const [page, setPage] = React.useState(0);

 

  return (

    <UserProvider>

      <button onClick={() => setPage(0)} disabled=

        {page === 0}>

        Page 1

      </button>

      <button onClick={() => setPage(1)} disabled=

        {page === 1}>

        Page 2

      </button>



Sharing data using context Hooks     73

      <button onClick={() => setPage(2)} disabled=

        {page === 2}>

        Page 3

      </button>

      <ChoosePage page={page} />

    </UserProvider>

  );

}

 

export default App;

The App component renders three buttons that, when clicked, render their corresponding 
page component. The page state is used to control the page that is displayed and defaults 
to 0. When App is first rendered, the Page1 component is rendered. This happens with 
the help of ChoosePage, which renders the correct page based on the page state that is 
passed to it. Here's what you'll see when the page state first loads:

Figure 4.8 – The default view of our page

The Page 1 button is disabled because it is the currently active page. There's an ellipsis 
following the Logged in as message at the bottom of the page. This is because the 
UserProvider component is waiting for the fetchUser() API call to respond. When 
the response arrives and the context data is updated, the Page1 component is updated:

Figure 4.9 – The state changes when the fetch call resolves, updating the user name



74     Getting Started with Hooks

Last but not least, let's take a look at the page components that use context Hooks:

import * as React from "react";

import { UserContext } from "./UserContext";

 

function Username() {

  const user = React.useContext(UserContext);

  return (

    <p>

      Logged in as <strong>{user.name}</strong>

    </p>

  );

}

 

export function Page1() {

  return (

    <>

      <h1>Page 1</h1>

      <Username />

    </>

  );

}

 

export function Page2() {

  return (

    <>

      <h1>Page 2</h1>

      <Username />

    </>

  );

}

 

export function Page3() {

  return (

    <>

      <h1>Page 3</h1>

      <Username />



Sharing data using context Hooks     75

    </>

  );

}

All three page components look pretty much the same, except for the text used in each. 
Let's focus on the Username component that is used by each page:

function Username() {

  const user = React.useContext(UserContext);

  return (

    <p>

      Logged in as <strong>{user.name}</strong>

    </p>

  );

}

This is where the useContext() Hook is used. The user context value is actually the 
state that is set by the UserProvider component when the API call responds. This 
means that the user context value is updated by the useContext() Hook whenever 
the user value changes.

Another important idea from this example is that the page components (Page1, Page2, 
and Page3) have no knowledge of this global user data. Instead of having to pass data 
down from the top-level component as property values, we can rely on useContext() 
when we need access to global data, no matter how deeply nested the component is in 
our JSX markup. For components that have nothing to do with the data, such as the page 
components in this example, there's no need to touch them.

Updating stateful context data
Global data that is shared throughout your application isn't limited to read-only API 
response data. Sometimes, components themselves need to update global state values. 
To enable this capability, we need to pass not only data from context producers but also 
a mechanism to update the data. Since data stored in a context provider is a state created 
with useState(), we can just pass along the setter function, along with the state value.



76     Getting Started with Hooks

Let's illustrate these ideas by extending the sharing fetched data example. Instead of a user 
context, we'll add a status context. This way, components that are rendered within this 
context will have access to the status state value and the status state setter function. 
Here's what the StatusProvider component looks like:

import * as React from "react";

 

export const StatusContext = React.createContext();

 

export function StatusProvider({ children }) {

  const value = React.useState("set a status");

 

  return (

    <StatusContext.Provider value={value}>

      {children}

    </StatusContext.Provider>

  );

}

The StatusProvider component has a status state with a default string value. Recall 
that useState() returns an array of state value and a state setter function. This array is 
then passed to the value property of <StatusContext.Provider>. Now, let's take a 
look at the page components that display and update the status context data:

import * as React from "react";

import { StatusContext } from "./StatusContext";

 

function SetStatus() {

  const [status, setStatus] =

    React.useContext(StatusContext);

  return (

    <input

      value={status}

      onChange={(e) => setStatus(e.target.value)}

    />

  );

}

 



Sharing data using context Hooks     77

export function Status() {

  const [status] = React.useContext(StatusContext);

  return <p>{status}</p>;

}

 

export function Page1() {

  return (

    <>

      <h1>Page 1</h1>

      <SetStatus />

    </>

  );

}

 

export function Page2() {

  return (

    <>

      <h1>Page 2</h1>

    </>

  );

}

 

export function Page3() {

  return (

    <>

      <h1>Page 3</h1>

      <SetStatus />

    </>

  );

}



78     Getting Started with Hooks

Let's take a closer look at the two utility components that consume context data with 
useContext():

function SetStatus() {

  const [status, setStatus] =

    React.useContext(StatusContext);

  return (

    <input

      value={status}

      onChange={(e) => setStatus(e.target.value)}

    />

  );

}

 

export function Status() {

  const [status] = React.useContext(StatusContext);

  return <p>{status}</p>;

}

The SetStatus component is used to render an input so that the user can provide new 
values for the status context. When they do, the setStatus() function that comes 
from the context data array is used to update the context state. The Status component 
only renders status, so it doesn't need the setStatus() function that comes from 
useContext(). The Page2 component doesn't render the SetStatus component, 
but Page1 and Page2 do.

The Status component is used by the App component to display status on every page, 
including Page2. Let's see these pages in action now. Here is what the first page looks like 
when it first loads, using the default status context:

Figure 4.10 – Showing what the user is typing



Sharing data using context Hooks     79

The text input that sets the status is part of the Page1 component. The succeeding status 
label shows that the text input that displays the status is part of the App component and 
will be rendered on every page. Let's try changing the status:

Figure 4.11 – The display changes as the user types

The setStatus() function that was passed in context data is used to update the 
status state in the StatusProvider component. The new context data is propagated 
throughout the application components that use it, any time it changes. Let's see what the 
second page looks like after we've updated the status:

Figure 4.12 – The status update is visible on page 2

The Page2 component doesn't use the SetStatus component, which is why there's 
no input shown here. But the status label that is rendered by the App component hasn't 
changed. Lastly, let's take a look at the third page:

Figure 4.13 – Status changes are also reflected on page 3



80     Getting Started with Hooks

As expected, the updated status context data is reflected here as well. In fact, since Page3 
uses the SetStatus component, you can update the status again and navigate the pages 
again. The result will be the same, since the same mechanics are in place.

This section showed you how to create a context for global data that various components 
in your application need to share. One common scenario is an API endpoint with data 
that most components in the application need access to. You can implement a context 
provider component that performs this API data fetch and then shares it with other 
components. The components that require this global data can use the useContext() 
Hook, which feels a lot like using the useState() Hook.

You also learned that context data can be changed by different components. This involves 
passing a state setting function as part of the context data so that components can use it 
to update the context value. In the next section, we'll look at using reducer Hooks to help 
simplify complex state management.

Using reducer Hooks to scale state 
management
The useState() Hook is a great way to manage the state of your component. It can 
become a challenge to use this Hook when your component has a lot of related pieces of 
state. You end up with a lot of setter functions that you need to call individually, once you've 
figured out how a change in one state value affects another state value. With reducers, you 
have one dispatch() function that's used to update the state of your component.

In this section, you'll learn about the basics of reducer actions and how they update the 
state of your component. Then, we'll look at a more in-depth example that shows you how 
to handle updating state values that depend on other state values.

Using reducer actions
A reducer function in a React application is a function that takes the current state, an 
action, and any other arguments that are needed to update the state. It returns the new 
state of the component. The action argument tells the reducer function what new state 
to return and is often used in a switch statement. Let's look at an example now:

function reducer(state, action) {

  switch (action.type) {

    case "changeName":

      return { ...state, name: action.value };



Using reducer Hooks to scale state management     81

    case "changeAge":

      return { ...state, age: action.value };

    default:

      throw new Error('${action.type} is not a valid

        action');

  }

}

 

function App() {

  const [{ name, age }, dispatch] =

    React.useReducer(reducer, {

    name: "",

    age: "",

  });

 

  return (

    <>

      <input

        placeholder="Name"

        value={name}

        onChange={(e) =>

          dispatch({ type: "changeName", value:

            e.target.value })

        }

      />

      <p>Name: {name}</p>

      <input

        placeholder="Age"

        type="number"

        value={age}

        onChange={(e) =>

          dispatch({ type: "changeAge", value:

            e.target.value })

        }

      />



82     Getting Started with Hooks

      <p>Age: {age}</p>

    </>

  );

}

Here, we have an App component that renders two fields and two labels. When the text 
value changes, it should update the corresponding label value. This is done by using two 
pieces of state, one for each field. Let's take a closer look at how state is set up with the 
useReducer() Hook:

  const [{ name, age }, dispatch] =

    React.useReducer(reducer, {

    name: "",

    age: "",

  });

The useReducer() function takes two arguments – the reducer function that updates 
the state, and the initial state of the component. The return value of useReducer() is an 
array, with the state as the first element and the dispatcher function as the second. When 
we use reducers, we only have one object as the state of the component, instead of several 
smaller, unrelated state values. This is why we're destructuring the state object into 
name and age constants. Now, let's take a look at the reducer function itself:

function reducer(state, action) {

  switch (action.type) {

    case "changeName":

      return { ...state, name: action.value };

    case "changeAge":

      return { ...state, age: action.value };

    default:

      throw new Error('${action.type} is not a valid

        action');

  }

}



Using reducer Hooks to scale state management     83

The state argument is the current state of the component. The action argument is the 
argument that's passed to dispatch(). The action.type value is used to determine 
what to do. This reducer only has two possible actions – changeName and changeAge. 
Based on this, we use the object spread operator to return a new state object, made from 
the existing state and the updated state object values. In this case, based on the action.
type value, either the name or age state values will be updated.

It's also important to have a default handler in place that throws an error when an 
unexpected action is passed to the reducer. It's highly likely that you will get this wrong 
at some point, and it's better to have the reducer complain loudly about the invalid action 
than to have to figure out why your component has the wrong state set on it.

Here is what the screen looks like when App is first rendered:

Figure 4.14 – The default input values

Here's what you'll see when you enter some text into these two inputs:

Figure 4.15 – The updated labels once text is added

This example used a reducer function to update two unrelated pieces of state. In other 
words, you probably could have used the useState() Hook just as easily. However, now 
that you have an idea of what reducers are and how they handle different actions that are 
dispatched to them, you're ready to look at a more complex example that involves state 
values that depend on other state values.



84     Getting Started with Hooks

Handling state dependencies
When our components have one piece of state that depends on another, it's difficult to use 
the useState() Hook. This Hook comes with the assumption that when a state needs 
to be updated, it's one piece at a time. In real applications, there are often scenarios where 
updating one piece of state means that another piece of state needs to be updated as well, 
based on this new value.

Let's look at an example that allows the user to select an item and the quantity of that item. 
It then shows the cost. This means that whenever the quantity or item fields change, the 
total must also change. Here's the reducer code:

const initialState = {

  options: [

    { id: 1, name: "First", value: 10 },

    { id: 2, name: "Second", value: 50 },

    { id: 3, name: "Third", value: 200 },

  ],

  quantity: 1,

  selected: 1,

};

 

function reduceButtonStates(state) {

  return {

    ...state,

    decrementDisabled: state.quantity === 0,

    incrementDisabled: state.quantity === 10,

  };

}

 

function reduceTotal(state) {

  const option = state.options.find(

    (option) => option.id === state.selected

  );

  return { ...state, total: state.quantity * option.value

    };

}

 

function reducer(state, action) {



Using reducer Hooks to scale state management     85

  let newState;

  switch (action.type) {

   case "init":

     newState = reduceTotal(state);

     return reduceButtonStates(newState);

   case "decrementQuantity":

     newState = { ...state, quantity: state.quantity - 1 };

     newState = reduceTotal(newState);

     return reduceButtonStates(newState);

   case "incrementQuantity":

     newState = { ...state, quantity: state.quantity + 1 };

     newState = reduceTotal(newState);

     return reduceButtonStates(newState);

   case "selectItem":

     newState = { ...state, selected: Number(action.id) };

     return reduceTotal(newState);

   default:

     throw new Error('${action.type} is not a valid

       action');

  }

}

Here's the App component that uses the reducer:

export default function App() {

  const [

    {

      options,

      selected,

      quantity,

      total,

      decrementDisabled,

      incrementDisabled,

    },

    dispatch,

  ] = React.useReducer(reducer, initialState);

 



86     Getting Started with Hooks

  React.useEffect(() => {

    dispatch({ type: "init" });

  }, []);

 

  return (

    <>

      <section>

        <button

          disabled={decrementDisabled}

          onClick={() => dispatch({ type:

            "decrementQuantity" })}

        >

          -

        </button>

        <button

          disabled={incrementDisabled}

          onClick={() => dispatch({ type:

            "incrementQuantity" })}

        >

          +

        </button>

        <input readOnly value={quantity} />

      </section>

      <section>

        <select

          value={selected}

          onChange={(e) =>

            dispatch({ type: "selectItem", id:

              e.target.value })

          }

        >

          {options.map((o) => (

            <option key={o.id} value={o.id}>

              {o.name}

            </option>

          ))}



Using reducer Hooks to scale state management     87

        </select>

      </section>

      <section>

        <strong>{total}</strong>

      </section>

    </>

  );

}

Before jumping into code explanations, let's see what this code actually does. Here's what 
you'll see when the screen first loads:

Figure 4.16 – The default field values when the screen first loads

By default, the quantity is set to 1 and the First item is selected. The total cost is displayed 
beneath the two fields. When the page first loads, the total is 10, since the cost of the First 
item is 10 and the quantity is set to 1. Let's try changing the quantity value, using the 
increment and decrement buttons beside it:

Figure 4.17 – Incrementing the numeric field value

Here, we've changed the quantity to 5. As you can see, the total reflects this quantity by 
changing to 50. The quantity state has minimum (0) and maximum (10) restrictions, so if 
you increase the quantity value to 10, the increment button is disabled:

Figure 4.18 – The maximum allowed value



88     Getting Started with Hooks

If you change the selected item, the total is reflected, based on the current quantity value:

Figure 4.19 – Changing the multiplier value

This example has several pieces of state that depend on one another in moderately 
complex ways. This is a perfect opportunity to put the useReducer() Hook into action. 
Let's break down what's going on in the code. We'll start by looking at the initial state:

const initialState = {

  options: [

    { id: 1, name: "First", value: 10 },

    { id: 2, name: "Second", value: 50 },

    { id: 3, name: "Third", value: 200 },

  ],

  quantity: 1,

  selected: 1,

};

The options array is the items that the user can select from; the initial quantity value 
is 1, and the selected value represents which item is selected. Later on, this component 
will set several other state values, but these are all that are needed for the initial render. 
Next, let's take a closer look at the reducer functions that maintain the state of this 
component:

function reduceButtonStates(state) {

  return {

    ...state,

    decrementDisabled: state.quantity === 0,

    incrementDisabled: state.quantity === 10,

  };

}

 

function reduceTotal(state) {

  const option = state.options.find(

    (option) => option.id === state.selected

  );



Using reducer Hooks to scale state management     89

  return { ...state, total: state.quantity * option.value

    };

}

 

function reducer(state, action) {

  let newState;

  switch (action.type) {

   case "init":

     newState = reduceTotal(state);

     return reduceButtonStates(newState);

   case "decrementQuantity":

     newState = { ...state, quantity: state.quantity - 1 };

     newState = reduceTotal(newState);

     return reduceButtonStates(newState);

   case "incrementQuantity":

     newState = { ...state, quantity: state.quantity + 1 };

     newState = reduceTotal(newState);

     return reduceButtonStates(newState);

   case "selectItem":

     newState = { ...state, selected: Number(action.id) };

     return reduceTotal(newState);

   default:

     throw new Error('${action.type} is not a valid

       action');

  }

}

The reducer() function is passed to useReducer() and is responsible for handling 
different action paths. This particular reducer handles the following actions:

• init: When the component first mounts.

• decrementQuantity: The decrement quantity button was pressed.

• incrementQuantity: The increment quantity button was pressed.

• selectItem: The selected item was changed.



90     Getting Started with Hooks

Every one of these actions has the potential to change the total state, which is why the 
code to compute the total was moved into its own function – reduceTotal(). For 
example, if the quantity changes or the item changes, we need to compute a new total. 
When the component first mounts, we also need to compute the total because we don't 
want to have a default state for something that's derived from other state values. Instead, 
we introduce the init action and use the useEffect() Hook to call it once when the 
component is first mounted.

The state of the increment and decrement buttons is dependent on the quantity 
value. So, the incrementDisabled and decrementDisabled state values are 
computed in the reduceButtonStates() function, which is used by the init, 
decrementQuantity, and incrementQuantity actions.

At first glance, it might seem like there's a lot going on in the reducer() function, and 
you'd be right – there is. But in this example, the goal is to keep related state operations 
close to one another, since they're related. The perfect place to do this is in a reducer 
function. Developers look at our code and follow the action flow without much trouble. 
We also managed to factor out common reducer behavior into its own functions. All of 
this results in a functional component that doesn't have to directly perform any complex 
state updates. Instead, it just needs to make dispatch() calls, keeping the component 
itself focused on markup and event handling.

In this section, you learned that the useReducer() Hook is similar to the useState() 
Hook in that they are both React state management APIs. Using a reducer function is 
helpful when you want to keep your component state together as a single object so that 
you can update it more easily when the updates are complex due to dependencies.

Summary
This chapter introduced you to the new React Hooks API. You started by using 
the useState() Hook, which is fundamental for using state in functional React 
components. Then, you learned about useEffect(), which enables life cycle 
management in functional React components, such as fetching API data when a 
component is mounted and cleaning up any pending async operations when it is removed. 
Then, you learned how to use the useContext() Hook in order to access global 
application data. Lastly, you learned about the useReducer() Hook – an effective 
replacement for useState() when your component state grows too big or too complex 
for useState().

In the following chapter, you'll learn about event handling in React components.



5
Event Handling, the 

React Way
The focus of this chapter is event handling. React has a unique approach to handling 
events – declaring event handlers in JSX. We'll get things started by looking at how event 
handlers for particular elements are declared in JSX. Then, we'll learn about binding 
handler context and parameter values. Next, we'll implement inline and higher-order 
event handler functions.

Then, you'll learn how React actually maps event handlers to DOM elements under the 
hood. Finally, you'll learn about the synthetic events that React passes to event handler 
functions and how they're pooled for performance purposes. Once you've completed this 
chapter, you'll be comfortable implementing event handlers in your React components. 
At that point, your applications come to life for your users because they are then able to 
interact with them.
The following topics are covered in this chapter:
Declaring event handlers
Using event handler context and parameters
Declaring inline event handlers
Binding handlers to elements
Using synthetic event objects
Understanding event pooling



92     Event Handling, the React Way

Technical requirements
The code present in this chapter can be found at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter05.

Declaring event handlers
The differentiating factor with event handling in React components is that it's declarative. 
Contrast this with something such as jQuery, where you have to write imperative code 
that selects the relevant DOM elements and attaches event handler functions to them.

The advantage of the declarative approach to event handlers in JSX markup is that they're 
part of the UI structure. Not having to track down code that assigns event handlers is 
mentally liberating.

In this section, you'll write a basic event handler so that you can get a feel for the 
declarative event-handling syntax found in React applications. Then, you'll learn how to 
use generic event handler functions.

Declaring handler functions
Let's take a look at a basic component that declares an event handler for the click event of 
an element:

import * as React from "react";

 

class MyButton extends React.Component {

  onClick() {

    console.log("clicked");

  }

 

  render() {

    return (

      <button onClick={this.onClick}>{this.props.children}

        </button>

    );

  }

}

 

export default MyButton;

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter05


Declaring event handlers     93

The event handler this.onClick() function is passed to the onClick property of the 
<button> element. By looking at this markup, you can see exactly which code will run 
when the button is clicked.

Note
View the official React documentation for the full list of supported event 
property names at https://reactjs.org/docs/events.
html#supported-events.

Next, let's take a look at how to respond to more than one type of event using different 
event handlers with the same element.

Multiple event handlers
What I really like about the declarative event handler syntax is that it's easy to read when 
there's more than one handler assigned to an element. Sometimes, for example, there are 
two or three handlers for an element. Imperative code is difficult to work with for a single 
event handler, let alone several of them. When an element needs more handlers, it's just 
another JSX attribute. This scales well from a code-maintainability perspective, as this 
example shows:

import * as React from "react";

 

class MyInput extends React.Component {

  onChange() {

    console.log("changed");

  }

 

  onBlur() {

    console.log("blured");

  }

 

  render() {

    return <input onChange={this.onChange}

      onBlur={this.onBlur} />;

  }

}

 

export default MyInput;

https://reactjs.org/docs/events.html#supported-events
https://reactjs.org/docs/events.html#supported-events


94     Event Handling, the React Way

This <input> element could have several more event handlers and the code would be 
just as readable.

As you keep adding more event handlers to your components, you'll notice that a lot of 
them do the same thing. Next, you'll learn how to share generic handler functions across 
components.

Importing generic handlers
Any React application is likely going to share the same event-handling logic for different 
components. For example, in response to a button click, the component should sort a list 
of items. It's these types of generic behaviors that belong in their own modules so that 
several components can share them.

Let's implement a component that uses a generic event handler function:

import * as React from "react";

import reverse from "./reverse";

 

class MyList extends React.Component {

  state = {

    items: ["Angular", "Ember", "React"],

  };

 

  onReverseClick = reverse.bind(this);

 

  render() {

    const {

      state: { items },

      onReverseClick,

    } = this;

 

    return (

      <section>

        <button onClick={onReverseClick}>Reverse</button>

        <ul>

          {items.map((v, i) => (

            <li key={i}>{v}</li>

          ))}



Declaring event handlers     95

        </ul>

      </section>

    );

  }

}

 

export default MyList;

Let's walk through what's going on here, starting with the imports. You're importing a 
function called reverse(). This is the generic event handler function that you're using 
with your <button> element. When it's clicked, the list should reverse its order.

The onReverseClick method actually calls the generic reverse() function. It is 
created using bind() to bind the context of the generic function to this component 
instance.

Finally, looking at the JSX markup, you can see that the onReverseClick() function is 
used as the handler for the button click.

So, how does this work exactly? You have a generic function that somehow changes the 
state of this component because you bound context to it? Well, pretty much, yes – that's it. 
Let's look at the generic function implementation now:

export default function reverse() {

  this.setState(this.state.items.reverse());

}

This function depends on a this.state property and an items array within the state. 
The key is that the state is generic; an application can have many components with an 
items array in its state.

Here's what our rendered list looks like:

Figure 5.1 – The rendered list of values



96     Event Handling, the React Way

As expected, clicking on the button causes the list to sort, using your generic reverse() 
event handler:

Figure 5.2 – The list of values reversed

In this section, you learned how to declare event handler functions for your JSX elements. 
You then learned how to assign more than one event handler to an element and import 
and use generic handler functions. Next, you'll learn how to bind the context and the 
argument values of event handler functions.

Using event handler context and parameters
In this section, you'll learn about React components that bind their event handler contexts 
and how you can pass data into event handlers. Having the right context is important for 
React event handler functions because they usually need access to component properties 
or state. Being able to parameterize event handlers is also important because they don't 
pull data out of DOM elements.

Getting component data
In this section, you'll learn about scenarios where the handler needs access to component 
properties, along with argument values. You'll render a custom list component that has a 
click event handler for each item in the list. The component is passed an array of values, 
as follows:

import * as React from "react";

import * as ReactDOM from "react-dom";

import MyList from "./MyList";

 

const items = [

  { id: 0, name: "First" },

  { id: 1, name: "Second" },

  { id: 2, name: "Third" },

];

 

const root =



Using event handler context and parameters     97

  ReactDOM.createRoot(document.getElementById("root"));

root.render(<MyList items={items} />);

Each item in the list has an id property, which is used to identify the item. You'll need to 
be able to access this ID when the item is clicked on in the UI so that the event handler 
can work with the item.

Here's what the MyList component implementation looks like:

import * as React from "react";

 

class MyList extends React.Component {

  constructor() {

    super();

    this.onClick = this.onClick.bind(this);

  }

 

  onClick(id) {

    const { name } = this.props.items.find((i) => i.id ===

      id);

    console.log("clicked", '"${name}"');

  }

 

  render() {

    return (

      <ul>

        {this.props.items.map(({ id, name }) => (

          <li key={id} onClick={this.onClick.bind(null,

            id)}>

            {name}

          </li>

        ))}

      </ul>

    );

  }

}

 

export default MyList;



98     Event Handling, the React Way

Here is what the rendered list looks like:

Figure 5.3 – The rendered list of values

You have to bind the event handler context, which is done in the constructor. If you look 
at the onClick() event handler, you can see that it needs access to the component so 
that it can look up the clicked item in this.props.items. Also, the onClick() 
handler is expecting an id parameter. If you take a look at the JSX content of this 
component, you can see that calling bind() supplies the argument value for each item in 
the list. This means that when the handler is called in response to a click event, the id of 
the item is already provided.

This approach to parameterized event handling is quite different from prior approaches 
– for example, I used to rely on getting parameter data from the DOM element itself. 
This works well when you only need one event handler, and it can extract the data it 
needs from the event argument. This approach also doesn't require setting up several new 
functions by iterating over a collection and calling bind().

And therein lies the trade-off. React applications avoid touching the DOM because it 
is really just a render target for React components. If you can write code that doesn't 
introduce explicit dependencies to DOM elements, your code will be portable. This is 
what you've accomplished with the event handler in this example.

Note
If you're concerned about the performance implications of creating a new 
function for every item in a collection, don't be. You're not going to render 
thousands of items on the page at a time. Benchmark your code, and if it turns 
out that bind() is the slowest part, then you probably have a really fast 
application.

In the next section, you'll learn how to build event handler functions on the fly using 
higher-order functions.



Using event handler context and parameters     99

Higher-order event handlers
A higher-order function is a function that returns a new function. Sometimes, higher-
order functions take functions as arguments too. In the Getting component data example, 
you used bind() to bind the context and argument values of your event handler functions. 
Higher-order functions that return event handler functions are another technique. The main 
advantage of this technique is that you don't have to call bind() several times. Instead, you 
just call the function where you want to bind parameters to the function.

Let's look at an example component:

import * as React from "react";

 

class App extends React.Component {

  state = {

    first: 0,

    second: 0,

    third: 0,

  };

 

  onClick = (name) => () => {

    this.setState((state) => ({

      ...state,

      [name]: state[name] + 1,

    }));

  };

 

  render() {

    const { first, second, third } = this.state;

 

    return (

      <>

        <button onClick={this.onClick("first")}>

          First {first}</button>

        <button onClick={this.onClick("second")}>

          Second {second}

        </button>

        <button onClick={this.onClick("third")}>

          Third {third}



100     Event Handling, the React Way

        </button>

      </>

    );

  }

}

 

export default App;

This component renders three buttons and has three pieces of state – a counter for each 
button. The onClick() function is automatically bound to the component context 
because it's defined as an arrow function. It takes a name argument and returns a 
new function. The function that is returned uses this name value when called. It uses 
computed property syntax (variables inside []) to increment the state value for the given 
name. Here's what that component content looks like after each button has been clicked a 
few times:

Figure 5.4 – Three buttons rendered

In this section, you learned how to make your event handler functions interact with 
your component data. If you have a class-based component, you can bind your function 
context to the component class so that you have direct access to the component state and 
properties. You also learned that higher-order functions are another option for generating 
distinct callback functions by passing an argument to the higher-order function.

In the next section, you'll learn about inline event handler functions.

Declaring inline event handlers
The typical approach to assigning handler functions to JSX properties is to use a named 
function. However, sometimes, you might want to use an inline function, where the 
function is defined as part of the markup. This is done by assigning an arrow function 
directly to the event property in the JSX markup:

import * as React from "react";

 

class MyButton extends React.Component {

  render() {

    return (



Binding handlers to elements     101

      <button onClick={(e) => console.log("clicked", e)}>

        {this.props.children}

      </button>

    );

  }

}

 

export default MyButton;

The main use of inlining event handlers like this is when you have a static parameter value 
that you want to pass to another function. In this example, you're calling console.
log() with the clicked string. You could have set up a special function for this purpose 
outside of the JSX markup by creating a new function using bind(), or by using a 
higher-order function. But then you would have to think of yet another name for yet 
another function. Inlining is just easier sometimes.

Next, you'll learn about how React binds handler functions to the underlying DOM 
elements in the browser.

Binding handlers to elements
When you assign an event handler function to an element in JSX, React doesn't actually 
attach an event listener to the underlying DOM element. Instead, it adds the function to an 
internal mapping of functions. There's a single event listener on the document for the page. 
As events bubble up through the DOM tree to the document, the React handler checks to 
see whether any components have matching handlers. The process is illustrated here:

Figure 5.5 – The event handler cycle

Why does React go to all of this trouble, you might ask? It's the same principle that I've 
been covering in the last few chapters – keep the declarative UI structures separated from 
the DOM as much as possible.



102     Event Handling, the React Way

For example, when a new component is rendered, its event handler functions are simply 
added to the internal mapping maintained by React. When an event is triggered and it hits 
the document object, React maps the event to the handlers. If a match is found, it calls the 
handler. Finally, when the React component is removed, the handler is simply removed 
from the list of handlers.

None of these DOM operations actually touch the DOM. It's all abstracted by a single 
event listener. This is good for performance and the overall architecture (keep the render 
target separate from the application code).

In the following section, you'll learn about the synthetic event implementation used by 
React to ensure good performance and safe asynchronous behavior.

Using synthetic event objects
When you attach an event handler function to a DOM element using the native 
addEventListener() function, the callback will get an event argument passed to 
it. Event handler functions in React are also passed an event argument, but it's not the 
standard Event instance. It's called SyntheticEvent, and it's a simple wrapper for 
native event instances.

Synthetic events serve two purposes in React:

• They provide a consistent event interface, normalizing browser inconsistencies.

• They contain information that's necessary for propagation to work.

Here's a diagram of the synthetic event in the context of a React component:

Figure 5.6 – How synthetic events are created and processed

When a DOM element that is part of a React component dispatches an event, React will 
handle the event because it sets up its own listeners for them. Then, it will either create 
a new synthetic event or reuse one from the pool, depending on availability. If there 
are any event handlers declared for the component that match the DOM event that was 
dispatched, they will run with the synthetic event passed to them.



Understanding event pooling     103

In the next section, you'll see how these synthetic events are pooled for performance 
reasons and the implications of this on asynchronous code.

Understanding event pooling
One challenge of wrapping native event instances is that it can cause performance issues. 
Every synthetic event wrapper that's created will also need to be garbage-collected at some 
point, which can be expensive in terms of CPU time.

Note
When the garbage collector is running, none of your JavaScript code is able 
to run. This is why it's important to be memory-efficient; frequent garbage 
collection means less CPU time for code that responds to user interactions.

For example, if your application only handles a few events, this wouldn't matter much. But 
even by modest standards, applications respond to many events, even if the handlers don't 
actually do anything with them. This is problematic if React constantly has to allocate new 
synthetic event instances.

React deals with this problem by allocating a synthetic instance pool. Whenever an event 
is triggered, it takes an instance from the pool and populates its properties. When the 
event handler has finished running, the synthetic event instance is released back into the 
pool, as shown here:

Figure 5.7 – Synthetic events are reused to save memory resources

This prevents the garbage collector from running frequently when a lot of events are 
triggered. The pool keeps a reference to the synthetic event instances, so they're never 
eligible for garbage collection. React never has to allocate new instances either.

However, there is one gotcha that you need to be aware of. It involves accessing the 
synthetic event instances from asynchronous code in your event handlers. This is an issue 
because, as soon as the handler has finished running, the instance goes back into the pool. 
When it goes back into the pool, all of its properties are cleared.



104     Event Handling, the React Way

Here's an example that shows how this can go wrong:

import * as React from "react";

 

function fetchData() {

  return new Promise((resolve) => {

    setTimeout(() => {

      resolve();

    }, 1000);

  });

}

 

class MyButton extends React.Component {

  onClick(e) {

    const style = e.currentTarget.style;

 

    console.log("clicked", style);

 

    fetchData().then(() => {

      console.log("callback", style);

    });

  }

 

  render() {

    return (

      <button onClick={this.onClick}>{this.props.children}

        </button>

    );

  }

}

 

export default MyButton;



Summary     105

The second call to console.log() is attempting to access a synthetic event property 
from an asynchronous callback that doesn't run until the event handler completes, which 
causes the event to empty its properties. This results in a warning and an undefined value.

Note
The aim of this example is to illustrate how things can break when you write 
asynchronous code that interacts with events. Just don't do it!

In this section, you learned that events are pooled for performance reasons, which means 
that you should never access event objects in an asynchronous way.

Summary
This chapter introduced you to event handling in React. The key differentiator between 
React and other approaches to event handling is that handlers are declared in JSX markup. 
This makes tracking down which elements handle which events much simpler.

You learned that having multiple event handlers on a single element is a matter of adding 
new JSX properties. Next, you learned that it's a good idea to share event-handling 
functions that handle generic behavior. Context can be important for event handler 
functions if they need access to component properties or state. You learned about the 
various ways to bind event handler function context and parameter values. These include 
calling bind() and using higher-order event handler functions.

Then, you learned about inline event handler functions and their potential use, as well as 
how React actually binds a single DOM event handler to the document object. Synthetic 
events are abstractions that wrap native events; you learned why they're necessary and 
how they're pooled for efficient memory consumption.

In the next chapter, you'll learn how to create components that are reusable for a variety of 
purposes. Instead of writing new components for each use case that you encounter, you'll 
learn the skills necessary to refactor existing components so that they can be used in more 
than one context. 

Further reading
Visit the following link for more information: 

• Handling Events (https://reactjs.org/docs/handling-events.html).

https://reactjs.org/docs/handling-events.html




6
Crafting Reusable 

Components
The focus of this chapter is to show you how to implement React components that serve 
more than just one purpose. After reading this chapter, you'll feel confident about how to 
compose application features.

The chapter starts with a brief look at HTML elements and how they work in terms of 
helping to implement features versus having a high level of utility. Then, you'll see the 
implementation of a monolithic component and discover the issues that it will cause down 
the road. The next section is devoted to re-implementing the monolithic component in 
such a way that the feature is composed of smaller components.

Finally, the chapter ends with a discussion of rendering trees of React components and 
gives you some tips on how to avoid introducing too much complexity as a result of 
decomposing components. I'll close the final section by reiterating the concept of high-level 
feature components versus utility components.



108     Crafting Reusable Components

The following topics will be covered in this chapter:

• Reusable HTML elements

• The difficulty with monolithic components

• Refactoring component structures

• Render props

• Refactoring class components using hooks

• Rendering component trees

• Feature components and utility components

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter06.

Reusable HTML elements
Let's think about HTML elements for a moment. Depending on the type of HTML 
element, it's either feature-centric or utility-centric. Utility-centric HTML elements 
are more reusable than feature-centric HTML elements. For example, consider the 
<section> element. This is a generic element that can be used just about anywhere, but 
its primary purpose is to compose the structural aspects of a feature: the outer shell of 
the feature and the inner sections of the feature. This is where the <section> element is 
most useful.

On the other side of the fence, you have elements such as <p>, <span>, and <button>. 
These elements provide a high level of utility because they're generic by design. You're 
supposed to use <button> elements whenever you have something that's clickable by the 
user, resulting in an action. This is a level lower than the concept of a feature.

While it's easy to talk about HTML elements that have a high level of utility versus those 
that are geared toward specific features, the discussion is more detailed when data is 
involved. HTML is static markup; React components combine static markup with data. 
The question is, how do you make sure that you're creating the right feature-centric and 
utility-centric components?

The aim of this chapter is to find out how to go from a monolithic React component 
that defines a feature to a smaller feature-centric component combined with utility 
components.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter06


The difficulty with monolithic components     109

The difficulty with monolithic components
If you could implement just one component for any given feature, it would simplify your 
job. At the very least, there wouldn't be many components to maintain, and there wouldn't 
be many communication paths for data to flow through, because everything would be 
internal to the component.

However, this idea doesn't work for a number of reasons. Having monolithic feature 
components makes it difficult to coordinate any kind of team development effort. The 
bigger monolithic components become, the more difficult they are to refactor into 
something better later on.

There's also the problem of feature overlap and feature communication. Overlap happens 
because of similarities between features; it's unlikely that an application will have a set of 
features that are completely unique to one another. That would make the application very 
difficult to learn and use. Component communication essentially means that the state 
of something in one feature will impact the state of something in another feature. State 
is difficult to deal with, and even more so when there is a lot of state packaged up in a 
monolithic component.

The best way to learn how to avoid monolithic components is to experience one firsthand. 
You'll spend the remainder of this section implementing a monolithic component. In the 
following section, you'll see how this component can be refactored into something a little 
more sustainable.

The JSX markup
The monolithic component we're going to implement is a feature that lists articles. It's just 
for illustrative purposes, so we don't want to go overboard on the size of the component. 
It'll be simple, yet monolithic. The user can add new items to the list, toggle the summary 
of items in the list, and remove items from the list.

Here is the render() method of the component:

render() {

  const { articles, title, summary } = this.state;

 

  return (

    <section>

      <header>

        <h1>Articles</h1>

        <input

          placeholder="Title"



110     Crafting Reusable Components

          value={title}

          onChange={this.onChangeTitle}

        />

        <input

          placeholder="Summary"

          value={summary}

          onChange={this.onChangeSummary}

        />

        <button onClick={this.onClickAdd}>Add</button>

      </header>

      <article>

        <ul>

          {articles.map((i) => (

            <li key={i.id}>

              <a

                href={'#${i.id}'}

                title="Toggle Summary"

                onClick={this.onClickToggle.bind

                  (null, i.id)}

              >

                {i.title}

              </a>

              &nbsp;

              <a

                href={'#${i.id}'}

                title="Remove"

                onClick={this.onClickRemove.bind

                  (null, i.id)}

              >

                &#10007;

              </a>

              <p style={{ display: i.display

                }}>{i.summary}</p>

            </li>

          ))}

        </ul>



The difficulty with monolithic components     111

      </article>

    </section>

  );

}

This is definitely more JSX than is necessary in one place. We'll improve on this in the 
following section, but for now, let's implement the initial state for this component.

I strongly encourage you to download the companion code for this book from https://
github.com/PacktPublishing/React-and-React-Native-4th-Edition. 
I can break apart the component code so that I can explain it on these pages. However, it's 
an easier learning experience if you can see the code modules in their entirety, in addition 
to running them.

Initial state
Now, let's look at the initial state of this component:

state = {

  articles: [

    {

      id: id.next(),

      title: "Article 1",

      summary: "Article 1 Summary",

      display: "none",

    },

    {

      id: id.next(),

      title: "Article 2",

      summary: "Article 2 Summary",

      display: "none",

    },

    {

      id: id.next(),

      title: "Article 3",

      summary: "Article 3 Summary",

      display: "none",

    },

    {

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition


112     Crafting Reusable Components

      id: id.next(),

      title: "Article 4",

      summary: "Article 4 Summary",

      display: "none",

    },

  ],

  title: "",

  summary: "",

};

The state consists of an array of articles, a title string, and a summary string. Each 
article object in the articles array has several string fields to help render the article and 
an id field, which is a number. The number is generated by id.next().

Let's take a look at how this works:

const id = (function* () {

  let i = 1;

  while (true) {

    yield i;

    i += 1;

  }

})();

The id constant is a generator. It is created by defining an inline generator function and 
calling it right away. This generator will yield numbers infinitely. So, calling id.next() 
the first time returns 1, the next is 2, and so on. This simple utility will come in handy 
when it's time to add new articles and we need a new unique ID.

Event handler implementation
At this point, you have the initial state and the JSX of the component. Now, it's time to 
implement the event handlers:

onChangeTitle = (e) => {

  this.setState({ title: e.target.value });

};

 

onChangeSummary = (e) => {

  this.setState({ summary: e.target.value });

};



The difficulty with monolithic components     113

The onChangeTitle() and onChangeSummary() methods use setState() to 
update the title and summary state values, respectively. The new values come from the 
target.value property of the event argument, which is the value that the user types 
into the text input:

onClickAdd = () => {

  this.setState((state) => ({

    articles: [

      ...state.articles,

      {

        id: id.next(),

        title: state.title,

        summary: state.summary,

        display: "none",

      },

    ],

    title: "",

    summary: "",

  }));

};

The onClickAdd() method adds a new article to the articles state. This state value 
is an array. We use the spread operator to build a new array from the existing array ([...
state.articles]), and the new object gets added to the end of the new array. The 
reason we're building a new array and passing it to setState() is so that there are no 
surprises. In other words, we're treating state values as immutable so that other code that 
updates the same state doesn't accidentally cause problems:

onClickRemove = (id) => {

  this.setState((state) => ({

    ...state,

    articles: state.articles.filter((article) =>

      article.id !== id),

  }));

};

The onClickRemove() method removes the article with the given ID from the 
articles state. It does this by calling filter() on the array, which returns a new 
array, so the operation is immutable.



114     Crafting Reusable Components

The filter removes the object with the given ID:

onClickToggle = (id) => {

  this.setState((state) => {

    const articles = [...state.articles];

    const index = articles.findIndex(

      (article) => article.id === id

    );

 

    articles[index] = {

      ...articles[index],

      display: articles[index].display ? "" : "none",

    };

 

    return { ...state, articles };

  });

};

The onClickToggle() method toggles the visibility of the article with the given ID. 
We carry out two immutable operations in this method. First, we build a new articles 
array from state.articles. Then, based on the index of the given ID, we replace the 
article object at the index with a new object. We use the object spread operator to fill in 
the properties ({...articles[index]}), and then the display property value is 
toggled based on the existing display value.

Here's a screenshot of the output rendered:

Figure 6.1 – Rendered articles



Refactoring component structures     115

At this point, we have a component that does everything that we need our feature to do. 
However, it's monolithic and difficult to maintain. Imagine if we had other places in our 
app that use the same pieces of MyFeature? They have to re-invent them because they 
cannot be shared. In the following section, we'll work on breaking down MyFeature into 
smaller reusable components.

Refactoring component structures
You have a monolithic feature component—now what? Let's make it better.

In this section, you'll learn how to take the feature component that you just implemented 
in the preceding section and split it into more maintainable components. You'll start with 
the JSX, as this is probably the best refactor starting point. Then, you'll implement new 
components for the feature. 

Next, you'll make these new components functional, instead of class-based. Finally, you'll 
learn how to use render props to reduce the number of direct component dependencies 
in your application, and how to remove classes entirely by using hooks to manage state 
within functional components.

Starting with the JSX
The JSX of any monolithic component is the best starting point for figuring out how to 
refactor it into smaller components. Let's visualize the structure of the component that 
we're currently refactoring:

Figure 6.2 – Visualization of the JSX that makes up a React component



116     Crafting Reusable Components

The top part of the JSX is the form controls, so this could easily become its own 
component:

<header>

  <h1>Articles</h1>

  <input

    placeholder="Title"

    value={title}

    onChange={this.onChangeTitle}

  />

  <input

    placeholder="Summary"

    value={summary}

    onChange={this.onChangeSummary}

  />

  <button onClick={this.onClickAdd}>Add</button>

</header>

Next, you have the list of articles:

<ul>

  {articles.map((i) => (

    <li key={i.id}>

      <a

        href={'#${i.id}'}

        title="Toggle Summary"

        onClick={this.onClickToggle.bind(null, i.id)}

      >

        {i.title}

      </a>

      &nbsp;

      <a

        href={'#${i.id}'}

        title="Remove"

        onClick={this.onClickRemove.bind(null, i.id)}

      >

        &#10007;

      </a>



Refactoring component structures     117

      <p style={{ display: i.display }}>{i.summary}</p>

    </li>

  ))}

</ul>

Within this list, there's potential for an article component, which would be everything in 
the <li> tag. Let's try building this next.

Implementing an article list component
Here's what the article list component implementation looks like:

 

class ArticleList extends React.Component {

  render() {

    const { articles, onClickToggle, onClickRemove } =

      this.props;

 

    return (

      <ul>

        {articles.map((article) => (

          <li key={article.id}>

            <a

              href={'#${article.id}'}

              title="Toggle Summary"

              onClick={onClickToggle.bind(null,

                article.id)}

            >

              {article.title}

            </a>

            &nbsp;

            <a

              href={'#${article.id}'}

              title="Remove"

              onClick={onClickRemove.bind(null,

                article.id)}

            >

              &#10007;



118     Crafting Reusable Components

            </a>

            <p style={{ display: article.display }}>

              {article.summary}

            </p>

          </li>

        ))}

      </ul>

    );

  }

We're taking the relevant JSX out of the monolithic component and putting it here.  
Now, let's see what the feature component of JSX looks like:

render() {

  const { articles, title, summary } = this.state;

 

  return (

    <section>

      <header>

        <h1>Articles</h1>

        <input

          placeholder="Title"

          value={title}

          onChange={this.onChangeTitle}

        />

        <input

          placeholder="Summary"

          value={summary}

          onChange={this.onChangeSummary}

        />

        <button onClick={this.onClickAdd}>Add</button>

      </header>

      <ArticleList

        articles={articles}

        onClickToggle={this.onClickToggle}

        onClickRemove={this.onClickRemove}

      />



Refactoring component structures     119

    </section>

  );

}

The list of articles is now rendered by the <ArticleList> component. The list of 
articles to render is passed to this component as a property along with two of the event 
handlers.

Note
Why are we passing event handlers to a child component? The reason is so 
that the ArticleList component doesn't have to worry about the state 
or how the state changes. All it cares about is rendering content and making 
sure the appropriate event callbacks are hooked up to the appropriate DOM 
elements. This is a container component concept that I'll expand upon later in 
this chapter.

Now that we have an ArticleList component, let's see whether we can further break it 
down into smaller reusable components.

Implementing an article item component
After implementing the article list component, you might decide that it's a good idea to 
break this component.

Another way to look at it is this is, if it turns out that we don't actually need the item as its 
own component, this new component doesn't introduce much indirection or complexity. 
Without further ado, here's the article item component:

import * as React from "react";

 

class ArticleItem extends React.Component {

  render() {

    const { article, onClickToggle, onClickRemove } =

      this.props;

 

    return (

      <li>

        <a

          href={'#{article.id}'}

          title="Toggle Summary"



120     Crafting Reusable Components

          onClick={onClickToggle.bind(null, article.id)}

        >

          {article.title}

        </a>

        &nbsp;

        <a

          href={'#{article.id}'}

          title="Remove"

          onClick={onClickRemove.bind(null, article.id)}

        >

          &#10007;

        </a>

        <p style={{ display: article.display }}>

          {article.summary}

        </p>

      </li>

    );

  }

}

 

export default ArticleItem;

Here's the new ArticleItem component being rendered by the ArticleList 
component:

import * as React from "react";

import ArticleItem from "./ArticleItem";

 

class ArticleList extends React.Component {

  render() {

    const { articles, onClickToggle, onClickRemove } =

      this.props;

 

    return (

      <ul>

        {articles.map((i) => (

          <ArticleItem



Refactoring component structures     121

            key={i.id}

            article={i}

            onClickToggle={onClickToggle}

            onClickRemove={onClickRemove}

          />

        ))}

      </ul>

    );

  }

}

 

export default ArticleList;

Do you see how this list just maps the list of articles? What if you wanted to implement 
another article list that does some filtering too? If so, it's beneficial to have a reusable 
ArticleItem component. Next, we'll move the add article markup into its own 
component.

Implementing an add article component
Now that we're done with the article list, it's time to think about the form controls used to 
add a new article. Let's implement a component for this aspect of the feature:

import * as React from "react";

 

class AddArticle extends React.Component {

  render() {

    const {

      name,

      title,

      summary,

      onChangeTitle,

      onChangeSummary,

      onClickAdd,

    } = this.props;

 

    return (

      <section>



122     Crafting Reusable Components

        <h1>{name}</h1>

        <input

          placeholder="Title"

          value={title}

          onChange={onChangeTitle}

        />

        <input

          placeholder="Summary"

          value={summary}

          onChange={onChangeSummary}

        />

        <button onClick={onClickAdd}>Add</button>

      </section>

    );

  }

}

 

export default AddArticle;

Now, our feature component only needs to render <AddArticle> and 
<ArticleList> components:

render() {

  const { articles, title, summary } = this.state;

 

  return (

    <section>

      <AddArticle

        name="Articles"

        title={title}

        summary={summary}

        onChangeTitle={this.onChangeTitle}

        onChangeSummary={this.onChangeSummary}

        onClickAdd={this.onClickAdd}

      />

 

      <ArticleList



Refactoring component structures     123

        articles={articles}

        onClickToggle={this.onClickToggle}

        onClickRemove={this.onClickRemove}

      />

    </section>

  );

}

The focus of this component is on the feature data, while it defers to other components 
for rendering UI elements. Several components that we've created while refactoring 
MyFeature are classes, and they don't need to be. Let's make them simple functions 
instead.

Making components functional
While implementing these new components, you may have noticed that they don't have 
any responsibilities other than rendering JSX using property values. These components are 
good candidates for pure function components. Whenever you come across components 
that only use property values, it's a good idea to make them functional. For one thing, it 
makes it explicit that the component doesn't rely on any state or life cycle methods. It's 
also more efficient because React doesn't perform as much work when it detects that a 
component is a function.

Here is the functional version of the ArticleList component:

import ArticleItem from "./ArticleItem";

 

function ArticleList({ articles, onClickToggle,

  onClickRemove }) {

  return (

    <ul>

      {articles.map((i) => (

        <ArticleItem

          key={i.id}

          article={i}

          onClickToggle={onClickToggle}

          onClickRemove={onClickRemove}

        />

      ))}



124     Crafting Reusable Components

    </ul>

  );

}

 

export default ArticleList;

Here is the functional version of the ArticleItem component: 

function ArticleItem({ article, onClickToggle,

  onClickRemove }) {

  return (

    <li>

      <a

        href={'#${article.id}'}

        title="Toggle Summary"

        onClick={onClickToggle.bind(null, article.id)}

      >

        {article.title}

      </a>

      &nbsp;

      <a

        href={'#${article.id}'}

        title="Remove"

        onClick={onClickRemove.bind(null, article.id)}

      >

        &#10007;

      </a>

      <p style={{ display: article.display

        }}>{article.summary}</p>

    </li>

  );

}

 

export default ArticleItem;



Refactoring component structures     125

Here is the functional version of the AddArticle component: 

function AddArticle({

  name,

  title,

  summary,

  onChangeTitle,

  onChangeSummary,

  onClickAdd,

}) {

  return (

    <section>

      <h1>{name}</h1>

      <input

        placeholder="Title"

        value={title}

        onChange={onChangeTitle}

      />

      <input

        placeholder="Summary"

        value={summary}

        onChange={onChangeSummary}

      />

      <button onClick={onClickAdd}>Add</button>

    </section>

  );

}

 

export default AddArticle;

Another added benefit of making components functional is that there's less opportunity to 
introduce unnecessary methods or other data.

In this section, you learned about using JSX as the basis for refactoring larger components 
into smaller, more reusable ones. This leads to more components, but they're smaller, 
more focused, and reusable. In the next section, we'll look at how render props make it 
possible to pass components around as properties instead of directly importing them as 
dependencies.



126     Crafting Reusable Components

Render props
Imagine implementing a feature that is composed of several smaller components, like 
what you've been working on in this chapter. The MyFeature component depends 
on ArticleList and AddArticle. Now, imagine using MyFeature in different 
parts of your application where it makes sense to use a different implementation of 
ArticleList or AddArticle. The fundamental challenge is substituting one 
component for another.

Render props are a nice way to address this challenge. The idea is that you pass a property 
to your component whose value is a function that returns a component to render. This 
way, instead of having the feature component directly depend on its child components, 
you can configure them as you like; they pass them in as render prop values.

Note
Render props aren't a React 16 feature. It's a technique whose popularity 
increase coincided with the release of React 16. It's an officially recognized way 
to deal with dependency and substitution problems. You can read more about 
render props at https://reactjs.org/docs/render-props.
html.

Let's look at an example. Instead of having MyFeature directly depend on AddArticle 
and ArticleList, you can pass them as render props. Here's what the render() 
method of MyFeature looks like when it's using render props to fill in the holes where 
add used to be:

render() {

  const { articles, title, summary } = this.state;

  const {

    props: { addArticle, articleList },

    onClickAdd,

    onClickToggle,

    onClickRemove,

    onChangeTitle,

    onChangeSummary,

  } = this;

 

  return (

    <section>

      {addArticle({

 https://reactjs.org/docs/render-props.html
 https://reactjs.org/docs/render-props.html


Render props     127

        title,

        summary,

        onChangeTitle,

        onChangeSummary,

        onClickAdd,

      })}

      {articleList({ articles, onClickToggle, onClickRemove

        })}

    </section>

  );

}

The addArticle() and articleList() functions are called with the same property 
values that would have been passed to <AddArticle> and <ArticleList>, 
respectively. The difference now is that this module no longer imports AddArticle or 
ArticleList as dependencies.

Now, let's take a look at the index.js file where <MyFeature> is rendered:

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <MyFeature

    addArticle={({

      title,

      summary,

      onChangeTitle,

      onChangeSummary,

      onClickAdd,

    }) => (

      <AddArticle

        name="Articles"

        title={title}

        summary={summary}

        onChangeTitle={onChangeTitle}

        onChangeSummary={onChangeSummary}

        onClickAdd={onClickAdd}

      />



128     Crafting Reusable Components

    )}

    articleList={({ articles, onClickToggle, onClickRemove

      }) => (

      <ArticleList

        articles={articles}

        onClickToggle={onClickToggle}

        onClickRemove={onClickRemove}

      />

    )}

  />

);

There's a lot more going on here now than there was when it was just <MyFeature> 
being rendered. Let's break down why that is. Here is where you pass the addArticle 
and articleList render props. These prop values are functions that accept argument 
values from MyComponent. For example, the onClickToggle() function comes from 
MyFeature and is used to change the state of that component. You can use the render 
prop function to pass this to the component that will be rendered, along with any other 
values. The return value of these functions is what is ultimately rendered.

In this section, you learned that by passing render property values – functions that render 
JSX markup – you can avoid hardcoding dependencies in places where you might want 
to share functionality. Passing a different property value to a component is usually easier 
than changing the dependencies used by a given module. In the final section of this 
chapter, we'll refactor the MyFeature component into a functional component that uses 
hooks for state management.

Refactoring class components using hooks
Prior to the addition of hooks to React, we would often end up using class-based 
components just because the component had state data to maintain. Hooks exist so that 
you can implement React components using regular functions and still have access to 
the React APIs that you used to access through class attributes and methods. In this 
section, we'll rewrite the MyFeature component so that it's a function and it uses the 
useState() hook.



Refactoring class components using hooks     129

First, let's take a look at the functional version of MyFeature:

function MyFeature({ addArticle, articleList }) {

  const [articles, setArticles] = React.useState([

    {

      id: id.next(),

      title: "Article 1",

      summary: "Article 1 Summary",

      display: "none",

    },

    ...

  ]);

 

  const [title, setTitle] = React.useState("");

  const [summary, setSummary] = React.useState("");

 

  function onChangeTitle(e) {

    setTitle(e.target.value);

  }

 

  function onChangeSummary(e) {

    setSummary(e.target.value);

  }

 

  function onClickAdd() {

    setArticles([

      ...articles,

      {

        id: id.next(),

        title: title,

        summary: summary,

        display: "none",

      },

    ]);

    setTitle("");

    setSummary("");

  }



130     Crafting Reusable Components

 

  function onClickRemove(id) {

    setArticles(articles.filter((article) => article.id 

      !== id));

  }

 

  function onClickToggle(id) {

    const index = articles.findIndex((article) =>

      article.id === id);

    const updatedArticles = [...articles];

 

    updatedArticles[index] = {

      ...articles[index],

      display: articles[index].display ? "" : "none",

    };

 

    setArticles(updatedArticles);

  }

 

  return (

    <section>

      {addArticle({

        title,

        summary,

        onChangeTitle,

        onChangeSummary,

        onClickAdd,

      })}

      {articleList({ articles, onClickToggle, 

        onClickRemove })}

    </section>

  );

}



Refactoring class components using hooks     131

Even though we've completely changed the implementation of MyFeature, none of 
the other utility components, such as AddArticle or ArticleList, require any 
changes. Now, let's take a closer look at what was changed, starting with the component 
declaration:

function MyFeature({ addArticle, articleList }) {

  …

}

Now, MyFeature is a function that takes two properties (addArticle and 
articleList) as arguments. Next, let's look at how state is initialized in this function:

const [articles, setArticles] = React.useState([

  {

    id: id.next(),

    title: "Article 1",

    summary: "Article 1 Summary",

    display: "none",

  },

  {

    id: id.next(),

    title: "Article 2",

    summary: "Article 2 Summary",

    display: "none",

  },

  {

    id: id.next(),

    title: "Article 3",

    summary: "Article 3 Summary",

    display: "none",

  },

  {

    id: id.next(),

    title: "Article 4",

    summary: "Article 4 Summary",

    display: "none",

  },

]);



132     Crafting Reusable Components

 

const [title, setTitle] = React.useState("");

const [summary, setSummary] = React.useState("");

Now, instead of assigning the pieces of state that our component needs to a state 
property on a class, we're using the useState() hook to initialize our state values and 
state setter functions. One immediate benefit of this approach is that the state values are 
now accessible throughout the function scope. We no longer need to access state values 
via this.state.

Next, let's look at the event handler implementations:

function onChangeTitle(e) {

  setTitle(e.target.value);

}

 

function onChangeSummary(e) {

  setSummary(e.target.value);

}

 

function onClickAdd() {

  setArticles([

    ...articles,

    {

      id: id.next(),

      title: title,

      summary: summary,

      display: "none",

    },

  ]);

  setTitle("");

  setSummary("");

}

 

function onClickRemove(id) {

  setArticles(articles.filter((article) => article.id 

    !== id));

}



Rendering component trees     133

 

function onClickToggle(id) {

  const index = articles.findIndex((article) => article.id

    === id);

  const updatedArticles = [...articles];

 

  updatedArticles[index] = {

    ...articles[index],

    display: articles[index].display ? "" : "none",

  };

 

  setArticles(updatedArticles);

}

Now, instead of using this.setState() to update any values, we can just use the 
setter functions. For example, setArticles() updates the articles state. In cases 
where updating the state depends on the previous state value, we can simply access the 
previous value directly. For example, in the onClickToggle() handler, we need access 
to the articles array before we can update it. The articles constant is available to 
us to read the current state value, which leads to simpler code; we no longer need to pass a 
callback function to setState().

