

React Projects
Second Edition

Build advanced cross-platform projects with React
and React Native to become a professional developer

Roy Derks

BIRMINGHAM—MUMBAI

React Projects
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Ashitosh Gupta
Senior Editor: Mark Dsouza
Content Development Editor: Divya Vijayan
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Ajesh Devavaram
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Prashant Ghare
Marketing Coordinator: Anamika Singh

First published: December 2019
Second edition: April 2022
Production reference: 1290422

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-063-8
www.packt.com

http://www.packt.com

To all developers who are starting their journey with React. It will be hard
work, but you will succeed.

– Roy Derks

Contributors

About the author
Roy Derks is a serial start-up CTO, conference speaker, and developer from Amsterdam.
He has been actively programming since he was a teenager, starting as a self-taught
programmer using online tutorials and books. At the age of 14, he founded his first
start-up, a peer-to-peer platform where users could trade DVDs with other users for
free. This marked the start of his career in web development, which back then primarily
consisted of creating web applications using an MVC architecture with the LAMP stack.

In 2015, he was introduced to React and GraphQL at a hackathon in Berlin, and after
winning a prize for his project, he started to use these technologies professionally. Over
the next few years, he helped multiple start-ups create cross-platform applications using
React and React Native, including a start-up he co-founded. He also started giving
workshops and talks at conferences around the globe. Over the last years he gave over
100 conference talks about React, React Native, and GraphQL, inspiring ten thousands of
developers worldwide.

You can follow Roy on Twitter to get more information on the latest developments in the
world of React and React Native: https://twitter.com/gethackteam.

https://twitter.com/gethackteam

About the reviewers
Kirill Ezhemenskii is an experienced software engineer, a frontend and mobile
developer, a solution architect, and the CTO at a healthcare company. He's a functional
programming advocate and an expert in the React stack, GraphQL, and TypeScript. He's
also a React Native mentor.

Emmanuel Demey works with the JavaScript ecosystem on a daily basis. He spends his
time sharing his knowledge with anyone and everyone. His first goal at work is to help
the people he works with. He has spoken at French conferences (such as Devfest Nantes,
Devfest Toulouse, Sunny Tech, and Devoxx France) about topics related to the web
platform, such as JavaScript frameworks (Angular, React.js, and Vue.js), accessibility, and
Nest.js. He has been a trainer for 10 years at Worldline and Zenika (two French consulting
companies). He is also the co-leader of the Google Developer of Lille group and the
co-organizer of the Devfest Lille conference.

Table of Contents
Preface

1
Creating a Single-Page Application in React

Project overview� 2
Getting started� 2
Creating a single-page
application� 3
Setting up a project� 3

Structuring a project� 13
Creating new components� 13

Summary� 30
Further reading� 30

2
Creating a Portfolio in React with Reusable Components
and Routing

Project overview� 32
Getting started� 32
Creating a portfolio in React� 32
Creating a portfolio with Create
React App� 33
Installing Create React App� 33

Building reusable React components� 35
Structuring our application� 36
Reusing components in React� 43
Routing with react-router� 55

Summary� 67
Further reading� 67

3
Building a Dynamic Project Management Board

Project overview� 70
Getting started� 70

Creating a project management
board application� 72
Handling the data flow� 72
Loading and displaying the data� 72

viii Table of Contents

Working with custom Hooks� 78
Creating custom Hooks� 78
Reusing a custom Hook� 83
Making the board dynamic� 86

Styling in React with
styled-components� 94
Summary� 102
Further reading� 102

4
Building a Server-Side-Rendered Community Feed
Using Next.js

Project overview� 104
Getting started� 104
Community feed application� 104
Setting up Next.js� 104
Installing Next.js� 105
Adding styled-components� 106

Routing with Next.js� 111
Handling query strings� 120

Enabling SSR� 127
Fetching data server side with Next.js� 127
Adding head tags for SEO� 132

Summary� 135
Further reading� 135

5
Building a Personal Shopping List Application Using Context
and Hooks

Project overview� 138
Getting started� 138
Personal shopping list� 141
Using the Context API for state
management� 141
Creating Context� 142
Nesting Context� 145

Mutating Context with Hooks� 148
Using life cycles in functional
components� 148
Using advanced state with useReducer� 151

Mutating data in the Provider� 162
Creating an application Context�168
Code splitting with React
Suspense� 170
Summary� 173
Further reading� 173

Table of Contents ix

6
Building an Application Exploring TDD Using the React
Testing Library and Cypress

Project overview� 176
Getting started� 176
The hotel review application� 179
Unit testing components� 180

Testing React state and Hooks� 191
End-to-end testing with Cypress� 197

Summary� 206
Further reading� 206

7
Building a Full Stack E-Commerce Application with Next.js
and GraphQL

Project overview� 208
Getting started� 208
Getting started with the initial
React application� 208

Building a full stack
e-commerce application with
React, Apollo, and GraphQL� 210
Creating a GraphQL server with Next.js� 210
Consuming GraphQL with Apollo Client� 218

Summary� 247
Further reading� 247

8
Building an Animated Game Using React Native and Expo

Project overview� 250
Getting started� 250
Creating an animated game
application with React Native
and Expo� 251
Setting up React Native with Expo� 252

Adding gestures and animations in
React Native� 270
Advanced animations with Lottie� 282

Summary� 287
Further reading� 288

x Table of Contents

9
Building a Full-Stack Social Media Application with React
Native and Expo

Project overview� 290
Getting started� 290
Checking out the initial project� 291

Building a full-stack social
media application with React
Native and Expo� 296
Advanced routing with authentication� 296

Using the camera with React Native
and Expo� 313
Differences in styling for iOS
and Android � 322

Summary� 329
Further reading� 329

10
Creating a Virtual Reality Application with React and Three.js

Project overview� 332
Getting started� 332
Creating a VR application with
React and Three.js� 332
Getting started with Three.js� 333
Creating 3D objects with Three.js� 334

Rendering 360-degree panorama
images� 343
Animating 3D objects� 351

Summary� 355
Further reading� 355

Index
Other Books You May Enjoy

Preface
This book will help you take your React knowledge to the next level by showing how
to apply both basic and advanced React patterns to create cross-platform applications.
The concepts of React are described in a way that's understandable to both new and
experienced developers; no prior experience of React is required, although it would help.

In each of the 10 chapters of this book, you'll create a project with React or React Native.
The projects created in these chapters implement popular React features such as
Hooks for re-using logic, the context API for state-management, and Suspense. Popular
libraries, such as React Router and React Navigation, are used for routing, while the
JavaScript testing framework React Testing Library and Cypress are used to write unit
and integration tests for the applications. Also, some more advanced chapters involve
a GraphQL server, and Expo is used to help you create React Native applications.

Who this book is for
The book is for JavaScript developers who want to explore React tooling and frameworks
for building cross-platform applications. Basic knowledge of web development,
ECMAScript, and React will assist in understanding key concepts covered in this book.

The supported React versions for this book are:

•	 React - v18.0

•	 React Native - v0.64

What this book covers
Chapter 1, Creating a Single-Page Application in React, will explore the foundation of
building React projects that can scale. Best practices of how to structure your files,
packages to use, and tools will be discussed and practiced. You'll learn about React
architecture while building a Single-page application. Also, webpack and Babel are used to
compile code.

xii Preface

Chapter 2, Creating a Portfolio in React with Reusable Components and Routing, will
explain how to set up and re-use styling in React components throughout your entire
application. We will build a GitHub Card application to see how to use CSS in JavaScript
and re-use components and styling in your application. Next to this, you'll learn about
implementing navigation with React Router v6.

Chapter 3, Building a Dynamic Project Management Board, will cover how to reuse
application state-logic from components by using Hooks. You'll learn how to build custom
Hooks and interact with Web APIs to make draggable components. Styled Components
are introduced to make it easier to style React components in a scalable way.

Chapter 4, Build a Server-Side-Rendered Community Feed Using Next.js, will discuss
routing, ranging from setting up basic routes, dynamic route handling, and how to set up
routes for server-side rendering. Therefore the React web framework Next.js will be used
as you'll learn while building an application based on Stack Overflow.

Chapter 5, Build a Personal Shopping List Application Using Context and Hooks, will show
you how to use the React context API with Hooks to handle the data flow throughout the
application. We will create a personal shopping list to see how data can be accessed and
changed from parent to child components and vice versa with Hooks and the context API.

Chapter 6, Build an Application Exploring TDD Using React Testing Library and Cypress,
will focus on unit testing with assertions and snapshots. You'll learn how to manage test
coverage, and implement visual integrations tests using the Cypress framework. We will
build a hotel review application to see how to test components and data flows.

Chapter 7, Build a Full-Stack E-Commerce Application with Next.js and GraphQL, will use
GraphQL to supply a backend to the application. This chapter will show you how to set
up a Full Stack React application with Next.js including a basic GraphQL server. We will
build an e-commerce application to see how to create a server, send requests to it, and
handle authentication.

Chapter 8, Build an Animated Game Using React Native and Expo, will discuss animations
and gestures, which are what truly distinguishes a mobile application from a web
application. This chapter will explain how to implement them. Also, the differences in
gestures between iOS and Android will be shown by building a card game application that
has animations and that responds to gestures.

Chapter 9, Build a Full-Stack Social Media Application with React Native and Expo, will
cover scaling and structuring React Native applications, which are slightly different from
web applications created with React. This chapter will outline how to use native APIs of
the mobile device, such as using the Camera, while building a Full Stack social media
application to examine the best practices for React Native.

Preface xiii

Chapter 10, Creating a Virtual Reality Application with React and Three.js, will discuss
how to get started with React and Three.js by creating a panorama viewer that gives the
user the ability to look around in the virtual world and create components inside it. The
application you'll build will look like a game you can play in Virtual Reality (VR).

To get the most out of this book
All the projects in this book are created with React or React Native. Prior knowledge of
JavaScript is required for most chapters in this book. Although all the concepts of React
and related technologies are described in this book, we advise you to refer to React docs
if you want to find out more about a feature. In the following section, you can find some
information about setting up your machine for this book and how to download the code
for each chapter.

For the applications that are created in this book, you'll need to have at least Node.js v14.19.1
installed on your machine so that you can run npm commands. If you haven't installed
Node.js on your machine, please go to https://nodejs.org/en/download/, where
you can find the download instructions for macOS, Windows, and Linux.

After installing Node.js, run the following commands in your command line to check the
installed versions:

•	 For Node.js (should be v14.19.1 or higher):

node -v

•	 For npm (should be v6.14.14 or higher):

npm -v

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

https://nodejs.org/en/download/

xiv Preface

The contents of this book use the latest available version when this book is completed in
April 2022. Any updates after this date, might not work with the functionalities described
in this book. It's advised to follow the official React and React Native documentation to
get more information on the features that got released after this book was published.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/React-Projects-Second-Edition. If there's
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801070638_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "If we look at the source code for this component in App.js, we'll see
that there's already a CSS header element in the return function."

A block of code is set as follows:

.App-logo {

 height: 40vmin;

 pointer-events: none;

}

https://github.com/PacktPublishing/React-Projects-Second-Edition
https://github.com/PacktPublishing/React-Projects-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801070638_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801070638_ColorImages.pdf

Preface xv

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 import './Header.css';

- function Header() {

+ function Header({ logo }) {

 return (

 <header className='App-header'>

Any command-line input or output is written as follows:

npx create-react-app chapter-2

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select
System info from the Administration panel."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report
this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xvi Preface

Share Your Thoughts
Once you've read React Projects, we'd love to hear your thoughts! Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801070636
https://packt.link/r/1801070636

1
Creating a Single-
Page Application

in React
When you bought this book, you'd probably heard of React before and maybe even tried
out some of the code examples that can be found online. This book is constructed in such
a way that the code examples in each chapter gradually increase in complexity, so even if
you feel your experience with React is limited, each chapter should be understandable if
you've read the previous one. By the end of this book, you will know how to work with
React and its stable features, up until version 18, and you will also have experience with
GraphQL and React Native.

This first chapter kicks off with us learning how to build a single-page application based
on the popular TV show Rick and Morty; the application will provide us with information
about its characters that we'll fetch from an external source. The core concepts for getting
started with React will be applied to this project, which should be understandable if you've
got some prior experience in building applications with React. If you haven't worked with
React before, that's no problem either; this book describes the React features that are used
in the code examples along the way.

2 Creating a Single-Page Application in React

In this chapter, we'll cover the following topics:

•	 Setting up a new React project

•	 Structuring a project

Let's dive in!

Project overview
In this chapter, we will create a single-page application in React that retrieves data from
an API and runs in the browser with Webpack and Babel. Styling will be done using
Bootstrap. The application that you'll build will show information about the popular TV
show Rick and Morty, along with images.

The build time is 1 hour.

Getting started
The complete code for this chapter can be found on GitHub: https://github.
com/PacktPublishing/React-Projects-Second-Edition/tree/main/
Chapter01.

For the applications created in this book, you'll need to have at least Node.js v14.17.0
installed on your machine so that you can run npm commands. If you haven't installed
Node.js on your machine, please go to https://nodejs.org/en/download/,
where you can find the download instructions for macOS, Windows, and Linux.

After installing Node.js, run the following commands in your command line to check the
installed versions:

•	 For Node.js (which should be v14.17.0 or higher), use this:

node -v

•	 For npm (which should be v6.14.3 or higher), use this:

npm -v

Also, you should have installed the React Developer Tools plugin (for Chrome and
Firefox) and added it to your browser. This plugin can be installed from the Chrome Web
Store (https://chrome.google.com/webstore) or Firefox Add-ons (https://
addons.mozilla.org).

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter01
https://nodejs.org/en/download/
https://chrome.google.com/webstore
https://addons.mozilla.org
https://addons.mozilla.org

Creating a single-page application 3

Creating a single-page application
In this section, we will create a new single-page React application from scratch, starting
with setting up a new project with Webpack and Babel. Setting up a React project from
scratch will help you understand the basic needs of a project, which is crucial for any
project you create.

Setting up a project
Every time you create a new React project, the first step is to create a new directory
on your local machine. Since this is the first chapter for which you're going to build
a single-page application, name this directory chapter-1.

Inside this new directory, execute the following from the command line:

npm init -y

Running this command will create a fresh package.json file with the bare minimum
of information needed to run a JavaScript/React project. By adding the -y flag to the
command, we can automatically skip the steps where we set information such as the
name, version, and description.

After running this command, the following package.json file will be created for
the project:

{

 "name": "chapter-1",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [],

 "author": "",

 "license": "ISC"

}

4 Creating a Single-Page Application in React

Note
To learn more about the workings of package.json, make sure to read
the documentation from npm: https://docs.npmjs.com/cli/v6/
configuring-npm/package-json.

After creating package.json in this section, we're ready to add Webpack, which we will
do in the next section.

Setting up Webpack
To run the React application, we need to install Webpack 5 (at the time of writing,
the current stable version of Webpack is version 5) and the Webpack CLI as
devDependencies. Webpack is a library that lets us create a bundle out of JavaScript/
React code that can be used in a browser. The following steps will help you set
up Webpack:

1.	 Install the required packages from npm using the following command:
npm install --save-dev webpack webpack-cli

2.	 After installation, these packages are included inside the package.json file where
we can have them run in our start and build scripts. But first, we need to add
some files to the project:

chapter-1

 |- node_modules

 |- package.json

+ |- src

+ |- index.js

This will add the index.js file to a new directory called src. Later on, we'll
configure Webpack so that this file is the starting point for our application.

3.	 First, the following code block must be added to this file:
console.log('Rick and Morty');

4.	 To run the preceding code, we will add the start and build scripts to
our application using Webpack. The test script is not needed in this chapter, so this
can be deleted. Also, the main field can be changed to private with the true
value, as the code we're building is a local project:

 {

 "name": "chapter-1",

 "version": "1.0.0",

https://docs.npmjs.com/cli/v6/configuring-npm/package-json
https://docs.npmjs.com/cli/v6/configuring-npm/package-json

Creating a single-page application 5

 "description": "",

 "main": "index.js",

 "scripts": {

- "test": "echo \"Error: no test specified\" &&

 exit 1"

+ "start": "webpack --mode development",

+ "build": "webpack --mode production"

 },

 "keywords": [],

 "author": "",

 "license": "ISC"

 }

The npm start command will run Webpack in development mode, while npm
run build will create a production bundle using Webpack. The biggest difference
is that running Webpack in production mode will minimize our code and decrease
the size of the project bundle.

5.	 We now run the start or build command from the command line; Webpack will
start up and create a new directory called dist:

chapter-1

 |- node_modules

 |- package.json

+ |- dist

+ |- main.js

 |- src

 |- index.js

6.	 Inside this directory, there will be a file called main.js that includes our project
code and is also known as our bundle. If successful, the following output will
be visible:

asset main.js 794 bytes [compared for emit] (name: main)

./src/index.js 31 bytes [built] [code generated]

webpack compiled successfully in 67 ms

Depending on whether we've run Webpack in development or production mode,
the code will be minimized in this file.

6 Creating a Single-Page Application in React

7.	 You can check whether your code is working by running the main.js file in your
bundle from the command line:

node dist/main.js

This command runs the bundled version of our application and should return the
following output:

> node dist/main.js

Rick and Morty

Now, we're able to run JavaScript code from the command line. In the next part of this
section, we will learn how to configure Webpack so that it works with React.

Configuring Webpack to work with React
Now that we've set up a basic development environment with Webpack for
a JavaScript application, we can start installing the packages we need in order to run any
React application.

These packages are react and react-dom, where the former is the generic core package
for React and the latter provides an entry point to the browser's DOM and renders React.
Install these packages by executing the following command in the command line:

npm install react react-dom

Installing only the dependencies for React is not sufficient to run it, since, by default, not
every browser can read the format (such as ES2015+ or React) that your JavaScript code
is written in. Therefore, we need to compile the JavaScript code into a readable format for
every browser.

For this, we'll use Babel and its related packages to create a toolchain to use React in
the browser with Webpack. These packages can be installed as devDependencies by
running the following command:

npm install --save-dev @babel/core babel-loader @babel/preset-
env @babel/preset-react

Next to the Babel core package, we'll also install babel-loader, which is a helper so
that Babel can run with Webpack and two preset packages. These preset packages help
determine which plugins will be used to compile our JavaScript code into a readable
format for the browser (@babel/preset-env) and to compile React-specific code
(@babel/preset-react). With the packages for React and the correct compilers
installed, the next step is to make them work with Webpack so that they are used when
we run our application.

Creating a single-page application 7

To do this, configuration files for both Webpack and Babel need to be created in the src
directory of the project:

chapter-1

 |- node_modules

 |- package.json

+ |- babel.config.json

+ |- webpack.config.js

 |- dist

 |- main.js

 |- src

 |- index.js

The configuration for Webpack is added to the webpack.config.js file to use
babel-loader:

module.exports = {

 module: {

 rules: [

 {

 test: /\.js$/,

 exclude: /node_modules/,

 use: {

 loader: 'babel-loader'

 },

 },

],

 },

};

The configuration in this file tells Webpack to use babel-loader for every file that
has the .js extension and excludes files in the node_modules directory for the
Babel compiler.

To use the Babel presets, the following configuration must be added to babel.config.
json:

{

 "presets": [

 [

8 Creating a Single-Page Application in React

 "@babel/preset-env",

 {

 "targets": {

 "esmodules": true

 }

 }

],

 [

 "@babel/preset-react",

 {

 "runtime": "automatic"

 }

]

]

}

@babel/preset-env must be set to target esmodules in order to use the latest
Node modules. Also, defining the JSX runtime to automatic is needed, since React
18 has adopted the new JSX Transform functionality: https://reactjs.org/
blog/2020/09/22/introducing-the-new-jsx-transform.html.

Note
The configuration for babel-loader can also be placed in the
configuration inside webpack.config.json. But by creating a separate
Babel configuration file for this, these settings can also be used by other tools in
the JavaScript/React ecosystem.

Now that we've set up Webpack and Babel, we can run JavaScript and React from the
command line. In the next part of this section, we'll create our first React code and make it
run in the browser.

https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html

Creating a single-page application 9

Rendering a React project
With the packages we've installed and configured in the previous sections to set up Babel
and Webpack, we need to create an actual React component that can be compiled and run.
Creating a new React project involves adding some new files to the project and making
changes to the setup for Webpack:

1.	 Let's edit the index.js file that already exists in our src directory so that
we can use react and react-dom. The contents of this file can be replaced with
the following:

import ReactDOM from 'react-dom/client';

function App() {

 return <h1>Rick and Morty</h1>;

}

const container = document.getElementById('app');

const root = ReactDOM.createRoot(container);

root.render(<App />);

As you can see, this file imports the react and react-dom packages, defines
a simple component that returns an h1 element containing the name of your
application, and has this component rendered in the browser with react-dom.
The last line of code mounts the App component to an element with the root ID
selector in your document, which is the entry point of the application.

2.	 We can create a file that has this element in a new directory called public and
name that file index.html:

chapter-1

 |- node_modules

 |- package.json

 |- babel.config.json

 |- webpack.config.js

 |- dist

 |- main.js

+ |- public

+ |- index.html

 |- src

 |- index.js

10 Creating a Single-Page Application in React

3.	 After adding a new file called index.html to this directory, we add the following
code inside it:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8" />

 <meta name="viewport" content="width=device-width,

 initial-scale=1.0" />

 <meta http-equiv="X-UA-Compatible"

 content="ie=edge" />

 <title>Rick and Morty</title>

 </head>

 <body>

 <section id="root"></section>

 </body>

</html>

This adds an HTML heading and body. Within the head tag is the title of our
application, and inside the body tag is a section with the "root" ID selector. This
matches with the element we've mounted the App component to in the src/
index.js file.

4.	 The final step in rendering our React component is extending Webpack so
that it adds the minified bundle code to the body tags as scripts when running.
Therefore, we should install the html-webpack-plugin package into
our devDependencies:

npm install --save-dev html-webpack-plugin

To use this new package to render our files with React, the Webpack configuration
in the webpack.config.js file must be extended:

+ const HtmlWebpackPlugin =

 require('html-webpack-plugin');

 module.exports = {

 module: {

 rules: [

 {

 test: /\.js$/,

Creating a single-page application 11

 exclude: /node_modules/,

 use: {

 loader: 'babel-loader',

 },

 },

],

 },

+ plugins: [

+ new HtmlWebpackPlugin({

+ template: './public/index.html',

+ filename: './index.html',

+ }),

+],

};

Now, if we run npm start again, Webpack will start in development mode and add the
index.html file to the dist directory. Inside this file, we'll see that, inside our body
tag, a new scripts tag has been inserted that directs us to our application bundle –
that is, the dist/main.js file. If we open this file in the browser or run open dist/
index.html from the command line, it will return the result directly inside the browser.
We can do the same when running the npm run build command to start Webpack in
production mode; the only difference is that our code will be minified:

Figure 1.1 – Rendering React in the browser

This process can be sped up by setting up a development server with Webpack. We'll do
this in the final part of this section.

Creating a development server
While working in development mode, every time we make changes to the files in
our application, we need to rerun the npm start command. Since this is a bit tedious,
we will install another package called webpack-dev-server. This package adds the
option to force Webpack to restart every time we make changes to our project files and
manages our application files in memory instead of by building the dist directory.

12 Creating a Single-Page Application in React

The webpack-dev-server package can be installed with npm:

npm install --save-dev webpack-dev-server

Also, we need to edit the dev script in the package.json file so that it uses webpack-
dev-server instead of Webpack. This way, you don't have to recompile and reopen the
bundle in the browser after every code change:

{

 "name": "chapter-1",

 "version": "1.0.0",

 "description": "",

 "private": true,

 "scripts": {

- "start": "webpack –mode development",

+ "start": "webpack serve –mode development",

 "build": "webpack –mode production"

 },

 "keywords": [],

 "author": "",

 "license": "ISC"

 …

}

The preceding configuration replaces Webpack in the start scripts with webpack-
dev-server, which runs Webpack in development mode. This will create a local
development server that runs the application, which makes sure that Webpack is restarted
every time an update is made to any of your project files.

Run the following command from the command line:

npm start

This will cause the local development server to become active at http://
localhost:8080/, and it will refresh every time we make an update to any file in
our project.

Now, we've created the basic development environment for our React application, which
we'll develop and structure further in the next section of this chapter.

Structuring a project 13

Structuring a project
With the development environment set up, it's time to start creating the single-page
application. In the preceding sections, we've already added new directories to the project.
But let's recap the current structure of the project, where two of the directories within
our project's root directory are important:

•	 The first directory is called dist and is where the output from Webpack's bundled
version of our application can be found.

•	 The second one is called src and includes the source code of our application.

Note
Another directory that can be found in the root directory of our project is
called node_modules. This is where the source files for every package
that we install using npm are placed. It is recommended you don't make any
manual changes to files inside this directory.

In the following subsections, we will learn how to structure our React projects.
This structure will be used in the rest of the chapters in this book as well.

Creating new components
The official documentation for React doesn't state any preferred approach regarding how
to structure our React project, although two common approaches are popular within the
community: either structuring your files by feature/page or structuring them by file type.

The single-page application in this chapter will use a hybrid approach, where files are
structured by file type first and by feature second. In practice, this means that there will be
two types of components: top-level components, which are sometimes called containers,
and low-level components, which relate to these top-level components. Creating these
components requires that we add the following files and code changes:

1.	 The first step to achieving this structure is by creating a new subdirectory of src
called components. Inside this directory, create a file called List.js:

chapter-1

 |- node_modules

 |- package.json

 |- babel.config.json

 |- webpack.config.js

 |- dist

14 Creating a Single-Page Application in React

 |- main.js

 |- index.html

 |- public

 |- index.html

 |- src

+ |- components

+ |- List.js

 |- index.js

This file will return the component that lists all the information about Rick
and Morty:

function List() {

 return <h2>Characters</h2>;

}

export default List;

2.	 This component should be included in the entry point of our application so that
it's visible. Therefore, we need to include it in the index.js file, inside the src
directory, and refer to it:

 import ReactDOM fr'm 'react-dom/client';

+ import List from './components/List';

 function App() {

- return <h1>Rick and Morty</h1>;

+ return (

+ <div>

+ <h1>Rick and Morty</h1>

+ <List />

+ </div>

+);

 };

 // ...

Structuring a project 15

If we still have the development server running (if not, execute the npm start
command again), we'll see that our application now returns the Characters heading
below the title.

3.	 The next step is to add a component to the List component, making it
a so-called composed component, which is a component that consists of multiple
components. This component will be called Character and should also be located
in the src subdirectory called components. Inside this directory, create a file
called Character.js and add the following code block to it:

function Character() {

 return <h3>Character</h3>;

};

export default Character;

As you have probably guessed from the name of this component, it will be used to
return information about a character from Rick and Morty later on.

4.	 Now, import this Character component into the List component and return
this component after the h2 element by replacing the return function with the
following code:

+ import Character from './Character';

 function List() {

- return <h2>Characters</h2>;

+ return (

+ <div>

+ <h2>Characters</h2>

+ <Character />

+ <Character />

+ </div>

+);

}

export default List;

16 Creating a Single-Page Application in React

If we visit our application in the browser again at http://localhost:8080/,
the words Character will be displayed below the title and heading of the page:

Figure 1.2 – Adding components to React

From this, we cannot see which components are being rendered in the browser. But
luckily, we can open the React Developer Tools plugin in our browser; we'll notice that the
application currently consists of multiple stacked components:

<App>

 <List>

 <Character>

In the next part of this section, we will use our knowledge of structuring a React project
and create new components to fetch data about Rick and Morty that we want to display in
this single-page application.

Retrieving data
With both the development server and the structure for our project set up, it's time
to finally add some data to it. For this, we'll be using the Rick and Morty REST API
(https://rickandmortyapi.com/documentation/#rest), which provides
information about this popular TV show.

Information from APIs can be retrieved in JavaScript using, for example, the fetch
method, which is already supported by our browser. This data will be retrieved in the
top-level components only, meaning that we should add a fetch function in the List
container to retrieve and store that information.

https://rickandmortyapi.com/documentation/#rest

Structuring a project 17

To store the information, we'll be using the built-in state management (https://
reactjs.org/docs/state-and-lifecycle.html) in React. Anything stored
in the state can be passed down to the low-level components, after which they are called
props. A simple example of using state in React is by using the useState Hook, which
can be used to store and update variables. Every time these variables change using the
update method that is returned by the useState Hook, our component will re-render.

Note
Since the release of version 16.8.0, React has used the concept of Hooks,
which are methods supplied by React that let you use its core features without
using class components. More information about Hooks can be found in the
documentation: https://reactjs.org/docs/hooks-intro.
html.

Before adding the logic to retrieve data from the Rick and Morty REST API, let's inspect
that API to see what fields will be returned. The base URL for the API is https://
rickandmortyapi.com/api.

This URL returns a JSON output with all the possible endpoints for this API, which are
all GET requests, meaning read-only, and work over https. From this base URL, we'll be
using the /character endpoint to get information about the characters from Rick and
Morty. Not all information returned by this endpoint will be used; the following are the
fields that we'll actually be using:

•	 id (int): The unique identifier of the character

•	 name (string): The name of the character

•	 origin (object): The object containing the name and the link to the character's
origin location

•	 image (string): The link to the character's image with the dimensions 300 x 300 px

Before retrieving the data for Rick and Morty, the Character component needs to be
prepared to receive this information. To display information about Rick and Morty,
we need to add the following lines to the Character component:

- function Character() {

- return <h3>Character</h3>;

+ function Character(character) {

+ return (

+ <div>

+ <h3>{character.name}</h3>

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://rickandmortyapi.com/api
https://rickandmortyapi.com/api

18 Creating a Single-Page Application in React

+ <img src={character.image} alt={character.name}

 width='300' />

+ <p>{'Origin: ${character.origin &&

 character.origin.name}'}</p>

+ </div>

+);

};

export default Character;

Now, the logic to retrieve the data can be implemented by importing useState from
React and adding this Hook to the List component, which will contain an empty array
as a placeholder for the characters:

+ import { useState } from 'react';

 import Character from './Character';

 function List() {

+ const [characters, setCharacters] = useState([]);

 return (

 // ...

To do the actual data fetching, another Hook should be imported, which is the
useEffect Hook. This one can be used to handle side effects, either when the
application mounts or when the state or a prop gets updated. This Hook takes two
parameters, where the first one is a callback and the second one is an array containing
all of the variables this Hook depends on – the so-called dependency array. When any of
these dependencies change, the callback for this Hook will be called. When there are no
values in this array, the Hook will be called constantly. After the data is fetched from the
source, the state will be updated with the results.

Structuring a project 19

In our application, we need to add this Hook and retrieve the data from the API, and
we should use an async/await function, since the fetch API returns a promise. After
fetching the data, state should be updated by replacing the empty array for data with the
character information:

- import { useState } from 'react';

+ import { useEffect, useState } from 'react';

 import Character from './Character';

 function List() {

 const [characters, setCharacters] = useState([]);

+ useEffect(() => {

+ async function fetchData() {

+ const data = await fetch(

 'https://rickandmortyapi.com/api/character');

+ const { results } = await data.json();

+ setCharacters(results);

+ }

+ fetchData();

+ }, [characters.length]);

 return (

 // ...

20 Creating a Single-Page Application in React

Inside the useEffect Hook, the new fetchData function will be called, as it's advised
to not use an async/await function directly. The Hook is only calling the logic to
retrieve the data from the API when the length of the characters state changes. You
can extend this logic by also adding a loading state to the application so that the user
will know when the data is still being fetched:

 function List() {

+ const [loading, setLoading] = useState(true);

 const [characters, setCharacters] = useState([]);

 useEffect(() => {

 async function fetchData() {

 const data = await fetch(

 'https://rickandmortyapi.com/api/character');

 const { results } = await data.json();

 setCharacters(results);

+ setLoading(false);

 }

 fetchData();

 }, [characters.length]);

 return (

 // ...

Note
The previous method that we used to retrieve information from JSON files
using fetch doesn't take into account that the request to this file may fail. If
the request fails, the loading state will remain true, meaning that the user
will keep seeing the loading indicator. If you want to display an error message
when the request doesn't succeed, you'll need to wrap the fetch method
inside a try...catch block, which will be shown later on in this book.

Structuring a project 21

To display the character information in the application, we need to pass it to the
Character component, where it can ultimately be shown in the Character
component that we changed in the first step.

When the data is being retrieved from the API, the loading state is true, so
we cannot display the Character component yet. When data fetching is finished,
loading will be false, and we can iterate over the character state, return the
Character component, and pass the character information as props. This component
will also get a key prop, which is required for every component that is rendered within an
iteration. Since this value needs to be unique, the id of the character is used, as follows:

 // ...

 return (

 <div>

 <h2>Characters</h2>

- <Character />

- <Character />

+ {loading ? (

+ <div>Loading...</div>

+) : (

+ characters.map((character) => (

+ <Character

+ key={character.id}

+ name={character.name}

+ origin={character.origin}

+ image={character.image}

+ />

+))

+)}

 </div>

);

}

export default List;

22 Creating a Single-Page Application in React

If we visit our application in the browser again, we'll see that it now shows a list of
characters, including some basic information and an image. At this point, our application
will look similar to the following screenshot:

Figure 1.3 – Rendering a list of components from the local state

Structuring a project 23

As you can see, limited styling has been applied to the application, and it's only rendering
the information that's been fetched from the API. Styling will be added in the next part of
this section using a package called Bootstrap.

Adding styling
Showing just the character information isn't enough. We also need to apply some basic
styling to the project. Adding styling to the project is done with the Bootstrap package,
which adds styling to our components based on class names.

Bootstrap can be installed from npm using the following and added
to devDependencies:

npm install --save-dev bootstrap

Also, import this file into the entry point of our React application, src/index.js,
so that we can use the styling throughout the entire application:

 import ReactDOM from 'react-dom/client';

 import List from './containers/List';

+ import 'bootstrap/dist/css/bootstrap.min.css';

 function App() {

 // ...

Webpack is unable to compile CSS files by itself; we need to add the appropriate loaders
to make this happen. We can install these by running the following command:

npm install --save-dev css-loader style-loader

We need to add these packages as a rule to the Webpack configuration:

 const HtmlWebpackPlugin = require('html-webpack-plugin');

 module.exports = {

 module: {

 rules: [

 {

 test: /\.js$/,

 exclude: /node_modules/,

 use: {

24 Creating a Single-Page Application in React

 loader: 'babel-loader',

 },

 },

+ {

+ test: /\.css$/,

+ use: ['style-loader', 'css-loader'],

+ },

],

 },

 plugins: [

 new HtmlWebpackPlugin({

 template: './public/index.html',

 filename: './index.html',

 }),

],

 };

Note
The order in which loaders are added is important since css-loader
handles the compilation of the CSS file and style-loader adds the
compiled CSS files to the React DOM. Webpack reads these settings from right
to left, and the CSS needs to be compiled before it's attached to the DOM.

The application should run in the browser correctly now and should have picked up some
small styling changes from the default Bootstrap stylesheet. Let's make some changes to
the index.js file first and style it as the container for the entire application. We need to
change the App component that is rendered to the DOM and wrap the List component
with a div container:

 // ...

 function App() {

 return (

- <div>

+ <div className='container'>

 <h1>Rick and Morty</h1>

 <List />

Structuring a project 25

 </div>

);

 };

 const root = ReactDOM.createRoot(

 document.getElementById('root'));

 root.render(<App />);

Inside the List component, we need to set the grid to display the Characters
components, which display the character information. Wrap the map function in
a div element to treat it as a row container for Bootstrap:

 // ...

 return (

 <div>

 <h2>Characters</h2>

+ <div className='row'>

 {loading ? (

 <div>Loading...</div>

) : (

 // ...

))

)}

+ </div>

 </div>

);

}

export default List;

The code for the Character component must also be altered to add styling using
Bootstrap; you can replace the current contents of that file with the following:

function Character(character) {

 return (

 <div className='col-3'>

 <div className='card'>

26 Creating a Single-Page Application in React

 <img

 src={character.image}

 alt={character.name}

 className='card-img-top'

 />

 <div className='card-body'>

 <h3 className='card-title'>{character.name}</h3>

 <p>{'Origin: ${character.origin &&

 character.origin.name}'}</p>

 </div>

 </div>

 </div>

);

};

export default Character;

This lets us use the Bootstrap container layout with a column size of 3 (https://
getbootstrap.com/docs/5.0/layout/columns/) and style the Character
component as a Bootstrap card component (https://getbootstrap.com/
docs/5.0/components/card/).

To add the finishing touches, open the index.js file and insert the following code
to add a header that will be placed above our list of Rick and Morty characters in
the application:

 // ...

 function App() {

 return (

 <div className='container'>

- <h1>Rick and Morty</h1>

+ <nav className='navbar sticky-top navbar-light

 bg-dark'>

+ <h1 className='navbar-brand text-light'>

 Rick and Morty</h1>

+ </nav>

 <List />

 </div>

https://getbootstrap.com/docs/5.0/layout/columns/
https://getbootstrap.com/docs/5.0/layout/columns/
https://getbootstrap.com/docs/5.0/components/card/
https://getbootstrap.com/docs/5.0/components/card/

Structuring a project 27

);

 // ...

After making sure that the development server is running, we'll see that the application
has had styling applied through Bootstrap, which will make it look as follows in
the browser:

Figure 1.4 – Our application styled with Bootstrap

The style rules from Bootstrap have been applied to our application, making it look far
more complete than it did before. In the final part of this section, we'll add the ESLint
package to the project, which will make maintaining our code easier by synchronizing
patterns across the project.

28 Creating a Single-Page Application in React

Adding ESLint
Finally, we will add ESLint to the project to make sure our code meets certain standards –
for instance, that our code follows the correct JavaScript patterns.

Install ESLint from npm by running the following command:

npm install --save-dev eslint eslint-webpack-plugin eslint-
plugin-react

The first package, called eslint, is the core package and helps us identify any potentially
problematic patterns in our JavaScript code. eslint-webpack-plugin is a package
that is used by Webpack to run ESLint every time we update our code. Finally, eslint-
plugin-react adds specific rules to ESLint for React applications.

To configure ESLint, we need to create a file called .eslintrc in the project's root
directory and add the following code to it:

{

 "env": {

 "browser": true,

 "node": true,

 "es6": true

 },

 "parserOptions": {

 "ecmaVersion": 2020,

 "sourceType": "module"

 },

 "plugins": ["react"],

 "extends": ["eslint:recommended",

 "plugin:react/recommended"],

 "rules": {

 "react/react-in-jsx-scope": "off"

 }

}

Structuring a project 29

The env field sets the actual environment our code will run in and will use es6 functions
in it, while the parserOptions field adds extra configuration for using jsx and
modern JavaScript. Where things get interesting, however, is the plugins field, which is
where we specify that our code uses react as a framework. The extends field is where
the recommended settings for eslint are used, as well as framework-specific settings
for React. Also, the rules field contains a rule to disable the notification about React not
being imported, as this is no longer required in React 18.

Note
We can run the eslint --init command to create custom settings, but
using the preceding settings is recommended so that we ensure the stability of
our React code.

If we look at our command line or browser, we will see no errors. However, we have to
add the eslint-webpack-plugin package to the Webpack configuration. In the
webpack.config.js file, you need to import this package and add it as a plugin to the
configuration:

 const HtmlWebpackPlugin = require('html-webpack-plugin');

+ const ESLintPlugin = require('eslint-webpack-plugin');

 module.exports = {

 // ...

 plugins: [

 new HtmlWebpackPlugin({

 template: './public/index.html',

 filename: './index.html',

 }),

+ new ESLintPlugin(),

],

 };

By restarting the development server, Webpack will now use ESLint to check whether
our JavaScript code complies with the configuration of ESLint. In our command line
(or the Console tab in the browser), any misuse of React (or JavaScript) functionalities
will be shown.

Congratulations! You have created a basic React application from scratch using React,
ReactDOM, Webpack, Babel, and ESLint.

30 Creating a Single-Page Application in React

Summary
In this chapter, you've created a single-page application for React from scratch and
learned about core React concepts. This chapter started with you creating a new project
with Webpack and Babel. These libraries help you compile and run your JavaScript and
React code in a browser with minimal setup. Then, we described how to structure a React
application, and this structure will be used throughout this book. Also, you learned about
state management and data fetching using React Hooks and basic styling with Bootstrap.
The principles that were applied provided you with the basics from which to create React
applications from nothing and structure them in a scalable way.

If you've worked with React before, then these concepts probably weren't that hard to
grasp. If you haven't, then don't worry if some concepts felt strange to you. The upcoming
chapters will build upon the features that you used in this chapter, giving you enough time
to fully understand them.

The project you'll build in the next chapter will focus on creating reusable React
components with more advanced styling. This will be available offline, since it will be set
up as a Progressive Web Application (PWA).

Further reading
•	 Thinking in React: https://reactjs.org/docs/thinking-in-react.

html

•	 Bootstrap: https://getbootstrap.com/docs/4.3/getting-started/
introduction/

•	 ESLint: https://eslint.org/docs/user-guide/getting-started

https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://getbootstrap.com/docs/4.3/getting-started/introduction/
https://eslint.org/docs/user-guide/getting-started

2
Creating a

Portfolio in React
with Reusable

Components
and Routing

Do you already feel familiar with React's core concepts after completing the first chapter?
Great! This chapter will be no problem for you! If not, don't worry – most of the concepts
you came across in the previous chapter will be repeated. However, if you want to get
more experience with Webpack and Babel, it's recommended that you try creating the
project in Chapter 1, Creating a Single-Page Application in React, again since this chapter
won't be covering those topics.

32 Creating a Portfolio in React with Reusable Components and Routing

In this chapter, you'll work with Create React App, a starter kit created by the React
core team to get you started with React quickly. It will make the configuration of module
bundlers and compilers such as Webpack and Babel unnecessary, as this will be taken care
of by the Create React App package. This means you can focus on building your portfolio
application, which reuses React components and has routing. Besides that, we'll be adding
routing using react-router v6, which is the leading library for routing in React.

Alongside setting up Create React App, the following topics will be covered in this
chapter:

•	 Creating a new project with Create React App

•	 Building reusable React components

•	 Routing with react-router

Can't wait? Let's go!

Project overview
In this chapter, we will create an application with React that makes use of reusable React
components and styling using Create React App and styled-components. The
application will use data that is fetched from the public GitHub API.

The build time is 1.5–2 hours.

Getting started
The project you'll create in this chapter will use the public API from GitHub, which you
can find at https://docs.github.com/en/rest. To use this API, you need to have
a GitHub account, since you'll want to retrieve information from a GitHub user account.
If you don't have a GitHub account yet, you can create one on the GitHub website. The
complete source code for this application can also be found on GitHub: https://
github.com/PacktPublishing/React-Projects-Second-Edition/tree/
main/Chapter02.

Creating a portfolio in React
In this section, we will learn how to create a new React project using Create React App
and add reusable React components and routing with react-router.

https://docs.github.com/en/rest
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter02

Creating a portfolio in React 33

Creating a portfolio with Create React App
Having to configure Webpack and Babel every time we create a new React project can
be quite time-consuming. Also, the settings for every project can change, and it becomes
hard to manage all of these configurations when we want to add new features to our
project.

Therefore, the React core team introduced a starter kit known as Create React App, which
is currently at version 5. By using Create React App, we no longer have to worry about
managing compile and build configurations, even when newer versions of React are
released, which means we can focus on coding instead of configurations.

This section will show us how to create a React application with Create React App.

Before anything else, let's see how to install Create React App.

Installing Create React App
Create React App doesn't have to be installed globally. Instead, we can use npx, a tool that
comes preinstalled with npm (v5.2.0 or higher) and simplifies the way that we execute
npm packages:

npx create-react-app chapter-2

This will start the installation process for Create React App, which can take several
minutes, depending on your hardware. Although we're only executing one command,
the installer for Create React App will install the packages we need to run our React
application. Therefore, it will install react, react-dom, and react-scripts, where
the last package includes all the configurations for compiling, running, and building React
applications.

If we move into the project's root directory, which is named after our project name, we
will see that it has the following structure:

chapter-2

 |- node_modules

 |- package.json

 |- public

 |- index.html

 |- src

 |- App.css

34 Creating a Portfolio in React with Reusable Components and Routing

 |- App.test.js

 |- App.js

 |- index.css

 |- index.js

Note
Not all files that were created by Create React App are listed; instead, only the
ones used in this chapter are listed.