The callbacks are now functions nested inside the MyFeature function, instead of 
class methods. The functions are named, so no readability is lost. Also, there's no scope 
to worry about since everything, including state values, is within the larger component 
function scope.

This section showed you how to take an existing class component that has state and 
refactor it into a functional component with state. The useState() hook leads to a 
simplified state management code. In the following section, we'll look at the concept of 
component trees.

Rendering component trees
Let's take a moment to reflect on what we've accomplished so far in this chapter. The 
feature component that was once monolithic ended up focusing almost entirely on the 
state data. It handled the initial state and handled transforming the state, and it would 
handle network requests that fetch state, if there were any. This is a typical container 
component in a React application, and it's the starting point for data.



134     Crafting Reusable Components

The new components that you implemented, to better compose the feature, were the 
recipients of this data. The difference between these components and their container is that 
they only care about the properties that are passed into them at the time they're rendered. 
In other words, they only care about data snapshots at a particular point in time. From 
here, these components might pass the property data into their own child components as 
properties. The generic pattern for composing React components is as follows:

Figure 6.3 – A pattern for composing larger React components from smaller components

The container component will typically contain one direct child. In this diagram, you can 
see that the container has either an item detail component or a list component. Of course, 
there will be variations in these two categories, as every application is different. This 
generic pattern has three levels of component composition. Data flows in one direction 
from the container all the way down to the utility components.

Once you add more than three layers, the application architecture becomes difficult to 
comprehend. There will be the odd case where you'll need to add four layers of React 
components but, as a rule of thumb, you should avoid this.

Feature components and utility components
In the monolithic component example, you started off with a single component that 
was entirely focused on a feature. This means that the component has very little utility 
elsewhere in the application.

The reason for this is that top-level components deal with the application state. Stateful 
components are difficult to use in any other context. As you refactored the monolithic 
feature component, you created new components that moved further away from the 
data. The general rule is that the further your components move from stateful data, the 
more utility they have because their property values could be passed in from anywhere 
in the application.



Summary     135

Summary
This chapter was about avoiding a monolithic component design. However, monoliths are 
often a necessary starting point in the design of any React component.

You began by learning about how the different HTML elements have varying degrees of 
utility. Next, you learned about the issues with monolithic React components and walked 
through the implementation of a monolithic component.

Then, you spent several sections learning how to refactor the monolithic component into 
a more sustainable design. From this exercise, you learned that container components 
should only have to think in terms of handling state, while smaller components have 
more utility because their property values can be passed from anywhere. You also learned 
that you could use render props for better control over component dependencies and 
substitution.

In the next chapter, you'll learn about the React component life cycle. This is an especially 
relevant topic for implementing container components.

Further reading
Visit the following links for more information:

• Render props: https://reactjs.org/docs/render-props.html

• Components and props: https://reactjs.org/docs/components-and-
props.html

https://reactjs.org/docs/render-props.html




7
The React 

Component Life 
Cycle

The goal of this chapter is for you to learn about the life cycle of React components and 
how to write code that responds to life cycle events. You'll learn why components need a 
life cycle in the first place. Then, you'll implement several components that initialize their 
properties and state using these methods.

Next, you'll learn about how to optimize the rendering efficiency of your components by 
avoiding rendering when it isn't necessary. Then, you'll see how to encapsulate the imperative 
code in React components and how to clean up when components are unmounted. Finally, 
you'll learn how to capture and handle errors using React life cycle methods.

Here are the sections we'll cover in this chapter:

• Why components need a life cycle
• Initializing properties and state
• Optimizing rendering efficiency
• Rendering imperative components
• Cleaning up after components
• Containing errors with error boundaries



138     The React Component Life Cycle

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter07.

Why components need a life cycle
React components go through a life cycle. In fact, the render() method that you've 
implemented in your components so far in this book is actually a life cycle method. 
Rendering is just one life cycle event in a React component.

For example, there are life cycle events for when the component is mounted to the DOM, 
when the component is updated, and so on. Life cycle events are yet another moving 
part, so you'll want to keep them to a minimum. As you'll learn in this chapter, some 
components do need to respond to life cycle events to perform initialization, render 
heuristics, clean up after the component when it's unmounted from the DOM, or handle 
errors thrown by the component.

The following diagram gives you an idea of how a component flows through its life cycle, 
calling the corresponding methods in turn:

Figure 7.1 – The functions used in the life cycle of React components

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter07


Initializing properties and state     139

These are the two main life cycle flows of a React component. The first happens when the 
component is initially rendered. The second happens whenever the component is updated. 
Here's a rough overview of each of the methods:

• getDerivedStateFromProps(): This method allows you to update the state of 
the component based on the property values of the component. This method is called 
when the component is initially rendered and when it receives new property values.

• render(): This returns the content to be rendered by the component. This is 
called when the component is first mounted to the DOM, when it receives new 
property values, and when setState() is called.

• componentDidMount(): This is called after the component is mounted to the 
DOM. This is where you can perform component initialization work, such as 
fetching data. 

• shouldComponentUpdate(): You can use this method to compare new states 
or props with current states or props. Then, you can return false if there's no need 
to re-render the component. This method is used to make your components more 
efficient. 

• getSnapshotBeforeUpdate(): This method lets you perform operations 
directly on the DOM elements of your component before they're actually 
committed to the DOM. The difference between this method and render() is that 
getSnapshotBeforeUpdate() isn't asynchronous. With render(), there's 
a good chance that the DOM structure could change between when it's called and 
when the changes are actually made in the DOM. 

• componentDidUpdate(): This is called when the component is updated. It's rare 
that you'll have to use this method.

The other life cycle method that isn't included in this diagram is 
componentWillUnmount(). This is the only life cycle method that's called when a 
component is about to be removed. We'll see an example of how to use this method at the 
end of this chapter. On that note, let's get coding.

Initializing properties and state
In this section, you'll see how to implement the initialization code in React components. 
This involves using life cycle methods that are called when the component is first created. 
First, you'll implement a basic example that sets the component up with data from the 
API. Then, you'll see how the state can be initialized from properties, and also how the 
state can be updated as properties change.



140     The React Component Life Cycle

Fetching component data
When your components are initialized, you'll want to populate their state or properties. 
Otherwise, the component won't have anything to render other than its skeleton markup. 
For instance, let's say you want to render the following user list component:

const ErrorMessage = ({ error }) =>

  error ? <strong>{error}</strong> : null;

 

const LoadingMessage = ({ loading }) =>

  loading ? <em>{loading}</em> : null;

 

function UserList({ error, loading, users }) {

  return (

    <section>

      <ErrorMessage error={error} />

      <LoadingMessage loading={loading} />

      <ul>

        {users.map((user) => (

          <li key={user.id}>{user.name}</li>

        ))}

      </ul>

    </section>

  );

}

There are three pieces of data that this JSX relies on, as follows:

• loading: This message is displayed while fetching API data.

• error: This message is displayed if something goes wrong.

• users: Data that's fetched from the API.

There are two helper components being used here: ErrorMessage and 
LoadingMessage. They're used to format the error and the loading states, respectively. 
If error or loading is null, nothing is rendered. Otherwise, an error or loading 
message is rendered by the respective component.



Initializing properties and state     141

How should we go about making the API call and using the response to populate the 
users collection? The answer is to use a container component that makes the API call 
and then renders the UserList component:

import { users } from "./api";

import UserList from "./UserList";

 

class UserListContainer extends React.Component {

  state = {

    error: null,

    loading: "loading...",

    users: [],

  };

 

  componentDidMount() {

    users().then(

      (result) => {

        this.setState({

          loading: null,

          error: null,

          users: result.users,

        });

      },

      (error) => {

        this.setState({ loading: null, error });

      }

    );

  }

 

  render() {

    return <UserList {...this.state} />;

  }

}

Let's take a look at the render() method. Its job is to render the <UserList> 
component, passing in this.state as properties. The actual API call happens in 
the componentDidMount() method. This method is called after the component is 
mounted into the DOM.



142     The React Component Life Cycle

Note
Due to the naming of componentDidMount(), React newcomers think 
that it's bad to wait until the component is mounted to the DOM before 
issuing requests for component data. In other words, the user experience 
might suffer if React has to perform a lot of work before the request is even 
sent. In reality, fetching data is an asynchronous task, and initiating it before 
or after render() makes no real difference as far as your application is 
concerned. You can read more about this at https://reactjs.org/
blog/2018/03/27/update-on-async-rendering.html.

Once the API call returns with data, the users collection is populated, causing the 
UserList to re-render itself, only this time, it has the data it needs. Let's take a look at 
the users() mock API function call being used here:

export function users(fail) {

  return new Promise((resolve, reject) => {

    setTimeout(() => {

      if (fail) {

        reject("epic fail");

      } else {

        resolve({

          users: [

            { id: 0, name: "First" },

            { id: 1, name: "Second" },

            { id: 2, name: "Third" }

          ]

        });

      }

    }, 2000);

  });

}

It returns a promise that's resolved with an array after 2 seconds. Promises are a good tool 
for mocking things such as API calls because they enable you to use more than HTTP 
calls as a data source in your React components. For example, you might be reading from 
a local file or using a library that returns promises that resolve data from various sources.

https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html


Initializing properties and state     143

Here's what the UserList component renders when the loading state is a string, and the 
users state is an empty array:

Figure 7.2 – The loading screen when the users state is empty

Here's what it renders when loading is null and users is non-empty:

Figure 7.3 – Rendering a list when the users state is populated

I want to reiterate the separation of responsibilities between the UserListContainer 
and UserList components. Because the container component handles the life cycle 
management and the actual API communication, you can create a generic user list 
component. In fact, it's a functional component that doesn't require any state, which 
means you can reuse it in other container components throughout your application.

Now that we've seen how to set the state of a component using fetched API data, let's 
figure out how to set the state of a component using property values that are passed to it.

Initializing state with properties
The preceding example showed you how to initialize the state of a container component 
by making an API call in the componentDidMount() life cycle method. However, the 
only populated part of the component state was the users collection. You might want to 
populate other pieces of state that don't come from API endpoints.

For example, the error and loading state messages have default values set when the state 
is initialized. This is great, but what if the code that is rendering UserListContainer 
wants to use a different loading message? You can achieve this by allowing properties to 
override the default state. Let's build on the UserListContainer component:

import { users } from "./api";

import UserList from "./UserList";

 

class UserListContainer extends React.Component {

  state = {

    error: null,

    users: [],

  };



144     The React Component Life Cycle

 

  componentDidMount() {

    users().then(

      (result) => {

        this.setState({ error: null, users: result.users

          });

      },

      (error) => {

        this.setState({ loading: null, error });

      }

    );

  }

 

  render() {

    return <UserList {...this.state} />;

  }

 

  static getDerivedStateFromProps(props, state) {

    return {

      ...state,

      loading: state.users.length === 0 ? props.loading :

        null,

    };

  }

}

 

UserListContainer.defaultProps = {

  loading: "loading...",

};

The loading property no longer has a default string value. Instead, defaultProps 
provides default values for properties. The new life cycle method is getDerived 
StateFromProps(). It uses the loading property to set the loading state. Since 
the loading property has a default value, it's safe to just change the state. The 
method is called before the component mounts and on subsequent re-renders of  
the component.



Initializing properties and state     145

Note
This method is static because of internal changes in React 16. The expectation 
is that this method behaves like a pure function and has no side effects. If this 
method were an instance method, you would have access to the component 
context and side effects would be commonplace.

The challenge with this method is that it's called on the initial render and subsequent 
re-renders. Prior to React 16, you could use the componentWillMount() method for 
code that you only wanted to run prior to the initial render. In this example, you have to 
check whether there are values in the users collection before setting the loading state 
to null – you don't know whether this is the initial render or the fortieth render.

Let's see how we can pass state data to UserListContainer now:

import UserListContainer from "./UserListContainer";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <UserListContainer loading="playing the waiting game..."

    />

);

Here's what the initial loading message looks like when UserList is first rendered:

Figure 7.4 – Displaying the loading message

Just because the component has state doesn't mean that you can't allow for customization. 
Next, you'll learn a variation of this concept—updating the component state with 
properties.

Updating state with properties
You've seen how the componentDidMount() and getDerivedStateFromProps() 
life cycle methods help get your components the data they need. There's one more 
scenario that you need to consider—re-rendering the component container.



146     The React Component Life Cycle

Let's take a look at a simple button component that tracks the number of times it's  
been clicked:

function MyButton({ clicks, disabled, text, onClick }) {

  return (

    <section>

      <p>{clicks} clicks</p>

      <button disabled={disabled} onClick={onClick}>

        {text}

      </button>

    </section>

  );

}

Now, let's implement a container component for this feature:

import MyButton from "./MyButton";

 

class MyFeature extends React.Component {

  state = {

    clicks: 0,

    disabled: false,

    text: "",

  };

 

  onClick = () => {

    this.setState((state) => ({

      ...state,

      clicks: state.clicks + 1,

    }));

  };

 

  render() {

    return <MyButton onClick={this.onClick} {...this.state}

      />;

  }

 

  static getDerivedStateFromProps({ disabled, text },



Initializing properties and state     147

    state) {

    return { ...state, disabled, text };

  }

}

 

MyFeature.defaultProps = {

  text: "A Button",

};

The same approach that we used for initializing the state with properties is being used 
here. The getDerivedStateFromProps() method is called before every render and 
is where you can use prop values to figure out whether and how the component state 
should be updated. Let's see how to re-render this component and whether or not the state 
behaves as expected:

import MyFeature from "./MyFeature";

 

let disabled = true;

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

function render() {

  disabled = !disabled;

 

  root.render(<MyFeature {...{ disabled }} />);

}

 

setInterval(render, 3000);

render();

Sure enough, everything goes as planned. Whenever the button is clicked, the click 
counter is updated. <MyFeature> is re-rendered every 3 seconds, toggling the 
disabled state of the button. When the button is re-enabled and clicking resumes,  
the counter continues from where it left off.



148     The React Component Life Cycle

Here is what the MyButton component looks like when it's first rendered:

Figure 7.5 – The button hasn't been clicked yet

Here's what it looks like after it has been clicked a few times and the button has moved 
into a disabled state:

Figure 7.6 – Showing the number of times the button has been clicked

In this section, you learned about initializing property and state values in your 
components by using different life cycle methods. Without these methods, you would 
have a hard time ensuring that your components have the data that they need when they 
need it. In the next section, we'll consider different ways to optimize the efficiency of our 
components using life cycle methods.

Optimizing rendering efficiency
The next life cycle method you're going to learn about is used to implement heuristics that 
improve component rendering performance. You'll see that if the state of a component 
hasn't changed, then there's no need to render. Then, you'll implement a component that 
uses specific metadata from the API to determine whether or not the component needs to 
be re-rendered.

To render or not to render
The shouldComponentUpdate() life cycle method is used to determine whether or not 
the component will render when asked to. For example, if this method were implemented 
and returned false, the entire life cycle of the component would short-circuit, and no 
render would happen. This can be an important check to have in place if the component is 
rendering a lot of data and is re-rendered frequently. The trick is knowing whether or not the 
component state has changed.



Optimizing rendering efficiency     149

Let's take a look at a simple list component:

function referenceEquality(arr1, arr2) {

  return arr1 === arr2;

}

 

function valueEquality(arr1, arr2) {

  for (let i = 0; i < arr1.length; i++) {

    if (arr1[i] !== arr2[i]) {

      return false;

    }

  }

  return true;

}

 

class MyList extends React.Component {

  state = {

    items: new Array(5000).fill(null).map((v, i) => i),

  };

 

  shouldComponentUpdate(props, state) {

    if (!referenceEquality(this.state.items, state.items))

    {

      return !valueEquality(this.state.items, state.items);

    }

 

    return false;

  }

 

  render() {

    return (

      <ul>

        {this.state.items.map((item) => (

          <li key={item}>{item}</li>

        ))}

      </ul>



150     The React Component Life Cycle

    );

  }

}

The items state is initialized to an array with 5,000 items in it. This is a fairly large 
collection, so you don't want the virtual DOM inside React to constantly diff this list. 
The virtual DOM is efficient at what it does but not nearly as efficient as code, which can 
perform a simple should or shouldn't render check. The shouldComponentRender() 
method that you've implemented here does exactly that. It compares the new state with 
the current state with the help of two utility functions:

• referenceEquality(): Returns true if two arguments are the same reference. 
This is an extremely fast check to perform.

• valueEquality(): Returns true if the two array values are the same. This isn't 
quite as fast because it needs to iterate over the whole array, but it's still faster than 
the virtual DOM.

The idea for having these two functions separated like this is to handle the fast common 
case, which is that setState() wasn't even called and we have the same array reference, 
so there's no need to do anything else. If it's not the same object, then we can check for value 
changes. Even if the values are all the same and it's a new array reference, this method still 
pays off because it's relatively fast to run and often avoids a trip to the virtual DOM.

Now, let's put this component to work and see what kind of efficiency gains you get:

const root =

  ReactDOM.createRoot(document.getElementById("root"));

const myList = React.createRef();

 

ReactDOM.flushSync(() => {

  root.render(<MyList ref={myList} />);

});

 

for (let i = 0; i < 100; i++) {

  ReactDOM.flushSync(() => {

    myList.current.setState((state) => ({

      items: [0, ...state.items.slice(1)],

    }));

  });

}



Optimizing rendering efficiency     151

You're rendering <MyList> over and over, in a loop. Each iteration has 5,000 list items 
to render. Since the state doesn't change, the call to shouldComponentUpdate() 
returns false on every one of these iterations. This is important for performance reasons 
because there are a lot of them. You're not going to have code that re-renders a component 
in a tight loop in a real application. This code is meant to stress the rendering capabilities 
of React. If you were to comment out the shouldComponentUpdate() method, you'd 
see what I mean. Here's what the performance profile looks like for this component:

Figure 7.7 – Component performance in React dev tools

The initial render takes the longest (a few hundred milliseconds), but then you have all of 
these tiny time slices that are completely imperceptible to the user experience. These are 
the result of shouldComponentUpdate() returning false. Let's comment out this 
method now and see how this profile changes:

Figure 7.8 – Observing performance changes in React dev tools

Without shouldComponentUpdate(), the end result is much larger time slices with 
a drastically negative impact on user experience. In the next section, we'll try a different 
approach to optimizing our component rendering in shouldComponentUpdate().



152     The React Component Life Cycle

Using metadata to optimize rendering
In this section, you'll learn how to use metadata that's part of the API response to 
determine whether or not the component should re-render itself. Here's a simple user 
details component:

class MyUser extends React.Component {

  state = {

    modified: new Date(),

    first: "First",

    last: "Last",

  };

 

  shouldComponentUpdate(props, state) {

    return Number(state.modified) >

      Number(this.state.modified);

  }

 

  render() {

    const { modified, first, last } = this.state;

 

    return (

      <section>

        <p>{modified.toLocaleString()}</p>

        <p>{first}</p>

        <p>{last}</p>

      </section>

    );

  }

}

The shouldComponentUpdate() method is comparing the new, modified state with 
the old, modified state. This code makes the assumption that the modified value is a date 
that reflects when the data that was returned by the API was actually modified. The main 
downside to this approach is that the shouldComponentUpdate() method is now 
tightly coupled with the API data. The advantage is that you get a performance boost in 
the same way that you would with immutable data.



Optimizing rendering efficiency     153

Here's how this heuristic looks in action:

import MyUser from "./MyUser";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

const myUser = React.createRef();

 

ReactDOM.flushSync(() => {

  root.render(<MyUser ref={myUser} />);

});

 

myUser.current.setState({

  modified: new Date(),

  first: "First1",

  last: "Last1",

});

 

setTimeout(() => {

  myUser.current.setState({

    first: "First2",

    last: "Last2",

  });

}, 1000);

The MyUser component is now entirely dependent on the modified state. If it's not 
greater than the previous modified value, no render happens.

Here's what the component looks like after it's been rendered twice:

Figure 7.9 – Our component isn't re-rendered because it doesn't need to be

In this section, you learned how to improve the efficiency of your components by using 
the shouldComponentUpdate() life cycle method. Even if your component data 
hasn't changed, frequently diffing the virtual DOM can cause performance issues. This 
method exists so that we can build heuristics into our components using an approach that 
makes sense for our app. In the next section, we'll attempt to render components from 
other libraries that use an imperative approach.



154     The React Component Life Cycle

Rendering imperative components
Everything you've rendered so far in this book has been straightforward declarative 
HTML. Life is never so simple; sometimes, your React components need to implement 
some imperative code under the covers.

This is the key: hiding the imperative operations so that the code that renders your 
component doesn't have to touch it. In this section, you'll implement a simple jQuery UI 
button React component so that you can see how the relevant life cycle methods help you 
to encapsulate the imperative code.

Rendering jQuery UI widgets
The jQuery UI widget library implements several widgets on top of standard HTML. 
It uses a progressive enhancement technique whereby the basic HTML is enhanced in 
browsers that support newer features. To make these widgets work, you first need to 
render HTML into the DOM somehow, then, you need to make imperative function calls 
to create and interact with the widgets. 

In this example, you'll create a React button component that acts as a wrapper around 
the jQuery UI widget. Anyone using the React component shouldn't need to know that, 
behind the scenes, it's making imperative calls to control the widget. Let's see what the 
button component looks like:

import $ from "jquery";

import "jquery-ui/ui/widgets/button";

import "jquery-ui/themes/base/all.css";

 

class MyButton extends React.Component {

  componentDidMount() {

    $(this.button).button(this.props);

  }

 

  componentDidUpdate() {

    $(this.button).button("option", this.props);

  }

 

  render() {

    return (

      <button



Rendering imperative components     155

        onClick={this.props.onClick}

        ref={(button) => {

          this.button = button;

        }}

      />

    );

  }

}

The jQuery UI button widget expects an element, so this is what's rendered by the 
component. An onClick() handler from the component props is assigned as well. 
There's also a ref property being used here, which assigns the button argument to 
this.button. The reason this is done is so that the component has direct access to the 
underlying DOM element of the component. Generally, components don't need access to 
any DOM elements, but here, you need to issue imperative commands to the element.

For example, in the componentDidMount() method, the button() function is called 
and passes its properties from the component. The componentDidUpdate() method 
does something similar and is called when property values change. Now, let's take a look 
at the button container component:

import MyButton from "./MyButton";

 

class MyButtonContainer extends React.Component {

  componentDidMount() {

    this.setState({

      ...this.props,

      onClick: this.props.onClick.bind(this),

    });

  }

 

  render() {

    return <MyButton {...this.state} />;

  }

}

 

MyButtonContainer.defaultProps = {

  onClick: () => {},

};



156     The React Component Life Cycle

You have a container component that controls the state, which is then passed to 
<MyButton> as properties.

Note
The {...data} syntax is called JSX spread attributes. This allows you to pass 
objects to elements as attributes. Instead of writing <User first={data.
first} last={data.last} age={data.age} />, you could 
shorten it to <User {...data} /> to get the exact same result.

The component has a default onClick() handler function. However, you can pass 
a different click handler in as a property. Additionally, it's automatically bound to the 
component context, which is useful if the handler needs to change the button state.  
Let's look at an example of this:

import MyButtonContainer from "./MyButtonContainer";

 

function onClick() {

  this.setState({ disabled: true });

}

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <section>

    <MyButtonContainer label="Text" />

    <MyButtonContainer

      label="My Button"

      icon="ui-icon-person"

      showLabel={false}

    />

    <MyButtonContainer label="Disable Me" onClick={onClick}

      />

  </section>

);



Cleaning up after components     157

Here, you have three jQuery UI button widgets, each controlled by a React component 
with no imperative code in sight. Here's how the buttons look:

Figure 7.10 – jQuery UI buttons as React components

In this section, you learned that React components can be used to render imperative 
components. In order to do so, we need life cycle methods so that we can perform the 
necessary setup and cleanup operations. In the next section, we'll dig deeper into cleaning 
up after our components when they're removed.

Cleaning up after components
In this section, you'll learn how to clean up after components. You don't have to explicitly 
unmount components from the DOM – React handles that for you. There are some things 
that React doesn't know about and, therefore, cannot clean up for you after the component 
is removed.

It's for these types of cleanup tasks that the componentWillUnmount() life cycle 
method exists. One use case for cleaning up after React components is asynchronous code.

For example, imagine a component that issues an API call to fetch some data when the 
component is first mounted. Now, imagine that this component is removed from the 
DOM before the API response arrives.

Cleaning up asynchronous calls
If your asynchronous code tries to set the state of a component that has been unmounted, 
nothing will happen. A warning will be logged, and the state won't be set. It's actually very 
important that this warning is logged; otherwise, you would have a hard time trying to 
solve subtle race condition bugs.

The correct approach is to create cancellable asynchronous actions. Here's a modified 
version of the users() API function that you implemented in the fetching component 
data example:

import { Promise } from "bluebird";

 

Promise.config({ cancellation: true });

 

export function users(fail) {



158     The React Component Life Cycle

  return new Promise((resolve, reject) => {

    setTimeout(() => {

      if (fail) {

        reject(fail);

      } else {

        resolve({

          users: [

            { id: 0, name: "First" },

            { id: 1, name: "Second" },

            { id: 2, name: "Third" }

          ]

        });

      }

    }, 4000);

  });

}

Instead of returning a native promise, users() returns a promise from the Bluebird 
library that's been configured to have cancellable behavior. Now, let's take a look at a 
container component, which has the ability to cancel asynchronous behavior:

import root from "./root";

import { users } from "./api";

import UserList from "./UserList";

 

const onClickCancel = (e) => {

  e.preventDefault();

  root.render(<p>Cancelled</p>,

    document.getElementById("root"));

};

 

class UserListContainer extends React.Component {

  state = {

    error: null,

    loading: "loading...",

    users: [],

  };



Cleaning up after components     159

 

  componentDidMount() {

    this.job = users();

 

    this.job.then(

      (result) => {

        this.setState({

          loading: null,

          error: null,

          users: result.users,

        });

      },

 

      (error) => {

        this.setState({ loading: null, error: error.message

          });

      }

    );

  }

 

  componentWillUnmount() {

    this.job.cancel();

  }

 

  render() {

    return <UserList onClickCancel={onClickCancel}

      {...this.state} />;

  }

}

The onClickCancel() handler actually replaces the user list. This calls the 
componentWillUnmount() method, where you can cancel this.job. It's also worth 
noting that when the API call is made in componentDidMount(), a reference to the 
promise is stored in the component. This is necessary, otherwise, you would have no way 
to cancel the async call.



160     The React Component Life Cycle

Here's what the component looks like when rendered during a pending API call:

Figure 7.11 – The UI while the API call is pending

Clicking the Cancel button causes the onClickCancel() function to run, which 
completely removes UserListContainer from the DOM. This, in turn, causes the 
componentWillUnmount() method to run, which will make sure that any pending 
promises are canceled. Now, we can feel confident that our components can be safely 
removed, even when they have pending API requests. In the next section, we'll look at life 
cycle methods to help us control errors in our components.

Containing errors with error boundaries
Error boundaries allow you to handle unexpected component failures. Rather than have 
every component of your application know how to deal with any errors that it might 
encounter, error boundaries are a mechanism that you can use to wrap components with 
error-handling behavior. The best way to think of error boundaries is as try/catch 
syntax for JSX.

Let's revisit the first example from this chapter, where you fetched component data using 
an API function. The users() function accepts a Boolean argument, which, when 
true, causes the promise to reject. This is something that you'll want to handle, but not 
necessarily in the component that made the API call. In fact, the UserListContainer 
and UserList components are already set up to handle API errors like this. The 
challenge is that if you have lots of components, this is a lot of error-handling code. 
Furthermore, the error handling is specific to that one API call – what if something else 
goes wrong?

Here's the modified source for UserListContainer that you can use for this example:

import { users } from "./api";

import UserList from "./UserList";

 

class UserListContainer extends React.Component {

  state = {

    error: null,

    loading: "loading...",

    users: [],



Containing errors with error boundaries     161

  };

 

  componentDidMount() {

    users(false).then(

      (result) => {

        this.setState({

          loading: null,

          error: null,

          users: result.users,

        });

      },

      (error) => {

        this.setState({ loading: null, error });

      }

    );

  }

 

  render() {

    if (this.state.error !== null) {

      throw new Error(this.state.error);

    }

    return <UserList {...this.state} />;

  }

}

This component is mostly the same as it was in the first example. The first difference is the 
call to users(), where it's now passing true:

componentDidMount() {

  users(true).then(

    …

This call will fail, resulting in the error state being set. The second difference is in the 
render() method:

if (this.state.error !== null) {

  throw new Error(this.state.error);

}



162     The React Component Life Cycle

Instead of forwarding the error state to the UserList component, it's passing the 
error back to the component tree by throwing an error instead of attempting to render 
more components. The key design change here is that this component is now making 
the assumption that there is some sort of error boundary in place further up in the 
component tree that will handle these errors accordingly.

Note
You might be wondering why the error is thrown in render instead of being 
thrown when the promise is rejected in componentDidMount(). The 
problem is that fetching data asynchronously like this means that there's no 
way for the React internals to actually catch exceptions that are thrown from 
within async promise handlers. The easiest solution for asynchronous actions 
that could cause a component to fail is to store the error in the component state 
but to throw the error before actually rendering anything if it's there.

Now, let's create the error boundary itself:

class ErrorBoundary extends React.Component {

  state = {

    error: null,

  };

 

  componentDidCatch(error) {

    this.setState({ error });

  }

 

  render() {

    if (this.state.error === null) {

      return this.props.children;

    } else {

      return

        <strong>{this.state.error.toString()}</strong>;

    }

  }

}



Containing errors with error boundaries     163

This is where the componentDidCatch() life cycle method is utilized by setting the error 
state of this component when it catches an error. When it's rendered, an error message is 
rendered if the error state is set. Otherwise, it renders the child components as usual.

Here's how you can use this ErrorBoundary component:

import ErrorBoundary from "./ErrorBoundary";

import UserListContainer from "./UserListContainer";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <ErrorBoundary>

    <UserListContainer />

  </ErrorBoundary>

);

Any errors that are thrown by UserListContainer or any of its children will be 
caught and handled by ErrorBoundary:

Figure 7.12 – What the error looks like in the dev tools console



164     The React Component Life Cycle

Now, you can remove the argument that's passed to users() in UserListContainer 
to stop it from failing. In the UserList component, let's say that you have an error that 
tries to call toUpperCase() on a number:

const LoadingMessage = ({ loading }) =>

  loading ? <em>{loading}</em> : null;

 

function UserList({ error, loading, users }) {

  return (

    <section>

      <LoadingMessage loading={loading} />

      <ul>

        {users.map((user) => (

          <li key={user.id.toUpperCase()}>{user.name}</li>

        ))}

      </ul>

    </section>

  );

}

You'll get a different error thrown, but since it's under the same boundary as the previous 
error, it'll be handled the same way:

Figure 7.13 – Error being handled by a React error boundary



Summary     165

Note
If you're running your project with create-react-app and 
reactscripts, you might notice an error overlay for every error in your 
application, even those that are handled by error boundaries. If you close the 
overlay using the x button in the top right, you will be able to see how your 
component handles the error in your app.

In this section, you learned about the componentDidCatch() life cycle method and 
how it can be used to handle errors in a way that prevents your entire app from crashing. 
By introducing error boundaries into your application, you have total control over what 
happens when any piece of your application fails.

Summary
In this chapter, you learned a lot about the life cycle of React components. We started 
things off with a discussion on why React components need a life cycle in the first place. 
It turns out that React can't do everything automatically for us, so we need to write some 
code that's run at the appropriate time during the components' life cycles.

Next, you implemented several components that were able to fetch their initial data and 
initialize their state from JSX properties. Then, you learned how to implement more 
efficient React components by providing a shouldComponentRender() method.

After that, you learned how to hide the imperative code that some components need to 
implement and how to clean up after asynchronous behavior. Finally, you learned how to 
use the new error boundary functionality from React 16.

In the next chapter, you'll learn techniques that help to ensure that your components are 
being passed the right properties.

Further reading
You can visit the following links for more information:

• React.Component: https://reactjs.org/docs/react-component.html

• State and Lifecycle: https://reactjs.org/docs/state-and-
lifecycle.html

https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html




8
Validating 

Component 
Properties

In this chapter, you'll learn about property validation in React components. This might 
seem simple at first glance, but it's an important topic because it leads to bug-free 
components. We'll start things off with a discussion about predictable outcomes and how 
this leads to components that are portable throughout the application.

Next, we'll walk through examples of some of the type-checking property validators that 
come with React. Then, we'll walk through some more complex property-validation 
scenarios. Finally, we'll wrap this chapter up with an example of how to implement your 
own custom validators.

The following topics will be covered in this chapter:

• Knowing what to expect

• Promoting portable components

• Simple property validators

• Type and value validators

• Writing custom property validators



168     Validating Component Properties

Technical requirements 
The code files for this chapter can be found on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter08.

Knowing what to expect
Property validation in React components is like field validation in HTML forms. The basic 
premise of validating form fields is letting the user know that they've provided a value 
that's not acceptable. Ideally, the validation error message is clear enough that the user can 
easily fix the situation. With React component property validation, you're doing the same 
thing – making it easy to fix a situation where an unexpected value was provided. Property 
validation enhances the developer experience, rather than the user experience.

The key aspect of property validation is knowing what's passed into the component 
as a property value. For example, if you're expecting an array and a Boolean is passed 
instead, something will probably go wrong. If you validate the property values using the 
proptypes React validation package, then you know that something unexpected was 
passed. If the component is expecting an array so that it can call the map() method, it'll 
fail if a Boolean value is passed because it has no map() method. However, before this 
failure happens, you'll see the property validation warning.

The idea isn't to fail fast with property validation. It's to provide information to the 
developer. When property validation fails, you know that something was provided as a 
component property that shouldn't have been. It's a matter of finding where the value is 
passed in the code and fixing it.

Note
Fail fast is an architectural property of software in which the system will crash 
completely rather than continue running in an inconsistent state.

Next, you'll learn how property validation is used to promote portability. These are 
components that can be used in many places throughout your app.

Promoting portable components
When you know what to expect from your component properties, the context in which 
the component is used becomes less important. This means that as long as the component 
is able to validate its property values, it really shouldn't matter where the component is 
used; it could easily be used by any feature.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter08


Simple property validators     169

If you want a generic component that's portable across application features, you can either 
write component validation code or you can write defensive code that runs at render time. 
The challenge with programming defensively is that it dilutes the value of declarative 
React components. Using React-style property validation, you can avoid writing defensive 
code. Instead, the property validation mechanism emits a warning when something 
doesn't pass, informing you that you need to fix something.

Defensive Code
Defensive code is code that needs to account for a number of edge cases during 
runtime, in a production environment. Coding defensively is necessary when 
potential problems cannot be detected during development, such as with React 
component property validation.

Now that you have a better understanding of how property validation assists with writing 
defensive code and portable components, it's time to implement some property validators.

Simple property validators
In this section, you'll learn how to use the simple property type validators available in the 
prop-types package. Then, you'll learn how to accept any property value as well as to 
make a property required instead of optional.

Basic type validation
Let's take a look at validators that handle the most primitive types of JavaScript values. 
You will use these validators frequently, as you'll want to know whether a property is a 
string or a function, for example. This example will also introduce you to the mechanisms 
involved in setting up the validation of a component. Here's the component; it just renders 
some properties using basic markup:

import PropTypes from "prop-types";

 

function MyComponent({

  myString,

  myNumber,

  myBool,

  myFunc,

  myArray,

  myObject,



170     Validating Component Properties

}) {

  return (

    <section>

      <p>{myString}</p>

      <p>{myNumber}</p>

      <p>

        <input type="checkbox" defaultChecked={myBool} />

      </p>

      <p>{myFunc()}</p>

      <ul>

        {myArray.map((i) => (

          <li key={i}>{i}</li>

        ))}

      </ul>

      <p>{myObject.myProp}</p>

    </section>

  );

}

 

MyComponent.propTypes = {

  myString: PropTypes.string,

  myNumber: PropTypes.number,

  myBool: PropTypes.bool,

  myFunc: PropTypes.func,

  myArray: PropTypes.array,

  myObject: PropTypes.object,

};

There are two key pieces to the property validation mechanism:

• You have the static propTypes property. This is a class-level property, not an 
instance property. When React finds propTypes, it uses this object as the property 
specification of the component.

• You have the PropTypes object from the prop-types package, which has 
several built-in validator functions.



Simple property validators     171

Note
The PropTypes object used to be built into React. It was split from React 
core and moved into the prop-types package so that it became opt-in to 
use – a request by React developers that do not use property validation.

In this example, MyComponent has six properties, each with its own type. When you 
look at the propTypes specification, you will see what type of values this component will 
accept. Let's render this component with some property values:
import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

const validProps = {

  myString: "My String",

  myNumber: 100,

  myBool: true,

  myFunc: () => "My Return Value",

  myArray: ["One", "Two", "Three"],

  myObject: { myProp: "My Prop" },

};

 

const invalidProps = {

  myString: 100,

  myNumber: "My String",

  myBool: () => "My Return Value",

  myFunc: true,

  myArray: { myProp: "My Prop" },

  myObject: ["One", "Two", "Three"],

};

 

function render(props) {

  root.render(<MyComponent {...props} />);

}

 

render(validProps);

render(invalidProps);



172     Validating Component Properties

The first time <MyComponent> is rendered, it uses the validProps properties. These 
values all meet the component property specification, so no warnings are logged in the 
console. The second time around, the invalidProps properties are used, and this fails 
the property validation because the wrong type is used in every property. The console 
output should look something like the following:

Invalid prop 'myString' of type 'number' supplied to

  'MyComponent',

expected 'string'

Invalid prop 'myNumber' of type 'string' supplied to

  'MyComponent',

expected 'number'

Invalid prop 'myBool' of type 'function' supplied to

  'MyComponent',

expected 'boolean'

Invalid prop 'myFunc' of type 'boolean' supplied to

  'MyComponent', expected

'function'

Invalid prop 'myArray' of type 'object' supplied to

  'MyComponent', expected

'array'

Invalid prop 'myObject' of type 'array' supplied to

  'MyComponent', expected

'object'

TypeError: myFunc is not a function

This last error is interesting. We can see that the property validation is complaining about 
invalid property types. This includes the invalid function that was passed to myFunc. So, 
despite the type checking that happens on the property, the component will still try to call 
the value as though it were a function.



Simple property validators     173

Here's what the rendered output looks like:

Figure 8.1 – Showing the rendered components that use prop types

Note
Once again, the aim of property validation in React components is to help 
you discover bugs during development. When React is in production mode, 
property validation is turned off completely. This means that you don't have to 
concern yourself with writing expensive property validation code; it'll never 
run in production. However, the error will still occur, so fix it.

When you validate the type of a given property, nothing is validated if the property isn't 
passed to the component at all. In the following section, we'll look at how to specify that a 
property is required and should always be passed.

Requiring values
Let's make some adjustments to the preceding example. The component property 
specification requires specific types for values, but these are only checked if the property 
is passed to the component as a JSX attribute. For example, you could have completely 
omitted the myFunc property and it would have been validated. Thankfully, the 
PropTypes functions have a tool that lets you specify that a property must be provided, 
and it must have a specific type. Here's the modified component:

import PropTypes from "prop-types";

 

function MyComponent({

  myString,

  myNumber,



174     Validating Component Properties

  myBool,

  myFunc,

  myArray,

  myObject,

}) {

  return (

    <section>

      <p>{myString}</p>

      <p>{myNumber}</p>

      <p>

        <input type="checkbox" defaultChecked={myBool} />

      </p>

      <p>{myFunc()}</p>

      <ul>

        {myArray.map((i) => (

          <li key={i}>{i}</li>

        ))}

      </ul>

      <p>{myObject.myProp}</p>

    </section>

  );

}

 

MyComponent.propTypes = {

  myString: PropTypes.string.isRequired,

  myNumber: PropTypes.number.isRequired,

  myBool: PropTypes.bool.isRequired,

  myFunc: PropTypes.func.isRequired,

  myArray: PropTypes.array.isRequired,

  myObject: PropTypes.object.isRequired,

};



Simple property validators     175

Not much has changed between this component and the one that you implemented in 
the preceding section. The main difference is with regard to the specs in propTypes. 
The isRequired value is appended to each of the type validators used. So, for instance, 
string.isRequired means that the property value must be a string and that the 
property cannot be missing. Let's put this component to the test:

import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

const validProps = {

  myString: "My String",

  myNumber: 100,

  myBool: true,

  myFunc: () => "My Return Value",

  myArray: ["One", "Two", "Three"],

  myObject: { myProp: "My Prop" },

};

 

const missingProp = {

  myString: "My String",

  myNumber: 100,

  myBool: true,

  myFunc: () => "My Return Value",

  myArray: ["One", "Two", "Three"],

};

 

function render(props) {

  root.render(<MyComponent {...props} />);

}

 

render(validProps);

render(missingProp);



176     Validating Component Properties

The first time around, the component is rendered with all of the correct property types. 
The second time around, the component is rendered without the myObject property. 
The console errors should be as follows:

Required prop 'myObject' was not specified in

  'MyComponent'.

Cannot read property 'myProp' of undefined

Thanks to the property specification and subsequent error message for myObject, it's 
clear that an object value needs to be provided to the myObject property. The last error 
is because the component assumes that there is an object with myProp as a property.

Note
Ideally, you would validate the myProp object property in this example since it's 
directly used in the JSX. The specific properties that are used in the JSX markup 
for the shape of an object can be validated, as you'll see later in this chapter.

What if you're not exactly sure about the specific type of a given property quite yet? In the 
next section, we'll look at allowing any value to be passed to a property value while we're 
still adding a validator for it.

Any property value
The final topic of this section is the any property validator. That is, it doesn't actually 
care what value it gets – anything is valid, including not passing a value at all. In fact, the 
isRequired validator can be combined with the any property validator. For example, if 
you're working on a component and you just want to make sure that something is passed, 
but are not sure exactly which type you're going to need yet, you could do something like 
myProp: PropTypes.any.isRequired.

Another reason to have the any property validator is for the sake of consistency. Every 
component should have property specifications. The any validator is useful in the 
beginning when you're not exactly sure what the property type will be. You can at least 
begin the property spec and then refine it later as things unfold.

Let's take a look at some code:

import PropTypes from "prop-types";

 

function MyComponent({ label, value, max }) {

  return (



Simple property validators     177

    <section>

      <h5>{label}</h5>

      <progress {...{ max, value }} />

    </section>

  );

}

 

MyComponent.propTypes = {

  label: PropTypes.any,

  value: PropTypes.any,

  max: PropTypes.any,

};

This component doesn't actually validate anything because the three properties in its 
property spec will accept anything. However, it's a good starting point, because, at a 
glance, we can see the names of the three properties that this component uses. So, later on, 
when we decide exactly which types these properties should have, the change is simple. 
Let's see this component in action:

import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <section>

    <MyComponent label="Regular Values" max={20} value={10}

      />

    <MyComponent label="String Values" max="20" value="10"

      />

    <MyComponent

      label={Number.MAX_SAFE_INTEGER}

      max={new Date()}

      value="10"

    />

  </section>

);



178     Validating Component Properties

Strings and numbers are interchangeable in several places. Allowing just one or the 
other seems overly restrictive. As you'll see in the next section, React has other property 
validators that allow you to further restrict the property values that are allowed by your 
component.

Here's what our component looks like when rendered:

Figure 8.2 – Progress indicators that use different prop type validators

In this section, you learned the basics of property validation for your React components. 
You can make sure that a property value follows a specific type, that a value is indeed 
required, and how to allow any value to be passed. In the following section, we'll get into 
the more specific type and value property validations.

Type and value validators
In this section, you'll learn about the more advanced validator functionality available in 
the React prop-types package. First, you'll learn about the element and node validators 
that check for values that can be rendered inside HTML markup. Then, you'll see how to 
check for specific types, beyond the primitive type checking that you just learned about. 
Finally, you'll implement validation that looks for specific values.

Things that can be rendered
Sometimes, you just want to make sure that a property value is something that can be 
rendered by JSX markup. For example, if a property value is an array of plain objects, this 
can't be rendered by putting it in {}. You have to map the array items to JSX elements.



Type and value validators     179

This sort of checking is especially useful if your component passes property values to 
other elements as children. Let's look at an example of what this looks like:

import PropTypes from "prop-types";

 

function MyComponent({ myHeader, myContent }) {

  return (

    <section>

      <header>{myHeader}</header>

      <main>{myContent}</main>

    </section>

  );

}

 

MyComponent.propTypes = {

  myHeader: PropTypes.element.isRequired,

  myContent: PropTypes.node.isRequired,

};

This component has two properties that require values that can be rendered. The 
myHeader property wants an element; this can be any JSX element. The myContent 
property wants a node; this can be any JSX element or any string value. Let's pass this 
component some values and render it:

import MyComponent from "./MyComponent";

 

const myHeader = <h1>My Header</h1>;

const myContent = <p>My Content</p>;

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <section>

    <MyComponent {...{ myHeader, myContent }} />

    <MyComponent myHeader="My Header" {...{ myContent }} />

    <MyComponent {...{ myHeader }} myContent="My Content"

      />



180     Validating Component Properties

    <MyComponent

      {...{ myHeader }}

      myContent={[myContent, myContent, myContent]}

    />

  </section>

);

The myHeader property is more restrictive about the values it will accept. The 
myContent property will accept a string, an element, or an array of elements. These two 
validators are important when passing in child data from properties, as this component 
does. For example, trying to pass a plain object or a function as a child will not work, and 
it's best if you check for this situation using a validator.

Here's what this component looks like when rendered:

Figure 8.3 – Rendering the header and content components

In the following section, you'll learn how to apply more to your property validators.

Requiring specific types
Sometimes, you need a property validator that checks for a type defined by your 
application. For example, let's say you have the following user class:

const id = (function* () {

  let i = 1;

  while (true) {

    yield i;



Type and value validators     181

    i += 1;

  }

})();

 

class MyUser {

  constructor(first, last) {

    this.id = id.next().value;

    this.first = first;

    this.last = last;

  }

 

  get name() {

    return '${this.first} ${this.last}';

  }

}

Now, suppose that you have a component that wants to use an instance of this class as 
a property value. You would need a validator that checks that the property value is an 
instance of MyUser. Let's implement a component that does just that:

import PropTypes from "prop-types";

import MyUser from "./MyUser";

 

function MyComponent({ myDate, myCount, myUsers }) {

  return (

    <section>

      <p>{myDate.toLocaleString()}</p>

      <p>{myCount}</p>

      <ul>

        {myUsers.map((user) => (

          <li key={user.id}>{user.name}</li>

        ))}

      </ul>

    </section>

  );

}

 



182     Validating Component Properties

MyComponent.propTypes = {

  myDate: PropTypes.instanceOf(Date),

  myCount: PropTypes.oneOfType([PropTypes.string,

    PropTypes.number]),

  myUsers: PropTypes.arrayOf(PropTypes.instanceOf(MyUser)),

};

This component has three properties that require specific types, each going beyond the 
basic type validators that you've seen so far in this chapter. Let's walk through these now:

• myDate requires an instance of Date. It uses the instanceOf() function to 
build a validator function that ensures the value is a Date instance.

• myCount requires that the value either be a number or a string. This validator 
function is created by combining oneOfType, PropTypes.number(), and 
PropTypes.string().

• myUsers requires an array of MyUser instances. This validator is built by combining 
arrayOf() and instanceOf(). This example illustrates the number of scenarios 
that you can handle by combining the property validators provided by React.

Here's what the rendered output looks like:

Figure 8.4 – The rendered output of components

In the next section, we'll look at validating the actual values that are passed to component 
properties.



Type and value validators     183

Requiring specific values
I've focused on validating the type of property values so far, but that's not always what 
you'll want to check for. Sometimes, specific values matter. Let's see how we can validate 
specific property values:

import PropTypes from "prop-types";

 

const levels = new Array(10).fill(null).map((v, i) => i +

  1);

const userShape = {

  name: PropTypes.string,

  age: PropTypes.number,

};

 

function MyComponent({ level, user }) {

  return (

    <section>

      <p>{level}</p>

      <p>{user.name}</p>

      <p>{user.age}</p>

    </section>

  );

}

 

MyComponent.propTypes = {

  level: PropTypes.oneOf(levels),

  user: PropTypes.shape(userShape),

};

The level property is expected to be a number from the levels array. This is easy to 
validate using the oneOf() function. The user property is expecting a specific shape. 
A shape is the expected properties and types of an object. The userShape defined in 
this example requires a name string and an age number. The key difference between 
shape() and instanceOf() is that you don't necessarily care about the type. You 
might only care about the values that are used in the JSX of the component. 



184     Validating Component Properties

Let's take a look at how this component is used:

import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <section>

    <MyComponent level={10} user={{ name: "Name", age: 32

      }} />

    <MyComponent user={{ name: "Name", age: 32, online:

      false }} />

    <MyComponent level={11} user={{ name: "Name", age: "32"

      }} />

  </section>

);

Here's what the component looks like when it's rendered:

Figure 8.5 – The rendered component output

In this section, you learned about the property validation tools that are available to 
validate very precise requirements regarding the property types and property values.  
In the following section, you'll learn how to build your own property validators.



Writing custom property validators     185

Writing custom property validators
In this final section, you'll learn how to build your own custom property validation 
functions and apply them to the property specification. Generally speaking, you should 
only implement your own property validator if you absolutely have to. The default 
validators available in prop-types cover a wide range of scenarios.

However, sometimes, you need to make sure that very specific property values are passed 
to the component. Remember, these will not be run in production mode, so it's perfectly 
acceptable for a validator function to iterate over collections. Let's implement some 
custom validator functions:

function MyComponent({ myArray, myNumber }) {

  return (

    <section>

      <ul>

        {myArray.map((i) => (

          <li key={i}>{i}</li>

        ))}

      </ul>

      <p>{myNumber}</p>

    </section>

  );

}

 

MyComponent.propTypes = {

  myArray: (props, name, component) =>

    Array.isArray(props[name]) && props[name].length

      ? null

      : new Error('${component}.${name}: expecting non-

        empty array'),

 

  myNumber: (props, name, component) =>

    Number.isFinite(props[name]) &&

    props[name] > 0 &&

    props[name] < 100

      ? null

      : new Error(



186     Validating Component Properties

          '${component}.${name}: expecting number between 1

            and 99'

        ),

};

The myArray property expects a non-empty array, and the myNumber property expects a 
number that's greater than 0 and less than 100. Let's try passing these validators some data:

import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <section>

    <MyComponent

      myArray={["first", "second", "third"]}

      myNumber={99}

    />

    <MyComponent myArray={[]} myNumber={100} />

  </section>

);

The first element renders just fine, as both of the validators return null. However, the 
empty array and the number 100 cause both validators to return errors, like so:

MyComponent.myArray: expecting non-empty array

MyComponent.myNumber: expecting number between 1 and 99

Here's what the rendered output looks like:

Figure 8.6 – Rendering components with prop types



Summary     187

In this section, you learned how to construct your own functions that are given a number 
of arguments so that you can validate the property value. As long as the function returns 
true when the property value is considered valid, you can do almost any kind of 
validation that you can imagine. These functions can then be passed to the propTypes 
object, just like any of the built-in property validators.

Summary
The focus of this chapter has been React component property validation. When you 
implement property validation, you know what to expect; this promotes portability. The 
component doesn't care how the property values are passed to it, just as long as they're valid.

Then, you worked on several examples that used the basic React validators to check 
primitive JavaScript types. You also learned that if a property is required, it must be made 
explicit. Next, you learned how to validate more complex property values by combining 
the built-in validators that come with React.

Finally, you implemented your own custom validator functions to perform validation that 
goes beyond what's possible with the prop-types validators. In the next chapter, you'll 
learn how to handle navigation using React routes.

Further reading
To find out more about type checking with PropTypes, you can refer to https://
reactjs.org/docs/typechecking-with-proptypes.html.

https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html




9
Handling Navigation 

with Routes
Almost every web application requires routing: the process of responding to a URL, based 
on a set of route handler declarations. In other words, this is a mapping from the URL to 
rendered content. However, this task is more involved than it seems at first. This is why 
you're going to leverage the react-router package in this chapter, the de facto routing 
tool for React.

First, you'll learn the basics of declaring routes using JSX syntax. Then, you'll learn about 
the dynamic aspects of routing, such as dynamic path segments and query parameters. 
Next, you'll implement links using components from react-router.

Here are the high-level topics that we'll cover in this chapter:

• Declaring routes

• Handling route parameters

• Using link components



190     Handling Navigation with Routes

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter09.

Declaring routes
With react-router, you can collocate routes with the content that they render. In this 
section, you'll see that this is done using JSX syntax that defines routes.

You'll create a basic hello world example route so that you can see what routes look like  
in React applications. Then, you'll learn how you can organize your route declarations  
by feature instead of in a monolithic module. Finally, you'll implement a common  
parent-child routing pattern.

Hello route
Let's create a simple route that renders a simple component. First, we have a small React 
component that we want to render when the route is activated:

function MyComponent() {

  return <p>Hello Route!</p>;

}

Next, let's look at the route definition:

import * as React from "react";

import * as ReactDOM from "react-dom";

import { BrowserRouter as Router, Route, Routes } from

  "react-router-dom";

import MyComponent from "./MyComponent";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

 

root.render(

  <Router>

    <Routes>

      <Route path="/" element={<MyComponent />} />

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter09


Declaring routes     191

    </Routes>

  </Router>

);

The Router component is the top-level component of the application. Let's break it down 
to find out what's happening within the router.

You have the actual routes declared as <Route> elements. There are two key properties 
of any route: path and element. When the path is matched against the active URL, 
the component is rendered. But where is it rendered, exactly? The Router component 
doesn't actually render anything itself; it's responsible for managing how other 
components are rendered based on the current URL. Sure enough, when you look at this 
example in a browser, <MyComponent> is rendered as expected:

Figure 9.1 – The rendered output of our component

When the path property matches the current URL, <Route> is replaced by the 
element property value. In this example, the route is replaced with <MyComponent>.  
If a given route doesn't match, nothing is rendered.

Decoupling route declarations
The difficulty with routing happens when your application has dozens of routes declared 
within a single module since it's more difficult to mentally map routes to features.

To help with this, each top-level feature of the application can define its own routes. This 
way, it's clear which routes belong to which feature. So, let's start with the App component:

import React from "react";

import { BrowserRouter as Router, Route, Routes } from

  "react-router-dom";

import Layout from "./Layout";

import oneRoutes from "./one";

import Redirect from "./Redirect";

import twoRoutes from "./two";

 

export default () => (

  <Router>

    <Routes>



192     Handling Navigation with Routes

      <Route path="/" element={<Layout />}>

        <Route index element={<Redirect path="/one" />} />

        {oneRoutes}

        {twoRoutes}

      </Route>

    </Routes>

  </Router>

);

In this example, the application has two features: one and two. These are imported as 
components and rendered inside <Router>. The first child in this router is actually 
a redirect. This means that when the app first loads the URL, /, the <Redirect> 
component will send the user to /one. The render property is an alternative to the 
component property when you need to call a function to render content. You're using it 
here because you need to pass the property to <Redirect>.

This module will only get as big as the number of application features, instead of the 
number of routes, which could be substantially larger. Let's take a look at one of the 
feature routes:

import * as React from "react";

import { Route, Outlet } from "react-router-dom";

import Redirect from "../Redirect";

import First from "./First";

import Second from "./Second";

 

const routes = (

  <Route path="/one" element={<Outlet />}>

    <Route index element={<Redirect path="/one/1" />} />

    <Route path="/one/1" element={<First />} />

    <Route path="/one/2" element={<Second />} />

  </Route>

);

 

export default routes;



Handling route parameters     193

This module, one/index.js, exports an element with three routes:

• When the /one path is matched, redirect to /one/1.

• When the /one/1 path is matched, render the First component.

• When the /one/2 path is matched, render the Second component.

This follows the same pattern as the App component for the / path. Often, your 
application doesn't actually have content to render at the root of a feature, or at the root of 
the application itself. This pattern allows you to send the user to the appropriate route and 
the appropriate content. Here's what you'll see when you first load the app:

Figure 9.2 – The contents of page 1

The second feature follows the exact same pattern as the first. Here's what the First 
component looks like:

export default function First() {

  return <p>Feature 1, page 1</p>;

}

Each feature, in this example, uses the same minimal rendered content. These components 
are ultimately what the user needs to see when they navigate to a given route. By 
organizing routes this way, you've made your features self-contained with regard  
to routing. 

In the following section, you'll learn how to further organize your routes into  
parent-child relationships.

Handling route parameters
The URLs that you've seen so far in this chapter have all been static. Most applications 
will use both static and dynamic routes. In this section, you'll learn how to pass dynamic 
URL segments to your components, how to make these segments optional, and how to get 
query string parameters.



194     Handling Navigation with Routes

Resource IDs in routes
One common use case is to make the ID of a resource part of the URL. This makes it easy 
for your code to get the ID and then make an API call that fetches the relevant resource 
data. Let's implement a route that renders a user detail page. This will require a route that 
includes the user ID, which then needs to somehow be passed to the component so that it 
can fetch the user.