This structure looks a lot like the one we set up in the first chapter, although there are
some slight differences. The public directory includes all the files that shouldn't be
included in the compile and build process, and the files inside this directory are the only
files that can be directly used inside the index.html file.

In the other directory, called src, we will find all the files that will be compiled and built
when we execute any of the scripts inside the package.json file. There is a component
called App, which is defined by the App.js, App.test.js, and App.css files, and a
file called index.js, which is the entry point for Create React App.

If we open the package.json file, we'll see that four scripts have been defined: start,
build, test, and eject. Since the last two aren't handled at this point, we can ignore
these two scripts for now. To be able to open the project in the browser, we can simply
type the following command into the command line, which runs package react-
scripts in development mode:

npm start

Note
Instead of npm start, we can also run yarn start, as using Yarn is
recommended by Create React App.

Creating a portfolio in React 35

If we visit http://localhost:3000/, the default Create React App page will look
as follows:

Figure 2.1 – The default Create React App boilerplate

Since react-scripts supports hot reloading by default, any changes we make to the
code will result in a page reload. If we run the build script, a new directory called build
will be created in the project's root directory, where the minified bundle of our application
can be found.

With the basic installation of Create React App in place, we will start looking at creating
the components for our project and styling them.

Building reusable React components
Creating React components with JSX was briefly discussed in the previous chapter, but
in this chapter, we'll explore this topic further by creating components that we can reuse
throughout our application. First, let's look at how to structure our application, which
builds upon the contents of the previous chapter.

http://localhost:3000/

36 Creating a Portfolio in React with Reusable Components and Routing

Structuring our application
Our project still consists of only one component, which doesn't make it very reusable.
To begin, we'll need to structure our application in the same way that we did in the first
chapter. This means that we need to split up the App component into multiple smaller
components. If we look at the source code for this component in App.js, we'll see that
there's already a CSS header element in the return function. Let's change that header
element into a React component:

1.	 First, create a new file called Header.css inside a new directory called
components within src and copy the styling for classNames, App-header,
App-logo, and App-link into it:

.App-logo {

 height: 40vmin;

 pointer-events: none;

}

@media (prefers-reduced-motion: no-preference) {

 .App-logo {

 animation: App-logo-spin infinite 20s linear;

 }

}

.App-header {

 background-color: #282c34;

 min-height: 100vh;

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

 font-size: calc(10px + 2vmin);

 color: white;

}

.App-link {

 color: #61dafb;

}

Creating a portfolio in React 37

@keyframes App-logo-spin {

 from {

 transform: rotate(0deg);

 }

 to {

 transform: rotate(360deg);

 }

}

2.	 Now, create a file called Header.js inside this directory. This file should return
the same content as the <header> element:

import './Header.css';

function Header() {

 return (

 <header className='App-header'>

 <img src={logo} className='App-logo' alt='logo'

 />

 <p>Edit <code>src/App.js</code>

 and save to reload. </p>

 <a

 className='App-link'

 href='https://reactjs.org'

 target='_blank'

 rel='noopener noreferrer'

 >

 Learn React

 </header>

);

}

export default Header;

38 Creating a Portfolio in React with Reusable Components and Routing

3.	 Import this Header component inside your App component and add it to the
return function:

+ import Header from './components/Header';

 import './App.css';

 import logo from './logo.svg';

 function App() {

 return (

 <div className="App">

- <header className='App-header'>

- <img src={logo} className='App-logo'

 alt='logo' />

- <p>Edit <code>src/App.js</code> and save to

 reload. </p>

- <a

- className='App-link'

- href='https://reactjs.org'

- target='_blank'

- rel='noopener noreferrer'

- >

- Learn React

- <a>

- </header>

+ <Header />

 </div>

);

}

export default App;

The styles for the header need to be deleted from App.css. This file should only
contain the following style definitions:

.App {

 text-align: center;

}

Creating a portfolio in React 39

.App-link {

 color: #61dafb;

}

When we visit our project in the browser again, we'll see an error saying that the value for
the logo is undefined. This is because the new Header component can't reach the logo
constant that's been defined inside the App component. From what we learned in the
first chapter, we know that this logo constant should be added as a prop to the Header
component so that it can be displayed. Let's do this now:

1.	 Send the logo constant as a prop to the Header component in src/App.js:

// ...

function App() {

 return (

 <div className='App'>

- <Header />

+ <Header logo={logo} />

 </div>

);

 }

}

export default App;

2.	 Get the logo prop so that it can be used by the img element as an src attribute in
src/components/Header.js:

 import './Header.css';

- function Header() {

+ function Header({ logo }) {

 return (

 <header className='App-header'>

 // ...

40 Creating a Portfolio in React with Reusable Components and Routing

Here, we won't see any visible changes when we open the project in the browser. But if we
open up the React Developer Tools, we will see that the project is now divided into an App
component and a Header component. This component receives the logo prop in the
form of a .svg file, as shown in the following screenshot:

Figure 2.2 – The React Developer Tools

The Header component is still divided into multiple elements that can be split into
separate components. Looking at the img and p elements, they look pretty simple already.
However, the a element looks more complicated and takes attributes such as url, title,
and className. To change this a element into a component we can reuse, it needs to be
moved to a different location in our project.

To do this, create a new file called Link.js inside the components directory. This file
should return the same a element that we've already got inside our Header component.
Also, we can send both url and title to this component as a prop. Let's do this now:

1.	 Delete the styling for the App-link class from src/components/Header.css
and place this inside a file called Link.css:

.App-link {

 color: #61dafb;

}

Creating a portfolio in React 41

2.	 Create a new component called Link that takes the url and title props.
This component adds these props as attributes to the <a> element in src/
components /Link.js:

import './Link.css';

function Link({ url, title }) {

 return (

 <a

 className='App-link'

 href={url}

 target='_blank'

 rel='noopener noreferrer'

 >

 {title}

);

};

export default Link;

3.	 Import this Link component and place it inside the Header component in src/
components/Header.js:

+ import Link from './Link.js';

 import './Header.css';

 function Header({ logo }) {

 return (

 <header className='App-header'>

 <img src={logo} className='App-logo'

 alt='logo' />

 <p>Edit <code>src/App.js</code> and save to

 reload. </p>

- <a

- className='App-link'

- href='https://reactjs.org'

- target='_blank'

- rel='noopener noreferrer'

42 Creating a Portfolio in React with Reusable Components and Routing

- >

- Learn React

- <a>

+ <Link

+ url='https://reactjs.org'

+ title='Learn React'

+ />

 </header>

);

}

export default Header;

4.	 Our code should now look like the following, meaning that we've successfully split
the App component into different files in the components directory. Also, the
logo.svg file can be moved to a new directory called assets:

chapter-2

 |- node_modules

 |- package.json

 |- public

 |- index.html

 |- src

 |- assets

 |- logo.svg

 |- components

 |- Header.css

 |- Header.js

 |- Link.css

 |- Link.js

 |- App.css

 |- App.js

 |- index.css

 |- index.js

Creating a portfolio in React 43

5.	 Don't forget to also change the import statement in the src/App.js file, where
the logo.svg file is imported as a component:

 import Header from './components/Header';

 import './App.css';

- import logo from './logo.svg';

+ import logo from './assets/logo.svg';

 function App() {

 return (

 // ...

However, if we take a look at the project in the browser, no visible changes are present.
In the React Developer Tools, however, the structure of our application has already taken
shape. The App component is shown as the parent component in the component tree,
while the Header component is a child component that has Link as a child.

In the next part of this section, we'll add more components to the component tree of this
application and make these reusable throughout the application.

Reusing components in React
The project we're building in this chapter is a portfolio page; it will show our public
information and a list of public repositories. Therefore, we need to fetch the official
GitHub REST API (v3) and pull information from two endpoints. Fetching data is
something we did in the first chapter, but this time, the information won't come from a
local JSON file. The method to retrieve the information is almost the same. We'll use the
fetch API to do this.

We can retrieve our public GitHub information from GitHub by executing the following
command (replace username at the end of the bold section of code with your own
username):

curl 'https://api.github.com/users/username'

Note
If you don't have a GitHub profile or haven't filled out all the necessary
information, you can also use the octocat username. This is the username
of the GitHub mascotte and is already filled with sample data.

44 Creating a Portfolio in React with Reusable Components and Routing

This request will return the following output:

{

 "login": "octocat",

 "id": 583231,

 "node_id": "MDQ6VXNlcjU4MzIzMQ==",

 "avatar_url":

 "https://avatars.githubusercontent.com/u/583231?v=4",

 "gravatar_id": "",

 "url": "https://api.github.com/users/octocat",

 "html_url": "https://github.com/octocat",

 "followers_url":

 "https://api.github.com/users/octocat/followers",

 "following_url":

 "https://api.github.com/users/octocat/following{

 /other_user}",

 "gists_url":

 "https://api.github.com/users/octocat/gists{/gist_id}",

 "starred_url":

 "https://api.github.com/users/octocat/starred{/owner}{

 /repo}",

 "subscriptions_url":

 "https://api.github.com/users/octocat/subscriptions",

 "organizations_url":

 "https://api.github.com/users/octocat/orgs",

 "repos_url":

 "https://api.github.com/users/octocat/repos",

 "type": "User",

 "site_admin": false,

 "name": "The Octocat",

 "company": "@github",

 "blog": "https://github.blog",

 "location": "San Francisco",

 "email": null,

 "hireable": null,

 "bio": null,

Creating a portfolio in React 45

 "twitter_username": null,

 "public_repos": 8,

 "public_gists": 8,

 "followers": 3555,

 "following": 9

}

Multiple fields in the JSON output are highlighted, since these are the fields we'll use in
the application. These are avatar_url, html_url, repos_url, name, company,
location, email, and bio, where the value of the repos_url field is actually another
API endpoint that we need to call to retrieve all the repositories of this user. This is
something we'll do later in this chapter.

Since we want to display this result in the application, we need to do the following:

1.	 To retrieve this public information from GitHub, create a new component called
Profile inside a new directory called pages. This directory will hold all the
components that represent a page in our application later on. In this file, add the
following code to src/pages/Profile.js:

import { useState, useEffect } from 'react';

function Profile({ userName }) {

 const [loading, setLoading] = useState(false);

 const [profile, setProfile] = useState({});

 useEffect(() => {

 async function fetchData() {

 const profile = await fetch(

 'https://api.github.com/users/${userName}');

 const result = await profile.json();

 if (result) {

 setProfile(result);

 setLoading(false);

 }

 }

46 Creating a Portfolio in React with Reusable Components and Routing

 fetchData();

 }, [userName]);

 return (

 <div>

 <h2>About me</h2>

 {loading ? (

 Loading...

) : (

)}

 </div>

);

}

export default Profile;

This new component imports two Hooks from React, which are used to handle
state management and life cycles. We've already used a useState Hook in the
previous chapter, and it's used to create a state for loading and profile. Inside
the second Hook, which is the useEffect Hook, we do the asynchronous data
fetching from the GitHub API. No result has been rendered yet, since we still need
to create new components to display the data.

2.	 Now, import this new component into the App component and pass the userName
prop to it. If you don't have a GitHub account, you can use the username octocat:

 import Header from './Header';

+ import Profile from './pages/Profile';

 import './App.css';

 function App() {

 return (

 <div className='App'>

 <Header logo={logo} />

+ <Profile userName="octocat" />

 </div>

);

Creating a portfolio in React 47

 }

}

export default App;

3.	 A quick look at the browser where our project is running shows that this new
Profile component isn't visible yet. This is because the Header.css file
has a height attribute with a view-height value of 100, meaning that the
component will take up the entire height of the page. To change this, open the src/
components/Header.css file and change the following highlighted lines:

 .App-logo {

- height: 40vmin;

+ height: 60px;

 pointer-events: none;

 }

 // ...

 .App-header {

 background-color: #282c34;

- min-height: 100vh;

+ min-height: 100%;

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

 font-size: calc(10px + 2vmin);

 color: white;

 }

4.	 There should be enough free space on our page to display the Profile component,
so we can open the scr/pages/Profile.js file once more and display the
avatar_url, html_url, repos_url, name, company, location, email,
and bio fields that were returned by the GitHub API:

 // ...

 return (

48 Creating a Portfolio in React with Reusable Components and Routing

 <div>

 <h2>About me</h2>

 {loading ? (

 Loading...

) : (

+ avatar_url:

 {profile.avatar_url}

+ html_url:

 {profile.html_url}

+ repos_url:

 {profile.repos_url}

+ name: {profile.name}

+ company:

 {profile.company}

+ location:

 {profile.location}

+ email:

 {profile.email}

+ bio: {profile.bio}

)}

 </div>

);

}

export default Profile;

Once we've saved this file and visited our project in the browser, we will see a bullet list of
the GitHub information being displayed.

Creating a portfolio in React 49

Since this doesn't look very pretty and the header doesn't match the content of the page,
let's make some changes to the styling files for these two components:

1.	 Change the code for the Header component so that it will display a different title
for the page. Also, the Link component can be deleted from here, as we'll be using
it in a Profile component later on:

 import './Header.css';

- import Link from './Link';

 function Header({ logo }) {

 return (

 <header className='App-header'>

 <img src={logo} className='App-logo'

 alt='logo' />

- <p>

- Edit <code>src/App.js</code> and save to

 reload.

- </p>

- <Link url='https://reactjs.org'

 title='Learn React' />

+ <h1>My Portfolio</h1>

 </header>

);

 }

 export default Header;

2.	 Before changing the styling of the Profile component, we first need to create
a CSS file that will hold the styling rules for the component. To do so, create the
Profile.css file in the pages directory and add the following content:

.Profile-container {

 width: 50%;

 margin: 10px auto;

}

.Profile-avatar {

 width: 150px;

50 Creating a Portfolio in React with Reusable Components and Routing

}

.Profile-container > ul {

 list-style: none;

 padding: 0;

 text-align: left;

}

.Profile-container > ul > li {

 display: flex;

 justify-content: space-between;

}

.Profile-container > ul > li > span {

 font-weight: 600;

}

3.	 In src/pages/Profile.js, we need to import this file to apply the styling.
Remember the Link component we created previously? We also import this file, as
it will be used to create a link to our profile and a list of repositories on the GitHub
website:

 import { useState, useEffect } from 'react';

+ import Link from '../components/Link';

+ import './Profile.css';

 function Profile({ userName }) {

 // ..

4.	 In the return statement, we'll add the classNames function that we defined in
the styling and separate the avatar image from the bullet list. By doing that, we also
need to wrap the bullet list with an extra div:

 // ...

 return (

- <div>

+ <div className='Profile-container'>

Creating a portfolio in React 51

 <h2>About me</h2>

 {loading ? (

 Loading...

) : (

+ <div>

+ <img

+ className='Profile-avatar'

+ src={profile.avatar_url}

+ alt={profile.name}

+ />

- avatar_url:

 {profile.avatar_url}

- html_url:

 {profile.html_url}

- repos_url:

 {profile.repos_url}

+

+ html_url:

+ <Link url={profile.html_url}

 title={profile.html_url} />

+

+

+ repos_url:

+ <Link url={profile.repos_url}

 title={profile.repos_url} />

+

 name:

 {profile.name}

 company:

 {profile.company}

 location:

 {profile.location}

 email:

 {profile.email}

52 Creating a Portfolio in React with Reusable Components and Routing

 bio: {profile.bio}

+ </div>

);

 }

 // ..

Finally, we can see that the application is starting to look like a portfolio page
loading your GitHub information, including your avatar and a list of the public
information. This results in an application that looks similar to what's shown in the
following screenshot:

Figure 2.3 – Our styled portfolio application

If we take a look at the code in the Profile component, we'll see that there is a lot of
duplicate code, so we need to transform the list that's displaying our public information
into a separate component. Let's get started:

1.	 Create a new file called List.js inside the components directory, which will
take a prop called items:

function List({ items }) {

 return (

Creating a portfolio in React 53

);

}

export default List;

2.	 In the Profile component, we can import this new List component. A new
variable called items should be created, which is an array containing all the items
we want to display inside this list:

 import { useState, useEffect } from 'react';

+ import List from '../components/List';

 import Link from '../components/Link';

 import './Profile.css';

 function Profile({ userName }) {

 // …

+ const items = [

+ {

+ field: 'html_url',

+ value: <Link url={profile.html_url}

 title={profile.html_url} />,

+ },

+ {

+ field: 'repos_url',

+ value: <Link url={profile.repos_url}

 title={profile.repos_url} />,

+ },

+ { field: 'name', value: profile.name },

+ { field: 'company', value: profile.company },

+ { field: 'location', value: profile.location },

+ { field: 'email', value: profile.email },

+ { field: 'bio', value: profile.bio },

+];

 // ...

54 Creating a Portfolio in React with Reusable Components and Routing

3.	 This will be sent as a prop to the List component, so these items can be rendered
from that component instead. This means that you can remove the ul element and
all the li elements inside:

 // ...

 return (

 <div className='Profile-container'>

 <h2>About me</h2>

 {loading ? (

 Loading...

) : (

 <div>

 <img

 className='Profile-avatar'

 src={profile.avatar_url}

 alt={profile.name}

 />

-

- // ...

-

+ <List items={items} />

 </div>

)}

 </div>

);

 }

export default Profile;

You can see that for the list item with the html_url and repos_url fields, we'll
be sending the Link component as a value instead of the value that was returned
from the GitHub API. In React, you can also send complete components as a prop
to a different component, as props can be anything.

Creating a portfolio in React 55

4.	 In the List component, we can now map over the items prop and return the list
items:

 // ...

 function List({ items }) {

 return (

+ {items.map((item) => (

+ <li key={item.field}>

+ {item.field}:

+ {item.value}

+

+))}

);

 }

 export default List;

The styling is inherited from the Profile component, as the List component is a child
component. To structure your application better, you can move the styling for the list of
information to a separate List.css file and import it inside the List component.

Assuming we executed the preceding steps correctly, your application shouldn't have
changed aesthetically. However, if we take a look at the React Developer Tools, we will see
that some changes have been made to the component tree.

In the next section, we'll add routing with react-router and display repositories that
are linked to our GitHub account.

Routing with react-router
react-router v6 is the most popular library in React for routing, and it supports lots
of features to help you get the most out of it. With this library, you can add declarative
routing to a React application, just by adding components. These components can be
divided into three types: router components, route matching components, and navigation
components.

56 Creating a Portfolio in React with Reusable Components and Routing

Setting up routing with react-router consists of multiple steps:

1.	 To use these components, you need to install the react-router web package,
called react-router-dom, by executing the following:

npm install react-router-dom

2.	 After installing react-router-dom, the next step is to import the routing and
route matching components from this package into the container component of
your application. In this case, that is the App component, which is inside the src
directory:

 import React from 'react';

+ import { BrowserRouter, Routes, Route }

 from 'react-router-dom';

 import logo from './assets/logo.svg';

 import './App.css';

 import Header from './components/Header';

 import Profile from './pages/Profile';

 function App() {

 // …

3.	 The actual routes must be added to the return statement of this component,
where all of the route matching components (Route) must be wrapped in a routing
component, called Router. When your URL matches a route defined in any of the
iterations of Route, this component will render the React component that passed
as a child:

 // ...

 function App() {

 return (

 <div className='App'>

+ <BrowserRouter>

 <Header logo={logo} />

- <Profile userName='octocat' />

+ <Routes>

+ <Route

+ path='/'

+ element={<Profile userName='octocat' />}

Creating a portfolio in React 57

+ />

+ </Routes>

+ </BrowserRouter>

 </div>

);

 }

 export default App;

If you now visit the project in the browser again at http://localhost:3000, the
Profile component will be rendered.

Besides our GitHub profile, we also want to showcase the projects we've been working
on. Let's add a new route to the application, which will render all the repositories of our
GitHub account:

1.	 This new component will use the endpoint to get all your repositories, which you
can try out by executing the following command (replace username at the end of
the bold section of code with your own username):

curl 'https://api.github.com/users/username/repos'

The output of calling this endpoint will look something like this:
[

 {

 "id": 132935648,

 "node_id": "MDEwOlJlcG9zaXRvcnkxMzI5MzU2NDg=",

 "name": "boysenberry-repo-1",

 "full_name": "octocat/boysenberry-repo-1",

 "private": false,

 "html_url":

 "https://github.com/octocat/boysenberry-repo-1",

 "description": "Testing",

 "fork": true,

 "created_at": "2018-05-10T17:51:29Z",

 "updated_at": "2021-01-13T19:56:01Z",

 "pushed_at": "2018-05-10T17:52:17Z",

 "stargazers_count": 9,

58 Creating a Portfolio in React with Reusable Components and Routing

 "watchers_count": 9,

 "forks": 6,

 "open_issues": 0,

 "watchers": 9,

 "default_branch": "master"

 },

 // ...

]

As you can see from the preceding sample response, the repositories data is an
array with objects. We'll be using the preceding highlighted fields to display our
repositories on the /projects route.

2.	 First, we need to create a new component called Projects in the pages directory.
This component will have almost the same logic for state management and data
fetching as the Profile component, but it will call a different endpoint to get the
repositories instead:

import { useState, useEffect } from 'react';

import Link from '../components/Link';

import List from '../components/List;

function Projects({ userName }) {

 const [loading, setLoading] = useState(true);

 const [projects, setProjects] = useState({});

 useEffect(() => {

 async function fetchData() {

 const data = await fetch(

 'https://api.github.com/users/${

 userName}/repos',

);

 const result = await data.json();

 if (result) {

 setProjects(result);

 setLoading(false);

Creating a portfolio in React 59

 }

 }

 fetchData();

 }, [userName]);

 // ...

3.	 After putting the information from the endpoint to the local state variable
projects, we'll use the same List component to render the information about the
repositories:

 // ...

 return (

 <div className='Projects-container'>

 <h2>Projects</h2>

 {loading ? (

 Loading...

) : (

 <div>

 <List items={projects.map((project) => ({

 field: project.name,

 value: <Link url={project.html_url}

 title={project.html_url} />,

 }))} />

 </div>

)}

 </div>

);

}

export default Projects;

60 Creating a Portfolio in React with Reusable Components and Routing

4.	 To have this component render when we visit the /profile route, we need to add
it to the App component using a Route component:

 import React from 'react';

 import { BrowserRouter, Routes, Route }

 from 'react-router-dom';

 import logo from './assets/logo.svg';

 import './App.css';

 import Header from './components/Header';

 import Profile from './pages/Profile';

+ import Projects from './pages/Projects';

 function App() {

 return (

 <div className='App'>

 <Header logo={logo} />

 <BrowserRouter>

 <Routes>

 <Route path='/' element={ <Profile

 userName='octocat' />} />

+ <Route path='/projects' element=

 {<Projects userName='octocat' />} />

 </Routes>

 </BrowserRouter>

 // ...

The Profile component will now only be rendered if you visit the / route, and the
Projects component when you visit the /projects route. No component will be
rendered besides the Header component if you visit any other route.

Note
You can set a component that will be displayed when no route can be matched
by passing * as a path to the Route component.

Creating a portfolio in React 61

Although we have two routes set up, the only way to visit these routes is by changing the
URL in the browser. With react-router, we can also create dynamic links to visit
these routes from any component. In our Header component, we can add a navigation
bar that renders links to these routes:

 import './Header.css';

+ import { Link as RouterLink } from 'react-router-dom';

 function Header({ logo }) {

 return (

 <header className='App-header'>

 <h1>My Portfolio</h1>

+ <nav>

+ <RouterLink to='/' className='App-link'>

+ About me

+ </RouterLink>

+ <RouterLink to='/projects' className='App-link'>

+ Projects

+ </RouterLink>

+ </nav>

 </header>

);

 }

 export default Header;

As we already have a Link component defined ourselves, we're importing the Link
component from react-router-dom as RouterLink. This will prevent confusion if
you make any changes later on, or when you're using an autocomplete feature in your IDE.

Finally, we can add some styling to Header.css so that the links to our routes are
displayed nicely:

 .App-header {

 background-color: #282c34;

 min-height: 100%;

 display: flex;

 flex-direction: column;

62 Creating a Portfolio in React with Reusable Components and Routing

 align-items: center;

 justify-content: center;

 font-size: calc(10px + 2vmin);

 color: white;

 }

+ .App-header > nav {

+ margin-bottom: 10px;

+ }

+ .App-header > nav > .App-link {

+ margin-right: 10px;

+ }

If you now visit the application in the browser at http://localhost:3000/
projects, it should look something like the following screenshot. Clicking on the links
in the header will navigate you between the two different routes:

Figure 2.4 – The Projects route in our application

Creating a portfolio in React 63

With these routes in place, even more routes can be added to the router component.
A logical one is having a route for individual projects, which has an extra parameter
that specifies which projects should be displayed. Therefore, we have a new component
called the ProjectDetailpages directory, which contains the logic for fetching an
individual repository from GitHub API. This component is rendered when the path
matches /projects/:name, where name stands for the name of the repository that is
clicked on on the projects page:

1.	 This route uses a new component in a file called ProjectDetail.js, which is
similar to the Projects component. You can also create this file in the pages
directory, except that it will be fetching data from the https://api.github.
com/repos/userName/repo endpoint, where userName and repo should be
replaced with your own username and the name of the repository that you want to
display:

import { useState, useEffect } from 'react';

Import { useParams } from 'react-router-dom';

function Project({ userName }) {

 const [loading, setLoading] = useState(false);

 const [project, setProject] = useState([]);

 const { name } = useParams();

 useEffect(() => {

 async function fetchData() {

 const data = await fetch(

 'https://api.github.com/repos/${

 userName}/${name}',

);

 const result = await data.json();

 if (result) {

 setProject(result);

 setLoading(false);

 }

 }

https://api.github.com/repos/userName/repo
https://api.github.com/repos/userName/repo

64 Creating a Portfolio in React with Reusable Components and Routing

 if (userName && name) {

 fetchData();

 }

 }, [userName, name]);

 // ...

In the preceding section, you can see how the data is retrieved from the GitHub
API, using both your username and the name of the repository. The name of the
repository comes from the useParams Hook from react-router-dom, which
gets the name variable from the URL for you.

2.	 With the repository data retrieved from GitHub, you can create the items variable
that is used to render information about this project using the List component
that we also used in the previous routes. The fields that are added to items are
coming from GitHub and can also be seen in the response of the https://api.
github.com/users/username/repos endpoint that we inspected previously.
Also, the name of the repository is listed previously:

 // ...

 return (

 <div className='Project-container'>

 <h2>Project: {project.name}</h2>

 {loading ? (

 Loading...

) : (

 <div></div>

)}

 </div>

);

}

export default Project;

Creating a portfolio in React 65

3.	 To render this component on the /projects/:name route, we need to add this
component within the Router component inside App.js:

 // ...

+ import ProjectDetail from './pages/ProjectDetail';

 function App() {

 return (

 <div className='App'>

 <BrowserRouter>

 <Header logo={logo} />

 <Routes>

 <Route exact path='/' element=

 {<Profile userName='octocat' />} />

 <Route path='/projects' elements=

 {<Projects userName='octocat' />} />

+ <Route path='/projects/:name' element=

 {<ProjectDetail userName='octocat' />}

 />

 </Routes>

 </BrowserRouter>

);

 }

4.	 You can already navigate to this route by changing the URL in the browser, but you
also want to add a link to this page in the Projects component. Therefore, you
need to make changes that will import RouterLink from react-router-dom
and use it instead of your own Link component:

 import { useState, useEffect } from 'react';

+ import { Link as RouterLink } from

 'react-router-dom'

 import List from '../components/List';

- import Link from '../components/Link';

66 Creating a Portfolio in React with Reusable Components and Routing

 // ...

 return (

 <div className='Projects-container'>

 <h2>Projects</h2>

 {loading ? (

 Loading...

) : (

 <div>

 <List items={projects.map((project) => ({

 field: project.name,

- value: <Link url={project.html_url}

 title={project.html_url} />,

 }))items} />

+ value: <RouterLink url={project.html_url}

 title={project.html_url} />,

 }))items} />

 </div>

)}

 </div>

);

}

export default Projects;

If you now visit the http://localhost:3000/projects page in the browser, you
can click on the projects and move on to a new page that shows all the information for
a specific project.

With these last changes, you've created a portfolio application that uses react-router
for dynamic routing.

Summary 67

Summary
In this chapter, you used Create React App to create your starter project for a React
application, which comes with an initial configuration for libraries such as Babel and
Webpack. By doing this, you don't have to configure these libraries yourself and worry
about how your React code will run in the browser. We've looked into building reusable
components in this chapter and learned how to add dynamic routing with react-
router. With this library, you can create applications that have tons of routes, and you're
able to use changes in the URL to change what is displayed inside your application.

The upcoming chapters will all feature projects that are created with Create React App or
other zero-config libraries, meaning that these projects don't require you to make changes
to Webpack or Babel.

In the next chapter, we will build upon this chapter by creating a dynamic project
management board with React that uses styled-components for styling and reuses logic
with custom Hooks.

Further reading
•	 Using npx: https://medium.com/@maybekatz/introducing-npx-an-

npm-package-runner-55f7d4bd282b

•	 Create React App: https://create-react-app.dev/

•	 React Router: https://reactrouter.com/web/guides/quick-start

mailto:https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
mailto:https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://create-react-app.dev/
https://reactrouter.com/web/guides/quick-start

3
Building a

Dynamic Project
Management Board

In the first two chapters of this book, you created two React projects all by yourself,
and you should, by now, have a solid understanding of the core concepts of React. The
concepts you've used so far will also be used in this chapter to create your third project
with React, including some new and more advanced concepts that will show you the
strength of using React. Again, if you feel you lack some of the knowledge you'll need to
finalize the contents of this chapter, you can always repeat what you have built so far.

This chapter will once again use Create React App, which you used in the previous
chapter. During the development of the project management board application for this
chapter, we'll create and use a custom Hook for data fetching. HTML5 web APIs will be
used to dynamically drag and drop components, which are set up as reusable components
with styled-components. Following this, you'll use more advanced React techniques
to control the data flow throughout your components, such as by creating custom Hooks.

70 Building a Dynamic Project Management Board

The following topics will be covered in this chapter:

•	 Handling the data flow

•	 Working with custom Hooks

•	 Using HTML5 web APIs

•	 Styling React with styled-components

Project overview
In this chapter, we will create a dynamic project management board that has reusable
React components and styling using Create React App and styled-components. The
application will feature a dynamic drag and drop interface that uses the HTML5 Drag and
Drop API.

The build time is 1.5–2 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can
find on GitHub: https://github.com/PacktPublishing/React-Projects-
Second-Edition/tree/main/Chapter03-initial. The complete source
code for this application can also be found on GitHub: https://github.com/
PacktPublishing/React-Projects-Second-Edition/tree/main/
Chapter03.

After downloading the initial application from GitHub, we can start by moving into
its root directory and running the npm install command. This will install the core
packages from Create React App (react, react-dom, and react-scripts). After the
installation, we can start the application by executing the npm start command and visit
the project in the browser by visiting http://localhost:3000.

As shown in the following screenshot, the application has a basic header with a title and is
divided into four columns. These columns are the lanes for the project management board
and will contain the individual tasks once we've connected the project to the data file.

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter03-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter03-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter03

Getting started 71

Figure 3.1 – The initial application

If we look at the project's structure, we'll see that it's structured in the same way as the
projects in the previous chapters. The entry point of the application is the src/index.
js file, which renders a component called App, which holds two other components called
Header and Board. The first one is the actual header of the application, while the Board
component holds the four columns we can see in the application. These columns are
represented by the Lane component.

In this application, you can see that we've further split up the components into separate
directories. Every component in either the components or pages directory now has its
own subdirectory:

chapter-3-initial

 |- /node_modules

 |- /public

 |- /src

 |- /components

 |- /Header

 |- Header.css

 |- Header.js

 |- /Lane

 |- Lane.css

 |- Lane.js

72 Building a Dynamic Project Management Board

 |- /pages

 |- /Board

 |- Board.js

 |- Board.css

 |- App.js

 |- App.css

 |- index.js

 |- index.css

package.json

Creating a project management board
application
In this section, we'll create a project management board PWA that uses custom Hooks for
data fetching and the HTML5 Drag and Drop API to make it dynamic. We're going to use
a boilerplate application that is set up with Create React App, which we can find in the
GitHub repository for this chapter.

Handling the data flow
With the initial version of the application in place, the next step is to fetch the initial data
for the project management board and handle its flow through the components. For this,
we will create a custom Hook for data fetching that can be reused in other components.

The first part of this section will show us how to load data from a data source using React
life cycle methods and display this in React components.

Loading and displaying the data
Loading and displaying data that is retrieved from a data source is something we did in
the previous chapter. The data used in this chapter is coming from a mock REST API,
created with My JSON Server from Typicode. Using a file called db.json, which is
placed in the repository for this book, we can automatically create REST endpoints.

Creating a project management board application 73

Figure 3.2 – Using My JSON Server

Using My JSON Server, the https://my-json-server.typicode.com/
PacktPublishing/React-Projects-Second-Edition/tasks endpoint
returns a list of tasks, which we'll load into our project management board in this section.
The response is an array consisting of objects that contain information about our tasks
defined in the id, title, body, and lane fields.

This section will explore this further. Follow these steps to get started:

1.	 We will start by fetching the project data from the data file. To do this, we need to
add the necessary functions to the Board component. We need these to access the
React life cycles using Hooks, which we already did in the earlier chapters:

+ import { useState, useEffect } from 'react';

 import Lane from '../../components/Lane/Lane';

 import './Board.css';

 // ...

 function Board() {

+ const [loading, setLoading] = useState(false);

https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/tasks
https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/tasks

74 Building a Dynamic Project Management Board

+ const [tasks, setTasks] = useState([]);

+ const [error, setError] = useState('');

+ useEffect(() => {

+ async function fetchData() {

+ try {

+ const tasks = await fetch(

 `https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-

 Edition/tasks`,

);

+ const result = await tasks.json();

+ if (result) {

+ setTasks(result);

+ setLoading(false);

+ }

+ } catch (e) {

+ setLoading(false);

+ setError(e.message);

+ }

+ }

+ fetchData();

+ }, []);

 return (

 // ...

In the useEffect Hook, the data is fetched inside a try..catch statement. This
statement catches any errors that are being returned from the data fetching process
and replaces the error state with this message.

2.	 Now, we can distribute the tasks over the corresponding lanes:

 // ...

 return (

Creating a project management board application 75

 <div className='Board-wrapper'>

 {lanes.map((lane) => (

 <Lane

 key={lane.id}

 title={lane.title}

+ loading={loading}

+ error={error}

+ tasks={tasks.filter((task) =>

 task.lane === lane.id)}

 />

))}

 </div>

);

 }

 export default Board;

In the return statement, you can see a function that iterates over the lanes
constant and that these values are passed as props to the Lane component. Also,
something special is going on when we pass the tasks to the components since the
filter function is being used to only return tasks from the tasks state that match
the lane ID.

3.	 Next, we need to make some changes to the Lane component so that it will use the
data that we fetched from the REST API to display the tasks for us:

+ import Task from '../Task/Task';

 import './Lane.css';

- function Lane({ title }) {

+ function Lane({ title, loading, error, tasks }) {

 return (

 <div className='Lane-wrapper'>

 <h2>{title}</h2>

+ {loading || error ? (

+ {error || 'Loading...'}

+) : (

+ tasks.map((task) => (

76 Building a Dynamic Project Management Board

+ <Task

+ key={task.id}

+ id={task.id}

+ title={task.title}

+ body={task.body}

+ />

+))

+)}

 </div>

);

 }

 export default Lane;

The Lane component now takes three other props, which are tasks, loading,
and error, where tasks contains the array of tasks from the REST API,
loading indicates whether the loading message should be displayed, and
error contains the error message when there is one. We can see that inside the
map function to iterate over the tasks, the Task component that displays the
information will be rendered.

4.	 To create this task, we need to create a directory called Task in the components
directory and place a new file for the Task component inside. This new file is called
Task.js:

import './Task.css';

function Task({ title, body }) {

 return (

 <div className='Task-wrapper'>

 <h3>{title}</h3>

 <p>{body}</p>

 </div>

);

}

export default Task;

Creating a project management board application 77

5.	 This component takes its styling from another file that we need to create inside the
Task directory, which is called Task.css and has the following contents:

.Task-wrapper {

 background: darkGray;

 padding: 20px;

 border-radius: 20px;

 margin: 0% 5% 5% 5%;

}

.Task-wrapper h3 {

 width: 100%;

 margin: 0;

}

If we visit our application in a web browser at http://localhost:3000, we will see
the following:

Figure 3.3 – Our application with data from the mock REST API

78 Building a Dynamic Project Management Board

Fetching data from a data source is logic that can be reused throughout our application. In
the next section, we will explore how this logic can be reused across multiple components
by creating a custom Hook.

Working with custom Hooks
Hooks are a way to use React features for creating local state or to watch for updates in
that state using life cycles. But Hooks are also a way to reuse logic that you create for your
own React application. This is a pattern that is popular among a lot of libraries that create
functionalities for React, such as react-router.

Note
Before React introduced Hooks themselves, it was a popular pattern to create
Higher-Order Components (HOCs) to reuse logic. HOCs are advanced
features in React that focus on the reusability of components. The React
documentation described them as follows: "A higher-order component is a
function that takes a component and returns a new component."

In the first part of this section, we'll create our first custom Hook, which uses logic to
retrieve data from the data source that we created in the previous section.

Creating custom Hooks
We already saw that we can reuse components in React, but the next step is to reuse
logic that you have inside these components. To explain what this means in practice, let's
create an example. Our project has a Board component, which fetches the REST API
and renders all the lanes and tasks. There is logic in this component in the form of a local
state created with the useState Hook, data fetching inside a useEffect Hook, and
information about how each Lane component is being rendered. How will we handle a
situation where we just want to show a board without lanes and only tasks? Do we just
send different props from the Board component? Sure, that's possible, but, in React, that's
what custom Hooks are used for.

A Board component without lanes wouldn't map over all the lanes and render the
corresponding lane with the tasks as a prop. Instead, it would map over all the tasks and
render them directly. Although the rendered components are different, the logic to set the
initial state, fetch the data, and render the component(s) can be reused. The custom Hook
should be able to use the local state and execute data fetching from any component that
it's used in.

Working with custom Hooks 79

To create the custom Hook, create a new file called useDataFetching.js inside a new
directory called hooks in the src directory. Now, follow these steps:

1.	 Import the useState and useEffect Hooks from React and create a new
function for the Hook, which becomes the default export. This function will take
one parameter called dataSource. Since this Hook will use the life cycles for data
fetching, let's call this custom Hook useDataFetching and have it return an
empty array:

import { useState, useEffect } from 'react';

function useDataFetching(dataSource) {

 return [];

}

export default useDataFetching;

2.	 Inside this function, add the useState Hooks to create a local state for loading,
error, and data, which has almost the same structure as our local state inside the
Board component:

 import { useState, useEffect } from 'react';

 function useDataFetching(dataSource) {

+ const [loading, setLoading] = useState(false);

+ const [data, setData] = useState([]);

+ const [error, setError] = useState('');

 return [];

 }

 export default useDataFetching;

80 Building a Dynamic Project Management Board

3.	 Next, we need to use the useEffect hook, which is where the data fetching will be
done. The dataSource parameter is used as the location to fetch from. Also, notice
that the constant names are now more generic and no longer specify a single use:

 import { useState, useEffect } from 'react';

 function useDataFetching(dataSource) {

 // ...

- return [];

+ useEffect(() => {

+ async function fetchData() {

+ try {

+ const data = await fetch(dataSource);

+ const result = await data.json();

+ if (result) {

+ setData(result);

+ setLoading(false);

+ }

+ } catch (e) {

+ setLoading(false);

+ setError(e.message);

+ }

+ }

+ fetchData();

+ }, [dataSource]);

+ return [loading, error, data];

 }

 export default useDataFetching;

Working with custom Hooks 81

This adds the method to do data fetching, and in the return statement, we're returning
the data, loading, and error state.

Congratulations! You've created your very first Hook! However, it still needs to be added
to a component that supports data fetching. Therefore, we need to refactor our Board
component to use this custom Hook for data fetching instead:

1.	 Import the custom Hook from the src/hooks/useDataFetching.js file and
delete the imports of the React Hooks:

- import { useState, useEffect } from 'react';

+ import useDataFetching from

 '../../hooks/useDataFetching';

 import Lane from '../../components/Lane/Lane';

 import './Board.css';

 // ...

2.	 Subsequently, we can delete the usage of the useState and useEffect Hooks in
the Board component:

 // ...

 function Board() {

- const [loading, setLoading] = useState(false);

- const [tasks, setTasks] = useState([]);

- const [error, setError] = useState('');

- useEffect(() => {

- async function fetchData() {

- try {

- const tasks = await fetch(

 `https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-

 Edition/tasks`,

);

- const result = await tasks.json();

82 Building a Dynamic Project Management Board

- if (result) {

- setTasks(result);

- setLoading(false);

- }

- } catch (e) {

- setLoading(false);

- setError(e.message);

- }

- }

- fetchData();

- }, []);

 return (

 // ...

3.	 Instead, use the imported custom Hook to handle our data fetching. The Hook
returns the loading, error, and tasks state as before, but the data state is
renamed tasks to fit the needs of our component:

 import useDataFetching

 from '../../hooks/useDataFetching';

 import Lane from '../../components/Lane/Lane';

 import './Board.css';

 function Board() {

+ const [loading, error, tasks] =

 useDataFetching(`https://my-json-server.

 typicode.com/PacktPublishing/React-Projects-

 Second-Edition/tasks`);

 return (

 // ...

In the next section, we'll learn how to reuse a custom Hook by importing it from a
different component.

Working with custom Hooks 83

Reusing a custom Hook
With the very first custom Hook in place, it's time to think of other components that
could do data fetching, such as a component that is displaying only tasks. The process to
create this component consists of two steps: creating the actual component and using the
custom Hook for data fetching. Let's get started:

1.	 Inside the directory pages, we need to create a new file called Backlog.js in a
new directory called Backlog. In this file, we can place the following code to create
the component, import the custom Hook, and import the CSS for styling:

import Task from '../../components/Task/Task';

import useDataFetching from

 '../../hooks/useDataFetching';

import './Backlog.css';

function Backlog() {

 const [loading, error, tasks] = useDataFetching(

 'https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-Edition/

 tasks',

);

 return (

 <div></div>

);

}

export default Backlog;

2.	 The return statement is now returning an empty div element, so we need to add
the code to render the tasks here:

 // ...

 return (

- <div>

+ <div className='Backlog-wrapper'>

+ <h2>Backlog</h2>

84 Building a Dynamic Project Management Board

+ <div className='Tasks-wrapper'>

+ {loading || error ? (

+ {error || 'Loading...'}

+) : (

+ tasks.map((task) => (

+ <Task

+ key={task.id}

+ title={task.title}

+ body={task.body}

+ />

+))

+)}

+ </div>

 </div>

);

}

export default Backlog;

3.	 This component imports the Backlog.css file for styling, and we've also added
classes to the elements in this file. But we also need to create and add some basic
styling rules to Backlog.css:

.Backlog-wrapper {

 display: flex;

 flex-direction: column;

 margin: 5%;

}

.Backlog-wrapper h2 {

 width: 100%;

 padding-bottom: 10px;

 text-align: center;

 border-bottom: 1px solid darkGray;

}

Working with custom Hooks 85

.Tasks-wrapper {

 display: flex;

 justify-content: space-between;

 flex-direction: row;

 flex-wrap: wrap;

 margin: 5%;

}

4.	 In the App component, we can import this component to render it below the
Board component:

 import './App.css';

 import Board from './pages/Board/Board';

 import Header from './components/Header/Header';

+ import Backlog from './pages/Backlog/Backlog';

 function App() {

 return (

 <div className='App'>

 <Header />

 <Board />

+ <Backlog />

 </div>

);

 }

 export default App;

This will render the new Backlog component below our board with all the different
tasks. These tasks are the same ones as in the Board component, as the same REST API
endpoint is used. Also, you can set up react-router for this project to render the
Backlog component on a different page instead.