Let's start with the App component that declares the routes:

import { BrowserRouter as Router, Routes, Route } from

  "react-router-dom";

import UsersContainer from "./UsersContainer";

import UserContainer from "./UserContainer";

 

function App() {

  return (

    <Router>

      <Routes>

        <Route path="/" element={<UsersContainer />} />

        <Route path="/users/:id" element={<UserContainer

          />} />

      </Routes>

    </Router>

  );

}

The : syntax marks the beginning of a URL variable. The id variable will be passed to the 
UserContainer component – here's how it's implemented:

import React, { useState, useEffect } from "react";

import { useParams } from "react-router-dom";

import User from "./User";

import { fetchUser } from "./api";

 

function UserContainer() {

  const params = useParams();

  const [error, setError] = useState();

  const [first, setFirst] = useState();



Handling route parameters     195

  const [last, setLast] = useState();

  const [age, setAge] = useState();

 

  useEffect(() => {

    fetchUser(Number(params.id)).then(

      (user) => {

        setError(null);

        setFirst(user.first);

        setLast(user.last);

        setAge(user.age);

      },

      (error) => {

        setError(error);

        setFirst(null);

        setLast(null);

        setAge(null);

      }

    );

  }, [params.id]);

 

  return <User {...{ error, first, last, age }} />;

}

 

export default UserContainer;

The useParams() hook is used to get any dynamic parts of the URL. In this case,  
you're interested in the id parameter. Then, you pass the number version of this value to 
the fetchUser() API call. If the URL is missing the segment completely, then this code 
won't run at all; the router will revert back to the / route. However, no type checking is 
done at the route level, which means it's up to you to handle non-numbers being passed 
where numbers are expected, and so on.

In this example, the type cast operation will result in a 500 error if the user navigates to, 
for example, /users/one. You could write a function that type-checks parameters and, 
instead of failing with an exception, responds with a 404: Not found error. In any case,  
it's up to the application, and not the react-router library, to provide a meaningful  
failure mode.



196     Handling Navigation with Routes

Now, let's take a look at the API functions that were used in this example:

const users = [

  { first: "First 1", last: "Last 1", age: 1 },

  { first: "First 2", last: "Last 2", age: 2 }

];

 

export function fetchUsers() {

  return new Promise((resolve, reject) => {

    resolve(users);

  });

}

 

export function fetchUser(id) {

  return new Promise((resolve, reject) => {

    const user = users[id];

 

    if (user === undefined) {

      reject('User ${id} not found');

    } else {

      resolve(user);

    }

  });

}

The fetchUsers() function is used by the UsersContainer component to populate 
the list of user links. The fetchUser() function will find and resolve a value from the 
users array of the mock data if the promise is rejected. If rejected, the error handling 
behavior of the UserContainer component is invoked.

Here is the User component, which is responsible for rendering the user details:

import React from "react";

import PropTypes from "prop-types";

 

const Error = ({ error }) =>

  error ? (

    <p>



Handling route parameters     197

      <strong>{error}</strong>

    </p>

  ) : null;

const Text = ({ children }) => (children ?

  <p>{children}</p> : null);

 

function User({ error, first, last, age }) {

  return (

    <section>

      <Error error={error} />

      <Text>{first}</Text>

      <Text>{last}</Text>

      <Text>{age}</Text>

    </section>

  );

}

 

User.propTypes = {

  error: PropTypes.string,

  first: PropTypes.string,

  last: PropTypes.string,

  age: PropTypes.number,

};

 

export default User;

When you run this app and navigate to /, you should see a list of users that looks like this:

Figure 9.3 – The contents of the app home page

Clicking on the first link should take you to /users/0, which looks like this:

Figure 9.4 – The contents of the user page



198     Handling Navigation with Routes

If you navigate to a user that doesn't exist, for example, /users/2, here's what you'll see:

Figure 9.5 – When a user isn't found

The reason that you get this error message instead of a 500 error is that the API endpoint 
knows how to deal with missing resources:

if (user === undefined) {

  reject('User ${id} not found');

}

This results in UserContainer setting its error state:

fetchUser(Number(params.id)).then(

  (user) => {

    setError(null);

    setFirst(user.first);

    setLast(user.last);

    setAge(user.age);

  },

  (error) => {

    setError(error);

    setFirst(null);

    setLast(null);

    setAge(null);

  }

);

This then results in the User component rendering the error message:

const Error = ({ error }) =>

  error ? (

    <p>

      <strong>{error}</strong>

    </p>

  ) : null;

const Text = ({ children }) => (children ?



Handling route parameters     199

  <p>{children}</p> : null);

 

function User({ error, first, last, age }) {

  return (

    <section>

      <Error error={error} />

      <Text>{first}</Text>

      <Text>{last}</Text>

      <Text>{age}</Text>

    </section>

  );

}

Since the error property value is a string, the Error component will render the error 
message. In the next section, we'll look at defining optional route parameters.

Optional parameters
Sometimes, we need optional URL path values and query parameters. URLs work best 
for simple options, and query parameters work best if there are many values that the 
component can use.

Let's implement a user list component that renders a list of users. Optionally, you want to 
be able to sort the list in descending order. Let's make this an optional path segment in the 
route definition for this page:

import * as React from "react";

import * as ReactDOM from "react-dom";

import { BrowserRouter as Router, Route, Routes } from

  "react-router-dom";

import UsersContainer from "./UsersContainer";

 

const root =

  ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <Router>

    <Routes>

      <Route path="/users">

        <Route path=":desc" element={<UsersContainer />} />



200     Handling Navigation with Routes

        <Route path="" element={<UsersContainer />} />

      </Route>

    </Routes>

  </Router>

);

The : syntax marks a variable, and in this case, we've called it desc. To make this variable 
optional, we've added another route that doesn't have this variable but renders the  
same component.

It's also up to the component to handle any query strings provided to it. So, while the 
route declaration doesn't provide a mechanism to define accepted query strings, the  
router will still pass the raw query string to the component. Let's take a look at the user  
list container component:

import React, { useState, useEffect } from "react";

import { useParams, useSearchParams } from "react-router-

  dom";

import Users from "./Users";

import { fetchUsers } from "./api";

 

function UsersContainer() {

  const [users, setUsers] = useState([]);

  const params = useParams();

  const [search] = useSearchParams();

 

  useEffect(() => {

    const desc = params.desc === "desc" ||

      !!search.get("desc");

 

    fetchUsers(desc).then((users) => {

      setUsers(users);

    });

  }, [params, search]);

 

  return <Users users={users} />;



Handling route parameters     201

}

 

export default UsersContainer;

This component looks for either params.desc or search.desc. It uses this as an 
argument to the fetchUsers() API to determine the sort order.

Here's what the Users component looks like:

import * as React from "react";

import PropTypes from "prop-types";

 

function Users({ users }) {

  return (

    <ul>

      {users.map((user) => (

        <li key={user}>{user}</li>

      ))}

    </ul>

  );

}

 

Users.propTypes = {

  users: PropTypes.array.isRequired,

};

 

export default Users;

Here is what's rendered when you navigate to /users:

Figure 9.6 – Rendering the user list in default order



202     Handling Navigation with Routes

If you include the descending parameter by navigating to /users/desc, here's what  
you get:

Figure 9.7 – Rendering the user list in descending order

In this section, you learned about parameters in routes. Perhaps the most common 
pattern is to have the ID of a resource in your app as part of the URL, which means that 
components need to be able to parse out this information in order to interact with the 
API. You also learned about optional parameters in routes – these aren't always required 
because the component will use default values when they're not provided. In the next 
section, you'll learn about link components.

Using link components
In this section, you'll learn how to create links. You might be tempted to use the standard 
<a> elements to link to pages controlled by react-router. The problem with this 
approach is that these links will try to locate the page on the backend by sending a GET 
request. This isn't what you want because the route configuration is already in the browser.

First, you'll see an example that illustrates how <Link> elements are just like <a> 
elements in most ways. Then, you'll see how to build links that use URL parameters and 
query parameters.

Basic linking
The idea of links in React apps is that they point to routes that point to components, 
which render new content. The Link component also takes care of the browser history 
API and looks up route-component mappings. Here's an application component that 
renders two links:

import * as React from "react";

import {

  BrowserRouter as Router,

  Route,

  Routes,

  Link,

  Outlet

} from "react-router-dom";



Using link components     203

import Layout from "./Layout";

import First from "./First";

import Second from "./Second";

 

function Layout() {

  return (

    <>

      <nav>

        <p>

          <Link to="first">First</Link>

        </p>

        <p>

          <Link to="second">Second</Link>

        </p>

      </nav>

      <main>

        <Outlet />

      </main>

    </>

  );

}

 

function App() {

  return (

    <Router>

      <Routes>

        <Route path="/" element={<Layout />}>

          <Route path="/first" element={<First />} />

          <Route path="/second" element={<Second />} />

        </Route>

      </Routes>

    </Router>

  );

}



204     Handling Navigation with Routes

The to property specifies the route to activate when clicked. In this case, the application 
has two routes – /first and /second. Here is what the rendered links look like:

Figure 9.8 – Links to the first and second pages of the app

When you click the first link, the page content changes to look like this:

Figure 9.9 – The first page when the app is rendered

Now that you can use Link components to render links to basic paths, it's time to learn 
about building dynamic links with parameters.

URL and query parameters
Constructing the dynamic segments of a path that is passed to <Link> involves string 
manipulation. Everything that's part of the path goes to the to property. This means  
that you have to write more code to construct the string, but it also means less  
behind-the-scenes magic happening in the router.

Let's create a simple component that will echo back whatever is passed to the echo URL 
segment or the echo query parameter:

import React from "react";

import { useParams, useSearchParams } from "react-router-

  dom";

 

function Echo() {

  const params = useParams();

  const [searchParams] = useSearchParams();

 

  return <h1>{params.msg || searchParams.get("msg")}</h1>;

}

 

export default Echo;



Using link components     205

In order to get search parameters that were passed to a route, you can use the 
useSearchParams() hook, which gives you a URLSearchParams object. In this 
case, we can call searchParams.get("msg") to get the parameter we need.

Now, let's take a look at the App component that renders two links. The first will 
build a string that uses a dynamic value as a URL parameter. The second will use 
URLSearchParams to build the query string portion of the URL:

import React from "react";

import PropTypes from "prop-types";

import { Link } from "react-router-dom";

 

export default function App({ children }) {

  return <section>{children}</section>;

}

 

App.propTypes = {

  children: PropTypes.node.isRequired

};

 

const param = "From Param";

const query = new URLSearchParams({ msg: "From Query" });

 

App.defaultProps = {

  children: (

    <section>

      <p>

        <Link to={'echo/${param}'}>Echo param</Link>

      </p>

      <p>

        <Link to={'echo?${query.toString()}'}

          query={query}>

          Echo query

        </Link>

      </p>

    </section>

  )

};



206     Handling Navigation with Routes

Here's what the two links look like when they're rendered:

Figure 9.10 – Different types of link parameters

The param link takes you to /echo/From Param, which looks like this:

Figure 9.11 – The param version of the page

The query link takes you to /echo?echo=From+Query, which looks like this:

Figure 9.12 – The query version of the page

In this section, you learned about using the Link component to render links in your 
application. You also learned how to build dynamic links that pass parameters to URLs.

Summary
In this chapter, you learned about routing in React applications. The job of a router is to 
render content that corresponds to a URL. The react-router package is the standard 
tool for this job. You learned how routes are JSX elements, just like the components they 
render. Sometimes, you need to split routes into feature-based modules. A common 
pattern for structuring page content is to have a parent component that renders the 
dynamic parts as the URL changes.

Then, you learned how to handle the dynamic parts of URL segments and query  
strings. You also learned how to build links throughout your application using the 
<Link> element. 

In the next chapter, you'll learn how to split your code into smaller chunks using  
lazy components.

Further reading
Refer to the following links for more information:

• React Router: https://reactrouter.com/

• URLSearchParams: https://developer.mozilla.org/en-US/docs/
Web/API/URLSearchParams

https://reactrouter.com/
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams


10
Code Splitting Using 

Lazy Components 
and Suspense

Code splitting has been happening in React applications for some time now, long before 
there was any official support in the React API. With the latest version of React, there are 
new APIs that we can use that directly support code-splitting scenarios. Code splitting 
is necessary when you have larger applications with a lot of JavaScript code that must be 
delivered to a browser.

Big monolithic JavaScript bundles that house an entire application can create usability 
issues on initial page loads due to longer load times. With code splitting, we have more 
fine-grained control over how code makes its way from the server to the browser. This 
means more opportunities for us to properly handle load-time User Experience (UX). 

In this chapter, you'll learn how to do this in your React applications by using the 
lazy() API and the Suspense components, two recent additions to React. Once you 
understand how these two pieces work, you'll be able to completely integrate code 
splitting into your applications.



208     Code Splitting Using Lazy Components and Suspense

We'll cover the following topics in this chapter:

• Using the lazy() API

• Using the Suspense component

• Avoiding lazy components

• Exploring lazy pages and routes

Technical requirements
You can find the code files of this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter10.

Using the lazy API
There are two pieces involved with using the new lazy() API in React. First, there's 
bundling components into their own separate files so that they can be downloaded by the 
browser separately from other parts of the application. Second, once you have created the 
bundles, you can build React components that are lazy – they don't download anything 
until the first time they're rendered. Let's look at both of these.

Dynamic imports and bundles
The code examples in this book use the create-react-app tooling for creating 
bundles. The nice thing about this approach is that you don't have to maintain any bundle 
configuration. Instead, bundles are created for you automatically, based on how you 
import your modules. If you're using the import statement everywhere, your app will 
be downloaded all at once in one bundle. When your app gets bigger, there will likely be 
features that some users never use or don't use as frequently as others. You can use the 
import() function to import modules on demand. By using this function, you're telling 
webpack to create a separate bundle for the code that you're importing dynamically.

Let's look at a simple component that we might want to bundle separately from the rest of 
the application:

export default function MyComponent() {

  return <p>My Component</p>;

}

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter10


Using the lazy API     209

Now, let's take a look at how we would import this module dynamically using the 
import() function, resulting in a separate bundle:

function App() {

  const [MyComponent, setMyComponent] = React.useState

    (() => () => null);

 

  React.useEffect(() => {

    import("./MyComponent").then((module) => {

      setMyComponent(() => module.default);

    });

  }, []);

 

  return <MyComponent />;

}

When you run this example, you'll see the <p> text rendered right away. If you open 
the browser dev tools and look at the network requests, you'll notice that a separate call 
is made to fetch the bundle containing the MyComponent code. This happens because 
of the call to import("./MyComponent"). The import() function returns a 
promise that resolves with the module object. Since we need the default export to access 
MyComponent, we reference module.default when we call setMyComponent().

The reason why we're setting a component as the MyComponent state is that when the 
App component renders for the first time, we don't have the MyComponent code loaded 
yet. Once it loads, MyComponent will reference the proper value, which results in the 
correct text being rendered.

Now that you have an idea of how bundles get created and are fetched by the app, it's time 
to see how the lazy() API greatly simplifies this process for us.

Making components lazy
Instead of manually handling the promise returned by import() by returning the 
default export and setting state, you can lean on the lazy() API. This function takes a 
function that returns an import() promise. The return value is a lazy component that 
you can just render. Let's modify the App component to use this API:

import MyPage from "./MyPage";

 

function App() {



210     Code Splitting Using Lazy Components and Suspense

  return (

    <Suspense fallback={"loading..."}>

      <MyPage />

    </Suspense>

  );

}

The MyComponent value is created by calling lazy(), passing in the dynamic module 
import as an argument. Now, you have a separate bundle for your component and a lazy 
component that loads the bundle when it's first rendered. 

In this section, you learned how code splitting works. You learned that the import() 
function handles bundle creation for you. You also learned that the lazy() API makes 
your components lazy and handles all of the gritty work of importing components for 
you. But there's one last thing we need, the Suspense component, to help display 
placeholders while components are loading.

Using the Suspense component
In this section, we'll explore some of the more common usage scenarios of the Suspense 
component. We'll look at where to place Suspense components in your component tree, 
how to simulate latency when fetching bundles, and some of the options available to us to 
use as the fallback content.

Top-level Suspense components
Lazy components need to be rendered inside of a Suspense component. However, they 
do not have to be direct children of Suspense though, which is important because this 
means that you can have one Suspense component handle every lazy component in 
your app. Let's illustrate this concept with an example. Here's a component that we would 
like to bundle separately and use lazily:

export default function MyFeature() {

  return <p>My Feature</p>;

}



Using the Suspense component     211

Next, let's make the MyFeature component lazy and render it inside of a MyPage 
component:

const MyFeature = React.lazy(() => import("./MyFeature"));

 

function MyPage() {

  return (

    <>

      <h1>My Page</h1>

      <MyFeature />

    </>

  );

}

Here, we're using the lazy() API to make the MyFeature component lazy. This 
means that when the MyPage component is rendered, the code bundle that contains 
MyFeature will be downloaded because MyFeature was also rendered. What's 
important to note with the MyPage component is that it is rendering a lazy component 
(MyFeature) but isn't rendering a Suspense component. This is because our 
hypothetical app has many page components, each with its own lazy components. Having 
each of these components render its own Suspense component would be redundant. 
Instead, we can render one Suspense component inside of our App component, like so:

import MyPage from "./MyPage";

 

function App() {

  return (

    <React.Suspense fallback={"loading..."}>

      <MyPage />

    </React.Suspense>

  );

}

While the MyFeature code bundle is being downloaded, <MyPage> is replaced with 
the fallback text passed to Suspense. So, even though MyPage isn't lazy itself, it renders 
a lazy component that Suspense knows about and will replace its children with the 
fallback content while this happens.



212     Code Splitting Using Lazy Components and Suspense

So far, we haven't really been able to see the fallback content that displays while our lazy 
components load their code bundles. This is because when developing locally, these 
bundles load almost instantly. In the next section, we'll look at an approach to simulate 
latency when loading code bundles.

Simulating latency
The whole idea with the lazy() and Suspense APIs is to provide a better user 
experience for both of the following:

• The initial load, by splitting code into bundles so that the whole app doesn't have to 
be downloaded upfront

• Providing consistent fallback content while code bundles load

Unless we can experience latency similar to what our users are likely to experience, we 
have no idea how effective our use of these APIs is. One way to address this issue is to 
simulate latency in the same way that you might simulate latency in a mock API call. In 
the mock function that returns a promise, you use a setTimeout() call that resolves 
the promise after some time – say, 3 seconds. Because the import() function returns a 
promise, we can use this to our advantage.

Here's an updated version of the MyPage component from the top-level suspense 
component example:

const MyFeature = React.lazy(() =>

  Promise.all([

    import("./MyFeature"),

    new Promise((resolve) => {

      setTimeout(() => {

        resolve();

      }, 3000);

    }),

  ]).then(([m]) => m)

);

 

function MyPage() {

  return (

    <>

      <h1>My Page</h1>



Using the Suspense component     213

      <MyFeature />

    </>

  );

}

Now when you load the example, you'll actually get to see the loading text for about 
3 seconds before it's replaced with the MyPage content. Instead of just returning the 
promise from import(), we're building a new promise using Promise.all(). This 
method returns a promise that resolves when all of the promises that are passed to it have 
been resolved. In this example, we're passing two promises to Promise.all(). The first 
is the promise returned by import(), which eventually resolves the module object from 
the code bundle once it's downloaded. The problem is that this resolves immediately when 
doing local development. The second promise that's passed to Promise.all() is how 
we simulate latency by not resolving the promise for 3 seconds.

The last thing we need to do is make sure that it's the module that's resolved since this is 
what lazy() is expecting. When Promise.all() resolves, all of the resolved values 
are passed as an array to .then(). To address this, we add our own .then() that 
returns the first array argument, which is the module that lazy() needs.

Now that we can actually see our loading fallback content in action, let's work on making 
this content a little bit more visually appealing.

Working with spinner fallbacks
The simplest fallback that you can use with the Suspense component is some text that 
indicates to the user that something is happening. The fallback property can be any 
valid React element, which means that we can enhance the fallback to be something 
more visually appealing. For example, the react-spinners package has a selection of 
spinner components, all of which can be used as a fallback with Suspense.

Let's modify the App component from the Simulating latency section to include a spinner 
from the react-spinners package as the Suspense fallback:

import { FadeLoader } from "react-spinners";

import MyPage from "./MyPage";

 

function App() {

  return (

    <React.Suspense fallback={<FadeLoader

      color={"lightblue"} size={150} />}>



214     Code Splitting Using Lazy Components and Suspense

      <MyPage />

    </React.Suspense>

  );

}

The FadeLoader component will render a spinner that we've configured with a color 
value of lightblue and a size of 150 pixels. The rendered element of the FadeLoader 
component is passed to the fallback property. Since we're simulating latency, you should 
be able to see the spinner when you first load the app:

Figure 10.1 – The image rendered by the loader component

Now, instead of text, we're showing an animated spinner. This likely provides a user 
experience that your users are more accustomed to. The react-spinners package has 
several spinners for you to choose from, each of which has several configuration options. 
There are other spinner libraries that you can use or implement on your own.

In this section, you learned that you can use a single Suspense component that will 
display its fallback content for any lazy components that are lower in the tree. You learned 
how to simulate latency during local development so that you can experience what your 
users will experience with your Suspense fallback content. Finally, you learned how to 
use components from other libraries as the fallback content to provide something that 
looks better than plain text.

In the next section, you'll learn about why it doesn't make sense to make every component 
in your app a lazy component.

Avoiding lazy components
It might be tempting to make most of your React components lazy components that live 
in their own bundle. After all, there isn't much extra work that needs to happen to set 
up separate bundles and make lazy components. However, there are some downsides to 
this. If you have too many lazy components, your app will end up making several HTTP 
requests to fetch them – at the same time. There's no benefit to having separate bundles 
for components used on the same part of the app. You're better off trying to bundle 
components together in a way that one HTTP request is made to load what is needed on 
the current page.



Avoiding lazy components     215

A helpful way to think of this is to associate "pages" with bundles. If you have lazy page 
components, everything on that page will also be lazy yet bundled together with other 
components on the page. Let's build an example that demonstrates how to organize our 
lazy components. Let's say that your app has a couple of pages and a few features on 
each page. We don't necessarily want to make these features lazy if they're all going to be 
needed when the page loads. Here's the App component that shows the user a selector to 
pick which page to load:

const First = React.lazy(() => import("./First"));

const Second = React.lazy(() => import("./Second"));

 

function ShowComponent({ name }) {

  switch (name) {

    case "first":

      return <First />;

    case "second":

      return <Second />;

    default:

      return null;

  }

}

 

function App() {

  const [component, setComponent] = React.useState("");

 

  return (

    <>

      <label>

        Load Component:{" "}

        <select

          value={component}

          onChange={(e) => setComponent(e.target.value)}

        >

          <option value="">None</option>

          <option value="first">First</option>

          <option value="second">Second</option>

        </select>



216     Code Splitting Using Lazy Components and Suspense

      </label>

      <Suspense fallback="loading...">

        <ShowComponent name={component} />

      </Suspense>

    </>

  );

}

The First and Second components are the pages that make up our app, so we want 
them to be lazy components that load their bundles on demand. The ShowComponent 
component renders the appropriate page when the user changes the selector. 

Next, let's look at the First page and see how it's composed, starting with the First 
component:

import One from "./One";

import Two from "./Two";

import Three from "./Three";

 

export default function First() {

  return (

    <>

      <One />

      <Two />

      <Three />

    </>

  );

}

The First component pulls in three components and renders them – One, Two, and 
Three. These three components will be part of the same bundle. While we could make 
them lazy, there would be no point, as all we would be doing is making three HTTP 
requests for bundles at the same time instead of one.

Now that you have a better understanding of how to map page structures of your 
application to bundles, let's look at another use case where we use a router component to 
navigate around our app.



Exploring lazy pages and routes     217

Exploring lazy pages and routes
In the Avoiding lazy components section, you saw where to avoid making components lazy 
when there is no benefit in doing so. The same pattern can be applied when you're using 
react-router as the mechanism to navigate around your application. Let's take a look 
at an example. Here are the imports we'll need:

import {

  BrowserRouter as Router,

  Routes,

  Route,

  Link,

  Outlet,

} from "react-router-dom";

import { FadeLoader } from "react-spinners";

Next, we'll create our lazy components:

const First = React.lazy(() =>

  Promise.all([

    import("./First"),

    new Promise((resolve) => {

      setTimeout(() => {

        resolve();

      }, 3000);

    }),

  ]).then(([m]) => m)

);

 

const Second = React.lazy(() =>

  Promise.all([

    import("./Second"),

    new Promise((resolve) => {

      setTimeout(() => {

        resolve();

      }, 3000);

    }),

  ]).then(([m]) => m)

);



218     Code Splitting Using Lazy Components and Suspense

Finally, we have the application component that uses the two lazy components that we 
just declared:

function Layout() {

  return (

    <section>

      <nav>

        <p>

          <Link to="first">First</Link>

        </p>

        <p>

          <Link to="second">Second</Link>

        </p>

      </nav>

      <section>

        <Suspense

          fallback={<FadeLoader color={"lightblue"}

            size={150} />}

        >

          <Outlet />

        </Suspense>

      </section>

    </section>

  );

}

 

export default function App() {

  return (

    <Router>

      <Routes>

        <Route path="/" element={<Layout />}>

          <Route path="/first" element={<First />} />

          <Route path="/second" element={<Second />} />

        </Route>



Summary     219

      </Routes>

    </Router>

  );

}

In the preceding code, we have two lazy page components that will be bundled separately 
from the rest of the app. They're using the same latency simulation technique that was 
introduced in the Simulating latency section so that we can see the fallback content as we 
navigate through pages by clicking on links. The fallback content in this example uses the 
same FadeLoader spinner component that was introduced in the Working with spinner 
fallbacks section.

Note that the Suspense component is placed beneath the navigation links. This 
means that the fallback content will be rendered in the spot where the page content will 
eventually show when it loads. The children of the Suspense component are the Route 
components that will render our lazy page components – for example, when the /first 
route is activated, the First component is rendered for the first time, triggering the 
bundle download.

That brings us to the end of this chapter.

Summary
This chapter was all about code splitting and bundling, which are important concepts for 
larger React applications. We started by looking at how code is split into bundles in your 
React applications by using the import() function. Then, we looked at the lazy() 
React API and how it helps to simplify loading bundles when components are rendered 
for the first time. Next, we looked more deeply at the Suspense component, which 
is used to manage content while component bundles are being fetched. The fallback 
property is how we specify the content to be shown while bundles are being loaded. You 
typically don't need more than one Suspense component in your app, as long as you 
follow a consistent pattern for bundling pages of your app.

In the next chapter, you'll learn how to use the Next.js framework to handle rendering 
React components on the server. The Next.js framework allows you to create pages that 
act as React components and can be rendered on the server and in the browser. This is an 
important capability for applications that need good initial page load performance – that 
is, all applications.





11
Server-Side React 

Components
Everything that you've learned so far in this book has been React code that runs in web 
browsers. React isn't just confined to the browser for rendering, and in this chapter,  
you'll learn how to render components from a Node.js server.

The first section of this chapter briefly touches upon high-level server rendering concepts. 
The next four sections go into more depth, teaching you how to implement the most 
crucial aspects of server-side rendering with React and Next.js.

In this chapter, we'll cover the following topics:

• What is isomorphic JavaScript?

• Rendering to strings

• Backend routing

• Frontend reconciliation

• Fetching data



222     Server-Side React Components

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/React-and-React-Native-4th-Edition/tree/
main/Chapter11.

What is isomorphic JavaScript?
Another term for server-side rendering is isomorphic JavaScript. This is a fancy way of 
saying JavaScript code that can run in the browser and in Node.js without modification.  
In this section, you'll learn the basic concepts of isomorphic JavaScript before diving into 
the code.

The server is a render target
The beauty of React is that it's a small abstraction layer that sits on top of a rendering 
target. So far, the target has been the browser, but it can also be the server. The render 
target can be anything, just as long as the correct translation calls are implemented behind 
the scenes.

In the case of rendering on the server, components are rendered to strings. The server 
can't actually display rendered HTML; all it can do is send the rendered markup to the 
browser. This idea is shown in the following diagram:

Figure 11.1 – A conceptual model of server-side rendering

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter11


What is isomorphic JavaScript?     223

It's possible to render a React component on the server and send the rendered output to 
the browser. The question is, why would you want to do this on the server instead of in  
the browser?

Initial load performance
The main motivation behind server-side rendering, for me personally, is improved 
performance. In particular, the initial rendering just feels faster for the user, and this 
translates to an overall better user experience. It doesn't matter how fast your application 
is once it's loaded and ready to go; it's the initial load time that leaves a lasting impression 
on your users.

There are three ways in which this approach results in better performance for the  
initial load:

• The rendering that takes place on the server is generating a string; there's no need to 
compute a difference or to interact with the DOM in any way. Producing a string of 
rendered markup is inherently faster than rendering components in the browser.

• The rendered HTML is displayed as soon as it arrives. Any JavaScript code that 
needs to run on the initial load is run after the user is already looking at the content.

• There are fewer network requests to fetch data from the API because these have 
already happened on the server, and the server, typically, has far more resources 
than a single client.

The following diagram illustrates these performance ideas:

Figure 11.2 – A conceptual model of what happens during  
the initial load of a page that's been rendered on the server



224     Server-Side React Components

Beyond just performance enhancements, we can share the same code between the client 
and the server in some cases. We'll cover this next.

Sharing code between the server and the browser
There's a good chance that your application will need to talk to API endpoints that are 
beyond your control; for example, an application that is composed of many different 
microservice endpoints. You can rarely use data from these services without modification. 
Rather, you have to write code that transforms data so that it's usable by your  
React components.

If you're rendering your components on a Node.js server, then this data transformation 
code will be used by both the client and the server. This is because, on the initial load, the 
server will need to talk to the API and, later on, the component in the browser will need to 
talk to the API.

It's not just about transforming the data that's returned from these services either. For 
example, you have to think about providing input to them as well, such as when creating 
or modifying resources.

The fundamental adjustment that you'll need to make as a React programmer is to assume 
that any given component that you implement will need to be rendered on the server. This 
may seem like a minor adjustment, but the devil is in the detail.

In this section, we covered the important concepts related to rendering React components 
on the server. You learned that React treats the server as a target to render content on, just 
like the browser is a target. You learned that the performance of your initial application 
page load can be greatly improved when the server sends content that's already been 
rendered. Finally, you learned that once the browser has the initial content to display,  
it can then use those same components that were used on the server to perform the  
initial render.

In the next section, we'll look at how React can render components to static HTML strings 
instead of DOM manipulation calls.

Rendering to strings
When React components are rendered in Node.js, they're transformed into strings of 
HTML output. The string content is then returned to the browser, which displays this to 
the user immediately. Let's look at an example.



Rendering to strings     225

Here is the component to render:

import React from "react";

import PropTypes from "prop-types";

 

export default function App({ items }) {

  return (

    <ul>

      {items.map(item => (

        <li key={item}>{item}</li>

      ))}

    </ul>

  );

}

 

App.propTypes = {

  items: PropTypes.arrayOf(PropTypes.string).isRequired

};

Next, let's implement the server that will render this component when the browser  
asks for it:

import * as React from "react";

import ReactDOM from "react-dom/server";

import express from "express";

import App from "./App";

 

const doc = (content) =>

  '

  <!doctype html>

  <html>

    <head>

      <title>Rendering to strings</title>

    </head>

    <body>

      <div id="app">${content}</div>



226     Server-Side React Components

    </body>

  </html>

  ';

 

const app = express();

 

app.get("/", (req, res) => {

  const props = { items: ["One", "Two", "Three"] };

  const rendered = ReactDOM.renderToString(<App {...props}

    />);

 

  res.send(doc(rendered));

});

 

app.listen(8080, () => {

  console.log("Listening on 127.0.0.1:8080");

});

Now, if you visit http://127.0.0.1:8080 in your browser, you'll see the rendered 
component content:

Figure 11.3 – The rendered list in the browser

There are two things to pay attention to in this example. First, there's the doc() function. 
This creates the basic HTML document template with a placeholder for rendered React 
content. The second is the call to renderToString(), which is just like the render() 
call that you're used to. This is called in the server request handler and the rendered string 
is sent to the browser.

This section showed you that React can act similar to a template engine, by building 
strings as its output and using this content to serve as HTML content from the server.  
In the following section, we'll look at how routing works in a React application that runs 
on the server.



Backend routing     227

Backend routing
In the Rendering to strings section, you implemented a single request handler in the server 
that responded to requests for the root URL (/). Your application is going to need to 
handle more than a single route. You learned how to use the react-router package for 
routing in Chapter 9, Handling Navigation with Routes, but now, you're going to see how 
to use the same package in Node.js.

First, let's take a look at the main App component:

import { Routes, Route, Link, Outlet } from 

  "react-router-dom";

 

import FirstHeader from "./first/FirstHeader";

import FirstContent from "./first/FirstContent";

import SecondHeader from "./second/SecondHeader";

import SecondContent from "./second/SecondContent";

 

function Layout() {

  return (

    <section>

      <Outlet />

    </section>

  );

}

 

export default function App() {

  return (

    <Routes>

      <Route path="/" element={<Layout />}>

        <Route

          index

          element={

            <>

              <h1>App</h1>

              <ul>

                <li>



228     Server-Side React Components

                  <Link to="first">First</Link>

                </li>

                <li>

                  <Link to="second">Second</Link>

                </li>

              </ul>

            </>

          }

        />

        <Route

          path="/first"

          element={

            <>

              <header>

                <FirstHeader />

              </header>

              <main>

                <FirstContent />

              </main>

            </>

          }

        />

        <Route

          path="/second"

          element={

            <>

              <header>

                <SecondHeader />

              </header>

              <main>

                <SecondContent />

              </main>

            </>

          }

        />

      </Route>



Backend routing     229

    </Routes>

  );

}

There are three routes that this application handles:

• /: The home page

• /first: The first page of content

• /second: The second page of content

The App content is divided into <header> and <main> elements. In each of these 
sections, there is a <Route> component that handles the appropriate content. For 
example, the main content for the / route is handled by a render() function that 
renders links to /first and /second.

This component will work fine on the client, but will it work on the server? Let's 
implement that now:

import React from "react";

import { renderToString } from "react-dom/server";

import { StaticRouter } from "react-router-dom/server";

import express from "express";

 

import App from "./App";

 

const app = express();

 

app.get("/*", (req, res) => {

  const html = renderToString(

    <StaticRouter location={req.url}>

      <App />

    </StaticRouter>

  );

  res.write('

      <!doctype html>

      <div id="app">${html}</div>

    ');

  res.end();



230     Server-Side React Components

});

 

app.listen(8080, () => {

  console.log("Listening on 127.0.0.1:8080");

});

Now you have both frontend and backend routing! How does this work exactly? Let's start 
with the request handler path. This has changed so that it's now a wildcard (/*). Now, this 
handler is called for every request.

On the server, the <StaticRouter> component is used instead of the 
<BrowserRouter> component. The <App> component is the child, which means that 
the <Route> components within it will be passed data from <StaticRouter>. This is 
how <App> knows to render the correct content based on the URL. The resulting HTML 
value that results from calling renderToString() can then be used as part of the 
document that's sent to the browser as a response.

Now your application is starting to look like a real end-to-end React rendering solution. 
This is what the server renders if you hit the root URL, /:

Figure 11.4 – The output of the index page

If you hit the /second URL, the Node.js server will render the correct component:

Figure 11.5 – The output of the second page

If you navigate from the main page to the first page, the request goes back to the server. 
We need to figure out how to get the frontend code to the browser so that it can take over 
after the initial render.

In this section, you learned that react-router routes work similarly to how they 
would work in a browser-based React app. In the next section, we'll make sure that your 
components can work both on the server and in the browser.



Frontend reconciliation     231

Frontend reconciliation
The only thing that was missing from the last example was the client's JavaScript code. The 
user wants to use the application, and the server needs to deliver the client's code bundle. 
How would this work? Routing has to work in the browser and on the server, without 
modifying the routes. In other words, the server handles routing in the initial request and 
then the browser takes over as the user starts clicking on things and moving around in  
the application.

Let's create the index.js module for this example:

import React from "react";

import { hydrate } from "react-dom";

import App from "./App";

 

hydrate(<App />, document.getElementById("root"));

This looks like most other index.js files that you've seen so far in this book. You render 
the <App> component in the root element in the HTML document. In this case, you're 
using the hydrate() function instead of the render() function. The two functions 
have the same end result—rendered JSX content in the browser window. The hydrate() 
function is different because it expects rendered component content to already be in place. 
This means that it will perform less work because it will assume that the markup is correct 
and doesn't need to be updated on the initial render.

Only in development mode will React examine the entire DOM tree of the server-
rendered content to make sure that the correct content is displayed. If there's a mismatch 
between the existing content and the output of the React components, you'll see warnings 
that show you where these mismatches happened, so that you can go and fix them.

Here is the App component that your app will render in the browser and on the  
Node.js server:

import React, { useState } from "react";

 

export default function App() {

  const [clicks, setClicks] = useState(0);

 

  return (

    <section>

      <header>

        <h1>Hydrating The Client</h1>



232     Server-Side React Components

      </header>

      <main>

        <p>Clicks {clicks}</p>

        <button onClick={() => setClicks(clicks + 1)}>Click

          Me</button>

      </main>

    </section>

  );

}

The component renders a button that, when clicked, will update the clicks state. This 
state is rendered in a label above the button. When this component is rendered on the 
server, the default clicks value of 0 is used, and the onClick handler is ignored since 
it's just rendering static markup. Let's take a look at the server code next:

import fs from "fs";

import React from "react";

import { renderToString } from "react-dom/server";

import express from "express";

import App from "./App";

 

const app = express();

const doc = fs.readFileSync("./build/index.html");

 

app.use(express.static("./build", { index: false }));

 

app.get("/*", (req, res) => {

  const context = {};

  const html = renderToString(<App />);

 

  if (context.url) {

    res.writeHead(301, {

      Location: context.url

    });

    res.end();

  } else {

    res.write(



Frontend reconciliation     233

      doc.toString().replace('<div id="root">', 

        '<div id="root">${html}')

    );

    res.end();

  }

});

 

app.listen(8080, () => {

  console.log("Listening on 127.0.0.1:8080");

});

Let's walk through the preceding code and see what's going on:

const doc = fs.readFileSync("./build/index.html");

The previous line of code reads the index.html file that's created by your React build 
tool, such as create- react-app/react-scripts, and stores it in doc.

Next, we added this:

app.use(express.static("./build", { index: false }));

This tells the Express server to serve files under ./build as static files, except for 
index.html. 

Instead, you're going to write a handler that responds to requests for the root of the site:

app.get("/*", (req, res) => {

  const context = {};

  const html = renderToString(<App />);

 

  if (context.url) {

    res.writeHead(301, {

      Location: context.url

    });

    res.end();

  } else {

    res.write(

      doc.toString().replace('<div id="root">', 

        '<div id="root">${html}')



234     Server-Side React Components

    );

    res.end();

  }

});

This is where the HTML constant is populated with the rendered React content. Then, it 
gets interpolated into the HTML string using replace() and is sent as the response. 
Because you've used the index.html file based on your build, it contains a link to the 
bundled React app that will run when loaded in the browser.

In this section, you learned how to share the same components that render content on the 
server with your application that runs in the browser. In the next section, you'll learn how 
to leverage Next.js to fetch data that React components on the server need.

Fetching data
What if one of your components needs to fetch API data before it can fully render its 
content? This presents a challenge for rendering on the server because there's no easy way 
to define a component that knows when to fetch data on the server and in the browser.

This is where a minimal framework such as Next.js comes into play. Next.js treats server 
rendering and browser rendering as equals. This means that the headache of fetching data 
for your components is abstracted—you can use the same code in the browser and on  
the server.

To handle routing, Next.js uses the concept of pages. A page is a JavaScript module that 
exports a React component. The rendered content of the component turns into the page 
content. Here's what the pages directory looks like:

• pages

 � first.js

 � index.js

 � second.js

The index.js module is the root page of the app; Next.js knows this based on the 
filename. Here's what the source looks like:

import Layout from "../components/MyLayout.js"; 

export default function Index() {

  return (

    <Layout>



Fetching data     235

      <p>Fetching component data on the server and on the

        client...</p>

    </Layout>

  );

}

This page uses a <Layout> component to ensure that common components are rendered 
without the need to duplicate code. Here's what the page looks like when rendered:

Figure 11.6 – The index page of the Next.js app

In addition to the paragraph, you have the overall application layout, including the 
navigation links to other pages. Here's what the Layout source looks like:

import Header from "./Header";

 

const layoutStyle = {

  margin: 20,

  padding: 20,

  border: "1px solid #DDD"

};

 

export default function Layout(props) {

  return (

    <div style={layoutStyle}>

      <Header />

      {props.children}

    </div>

  );

}



236     Server-Side React Components

The Layout component renders a Header component and props.children. The 
children property is the value that you pass to the Layout component in your pages. 

Let's take a look at the Header component now:

import Link from "next/link";

 

const linkStyle = {

  marginRight: 15

};

 

export default function Header() {

  return (

    <div>

      <Link href="/">

        <a style={linkStyle}>Home</a>

      </Link>

      <Link href="/first">

        <a style={linkStyle}>First</a>

      </Link>

      <Link href="/second">

        <a style={linkStyle}>Second</a>

      </Link>

    </div>

  );

}

The Link component used here comes from Next.js. This is so that the links work as 
expected with the routing that Next.js sets up automatically. 

Now, let's look at a page that has data-fetching requirements—pages/first.js:

import Layout from "../components/MyLayout.js";

import { fetchFirstItems } from "../api";

 

export default function First({ items }) {

  return (



Fetching data     237

    <Layout>

      {items.map(item => (

        <li key={item}>{item}</li>

      ))}

    </Layout>

  );

}

 

First.getInitialProps = async () => {

  const res = await fetchFirstItems();

  const items = await res.json();

 

  return { items };

};

The fetch() function that's used to fetch data comes from the isomorphic-unfetch 
package. This version of fetch() works on the server and in the browser. There's no 
need for you to check anything. Once again, the Layout component is used to wrap the 
page content for consistency with other pages.

The getInitialProps() function is how Next.js fetches data—in the browser and 
on the server. This is an async function, meaning that you can take as long as you need 
to fetch data for the component properties and Next.js will make sure not to render any 
markup until the data is ready. 

Let's take a look at the fetchFirstItems() API function:

export default function fetchFirstItems() {

  return new Promise(resolve =>

    setTimeout(() => {

      resolve({

        json: () => Promise.resolve(["One", "Two",

          "Three"])

      });

    }, 1000)

  );

}



238     Server-Side React Components

This function is mimicking API behavior by returning a promise that's resolved after  
1 second with data for the component. If you navigate to /first, you'll see the following 
after 1 second:

Figure 11.7 – The first page of the Next.js app

By clicking on the First link, you caused the getInitialProps() function to be called 
in the browser since the app has already been delivered. If you reload the page while at /
first, you'll trigger getInitialProps() to be called on the server since this is the 
page that Next.js is handling on the server.

Summary
In this chapter, you learned that React can be rendered on the server, in addition to the 
client. There are several reasons for doing this, such as sharing common code between 
the frontend and the backend. The main advantage of server-side rendering is the 
performance boost that you get on the initial page load. This translates to a better user 
experience and, therefore, a better product.

Then, you progressively improved a server-side React application, starting with  
a single-page render. You were also introduced to routing, client-side reconciliation, and 
component data fetching to produce a complete backend rendering solution using Next.js.

In the next chapter, you'll learn how to implement modern React UI components using 
Material UI.



12
User Interface 

Framework 
Components

If you're using React to build a user interface (UI) for your application, you probably 
aren't planning on creating your own UI library too. There are lots of React UI component 
libraries available to choose from, and there's no wrong choice, as long as the components 
make your life simpler.

This chapter will introduce you to the Material-UI React library. Here are the specific 
topics that we'll cover:

• Layout and organization

• Using navigation components

• Collecting user input

• Working with styles and themes



240     User Interface Framework Components

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/React-and-React-Native-4th-Edition/tree/
main/Chapter12.

Layout and organization
Material-UI provides us with several components that help us control the overall layout of 
our applications and organize the other UI components without each layout. This section 
will demonstrate how to use containers and grids.

Using containers
Often, when you're trying to lay components out on your page, the horizontal layout is the 
most difficult part to get right. The Container component from Material-UI is a simple 
but powerful layout tool. It helps to control the horizontal width of its children. Let's look 
at an example to see what's possible:

import "typeface-roboto";

import React, { Fragment } from "react";

import Typography from "@mui/material/Typography";

import Container from "@mui/material/Container";

 

export default function App() {

  const textStyle = {

    backgroundColor: "#cfe8fc",

    margin: 5,

    textAlign: "center",

  };

 

  return (

    <Fragment>

      <Container maxWidth="sm">

        <Typography style={textStyle}>sm</Typography>

      </Container>

      <Container maxWidth="md">

        <Typography style={textStyle}>md</Typography>

      </Container>

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter12
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter12


Layout and organization     241

      <Container maxWidth="lg">

        <Typography style={textStyle}>lg</Typography>

      </Container>

    </Fragment>

  );

}

This example has three Container components, each of which wraps a Typography 
component. The Typography component is used to render text in Material-UI 
applications. Each Container component used in this example takes a maxWidth 
property. It accepts a breakpoint string value. These breakpoints represent common screen 
sizes. This example uses small (sm), medium (md), and large (lg). When the screen 
reaches these breakpoint sizes, the container width will stop growing. Here's what the page 
looks like when the width is smaller than the sm breakpoint:

Figure 12.1 – The sm breakpoint

Now, if we were to resize the screen so that it was larger than the md breakpoint,  
but smaller than the lg breakpoint, here is what it would look like:

Figure 12.2 – The lg breakpoint

Notice how the first container stays at a fixed width now that we've exceeded its 
maxWidth breakpoint. The md and lg containers just keep growing along with the screen 
until their breakpoints have been passed. Let's see what these Container components 
look like when the screen width surpasses all breakpoints:

Figure 12.3 – All breakpoints



242     User Interface Framework Components

The Container component gives you control over how your page elements grow 
horizontally. They're also responsive, so your layouts will be updated as the screen 
dimensions change. While it is helpful, we can only do so much with horizontal layouts.  
In the next section, we'll look at using Material-UI components to build more complex 
and responsive layouts.

Building responsive grid layouts
Material-UI has a Grid component that we can use to compose responsive complex 
layouts. At a high level, a Grid component can be either a container or an item within  
a container. By combining these two roles, we can achieve any type of layout for our app. 
To get familiar with Material-UI grid layouts, let's put together an example that uses  
a common layout pattern that we'll find in many web applications. Here is what the result 
looks like:

Figure 12.4 – A sample responsive grid layout

As you can see, this layout has familiar sections that are typical in many web apps. This is 
just an example layout; you can use the Grid component to build any type of layout you 
can imagine. Let's look at the code that created this layout:

import "typeface-roboto";

import React from "react";

import Paper from "@mui/material/Paper";

import Grid from "@mui/material/Grid";

import Typography from "@mui/material/Typography";

 

const headerFooterStyle = {



Layout and organization     243

  padding: 8,

  textAlign: "center",

};

const mainStyle = {

  padding: 16,

  textAlign: "center",

};

const navStyle = { marginLeft: 5 };

 

export default function App() {

  return (

    <div style={{ flexGrow: 1 }}>

      <Grid container spacing={3}>

        <Grid item xs={12}>

          <Paper style={headerFooterStyle}>

            <Typography>Header</Typography>

          </Paper>

        </Grid>

        <Grid item xs={4}>

          <Paper>

            <Grid container spacing={2} direction="column">

              <Grid item xs={12}>

                <Typography style={navStyle}>Nav Item

                  1</Typography>

              </Grid>

              <Grid item xs={12}>

                <Typography style={navStyle}>Nav Item

                  2</Typography>

              </Grid>

              <Grid item xs={12}>

                <Typography style={navStyle}>Nav Item

                  3</Typography>

              </Grid>

              <Grid item xs={12}>

                <Typography style={navStyle}>Nav Item

                  4</Typography>



244     User Interface Framework Components

              </Grid>

            </Grid>

          </Paper>

        </Grid>

        <Grid item xs={8}>

          <Grid container spacing={2}>

            <Grid item xs={6}>

              <Paper style={mainStyle}>

                <Typography>Main Content 1</Typography>

              </Paper>

            </Grid>

            <Grid item xs={6}>

              ...

            </Grid>

            <Grid item xs={6}>

              ...

            </Grid>

            <Grid item xs={6}>

              ...

            </Grid>

          </Grid>

        </Grid>

        <Grid item xs={12}>

          <Paper style={headerFooterStyle}>

            <Typography>Footer</Typography>

          </Paper>

        </Grid>

      </Grid>

    </div>

  );

}



Layout and organization     245

There are a couple of places where I've replaced repetitive code with .... In these cases, 
the code that was removed was just a repeat of the Grid component that came before 
it. Now, let's break down how the sections in this layout are created. We'll start with the 
header section:

<Grid item xs={12}>

  <Paper style={headerFooterStyle}>

    <Typography>Header</Typography>

  </Paper>

</Grid>

The xs breakpoint property value of 12 means that the header will always span the entire 
width of the screen since 12 is the highest value you can use here. Next, let's look at the 
navigation items:

<Grid item xs={4}>

  <Paper>

    <Grid container spacing={2} direction="column">

      <Grid item xs={12}>

        <Typography style={navStyle}>Nav Item

          1</Typography>

      </Grid>

      <Grid item xs={12}>

        <Typography style={navStyle}>Nav Item

          2</Typography>

      </Grid>

      <Grid item xs={12}>

        <Typography style={navStyle}>Nav Item

          3</Typography>

      </Grid>

      <Grid item xs={12}>

        <Typography style={navStyle}>Nav Item

          4</Typography>

      </Grid>

    </Grid>

  </Paper>

</Grid>



246     User Interface Framework Components

In the navigation section, we have a grid container nested inside of a grid item. It's 
common to nest grids like this, and the more complex the layout, the more levels of nested 
grids that you'll require. You'll notice that the direction property value of the column 
used in the navigation section makes the navigation items flow vertically instead of the 
horizontal default. Next, we'll look at the main content section:

<Grid item xs={8}>

  <Grid container spacing={2}>

    <Grid item xs={6}>

      <Paper style={mainStyle}>

        <Typography>Main Content 1</Typography>

      </Paper>

    </Grid>

    <Grid item xs={6}>

      <Paper style={mainStyle}>

        <Typography>Main Content 2</Typography>

      </Paper>

    </Grid>

    <Grid item xs={6}>

      <Paper style={mainStyle}>

        <Typography>Main Content 3</Typography>

      </Paper>

    </Grid>

    <Grid item xs={6}>

      <Paper style={mainStyle}>

        <Typography>Main Content 4</Typography>

      </Paper>

    </Grid>

  </Grid>

</Grid>

The main content section follows the same approach as the navigation section—it uses  
a nested grid container for subsections. The xs breakpoint value of 6 used by each of the 
Grid subsection components determines how wide each of them is and how they flow on 
the page. Since the value is 6, they take up half of the available space in the main section.

Also, you can see that the xs breakpoint value for the main section is 8. The xs value for 
the navigation section is 4; these two numbers add up to 12, meaning that, together,  
they use the full width of the screen.



Using navigation components     247

In this section, you were introduced to what Material-UI has to offer in the way of layouts. 
You can use the Container component to control the width of sections and how 
they change in response to screen dimension changes. You then learned that the Grid 
component is used to put together more complex grid layouts. In the following section, 
we'll look at some of the navigational components found in Material-UI.

Using navigation components
Once we have an idea of how the layout of our application is going to look and work,  
we can start to think about the navigation. This is an important piece of our UI because 
it's how the user gets around the application, and it will be used frequently. In this section, 
we'll learn about two of the navigational components offered by Material-UI.

Navigating with drawers
The Drawer component, just like a physical drawer, slides open to reveal content that 
is easily accessed. When we're finished, the drawer closes again. This works well for 
navigation because it stays out of the way, allowing more space on the screen for the  
active task that the user is engaged with. Let's look at an example, starting with the  
App component:

import First from "./First";

import Second from "./Second";

import Third from "./Third";

 

export default function App({ links }) {

  const [open, setOpen] = useState(false);

 

  function toggleDrawer({ type, key }) {

    if (type === "keydown" && (key === "Tab" || key ===

      "Shift")) {

      return;

    }

 

    setOpen(!open);

  }

 

  return (



248     User Interface Framework Components

    <Router>

      <Button onClick={toggleDrawer}>Open Nav</Button>

      <section>

        <Route path="/first" component={First} />

        <Route path="/second" component={Second} />

        <Route path="/third" component={Third} />

      </section>

      <Drawer open={open} onClose={toggleDrawer}>

        <div

          style={{ width: 250 }}

          role="presentation"

          onClick={toggleDrawer}

          onKeyDown={toggleDrawer}

        >

          <List>

            {links.map((link) => (

              <ListItem button key={link.url}

                component={Link} to={link.url}>

                <Switch>

                  <Route

                    exact

                    path={link.url}

                    render={() => (

                      <ListItemText

                        primary={link.name}

                        primaryTypographyProps={{ color:

                          "primary" }}

                      />

                    )}

                  />

                  <Route

                    path="/"

                    render={() => <ListItemText

                      primary={link.name} />}

                  />



Using navigation components     249

                </Switch>

              </ListItem>

            ))}

          </List>

        </div>

      </Drawer>

    </Router>

  );

}

Let's look at what's happening here. Everything that this component renders is within the 
Router component because the items in the drawer are links to routes:

<section>

  <Route path="/first" component={First} />

  <Route path="/second" component={Second} />

  <Route path="/third" component={Third} />

</section>

The First, Second, and Third components are used to render the main application 
content when the user clicks on a link in the drawer. The drawer itself is opened when the 
Open Nav button is clicked. Let's take a closer look at the state that's used to control this:

const [open, setOpen] = useState(false);

 

function toggleDrawer({ type, key }) {

  if (type === "keydown" && (key === "Tab" || 

    key === "Shift")) {

    return;

  }

 

  setOpen(!open);

}



250     User Interface Framework Components

The open state controls the visibility of the drawer. The onClose property of the Drawer 
component calls this function, too, meaning that the drawer closes when any of the links 
within it are activated. Next, let's look at how the links within the drawer are generated:

<List>

  {links.map((link) => (

    <ListItem button key={link.url} component={Link}

      to={link.url}>

      <Switch>

        <Route

          exact

          path={link.url}

          render={() => (

            <ListItemText

              primary={link.name}

              primaryTypographyProps={{ color: "primary" }}

            />

          )}

        />

        <Route

          path="/"

          render={() => <ListItemText primary={link.name}

            />}

        />

      </Switch>

    </ListItem>

  ))}

</List>



Using navigation components     251

The items that are displayed in a Drawer component are actually list items, as you can see 
here. The links property that is passed to App has all the link objects with the url and 
name properties. Each item in the items array is mapped to the ListItem component, 
which uses the Link component. Within ListItem, we have the Route component 
that generates the link text by rendering a ListItemText component. There are two 
Route components within a Switch component. The reason is so that we can style the 
list item differently if it matches the current path. Finally, let's look at the default value for 
the links property:

App.defaultProps = {

  links: [

    { url: "/first", name: "First Page" },

    { url: "/second", name: "Second Page" },

    { url: "/third", name: "Third Page" },

  ],

};

Here's what the drawer looks like when it's opened after the screen first loads:

Figure 12.5 – A drawer showing links to our pages

Try clicking on the First Page link. The drawer closes and renders the content of the /
first route. Then, when you open the drawer again, you'll notice that the First Page link 
is rendered as the active link:

Figure 12.6 – The first page link is styled as the active link in the drawer



252     User Interface Framework Components

In this section, you learned how to use the Drawer component as the main navigation for 
your application. In the following section, we'll look at the Tabs component.

Navigating with tabs
Tabs are another common navigation pattern found in modern web apps. The 
Material-UI Tabs component lets us use tabs as links and hook them up to a router. 
Let's look at an example of how to do this. Here is the App component:

 

const tabContentStyle = {

  padding: 16,

};

 

function TabContainer({ value }) {

  return (

    <AppBar position="static">

      <Tabs value={value}>

        <Tab label="Item One" component={Link} to="/" />

        <Tab label="Item Two" component={Link} to="/page2"

          />

        <Tab label="Item Three" component={Link}

          to="/page3" />

      </Tabs>

    </AppBar>

  );

}

 

export default function App() {

  return (

    <Router>

      <Route

        exact

        path="/"

        render={() => (

          <>

            <TabContainer value={0} />

            <Typography component="div"



Using navigation components     253

              style={tabContentStyle}>

              Item One

            </Typography>

          </>

        )}

      />

      <Route

        exact

        path="/page2"

        render={() => (

          <>

            <TabContainer value={1} />

            <Typography component="div"

              style={tabContentStyle}>

              Item Two

            </Typography>

          </>

        )}

      />

    </Router>

  );

}

In the interest of space, I've left out the Route component for /page3; it follows the 
same pattern as /page2. The Tabs and Tab components from Material-UI don't actually 
render any content underneath the selected tab. It's up to us to provide the content as the 
Tabs component only looks after showing the tabs and marking one of them as selected. 
This example aims to have the Tab components use Link components that link to content 
rendered by routes. Let's now take a closer look at the TabContainer component:

function TabContainer({ value }) {

  return (

    <AppBar position="static">

      <Tabs value={value}>

        <Tab label="Item One" component={Link} to="/" />

        <Tab label="Item Two" component={Link} to="/page2"

          />

        <Tab label="Item Three" component={Link}



254     User Interface Framework Components

          to="/page3" />

      </Tabs>

    </AppBar>

  );

}

Here, we're wrapping the Tabs component with the AppBar component, meaning that 
the tabs appear like they're part of the bar across the top of the UI. Each Tab component 
uses the Link component so that, when it is clicked, the router is activated with the  
route specified in the to property. The TabContainer component is then used as  
a child component inside our Route components. This way, the route knows which  
value property to pass—this determines the active tab.

Here's what the page looks like when it first loads:

Figure 12.7 – Tabs with the first item active

If you click on the ITEM TWO tab, the URL will update, the active tab will change,  
and the page content below the tabs will change:

Figure 12.8 – Tabs with the second item active

In this section, you learned about two of the navigation approaches that you can use in 
your Material-UI application. The first is to use a drawer that is only displayed when the 
user needs to access navigational links. The second is to use tabs that are always visible.  
In the following section, you'll learn about collecting input from users.