All the tasks that are displayed in the lanes are only in one part of our application, since
we want to be able to drag and drop these tasks into different lanes. We'll learn how to do
this in the next section, where we'll add dynamic functionalities to the board.

86 Building a Dynamic Project Management Board

Making the board dynamic
One of the things that usually give project management boards great user interaction is
the ability to drag and drop tasks from one lane into another. This is something that can
easily be accomplished using the HTML5 Drag and Drop API, which is available in every
modern browser, including IE11.

The HTML5 Drag and Drop API makes it possible for us to drag and drop elements
across our project management board. To make this possible, it uses drag events.
onDragStart, onDragOver, and onDrop will be used for this application. These
events should be placed on both the Lane and the Task components.

In the file for the Board component, let's add the functions that respond to the drop
events, which need to be sent to the Lane and Task components. Let's get started:

1.	 Start by adding the event handler function for the onDragStart event,
which fires when the dragging operation is started, to the Board component. This
function needs to be passed to the Lane component, where it can be passed on to
the Task component. This function sets an ID for the task that is being dragged to
the dataTransfer object of the element, which is used by the browser to identify
the drag element:

 // ...

+ function onDragStart(e, id) {

+ e.dataTransfer.setData('id', id);

+ }

 function Board() {

 const [loading, error, tasks] = useDataFetching(

 'https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-Edition/

 tasks',

);

 return (

 <div className='Board-wrapper'>

 {lanes.map((lane) => (

 <Lane

 key={lane.id}

 title={lane.title}

Working with custom Hooks 87

 loading={loading}

 error={error}

 tasks={tasks.filter((task) =>

 task.lane === lane.id)}

+ onDragStart={onDragStart}

 />

))}

 </div>

);

 }

 export default Board;

2.	 In the Lane component, we need to pass this event handler function to the
Task component:

 // ...

- function Lane({ title, loading, error, tasks }) {

+ function Lane({ title, loading, error, tasks,

 onDragStart }) {

 return (

 <div className='Lane-wrapper'>

 <h2>{title}</h2>

 {loading || error ? (

 {error || 'Loading...'}

) : (

 tasks.map((task) => (

 <Task

 key={task.id}

 title={task.title}

 body={task.body}

+ onDragStart={onDragStart}

 />

))

)}

 </div>

88 Building a Dynamic Project Management Board

);

 }

 export default Lane;

3.	 Now, we can invoke this function in the Task component, where we also need
to add the draggable attribute to the div element with the class name Task-
wrapper. Here, we send the element and the task ID as a parameter to the event
handler:

 import './Task.css';

- function Task({ title, body }) {

+ function Task({ id, title, body, onDragStart }) {

 return (

 <div

 className='Task-wrapper'

+ draggable

+ onDragStart={(e) => onDragStart(e, id)}

 >

 <h3>{title}</h3>

 <p>{body}</p>

 </div>

);

 }

 export default Task;

After making these changes, we should be able to see that each task can be dragged
around. But don't drop them anywhere yet – the other drop events and event handlers that
update the state should be added as well. Dragging a task from one lane to another can be
done by clicking on a task without releasing the mouse and dragging it to another lane, as
shown in the following screenshot:

Working with custom Hooks 89

Figure 3.4 – The interactive project management board

With the onDragStart event implemented, the onDragOver and onDrop events can
be implemented as well. Let's get started:

1.	 By default, it's impossible to drop elements into another element – for example, a
Task component into a Lane component. This can be prevented by calling the
preventDefault method for the onDragOver event:

 // ...

 function onDragStart(e, id) {

 e.dataTransfer.setData('id', id);

 }

+ function onDragOver(e) {

+ e.preventDefault();

+ };

90 Building a Dynamic Project Management Board

 function Board() {

 const [loading, error, tasks] = useDataFetching(

 'https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-Edition/

 tasks',

);

 return (

 <div className='Board-wrapper'>

 {lanes.map((lane) => (

 <Lane

 key={lane.id}

 title={lane.title}

 loading={loading}

 error={error}

 tasks={tasks.filter((task) =>

 task.lane === lane.id)}

 onDragStart={onDragStart}

+ onDragOver={onDragOver}

 />

))}

 </div>

);

 }

 export default Board;

2.	 This function needs to be imported and placed as an event handler on the div
element with the class name Lane-wrapper in the Lane component:

 // ...

- function Lane({ title, loading, error, tasks,

 onDragStart }) {

+ function Lane({ title, loading, error, tasks,

 onDragStart, onDragOver }) {

 return (

Working with custom Hooks 91

- <div className='Lane-wrapper'>

+ <div className='Lane-wrapper'

 onDragOver={onDragOver}>

 <h2>{title}</h2>

 // ...

3.	 The onDrop event is where things get interesting, since this event makes it possible
for us to mutate the state after we've finished the drag operation. Before we can
add this event handler, we need to create a new local state variable called tasks
in the Board component. This state variable is overwritten when the data is being
fetched from the useDataFetching Hook and is used to display the tasks from
the Lane components:

+ import { useEffect, useState } from 'react';

 import Lane from '../../components/Lane/Lane';

 import useDataFetching from

 '../../hooks/useDataFetching';

 import './Board.css';

 // ...

 function Board() {

 const [

 loading,

 error,

- tasks

+ data] = useDataFetching(

 'https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-Edition/

 tasks',

);

+ const [tasks, setTasks] = useState([]);

+ useEffect(() => {

+ setTasks(data);

92 Building a Dynamic Project Management Board

+ }, [data]);

 // ...

 return (

 // ...

4.	 The new event handler function can now be created, and when it's invoked, we can
call the setTasks function from the useState Hook for the tasks state:

 // ...

 function Board() {

 // ...

+ function onDrop(e, laneId) {

+ const id = e.dataTransfer.getData('id');

+ const updatedTasks = tasks.filter((task) => {

+ if (task.id.toString() === id) {

+ task.lane = laneId;

+ }

+ return task;

+ });

+ setTasks(updatedTasks);

+ }

 return (

 // ...

5.	 Also, this event handler function should be passed as a prop to the Task
component:

 // ...

 Return (

 <div className='Board-wrapper'>

 {lanes.map((lane) => (

 <Lane

Working with custom Hooks 93

 key={lane.id}

+ laneId={lane.id}

 title={lane.title}

 loading={loading}

 error={error}

 tasks={tasks.filter((task) =>

 task.lane === lane.id)}

 onDragStart={onDragStart}

 onDragOver={onDragOver}

+ onDrop={onDrop}

 />

))}

 </div>

);

 }

 export default Board;

This onDrop event handler function takes an element and the ID of the lane as
a parameter because it needs the ID of the dragged element and the new lane it
should be placed in. With this information, the function uses a filter function
to find the task that needs to be moved and changes the ID of the lane. This
new information will replace the current object for the task in the state with the
setState function.

6.	 Since the onDrop event gets fired from the Lane component, it is passed as a prop
to this component. Also, the ID of the lane is added as a prop because this needs to
be passed to the onDrop event handler function from the Lane component:

 import Task from '../Task/Task';

 import './Lane.css';

 function Lane({

+ laneId,

 title,

 loading,

 error,

 tasks,

94 Building a Dynamic Project Management Board

 onDragStart,

 onDragOver,

+ onDrop,

 }) {

 return (

 <div

 className='Lane-wrapper'

 onDragOver={onDragOver}

+ onDrop={(e) => onDrop(e, laneId)}

 >

 // ...

With this, we're able to drag and drop tasks onto other lanes in our board – something
that you can also do for the Backlog component – or even make this logic reusable with
another custom Hook. But instead, we'll be looking at how to make the styling for our
component more flexible and reusable by using the styled-components library in the
next section.

Styling in React with styled-components
So far, we've been using CSS files to add styling to our React components. However, this
forces us to import these files across different components, which makes our code less
reusable. Therefore, we'll add the styled-components package to the project, which
allows us to write CSS inside JavaScript (so-called CSS-in-JS) and create components.

By doing this, we'll get more flexibility out of styling our components, be able to prevent
the duplication or overlapping of styles due to classNames, and add dynamic styling
to components with ease. All of this can be done using the same syntax we used for CSS,
right inside our React components.

The first step is installing styled-components using npm:

npm install styled-components

Note
If you look at the official documentation of styled-components, you will
notice that they strongly advise you to use the Babel plugin for this package
as well. But since you're using Create React App to initialize your project, you
don't need to add this plugin, as all the compilation that your application needs
has already been taken care of by react-scripts.

Styling in React with styled-components 95

After installing styled-components, let's try to delete the CSS file from one of
our components. A good start will be the Task component since this is a very small
component with limited functionality:

1.	 Start by importing the styled-components package and creating a new styled
component called TaskWrapper. This component extends a div element and
takes the CSS rules we already have for the Task-wrapper class name in Task.
css. Also, we no longer have to import this file, since all the styling is now being
done inside this JavaScript file:

+ import styled from 'styled-components';

- import './Task.css';

+ const TaskWrapper = styled.div`

+ background: darkGray;

+ padding: 20px;

+ border-radius: 20px;

+ margin: 0% 5% 5% 5%;

+ h3 {

+ width: 100%;

+ margin: 0;

+ }

+ `;

 function Task({ id, title, body, onDragStart }) {

 return (

- <div className="Task-wrapper"

+ <TaskWrapper

 draggable

 onDragStart={(e) => onDragStart(e, id)}

 >

 <h3>{title}</h3>

 <p>{body}</p>

- </div>

+ </TaskWrapper>

);

96 Building a Dynamic Project Management Board

}

export default Task;

2.	 In the preceding code block, we've added the styling of the h3 element in the styled
component for TaskWrapper, but we can also do this inside a specific styled
component as well:

 import styled from 'styled-components';

 // ...

- h3 {

- width: 100%;

- margin: 0;

- }

- `;

+ const Title = styled.h3`

+ width: 100%;

+ margin: 0;

+ `;

 function Task({ id, title, body, onDragStart }) {

 return (

 <TaskWrapper

 draggable

 onDragStart={(e) => onDragStart(e, id)}

 >

- <h3>{title}</h3>

+ <Title>{title}</Title>

 <p>{body}</p>

 </TaskWrapper>

);

}

export default Task;

Styling in React with styled-components 97

3.	 We can also do this for the other components in our project, starting with the Lane
component, for which we first need to create the styled components that use the
same styling as those in the Lane.css file:

+ import styled from 'styled-components';

 import Task from '../Task/Task';

- import './Lane.css';

+ const LaneWrapper = styled.div`

+ text-align: left;

+ padding: 0;

+ background: lightGray;

+ border-radius: 20px;

+ min-height: 50vh;

+ width: 20vw;

+ @media (max-width: 768px) {

+ margin-bottom: 5%;

+ }

+ `;

+ const Title = styled.h2`

+ width: 100%;

+ padding-bottom: 10px;

+ text-align: center;

+ border-bottom: 1px solid darkGray;

+ `;

 function Lane({

 // ...

4.	 Replace the existing div and h3 elements with these new components:

 // ...

 function Lane({

 laneId,

 title,

98 Building a Dynamic Project Management Board

 loading,

 error,

 tasks,

 onDragStart,

 onDragOver,

 onDrop,

 }) {

 return (

- <div className="Lane-wrapper"

+ <LaneWrapper

 onDragOver={onDragOver}

 onDrop={(e) => onDrop(e, laneId)}

 >

- <h3>{title}</h3>

+ <Title>{title}</Title>

 {loading || error ? (

 {error || 'Loading...'}

) : (

 // ...

)}

- </div>

+ </LaneWrapper>

);

 }

 export default Lane;

If we visit our project in the browser after running npm start again, we'll see that
our application still looks the same after deleting the CSS files for the Ticket and Lane
component. You can, of course, also do the same thing for the other components in
the project.

Styling in React with styled-components 99

Let's proceed and convert another component to use styled-components instead of
CSS – for example, the component in the src/App.js file. This one is using the src/
App.css file to style the div element that wraps all the components in our application:

- import './App.css';

+ import styled from 'styled-components';

 import Board from './pages/Board/Board';

 import Header from './components/Header/Header';

 import Backlog from './pages/Backlog/Backlog';

+ const AppWrapper = styled.div`

+ text-align: center;

+ `;

 function App() {

 return (

- <div className='App'>

+ <AppWrapper>

 <Header />

 <Board />

 <Backlog />

- </div>

+ </AppWrapper>

);

 }

 export default App;

After making these changes, you can delete the src/App.css file as we're no longer
using it to style the App component.

100 Building a Dynamic Project Management Board

Another possibility with styled-components is creating a global style for our
application, which is currently done in src/index.css. This file is imported in src/
index.js and therefore loaded into every page of the application, as it is the entry
to our React application. But the App component in src/App.js also wraps all our
components, in which we can copy the styling rules from src/index.css and use them
to create a GlobalStyle component:

- import styled from 'styled-components';

+ import styled, { createGlobalStyle } from

 'styled-components';

 import Board from './pages/Board/Board';

 import Header from './components/Header/Header';

 import Backlog from './pages/Backlog/Backlog';

+ const GlobalStyle = createGlobalStyle`

+ body {

+ margin: 0;

+ font-family: -apple-system, BlinkMacSystemFont,

 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu',

 'Cantarell', 'Fira Sans', 'Droid Sans',

 'Helvetica Neue', sans-serif;

+ -webkit-font-smoothing: antialiased;

+ -moz-osx-font-smoothing: grayscale;

+ }

+ `;

 const AppWrapper = styled.div`

 // ...

This global style that we just created must be added to the return statement for the App
component, above the AppWrapper component. As we can only return a single element or
component from the return statement, we need to wrap the contents into another element.
If we wanted to apply styling to this element, we could do this with a div element. As we
don't want that in this scenario, we'll be using a React fragment instead. With a fragment, we
can wrap elements and components without rendering anything in the browser:

 // ...

 function App() {

Styling in React with styled-components 101

 return (

+ <>

+ <GlobalStyle />

 <AppWrapper>

 <Header />

 <Board />

 <Backlog />

 </AppWrapper>

+ </>

);

 }

 export default App;

Note
The <> notation is shorthand for <React.Fragment>; you can use both
notations in React. For the <React.Fragment> notation, you can also
import Fragment from React to write <Fragment>.

Finally, you can delete the src/index.css file and the line in src/index.js that
imports this file into our application:

 import React from 'react';

 import ReactDOM from 'react-dom/client';

- import './index.css';

 import App from './App';

 import reportWebVitals from './reportWebVitals';

 const root = ReactDOM.createRoot(

 document.getElementById('root'));

 // ...

With these final additions, we've styled large parts of our application with styled-
components instead of CSS. By writing the styling rules directly in the components, we
can reduce the number of files in the project and also make it easier to find what styling is
applied to our elements.

102 Building a Dynamic Project Management Board

Summary
In this chapter, you created a project management board that lets you move, drag, and
drop tasks from one lane to another using the HTML5 Drag and Drop API. The data
flow of this application is handled using local state and life cycles and determines which
tasks are displayed in the different lanes. This chapter also introduced the advanced React
pattern of custom Hooks. With custom Hooks, you can reuse state logic in function
components across your applications.

This advanced pattern will be also be used in the next chapter, which will handle routing
and Server-Side Rendering (SSR) in React applications using Next.js. Have you ever tried
using Stack Overflow to find a solution to a programming issue you once had? I have! In
the next chapter, we will be building a community feed that uses Stack Overflow as a data
source and React to render the application.

Further reading
•	 The HTML Drag and Drop API: https://developer.mozilla.org/

en-US/docs/Web/API/HTML_Drag_and_Drop_API

•	 DataTransfer: https://developer.mozilla.org/en-US/docs/Web/
API/DataTransfer

•	 React DnD: https://github.com/react-dnd/react-dnd

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
https://github.com/react-dnd/react-dnd

4
Building a Server-

Side-Rendered
Community Feed

Using Next.js
So far, you've learned how React applications are typically Single-Page Applications
(SPAs) and can be kickstarted using Create React App. This means the application is
rendered on the client side, making it load in the browser when the user visits your
application. But did you know React also supports Server-Side Rendering (SSR), as you
might remember from back in the old days when code only rendered from a server?

In this chapter, you'll learn how to create an application that has components dynamically
loaded from the server instead of the browser. To enable SSR, we'll be using Next.js instead
of Create React App. Next.js is a framework for React applications and adds additional
features to React. If you're interested in Search Engine Optimization (SEO), SSR comes
with the advantage that we can add metadata to the application so it can be better indexed
by search engines.

104 Building a Server-Side-Rendered Community Feed Using Next.js

The following topics will be covered in this chapter:

•	 Setting up Next.js

•	 Server-side rendering

•	 SEO in React

Project overview
In this chapter, we will create a community feed application using Next.js that supports
SSR and therefore is loaded from the server rather than the browser. Also, the application
is optimized for search engines.

The build time is 2 hours.

Getting started
The complete source code can also be found on GitHub: https://github.com/
PacktPublishing/React-Projects-Second-Edition/tree/main/
Chapter04. Also, this project uses the publicly available Stack Overflow API to fill the
application with data. This is done by fetching questions that are posted to Stack Overflow.
More information about this API can be found at: https://api.stackexchange.
com/docs/.

Community feed application
In this section, you'll build a community feed application with Next.js that supports SSR.
Next.js goes beyond the functionalities of Create React App, by delivering a framework to
build React applications quickly. It has built-in features for routing, SEO, SSR, and much
more, as you'll learn in this chapter. In this community feed, you can see an overview
of recent questions on Stack Overflow that have the reactjs tag, and you can click on
them to see more information and the answers.

Setting up Next.js
In previous chapters, we used Create React App to run a React application. Although
Create React App is a good starting point for most React applications, it doesn't support
SSR. Luckily, Next.js does offer this feature as it's considered a framework for React.
In this chapter, we'll be using the latest stable version of Next.js, which is version 12.

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter04
https://api.stackexchange.com/docs/
https://api.stackexchange.com/docs/

Setting up Next.js 105

Installing Next.js
To set up Next.js, we run the following command:

npx create-next-app chapter-4

You'll be asked to select a template, which is either the default starter app or a template
that is created by the community. After selecting the default template, the react,
react-dom, and next libraries will be installed, among others.

After the installation is finished, we can move into the new chapter-4 directory and
run the following command:

npm run dev

This will start the new Next.js application that will become available at http://
localhost:3000. The default starter app will look something like the following
application:

Figure 4.1 – The initial Next.js application

In this application, you can not only see what a Next.js application looks like but also find
useful links to more sources to learn about Next.js and examples of how to deploy it.

106 Building a Server-Side-Rendered Community Feed Using Next.js

The application structure for a Next.js project is slightly different from how we structured
our Create React App in the preceding chapters:

chapter-4

 |- package.json

 |- node_modules

 |- public

 |- pages

 |- api

 |- hello.js

 |- _app.js

 |- index.js

 |- styles

 |- globals.css

 |- Home.module.css

In the preceding structure, you can see that there is again a directory called pages
that will contain React components that will serve as a page. But different from Create
React App, we don't need to set up react-router to serve the pages. Instead, Next.js
automatically renders every component in that directory as a page. In this directory,
we also find the hello.js file in the api directory. Next.js can also be used to create
API endpoints, which we'll explore more in Chapter 7, Build a Full Stack E-Commerce
Application with Next.js and GraphQL. Also, the CSS files for our components are put in
the styles directory, where you'll find the globals.css file with global styling and
Home.module.css with styling for a specific component.

Adding styled-components
Before we set up the routing, let's add styled-components to the project, which we've
also used in the previous chapters. For this, we need to install styled-components by
running the following commands:

npm install styled-components

This will add the packages to our project so we can use them to create and style reusable
components.

Setting up Next.js 107

Note
Next.js uses the styles directory to store global and component-specific CSS
files for styling. As we're using styled-components for styling instead,
we don't have to add any new CSS files to this directory. If you're not using a
library for styling with CSS-in-JS, you can place both global and component-
level styling files in the styles directory instead.

Setting up styled-components in Next.js is done slightly differently in comparison to
Create React App:

1.	 In Next.js, a Document component wraps the html, body, and head tags and
runs them through a so-called renderPage method to allow for SSR. We need to
overwrite this Document component from a new file called _document.js in the
pages folder:

import Document from 'next/document';

import { ServerStyleSheet } from 'styled-components';

export default class MyDocument extends Document {

 static async getInitialProps(ctx) {

 const sheet = new ServerStyleSheet();

 const originalRenderPage = ctx.renderPage;

 try {

 ctx.renderPage = () =>

 originalRenderPage({

 enhanceApp: (App) => (props) =>

 sheet.collectStyles(<App {...props} />),

 });

 const initialProps =

 await Document.getInitialProps(ctx);

 return {

 ...initialProps,

 styles: (

 <>

 {initialProps.styles}

108 Building a Server-Side-Rendered Community Feed Using Next.js

 {sheet.getStyleElement()}

 </>

),

 };

 } finally {

 sheet.seal();

 }

 }

}

The preceding code creates an instance of ServerStyleSheet, which styled-
components uses to retrieve any styles found in all the components in our
application. This is needed to create a stylesheet that can be injected into our
server-side-rendered application later on. The sheets.collectStyles method
collects all of the styles from our components, while sheets.getElement()
generates the style tag, which we'll need to return as a prop called styles.

2.	 To support SSR for styled-components, we also need to configure the next.
config.json file in the root of the project. This file needs to hold the following
configuration:

const nextConfig = {

 reactStrictMode: true,

+ compiler: {

+ styledComponents: true

+ }

}

module.exports = nextConfig

3.	 As with Next.js, we don't have a global entry file for the application. We need a
different place to add our global styling and components that we want to display on
all pages, such as a header. These styling and component must be added to _app.
js in our pages directory, which returns the component for the page that we're
currently visiting and any other component or styling that we return:

- import '../styles/globals.css';

+ import { createGlobalStyle } from 'styled-components';

+ const GlobalStyle = createGlobalStyle'

Setting up Next.js 109

+ body {

+ margin: 0;

+ padding: 0;

+ font-family: -apple-system, BlinkMacSystemFont,

 "Segoe UI", "Roboto", "Oxygen","Ubuntu",

 "Cantarell", "Fira Sans", "Droid Sans",

 "Helvetica Neue", sans-serif;

+ -webkit-font-smoothing: antialiased;

+ -moz-osx-font-smoothing: grayscale;

+ }

+ ';

 function MyApp({ Component, pageProps }) {

- return <Component {...pageProps} />;

+ return (

+ <>

+ <GlobalStyle />

+ <Component {...pageProps} />

+ </>

+);

 }

 export default MyApp;

In the preceding file, we've deleted the line that imports the styles/globals.
css file and replaced it with styling in styled-components. This means you can
also safely delete the globals.css file from the styles directory.

4.	 This global styling is now present on all pages that we'll create later in this Next.js
application. But for starters, let's create a Header component by adding a file called
Header.js in a new directory called components:

import styled from 'styled-components';

const HeaderWrapper = styled.div'

 background-color: orange;

 height: 100%;

110 Building a Server-Side-Rendered Community Feed Using Next.js

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

 font-size: calc(10px + 2vmin);

 color: white;

';

const Title = styled.h1'

 height: 64px;

 pointer-events: none;

';

function Header() {

 return (

 <HeaderWrapper>

 <Title>Community Feed</Title>

 </HeaderWrapper>

);

}

export default Header;

5.	 This component will return a header that will be used on every page, but we also
need to add it to _app.js to be effective:

 import { createGlobalStyle } from

 'styled-components';

+ import Header from '../components/Header';

 // ...

 function MyApp({ Component, pageProps }) {

 return (

 <>

 <GlobalStyle />

+ <Header />

Routing with Next.js 111

 <Component {...pageProps} />

 </>

);

 }

 export default MyApp;

You'll see what the headers look like in the next section when we add our first route to the
application.

We've added multiple new files that have global styling with styled-components,
which supports SSR, and also a directory that holds reusable components.

With both Next.js and styled-components set up, we are ready to start developing
with Next.js in the next section of this chapter.

Routing with Next.js
With the react-router package, we can add declarative routing to any React
application, but you need to set up components that define which routes you want to add.
With Next.js, the filesystem is being used for routing, starting at the pages directory.
Every file and directory in pages can represent a route. You can check this by visiting
the project at http://localhost:3000, where the contents of index.js are being
rendered.

If we, for example, wanted to add the new /questions route to the application, we'd
need to create either a new file called questions.js or a directory called questions
with an index.js file in pages. Let's go with the second option and add the following
code to this file:

import styled from 'styled-components';

const QuestionsContainer = styled.div'

 display: flex;

 justify-content: space-between;

 flex-direction: column;

 margin: 5%;

';

function Questions() {

112 Building a Server-Side-Rendered Community Feed Using Next.js

 return (

 <QuestionsContainer>

 <h2>Questions</h2>

 </QuestionsContainer>

);

}

export default Questions;

This new route has now become available at http://localhost:3000/questions
where only a title is being rendered. As mentioned in the introduction of this chapter, we'll
be using the Stack Overflow API to get the data for this application.

Before retrieving the data from the endpoint, we also need to create a component to
render this data in. To do so, we need to create a new component that will be used to
display a question. This new component can be created in a file called Card.js in the
components directory with the following contents:

import styled from 'styled-components';

const CardWrapper = styled.div'

 text-align: left;

 padding: 1%;

 background: lightGray;

 border-radius: 5px;

 margin-bottom: 2%;

';

const Title = styled.h2'

 width: 100%;

 padding-bottom: 10px;

 text-align: center;

 border-bottom: 1px solid darkGray;

 color: black;

';

const Count = styled.span'

 color: darkGray;

Routing with Next.js 113

';

function Card({ title, views, answers }) {

 return (

 <CardWrapper>

 <Title>{title}</Title>

 <Count>{

 'Views: ${views} | Answers: ${answers}'}

 </Count>

 </CardWrapper>

);

}

export default Card;

With this component in place, let's retrieve the data from the Stack Overflow API. From
this API, we want to retrieve all the questions that are posted with the reactjs tag, using
the following endpoint:

https://api.stackexchange.com/2.2/
questions?order=desc&sort=hot&tagged=reactjs&site=stackoverflow

You can find more information on this at https://api.stackexchange.com/
docs/questions#order=desc&sort=hot&tagged=reactjs&filter=
default&site=stackoverflow&run=true.

This returns an array of objects under the items field, and from every object, we can get
information about a question, such as the title and the number of answers.

We can retrieve the data from this endpoint and display it on the /questions route by
making some additions to the index.js file in the questions directory in pages:

1.	 First, we need to add local state variables to the Questions component and add a
useEffect Hook to fetch the data from the Stack Overflow API:

+ import { useState, useEffect } from 'react';

 import styled from 'styled-components';

+ import Card from '../ ../ components/Card';

 function Questions() {

+ const [loading, setLoading] = useState(false);

https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true
https://api.stackexchange.com/docs/questions#order=desc&sort=hot&tagged=reactjs&filter=default&site=stackoverflow&run=true

114 Building a Server-Side-Rendered Community Feed Using Next.js

+ const [questions, setQuestions] = useState([]);

+ useEffect(() => {

+ async function fetchData() {

+ const data = await fetch(

 'https://api.stackexchange.com/2.2/questions?

 order=desc&sort=hot&tagged=reactjs&

 site=stackoverflow');

+ const result = await data.json();

+ if (result) {

+ setQuestions(result.items);

+ setLoading(false);

+ }

+ }

+ fetchData();

+ }, []);

 return (

 // ...

2.	 After adding the data fetching logic, we need to add some more code to display the
fields from the API on our page. We're passing this data to our Card component to
render it on the page:

 // ...

 return (

 <QuestionsContainer>

 <h2>Questions</h2>

+ {loading ? (

+ Loading...

+) : (

+ <div>

+ {questions.map((question) => (

+ <Card

+ key={question.question_id}

Routing with Next.js 115

+ title={question.title}

+ views={question.view_count}

+ answers={question.answer_count}

+ />

+))}

+ </div>

+)}

 </QuestionsContainer>

);

}

export default Questions;

If you now visit the /questions route on http://localhost:3000/
questions, you can see that a list of questions is being rendered together with the
Header component, as you can see in the following screenshot:

Figure 4.2 – Our application with Stack Overflow data

116 Building a Server-Side-Rendered Community Feed Using Next.js

We'll be handling SSR later, but before that, we need to add routes that support
parameters. To create a route that supports a parameter, we need to create a file created
in the same manner as the Questions component. The new route will display a specific
question, information that we can also get from the Stack Overflow API. Again, the
filesystem will be leading in creating the route:

1.	 To create a new route with a parameter, we need to create a file called [id].js
inside the questions directory. This file has the parameter name inside square
brackets, and in this file, we can use a Hook from the Next.js routing library to get
this parameter value:

import { useRouter } from 'next/router';

import styled from 'styled-components';

const QuestionDetailContainer = styled.div'

 display: flex;

 justify-content: space-between;

 flex-direction: column;

 margin: 5%;

';

function QuestionDetail() {

 const router = useRouter();

 const { id } = router.query;

 return (

 <QuestionDetailContainer>

 <h2>Question: {id}</h2>

 </QuestionDetailContainer>

);

}

export default QuestionDetail;

By visiting http://localhost:3000/questions/123, you can see that the parameter that
we've added has become visible on the screen.

Routing with Next.js 117

2.	 In the QuestionDetail component, we can import the Card component and
we can use the Stack Overflow API to fetch data for a specific question. For this, we
need to add both data fetching logic and elements to render the data to the [id].
js file in the questions directory that we created in the previous step:

+ import { useState, useEffect } from 'react';

 import { useRouter } from 'next/router';

 import styled from 'styled-components';

+ import Card from '../../components/Card';

 // ...

 function QuestionDetail() {

 const router = useRouter();

 const { id } = router.query;

+ const [loading, setLoading] = useState(false);

+ const [question, setQuestion] = useState({});

+ useEffect(() => {

+ async function fetchData() {

+ const data = await fetch(

 'https://api.stackexchange.com/2.2/questions

 /${id}?site=stackoverflow');

+ const result = await data.json();

+ if (result) {

+ setQuestion(result.items[0]);

+ setLoading(false);

+ }

+ }

+ id && fetchData();

+ }, [id]);

 // ...

118 Building a Server-Side-Rendered Community Feed Using Next.js

3.	 After adding the data fetching logic, the Card component can be returned with the
question information passed to it as props:

 // ...

 return (

 <QuestionDetailContainer>

- <h2>Question: {id}</h2>

+ {loading ? (

+ Loading...

+) : (

+ <Card

+ title={question.title}

+ views={question.view_count}

+ answers={question.answers_count}

+ />

+)}

 </QuestionDetailContainer>

);

}

export default QuestionDetail;

The API endpoint that gets a question by its identifier returns an array, as it expects
multiple IDs at once. Therefore, we need to get the first item that's returned by the
endpoint as we only provide one ID.

4.	 To get to a specific question, you need to have the ID of the question. This is best
done from the Questions component where we can import a Link component
from the routing library of Next.js. Every Link component needs to wrap a
component that's able to do routing, so we'll add a styled a element inside it. Also,
the elements used to display the questions will be replaced by the Card component
that we created before:

 import { useState, useEffect } from 'react';

 import styled from 'styled-components';

+ import Link from 'next/link';

 import Card from '../../components/Card';

Routing with Next.js 119

 // ...

+ const CardLink = styled.a'

+ text-decoration: none;

+ ';

 function Questions() {

 // ...

 return (

 <QuestionsContainer>

 // ...

 {questions.map((question) => (

+ <Link

+ key={question.question_id}

+ href={'/questions/${question.question_id}'}

+ passHref

+ >

+ <CardLink>

 <Card

- key={question.question_id}

 title={question.title}

 views={question.view_count}

 answers={question.answer_count}

 />

+ </CardLink>

+ </Link>

))}

 // ...

As you might notice when visiting http://localhost:3000/questions, the
Card components are now clickable and link to a new page showing the question
you've just clicked on.

120 Building a Server-Side-Rendered Community Feed Using Next.js

5.	 Finally, we want the basic / route to also show the Questions component. We
can do this by importing this component inside /pages/index.js and having it
returned from there:

import Questions from './questions';

export default function Home() {

 return <Questions />;

}

The application will now return a list of questions on both the / and /questions
routes, and is able to display a specific question when you click on any of the
questions from these routes:

Figure 4.3 – Our application with basic styling and dynamic routes

Besides routing using parameters, we can also add routing using a query string for
features such as pagination. This will be shown in the next part of this section, about
routing with Next.js.

Handling query strings
Being able to navigate to individual questions is only one piece of the cake when you want
to add routing to a project, and pagination could be another one.

The Stack Overflow API already has support for pagination, which you can see if you look
at the API response. The object that is being returned when you call the endpoint that is
described on https://api.stackexchange.com/docs/questions#order=
desc&sort=hot&tagged=reactjs&filter=default&site=
stackoverflow&run=true has a field called has_more. If this field has the
true value, you can request more questions by adding the page query string to the
API request.

Routing with Next.js 121

Just as we got the parameters from the URL with the useRouter Hook from Next.js,
we can also get the query strings with this Hook. To add pagination to the Questions
component, we need to make the following changes:

1.	 In the Questions page component in pages/questions/index.js, we need
to import the useRouter Hook and get the query strings from the URL:

 import { useState, useEffect } from 'react';

 import styled from 'styled-components';

 import Link from 'next/link';

+ import { useRouter } from 'next/router';

 import Card from '../components/Card';

 // ...

 function Questions() {

 const [loading, setLoading] = useState(false);

 const [questions, setQuestions] = useState([]);

+ const router = useRouter();

+ const { page } = router.query;

 useEffect(() => {

 // ...

2.	 The page constant can then be appended to the endpoint to retrieve the questions
from the Stack Overflow API:

 // ...

 useEffect(() => {

 async function fetchData() {

- const data = await fetch(

 'https://api.stackexchange.com/2.2/questions

 ?order=desc&sort=hot&tagged=reactjs&site=

 stackoverflow');

+ const data = await fetch(

 'https://api.stackexchange.com/2.2/questions

 ?${page ? 'page=${page}&' : ''}order=

 desc&sort=hot&tagged=reactjs&site=

122 Building a Server-Side-Rendered Community Feed Using Next.js

 stackoverflow');

 const result = await data.json();

 if (result) {

 setQuestions(result.items);

 setLoading(false);

 }

 }

 fetchData();

- }, []);

+ }, [page]);

 return (

 // ...

Note
In the preceding code, we've also added page to the dependency array of the
useEffect Hook to do the data fetching. When the application first renders,
the value for page is not set as the query string should still be retrieved from
the API. This is causing the API to be called twice, something that we won't
optimize now but will do later once we add SSR to the application.

You can test whether this is working by changing the query string for page to
different numbers, such as http://localhost:3000/questions?page=1
or http://localhost:3000/questions?page=3. To make the application
more user-friendly, let's add pagination buttons to the bottom of the page.

3.	 Create the Pagination component inside the components directory, which
holds two Link components from Next.js. The component will display a link to the
previous page if the current page number is above 1 and will also show a link to the
next page if more pages are available:

import styled from 'styled-components';

import Link from 'next/link';

const PaginationContainer = styled.div'

 display: flex;

Routing with Next.js 123

 justify-content: center;

';

const PaginationLink = styled.a'

 padding: 2%;

 margin: 1%;

 background: orange;

 cursor: pointer;

 color: white;

 text-decoration: none;

 border-radius: 5px;

';

function Pagination({ currentPage, hasMore }) {

 return (

 <PaginationContainer>

 <Link

 href={'?page=${parseInt(currentPage) - 1}'}>

 <PaginationLink>Previous</PaginationLink>

 </Link>

 <Link

 href={'?page=${parseInt(currentPage) + 1}'}>

 <PaginationLink>Next</PaginationLink>

 </Link>

 </PaginationContainer>

);

}

export default Pagination;

4.	 We need to import this new Pagination component inside the Questions page
component, but we also need to retrieve the value for hasMore from the Stack
Overflow API:

 import { useState, useEffect } from 'react';

 import Link from 'next/link';

 import { useRouter } from 'next/router';

124 Building a Server-Side-Rendered Community Feed Using Next.js

 import styled from 'styled-components';

 import Card from '../../components/Card';

+ import Pagination from

 '../../components/Pagination';

 // ...

 function Questions() {

 const [loading, setLoading] = useState(false);

 const [questions, setQuestions] = useState([]);

+ const [hasMore, setHasMore] = useState(false);

 const router = useRouter();

 const { page } = router.query;

 useEffect(() => {

 async function fetchData() {

 const data = await fetch(

 'https://api.stackexchange.com/2.2/questions

 ?${page ? 'page=${page}&' : ''}order=

 desc&sort=hot&tagged=reactjs&site=

 stackoverflow');

 const result = await data.json();

 if (result) {

 setQuestions(result.items);

+ setHasMore(result.has_more);

 setLoading(false);

 }

 }

 fetchData();

 }, [page]);

 // ...

Routing with Next.js 125

5.	 Also, the Pagination component must be rendered at the end of the Questions
component. Make sure to also pass the currentPage and hasMore props to the
component:

 // ...

 return (

 <QuestionsContainer>

 <h2>Questions</h2>

 {loading ? (

 Loading...

) : (

+ <>

 <div>

 {questions.map((question) => (

 // ...

))}

 </div>

+ <Pagination currentPage={parseInt(page) ||

 1} hasMore={hasMore} />

+ </>

)}

 </QuestionsContainer>

);

 }

 export default Questions;

6.	 Finally, we want the user to not be able to navigate to a page that doesn't exist. So, in
the Pagination component, make the following changes to disable the previous
or next button if there is no page available:

 // ...

 const PaginationLink = styled.a'

 padding: 2%;

 margin: 1%;

+ background: ${(props) =>

 (!props.disabled ? 'orange' : 'lightGrey')};

+ pointer-events: ${(props) =>

126 Building a Server-Side-Rendered Community Feed Using Next.js

 (!props.disabled ? 'all' : 'none')};

+ cursor: ${(props) =>

 (!props.disabled ? 'pointer' : 'not-allowed')};

 color: white;

 text-decoration: none;

 border-radius: 5px;

 ';

 function Pagination({ currentPage, hasMore }) {

 return (

 <PaginationContainer>

 <Link href={'?page=${parseInt(currentPage) - 1}'}>

- <PaginationLink>Previous</PaginationLink>

+ <PaginationLink disabled={currentPage <= 1}>

 Previous

 </PaginationLink>

 </Link>

 <Link href={'?page=${parseInt(currentPage) + 1}'}>

- <PaginationLink>Next</PaginationLink>

+ <PaginationLink disabled={!hasMore}>

 Next

 </PaginationLink>

 </Link>

 </PaginationContainer>

);

}

export default Pagination;

You have now implemented the parsing of the query string to dynamically change
the route for your application. With the addition of the Pagination component,
both the / and /questions routes will look something like this:

Enabling SSR 127

Figure 4.4 – The application after adding pagination

In the next section, you'll explore another thing you can do with React in combination
with Next.js, SRR, which enables you to serve your application from the server instead of
rendering it at runtime.

Enabling SSR
Using SSR can be helpful if you're building an application that needs to render very
quickly or when you want certain information to be loaded before the web page is
visible. Although most search engines are now able to render SPAs, this can still be an
improvement, for example, if you want users to share your page on social media or when
you want to enhance the performance of your application.

Fetching data server side with Next.js
There is no standard pattern to enable SSR for your React application, but luckily,
Next.js supports multiple ways to do data fetching, such as dynamically from the client,
server side on every request, or statically during build time. The first way is what we've
done in this chapter so far and in this section, we'll be requesting our data server side on
every request. For this, the Next.js getServerSideProps method will be used.

128 Building a Server-Side-Rendered Community Feed Using Next.js

Note
Next.js also offers the getStaticProps and getStaticPaths
methods to generate the content of your application statically at build time.
This is especially useful if your content doesn't change that often and you want
to serve your website as fast as possible.

At the beginning of this chapter, we already set up styled-components in such a way
that it will support SSR, so we just have to alter how we do data fetching to enable it for
the entire application. Therefore, we need to refactor our Questions component so that
it will get the data from the Stack Overflow API on the server side instead of dynamically
from the client:

1.	 In the Questions page component, we no longer have to import the useState
and useEffect Hooks to set up state management and data fetching, so these can
be removed. The useRouter Hook from Next.js can also be deleted:

- import { useState, useEffect } from 'react';

 import styled from 'styled-components';

 import Link from 'next/link';

- import { useRouter } from 'next/router';

 import Card from '../../components/Card';

 import Pagination from '../../components/Pagination';

 // ...

 function Questions() {

- const [loading, setLoading] = useState(false);

- const [questions, setQuestions] = useState([]);

- const [hasMore, setHasMore] = useState(false);

- const router = useRouter();

- const { page } = router.query;

- useEffect(() => {

- async function fetchData() {

- const data = await fetch(

 'https://api.stackexchange.com/2.2/questions

 ?${page ? 'page=${page}&' : ''}order=

Enabling SSR 129

 desc&sort=hot&tagged=reactjs&site

 =stackoverflow');

- const result = await data.json();

- if (result) {

- setQuestions(result.items);

- setHasMore(result.has_more);

- setLoading(false);

- }

- }

- fetchData();

- }, [page]);

 return (

 // ...

2.	 Instead, the getServerSideProps method needs to be used to do the data
fetching on the server side. As the data is then not retrieved by the client, we no
longer need to set local state variables or life cycles to keep track of changes in
the data. The data will already be there once we load our React application in the
browser:

 // ...

+ export async function getServerSideProps(context) {

+ const { page } = context.query;

+ const data = await fetch(

+ 'https://api.stackexchange.com/2.2/questions?${

+ page ? 'page=${page}&' : ''

+ }order=desc&sort=hot&tagged=reactjs&site=

 stackoverflow',

+);

+ const result = await data.json();

+ return {

+ props: {

130 Building a Server-Side-Rendered Community Feed Using Next.js

+ questions: result.items,

+ hasMore: result.has_more,

+ page: page || 1,

+ }

+ };

+ }

export default Questions;

In this method, the value for page is retrieved from a constant called context,
which is passed to getServerSideProps by Next.js and gets the page from
the router. Using this value, we can do the data fetching in the same way as we did
before in the life cycle. Instead of storing the data in local state variables, we're now
passing it as props to the Questions component by returning it from the method
we created.

3.	 Our Questions page component can use these props to render our list of
questions in the browser. As the data is retrieved from the server side before passing
the application to the client, we no longer have to set a loading indicator to wait for
the data to be fetched:

 // ...

- function Questions() {

+ function Questions({ questions, hasMore, page }) {

 return (

 <QuestionsContainer>

 <h2>Questions</h2>

- {loading ? (

- Loading...

-) : (

- <>

 <div>

 {questions &&

 questions.map((question) => (

 // ...

))}

 </div>

 <Pagination currentPage={parseInt(page) || 1}

Enabling SSR 131

 hasMore={hasMore} />

- </>

-)}

 </QuestionsContainer>

);

}

// ...

You can check this by going to http://localhost:3000/questions and
seeing that the questions are no longer being retrieved on the client side but on the
server side. In the Network tab, there's no request made to the Stack Overflow API,
while the questions are being rendered in the browsers. You can also verify this by
inspecting the page source:

Figure 4.5 – SSR application using Next.js

132 Building a Server-Side-Rendered Community Feed Using Next.js

However, the Questions page component is also imported in pages/
index.js and returned there. But opening our main / route at http://
localhost:3000/ doesn't show any questions. This is because this file doesn't
have a getServerSideProps to get the data. Therefore, we need to create this
method in pages/index.js as well and have it return the method that we can
import from pages/questions/index.js so that we don't have to duplicate
the data fetching logic. The Home component in this file can then get the data from
the props and pass it to the Questions component:

- import Questions from './questions';

+ import Questions, {

+ getServerSideProps as getServerSidePropsQuestions,

+ } from './questions';

+ export function getServerSideProps(context) {

+ return getServerSidePropsQuestions(context);

+ }

- export default function Home() {

- return <Questions />;

+ export default function Home(props) {

+ return <Questions {...props} />;

}

After making this change, both the / and /questions routes will have SSR enabled.
Another advantage of SSR is that your application can be discovered by search engines
more effectively. In the next part of this section, you'll add the tags that make your
application discoverable by these engines.

Adding head tags for SEO
Assuming you want your application to be indexed by search engines, you need to set
head tags for the crawlers to identify the content on your page. This is something you want
to do dynamically for each route, as each route will have different content.

Enabling SSR 133

Next.js can define the head tags in any component that is rendered by your application by
importing Head from next/head. If nested, the lowest definition of a Head component
in the component tree will be used. That's why we can create a Head component in our
Header component for all routes and in each of the components that is being rendered
on a route:

1.	 Import the Head component in the components/Header.js file, and create a
Head component that sets title and a meta description:

 import styled from 'styled-components';

+ import Head from 'next/head';

// ...

 const Header = () => (

+ <>

+ <Head>

+ <title>Community Feed</title>

+ <meta name='description' content='This is a

 Community Feed project build with React' />

+ </Head>

 <HeaderWrapper>

 <Title>Community Feed</Title>

 </HeaderWrapper>

+ </>

);

export default Header;

2.	 Also, create a Head component in pages/questions/index.js that only sets
a title for this route, so it will use the meta description of the Header component:

 import styled from 'styled-components';

 import Link from 'next/link';

+ import Head from 'next/head';

 import Card from '../../components/Card';

 import Pagination from

 '../../components/Pagination';

134 Building a Server-Side-Rendered Community Feed Using Next.js

 // ...

 function Questions({ questions, hasMore, page }) {

 return (

+ <>

+ <Head>

+ <title>Questions</title>

+ </Head>

 <QuestionsContainer>

 // ...

 </QuestionsContainer>

+ </>

);

 }

 // ...

3.	 Do the same for the pages/questions/[id].js file, where you can also take
the title of the question to make the page title more dynamic:

 import { useState, useEffect } from 'react';

 import { useRouter } from 'next/router';

+ import Head from 'next/head';

 import styled from 'styled-components';

 import Card from '../../components/Card';

 // ...

 function QuestionDetail() {

 // ...

 return (

 <QuestionDetailContainer>

 {loading ? (

 Loading...

) : (

+ <>

+ <Head>

+ <title>{question.title}</title>

Summary 135

+ </Head>

 <Card

 title={question.title}

 views={question.view_count}

 answers={question.answer_count}

 />

+ </>

)}

 </QuestionDetailContainer>

);

 }

 export default QuestionDetail;

These head tags will now be used when you're running your application on both the server
and the client side, making your application more suitable for being indexed by search
engines, which improves your SEO.

Summary
In this chapter, you've learned how to use Next.js as an alternative to Create React App.
Next.js is a framework to create React applications, without having to add configuration
for compiling and building your code or to handle features such as routing and data
fetching. The project you created in this chapter supports SSR, as this is built in by Next.js.
Also, we've added dynamic head tags to the application for SEO purposes.

After completing this chapter, you must already feel like an expert with React! The
next chapter will take your skill to the next level as you'll learn how to handle state
management using the context API. With the context API, you can share the state and
data between multiple components in your application, no matter whether they're direct
children of the parent component or not.

Further reading
For more information on Next.js, you can refer to https://nextjs.org/docs/.

https://nextjs.org/docs/

5
Building a Personal

Shopping List
Application Using

Context and Hooks
State management is a very important part of modern web and mobile applications and
is something that React is very good at. Handling state management in React applications
can be quite confusing, as there are multiple ways you can handle the current state of
your application. The projects you created in the first four chapters of this book didn't
focus on state management too much, something that will be investigated much more in
this chapter.

This chapter will show how you can handle state management in React by creating an
application state that is accessible from every component. Before React v16.3, you needed
third-party packages to handle state in React, but with the renewed version of the context
API, this is no longer mandatory. Also, with the release of React Hooks, more ways to
mutate this Context were introduced. Using an example application, the methods for
handling state management for your application are demonstrated.

138 Building a Personal Shopping List Application Using Context and Hooks

The following topics will be covered in this chapter:

•	 Using the context API for state management

•	 Mutating Context with Hooks

•	 Code splitting with React Suspense

Project overview
In this chapter, we will build a personal shopping list by adding state management using
Context and Hooks. We will advance upon a boilerplate application that has been created
with Create React App and has declarative routing using react-router. Also, code
splitting of the bundle is added with React Suspense.

The build time is 2.5 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can
find on GitHub: https://github.com/PacktPublishing/React-Projects-
Second-Edition/tree/main/Chapter05-initial. The complete source code
can also be found on GitHub: https://github.com/PacktPublishing/React-
Projects-Second-Edition/tree/main/Chapter05.

After downloading the initial application, make sure that you run npm install from
the project's root directory. This project is created using Create React App and installs
the react, react-dom, react-scripts, styled-components, and react-
router-dom packages, which you've already seen in previous chapters. After finishing
the installation process, you can run npm start from the same tab in Terminal and view
the project in your browser (http://localhost:3000).

The initial application for this section is created with Create React App and has routing
and data fetching already implemented. When you open the application, a screen
displaying a header, a navigation bar, and two lists are being rendered. If, for example, you
click on the first list that is displayed here, a new page will open that displays the items
of this list. On this page, you can click on the Add Item button in the top-right corner to
open a new page, which has a form to add a new list and looks like this:

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter05-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter05-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter05

Getting started 139

Figure 5.1 – The initial application

This form is rendered by the ListForm component and has no functionality yet, as you'll
add this later on. When you click on the left button, it redirects you to the previously
visited page, using the navigate method from react-router-dom.

Note
When you try to submit the form to either add a new list or add a new item to a
list, nothing happens yet. The functionality of these forms will be added in this
section later on, for which you'll use the Context API and React Hooks.

The project is structured in the same manner as the applications you've created before.
A distinction is made, however, between reusable function components in the
components directory and components that represent a route in the pages directory.
The page components are using the useDataFetching Hook, which we saw earlier in
Chapter 3, Building a Dynamic Project Management Board, which adds data fetching.

140 Building a Personal Shopping List Application Using Context and Hooks

The following is an overview of the complete structure of the project:

chapter-5-initial

 |- /node_modules

 |- /public

 |- /src

 |- /components

 |- /Button

 |- Button.js

 |- /FormItem

 |- FormItem.js

 |- /Header

 |- Header.js

 |- /NavBar

 |- NavBar.js

 |- /ListItem

 |- ListItem.js

 |- /hooks

 |- useDataFetching.js

 |- /pages

 |- ListDetail.js

 |- ListForm.js

 |- Lists.js

 |- App.js

 |- index.js

 package.json

The entry point of this application is the src/index.js file that renders the App
component, which sets up routing using a Router component from react-router-
dom. The App component contains a Header component and a Switch router
component that defines four routes. These routes are as follows:

•	 /: Renders Lists, with an overview of all of the lists

•	 /list/:listId: Renders ListDetail, with an overview of all items from a
specific list

•	 /list/:listId/new: Renders ListForm, with a form to add new items to a
specific list

Personal shopping list 141

The data is fetched from a mock server that was created using the free service, My JSON
Server, which creates a server from the db.json file in the root directory of your project
in GitHub. This file consists of a JSON object that has two fields, items and lists,
which creates multiple endpoints on a mock server. The ones you'll be using in this
chapter are as follows:

•	 https://my-json-server.typicode.com/PacktPublishing/React-
Projects-Second-Edition/items

•	 https://my-json-server.typicode.com/PacktPublishing/React-
Projects-Second-Edition/lists

Note
The db.json file must be present in the master branch (or default branch) of
your GitHub repository for My JSON Server to work. Otherwise, you'll receive
a 404 Not Found message when trying to request the API endpoints.

Personal shopping list
In this section, you'll build a personal shopping list application that has state management
using Context and Hooks. With this application, you can create shopping lists that you
can add items to, along with their quantities and prices. The starting point of this section
is an initial application that has routing and local state management already enabled.

Using the Context API for state management
State management is very important, as the current state of the application holds data that
is valuable to the user. In previous chapters, you've already used local state management
by using useState and useEffect Hooks. This pattern is very useful when the data
in the state is only of importance to the components you're setting the state in. As passing
down the state as props through several components can become confusing, you'd need a
way to access props throughout your application even when you're not specifically passing
them as props. For this, you can use the Context API from React, which is also used by
packages you've already used in previous chapters such as styled-components and
react-router-dom.

To share state across multiple components, a React feature called Context will be explored,
starting in the first part of this section.

https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/items
https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/items
https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/lists
https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/lists

142 Building a Personal Shopping List Application Using Context and Hooks

Creating Context
When you want to add Context to your React application, you can do this by creating
a new Context with the createContext method from React. This creates a Context
object that consists of two React components, called Provider and Consumer. The
Provider is where the initial (and subsequently current) value of the Context is placed,
which can be accessed by components that are present within the Consumer.

This is done in the App component in src/App.js, as you want the Context for the lists
to be available in every component that is rendered by Route:

1.	 Let's start by creating a Context for the lists and making it exportable so that
the list data can be used everywhere. For this, you can create a new file called
ListsContext.js inside a new directory, src/context. In this file, you can
add the following code:

import { createContext } from 'react';

import useDataFetching from

 '../hooks/useDataFetching';

export const ListsContext = createContext();

export const ListsContextProvider = ({ children }) => {

 const [loading, error, data] = useDataFetching(

 'https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-Edition/

 lists',

);

 return (

 <ListsContext.Provider value=

 {{ lists: data, loading, error }}>

 {children}

 </ListsContext.Provider>

);

};

export default ListsContext;

Personal shopping list 143

The previous code creates a Provider based on a Context object that is passed as a
prop and sets a value based on the return from the useDataFetching Hook that
is fetching all of the lists. Using the children prop, all of the components that will
be wrapped inside the ListsContextProvider component can retrieve the data
for the value from a Consumer.

2.	 This ListsContextProvider component can be imported inside your App
component to wrap the Router component that is wrapping all the routes for our
application:

 import styled, { createGlobalStyle } from

 'styled-components';

 import { Route, Routes, BrowserRouter } from

 'react-router-dom';

+ import { ListsContextProvider } from

 './context/ListsContext';

 // ...

 function App() {

 return (

 <>

 <GlobalStyle />

 <AppWrapper>

 <BrowserRouter>

 <Header />

+ <ListsContextProvider>

 <Routes>

 // ...

 </Routes>

+ </ListsContextProvider>

 </BrowserRouter>

 </AppWrapper>

 </>

);

 }

 export default App;

144 Building a Personal Shopping List Application Using Context and Hooks

3.	 This way, you're now able to consume the value from the Provider
for ListsContext, from all the components wrapped within
ListsContextProvider. In the Lists component, this data can be retrieved
using the useContext Hook from React by passing the ListsContext object to
it. This data can then be used to render the lists, and the useDataFetching Hook
can be removed from src/pages/Lists.js:

+ import { useContext } from 'react';

 import styled from 'styled-components';

 import { Link, useNavigate } from

 'react-router-dom';

- import useDataFetching from

 '../hooks/useDataFetching';

 import NavBar from '../components/NavBar/NavBar';

+ import ListsContext from '../context/ListsContext';

 // ...

 const Lists = () => {

 let navigate = useNavigate();

- const [loading, error, data] =

 useDataFetching('https://my-json-server.

 typicode.com/PacktPublishing/React-Projects-

 Second-Edition/lists');

+ const { loading, error, lists } =

 useContext(ListsContext);

 return (

 <>

 {navigate && <NavBar title='Your Lists' />}

 <ListWrapper>

 {loading || error ? (

 {error || 'Loading...'}

) : (

- data.map((list) => (

+ lists.map((list) => (

Personal shopping list 145

 <ListLink key={list.id}

 to={`list/${list.id}`}>

 // ...

Now that you've removed the useDataFetching Hook from Lists, no requests to the
API are sent directly from this component anymore. The data for the lists is instead fetched
from ListsContextProvider and is passed by ListsContext, which is used by
the useContext Hook in Lists. If you open the application in the browser by going to
http://localhost:3000/, you can see the lists are being rendered just as before.

In the next section, you'll also add a Context object for the items, so the items are also
available to all of the components within the Routes component from react-router.

Nesting Context
Just as for the list data, the item data could also be stored in Context and passed to the
components that need this data. That way, data is no longer fetched from any of the
rendered components but from the Context only:

1.	 Again, start by creating a new file where both a Context and Provider are created.
This time, it's called ItemsContext.js, which can also be added to the src/
context directory:

import { createContext } from 'react';

import useDataFetching from

 '../hooks/useDataFetching';

export const ItemsContext = createContext();

export const ItemsContextProvider = ({ children }) => {

 const [loading, error, data] = useDataFetching(

 'https://my-json-server.typicode.com/

 PacktPublishing/React-Projects-Second-

 Edition/items',

);

 return (

 <ItemsContext.Provider value=

146 Building a Personal Shopping List Application Using Context and Hooks

 {{ items: data, loading, error }}>

 {children}

 </ItemsContext.Provider>

);

};

export default ItemsContext;

2.	 Next, import this new Context and Provider in src/App.js, where you can nest
this below the ListsContextProvider component:

 // ...

 import { ListsContextProvider } from

 './context/ListsContext';

+ import { ItemsContextProvider } from

 './context/ItemsContext';

 // ...

 function App() {

 return (

 <>

 <GlobalStyle />

 <AppWrapper>

 <BrowserRouter>

 <Header />

 <ListsContextProvider>

+ <ItemsContextProvider>

 <Routes>

 // ...

 </Routes>

+ </ItemsContextProvider>

 </ListsContextProvider>

 </BrowserRouter>

 </AppWrapper>

 </>

);

Personal shopping list 147

 }

 export default App;

3.	 The ListDetail component can now get the item from ItemsContext,
meaning we no longer have to use the useDataFetching Hook in this
component. To accomplish this, you need to make the following changes to src/
pages/ListDetail.js:

- import { useState, useEffect } from 'react';

+ import { useState, useEffect, useContext } from

 'react';

 import styled from 'styled-components';

 import { useNavigate, useParams } from

 'react-router-dom';

- import useDataFetching from

 '../hooks/useDataFetching';

 import NavBar from '../components/NavBar/NavBar';

 import ListItem from

 '../components/ListItem/ListItem';

+ import ItemsContext from '../context/ItemsContext';

 // ...

 function ListDetail() {

 let navigate = useNavigate();

 const { listId } = useParams();

- const [loading, error, data] =

 useDataFetching('https://my-json-server.

 typicode.com/PacktPublishing/React-Projects-

 Second-Edition/items/');

+ const { loading, error, items: data } =

 useContext(ItemsContext);

 // ...

148 Building a Personal Shopping List Application Using Context and Hooks

All of the data fetching is now no longer by the List and Lists components. By nesting
these Context Providers, the return values can be consumed by multiple components. But
this still isn't ideal, as you're now loading all of the lists and all of the items when starting
your application.

The downside of this approach is that once we open a detail page for a list, it will retrieve
all items, even if they are not for this list. In the next section, you'll see how to get only the
data you need by combining Context with custom Hooks.

Mutating Context with Hooks
There are multiple ways in which you can get data conditionally from the Context; one of
these is placing the data from the Context in the local state. That could be a solution for a
smaller application, but can be inefficient for larger applications, as you'd still need to pass
this state down your component tree. Another solution is to use React Hooks to create a
function that is added to the value of your Context and can be invoked from any of the
components that are nested in this Context. Also, this method of getting the data lets you
efficiently load only the data that you'd need.

How this can be used together with React life cycles and state management using Hooks is
demonstrated in the first part of this section.

Using life cycles in functional components
Previously, we used the useDataFetching Hook to do the data fetching for us, but this
doesn't let us control when the data will be fetched exactly. From the components that are
consuming our Context data, we want to be able to initiate the data fetching. Therefore we
need to add life cycles to them, which invoke a function to do the data fetching inside our
Context components. Follow these steps to implement this:

1.	 The first step in achieving this is by adding logic to do data fetching in the src/
context/ItemsContext.js file. This logic will replace the usage of the
useDataFetching Hook, starting with adding local state variables for the data
fetching state:

- import { createContext } from 'react';

- import useDataFetching from

 '../hooks/useDataFetching';

+ import { createContext, useCallback, useState } from

 'react';

Mutating Context with Hooks 149

 export const ItemsContext = createContext();

 export const ItemsContextProvider = ({ children })

 => {

- const [loading, error, data] =

 useDataFetching('https://my-json-server.

 typicode.com/PacktPublishing/React-Projects-

 Second-Edition/items);

+ const [loading, setLoading] = useState(true);

+ const [items, setItems] = useState([]);

+ const [error, setError] = useState('');

 // ...

2.	 After this, we can add a function called fetchItems that we pass to
ItemsContextProvider, meaning it will be added to the Context. This
function is wrapped in a useCallback Hook to prevent unneeded (re)renders
of your component:

 // ...

 const [error, setError] = useState('');

+ const fetchItems = useCallback(async (listId) => {

+ try {

+ const data = await fetch(`https://my-json-

 server.typicode.com/PacktPublishing/

 React-Projects-Second-Edition/lists/

 ${listId}/items`);

+ const result = await data.json();

+ if (result) {

+ setItems(result);

+ setLoading(false);

+ }

150 Building a Personal Shopping List Application Using Context and Hooks

+ } catch (e) {

+ setLoading(false);

+ setError(e.message);

+ }

+ }, [])

 return (

- <ItemsContext.Provider value={{ data: items,

 loading, error }}>

+ <ItemsContext.Provider value={{ items, loading,

 error, fetchItems }}>

 // ...

3.	 With this function in place, the next step would be to invoke it with a value for
listId from the ListDetail component. This would mean that we no longer
retrieve all the items once we load this component, but use the params from the
URL to determine what data should be fetched and added to the Context:

- import { useState, useEffect, useContext } from

 'react';

+ import { useEffect, useContext } from 'react';

 import styled from 'styled-components';

 // ...

 function ListDetail() {

 let navigate = useNavigate();

 const { listId } = useParams();

- const { loading, error, items: data } =

 useContext(ItemsContext);

+ const { loading, error, items, fetchItems } =

 useContext(ItemsContext);

- const [items, setItems] = useState([]);

- useEffect(() => {

Mutating Context with Hooks 151

- data && listId && setItems(data.filter((item) =>

 item.listId === parseInt(listId)));

- }, [data, listId]);

+ useEffect(() => {

+ listId && !items.length && fetchItems(listId);

+ }, [fetchItems, items, listId]);

 return (

 // ...

The preceding useEffect Hooks call the fetchItems function when there's a listId
present in the URL of the page, and when the value for items is an empty array. This
prevents us from fetching the items again if they already exist in ItemsContext.

By creating a function to do data fetching in our Context, we can now control when
the data should be fetched, so there will no longer be unnecessary requests to the API.
But other Hooks can also directly pass data to the Provider without having to duplicate
useState Hooks. This will be demonstrated in the next part of this section.

Using advanced state with useReducer
Another way to use actions for adding data to the Provider is by using a pattern similar
to Flux, which was introduced by Facebook. The Flux pattern describes a data flow where
actions are being dispatched that retrieve data from a store and return it to the view. This
would mean that actions need to be described somewhere; there should be a central place
where data is stored and this data can be read by the view. To accomplish this pattern with
the Context API, you can use another Hook, called useReducer. This Hook can be used
to return data not from a local state, but from any data variable:

1.	 Just as with the useState Hook, the useReducer Hook needs to be added to the
component that is using it. useReducer will take an initial state and a function
that determines which data should be returned. This initial value needs to be added
to the src/context/ListsContext.js file before adding the Hook:

- import { createContext } from 'react';

+ import { createContext, useCallback, useReducer }

 from 'react';

 const ListsContext = createContext();

152 Building a Personal Shopping List Application Using Context and Hooks

+ const initialState = {

+ lists: [],

+ loading: true,

+ error: '',

+ };

 // ...

2.	 Next to an initial value, the useReducer Hook also takes a function that's called
reducer. This reducer function should also be created and is a function that
updates initialState, which was passed and returns the current value, based
on the action that was sent to it. If the action that was dispatched doesn't match any
of those defined in reducer, the reducer will just return the current value without
any changes:

 import { createContext, useReducer } from 'react';

 const ListsContext = createContext();

 // ...

+ const reducer = (state, action) => {

+ switch (action.type) {

+ case 'GET_LISTS_SUCCESS':

+ return {

+ ...state,

+ lists: action.payload,

+ loading: false,

+ };

+ case 'GET_LISTS_ERROR':

+ return {

+ ...state,

+ lists: [],

+ loading: false,

+ error: action.payload,

+ };

+ default:

+ return state;

Mutating Context with Hooks 153

+ }

+ };

 export const ListsContextProvider = ({ children }) => {

 // ...

3.	 The two parameters for the useReducer Hook are now added to the file, so you
need to add the actual Hook and pass initialState and reducer to it. The
useDataFetching Hook can be removed, as this will be replaced with a new
function that has data fetching logic:

 // ...

 const ListsContextProvider = ({ children }) => {

- const [loading, error, data] =

 useDataFetching('https://my-json-server.

 typicode.com/PacktPublishing/React-Projects-

 Second-Edition/lists');

+ const [state, dispatch] =

 useReducer(reducer, initialState);

 // ...

4.	 As you can see, reducer changes the value it returns when the GET_LISTS_
SUCCESS or GET_LISTS_ERROR action is sent to it. Before it was mentioned,
you can call this reducer by using the dispatch function that was returned by
the useReducer Hook. However, as you also have to deal with the asynchronous
fetching of the data, you can't invoke this function directly. Instead, you need
to create an async/await function that calls the fetchData function and
dispatches the correct action afterward:

 // ...

 export const ListsContextProvider = ({ children })

 => {

 const [state, dispatch] =

 useReducer(reducer, initialState);

+ const fetchLists = useCallback(async () => {

+ try {

154 Building a Personal Shopping List Application Using Context and Hooks

+ const data = await fetch(`https://my-json-

 server.typicode.com/PacktPublishing/React-

 Projects-Second-Edition/lists`);

+ const result = await data.json();

+ if (result) {

+ dispatch({ type: 'GET_LISTS_SUCCESS',

 payload: result });

+ }

+ } catch (e) {

+ dispatch({ type: 'GET_LISTS_ERROR',

 payload: e.message });

+ }

+ }, [])

 return (

 // ...

5.	 The preceding fetchLists function calls the API and if there is a result, the GET_
LISTS_SUCCESS action will be dispatched to the reducer using the dispatch
function from the useReducer Hook. If not, the GET_LISTS_ERROR action will
be dispatched, which returns an error message.

6.	 The values from the state and the fetchLists function must be added to the
Provider so that we can access them from other components through the Context:

 // ...

 return (

- <ListsContext.Provider value=

 {{ loading, error, data: lists }}>

+ <ListsContext.Provider value=

 {{ ...state, fetchLists }}>

 {children}

 </ListsContext.Provider>

);

 };

 export default ListsContext;

Mutating Context with Hooks 155

7.	 This getLists function can now be invoked from the useEffect Hook in the
component where the lists are displayed, the Lists component, on the first render.
The lists should only be retrieved when there aren't any lists available yet:

- import { useContext } from 'react';

+ import { useContext, useEffect } from 'react';

 import styled from 'styled-components';

 import { Link, useNavigate } from

 'react-router-dom';

 import NavBar from '../components/NavBar/NavBar';

 import ListsContext from '../context/ListsContext';

 // ...

 function Lists() {

 let navigate = useNavigate();

- const { loading, error, lists } =

 useContext(ListsContext);

+ const { loading, error, lists, fetchLists } =

 useContext(ListsContext);

+ useEffect(() => {

+ !lists.length && fetchLists()

+ }, [fetchLists, lists])

 return (

 // ...

If you now visit the project in the browser again, you can see the data from the lists is
loaded just as before. The big difference is that the data is fetched using a Flux pattern,
meaning this can be extended to fetch the data in other instances as well. The same can be
done for ItemsContext as well, in the src/context/ItemsContext.js file:

1.	 First, import the useReducer Hook, and add the initial value for the items and
the reducer function that we use with this Hook later:

- import { createContext, useState } from 'react';

+ import { createContext, useReducer } from 'react';

156 Building a Personal Shopping List Application Using Context and Hooks

 export const ItemsContext = createContext();

+ const initialState = {

+ items: [],

+ loading: true,

+ error: '',

+ };

+ const reducer = (state, action) => {

+ switch (action.type) {

+ case 'GET_ITEMS_SUCCESS':

+ return {

+ ...state,

+ items: action.payload,

+ loading: false,

+ };

+ case 'GET_ITEMS_ERROR':

+ return {

+ ...state,

+ items: [],

+ loading: false,

+ error: action.payload,

+ };

+ default:

+ return state;

+ }

+ };

 export const ItemsContextProvider =

 ({ children }) => {

 // ...

Mutating Context with Hooks 157

2.	 After this, you can add the initial state and reducer to the useReducer Hook. The
fetchItems function that already exists in this file must be changed so that it will
use the dispatch function from useReducer instead of the update functions
from the useState Hooks:

 // ...

 export const ItemsContextProvider =

 ({ children }) => {

- const [loading, setLoading] = useState(true);

- const [items, setItems] = useState([]);

- const [error, setError] = useState('');

+ const [state, dispatch] =

 useReducer(reducer, initialState);

 const fetchItems = useCallback(async (listId) => {

 try {

 const data = await fetch(`https://my-json-

 server.typicode.com/PacktPublishing/React-

 Projects-Second-Edition/lists/${listId}/

 items`);

 const result = await data.json();

 if (result) {

- setItems(result);

- setLoading(false);

+ dispatch({ type: 'GET_ITEMS_SUCCESS',

 payload: result });

 }

 } catch (e) {

- setLoading(false);

- setError(e.message);

+ dispatch({ type: 'GET_ITEMS_ERROR',

 payload: e.message });

 }

 }, [])

158 Building a Personal Shopping List Application Using Context and Hooks

 return (

 // ...

3.	 Also, add the state and the fetchItems function to ListsContextProvider:

 // ...

 return (

- <ItemsContext.Provider value={{ items, loading,

 error, fetchItems }}>

+ <ItemsContext.Provider value=

 {{ ...state, fetchItems }}>

 {children}

 </ItemsContext.Provider>

);

 };

 export default ItemsContext;

If you were to open a specific list on the /lists/:listId route, for example, http://
localhost:3000/list/1, you would see that nothing has changed and that the items
for the list are still displayed.

You might notice that the title of the list isn't displayed here. The information for the lists
is only fetched when the Lists component is first rendered, so you'd need to create a
new function to always fetch the information for the list that you're currently displaying in
the List component:

1.	 In the src/context/ListsContextProvider.js file, you need to extend
initialState to also have a field called list:

 import { createContext, useReducer } from 'react';

 export const ListsContext = createContext();

 const initialState = {

 lists: [],

+ list: {},

 loading: true,

 error: '',

 };

Mutating Context with Hooks 159

 const reducer = (state, action) => {

 // ...

2.	 In reducer, you also now have to check for two new actions that either add the
data about a list to the context or add an error message:

 // ...

 const reducer = (state, action) => {

 switch (action.type) {

 case 'GET_LISTS_SUCCESS':

 // ...

 case 'GET_LISTS_ERROR':

 // ...

+ case 'GET_LIST_SUCCESS':

+ return {

+ ...state,

+ list: action.payload,

+ loading: false,

+ };

+ case 'GET_LIST_ERROR':

+ return {

+ ...state,

+ list: {},

+ loading: false,

+ error: action.payload,

+ };

 default:

 return state;

 }

 };

 export const ListsContextProvider =

 ({ children }) => {

 // ...

160 Building a Personal Shopping List Application Using Context and Hooks

3.	 These actions will be dispatched from a new fetchList function that takes the
specific ID of a list to call the API. If successful, the GET_LIST_SUCCESS action
will be dispatched; otherwise, the GET_LIST_ERROR action is dispatched. Also,
pass the function to the Provider so that it can be used from other components:

 // ...

+ const fetchList = useCallback(async (listId) => {

+ try {

+ const data = await fetch(`https://my-json-

 server.typicode.com/PacktPublishing/React-

 Projects-Second-Edition/lists/${listId}`);

+ const result = await data.json();

+ if (result) {

+ dispatch({ type: 'GET_LIST_SUCCESS',

 payload: result });

+ }

+ } catch (e) {

+ dispatch({ type: 'GET_LIST_ERROR',

 payload: e.message });

+ }

+ }, [])

 return (

- <ListsContext.Provider value=

 {{ ...state, fetchLists }}>

+ <ListsContext.Provider value=

 {{ ...state, fetchLists, fetchList }}>

 {children}

 </ListsContext.Provider>

);

 };

 export default ListsContext;

Mutating Context with Hooks 161

4.	 And, in the ListDetail component, we can get the list data from
ListsContext by calling the fetchList function in a useEffect Hook. Also,
pass it as a prop to the NavBar component so that it will be displayed:

 import { useEffect, useCallback, useContext } from

 'react';

 import styled from 'styled-components';

 import { useNavigate, useParams } from

 'react-router-dom';

 import NavBar from '../components/NavBar/NavBar';

 import ListItem from

 '../components/ListItem/ListItem';

 import ItemsContext from '../context/ItemsContext';

+ import ListsContext from '../context/ListsContext';

 // ...

 function ListDetail() {

 let navigate = useNavigate();

 const { listId } = useParams();

 const { loading, error, items, fetchItems } =

 useContext(ItemsContext);

+ const { list, fetchList } =

 useContext(ListsContext);

 useEffect(() => {

 listId && !items.length && fetchItems(listId);

 }, [fetchItems, items, listId]);

+ useEffect(() => {

+ listId && fetchList(listId);

+ }, [fetchList, listId]);

 return (

 <>

 {navigate && (

162 Building a Personal Shopping List Application Using Context and Hooks

 <NavBar

 goBack={() => navigate(-1)}

 openForm={() =>

 navigate(`/list/${listId}/new`)}

+ title={list && list.title}

 />

)}

 // ...

In the previous code block, we're calling the fetchList function from a different
useEffect Hook than the fetchItems function. This is a good way to separate
concerns to keep our code clean and concise.

All of the data in your application is now being loaded using the Providers, which means
it's now detached from the views. Also, the useDataFetching Hook is completely
removed, making your application structure more readable.

Not only can you use the context API with this pattern to make data available to many
components, but you can also mutate the data. How to mutate this data will be shown in
the next section.

Mutating data in the Provider
Not only can you retrieve data using this Flux pattern, but you can also use it to update
data. The pattern remains the same: you dispatch an action that would trigger the request
to the server and, based on the outcome, the reducer will mutate the data with this result.
Depending on whether or not it was successful, you could display a success message or an
error message.

The code already has a form for adding a new item to a list—something that is not
working yet. Let's create the mechanism to add items by updating the Provider for items:

1.	 The first step is to add new actions to the reducer in ItemsContext, which will be
dispatched once we try to add a new item:

 // ...

 const reducer = (state, action) => {

 switch (action.type) {

 // ...

+ case 'ADD_ITEM_SUCCESS':

+ return {

Mutating data in the Provider 163

+ ...state,

+ items: [...state.items, action.payload],

+ loading: false,

+ };

 default:

 return state;

 }

 };

 export const ItemsContextProvider =

 ({ children }) => {

 // ...

2.	 We also need to add a new function that can handle POST requests, as this function
should also set the method and a body when handling the fetch request. You can
create this function in the preceding file as well, and pass it to the Provider:

 // ...

+ const addItem = useCallback(async ({ listId, title,

 quantity, price }) => {

+ const itemId = Math.floor(Math.random() * 100);

+ try {

+ const data = await fetch(`https://my-json-

 server.typicode.com/PacktPublishing/React-

 Projects-Second-Edition/items`,

+ {

+ method: 'POST',

+ body: JSON.stringify({

+ id: itemId,

+ listId,

+ title,

+ quantity,

+ price,

+ }),

+ },

+);

164 Building a Personal Shopping List Application Using Context and Hooks

+ const result = await data.json();

+ if (result) {

+ dispatch({

+ type: 'ADD_ITEM_SUCCESS',

+ payload: {

+ id: itemId,

+ listId,

+ title,

+ quantity,

+ price,

+ },

+ });

+ }

+ } catch {}

+ }, [])

 return (

- <ItemsContext.Provider value=

 {{ ...state, fetchItems }}>

+ <ItemsContext.Provider value=

 {{ ...state, fetchItems, addItem }}>

 // ...

Note
The mock API from My JSON Server doesn't persist data once it is added,
updated, or deleted with a request. However, you can see whether the request
was successful by checking the request in the Network tab in the Developer
Tools section of your browser. That's why the input content is spread over the
value for items, so this data is available from the Consumer.

Mutating data in the Provider 165

3.	 As the function to add a new item to a list is now available from the Provider, the
ListForm component in src/pages/ListForm.js is now able to use the
addItem function, which will dispatch the action that will call the API and add
the item to the state. However, the values of the input fields in the form need to
be determined first. Therefore, the input fields need to be controlled components,
meaning their value is controlled by the local state that encapsulates the value.
Therefore we need to import the useState Hook and also a useContext Hook,
which we'll use later to get values from the Context:

+ import { useState, useContext } from 'react';

 import styled from 'styled-components';

 import { useNavigate, useParams } from

 'react-router-dom';

 import NavBar from '../components/NavBar/NavBar';

 import FormItem from

 '../components/FormItem/FormItem';

 import Button from '../components/Button/Button';

+ import ItemsContext from '../context/ItemsContext';

 // ...

 function ListForm() {

 let navigate = useNavigate();

 const { listId } = useParams();

+ const [title, setTitle] = useState('');

+ const [quantity, setQuantity] = useState('');

+ const [price, setPrice] = useState('');

 return (

 // ...

For this, we used the useState Hook for every state value that we created.

166 Building a Personal Shopping List Application Using Context and Hooks

4.	 The local state values and the function that triggers an update of the local state
values must be set as a prop on the FormItem components:

 // ...

 return (

 <>

 {navigate && <NavBar goBack={() =>

 navigate(-1)} title={`Add Item`} />}

 <FormWrapper>

 <form>

 <FormItem

 id='title'

 label='Title'

 placeholder='Insert title'

+ value={title}

+ handleOnChange={(e) =>

 setTitle(e.currentTarget.value)}

 />

 <FormItem

 id='quantity'

 label='Quantity'

 type='number'

 placeholder='0'

+ value={quantity}

+ handleOnChange={(e) =>

 setQuantity(e.currentTarget.value)}

 />

 <FormItem

 id='price'

 label='Price'

 type='number'

 placeholder='0.00'

+ value={price}

+ handleOnChange={(e) =>

 setPrice(e.currentTarget.value)}

 />

Mutating data in the Provider 167

 <SubmitButton>Add Item</SubmitButton>

 </form>

 </FormWrapper>

 </>

);

 };

 export default Form;

5.	 The last thing you need to do now is to add a function that will be dispatched when
the form is submitted by clicking the submit button. This function takes value for
the local state, adds information about the item, and uses this to call the addItem
function. After this function is called, the navigate function from useNavigate is
called to go back to the overview for this list:

 // ...

+ const { addItem } = useContext(ItemsContext);

+ function onSubmit(e) {

+ e.preventDefault();

+ if (title && quantity && price) {

+ addItem({

+ title,

+ quantity,

+ price,

+ listId,

+ });

+ }

+ navigate(`/list/${listId}`);

+ }

 return (

 <>

 {navigate && <NavBar goBack={() =>

 navigate(-1)} title={`Add Item`} />}

 <FormWrapper>

168 Building a Personal Shopping List Application Using Context and Hooks

- <form>

+ <form onSubmit={onSubmit}>

 // ...

When you now submit the form, a POST request to the mock server will be sent. You'll be
sent back to the previous page where you can see the result. If successful, the GET_LIST_
SUCCESS action was dispatched and the item you inserted was added to the list.

So far, the information from the Context has been used only separately by using the
Providers, but this can also be combined into one application Context, as shown in the
next section.

Creating an application Context
If you look at the current structure of the routes in your App component, you can imagine
that this will get messy if you add more Providers and Consumers to your application.
State management packages such as Redux tend to have an application state where all
of the data for the application is stored. When using Context, it's possible to create an
application Context that can be accessed using the useContext Hook. This Hook acts as
a Consumer and can retrieve values from the Provider of the Context that was passed to it.
Let's refactor the current application to have an application Context:

1.	 Start by creating a file called AppContext.js in the src/context
directory. This file will import both ListsContextProvider and
ItemsContextProvider, nest them, and have them wrap any component that
will be passed to it as a children prop:

import { ListsContextProvider } from './ListsContext';

import { ItemsContextProvider } from './ItemsContext';

const AppContext = ({ children }) => {

 return (

 <ListsContextProvider>

 <ItemsContextProvider>{children}

 </ItemsContextProvider>

 </ListsContextProvider>

);

};

export default AppContext;

Creating an application Context 169

2.	 In the src/App.js file, we can now import this AppContext file in favor of
the Providers for the lists and items and replace ListsContextProvider and
ItemsContextProvider with AppContext:

 import styled, { createGlobalStyle } from

 'styled-components';

 import { Route, Routes, BrowserRouter } from

 'react-router-dom';

 import Header from './components/Header/Header';

 import Lists from './pages/Lists';

 import ListDetail from './pages/ListDetail';

 import ListForm from './pages/ListForm';

- import { ListsContextProvider } from

 './context/ListsContext';

- import { ItemsContextProvider } from

 './context/ItemsContext';

+ import AppContext from './context/AppContext';

 // ...

 function App() {

 return (

 <>

 <GlobalStyle />

 <AppWrapper>

 <BrowserRouter>

 <Header />

+ <AppContext>

- <ListsContextProvider>

- <ItemsContextProvider>

 <Routes>

 // ...

 </Routes>

- </ItemsContextProvider>

- </ListsContextProvider>

+ </AppContext>

 </BrowserRouter>

170 Building a Personal Shopping List Application Using Context and Hooks

 </AppWrapper>

 </>

);

 }

 export default App;

The AppContext component can be extended with all of the Context objects that you
might want to add in the future. Our application now has a much cleaner structure, while
the data is still being retrieved by the Providers.

Code splitting with React Suspense
So far, we've focused mostly on adding new features, such as routing or state management,
to our application. But not much focus has been devoted to making our application more
performant, something that we can do with code splitting. A React feature called Suspense
can be used for code splitting, which means you split the compiled code (your bundle)
into smaller chunks. This will prevent the browser from downloading the entire bundle
with your compiled code at once, and instead load your bundle in chunks depending on
the components that are rendered by the browser.

Note
In the previous chapter, we used Next.js instead of Create React App to create
our React application, which has code splitting enabled by default.

Suspense lets your components wait until the component you're importing is ready to be
displayed. Before React 18 it could only be used for code splitting, but since the latest version
of React it serves more purposes. When you fetch data from a component that is imported
with Suspense, React will also wait until the data for that component is completely fetched.

Suspense must be used together with the lazy method, which involves using JavaScript
dynamic imports to load the component only when requested. Both methods can be
imported from React in src/App.js, where the lazy method is used to import the
components for our pages:

+ import { Suspense, lazy } from 'react';

 import styled, { createGlobalStyle } from

 'styled-components';

 import { Route, Routes, BrowserRouter} from

 'react-router-dom';

Code splitting with React Suspense 171

 import Header from './components/Header/Header';

- import Lists from './pages/Lists';

- import ListDetail from './pages/ListDetail';

- import ListForm from './pages/ListForm';

 import AppContext from './context/AppContext';

+ const Lists = lazy(() => import('./pages/Lists'));

+ const ListDetail = lazy(() =>

 import('./pages/ListDetail'));

+ const ListForm = lazy(() => import('./pages/ListForm'));

 // ...

 function App() {

 // ...

In the return statement for the App component, Suspense must be used with a fallback
that will be displayed when the dynamically imported components are being loaded:

 // ...

 function App() {

 return (

 <>

 <GlobalStyle />

 <AppWrapper>

 <BrowserRouter>

 <Header />

+ <Suspense fallback={<div>Loading...</div>}>

 <AppContext>

 // ...

 </AppContext>

+ </Suspense>

 </BrowserRouter>

 </AppWrapper>

 </>

);

 }

 export default App;

172 Building a Personal Shopping List Application Using Context and Hooks

When you look at the application in the browser, you don't see any changes, unless you
have a slow internet connection. In that case, the fallback for Suspense will be displayed
while the component is being loaded. However, when you open the Network tab in the
developer console, you do see a difference. Here, all the network requests are shown,
and all the downloaded JavaScript as well. For our application, we can see that multiple
files are loaded, such as bundle.js and main.chunk.js. However, after applying
code splitting, chunked components are also being loaded, for example, src_pages_
ListDetail_js.js.

Figure 5.2 – The network requests for our application after code splitting

Looking at the main route, which is /, we can see that a chunk named 3.chunk.
js is loaded. This isn't a very helpful filename, something we can change with
webpackChunkName in an inline comment. With this addition, we can instruct webpack
to name the file something more user friendly:

 // ...

- const Lists = lazy(() => import('./pages/Lists'));

- const ListDetail = lazy(() =>

 import'./pages/ListDetail'));

- const ListForm = lazy(() => import('./pages/ListForm'));

+ const Lists = lazy(() => import(/* webpackChunkName:

 "Lists" */ './pages/Lists'));

+ const ListDetail = lazy(() => import(/* webpackChunkName:

 "ListDetail" */ './pages/ListDetail'));

Summary 173

+ const ListForm = lazy(() => import(/* webpackChunkName:

 "ListForm" */ './pages/ListForm'));

 function App() {

 // ...

This latest addition makes recognizing which chunks (or components) are loaded in our
application much easier, as you can see by reloading the application in the browser and
checking the Network tab again.

Summary
In this chapter, you've created a shopping list application that uses the Context API and
Hooks to pass and retrieve data. Context is used to store data and Hooks are used to
retrieve and mutate data. With the Context API, you can create more advanced scenarios
for state management using the useReducer Hook. Context is also used to create a
situation where all of the data is stored application-wide and can be accessed from any
component by creating a shared Context. Finally, we've used React Suspense to apply code
splitting to our bundle for improved performance.

The Context API will be used in the next chapter as well, which will show you how
to build a hotel review application with automated testing using libraries such as Jest
and Enzyme. It will introduce you to the multiple ways in which you can test your UI
components created with React, and also show you how to test state management in your
application using the Context API.

Further reading
For more information, refer to the following links:

•	 Consuming multiple Context objects: https://reactjs.org/docs/
context.html#consuming-multiple-contexts

•	 React Suspense: https://reactjs.org/docs/react-api.
html#reactsuspense

https://reactjs.org/docs/context.html#consuming-multiple-contexts
https://reactjs.org/docs/context.html#consuming-multiple-contexts
https://reactjs.org/docs/react-api.html#reactsuspense
https://reactjs.org/docs/react-api.html#reactsuspense

6
Building an
Application

Exploring TDD Using
the React Testing

Library and Cypress
To keep your application maintainable, it is good practice to have testing set up for your
project. Whereas some developers hate writing tests and therefore try to avoid writing
them, other developers like to make testing the core of their development process by
implementing a Test-Driven Development (TDD) strategy. There are many opinions
about testing your applications and how to do this. Luckily, when building an application
with React, many great libraries can help you with testing.

176 Building an Application Exploring TDD Using the React Testing Library and Cypress

In this chapter, you'll use the React Testing Library tool to unit-test React applications.
This library is maintained by the React community itself and ships with Create React App.
It has lots of functionalities tailored to testing entire life cycles within your components
and other React features. Therefore, the React Testing Library is a great fit for testing
most React applications if you want to test whether functions or components behave as
expected when they're given a certain input. Also, we'll be exploring another tool called
Cypress that is perfect for end-to-end testing of our React application.

The following topics will be covered in this chapter:

•	 Unit testing components

•	 Testing React state and Hooks

•	 End-to-end testing with Cypress

Project overview
In this chapter, we will create a hotel review application build with React that has state
management with the Context API. The React Testing Library will be added to perform
unit and integration testing for this application, while Cypress is used for end-to-end
testing. The application has been prebuilt and uses the same patterns that we've looked at
in the previous chapters.

The build time is 2 hours.

Getting started
The application for this chapter builds upon an initial version, which can be found
at https://github.com/PacktPublishing/React-Projects-Second-
Edition/tree/main/Chapter06-initial. The complete code for this chapter
can be found on GitHub: https://github.com/PacktPublishing/React-
Projects-Second-Edition/tree/main/Chapter06.