Collecting user input     255

Collecting user input
Collecting input from users can be difficult. There are many nuanced things about every 
field that we need to consider if we plan on getting the user experience right. Thankfully, 
the form components available in Material-UI take care of a lot of usability concerns for 
us. In this section, you'll get a brief sampling of the input controls that you can use.

Checkboxes and radio buttons
Checkboxes are useful for collecting true/false answers from users, while radio buttons are 
useful for getting the user to select an option from a short number of choices. Let's take  
a look at an example of these components in Material-UI:

import "typeface-roboto";

import React from "react";

import Checkbox from "@mui/material/Checkbox";

import Radio from "@mui/material/Radio";

import RadioGroup from "@mui/material/RadioGroup";

import FormControlLabel from

  "@mui/material/FormControlLabel";

import FormControl from "@mui/material/FormControl";

import FormLabel from "@mui/material/FormLabel";

 

export default function Checkboxes() {

  const [checkbox, setCheckbox] = React.useState(false);

  const [radio, setRadio] = React.useState("First");

 

  return (

    <div>

      <FormControlLabel

        label={'Checkbox ${checkbox ? "(checked)" : ""}'}

        control={

          <Checkbox

            checked={checkbox}

            onChange={() => setCheckbox(!checkbox)}

          />

        }

      />



256     User Interface Framework Components

      <FormControl component="fieldset">

        <FormLabel component="legend">{radio}</FormLabel>

        <RadioGroup value={radio} onChange={(e) =>

          setRadio(e.target.value)}>

          <FormControlLabel value="First" label="First"

            control={<Radio />} />

          <FormControlLabel value="Second" label="Second"

            control={<Radio />} />

          <FormControlLabel value="Third" label="Third"

            control={<Radio />} />

        </RadioGroup>

      </FormControl>

    </div>

  );

}

This example has two pieces of state. The checkbox state controls the value of the 
Checkbox component, while the radio value controls the state of the RadioGroup 
component. The checkbox state is passed to the checked property of the Checkbox 
component, while the radio state is passed to the value property of the RadioGroup 
component. Both components have onChange handlers that call their respective state 
setter functions: setCheckbox() and setRadio(). You'll notice that many other 
Material-UI components are involved in the display of these controls. For example, the 
label for the checkbox is displayed using the FormControlLabel component, while the 
radio control uses a FormControl component and a FormLabel component.

Here is what the two input controls look like:

Figure 12.9 – A checkbox and a radio group

The labels for both of these controls are updated to reflect the state of the component as 
they change. The checkbox labels show whether the checkbox is checked, and the radio 
labels show the currently selected value. In the next section, we'll look at text inputs and 
select components.



Collecting user input     257

Text inputs and select inputs
Text fields allow our users to enter text, while selects allow them to choose from several 
options. The difference between selects and radio buttons is that selects require less space 
on the screen since the options are only displayed when the user opens the option menu.

Let's look at a Select component now:

import React, { useState } from "react";

import InputLabel from "@mui/material/InputLabel";

import MenuItem from "@mui/material/MenuItem";

import FormControl from "@mui/material/FormControl";

import Select from "@mui/material/Select";

 

export default function MySelect() {

  const [value, setValue] = useState("first");

 

  return (

    <FormControl>

      <InputLabel htmlFor="my-select">My

        Select</InputLabel>

      <Select

        value={value}

        onChange={(e) => setValue(e.target.value)}

        inputProps={{ id: "my-select" }}

      >

        <MenuItem value="first">First</MenuItem>

        <MenuItem value="second">Second</MenuItem>

        <MenuItem value="third">Third</MenuItem>

      </Select>

    </FormControl>

  );

}



258     User Interface Framework Components

The value state used in this example controls the selected value in the Select 
component. When the user changes their selection, the setValue() function changes 
the value. The MenuItem component is used to specify the available options in the 
select field; the value property is set as the value state when a given item is selected. 
Here's what the select looks like when the menu is displayed:

Figure 12.10 – A menu with the first item active

Next, let's look at a TextField component example:

import React, { useState } from "react";

import TextField from "@mui/material/TextField";

 

export default function MyTextInput() {

  const [value, setValue] = useState("");

 

  return (

    <TextField

      label="Name"

      value={value}

      onChange={(e) => setValue(e.target.value)}

      margin="normal"

    />

  );

}

The value state controls the value of the text input and changes as the user types.  
Here's what the text field looks like:

Figure 12.11 – A text field with user-provided text



Working with buttons     259

Unlike other form control components, the TextField component doesn't require 
several other supporting components. Everything that we need can be specified via 
properties. In the next section, we'll look at the Button component.

Working with buttons
Material-UI buttons are very similar to HTML button elements. The difference is that 
they're React components that work well with other aspects of Material-UI, such as 
theming and layout. Let's look at an example that renders different styles of buttons:

 

const buttonStyle = { margin: 10 };

 

function toggleColor(setter, value) {

  setter(value === "default" ? "primary" : "default");

}

 

export default function App() {

  const [contained, setContained] = useState("default");

  const [text, setText] = useState("default");

  const [outlined, setOutlined] = useState("default");

  const [icon, setIcon] = useState("default");

 

  return (

    <Grid container>

      <Grid

        item

        component={Button}

        variant="contained"

        style={buttonStyle}

        color={contained}

        onClick={() => toggleColor(setContained,

          contained)}

      >

        Contained

      </Grid>

      <Grid



260     User Interface Framework Components

        item

        component={Button}

        style={buttonStyle}

        color={text}

        onClick={() => toggleColor(setText, text)}

      >

        Text

      </Grid>

      <Grid

        item

        component={Button}

        variant="outlined"

        style={buttonStyle}

        color={outlined}

        onClick={() => toggleColor(setOutlined, outlined)}

      >

        Outlined

      </Grid>

      <Grid

        item

        component={IconButton}

        style={buttonStyle}

        color={icon}

        onClick={() => toggleColor(setIcon, icon)}

      >

        <AndroidIcon />

      </Grid>

    </Grid>

  );

}

This example renders four different button styles. We're using the Grid component to 
render the row of buttons. Instead of rendering buttons as children of the Grid item 
components, we're setting the component property value to Button and IconButton. 
This way, we can pass button properties directly to Grid. Each button has its own color 
state, initially set to default. When the buttons are clicked on, the state toggles to primary.



Working with styles and themes     261

Here's what the buttons look like when they're first rendered:

Figure 12.12 – Four styles of Material UI buttons

And here's what the buttons look like when they've each been clicked on:

Figure 12.13 – What the buttons look like after they've been clicked on

In this section, you learned about some of the user input controls available in Material-UI. 
Checkboxes and radio buttons are useful when the user needs to turn something on  
or off or choose an option. Text inputs are necessary when the user needs to type in some 
text, while selects are useful when you have a list of options to choose from but limited 
space to display those options. Finally, you learned that Material-UI has several styles 
of buttons that can be used when the user needs to initiate an action. In the following 
section, we'll look at how styles and themes work in Material-UI.

Working with styles and themes
Included with Material-UI are systems for extending the styles of UI components and 
extending theme styles that are applied to all components. In this section, you'll learn 
about using both these systems.

Making styles
Material-UI comes with a styled() function that can be used to create styled 
components based on JavaScript objects. The return value of this function is a new 
component with the new styles applied.

Let's take a closer look at this approach:

import "typeface-roboto";

import React from "react";

import { styled } from "@mui/material/styles";

import Button from "@mui/material/Button";

 

const StyledButton = styled(Button)(({ theme }) => ({



262     User Interface Framework Components

  "&.MuiButton-root": { margin: theme.spacing(1) },

  "&.MuiButton-contained": { borderRadius:

    theme.shape.borderRadius + 2 },

  "&.MuiButton-sizeSmall": { fontWeight:

    theme.typography.fontWeightLight },

}));

 

export default function App() {

  return (

    <>

      <StyledButton>First</StyledButton>

      <StyledButton

        variant="contained">Second</StyledButton>

      <StyledButton size="small" variant="outlined">

        Third

      </StyledButton>

    </>

  );

}

The names used in this style (MuiButton-root, MuiButton-contained, and 
MuiButton-sizeSmall) aren't something that we came up with. These are part of 
the Button CSS API. The root style is applied to all buttons, so, in this example, all three 
buttons will have the margin value that we've applied here. The contained style is applied 
to buttons that use the contained variant. The sizeSmall style is applied to buttons 
that have a small value for the size property.

Here's what the custom button styles look like:

Figure 12.14 – Buttons using customized styles

Now that you know how to change the look and feel of individual components, it's time to 
think about customizing the look and feel of the application as a whole.



Working with styles and themes     263

Customizing themes
Material-UI comes with a default theme. We can use this as the starting point to create  
our own theme. There are two main steps to creating a new theme in Material-UI:

1. Use the createTheme() function to customize the default theme settings and 
return a new theme object.

2. Use the ThemeProvider component to wrap our application so that the 
appropriate theme is applied.

Let's look at how this process works in practice:

import "typeface-roboto";

import React from "react";

import { createTheme, ThemeProvider } from

  "@mui/material/styles";

import Menu from "@mui/material/Menu";

import MenuItem from "@mui/material/MenuItem";

 

const theme = createTheme({

  typography: {

    fontSize: 11,

  },

  overrides: {

    MuiMenuItem: {

      root: {

        marginLeft: 15,

        marginRight: 15,

      },

    },

  },

});

 

export default function App() {

  return (

    <ThemeProvider theme={theme}>

      <Menu anchorEl={document.body} open={true}>

        <MenuItem>First Item</MenuItem>

        <MenuItem>Second Item</MenuItem>



264     User Interface Framework Components

        <MenuItem>Third Item</MenuItem>

      </Menu>

    </ThemeProvider>

  );

}

The custom theme that we've created here does two things:

• It changes the default font size for all components to 11.

• It updates the left and right margin values for the MenuItem components.

Many values can be set in a Material-UI theme; refer to the customization documentation 
for more. The overrides section is used for component-specific customizations. This is 
useful when you need to style for every instance of a component in your application.

Summary
This chapter was a very brief introduction to Material-UI, the most popular React UI 
framework. We started by looking at the components used to assist with the layout 
of our pages. We then looked at components that can help the user navigate around 
your application. Next, you learned how to collect user input using Material-UI form 
components. Finally, you learned how to style your Material-UI using styles and 
modifying themes.

In the next chapter, we'll look at ways to improve the efficiency of your component state 
updates using the latest functionality available in the latest version of React.



13
High-Performance 

State Updates
State represents the dynamic aspect of your React application. When state changes, your 
components react to those changes. Without state, you would have nothing more than  
a fancy HTML template language. Usually, the time required to perform a state update 
and have the changes rendered on the screen is barely noticeable if at all. However, there 
are times that complex state changes can lead to noticeable lag for your users. 

In this chapter, you'll learn how to do the following:

• Batch your state changes together for minimal re-rendering.

• Prioritize state updates to render content that's critical for your user experience first.

• Develop strategies for performing asynchronous actions while batching and 
prioritizing state updates.

Technical requirements
For this chapter, you'll need your code editor (Visual Studio Code). The code we'll be 
following can be found here: https://github.com/PacktPublishing/React-
and-React-Native-4th-Edition/tree/main/Chapter13. 

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter13
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter13


266     High-Performance State Updates

You can open the terminal within Visual Studio Code and run npm install to make 
sure you're able to follow along with the examples as you read through the chapter.

Batching state updates
In this section, you'll learn about how React can batch state updates together in order to 
prevent unnecessary rendering when multiple state changes happen at the same time.  
In particular, we'll look at the changes introduced in React 18 that make automatic 
batching of state updates commonplace.

When your React component issues a state change, this causes the React internals to 
re-render the parts of your component that have changed visually as a result of this state 
update. For example, imagine you have a component with a name state that's rendered 
inside of a <span> element and you change the name state from Adam to Ashley. That's 
a straightforward change that results in a re-render that's too fast for the user to even 
notice. Unfortunately, state updates in web applications are rarely this straightforward. 
Instead, there might be dozens of state changes in 10 milliseconds. For example, the name 
state might follow changes like this:

1. Adam

2. Ashley

3. Andrew

4. Ashley

5. Aaron

6. Adam

Here, we have six changes that took place with the name state in a short amount of 
time. This means that React would have re-rendered the DOM six times, once for each 
value that was set as the name state. What's interesting to note about this scenario is 
the final state update – we're back where we started with Adam. This means that we just 
re-rendered the DOM five times for no reason. Now, imagine these wasted re-renders  
on a web application scale and how these types of state updates might cause problems  
for performance.

The answer to this problem is batching. This is how React takes several state updates 
that were made in our component code and treats them as a single state update. Rather 
than process every state update individually, while re-rendering the DOM between each 
update, the state changes are all merged, which results in one DOM re-render. In the 
aggregate, this reduces the amount of work that our web applications need to do by a lot.



Batching state updates     267

In React 17, automatic batching of state updates only happened inside of event handler 
functions. For example, let's say you have a button with an onClick() handler that 
performs five state updates. React will batch all of these state updates together so that 
only one re-render is necessary. The problem arises when your event handlers make 
asynchronous calls, usually to fetch some data, and then make state updates when the 
asynchronous call finishes. These state changes are no longer automatically batched 
because they're not running directly inside of the event handler function. Instead, they're 
running in the callback code of the asynchronous operation, and React 17 will not batch 
these updates. This is a challenge because it's fairly common for our React components  
to fetch data asynchronously and perform state updates in response to events!

Let's turn our attention to some code now to see how React 18 addresses this batching 
problem that we've just outlined. For this example, we'll render a button that, when 
clicked, will perform 100 state updates. We'll use setTimeout() so that the updates are 
performed asynchronously, outside of the event handler function. The idea is to show the 
difference between how this code is handled by two different React versions. To do this, 
we can open up the React profiler in the browser dev tools and hit record before we press 
the button to execute our state changes. Here's what the code looks like:

import * as React from "react";

 

export default function BatchingUpdates() {

  let [value, setValue] = React.useState("loading...");

 

  function onStart() {

    setTimeout(() => {

      for (let i = 0; i < 100; i++) {

        setValue('value ${i + 1}');

      }

    }, 1);

  }

 

  return (

    <div>

      <p>

        Value: <em>{value}</em>

      </p>

      <button onClick={onStart}>Start</button>

    </div>



268     High-Performance State Updates

  );

}

By clicking the button that this component renders, we're calling the onStart() event 
handler function defined by our component. Then, our handler calls  setValue() 100 
times inside a loop. Ideally, we do not want to perform 100 re-renders because this will 
hurt the performance of our application, and it doesn't need to. Only the final call to 
setValue() matters here. 

Let's take a look at the profile captured for this component using React 17:

Figure 13.1 – Using React dev tools to view re-renders every time state updates are made



Batching state updates     269

By pressing the button with our event handler attached to it, we're making 100 state 
update calls. Since this is done outside of the event handler function in setTimeout(), 
automatic batching doesn't happen. We can see this in the profile output of the 
BactchingUpdates component where there's a long list of renders. Most of these  
aren't necessary and contribute to the amount of work React needs to do in response to 
user interactions, hurting the overall performance of our application.

Let's capture a profile of the same component being rendered using React 18:

Figure 13.2 – React dev tools showing only one render with automatic batching enabled

Automatic batching is applied everywhere state updates are made, even in common 
asynchronous scenarios such as this one. As the profile shows, there's only one re-render 
when we click the button instead of 100. We didn't have to make any adjustments to our 
component code to make this happen either. However, there is one change that's required 
in order to make state updates batch automatically. Let's say you used ReactDOM.
render() to render your root component, like so:

ReactDOM.render(

  <React.StrictMode>

    <App />

  </React.StrictMode>,

  document.getElementById("root")

);

Instead, you can use ReactDOM.createRoot() and render that:

ReactDOM.createRoot(document.getElementById("root")).render(

  <React.StrictMode>

    <App />

  </React.StrictMode>

);



270     High-Performance State Updates

By creating and rendering your root node this way, you can ensure that with React 18, 
you'll get batched state updates throughout your application. You no longer need to worry 
about manually optimizing state updates so that they take place at once – React does this 
for you now. However, sometimes you'll have state updates that are of higher priority than 
others. In cases like these, we need a way to tell React to prioritize certain state updates 
over others instead of batching everything together.

Prioritizing state updates
When something happens in our React application, we usually make several state updates 
so that the UI can reflect these changes. Typically, you can make these state changes 
without much thought about how the rendering performance is impacted. For example, 
let's say you have a long list of items that need to be rendered. This will probably have 
some impact on the UI – while the list is being rendered, the user probably won't be able 
to interact with certain page elements because the JavaScript engine is 100% utilized for  
a brief moment.

However, this can become an issue when expensive rendering disrupts the normal 
browser behavior that users expect. For example, if the user is typing in a textbox, they 
expect the character they just typed to show up immediately. But if your component is 
busy rendering a large item list, the textbox state cannot be updated right away. This is 
where the new React state update prioritization API comes in handy.

The startTransition() API is used to mark certain state updates as transitional, 
meaning that the updates are treated as a lower priority. If you think about a list of items 
either being rendered for the first time or being changed to another list of items, this is 
a transition that doesn't have to be immediate. On the other hand, state updates such 
as changing the value in a textbox should be as close to immediate as possible. By using 
startTransition(), you're telling React that any state updates within can wait if 
there are more important updates.

A good rule of thumb for startTransition() is to use it for the following:

• Anything that has the potential to perform a lot of rendering work

• Anything that doesn't require immediate feedback for the user in response to  
their interactions

Let's walk through an example that renders a large list of items in response to a user typing 
in a textbox to filter the list.



Prioritizing state updates     271

This component will render a textbox that the user can type in to filter the list of 25,000 
items. I've chosen this number based on the performance of the laptop I'm using to write 
this code – you might want to tweak it up if there's no delay or down if it takes too long  
to render anything. When the page first loads, you should see a filter textbox that looks 
like this:

Figure 13.3 – The filter box before the user types anything

When you start typing in the filter textbox, the filtered items will render underneath it.  
It might take a second or 2, since there are so many items to render:

Figure 13.4 – Filtered items underneath the filter input when the user starts typing

Now, let's walk through the code, starting with a large array of items:

let unfilteredItems = new Array(25000)

  .fill(null)

  .map((v, i) => ({ id: i, name: 'Item ${i}' }));

The size of the array is specified in the array constructor, and then it's filled with 
numbered string values that we can filter by. 

Next, let's look at the state used by this component:

let [filter, setFilter] = React.useState("");

let [items, setItems] = React.useState([]);



272     High-Performance State Updates

The filter state represents the value of the filter textbox and defaults to an empty string. 
The items state represents the filtered items from our unfilteredItems array. This 
array is populated when the user types in the filter textbox. 

Next, let's look at the markup rendered by this component:

<div>

  <div>

    <input

      type="text"

      placeholder="Filter"

      value={filter}

      onChange={onChange}

    />

  </div>

  <div>

    <ul>

      {items.map(item => (

        <li key={item.id}>{item.name}</li>

      ))}

    </ul>

  </div>

</div>

The filter textbox is rendered by an <input> element while the filtered results are 
rendered as a list by iterating over the items array. 

Finally, let's look at the event handler function that's fired when the user types in the  
filter textbox:

function onChange(e) {

  setFilter(e.target.value);

  setItems(

    e.target.value === ""

      ? []

      : unfilteredItems.filter(

        item => item.name.includes(e.target.value)

      )



Prioritizing state updates     273

  );

}

The onChange() function is called when the user types in the filter textbox and sets two 
state values. First, it uses setFilter() to set the value of the filter textbox. Then, it calls 
setItems() to set the filtered items to render unless the filter text is empty, in which 
case, we render nothing. When interacting with this example, you might notice a problem 
with the responsiveness of the textbox when typing in it. This is because, in this function, 
we're setting not only the textbox value but also the filtered items. This means that before 
the text value can be rendered, we have to wait for thousands of items to be rendered.

Even though these are two separate state updates (setFilter() and setItems()) 
they're batched and treated as a single state update. Likewise, when the rendering starts, 
React is making all the changes at once, which means that the CPU won't let the user 
interact with the textbox because it's fully utilized, rendering the long list of filter results. 
Ideally, we want to prioritize the textbox state update while letting the items render 
afterward. To put it another way, we want to deprioritize the item rendering, since  
it's expensive and the user isn't interacting with it directly.

This is where the startTransition() API comes in. Any state updates that take place 
within the function that's passed to startTransition() will be treated with lower 
priority than any state updates that happen outside of it. In our filtering example, we can 
fix the textbox responsiveness issue by moving the setItems() state change inside of 
startTransition().

Here's what our new onChange() event handler looks like:

function onChange(e) {

  setFilter(e.target.value);

  React.startTransition(() => {

    setItems(

      e.target.value === ""

        ? []

        : unfilteredItems.filter(

          item => item.name.includes(e.target.value)

        )

    );

  });

}



274     High-Performance State Updates

Note that we didn't have to make any changes to how the items state is updated – the 
same code is moved to a function that's passed to startTransition(). This tells React 
to only execute this state change after any other state changes are complete. In our case, 
this allows the textbox to update and render before the setItems() state change runs. 
If you run the example now, you'll see that the responsiveness of the textbox is no longer 
affected by how long it takes to render a long list of items.

Before this new API was introduced, you could achieve state update prioritizations via 
workarounds with setTimeout(). The main disadvantage of this approach is that the 
internal React scheduler knows nothing about your state updates and their priorities.  
For example, by using startTransitiion(), React can cancel the update entirely if 
the state changes again before completion or if the component is unmounted.

In real applications, it isn't simply a matter of prioritizing which state updates should run 
first. Rather, it's a combination of fetching data asynchronously while making sure that 
priorities are taken into account. In the final section of this chapter, we'll tie all of  
this together.

Handling asynchronous state updates
In this final section of the chapter, we'll look at the common scenario of fetching data 
asynchronously and setting render priorities. The key scenario that we want to address 
is making sure that users aren't interrupted from typing or any other interaction that 
requires immediate feedback. This requires both proper prioritization and handling 
asynchronous responses from the server. Let's start by looking at the React APIs that can 
potentially help with this scenario.

The startTransition() API can be used as a Hook. When we do this, we also get 
a Boolean value that we can check to see whether the transition is still pending. This is 
useful for showing the user that things are loading. Let's modify the example from the 
previous section to use an asynchronous data-fetching function for our items. We'll  
also use the useTransition() Hook and add loading behavior to the output of  
our component:

import * as React from "react";

 

let unfilteredItems = new Array(25000)

  .fill(null)

  .map((v, i) => ({ id: i, name: 'Item ${i}' }));

 

function filterItems(filter) {



Handling asynchronous state updates     275

  return new Promise(resolve => {

    setTimeout(() => {

      resolve(unfilteredItems.filter(

        item => item.name.includes(filter)));

    }, 1000);

  });

}

 

export default function AsyncUpdates() {

  let [isPending, startTransition] = React.useTransition();

  let [filter, setFilter] = React.useState("");

  let [items, setItems] = React.useState([]);

 

  async function onChange(e) {

    setFilter(e.target.value);

 

    startTransition(async () => {

      setItems(e.target.value === ""

        ? []

        : await filterItems(e.target.value)

      );

    });

  }

 

  return (...)

    

}

What this example shows is that once you start typing in the filter textbox, this will  
trigger the onChange() handler, which will call the filterItems() function. Since  
we're using the useTransition() Hook, we have an isPending value that we can 
use to show the user that something is happening in the background:

<div> 

  <div> 

    <input 

      type="text" 



276     High-Performance State Updates

      placeholder="Filter" 

      value={filter} 

      onChange={onChange} 

    /> 

  </div> 

  <div> 

    {isPending && <em>loading...</em>} 

    <ul> 

      {items.map(item => ( 

        <li key={item.id}>{item.name}</li> 

      ))} 

    </ul> 

  </div> 

</div>

Here's what the user will see when isPending is true:

Figure 13.5 – A loading indicator while a state transition is pending

However, there's a slight problem with our approach. You might have noticed the loading 
message flash briefly when typing into the textbox. But then, you probably had a longer 
period where the items still weren't visible and the loading message disappeared. What's 
happening here? Well, the isPending value that comes from the useTransition() 
Hook can be misleading. We've designed our component in such a way that isPending 
will be true in the following situations:

• If the filterItems() function is still fetching our data

• If the setItems() state update is still performing the expensive render with lots 
of items

Unfortunately, this isn't how isPending works. The only time this value is true is 
before the function we pass to startTransition() is run. This is why you'll see the 
loading indicator flash briefly instead of being displayed throughout the data-fetching 
operation and the rendering operation. Remember, React schedules state updates 
internally, and by using startTransition(), we've scheduled setItems() to run 
after other state updates.



Handling asynchronous state updates     277

Another way to think about isPending is that it's true while high-priority updates  
are still running. We can call it highPriorityUpdatesPending to avoid confusion. 
That said, the uses of this value are narrow, but they do happen from time to time. For  
our more common case of fetching data and performing an expensive render, we need  
to think of another solution. Let's walk through our code and refactor it in such a way  
that the loading indicator is displayed while the fetch is happening and while the  
higher-priority updates happen. First, let's introduce a new loading state that defaults  
to false:

let [loading, setLoading] = React.useState(false);

let [filter, setFilter] = React.useState("");

let [items, setItems] = React.useState([]);

Now, inside of our onChange() handler, we can set this to true. Inside of our transition 
that runs after the data fetch completes, we set it back to false:

async function onChange(e) {

  setLoading(true);

  setFilter(e.target.value);

 

  React.startTransition(async () => {

    setItems(e.target.value === ""

      ? []

      : await filterItems(e.target.value)

    );

    setLoading(false);

  });

}

Now that we're keeping track of the loading state, we know exactly when all the heavy 
lifting is done and can hide the loading indicator. The final change is to base the indicator 
display on loading instead of isPending:

<div>

  {loading && <em>loading...</em>}

  <ul>

    {items.map(item => (

      <li key={item.id}>{item.name}</li>

    ))}



278     High-Performance State Updates

  </ul>

</div>

When you run the example with these changes, the results should be a lot more 
predictable. The setLoading() and setFilter() state updates are high-priority 
and execute immediately. The call to fetch data using filterItems() isn't made until 
the high-priority state updates are completed. Only after we have the data do we hide the 
loading indicator.

Summary
This chapter introduced you to the new APIs available in React 18 that help you achieve 
high-performance state updates. We started with a look at the changes to automatic state 
update batching in React 18 and how to best take advantage of them. We then explored 
the new startTransition() API and how it can be used to mark certain state 
updates as having a lower priority than those that require immediate feedback for user 
interactions. Finally, we looked at how state update prioritization can be combined  
with asynchronous data fetching.

In the next chapter, we'll go over what makes React Native a good choice for native 
application development.



Part 2 – React Native

In this part, we look at building mobile apps with the React Native library. We'll explore 
the basic API and some common approaches to help you develop solid and performant 
applications.

This part contains the following chapters:

• Chapter 14, Why React Native?

• Chapter 15, React Native under the Hood 

• Chapter 16, Kick-Starting React Native Projects 

• Chapter 17, Building Responsive Layouts with Flexbox 

• Chapter 18, Navigating between Screens

• Chapter 19, Rendering Item Lists

• Chapter 20, Showing Progress

• Chapter 21, Geolocation and Maps

• Chapter 22, Collecting User Input

• Chapter 23, Displaying Modal Screens

• Chapter 24, Responding to User Gestures

• Chapter 25, Using Animations

• Chapter 26, Controlling Image Display

• Chapter 27, Going Offline

• Chapter 28, Selecting Native UI Components Using NativeBase





14
Why React Native?

Facebook created React Native (RN) to build its mobile applications. It started as a 
hackathon project in the summer of 2013 inside Facebook and became open source 
for everyone in 2015. The motivation to release it was because React for the web was 
so successful. They thought that if React was such a good tool for user interface (UI) 
development, and you wanted a native application, why not just make React work with 
mobile OS UI elements! 

Therefore, in the same year, Facebook divided React into two independent libraries, React 
and ReactDOM, and since then, React has had to work only with interfaces and not care 
about where these elements will be rendered. The rendering part for the web was taken by 
ReactDOM, and for mobile platforms by RN. 

In this chapter, you'll learn about the motivations for using RN to build native mobile web 
applications. Here are the topics that we'll cover in this chapter:

• What is RN? 

• React and JSX are familiar

• The mobile browser experience

• Android and iOS – different yet the same

• The case for mobile web apps



282     Why React Native?

Technical requirements
There aren't any technical requirements for this chapter, since it is a brief conceptual 
introduction to RN.

What is RN?
RN is a JavaScript-based mobile app framework that allows you to create natively rendered 
mobile apps for iOS and Android. Frameworks allow you to create an application for 
multiple platforms using the same code base.

Earlier in this book, I introduced the notion of a render target—the thing that React 
components render to. The render target is abstract as far as the React programmer is 
concerned. For example, in React, the render target can be a string, or it could be the 
Document Object Model (DOM). Therefore, your components never directly interface 
with the render target, because you can never make assumptions about where the 
rendering is taking place.

A mobile platform has UI widget libraries that developers can leverage to build apps for 
that platform. On Android, developers implement Java apps, while on iOS, developers 
implement Swift apps. If you want a functional mobile app, you're going to have to pick 
one. However, you'll need to learn both languages, as supporting only one of two major 
platforms isn't realistic for success.

For React developers, this isn't a problem. The same React components that you build 
work all over the place, even on mobile browsers! Having to learn two more programming 
languages to build and ship a mobile application is costly and time-intensive. The solution 
to this is to introduce a new React platform that supports a new render Replace with 
target-native mobile UI widgets.

RN uses a technique that makes asynchronous calls to the underlying mobile OS, which 
calls the native widget APIs. There's a JavaScript engine, and the React API is mostly the 
same as React for the web. The difference is with the target; instead of a DOM, there are 
asynchronous API calls. The concept is visualized here:



What is RN?     283

Figure 14.1 – RN workflow

This oversimplifies everything that's happening under the hood, but the basic ideas are as 
follows:

• The same React library that's used on the web is used by RN and runs in 
JavaScriptCore.

• Messages that are sent to native platform APIs are asynchronous and batched for 
performance purposes.

• RN ships with components implemented for mobile platforms, instead of 
components that are HTML elements.

• RN represents a way to render components via iOS and Android APIs. It can 
be replaced using the same concept with tvOS, Android TV, Windows, macOS, 
and even Web again. This is possible by using forks and add-ons for RN. In this 
part of the book, we will learn how to write mobile apps for iOS and Android. 
More information about other possible platforms can be found here: https://
reactnative.dev/docs/out-of-tree-platforms.

Important Note
Much more on the history and mechanics of RN can be found at https://
engineering.fb.com/2015/03/26/android/react-
native-bringing-modern-web-techniques-to-mobile/.

In the next chapter, we'll take a closer look at each part of the RN architecture. Now that 
you know what RN is, it's time to look at what attracts React developers to it.

https://reactnative.dev/docs/out-of-tree-platforms
https://reactnative.dev/docs/out-of-tree-platforms
https://engineering.fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/
https://engineering.fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/
https://engineering.fb.com/2015/03/26/android/react-native-bringing-modern-web-techniques-to-mobile/


284     Why React Native?

React and JSX are familiar
Implementing a new render target for React is not straightforward. It's essentially the 
same thing as inventing a new DOM that runs on iOS and Android. So, why go through 
all the trouble?

First, there's a huge demand for mobile apps. The reason is that the mobile web browser 
user experience isn't as good as the native app experience. Second, JSX is a fantastic tool 
for building UIs. Rather than having to learn new technology, it's much easier to use what 
you know.

It's the latter point that's the most relevant to you. If you're reading this book, you're 
probably interested in using React for both web applications and native mobile 
applications. I can't put into words how valuable React is from a development-resource 
perspective. Instead of having a team that does web UIs, a team that does iOS, a team that 
does Android, and so on, there's just the UI team that understands React.

In the following section, you'll learn about the challenges of delivering good user 
experiences on mobile web browsers.

The mobile browser experience
Mobile browsers lack many capabilities of mobile applications. This is because browsers 
cannot replicate the same native platform widgets as HTML elements. You can try to do 
this, but it's often better to just use the native widget rather than try to replicate it. This is 
partly because this requires less maintenance effort on your part, and partly because using 
widgets that are native to the platform means that they're consistent with the rest of the 
platform. For example, if a date picker in your application looks different from all the date 
pickers the user interacts with on their phone, this isn't a good thing. Familiarity is key 
and using native platform widgets makes familiarity possible.

User interactions on mobile devices are fundamentally different from the interactions that 
you typically design for the web. Web applications assume the presence of a mouse, for 
example, and that the click event on a button is just one phase. However, things become 
more complicated when the user uses their fingers to interact with the screen. Mobile 
platforms have what's called a gesture system to deal with this. RN is a much better 
candidate for handling gestures than React for the web because it handles these types of 
things that you don't have to think about much in a web app.



Android and iOS – different yet the same     285

As the mobile platform is updated, you want the components of your app to stay 
updated too. This isn't a problem with RN because they're using actual components 
from the platform. Once again, consistency and familiarity are important for a good user 
experience. So, when the buttons in your app look and behave in the same way as the 
buttons in every other app on the device, your app feels like part of the device.

Now that you understand what makes developing UIs for mobile browsers difficult, it's 
time to look at how RN can bridge the gap between the different native platforms.

Android and iOS – different yet the same
When I first heard about RN, I automatically thought that it would be some cross-
platform solution that lets you write a single React application that will run natively 
on any device. Do yourself a favor and get out of this mindset before you start working 
with RN. iOS and Android are different on many fundamental levels. Even their user 
experience philosophies are different, so trying to write a single app that runs on both 
platforms is categorically misguided.

Besides, this is not the goal of RN. The goal is to learn once and write anywhere, not 
write once, run anywhere. In some cases, you'll want your app to take advantage of an 
iOS-specific widget or an Android-specific widget. This provides a better user experience 
for that platform and should trump the portability of a component library.

There are several areas that overlap between iOS and Android where the differences are 
trivial. The two widgets aim to accomplish the same thing for the user, in roughly the 
same way. In these cases, RN will handle the difference for you and provide a unified 
component. In the next section, we'll look at the case where mobile web apps that run in 
the browser might be a better fit for your users.

The case for mobile web apps
Not every one of your users is going to be willing to install an app, especially if you don't 
yet have a high download count and rating. The barrier to entry is much lower with web 
applications – the user only needs a browser.

Despite not being able to replicate everything that native platform UIs have to offer, you 
can still implement awesome things in a mobile web UI. Maybe having a good web UI is 
the first step toward getting those download counts and ratings up for your mobile app.



286     Why React Native?

Ideally, you should aim for the following:

• Standard web (laptop/desktop browsers) 

• Mobile web (phone/tablet browsers)

• Mobile apps (phone-/tablet-native platform)

Putting an equal amount of effort into all three of these spaces might not make much 
sense, as your users probably favor one area over another. Once you know, for example, 
that there's a high demand for your mobile app compared to the web versions, that's when 
you allocate more effort there.

Summary
In this chapter, you learned that RN is an effort by Facebook to reuse React to create 
native mobile applications. React and JSX are good at declaring UI components, and since 
there's now a huge demand for mobile applications, it makes sense to use what you already 
know for the web.

The reason there's such a demand for mobile applications over mobile browsers is that 
they just feel better. Web applications lack the ability to handle mobile gestures the same 
way apps can, and they generally don't feel like part of the mobile experience from a look 
and feel perspective.

RN isn't trying to implement a component library that lets you build a single React app 
that runs on any mobile platform. iOS and Android are fundamentally different in many 
important ways. Where there's overlap, RN does try to implement common components. 
Will you do away with mobile web apps now that we can build natively using React? This 
will probably never happen because the user can only install so many apps.

Now that you know what RN is and what its strengths are, you'll learn how RN works 
under the hood.

Further reading
You can find more information on RN at https://reactnative.dev/.

https://reactnative.dev/


15
React Native  

under the Hood
The previous chapter briefly touched on what React Native is and the differences that users 
experience between the Native UI and mobile browsers.

In this chapter, we will dig deeper into React Native as well as become well versed on how 
it performs on mobile devices and what we should attain before commencing any efforts 
with this framework. We will also look at what options we can execute for the native 
functionality of JavaScript and what restrictions we will come up against. 

So, in this chapter, we will cover the following topics:

• Exploring React Native architecture

• Explaining JavaScript and Native modules

• Exploring React Native components and APIs

Important Note
Meta is the company formerly known as Facebook before 2021. 



288     React Native under the Hood

Technical requirements
This chapter doesn't have any technical requirements since it is an introduction to  
React Native.

Exploring React Native architecture
Before understanding how React Native works, let's revise some history points about 
React architecture and the differences between web and native mobile apps. 

The state of web and mobile apps in the past
Meta released React in 2013 as a monolith tool for creating apps using a component 
approach and a virtual DOM. It gave us the opportunity to develop web applications 
without thinking about browser processes, such as how it parses JS code, and creates the 
DOM, and layers and rendering. We just had to create interfaces using state and props for 
data and CSS for styling, fetch data from the backend, save it in local storage, and so on. 
React, together with browsers, allowed us to create a performance application in less time. 
At that time, the architecture of React looked like this:

Figure 15.1 – React architecture in 2013

The new declarative approach to developing interfaces became more favorable because of 
the fast development and the low threshold for novices. Additionally, if your backend is 
built with Node.js, you can benefit from the ease of support and development of the entire 
project with just one developer.

At the same time, mobile apps require more complex techniques to create the apps. For 
Android and iOS apps, companies should manage three different teams with unparalleled 
experience to support three major ecosystems:

• Web developers should know HTML, CSS, JS, and React.

• Java or Kotlin SDK experience is required for Android developers.

• The iOS developer should be familiar with Objective-C or Swift and CocoaPods.



Exploring React Native architecture     289

Every step of developing an application from prototyping to release requires unique skills. 
Web and mobile app development before cross-platform solutions looked like this:

Figure 15.2 – The state of web and mobile apps 

Even if a corporation carries out a basic application, it can be faced with some major 
issues:

• Each of these teams implements the same business logic.

• There is no alternative to sharing code between teams.

• It is not conceivable to share resources between teams (Android developers can't 
write code for iOS applications and vice versa).

As a result of these significant issues, we likewise have complications with having more 
testing resources, since there are more places to create bugs. The speed of development 
is also diverse because mobile apps take more time to deliver the same features. This all 
accumulates into a large, costly problem for the companies involved. Many of them came 
up with ideas on how to write a single code base or reuse a current one that can be used in 
multiple ecosystems. The simplest method would be to wrap a web app to mobiles using a 
browser, but this has limitations in handling touch and gestures (we explored this more in 
the previous chapter).

Following these issues, Meta started investing resources in developing a cross-platform 
framework and released the React Native library in 2015. Also, they divided React into 
two separate libraries. For rendering our app in the browser, we should now use the 
ReactDOM library. 



290     React Native under the Hood

In Figure 15.3, we can see how React works together with ReactDOM and React Native to 
render our apps:

Figure 15.3 – React and React Native flow

Now, React only works for managing components tree. This approach incapsulates any 
rendering APIs and hides a lot of platform-specific methods from us. We can concentrate 
solely on developing interfaces and cease speculating about how they would be rendered. 
That's why React is frequently claimed as a renderer-agnostic library. And for web apps, 
we use ReactDOM, which forms elements and applies them right to the browser DOM. 
For mobile apps, React Native renders our interface directly on the mobile screen.

But how does React Native replace the whole browser API and allow us to write familiar 
code and run it on mobiles? 

React Native current architecture
The React Native library allows you to create native applications with React and JS by 
utilizing native building blocks. For instance, the <Image/> component represents two 
other native components, ImageView on Android and UIImageView on iOS. This is 
viable because of the architecture of React Native, which includes two dedicated layers, 
represented by JS and Native threads:



Exploring React Native architecture     291

Figure 15.4 – React Native threads

In the next sections, we will explore each thread and see how they can communicate, 
ensuring that JS is integrated into the native code.

JS part of React Native
As the browser executes JS through a JS virtual machine such as V8, SpiderMonkey, and 
others, React Native also contains a JS virtual machine. There, our JS code is executed, API 
calls are made, touch events are processed, and many other processes occur.

Initially, React Native only supported Apple's JSCore virtual machine. With iOS devices, 
this virtual machine is built-in and available out of the box. In the case of Android, JSCore 
is bundled with React Native. This increases the size of the app. Therefore, the Hello World 
application of React Native would consume approximately 3 to 4 MB on Android. From 
the 0.60 version, React Native started using the new Hermes virtual machine, and from 
0.64, for iOS as well. 

The Hermes virtual machine introduced a lot of improvements for both platforms:

• Improvement of the app's start up time

• Reduced size of the downloaded app

• Decreased memory usage

• Built-in Proxy support, enabling the use of react-native-firebase and mobx

Note
More information about Hermes can be found here:  
https://reactnative.dev/docs/hermes.

https://reactnative.dev/docs/hermes


292     React Native under the Hood

JS in React Native, as in browsers, is implemented in a single thread. That thread is 
responsible for executing JS. The business logic we are writing is carried out in this thread. 
It means all our common code, such as components, state, hooks, and REST API calls, will 
be handled in the JS part of the app.

Our entire application structure is packaged into a single file using the Metro bundler. It 
is also responsible for transpiling JSX code into JS. If we want to use TypeScript, Babel can 
support it. It works right out of the box, so there's no need to configure anything. In future 
chapters, we will learn how to start a ready-to-work project.

The Native part
Here is where native code is executed. React Native implements this part in native code 
for each platform, Java for Android and Objective-C for iOS. The Native layer is mainly 
composed of Native modules that communicate with the Android or iOS SDK and are 
supposed to provide native functionality to our apps using a unified API. If we want 
to display an alert dialog, for instance, the Native layer presents a unified API for both 
platforms, which we will call from the JS thread using the single API.

This thread interacts with the JS thread when you need to update the interface or call the 
native functions. There are two parts to this thread:

• The first, Native UI, is responsible for using native interface shaping tools. 

• The second is Native Modules, which allow applications to access specific 
capabilities of the platform on which they run.

Communication between threads
As previously mentioned, each React Native layer implements a unique API for 
every native and UI feature in the application. The communication between layers is 
accomplished through the bridge. The module is written in C ++ and is based on an 
asynchronous queue. When the bridge receives data from one of the parties, it serializes 
it, converts it to a JSON string, and passes it through the queue. After arriving at its 
destination, the data is deserialized.

As shown in the alert example, the native part accepts the call from JS and displays the 
dialog. In reality, the JS method, upon being invoked, sends a message to the bridge, and 
upon receiving this message, the native part executes the instruction. Native messages 
may also be forwarded to the JS layer. On clicking the button, for example, the Native layer 
sends a message to the JS one with an onClick event. It can be imagined as follows:



Exploring React Native architecture     293

Figure 15.5 – The bridge

JS and the Native part of this architecture, together with the bridge, resemble the server 
and client sides of web applications, where they communicate through the REST APIs. 
It does not matter to us in what language or how the Native part is implemented, since 
the code in JS is isolated. We simply send messages and receive responses from the 
bridge. This is both a significant advantage and a great disadvantage – first, it allows us to 
implement cross-platform apps with one code base, but it can be a bottleneck in our app 
when we have a lot of business logic in it. All events and actions in the application rely 
on asynchronous JSON bridged messages. Each party sends these messages, expecting 
(which is not guaranteed) that sometime in the future, a response will be received from 
these messages. With such a data exchange scheme, there is a risk of overloading the 
communication channel.

Here is an example commonly used to illustrate how such a communication scheme 
can cause performance problems for an application. Suppose a user of an application 
is scrolling through a huge list. When the onScroll event occurs in the native 
environment, information is passed asynchronously to the JS environment. But native 
mechanisms do not wait until the JS part of the application does its job and reports to 
them about it. Because of this, there is a delay in the appearance of empty space in the 
list before displaying its contents. We can avoid a lot of usual problems using special 
approaches, such as using paginated FlatList on limitless lists. We will look at the main 
tricks in future chapters, but it is important to remember the limitations of the current 
architecture. 



294     React Native under the Hood

Styling 
As we already understand the concept of cross-platform, we can assume that each 
platform has its own technologies for creating and styling interfaces. In order to unify this, 
React Native has a CSS-in-JS syntax for styling the app. Using Flexbox, components are 
able to specify the layout of their children. This ensures a consistent layout across different 
screen sizes. It is usually similar to how CSS works on the web, except the names are 
written in camel case, such as backgroundColor rather than background-color.

In JS, it is a plain object with style properties, and in native code, it is a separate thread 
called Shadow. It recalculates the layout of the application using the Yoga engine, which 
is developed by Meta. In this thread, the calculations related to the formation of the 
application interface are performed. The results of these calculations are sent to the Native 
UI thread responsible for displaying the interface.

With all the parts coming together, the final architecture of React Native is illustrated in 
this figure:

Figure 15.6 – The current React Native architecture

The current architecture of React Native addresses major business problems – it is feasible 
to develop web and mobile applications within the same team, it is possible to reuse a 
large amount of business logic code, and even developers with no previous experience in 
mobile development can easily use React Native.

However, the current architecture is not ideal. Over the past few years, the React Native 
team has been working on a bridge bottleneck solution. The new architecture is designed 
to address this issue.



Exploring React Native architecture     295

React Native future architecture
A series of significant improvements have been introduced with React Native that will 
streamline the development process and make it more convenient for everyone.

React Native re-architecture will gradually deprecate the bridge and replace it with a new 
component called the JS Interface (JSI). In addition, this element will enable new Fabric 
and TurboModules.

The use of the JSI opens up many possibilities for improvement. In Figure 15.7, you can 
see the major updates to the React Native architecture:

Figure 15.7 – The new React Native architecture

The first change is that the JS bundle is no longer dependent on a JavaScriptCore virtual 
machine. It is actually part of the current architecture because now we can enable the new 
Hermes JS engine on both platforms. In other words, the JSC engine can now easily be 
replaced with something else, quite possibly with better performance.

The second improvement is what lies at the heart of the new React Native architecture.  
The JSI allows JS to call native methods and functions directly. This was made possible by 
the HostObject C++ object, which stores references to native methods and properties. 
HostObject in JS binds native methods and props to a global object, so direct calls to JS 
functions will invoke Java or Objective-C APIs.

Another benefit of the new React Native is the ability to fully control native modules 
called TurboModules. Rather than starting them all at once, the application will only use 
them when they are needed.



296     React Native under the Hood

Fabric is the new UI manager, called Renderer in Figure 15.7, which is expected to 
transform the rendering layer by eliminating the need for bridges. It is now possible to 
create Shadow Tree directly in C++, which brings speed and reduces the number of steps 
to render a particular element.

In order to ensure smooth communication between React Native and Native parts, Meta is 
currently working on a tool called CodeGen. It is expected to automate the compatibility 
of strongly typed native code and dynamic typed JS to make them synchronized. To 
achieve this, the React Native team has developed a Codegen tool that will define the 
interface and types needed by TurboModules and Fabric. With this upgrade, there will be 
no need to duplicate the code for both threads, thereby enabling smooth synchronization.

The new architecture could open the way for the development of new designs that are 
capable of things that were not available in old RN applications. The fact is that now we 
have at our disposal the power of C++. This means that with React Native, it will now be 
possible to create many more varieties of applications than before.

Here, we discussed the fundamentals that explain how React Native works. It is important 
to understand the architecture of the tools we use. Having this knowledge allows you to 
avoid mistakes during planning and prototyping, as well as to maximize the potential of 
your future applications. In the following section, we will briefly explore how to extend 
React Native with modules. 

Explaining JS and Native modules
React Native does not cover all native capabilities out of the box. It only provides the most 
common features that you will need in the basic application. Also, the Meta team itself has 
recently moved some functions into its own modules in an effort to reduce the size of the 
overall application. For example, AsyncStorage for storing data on the device was moved 
into a separate package and must be installed if you plan to use it.

However, React Native is an extendable framework. We can add our own native modules 
and expose the JS API using the same bridge or JSI. Our focus in this book will not be 
on developing native modules, since we need prior experience with Objective-C or Java. 
And it is not necessary, since the React community has created an enormous number 
of ready-to-use modules for all cases. We will learn how to install native packages in 
subsequent chapters.



Explaining JS and Native modules     297

The following are a few of the most popular native modules, without which most projects 
couldn't prosper.

React Navigation
React Navigation is one of the best React Native navigation libraries for creating 
navigation menus and screens for your app. It's a good tool for beginners because it's 
stable, fast, and less buggy. The documentation is really good, and it provides examples for 
all use cases. 

We'll learn more about React Navigation in Chapter 16, Kick-Starting React Native 
Projects.

UI component libraries
The UI component libraries enable you to quickly assemble the application layout 
without wasting time designing and coding atomic elements. In addition, such libraries 
are often more stable and consistent, which leads to better results both in terms of UI  
and UX. 

These are some of the most popular libraries (we will explore a few of them in greater 
detail in future chapters):

• NativeBase – this is a component library that enables developers to build universal 
design systems. It is built on top of React Native, allowing you to develop apps for 
Android, iOS, and the web.

• React Native Element – this provides an all-in-one UI kit for creating apps in  
React Native.

• UI Kitten – this is a React Native implementation of the Eva Design System. The 
framework contains a set of general-purpose UI components styled in a similar way.

• React-native-paper – this is a collection of customizable and production-ready 
components for React Native, following Google's Material Design guidelines.

Splash screen
Adding a splash screen to your mobile app can be a tedious task, since this screen should 
appear before the JS thread begins. The react-native-bootsplash package allows 
you to create a fancy splash screen from the command line. The package will do all the 
work for you if you provide it with an image and a background color.



298     React Native under the Hood

Icons
Icons are an integral part of the visualization of interfaces. Different approaches are used 
to display icons and other vector graphics on each platform. React Native unifies this for 
us but only with additional libraries such as react-native-vector-icons. Using 
react-native-svg, you can also render SVG into a React Native app.

Handling errors
Usually, when we develop a web application, we are able to handle errors without any 
difficulty, since they do not reach beyond the scope of JS. As a result, we have more 
control and stability in the event of critical bugs because if the application does not start at 
all, we can easily see the reason, and open the logs in the DevTools.

There are even more complications with React Native applications, since we have a 
Native component, in addition to the JS of the environment, which can also cause errors 
in application execution. Therefore, when an error occurs, our application will close 
immediately. It will be hard for us to figure out why.

React-native-exception-handler provides a simple technique for handling native 
errors and JS errors and providing feedback. To make it work, you need to install and link 
the module. Then, register your global handler for JS and native exceptions, as follows:

import { setJSExceptionHandler, setNativeExceptionHandler }

  from "react-native-exception-handler";

setJSExceptionHandler((error, isFatal) => {

  // …

});

const exceptionhandler = (exceptionString) => {

  // your exception handler code here

};

setNativeExceptionHandler(

  exceptionhandler,

  forceAppQuit,

  executeDefaultHandler

);



Explaining JS and Native modules     299

The setJSExceptionHandler and setNativeExceptionHandler methods 
are custom global error handlers. If a crash occurs, you can show an error message, use 
Google Analytics to track it, or use a custom API to inform the development team.

Push notifications
We live in a world where notifications are integral. We open dozens of apps every day just 
because we receive notifications from them.

Push notifications are often connected to a gateway provider that sends messages to 
users' devices. The following libraries can be used to add push notifications to your 
application:

• react-native-onesignal – a OneSignal provider for push notifications, 
email, and SMS

• react-native-firebase – Google Firebase

• @aws-amplify/pushnotification – AWS Amplify

Over the air updates
As part of the normal application update, when you build a new version and upload it 
to the app store, you can replace the JS package in Over the Air (OTA). As the bundle 
contains only one file, updating it is not complicated. You can update your application as 
often as you like without waiting for Apple or Google to verify your application. That is 
the real power of React Native.

We can use it due to the CodePush service made by Microsoft. You can find more 
information about CodePush here: https://docs.microsoft.com/en-gb/
appcenter/distribution/codepush/.

JS libraries
As for the JS (non-native) modules, we have almost no restrictions, except for libraries 
that use unsupported APIs, such as the DOM and Node.js. We can use any packages 
written in JS – Moment, Lodash, Axios, Redux, MobX, and a thousand others.

We have barely scratched the surface of the possibilities for extending the application with 
various modules in this section. Because React Native has thousands of libraries, it makes 
little sense to go through them all. In order to find the required package you need, there is 
a project called React Native Directory that has collected and rated a huge list of packages. 
The project can be found here: https://reactnative.directory/.

https://docs.microsoft.com/en-gb/appcenter/distribution/codepush/
https://docs.microsoft.com/en-gb/appcenter/distribution/codepush/
https://reactnative.directory/


300     React Native under the Hood

We now know how React Native is organized internally and how we can expand  
its functionality. Our next step is to examine what API and components this  
framework offers.

Exploring React Native components and APIs
The main modules and components will be discussed in detail in each new chapter, but for 
now, let's familiarize ourselves with them. A number of core components are available in 
the React Native framework for use in the app.

Almost all apps use at least one of these components. These are the fundamental building 
blocks of React Native apps:

• View: The main brick of any app. This is the equivalent of <div>, and on mobiles, 
it is represented as UIView and android.view. Any <View/> component can 
nest inside another <View/> component and can have zero or many children of 
any type.

• Text: This is a React component for displaying text. As with the View, <Text/> 
supports nesting, styling, and touch handling.

• Image: This displays images from a variety of sources, such as network images, 
static resources, temporary local images, and images from the camera roll.

• TextInput: This allows users to input text using a keyboard. Props enable a variety 
of features that can be configured, including auto-correction, auto-capitalization, 
placeholder text, and different keyboard types, such as a numeric keypad.

• ScrollView: This component is a generic container for scrolling multiple views 
and components. There can be both vertical and horizontal scrolling (by adjusting 
the horizontal property) for the scrollable items. If you need to render a huge or 
limitless list of items, you should use FlatList. This supports a set of special 
props such as Pull to Refresh and Scroll loading (lazy-loading). If your list needs 
to be divided into sections, then there is also a special component for this – 
SectionList.

• Button: React Native has advanced components that can be used to create custom 
buttons and other touchable components, such as TouchableHighlight, 
TouchableOpacity, and TouchableWithoutFeedback.



Summary     301

• Pressable: This gives more precise touch control with React Native version 0.63. 
Basically, it is a wrapper for detecting touch. It is a well-defined component that 
can be used instead of touchable components such as TouchableOpacity and 
Button.

• Switch: This component resembles a checkbox; however, it is presented in the form 
of a switch, which we are familiar with on mobile devices.

In the following chapters, we will delve deeper into common components and their 
properties, as well as explore new components that are rarely used. We'll also look at code 
examples that show how to combine components to create application interfaces. 

Note
Detailed information about all the available components can be found at 
https://reactnative.dev/docs/components-and-apis.

Summary
In this chapter, we looked at the history of the cross-platform framework React Native 
and what problems it solved for companies. With it, companies can use a single universal 
developer team to build one business logic and apply it on all platforms simultaneously, 
thus saving a lot of time and money. Considering, in detail, how React Native works under 
the hood allows us to identify potential issues at the planning stage and resolve them.

Additionally, we started to examine React Native's basic components, and with each new 
chapter, we will learn more about them.

In the next chapter, you'll learn how to get started with new React Native projects.

https://reactnative.dev/docs/components-and-apis




16
Kick-Starting React 

Native Projects
In this chapter, you'll get up and running with React Native. Thankfully, much of the 
boilerplate code involved with the creation of a new project is handled for you by the 
command-line tools. We will look at the different CLI tools for React Native apps and 
create our first simple app that you will be able to upload and start right on your device.

In this chapter, we'll cover the following topics:

• Exploring React Native CLI tools

• Installing and using the Expo command-line tool

• Viewing your app on your phone

• Viewing your app on Expo Snack

Technical requirements
You can find the code files of this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter16/my-project.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter16/my-project
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter16/my-project
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter16/my-project


304     Kick-Starting React Native Projects

Exploring React Native CLI tools
To simplify and speed up the development process, we use special command-line tools 
that install blank projects with application templates, dependencies, and other tools for 
starting, building, and testing. There are two major CLI approaches we can apply:

• React Native CLI

• Expo CLI

React Native CLI is a tool created by Meta. The project is based on the original CLI tool 
and has three parts: native iOS and Android projects and a React Native JavaScript app. To 
get started, you will need either Xcode or Android Studio. One of the main advantages 
of React Native CLI is its flexibility. You can connect any library with a native module 
or directly write code to the native parts. However, all of this requires at least a basic 
understanding of mobile development.

Expo CLI is just one part of the big ecosystem for developing React Native apps. Expo is a 
framework and a platform for universal React applications. Built around React Native and 
native platforms, it allows you to build, deploy, test, and rapidly iterate on iOS, Android, 
and web apps from a single JavaScript/TypeScript code base. 

The Expo framework provides the following:

• Expo CLI: A command-line tool that can create blank projects, then run, build, and 
update them.

• Expo Go: An Android and iOS app for running your projects directly on your 
device (without having to compile and sign native apps) and sharing them across 
your entire team.

• Expo Snack: The online playground that allows you to develop React Native apps in 
the browser.

• Expo Application Services (EAS): A set of deeply integrated cloud services for 
Expo and React Native applications. Apps can be compiled, signed, and uploaded to 
the stores using EAS in the cloud.

Expo comes with a huge number of ready-to-use features, but it also imposes limitations 
on projects. We cannot manually connect custom libraries with native modules since we 
do not have direct access to the native part of our app. Expo provides us with the most 
popular native libraries that we can use with Expo CLI. Expo also includes a particular 
version of React Native, and to update it we must wait until Expo CLI is compatible with 
the new React Native version.



Installing and using the Expo command-line tool     305

Since Expo is useful for new developers without mobile development skills, we will use it 
to set up our first React Native project.

Installing and using the Expo command-line 
tool
The Expo command-line tool handles the creation of all of the scaffolding that your 
project needs to run a basic React Native application. Additionally, Expo has a couple of 
other tools that make running our app during development nice and straightforward. But 
first, we need to install the Expo command-line tool:

1. In your command-line terminal, type in the following command:

npm install -g expo-cli

2. Once this installation is complete, you'll have a new expo command available on 
your system. To start a new project, we can run the expo init command,  
as follows:

expo init my-project

3. In this case, the name of the project that will be created is my-project. Next, the 
process will ask you about your project. You should see something like this in your 
terminal:

? Choose a template: ' - Use arrow-keys. Return to 
submit.