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter06-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter06-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter06

Getting started 177

Start by downloading the initial project from GitHub and move into the root directory
for this project, where you must run the npm install command. Since this project
builds upon Create React App, running this command will install react, react-dom,
and react-scripts. Also, styled-components and react-router-dom will
be installed so that they can handle styling and routing for the application. Something
else that will be installed is the React Test Library, which you will recognize with the @
testing-library/* prefix. After finishing the installation process, you can execute
the npm start command to run the application so that you can visit the project in
the browser at http://localhost:3000. The initial application consists of a simple
header and a list of hotels. These hotels have a title and meta information, such as a
thumbnail. This page will look as follows:

Figure 6.1 – The initial application

178 Building an Application Exploring TDD Using the React Testing Library and Cypress

If you click on any of the hotels in the list, a new page will open with a list of reviews for
this hotel. By clicking the button at the top left of this page, you can move back to the
previous page, and with the button at the top right, a page with a form where you can add
a review will open. If you add a new review, this data will be stored in a global context and
sent to a mock API server:

If you look at the project's structure, you'll see that it's using the same structure as the
projects we created previously:

chapter-6-initial

 |- node_modules

 |- public

 |- package.json

 |- src

 |- components

 |- Button

 |- Button.js

 |- FormItem

 |- FormItem.js

 |- Header

 |- Header.js

 |- HotelItem

 |- HotelItem.js

 |- NavBar

 |- NavBar.js

 |- ReviewItem

 |- ReviewItem.js

 |- context

 |- AppContext.js

 |- HotelsContext.js

 |- ReviewsContext.js

 |- pages

 |- HotelDetail.js

 |- Hotels.js

 |- ReviewForm.js

 |- App.js

 |- index.js

 |- setupTests.js

The hotel review application 179

Important for this chapter is the setupTests.js file, which is used to configure the
React Testing Library for this project. The entry point of this application is a file called
src/index.js, which renders a component called App. In this App component, all
the routes are declared and wrapped within a Router component. These routes are as
follows:

•	 /: This renders Hotels, with an overview of all of the hotels.

•	 /hotel/:hotelId: This renders HotelDetail, with an overview of all reviews
for a specific hotel.

•	 /hotel/:hotelId/new: This renders ReviewForm, with a form to add new
reviews to a specific hotel.

The data is fetched from a mock server that was created using the free My JSON Server
service, which creates a server from the db.json file in the root directory of your project
in GitHub. This file consists of a JSON object that has two fields, hotels and reviews,
which creates multiple endpoints on a mock server. The ones you'll be using in this
chapter are as follows:

•	 https://my-json-server.typicode.com/PacktPublishing/React-
Projects-Second-Edition/hotels

•	 https://my-json-server.typicode.com/PacktPublishing/React-
Projects-Second-Edition/reviews

The db.json file must be present in the master branch (or default branch) of your
GitHub repository for My JSON Server to work. Otherwise, you'll receive a 404 Not
Found message when trying to request the API endpoints.

The hotel review application
In this section, we will add unit and integration testing to the hotel review application that
was created in Create React App. This application lets you add reviews to a list of hotels
and controls this data from an application context. The React Testing Library will be used
to render React components to test assertions on these components.

https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/hotels
https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/hotels
https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/reviews
https://my-json-server.typicode.com/PacktPublishing/React-Projects-Second-Edition/reviews

180 Building an Application Exploring TDD Using the React Testing Library and Cypress

Unit testing components
Unit testing is an important part of your application, since you want to know that your
functions and components behave as expected, even when you make code changes. For
this, we're going to use the React Testing Library, an open source testing package for React
applications that was created by the React community. With the React Testing Library,
you can test assertions – for example, whether the output of a function matches the value
you expected.

To get started, we don't have to install anything; it's part of Create React App. If you look
at the package.json file, you will see that a script is already there for running tests.
Let's see what happens if you execute the following command from your terminal:

npm run test

This will return a message saying No tests found related to files changed
since last commit., which means our tests are running in watch mode and only
running tests for files that have been changed. Under the hood, the Jest test runner is
used to run our tests. By pressing the A key, you can run all the tests, even if you haven't
modified any files. If you press this key, the following message will be displayed:

No tests found related to files changed since last commit.

Jest will automatically check all our files within the src directory and look for test files.
In the first part of this section, we'll show how we can create tests that can be run with Jest
using the React Test Library.

Creating a unit test
Since there are multiple ways that Jest can detect which file contains a test, let's choose
a structure where every component has a separate test file. This test file will have the
same name as the file that holds the component, with the .test suffix. If we choose the
NavBar component, we can create a new file called NavBar.test.js in the src/
components/NavBar directory. Add the following code to this file:

test('The NavBar component should render', () => {

});

The global test function from Jest is used here to define a test; the test assertions can
be placed within the curly brackets. Alternatively, you can also use the describe or it
functions to declare a (block) of tests.

The hotel review application 181

If we now run the npm run test command again, the Jest runner will find our first test
and show the following output:

PASS src/components/NavBar/NavBar.test.js

 ✓ The NavBar component should render (1 ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 3.105 s

Ran all test suites related to changed files.

Within the definition of a test, you can add assumptions such as toEqual or toBe,
which check whether the value is exactly equal to something or whether the types just
match respectively. The assumptions can be added within the callback of the test
function:

 test('The NavBar component should render', () => {

+ expect(1 + 2).toBe(3);

 });

If you still have the test script running in your terminal, you will see that Jest has detected
your test. The test succeeds, since 1+2 is indeed 3. Let's go ahead and change the
assumption to the following:

 test('The NavBar component should render', () => {

- expect(1 + 2).toBe(3);

+ expect(1 + 2).toBe('3');

 });

Now, the test will fail, as the second assumption doesn't match. Although 1+2 still equals
3, it's assumed that a string type with a value of 3 is returned, while in fact a number type
is returned. If you're still running the npm run test command in the terminal, you can
also see this explanation described there.

However, this assumption has no actual usage, as it doesn't test your component. To test
your component, you need to render it. Rendering components so that you can test them
will be handled in the next part of this section.

182 Building an Application Exploring TDD Using the React Testing Library and Cypress

Rendering a React component for testing
Jest is based upon Node.js, meaning that it can't use the browser or (virtual) DOM to
render your component and test its functionality. Therefore, we'll be using the React
Testing Library to help us render these components. Create React App comes with this
library by default, and the packages it uses can be found in the package.json file:

•	 @testing-library/jest-dom: Provides custom elements to test the DOM

•	 @testing-library/react: The core package for the React Testing Library

•	 @testing-library/user-events: Provides methods to test user interactions

The React Testing Library can render React components for us so that we can write tests
for them. The preceding packages will be used to create our tests:

1.	 In our test file for the NavBar component, we can render the component with
the render method from @testing-library/react and get the output of
this component. With the Jest toMatchSnapshot assumption, we can test the
structure of the component by creating a snapshot from this render and comparing
it to the actual component every time this test is run:

+ import { render } from '@testing-library/react';

+ import NavBar from './NavBar';

 test('The NavBar component should render', () => {

- expect(1 + 2).toBe('3');

+ const view = render(<NavBar />);

+ expect(view).toMatchSnapshot();

 });

2.	 In the src/components/NavBar directory, a new directory called __
snapshots__ has now been created by Jest. Inside this directory is a file called
NavBar.test.js.snap, which includes the snapshot. If you open this file, you
will see that a rendered version of the NavBar component is stored here:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`The NavBar component should render 1`] = `

Object {

 "asFragment": [Function],

The hotel review application 183

 "baseElement": <body>

 <div>

 <div

 class="sc-gsDJrp PAvEv"

 >

 <h2

 class="sc-dkPtyc jFfuUr"

 />

 </div>

 </div>

 </body>,

 // ...

The components that have been created with styled-components will be
rendered as HTML elements with a class name prefixed by sc-*.

3.	 No actual values are being rendered by the React Testing Library since no props
have been passed to the NavBar component. You can inspect how the snapshot
works by passing, for instance, a title prop to the component:

 import { render } from '@testing-library/react';

 import NavBar from './NavBar';

 // ...

+ test('The NavBar component should render with a title',

 () => {

+ const view = render(<NavBar title='Test application'

 />);

+ expect(view).toMatchSnapshot();

+ });

184 Building an Application Exploring TDD Using the React Testing Library and Cypress

4.	 The next time the tests are run, a new snapshot will be added to the src/
components/NavBar/__snapshots__/NavBar.test.js.snap file.
This snapshot has a value rendered for the title prop. If you change the title
prop that is displayed by the NavBar component in your test file, the rendered
component will no longer match the snapshot. You can try this by changing the
value for the title prop in the test scenario:

 import { render } from '@testing-library/react';

 import NavBar from './NavBar';

 // ...

 test('The NavBar component should render with a

 title', () => {

- const view =

 render(<NavBar title='Test application' />);

+ const view =

 render(<NavBar title='Test application #2' />);

 expect(view).toMatchSnapshot();

 });

Jest will return the following message in the terminal, where it specifies which
lines have changed in comparison to the snapshot. In this case, the title that's being
displayed is no longer Test Application but Test Application #2,
which doesn't match the title in the snapshot:

FAIL src/components/NavBar/NavBar.test.js

 ✓ The NavBar component should render (29 ms)
 ✕ The NavBar component should render with a title
 (10 ms)

 ● The NavBar component should render with a title

 expect(received).toMatchSnapshot()

 Snapshot name: `The NavBar component should render

 with a title 1`

The hotel review application 185

 - Snapshot - 3

 + Received + 3

 @@ -6,23 +6,23 @@

 class="sc-gsDJrp PAvEv"

 >

 <h2

 class="sc-dkPtyc jFfuUr"

 >

 - Test application

 + Test application #2

 // ...

By pressing the U key, you can update the snapshot to handle this new test scenario. This
is an easy way to test the structure of your component and see whether the title has been
rendered. With the preceding test, the initially created snapshot still matches the rendered
component for the first test. Also, another snapshot was created for the second test, where
a title prop was added to the NavBar component.

Note
You can do the same for the other props that are passed to the NavBar
component, which renders differently if you do or don't pass certain props to
it. Next to title, this component takes goBack and openForm as props,
which can also be tested.

We've now created two tests for our NavBar component, which is a good start. But
something else that Jest does is show you how many lines of code have been covered
by your tests. The higher your testing coverage, the more reason to assume your code
is stable. You can check the test coverage of your code by executing the test script
command with the --coverage flag and an extra -- in between, or use the following
command in your terminal:

npm run test -- --coverage

186 Building an Application Exploring TDD Using the React Testing Library and Cypress

This command will run your tests and generate a report with all the test coverage
information about your code per file. After adding the tests for NavBar, this report will
look as follows:

---------------------------|---------|----------|---------|---
------|

File | % Stmts | % Branch | % Funcs | %
Lines | Uncovered Line #s

---------------------------|---------|----------|---------|---
------|

All files | 5 | 4.68 | 3.12 |
5 |

 src | 0 | 100 | 0 |
0 |

 App.js | 0 | 100 | 0 |
0 |

 index.js | 0 | 100 | 100 |
0 |

 src/components/Button | 100 | 100 | 100 |
100 |

 Button.js | 100 | 100 | 100 |
100 |

 src/components/FormItem | 0 | 0 | 0 |
0 |

 FormItem.js | 0 | 0 | 0 |
0 |

 src/components/Header | 0 | 100 | 0 |
0 |

 Header.js | 0 | 100 | 0 |
0 |

 src/components/HotelItem | 0 | 100 | 0 |
0 |

 HotelItem.js | 0 | 100 | 0 |
0 |

 src/components/NavBar | 100 | 60 | 100 |
100 |

 NavBar.js | 100 | 60 | 100 |
100 |

 // ...

The hotel review application 187

Note
Testing coverage only tells us something about the lines and the functions of
your code that have been tested and not their actual implementation. Having
a test coverage of 100% doesn't mean that there aren't any bugs in your code,
as there will always be edge cases. Also, reaching a testing coverage of 100%
means that you may end up spending more time on writing tests than on actual
code. Usually, a testing coverage above 80% is considered good practice.

As you can see, the test coverage for the component is 60%, meaning that most of the lines
are covered in your test. To go to a 100% coverage, we will also need to add tests for the
other props that are used in the NavBar component to render the buttons to return to the
previous stage or the form component. Also, the coverage for the Button component is
100% due to no actual elements being rendered there.

However, this method of testing with snapshots will create a lot of new files and lines of
code. We'll look at other ways we can test our components in the next part of this section.

Testing components with assertions
In theory, snapshot testing is not necessarily a bad practice; however, your files can get
quite big over time. Also, since you're not explicitly telling Jest what part of the component
you want to test, you might need to update your code regularly.

Luckily, using snapshots isn't the only method we can use to test whether our components
are rendering the correct props. Instead, we can also directly compare which props are
being rendered by checking the value of the component and making assertions. The big
advantage of testing with assertions is that you can test a lot without having to dig deeper
into the logic of the component you're testing. For instance, you can see what the children
that are being rendered look like.

Let's change our second snapshot test for the NavBar component to compare the impact
on the test coverage. We'll need to import the screen method from the React Testing
Library, which is used to scan the rendered components. Instead of making a snapshot
of the whole component and finding the title in there, we will look for any heading
components (such as h2) and check whether their value is equal to the prop that we set on
NavBar:

- import { render } from '@testing-library/react';

+ import { render, screen } from '@testing-library/react';

 import NavBar from './NavBar';

 // ...

188 Building an Application Exploring TDD Using the React Testing Library and Cypress

+ test('The NavBar component should render with a title',

 () => {

- const view =

 render(<NavBar title='Test application #2' />);

- expect(view).toMatchSnapshot();

+ const title = 'Test application';

+ render(<NavBar title={title} />);

+ expect(screen.getByRole('heading')).

 toHaveTextContent(title);

 });

We've used the getByRole React Testing Library method to find the Title component
in the NavBar component, and the toHaveTextContent method to check whether
the text inside Title is equal to our prop. The test still passes and also allows us to delete
the snapshot, as we're now using an assumption to test this part of the component:

PASS src/components/NavBar/NavBar.test.js

 ✓ The NavBar component should render (13 ms)
 ✓ The NavBar component should render with a title (54 ms)

 › 1 snapshot obsolete.

 • The NavBar component should render with a title 1

Snapshot Summary

 › 1 snapshot obsolete from 1 test suite. To remove it, press
`u`.

 ↳ src/components/NavBar/NavBar.test.js
 • The NavBar component should render with a title 1

By pressing U or running npm run test with the -u flag, the snapshot for the NavBar
component is removed by Jest:

Snapshot Summary

 › 1 snapshot removed from 1 test suite.

 ↳ src/components/NavBar/NavBar.test.js
 • The NavBar component should render with a title 1

The hotel review application 189

The test coverage of the NavBar component should still be 60%, as we continued
testing whether the title prop was presented and rendered, which you can check by
running again:

---------------------------|---------|----------|---------|---
------|

File | % Stmts | % Branch | % Funcs | %
Lines | Uncovered Line #s

---------------------------|---------|----------|---------|---
------|

All files | 5 | 4.84 | 3.33 |
5 |

 src | 0 | 100 | 0 |
0 |

 App.js | 0 | 100 | 0 |
0 |

 index.js | 0 | 100 | 100 |
0 |

src/components/NavBar | 100 | 60 | 100 |
100 |

 NavBar.js | 100 | 60 | 100 |
100 |

 // ...

However, the NavBar component doesn't just take the title prop – it also takes the
goBack and openForm functions as props. You also want to test whether these functions
are triggered when you click on any of the buttons.

To test these props, we need to create a mock function that we can pass as a prop to
NavBar and mock the user click events to test whether this function is being called. The
fireEvent method from the React Testing Library can be used to mock user events, and
with Jest, we can mock a function and check whether that function is called:

- import { render, screen } from '@testing-library/react';

+ import { render, screen, fireEvent } from

 '@testing-library/react';

 import NavBar from './NavBar';

 // ...

190 Building an Application Exploring TDD Using the React Testing Library and Cypress

+ test('The NavBar component should respond to button

 clicks', () => {

+ const mockFunction = jest.fn();

+ render(<NavBar goBack={mockFunction} />);

+ fireEvent.click(screen.getByText('< Go Back'));

+ expect(mockFunction).toHaveBeenCalled();

+ });

By running the preceding test, a click on the back button in NavBar will be simulated,
and Jest will check whether the mocked function is being called. The same can be done for
the openForm prop:

 // ...

 test('The NavBar component should respond to button

 clicks', () => {

 const mockFunction = jest.fn();

- render(<NavBar goBack={mockFunction} />);

+ render(<NavBar goBack={mockFunction} openForm=

 {mockFunction} />);

 fireEvent.click(screen.getByText('< Go Back'));

 expect(mockFunction).toHaveBeenCalled();

+ fireEvent.click(screen.getByText('+ Add Review'));

+ expect(mockFunction).toHaveBeenCalledTimes(2);

 });

The mocked function for both the goBack and openForm props are the same, so we
need to check whether this function is called twice after clicking the open form button.
By testing the user events on these two buttons, we've tested 100% of the NavBar
component, as you can also see in the coverage report:

PASS src/components/NavBar/NavBar.test.js

 ✓ The NavBar component should render (27 ms)
 ✓ The NavBar component should render with a title (45 ms)
 ✓ The NavBar component should respond to button clicks (13
ms)

The hotel review application 191

---------------------------|---------|----------|---------|---
------|

File | % Stmts | % Branch | % Funcs | %
Lines | Uncovered Line #s

---------------------------|---------|----------|---------|---
------|

All files | 5 | 8.06 | 3.33 |
5 |

 src | 0 | 100 | 0 |
0 |

 App.js | 0 | 100 | 0 |
0 |

 index.js | 0 | 100 | 100 |
0 |

 src/components/NavBar | 100 | 100 | 100 |
100 |

 NavBar.js | 100 | 100 | 100 |
100 |

 // ...

In this section, we've created unit tests that will test a specific part of our code. However, it
can be interesting to test how different parts of our code work together. For this, we'll add
integration tests to test our state management and Hooks.

Testing React state and Hooks
The tests that we've created all render components without state management, but with
the React Testing Library, we also have the option to test state and Hooks. In our setup, the
pages that are rendered by our router are wrapped in an application context component.
If we want to test the page components, we need to make sure that the data for these
pages is being mocked or stubbed, so the integration of this component with the state can
be tested.

192 Building an Application Exploring TDD Using the React Testing Library and Cypress

A good example of where we can test this is the Hotels component, which renders the
list of hotels that were returned by the context:

1.	 As always, the starting point is to create a new file with the .test suffix in the same
directory where the component we want to test is located. Here, we need to create
the Hotels.test.js file in the src/pages directory. In this file, we need to
add the following code:

import { render, screen } from

 '@testing-library/react';

import Hotels from './Hotels';

import HotelsContext from '../context/HotelsContext';

test('The Hotels component should render', async () => {

 const wrapper = ({ children }) => (

 <HotelsContext.Provider

 value={{

 loading: true,

 error: '',

 hotels: [],

 fetchHotels: jest.fn(),

 }}

 >

 {children}

 </HotelsContext.Provider>

);

 render(<Hotels />, { wrapper });

 expect(await screen.findByText(

 'Loading...')).toBeVisible();

});

The preceding test imports the context object that the Hotels component uses
to render the page and creates a wrapper function that creates a provider on the
HotelsContext. To this Provider, we've added the mock values for the context
that is used by the Hotels component. Our test assertion tries to find an element
with the Loading… text value and checks whether it exists. As the value for
loading in our context is true, that element can indeed be found.

The hotel review application 193

Note
To run just a selection of tests, you can press P after running the npm run
test command; you can now type a string in the terminal that will be used to
pattern-match the test files.

2.	 To test whether the hotels are being rendered when data is present in the context,
we need to mock this data in a new test in the Hotels.test.js file:

 import { render, screen } from

 '@testing-library/react';

 import Hotels from './Hotels';

 import HotelsContext from

 '../context/HotelsContext';

+ import { BrowserRouter } from 'react-router-dom';

 // ...

+ test('The Hotels component should render a list of

 hotels', async () => {

+ const wrapper = ({ children }) => (

+ <BrowserRouter>

+ <HotelsContext.Provider

+ value={{

+ loading: false,

+ error: '',

+ hotels: [

+ { id: 1, title: 'Test hotel 1',

 thumbnail: '' },

+ { id: 2, title: 'Test hotel 2',

 thumbnail: '' },

+],

+ fetchHotels: jest.fn(),

+ }}

+ >

+ {children}

+ </HotelsContext.Provider>

+ </BrowserRouter>

194 Building an Application Exploring TDD Using the React Testing Library and Cypress

+);

+ });

In the preceding mocked context value, the value for loading is set to false,
and mocked hotels are also added. Note that we also wrapped the Provider with
BrowserRouter from React Router, as the Hotels component uses a Link
component to make the hotels clickable.

3.	 To test whether the hotels are being rendered, we need to add a test assertion to
check whether the loading message is gone and whether the correct number of
links to hotels are rendered:

 // ...

 test('The Hotels component should render a list of

 hotels', async () => {

 const wrapper = ({ children }) => (

 // ...

);

+ render(<Hotels />, { wrapper });

+ expect(screen.queryByText('Loading...')

).toBeNull();

+ expect(screen.getAllByRole('link'

).length).toBe(2);

 });

The getBy methods we used before will throw an error when an element cannot
be found; to test whether something is not rendered, we need to use the queryBy
methods instead. Also, we need to check whether two Link components are
present by looking for the link role and counting them.

4.	 The useEffect Hook in the Hotels component can also be tested to check
whether the fetchHotels function is being called if there are no hotels in the
context. Therefore, we can edit the first test by importing the waitFor method
from the React Testing Library and altering the context value slightly:

- import { render, screen } from

 '@testing-library/react';

+ import { render, screen, waitFor } from

 '@testing-library/react';

The hotel review application 195

 import Hotels from './Hotels';

 import HotelsContext from

 '../context/HotelsContext';

 import { BrowserRouter } from 'react-router-dom';

 test('The Hotels component should render', async ()

 => {

+ const mockFunction = jest.fn()

 const wrapper = ({ children }) => (

 <HotelsContext.Provider

 value={{

 loading: true,

 error: '',

 hotels: [],

- fetchHotels: jest.fn(),

+ fetchHotels: mockFunction,

 }}

 >

 {children}

 </HotelsContext.Provider>

);

 // ...

5.	 We also add the test assertion to wait for the mock function to be called. Here,
we specifically state that the mocked function, which is fetchHotels from
HotelsContext, is called only once. In our Hotels component, useEffect
has a check to only fetch the hotels if there is no data:

 // ...

 render(<Hotels />, { wrapper });

 expect(await screen.findByText('Loading...')

).toBeVisible();

196 Building an Application Exploring TDD Using the React Testing Library and Cypress

+ await waitFor(() =>

 expect(mockFunction).toHaveBeenCalledTimes(1));

 });

 // ...

With this test, we've tested both the context in the Hotels component and the
useEffect Hook to fetch hotel data in that function.

After running the tests again with the --coverage flag, we will be able to see what
impact writing this integration test has on our coverage. Since an integration test not only
tests one specific component but multiple components at once, the testing coverage for
Hotels will be updated. This test also covers the HotelItem component, which we will
be able to see in the coverage report after running npm run test --coverage:

---------------------------|---------|----------|---------|---
------|

File | % Stmts | % Branch | % Funcs | %
Lines | Uncovered Line #s

---------------------------|---------|----------|---------|---
------|

All files | 19.83 | 29.03 | 16.67 |
19.83 |

 src | 0 | 100 | 0 |
0 |

 App.js | 0 | 100 | 0 |
0 |

 index.js | 0 | 100 | 100 |
0 |

 src/components/HotelItem | 100 | 100 | 100 |
100 |

 HotelItem.js | 100 | 100 | 100 |
100 |

 src/components/NavBar | 100 | 100 | 100 |
100 |

 NavBar.js | 100 | 100 | 100 |
100 |

 src/context | 8.16 | 0 | 0 |

The hotel review application 197

8.16 |

 AppContext.js | 0 | 100 | 0 |
0 |

 HotelsContext.js | 16.67 | 0 | 0 |
16.67 |

 ReviewsContext.js | 0 | 0 | 0 |
0 |

 src/pages | 21.95 | 34.21 | 20 |
21.95 |

 Hotels.js | 100 | 100 | 100 |
100 |

 // ...

According to Jest, the coverage for Hotels is 100%. The test coverage for HotelItems
has also reached 100%. This means that we can skip writing unit tests for HotelItem,
assuming that we only use this component within the Hotels component. The
HotelsContext component with our context already has a small amount of coverage
through testing it from the Hotels component. To get a higher coverage, we can test
even more, such as testing how the context itself or the useReducer Hook in the context
is behaving.

The only downside of having integration tests over unit tests is that they're harder to
write, as they usually contain more complex logic. Also, these integration tests will run
slower than unit tests because of them having more logic and bringing together multiple
components. In the final section of this chapter, we'll be adding an end-to-end test that
will test the entire application from a user perspective using Cypress.

End-to-end testing with Cypress
So far, we've covered both unit and integration testing with the React Testing Library
that tests our code in an isolated setting. But in order to make sure that our application
is tested as a whole, we can also write an end-to-end test to cover certain aspects of our
application from start to finish. End-to-end tests are considered more time-consuming
to write and run than unit or integration tests. It's recommended to have more unit and
integrations tests for your project than end-to-end tests, and think about what aspects of
your application you really want to have tested.

198 Building an Application Exploring TDD Using the React Testing Library and Cypress

To add end-to-end tests, we'll install the open source test tool Cypress, which can be used
to write and run such tests. Adding Cypress to the project requires several steps:

1.	 Install the library from npm in our project by running the following command from
the terminal:

npm install cypress --save-dev

2.	 After completing the installation, the script to run Cypress needs to be added to the
package.json file so that it can be started with a single command:

 // ...

 "scripts": {

 "start": "react-scripts start",

 "build": "react-scripts build",

 "test": "react-scripts test",

+ "cypress": "cypress open"

 "eject": "react-scripts eject"

 },

 // ...

3.	 You can now run the npm run cypress command to start Cypress. Make sure
to do this in a new tab in the terminal, as you need to have both the application and
Cypress running simultaneously. If this is the first time that you're running Cypress,
it will validate whether it's able to run on your system. When all goes well, Cypress
will open and create a new directory called cypress in our project, as shown in
the following screenshot:

The hotel review application 199

Figure 6.2 – Cypress running for the first time

4.	 Cypress has created example tests in the cypress/integration/examples
directory, which you can use to learn more about how the library is working.
Otherwise, you can delete these, as they will clutter the Cypress runner when we
add new tests. In the cypress/integration directory ,we can add a new
end-to-end test for our project called hotels.spec.js with the following
contents:

describe('Cypress', () => {

 it('opens the app', () => {

 cy.visit('http://localhost:3000')

 })

})

200 Building an Application Exploring TDD Using the React Testing Library and Cypress

5.	 You can run this test by pressing on it in the Cypress runner, after which the test will
run in a browser. Which browser it uses depends on what you've selected at the top
right in Cypress. This test will open the application within a browser and test it with
Cypress, giving the following output:

Figure 6.3 – Cypress rendering our application in a test

Note
You need to make sure that you have both Cypress and the application
running in your terminal. This means that one terminal tab must have npm
run cypress running and the other npm start. If you don't have the
application running, you'll get an error that the web page is not available.

The preceding test will just render our application, without making any assertions. To
test the application using Cypress, we need to use any of the assertions that are provided
by the library. Using these assertions, we'll write an end-to-end test that checks the entire
flow, from visiting the application to adding a review for a hotel. This way, we have tested
the most critical process of our application, namely reviewing hotels.

The hotel review application 201

To start, we need to change the hotels.spec.js file so that it will open the application
and navigate to a hotel page, and on that page, click on the button to open the form. After
filling in this form, we want our test to submit the form and check whether our review has
been added. Follow these steps to make these changes:

1.	 All the tests in the hotels.spec.js file will start by visiting the application in
the browser, so it can click on any of the hotels listed on this page. After clicking on
a hotel, we need to verify whether the location in the browser has changed by using
the cy.location method:

 describe('Cypress', () => {

- it('opens the app', () => {

+ it('opens the app and clicks on a hotel', () => {

 cy.visit('http://localhost:3000');

+ cy.get('a').first().click();

+ cy.location('pathname').should('include',

 'hotel');

 });

 });

Running this test will validate that you can click on a hotel and navigate to the
correct page, which you can check in the Cypress runner.

Note
When you need to visit many URLs over different development environments,
you can also define baseUrl in a cypress.json file:

{

 "id": "http://localhost:3000",

}

202 Building an Application Exploring TDD Using the React Testing Library and Cypress

2.	 In the second test, we tell Cypress to find the button with the + Add Review text
and click on it, which should change the browser's location to the page to add the
review. This page is located at the /hotel/:hotelId/new route and includes the
new string. Note that we don't have to navigate to the application anymore, as this
test builds upon the previous test and is therefore already at the correct page:

 describe('Cypress', () => {

 // ...

+ it('navigates to the form to add a review', () =>

 {

+ cy.get('button').contains('+ Add

 Review').click();

+ cy.location('pathname').should('include',

 'new');

+ });

});

3.	 In the preceding test, Cypress will look for a button that contains a specific word,
something that is not future-proof if someone changes the content of the button.
Deciding which selector to use (id, class, or content) is important when writing
tests. To prevent failing tests, you can also add the data-cy, data-test, or
data-testid attributes to your elements. Therefore, we need to change how the
Button component is rendered in src/components/NavBar:

 // ...

 function NavBar({ goBack, title, openForm = false })

 {

 return (

 <NavBarWrapper>

 {goBack && <NavBarButton onClick={goBack}>{`<

 Go Back`} </NavBarButton>}

 <Title>{title}</Title>

 {openForm &&

 <NavBarButton

 onClick={openForm}

+ data-cy='addReview'

 >

 {`+ Add Review`}

The hotel review application 203

 </NavBarButton>

 }

 </NavBarWrapper>

);

 }

 export default NavBar;

4.	 In the cypress/integrations/hotels.spec.js Cypress test file, we can
look for the data-cy attribute instead of using the content of the button as a
selector:

 describe('Cypress', () => {

 // ...

 it('navigates to the form to add a review', () =>

 {

- cy.get('button').contains('+ Add

 Review').click();

+ cy.get('[data-cy=addReview]').click();

 cy.location('pathname').should('include',

 'new');

 });

 });

5.	 A third test to fill in the form to add the review and submit it can also be added to
this file. Using the cy.get command, Cypress can find the form element on this
page, and the within method is used to find the input elements inside the form.
It will search for the name of the input field, add a value to it, and finally submit
button inside the form:

 describe('Cypress', () => {

 // ...

+ it('fills in and submits the form', () => {

+ cy.get('form').within(() => {

+ cy.get('input[name=title]').type('Test

 review');

+ cy.get('input[name=description]').type('Is a

204 Building an Application Exploring TDD Using the React Testing Library and Cypress

 test review by Cypress');

 cy.get('input[name=rating]').type(4);

 cy.get('button').click();

+ });

+ });

 });

6.	 Finally, we need to write a test that checks the hotel details page again and tries to
find the new review that we've added. To find this review, we need to search the
page for the contents of the review that was just added by Cypress; also, we need
to add a wait command to make sure that the review has been processed and
displayed on the screen:

 describe('Cypress', () => {

 // ...

+ it('and verifies if the review is added', () => {

+ cy.wait(600);

+ cy.get('h3').contains('Test review');

+ cy.get('div').contains('Is a test review by

 Cypress');

+ });

 });

By adding this final test to Cypress, we've tested the most important scenario of our
application, which you can expand even more by adding tests for edge cases such as
error messages.

Tip
We didn't add a data-cy attribute to the elements that display the review,
which is something that you could add yourself. As we're aware of the content
that we just added, it's safe to assume that we don't need a complicated selector
for this.

You can add more functionalities, such as mocking the API requests and responses, as
the preceding test is using the same API as the application itself. In this scenario, there's
nothing wrong with that, as the API we're using is already a mock API. If you're working
in a production environment, you will want to replace that with a mocked response that
can be generated by Cypress.

The hotel review application 205

For this, we need to add a beforeEach Hook to our test file that intercepts the API calls
and replaces the response with a mocked value. The format of that mocked value should
be equal to the format of the actual API. Luckily, our API is being populated from the
db.json file that you can find in the repository for this book. From the contents of that
file, you can take the data for the hotels field and paste it into two separate files inside the
cypress/fixtures directory. Let's look at the steps:

1.	 The first one can be called hotels.json and needs to have an array of objects
with hotel details:

[

 {

 "id": 1,

 "title": "Downtown Hotel (***)",

 "thumbnail":

 "https://picsum.photos/id/369/400/400"

 }

]

2.	 The second fixture needs to have a single object that replaces the API request for a
single hotel, in a file called hotel.json:

{

 "id": 1,

 "title": "Downtown Hotel (***)",

 "thumbnail": "https://picsum.photos/id/369/400/400"

}

3.	 Intercepting the calls to the actual API can be done from the test file in cypress/
integrations/hotels.spec.js by adding a beforeEach Hook and the
cy.intercept method. For the hotels and hotels/* endpoints, it can return
the fixture, and the reviews endpoint can return an empty array, as Cypress will
add a review itself:

 describe('Cypress', () => {

+ beforeEach(() => {

+ cy.intercept('GET', 'PacktPublishing/

 React-Projects-Second-Edition/hotels',

 { fixture: 'hotels.json' });

+ cy.intercept('GET', 'PacktPublishing/

206 Building an Application Exploring TDD Using the React Testing Library and Cypress

 React-Projects-Second-Edition/hotels/*',

 { fixture: 'hotel.json' });

+ cy.intercept('GET', 'PacktPublishing/

 React-Projects-Second-Edition/hotels/*/reviews',

 []);

+ })

 it('opens the app and clicks on a hotel', () => {

 // ...

By opening the Cypress runner, you can see that our tests are now being executed with the
data from the fixtures, as the API calls are being intercepted.

The tests we've created in this section gave you a good start on writing end-to-end tests for
React applications with Cypress. Also, Cypress can be used to do visual regression testing
for your application or to test API responses.

Summary
In this chapter, we covered testing for React applications using the React Testing Library
in combination with Jest. Both packages are a great resource for any developer that wants
to add test scripts to their application, and they work very well with React. The advantages
of having tests for your application were discussed in this chapter, and hopefully, you
now know how to add test scripts to any project. The differences between unit tests and
integration tests were shown, and you've also learned how to write end-to-end tests
with Cypress.

Since the application that was tested in this chapter has the same structure as the
applications from previous chapters, the same testing principles can be applied to any of
the applications we've built in this book.

The next chapter will combine a lot of the patterns and libraries we've already used in this
book, as we'll be creating a full-stack e-commerce store with React, GraphQL, and Apollo.

Further reading
For more information, refer to the following links:

•	 The React Testing Library: https://testing-library.com/docs/react-
testing-library/intro/

•	 Cypress: https://docs.cypress.io/

https://testing-library.com/docs/react-testing-library/intro/
https://testing-library.com/docs/react-testing-library/intro/
https://docs.cypress.io/

7
Building a Full-

Stack E-Commerce
Application with

Next.js and GraphQL
If you're reading this, this means you've reached the last chapter of this book that is
focused on building web applications with React. In the preceding chapters, you've already
used the core features of React, such as rendering components, state management with
Context, and Hooks. You've learned how to add routing to your React application, or
SSR with Next.js. Also, you know how to add testing to a React application with Jest and
Enzyme. Let's make this experience full stack by adding GraphQL to the list of things
you've learned about so far.

In this chapter, you will not only build the frontend of an application, but also the
backend. For this, GraphQL will be used, which can best be defined as a query language
for APIs. Using mock data, you'll create a GraphQL server in Next.js that exposes a single
endpoint for your React application. On the frontend side, this endpoint will be consumed
using Apollo Client, which helps you handle sending requests to the server and state
management for this data.

208 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

In this chapter, the following topics will be covered:

•	 Creating a GraphQL server with Next.js

•	 Consuming GraphQL with Apollo Client

•	 Handling authentication in GraphQL

Project overview
In this chapter, we will create a full stack e-commerce application in Next.js that has a
GraphQL server as a backend and consumes this server in React using Apollo Client. For
the frontend, an initial application is available to get you started quickly.

The build time is 3 hours.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can
find on GitHub: https://github.com/PacktPublishing/React-Projects-
Second-Edition/tree/main/Chapter07-initial. The complete source code
can also be found on GitHub: https://github.com/PacktPublishing/React-
Projects-Second-Edition/tree/main/Chapter07.

The initial project consists of a boilerplate application based on Next.js to get you started
quickly. This application requires the installation of several dependencies, which you can
do by running the following commands:

npm install && npm run dev

This command will install all the dependencies that are needed to run the React
application with Next.js, such as react, next, and styled-components. Once the
installation process has finished, both the GraphQL server and the React application will
be started.

Getting started with the initial React application
Since the React application is created with Next.js, it can be started with npm run dev
and will be available at http://localhost:3000/. This initial application doesn't
show any data as it still needs to be connected to the GraphQL server, which you'll do later
in this chapter. At this point, the application will, therefore, just render a header with the
title E-Commerce Store and a subheader as well, which looks something like this:

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter07-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter07-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter07

Getting started 209

:

Figure 7.1 – The initial application

The structure of this initial React application built with Next.js is as follows:

chapter-7-initial

 |- /node_modules

 |- /public

 |- /pages

 |- /api

 |- /hello.js

 |- /products

 |- /index.js

 |- /cart

 |- /index.js

 |- /login

 |- /index.js

 |- _app.js

 |- index.js

 |- /utils

 |- hooks.js

 |- authentication.js

 package.json

In the pages directory, you'll find all the routes for this application. The route / is
rendered by pages/index.js, and the routes /cart, /login, and /products
are rendered by the .js files in those respective directories. All routes will be wrapped
within pages/_app.js. In this file, the header for all pages is constructed for example.
All routes will also contain a SubHeader component, with a Button to go back to
the previous page or a Button to the Cart component. The utils directory contains
two files with methods that you'll be needing later in this chapter. Also, this application
will have a REST endpoint available under http://localhost:3000/api/hello
coming from the pages/api/hello.js file.

210 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

Building a full stack e-commerce application
with React, Apollo, and GraphQL
In this section, you'll connect the React web application to the GraphQL server. A
GraphQL Server on a Next.js API Route is used to create a single GraphQL endpoint
that uses dynamic mock data as a source. Apollo Client is used by React to consume this
endpoint and handle state management for your application.

Creating a GraphQL server with Next.js
In Chapter 3, Building a Dynamic Project Management Board, we already created a React
application with Next.js, in which it was already mentioned that you can also use it to
create API endpoints. By looking at the files in our directory for this chapter, you can see
that the pages directory contains a directory called api with a file called hello.js.
All the directories and files that you create in the pages directory become available as
a route in the browser, but if you create them under the api directory in pages, they
are called API routes. The hello.js file is such an API route, which is available under
http://localhost:3000/api/hello. This endpoint returns a JSON blob with the
following contents:

{"name":"John Doe"}

This is a REST endpoint, which we've also explored in the previous chapters of this book.
In this chapter, we'll be using a GraphQL endpoint instead, as GraphQL is a popular
format for APIs that are used by web and mobile applications.

GraphQL is best described as a query language for APIs and is defined as a convention
for retrieving data from an API. Often, GraphQL APIs are compared to RESTful APIs,
which is a well-known convention for sending HTTP requests that are dependent on
multiple endpoints that will all return a separate data collection. As opposed to the well-
known RESTful APIs, a GraphQL API will provide a single endpoint that lets you query
and/or mutate data sources such as a database. You can query or mutate data by sending
a document containing either a query or mutation operation to the GraphQL server.
Whatever data is available can be found in the schema of the GraphQL server, which
consists of types that define what data can be queried or mutated.

Before creating the GraphQL endpoint, we need to set up the server in Next.js. Therefore,
we need to install the following dependencies that are needed to do so:

npm install graphql @graphql-tools/schema @graphql-tools/mock
express-graphql

Building a full stack e-commerce application with React, Apollo, and GraphQL 211

The graphql library is needed to use GraphQL in our application, while express-
graphql is a tiny implementation of GraphQL Server for Node.js. Both @graphql-
tools/schema and @graphql-tools/mock are open source libraries that helps you
create GraphQL servers. We can also delete the pages/api/hello.js file as we won't
be using this API route.

To set up the GraphQL server, we must create a new file, pages/api/graphql/
index.js, that will contain the single GraphQL endpoint for our application. We need
to import graphqlHTTP to create the server. The schema for the GraphQL server is
written under a variable called typeDefs:

import { graphqlHTTP } from 'express-graphql';

import { makeExecutableSchema } from '@graphql-tools/schema';

import { addMocksToSchema } from '@graphql-tools/mock';

const typeDefs = /* GraphQL */ `

 type Product {

 id: Int!

 title: String!

 thumbnail: String!

 price: Float

 }

 type Query {

 product: Product

 products(limit: Int): [Product]

 }

`;

Below the schema, we can initiate the GraphQL server using the graphqlHTTP instance
and pass the schema to it. We also configure the server to create mocks for all the values
in our schema. At the bottom of the file, we return the handler that is used by Next.js
to make the GraphQL server available at the route http://localhost:3000/api/
graphql:

// ...

const executableSchema = addMocksToSchema({

 schema: makeExecutableSchema({ typeDefs, }),

});

212 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

function runMiddleware(req, res, fn) {

 return new Promise((resolve, reject) => {

 fn(req, res, (result) => {

 if (result instanceof Error) {

 return reject(result);

 }

 return resolve(result);

 });

 });

}

async function handler(req, res) {

 const result = await runMiddleware(

 req,

 res,

 graphqlHTTP({

 schema: executableSchema,

 graphiql: true,

 }),

);

 res.json(result);

}

export default handler;

After making sure you've run the application again, the GraphQL API becomes available
on http://localhost:3000/api/graphql. On this page in the browser, the
GraphiQL playground will be displayed, and here is where you can use and explore the
GraphQL server.

With this playground, you can send queries and mutations to the GraphQL server, which
you can type on the left-hand side of this page. The queries and mutations that you're able
to send can be found in DOCS for this GraphQL server, which you can find by clicking on
the green button labeled DOCS. This button will open an overview with all the possible
return values of the GraphQL server.

Building a full stack e-commerce application with React, Apollo, and GraphQL 213

Figure 7.2 – Using the GraphiQL playground

Whenever you describe a query or mutation on the left-hand side of this page, the output
that is returned by the server will be displayed on the right-hand side of the playground.
The way a GraphQL query is constructed will determine the structure of the returned
data since GraphQL follows the principle of ask for what you need, get exactly that. Since
GraphQL queries always return predictable results, we can have a query that looks like this:

query {

 products {

 id

 title

 price

 }

}

214 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

This will return an output that will follow the same structure of the query that's defined in
the document that you sent to the GraphQL server. Sending this document with a query
to the GraphQL server will return an array consisting of objects with product information,
which has a limit of 10 products by default. The result will be returned in JSON format
and will consist of different products every time you send the requests since the data is
mocked by the GraphQL server. The response has the following format:

{

 "data": {

 "products": [

 {

 "id": 85,

 "title": "Hello World",

 "price": 35.610056991945214

 },

 {

 "id": 24,

 "title": "Hello World",

 "price": 89.47561381959673

 }

]

 }

}

Applications using GraphQL are often fast and stable because they control the data they
get, not the server. With GraphQL we can also create relations between certain fields in
our data, for example, by adding a category field to our products. This is done by adding
the following to the GraphQL schema in pages/api/graphql/index.js:

// ...

 const typeDefs = `

 type Product {

 id: Int!

 title: String!

 thumbnail: String!

 price: Float

+ category: Category

 }

Building a full stack e-commerce application with React, Apollo, and GraphQL 215

+ type Category {

+ id: Int!

+ title: String!

+ }

 type Query {

 product: Product

 products(limit: Int): [Product]

 }

 `;

 // ...

And we can also add a query for type Category by adding it to the schema:

// ...

 const typeDefs = `

 // ...

 type Category {

 id: Int!

 title: String!

 }

 type Query {

 product: Product

 products(limit: Int): [Product]

+ categories: [Category]

 }

 `;

 // ...

The products will now have a new field called category, but you can also query a list
of categories on its own. As all the data for the GraphQL server is currently mocked, you
don't need to connect a data source that makes the category information available. But
we can specify how certain fields should be mocked, for example, by adding a thumbnail
to our products. Therefore, we need to create a variable called mocks that sets the field
thumbnail on the Product type to be a URL to https://picsum.photos. This is a
free server for generating mock images on the fly:

 // ...

+ const mocks = {

https://picsum.photos

216 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

+ Product: () => ({

+ thumbnail: () => 'https://picsum.photos/400/400'

+ }),

+ };

 const executableSchema = addMocksToSchema({

 schema: makeExecutableSchema({ typeDefs, }),

+ mocks,

 });

 // ...

In addition to mocking the thumbnail field on the Product type, we also want to
mock all the values of fields with the Int or Float type everywhere. Both fields are now
often negative values, which is incorrect for its usage as an identifier or price. The Int
type is used to define identifiers, while the Float type is used for prices. We can also
mock these by adding the following:

 // ...

 const mocks = {

+ Int: () => Math.floor(Math.random() * 99) + 1,

+ Float: () => (Math.random() * 99.0 + 1.0).toFixed(2),

 Product: () => ({

 thumbnail: () => 'https://picsum.photos/400/400'

 }),

 };

 // ...

You can check this by trying the following query that also requests a category and the
thumbnail for the products:

query {

 products {

 id

 title

Building a full stack e-commerce application with React, Apollo, and GraphQL 217

 price

 thumbnail

 category {

 id

 title

 }

 }

}

You can insert the preceding query in the GraphQL playground to get the response, which
will look something like the following screenshot:

Figure 7.3 – Sending a query to the GraphQL server

As the data is mocked by the GraphQL Server, the values will change every time you send
a new request with this query. But you can get the same response by sending the query in
the body of an HTTP request, from either the command line or from a React application
with fetch.

218 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

You can also use a library such as Apollo Client to make this more intuitive. This will
be explained in the next section of this chapter, where you'll connect the GraphQL
server to the React web application using Apollo and send documents to the server from
your application.

Consuming GraphQL with Apollo Client
With the GraphQL server in place, let's move on to the part where you make requests to
this server from a React application. For this, you'll use Apollo packages that help you add
an abstraction layer between your application and the server. That way, you don't have to
worry about sending documents to the GraphQL endpoint yourself by using, for example,
fetch, and can send documents directly from a component.

Setting up Apollo Client
As we mentioned previously, you can use Apollo to connect to the GraphQL server; for
this, Apollo Client will be used. With Apollo Client, you can set up the connection with
the server, handle queries and mutations, and enable caching for data that's been retrieved
from the GraphQL server, among other things. You can add Apollo Client to your
application by following these steps:

1.	 To install Apollo Client and its related packages, you need to run the following
command from the client directory where the React application is initialized:

npm install @apollo/client

This will install Apollo Client as well as the other dependencies you need to use
Apollo Client and GraphQL in your React application.

Note
Normally, we also need to install graphql when installing Apollo Client, but
this library is already present in our application.

2.	 These packages should be imported into the pages/_app.js file, where you want
to create the Apollo Provider that wraps our application with the connection to the
GraphQL server:

 import { createGlobalStyle } from

 'styled-components';

+ import {

+ ApolloClient,

+ InMemoryCache,

Building a full stack e-commerce application with React, Apollo, and GraphQL 219

+ ApolloProvider,

+ } from "@apollo/client";

 import Header from '../components/Header';

 const GlobalStyle = createGlobalStyle`

 // ...

3.	 Now you can define the client constant using the ApolloClient class, and
pass the location of the local GraphQL server to it:

 // ...

+ const client = new ApolloClient({

+ uri: 'http://localhost:3000/api/graphql/',

+ cache: new InMemoryCache()

+ });

 function MyApp({ Component, pageProps }) {

 return (

 // ...

4.	 Within the return function for the MyApp component, you need to add
ApolloProvider and pass the client you've just created as a prop:

 // ...

 function MyApp({ Component, pageProps }) {

 return (

- <>

+ <ApolloProvider client={client}>

 <GlobalStyle />

 <Header />

 <Component {...pageProps} />

+ </ApolloProvider>

- </>

);

 }

 export default MyApp;

220 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

After these steps, all the components that are nested within ApolloProvider can
access this client and send documents with queries and/or mutations to the GraphQL
server. In Next.js, all the page components are rendered under Component based on the
route. The method for getting data from ApolloProvider is similar to the context API
that we've used before.

Sending GraphQL queries with React
Apollo Client doesn't only export a Provider, but also methods to consume the value from
this Provider. That way, you can easily get any value using the client that was added to the
Provider. One of those methods is Query, which helps you to send a document containing
a query to the GraphQL server without having to use a fetch function, for example.

Since a Query component should always be nested inside an ApolloProvider
component, they can be placed in any component that's been rendered within App. One
of those is the Products component in pages/product/index.js. This component
is being rendered for the / route and should display products that are available in the
e-commerce store.

To send a document from the Products component, follow these steps, which will guide
you in the process of sending documents using react-apollo:

1.	 In the Products page component, you can import the useQuery Hook from
@apollo/client and define a constant for the named getProducts query.
Also, you need to import gql to use the GraphQL query language inside your React
file as follows:

 import styled from 'styled-components';

+ import { useQuery, gql } from '@apollo/client';

 import SubHeader from '../../components/SubHeader';

 import ProductItem from

 '../../components/ProductItem';

 // ...

+ const GET_PRODUCTS = gql`

+ query getProducts {

+ products {

+ id

+ title

+ price

Building a full stack e-commerce application with React, Apollo, and GraphQL 221

+ thumbnail

+ }

+ }

+ `;

 function Products() {

 // ...

2.	 The imported useQuery Hook can be called from Products and handle the data
fetching process based on the query that you pass to it. In the same way as the context
API, useQuery can consume the data from the Provider by returning a data
variable. You can iterate over the products field from this object and return a list of
ProductItem components already imported into this file. Also, a loading variable
is returned that will be true when the GraphQL server hasn't returned the data yet:

 // ...

 function Products() {

+ const { loading, data } = useQuery(GET_PRODUCTS);

 return (

 <>

 <SubHeader title='Available products' goToCart />

+ {loading ? (

+ Loading...

+) : (

 <ProductItemsWrapper>

+ {data && data.products &&

 data.products.map((product) => (

+ <ProductItem key={product.id}

 data={product} />

+))}

 </ProductItemsWrapper>

+)}

 </>

);

 };

 export default Products;

222 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

This will send a document with the GET_PRODUCTS query to the GraphQL server
when your application mounts and subsequently display the product information
in the list of ProductItem components. After adding the logic to retrieve the
product information from the GraphQL server, your application will look similar to
the following:

Figure 7.4 – Rendering products from GraphQL
By clicking on the button in the top-right corner of this page, you'll navigate to the
/cart route, which also needs to query data from the GraphQL server. As we don't
have a query to retrieve the cart yet, we need to add it to the GraphQL server in
pages/api/graphql/index.js.

Building a full stack e-commerce application with React, Apollo, and GraphQL 223

3.	 We can create a mutable variable using let because there is no connected data
source for the GraphQL server. This is an object that we want to update later, for
example, when we add products to the cart:

 import { graphqlHTTP } from 'express-graphql';

 import { makeExecutableSchema }

 from '@graphql-tools/schema';

 import { addMocksToSchema } from '@graphql-tools/mock';

+ let cart = {

+ count: 0,

+ products: [],

+ complete: false,

+ };

 const typeDefs = `

 // ...

4.	 In the schema, we need to define a type for Cart and add this type to the list of
queries for our GraphQL server:

 // ...

 const typeDefs = `

 // ...

+ type Cart {

+ count: Int

+ products: [Product]

+ complete: Boolean

+ }

 type Query {

 product: Product

 products(limit: Int): [Product]

 categories: [Category]

+ cart: Cart

 }

224 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

 `;

 const mocks = {

 // ...

5.	 In the pages/cart/index.js file, the components to render the products in
the cart are already imported. We do have to import the useQuery Hook and gql
from @apollo/client and create the query constant:

 import styled from 'styled-components';

+ import { useQuery, gql } from '@apollo/client';

 import { usePrice } from '../../utils/hooks';

 import SubHeader from '../../components/SubHeader';

 import ProductItem from

 '../../components/ProductItem';

 import Button from '../../components/Button';

 // ...

+ const GET_CART = gql`

+ query getCart {

+ cart {

+ products {

+ id

+ title

+ price

+ thumbnail

+ }

+ }

+ }

+ `;

 function Cart() {

 // ...

Building a full stack e-commerce application with React, Apollo, and GraphQL 225

6.	 In the Cart component, we need to get the data that we want to display using the
useQuery Hook. After getting the data, we can return a list of products that are
added to the cart together with the button to check out:

 // ...

 function Cart() {

+ const { loading, data } = useQuery(GET_CART);

 return (

 <>

 <SubHeader title='Cart' />

+ {loading ? (

+ Loading...

+) : (

 <CartWrapper>

 <CartItemsWrapper>

+ {data && data.cart.products &&

 data.cart.products.map((product) => (

+ <ProductItem key={product.id}

 data={product} />

+))}

 </CartItemsWrapper>

+ {data && data.cart.products.length >

 0 && (

+ <Button backgroundColor='royalBlue'>

 Checkout

 </Button>

+)}

 </CartWrapper>

+)}

 </>

);

 };

export default Cart;

226 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

7.	 This won't show any products yet as the cart is empty; the cart will be filled with
products in the next section. However, let's proceed by adding a useQuery Hook
to the button that navigates to the cart in SubHeader, which is rendered on routes
other than /cart itself. A new file called CartButton.js can be created in the
components directory. In this file, a useQuery Hook will return data from a
query that requests the total number of products in the cart. Also, we can add a
value to the Button component by adding the following code to this file:

import { useQuery, gql } from '@apollo/client';

import Button from './Button';

export const GET_CART_TOTAL = gql`

 query getCart {

 cart {

 count

 }

 }

`;

function CartButton({ ...props }) {

 const { loading, data } = useQuery(GET_CART_TOTAL);

 return (

 <Button {...props}>

 {loading ? 'Cart' : `Cart (${data.cart.count})`}

 </Button>

);

}

export default CartButton;

8.	 This CartButton component replaces Button, which is now being displayed
with a placeholder count for the number of products in the cart, in the
components/SubHeader.js file:

 import styled from 'styled-components';

 import { useRouter } from 'next/router';

- import Button from './Button';

Building a full stack e-commerce application with React, Apollo, and GraphQL 227

+ import CartButton from './CartButton';

 // ...

 function SubHeader({ title, goToCart = false }) {

 const router = useRouter();

 return (

 <SubHeaderWrapper>

 // ...

 {goToCart && (

- <Button onClick={() =>

 router.push('/cart')}>

- Cart (0)

- </Button>

+ <CartButton onClick={() =>

 router.push('/cart')} />

)}

 </SubHeaderWrapper>

);

 }

 export default SubHeader;

With all the components that show either a product or cart information connected to
the GraphQL server, you can proceed by adding mutations that add products to the cart.
How to add mutations to the application and send document container mutations to the
GraphQL server will be shown in the next part of this section.

Handling mutations in GraphQL
Mutating data makes using GraphQL more interesting because when data is mutated,
some side effects should be executed. For example, when a user adds a product to their
cart, the data for the cart should be updated throughout the component as well. This is
quite easy when you're using Apollo Client since the Provider handles this in the same
way as the context API.

228 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

The GraphQL server now only has queries, but no operations as yet. Adding mutations
is quite like how we've added queries to the schema before, but for the mutation, we also
need to add resolvers. Resolvers are where the magic happens in GraphQL and where
the schema is linked to logic to get the data, possibly from a data source. The addition of
mutations is done in the pages/api/graphql/index.js file:

1.	 The first step is to add the mutation to add a product to the cart to the schema.
This mutation takes productId as an argument. Also, we need to mock a list of
types later:

 // ...

 const typeDefs =`

 // ...

 const typeDefs = gql`

 // ...

 type Cart {

 total: Float

 count: Int

 products: [Product]

 complete: Boolean

 }

 type Query {

 product: Product

 products(limit: Int): [Product]

 categories: [Category]

 cart: Cart

 }

+ type Mutation {

+ addToCart(productId: Int!): Cart

+ }

 `;

Building a full stack e-commerce application with React, Apollo, and GraphQL 229

 const mocks = {

 // ...

2.	 So far, all the values for our schema are mocked the GraphQLServer, but normally
you would add resolvers for every type in the schema. These resolvers will contain
the logic to get something from a data source. As we want to store the values for the
Cart type in the cart object that is created at the top of this file, we need to add a
resolver for the addToCart mutation:

 // ...

+ const resolvers = {

+ Mutation: {

+ addToCart: (_, { productId }) => {

+ cart = {

+ ...cart,

+ count: cart.count + 1,

+ products: [

+ ...cart.products,

+ {

+ productId,

+ title: 'My product',

+ thumbnail: 'https://picsum.photos/400/400',

+ price: (Math.random() * 99.0 + 1.0).

 toFixed(2),

+ category: null,

+ },

+],

+ };

+ return cart;

+ },

+ },

+ };

 const executableSchema = addMocksToSchema({

 // ...

230 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

3.	 When creating the graphqlHTTP instance, we need to pass the resolver that we
created to it in order for our changes to become effective:

 // ...

 const executableSchema = addMocksToSchema({

 schema: makeExecutableSchema({ typeDefs, }),

 mocks,

+ resolvers,

 });

 // ...

 export default handler;

You can already test this mutation by trying it out on the GraphQL playground that's
available at http://localhost:3000/api/graphql. Here, you'd need to add
the mutation in the upper-left box of this page. The variable that you want to include in
this mutation for productId must be placed in the bottom-left box of this page, called
QUERY VARIABLES. This would result in the following output:

Figure 7.5 – Using mutations in the GraphiQL playground

Building a full stack e-commerce application with React, Apollo, and GraphQL 231

Every time you send a document to the GraphQL server with this mutation, a new
product will be added to the list. Also, the count field will be incremented by 1. But,
when you want to retrieve this information using the query for the Cart type, the values
will still be mocked by the GraphQL Server. To return the cart object instead, we also
need to add a resolver for the query to get the cart information:

 // ...

 const resolvers = {

+ Query: {

+ cart: () => cart,

+ },

 Mutation: {

 // ...

 },

 };

 const executableSchema = addMocksToSchema({

 // ...

The response that will now be returned after using the addToCart mutation will reflect
what you can retrieve with the cart query.

To be able to use this mutation from our React application, we will need to make the
following changes:

1.	 Currently, there's no button to add a product to the cart yet, so you can create a new
file in the components directory and call this AddToCartButton.js. In this
file, you can add the following code:

import { useMutation, gql } from '@apollo/client';

import Button from './Button';

const ADD_TO_CART = gql`

 mutation addToCart($productId: Int!) {

 addToCart(productId: $productId) {

 count

 products {

 id

 title

232 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

 price

 }

 }

 }

`;

function AddToCartButton({ productId }) {

 const [addToCart, { data }] =

 useMutation(ADD_TO_CART);

 return (

 <Button

 onClick={() =>

 !data && addToCart({ variables: { productId } })

 }

 >

 {data ? 'Added to cart!' : 'Add to cart'}

 </Button>

);

}

export default AddToCartButton;

This new AddToCartButton takes productId as a prop and has a
useMutation Hook from @apollo/client, which uses the mutation we've
created earlier. The output of Mutation is the actual function to call this mutation,
which takes an object containing the inputs as an argument. Clicking on the
Button component will execute the mutation and pass the productId to it.

2.	 This button should be displayed next to the products in the list on the / or /
products routes, where each product is displayed in a ProductItem component.
This means that you will need to import AddCartButton in components/
ProductItem.js and pass a productId prop to it by using the following code:

 import styled from 'styled-components';

 import { usePrice } from '../utils/hooks';

+ import AddToCartButton from './AddToCartButton';

Building a full stack e-commerce application with React, Apollo, and GraphQL 233

 // ...

 function ProductItem({ data }) {

 const price = usePrice(data.price);

 return (

 <ProductItemWrapper>

 {data.thumbnail && <Thumbnail

 src={data.thumbnail} width={200} />}

 <Title>{data.title}</Title>

 <Price>{price}</Price>

+ <AddToCartButton productId={data.id} />

 </ProductItemWrapper>

);

 }

 export default ProductItem;

Now, when you open the React application in the browser, a button will be displayed
next to the product titles. If you click this button, the mutation will be sent to the
GraphQL server, and the product will be added to the cart. However, you won't see
any changes to the button that displays Cart (0) in the SubHeader component.

3.	 Executing this query after sending the mutation can be done by setting a value for
the refetchQueries option of the useMutation Hook in components/
AddToCartButton.js. This option takes an array of objects with information about
the queries that should be requested. In this case, it's only the GET_CART_TOTAL
query, which is executed by CartButton. To do this, make the following changes:

 import { useMutation, gql } from '@apollo/client';

 import Button from './Button';

+ import { GET_CART_TOTAL } from './CartButton';

 // ...

 function AddToCartButton({ productId }) {

 const [addToCart, { data }] =

 useMutation(ADD_TO_CART);

234 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

 return (

 <Button

 onClick={() =>

 !data && addToCart({

 variables: { productId },

+ refetchQueries:

 [{ query: GET_CART_TOTAL }],

 })

 }

 >

 {data ? 'Added to cart!' : 'Add to cart'}

 </Button>

);

 }

export default AddToCartButton;

4.	 When you click on CartButton, we'll navigate to the /cart route, where the
products that we have in the cart are displayed. On here, AddToCartButton is
also rendered, as this is defined in the ProductItem component. Let's change this
by going to the components/ProductItem.js file and add the following lines
of code, which will render this button conditionally:

 // ...

- function ProductItem({ data }) {

+ function ProductItem({ data, addToCart = false }) {

 const price = usePrice(data.price);

 return (

 <ProductItemWrapper>

 {data.thumbnail && <Thumbnail

 src={data.thumbnail} width={200} />}

 <Title>{data.title}</Title>

 <Price>{price}</Price>

- <AddToCartButton productId={data.id} />

+ {addToCart && <AddToCartButton

 productId={data.id} />}

Building a full stack e-commerce application with React, Apollo, and GraphQL 235

 </ProductItemWrapper>

);

 }

 export default ProductItem;

5.	 From the Products page component, we need to pass the addToCart prop to
render the button on this page:

 // ...

 return (

 <>

 <SubHeader title='Available products' goToCart

 />

 {loading ? (

 Loading...

) : (

 <ProductItemsWrapper>

 {data && data.products &&

 data.products.map((product) => (

 <ProductItem

 key={product.id}

 data={product}

+ addToCart

 />

))}

 </ProductItemsWrapper>

)}

 </>

);

 };

 export default Products;

236 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

Now, every time you send a mutation in a document to the GraphQL server from
this component, the GET_CART_TOTAL query will be sent as well. If the results have
changed, the CartButton and Cart components will be rendered with this new output.
Therefore, the CartButton component will be updated to display Cart (1) if you click
on the AddToCartButton component:

Figure 7.6 – Updating the products in the cart

In this section, we've learned how to set up Apollo Client and use it to send documents
to the GraphQL server. In the next section of this chapter, we'll expand on this by
handling authentication.

Handling authentication in GraphQL
Until now, we've created a GraphQL server that can be consumed by an application built
with Next.js and React. Using queries and mutation, we can view a list of products and
add them to a shopping cart. But we haven't added logic to check out that cart yet, which
we'll do in this section.

When users have added products to the cart, you want them to be able to check out;
but before that, the users should be authenticated as you want to know who's buying
the product.

Building a full stack e-commerce application with React, Apollo, and GraphQL 237

For authentication in frontend applications, most of the time, JSON Web Tokens (JWTs)
are used, which are encrypted tokens that can easily be used to share user information
with a backend. The JWT will be returned by the backend when the user is successfully
authenticated and often, this token will have an expiration date. With every request that
the user should be authenticated for, the token should be sent so that the backend server
can determine whether the user is authenticated and allowed to take this action. Although
JWTs can be used for authentication since they're encrypted, no private information
should be added to them since the tokens should only be used to authenticate the user.
Private information can only be sent from the server when a document with the correct
JWT has been sent.

Before we can add the checkout process to the React application, we need to make it
possible for customers to authenticate. This consists of multiple steps:

1.	 We need to create a new type in the schema that defines a user and a mutation to
log in a user, which we can do in pages/api/graphql/index.js:

 // ...

 const typeDefs = `

 // ...

+ type User {

+ username: String!

+ token: String!

+ }

 type Query {

 product: Product

 products(limit: Int): [Product]

 categories: [Category]

 cart: Cart

 }

 type Mutation {

 addToCart(productId: Int!): Cart

+ loginUser(username: String!, password: String!):

 User

 }

 `;

 // ...

238 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

2.	 With the mutation defined in the schema, it can be added to the resolvers. In
the utils/authentication.js file, a method to check the username and
password combination is already present. This method will return a valid token
together with the username if that combination is correct. From this file, we also
import a method to check whether a token is valid:

 import { graphqlHTTP } from 'express-graphql';

 import { makeExecutableSchema }

 from '@graphql-tools/schema';

 import { addMocksToSchema } from '@graphql-tools/mock';

+ import { loginUser, isTokenValid }

 from '../../../utils/authentication';

 // ...

 const resolvers = {

 Query: {

 cart: () => cart,

 },

 Mutation: {

+ loginUser: async (_, { username, password }) =>

 {

+ const user = loginUser(username, password);

+ if (user) {

+ return user;

+ }

+ },

 // ...

Building a full stack e-commerce application with React, Apollo, and GraphQL 239

From the GraphiQL playground, we can now check whether this mutation is
working by entering the username test and the password test:

Figure 7.7 – Creating a JWT with GraphQL

3.	 In the pages/login/index.js file, we can add the logic to use the input from
a form to send a document with the loginUser mutation to the GraphQL server.
The Login page component is already using useState Hooks to control the value
of the input fields for username and password. The useMutation Hook can be
imported from @apollo/client:

 import { useState } from 'react';

+ import { useMutation, gql } from '@apollo/client';

 // ...

+ const LOGIN_USER = gql`

+ mutation loginUser($username: String!, $password:

 String!) {

+ loginUser(username: $username,

 password: $password) {

+ username

+ token

+ }

+ }

+ `;

240 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

 function Login() {

 const [username, setUsername] = useState('');

 const [password, setPassword] = useState('');

+ const [loginUser, { data }] =

 useMutation(LOGIN_USER);

 return (

 // ...

4.	 After creating the loginUser function, this can be added to the onSubmit event
from the form element, and the values for username and password should be
passed to this function as variables:

 // ...

 function Login() {

 // ...

 return (

 <>

 <SubHeader title='Login' />

 <FormWrapper>

 <form

+ onSubmit={(e) => {

+ e.preventDefault();

+ loginUser({ variables: { username,

 password } });

+ }}

 >

 // ...

Building a full stack e-commerce application with React, Apollo, and GraphQL 241

5.	 Clicking the Button will send the document containing the username and
password values to the GraphQL server and, if successful, it returns the JWT for
this user. This token should also be stored in the session storage so that it can be
used later. Also, we want to redirect the user back to the home page when logged
in. To do this, we need to import a useEffect Hook from React that watches
for changes in the data. When the token is present, we can use a router object
obtained from a useRouter Hook that we need to import from Next.js:

- import { useState } from 'react';

+ import { useState, useEffect } from 'react';

 import { useMutation, gql } from '@apollo/client';

+ import { useRouter } from 'next/router';

 // ...

 function Login() {

 const [username, setUsername] = useState('');

 const [password, setPassword] = useState('');

 const [loginUser, { data }] =

 useMutation(LOGIN_USER);

+ const router = useRouter();

+ useEffect(() => {

+ if (data && data.loginUser &&

 data.loginUser.token) {

+ sessionStorage.setItem('token',

 data.loginUser.token);

+ router.push('/');

+ }

+ }, [data]);

 return (

 // ...

242 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

6.	 Every time a customer logs in via the /login route, the token is stored in the
session storage in the browser. You can delete the token from the session storage by
going to the Application tab in the Developer tools section of your browser; there,
you'll find another tab called Session Storage. The customer's authentication details
in the form of the JWT are now stored in the session storage. But for the customer
to check out, this token should also be sent to the GraphQL server, along with every
document for the server, to validate whether the user is authenticated or whether
the token has expired. Therefore, you need to extend the setup of Apollo Client
to also send the token when you make a request to the server and prefix it with
Bearer, since this is how a JWT is recognized. This requires us to make multiple
changes to pages/_app.js:

 import { createGlobalStyle } from

 'styled-components';

 import {

 ApolloClient,

 InMemoryCache,

 ApolloProvider,

+ createHttpLink,

 } from '@apollo/client';

+ import { setContext } from

 '@apollo/client/link/context';

 import Header from '../components/Header';

 // ...

+ const httpLink = createHttpLink({

+ uri: 'http://localhost:3000/api/graphql/',

+ });

+ const authLink = setContext((_, { headers }) => {

+ const token = sessionStorage.getItem('token');

+ return {

+ headers: {

+ ...headers,

+ authorization: token ? `Bearer ${token}` : '',

+ },

Building a full stack e-commerce application with React, Apollo, and GraphQL 243

+ };

+ });

 const client = new ApolloClient({

- uri: 'http://localhost:3000/api/graphql/',

+ link: authLink.concat(httpLink),

 cache: new InMemoryCache(),

 });

 function MyApp({ Component, pageProps }) {

 // ...

On every request to the GraphQL server, the token will now be added to the headers
of the HTTP request.

7.	 The GraphQL Server can now get the token from the HTTP request headers and
store them in the context. The context is an object that you use to store data that
you want to use in your resolvers, such as a JWT. This can be done in pages/api/
graphql/index.js:

 // ...

 const executableSchema = addMocksToSchema({

 schema: makeExecutableSchema({ typeDefs, }),

 mocks,

 resolvers,

+ context: ({ req }) => {

+ const token = req.headers.authorization || '';

+ return { token }

+ },

 });

 // ...

244 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

Finally, we can also create a mutation to check out the items. This mutation should empty
the card and, in a production environment, redirect the customer to a payment provider.
In this scenario, we'll just empty the card and display a message that the order has been
created successfully. To aid the checkout process, we need to make the following changes:

1.	 We require a new mutation in the schema of our GraphQL server in pages/api/
graphql/index.js:

 // ...

 type Mutation {

 addToCart(productId: Int!): Cart

 loginUser(username: String!, password: String!):

 User

+ completeCart: Cart

 }

 `;

 const mocks = {

 // ...

2.	 With the mutation defined in the schema, it can be added to the resolvers. The
mutation needs to clear the products in the cart, set the count field to 0, and the
complete field to true. Also, it should check whether the user has a token stored
in the context and whether this is a valid token. To check the token, we can use the
previously imported isTokenValid method:

 // ...

 const resolvers = {

 Query: {

 cart: () => cart,

 },

 Mutation: {

 // ...

+ completeCart: (_, {}, { token }) => {

+ if (token && isTokenValid(token)) {

+ cart = {

+ count: 0,

+ products: [],

+ complete: true,

Building a full stack e-commerce application with React, Apollo, and GraphQL 245

+ };

+ return cart;

+ }

+ },

 },

 };

 // ...

3.	 In the pages/cart/index.js file, we need to import this Hook from
@apollo/client and import useRouter from Next.js to redirect the user to
the /login page if they are not authenticated. Also, the mutation to complete the
cart can be added here:

 import styled from 'styled-components';

 import {

 useQuery,

+ useMutation,

 gql

 } from '@apollo/client';

+ import { useRouter } from 'next/router';

 // ...

+ const COMPLETE_CART = gql`

+ mutation completeCart {

+ completeCart {

+ complete

+ }

+ }

+ `;

 function Cart() {

 // ...

246 Building a Full-Stack E-Commerce Application with Next.js and GraphQL

In the return statement of the Cart component, there is a button to check out. This
button will need to call a function created by a useMutation Hook that takes this
new mutation. This mutation completes the cart and clears its content. If the user
isn't authenticated, it should redirect the user to the /login page:

 // ...

 function Cart() {

 const { loading, data } = useQuery(GET_CART);

+ const [completeCard] = useMutation(COMPLETE_CART);

 return (

 <>

 <SubHeader title='Cart' />

 {loading ? (

 Loading...

) : (

 <CartWrapper>

 // ...

 {data &&

 data.cart.products.length > 0 &&

+ sessionStorage.getItem('token') && (

 <Button

 backgroundColor='royalBlue'

+ onClick={() => {

+ const isAuthenticated =

 sessionStorage.getItem(

 'token');

+ if (isAuthenticated) {

+ completeCard();

+ }

+ }}

 >

 Checkout

 </Button>

)}

Summary 247

 </CartWrapper>

)}

 </>

);

 }

 export default Cart;

This concludes the checkout process for the application and thereby this chapter, where
you've used React and GraphQL to create an e-commerce application.

Summary
In this chapter, you've created a full stack React application that uses GraphQL as its
backend. Using a GraphQL server and mock data, the GraphQL server was created within
Next.js using API routes. This GraphQL server takes queries and mutations to provide
you with data and lets you mutate that data. This GraphQL server is used by a React
application that uses Apollo Client to send and receive data from the server.

That's it! You've completed the seventh chapter of this book and have already created
seven web applications with React. By now, you should feel comfortable with React and
its features and be ready to learn some more. In the next chapter, you'll be introduced to
React Native and learn how you can use your React skills to build a mobile application by
creating an animated game with React Native and Expo.

Further reading
•	 Next.js API routes: https://nextjs.org/docs/api-routes/

introduction

•	 GraphQL: https://graphql.org/learn/

•	 Apollo Client: https://www.apollographql.com/docs/react/

https://nextjs.org/docs/api-routes/introduction
https://nextjs.org/docs/api-routes/introduction
https://graphql.org/learn/
https://www.apollographql.com/docs/react/

8
Building an

Animated Game
Using React

Native and Expo
One of the taglines for development with React is "learn once, write anywhere," which
is due to the existence of React Native. With React Native, you can write native mobile
applications using JavaScript and React, and easily run and deploy these applications
using a toolchain called Expo. The previous applications created in this book were all web
applications, meaning that they will run in a browser. A downside of running applications
in a browser is the lack of interaction when you click on a button or navigate to a different
page. When building a mobile application that runs directly on a mobile phone, your users
expect animations and gestures that make using the application easy and familiar. This is
something that you'll focus on in this chapter.

250 Building an Animated Game Using React Native and Expo

In this chapter, you'll create a React Native application with add animations and
gestures using the Animated API from React Native, a package called Lottie, and Expo's
GestureHandler. Together, they make it possible for us to create applications that
make the best use of a mobile's interaction methods, which is perfect for a game such as
the Higher/Lower game.

To create this game, the following topics will be covered:

•	 Setting up React Native with Expo

•	 Adding gestures and animations to React Native

•	 Advanced animations with Lottie

Project overview
In this chapter, we will be creating an animated Higher/Lower game build with React
Native and Expo, which uses the Animated API to add basic animations, Lottie for
advanced animations, and GestureHandler from Expo to handle native gestures.

The build time is 1.5 hours.

Note
This chapter is using React Native version 0.64.3 and Expo SDK version 44. As
React Native and Expo are updated frequently, make sure that you're working
with this version to ensure the patterns described in this chapter are behaving
as expected.

Getting started
The complete source code for the project we build in this chapter can be found on
GitHub: https://github.com/PacktPublishing/React-Projects-
Second-Edition/tree/main/Chapter08. Also, the winner.json file that
is needed in the final section of this chapter can be found at https://github.
com/PacktPublishing/React-Projects-Second-Edition/tree/main/
Chapter08-assets.

You need to have the Expo Go application installed on a mobile iOS or Android device to
run the project on a physical device. Once you've downloaded the application, you need
to create an Expo account to make the development process smoother. Make sure to store
your account details somewhere safe, as you will need these later on in this chapter.

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter08-assets
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter08-assets
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter08-assets

Creating an animated game application with React Native and Expo 251

Alternatively, you can install either Xcode or Android Studio on your computer to run the
application on a virtual device:

•	 For iOS: Information on how to set up your local machine to run the iOS simulator
can be found here: https://docs.expo.io/workflow/ios-simulator/.

•	 For Android: Information on how to set up your local machine to run the emulator
from Android Studio can be found here: https://docs.expo.io/workflow/
android-studio-emulator/.

Note
It's highly recommended to use the Expo Client application to run the project
from this chapter on a physical device. Receiving notifications is currently
only supported on physical devices, and running the project on either the iOS
simulator or Android Studio emulator will result in error messages.

Creating an animated game application with
React Native and Expo
In this section, you'll build an animated game with React Native and Expo that runs
directly on a mobile device. React Native allows you to use the same syntax and patterns
you already know from React, as it's using the core React library. Also, Expo makes it
possible to prevent having to install and configure Xcode (for iOS) or Android Studio to
start creating native applications on your machine. Therefore, you can write applications
for both the iOS and Android platforms from any machine.

Expo combines both React APIs and JavaScript APIs to the React Native development
process, such as JSX components, Hooks, and native features such as camera access.
Briefly, the Expo toolchain consists of multiple tools that help you with React Native, such
as the Expo CLI, which allows you to create React Native projects from your terminal,
with all the dependencies that you need to run React Native. With the Expo client, you
can open these projects from iOS and Android mobile devices that are connected to
your local network, and Expo SDK is a package that contains all the libraries that make it
possible to run your application on multiple devices and platforms.

https://docs.expo.io/workflow/ios-simulator/
https://docs.expo.io/workflow/android-studio-emulator/
https://docs.expo.io/workflow/android-studio-emulator/

252 Building an Animated Game Using React Native and Expo

Setting up React Native with Expo
Applications that we previously created in this book used Create React App or Next.js to
set up a starter application. For React Native, a similar boilerplate is available, which is
part of the Expo CLI and can be set up just as easily.

You need to globally install the Expo CLI with the following command, using Yarn:

yarn global add expo-cli

Alternatively, you can use npm:

npm install -g expo-cli

Note
Expo is using Yarn as its default package manager, but you can still use it with
npm instead as weve done in the previous React chapters.

This will start the installation process, which can take some time, as it will install the Expo
CLI with all its dependencies to help you develop mobile applications. After that, you will
be able to create a new project using the init command from the Expo CLI:

expo init chapter-8

Expo will now create the project for you, but before that, it will ask you whether you
want to create just a blank template, a blank template with TypeScript configuration, or a
sample template with some example screens set up. For this chapter, you'll need to choose
the first option. Expo automatically detects whether you have Yarn installed on your
machine; if so, it will use Yarn to install the other dependencies that are needed to set up
your computer.

Your application will now be created, using the setting you've previously selected. This
application can now be started by moving into the directory that was just created by Expo,
using the following commands:

cd chapter-8

yarn start

This will start Expo and give you the ability to start your project from both the terminal
and your browser. In the terminal, you will now see a QR code, which you can scan with
the Expo application from your mobile device, or you can start either the iOS or Android
emulator if you have Xcode or Android studio installed. Also, Expo DevTools will be
opened in your browser after running the start command:

Creating an animated game application with React Native and Expo 253

Figure 8.1 – Expo DevTools when running Expo

On this page, you will see a sidebar on the left and the logs from your React Native
application on the right. If you're using an Android device, you can scan the QR code
directly from the Expo Go application. On iOS, you need to use your camera to scan
the code, which will ask you to open the Expo client. Alternatively, the sidebar in Expo
DevTools has buttons to start the iOS or Android emulator, for which you need to have
either Xcode installed or Android Studio installed. Otherwise, you can also find a button
to send a link to the application by email.

It doesn't matter whether you've opened the application using the emulator for iOS or
Android, or from an iOS or Android device; the application at this point should be a white
screen displaying Open up App.js to start working on your app!.

254 Building an Animated Game Using React Native and Expo

Note
If you don't see the application, but a red screen displaying an error, you should
make sure that you're running the correct version of React Native and Expo on
your local machine and mobile device. These versions should be React Native
version 0.64.3 and Expo version 44. Using any other version can lead to errors,
as the versions for React Native and Expo should be in sync.

The project structure from this React Native application created with Expo is quite similar
to the React projects you've created in the previous chapters:

chapter-8

 |- node_modules

 |- assets

 |- package.json

 |- App.js

 |- app.json

 |- babel.config.js

In the assets directory, you can find the images that are used as the application icon
on the home screen once you've installed this application on your mobile device and
the image that will serve as the splash screen, which is displayed when you start the
application. The App.js file is the actual entry point of your application, where you'll
put code that will be rendered when the application mounts. Configurations for your
application – for example, the App Store – are placed in app.json, while babel.
config.js holds specific Babel configurations.

Adding basic routing
For web applications created with React, we've used React Router for navigation, while
with Next.js, the routing was already built in using the filesystem. For React Native, we'll
need a different routing library that supports both iOS and Android. The most popular
library for this is react-navigation, which we can install from Yarn:

yarn add @react-navigation/native

Creating an animated game application with React Native and Expo 255

This will install the core library, but we need to extend our current Expo installation with
dependencies that are needed for react-navigation by running the following:

expo install react-native-screens react-native-safe-area-
context

To add routing to your React Native application, you will need to understand the
difference between routing in a browser and a mobile application. History in React Native
doesn't behave the same way as in a browser, where users can navigate to different pages
by changing the URL in the browser and previously visited URLs are added to the browser
history. Instead, you will need to keep track of transitions between pages yourself and
store local history in your application.

With React Navigation, you can use multiple different navigators to help you do this,
including a stack navigator and a tab navigator. The stack navigator behaves in a way that
is very similar to a browser, as it stacks pages after transition on top of each other and lets
you navigate using native gestures and animations for iOS and Android. Let's get started:

1.	 First, we need to install the library to use stack navigation and an additional library with
navigation elements from react-navigation:

yarn add @react-navigation/native-stack@react-navigation/
elements

2.	 From this library and the core library from react-navigation, we need to
import the following to create a stack navigator in App.js:

 import { StatusBar } from 'expo-status-bar';

 import React from 'react';

 import { StyleSheet, Text, View } from

 'react-native';

+ import { NavigationContainer }

 from '@react-navigation/native';

+ import { createNativeStackNavigator }

 from '@react-navigation/native-stack';

+ const Stack = createNativeStackNavigator();

 export default function App() {

 // ...

256 Building an Animated Game Using React Native and Expo

3.	 From the App component, we need to return this stack navigator, which also needs
a component to return to the home screen. Therefore, we need to create a Home
component in a new directory called screens. This component can be created in a
file called Home.js with the following content:

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

export default function Home() {

 return (

 <View style={styles.container}>

 <Text>Home screen</Text>

 </View>

);

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

4.	 In App.js, we need to import this Home component and set up the stack navigator
by returning a NavigationContainer component from the App component.
Inside this component, the stack navigator is created by the Navigator component
from the Stack component, and the home screen is described in a Stack.Screen
component. Also, the status bar for the mobile device is defined here:

 import { StatusBar } from 'expo-status-bar';

 import React from 'react';

- import { StyleSheet, Text, View } from

 'react-native';

+ import { StyleSheet } from 'react-native';

Creating an animated game application with React Native and Expo 257

 import { NavigationContainer }

 from '@react-navigation/native';

 import { createNativeStackNavigator }

 from '@react-navigation/native-stack';

+ import Home from './screens/Home';

const Stack = createNativeStackNavigator();

export default function App() {

 export default function App() {

 return (

- <View style={styles.container}>

- <Text>Open up App.js to start working on your

 app!</Text>

+ <NavigationContainer>

 <StatusBar style='auto' />

+ <Stack.Navigator>

+ <Stack.Screen name='Home' component={Home}

 />

+ </Stack.Navigator>

+ </NavigationContainer>

- </View>

);

 }

 // ...

258 Building an Animated Game Using React Native and Expo

Make sure that you still have Expo running from your terminal; otherwise, start it again
with the yarn start command. The application on your mobile device or emulator should
now look like this:

Figure 8.2 – The application with a stack navigator

Note
To reload the application in Expo Go, you can shake the device when you're
using an iOS or Android phone. By shaking the device, a menu with an option
to reload the application will appear. In this menu, you must also select to
enable a fast refresh to refresh the application automatically when you make
changes to the code.

We've got our stack navigator with the first page set up, so let's add more pages and create
buttons to navigate between them in the next part of this section.

Creating an animated game application with React Native and Expo 259

Navigate between screens
Navigating between screens in React Native also works a bit differently than in the
browser, as again there are no URLs. Instead, you need to use the navigation object that is
available as a prop from components that are rendered by the stack navigator, or by calling
the useNavigation Hook from react-navigation.

Before learning how to navigate between screens, we need to add another screen to
navigate to:

1.	 This screen can be added by creating a new component in a file called Game.js in
the screens directory with the following code:

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

export default function Game() {

 return (

 <View style={styles.container}>

 <Text>Game screen</Text>

 </View>

);

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

2.	 This component must be imported in App.js and added as a new screen to the
stack navigator. Also, on the navigator, we need to set the default screen that must
be displayed by setting the initialRouteName prop:

 import { StatusBar } from 'expo-status-bar';

 import React from 'react';

 import { StyleSheet } from 'react-native';

260 Building an Animated Game Using React Native and Expo

 import { NavigationContainer }

 from '@react-navigation/native';

 import { createNativeStackNavigator }

 from '@react-navigation/native-stack';

 import Home from './screens/Home';

+ import Game from './screens/Game';

 const Stack = createNativeStackNavigator();

 export default function App() {

 return (

 <NavigationContainer>

 <StatusBar style='auto' />

- <Stack.Navigator>

+ <Stack.Navigator initialRouteName='Home'>

 <Stack.Screen name='Home' component={Home}

 />

+ <Stack.Screen name='Game' component={Game}

 />

 </Stack.Navigator>

 </NavigationContainer>

);

 }

 // ...

3.	 From the Home component in screens/Home.js, we can get the navigation
object from the useNavigation Hook and create a button that will navigate
to the Game screen when pressed. This is done by using the navigate method
from the navigation object and passing it to the onPress prop of the Button
component from React Native:

 import React from 'react';

- import { StyleSheet, Text, View } from

 'react-native';

+ import { StyleSheet, View, Button } from

 'react-native';

+ import { useNavigation } from

Creating an animated game application with React Native and Expo 261

 '@react-navigation/native';

 export default function Home() {

+ const navigation = useNavigation();

 return (

 <View style={styles.container}>

- <Text>Home screen</Text>

+ <Button onPress={() => navigation.navigate(

 'Game')} title='Start game!' />

 </View>

);

 }

 // ...

From the application, you can now move between the Home and Game screen by using the
button that we just created or by using the button in the header. This header is automatically
generated by react-navigation, but you can also customize this, which we'll do in Chapter 9,
Building a Full-Stack Social Media Application with React Native and Expo:

Figure 8.3 – Our application with basic routing

262 Building an Animated Game Using React Native and Expo

At this point, we've added basic routing to our application, but we don't have a game
yet. In the screens/Game.js file, the logic for the Higher/Lower game can be added
by using local state management, using the useState and useEffect Hooks. These
Hooks work the same in React Native as they do in a React web application. Let's add the
game logic:

1.	 Import these Hooks from React in the Game component, next to the Button and
Alert components from React Native. After importing them, we need to create
a local state variable to store the user's choice and create the randomized number
and score for the game. Also, import the useNavigation Hook from react-
navigation:

- import React from 'react';

- import { StyleSheet, Text, View } from

 'react-native';

+ import React, { useEffect, useState } from 'react';

+ import { Button, StyleSheet, Text, View, Alert }

 from 'react-native';

+ import { useNavigation } from

 '@react-navigation/native';

 export default function Game() {

+ const baseNumber = Math.floor(Math.random() *

 100);

+ const score = Math.floor(Math.random() * 100);

+ const [choice, setChoice] = useState('');

 return (

 <View style={styles.container}>

 // ...