    ----- Managed workflow -----

   blank - a minimal app as clean as an empty canvas

    blank (TypeScript) - same as blank but with

    TypeScript configuration

    tabs (TypeScript) - several example screens and

    tabs using react-navigation and TypeScript

    ----- Bare workflow -----

    Minimal - bare and minimal, just the essentials to

    get you started

We'll choose the blank Managed workflow (the default). Managed means that, 
later on, we can use Expo tools and services during development that will enable 
us to focus more on the application than on the complexities of developing for 
different mobile devices. 



306     Kick-Starting React Native Projects

4. After installing all the dependencies, Expo will finish creating your project for you:

Extracting project files... Customizing project...

Installing dependencies...

 Your project is ready!

Now that we have created a blank React Native project, you'll learn how to launch the 
Expo development server on your computer and view the app on one of your devices.

Viewing your app on your phone
In order to view your React Native project on your device during development, we need to 
start the Expo development server:

1. In the command-line terminal, make sure that you're in the project directory:

cd path/to/my-project

2. Once you're in my-project, you can run the following command to start the 
development server:

npm start

3. This will show you some information about the developer server in the terminal:

Starting project at /Users/sakhniuk/React-and-React-

Native-4th-Edition-/Chapter16/my-project

Developer tools running on http://localhost:19002

Starting Metro Bundler

' Metro waiting on exp://192.168.1.233:19000

' Scan the QR code above with Expo Go (Android) or the

  Camera app (iOS)

4. It will also open a browser tab with the Expo developer tools for managing where 
the application is run, viewing logs, and other miscellaneous activities. Figure 16.1 
shows what the Expo developer tools look like:



Viewing your app on your phone     307

Figure 16.1 – Expo developer tools
On the right side of the screen is where you'll find logs that come from the bundler, 
the process that bundles your React Native code and sends it to an emulator or a 
physical device. In the bottom-left corner of the page is a QR code that you can scan 
with the camera on your device. This is how we deliver bundled React Native code 
to physical devices. If your device doesn't have a camera, you can click on the Send 
link with email... button.



308     Kick-Starting React Native Projects

5. In order to view the app on our devices, we need to install the Expo Go app. You 
can find it in the Play Store on Android devices or in the App Store on iOS devices. 
Once you have Expo installed, you can click on the Scan QR Code button or use the 
native camera on iOS devices:

Figure 16.2 – Expo Go app
If you logged in to Expo Go and Expo CLI, you will be able to run the app without 
the QR code. In Figure 16.2, you can see the opened development session for 
my-project; if you click on it, the app will be run.

6. Once the QR code is scanned or your opened session on Expo Go is clicked, you'll 
notice new logs and a new connected device in the Expo UI:



Viewing your app on your phone     309

Figure 16.3 – Connected device and JavaScript build bundled

7. If you see your device listed on the left side of this screen and the logs on the right 
side, that indicates a JavaScript bundle has been built. You can return to your device 
and you should see your app running:

Figure 16.4 – Opened app in Expo Go



310     Kick-Starting React Native Projects

At this point, you're ready to start developing your app. In fact, you can repeat this same 
process if you have several physical devices that you want to work with at the same time. 
The best part of this Expo setup is that we get live reloading for free on our physical 
devices as we make code updates on our computer. Let's try this now to make sure that 
everything works as expected:

1. Let's open up the App.js file inside the my-project folder:

import { StatusBar } from 'expo-status-bar';

import { StyleSheet, Text, View } from 'react-native';

export default function App() {

  return (

    <View style={styles.container}>

      <Text>Open up App.js to start working on your

        app!</Text>

      <StatusBar style="auto" />

    </View>

  );

}

const styles = StyleSheet.create({

  container: {

    flex: 1,

    backgroundColor: '#fff',

    alignItems: 'center',

    justifyContent: 'center',

  },

});



Viewing your app on your phone     311

2. Now let's make a small style change to make the font bold:

import { StatusBar } from "expo-status-bar";

import { StyleSheet, Text, View } from "react-native";

export default function App() {

  return (

    <View style={styles.container}>

      <Text style={styles.text}>

        Open up App.js to start working on your app!

      </Text>

      <StatusBar style="auto" />

    </View>

  );

}

const styles = StyleSheet.create({

  container: {

    flex: 1,

    backgroundColor: "#fff",

    alignItems: "center",

    justifyContent: "center",

  },

  text: {

    fontWeight: "bold",

  },

});



312     Kick-Starting React Native Projects

3. We've added a new style called text and applied it to the Text component. If you 
save the file and return to your device, you'll immediately see the change applied:

Figure 16.5 – App with updates to style of text

Now that you're able to run your apps locally on your physical devices, it's time to look at 
running your React Native apps on a variety of virtual device emulators using the Expo 
Snack service.

Viewing your app on Expo Snack
The Snack service provided by Expo is a playground for your React Native code. It lets 
you organize your React Native project files just like you would locally on your computer. 
If you end up putting something together that is worth building on, you can export your 
Snack. You can also create an Expo account and save your Snacks to keep working on 
them or to share them with others. You can find Expo Snack by the link: https://
snack.expo.dev/.

https://snack.expo.dev/
https://snack.expo.dev/


Viewing your app on Expo Snack     313

We can create a React Native app in Expo Snack from scratch, and it will be stored in an 
Expo account, or we can import existing projects from a Git repository. The nice thing 
about importing a repository is that when you push changes to Git, your Snack will also be 
updated. The Git URL for the example that we've worked on in this chapter looks like this:  
https://github.com/PacktPublishing/React-and-React-Native-4th-
Edition-/tree/main/Chapter16/my-project.

We can click on the Import git repository button in the Snack project menu and paste in 
this URL:

Figure 16.6 – Importing a Git repository to Expo Snack

Once the repository is imported and the Snack is saved, you'll get an updated Snack URL 
that reflects the Git repository location. For example, the Snack URL from this chapter 
looks like this: https://snack.expo.dev/@sakhnyuk/2a2429.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/tree/main/Chapter16/my-project
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/tree/main/Chapter16/my-project
mailto:https://snack.expo.dev/%40sakhnyuk/2a2429?subject=


314     Kick-Starting React Native Projects

If you open this URL, the Snack interface will load and you can make changes to the code 
to test things out before running them. The main advantage of Snack is the ability to easily 
run them on virtualized devices. The controls to run your app on a virtual device can be 
found on the right side of the UI and look like this:

Figure 16.7 – Expo Snack emulator

The top control above the image of the phone controls which device type to emulate: 
Android, iOS, or Web. The Tap to play button will launch the selected virtual device. 
The Run on your device button allows you to run the app in Expo Go using the QR code 
approach.



Viewing your app on Expo Snack     315

Here's what our app looks like on a virtual iOS device: 

Figure 16.8 – Expo Snack iOS emulator



316     Kick-Starting React Native Projects

And here's what our app looks like on a virtual Android device:

Figure 16.9 – Expo Snack Android emulator

This app only displays text and applies some styles to it, so it looks pretty much identical 
on different platforms. As we make our way through the React Native chapters in this 
book, you'll see how useful a tool such as Snack is for making comparisons between the 
two platforms to understand the difference between them.



Summary     317

Summary
In this chapter, you learned how to kick-start a React Native project using the Expo 
command-line tool. First, you learned how to install the Expo tool. Then, you learned how 
to initialize a new React Native project. Next, you started the Expo development server 
and learned about the various parts of the development server UI.

In particular, you learned how to connect the development server with the Expo app on 
any device that you want to test your app on. Expo also has the Snack service, which lets 
us experiment with snippets of code or entire Git repositories. You learned how to import 
a repository and run it on virtual iOS and Android devices.

In the next chapter, we'll look at how to build responsive layouts in our React Native apps.





17
Building Responsive 

Layouts with 
Flexbox

In this chapter, you'll get a feel for what it's like to lay components out on the screen of 
mobile devices. Thankfully, React Native polyfills many CSS properties that you might 
have used in the past to implement page layouts in web applications. 

Before you dive into implementing layouts, you'll get a brief introduction to Flexbox  
and using CSS style properties in React Native apps – it's not quite what you're used  
to with regular CSS style sheets. Then, you'll implement several React Native layouts  
using Flexbox.

Here's the list of topics that we'll cover in this chapter:

• Introducing Flexbox

• Introducing React Native styles

• Using the Styled Components library

• Building Flexbox layouts



320     Building Responsive Layouts with Flexbox

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/React-and-React-Native-4th-Edition/tree/
main/Chapter17.

Introducing Flexbox
Before the flexible box layout model was introduced to CSS, the various approaches  
used to build layouts felt hacky and were prone to errors. Flexbox fixes this by abstracting 
many of the properties that you would normally have to provide in order to make the 
layout work.

In essence, the Flexbox model is exactly what it sounds like: a box model that's flexible. 
That's the beauty of Flexbox – its simplicity. You have a box that acts as a container, and 
you have child elements within that box. Both the container and the child elements are 
flexible in how they're rendered on the screen, as illustrated here:

Figure 17.1 – Flexbox elements

Flexbox containers have a direction, either Column (up/down) or Row (left/right). This 
actually confused me when I was first learning Flexbox; my brain refused to believe 
that rows move from left to right. Rows stack on top of one another! The key thing to 
remember is that it's the direction that the box flexes, not the direction that boxes are 
placed on the screen.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter17
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter17
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter17


Introducing React Native styles     321

Important Note
For a more in-depth treatment of Flexbox concepts, refer to https://css-
tricks.com/snippets/css/a-guide-to-Flexbox.

Now that we've covered the basics of Flexbox layouts at a high level, it's time to learn how 
styles in React Native applications work.

Introducing React Native styles
It's time to implement your first React Native app, beyond the boilerplate that's generated 
by create-react-native-app. I want to make sure that you feel comfortable using 
React Native style sheets before you start implementing Flexbox layouts in the next 
section.

Here's what a React Native style sheet looks like:

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

  container: {

    flex: 1,

    justifyContent: "center",

    alignItems: "center",

    backgroundColor: "ghostwhite",

    ...Platform.select({

      ios: { paddingTop: 20 },

      android: { paddingTop: StatusBar.currentHeight },

    }),

  },

  box: {

    width: 100,

    height: 100,

    justifyContent: "center",

    alignItems: "center",

    backgroundColor: "lightgray",

  },

  boxText: {

    color: "darkslategray",

    fontWeight: "bold",

https://css-tricks.com/snippets/css/a-guide-to-Flexbox
https://css-tricks.com/snippets/css/a-guide-to-Flexbox


322     Building Responsive Layouts with Flexbox

  },

});

This is a JavaScript module, not a CSS module. If you want to declare React Native styles, 
you need to use plain objects. Then, you call StyleSheet.create() and export this 
from the style module. Note that style names are pretty similar to the web CSS, except that 
they are written in camel case; for example, justifyContent rather than justify-
content.

As you can see, this style sheet has three styles: container, box, and boxText. Within 
the container style, there's a call to Platform.select():

...Platform.select({

ios: { paddingTop: 20 },

android: { paddingTop: StatusBar.currentHeight }

})

This function will return different styles based on the platform of the mobile device. 
Here, you're handling the top padding of the top-level container view. You'll probably use 
this code in most of your apps to make sure that your React components don't render 
underneath the status bar of the device. Depending on the platform, the padding will 
require different values. If it's iOS, paddingTop is 20. If it's Android, paddingTop will 
be the value of StatusBar.currentHeight.

Important Note
The preceding Platform.select() code is an example of a case where 
you need to implement a workaround for differences in the platform. For 
example, if StatusBar.currentHeight was available on iOS and 
Android, you wouldn't need to call Platform.select().

Let's see how these styles are imported and applied to React Native components:

import React from "react";

import { Text, View } from "react-native";

import styles from "./styles";

export default function App() {

  return (

    <View style={styles.container}>

      <View style={styles.box}>

        <Text style={styles.boxText}>I'm in a box</Text>



Introducing React Native styles     323

      </View>

    </View>

  );

}

The styles are assigned to each component via the style property. You're trying to render 
a box with some text in the middle of the screen. Let's make sure that this looks as we 
expect it to.

Figure 17.2 – Box in a middle of a screen

We have found out how to apply styles to components using a built-in module, but there is 
more than one way to define styles. We also have the option to write CSS in React Native. 
Let's quickly go through it.



324     Building Responsive Layouts with Flexbox

Using the Styled Components library
Styled components is a CSS-in-JS library that styles React Native components using plain 
CSS. With this approach, you don't need to define style classes via objects and provide 
style props. The CSS itself is determined via tagged template literals provided by styled-
components. 

To install styled-components, run this command in your project:

npm install --save styled-components

Let's try to rewrite components from the Introducing React Native styles section. Here is 
what our Box component will look like:

import styled from "styled-components/native";

const Box = styled.View'

  width: 100px;

  height: 100px;

  justify-content: center;

  align-items: center;

  background-color: lightgray;

';

const BoxText = styled.Text'

  color: darkslategray;

  font-weight: bold;

';

In this example, we've got two components, Box and BoxText. Now we can use them as 
usual, but without any other additional styling props:

const App = () => {

  return (

    <Box>

      <BoxText>I'm in a box</BoxText>

    </Box>

  );

};



Building Flexbox layouts     325

In further sections, I will use StyleSheet objects, but if you want to learn more about 
styled-components, you can read more here: https://styled-components.
com/.

Perfect! Now that you have an idea of how to set styles on React Native elements, it's time 
to start creating some screen layouts.

Building Flexbox layouts
In this section, you'll learn about several potential layouts that you can use in your React 
Native applications. I want to stay away from the idea that one layout is better than 
another. Instead, I'll show you how powerful the Flexbox layout model is for mobile 
screens so that you can design the kind of layout that best suits your application.

Simple three-column layout
To start things off, let's implement a simple layout with three sections that flex in the 
direction of the column (top to bottom). We'll look at the result we are aiming for first.

Figure 17.3 – Simple three-column layout

https://styled-components.com/
https://styled-components.com/


326     Building Responsive Layouts with Flexbox

The idea, in this example, is that you've styled and labeled the three screen sections so that 
they stand out. In other words, these components wouldn't necessarily have any styling in 
a real application since they're used to arrange other components on the screen.

Now, let's take a look at the components used to create this screen layout:

import React from "react";

import { Text, View } from "react-native";

import styles from "./styles";

export default function App() {

  return (

    <View style={styles.container}>

      <View style={styles.box}>

        <Text style={styles.boxText}>#1</Text>

      </View>

      <View style={styles.box}>

        <Text style={styles.boxText}>#2</Text>

      </View>

      <View style={styles.box}>

        <Text style={styles.boxText}>#3</Text>

      </View>

    </View>

  );

}

The container view (the outermost <View> component) is the column and the child 
views are the rows. The <Text> component is used to label each row. In terms of HTML 
elements, <View> is similar to a <div> element, while <Text> is similar to a <p> 
element.

Important Note
Maybe this example could have been called a three-row layout since it has three 
rows. But, at the same time, the three layout sections are flexing in the direction 
of the column that they're in. Use the naming convention that makes the most 
conceptual sense to you.



Building Flexbox layouts     327

Now, let's take a look at the styles used to create this layout:

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

  container: {

    flex: 1,

    flexDirection: "column",

    alignItems: "center",

    justifyContent: "space-around",

    backgroundColor: "ghostwhite",

    ...Platform.select({

      ios: { paddingTop: 20 },

      android: { paddingTop: StatusBar.currentHeight }

    })

  },

  box: {

    width: 300,

    height: 100,

    justifyContent: "center",

    alignItems: "center",

    backgroundColor: "lightgray",

    borderWidth: 1,

    borderStyle: "dashed",

    borderColor: "darkslategray"

  },

  boxText: {

    color: "darkslategray",

    fontWeight: "bold"

  }

});



328     Building Responsive Layouts with Flexbox

The flex and flexDirection properties of container enable the layout of the rows 
to flow from top to bottom. The alignItems and justifyContent properties align 
the child elements to the center of the container and add space around them, respectively.

Let's see how this layout looks when you rotate the device from a portrait orientation to  
a landscape orientation:

Figure 17.4 – Landscape orientation

Flexbox automatically figured out how to preserve the layout for you. However, you can 
improve on this a little bit. For example, the landscape orientation now has a lot of wasted 
space to the left and right. You could create your own abstraction for the boxes that you're 
rendering. In the following section, we'll improve on this layout.

Improved three-column layout
There are a few things that I think you can improve on from the last example. Let's fix the 
styles so that the children of the Flexbox could stretch to take advantage of the available 
space. Do you remember, in the last example, when you rotated the device from a portrait 
orientation to a landscape orientation? There was a lot of wasted space. It would be nice to 
have the components automatically adjust themselves. Here's what the new style module 
looks like:

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

  container: {



Building Flexbox layouts     329

    flex: 1,

    flexDirection: "column",

    backgroundColor: "ghostwhite",

    justifyContent: "space-around",

    ...Platform.select({

      ios: { paddingTop: 20 },

      android: { paddingTop: StatusBar.currentHeight },

    }),

  },

  box: {

    height: 100,

    justifyContent: "center",

    alignSelf: "stretch",

    alignItems: "center",

    backgroundColor: "lightgray",

    borderWidth: 1,

    borderStyle: "dashed",

    borderColor: "darkslategray",

  },

  boxText: {

    color: "darkslategray",

    fontWeight: "bold",

  },

});



330     Building Responsive Layouts with Flexbox

The key change here is the alignSelf property. This tells elements with the box style 
to change their width or height (depending on the flexDirection of their container) 
to fill space. Also, the box style no longer defines a width property because this will be 
computed on the fly now. Here's what the sections look like in portrait mode:

Figure 17.5 – Improved three-column layout in portrait orientation

Now, each section takes the full width of the screen, which is exactly what you want to 
happen. The issue of wasted space was actually more prevalent in landscape orientation, 
so let's rotate the device and see what happens to these sections now.



Building Flexbox layouts     331

Figure 17.6 – Improved three-column layout in landscape orientation

Now your layout is utilizing the entire width of the screen, regardless of orientation. 
Lastly, let's implement a proper Box component that can be used by App.js instead of 
having repetitive style properties in place. Here's what the Box component looks like:

import React from "react";

import { PropTypes } from "prop-types";

import { View, Text } from "react-native";

import styles from "./styles";

export default function Box({ children }) {

  return (

    <View style={styles.box}>

      <Text style={styles.boxText}>{children}</Text>

    </View>

  );

}

Box.propTypes = {

  children: PropTypes.node.isRequired,

};

You now have the beginnings of a nice layout. Next, you'll learn about flexing in the other 
direction – left to right.



332     Building Responsive Layouts with Flexbox

Flexible rows
In this section, you'll learn how to make screen layout sections stretch from top to bottom. 
To do this, you need a flexible row. Here is what the styles for this screen look like:

import { Platform, StyleSheet, StatusBar } from "react-native";

export default StyleSheet.create({

  container: {

    flex: 1,

    flexDirection: "row",

    backgroundColor: "ghostwhite",

    alignItems: "center",

    justifyContent: "space-around",

    ...Platform.select({

      ios: { paddingTop: 20 },

      android: { paddingTop: StatusBar.currentHeight },

    }),

  },

  box: {

    width: 100,

    justifyContent: "center",

    alignSelf: "stretch",

    alignItems: "center",

    backgroundColor: "lightgray",

    borderWidth: 1,

    borderStyle: "dashed",

    borderColor: "darkslategray",

  },

  boxText: {

    color: "darkslategray",

    fontWeight: "bold",

  },

});



Building Flexbox layouts     333

Here's the App component, using the same Box component that you implemented in the 
previous section:

import React from "react";

import { Text, View, StatusBar } from "react-native";

import styles from "./styles";

import Box from "./Box";

export default function App() {

  return (

    <View style={styles.container}>

      <Box>#1</Box>

      <Box>#2</Box>

    </View>

  );

}

Here's what the resulting screen looks like in portrait mode:

Figure 17.7 – Flexible rows in portrait orientation



334     Building Responsive Layouts with Flexbox

The two columns stretch all the way from the top of the screen to the bottom because of 
the alignSelf property, which doesn't actually specify which direction to stretch in. 
The two Box components stretch from top to bottom because they're displayed in a flex 
row. Note how the spacing between these two sections goes from left to right? This is 
because of the container's flexDirection property, which has a value of row.

Now, let's see how this flex direction impacts the layout when the screen is rotated to  
a landscape orientation.

Figure 17.8 – Flexible rows in landscape orientation

Since Flexbox has a justifyContent style property value of space-around, space 
is added proportionally to the left, the right, and in between the sections. In the following 
section, you'll learn about flexible grids.

Flexible grids
Sometimes, you need a screen layout that flows like a grid. For example, what if you have 
several sections that are the same width and height, but you're not sure how many of these 
sections will be rendered? Flexbox makes it easy to build a row that flows from left to right 
until the end of the screen is reached. Then, it automatically continues rendering elements 
from left to right on the next row.



Building Flexbox layouts     335

Here's an example layout in portrait mode:

Figure 17.9 – Flexible grids in portrait orientation

The beauty of this approach is that you don't need to know in advance how many columns 
are in a given row. The dimensions of each child determine what will fit in a given row.

To see the styles used to create this layout, you can follow this link: https://github.
com/PacktPublishing/React-and-React-Native-4th-Edition/blob/
main/Chapter17/flexible-grids/styles.js.

Here's the App component that renders each section:

import React from "react";

import { View, StatusBar } from "react-native";

import styles from "./styles";

import Box from "./Box";

const boxes = new Array(10).fill(null).map((v, i) => i + 1);

export default function App() {

  return (

    <View style={styles.container}>

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter17/flexible-grids/styles.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter17/flexible-grids/styles.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter17/flexible-grids/styles.js


336     Building Responsive Layouts with Flexbox

      <StatusBar hidden={false} />

      {boxes.map((i) => (

        <Box key={i}>#{i}</Box>

      ))}

    </View>

  );

}

Lastly, let's make sure that the landscape orientation works with this layout:

Figure 17.10 – Flexible grids in landscape orientation

Important Note
You may have noticed that there's some superfluous space on the right side. 
Remember, these sections are only visible in this book because we want 
them to be visible. In a real app, they're just grouping other React Native 
components. However, if the space to the right of the screen becomes an issue, 
play around with the margin and the width of the child components.

Now that you have an understanding of how flexible grids work, we'll look at flexible rows 
and columns next.

Flexible rows and columns
In this final section of the chapter, you'll learn how to combine rows and columns to 
create a sophisticated layout for your app. For example, sometimes, you need the ability 
to nest columns within rows or rows within columns. To see the App component of an 
application that nests columns within rows, you can follow this link: https://github.
com/PacktPublishing/React-and-React-Native-4th-Edition/blob/
main/Chapter17/flexible-rows-and-columns/App.js.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter17/flexible-rows-and-columns/App.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter17/flexible-rows-and-columns/App.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter17/flexible-rows-and-columns/App.js


Building Flexbox layouts     337

You've created abstractions for the layout pieces (<Row> and <Column>) and the content 
piece (<Box>). Let's see what this screen looks like:

Figure 17.11 – Flexible rows and columns

This layout probably looks familiar because you've done it in the Flexible grids section. The 
key difference as compared to Figure 17.9 is in how these content sections are ordered. For 
example, #2 doesn't go to the right of #1, it goes below it. This is because we've placed #1 
and #2 in <Column>. The same happens with #3 and #4. These two columns are placed 
in a row. Then, the next row begins, and so on.

This is just one of many possible layouts that you can achieve by nesting row Flexboxes 
and column Flexboxes. Let's take a look at the Row component now:

import React from "react";

import PropTypes from "prop-types";

import { View, Text } from "react-native";

import styles from "./styles";

export default function Box({ children }) {

  return (

    <View style={styles.box}>



338     Building Responsive Layouts with Flexbox

      <Text style={styles.boxText}>{children}</Text>

    </View>

  );

}

Box.propTypes = {

  children: PropTypes.node.isRequired,

};

This component applies the row style to the <View> component. The end result is cleaner 
JSX markup in the App component when creating a complex layout. Finally, let's look at 
the Column component:

import React from "react";

import PropTypes from "prop-types";

import { View } from "react-native";

import styles from "./styles";

export default function Column({ children }) {

  return <View style={styles.column}>{children}</View>;

}

Column.propTypes = {

  children: PropTypes.node.isRequired,

};

This looks just like the Row component, just with a different style applied to it. It also 
serves the same purpose as Row – to enable simpler JSX markup for layouts in other 
components.

Summary
This chapter introduced you to styles in React Native. Though you can use many of the 
same CSS style properties that you're used to, the CSS style sheets used in web applications 
look very different. Namely, they're composed of plain JavaScript objects.



Further reading     339

Then, you learned how to work with the main React Native layout mechanism – Flexbox. 
This is the preferred way of laying out most web applications these days, so it makes sense 
to be able to reuse this approach in a Native app. You created several different layouts, and 
you saw how they looked in portrait and landscape orientation.

In the next chapter, you'll start implementing navigation for your app.

Further reading
Refer to the following links for more information:

• Layout with Flexbox: https://reactnative.dev/docs/flexbox

• StatusBar: https://reactnative.dev/docs/statusbar

• StyleSheet: https://reactnative.dev/docs/stylesheet

https://reactnative.dev/docs/flexbox
https://reactnative.dev/docs/statusbar
https://reactnative.dev/docs/stylesheet




18
Navigating Between 

Screens
The focus of this chapter is on navigating between the screens that make up your React 
Native application. Navigation in native apps is slightly different than navigation on web 
apps – mainly because there isn't any notion of a URL that the user is aware of. In prior 
versions of React Native, there were primitive navigator components that you could use 
to control the navigation between screens. There were a number of challenges with these 
components that resulted in more code to accomplish basic navigation tasks.

More recent versions of React Native encourage you to use the react-navigation 
package, which will be the focus of this chapter, even though there are several other 
options. You'll learn about navigation basics, passing parameters to screens, changing 
header content, using tab and drawer navigation, and handling state with navigation.

We'll cover the following topics in this chapter:

• Navigation basics

• Route parameters

• The navigation header

• Tab and drawer navigation



342     Navigating Between Screens

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter18.

Navigation basics
Let's start off with the basics of moving from one page to another using the react-
navigation package. 

Before starting, you should install the react-navigation package to our project and 
some additional dependencies related to the example:

npm install @react-navigation/native

Then, install native dependencies using expo:

expo install react-native-screens react-native-safe-area-
context

The preceding installation steps will be required for each example in this chapter, but we 
need to add one more package related to the stack navigator:

npm install @react-navigation/native-stack

Now, we are ready to develop navigation. Here's what the App component looks like:

import * as React from "react";

import { NavigationContainer } from 

  "@react-navigation/native";

import { createNativeStackNavigator } from 

  "@react-navigation/native-stack";

import Home from "./Home";

import Settings from "./Settings";

const Stack = createNativeStackNavigator();

export default function App() {

  return (

    <NavigationContainer>

      <Stack.Navigator>

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter18
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter18
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter18


Navigation basics     343

        <Stack.Screen name="Home" component={Home} />

        <Stack.Screen name="Settings" component={Settings}

          />

      </Stack.Navigator>

    </NavigationContainer>

  );

}

createNativeStackNavigator() is a function that sets up your navigation. It returns 
an object with two properties, the Screen and Navigator components, that are used for 
configuring the stack navigator.

The first argument to this function maps to the screen components that can be navigated. 
The second argument is for more general navigation options – in this case, you're telling 
the navigator that Home should be the default screen component that's rendered. The 
<NavigationContainer> component is necessary so that the screen components get 
all of the navigation properties that they need.

Here's what the Home component looks like:

import React from "react";

import { View, Text, Button, StatusBar } from 

  "react-native";

import styles from "./styles";

export default function Home({ navigation }) {

  return (

    <View style={styles.container}>

      <StatusBar barStyle="dark-content" />

      <Text>Home Screen</Text>

      <Button

        title="Settings"

        onPress={() => navigation.navigate("Settings")}

      />

    </View>

  );

}



344     Navigating Between Screens

This is your typical functional React component. You can use a class-based component 
here, but there's no need, since there are no life cycle methods or state. It renders a View 
component where the container style is applied. This is followed by a Text component 
that labels the screen followed by a Button component. A screen can be anything you 
want – it's just a regular React Native component. The navigator component handles the 
routing and the transitions between screens for you.

The onPress handler for this button navigates to the Settings screen when clicked. 
This is done by calling navigation.navigate('Settings'). The navigation 
property is passed to your screen component by react-navigation and contains all of 
the routing functionality you need. In contrast to working with URLs in React web apps, 
here you call navigator API functions and pass them the names of screens.

Let's take a look at the Settings component:

import React from "react";

import { View, Text, Button, StatusBar } from 

  "react-native";

import styles from "./styles";

export default function Settings({ navigation }) {

  return (

    <View style={styles.container}>

      <StatusBar barStyle="dark-content" />

      <Text>Settings Screen</Text>

      <Button title="Home" onPress={() =>

        navigation.navigate("Home")} />

    </View>

  );

}

This component is just like the Home component, except with different text, and when the 
button is clicked, you're taken back to the Home screen.



Navigation basics     345

Here's what the Home screen looks like:

Figure 18.1 – The Home screen



346     Navigating Between Screens

If you click the Settings button, you'll be taken to the Settings screen, which looks like this:

Figure 18.2 – The Settings screen

This screen looks almost identical to the Home screen. It has different text and a different 
button that will take you back to the Home screen when clicked. However, there's another 
way to get back to the Home screen. Take a look at the top of the screen, where you'll 
notice a white navigation bar. On the left side of the navigation bar, there's a back arrow. 
This works just like the back button in a web browser and will take you back to the 
previous screen. What's nice about react-navigation is that it takes care of rendering 
this navigation bar for you.

Important Note
With this navigation bar in place, you don't have to worry about how your 
layout styles impact the status bar. You only need to worry about the layout of 
each of your screens.



Route parameters     347

If you run this app on Android, you'll see the same back button in the navigation 
bar. But you can also use the standard back button found outside of the app on most 
Android devices. 

In the next section, you'll learn how to pass parameters to your routes.

Route parameters
When you develop React web applications, some of your routes have dynamic data 
in them. For example, you can link to a details page, and within that URL, you'll have 
some sort of identifier. The component then has what it needs to render specific detailed 
information. The same concept exists within react-navigation. Instead of just 
specifying the name of the screen that you want to navigate to, you can pass along 
additional data.

Let's take a look at route parameters in action:

1. We'll start with the App component:

import { NavigationContainer } from "@react-navigation/
native";

import { createNativeStackNavigator } from "@react-
navigation/native-stack";

import Home from "./Home";

import Details from "./Details";

const Stack = createNativeStackNavigator();

export default function App() {

  return (

    <NavigationContainer>

      <Stack.Navigator>

        <Stack.Screen name="Home" component={Home} />

        <Stack.Screen name="Details"

          component={Details} />

      </Stack.Navigator>

    </NavigationContainer>

  );

}



348     Navigating Between Screens

This looks just like the example in the Navigation basics section, except instead of 
a Settings page, there's a Details page. This is the page that you want to pass 
data to dynamically so that it can render the appropriate information.

2. Next, let's take a look at the Home screen component:

import React from "react";

import { View, Text, Button, StatusBar } from 

  "react-native";

import styles from "./styles";

export default function Home({ navigation }) {

  return (

    <View style={styles.container}>

      <StatusBar barStyle="dark-content" />

      <Text>Home Screen</Text>

      <Button

        title="First Item"

        onPress={() => navigation.navigate("Details",

          { title: "First Item" })}

      />

      <Button

        title="Second Item"

        onPress={() => navigation.navigate("Details",

          { title: "Second Item" })}

      />

      <Button

        title="Third Item"

        onPress={() => navigation.navigate("Details",

          { title: "Third Item" })}

      />

    </View>

  );

}



Route parameters     349

The Home screen has three Button components, and each navigates to the 
Details screen. Note that in the navigation.navigate() calls, in addition 
to the screen name, each has a second argument. These arguments are objects that 
contain specific data, which is passed to the Details screen.

3. Next, let's take a look at the Details screen and see how it consumes these route 
parameters:

import React from "react";

import { View, Text, StatusBar } from "react-native";

import styles from "./styles";

export default function ({ route }) {

  const { title } = route.params;

  return (

    <View style={styles.container}>

      <StatusBar barStyle="dark-content" />

      <Text>{title}</Text>

    </View>

  );

}

Although this example is only passing one title parameter, you can pass as many 
parameters to the screen as you need to. You can access these parameters using the 
params value of the route prop to look up the value.



350     Navigating Between Screens

4. Here's what the Home screen looks like when rendered:

Figure 18.3 – The Home screen



Route parameters     351

5. If you click on the First Item button, you'll be taken to the Details screen that is 
rendered using the route parameter data:

Figure 18.4 – The Details screen
You can click the back button in the navigation bar to get back to the Home screen. 
If you click on any of the other buttons on the Home screen, you'll be taken back 
to the Details screen with updated data. Route parameters are necessary to avoid 
having to write duplicate components. You can think of passing parameters to 
navigator.navigate() as passing props to a React component. 



352     Navigating Between Screens

In the following section, you'll learn how to populate navigation section headers  
with content.

The navigation header
The navigation bars that you've created so far in this chapter have been sort of plain. 
That's because you haven't configured them to do anything, so react-navigation will 
just render a plain bar with a back button. Each screen component that you create can 
configure specific navigation header content.

Let's build on the example discussed in the Route parameters section, which used buttons 
to navigate to a details page:

1. The App component has major updates, so let's take a look at it:

import { Button } from "react-native";

import { NavigationContainer } from 

  "@react-navigation/native";

import { createNativeStackNavigator } from 

  "@react-navigation/native-stack";

import Home from "./Home";

import Details from "./Details";

const Stack = createNativeStackNavigator();

export default function App() {

  return (

    <NavigationContainer>

      <Stack.Navigator>

        <Stack.Screen name="Home" component={Home} />

        <Stack.Screen

          name="Details"

          component={Details}

          options={({ route }) => ({

            headerRight: () => {

              return (

                <Button

                  title="Buy"

                  onPress={() => {}}



The navigation header     353

                  disabled={route.params.stock === 0}

                />

              );

            },

          })}

        />

      </Stack.Navigator>

    </NavigationContainer>

  );

}

The Screen component accepts the options prop as an object or function to 
provide additional screen properties. 

The headerRight option is used to add a Button component to the right side of 
the navigation bar. This is where the stock parameter comes into play. If this value 
is 0 because there isn't anything in stock, you want to disable the Buy button.

In our case, we pass options as a function and read the stock screen params 
to disable the button. This is one of several ways to pass options to the Screen 
component. We'll apply another way to the Details component.

2. To understand how the stock props have been passed, take a look at the Home 
component here: https://github.com/PacktPublishing/React-and-
React-Native-4th-Edition-/blob/main/Chapter18/navigation-
header/Home.js.

The first thing to note is that each button is passing more route parameters to the 
Details component – content and stock. You'll see why in a moment.

3. Next, let's take a look at the Details component:

import React from "react";

import { View, Text, StatusBar } from "react-native";

import styles from "./styles";

export default function Details({ route, navigation }) {

  const { content, title } = route.params;

  React.useLayoutEffect(() => {

    navigation.setOptions({ title });

  }, []);

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter18/navigation-header/Home.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter18/navigation-header/Home.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter18/navigation-header/Home.js


354     Navigating Between Screens

  return (

    <View style={styles.container}>

      <StatusBar barStyle="dark-content" />

      <Text>{content}</Text>

    </View>

  );

}

This time, the Details component renders the content route parameter. As with 
the App component, we add additional options to the screen. In this case, we update 
screen options using the navigation.setOptions() method. To customize a 
header, we can also add title to that screen via the App component.

4. Let's see how all of this works now, starting with the Home screen:

Figure 18.5 – The Home screen



The navigation header     355

There is now header text in the navigation bar, which is set by the name property in 
the Screen component.

5. Next, try clicking on the First Item button:

Figure 18.6 – The First Item screen
The title in the navigation bar is set based on the title parameter that's 
passed to the Details component using the navigation.setOptions() 
method. The Buy button that's rendered on the right side of the navigation bar is 
rendered by the options property in the Screen component placed in the App 
component. It's enabled because the stock parameter value is 1. 



356     Navigating Between Screens

6. Now, try returning to the Home screen and clicking on the Second Item button:

Figure 18.7 – The Second Item screen
The title and the page content both reflect the new parameter values passed to 
Details, but so does the Buy button. It is in a disabled state because the stock 
parameter value was 0, meaning that it can't be bought. 

Now that you've learned how to use navigation headers, in the next section, you'll learn 
about tab and drawer navigation.



Tab and drawer navigation     357

Tab and drawer navigation
So far in this chapter, each example has used Button components to link to other screens 
in the app. You can use functions from react-navigation that will create tab or 
drawer navigation for you automatically based on the screen components that you give it.

Let's create an example that uses bottom tab navigation on iOS and drawer navigation  
on Android.

Important Note
You aren't limited to using tab navigation on iOS or drawer navigation on 
Android. I'm just picking these two to demonstrate how to use different modes 
of navigation based on the platform. You can use the exact same navigation 
mode on both platforms if you prefer.

For this example, we need to install a few other packages for tab and drawer navigators:

npm install @react-navigation/bottom-tabs @react-navigation/
drawer

Also, the drawer navigator requires some native modules. Let's install them:

expo install react-native-gesture-handler react-native-
reanimated

Then, add a plugin to the babel.config.js file. As a result, the file should look like 
the following:

module.exports = function (api) {

  api.cache(true);

  return {

    presets: ["babel-preset-expo"],

    plugins: ["react-native-reanimated/plugin"],

  };

};

Now, we are ready to continue coding. Here's what the App component looks like:

import { NavigationContainer } from 

  "@react-navigation/native";

import { createDrawerNavigator } from 

  "@react-navigation/drawer";



358     Navigating Between Screens

import { createBottomTabNavigator } from 

  "@react-navigation/bottom-tabs";

import { Platform } from "react-native";

import Home from "./Home";

import News from "./News";

import Settings from "./Settings";

const Tab = createBottomTabNavigator();

const Drawer = createDrawerNavigator();

export default function App() {

  return (

    <NavigationContainer>

      {Platform.OS === "ios" && (

        <Tab.Navigator>

          <Tab.Screen name="Home" component={Home} />

          <Tab.Screen name="News" component={News} />

          <Tab.Screen name="Settings" component={Settings}

            />

        </Tab.Navigator>

      )}

      {Platform.OS == "android" && (

        <Drawer.Navigator>

          <Drawer.Screen name="Home" component={Home} />

          <Drawer.Screen name="News" component={News} />

          <Drawer.Screen name="Settings"

            component={Settings} />

        </Drawer.Navigator>

      )}

    </NavigationContainer>

  );

}



Tab and drawer navigation     359

Instead of using the createNativeStackNavigator() function to create 
your navigator, you're importing the createBottomTabNavigator() and 
createDrawerNavigator() functions:

import { createDrawerNavigator } from 

  "@react-navigation/drawer";

import { createBottomTabNavigator } from 

  "@react-navigation/bottom-tabs";

Then, you're using the Platform utility from react-native to decide which 
navigator to use. The result, depending on the platform, is assigned to App. Each navigator 
contains the Navigator and Screen components, and you can pass them to your App. 
The resulting tab or drawer navigation will be created and rendered for you:

export default function App() {

  return (

    <NavigationContainer>

      {Platform.OS === "ios" && (

        <Tab.Navigator>

          <Tab.Screen name="Home" component={Home} />

          <Tab.Screen name="News" component={News} />

          <Tab.Screen name="Settings" component={Settings}

            />

        </Tab.Navigator>

      )}

      {Platform.OS == "android" && (

        <Drawer.Navigator>

          <Drawer.Screen name="Home" component={Home} />

          <Drawer.Screen name="News" component={News} />

          <Drawer.Screen name="Settings"

            component={Settings} />

        </Drawer.Navigator>

      )}

    </NavigationContainer>

  );

}



360     Navigating Between Screens

Next, let's take a look at the Home screen component:

import React from "react";

import { View, Text } from "react-native";

import styles from "./styles";

export default function Home() {

  return (

    <View style={styles.container}>

      <Text>Home Content</Text>

    </View>

  );

}

The News and Settings components are essentially the same as Home. Here's what the 
bottom tab navigation looks like on iOS:

Figure 18.8 – The tab navigator



Summary     361

The three screens that make up your app are listed at the bottom. The current screen is 
marked as active, and you can click on the other tabs to move around.

Now, let's see what the drawer layout looks like on Android:

Figure 18.9 – The drawer navigator

To open the drawer, you need to swipe from the left side of the screen. Once it's open, 
you'll see buttons that will take you to the various screens of your app.

Important Note
Swiping the drawer open from the left side of the screen is default mode. You 
can configure the drawer to swipe open from any direction.

Now, you've learned how to use tab and drawer navigation.

Summary
In this chapter, you learned that mobile applications require navigation, just like web 
applications do. Although different, web application and mobile application navigation 
have enough conceptual similarities that mobile app routing and navigation don't have to 
be a nuisance.

Older versions of React Native made attempts to provide components to help manage 
navigation within mobile apps, but these never really took hold. Instead, the React Native 
community has dominated this area. One example of this is the react-navigation 
library, the focus of this chapter.

You learned how basic navigation works with react-navigation. You then learned 
how to control header components within the navigation bar. Next, you learned about tab 
and drawer navigation. These two navigation components can automatically render the 
navigation buttons for your app based on the screen components.

In the next chapter, you'll learn how to render lists of data.



362     Navigating Between Screens

Further reading
Check out the following link for more information on React Navigation: https://
reactnavigation.org/.

https://reactnavigation.org/
https://reactnavigation.org/


19
Rendering Item Lists

In this chapter, you'll learn how to work with item lists. Lists are a common web 
application component. While it's relatively straightforward to build lists using the <ul> 
and <li> elements, doing something similar on native mobile platforms is much more 
involved.

Thankfully, React Native provides an item list interface that hides all of the complexity. 
First, you'll get a feel for how item lists work by walking through an example. Then, you'll 
learn how to build controls that change the data displayed in lists. Lastly, you'll see a 
couple of examples that fetch items from the network. The following are the sections you'll 
find in this chapter:

• Rendering data collections

• Sorting and filtering lists

• Fetching list data

• Lazy list loading

• Implementing pull to refresh

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter19.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter19
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter19
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter19


364     Rendering Item Lists

Rendering data collections
Lists are the most common way to display a lot of information – for example, you can 
display your friend list, messages, and news. Many apps contain lists with data collections, 
and React Native provides the tools to create these components.

Let's start with an example. The React Native component you'll use to render lists is 
FlatList, which works the same way on iOS and Android. List views accept a data 
property, which is an array of objects. These objects can have any properties you like, 
but they do require a key property. If you don't have a key property, you can pass the 
keyExtractor prop to the Flatlist component and instruct what to use instead of 
key. The key property is similar to the requirement for rendering the <li> elements 
inside of a <ul> element. This helps the list to efficiently render when changes are made 
to list data.

Let's implement a basic list now. Here's the code to render a basic 100-item list:

import React from "react";

import { Text, View, FlatList } from "react-native";

import styles from "./styles";

const data = new Array(100)

  .fill(null)

  .map((v, i) => ({ key: i.toString(), value: 'Item ${i}'

    }));

export default function App() {

  return (

    <View style={styles.container}>

      <FlatList

        data={data}

        renderItem={({ item }) => <Text

          style={styles.item}>{item.value}</Text>}

      />

    </View>

  );

}



Rendering data collections     365

Let's walk through what's going on here, starting with the data constant. This has an array 
of 100 items in it. It is created by filling a new array with 100 null values and then mapping 
this to a new array with the objects that you want to pass to <FlatList>. Each object has 
a key property because this is a requirement; anything else is optional. In this case, you've 
decided to add a value property that will be used later on when the list is rendered.

Next, you render the <FlatList> component. It's within a <View> container 
because list views need height in order to make scrolling work correctly. The data and 
renderItem properties are passed to <FlatList>, which ultimately determines the 
rendered content.

At first glance, it would seem that the FlatList component doesn't do too much. 
Do you have to figure out how the items look? Well, yes, the FlatList component is 
supposed to be generic. It's supposed to excel at handling updates and embeds scrolling 
capabilities into lists for us. Here are the styles that were used to render the list:

import { StyleSheet } from "react-native";

export default StyleSheet.create({

  container: {

    flex: 1,

    flexDirection: "column",

    paddingTop: 40,

  },

  item: {

    margin: 5,

    padding: 5,

    color: "slategrey",

    backgroundColor: "ghostwhite",

    textAlign: "center",

  },

});

Here, you're styling each item in your list. Otherwise, each item would be text-only, and it 
would be difficult to differentiate between other list items. The container style gives the 
list height by setting flex to 1. Without height, you won't be able to scroll properly.



366     Rendering Item Lists

Let's see what the list looks like now:

Figure 19.1 – Rendering the data collection

If you're running this example in a simulator, you can click and hold down the mouse button 
anywhere on the screen, like a finger, and then scroll up and down through the items.

In the following section, you'll learn how to add controls for sorting and filtering lists.



Sorting and filtering lists     367

Sorting and filtering lists
Now that you have learned the basics of the FlatList components, including how to 
pass data, let's add some controls to the list that you just implemented in the Rendering 
data collections section. The FlatList component can be rendered together with other 
components – for example, list controls. It helps you to manipulate the data source, which 
ultimately drives what's rendered on the screen.

Before implementing list control components, it might be helpful to review the high-level 
structure of these components so that the code has more context. Here's an illustration of 
the component structure that you're going to implement:

Figure 19.2 – The component structure

Here's what each of these components is responsible for:

• ListContainer: The overall container for the list; it follows the familiar React 
container pattern

• List: A stateless component that passes the relevant pieces of state into 
ListControls and the React Native ListView component

• ListControls: A component that holds the various controls that change the state 
of the list

• ListFilter: A control for filtering the item list

• ListSort: A control for changing the sort order of the list

• FlatList: The actual React Native component that renders items



368     Rendering Item Lists

In some cases, splitting apart the implementation of a list like this is overhead. However, 
I think that if your list needs controls in the first place, you're probably implementing 
something that will stand to benefit from having a well-thought-out component 
architecture.

Now, let's drill down into the implementation of this list, starting with the 
ListContainer component:

import React, { useState, useMemo } from "react";

import List from "./List";

function mapItems(items) {

  return items.map((value, i) => ({ key: i.toString(),

    value }));

}

const array = new Array(100).fill(null).map((v, i) => 

  'Item ${i}');

function filterAndSort(text, asc) {

  return array

    .filter((i) => text.length === 0 || i.includes(text))

    .sort(

      asc

        ? (a, b) => (a > b ? 1 : a < b ? -1 : 0)

        : (a, b) => (b > a ? 1 : b < a ? -1 : 0)

    );

}

Here, we define a few utility functions and the initial array that we will use. 

Then, we will define asc and filter for managing sorting and filtering the list, 
respectively, with the data variable implemented using the useMemo hook:

export default function ListContainer() {

  const [asc, setAsc] = useState(true);

  const [filter, setFilter] = useState("");



Sorting and filtering lists     369

  const data = useMemo(() => {

    return filterAndSort(filter, asc);

  }, [filter, asc]);

It gives us an opportunity to avoid updating it manually because it will be recalculated 
automatically when the filter and asc dependencies are updated. It also helps us to 
avoid unnecessary recalculation when filter and asc are not changed.

Here is how we apply this logic to the List component:

  return (

    <List

      data={mapItems(data)}

      asc={asc}

      onFilter={(text) => {

        setFilter(text);

      }}

      onSort={() => {

        setAsc(!asc);

      }}

    />

  );

}

If this seems like a bit much, it's because it is. This container component has a lot of state 
to handle. It also has some non-trivial behavior that it needs to make available to its 
children. If you look at it from the perspective of an encapsulating state, it will be more 
approachable. Its job is to populate the list with state data and provide functions that 
operate in this state.

In an ideal world, the child components of this container should be nice and simple, 
since they don't have to directly interface with the state. Let's take a look at the List 
component next:

import React from "react";

import PropTypes from "prop-types";

import { Text, FlatList } from "react-native";

import styles from "./styles";



370     Rendering Item Lists

import ListControls from "./ListControls";

export default function List({ Controls, data, onFilter,

  onSort, asc }) {

  return (

    <FlatList

      data={data}

      ListHeaderComponent={<Controls {...{ onFilter,

        onSort, asc }} />}

      renderItem={({ item }) => <Text

        style={styles.item}>{item.value}</Text>}

    />

  );

}

List.propTypes = {

  Controls: PropTypes.func.isRequired,

  data: PropTypes.array.isRequired,

  onFilter: PropTypes.func.isRequired,

  onSort: PropTypes.func.isRequired,

  asc: PropTypes.bool.isRequired,

};

List.defaultProps = {

  Controls: ListControls,

};

This component takes the state from the ListContainer component as properties and 
renders a FlatList component. The main difference here from the previous example is 
the ListHeaderComponent property. This renders the controls for your List. What's 
especially useful about this property is that it renders the controls outside the scrollable 
list content, ensuring that the controls are always visible.



Sorting and filtering lists     371

Also, note that you're specifying your own ListControls component as a default value 
for the Controls property. This makes it easy for others to pass in their own list controls. 
Let's take a look at the ListControls component next:

import React from "react";

import PropTypes from "prop-types";

import { View } from "react-native";

import styles from "./styles";

import ListFilter from "./ListFilter";

import ListSort from "./ListSort";

export default function ListControls({ onFilter, onSort,

  asc }) {

  return (

    <View style={styles.controls}>

      <ListFilter onFilter={onFilter} />

      <ListSort onSort={onSort} asc={asc} />

    </View>

  );

}

ListControls.propTypes = {

  onFilter: PropTypes.func.isRequired,

  onSort: PropTypes.func.isRequired,

  asc: PropTypes.bool.isRequired,

};

This component brings together the ListFilter and ListSort controls. So, if you 
were to add another list control, you would add it here. 

Let's take a look at the ListFilter implementation now:

import React from "react";

import PropTypes from "prop-types";

import { View, TextInput } from "react-native";

import styles from "./styles";



372     Rendering Item Lists

export default function ListFilter({ onFilter }) {

  return (

    <View>

      <TextInput

        autoFocus

        placeholder="Search"

        style={styles.filter}

        onChangeText={onFilter}

      />

    </View>

  );

}

ListFilter.propTypes = {

  onFilter: PropTypes.func.isRequired,

};

The filter control is a simple text input that filters the list of items by user type. The 
onChange function that handles this comes from the ListContainer component.

Let's look at the ListSort component next:

import React from "react";

import PropTypes from "prop-types";

import { Text } from "react-native";

const arrows = new Map([

  [true, "▼"],

  [false, "▲"],

]);

export default function ListSort({ onSort, asc }) {

  return <Text onPress={onSort}>{arrows.get(asc)}</Text>;

}



Sorting and filtering lists     373

ListSort.propTypes = {

  onSort: PropTypes.func.isRequired,

  asc: PropTypes.bool.isRequired,

};

Here's a look at the resulting list:

Figure 19.3 – The sorting and filtering list



374     Rendering Item Lists

By default, the entire list is rendered in ascending order. You can see the placeholder 
Search text when the user hasn't provided anything yet. Let's see how this looks when you 
enter a filter and change the sort order:

Figure 19.4 – The list with a changed sort order and search value

This search includes items containing 1 and sorts the results in descending order. Note 
that you can either change the order first or enter the filter first. Both the filter and the sort 
order are part of the ListContainer state.

In the next section, you'll learn how to fetch list data from an API endpoint.



Fetching list data     375

Fetching list data
Often, you'll fetch your list data from some API endpoint. In this section, you'll learn 
about making API requests from React Native components. The good news is that the 
fetch() API is polyfilled by React Native, so the networking code in your mobile 
applications should look and feel a lot like it does in your web applications.

To start things off, let's build a mock API for our list items, using functions that return 
promises just like fetch() does:

const items = new Array(100).fill(null).map((v, i) => 

  'Item ${i}');

function filterAndSort(data, text, asc) {

  return data

    .filter(i => text.length === 0 || i.includes(text))

    .sort(

      asc

        ? (a, b) => (b > a ? -1 : a === b ? 0 : 1)

        : (a, b) => (a > b ? -1 : a === b ? 0 : 1)

    );

}

export function fetchItems(filter, asc) {

  return new Promise(resolve => {

    resolve({

      json: () =>

        Promise.resolve({

          items: filterAndSort(items, filter, asc)

        })

    });

  });

}



376     Rendering Item Lists

With the mock API function in place, let's make some changes to the ListContainer 
component. Instead of using local data sources, you can now use the fetchItems() 
function to load data from the mock API:

import React, { useState, useEffect } from "react";

import { fetchItems } from "./api";

import List from "./List";

function mapItems(items) {

  return items.map((value, i) => ({ key: i.toString(),

    value }));

}

In the preceding block, we've imported the necessary components and methods and 
defined the mapItems function to avoid repetition of such logic. 

Let's take a look and define the ListContainer component:

export default function ListContainer() {

  const [asc, setAsc] = useState(true);

  const [filter, setFilter] = useState("");

  const [data, setData] = useState([]);

  useEffect(() => {

    fetchItems(filter, asc)

      .then((resp) => resp.json())

      .then(({ items }) => {

        setData(mapItems(items));

      });

  }, []);

We've defined state variables using the useState and useEffect Hooks to fetch initial 
list data. 



Fetching list data     377

Now, let's take a look at the usage of our new handlers in the List component:

  return (

    <List

      data={data}

      asc={asc}

      onFilter={(text) => {

        fetchItems(text, asc)

          .then((resp) => resp.json())

          .then(({ items }) => {

            setFilter(text);

            setData(mapItems(items));

          });

      }}

      onSort={() => {

        fetchItems(filter, !asc)

          .then((resp) => resp.json())

          .then(({ items }) => {

            setAsc(!asc);

            setData(mapItems(items));

          });

      }}

    />

  );

}

Any action that modifies the state of the list needs to call fetchItems() and set the 
appropriate state once the promise resolves. 

In the following section, you'll learn how list data can be loaded lazily.



378     Rendering Item Lists

Lazy list loading
In this section, you'll implement a different kind of list – one that scrolls infinitely. 
Sometimes, users don't actually know what they're looking for, so filtering or sorting 
isn't going to help. Think about the Facebook news feed you see when you log in to your 
account; it's the main feature of the application, and rarely are you looking for something 
specific. You need to see what's going on by scrolling through the list.

To do this using a FlatList component, you need to be able to fetch more API data 
when the user scrolls to the end of the list. To get an idea of how this works, you need a lot 
of API data to work with, and generators are great at this. So, let's modify the mock that 
you created in the Fetching list data section's example so that it just keeps responding with 
new data:

function* genItems() {

  let cnt = 0;

  while (true) {

    yield 'Item ${cnt++}';

  }

}

const items = genItems();

export function fetchItems() {

  return Promise.resolve({

    json: () =>

      Promise.resolve({

        items: new Array(20).fill(null).map(() =>

          items.next().value),

      }),

  });

}



Lazy list loading     379

With fetchItems, you can now make an API request for new data every time the end 
of the list is reached. Eventually, this will fail when you run out of memory, but I'm just 
trying to show you in general terms the approach you can take to implement infinite 
scrolling in React Native. Now, let's take a look at what the ListContainer component 
looks like with fetchItems:

import React, { useState, useEffect } from "react";

import * as api from "./api";

import List from "./List";

export default function ListContainer() {

  const [data, setData] = useState([]);

  function fetchItems() {

    return api

      .fetchItems()

      .then((resp) => resp.json())

      .then(({ items }) => {

        setData([

          ...data,

          ...items.map((value) => ({

            key: value,

            value,

          })),

        ]);

      });

  }

  useEffect(() => {

    fetchItems();

  }, []);

  return <List data={data} fetchItems={fetchItems} />;

}



380     Rendering Item Lists

Each time fetchItems() is called, the response is concatenated with the data 
array. This becomes the new list data source, instead of replacing it as you did in earlier 
examples.

Now, let's take a look at the List component to see how to respond to the end of the list 
being reached:

import React from "react";

import PropTypes from "prop-types";

import { Text, FlatList } from "react-native";

import styles from "./styles";

export default function List({ data, fetchItems }) {

  return (

    <FlatList

      data={data}

      renderItem={({ item }) => <Text

        style={styles.item}>{item.value}</Text>}

      onEndReached={fetchItems}

    />

  );

}

List.propTypes = {

  data: PropTypes.array.isRequired,

  fetchItems: PropTypes.func.isRequired,

};

FlatList accepts the onEndReached handler prop, which will be invoked every time 
you reach the end of the list during scrolling.

If you run this example, you'll see that, as you approach the bottom of the screen while 
scrolling, the list just keeps growing.



Implementing pull to refresh     381

Implementing pull to refresh
The pull to refresh gesture is a common action on mobile devices. It allows users to 
refresh the content of a view without having to lift a finger from the screen or manually 
reopen the app, just by pulling it down to trigger a page refresh. Loren Brichter, the 
creator of Tweetie (later Twitter for iPhone) and Letterpress, introduced this gesture 
in 2009. This gesture has become so popular that Apple integrated it into its SDKs as 
UIRefreshControl.

To use pull to refresh in the FlatList app, we just need to pass a few props and 
handlers. Let's take a look at our List component:

export default function List({ data, fetchItems,

  refreshItems, isRefreshing }) {

  return (

    <FlatList

      data={data}

      renderItem={({ item }) => <Text

        style={styles.item}>{item.value}</Text>}

      onEndReached={fetchItems}

      onRefresh={refreshItems}

      refreshing={isRefreshing}

    />

  );

}

As we have provided the onRefresh and refreshing props, our FlatList 
component automatically enables the pull to refresh gesture. The onRefresh handler 
will be called when you pull the list, and the refreshing property will enable the 
loading spinner to reflect the loading state. 