The baseNumber value is the number that starts the game with an initial random
value between 1 and 100, created with a Math method from JavaScript. The score
value also has a random number as a value, and this value is used to compare with
baseNumber. The choice local state variable is used to store the choice of the
user if a score is either higher or lower than baseNumber.

Creating an animated game application with React Native and Expo 263

2.	 To be able to make a choice, we need to add two Button components that set the
value for a choice to be higher or lower, depending on which button you've pressed:

 // ...

 return (

 <View style={styles.container}>

- <Text>Game screen</Text>

+ <Text>Starting: {baseNumber}</Text>

+ <Button onPress={() => setChoice('higher')}

 title='Higher' />

+ <Button onPress={() => setChoice('lower')}

 title='Lower' />

 </View>

);

 }

 const styles = StyleSheet.create({

 // ...

3.	 From an useEffect Hook, we can compare the values for baseNumber and
score and, based on the value choice, show an alert. Depending on the choice, the
user sees an Alert component displayed with a message saying whether they've
won or not, and the score. Next to displaying the alert, the values for baseNumber,
score, and choice the navigation object will be used to navigate back to the
previous page. This will reset the Game component as well:

 // ...

+ const navigation = useNavigation();

+ useEffect(() => {

+ if (choice) {

+ const winner =

+ (choice === 'higher' && score > baseNumber) ||

+ (choice === 'lower' && baseNumber > score);

+ Alert.alert(`You've ${winner ? 'won' : 'lost'}`,

264 Building an Animated Game Using React Native and Expo

 `You scored: ${score}`);

+ navigation.goBack();

+ }

+ }, [baseNumber, score, choice]);

 return (

 <View style={styles.container}>

 // ...

You're now able to play the game and choose whether you think the score will be higher or
lower than the displayed baseNumber. But we haven't added any styling yet, which we'll
do in the next part of this section.

Styling in React Native
You might have seen in the previous components that we changed or added to the project
that we used a variable called StyleSheet. Using this variable from React Native, we can
create an object of styles, which we can attach to React Native components by passing it as
a prop called style. We've already used this to style the components with a style called
container, but let's make some changes to also add styling to the other components:

1.	 In screens/Home.js, we need to replace the Button component with a
TouchableHighlight component, as Button components in React Native are
hard to style. This TouchableHighlight component is an element that can be
pressed, and it gives the user feedback by getting highlighted when pressed. Inside this
component, a Text component must be added to display the label for the button:

 import React from 'react';

- import { StyleSheet, View, Button } from

 'react-native';

+ import { StyleSheet, Text, View, TouchableHighlight

 } from 'react-native';

 import { useNavigation } from

 '@react-navigation/native';

 export default function Home() {

 const navigation = useNavigation();

 return (

 <View style={styles.container}>

Creating an animated game application with React Native and Expo 265

- <Button onPress={() => navigation.navigate(

 'Game')} title='Start game!' />

+ <TouchableHighlight

+ onPress={() => navigation.navigate('Game')}

+ style={styles.button}

+ >

+ <Text style={styles.buttonText}>

 Start game!</Text>

+ </TouchableHighlight>

 </View>

);

 }

 // ...

2.	 The TouchableHighlight and Text components use the button and
buttonText styles from the styles object, which we need to add to the create
method of StyleSheet at the bottom of the file:

 // ...

 const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

+ button: {

+ width: 300,

+ height: 300,

+ display: 'flex',

+ alignItems: 'center',

+ justifyContent: 'space-around',

+ borderRadius: 150,

+ backgroundColor: 'purple',

+ },

+ buttonText: {

266 Building an Animated Game Using React Native and Expo

+ color: 'white',

+ fontSize: 48,

+ },

 });

Creating styles with React Native means you need to use camelCase notation instead
of kebab-case as we're used to with CSS – for example, background-color
becomes backgroundColor.

3.	 We also need to make styling additions to the buttons on the Game screen by
opening the screens/Game.js file. In this file, we again need to replace
the Button components from React Native with a TouchableHighlight
component with an inner Text:

 import React, { useEffect, useState } from 'react';

 import {

- Button,

 StyleSheet,

 Text,

 View,

 Alert,

+ TouchableHighlight,

 } from 'react-native';

 import { useNavigation } from

 '@react-navigation/native';

 export default function Game() {

 // ...

 return (

 <View style={styles.container}>

- <Text>Starting: {baseNumber}</Text>

- <Button onPress={() => setChoice('higher')}

 title='Higher' />

- <Button onPress={() => setChoice('lower')}

 title='Lower' />

+ <Text style={styles.baseNumber}>

 Starting: {baseNumber}</Text>

+ <TouchableHighlight onPress={() =>

 setChoice('higher')} style={styles.button}>

Creating an animated game application with React Native and Expo 267

+ <Text style={styles.buttonText}>Higher

 </Text>

+ </TouchableHighlight>

+ <TouchableHighlight onPress={() =>

 setChoice('lower')} style={styles.button}>

+ <Text style={styles.buttonText}>Lower</Text>

+ </TouchableHighlight>

 </View>

);

 }

 // ...

4.	 The styles object must have the new baseNumber, button, and buttonText
styles, which we can add at the bottom of the file:

 // ...

 const styles = StyleSheet.create({

 container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

+ baseNumber: {

+ fontSize: 48,

+ marginBottom: 30,

+ },

+ button: {

+ display: 'flex',

+ alignItems: 'center',

+ justifyContent: 'space-around',

+ borderRadius: 15,

+ padding: 30,

+ marginVertical: 15,

+ },

+ buttonText: {

268 Building an Animated Game Using React Native and Expo

+ color: 'white',

+ fontSize: 24,

+ },

 });

5.	 However, both buttons will now have the same white background. We can change
this by adding additional styling to them. The style prop on React Native
components can also take an array of styling objects instead of just a single object:

 // ...

 return (

 <View style={styles.container}>

 <Text style={styles.baseNumber}>

 Starting: {baseNumber}</Text>

 <TouchableHighlight

 onPress={() => setChoice('higher')}

- style={styles.button}

+ style={[styles.button, styles.buttonGreen]}

 >

 <Text style={styles.buttonText}>Higher</Text>

 </TouchableHighlight>

 <TouchableHighlight

 onPress={() => setChoice('lower')}

- style={styles.button}

+ style={[styles.button, styles.buttonRed]}

 >

 <Text style={styles.buttonText}>Lower</Text>

 </TouchableHighlight>

 </View>

);

 // ...

6.	 These buttonGreen and buttonRed objects must also be added to the styling
object:

 // ...

 const styles = StyleSheet.create({

 // ...

Creating an animated game application with React Native and Expo 269

+ buttonRed: {

+ backgroundColor: 'red',

+ },

+ buttonGreen: {

+ backgroundColor: 'green',

+ },

 buttonText: {

 color: 'white',

 fontSize: 24,

 },

 });

With these additions, the application is now styled, which makes it more appealing to play.
We've used the StyleSheet object from React Native to apply this styling, making your
application look like this:

Figure 8.4 – The styled React Native application

Mobile games often have flashy animations that make the user want to keep playing and
make the game more interactive. The Higher/Lower game that is already functioning
uses no animations so far and just has some transitions that have been built in with
React Navigation. In the next section, you'll be adding animations and gestures to
the application, which will improve the game interface and make the user feel more
comfortable while playing the game.

270 Building an Animated Game Using React Native and Expo

Adding gestures and animations in React Native
There are multiple ways to use animations in React Native, and one of those is
to use the Animated API, which can be found at the core of React Native. With
the Animated API, you can create animations for the View, Text, Image, and
ScrollView components from React Native by default. Alternatively, you can use the
createAnimatedComponent method to create your own.

Creating a basic animation
One of the simplest animations you can add is fading an element in or out by changing
the value for the opacity of that element. In the Higher/Lower game you created previously,
the buttons were styled. These colors already show a small transition, since you're using
the TouchableHighlight element to create the button. However, it's possible to add a
custom transition to this by using the Animated API. To add an animation, the following
code blocks must be changed:

1.	 Start by creating a new directory called components, which will hold all our
reusable components. In this directory, create a file called AnimatedButton.
js, which will contain the following code to construct the new component:

import React from 'react';

import { StyleSheet, Text, TouchableHighlight }

 from 'react-native';

export default function AnimatedButton({ action,

 onPress }) {

 return (

 <TouchableHighlight

 onPress={onPress}

 style={[

 styles.button,

 action === 'higher' ? styles.buttonGreen :

 styles.buttonRed,

]}

 >

 <Text style={styles.buttonText}>{action}</Text>

 </TouchableHighlight>

);

}

Creating an animated game application with React Native and Expo 271

2.	 Add the following styling to the bottom of this file:

// ...

const styles = StyleSheet.create({

 button: {

 display: 'flex',

 alignItems: 'center',

 justifyContent: 'space-around',

 borderRadius: 15,

 padding: 30,

 marginVertical: 15,

 },

 buttonRed: {

 backgroundColor: 'red',

 },

 buttonGreen: {

 backgroundColor: 'green',

 },

 buttonText: {

 color: 'white',

 fontSize: 24,

 textTransform: 'capitalize',

 },

});

3.	 As you can see, this component is comparable to the buttons we have in screens/
Game.js. Therefore, we can remove the TouchableHighlight buttons in that
file and replace them with the AnimatedButton component. Make sure to pass
the correct values for action and onPress as a prop to this component:

 import React, { useEffect, useState } from 'react';

 import {

 StyleSheet,

 Text,

 View,

 Alert,

- TouchableHighlight,

 } from 'react-native';

272 Building an Animated Game Using React Native and Expo

 import { useNavigation } from

 '@react-navigation/native';

+ import AnimatedButton from

 '../components/AnimatedButton';

 export default function Game() {

 // ...

 return (

 <View style={styles.container}>

 <Text style={styles.baseNumber}>

 Starting: {baseNumber}</Text>

- <TouchableHighlight onPress={() =>

 setChoice('higher')} style={[styles.button,

 styles.buttonGreen]}>

- <Text style={styles.buttonText}>Higher

 </Text>

- </TouchableHighlight>

- <TouchableHighlight onPress={() =>

 setChoice('lower')} style={[styles.button,

 styles.buttonRed]}>

- <Text style={styles.buttonText}>Lower</Text>

- </TouchableHighlight>

+ <AnimatedButton action='higher' onPress={() =>

 setChoice('higher')} />

+ <AnimatedButton action='lower' onPress={() =>

 setChoice('lower')} />

 </View>

);

 }

 // ...

Creating an animated game application with React Native and Expo 273

4.	 No visible changes are present if you look at the application on your mobile device
or the emulator on your computer, since we need to change the clickable element
from a TouchableHighlight element to a TouchableWithoutFeedback
element first. That way, the default transition with the highlight will be gone, and we
can replace this with our own effect. The TouchableWithoutFeedback element
can be imported from React Native in components/AnimatedButton.js and
should be placed around a View element, which will hold the default styling for
the button:

 import React from 'react';

 import {

 StyleSheet,

 Text,

- TouchableHighlight,

+ TouchableWithoutFeedback,

+ View

 } from 'react-native';

 export default function AnimatedButton({ action,

 onPress }) {

 return (

- <TouchableHighlight onPress={onPress} style={[

 styles.button, action === 'higher' ?

 styles.buttonGreen : styles.buttonRed]}>

+ <TouchableWithoutFeedback onPress={onPress}>

+ <View style={[styles.button, action === 'higher'

 ? styles.buttonGreen : styles.buttonRed]}>

 <Text style={styles.buttonText}>{action}</Text>

- </TouchableHighlight>

+ </View>

+ </TouchableWithoutFeedback>

);

 }

 // ...

274 Building an Animated Game Using React Native and Expo

5.	 To create a transition when we click on the button, we can use the Animated API.
We'll use this to change the opacity of the AnimatedButton component from
the moment it's pressed. A new instance of the Animated API starts by specifying
a value that should be changed during the animation that we created with the
Animated API. This value should be changeable by the Animated API in your
entire component, so you can add this value to the top of the component. This value
should be created with a useRef Hook, since you want this value to be changeable
later on. Also, we need to import Animated from React Native:

- import React from 'react';

+ import React, { useRef } from 'react';

 import {

 StyleSheet,

 Text,

 TouchableWithoutFeedback,

- View,

+ Animated,

 } from 'react-native';

 export default function AnimatedButton({ action,

 onPress }) {

+ const opacity = useRef(new Animated.Value(1));

 return (

 // ...

6.	 This value can now be changed by the Animated API using any of the three
animations types that are built in. These are decay, spring, and timing, where
you'll be using the timing method from the Animated API to change the animated
value within a specified time frame. The Animated API can be triggered from the
onPress event on TouchableWithoutFeedback and calls the onPress prop
after finishing the animation:

 // ...

 export default function AnimatedButton({ action,

 onPress }) {

 const opacity = useRef(new Animated.Value(1));

 return (

Creating an animated game application with React Native and Expo 275

 <TouchableWithoutFeedback

- onPress={onPress}

+ onPress={() => {

+ Animated.timing(opacity.current, {

+ toValue: 0.2,

+ duration: 800,

+ useNativeDriver: true,

+ }).start(() => onPress());

+ }}

 >

 // ...

The timing method takes the opacity that you've specified at the top of your
component and an object with the configuration for the Animated API. We need
to take the current value of the opacity, as this is a ref value. One of the fields is
toValue, which will become the value for opacity when the animation has
ended. The other field is for the field's duration, which specifies how long the
animation should last.

Note
The other built-in animation types next to timing are decay and spring.
Whereas the timing method changes gradually over time, the decay type
has animations that change fast in the beginning and gradually slow down until
the end of the animation. With spring, you can create animations that move
a little outside of their edges at the end of the animation.

7.	 The View component can be replaced by an Animated.View component.
This component uses the opacity variable created by the useRef Hook to set
its opacity:

 // ...

- <View

+ <Animated.View

 style={[

 styles.button,

 action === 'higher' ? styles.buttonGreen :

 styles.buttonRed,

+ { opacity: opacity.current },

]}

276 Building an Animated Game Using React Native and Expo

 >

 <Text style={styles.buttonText}>{action}

 </Text>

- </View>

+ </Animated.View>

 </TouchableWithoutFeedback>

);

 }

 // ...

Now, when you press any of the buttons on the Game screen, they will fade out, since the
opacity transitions from 1 to 0.2 in 400 milliseconds.

Something else you can do to make the animation appear smoother is to add an easing
field to the Animated object. The value for this field comes from the Easing module,
which can be imported from React Native. The Easing module has three standard
functions: linear, quad, and cubic. Here, the linear function can be used for
smoother timing animations:

 import React, { useRef } from 'react';

 import {

 StyleSheet,

 Text,

 TouchableWithoutFeedback,

 Animated,

+ Easing,

 } from 'react-native';

export default function AnimatedButton({ action, onPress }) {

 const opacity = useRef(new Animated.Value(1));

 return (

 <TouchableWithoutFeedback

 onPress={() => {

 Animated.timing(opacity.current, {

 toValue: 0.2,

Creating an animated game application with React Native and Expo 277

 duration: 400,

 useNativeDriver: true,

+ easing: Easing.linear(),

 }).start(() => onPress());

 }}

 >

 // ...

With this last change, the animation is complete, and the game interface already feels
smoother, since the buttons are being highlighted using our own custom animation. In
the next part of this section, we will combine some of these animations to make the user
experience for this game even more advanced.

Note
You can also combine animations – for example, with the parallel
method – from the Animated API. This method will start the animations
that are specified within the same moment and take an array of animations
as its value. Next to the parallel function, three other functions help
you with animation composition. These functions are delay, sequence,
and stagger, which can also be used in combination with each other. The
delay function starts any animation after a predefined delay, the sequence
function starts animations in the order you've specified and waits until an
animation is resolved before starting another one, and the stagger function
can start animations both in order and parallel with specified delays in
between.

Handling gestures with Expo
Gestures are an important feature of mobile applications, as they make the difference
between a mediocre and a good mobile application. In the Higher/Lower game you've
created, several gestures can be added to make the game more appealing.

Previously, you used the TouchableHighlight element, which gives the user feedback
after they press it by changing it. Another element that you could have used for this
was the TouchableOpacity element. These gestures give the user an impression of
what happens when they make decisions within your application, leading to improved
user experience. These gestures can be customized and added to other elements as well,
making it possible to have custom touchable elements as well.

278 Building an Animated Game Using React Native and Expo

For this, you can use a package called react-native-gesture-handler, which
helps you access native gestures on every platform. All of these gestures will be run in the
native thread, which means you can add complex gesture logic without having to deal
with the performance limitations of React Native's gesture responder system. Some of the
gestures it supports include tap, rotate, drag, and pan, and a long press. In the previous
section, we installed this package, as it's a requirement for react-navigation.

Note
You can also use gestures directly from React Native, without having to use an
additional package. However, the gesture responder system that React Native
currently uses doesn't run in the native thread. Not only does this limit the
possibilities of creating and customizing gestures, but you can also run into
cross-platform or performance problems. Therefore, it's advised that you
use the react-native-gesture-handler package, but this isn't
necessary for using gestures in React Native.

The gesture we will implement is a long press gesture, which will be added to the
start button in our Home screen, located at screens/Home.js. Here, we'll use the
TapGestureHandler element from react-native-gesture-handler, which
runs in the native thread, instead of the TouchableWithoutFeedback element from
React Native, which uses the gesture responder system. To implement this, we need to
do the following this becomes number 2 please make sure the rest of the numbers are
updated accordingly:

1.	 Install using Expo:

expo install react-native-gesture-handler

2.	 Import TapGestureHandler and State from react-native-
gesture-handler, next to View and Alert from React Native. The
TouchableHighlight import can be removed, as this will be replaced:

 import React from 'react';

 import {

 StyleSheet,

 Text, View,

+ Alert,

- TouchableHighlight,

 } from 'react-native';

 import { useNavigation } from

 '@react-navigation/native';

Creating an animated game application with React Native and Expo 279

+ import { TapGestureHandler, State } from

 'react-native-gesture-handler';

 export default function Home() {

 // ...

3.	 We can replace the TouchableHighlight component with
TapGestureHandler, and we need to put a View component inside it, to which
we apply the styling. TapGestureHandler doesn't take an onPress prop but
an onHandlerStateChange prop instead, to which we pass the new on Tap
function. In this function, we need to check whether the state of the tap event is
active. For this, you need to know that the tap event goes through different states:
UNDETERMINED, FAILED, BEGAN, CANCELLED, ACTIVE, and END. The naming
of these states is pretty straightforward, and usually, the handler will have the
following flow: UNDETERMINED > BEGAN > ACTIVE > END > UNDETERMINED:

 // ...

 export default function Home() {

 const navigation = useNavigation();

+ function onTap(e) {

+ if (e.nativeEvent.state === State.ACTIVE) {

+ Alert.alert('Long press to start the game');

+ }

+ }

 return (

 <View style={styles.container}>

- <TouchableHighlight

- onPress={() => navigation.navigate('Game')}

- style={styles.button}

- >

+ <TapGestureHandler onHandlerStateChange={onTap}>

+ <View style={styles.button}> <Text

 style={styles.buttonText}>Start game!</Text>

+ </View>

- </TouchableHighlight>

+ </TapGestureHandler>

280 Building an Animated Game Using React Native and Expo

 </View>

);

 }

 // ...

4.	 If you now press the start button on the Home screen, you will receive the message
that you need to long press the button to start the game. To add this long press
gesture, we need to add a LongPressGestureHandler component inside the
TapGestureHandler component. Also, we need to create a function that can be
called by the LongPressGestureHandler component, which navigates us to
the Game screen:

 import React from 'react';

 import { StyleSheet, Text, View, Alert }

 from 'react-native';

 import { useNavigation }

 from '@react-navigation/native';

 import {

+ LongPressGestureHandler,

 TapGestureHandler,

 State,

 } from 'react-native-gesture-handler';

 export default function Home() {

 const navigation = useNavigation();

+ function onLongPress(e) {

+ if (e.nativeEvent.state === State.ACTIVE) {

+ navigation.navigate('Game');

+ }

+ }

 // ...

Creating an animated game application with React Native and Expo 281

5.	 Inside the TapGestureHandler the newly imported
LongPressGestureHandler component should be placed. This component
takes the function to navigate to the game, and a prop to set the minimal duration
of the long press. If you dont set this prop, the minimal duration will be 500ms by
default::

 // ...

 export default function Home() {

 // ...

 return (

 <View style={styles.container}>

 <TapGestureHandler

 onHandlerStateChange={onSingleTap}

 >

+ <LongPressGestureHandler+

 onHandlerStateChange={onLongPress}

+ minDurationMs={600}

+ >

 <View style={styles.button}>

 <Text style={styles.buttonText}>

 Start game!</Text>

 </View>

+ </LongPressGestureHandler>

 </TapGestureHandler>

 </View>

);

 }

 // ...

With this latest change, you can only start the game by long pressing the start button
on the Home screen. These gestures can be customized even more, since you can use
composition to have multiple tap events that respond to each other. By creating so-called
cross-handler interactions, you can create a touchable element that supports a double-tap
gesture and a long-press gesture.

The next section will show you how to handle even more advanced animations, such as
displaying animated graphics when any of two players win. For this, we'll use the Lottie
package, since it supports more functionalities than the built-in Animated API.

282 Building an Animated Game Using React Native and Expo

Advanced animations with Lottie
The React Native Animated API is great for building simple animations, but building
more advanced animations can be harder. Luckily, Lottie offers a solution for creating
advanced animations in React Native by making it possible for us to render After Effects
animations in real time for iOS, Android, and React Native.

Note
When using Lottie, you don't have to create these After Effects animations
yourself; there's a whole library full of resources that you can customize and
use in your project. This library is called LottieFiles and is available at
https://lottiefiles.com/.

Since we've already added animations to the buttons of our game, a nice place to add more
advanced animations would be the message that is displayed when you win or lose the
game. This message can be displayed on a screen instead of an alert, where a trophy can be
displayed if the user won. Let's do this now:

1.	 To get started with Lottie, run the following command, which will install Lottie
to our project:

yarn add lottie-react-native

2.	 After the installation is completed, we can create a new screen component called
screens/Result.js with the following content:

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

export default function Result() {

 return (

 <View style={styles.container}>

 <Text></Text>

 </View>

);

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

https://lottiefiles.com/

Creating an animated game application with React Native and Expo 283

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

 },

});

3.	 Add this screen to the stack navigator so that it can be used in the navigation for
this mobile application by importing it in App.js. Also, the navigation element
HeaderBackButton should be imported:

 import { StatusBar } from 'expo-status-bar';

 import React from 'react';

 import { StyleSheet } from 'react-native';

 import { NavigationContainer }

 from '@react-navigation/native';

 import { createNativeStackNavigator }

 from '@react-navigation/native-stack';

+ import { HeaderBackButton }

 from '@react-navigation/elements';

 import Home from './screens/Home';

 import Game from './screens/Game';

+ import Result from './screens/Result';

 // ...

4.	 We also imported the HeaderBackButton component from React Navigation
when adding the Result screen, as we also want to change the go back button in
the header for this screen. This way, it will navigate back to the Home screen instead
of the Game screen so that the user can start a new game after finishing it:

 // ...

 export default function App() {

 return (

 <NavigationContainer>

 <StatusBar style='auto' />

 <Stack.Navigator initialRouteName='Home'>

 <Stack.Screen name='Home' component={Home} />

 <Stack.Screen name='Game' component={Game} />

+ <Stack.Screen

+ name='Result'

284 Building an Animated Game Using React Native and Expo

+ component={Result}

+ options={({ navigation }) => ({

+ headerLeft: (props) => (

+ <HeaderBackButton

+ {...props}

+ label='Home'

+ onPress={() =>

 navigation.navigate('Home')}

+ />

+),

+ })}

+ />

 </Stack.Navigator>

 </NavigationContainer>

);

 // ...

5.	 From the Game screen in screens/Game.js, we can navigate the user to the
Result screen after playing the game and also pass a param to this screen. Using
this param, a message can be displayed with the result of the game:

 // ...

 export default function Game() {

 // ...

 useEffect(() => {

 if (choice.length) {

 const winner = (choice === 'higher' && score >

 baseNumber) || (choice === 'lower' &&

 baseNumber > score);

- Alert.alert(`You've ${winner ? 'won' :

 'lost'}`, `You scored: ${score}`);

- navigation.goBack();

+ navigation.navigate('Result', { winner })

 }

 }, [baseNumber, score, choice]);

Creating an animated game application with React Native and Expo 285

 return (

 // ...

6.	 From the Result screen in the screens/Result.js file, we can import
LottieView from lottie-react-native and get the param from the route
object using the useRoute Hook from React Navigation. Using this param, we can
return a message if the user has won or lost:

 import React from 'react';

 import { StyleSheet, Text, View } from

 'react-native';

+ import LottieView from 'lottie-react-native';

+ import { useRoute } from '@react-navigation/native';

 export default function Result() {

+ const route = useRoute();

+ const { winner } = route.params;

 return (

 <View style={styles.container}>

+ <Text>You've {winner ? 'won' : 'lost'}</Text>

 // ...

7.	 The imported Lottie component can render any Lottie file that you either create
yourself or that is downloaded from the LottieFiles library. In the GitHub
repository for this chapter, you will find a Lottie file that can be used in this project
called winner.json. This file must be placed in the assets directory and can
be rendered by the LottieView component when you add it to the source, and
the width and height values of the animation can be set by passing a style
object. Also, you should add the autoPlay prop to start the animation once the
component renders:

 // ...

 export default function Result() {

 const route = useRoute();

 const { winner } = route.params;

 return (

286 Building an Animated Game Using React Native and Expo

 <View style={styles.container}>

 <Text>You've {winner ? 'won' : 'lost'}</Text>

+ {winner && (

+ <LottieView

+ autoPlay

+ style={{

+ width: 300,

+ height: 300,

+ }}

+ source={require('../assets/winner.json')}

+ />

+)}

 </View>

);

 }

 // ...

8.	 As a finishing touch, we can add some styling to the message that is displayed on
this screen and make it bigger:

 // ...

 return (

 <View style={styles.container}>

- <Text>You've {winner ? 'won' : 'lost'}</Text>

+ <Text style={styles.message}>

 You've {winner ? 'won' : 'lost'}</Text>

 // ...

 const styles = StyleSheet.create({

 // ...

+ message: {

+ fontSize: 48,

+ },

 });

Summary 287

When the Result screen component receives the winner param with the true value,
instead of the board, the user will see the trophy animation being rendered. An example
of how this will look when you're running the application with the iOS simulator or on an
iOS device can be seen here:

Figure 8.5 – The Lottie animation after winning a game

Note
If you find the speed of this animation too fast, you can reduce it by combining
the Animated API with Lottie. The LottieView component can take a
progress prop that determines the speed of the animation. When passing
a value that is created by the Animated API, you can tweak the speed of the
animation as per your preference.

By adding this animation using Lottie, we've created a mobile application with an
animated game that you can play for hours.

Summary
In this chapter, we've created a React Native application with Expo. React Native uses the
same principles as React and can be used to create mobile applications. We've added basic
routing with React Navigation, based on stack navigation. We've also added basic and
more complex gestures to the game, which run in the native thread thanks to the react-
native-gesture-handler package. Finally, animations were created using the React
Native Animated API and Lottie, which is available from the Expo CLI.

The project that we'll create in the next chapter will explore handling data in React Native.
We'll also learn about the differences in styling between iOS and Android.

288 Building an Animated Game Using React Native and Expo

Further reading
•	 Expo: https://docs.expo.io/

•	 Various Lottie files: https://lottiefiles.com/

•	 More on the Animated API: https://facebook.github.io/react-
native/docs/animated

•	 Gesture Handler:https://docs.swmansion.com/react-native-
gesture-handler/

https://docs.expo.io/
https://lottiefiles.com/
https://facebook.github.io/react-native/docs/animated
https://facebook.github.io/react-native/docs/animated
https://docs.swmansion.com/react-native-gesture-handler/
https://docs.swmansion.com/react-native-gesture-handler/

9
Building a

Full-Stack Social
Media Application
with React Native

and Expo
Most of the projects that you've created in this book focused on displaying data and
making it possible to navigate between pages. When we created our first mobile
application with React Native, animations were one of the focus points, which is a
must-have when creating a mobile application. In this chapter, we'll be exploring a big
advantage of mobile applications, namely the ability to use the camera (or camera roll)
from the phone.

290 Building a Full-Stack Social Media Application with React Native and Expo

The application we'll be creating in this chapter will follow the same patterns for data-
heavy applications as in previous chapters. React techniques such as Context and Hooks
are used to get data from a local API that also supports authentication, while React
Navigation is used again to create a more advanced routing setup. Also, Expo is used to
post images to a social feed by using the camera of the mobile device the application is
running on.

The following topics will be covered in this chapter:

•	 Advanced routing with authentication

•	 Using the camera with React Native and Expo

•	 Differences in styling for iOS and Android

Project overview
In this chapter, we will build a mobile social media application that is using a local API to
request and add posts to the social feed, including using the camera on the mobile device.
Advanced routing with authentication is added using the local API and React Navigation,
while Expo is used for access to the camera (roll).

The build time is 2 hours.

Note
This chapter is using React Native version 0.64.3 and Expo SDK version 44.
As React Native and Expo are updated frequently, make sure that you're
working with these versions to ensure the patterns described in this chapter are
behaving as expected.

Getting started
The project that we'll create in this chapter builds upon an initial version that you can
find on GitHub: https://github.com/PacktPublishing/React-Projects-
Second-Edition/tree/main/Chapter09-initial. The complete source code
can also be found on GitHub: https://github.com/PacktPublishing/React-
Projects-Second-Edition/tree/main/Chapter09.

You need to have the Expo Go application installed on a mobile iOS or Android device to
run the project on a physical device. Once you've downloaded the application, you need
to create an Expo account to make the development process smoother. Make sure to store
your account details somewhere safe, as you need these later on in this chapter.

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter09-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter09-initial
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter09

Getting started 291

Alternatively, you can install either Xcode or Android Studio on your computer to run the
application on a virtual device:

•	 For iOS: Information on how to set up your local machine to run the iOS simulator
can be found here: https://docs.expo.io/workflow/ios-simulator/.

•	 For Android: Information on how to set up your local machine to run the emulator
from Android Studio can be found here: https://docs.expo.io/workflow/
android-studio-emulator/.

Note
It's highly recommended to use the Expo client application to run the project
from this chapter on a physical device. Receiving notifications is currently
only supported on physical devices, and running the project on either the iOS
simulator or Android Studio emulator will result in error messages.

Checking out the initial project
For this chapter, an initial application has been created with Expo using their CLI, as you
learned in the previous chapter. To get started, you'll need to run the following command
in this chapter's directory to install all of the dependencies and start both the server and
application:

yarn && yarn start

This command will start Expo after installing the dependencies, and it gives you the ability
to start your project from either the terminal or your browser. In the terminal, you can
now either use the QR code to open the application on your mobile device or open the
application in a simulator. In the browser, the Expo DevTools will be opened, which also
lets you scan the QR code with your phone using the camera or the Expo Go application.

The local API from which to get the data for our application was created using JSON
Server. We've already used this library before, as we used the My JSON Server endpoint
based on the db.json file in this repository. For this project, we have a separate
db.json file in the directory for this chapter, which is loaded by the server.js file to
create a local API. The local API can be started by running the following command in a
separate terminal tab or window:

yarn start-server

https://docs.expo.io/workflow/ios-simulator/
https://docs.expo.io/workflow/android-studio-emulator/
https://docs.expo.io/workflow/android-studio-emulator/

292 Building a Full-Stack Social Media Application with React Native and Expo

This spins up a server at http://localhost:3000/api/ with, for example, the
http://localhost:3000/api/posts endpoint, which returns an array of posts.
However, when building mobile applications, you cannot use a localhost address
(or any other address without HTTPS) for security reasons. To be able to use this endpoint
in the React Native application, you need to find the local IP address of your machine.

To find your local IP address, you'll need to do the following depending on your
operating system:

•	 For Windows: Open the terminal (or Command Prompt) and run this command:

Ipconfig

This will return a list like the one you see in the following screenshot with data from
your local machine. In this list, you need to look for the IPv4 Address field:

Figure 9.1 – Finding a local IP address in Windows

•	 For macOS: Open the Terminal and run this command:

ipconfig getifaddr en0

After running this command, the local IPv4 address of your machine gets returned,
which looks like this:

192.168.1.107

Getting started 293

The local IP address can be used as an alternative for localhost, which you can try
by visiting the following page: http://192.168.1.107/api/posts. Make sure to
replace the IP address with your own.

Our application for this chapter has already been set up and needs to know what URL
to use for the local API. Configuration in Expo can be stored in app.json, but also in
app.config.js if you want to store specific configuration environment variables. In
this file, you can add the following configuration:

export default {

 extra: {

 apiUrl: 'http://LOCAL_IP_ADDRESS:3000',

 },

 };

In the preceding app.config.js file, you need to replace LOCAL_IP_ADDRESS with
your own IP address that you acquired from your machine.

To use this environment variable in our code, we use the expo-constants library. This
has already been installed in the initial application for this chapter, and an example of how
to get apiUrl from app.config.js can be seen in the context/PostsContext.
js file:

import React from 'react';

import { createContext, useReducer } from 'react';

import Constants from 'expo-constants';

const { apiUrl } = Constants.manifest.extra;

export const PostsContext = createContext();

 // ...

294 Building a Full-Stack Social Media Application with React Native and Expo

The apiUrl constant is now used to fetch the following local API. No matter whether
you've opened the application from a virtual or physical device, the initial application at
this point should look something like this:

Figure 9.2 – The initial application

The screens directory for the initial application consists of five screens, which are
Posts, PostDetail, PostForm, Profile, and Login. The Posts screen will be the
initial screen that is loaded and shows a list of posts on which you can tap to continue to
the PostDetail screen. For now, the PostForm, Profile, and Login screens aren't
visible yet, as we'll add advanced routing and authentication later on in this chapter.

Getting started 295

The project structure from this React Native app is as follows, where the structure is
similar to the projects you've created before in this book:

chapter-9-initial

 |- /.expo

 |- /.expo-shared

 |- /node_modules

 |- /assets

 |- /components

 |- Button.js

 |- FormItem.js

 |- PostItem.js

 |- /context

 |- AppContext.js

 |- PostsContext.js

 |- UserContext.js

 |- /screens

 |- Login.js

 |- PostDetail.js

 |- PostForm.js

 |- Posts.js

 |- Profile.js

 app.config.js

 app.json

 App.js

 babel.config.js

 db.json

 server.js

In the assets directory, you can find the images that are used as the application icon
on the home screen once you've installed this application on your mobile device, and the
image that will serve as the splash screen, which is displayed when you start the application.
The App.js file is the actual entry point of your application and all of the components for
this application are located in the screens and components directories. You can also
find a directory called context. This directory has all the state management components
for this application.

296 Building a Full-Stack Social Media Application with React Native and Expo

Note
If you get an error when loading the application on your local device or
emulator stating Network request failed, make sure that you've added your
local IP address in app.config.js. Also, the server must be running in
a separate terminal tab.

Configurations for your application, for example, the App Store, are placed in app.json,
while babel.config.js holds specific Babel configurations. As mentioned earlier, the
app.config.js file holds the configuration for the URL to the local API. There are also
two files that are needed to create the local API. These are db.json and server.js, as
described previously in this section.

Building a full-stack social media application
with React Native and Expo
The application that you're going to build in this chapter will use a local API to retrieve
and mutate data that is available in the application. This application will display data from
a social media feed, lets you add new posts containing images, and allows you to respond
to these social media posts.

Advanced routing with authentication
We've already learned how to add routing to a React Native application using React
Navigation. The routing we added was using a stack navigator, which doesn't have a way
to display some sort of menu or navigation bar with all the routes. In this section, we'll
be adding a tab navigator using React Navigation to display a tab bar at the bottom of the
application. Later on, we'll also be adding an authentication flow.

Adding bottom tabs
Bottom tabs are common on applications for iOS, but less popular on Android applications.
In the final section of this chapter, we'll learn more about the styling differences between
iOS and Android. But first, we'll focus on adding bottom tabs to our application.

Building a full-stack social media application with React Native and Expo 297

To add a tab navigator, we need to complete the following actions:

1.	 React Navigation has a separate library to create a tab navigator, which we need to
install from npm:

yarn add @react-navigation/bottom-tabs

When the installation of @react-navigation/bottom-tabs is complete,
make sure to restart Expo using the npm start command.

2.	 In the App.js file, all the routes for this application are listed, and we need to
import the method to create a tab:

 import { StatusBar } from 'expo-status-bar';

 import React from 'react';

 import { NavigationContainer } from

 '@react-navigation/native';

 import { createStackNavigator } from

 '@react-navigation/stack';

+ import { createBottomTabNavigator } from

 '@react-navigation/bottom-tabs';

 // ...

3.	 The tab navigator can be created using the createBottomTabNavigator
method. These screens for the navigator must be created in a separate component
inside the App.js file, where the Posts, PostForm, and Profile screens will
be added to it. These screens will later become available in the bottom tabs. It's
important to pass the option to not show the header, as the title of the screen will be
rendered by the parent navigator:

 // ...

+ const Tab = createBottomTabNavigator();

+ function Home() {

+ return (

+ <Tab.Navigator>

+ <Stack.Screen

+ name='Posts'

+ component={Posts}

+ options={{ headerShown: false }}

298 Building a Full-Stack Social Media Application with React Native and Expo

+ />

+ <Stack.Screen

+ name='Profile'

+ component={Profile}

+ options={{ headerShown: false }}

+ />

+ <Stack.Screen

+ name='PostForm'

+ component={PostForm}

+ options={{ headerShown: false }}

+ />

+ </Tab.Navigator>

+);

+ }

 export default function App() {

 // ...

4.	 To render the navigator in the application, we need to add it to the return
statement inside the App component:

 export default function App() {

 return (

 <AppContext>

 <NavigationContainer>

 <StatusBar style='auto' />

- <Stack.Navigator initialRouteName='Posts'>

- <Stack.Screen name='Posts'

 component={Posts} />

- <Stack.Screen name='Profile'

 component={Profile} />

- <Stack.Screen name='PostForm'

 component={PostForm} />

+ <Stack.Navigator initialRouteName='Home'>

+ <Stack.Screen name='Home' component={Home} />

 <Stack.Screen name='PostDetail'

 component={PostDetail} />

Building a full-stack social media application with React Native and Expo 299

 <Stack.Screen name='Login'

 component={Login} />

 </Stack.Navigator>

 </NavigationContainer>

 </AppContext>

);

 }

5.	 When you now navigate to any of the screens using the tab navigator, you see that the
title in the header is always Home. Because the nested Home component is rendered,
that on its own end renders the different screens. We can force the header title to be
that of the tab that is active by using getFocusedRouteNameFromRoute from
React Navigation in the options prop for the home screen:

 import { StatusBar } from 'expo-status-bar';

 import React from 'react';

- import { NavigationContainer } from

 '@react-navigation/native';

+ import { NavigationContainer,

 getFocusedRouteNameFromRoute }

 from '@react-navigation/native';

 // ...

 export default function App() {

 return (

 <AppContext>

 <NavigationContainer>

 <StatusBar style='auto' />

 <Stack.Navigator>

 <Stack.Screen

 name='Home'

 component={Home}

+ options={({ route }) => ({

+ headerTitle:

 getFocusedRouteNameFromRoute(route),

+ })}

300 Building a Full-Stack Social Media Application with React Native and Expo

 />

 <Stack.Screen name='PostDetail'

 component={PostDetail} />

 <Stack.Screen name='Login'

 component={Login} />

 </Stack.Navigator>

 </NavigationContainer>

 </AppContext>

);

 }

6.	 The bottom tabs can also have an icon and a custom color when active. For this, we
can alter the screenOptions and of the tab navigator. The icons for the tab can
be imported from @expo/vector-icons, which is already included in Expo:

 import { StatusBar } from 'expo-status-bar';

 + import { FontAwesome } from '@expo/vector-icons';

 import React from 'react';

 // ...

 function Home() {

 return (

 <Tab.Navigator

+ screenOptions={({ route }) => ({

+ tabBarActiveTintColor: 'blue',

+ tabBarInactiveTintColor: 'gray',

+ tabBarIcon: ({ color, size }) => {

+ const iconName =

+ (route.name === 'Posts' && 'feed') ||

+ (route.name === 'PostForm' &&

 'plus-square') ||

+ (route.name === 'Profile' && 'user');

+ return <FontAwesome name={iconName}

 size={size} color={color} />;

Building a full-stack social media application with React Native and Expo 301

 },

+ })}

 >

 // ...

 </Tab.Navigator>

);

 }

 // ...

7.	 Finally, we can also change the labels of the tabs, for example, for the PostForm
screen that displays the form to add a new post:

 // ...

 function Home() {

 return (

 <Tab.Navigator

 // ...

 >

 <Stack.Screen

 name='PostForm'

 component={PostForm}

 options={{

 headerShown: false,

+ tabBarLabel: 'Add post',

 }}

 />

 <Stack.Screen name='Profile' component={Profile}

 />

 </Tab.Navigator>

);

 }

 // ...

302 Building a Full-Stack Social Media Application with React Native and Expo

With these changes, the application now has routing with both a stack navigator and
a tab navigator, and should look something like this:

Figure 9.3 – The application with bottom tabs

We're now able to reach almost all the screens, with only the Login screen still hidden.
This screen is added to the stack navigator and should be displayed when the user isn't
authenticated. In the next part of this section, we'll add the authentication flow to handle this.

Building a full-stack social media application with React Native and Expo 303

Authentication flow
For authentication in frontend applications, most of the time, JSON Web Tokens (JWTs)
are used, which are encrypted tokens that can easily be used to share user information
with a backend. The JWT will be returned by the backend when the user is successfully
authenticated and often, this token will have an expiration date. With every request that
the user should be authenticated for, the token should be sent so that the backend server
can determine whether the user is authenticated and allowed to take this action. Although
JWTs can be used for authentication since they're encrypted, no private information
should be added to them since the tokens should only be used to authenticate the user.
Private information can only be sent from the server when a document with the correct
JWT has been sent.

The mobile application we're building in this chapter is only using GET requests to retrieve
posts, but the local API also supports POST requests. But to send POST requests, we need
to be authenticated, meaning we need to retrieve a token that we can send along with our
request to the API. For this, we can use the api/login endpoint of the API:

1.	 The Login component can be used to log in but isn't displayed at the moment. To
display this component, we need to change the logic in the stack navigator in App.
js. Instead of having the App component return the stack navigator, we need to
create a new component in this file called Navigator:

 // ...

+ function Navigator() {

+ return (

+ <NavigationContainer>

+ <StatusBar style='auto' />

+ <Stack.Navigator>

+ <Stack.Screen name='Login' component={Login}

 />

+ <Stack.Screen

+ name='Home'

+ component={Home}

+ options={({ route }) => ({

+ headerTitle:

 getFocusedRouteNameFromRoute(route),

+ })}

+ />

304 Building a Full-Stack Social Media Application with React Native and Expo

+ <Stack.Screen name='PostDetail'

 component={PostDetail} />

+ </Stack.Navigator>

+ </NavigationContainer>

+);

+ }

 export default function App() {

 // ...

2.	 The preceding code block can be deleted from App and replaced by this new
Navigator component:

 // ...

 export default function App() {

 return (

 <AppContext>

- // ...

+ <Navigator />

 </AppContext>

);

 }

3.	 We also need to check the value for the token in the Navigator component, as we
don't want to include the home screen when there is no token provided. The logic to
log in is already present in the UserContext in the context/UserContext.
js file and from the Navigator component, you can get the user object from
this context:

 import { StatusBar } from 'expo-status-bar';

 import { FontAwesome } from '@expo/vector-icons';

- import React from 'react';

+ import React, { useContext } from 'react';

 // ...

 import AppContext from './context/AppContext';

+ import UserContext from './context/UserContext';

 const Stack = createStackNavigator();

Building a full-stack social media application with React Native and Expo 305

 const Tab = createBottomTabNavigator();

 function Home() {

 // ...