To apply defined props in the List component, let's implement the refreshItems 
function with the isRefreshing state in the ListContainer component:

const [isRefreshing, setIsRefreshing] = useState(false);

function refreshItems() {

    setIsRefreshing(true);

    return api

      .fetchItems({ refresh: true })

      .then((resp) => resp.json())

      .then(({ items }) => {



382     Rendering Item Lists

        setData(

          items.map((value) => ({

            key: value,

            value,

          }))

        );

      })

      .finally(() => {

        setIsRefreshing(false);

      });

  }

In refreshItems, as well as in the fetchItems method, we get list items but save 
them as a new list. Also, note that before calling the API, we update the isRefreshing 
state to set it as a true value, and in the finally block, we set it to false to provide 
information to FlatList that loading has ended.

Summary
In this chapter, you learned about the FlatList component in React Native. This 
component is general-purpose, as it doesn't impose any specific look for items that 
get rendered. Instead, the appearance of the list is up to you, leaving the FlatList 
component to help with efficiently rendering a data source. The FlatList component 
also provides a scrollable region for the items it renders.

You implemented an example that took advantage of section headers in list views. This is 
a good place to render static content such as list controls. You then learned about making 
network calls in React Native; it's just like using fetch() in any other web application.

Finally, you implemented lazy lists that scroll infinitely by only loading new items after 
they've scrolled to the bottom of what's already been rendered. Also, we added a feature to 
refresh that list by means of a pull gesture.

In the next chapter, you'll learn how to show the progress of network calls, among other 
things.

Further reading
Take a look at the following link for more information on FlatList: https://
reactnative.dev/docs/flatlist.



20
Showing Progress

This chapter is all about communicating progress to the user. React Native has different 
components that are used to handle the different types of progress that you want to 
communicate. First, you'll learn why you need to communicate progress in the app. Then, 
you'll learn how to implement progress indicators and progress bars. And finally, you'll see 
specific examples that show you how to use progress indicators with navigation while data 
loads and progress bars to communicate the current position in a series of steps.

The following sections are covered in this chapter: 

• Understanding progress and usability

• Indicating progress

• Measuring progress

• Exploring navigation indicators

• Step progress

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter20.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter20
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter20
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter20


384     Showing Progress

Understanding progress and usability
Imagine that you have a microwave oven that has no window and makes no sound. The 
only way to interact with it is by pressing a button labeled cook. As absurd as this device 
sounds, it's what many software users face – no indication of progress. Is the microwave 
cooking anything? If so, how do we know when it will be done?

One way to improve the microwave situation is to add sound. This way, the user gets 
feedback after pressing the cook button. You've overcome one hurdle, but the user is still 
left asking, "Where's my food?" Before you go out of business, you had better add some 
sort of progress measurement display, such as a timer.

It's not that UI programmers don't understand the basic principles of this usability 
concern; it's just that they have stuff to do, and this sort of thing simply slips through 
the cracks in terms of priority. In React Native, there are components to give the user 
indeterminate progress feedback and precise progress measurements. It's always a good 
idea to make these things a top priority if you want a good user experience.

Now that you understand the role of progress in usability, it's time to learn how to indicate 
progress in your React Native UIs.

Indicating progress
In this section, you'll learn how to use the ActivityIndicator component. As its 
name suggests, you render this component when you need to indicate to the user that 
something is happening. The actual progress may be indeterminate, but at least you have 
a standardized way to show that something is happening, despite there being no results to 
display yet.

Let's create an example so that you can see what this component looks like. Here's the App 
component:

import React from "react";

import { View, ActivityIndicator } from "react-native";

import styles from "./styles";

export default function App() {

  return (

    <View style={styles.container}>

      <ActivityIndicator size="large" />

    </View>



Indicating progress     385

  );

}

The <ActivityIndicator /> component is platform-agnostic. Here's how it looks  
on iOS:

Figure 20.1 – An activity indicator on iOS



386     Showing Progress

It renders an animated spinner in the middle of the screen. This is the large spinner, as 
specified in the size property. The ActivityIndicator spinner can also be small, 
which makes more sense if you're rendering it inside another smaller element. Now, let's 
take a look at how this looks on an Android device:

Figure 20.2 – An activity indicator on Android



Measuring progress     387

The spinner looks different, as it should, but your app conveys the same thing on both 
platforms – you're waiting for something.

This example spins forever. But don't worry – there's a more realistic progress indicator 
example coming up that shows you how to work with navigation and loading API data.

Measuring progress
The downside of just indicating that progress is being made is that there's no end in sight 
for the user. This leads to a feeling of unease, like when you're waiting for food to cook 
in a microwave with no timer. When you know how much progress has been made and 
how much is left to go, you feel better. That is why it's always better to use a deterministic 
progress bar whenever possible.

Unlike the ActivityIndicator component, there's no platform-agnostic component 
in React Native for progress bars. So, we'll have to make one ourselves. We'll create a 
component that uses ProgressViewIOS on iOS and ProgressBarAndroid on 
Android.

Important Information
Due to react-native size optimization, the Meta team is working 
on moving such components to separate packages. In the next releases, 
ProgressViewIOS and ProgressBarAndroid might be moved 
outside of the react-native library.

You can also try the following packages with a similar API:

expo-progress – https://github.com/EvanBacon/expo-
progress and

ProgressBar – https://callstack.github.io/react-
native-paper/progress-bar.html.

Let's handle the cross-platform issues first. React Native knows to import the correct 
module based on its file extension. Here's what the ProgressBarComponent.ios.js 
module looks like:

export { ProgressViewIOS as ProgressBarComponent } from

  "react-native";

export const progressProps = {};

https://github.com/EvanBacon/expo-progress
https://github.com/EvanBacon/expo-progress
https://callstack.github.io/react-native-paper/progress-bar.html
https://callstack.github.io/react-native-paper/progress-bar.html


388     Showing Progress

You're directly exporting the ProgressViewIOS component from React Native. You're 
also exporting properties for a component specific to the platform. In this case, it's an 
empty object because there are no properties that are specific to <ProgressViewIOS>.

Now, let's look at the ProgressBarComponent.android.js module:

export { ProgressBarAndroid as ProgressBarComponent } from

  "react-native";

export const progressProps = {

  styleAttr: "Horizontal",

  indeterminate: false

};

This module uses the exact same approach as the ProgressBarComponent.ios.js 
module. It exports the Android-specific component and the Android-specific properties 
to pass to it.

Now, let's build the ProgressBar component that the application will use. You 
can find the source code for this component here: https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/
Chapter20/measuring-progress/ProgressBar.js.

Let's walk through what's going on in this module, starting with the imports. The 
ProgressBarComponent and progressProps values are imported from our 
ProgressBarComponent module. React Native determines which module to import 
these from.

Next, you have the ProgressLabel utility component. It figures out what label is 
rendered for the progress bar based on the show property. If it's false, nothing is 
rendered. If it's true, it renders a <Text> component that displays the progress as a 
percentage.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter20/measuring-progress/ProgressBar.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter20/measuring-progress/ProgressBar.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter20/measuring-progress/ProgressBar.js


Measuring progress     389

Lastly, you have the ProgressBar component itself, which our application will import 
and use. This renders the label and the appropriate progress bar component. It takes  
a progress property, which is a value between 0 and 1. Now, let's put this component  
to use in the App component:

import React, { useState, useEffect } from "react";

import { View } from "react-native";

import styles from "./styles";

import ProgressBar from "./ProgressBar";

export default function MeasuringProgress() {

  const [progress, setProgress] = useState(0);

  useEffect(() => {

    function updateProgress() {

      setProgress(currentProgress => {

        if (currentProgress < 1) {

          setTimeout(updateProgress, 300);

          return currentProgress + 0.01;

        }

        return currentProgress;

      });

    }

    updateProgress();

  }, []);

  return (

    <View style={styles.container}>

      <ProgressBar progress={progress} />

    </View>

  );

}



390     Showing Progress

Initially, the <ProgressBar> component is rendered at 0%. In the useEffect() 
hook, the updateProgress() function uses a timer to simulate a real process that you 
want to show progress for. Here's what the iOS screen looks like:

Figure 20.3 – The progress bar on iOS



Exploring navigation indicators     391

Here's what the same progress bar looks like on Android:

Figure 20.4 – The progress bar on Android

Showing a quantitative measure of progress is important so that users can gauge how long 
something will take. In the next section, you'll learn how to use progress indicators to 
show the user where they are in terms of navigating screens.

Exploring navigation indicators
Earlier in this chapter, you were introduced to the ActivityIndicator component. 
In this section, you'll learn how it can be used when navigating an application that loads 
data. For example, the user navigates from page or screen one to page two. However, page 
two needs to fetch data from the API that it can display to the user. So, while this network 
call is happening, it makes more sense to display a progress indicator instead of a screen 
devoid of useful information.



392     Showing Progress

Doing this is actually kind of tricky because you have to make sure that the data that's 
required by the screen is fetched from the API each time the user navigates to the screen. 
Your goals should be as follows:

• Have the Navigator component automatically fetch API data for the scene that's 
about to be rendered.

• Use the promise that's returned by the API call as a means to display the spinner 
and hide it once the promise has been resolved.

Since your components probably don't care about whether a spinner is displayed or not, 
let's implement this as a generic Higher-Order Component (HOC):

import React, { useState, useEffect } from "react";

import { View, ActivityIndicator } from "react-native";

import styles from "./styles";

export default function loading(Wrapped) {

  return function LoadingWrapper(props) {

    const [loading, setLoading] = useState(true);

    useEffect(() => {

      setTimeout(() => {

        setLoading(false);

      }, 1000);

    }, []);

    if (loading) {

      return (

        <View style={styles.container}>

          <ActivityIndicator size="large" />

        </View>

      );

    } else {

      return <Wrapped {...props} />;

    }

  };

}



Step progress     393

This loading() function takes a component – the Wrapped argument – and returns 
a LoadingWrapper component. The HOC has a useEffect hook with a timeout, 
and when it resolves, it changes the loading state to false. As you can see in the 
render() method, the loading state determines whether the spinner or the Wrapped 
component is rendered.

With the loading() higher-order function in place, let's take a look at the first screen 
component that you'll use with react-navigation:

import React from "react";

import { View, Button } from "react-native";

import styles from "./styles";

import loading from "./loading";

const First = loading(({ navigation }) => (

  <View style={styles.container}>

    <Button title="Second" onPress={() =>

      navigation.navigate("Second")} />

    <Button title="Third" onPress={() =>

      navigation.navigate("Third")} />

  </View>

));

export default First;

This module exports a component that's wrapped with the loading() HOC we 
created earlier. It wraps the First component so that a spinner is displayed while the 
setTimeout method is pending. This is a useful approach to hiding extra logic in one 
place and reusing it on every page. Instead of the setTimeout method, in a real app, you 
can pass additional props to the HOC. 

Step progress
In this final example, you'll build an app that displays the user's progress through a 
predefined number of steps. For example, it might make sense to split a form into several 
logical sections and organize them in such a way that, as the user completes one section, 
they move to the next step. A progress bar would be helpful feedback for the user.



394     Showing Progress

You'll insert a progress bar into the navigation bar, just below the title, so that the user 
knows how far they've gone and how far is left to go. You'll also reuse the ProgressBar 
component that you implemented earlier in this chapter.

Let's take a look at the result first. There are four screens in this app that the user can 
navigate. Here's what the first page (scene) looks like:

Figure 20.5 – The first screen



Step progress     395

The progress bar under the title reflects the fact that the user is 25% through the 
navigation. Let's see what the third screen looks like:

Figure 20.6 – The third screen

The progress is updated to reflect where the user is in the route stack. Let's take a 
look at the App component here: https://github.com/PacktPublishing/
React-and-React-Native-4th-Edition-/blob/main/Chapter20/step-
progress-new/App.js.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter20/step-progress-new/App.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter20/step-progress-new/App.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-/blob/main/Chapter20/step-progress-new/App.js


396     Showing Progress

This app has four screens. The components that render each of these screens are stored 
in the routes constant, which is then used to configure the stack navigator using 
createNativeStackNavigator(). The reason for creating the routes array is so 
that it can be used by the progress parameter that is passed by initialParams to 
every route. To calculate the progress, we take the current route index as a value of the 
route's length. For example, Second is in the number 2 position (an index of 1 + 1) and 
the length of the array is 4. This will set the progress bar to 50%.

Also, the Next and Previous buttons' calls to navigation.navigate() have to 
pass routeName, so we added the nextRouteName and prevRouteName variables to 
the screenOptions handler.

Summary
In this chapter, you learned how to show your users that something is happening behind 
the scenes. First, we discussed why showing progress is important for the usability of an 
application. Then, we implemented a basic screen that indicated progress was being made. 
After that, we implemented a ProgressBar component, which is used to measure 
specific progress amounts.

Indicators are good for indeterminate progress. We implemented navigation that 
showed progress indicators while network calls were pending. In the final section, we 
implemented a progress bar that showed the user where they were in a predefined number 
of steps.

In the next chapter, we'll look at React Native maps and geolocation data in action.

Further reading
Check out the following links for more information:

• ActivityIndicator: https://reactnative.dev/docs/
activityindicator

• ProgressViewIOS: https://reactnative.dev/docs/
progressviewios

• ProgressBarAndroid: https://reactnative.dev/docs/
progressbarandroid

https://reactnative.dev/docs/activityindicator
https://reactnative.dev/docs/activityindicator
https://reactnative.dev/docs/progressviewios
https://reactnative.dev/docs/progressviewios
https://reactnative.dev/docs/progressbarandroid
https://reactnative.dev/docs/progressbarandroid


21
Geolocation and 

Maps
In this chapter, you'll learn about the geolocation and mapping capabilities of React 
Native. You'll start the learning process with how to use the geolocation API, and then 
you'll move on to using the MapView component to plot points of interest and regions.  
To do this, we'll use the react-native-maps package to implement maps. 

The goal of this chapter is to go over what's available in React Native for geolocation and 
in React Native Maps for maps. 

Here's a list of the topics that we'll cover in this chapter:

• Using Location API 

• Rendering the Map

• Annotating points of interest

Technical requirements
You can find the code file for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter21.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter21
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter21
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter21


398     Geolocation and Maps

Using Location API
The geolocation API that web applications use to figure out where the user is located can 
also be used by React Native applications because the same API has been polyfilled. Other 
than maps, this API is useful for getting precise coordinates from the GPS on mobile 
devices. You can then use this information to display meaningful location data to the user.

Unfortunately, the data returned by the geolocation API is of little use on its own. Your 
code must do the legwork to transform it into something useful. For example, latitude 
and longitude don't mean anything to the user, but you can use this data to look up 
something that is of use to the user. This might be as simple as displaying where the user 
is currently located.

Let's implement an example that uses the geolocation API of React Native to look 
up coordinates and then use those coordinates to look up human-readable location 
information from the Google Maps API.

Before we start coding, let's create a project using expo init and then add the location 
module:

expo install expo-location

When you have a prepared project, let's have a look at the App component, which you 
can find here: https://github.com/PacktPublishing/React-and-React-
Native-4th-Edition/blob/main/Chapter21/where-am-i/App.js. The 
goal of this component is to render the properties returned by the geolocation API on the 
screen, as well as looking up the user's specific location and displaying it.

To fetch a location from the app, we need to grant permissions. In App.js, we have called 
Location.requestForegroundPermissionsAsync() for that.

The setPosition() function is used as a callback in a couple of places, with its job 
being to set the state of your component. Firstly, setPosition() sets the lat-long 
coordinates. Normally, you wouldn't display this data directly, but this is an example that's 
showing the data that's available as part of the geolocation API. And secondly, it uses the 
latitude and longitude values to look up the name of where the user is currently, 
using the Google Maps API. 

In the example, the API_KEY value is empty, and you can get it here: https://
developers.google.com/maps/documentation/geocoding/start.

The setPosition() callback is used with getCurrentPosition(), which is only 
called once when the component is mounted. You're also using setPosition() with 
watchPosition(), which calls the callback any time the user's position changes.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter21/where-am-i/App.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter21/where-am-i/App.js
https://developers.google.com/maps/documentation/geocoding/start
https://developers.google.com/maps/documentation/geocoding/start


Using Location API     399

Important Note
The iOS emulator and Android Studio let you change locations via menu 
options. You don't have to install your app on a physical device every time you 
want to test changing locations.

Let's see what this screen looks like once the location data has loaded:

Figure 21.1 – Location data

The address information that was fetched is probably more useful in an application than 
latitude and longitude data. Even better than physical address text is visualizing the user's 
physical location on a map; you'll learn how to do this in the next section.



400     Geolocation and Maps

Rendering the Map
The MapView component from react-native-maps is the main tool you'll use to 
render maps in your React Native applications. It offers a wide range of tools for rendering 
maps, markers, polygons, heatmaps, and suchlike.

Let's now implement a basic MapView component to see what you get out of the box:

import React from "react";

import { View, StatusBar } from "react-native";

import MapView from "react-native-maps";

import styles from "./styles";

StatusBar.setBarStyle("dark-content");

export default () => (

  <View style={styles.container}>

    <MapView style={styles.mapView} showsUserLocation

      followUserLocation />

  </View>

);

The two Boolean properties that you've passed to MapView do a lot of work for you. The 
showsUserLocation property will activate the marker on the map, which denotes the 
physical location of the device running this application. The followUserLocation 
property tells the map to update the location marker as the device moves around. 



Rendering the Map     401

Here is the resulting map:

Figure 21.2 – Current location

The current location of the device is clearly marked on the map. By default, points of 
interest are also rendered on the map. These are things close to the user so that they can 
see what's around them.

It's generally a good idea to use the followUserLocation property whenever using 
showsUserLocation. This makes the map zoom to the region where the user is located. 

In the following section, you'll learn how to annotate points of interest on your maps.



402     Geolocation and Maps

Annotating points of interest
Annotations are exactly what they sound like; additional information rendered on top 
of the basic map geography. You get annotations by default when you render MapView 
components. The MapView component can render the user's current location and points 
of interest around the user. The challenge here is that you probably want to show the 
points of interest relevant to your application instead of those rendered by default.

In this section, you'll learn how to render markers for specific locations on the map,  
as well as rendering regions on the map.

Plotting points
Let's plot some local breweries! Here's how you pass annotations to the MapView 
component:

import React from "react";

import { View, StatusBar } from "react-native";

import MapView from "react-native-maps";

import styles from "./styles";

StatusBar.setBarStyle("dark-content");

export default function App() {

  return (

    <View style={styles.container}>

      <MapView

        style={styles.mapView}

        showsPointsOfInterest={false}

        showsUserLocation

        followUserLocation

      >

        <MapView.Marker

          title="Duff Brewery"

          description="Duff beer for me, Duff beer for you"

          coordinate={{

            latitude: 43.8418728,

            longitude: -79.086082,

          }}



Annotating points of interest     403

        />

        <MapView.Marker

          title="Pawtucket Brewery"

          description="New! Patriot Light!"

          coordinate={{

            latitude: 43.8401328,

            longitude: -79.085407,

          }}

        />

      </MapView>

    </View>

  );

}

In this example, we've opted out of this capability by setting the 
showsPointsOfInterest property to false. Let's see where these breweries are 
located:

Figure 21.3 – Plotting points



404     Geolocation and Maps

The callout is displayed when you press the marker that shows the location of the brewery 
on the map. The title and description property values that you give to <MapView.
Marker> are used to render this text.

Plotting overlays
In this last section of this chapter, you'll learn how to render region overlays. Think of a 
region as a connect-the-dots drawing of several points, and a point is a single latitude/
longitude coordinate. 

Regions can serve many purposes. In our example, we'll create a region that shows where 
we're more likely to find IPA drinkers versus stout drinkers. You can follow this link to 
see what the code looks like: https://github.com/PacktPublishing/React-
and-React-Native-4th-Edition/blob/main/Chapter21/plotting-
overlays/App.js.

The region data consists of several latitude/longitude coordinates that define the 
shape and location of the region. The rest of this code is mostly about the handling state 
when the two text links are pressed. 

By default, the IPA region is rendered as follows:

Figure 21.4 – IPA Fans

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter21/plotting-overlays/App.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter21/plotting-overlays/App.js
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/blob/main/Chapter21/plotting-overlays/App.js


Summary     405

When the Stout Fans button is pressed, the IPA overlay is removed from the map, and the 
stout region is added:

Figure 21.5 – Stout Fans

Overlays are useful when you need to highlight an area instead of a latitude/
longitude point or an address.

Summary
In this chapter, you learned about geolocation and mapping in React Native. The 
geolocation API works the same as its web counterpart. The only reliable way to use maps 
in React Native applications is to install the third-party react-native-maps package.

You saw the basic configuration MapView components and how they can track the user's 
location and show relevant points of interest. Then, you saw how to plot your own points 
of interest and regions of interest.

In the next chapter, you'll learn how to collect user input using React Native components 
that resemble HTML form controls.



406     Geolocation and Maps

Further reading
Take a look at the following URLs to get more information:

• Geolocation: https://docs.expo.dev/versions/latest/sdk/
location/

• React Native maps: https://docs.expo.dev/versions/latest/sdk/
map-view/

https://docs.expo.dev/versions/latest/sdk/location/
https://docs.expo.dev/versions/latest/sdk/location/
https://docs.expo.dev/versions/latest/sdk/map-view/
https://docs.expo.dev/versions/latest/sdk/map-view/


22
Collecting User 

Input
In web applications, you can collect user input from standard HTML form elements that 
look and behave similarly on all browsers. With native UI platforms, collecting user input 
is more nuanced.

In this chapter, you'll learn how to work with the various React Native components that 
are used to collect user input. These include text input, selecting from a list of options, 
checkboxes, and date/time selectors. All of these are used in every app in cases of register 
or login flow, as well as the purchase form. The experience of creating such forms is very 
valuable and this chapter will help you to know how to create any form in your future 
apps. You'll learn the differences between iOS and Android and how to implement the 
appropriate abstractions for your app.

The following topics will be covered in this chapter:

• Collecting text input

• Selecting from a list of options

• Toggling between on and off

• Collecting date/time input



408     Collecting User Input

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter22.

Collecting text input
It turns out that there's a lot to think about when it comes to implementing text inputs. 
For example, should it have placeholder text? Is this sensitive data that shouldn't be 
displayed on the screen? Should you process text as it's entered or when the user moves to 
another field?

The noticeable difference between mobile text input and traditional web text input is that 
the former has its own built-in virtual keyboard that you can configure and respond to. 
Let's build an example that renders several instances of the <TextInput> component:

import React, { useState } from "react";

import PropTypes from "prop-types";

import { Text, TextInput, View } from "react-native";

import styles from "./styles";

function Input(props) {

  return (

    <View style={styles.textInputContainer}>

      <Text style={styles.textInputLabel}>{props.label}

        </Text>

      <TextInput style={styles.textInput} {...props} />

    </View>

  );

}

Input.propTypes = {

  label: PropTypes.string,

};

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter22
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter22
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter22


Collecting text input     409

We have implemented the Input component that we will reuse several times. Let's take a 
look at a few use cases of text inputs:

export default function CollectingTextInput() {

  const [changedText, setChangedText] = useState("");

  const [submittedText, setSubmittedText] = useState("");

  return (

    <View style={styles.container}>

      <Input label="Basic Text Input:" />

      <Input label="Password Input:" secureTextEntry />

      <Input label="Return Key:" returnKeyType="search" />

      <Input label="Placeholder Text:" 

        placeholder="Search" />

      <Input

        label="Input Events:"

        onChangeText={(e) => {

          setChangedText(e);

        }}

        onSubmitEditing={(e) => {

          setSubmittedText(e.nativeEvent.text);

        }}

        onFocus={() => {

          setChangedText("");

          setSubmittedText("");

        }}

      />

      <Text>Changed: {changedText}</Text>

      <Text>Submitted: {submittedText}</Text>

    </View>

  );

}



410     Collecting User Input

I won't go into depth about what each of these <TextInput> components is doing – 
there are comments in the code that explain this. Let's see what these components look 
like on the screen:

Figure 22.1 – Text input variations

The plain text input shows the text that's been entered. The Password Input field doesn't 
reveal any characters. Placeholder Text is displayed when the input is empty. The Changed 
text state is also displayed. You can't see the Submitted text state because I didn't press the 
Submitted button on the virtual keyboard before I took the screenshot.

Let's take a look at the virtual keyboard for the input element where you changed the 
Return Key text via the returnKeyType prop:

Figure 22.2 – Keyboard with changed Return key text



Selecting from a list of options     411

When the keyboard Return key reflects what's going to happen when the user presses it, 
the user feels more in tune with the application. 

One more common use case is changing the keyboard type. By providing the 
keyboardType prop to the TextInput component, you will see different variations of 
keyboards. This is convenient when you need to enter a pin code or email address. Here is 
an example of a numeric keyboard:

Figure 22.3 – Numeric keyboard type

Now that you're familiar with collecting text input, it's time to learn how to select a value 
from a list of options.

Selecting from a list of options
In web applications, you typically use the <select> element to let the user choose from 
a list of options. React Native comes with a <Picker> component, which works on 
both iOS and Android, but in terms of reducing the React Native app size, the Meta team 
decided to delete it in future releases and extract Picker to its own package. To use that 
package, firstly, we install it in a clean project by running this command:

expo install @react-native-picker/picker

There is some trickery involved with styling this component based on which platform 
the user is on, so let's hide all of this inside a generic Select component. Here's the 
Select.ios.js module:

import React from "react";

import { View, Text } from "react-native";

import { Picker } from "@react-native-picker/picker";

import styles from "./styles";

export default function Select(props) {

  return (

    <View style={styles.pickerHeight}>



412     Collecting User Input

      <View style={styles.pickerContainer}>

        <Text style={styles.pickerLabel}>{props.label}

          </Text>

        <Picker style={styles.picker} {...props}>

          {props.items.map((i) => (

            <Picker.Item key={i.label} {...i} />

          ))}

        </Picker>

      </View>

    </View>

  );

}

That's a lot of overhead for a simple Select component. Well, it turns out that it's 
actually quite hard to style the React Native <Picker> component. Here's the Select.
android.js module:

import React from "react";

import { View, Text } from "react-native";

import { Picker } from "@react-native-picker/picker";

import styles from "./styles";

export default function Select(props) {

  return (

    <View>

      <Text style={styles.pickerLabel}>{props.label}</Text>

      <Picker {...props}>

        {props.items.map((i) => (

          <Picker.Item key={i.label} {...i} />

        ))}

      </Picker>

    </View>

  );

}



Selecting from a list of options     413

This is what the styles look like:

import { StyleSheet } from "react-native";

export default StyleSheet.create({

  container: {

    flex: 1,

    flexDirection: "column",

    backgroundColor: "ghostwhite",

    justifyContent: "center",

  },

  pickersBlock: {

    flex: 2,

    flexDirection: "row",

    justifyContent: "space-around",

    alignItems: "center",

  },

As usual with the container and pickersBlock styles, we define the base layout of 
the screen. Next, let's take a look at the styles of the <Select> component:

  pickerHeight: {

    height: 250,

  },

  pickerContainer: {

    flex: 1,

    flexDirection: "column",

    alignItems: "center",

    backgroundColor: "white",

    padding: 6,

    height: 240,

  },

  pickerLabel: {

    fontSize: 14,



414     Collecting User Input

    fontWeight: "bold",

  },

  picker: {

    width: 150,

    backgroundColor: "white",

  },

  selection: {

    flex: 1,

    textAlign: "center",

  },

});

Now, you can render your <Select> component. Here is what the App.js file looks like:

const sizes = [

  { label: "", value: null },

  { label: "S", value: "S" },

  { label: "M", value: "M" },

  { label: "L", value: "L" },

  { label: "XL", value: "XL" },

];

const garments = [

  { label: "", value: null, sizes: ["S", "M", "L", "XL"] },

  { label: "Socks", value: 1, sizes: ["S", "L"] },

  { label: "Shirt", value: 2, sizes: ["M", "XL"] },

  { label: "Pants", value: 3, sizes: ["S", "L"] },

  { label: "Hat", value: 4, sizes: ["M", "XL"] },

];

Here, we defined the default values for our <Select/> component. Let's take a look at 
the final SelectingOptions component:

export default function SelectingOptions() {

  const [availableGarments, setAvailableGarments] =

    useState([]);

  const [selectedSize, setSelectedSize] = useState(null);



Selecting from a list of options     415

  const [selectedGarment, setSelectedGarment] =

    useState(null);

  const [selection, setSelection] = useState("");

With these hooks, we've implemented states of selectors. Next, we will use and pass them 
into components:

  return (

    <View style={styles.container}>

      <View style={styles.pickersBlock}>

        <Select

          label="Size"

          items={sizes}

          selectedValue={selectedSize}

          onValueChange={(size) => {

            setSelectedSize(size);

            setSelectedGarment(null);

            setAvailableGarments(

              garments.filter((i) =>

                i.sizes.includes(size))

            );

          }}

        />

        <Select

          label="Garment"

          items={availableGarments}

          selectedValue={selectedGarment}

          onValueChange={(garment) => {

            setSelectedGarment(garment);

            setSelection(

              '${selectedSize} ${

                garments.find((i) => i.value ===

                  garment).label

              }'

            );

          }}

        />



416     Collecting User Input

      </View>

      <Text style={styles.selection}>{selection}</Text>

    </View>

  );

}

The basic idea of this example is that the selected option in the first selector changes the 
available options in the second selector. When the second selector changes, the label shows 
selectedSize and selectedGarment as a string. Here's how the screen looks:

Figure 22.4 – Selecting from the list of options

The size selector is shown on the left-hand side of the screen. When the size value 
changes, the available values in the garment selector on the right-hand side of the screen 
change to reflect size availability. The current selection is displayed as a string after the two 
selectors. In the following section, you'll learn about the buttons that toggle between on 
and off states.



Toggling between on and off     417

Toggling between on and off
Another common element you'll see in web forms is checkboxes. React Native has a 
Switch component that works on both iOS and Android. Thankfully, this component is 
a little easier to style than the Picker component. Let's look at a simple abstraction you 
can implement to provide labels for your switches:

import React from "react";

import { View, Text, Switch } from "react-native";

import styles from "./styles";

export default function CustomSwitch(props) {

  return (

    <View style={styles.customSwitch}>

      <Text>{props.label}</Text>

      <Switch {...props} />

    </View>

  );

}

Now, let's learn how we can use a couple of switches to control application state:

import React, { useState } from "react";

import { View } from "react-native";

import styles from "./styles";

import Switch from "./Switch";

export default function TogglingOnAndOff() {

  const [first, setFirst] = useState(false);

  const [second, setSecond] = useState(false);

  return (

    <View style={styles.container}>

      <Switch

        label="Disable Next Switch"

        value={first}

        disabled={second}

        onValueChange={setFirst}



418     Collecting User Input

      />

      <Switch

        label="Disable Previous Switch"

        value={second}

        disabled={first}

        onValueChange={setSecond}

      />

    </View>

  );

}

These two switches toggle the disabled property of one another. When the first switch 
is toggled, the setFirst() function is called, which will update the value of the first 
state. Depending on the current value of first, it will either be set to true or false. 
The second switch works the same way, except it uses setSecond() and the second 
state value.

Turning on one switch will disable the other because we've set the disabled property 
value for each switch to the state of the other switch. For example, the second switch has 
disabled={first}, which means that it is disabled whenever the first switch is turned 
on. Here's what the screen looks like on iOS:

Figure 22.5 – Switch toggles on iOS



Collecting date/time input     419

Here's what the same screen looks like on Android:

Figure 22.6 – Switch toggles on Android

As you can see, our CustomSwitch component enables the same functionality on 
Android and iOS while using one component for both platforms. In the following section, 
you'll learn how to collect date/time input.

Collecting date/time input
In this final section of this chapter, you'll learn how to implement date/time pickers. 
React Native docs suggest using @react-native-community/datetimepicker 
independent date/time picker components for iOS and Android, which means that it is 
up to you to handle the cross-platform differences between the components. To install 
datetimepicker, run the following command in the project:

expo install @react-native-community/datetimepicker

So, let's start with a date picker component for iOS:

import React from "react";

import { Text, View } from "react-native";

import DateTimePicker from "@react-native-

  community/datetimepicker";



420     Collecting User Input

import styles from "./styles";

export default function DatePicker(props) {

  return (

    <View style={styles.datePickerContainer}>

      <Text style={styles.datePickerLabel}>{props.label}

        </Text>

      <DateTimePicker mode="date" display="spinner"

        {...props} />

    </View>

  );

}

There's not a lot to this component; it simply adds a label to the DateTimePicker 
component. The Android version of the date picker needs a little more work. Let's take a 
look at the implementation:

import React from "react";

import { Text, View } from "react-native";

import DateTimePicker from "@react-native-

  community/datetimepicker";

import styles from "./styles";

function pickDate(options, onDateChange) {

  DateTimePicker.open(options).then((date) =>

    onDateChange(new Date(date.year, date.month, date.day))

  );

}

export default function DatePicker({ label, date,

  onDateChange }) {

  return (

    <View style={styles.datePickerContainer}>

      <Text style={styles.datePickerLabel}>{label}</Text>

      <Text onPress={() => pickDate({ date },

        onDateChange)}>



Collecting date/time input     421

        {date.toLocaleDateString()}

      </Text>

    </View>

  );

}

The key difference between the two date pickers is that the Android version doesn't use a 
React Native component, such as DateTimePicker in iOS. Instead, we have to use the 
imperative DateTimePicker.open() API. This is triggered when the user presses the 
date text that our component renders and opens a date picker dialog. The good news is 
that this component of ours hides this API behind a declarative component.

Important Note
I've also implemented a time picker component that follows this exact pattern. 
So, rather than listing that code here, I suggest that you download the code 
for this book from https://github.com/PacktPublishing/
React-and-React-Native-4th-Edition- so that you can see the 
subtle differences and run the example.

Now, let's learn how to use our date and time picker components:

import React, { useState } from "react";

import { View } from "react-native";

import DatePicker from "./DatePicker";

import TimePicker from "./TimePicker";

import styles from "./styles";

export default function CollectingDateTimeInput() {

  const [date, setDate] = useState(new Date());

  const [time, setTime] = useState(new Date());

  return (

    <View style={styles.container}>

      <DatePicker

        label="Pick a date, any date:"

        value={date}

        onChange={setDate}

      />

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition-


422     Collecting User Input

      <TimePicker

        label="Pick a time, any time:"

        value={time}

        onChange={setTime}

      />

    </View>

  );

}

Awesome! Now, we have DatePicker and TimePicker components that can help us 
to select dates and times in our app. Also, they both work on iOS and Android. Let's see 
how the pickers look on iOS:

Figure 22.7 – iOS date and time pickers



Summary     423

As you can see, the iOS date and time pickers use the Picker component that you 
learned about earlier in this chapter. The Android picker looks a lot different – let's look at 
it now:

Figure 22.8 – Android date picker

The Android version follows a completely different approach from the iOS date/time 
picker, yet we can use the same DatePicker component that we've created on both 
platforms. This brings us to the end of the chapter.

Summary
In this chapter, we learned about the various React Native components that resemble 
the form elements from the web that we're used to. We started off by learning about text 
input and how each text input has its own virtual keyboard to take into consideration. 
Next, we learned about Picker components, which allow the user to select an item from 
a list of options. Then, we learned about the Switch component, which is kind of like a 
checkbox. With these components, you will be able to build a form of any complexity.



424     Collecting User Input

In the final section, we learned how to implement generic date/time pickers that work on 
both iOS and Android. In the next chapter, we'll learn about modal dialogs in React Native.

Further reading
Visit the following links for more information:

• Handling text input: https://reactnative.dev/docs/handling-text-
input

• Switch: https://reactnative.dev/docs/switch

• Picker: https://docs.expo.dev/versions/latest/sdk/picker/

• DateTimePicker: https://docs.expo.dev/versions/latest/sdk/
date-time-picker/

https://reactnative.dev/docs/handling-text-input
https://reactnative.dev/docs/handling-text-input
https://reactnative.dev/docs/switch
https://docs.expo.dev/versions/latest/sdk/picker/
https://docs.expo.dev/versions/latest/sdk/date-time-picker/
https://docs.expo.dev/versions/latest/sdk/date-time-picker/


23
Displaying Modal 

Screens
The goal of this chapter is to show you how to present information to the user in ways that 
don't disrupt the current page. Pages use a View component and render it directly on the 
screen. There are times, however, when there's important information that the user needs 
to see but you don't necessarily want to kick them off the current page.

You'll start by learning how to display important information. By knowing what 
information is important and when to use it, you'll learn how to get user acknowledgment 
– both for error and success scenarios. Then, you'll implement passive notifications that 
show the user that something has happened. Finally, you'll implement modal views that 
show the user that something is happening in the background.

The following topics will be covered in this chapter: 

• Important information

• Getting user confirmation

• Passive notifications 

• Activity modals



426     Displaying Modal Screens

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter23.

Important information
Before you dive into implementing alerts, notifications, and confirmations, let's take a few 
minutes and think about what each of these items means. I think this is important because 
if you end up passively notifying the user about an error, it can easily get missed. Here are 
my definitions of the types of information that you'll want to display:

• Alert: Something important just happened, and you need to ensure that the user 
sees what's going on. Possibly, the user needs to acknowledge the alert.

• Confirmation: This is part of an alert. For example, if the user has just performed 
an action and then wants to make sure that it was successful before carrying on, 
they would have to confirm that they've seen the information in order to close the 
modal. A confirmation can also exist within an alert, warning the user about an 
action that they're about to perform.

• Notification: Something happened but it's not important enough to completely 
block what the user is doing. These typically go away on their own. 

The trick is to try to use notifications where the information is good to know but not 
critical. Use confirmations only when the workflow of the feature cannot continue without 
the user acknowledging what's going on. In the following sections, you'll see examples of 
alerts and notifications that are used for different purposes.

Getting user confirmation
In this section, you'll learn how to show modal views in order to get confirmation from 
the user. First, you'll learn how to implement a successful scenario, where an action 
generates a successful outcome that you want the user to be aware of. Then, you'll learn 
how to implement an error scenario where something went wrong and you don't want the 
user to move forward without acknowledging the issue.



Getting user confirmation     427

Displaying a success confirmation
Let's start by implementing a modal view that's displayed as a result of the user 
successfully performing an action. Here's the Modal component, which is used to show 
the user a confirmation modal:

iexport default function ConfirmationModal(props) {

  return (

    <Modal {...props}>

      <View style={styles.modalContainer}>

        <View style={styles.modalInner}>

          <Text style={styles.modalText}>Dude,

            srsly?</Text>

          <Text style={styles.modalButton}

            onPress={props.onPressConfirm}>

            Yep

          </Text>

          <Text style={styles.modalButton}

            onPress={props.onPressCancel}>

            Nope

          </Text>

        </View>

      </View>

    </Modal>

  );

}

ConfirmationModal.defaultProps = {

  transparent: true,

  onRequestClose: () => {},

};



428     Displaying Modal Screens

The properties that are passed to ConfirmationModal are forwarded to the React 
Native Modal component. You'll see why in a moment. First, let's see what this 
confirmation modal looks like:

Figure 23.1 – The confirmation modal

The modal that's displayed once the user completes an action uses our own styling and 
confirmation message. It also has two actions, but it may only need one, depending on 
whether this confirmation is pre-action or post-action. Here are styles that are being 
used for this modal:

modalContainer: {

    flex: 1,

    justifyContent: "center",

    alignItems: "center",

  },

  modalInner: {

    backgroundColor: "azure",

    padding: 20,



Getting user confirmation     429

    borderWidth: 1,

    borderColor: "lightsteelblue",

    borderRadius: 2,

    alignItems: "center",

  },

  modalText: {

    fontSize: 16,

    margin: 5,

    color: "slategrey",

  },

  modalButton: {

    fontWeight: "bold",

    margin: 5,

    color: "slategrey",

  },

With the React Native Modal component, it's pretty much up to you how you want your 
confirmation modal view to look. Think of them as regular views, with the only difference 
being that they're rendered on top of other views.

A lot of the time, you might not care to style your own modal views. For example, in web 
browsers, you can simply call the alert() function, which shows text in a window that's 
styled by the browser. React Native has something similar – Alert.alert(). The tricky 
part here is that this is an imperative API, and you don't necessarily want to expose it 
directly to your application.

Instead, let's implement a ConfirmationAlert component that hides the details of this 
particular React Native API so that your app can just treat this like any other component:

import React from "react";

import { Alert } from "react-native";

export default function ConfirmationAlert(props) {

  React.useEffect(() => {

    if (props.visible) {

      Alert.alert(props.title, props.message,

        props.buttons);



430     Displaying Modal Screens

    }

  }, [props.visible]);

  return null;

}

ConfirmationAlert.defaultProps = {

  title: "",

  message: "",

  buttons: [],

};

This component doesn't need to render anything, since it deals exclusively with imperative 
React Native calls. However, it feels like something is being rendered to the person that's 
using ConfirmationAlert.

Here's what the alert looks like on iOS:

Figure 23.2 – A confirmation alert on iOS



Getting user confirmation     431

In terms of functionality, there's nothing really different here. There is a title and text 
beneath it, but that's something that can easily be added to a modal view if you wanted. 
The real difference is that this modal looks like an iOS modal instead of something that's 
styled by the app. Let's see how this alert appears on Android:

Figure 23.3 – A confirmation alert on Android

This modal looks like an Android modal, and you didn't have to style it. I think using 
alerts over modals is a better choice most of the time. It makes sense to have something 
styled to look like it's part of iOS or Android. However, there are times when you need 
more control over how the modal looks, such as when displaying error confirmations. 

The approach to rendering modals is different from the approach to rendering alerts. 
However, they're both still declarative components that change based on the changing 
property values.



432     Displaying Modal Screens

Error confirmation
All of the principles you learned about in the Displaying a success confirmation section are 
applicable when you need the user to acknowledge an error. If you need more control of the 
display, use a modal. For example, you might want the modal to be red and scary-looking, 
like this:

Figure 23.4 – The error confirmation modal

Here are styles that were used to create this look. Maybe you want something a bit 
more subtle, but the point is that you can make this look however you want:

  modalInner: {

    backgroundColor: "azure",

    padding: 20,

    borderWidth: 1,

    borderColor: "lightsteelblue",

    borderRadius: 2,

    alignItems: "center",

  },



Getting user confirmation     433

In the modalInner style property, we've defined screen styles. Next, we'll define  
modal styles: 

  modalInnerError: {

    backgroundColor: "lightcoral",

    borderColor: "darkred",

  },

  modalText: {

    fontSize: 16,

    margin: 5,

    color: "slategrey",

  },

  modalTextError: {

    fontSize: 18,

    color: "darkred",

  },

  modalButton: {

    fontWeight: "bold",

    margin: 5,

    color: "slategrey",

  },

  modalButtonError: {

    color: "black",

  },

The same modal styles that you used for the success confirmations are still here. That's 
because the error confirmation modal needs many of the same style properties. Here's 
how you apply both to the Modal component:

import React from "react";

import { View, Text, Modal } from "react-native";

import styles from "./styles";

const innerViewStyle = [styles.modalInner,

  styles.modalInnerError];

const textStyle = [styles.modalText,

  styles.modalTextError];

const buttonStyle = [styles.modalButton,



434     Displaying Modal Screens

  styles.modalButtonError];

export default function ErrorModal(props) {

  return (

    <Modal {...props}>

      <View style={styles.modalContainer}>

        <View style={innerViewStyle}>

          <Text style={textStyle}>Epic fail!</Text>

          <Text style={buttonStyle}

            onPress={props.onPressConfirm}>

            Fix it

          </Text>

          <Text style={buttonStyle}

            onPress={props.onPressCancel}>

            Ignore it

          </Text>

        </View>

      </View>

    </Modal>

  );

}

The styles are combined as arrays before they're passed to the style component 
property. The styles error always comes last, since conflicting style properties, such as 
backgroundColor, will be overridden by whatever comes later in the array.

In addition to styles in error confirmations, you can include whatever advanced controls 
you want. It really depends on how your application lets users cope with errors – for 
example, maybe there are several courses of action that can be taken.

However, the more common case is that something went wrong, and there's nothing you 
can do about it besides making sure that the user is aware of the situation. In these cases, 
you can probably get away with just displaying an alert:



Passive notifications     435

Figure 23.5 – An error alert

Now that you're able to display error notifications that require user engagement, it's time to 
learn about less aggressive notifications that don't disrupt what the user is currently doing.

Passive notifications
The notifications you've examined so far in this chapter all have required input from the 
user. This is by design because it's important information that you're forcing the user to 
look at. However, you don't want to overdo this. For notifications that are important but 
not life-altering if ignored, you can use passive notifications. These are displayed in a less 
obtrusive way than modals and don't require any user action to dismiss them.

In this section, you'll create a Notification component that uses the Toast API 
for Android and creates a custom modal for iOS. It's called the Toast API because the 
information that's displayed looks like a piece of toast popping up. Toasts is a common 
component in Android to show some basic information that does not require user response.



436     Displaying Modal Screens

Here's what the Android component looks like:

import React from "react";

import { ToastAndroid } from "react-native";

export default function Notification({ message, duration }) {

  React.useEffect(() => {

    if (message) {

      ToastAndroid.show(message, duration);

    }

  }, [message]);

  return null;

}

Notification.defaultProps = {

  duration: ToastAndroid.LONG,

};

Once again, you're dealing with an imperative React Native API that you don't want 
to expose to the rest of your app. Instead, this component hides the imperative 
ToastAndroid.show() function behind a declarative React component. No matter 
what, this component returns null because it doesn't actually render anything. Here's 
what the ToastAndroid notification looks like:

Figure 23.6 – An Android notification



Passive notifications     437

A notification stating Something happened! is displayed at the bottom of the screen and 
is removed after a short delay. The key is that the notification is unobtrusive.

The iOS notification component is a little more involved because it needs state and life 
cycle events to make a modal view behave like a transient notification. Here's what the 
code for it looks like:

export default function Notification(props) {

  const [message, setMessage] = useState(props.message);

  useEffect(() => {

    setMessage(props.message);

    const timer = setTimeout(() => {

      setMessage(null);

    }, props.duration);

    return () => {

      clearTimeout(timer);

    };

  }, [props.message]);

  const modalProps = {

    animationType: "fade",

    transparent: true,

    visible: Boolean(message),

  };

The logic in the preceding code block describes how to render a message that disappears 
after a duration period. In the following code block, you can see how we applied this logic 
to the layout:

  return (

    <Modal {...modalProps}>

      <View style={styles.notificationContainer}>

        <View style={styles.notificationInner}>

          <Text>{message}</Text>

        </View>

      </View>



438     Displaying Modal Screens

    </Modal>

  );

}

You have to style the modal to display the notification text, as well as the state that's used 
to hide the notification after a delay. Here's what the end result looks like for iOS:

Figure 23.7 – An iOS notification

The same principle for the ToastAndroid API applies here. You might have noticed 
that there's another button in addition to the Show Notification button. This is 
a simple counter that re-renders the view. There's actually a reason for demonstrating 
this seemingly obtuse feature, as you'll see momentarily. Here's the code for the main 
application view:

export default function PassiveNotifications() {

  const [count, setCount] = useState(0);

  const [message, setMessage] = useState(null);

  return (

    <View style={styles.container}>

      <Notification message={message} />



Activity modals     439

      <Text

        onPress={() => {

          setCount(count + 1);

          setMessage(null);

        }}

      >

        Pressed {count}

      </Text>

      <Text

        onPress={() => {

          setMessage("Something happened!");

        }}

      >

        Show Notification

      </Text>

    </View>

  );

}

The whole point of the press counter is to demonstrate that even though the 
Notification component is declarative and accepts new property values when the 
state changes, you still have to set the message state to null when changing other state 
values. The reason for this is that if you re-render the component and the message state 
still has a string in it, it will display the same notification over and over.

In the next section, you'll learn about activity modals, which show the user that something 
is happening.

Activity modals
In this final section of this chapter, you'll implement a modal that shows a progress 
indicator. The idea is to display the modal and then hide it when the promise resolves. 
Here's the code for the generic Activity component, which shows a modal with 
ActivityIndicator:

import React from "react";

import { View, Modal, ActivityIndicator } from 

  "react-native";

import styles from "./styles";



440     Displaying Modal Screens

export default function Activity(props) {

  return (

    <Modal visible={props.visible} transparent>

      <View style={styles.modalContainer}>

        <ActivityIndicator size={props.size} />

      </View>

    </Modal>

  );

}

Activity.defaultProps = {

  visible: false,

  size: "large",

};

You might be tempted to pass the promise to the component so that it automatically hides 
when the promise resolves. I don't think this is a good idea because then you would have 
to introduce the state into this component. Furthermore, it would depend on a promise 
in order to function. With the way you've implemented this component, you can show 
or hide the modal based on the visible property alone. Here's what the activity modal 
looks like on iOS:

Figure 23.8 – An activity modal



Activity modals     441

There's a semi-transparent background on the modal that's placed over the main view 
with the Fetch Stuff... link. By clicking on this link, we will be shown the activity loader. 
Here's how this effect is created in styles.js:

modalContainer: {

    flex: 1,

    justifyContent: "center",

    alignItems: "center",

    backgroundColor: "rgba(0, 0, 0, 0.2)",

  },

Instead of setting the actual Modal component to transparent, you can set the 
transparency in backgroundColor, which gives the look of an overlay. Now, let's take a 
look at the code that controls this component:

export default function App() {

  const [fetching, setFetching] = useState(false);

  const [promise, setPromise] =

    useState(Promise.resolve());

  function onPress() {

    setPromise(

      new Promise((resolve) => setTimeout(resolve,

        3000)).then(() => {

        setFetching(false);

      })

    );

    setFetching(true);

  }

  return (

    <View style={styles.container}>

      <Activity visible={fetching} />

      <Text onPress={onPress}>Fetch Stuff...</Text>

    </View>

  );

}

When the fetch link is pressed, a new promise is created that simulates asynchronous 
network activity. Then, when the promise resolves, you can change the fetching state 
back to false so that the activity dialog is hidden.



442     Displaying Modal Screens

Summary
In this chapter, we learned about the need to show important information to mobile 
users. This sometimes involves explicit feedback from the user, even if that just means 
acknowledging the message. In other cases, passive notifications work better, since they're 
less obtrusive than confirmation modals.

There are two tools that we can use to display messages to users – modals and alerts. 
Modals are more flexible because they're just like regular views. Alerts are good for 
displaying plain text, and they take care of styling concerns for us. On Android, we have 
the ToastAndroid interface as well. We saw that it's also possible to do this on iOS, but 
it just requires more work.

In the next chapter, we'll dig deeper into the gesture response system inside React Native, 
which makes for a better mobile experience than browsers can provide.

Further reading
Check out the following links for more information:

• Modal: https://reactnative.dev/docs/modal

• Alert: https://reactnative.dev/docs/alert

• ToastAndroid: https://reactnative.dev/docs/toastandroid

https://reactnative.dev/docs/modal 
https://reactnative.dev/docs/alert
https://reactnative.dev/docs/toastandroid


24
Responding to  
User Gestures

All of the examples that you've implemented so far in this book have relied on user 
gestures. In traditional web applications, you mostly deal with mouse events. However, 
touchscreens rely on the user manipulating elements with their fingers, which is 
fundamentally different from the mouse.

In this chapter, first, you'll learn about scrolling. This is probably the most common 
gesture, besides touch. Then, you'll learn about giving the user the appropriate level  
of feedback when they interact with your components. Finally, you'll implement 
components that can be swiped.

The goal of this chapter is to show you how the gesture response system inside React 
Native works and some of the ways in which this system is exposed via components.

In this chapter, we'll cover the following topics: 

• Scrolling with your fingers

• Giving touch feedback

• Using Swipeable and cancellable components



444     Responding to User Gestures

Technical requirements
You can find the code files for this chapter on Github at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter24.

Scrolling with your fingers
Scrolling in web applications is done by using the mouse pointer to drag the scrollbar back 
and forth or up and down, or by spinning the mouse wheel. This doesn't work on mobile 
devices because there's no mouse. Everything is controlled by gestures on the screen. 
For example, if you want to scroll down, you use your thumb or index finger to pull the 
content up by physically moving your finger over the screen.

Scrolling like this is difficult to implement, but it gets more complicated. When you  
scroll on a mobile screen, the velocity of the dragging motion is taken into consideration.  
You drag the screen fast, then let go, and the screen continues to scroll based on how fast 
you moved your finger. You can also touch the screen while this is happening to stop it  
from scrolling.

Thankfully, you don't have to handle most of this stuff. The ScrollView component 
handles much of the scrolling complexity for you. In fact, you've already used the 
ScrollView component back in Chapter 19, Rendering Item Lists. The ListView 
component has ScrollView baked into it.

Important Note
You can hack the low-level parts of user interactions by implementing 
gesture life cycle methods. You'll probably never need to do this, but if you're 
interested, you can read about it at https://reactnative.dev/
docs/gesture-responder-system.

You can use ScrollView outside of ListView. For example, if you're just rendering 
arbitrary content such as text and other widgets – not a list, in other words – you can just 
wrap it in <ScrollView>. Here's an example:

import React from "react";

import {

  Text,

  ScrollView,

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter24
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter24
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter24
https://reactnative.dev/docs/gesture-responder-system
https://reactnative.dev/docs/gesture-responder-system


Scrolling with your fingers     445

  ActivityIndicator,

  Switch,

  View,

} from "react-native";

import styles from "./styles";

export default function App() {

  return (

    <View style={styles.container}>

      <ScrollView style={styles.scroll}>

        {new Array(20).fill(null).map((v, i) => (

          <View key={i}>

            <Text style={[styles.scrollItem,

              styles.text]}>Some text</Text>

            <ActivityIndicator style={styles.scrollItem}

              size="large" />

            <Switch style={styles.scrollItem} />

          </View>

        ))}

      </ScrollView>

    </View>

  );

}

The ScrollView component isn't of much use on its own – it's there to wrap other 
components. It needs height in order to function correctly. Here's what the scroll style 
looks like:

scroll: {

    height: 1,

    alignSelf: "stretch",

  },



446     Responding to User Gestures

The height property is set to 1, but the stretch value of alignSelf allows the items 
to display properly. Here's what the end result looks like:

Figure 24.1 – ScrollView



Giving touch feedback     447

There's a vertical scrollbar on the right-hand side of the screen as you drag the content 
down. If you run this example, you can play around with making various gestures, such as 
making content scroll on its own and then making it stop.

When the user scrolls through content on the screen, they receive visual feedback. Users 
should also receive visual feedback when they touch certain elements on the screen.

Giving touch feedback
The React Native examples you've worked with so far in this book have used plain text to 
act as buttons or links. In web applications, to make text look like something that can be 
clicked, you just wrap it with the appropriate link. There's no such thing as mobile links, 
so you can style your text to look like a button.

Important Note
The problem with trying to style text as links on mobile devices is that they're 
too hard to press. Buttons provide a bigger target for fingers, and they're easier 
to apply touch feedback on.

Let's style some text as a button. This is a great first step as it makes the text look 
touchable. But you also want to give visual feedback to the user when they start interacting 
with the button. React Native provides several components to help with this: 

• TouchableOpacity 

• TouchableHighlight

• Pressable API



448     Responding to User Gestures

But before diving into the code, let's take a look at what these components look like 
visually when users interact with them, starting with TouchableOpacity:

Figure 24.2 – TouchableOpacity



Giving touch feedback     449

There are three buttons being rendered here. The top one, labeled Opacity, is currently 
being pressed by the user. The opacity of the button is dimmed when pressed, which 
provides important visual feedback for the user. Let's see what the Highlight button looks 
like when pressed:

Figure 24.3 – TouchableHighlight

Instead of changing the opacity when pressed, the TouchableHighlight component 
adds a highlight layer over the button. In this case, it's highlighted using a more 
transparent version of the slate gray that's being used in the font and border colors.



450     Responding to User Gestures

The last example of a button is provided by the Pressable component. The Pressable 
API has been introduced as a core component wrapper and allows different stages of 
press interaction on any of its defined children. With such components, we can handle 
onPressIn, onPressOut, and onLongPress callbacks and implement any touchable 
feedback that we want. Let's take a look at how PressableButton looks when  
we click on it:

Figure 24.4 – Pressable button



Giving touch feedback     451

If we continue to keep our finger on this button, we get an onLongPress event and the 
button will update:

Figure 24.5 – Long Pressed button



452     Responding to User Gestures

It doesn't really matter which approach you use. The important thing is that you provide 
the appropriate touch feedback for your users as they interact with your buttons. In fact, 
you might want to use all the approaches in the same app, but for different things:

1. Let's create a Button component, which makes it easy to use the first two 
approaches:

import React from "react";

import { Text, TouchableOpacity, TouchableHighlight }

  from "react-native";

import styles from "./styles";

const touchables = new Map([

  ["opacity", TouchableOpacity],

  ["highlight", TouchableHighlight],

  [undefined, TouchableOpacity],

]);

export default function Button({ label, onPress,

  touchable }) {

  const Touchable = touchables.get(touchable);

  const touchableProps = {

    style: styles.button,

    underlayColor: "rgba(112,128,144,0.3)",

    onPress,

  };

  return (

    <Touchable {...touchableProps}>

      <Text style={styles.buttonText}> {label} </Text>

    </Touchable>

  );

}



Giving touch feedback     453

The touchables map is used to determine which React Native touchable 
component wraps the text, based on the touchable property value. Here are the 
styles that were used to create this button:

button: {

    padding: 10,

    margin: 5,

    backgroundColor: "azure",

    borderWidth: 1,

    borderRadius: 4,

    borderColor: "slategrey",

  },

  buttonText: {

    color: "slategrey",

  },

2. Let's take a look at the button based on the Pressable API:

import React, { useState } from "react";

import { Pressable, Text } from "react-native";

import styles from "./styles";

export default PressableButton = () => {

  const [text, setText] = useState(0);

  return (

    <Pressable

      onPressIn={() => setText("Pressed")}

      onPressOut={() => setText("Press")}

      onLongPress={() => {

        setText("Long Pressed");

      }}

      delayLongPress={500}

      style={({ pressed }) => [

        {

          opacity: pressed ? 0.5 : 1,

        },



454     Responding to User Gestures

        styles.button,

      ]}

    >

      <Text style={styles.text}>{text}</Text>

    </Pressable>

  );

};

3. Here's how you can put those buttons into the main app module:

import React from "react";

import { View } from "react-native";

import styles from "./styles";

import Button from "./Button";

import PressableButton from "./PressableButton";

export default function App() {

  return (

    <View style={styles.container}>

      <Button onPress={() => {}} label="Opacity" />

      <Button onPress={() => {}} label="Highlight"

        touchable="highlight" />

      <PressableButton />

    </View>

  );

}

Note that the onPress callbacks don't actually do anything – we're passing them 
because they're a required property.

In the following section, you'll learn about providing feedback when the user swipes 
elements across the screen.

Using Swipeable and cancellable components
Part of what makes native mobile applications easier to use than mobile web applications 
is that they feel more intuitive. Using gestures, you can quickly get a handle on how things 
work. For example, swiping an element across the screen with your finger is a common 
gesture, but the gesture has to be discoverable.



Using Swipeable and cancellable components     455

Let's say that you're using an app, and you're not exactly sure what something on the 
screen does. So, you press down with your finger and try dragging the element. It starts 
to move. Unsure of what will happen, you lift your finger up, and the element moves back 
into place. You've just discovered how part of this application works.

You'll use the Scrollable component to implement swipeable and cancellable 
behaviors like this. You can create a somewhat generic component that allows the user to 
swipe text off the screen and, when that happens, call a callback function. Let's look at the 
code that will render the swipeables before we look at the generic component itself:

import React, { useState } from "react";

import { View } from "react-native";

import styles from "./styles";

import Swipeable from "./Swipeable";

export default function SwipableAndCancellable() {

  const [items, setItems] = useState(

    new Array(10).fill(null).map((v, id) => ({ id, name:

      "Swipe Me" }))

  );

  function onSwipe(id) {

    return () => {

      setItems(items.filter((item) => item.id !== id));

    };

  }

  return (

    <View style={styles.container}>

      {items.map((item) => (

        <Swipeable key={item.id} onSwipe={onSwipe(item.id)}

          name={item.name} />

      ))}

    </View>

  );

}



456     Responding to User Gestures

This will render 10 <Swipeable> components on the screen. Let's see what this  
looks like:

Figure 24.6 – Screen with Swipeable components



Using Swipeable and cancellable components     457

Now, if you start to swipe one of these items to the left, it will move. Here's what this  
looks like:

Figure 24.7 – Swiped component



458     Responding to User Gestures

If you don't swipe far enough, the gesture will be canceled and the item will move back 
into place, as expected. If you swipe it all the way, the item will be removed from the list 
completely and the items on the screen will fill the empty space.

Now, let's take a look at the Swipeable component itself:

import React from "react";

import { View, ScrollView, Text, TouchableOpacity } from

  "react-native";

import styles from "./styles";

export default function Swipeable({ onSwipe, name }) {

  function onScroll(e) {

    e.nativeEvent.contentOffset.x === 200 && onSwipe();

  }

  const scrollProps = {

    horizontal: true,

    pagingEnabled: true,

    showsHorizontalScrollIndicator: false,

    scrollEventThrottle: 10,

    onScroll,

  };

Here, we have defined a set of props for the ScrollView component. Let's apply them to 
the component and see the layout: 

  return (

    <View style={styles.swipeContainer}>

      <ScrollView {...scrollProps}>

        <TouchableOpacity>

          <View style={styles.swipeItem}>

            <Text

              style={styles.swipeItemText}>{name}</Text>

          </View>

        </TouchableOpacity>

        <View style={styles.swipeBlank} />



Using Swipeable and cancellable components     459

      </ScrollView>

    </View>

  );

}

Note that the <ScrollView> component is set to horizontal and that pagingEnabled 
is true. It's the paging behavior that snaps the components into place and provides 
cancellable behavior. This is why there's a blank component besides the component  
with text in it. Here are the styles that are used for this component:

  swipeContainer: {

    flex: 1,

    flexDirection: "row",

    width: 200,

    height: 30,

    marginTop: 50,

  },

  swipeItem: {

    width: 200,

    height: 30,

    backgroundColor: "azure",

    justifyContent: "center",

    borderWidth: 1,

    borderRadius: 4,

    borderColor: "slategrey",

  },

  swipeItemText: {

    textAlign: "center",

    color: "slategrey",

  },

  swipeBlank: {

    width: 200,

    height: 30,

  },



460     Responding to User Gestures

The swipeBlank style has the same dimensions as swipeItem, but nothing else.  
It's invisible.

We have now covered all the topics in this chapter.

Summary
In this chapter, we were introduced to the idea that gestures on native platforms make 
a significant difference compared to mobile web platforms. We started off by looking at 
the ScrollView component, and how it makes life much simpler by providing native 
scrolling behavior for wrapped components.

Next, we spent some time implementing buttons with touch feedback. This is another  
area that's tricky to get right on the mobile web. We learned how to use the 
TouchableOpacity, TouchableHighlight, and Pressed API components to  
do this.

Finally, we implemented a generic Swipeable component. Swiping is a common mobile 
pattern, and it allows the user to discover how things work without feeling intimidated.

In the next chapter, we'll learn how to control animation using React Native.

Further reading
Take a look at the following links for more information:

• ScrollView: https://reactnative.dev/docs/scrollview

• TouchableHighlight: https://reactnative.dev/docs/
touchablehighlight

• TouchableOpacity: https://reactnative.dev/docs/
touchableopacity

• Pressable: https://reactnative.dev/docs/pressable

https://reactnative.dev/docs/scrollview
https://reactnative.dev/docs/touchablehighlight
https://reactnative.dev/docs/touchablehighlight
https://reactnative.dev/docs/touchableopacity
https://reactnative.dev/docs/touchableopacity
https://reactnative.dev/docs/pressable


25
Using Animations

Animations can be used to improve the user experience in mobile applications. They 
usually help users to quickly recognize that something has changed, or help them focus on 
what is important. Also, animations are simply fun to look at.

There are a couple of different approaches for processing and controlling animations in 
React Native. Firstly, we will take a look at animation tools that we can use, discover their 
pros and cons, and compare them. And then we will implement several examples to get to 
know APIs better.

We'll cover the following topics in this chapter: 

• Using React Native Reanimated

• Animating layout components 

• Animating styling components

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter25.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter25
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter25
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter25


462     Using Animations

Using React Native Reanimated
In the React Native world, we have a lot of libraries and approaches to animate our 
components, including the built-in Animated API. But in this chapter, I would like to opt 
for a library called React Native Reanimated and compare it with the Animated API to 
learn why it is the best choice.

Animated API
The Animated API is the most common tool used to animate components in React 
Native. It has a set of methods that help you to create an animation object, control its state, 
and process it. The main benefit is that it can be used with any component, and not just 
animated components such as View or Text. 

But, at the same time, this API has been implemented in the old architecture of React 
Native. Asynchronous communications between JavaScript and UI Native threads 
are used with the Animated API, delaying updates by at least one frame and lasting 
approximately 16 ms. Sometimes, the delay may last even longer if the JavaScript thread 
is running React's diff algorithm and comparing or processing network requests 
simultaneously. The problem of dropped or delayed frames can be solved with the React 
Native Reanimated library, which is based on the new architecture and processes all 
business logic from the JavaScript thread in the UI thread.

React Native Reanimated
React Native Reanimated can be utilized to provide a more exhaustive abstraction of the 
Animated API to use with React Native. It provides an imperative API with multistage 
animations and custom transitions, while at the same time providing a declarative API 
that can be used to describe simple animations and transitions in a similar way to how 
CSS transitions work. It's built on top of React Native Animated and reimplements it on 
the Native Thread. This allows you to use the familiar JavaScript language while taking 
advantage of the highest performance and simplest API.

Furthermore, React Native Reanimated defines worklets, which are JavaScript functions that 
can be synchronously executed within the UI thread. This allows instant animations without 
having to wait for a new frame. Let's take a look at what a simple worklet looks like: 

function simpleWorklet() {

  "worklet";

  console.log("Hello from UI thread");

}



Using React Native Reanimated     463

The only thing that is needed for the simpleWorklet function to get called inside the 
UI thread is to add the "worklet" directive at the top of the function block. 

React Native Reanimated provides a variety of hooks and methods that help us to handle 
animations:

• useSharedValue: This hook returns a SharedValue instance, which is the 
main stateful data object that lives in the UI thread context and has a similar 
concept to Animated.Value in the core Animated API. A Reanimated 
animation is triggered when SharedValue is changed. This is similar to how 
React re-rendered components when the state was changed.

• useDerivedValue: This allows the creation of another value based on a 
SharedValue.

• useAnimatedStyle: This hook creates an animated, observed style object in 
React Native.

• withTiming, withSpring, withDecay: These are utility methods that update 
SharedValue smoothly with animation.

We have learned what React Native Reanimated is and how it is different from the 
Animated API. Next, let's try to install it and apply it to our app.

Installing the React Native Reanimated library
To install the React Native Reanimated library, run this command inside your Expo project:

expo install react-native-reanimated

After the installation is complete, add the Babel plugin to babel.config.js:

module.exports = function(api) {

  api.cache(true);

  return {

    presets: ['babel-preset-expo'],

    plugins: ['react-native-reanimated/plugin'],

  };

};



464     Using Animations

After you add the Babel plugin, restart your development server and clear the bundler cache:

expo start --clear

This section has introduced us to the React Native Reanimated library. We have found 
out why it is better than the built-in Animated API. In the next sections, we will use it 
in real examples.

Animating layout components 
A common use case is animating the entering and exiting layout of your components. This 
means that when your component renders for the first time and when you unmount your 
component, it appears animated. React Native Reanimated is an API that lets you animate 
layouts and add animations such as FadeIn, BounceIn, and ZoomIn.

React Native Reanimated also provides a special Animated component that is the same 
as the Animated component in the Animated API, but with additional props:

• entering: Accepts predefined animation when the component will mount and 
render 

• exiting: Accepts the same animation object, but it will be called when the 
component unmounts

Let's create a simple todo list with a button for creating tasks, and a feature that allows us 
to delete tasks when we click on them.

Important Note
It's impossible to see animation in screenshots, so I suggest you open the code 
and try to implement the animations to see the results.



Animating layout components      465

Firstly, let's take a look at the main screen of our todo list app and how the items are 
rendering at the moment:

Figure 25.1 – Todo list



466     Using Animations

This is a simple example with a list of task items and one button for adding new tasks. 
When we quickly press the Add button several times, the list items come from the left side 
of the screen with an animation:

Figure 25.2 – Todo list with animated rendering



Animating layout components      467

The magic is implemented in the TodoItem component. Let's take a look at it:

import { Text, TouchableOpacity } from "react-native";

import Animated, { SlideInLeft, SlideOutRight } from

  "react-native-reanimated";

import { styles } from "./styles";

export const TodoItem = ({ id, title, onPress }) => {

  return (

    <Animated.View entering={SlideInLeft}

      exiting={SlideOutRight}>

      <TouchableOpacity onPress={() => onPress(id)}

        style={styles.todoItem}>

        <Text>{title}</Text>

      </TouchableOpacity>

    </Animated.View>

  );

};

As you can see, there is no complicated logic, and there's not too much code. We just take 
the Animated component as the root of animation and pass predefined animations from 
the React Native Reanimated library to the entering and exiting props.



468     Using Animations

To see how the items disappear from the screen, we need to press the todo items so the 
exiting animation will run. I've pressed a few items and tried to catch the result in the 
following screenshot:

Figure 25.3 – Deleting todo items from the screen



Animating layout components      469

Let's examine the App component to see the entire picture:

export default function App() {

  const [todoList, setTodoList] = useState([]);

  const addTask = () => {

    setTodoList([

      ...todoList,

      { id: String(new Date().getTime()), title: "New task"

        },

    ]);

  };

  const deleteTask = (id) => {

    setTodoList(todoList.filter((todo) => todo.id !== id));

  };

We have created a todoList state using the useState hook and handler functions for 
adding and deleting tasks. Next, let's take a look at how the animation will be applied to 
the layout:

  return (

    <View style={styles.container}>

      <View style={{ flex: 1 }}>

        {todoList.map(({ id, title }) => (

          <TodoItem key={id} id={id} title={title}

            onPress={deleteTask} />

        ))}

      </View>

      <Button onPress={addTask} title="Add" />

    </View>

  );

}

In this example, we learned a simple way to apply animations to make our app look better. 
However, the React Native Reanimated library is a lot more powerful than we imagined. 
The next example illustrates how we can animate and create our own animations by 
applying them directly to the styles of our components.



470     Using Animations

Animating styling components
In a more complex example, I suggest creating a button with beautiful tappable feedback. 
This button will be built using the Pressable component that we learned about in 
Chapter 24, Responding to User Gestures. This component accepts the onPressIn, 
onLongPress, and onPressOut events. As a result of these events, we will be able to 
see how our touches will be reflected on the button.

Let's start by defining SharedValue and AnimatedStyle:

  const radius = useSharedValue(30);

  const opacity = useSharedValue(1);

  const scale = useSharedValue(1);

  const color = useSharedValue(0);

  const animatedStyles = useAnimatedStyle(() => {

    const backgroundColor = interpolateColor(

      color.value,

      [0, 1],

      ["orange", "red"]

    );

    return {

      opacity: opacity.value,

      borderRadius: radius.value,

      transform: [{ scale: scale.value }],

      backgroundColor: backgroundColor,

    };

  }, []);

In order to animate style properties, we have created a SharedValue object using the 
useSharedValue hook. It takes default values as an argument. Next, we created the 
style object with the useAnimatedStyle hook. The hook accepts the callback that 
should return a style object. The useAnimatedStyle hook is similar to the useMemo 
hook, but all calculations are performed in the UI thread and all SharedValue changes 
will invoke the hook to recalculate the style object.



Animating styling components     471

Next, let's create handler functions that will update the style properties in relation to the 
pressing state of the button:

  const onPressIn = () => {

    radius.value = withSpring(20);

    opacity.value = withSpring(0.7);

    scale.value = withSpring(0.9);

  };

  const onLongPress = () => {

    scale.value = withSpring(0.8);

    color.value = withSpring(1);

  };

  const onPressOut = () => {

    radius.value = withSpring(30);

    opacity.value = withSpring(1);

    scale.value = withSpring(1, { damping: 50 });

    color.value = withSpring(0);

  };

The first handler, onPressIn, updates borderRadius, opacity, and scale from 
their default values. We also update these values using withSpring, which makes 
updating styles smoother. Like the first handler, other ones will also update the style of the 
button but in different ways. onLongPress turns the button red and makes it smaller. 
onPressOut resets all values to their default values.

We've implemented all necessary logic and can now apply it to the layout:

    <View style={styles.container}>

      <Animated.View style={[styles.buttonContainer,

        animatedStyles]}>

        <Pressable

          onPressIn={onPressIn}

          onPressOut={onPressOut}

          onLongPress={onLongPress}

          style={styles.button}

        >



472     Using Animations

          <Text style={styles.buttonText}>Press me</Text>

        </Pressable>

      </Animated.View>

    </View>

Finally, let's take a look at the result:

Figure 25.4 – Button with default, pressed, and long-pressed styles

In Figure 25.4, you can see the three states of the button: default, pressed, and  
long-pressed.

Summary
In this chapter, we've learned how to use the React Native Reanimated library to add 
animations to the layout and components. We've gone through the basic principles of the 
library and found out how it works under the hood and how it executes code inside the UI 
thread without using Bridge to connect JavaScript and Native layers of the app.

We also went through two examples using the React Native Reanimated library. 
In the first example, we learned how to apply a layout animation using predefined 
declarative animations to get our component to appear and disappear beautifully. In 
the second example, we animated the button's styles with the useSharedValue and 
useAnimatedStyle hooks.

Skills to animate components and layout will help you make your app more beautiful and 
responsive. In the next chapter, we'll learn about controlling images in our apps.

Further reading
Check out the following link for more information:

• React Native Reanimated: https://docs.swmansion.com/react-native-
reanimated/docs

https://docs.swmansion.com/react-native-reanimated/docs
https://docs.swmansion.com/react-native-reanimated/docs


26
Controlling  

Image Display
So far, the examples in this book haven't rendered any images on mobile screens. This 
doesn't reflect the reality of mobile applications. Web applications display lots of images. 
If anything, native mobile applications rely on images even more than web applications 
because images are a powerful tool when you have a limited amount of space.

In this chapter, you'll learn how to use the React Native Image component, starting with 
loading images from different sources. Then, you'll learn how you can use the Image 
component to resize images, and how you can set placeholders for lazily loaded images. 
Finally, you'll learn how to implement icons using the @expo/vector-icons package. 
These sections cover the most common use cases for using images and icons in apps. 

We'll cover the following topics in this chapter: 

• Loading images

• Resizing images 

• Lazy image loading 

• Rendering icons



474     Controlling Image Display

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter26.

Loading images
Let's get started by figuring out how to load images. You can render the <Image> 
component and pass its properties just like any other React component. But this particular 
component needs image blob data to be of any use. Let's look at some code:

export default function App({ reactSource, relaySource }) {

  return (

    <View style={styles.container}>

      <Image style={styles.image} source={reactSource} />

      <Image style={styles.image} source={relaySource} />

    </View>

  );

}

const sourceProp = PropTypes.oneOfType([

  PropTypes.shape({

    uri: PropTypes.string.isRequired,

  }),

  PropTypes.number,

]).isRequired;

App.propTypes = {

  reactSource: sourceProp,

  relaySource: sourceProp,

};

App.defaultProps = {

  reactSource: {

    uri: "https://reactnative.dev/docs/assets/favicon.png",

  },

  relaySource: require("./images/relay.png"),

};

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter26
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter26
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter26


Loading images     475

There are two ways to load the blob data into an <Image> component. The first approach 
loads the image data from the network. This is done by passing an object with a uri 
property to source. The second <Image> component in this example is using a local 
image file. It does this by calling require() and passing the result to source.

Take a look at the sourceProp property type validator. This gives you an idea of what 
can be passed to the source property. It's either an object with a uri string property  
or a number. It expects a number because require() returns a number.

Now, let's see what the rendered result looks like:

Figure 26.1 – Image loading



476     Controlling Image Display

Here's the style that was used with these images:

  image: {

    width: 100,

    height: 100,

    margin: 20,

  },

Note that without the width and height style properties, images will not render. In the 
next section, you'll learn how image resizing works when the width and height values 
are set.

Resizing images
The width and height style properties of Image components determine the size of 
what's rendered on the screen. For example, you'll probably have to work with images 
at some point that have a larger resolution than you want to be displayed in your React 
Native application. Simply setting the width and height style properties on the Image 
is enough to properly scale the image.

Let's look at some code that lets you dynamically adjust the dimensions of an image  
using controls:

import React, { useState } from "react";

import { View, Text, Image } from "react-native";

import Slider from "@react-native-community/slider";

import styles from "./styles";

export default function App() {

  const source = require("./images/flux.png");

  const [width, setWidth] = useState(100);

  const [height, setHeight] = useState(100);

  return (

    <View style={styles.container}>

      <Image source={source} style={{ width, height }} />

      <Text>Width: {width}</Text>

      <Text>Height: {height}</Text>

      <Slider



Resizing images     477

        style={styles.slider}

        minimumValue={50}

        maximumValue={150}

        value={width}

        onValueChange={(value) => {

          setWidth(value);

          setHeight(value);

        }}

      />

    </View>

  );

}

Here's what the image looks like if you're using the default 100 x 100 dimensions:

Figure 26.2 – Image 100 x 100



478     Controlling Image Display

Here's a scaled-down version of the image:

Figure 26.3 – Image 50 x 50



Resizing images     479

Lastly, here's a scaled-up version of the image:

Figure 26.4 – Image 150 x 150

Important Note
There's a resizeMode property that you can pass to Image components. 
This determines how the scaled image fits within the dimensions of the actual 
component. You'll see this property in action in the Rendering icons section of 
this chapter.



480     Controlling Image Display

As you can see, the dimensions of the images are controlled by the width and height 
style properties. Images can even be resized while the app is running by changing these 
values. In the next section, you'll learn how to lazily load images.

Lazy image loading
Sometimes, you don't necessarily want an image to load at the exact moment that it's 
rendered; for example, you might be rendering something that's not visible on the screen 
yet. Most of the time, it's perfectly fine to fetch the image source from the network before 
it's actually visible. But if you're fine-tuning your application and discover that loading lots 
of images over the network causes performance issues, you can lazily load the source.

I think the more common use case in a mobile context is handling a scenario where you've 
rendered one or more images where they're visible, but the network is slow to respond. 
In this case, you will probably want to render a placeholder image so that the user sees 
something right away, rather than an empty space. So, let's get started:

1. Firstly, you can implement an abstraction that wraps the actual image that you want 
to show once it's loaded. Here's the code for this:

import React, { useState } from "react";

import PropTypes from "prop-types";

import { View, Image } from "react-native";

const placeholder =

  require("./assets/placeholder.png");

function Placeholder(props) {

  if (props.loaded) {

    return null;

  } else {

    return <Image style={props.style}

      source={placeholder} />;

  }

}



Lazy image loading     481

Now, here, you can see the placeholder image will be rendered only while the original 
image isn't loaded:

export default function LazyImage(props) {

  const [loaded, setLoaded] = useState(false);

  return (

    <View style={props.style}>

      <Placeholder loaded={loaded} {...props} />

      <Image

        {...props}

        onLoad={() => {

          setLoaded(true);

        }}

      />

    </View>

  );

}

LazyImage.propTypes = {

  style: PropTypes.shape({

    width: PropTypes.number.isRequired,

    height: PropTypes.number.isRequired,

  }),

};

This component renders a View component with two Image components inside 
it. It also has a loaded state, which is initially false. When loaded is false, 
the placeholder image is rendered. The loaded state is set to true when the 
onLoad() handler is called. This means that the placeholder image is removed and 
the main image is displayed.



482     Controlling Image Display

2. Now, let's use the LazyImage component that we've just implemented. You'll 
render the image without a source, and the placeholder image should be displayed. 
Let's add a button that gives the lazy image a source. When it loads, the placeholder 
image should be replaced. Here's what the main app module looks like:

import React, { useState } from "react";

import { View } from "react-native";

import styles from "./styles";

import LazyImage from "./LazyImage";

import Button from "./Button";

const remote =

  "https://reactnative.dev/docs/assets/favicon.png";

export default function LazyLoading() {

  const [source, setSource] = useState(null);

  return (

    <View style={styles.container}>

      <LazyImage

        style={{ width: 200, height: 150 }}

        resizeMode="contain"

        source={source}

      />

      <Button

        label="Load Remote"

        onPress={() => {

          setSource({ uri: remote });

        }}

      />

    </View>

  );

}



Lazy image loading     483

This is what the screen looks like initially:

Figure 26.5 – Initial state of the image



484     Controlling Image Display

3. Then, click the Load Remote button to eventually see the image that  
we actually want:

Figure 26.6 – Loaded image



Rendering icons     485

You might notice that, depending on your network speed, the placeholder image remains 
visible, even after you click the Load Remote button. This is by design because you don't 
want to remove the placeholder image until you know for sure that the actual image is 
ready to be displayed. Now, let's render some icons in our React Native application.

Rendering icons
In the final section of this chapter, you'll learn how to render icons in React Native 
components. Using icons to indicate meaning makes web applications more usable.  
So, why should native mobile applications be any different?

We'll use the @expo/vector-icons package to pull various vector font packages into 
your React Native app. This package is already part of the Expo project that we use as base 
of the app and now, you can import Icon components and render them. Let's implement 
an example that renders several FontAwesome icons based on a selected icon category:

import React, { useState, useEffect } from "react";

import { View, FlatList, Text } from "react-native";

import { Picker } from "@react-native-picker/picker";

import Icon from "@expo/vector-icons/FontAwesome";

import styles from "./styles";

import iconNames from "./icon-names.json";

export default function RenderingIcons() {

  const [selected, setSelected] = useState("Web Application

    Icons");

  const [listSource, setListSource] = useState([]);

  const categories = Object.keys(iconNames);

  function updateListSource(selected) {

    setListSource(iconNames[selected]);

    setSelected(selected);

  }

  useEffect(() => {

    updateListSource(selected);

  }, []);



486     Controlling Image Display

Here, we have defined all necessary logic to store and update the icon data. Next, we will 
apply it to the layout:

  return (

    <View style={styles.container}>

      <View style={styles.picker}>

        <Picker selectedValue={selected}

          onValueChange={updateListSource}>

          {categories.map((category) => (

            <Picker.Item key={category} label={category}

              value={category} />

          ))}

        </Picker>

      </View>

      <FlatList

        style={styles.icons}

        data={listSource.map((value, key) => ({ key:

          key.toString(), value }))}

        renderItem={({ item }) => (

          <View style={styles.item}>

            <Icon name={item.value} style={styles.itemIcon}

                />

            <Text

              style={styles.itemText}>{item.value}</Text>

          </View>

        )}

      />

    </View>

  );

}



Rendering icons     487

When you run this example, you should see something that looks like the following:

Figure 26.7 – Rendering icons

The color of each icon is specified in the same way you would specify the color  
of text: via styles.



488     Controlling Image Display

Summary
In this chapter, we learned about handling images in our React Native applications. Images 
in a native application are just as important in a native mobile context as they are in a web 
context – they improve the user experience.

We learned about the different approaches to loading images, as well as how to resize 
them. We also learned how to implement a lazy image, which displays a placeholder  
image while the actual image is being loading in. Finally, we learned how to use icons  
in a React Native app. These skills will help you manage images and make your app  
more informative. 

In the next chapter, we'll learn about local storage in React Native, which is handy when 
our app goes offline.

Further reading
Check out the following links for more information:

• Image: https://reactnative.dev/docs/image

• React Native vector icons: https://docs.expo.dev/guides/icons/

https://reactnative.dev/docs/image
https://docs.expo.dev/guides/icons/


27
Going Offline

Users expect applications to operate seamlessly with unreliable network connections.  
If your mobile application can't cope with transient network issues, your users will use 
a different app. When there's no network, you have to persist data locally on the device. 
Alternatively, perhaps your app doesn't even require network access, in which case you'll 
still need to store data locally.

In this chapter, you'll learn how to do the three things with React Native. First, you'll learn 
how to detect the state of the network connection. Second, you'll learn how to store data 
locally. Lastly, you'll learn how to synchronize local data that's been stored due to network 
problems once it comes back online.

In this chapter, we'll cover the following topics:

• Detecting the state of the network

• Storing application data

• Synchronizing application data



490     Going Offline

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter27.

Detecting the state of the network
If your code tries to make a request over the network while disconnected – using 
fetch(), for example – an error will occur. You probably have error-handling code in 
place for these scenarios already, since the server could return some other type of error.

However, in the case of connectivity trouble, you might want to detect this issue before the 
user attempts to make network requests.

There are two potential reasons for proactively detecting the network state. The first one is 
to prevent the user from performing any network requests until you've detected that the 
app is back online. To do that, you can display a friendly message to the user stating that, 
since the network is disconnected, they can't do anything. The other possible benefit of 
early network state detection is that you can prepare to perform actions offline and sync 
the app state when the network is connected again.

Let's look at some code that uses the NetInfo utility from the @react-native- 
community/netinfo package to handle changes in network state:

import React, { useState, useEffect } from "react";

import { Text, View } from "react-native";

import NetInfo from "@react-native-community/netinfo";

import styles from "./styles";

const connectedMap = {

  none: "Disconnected",

  unknown: "Disconnected",

  wifi: "Connected",

  cell: "Connected",

  mobile: "Connected",

};

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter27
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter27
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter27


Detecting the state of the network     491

connectedMap covers all connection states and will help us to render it on the screen. 
Let's now see the App component:

export default function App() {

  const [connected, setConnected] = useState("");

  useEffect(() => {

    function onNetworkChange(connection) {

      setConnected(connectedMap[connection.type]);

    }

    const unsubscribe =

      NetInfo.addEventListener(onNetworkChange);

    return () => {

      unsubscribe();

    };

  }, []);

  return (

    <View style={styles.container}>

      <Text>{connected}</Text>

    </View>

  );

}



492     Going Offline

This component will render the state of the network based on the string values in 
connectedMap. The connectionChange event of the NetInfo object will cause the 
connected state to change. For example, when you run this app for the first time, the 
screen might look like this:

Figure 27.1 – Connected state



Detecting the state of the network     493

Then, if you turn off networking on your host machine, the network state will change on 
the emulated device as well, causing the state of our application to change, as follows:

Figure 27.2 – Disconnected state

In the next section, you'll learn how to store application data locally on the device where 
the application is running.



494     Going Offline

Storing application data
The AsyncStorage API works the same on both the iOS and Android platforms. You 
would use this API for applications that don't require any network connectivity in the first 
place or to store data that will eventually be synchronized using an API endpoint once a 
network becomes available.

To install the async-storage package, run the following command:

expo install @react-native-async-storage/async-storage

Let's look at some code that allows the user to enter a key and a value and then stores them:

import React, { useState, useEffect } from "react";

import { Text, TextInput, View, FlatList } from 

  "react-native";

import AsyncStorage from 

  "@react-native-async-storage/async-storage";

import styles from "./styles";

import Button from "./Button";

export default function App() {

  const [key, setKey] = useState(null);

  const [value, setValue] = useState(null);

  const [source, setSource] = useState([]);

The key, value, and source values will handle our state. To save it in AsyncStorage, 
we need to define functions:

  function setItem() {

    return AsyncStorage.setItem(key, value)

      .then(() => {

        setKey(null);

        setValue(null);

      })

      .then(loadItems);

  }



Storing application data     495

  function clearItems() {

    return AsyncStorage.clear().then(loadItems);

  }

  async function loadItems() {

    const keys = await AsyncStorage.getAllKeys();

    const values = await AsyncStorage.multiGet(keys);

    setValues(values);

  }

  useEffect(() => {

    loadItems();

  }, []);

Here's the markup that's rendered by the App component:

  return (

    <View style={styles.container}>

      <Text>Key:</Text>

      <TextInput

        style={styles.input}

        value={key}

        onChangeText={(v) => {

          setKey(v);

        }}

      />

      <Text>Value:</Text>

      <TextInput

        style={styles.input}

        value={value}

        onChangeText={(v) => {

          setValue(v);

        }}



496     Going Offline

      />

      <View style={styles.controls}>

        <Button label="Add" onPress={setItem} />

        <Button label="Clear" onPress={clearItems} />

      </View>

The markup in the preceding code block is represented as inputs and buttons to create, 
save, and delete items. Next, we will render the list of items by the FlatList component:

      <View style={styles.list}>

        <FlatList

          data={source.map(([key, value]) => ({

            key: key.toString(),

            value,

          }))}

          renderItem={({ item: { value, key } }) => (

            <Text>

              {value} ({key})

            </Text>

          )}

        />

      </View>

    </View>

  );

Before we walk through what this code is doing, let's take a look at the following screen, 
since it'll explain most of what we're going to cover under storing application data:



Storing application data     497

Figure 27.3 – Storing application data

As you can see in Figure 27.3, there are two input fields and two buttons. The fields 
allow the user to enter a new key and value. The Add button allows the user to store this 
key-value pair locally on their device, while the Clear button clears any existing items that 
have been stored previously.



498     Going Offline

The AsyncStorage API works the same for both iOS and Android. Under the hood, 
AsyncStorage works very differently, depending on which platform it's running on. 
The reason React Native is able to expose the same storage API on both platforms is due 
to its simplicity – it's just key-value pairs. Anything more complex than that is left up to 
the application developer.

The abstractions that you've created around AsyncStorage in this example are minimal. 
The idea is to set and get items. However, even straightforward actions like this deserve 
an abstraction layer. For example, the setItem() method you've implemented here will 
make the asynchronous call to AsyncStorage and update the items state once that has 
been completed. Loading items is even more complicated because you need to get the keys 
and values as two separate asynchronous operations.

The reason we do this is to keep the UI responsive. If there are pending screen repaints 
that need to happen while data is being written to disk, preventing those from happening 
by blocking them would lead to a suboptimal user experience.

In the next section, you'll learn how to synchronize data that's been stored locally while 
the device is offline with remote services once the device comes back online.

Synchronizing application data
So far in this chapter, you've learned how to detect the state of a network connection and 
how to store data locally in a React Native application. Now, it's time to combine these two 
concepts and implement an app that can detect network outages and continue to function.

The basic idea is to only make network requests when you know for sure that the device is 
online. If you know that it isn't, you can store any changes in the state locally. Then, when 
you're back online, you can synchronize those stored changes with the remote API.

Let's implement a simplified React Native app that does this. The first step is to implement 
an abstraction that sits between the React components and the network calls that store 
data. We'll call this module store.js:

export function set(key, value) {

  return new Promise((resolve, reject) => {

    if (connected) {

      fakeNetworkData[key] = value;

      resolve(true);

    } else {

      AsyncStorage.setItem(key, value.toString()).then(



Synchronizing application data     499

        () => {

          unsynced.push(key);

          resolve(false);

        },

        (err) => reject(err)

      );

    }

  });

}

The set method depends on the connected variable, and depending on whether there 
is an internet connection or not, it handles the different logic. Actually, the get method 
also follows the same approach:

export function get(key) {

  return new Promise((resolve, reject) => {

    if (connected) {

      resolve(key ? fakeNetworkData[key] :

        fakeNetworkData);

    } else if (key) {

      AsyncStorage.getItem(key).then(

        (item) => resolve(item),

        (err) => reject(err)

      );

    } else {

      AsyncStorage.getAllKeys().then(

        (keys) =>

          AsyncStorage.multiGet(keys).then(

            (items) => resolve(Object.fromEntries(items)),

            (err) => reject(err)

          ),

        (err) => reject(err)

      );

    }

  });

}



500     Going Offline

This module exports two functions – set() and get(). Their jobs are to set and 
get data, respectively. Since this is just a demonstration of how to sync between local 
storage and network endpoints, this module just mocks the actual network with the 
fakeNetworkData object.

Let's start by looking at the set() function. It's an asynchronous function that will 
always return a promise that resolves to a Boolean value. If it's true, it means that you're 
online and that the call over the network was successful. If it's false, it means that you're 
offline, and AsyncStorage was used to save the data.

The same approach is used with the get() function. It returns a promise that resolves a 
Boolean value that indicates the state of the network. If a key argument is provided, then 
the value for that key is looked up. Otherwise, all the values are returned, either from the 
network or from AsyncStorage.

In addition to these two functions, this module does two other things. It uses NetInfo.
fetch() to set the connected state. Then, it adds a listener to listen for changes in the 
network state. This is how items that were saved locally when you were offline become 
synced with the network when it's connected again.

Now, let's check out the main application that uses these functions:

export default function App() {

  const [message, setMessage] = useState(null);

  const [first, setFirst] = useState(false);

  const [second, setSecond] = useState(false);

  const [third, setThird] = useState(false);

  const setters = new Map([

    ["first", setFirst],

    ["second", setSecond],

    ["third", setThird],

  ]);



Synchronizing application data     501

Here, we have defined the state variables that we will use in the Switch components:

  function save(key) {

    return (value) => {

      set(key, value).then(

        (connected) => {

          setters.get(key)(value);

          setMessage(connected ? null : "Saved Offline");

        },

        (err) => {

          setMessage(err);

        }

      );

    };

  }

The save() function helps us to reuse logic in a different Switch component. Next,  
we have the useEffect hook to get saved data when the page renders for the first time:

  useEffect(() => {

    NetInfo.fetch().then(() =>

      get().then(

        (items) => {

          for (let [key, value] of Object.entries(items)) {

            setters.get(key)(value);

          }

        },

        (err) => {

          setMessage(err);

        }

      )

    );

  }, []);



502     Going Offline

Next, let's take a look at the final markup of the page:

  return (

    <View style={styles.container}>

      <Text>{message}</Text>

      <View>

        <Text>First</Text>

        <Switch

          value={boolMap[first.toString()]}

          onValueChange={save("first")}

        />

      </View>

      <View>

        <Text>Second</Text>

        <Switch

          value={boolMap[second.toString()]}

          onValueChange={save("second")}

        />

      </View>

      <View>

        <Text>Third</Text>

        <Switch

          value={boolMap[third.toString()]}

          onValueChange={save("third")}

        />

      </View>

    </View>

  );

}

The job of the App component is to save the state of three Switch components, which 
is difficult when you're providing the user with a seamless transition between online and 
offline modes. Thankfully, your set() and get() abstractions, which are implemented 
in another module, hide most of the details from the application's functionality.



Synchronizing application data     503

Note, however, that you need to check the state of the network in this module before you 
attempt to load any items. If you don't do this, then the get() function will assume that 
you're offline, even if the connection is fine. Here's what the app looks like:

Figure 27.4 – Synchronizing application data

Note that you won't actually see the Saved Offline message until you change something in 
the UI.



504     Going Offline

Summary
This chapter introduced us to storing data offline in React Native applications. The main 
reason we would want to store data locally is when the device goes offline and our app 
can't communicate with a remote API. However, not all applications require API calls, and 
AsyncStorage can be used as a general-purpose storage mechanism. We just need to 
implement the appropriate abstractions around it.

We also learned how to detect changes in the network state of React Native apps. It's 
important to know when the device has gone offline so that our storage layer doesn't make 
pointless attempts at network calls. Instead, we can let the user know that the device is 
offline and then synchronize the application state when a connection is available.

In the next chapter, we'll learn how to import and use UI components from the 
NativeBase library.

Further reading
You can find more information on AsyncStorage at https://react-native-
async-storage.github.io/async-storage/.

https://react-native-async-storage.github.io/async-storage/
https://react-native-async-storage.github.io/async-storage/


28
Selecting Native UI 
Components Using 

NativeBase
Right out of the box, React Native gives us most of the tools we need to build a fully 
functional native application that runs on both Android and iOS. However, taking your 
application to the next level and delivering a consistent and polished user experience 
(UX) across both platforms requires help. NativeBase can provide us with additional tools 
that can facilitate quality user interface (UI) designs for React Native apps. It is possible 
to build a quality native UI without a tool such as NativeBase, but this would require 
a lot more coding on our part. If you want to deliver applications that address specific 
challenges faced by your users rather than maintaining your own UI library, NativeBase 
might be what you're looking for.

We'll cover the following topics in this chapter: 

• Application containers

• Headers, footers, and navigation 

• Using layout components

• Collecting input using form components 



506     Selecting Native UI Components Using NativeBase

Technical requirements
You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/React-and-React-Native-4th-Edition/tree/main/
Chapter28.

Application containers
Before we can pull out the NativeBase UI components and render them on our application 
screens, there are a couple of initialization tasks we have to perform. NativeBase 
requires you to load font files in order to work. Additionally, we want to set up the same 
general screen structure for every screen using top-level NativeBase components. To 
accomplish both of these goals, we can implement a Container component, which can 
then be used by our screens. We'll start by importing everything that we need:

import React from "react";

import { StatusBar } from "react-native";

import { NativeBaseProvider, Box, Text, HStack } from

  "native-base";

import AppLoading from "expo-app-loading";

import {

  useFonts,

  Roboto_500Medium,

  Roboto_400Regular,

} from "@expo-google-fonts/roboto";

import { Ionicons } from "@expo/vector-icons";

import { theme } from "./theme";

Now, we can implement the Container component:

export default function Container({ title, children }) {

  const [fontsLoaded] = useFonts({

    Roboto_500Medium,

    Roboto_400Regular,

    ...Ionicons.font,

  });

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter28
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter28
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter28


Application containers     507

The useFonts Hook helps us to load fonts. When they are loaded, we will render the 
main content of the page: 

  if (fontsLoaded) {

    return (

      <NativeBaseProvider theme={theme}>

        <StatusBar bg="#3700B3" barStyle="light-content" />

        <Box safeAreaTop bg="#6200ee" />

        <HStack

          bg="#6200ee"

          px="1"

          py="3"

          justifyContent="center"

          alignItems="center"

          w="100%"

        >

          <Text color="white" fontSize="20"

            fontWeight="bold">

            {title}

          </Text>

        </HStack>

        <Box>{children}</Box>

      </NativeBaseProvider>

    );

  } else {

    return <AppLoading />;

  }

}



508     Selecting Native UI Components Using NativeBase

Let's take a look at what this code is doing. The Container component accepts two 
properties: title and children. The title property is a string that sets the title for 
each screen in the app, while children signifies the contents for each page in the app. 
The ready state is used to determine whether the fonts that we need to load have finished 
loading or not. The useFonts() Hook has been used to load the fonts that NativeBase 
requires. Without these fonts, we can't render the components. This is why we check the 
fontsLoaded state. If it's false, we render the AppLoading component while the 
fonts load. When they finish loading, it sets the fontsLoaded state to true and renders 
the NativeBaseProvider component.

NativeBase has a NativeBaseProvider component, which should be placed at 
the root of the app. Inside NativeBaseProvider, we have a Header component 
implementation based on the HStack component. The header is also where we set the 
title. The contents of a given page are passed in via the children property and this value 
is rendered in the Box component.

Let's see how the Container component is used by the App component:

import React from "react";

import { Text } from "native-base";

import Container from "./Container";

export default function App() {

  return (

    <Container title="Application Container">

      <Text>Application content goes here...</Text>

    </Container>

  );

}



Application containers     509

The title "Application Container" is passed as a property of Container and 
the application content is written in simple text, for now, set using the Text component. 
Here's what the result looks like on the screen:

Figure 28.1 – Application container



510     Selecting Native UI Components Using NativeBase

Now that we have a Container component that we can use on every page of the app, 
let's add in some navigation capabilities and footer navigation links. The approach to 
creating such containers helps us to reuse a lot of code and manage one Container 
component by passing necessary props to it.

Headers and footers
To implement navigation in our app, we can use the react-navigation package that 
we learned about in Chapter 18, Navigating between Screens. But, in this example, we will 
implement the layout of tab navigation without navigation features.

Here's what our App component looks like:

import React from "react";

import { Text } from "native-base";

import Container from "./Container";

export default function App() {

  return (

    <Container title="Home">

      <Text>Home content goes here...</Text>

    </Container>

  );

}

We're passing to the Container component the title that allows us to update the 
Header title. Let's take a look at the updated Container component:

<NativeBaseProvider theme={theme}>

  <StatusBar bg="#3700B3" barStyle="light-content" />

  <Box safeAreaTop bg="#6200ee" />

  <HStack

    bg="#6200ee"

    px="1"

    py="3"

    justifyContent="center"

    alignItems="center"

    w="100%"

  >



Headers and footers     511

    <Text color="white" fontSize="20" fontWeight="bold">

      {title}

    </Text>

  </HStack>

  <Box flex={1} safeAreaTop width="100%"

    alignSelf="center">

    <Center flex={1}>

      <Box>{children}</Box>

    </Center>

Here, we can see the header and main content of the page. Next, let's add a bottom tab bar:

    <HStack bg="#6200ee" alignItems="center" safeAreaBottom

      shadow={6}>

      <FooterButton

        title="Home"

        iconName="home"

        selected={selected === 0}

        onPress={() => setSelected(0)}

      />

      <FooterButton

        title="Settings"

        iconName="settings"

        selected={selected === 1}

        onPress={() => setSelected(1)}

      />

      <FooterButton

        title="Help"

        iconName="help"

        selected={selected === 2}

        onPress={() => setSelected(2)}

      />

      <FooterButton



512     Selecting Native UI Components Using NativeBase

        title="Contact"

        iconName="person"

        selected={selected === 3}

        onPress={() => setSelected(3)}

      />

    </HStack>

  </Box>

</NativeBaseProvider>

We've added the FooterButton component based on new NativeBase components. 
Let's take a look at this now:

import { Text, Pressable, Center, Icon } from 

  "native-base";

import { Ionicons } from "@expo/vector-icons";

export const FooterButton = ({ selected, onPress, title,

  iconName }) => {

  return (

    <Pressable opacity={selected ? 1 : 0.5} py="3" flex={1}

      onPress={onPress}>

      <Center>

        <Icon as={Ionicons} mb="1" name={iconName}

          color="white" size="sm" />

        <Text color="white" fontSize="12">

          {title}

        </Text>

      </Center>

    </Pressable>

  );

};



Headers and footers     513

As you can see, we used the Pressable, Center, and Icon components. Using 
NativeBase components is an advantage because it enables you to add styles via props. 
The FooterButton component accepts several props to update icons, active styling, and 
the label. Here's what the result looks like:

Figure 28.2 – Header and footer

In the next section, you'll learn how to use layout components to organize the content on 
your screens.



514     Selecting Native UI Components Using NativeBase

Using layout components
NativeBase provides layout components that simplify the layout code for your screens. 
You can use these components to build your own grid layouts for the UI components on 
your screens. Let's take a look at an example. Here are the App components:

import React from "react";

import { HStack } from "native-base";

import Container from "./Container";

import { CardItem } from "./CardItem";

export default function App() {

  return (

    <Container title="Using Layout Components">

      <HStack space={3} justifyContent="center"

        alignItems="center" mt={2}>

        <CardItem>Card 1</CardItem>

        <CardItem>Card 2</CardItem>

      </HStack>

      <HStack space={3} justifyContent="center"

        alignItems="center" mt={2}>

        <CardItem>Card 3</CardItem>

        <CardItem>Card 4</CardItem>

      </HStack>

    </Container>

  );

}



Using layout components     515

The HStack component for horizontal layout and VStack for a vertical layout are 
used to build layouts in NativeBase apps. To avoid repeating the code, I defined the 
CardItem component. Now, let's look at it:

import { Center } from "native-base";

export const CardItem = ({ children }) => {

  return (

    <Center

      flex={1}

      border="1"

      borderRadius="md"

      bg="gray.200"

      h={50}

      m={1}

      rounded="md"

      shadow={4}

    >

      {children}

    </Center>

  );

};



516     Selecting Native UI Components Using NativeBase

This component has been built on a primitive brick by NativeBase as well. The whole 
example creates two rows with two columns each; the second row is truncated here 
because it looks just like the first row. Here's what it looks like:

Figure 28.3 – Layout components

Now that you're able to build screen layouts, it's time to use the NativeBase layout 
components to align form input components.



Collecting input using form components     517

Collecting input using form components
NativeBase has form components for every type of input imaginable, including the 
common inputs that you're most likely to use. Form input controls are notoriously difficult 
for native application developers to use because, even with cross-platform tools such as 
React Native, the native input controls on the two platforms are so different that you have 
to write different code for different platforms. With the NativeBase input components, you 
can usually write your code once. Let's take a look at an example. Here's everything that 
you need to import:

import React, { useState } from "react";

import {

  Input,

  Stack,

  FormControl,

  Select,

  Checkbox,

  Radio,

} from "native-base";

import Container from "./Container";

Next, let's look at the state that's used by the various input components to store values 
collected from the user:

const [text, setText] = useState("");

const [select, setSelect] = useState();

const [checkbox, setCheckbox] = useState(true);

const [radio, setRadio] = useState();

const options = ["First", "Second", "Third"];

The text state defaults to an empty string, the picker state defaults to undefined, the 
checkbox state is false by default, and the radio state defaults to undefined. The 
options array is values used to define the options for the picker input and the radio 
control. Let's look at how the text input component is used:

<Stack>

  <FormControl.Label>Username</FormControl.Label>

  <Input

    p={2}

    placeholder="Username"



518     Selecting Native UI Components Using NativeBase

    value={text}

    onChange={setText}

  />

</Stack>

The value property uses the value state from our App component. The onChange 
handler uses setText() to update the text state any time the user changes the text input. 
Next, let's look at the Select component:

<Stack>

  <FormControl.Label>Select</FormControl.Label>

  <Select

    placeholder="Select"

    selectedValue={select}

    onValueChange={(itemValue) => setSelect(itemValue)}

  >

    {options.map((item) => (

      <Select.Item key={item} label={item} value={item} />

    ))}

  </Select>

</Stack>

The Select component requires several properties that control the appearance of the 
dropdown. The selectedValue property controls the value of the selector and is set 
in the picker state. When the picker value changes, the setPicker() function updates 
this state. The options available in the dropdown for the user to choose from are mapped 
from values in the options array to the Select.Item components. Let's look at the 
Checkbox component next:

<Stack>

  <FormControl.Label>Select</FormControl.Label>

  <Checkbox

    isChecked={checkbox}

    onChange={setCheckbox}

    colorScheme="green"

  >

    Checkbox

  </Checkbox>

</Stack>



Collecting input using form components     519

The isChecked visual is controlled by the checkbox state, while the onChange handler 
uses the setCheckbox() function to toggle the state of the checkbox. Lastly, let's look at 
the Radio form input control:

<Stack>

  <Radio.Group

    name="Radio"

    value={radio}

    onChange={(nextValue) => {

      setRadio(nextValue);

    }}

  >

    <Radio value="one" my={1}>

      One

    </Radio>

    <Radio value="two" my={1}>

      Two

    </Radio>

  </Radio.Group>

</Stack>

The Radio components are wrapped by Radio.Group to control all items. The value 
property controls the selected appearance of the radio and is true if the radio state 
matches the index state of the current radio control. When the user presses one of the 
radio controls, the setRadio() function is called to set the radio state to the index of 
the radio state that was pressed.



520     Selecting Native UI Components Using NativeBase

Here's what these controls look like:

Figure 28.4 – Form components

In this example, we've learned how to use Input components to create the form.



Summary     521

Summary
Although we barely scratched the surface of the components available in NativeBase, 
you now have a sense of what's possible with this library and how it greatly reduces the 
amount of cross-platform code we need to write. We started by looking at application 
container components that take care of loading NativeBase fonts and establishing the 
overall structure for every screen in the app. We then learned about adding navigation 
and navigation links to our NativeBase app. Then, we organized form components on the 
screen using NativeBase.

In the next chapter, we'll look at scaling application states in React applications.

Further reading
You can find more information on NativeBase at https://nativebase.io/.

https://nativebase.io/




Part 3 – React 
Architecture

In this part, we’ll dive into the architecture of a React application. We’ll also learn about 
handling the state of your React application and how to use modern API concepts, such 
as GraphQL.

This part contains the following chapters:

• Chapter 29, Handling Application State 

• Chapter 30, Why GraphQL?

• Chapter 31, Building a React GraphQL App





29
Handling Application 

State
From early on in this book, you've been using state to control your React components. 
State is an important concept in any React application because it controls what the 
user can see and interact with. Without state, you just have a bunch of empty React 
components.

In this chapter, you'll learn how to handle a more complex application state. Then, you'll 
learn how to build an architecture that best serves web and mobile architectures. You'll 
also be introduced to Context, followed by a discussion on the limitations of React 
architectures, and how you might overcome them using external libraries.

This chapter has the following sections:

• Organizing state in React 

• Implementing Context

• State in mobile apps

• Scaling the architecture



526     Handling Application State

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/React-and-React-Native-4th-Edition/tree/
main/Chapter29.

Organizing state in React
It can be difficult to think of user interfaces (UIs) as information architecture. Often, you 
get a rough idea of how the UI should look and behave and then you implement it. I do this 
all the time, and it's a great way to get the ball rolling, to discover issues with your approach 
early, and so on. But then, I like to take a step back and picture what's happening without 
any widgets. Inevitably, what I've built is flawed in terms of how state flows through the 
various components. This is fine; at least I have something to work with now. I just have to 
make sure that I address the information architecture before building too much.

As your application grows in size and there are more pages and components that need 
to interact with state, the way we have used state in this book might not be sufficient 
anymore. Therefore, it makes sense to split up your application state into reducers and 
Context. We can do this with Context, which will be explained in the following sections. 

Unidirectionality
So far, we know that state in React is passed down from a parent component to a child 
component. It flows in one direction, also called unidirectional. We've been creating 
state in UI components and passing it down to other components as props. This is a good 
approach for a simple state, such as whether a dropdown is opened or a menu should be 
visible. But, passing props down this way becomes inefficient. As only the direct child 
component can access the props, there can be situations where you need to pass props 
through multiple levels of components. This is called prop drilling. Prop drilling often 
occurs when you have lifted state up to a top-level component to make it accessible to 
more components.

This top-level component has state, but it doesn't render any UI elements. Instead, it renders 
other React components and passes in their state as properties. Whenever the container 
state changes, the child components are re-rendered with new property values. This is 
unidirectional data flow. You can prevent having to lift state and prop drilling with Context. 

React takes this idea and applies it to something called Context. Context is an abstract 
concept that holds an application state. Context lets you pass state down through multiple 
levels of components. You can combine Context with reducers, as you'll learn later in this 
chapter. First, I want you to understand why unidirectional data flows are advantageous.

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter29
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter29
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter29


Organizing state in React     527

There's a good chance that you've implemented a UI component that changes state, 
but you're not always sure how it happens. Was it the result of some event in another 
component? Was it a side-effect from some network call completing? When that happens, 
you spend lots of time chasing down where the update came from. The effect is often a 
cascading game of whack-a-mole. When changes can only come from one direction, you 
can eliminate several other possibilities, thus making the architecture more predictable.

Synchronous update rounds
When you change the state of a React container, it will re-render its children, who 
re-render their children, and so on. In React, this is called an update round. From the 
time state changes to the time that the UI elements reflect this change, this is the boundary 
of the round. It's nice to be able to group the dynamic parts of application behavior into 
larger chunks to have a clearer overview.

A potential problem with state in React components is that they can interweave with 
one another and render in a non-deterministic order. For example, what if some API call 
completes and causes a state update to happen before the rendering has completed in 
another update round? The side effects of asynchronicity can accumulate and morph into 
unsustainable architectures if not taken seriously.

With Context, you get more control over update rounds. JavaScript is a single-threaded, 
run-to-completion environment that should be embraced by working with it rather than 
against it. Update the whole UI, and then update the whole UI again. It turns out that 
React is a really good tool for this job.

Predictable state transformations
When using Context, you have one or multiple Context instances that hold the application 
state. A change of the values in the Context happens synchronously and unidirectionally, 
making the system as a whole more predictable and easier to reason about. However, 
there's still one more thing you can do to ensure that side effects aren't introduced.

You're keeping all your application state in Context instances, which is great, but you can 
still break things by mutating data in other places. These mutations might seem innocent 
at first glance, but they're toxic to your architecture. For example, the callback function 
that handles a fetch() call might manipulate the data before passing it to the Context 
value. Or, an event handler might generate some structure and pass it to the Context. 
There are limitless possibilities. For this reason, you should combine Context with 
reducers from the useReducer() Hook of React.



528     Handling Application State

The problem with performing these state transformations outside a Context instance 
is that you don't necessarily know that they're happening. Think of mutating data as a 
butterfly effect: one small change has far-reaching consequences, which aren't obvious at 
first. The solution is to only mutate state in the Context, without exception. It's predictable 
and easy to trace cause and effect of your React architecture this way.

Unified information architecture
Let's take a moment to recap the ingredients of our application architecture so far:

• React Web: Applications that run in web browsers

• React Native: Applications that run natively on mobile platforms

• Context: Way of handling the scalable state in React applications

Remember, React is just an abstraction that sits on top of a render target. The two main 
render targets are browsers and native mobile. This list will likely grow, so it's up to you to 
design your architecture in a way that doesn't exclude future possibilities. The challenge is 
that you're not porting a web application to a native mobile application; they're different 
applications, but they serve the same purpose.

Having said that, is there a way that you can still have a unified information architecture 
that can be used by these different applications? The best answer I can come up with, 
unfortunately, is sort of. You don't want to let the different web and mobile user 
experiences lead to drastically different approaches in handling state. If the goals of the 
applications are the same, then there must be some common information that you can 
share, using the same Context.

The difficult part is the fact that web and native mobile are different experiences, which 
means that the shape of your application state will be different. It must be different; 
otherwise, you would just be porting from one platform to the other, which defeats the 
purpose of using React Native to leverage capabilities that don't exist in browsers.

Now you know everything about state management in React and Context, let's continue 
by implementing Context in an application in the next section.

Implementing Context
With Context, we can implement the application state, as you'll learn in this chapter. To 
implement Context, we'll create a basic React application that needs state. The application 
itself will be a news application. It's a simple app, but I want to highlight the architectural 
challenges as I walk through the implementation. Even simple apps get complex when 
you're paying attention to what's going on with the data.



Implementing Context     529

We'll build the web version, and then you could implement the same patterns on a React 
Native app for iOS and Android. You'll see how you can share architectural concepts 
between your apps. This lowers the conceptual overhead when you need to implement the 
same application on several platforms. 

You're implementing two apps right now, but this will likely be more in the future as React 
expands its rendering capabilities.

Creating Context
The basis of implementing Context for a React application is importing the 
createContext() Hook. With this Hook, you can create a Context instance, which is 
needed to store the state information in your application. You create a Context for every 
main slice of your application. So, for example, your app would have an App Context and 
an Articles Context instance:

import { createContext } from 'react';

export const ArticlesContext = createContext();

const initialState = {

  article: {},

  articles: [],

  filter: '',

  loading: true,

  error: '',

};

The Context has an initial state, which is useful when the application first starts. This is 
enough to render components, but that's about it. Once the user starts interacting with the 
UI, you need a way to change the state of the store. Context works best when combined 
with a reducer from the useReducer() Hook in React. You assign a reducer function to 
each slice of state in your store. This is shown later, in the Reducer functions section.

Context provider
Context has a Provider component, which is used to wrap the top-level components of 
your application. This will ensure that state data is available to every component in your 
application.



530     Handling Application State

In the hipster newsreader app you're developing, you'll wrap the Router component 
from React Router with a Provider component. Then, as you build your components, 
you know that the data from the Context will be available. The App component includes 
the page heading and a list of links to various article categories, which serves as a filter. 
When the user moves around the UI, the App component is always rendered, but each 
Route element renders different content based on the current route. Here's what the App 
component looks like:

import { Routes, Route, BrowserRouter } from 'react-router-
dom';

import Filter from './components/Filter';

import Home from './components/Home';

import Article from './components/Article';

import AppContext from './context/AppContext';

function App() {

  return (

    <BrowserRouter>

      <div>

        <h1>Hipster news app</h1>

        <AppContext>

          <Filter />

          <Routes>

            <Route path='/' element={<Home />} />

            <Route exact path='/articles/:id'

              element={<Article />} />

          </Routes>

        </AppContext>

      </div>

    </BrowserRouter>

  );

}

export default App;



Implementing Context     531

In the App component, AppContext is imported. This is a wrapper that wraps all the 
Provider components of all the Context instances of the application. Wrapping the 
Provider components in one component makes it easier to add new Context instances 
to your application at a later stage. The AppContext components look like the following:

import { ArticlesContextProvider } from

  './ArticlesContext';

const AppContext = ({ children }) => {

  return <ArticlesContextProvider>{children}

    </ArticlesContextProvider>;

};

export default AppContext;

Every component within the component tree that is wrapped with AppContext can now 
access the state that is available from Context. This means that when the Context changes, 
the state data is automatically passed to each application component.

Reducer functions
To make Context updates more stable, you can combine them with reducer functions. 
Reducer functions look for state updates and return a new value for the state or content. 
Every Context instance created with the createContext() Hook has its own reducer 
functions.

Reducer functions take the current state and an action that is passed to it. Based 
on this action, it will change the state value. The reducer is often a switch statement 
that iterates over a map of actions, which are defined in uppercase. The reducer for 
ArticlesContext has the following format:

import { createContext, useReducer } from 'react';

export const ArticlesContext = createContext();

const initialState = {

  article: {},

  articles: [],

  filter: '',



532     Handling Application State

  loading: true,

  error: '',

};

const reducer = (state, action) => {

  switch (action.type) {

    case 'GET_ARTICLES_SUCCESS':

      return {

        ...state,

        articles: action.payload,

        loading: false,

      };

    case 'GET_ARTICLES_ERROR':

      return {

        ...state,

        articles: [],

        loading: false,

        error: action.payload,

      };

    default:

      return state;

  }

};

Reducer functions are passed to a useReducer() Hook together with the initial 
state. The output of this Hook will be the current state value after executing the reducer 
functions, and a dispatch() function. Together with the Context instance, the 
Provider component that is available on this Context instance is important. With this 
Provider component, you set the value for the Context, which is the state value:

export const ArticlesContextProvider = ({ children }) => {

  const [state, dispatch] = useReducer(reducer,

    initialState);

  async function fetchArticles(filter = '') {



Implementing Context     533

    try {

      const data = await fetch(

        'http://localhost:3001/articles${filter ?

          '?category=${filter}' : ''}',

      );

      const result = await data.json();

      if (result) {

        dispatch({ type: 'GET_ARTICLES_SUCCESS', 

          payload: result });

      }

    } catch (e) {

      dispatch({ type: 'GET_ARTICLES_ERROR', 

        payload: e.message });

    }

  }

  return (

    <ArticlesContext.Provider

      value={{ ...state, fetchArticles }}

    >

      {children}

    </ArticlesContext.Provider>

  );

};

export default ArticlesContext;

The dispatch() function is how these action creator functions can deliver payloads 
to the Context. For example, the fetchArticles() function is a call directly to 
dispatch() and is called when the user wants to load the list of articles. However, 
the fetchArticles() call involves asynchronous behavior. This means that 
dispatch() isn't called until the fetch() promise resolves. It's up to you to make 
sure that nothing unexpected happens in between. We'll look at the Home component 
next to see how this works.



534     Handling Application State

The Home component
The Home component is available on http://localhost:3000 and shows the list 
of all available articles. It also has a filter of the different categories of articles that can be 
selected, but this filter is rendered by the App component. Let's break down how the Home 
component is structured:

import React, { useContext, useEffect } from 'react';

import { Link } from 'react-router-dom';

import ArticlesContext from '../context/ArticlesContext';

function Home() {

  const { fetchArticles, articles } =

    useContext(ArticlesContext);

  useEffect(() => {

    if (!articles.length) {

      fetchArticles();

    }

  }, [articles, fetchArticles]);

  return (

    <ul style={listStyle}>

      {articles.length === 0 ? <li

        style={listItemStyle}>...</li> : null}

      {articles.map(({ id, title, summary }) => (

        <li key={id} style={listItemStyle}>

          <Link to={'articles/${id}'}>

            <button style={titleStyle}>{title}</button>

          </Link>

          <p>

            <small>

              <span>{summary} </span>

              <Link to={'/articles/${id}'}>More...</Link>



Implementing Context     535

            </small>

          </p>

        </li>

      ))}

    </ul>

  );

}

export default Home;

This component is using the useContext() Hook. With this Hook, you can read the 
Context value from a Context instance, such as ArticlesContext. The Context value 
has the articles that we want to render in the UI and the fetchArticles() function. 
This function gets the articles from an API from within a useEffect() Hook, when 
there aren't any articles in the Context yet.

Preventing unwanted re-renders
When the value for the Context changes, all components within the component tree might 
re-render. If multiple components are wrapped within a Provider component, these 
components are looking for state updates within that Context. 

For this application, this means that every component nested in AppContext might 
re-render if one of the Context instances is updated. This is something you want to 
prevent, as components should only re-render when the values they consume are changed. 
In the following code block, you can see the implementation of this:

export const ArticlesContextProvider = ({ children }) => {

  const [state, dispatch] = useReducer(reducer,

    initialState);

  async function fetchArticles(filter = '') {

    try {

      const data = await fetch(

        'http://localhost:3001/articles${filter ?

          '?category=${filter}' : ''}',

      );



536     Handling Application State

      const result = await data.json();

      if (result) {

        dispatch({ type: 'GET_ARTICLES_SUCCESS', 

          payload: result });

      }

    } catch (e) {

      dispatch({ type: 'GET_ARTICLES_ERROR', 

        payload: e.message });

    }

  }

  const value = useMemo(

    () => ({ ...state, fetchArticles }),

    [state],

  );

  return (

    <ArticlesContext.Provider value={value}>

      {children}

    </ArticlesContext.Provider>

  );

};

export default ArticlesContext;

In this code block, the value for Context is wrapped in a useMemo() Hook, so you 
prevent unwanted re-renders for your application. 



Managing state in mobile apps     537

Figure 29.1 – Our news app with mock data

All the data that is pulled from the API will be managed in the Context. The news 
application you've built in this section can also be transformed to work as a mobile app,  
as you'll learn in the next section.

Managing state in mobile apps
What about using Context in React Native mobile apps? Of course, you should if you're 
developing the same application for the web and for native platforms. In fact, you could 
copy and paste all the Context-related code to a React Native application and use it 
to handle state. I encourage you to download the code for this book and convert the 
application from this chapter to React Native as an exercise.



538     Handling Application State

There really is no difference in how you use Context in a mobile app. The only difference is 
in the shape of the state that's used. In other words, don't think that you can use the exact 
same Context and reducer functions in the web and native versions of your app. Think about 
React Native components. There's no one-size-fits-all component for many things. You have 
some components that are optimized for the iOS platform, while others are optimized for 
the Android platform. It's the same idea with Context. The information that you want the 
mobile UI to render might be different from what you want to render on the web.

For mobile apps, you also must deal with an offline state, as users could also open the mobile 
application without an internet connection. Persisting state is, therefore, more important on 
mobile compared to the web. To persist state, you can use external React libraries.

You can use what you've learned about Context in this chapter with your React Native 
application too. I'd recommend that you make a React Native version of the news 
app from this chapter as a challenge. The next section discusses how to scale these 
applications.

Scaling the architecture
By now, you probably have a pretty good grip of using Context, combining it with 
reducer functions, and using it to implement sound information architecture for React 
applications. The question then becomes, how sustainable is this approach, and can it 
handle arbitrarily large and complex applications?

Context is a good way to handle the state for your application if this state isn't 
continuously updated. By dividing your Context into different smaller Context instances, 
it becomes more scalable. You can predict what's going to happen as the result of any 
given action because everything is explicit. It's declarative, it's unidirectional, and without 
side effects. But, it isn't without challenges.

The limiting factor with Context is also its bread and butter; because everything is explicit, 
applications that need to scale up in terms of feature count and complexity ultimately end 
up with more moving parts. There's nothing wrong with this; it's just the nature of the 
game. The unavoidable consequence of scaling up is slowing down. You simply cannot 
grasp enough of the big picture in order to implement things quickly.

Context is a pure client-side approach to handling state. If you want to handle state from 
the server side or handle state that only comes from external data sources, have a look 
at React Query. It's an open source library to handle state, caching, data persistency, and 
much more.



Summary     539

In the final two chapters of this book, we're going to look at a related but different 
approach to Context: GraphQL. I believe that this technology can scale in ways that 
Context cannot, as it resides directly at the level of your data.

Summary
In this chapter, you learned about Context. With Context, you can handle state for any 
React application. In combination with reducer functions, you can use it for building 
information architecture for your React application. State in React involves unidirectional 
data flow, synchronous update rounds, and predictable state transformations.

Next, we walked through a detailed implementation of a React application that uses 
Context. Context provides an implementation for complex state situations, the benefit of 
which is predictability everywhere.

Then, you learned whether Context has what it takes to build scalable architectures for our 
React applications. The answer is yes, for the most part. For the remainder of this book, 
however, we're going to explore GraphQL to see whether these technologies can scale 
your applications to the next level. In the next chapter, you'll learn about the concepts of 
GraphQL and what it means for a React application.

Further reading
For more information, check out the following links:

• Context: https://reactjs.org/docs/context.html

• React Query: https://react-query.tanstack.com/

https://reactjs.org/docs/context.html
https://react-query.tanstack.com/




30
Why GraphQL?

In the preceding chapter, you learned about the architectural principles of state 
management in React. In particular, you used Context to implement more complex state 
management in a React application. Context, in combination with reducer functions, will 
help you to understand how state changes and flows in your application are a good thing. 
At the end of the preceding chapter, you also learned about the potential limitations in 
terms of scale.

In this chapter, we are going to walk you through yet another approach to handling state 
in a React application. Similar to Context, GraphQL can be used with both web and 
mobile React applications. GraphQL is a query language for APIs and is implemented 
on the server side. To connect with GraphQL from a React application, we'll be using the 
library called Apollo Client.

Unlike Context, you don't have to write reducers and actions to deal with state 
management. Instead, GraphQL provides a more declarative way of handling data fetching 
and the state of that data in your application afterward. For this, GraphQL can be used 
with Apollo Client, which provides you with components and hooks to fetch and mutate 
data from any GraphQL server.

In the final chapter of this book, you'll work on a React implementation of the ever-
popular TodoMVC application using GraphQL with Apollo Client.



542     Why GraphQL?

In this chapter, you'll learn about the following:

• The need for another approach to handle data in React apps 

• The high-level vocabulary of GraphQL

• Declarative data fetching

• Mutations to update data

Approaching state with GraphQL
How to handle application state with GraphQL? This was the exact question I had when  
I learned of GraphQL. Then, I reminded myself that the beauty of React is that it's just the 
view abstraction of the UI. Of course, there are going to be many approaches to handling 
data. So, the real question is, what makes using GraphQL better or worse than using 
something such as Context for state management and data fetching?

At a high level, how GraphQL is handled with Apollo Client is similar to what we've done 
previously in this book. At a more practical level, the value of Apollo Client is its ease of 
implementation. For example, with Context, you have a lot of implementation work to do 
just to populate the stores with data. This gets verbose over time, as it's difficult to scale 
Context beyond a certain point if you've got to write that much code for every new feature 
that you want to implement.

It's not the individual data points that are difficult to scale. Rather, it's the aggregate effect 
of having lots of fetch requests that end up building very complicated stores. Apollo Client 
changes this by allowing you to declare the data that a given component needs and letting 
Apollo Client figure out the best way to fetch this data and synchronize it with the local 
store. Under the hood, it will use a similar logic to what you've already written in the 
previous chapters.

Is the Apollo and GraphQL approach better than Context and other approaches for 
handling data in React applications? In some respects, yes, it is. Is it perfect? Far from it. 
There is a learning curve involved and not everyone is able to deal with it. It's immutable 
and parts of it are difficult to use. However, just knowing the premise of how GraphQL 
works with Apollo Client and seeing it in action is worth your while, even if you decide 
against it.

Now, let's pick apart some vocabulary.



Understanding some verbose vernacular about GraphQL     543

Understanding some verbose vernacular 
about GraphQL
Before I start going into more depth about data dependencies and mutations, I think 
it makes sense for me to throw some general Relay and GraphQL terminology and 
definitions out there:

• GraphQL: This is a query language that is used to specify data requirements and 
data mutations.

• Apollo Client: This is a library that manages application data fetching and data 
mutations. It provides higher-order components and hooks that feed data to our 
application components. Also, it comes with React Hooks support and caching out 
of the box.

• Query: This is a part of a data dependency, expressed in the GraphQL syntax, and 
executed by an encapsulated Relay mechanism.

• Fragment: This is a part of a larger GraphQL query.

• Mutation: This is a special type of GraphQL query that changes the state of a remote 
resource. Apollo Client has to figure out how to reflect this change in the frontend 
once it completes.

• Subscription: This is a GraphQL type used for real-time events between the server 
and the client application; for example, for notifications or chat messages.

Let's quickly talk about declarative data fetching and mutations before we move on to look 
at some application code.

Declarative data fetching
As mentioned earlier, GraphQL is a query language that lets you define what the response 
of an API looks like by how you structure your query. This is a more declarative approach to 
data fetching than you see in other APIs. Not only is it a query language, but it also provides 
a runtime to fulfill those queries based on your existing data. Also, not only can you use 
GraphQL to fetch data with queries, but you can also send mutate data by using mutations.

When you want to use GraphQL, the API that you're using for data fetching should 
support GraphQL. This means the server should have a schema that describes which 
operations (that is, queries, mutations, or subscriptions) are allowed and which data fields 
can be requested. Every operation that is described in the schema for a GraphQL server 
can be executed by sending a document containing these operations. Other than with 
REST APIs, you have complete control over the shape of your data as you define what 
structure the response should have in your operation.



544     Why GraphQL?

Let's get a taste of how GraphQL queries work. If you want to display the first and last 
name of a user, you need to tell the GraphQL server that you want to retrieve these fields. 
Then, you can be sure that the data will always be there. Here's an example of what a query 
looks like:

query getUser { 

  user {

    firstName 

    lastName

  }

}

In this query, you have described that you want to retrieve the firstName and 
lastName fields for a user. When you send this query in a document to a GraphQL 
server, it will respond with a JSON object containing these fields (and only these fields):

"data": {

  "user": {

    "firstName": "John",

    "lastName": "Doe"

  }

}

The preceding request is similar to how a REST API would handle a request, for example, 
a call to a /users endpoint. What differs is the shape of the data that is returned by the 
GraphQL server and the fact that you can use Apollo Client to retrieve this data.

Apollo Client can be used for data fetching in different ways, using React concepts that 
you've already explored in this book. One of those ways is by using hooks to execute 
GraphQL operations, such as sending a query. For this, you can use the useQuery() 
Hook from Apollo Client, which not only sends the query but also handles state 
management for you.

Let's see how to use a useQuery() Hook to retrieve data:

import { gql, useQuery } from '@apollo/client';

const GET_USER = gql'

  query getUser {

    user {

      firstName



Declarative data fetching     545

      lastName

    }

  }

';

function User() {

  const { loading, error, data } = useQuery(GET_USER);

  if (loading) return 'Loading...';

  if (error) return 'Error! ${error.message}';

  const { firstName, lastName } = data.user;

  return (

    <p>

      'Hi there, ${firstName} ${lastName}'

    </p>

  );

}

export default User;

The useQuery() Hook takes a GraphQL query as a prop and returns an object with 
the loading, error, and data state variables. When there is no data fetched yet, 
the loading variable will be true. As soon as the data is loaded, the error or data 
variables will be resolved with information from the GraphQL server.

Depending on the schema of the GraphQL server, you can add more fields to the query 
or even query nested relationships for this user. If the GraphQL schema allows for nested 
relationships, you can define these in your query as follows:

query getUser { 

  user {

    firstName 

    lastName 

    todos {

      title 

      status



546     Why GraphQL?

    }

  }

}

The preceding query will also retrieve the todos field for this user, along with 
firstName and lastName. 

This query will return the following data:

"data": {

  "user": {

    "firstName": "John",

    "lastName": "Doe", 

    "todos": [

      {

        "title": "Do dishes", 

        "status" "complete"

      },

      {

        "title": "Walk the dog", 

        "status": "open"

      }

    }

  }

}

Here, you can see how the todos object is not only shaped exactly as it was defined in 
the query, but also as a list. If you have a REST API, you will need to send two different 
requests to two different endpoints to retrieve this. For example, you can send one request 
to the /users endpoint and another request to the endpoint that returns the list of todos 
for a user.

Don't dwell on the Apollo Client and GraphQL specifics just yet. The idea here is to simply 
illustrate that this is what you need to write to get data from a GraphQL server. The rest is 
just bootstrapping Apollo Client for data fetching and state management, which you'll see 
in the next chapter.



Mutating application state     547

Mutating application state
GraphQL mutations are the actions that cause side effects in your systems because they 
change the state of a particular resource that your UI cares about. What's interesting 
about mutations is that they care about side effects that happen to your data as a result of 
a change in the state of something. For example, if you change the information of a user, 
this will certainly impact the screen that displays the user information. However, it could 
also impact a listing screen that shows the information of several users.

Let's see what a mutation looks like:

mutation changeTodoStatus($input: ChangeTodoStatusInput!) {

  changeTodoStatus(input: $input) {

    todo {

      title 

      status

    }

    user {

      todos { 

        title 

        status

      }

    }

  }

}

This mutation will change the status of a todo item and return the updated information 
of that item. But that's not all this mutation does; it also returns the user information 
containing all the todos of that user. When the status of a todo item changes, a screen 
that shows the todos for this user might also change. This is how Apollo Client and 
GraphQL can determine what might be affected as a side effect of performing this 
mutation, as the updated information for the user will also be returned.



548     Why GraphQL?

Similar to how you used Apollo Client to retrieve user information, this information 
can also be mutated using Apollo Client. Again, there are multiple approaches to using 
GraphQL mutations with Apollo Client. The default way to handle mutations is by using 
the useMutation() Hook:

import { gql, useMutation} from '@apollo/client';

const ADD_TODO = gql'

  // Insert mutation

';

function AddTodo() {

  let input;

  const [addTodo, { data, loading, error }] =

    useMutation(ADD_TODO);

  if (loading) return 'Submitting...';

  if (error) return 'Submission error! ${error.message}';

  return (

    <div>

      <form

        onSubmit={e => {

          e.preventDefault();

          addTodo({ variables: { text: input.value } });

          input.value = '';

        }}

      >

        <input

          ref={node => {

            input = node;

          }}

        />

        <button type="submit">Add Todo</button>

      </form>

    </div>

  );



Summary     549

}

export default AddTodo;

The useMutation() Hook takes the mutation as a parameter and returns an object to 
execute the mutation and an object with the data that will be returned. With a simple form 
element, the mutation function can be called when this form gets submitted. When it 
returns the data for the user, a Completed! message will be shown on the screen.

You'll see more mutations in action in the following chapter, where you'll implement 
Apollo Client in a React application.

Summary
The goal of this chapter was to briefly introduce you to the concepts of GraphQL and 
Apollo Client prior to the final chapter of this book, where you're going to implement 
some Apollo Client and GraphQL code.

Apollo Client is yet another approach to the state management problem in React 
applications. It's different in the sense that it reduces the complexities associated with the 
data fetching code that we must write with other approaches such as Context.

The two key aspects of Apollo Client are declarative data fetching and explicit mutation 
side-effect handling. All of this is expressed through the GraphQL syntax and React 
Hooks. In order to have an Apollo Client application, you need a GraphQL backend from 
which the data can be retrieved. 

Now, let's move on to the final chapter, where you'll examine GraphQL concepts in more 
detail by creating a React application with Apollo Client.

Further reading
Refer to the following links for more information:

• GraphQL: https://graphql.org/

• Apollo Client: https://www.apollographql.com/docs/react/

https://graphql.org/
https://www.apollographql.com/docs/react/




31
Building a GraphQL 

React App
In the previous chapter, you received an extensive introduction to Apollo and GraphQL 
and learned why and how you should use this approach for your React application. 

Now, you can build your Todo React application using Apollo Client. By the end of this 
chapter, you should be comfortable with knowing how data moves around in a GraphQL-
centric application.

In this chapter, we'll cover the following topics: 

• Todo and Apollo Client

• The GraphQL schema

• Bootstrapping Apollo Client 

• Adding to-do items 

• Rendering to-do items 

• Completing to-do items



552     Building a GraphQL React App

Technical requirements
You can find the code files present in this chapter on GitHub at https://github.
com/PacktPublishing/React-and-React-Native-4th-Edition/tree/
main/Chapter31.

Creating a Todo app
In this chapter, we'll build a Todo example for React that uses GraphQL to handle its data. 
This example is based on a popular open source library (https://todomvc.com/
examples/react/), which is a robust, yet concise, starting point for creating the Todo 
application for this chapter.

I'm going to walk you through an example React implementation of a Todo app. Also, you 
can find a React Native implementation of this same web app in the GitHub repository for 
this chapter. The key is that the mobile version will use the same GraphQL backend as the 
web UI. I think this is a win for React developers who want to build both web and native 
versions of their apps as they can share the same schema!

The code for this chapter contains both a web version build with React and a native 
version with React Native. If you've worked on frontend development in the past 5 years, 
you've probably come across a sample Todo app. Here's what the web version looks like:

Figure 31.1 – A Todo MVC app example

https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter31
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter31
https://github.com/PacktPublishing/React-and-React-Native-4th-Edition/tree/main/Chapter31
https://todomvc.com/examples/react/
https://todomvc.com/examples/react/


Constructing a GraphQL schema     553

Implementing GraphQL for this Todo app works similarly for both the web and mobile 
versions. We won't focus on both, only the web version. Apollo Client works mostly the 
same on native platforms as it does on web platforms, and the GraphQL backend can be 
shared between web and native apps. The next section shows what this GraphQL backend 
looks like.

Constructing a GraphQL schema
The schema is the vocabulary used by the GraphQL backend server and the Apollo Client 
implementation in the frontend. The GraphQL type system enables the schema to describe 
the data that's available and how to put it all together when a query request comes in. This 
is what makes the whole approach so scalable – the fact that the GraphQL runtime figures 
out how to put data together. All you need to supply are functions that tell GraphQL 
where the data is – for example, in a database or a remote service endpoint.

Let's take a look at some of the types used in the GraphQL schema for the Todo app.  
We'll start with Todo itself:

type Todo { 

  id: ID!

  text: String! 

  complete: Boolean

}

This type describes the Todo objects used throughout the application, including all the 
optional and required fields for this type. In the example code, you can see that the types 
followed with an exclamation mark are required (id and text), and the ones without an 
exclamation mark are optional (complete). Everything else in the GraphQL schema is 
based on this type, either directly or indirectly.

Next, let's look at the types that tie the Todo type to the user who is interacting with the app:

type User { 

  id: ID!

  totalCount: Int! 

  completedCount: Int! 

  todos: [Todo]!

}



554     Building a GraphQL React App

By implementing these types, the end result is a User type with a list of todos, including 
the total number of todos and the total number of completed todos. This type can be 
accessed from our components, which we'll see shortly. Our schema also needs to declare 
how data changes.

Let's look at some of the mutation types used with this app:

type Mutation {

  addTodo(text: String): [Todo]

  changeTodoStatus(id: Int!, complete: Boolean): [Todo] 

  markAllTodos: [Todo]

  removeCompletedTodos: [Todo] removeTodo(id: Int!): [Todo]   

  renameTodo(id: Int!, text: String): [Todo]

}

Each mutation type describes what it takes as input and what the resulting payload 
looks like once the operation is complete. The mutation type ties all of this together and 
provides an interface for everything that changes in the application. In this schema, there 
are mutations to add new todos, change the name or status of a todo, or delete todos. 
These mutations will be used when creating the application later on.

Now that there's a GraphQL schema in place, we're ready to put it into our application 
using Apollo and React in the next section.

Bootstrapping the Apollo Client
At this point, you will have the GraphQL backend up and running. Now, you can focus on 
your React components in the frontend. In particular, you're going to look at the Apollo 
Client in a React application. In web apps, it's usually React Router that bootstraps Apollo 
Client. Let's now look at the src/index.js file that serves as the entry point for your 
web app:

import React from 'react';

import ReactDOM from 'react-dom/client';

import { ApolloClient, InMemoryCache, ApolloProvider } from

  '@apollo/client';



Bootstrapping the Apollo Client     555

import App from './App';

import './index.css';

const client = new ApolloClient({

  cache: new InMemoryCache(),

  uri: 'http://localhost:4000/graphql',

});

 

const root =

  ReactDOM.createRoot(document.getElementById('root'));

root.render(

  <React.StrictMode>

    <ApolloProvider client={client}>

      <App />

    </ApolloProvider>

  </React.StrictMode>,

);

The ApolloProvider component is wrapping the App component in the same way as 
with Context. By wrapping a component tree with a Provider, every component in the 
tree can connect with the GraphQL server. The GraphQL server is running at http://
localhost:4000/graphql, and you can use this address to set up an Apollo Client 
instance for the application. 

Also, InMemoryCache from @apollo/client is used to get caching for your 
application data out of the box:

const client = new ApolloClient({

  cache: new InMemoryCache(),

  uri: 'http://localhost:4000/graphql',

});



556     Building a GraphQL React App

This is how you communicate with the GraphQL backend – by configuring a client. 
However, in the React Native example, you're using the network IP address of your 
computer, as Expo doesn't accept a localhost address. Using your local network IP address 
means all requests to the GraphQL backend are being made on your machine. To get 
your network IP address (or IPv4 address) of your local machine to access the GraphQL 
backend, follow these steps:

• For Windows: Open the terminal (or Command Prompt) and run this command:

ipconfig

This will return a list, as follows, with data from your local machine. In this list,  
you need to look for the IPv4 Address field:

Figure 31.2 – Getting the network address on Windows

• For macOS: Open the Terminal and run this command:

ipconfig getifaddr en0

After running this command, the IPv4 address of your machine gets returned, 
which looks like this:

192.168.1.107

You can use this address to set up an Apollo Client instance for the React Native 
application if you decide to work on the React Native example.

Let's get back to implementing Apollo Client in the React web application. The next step is 
to implement a useQuery() Hook. This Apollo Client Hook is used to get data from the 
server using GraphQL queries. It expects a query property, which is used to get the todo 
items for a user in src/App.js:



Bootstrapping the Apollo Client     557

import { useQuery } from '@apollo/client';

import TodoList from './components/TodoList';

import TodoListFooter from './components/TodoListFooter';

import { GET_USER } from './constants';

function App() {

  const { loading, error, data } = useQuery(GET_USER, {

    variables: {

      userId: 'me', // Mock authenticated ID that matches

        database

    },

  });

  if (loading) return 'Loading...';

  if (error) return 'Error! ${error.message}';

  const hasTodos = data.user.totalCount > 0;

  return (

    <div>

      <section className='todoapp'>

        <header className='header'>

          <h1>todos</h1>

        </header>

        <TodoList user={data.user} />

        {hasTodos && <TodoListFooter user={data.user} />}

      </section>

    </div>

  );

}

export default App;



558     Building a GraphQL React App

In this code block, the GraphQL backend returns a set of todo items by calling a 
query with the useQuery Hook. The value for the query can be found in the src/
constants.js file, which hosts all the queries and mutations for this application:

import { gql } from '@apollo/client';

export const GET_USER = gql'

  query GetUser($userId: String) {

    user(id: $userId) {

      id

      totalCount

      completedCount

      todos {

        id

        text

        complete

      }

    }

  }

';

As you can see, this query requires the userId parameter. This value is passed from the 
second parameter in the useQuery() Hook. 

Then, the Hook will return a loading value, once the query is transferred to the 
GraphQL backend, and the error and data values when the GraphQL data is ready:

const { loading, error, data } = useQuery(GET_USER, {

  variables: {

    userId: 'me', // Mock authenticated ID that matches

      database

  },

});

If something went wrong, error will contain information about the error, and you can 
return a message to the user. Otherwise, you can return the components that need the 
data value. If there's no error and no props, it's safe to assume that the GraphQL data is 
still loading.



Adding todo items     559

Next, we'll have a look at using mutations to add new todo items to the application.

Adding todo items
In the App component, there's also a text input that allows the user to enter new todo 
items. When they're done entering the todo item, Apollo Client will need to send a 
mutation to the backend GraphQL server. Here's what the component code looks like:

function App() {

  const [addTodo] = useMutation(ADD_TODO, {

    refetchQueries: [

      {

        query: GET_USER,

        variables: {

          userId: 'me',

        },

      },

    ],

  });

  return (

    <div>

      <section className='todoapp'>

        <header className='header'>

          <h1>todos</h1>

          <TodoTextInput

            className='new-todo'

            onSave={(text) => addTodo({ variables: { text }

              })}

            placeholder='What needs to be done?'

          />

        </header>

        <TodoList user={data.user} />

        {hasTodos && <TodoListFooter user={data.user} />}

      </section>



560     Building a GraphQL React App

    </div>

  );

}

export default App;

It doesn't look that different from your typical React component. The method to add a 
new todo item is created by the useMutation() Hook. This Hook uses a mutation, 
which is how you tell the GraphQL backend that you want to create a new todo item. 
This Hook looks very similar to the useMutation() Hook that you saw in the previous 
section. This Hook needs a mutation, which is the ADD_TODO mutation that you can find 
in the src/constants.js file:

import { gql } from '@apollo/client';

export const ADD_TODO = gql'

  mutation AddTodo($text: String) {

    addTodo(text: $text) {

      id

    }

  }

';

This mutation takes just one variable, which you can pass to the mutation by using the 
addTodo callback function that was returned by the useMutation() Hook. You can 
call this function when the user submits something in the input field in the TodoInput 
component:

<TodoTextInput

  className='new-todo'

  onSave={(text) => addTodo({ variables: { text } })}

  placeholder='What needs to be done?'

/>



Adding todo items     561

When the mutation has been sent to the GraphQL backend, this same Hook can be 
used to refetch any queries that are defined in your application. If a new todo is added 
using the mutation, you want your user to see the new list of todos by refetching the 
GET_USER query from the App component. To refetch a query, you can pass a value for 
refetchQueries to the useMutation() Hook:

const [addTodo] = useMutation(ADD_TODO, {

  refetchQueries: [

    { 

      query: GET_USER, 

      variables: { 

        userId: 'me' 

      } 

    }

  ],

});

Let's see what the application looks like so far:

Figure 31.3 – The Todos MVC app with mutations

The input field for adding new todo items is just above the list of todo items. Now, let's 
look at the TodoList component, which is responsible for rendering the todo item list.



562     Building a GraphQL React App

Rendering todo items
It's the job of the TodoList component to render the todo list items. When the  
GET_USER query takes place, the TodoList component needs to be able to render all 
the todo items. Let's take a look at the item list again, with several more todos added.

Figure 31.4 – The Todos MVC app with the filled list

Here's the TodoList component itself:

import React from 'react';

import { useMutation } from '@apollo/client';

import Todo from './Todo';

import { MARK_ALL_TODOS, GET_USER } from '../constants';

function TodoList({ user: { todos, totalCount,

  completedCount } }) {

  const [markAllTodos] = useMutation(MARK_ALL_TODOS, {

    refetchQueries: [{ query: GET_USER, variables: 

      { userId: 'me' } }],

  });

  const handleMarkAllChange = () => {

    if (todos) {

      markAllTodos();



Rendering todo items     563

    }

  };

  return (

    <section className='main'>

      <input

        checked={totalCount === completedCount}

        className='toggle-all'

        onChange={handleMarkAllChange}

        type='checkbox'

      />

      <label htmlFor='toggle-all'>Mark all as

        complete</label>

      <ul className='todo-list'>

        {todos.map((todo) => (

          <Todo key={todo.id} todo={todo} />

        ))}

      </ul>

    </section>

  );

}

export default TodoList;

The useMutation Hook in this code block takes a mutation to check all todo items and 
returns a method that you can call from your React component. After doing so, it will 
refetch the query to get the user and their todos.

The relevant GraphQL query to get the data you need for this component is already 
executed in the App component. This component, therefore, doesn't need to send a query 
to the GraphQL backend itself and can render the todos that were passed to it. When you 
render the App component, you're passing it the todo data. Now, let's see what else we 
can do with the todos.



564     Building a GraphQL React App

Completing todo items
The last piece of this application is rendering each todo item and providing the ability to 
change the status of the todo in the Todo component in src/components/Todo.js. 
Let's look at pieces of this code:

import classnames from 'classnames';

import { useMutation } from '@apollo/client';

import {

  CHANGE_TODO_STATUS,

  REMOVE_TODO,

  GET_USER,

} from '../constants';

function Todo({ todo }) {

  const [changeTodoStatus] =

    useMutation(CHANGE_TODO_STATUS, {

    refetchQueries: [{ query: GET_USER, variables: 

      { userId: 'me' } }],

  });

  const [removeTodo] = useMutation(REMOVE_TODO, {

    refetchQueries: [{ query: GET_USER, variables: 

      { userId: 'me' } }],

  });

  const handleCompleteChange = (e) => {

    const complete = e.currentTarget.checked;

    changeTodoStatus({ variables: { id: todo.id, complete }

      });

  };

  // ...

}



Completing todo items     565

Here, you can see that this component is using two mutations, one to change the status 
of a todo item and another to remove a todo item. These mutations are passed to the 
useMutation() Hooks, which return a callback function to execute them. The callback 
functions are wrapped in different methods for reusability. The mutation to change the 
status of a todo can be found in src/constants.js:

import { gql } from '@apollo/client';

export const CHANGE_TODO_STATUS = gql'

  mutation ChangeTodoStatus($id: Int!, $complete: Boolean) {

    changeTodoStatus(id: $id, complete: $complete) {

      id

      complete

    }

  }

';

Based on the id type of the todo item, this mutation sends the request to the GraphQL 
backend to change the todo state. The GraphQL backend then talks to any services that 
are needed to make this happen. Then, it will refetch the GET_USER query to get the new 
list of todos, including the one you've just updated.

The actual component, that's making this possible is rendered by the Todo component, is 
a switch control, and the item text. When the user marks the todo as complete, the item 
text is styled as crossed off. The user can also uncheck items:

  return (

    <li

      className={classnames({

        completed: todo.complete,

        editing: isEditing,

      })}

    >

      <div className='view'>

        <input

          checked={todo.complete}

          className='toggle'

          onChange={handleCompleteChange}

          type='checkbox'



566     Building a GraphQL React App

        />

        <label>{todo.text}</label>

        <button className='destroy'

          onClick={handleDestroyClick} />

      </div>

    </li>

  );

};

export default Todo;

That's all for the React implementation of the Todo app, but if you head over to the 
GitHub repository, you can see the full code source, including the example for a React 
Native implementation. In the native application, we've only used several queries and 
mutations, but the web version features more.

Summary
In this chapter, you implemented some specific GraphQL and Apollo Client ideas. 
Starting with the GraphQL schema, you learned how to declare the data that's used by 
the application and how these data types resolve to specific data sources, such as API 
endpoints. Then, you learned about bootstrapping GraphQL queries with Apollo Client 
in a React app. Next, you walked through the specifics of adding, changing, and listing 
todo items. The application itself uses the same schema as the web version of the Todo 
application, which makes things much easier when you're developing web and native 
React applications.

Well, that's a wrap for this book. We've gone over a lot of material together, and I hope 
that you've learned as much from reading it as I have from writing it. If there is one theme 
from this book that you should walk away with, it's that React is simply a rendering 
abstraction. As new rendering targets emerge, new React libraries will emerge as well. 
As developers think of novel ways to deal with state at scale, you'll see new techniques 
and libraries released. My hope is that you're now well prepared to work in this rapidly 
evolving React ecosystem.

Further reading
Refer to the following link for more information:

• Todo MVC: https://todomvc.com/examples/react/

https://todomvc.com/examples/react/


Index

A
activity indicator

on Android  386, 387
on iOS  385, 386

add article component
implementing  121-123

Android  285
Android Studio  304
Animated API  462
annotations  402
API data

fetching  234-238
Apollo Client

about  543
bootstrapping  554-558

App component  247
application architecture

ingredients  528
application data

storing  494-498
synchronizing  498-501, 503

application state mutation, 
GraphQL  547-549

architecture
scaling  538, 539

article item component
implementing  119-121

article list component
implementing  117-119

asynchronous calls
cleaning up  157-160

asynchronous state updates
handling  274-278

AsyncStorage  296
attributes  35

B
backend routing  227, 229, 230
buttons

working with  259-261

C
cancellable component

using  454-460
change in state  34
Checkbox component  256
checkboxes

about  417
using  255, 256



568     Index

class components
refactoring, with hooks  128, 131-133

cleanup action
performing  62

CodePush
URL  299

code splitting  207
component data

fetching  62-64, 140-143
component properties  35
component state

about  34
creating  38, 39
merging  40-42
setting  36-38

component trees
rendering  133, 134

Container component  240-242
container components  49, 51
containers

using  240-242
Context

architecture, scaling  538, 539
consuming  52-55
creating  529
Home component  534, 535
implementing  528
Provider component  529, 531
providing  52-55
reducer functions  531-533
unwanted re-renders, 

preventing  535, 537
context Hooks

used, for sharing data  70
Core Components and APIs

reference link  301
createContext() function  53

custom property validators
writing  185-187

D
data

sharing, with context Hooks  70
data collections

rendering  364-366
date and time pickers

on Android  423
on iOS  422, 423

date/time input
collecting  419, 421-423

declarative data fetching, 
GraphQL  543-546

defaultProps  42
defaultProps property  49
Document Object Model (DOM)  7, 282
Drawer component  247, 250-252
drawer navigation  357, 359-361
drawers

navigating with  247, 249, 251

E
error boundaries

about  160
used, for controlling errors in Reactive 

components  160, 162-165
error handling  298, 299
event handler context

component data, obtaining  96-98
higher-order function  99, 100
using  96



Index   569

event handler parameters
component data, obtaining  96-98
higher-order function  99, 100
using  96

event handler
binding, to elements  101
declaring  92
functions, declaring  92, 93
implementing  112-114

event pooling  103-105
Expo Application Services (EAS)  304
Expo command-line tool

about  304
installing  305
using  305

Expo Go  304
expo-progress

reference link  387
Expo Snack

about  304
React Native apps, viewing  312-316

F
feature components  134
fetched data

sharing  71-75
fingers

used, for scrolling  444-447
FlatList  367
Flexbox

about  320
reference link  321

Flexbox layouts
building  325
columns, nesting within rows  336-338
flexible grids  334-336
flexible rows  332-334

improved three-column layout  328-331
rows, nesting within columns  336-338
simple three-column layout  325-328

form components
used, for collecting inputs  517-520

FormControl component  256
FormControlLabel component  256
FormLabel component  256
frontend reconciliation  231-234
functional component

about  46, 48
creating  123-125
default values  48, 49

functional React component  46

G
generic handlers

importing  94-96
gesture response system, in React Native

cancellable component, using  454-460
scrolling, with fingers  444-447
Swipeable component, using  454-460
touch feedback, receiving  447-454

gesture system  284
global data  52
GraphQL

about  543
application state, mutating  547-549
declarative data fetching  543-546
state, approaching  542
verbose vernacular  543

GraphQL query
about  543
fragment  543
mutation  543



570     Index

GraphQL schema
constructing  553, 554

Grid component  242, 245

H
Hello Route  190, 191
Hermes

reference link  291
Higher-Order Component (HOC)  392
higher-order function  99
hooks

used for refactoring class 
components  128-133

HTML tags
built-in  16
conventions  17
rendering  15
UI structures, describing  18, 19

I
icons

about  298
rendering  485-487

images
loading  474-476
resizing  476-480

imperative components
rendering  154

initialization action
performing  62

initial state values  58, 59
inline event handlers

declaring  100
inputs

collecting, with form 
components  517-520

iOS  285
isomorphic JavaScript

about  222
code, sharing between server 

and browser  224
initial load performance  223, 224
server-side rendering  222

J
JavaScriptCore  283
JavaScript expressions

used, for mapping collections 
to JSX elements  26-28

used, to set dynamic property 
values and text  25

using  24
JavaScript XML (JSX)

about  6, 284
working with  115-117

jQuery UI widgets
rendering  154-157

JS Interface (JSI)  295
JS libraries  299
JS modules  296
JSX application

about  14
UI structures  15

JSX elements
creating  19
HTML, encapsulating  19, 20
namespaced components  23, 24
nested elements  20-22

JSX fragments
building  28, 29
building, with wrapper elements  29
using  30

JSX markup  109, 111



Index   571

L
layout components

animating  464-469
using  514, 516

lazy API
dynamic imports and bundles  208, 209
process, simplifying  209, 210
using  208

lazy component
avoiding  214-216

lazy images
loading  480-485

lazy pages
exploring  217-219

lazy routes
exploring  217-219

link components
basic linking  202, 204
dynamic links, building with URL 

and query parameters  204-206
using  202

links
creating  202

List  367
ListContainer  367
ListControls  367
list data

fetching  375-377
lazy list loading  378-380

ListFilter
about  367
controls, adding  367-374

list of options
selecting from  411-416

ListSort
about  367
controls, adding  367-374

Location API
using  398, 399

M
Map

rendering  400, 401
MenuItem component  258
metadata

used, for optimizing rendering 
efficiency  152, 153

mobile apps
state, managing  537, 538

mobile browsers  284, 285
mobile web apps

case  285
Modal Screens

activity  439-441
information, displaying  426
passive notifications  435-439
user confirmation, obtaining  426

Modal Screens, user confirmation
error confirmation  432-435
success confirmation, 

displaying  427-431
monolithic components

event handler implementation  112-114
initial state  111, 112
issues  109
JSX markup  109, 111

monolithic feature component
add article component, 

implementing  121-123
article item component, 

implementing  119-121
article list component, 

implementing  117-119



572     Index

functional component, creating  123-125
functional component, making  123
JSX  115-117
refactoring  115

multiple event handlers  93, 94
MyList component  50

N
NativeBase

about  297
application containers  506-510
headers and footers  510-513
layout components, using  514, 516

navigation
about  342-347
components, using  247
header  352-356
indicators, exploring  391, 393

O
out-of-tree platforms

reference link  283
overlays

plotting  404, 405
Over the Air (OTA)  299

P
PermissionConsumer component  55
PermissionProvider component  55
points

plotting  402, 403
points of interest

annotating  402
portable components

promoting  168, 169

progress
indicating  384-387
in usability  384
measuring  387-391

ProgressBar
on Android  391
on iOS  390
reference link  387

prop drilling  526
properties

initializing  139
used, for initializing state  143, 145
used, for updating state  145-148

property validation  168
property values

default values  42, 43
passing  42
setting  44-46

pull to refresh
implementing  381, 382

pure function  46
push notifications  299

R
radio buttons

using  255, 256
RadioGroup component  256
React

about  4, 281, 284
abstraction level  9, 10
components, rendering to static 

HTML strings  224-226
data, changing over time  7
declarative UI structures  6
performance  7, 8
URL  4
view layer  4



Index   573

React 18
about  10
automatic batching  10
state transitions  11

React API
React component  5
React DOM  5
simplicity  5

React application
layers  4

React component
cleaning up  157
data  5
error boundaries, used for 

controlling errors  160-165
events  5
JSX  5
lifecycle  5
life cycle, need for  138, 139

ReactDOM  281
React Native APIs

exploring  300, 301
React Native apps

viewing, on Expo Snack  312-316
viewing, on phone  306-312

React Native apps, building blocks
Button  300
Image  300
Pressable  301
ScrollView  300
Switch  301
Text  300
TextInput  300
View  300

React Native architecture
exploring  288
mobile apps  288-290
web apps  288-290

React Native CLI tools
exploring  304, 305

React Native components
exploring  300, 301

React Native current architecture
about  290, 291
JS part  291, 292
Native part  292
styling  294
thread communication  292, 293

React Native Directory
reference link  299

React Native Element  297
React Native future architecture  295, 296
React Native modules

about  296
error handling  298, 299
icons  298
JS libraries  299
Over the Air (OTA)  299
push notifications  299
React Navigation  297
splash screen  297
UI component libraries  297

React-native-paper  297
React Native Reanimated

about  462
Animated API  462
library, installing  463
using  462

React Native Reanimated, methods
useAnimatedStyle  463
useDerivedValue  463
useSharedValue  463
withDecay  463
withSpring  463
withTiming  463



574     Index

React Native (RN)
about  281, 282
workflow  282, 283

React Native (RN), history and mechanics
reference link  283

React Native styles  321-323
React Navigation  297
Reanimated animation  463
reducer actions

using  80-83
reducer Hooks

using, to scale state management  80
Renderer  296
rendering efficiency

optimizing  148-151
optimizing, with metadata  152, 153

render props
about  126-128
reference link  126

requests state
canceling  64-67

resetting state
canceling  64, 67

responsive grid layouts
building  242-246

reusable HTML elements  108
route parameters

about us  347-352
handling  193
optional parameters  199-202
resource IDs  194-199

Router component  249
routes

creating  190
declarations, decoupling  191-193
declaring  190
Hello Route  190, 191

S
Select component  257, 258
select inputs  257-259
setState() method  58
side-effect actions

optimizing  68, 70
simple property type validators

basic type validation  169-173
property value  176-178
using  169
values, requiring  173-176

splash screen  297
state

approaching, with GraphQL  542
initializing  139
initializing. with properties  143, 145
managing, mobile apps  537, 538
updating, with properties  145-148

state dependencies
handling  84-90

stateful context data
updating  75-80

state Hooks
initial state values  58, 59
maintaining  58
state values, updating  59-61

state, in React
organizing  526
predictable state transformations  

527, 528
unidirectionality  526, 527
unified information architecture  528
update rounds, synchronize  527

stateless components
about  46
functional component  46, 48



Index   575

state management
scaling, with reducer Hooks  80

state of network
detecting  490-493

state transformations  527, 528
state updates

batching  266-270
prioritizing  270-274

state values
updating  59-61

step progress  393-396
Styled Components library

about  324
using  324

styles
making  261, 262
working with  261

styling components
animating  470-472

subscription  543
Suspense component

latency, simulating  212, 213
spinner fallbacks, working with  213, 214
top-level Suspense component  210, 211
using  210

Swipeable component
using  454-460

Switch component  417
switch toggles

about  417, 418
on Android  419
on iOS  418

synthetic event objects
using  102

T
tab navigation  357-361
tabs

navigating with  252-254
Tabs component  252, 253
TextField component  258, 259
text input

about  257-259
collecting  408-411

themes
customizing  263, 264
working with  261

three-row layout  326
Todo application

Apollo Client, bootstrapping  554-558
creating  552
GraphQL schema, constructing  553, 554
todo items, adding  559-561
todo items, completing  564-566
todo items, rendering  562, 563

touch feedback
receiving  447-454

TurboModules  295
type and value validators

about  178
property value, rendering by 

JSX markup  178-180
specific types, requiring  180-184

Typography component  241



576     Index

U
UI component libraries  297
UI components

organizing  240
UI Kitten  297
unidirectional  526
update round  527
useEffect() Hook  62
user input

collecting  255
user interfaces (UIs)  4, 526
useState() method  58
utility components  134

V
verbose vernacular, GraphQL  543

W
wrapper elements

used, for building of JSX fragments  29

X
Xcode  304

Y
Yoga engine  294



   577

Hi!

We're Adam, Roy (@gethackteam on Twitter), and Mikhail, the authors of React and React 
Native Fourth Edition. We really hope you enjoyed reading this book and found it useful 
for increasing your productivity and efficiency in React. 

It would really help us (and other potential readers!) if you could leave a review on 
Amazon sharing your thoughts on React and React Native Fourth Edition here. 

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/1803231289

Your review will help us to understand what's worked well in this book, and what could be 
improved upon for future editions, so it really is appreciated.

Best Wishes,

Mikhail Sakhniuk                        Roy Derks

https://packt.link/r/1803231289




Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as 
well as industry leading tools to help you plan your personal development and advance 
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos 

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and 
ePub files available? You can upgrade to the eBook version at packt.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up 
for a range of free newsletters, and receive exclusive discounts and offers on Packt books 
and eBooks.

http://Packt.com
http://packt.com
http://customercare@packtpub.com
http://www.packt.com


580     Other Books You May Enjoy

Other Books You 
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

React Projects

Roy Derks

ISBN: 978-1-80107-063-8

• Create a wide range of applications using various modern React tools and frameworks

• Discover how React Hooks modernize state management for React apps

• Develop web applications using styled and reusable React components

• Build test-driven React applications using Jest, React Testing Library, and Cypress

• Understand full-stack development using GraphQL, Apollo, and React

• Perform server-side rendering using React and Next.js

• Create animated games using React Native and Expo

• Design gestures and animations for a cross-platform game using React Native

https://www.packtpub.com/product/react-projects-second-edition/9781801070638


Other Books You May Enjoy     581

Elevating React Web Development with Gatsby

Samuel Larsen-Disney

ISBN: 978-1-80020-909-1

• Understand what GatsbyJS is, where it excels, and how to use it

• Structure and build a GatsbyJS site with confidence

• Elevate your site with an industry-standard approach to styling

• Configure your GatsbyJS projects with search engine optimization to improve 
their ranking

• Get to grips with advanced GatsbyJS concepts to create powerful and dynamic sites

• Supercharge your site with translations for a global audience

• Discover how to use third-party services that provide interactivity to users 

https://www.packtpub.com/product/elevating-react-web-development-with-gatsby-4/9781800209091


582     

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and 
tech professionals, just like you, to help them share their insight with the global tech 
community. You can make a general application, apply for a specific hot topic that we are 
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com



	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1 – React
	Chapter 1: Why React?
	What is React?
	React is just the view layer
	Simplicity is good
	Declarative UI structures
	Data changes over time
	Performance matters
	The right level of abstraction

	What's new in React 18?
	Automatic batching
	State transitions

	Summary
	Further reading

	Chapter 2: Rendering with JSX
	Technical requirements
	Your first JSX content
	Hello JSX
	Declarative UI structures

	Rendering HTML
	Built-in HTML tags
	HTML tag conventions
	Describing UI structures

	Creating your own JSX elements
	Encapsulating HTML
	Nested elements
	Namespaced components

	Using JavaScript expressions
	Dynamic property values and text
	Mapping collections to elements

	Building fragments of JSX
	Using wrapper elements
	Using fragments

	Summary
	Further reading

	Chapter 3: Component Properties, State, and Context
	Technical requirements
	What is component state?
	What are component properties?
	Setting component state
	Setting initial component state
	Creating component state
	Merging component state

	Passing property values
	Default property values
	Setting property values

	Stateless components
	Pure functional components
	Defaults in functional components

	Container components
	Providing and consuming context
	Summary
	Further reading

	Chapter 4: Getting Started 
with Hooks
	Technical requirements
	Maintaining state using Hooks
	Initial state values
	Updating state values

	Performing initialization and cleanup actions
	Fetching component data
	Canceling requests and resetting state
	Optimizing side-effect actions

	Sharing data using context Hooks
	Sharing fetched data
	Updating stateful context data

	Using reducer Hooks to scale state management
	Using reducer actions
	Handling state dependencies

	Summary

	Chapter 5: Event Handling, the React Way
	Technical requirements
	Declaring event handlers
	Declaring handler functions
	Multiple event handlers
	Importing generic handlers

	Using event handler context and parameters
	Getting component data
	Higher-order event handlers

	Declaring inline event handlers
	Binding handlers to elements
	Using synthetic event objects
	Understanding event pooling
	Summary
	Further reading

	Chapter 6: Crafting Reusable Components
	Technical requirements
	Reusable HTML elements
	The difficulty with monolithic components
	The JSX markup
	Initial state
	Event handler implementation

	Refactoring component structures
	Starting with the JSX
	Implementing an article list component
	Implementing an article item component
	Implementing an add article component
	Making components functional

	Render props
	Refactoring class components using hooks
	Rendering component trees
	Feature components and utility components
	Summary
	Further reading

	Chapter 7: The React Component Life Cycle
	Technical requirements
	Why components need a life cycle
	Initializing properties and state
	Fetching component data
	Initializing state with properties
	Updating state with properties

	Optimizing rendering efficiency
	To render or not to render
	Using metadata to optimize rendering

	Rendering imperative components
	Rendering jQuery UI widgets

	Cleaning up after components
	Cleaning up asynchronous calls

	Containing errors with error boundaries
	Summary
	Further reading

	Chapter 8: Validating Component Properties
	Technical requirements 
	Knowing what to expect
	Promoting portable components
	Simple property validators
	Basic type validation
	Requiring values
	Any property value

	Type and value validators
	Things that can be rendered
	Requiring specific types
	Requiring specific values

	Writing custom property validators
	Summary
	Further reading

	Chapter 9: Handling Navigation with Routes
	Technical requirements
	Declaring routes
	Hello route
	Decoupling route declarations

	Handling route parameters
	Resource IDs in routes
	Optional parameters

	Using link components
	Basic linking
	URL and query parameters

	Summary
	Further reading

	Chapter 10: Code Splitting Using Lazy Components and Suspense
	Technical requirements
	Using the lazy API
	Dynamic imports and bundles
	Making components lazy

	Using the Suspense component
	Top-level Suspense components
	Simulating latency
	Working with spinner fallbacks

	Avoiding lazy components
	Exploring lazy pages and routes
	Summary

	Chapter 11: Server-Side React Components
	Technical requirements
	What is isomorphic JavaScript?
	The server is a render target
	Initial load performance
	Sharing code between the server and the browser

	Rendering to strings
	Backend routing
	Frontend reconciliation
	Fetching data
	Summary

	Chapter 12: User Interface Framework Components
	Technical requirements
	Layout and organization
	Using containers
	Building responsive grid layouts

	Using navigation components
	Navigating with drawers
	Navigating with tabs

	Collecting user input
	Checkboxes and radio buttons
	Text inputs and select inputs

	Working with buttons
	Working with styles and themes
	Making styles
	Customizing themes

	Summary

	Chapter 13: High-Performance State Updates
	Technical requirements
	Batching state updates
	Prioritizing state updates
	Handling asynchronous state updates
	Summary

	Part 2 – React Native
	Chapter 14: Why React Native?
	Technical requirements
	What is RN?
	React and JSX are familiar
	The mobile browser experience
	Android and iOS – different yet the same
	The case for mobile web apps
	Summary
	Further reading

	Chapter 15: React Native 
under the Hood
	Technical requirements
	Exploring React Native architecture
	The state of web and mobile apps in the past
	React Native current architecture
	React Native future architecture

	Explaining JS and Native modules
	React Navigation
	UI component libraries
	Splash screen
	Icons
	Handling errors
	Push notifications
	Over the air updates
	JS libraries

	Exploring React Native components and APIs
	Summary

	Chapter 16: Kick-Starting React Native Projects
	Technical requirements
	Exploring React Native CLI tools
	Installing and using the Expo command-line tool
	Viewing your app on your phone
	Viewing your app on Expo Snack
	Summary

	Chapter 17: Building Responsive Layouts with Flexbox
	Technical requirements
	Introducing Flexbox
	Introducing React Native styles
	Using the Styled Components library
	Building Flexbox layouts
	Simple three-column layout
	Improved three-column layout
	Flexible rows
	Flexible grids
	Flexible rows and columns

	Summary
	Further reading

	Chapter 18: Navigating Between Screens
	Technical requirements
	Navigation basics
	Route parameters
	The navigation header
	Tab and drawer navigation
	Summary
	Further reading

	Chapter 19: Rendering Item Lists
	Technical requirements
	Rendering data collections
	Sorting and filtering lists
	Fetching list data
	Lazy list loading
	Implementing pull to refresh
	Summary
	Further reading

	Chapter 20: Showing Progress
	Technical requirements
	Understanding progress and usability
	Indicating progress
	Measuring progress
	Exploring navigation indicators
	Step progress
	Summary
	Further reading

	Chapter 21: Geolocation and Maps
	Technical requirements
	Using Location API
	Rendering the Map
	Annotating points of interest
	Plotting points
	Plotting overlays

	Summary
	Further reading

	Chapter 22: Collecting User Input
	Technical requirements
	Collecting text input
	Selecting from a list of options
	Toggling between on and off
	Collecting date/time input
	Summary
	Further reading

	Chapter 23: Displaying Modal Screens
	Technical requirements
	Important information
	Getting user confirmation
	Displaying a success confirmation
	Error confirmation

	Passive notifications
	Activity modals
	Summary
	Further reading

	Chapter 24: Responding to 
User Gestures
	Technical requirements
	Scrolling with your fingers
	Giving touch feedback
	Using Swipeable and cancellable components
	Summary
	Further reading

	Chapter 25: Using Animations
	Technical requirements
	Using React Native Reanimated
	Animated API
	React Native Reanimated
	Installing the React Native Reanimated library

	Animating layout components 
	Animating styling components
	Summary
	Further reading

	Chapter 26: Controlling 
Image Display
	Technical requirements
	Loading images
	Resizing images
	Lazy image loading
	Rendering icons
	Summary
	Further reading

	Chapter 27: Going Offline
	Technical requirements
	Detecting the state of the network
	Storing application data
	Synchronizing application data
	Summary
	Further reading

	Chapter 28: Selecting Native UI Components Using NativeBase
	Technical requirements
	Application containers
	Headers and footers
	Using layout components
	Collecting input using form components
	Summary
	Further reading

	Part 3 – React Architecture
	Chapter 29: Handling Application State
	Technical requirements
	Organizing state in React
	Unidirectionality
	Synchronous update rounds
	Predictable state transformations
	Unified information architecture

	Implementing Context
	Creating Context
	Context provider
	Reducer functions
	The Home component
	Preventing unwanted re-renders

	Managing state in mobile apps
	Scaling the architecture
	Summary
	Further reading

	Chapter 30: Why GraphQL?
	Approaching state with GraphQL
	Understanding some verbose vernacular about GraphQL
	Declarative data fetching
	Mutating application state
	Summary
	Further reading

	Chapter 31: Building a GraphQL React App
	Technical requirements
	Creating a Todo app
	Constructing a GraphQL schema
	Bootstrapping the Apollo Client
	Adding todo items
	Rendering todo items
	Completing todo items
	Summary
	Further reading

	Index
	Other Books You May Enjoy