4.	 Now, we can get the user object from the context and add the logic to return the
Login screen only when no token is present:

 // ...

 function Navigator() {

+ const { user } = useContext(UserContext);

 return (

 <NavigationContainer>

 <StatusBar style='auto' />

- <Stack.Navigator>

+ <Stack.Navigator initialRouteName=

 {user.token.length ? 'Home' : 'Login'}>

 <Stack.Screen

 name='Home'

 // ...

 />

 <Stack.Screen name='PostDetail'

 component={PostDetail} />

 <Stack.Screen name='Login'

 component={Login} />

)}

 </Stack.Navigator>

 </NavigationContainer>

);

 }

 export default function App() {

 // ...

306 Building a Full-Stack Social Media Application with React Native and Expo

5.	 If you now refresh the application, you can see the Login component being
displayed. You can log in with a username and password combination, which is
test for both values. After logging in, we want to navigate to the home screen, for
which we need to make a change in screens/Login.js:

+ import { useNavigation } from

 '@react-navigation/core';

+ import React, { useContext, useState } from 'react';

- import React, { useContext, useEffect, useState }

 from 'react';

 // ...

 export default function Login() {

 const [username, setUsername] = useState('');

 const [password, setPassword] = useState('');

- const { error, loginUser } =

 useContext(UserContext);

+ const { user, error, loginUser } =

 useContext(UserContext);

+ const navigation = useNavigation();

+ useEffect(() => {

+ if (user.token) {

+ navigation.navigate('Home');

+ }

+ }, [user.token]);

 return (

 // ...

When the value for token in the user object in the context changes, the user will now
be navigated to the home screen. This can be shown by logging in with a username and
password combination, which is test for both values. If you put in an incorrect value,
you'll see an error message, as visible here:

Building a full-stack social media application with React Native and Expo 307

Figure 9.4 – Handling authentication

The token, however, isn't persisted as the context gets restored when you reload
the application. For web applications, we could have used localStorage or
sessionStorage. But for mobile applications, you'd need to use the AsyncStorage
library from React Native to have persistent storage on both iOS and Android. On iOS, it
will use native code blocks to give you the global persistent storage that AsyncStorage
offers, while on devices running Android, either RocksDB- or SQLite-based storage will
be used.

Note
For more complex usages, it's recommended to use an abstraction layer on top
of AsyncStorage as encryption isn't supported out of the box. Also, the
use of a key-value system can give you performance issues if you want to store
a lot of information for your application using AsyncStorage. Both iOS
and Android will have set limitations on the amount of storage each application
can use.

308 Building a Full-Stack Social Media Application with React Native and Expo

To add the persistence of the user token, we need to install the correct library from Expo
and make changes to the context:

1.	 We can install AsyncStorage from Expo by running the following command:

expo install @react-native-async-storage/async-storage

2.	 To persist, the AsyncStorage token can be imported in the UserContext in the
context/UserContext.js file:

 import React, { createContext, useReducer }

 from 'react';

+ import AsyncStorage from

 '@react-native-community/async-storage';

 import Constants from 'expo-constants';

 // ...

3.	 In the same file, it can be used to store the token in AsyncStorage after adding it
to the context:

 // ...

 export const UserContextProvider = ({ children }) => {

 const [state, dispatch] = useReducer(reducer,

 initialState);

 async function loginUser(username, password) {

 try {

 // ...

 if (result) {

 dispatch({ type: 'SET_USER_TOKEN',

 payload: result.token });

+ AsyncStorage.setItem('token', result.token);

 }

 } catch (e) {

 dispatch({ type: 'SET_USER_ERROR',

 payload: e.message });

 }

Building a full-stack social media application with React Native and Expo 309

 }

 // ...

4.	 Now that the token is persisted after it's retrieved from the local API, it can also be
retrieved from AsyncStorage. Therefore, we need to create a new function that
retrieves the token and adds it to the context:

 // ...

+ async function getToken() {

+ try {

+ const token =

 await AsyncStorage.getItem('token');

+ if (token !== null) {

+ dispatch({ type: 'SET_USER_TOKEN',

 payload: token });

+ }

+ } catch (e) {}

+ }

 return (

- <UserContext.Provider value={{ ...state,

 loginUser, logoutUser }}>

+ <UserContext.Provider value={{ ...state,

 loginUser, logoutUser, getToken }}>

 {children}

 </UserContext.Provider>

);

 };

 export default UserContext;

310 Building a Full-Stack Social Media Application with React Native and Expo

5.	 Finally, this function needs to be called from App.js when the application first
renders. That way, you'll get the token once the application starts or is refreshed and
the authentication is persisted:

 import { StatusBar } from 'expo-status-bar';

 import { FontAwesome } from '@expo/vector-icons';

- import React, { useContext } from 'react';

+ import React, { useContext, useEffect } from 'react';

 // ...

 function Navigator() {

- const { user } = useContext(UserContext);

+ const { user, getToken } =

 useContext(UserContext);

+ useEffect(() => {

+ getToken();

+ }, []);

 return (

 // ...

6.	 The token is now persisted after logging in once, the application will skip the Login
screen when it's loaded, and there is a token present in AsyncStorage. However,
as the token is persisted, we also need a way to log out and remove the token. In the
context/UserContext.js file, the logoutUser function must be altered:

 // ...

 async function logoutUser() {

+ try {

+ await AsyncStorage.removeItem('token');

 dispatch({ type: 'REMOVE_USER_TOKEN' });

+ } catch (e) { }

 }

 async function getToken() {

 // ...

Building a full-stack social media application with React Native and Expo 311

When you now go to the Profile screen and click the Logout button, nothing happens.
Unless you reload the application, you can still visit all the different screens. As the token
is already removed from AsyncStorage and the application state, we need to navigate
the user back to the Login screen. Navigating between different nested navigators is
demonstrated in the next part of this section.

Note
To reload the application in Expo Go, you can shake the device when you're
using an iOS or Android phone. By shaking the device, a menu with an option
to reload the application will appear. In this menu, you must also select to
enable Fast refresh to refresh the application automatically when you make
changes to the code.

Navigating between nested routes
In React Navigation, we can nest different navigators, such as the stack navigator that
renders when the application starts and shows either the Login screen or the tab navigator.
From a nested navigator, it isn't possible to navigate to the parent navigator directly, as the
navigation object for parent navigators cannot be accessed. But luckily, we can use a
ref to create a reference to the "highest" possible navigator. From this reference, we could
then access the navigation object, which we otherwise would have accessed using the
useNavigation Hook. To do this for our application, we need to change the following:

1.	 Create a new file called routing.js with the following content:

import React, { createRef } from 'react';

export const navigationRef = createRef();

2.	 This navigationRef can be imported in App.js and attached to the
NavigationContainer in the App component:

 // ...

 import AppContext from './context/AppContext';

 import UserContext from './context/UserContext';

+ import { navigationRef } from './routing';

 // ...

 function Navigator() {

312 Building a Full-Stack Social Media Application with React Native and Expo

 const { user, getToken } =

 useContext(UserContext);

 // ...

 return (

- <NavigationContainer>

+ <NavigationContainer ref={navigationRef}>

 // ...

3.	 The navigation object for the stack navigator that contains the Login screen
can now be accessed using this ref from the Profile screen in screens/
Profile.js. Using the reset method, we can reset the entire navigation
object and navigate to the Login screen:

 // ...

+ import { navigationRef } from '../routing';

 export default function Profile() {

 const { logoutUser } = useContext(UserContext);

 return (

 <View style={styles.container}>

 <Button

 onPress={() => {

 logoutUser();

+ navigationRef.current.reset({

+ index: 0,

+ routes: [{ name: 'Login' }],

+ });

 }}

 label='Logout'

 />

 </View>

);

 }

 // ...

Building a full-stack social media application with React Native and Expo 313

With the authentication of the user handled, we can continue to add the functionalities to
create a new post with an image in the next section.

Using the camera with React Native and Expo
Next to displaying the posts that were already added to the local API, you can also add a
post yourself using a POST request and send text and an image as variables. Uploading
images to your React Native application can be done by either using the camera to take
an image or selecting an image from your camera roll. For both use cases, there are APIs
available from React Native and Expo, or numerous packages that are installable from
npm. For this project, you'll use the ImagePicker API from Expo, which combines
these functionalities into just one component.

To add the feature to create new posts to your social media application, the following
changes need to be made to create the new screen to add the post:

1.	 We need to install a library from Expo that allows us to access the camera roll on
any device:

expo install expo-image-picker

2.	 To use the camera roll, we need to request the CAMERA_ROLL permissions from the
device, using the ImagePicker library we import in the screens/PostForm.
js file:

 import React, { useContext, useState } from 'react';

 import { StyleSheet, TouchableOpacity, View, Text,

 KeyboardAvoidingView, Platform, Alert, Image } from

 'react-native';

+ import * as ImagePicker from 'expo-image-picker';

 // ...

 export default function PostForm() {

 // ...

+ async function uploadImage() {

+ const { status } = await ImagePicker

 .requestMediaLibraryPermissionsAsync();

+ if (status !== 'granted') {

+ Alert.alert('Sorry', 'We need camera roll

 permissions to make this work!');

314 Building a Full-Stack Social Media Application with React Native and Expo

+ }

+ }

 return (

 // ...

3.	 This uploadImage function must then be added to the TouchableOpacity
component in this same file:

 // ...

 return (

 <KeyboardAvoidingView

 behavior={Platform.OS == 'ios' ? 'padding' :

 'height'}

 style={styles.container}

 >

 <View style={styles.form}>

 <TouchableOpacity

+ onPress={() => uploadImage()}

 style={styles.imageButton}

 >

 <Text style={styles.imageButtonText}>+

 </Text>

 </TouchableOpacity>

 // ...

4.	 When you now press the button to add the post on this screen, a popup asking to
give Expo Go permission to access your camera roll will be displayed. Also, note
that on this page, we're not using a View component to wrap the screen but a
KeyboardAvoidingView component. This makes sure that the components on
this screen won't be hidden behind the keyboard when you're typing something.

Note
You can't ask the user for permission a second time; instead, you'd need to
manually grant the permission to the camera roll. To set this permission again,
you should go to the settings screen on iOS and select the Expo application. On
the next screen, you're able to add permission to access the camera.

Building a full-stack social media application with React Native and Expo 315

5.	 When the user has granted permission to access the camera roll, you can call
the ImagePicker API from Expo to open the camera roll. This is again an
asynchronous function that takes some configuration fields, such as the aspect ratio.
If the user has selected an image, the ImagePicker API will return an object
containing the field URI, which is the URL to the image on the user's device:

 // ...

 async function uploadImage() {

 const { status } = await ImagePicker

 .requestMediaLibraryPermissionsAsync();

 if (status !== 'granted') {

 Alert.alert(

 'Sorry',

 'We need camera roll permissions to make this

 work!',

);

+ } else {

+ const result =

 await ImagePicker.launchImageLibraryAsync({

+ mediaTypes: ImagePicker.MediaTypeOptions.All,

+ allowsEditing: true,

+ aspect: [4, 3],

+ quality: 1,

+ });

+ if (!result.cancelled) {

+ setImageUrl(result.uri);

+ }

 }

 }

 return (

 // ...

316 Building a Full-Stack Social Media Application with React Native and Expo

6.	 As the URL to the image is now stored in the local state to the imageUrl constant,
you can display this URL in an Image component. This Image component takes
imageUrl as the value for the source and has been set to use a 100% width and
height:

 // ...

 return (

 <KeyboardAvoidingView

 behavior={Platform.OS == 'ios' ? 'padding' :

 'height'}

 style={styles.container}

 >

 <View style={styles.form}>

 <TouchableOpacity onPress={() =>

 uploadImage()} style={styles.imageButton}>

+ {imageUrl.length ? (

+ <Image

+ source={{ uri: imageUrl }}

+ style={{ width: '100%', height: '100%'

 }}

+ />

+) : (

 <Text style={styles.imageButtonText}>+</Text>

+)}

 </TouchableOpacity>

 // ...

With these changes, the AddPost screen should look something like the following
screenshots, which were taken from a device running iOS. There might be slight
differences in the appearance of this screen if you're using the Android Studio emulator
or a device that runs Android:

Building a full-stack social media application with React Native and Expo 317

Figure 9.5 – Using the camera roll

These changes will make it possible to select a photo from your camera roll, but your
users should also be able to upload an entirely new photo by using their camera. With
the ImagePicker API from Expo, you can handle both scenarios, as this component
also has a launchCameraAsync method. This asynchronous function will launch the
camera and return it the same way as it returns a URL to the image from the camera roll.

To add the functionality to directly use the camera on the user's device to upload an
image, you can make the following changes:

1.	 When the user clicks on the image placeholder, the image roll will be opened by
default. But you also want to give the user the option to use their camera. Therefore,
a selection must be made between using the camera or the camera roll for uploading
the image, which is a perfect use case for implementing an ActionSheet
component. React Native and Expo both have an ActionSheet component;
it's advisable to use the one from Expo as it will use the native UIActionSheet
component on iOS and a JavaScript implementation for Android:

yarn add @expo/react-native-action-sheet

318 Building a Full-Stack Social Media Application with React Native and Expo

2.	 After this, we need to import ActionSheetProvider from @expo/react-
native-action-sheet in our App.js file:

 import { StatusBar } from 'expo-status-bar';

 import { FontAwesome } from '@expo/vector-icons';

 import React, { useContext, useEffect } from 'react';

 import { NavigationContainer,

 getFocusedRouteNameFromRoute }

 from '@react-navigation/native';

 import { createNativeStackNavigator }

 from '@react-navigation/native-stack';

 import { createBottomTabNavigator }

 from '@react-navigation/bottom-tabs';

+ import { ActionSheetProvider }

 from '@expo/react-native-action-sheet';

 // ...

3.	 We wrap the navigator that contains the PostForm screen in this same file so that
we can use the Hook to create the action sheet in that screen component:

 function Home() {

 return (

+ <ActionSheetProvider>

 // ...

+ </ActionSheetProvider>

);

 }

 function Navigator() {

 // ...

4.	 In the screens/PostForm.js file, we can now import the Hook to create the
action sheet from @expo/react-native-action-sheet:

 // ...

 import * as ImagePicker from 'expo-image-picker';

+ import { useActionSheet } from

 '@expo/react-native-action-sheet';

 import { useNavigation } from '@react-navigation/core';

Building a full-stack social media application with React Native and Expo 319

 import Button from '../components/Button';

 import FormInput from '../components/FormInput';

 import PostsContext from '../context/PostsContext';

 export default function PostForm() {

 // ...

5.	 To add the action sheet, a function to open this ActionSheet must be added,
and by using the showActionSheetWithOptions prop and the options,
ActionSheet should be constructed. The options are Camera, Camera roll,
and Cancel, and based on the index of the button that gets pressed, a different
function should be called:

 // ...

 export default function PostForm() {

 // ...

 const { addPost } = useContext(PostsContext);

 const navigation = useNavigation();

+ const { showActionSheetWithOptions } =

 useActionSheet();

 // ...

+ function openActionSheet() {

+ const options = ['Camera roll', 'Camera',

 'Cancel'];

+ const cancelButtonIndex = 2;

+ showActionSheetWithOptions(

+ { options, cancelButtonIndex },

+ (buttonIndex) => {

+ if (buttonIndex === 0) {

+ uploadImage()

+ }

+ },

+);

+ }

320 Building a Full-Stack Social Media Application with React Native and Expo

 return (

 // ...

6.	 When the buttonIndex is 0, the function to ask for permission to access the
camera roll and select an image from it is called, but we also need a function to ask
for camera permission and use the camera:

 // ...

+ async function takePicture() {

+ const { status } = await

 ImagePicker.requestCameraPermissionsAsync();

+ if (status !== 'granted') {

+ Alert.alert('Sorry', 'We need camera permissions

 to make this work!');

+ } else {

+ const result =

 await ImagePicker. launchCameraAsync ({

+ mediaTypes: ImagePicker.MediaTypeOptions.All,

+ aspect: [4, 3],

+ quality: 1,

+ });

+ if (!result.cancelled) {

+ setImageUrl(result.uri);

+ }

+ }

+ }

 function openActionSheet() {

 // ...

7.	 Finally, the openActionSheet function to open the action sheet must be
attached to the TouchableOpacity component:

 // ...

 return (

 <KeyboardAvoidingView

Building a full-stack social media application with React Native and Expo 321

 behavior={Platform.OS == 'ios' ? 'padding' :

 'height'}

 style={styles.container}

 >

 <View style={styles.form}>

 <TouchableOpacity

- onPress={() => uploadImage()}

+ onPress={() => openActionSheet()}

 style={styles.imageButton}

 >

 // ...

Pressing the image placeholder will now open up the action sheet to select whether
you want to use the camera roll or the camera for the image:

Figure 9.6 – The action sheet on iOS

322 Building a Full-Stack Social Media Application with React Native and Expo

Your post and image will now be displayed at the top of the Posts screen, meaning
you've added the post successfully. In the final section of this chapter, we'll be exploring
differences in styling between iOS and Android for this application.

Differences in styling for iOS and Android
When styling your application, you might want to have different styling rules for iOS and
Android, for example, to match the styling of the Android operating system better. There
are multiple ways to apply different styling rules to different platforms; one of them is by
using the Platform module, which can be imported from React Native.

This module has already been used in parts of this application, but let's have a closer look
at its workings by adding different icons to the tabs in the navigator tab depending on the
operating system of the device:

1.	 In App.js, we've already imported the FontAwesome icons from Expo, but for
Android, we want to import MaterialIcons so they can be displayed instead.
Also, we need to import Platform from React Native:

 import { StatusBar } from 'expo-status-bar';

 import {

 FontAwesome,

+ MaterialIcons,

 } from '@expo/vector-icons';

 import React, { useContext, useEffect }

 from 'react';

+ import { Platform } from 'react-native';

 // ...

2.	 With the Platform module, you can check whether your mobile device is running
iOS or Android by checking whether the value of Platform.OS is ios or
android. The module must be used in the tab navigator, where we can make the
distinction between the two platforms:

 // ...

 function Home() {

 return (

 <ActionSheetProvider>

 <Tab.Navigator

 // ...

 screenOptions={({ route }) => ({

Building a full-stack social media application with React Native and Expo 323

 tabBarIcon: ({ color, size }) => {

 // ...

- return <FontAwesome name={iconName}

 size={size} color={color} />;

+ return Platform.OS === 'ios' ? (

+ <FontAwesome name={iconName}

 size={size} color={color} />

+) : (

+ <MaterialIcons name={iconName}

 size={size} color={color} />

+);

 },

 })}

 >

 // ...

3.	 This will replace the FontAwesome icons on Android with MaterialIcons.
This icon library uses different names for the icons, so we also need to make the
following change:

 // ...

 function Home() {

 return (

 <ActionSheetProvider>

 <Tab.Navigator

 // ...

 screenOptions={({ route }) => ({

 tabBarIcon: ({ color, size }) => {

 const iconName =

- (route.name === 'Posts' && 'feed') ||

- (route.name === 'PostForm' &&

 'plus-square') ||

- (route.name === 'Profile' && 'user');

+ (route.name === 'Posts' &&

+ (Platform.OS === 'ios' ? 'feed' :

 'rss-feed')) ||

+ (route.name === 'PostForm' &&

324 Building a Full-Stack Social Media Application with React Native and Expo

+ (Platform.OS === 'ios' ?

 'plus-square' : 'add-box')) ||

+ (route.name === 'Profile' &&

 (Platform.OS === 'ios' ? 'user' :

 'person'));

 return Platform.OS === 'ios' ? (

 // ...

When you're running the application on a mobile device with Android, the navigator
tab will display the icons based on Material Design. If you're using an Apple device,
it will display different icons; you can change the Platform.OS === 'ios'
condition to Platform.OS === 'android' to add the Material Design icons
to iOS instead. If you don't see any changes yet, try reloading the application on
your device.

4.	 We can also use the Platform module directly inside a StyleSheet, for example,
to change the color of the Button component in our application. By default, our
Button component has a blue background color, but let's change it to purple on
Android. In components/Button.js, we need to import the Platform module:

 import React from 'react';

 import {

 StyleSheet,

 TouchableOpacity,

 View,

 Text,

+ Platform,

 } from 'react-native';

 export default function Button({ onPress, label }) {

 // ...

5.	 We use the select method inside the creation of StyleSheet:

 // ...

 const styles = StyleSheet.create({

 button: {

 width: '100%',

 padding: 20,

Building a full-stack social media application with React Native and Expo 325

 borderRadius: 5,

- backgroundColor: 'blue',

+ ...Platform.select({

+ ios: {

+ backgroundColor: 'blue',

+ },

+ android: {

+ backgroundColor: 'purple',

+ },

 }),

 },

 // ...

Another component that can be styled differently between iOS and Android is the
PostItem component. As mentioned before, there are multiple ways to do this; besides
using the Platform module, you can also use platform-specific file extensions. Any
file that has the *.ios.js or *.android.js extension will only be rendered on the
platform specified in the extension. You can not only apply different styling rules but also
have changes in functionality on different platforms:

1.	 Rename the current components/PostItem.js file components/
PostItem.android.js, and create a new file called components/
PostItem.ios.js with the following contents:

import React from 'react';

import { StyleSheet, Text, Dimensions, Image, View }

 from 'react-native';

const PostItem = ({ data }) => (

 <View style={styles.container}>

 <View style={styles.details}>

 <Text>{data.description}</Text>

 </View>

 <Image source={{ uri: data.imageUrl }}

 style={styles.thumbnail} />

 </View>

);

326 Building a Full-Stack Social Media Application with React Native and Expo

2.	 This will change the order of the title and the image of a post on iOS, showing
the title above the image. Also, we need to add the following styling to the end of
this file:

// ...

const styles = StyleSheet.create({

 container: {

 display: 'flex',

 alignItems: 'center',

 justifyContent: 'flex-start',

 backgroundColor: 'white',

 borderWidth: 1,

 borderColor: '#ccc',

 marginBottom: '2%',

 },

 thumbnail: {

 width: Dimensions.get('window').width * 0.98,

 height: Dimensions.get('window').width * 0.98,

 margin: Dimensions.get('window').width * 0.01,

 },

 details: {

 width: '95%',

 margin: '2%',

 },

});

export default PostItem;

3.	 Instead of a border around this component on iOS, we want to display a shadow. To
add this shadow, we need to alter the styles for the component:

// ...

const styles = StyleSheet.create({

 container: {

 display: 'flex',

 alignItems: 'center',

 justifyContent: 'flex-start',

Building a full-stack social media application with React Native and Expo 327

 backgroundColor: 'white',

- borderWidth: 1,

- borderColor: '#ccc',

- marginBottom: '2%',

+ margin: '2%',

+ shadowColor: 'black',

+ shadowOffset: {

+ width: 0,

+ height: 2,

+ },

+ shadowOpacity: 0.25,

+ shadowRadius: 4,

+ elevation: 4,

 },

 // ...

Note
To have a depth of the shadow, iOS will look at the shadowRadius rule,
while Android uses the elevation rule.

4.	 Finally, we also need to change the dimensions of the image as we added a margin
to the container style:

// ...

const styles = StyleSheet.create({

 // ...

 thumbnail: {

- width: Dimensions.get('window').width * 0.98,

- height: Dimensions.get('window').width * 0.98,

+ width: Dimensions.get('window').width * 0.94,

+ height: Dimensions.get('window').width * 0.94,

 margin: Dimensions.get('window').width * 0.01,

 },

328 Building a Full-Stack Social Media Application with React Native and Expo

This will have the following result on iOS and Android, where the border has been
replaced by a shadow:

Figure 9.7 – Differences in styling on iOS and Android

Depending on your type of phone you can also rename this file from components/
PostItem.ios.js to components/PostItem.android.js to see the same
changes on Android.

That's it. With these final changes, you've created a React Native application that will run on
both Android and iOS devices and has differences in styling between these two platforms.

Summary 329

Summary
In this chapter, you've created a mobile social media application with React Native and
Expo that uses a local API to send and receive data as well for authentication. To handle
authentication, multiple types of navigators are combined. We've learned how to use the
camera and the camera roll of a mobile device, after getting the permissions to use them.
Also, the differences in styling between iOS and Android were explained.

In completing this social media application, you've completed the final React Native
chapter of this book and are now ready to start the very last chapter. In the last chapter,
you'll be exploring another use case of React, which is VR. By combining React with
Three.js, you can create 360-degree 2D and 3D experiences by writing React components.

Further reading
•	 Expo camera: https://docs.expo.io/versions/latest/sdk/camera/

•	 Platform-specific code: https://reactnative.dev/docs/platform-
specific-code

https://docs.expo.io/versions/latest/sdk/camera/
https://reactnative.dev/docs/platform-specific-code
https://reactnative.dev/docs/platform-specific-code

10
Creating a

Virtual Reality
Application with

React and Three.js
You're almost there—only one more chapter to go and then you can call yourself a React
expert that has experienced React on every platform. Throughout this book, you've built
nine applications with React and React Native. In this final chapter, we won't be creating
a web or mobile application, but a Virtual Reality (VR) application with React and
three.js. With three.js, you can create dynamic 2D, 3D, and VR experiences using
JavaScript, and with the use of another library apply it within React. Although VR is still
an emerging technology, the best use cases for VR are, for example, retail stores that want
their customers to experience their stores or games online.

In this chapter, you'll explore the very basics of what's possible with React together with
three.js and how it relates to React. The application you will build will be able to render
360-degree panorama images and use state management to render between screens.
Animated 3D objects will also be displayed by combining React and three.js with other
libraries.

332 Creating a Virtual Reality Application with React and Three.js

The following topics will be covered in this chapter:

•	 Getting started with three.js

•	 Creating a panorama viewer with React and three.js

•	 Animating 3D objects

Project overview
In this chapter, you will build a VR application with React and three.js that uses principles
from both JavaScript and React. Both 2D panorama images and 3D objects will be added to
this application, and the project can be run in the browser using Create React App.

The build time is 1.5 hours.

Getting started
The application for this chapter will be built from scratch and uses assets that can
be found on GitHub at https://github.com/PacktPublishing/React-
Projects-Second-Edition/tree/main/Chapter10-assets. These assets
should be downloaded to your computer so that you can use them later on in this chapter.
The complete code for this chapter can be found on GitHub at https://github.
com/PacktPublishing/React-Projects-Second-Edition/tree/main/
Chapter10.

Creating a VR application with React and
Three.js
You can write 2D and 3D VR applications in React by combining it with other libraries.
Previously, you could write VR applications in React directly with React 360. But due to
the emergence of other popular libraries, such as three.js, which is based on JavaScript,
its development was discontinued. Three.js allows you to create applications with both
2D and 3D UI components without having to deal with complex setups for mobile or VR
devices, which is similar to how React works.

To render both 2D and 3D in browsers, three.js uses WebGL, which is a JavaScript API
that runs directly in the browser. It's supported by all recent versions of popular browsers,
such as Chrome, Firefox, and Microsoft Edge.

https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter10-assets
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter10-assets
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/React-Projects-Second-Edition/tree/main/Chapter10

Creating a VR application with React and Three.js 333

Getting started with Three.js
Three.js is based on JavaScript and can be used together with React using a different
library called @react-three/fiber, which is a React renderer for three.js that creates
a link between the two.

As we already did for our previous React applications that render in the browser, we can
use Create React App as the starting point for this application. To get started with building
2D and 3D applications in React with three.js, we first need to create a new project with
Create React App:

npx create-react-app chapter-10

Secondly, we need to install both three.js and @react-three/fiber from npm:

npm install three @react-three/fiber

We don't need any extra dependencies or configuration as Create React App already has
the right configuration out of the box. If we move into the project's root directory, which
is named after our project name, we will see that it has the following structure:

chapter-10

 |- /node_modules

 |- package.json

 |- /public

 |- index.html

 |- /src

 |- App.css

 |- App.js

 |- index.css

 |- index.js

Note
Not all files that were created by Create React App are mentioned above;
instead, only the ones used in this chapter are listed.

334 Creating a Virtual Reality Application with React and Three.js

Creating 3D objects with Three.js
The base for the application has now been created with Create React App, and we've also
installed three.js together with @react-three/fiber. This last library lets us render
three.js elements as components inside React and makes multiple Hooks available to
make changes. This way, we can use three.js in the same declarative and predictive way
that we're already used to from learning React. There is no additional overhead incurred
by using this library instead of three.js directly, as components are rendered outside the
render loop of React.

To create 3D objects in React with three.js, we need to take the following steps:

1.	 Replace the contents of src/App.js with the following, so that it will return a
Canvas component from @react-three/fiber:

import { Canvas } from '@react-three/fiber';

import './App.css';

export default function App() {

 return (

 <div id="Canvas-container">

 <Canvas><Canvas />

 </div>

)

}

This code adds a Canvas component, which is important when we want to render
three.js elements in React for multiple reasons. With the Canvas component,
both a scene and a camera are created, the most important building blocks for this
application. The scene handles whatever is rendered by three.js, while the camera
is the perspective from which we're looking at the scene. This Canvas component
will render our three.js components and elements outside of the DOM and
automatically handles resizing.

2.	 The Canvas component will be resized to fit the div element it's rendered
in, so you can control its size by changing the width and height of #canvas-
container in CSS. This can be done by replacing the contents of src/App.css
with the following:

#Canvas-container {

 height: 100vh;

}

Creating a VR application with React and Three.js 335

3.	 To render something on the Canvas, we need to add a mesh element to this file, for
which we don't need to import anything. The same as we can add div or any other
elements in React, three.js elements will be treated as JSX elements automatically
when placed inside a Canvas from @react-three/fiber:

 import { Canvas } from '@react-three/fiber'

 export default function App() {

 return (

 <div id="Canvas-container">

 <Canvas>

+ <mesh>

+ <boxGeometry />

+ </mesh>

 </Canvas>

 </div>

)

}

Note
When we're adding a mesh element inside a Canvas component from @
react-three/fiber, under the hood, it will create a THREE.Mesh
object.

4.	 This will render a small gray square using the boxGeometry element from
three.js but has no additional features yet. Also, the square we have now is quite
small. By adding the scale prop to the mesh element, we can increase the size of
this element:

 // ...

 export default function App() {

 return (

 <div id="Canvas-container">

 <Canvas>

- <mesh>

+ <mesh scale={2}>

 <boxGeometry />

 // ...

336 Creating a Virtual Reality Application with React and Three.js

5.	 To give the element some color, we first need to add a meshStandardMaterial
with a color prop within our mesh element, and add another element called
ambientLight. This element will add light to the component to make the color
of the boxGeometry visible. On this ambientLight element, we can configure
how bright the light must shine using the intensity prop:

 // ...

 export default function App() {

 return (

 <div id='canvas-container'>

 <Canvas>

 <mesh scale={2}>

 <boxGeometry />

+ <meshStandardMaterial color='blue' />

+ <ambientLight intensity={0.5} />

 </mesh>

 </Canvas>

 </div>

);

 }

In our application, we can now see a blue square being rendered instead of a gray one.
You can see the effect of the ambientLight element by changing the intensity to see the
square getting lighter or darker depending on the value of the intensity.

Having a 2D square is cool, but with three.js, we can also build 3D components. For this, we
need to make some changes to the component to interact with three.js directly outside of
React to prevent performance issues. To make the element 3D, make the following changes:

1.	 Let's create a separate component for the boxGeometry element, so we can
separate concerns and make it reusable. We can do this in a new file called Box.js
under a new directory called components in our src directory:

export default function Box() {

 return (

 <mesh scale={2}>

 <boxGeometry />

 <meshStandardMaterial color='blue' />

 </mesh>

Creating a VR application with React and Three.js 337

);

}

2.	 We need to add a ref to the mesh so we can get access to it outside the scope of
React, and alter it using three.js:

+ import { useRef } from 'react';

 export default function Box() {

+ const mesh = useRef();

 return (

 <mesh

 scale={2}

+ ref={mesh}

 >

 <boxGeometry />

 <meshStandardMaterial color='blue' />

 </mesh>

);

 }

3.	 Altering the mesh element with three.js can be done by changing the values of the
mesh that we can now access using the ref. These alterations must be done within
a useFrame Hook from @react-three/fiber, which is triggered on every
frame render by three.js. When a new frame is rendered, we can slightly alter the
rotation of the mesh making it rotate:

 import { useRef } from 'react';

+ import { useFrame } from '@react-three/fiber';

 export default function Box() {

 const mesh = useRef();

+ useFrame(() => {

+ mesh.current.rotation.x =

 mesh.current.rotation.y += 0.01;

338 Creating a Virtual Reality Application with React and Three.js

+ });

 return (

 // ...

Note
If you don't want to rotate the Box component continuously on every frame
render, you can also use a useEffect Hook to rotate the mesh just once on
the initial render or on a set interval.

4.	 In the src/App.js file, we need to replace the boxGeometry element with this
new component to make it visible in the application:

 import { Canvas } from '@react-three/fiber';

+ import Box from './components/Box';

 export default function App() {

 return (

 <div id='canvas-container'>

 <Canvas>

- <mesh>

- <boxGeometry />

- <meshStandardMaterial color='blue' /> */}

+ <Box />

 <ambientLight intensity={0.5} />

- </mesh>

 </Canvas>

 </div>

);

 }

5.	 Finally, we need to add two more light elements to highlight that we're rendering a
3D element, which are the spotLight and pointLight elements:

 // ...

 export default function App() {

Creating a VR application with React and Three.js 339

 return (

 <div id='canvas-container'>

 <Canvas>

 <Box />

 <ambientLight intensity={0.5} />

+ <spotLight position={[10, 10, 10]}

 angle={0.15} penumbra={1} />

+ <pointLight position={[-10, -10, -10]} />

 </Canvas>

 </div>

);

 }

Note
The value for position is an array with three numbers. These numbers
represent a Vector3 position. This is a format to describe the position of an
object in 3D space where the numbers are the x, y, and z values.

By opening the application in the browser, you can now see a blue square box that is being
rotated in 3D:

Figure 10.1 – Rendering a 3D element with Three.js

340 Creating a Virtual Reality Application with React and Three.js

Something else that we can do with three.js is control the Canvas using our mouse. The
Box component is now rotating on every frame render, but we could also control the
rotation of the entire Canvas using three.js. The Canvas component already sets up a
camera that we can control using the OrbitControls component from three.js. To do
this for our application, we need to do the following:

1.	 Disable the rotation of the Box component by adding a prop called rotate, which
can be either true or false. If no value is provided, the default value will be
false, meaning the Box component isn't rotating:

 // ...

- export default function Box() {

+ export default function Box({ rotate = false }) {

 const mesh = useRef();

 useFrame(() => {

+ if (rotate) {

 mesh.current.rotation.x =

 mesh.current.rotation.y += 0.01;

+ }

 });

 return (

 // ...

2.	 From the src/App.js file, we don't need to set this prop as we don't want the
Box component to rotate. Instead, we will create a new component in the src/
components/Controls.js file to control the rotation of the entire Canvas
and thereby the camera of the application. To do this, we need to add the following
content to this file:

import { useEffect } from 'react';

import { useThree } from '@react-three/fiber';

import { OrbitControls } from

 'three/examples/jsm/controls/OrbitControls';

export default function Controls() {

 const { camera, gl } = useThree();

Creating a VR application with React and Three.js 341

 useEffect(() => {

 const controls = new OrbitControls(camera,

 gl.domElement);

 return () => {

 controls.dispose();

 };

 }, [camera, gl]);

 return null;

};

This will create the Controls component and use the OrbitControls
component from three.js as its base. From the useThree Hook, it will take
the camera and gl from three.js, where the first one is the view perspective
and the second one is the render for WebGL. In the useEffect Hook, the
OrbitControls component will be created and also cleaned up with the
dispose method when it's no longer needed.

3.	 We need to import this new Controls component in the src/App.js file and
place it inside the Canvas component:

 import { Canvas } from '@react-three/fiber';

 import Box from './components/Box';

+ import Controls from './components/Controls';

 export default function App() {

 return (

 <div id='canvas-container'>

 <Canvas>

+ <Controls />

 <Box />

 // ...

4.	 With the previous change, we could already rotate the Box component while
clicking and dragging around this component from the browser. To make this
experience smoother, we can add a minimum and maximum control distance to
this component in src/components/Box.js:

 // ...

 export default function Controls() {

342 Creating a Virtual Reality Application with React and Three.js

 // ...

 useEffect(() => {

 const controls = new OrbitControls(camera,

 gl.domElement);

+ controls.minDistance = 2;

+ controls.maxDistance = 20;

 // ...

 }, [camera, gl]);

 return null;

}

5.	 Finally, we can allow the Controls component, for example, to zoom or pan. This
can be done by setting the following values:

 // ...

 export default function Controls() {

 // ...

 useEffect(() => {

 const controls = new OrbitControls(camera,

 gl.domElement);

 controls.minDistance = 2;

 controls.maxDistance = 20;

+ controls.enableZoom = true;

+ controls.enablePan = true;

 // ...

After adding these last two values, you can rotate, zoom, and pan the Box component in
3D from the browser with three.js and React. In the next section of this chapter, we'll be
rendering 360-degree panorama images to interact with as well.

Creating a VR application with React and Three.js 343

Rendering 360-degree panorama images
The application is using a default background that is displayed for the scene, but it's also
possible to dynamically change the background of our scene. For this application, we want
our scene background to be either 360 degrees or in 3D. Online images can be found on
numerous stock photo websites that meet the requirements.

In this book's GitHub repository, you can find a selection of assets for this chapter under
the chapter-10-assets directory, including two 360-degree panorama images. You
need to download both the beach.jpeg and mountain.jpeg files and place them in
the public directory of the application. The file structure for this chapter will therefore
become the following:

chapter-10

 |- /node_modules

 |- package.json

 |- /public

 |- index.html

 |- beach.jpeg

 |- mountain.jpeg

 |- /src

 |- /components

 |- Box.js

 |- Controls.js

 |- App.css

 |- App.js

 |- index.css

 |- index.js

After we've added the 360-degree panorama images to the project, we can proceed by
rendering them in the background of our scene on the Canvas. Using components and
Hooks from both three.js and @react-three/fiber, we can create a 360-degree view
in which we can also render the 3D object that we created in the previous section of this
chapter.

344 Creating a Virtual Reality Application with React and Three.js

To add a 360-degree background, we need to follow a couple of steps:

1.	 Create a new file called Panorama.js in the components directory in the src
file of the project. In this file, the setup to create a new mesh with the 360-degree
image as a texture is added. First, we need to import the dependencies:

import { useLoader } from '@react-three/fiber';

import * as THREE from 'three';

import Box from './Box';

2.	 Below the imports, we need to define the backgrounds that we want to use for
this application:

// ...

const backgrounds = [

 {

 id: 1,

 url: '/mountain.jpeg',

 },

 {

 id: 2,

 url: '/beach.jpeg',

 },

];

3.	 At the bottom of this file, the actual Panorama component must be created, which
uses a Hook from @react-three/fiber and returns a mesh element from
three.js with two other three.js elements:

// ...

export default function Panorama() {

 const background = useLoader(THREE.TextureLoader,

 backgrounds[0].url);

 return (

 <mesh>

Creating a VR application with React and Three.js 345

 <sphereBufferGeometry args={[500, 60, 40]} />

 <meshBasicMaterial map={background}

 side={THREE.BackSide} />

 </mesh>

);

}

The useLoader Hook takes the THREE.TextureLoader and the background
image to create an object that can be used by meshBasicMaterial as a texture.
It will use the first entry of the backgrounds array, something we can make
dynamic later on. The sphereBufferGeometry defines our 360-degree view
within our scene on the Canvas.

4.	 This new Panorama component must be imported in src/App.js so it can be
rendered. Make sure to render this component within a Suspense component
from React, as it's a dynamic component due to the usage of the useLoader Hook:

+ import { Suspense } from 'react';

 import { Canvas } from '@react-three/fiber';

+ import Panorama from './components/Panorama';

 // ...

 export default function App() {

 return (

 <div id='Canvas-container'>

 <Canvas>

 <Controls />

+ <Suspense fallback={null}>

+ <Panorama />

+ </Suspense>

 <Box />

 // ...

346 Creating a Virtual Reality Application with React and Three.js

You can now open the application in the browser again to see how the 360-degree
panorama is rendered, also with our previously created 3D object:

Figure 10.2 – Rendering a 360-degree panorama image

Note
If you try zooming in and out of the 360-degree panorama images, you'll notice
that only the Box component is changing its size. The background images are
set to cover the full background and are not in 3D.

Besides rendering a 360-degree panorama image, we can also make this interactive. By
adding more three.js elements and using React, we can let the user change the background
image by clicking on, for example, the 3D box.

To change the backgrounds, we need to combine three.js with React and use local state
management to keep track of which 360-degree panorama image should be rendered.
Three.js elements rendered by @react-three/fiber can also handle onClick events
to make them clickable components. Let's implement this:

1.	 In the src/components/Panorama.js file, we need to import the useState
Hook from React, and create a local state variable with it:

+ import { useState } from 'react';

 import { useLoader } from '@react-three/fiber';

 import * as THREE from 'three';

 // ...

 export default function Panorama() {

Creating a VR application with React and Three.js 347

+ const [activeBackground, setActiveBackground] =

 useState(1);

 // ...

2.	 Based on the value for activeBackground, we can select the 360-degree
panorama image that should be rendered as the background. The id field of
the backgrounds array is used to match the local state variable to the correct
background:

 // ...

 export default function Panorama() {

 const [activeBackground, setActiveBackground] =

 useState(1);

- const background = useLoader(THREE.TextureLoader,

 backgrounds[0].url);

+ const { url } = backgrounds.find(({ id }) =>

 id === activeBackground);

+ const background = useLoader(

+ THREE.TextureLoader,

+ url

+);

 return (

 // ...

3.	 In the return statement of this Panorama component, we need to wrap the
returned mesh element in a group element. This group element lets three.js
return multiple interactive elements at once:

 // ...

 export default function Panorama() {

 // ...

 return (

+ <group>

 <mesh>

 <sphereBufferGeometry args={[500, 60, 40]} />

348 Creating a Virtual Reality Application with React and Three.js

 <meshBasicMaterial map={background}

 side={THREE.BackSide} />

 </mesh>

+ </group>

);

 }

4.	 In this group element, we can add another clickable group element with the
onClick event that will update the value for activeBackground when clicked
on: // ...And add the group element with the onClick event, which will update
the value for activeBackground when clicked on:

 // ...

 export default function Panorama() {

 // ...

 return (

 <group>

 // ...

+ <group

+ onClick={(e) => {

+ e.stopPropagation();

+ setActiveBackground(activeBackground ===

 1 ? 2 : 1);

+ }}

+ >

+ <Box />

+ </group>

 </group>

);

 }

5.	 To prevent the Box component from being rendered multiple times, we need to
remove it from the src/App.js file:

 import { Suspense } from 'react';

 import { Canvas } from '@react-three/fiber';

- import Box from './components/Box';

Creating a VR application with React and Three.js 349

 // ...

 export default function App() {

 return (

 <div id='Canvas-container'>

 <Canvas>

 <Controls />

- <Box />

 // ...

 </div>

);

 }

From our application, you can now change the 360-degree panorama image that is
being rendered by clicking on the 3D square. We can improve the user experience
more by making the mesh element interactive, for example, when the user hovers
over the Box.

6.	 In the src/components/Box.js file, we can add a local state variable to check
whether the component is hovered, which is triggered from the mesh element:

- import { useRef } from 'react';

+ import { useRef, useState } from 'react';

 import { useFrame } from '@react-three/fiber';

 export default function Box({ rotate = false }) {

 const mesh = useRef();

+ const [hovered, setHovered] = useState(false);

 // ...

 return (

 <mesh

 scale={2}

 ref={mesh}

+ onPointerOver={(e) => setHovered(true)}

+ onPointerOut={(e) => setHovered(false)}

 >

350 Creating a Virtual Reality Application with React and Three.js

 <boxGeometry />

 <meshStandardMaterial color='blue' />

 </mesh>

);

 }

7.	 When the local state variable hovered is true, we want the color prop on the
meshStandardMaterial element to change to a different color:

 // ...

 return (

 // ...

 <boxGeometry />

- <meshStandardMaterial color='blue' />

+ <meshStandardMaterial color={hovered ?

 'purple' : 'blue'} />

 </mesh>

);

 }

If you now open the application on http://localhost:3000, you can see the Box
component changes from blue to purple when hovered over. Clicking on it will render a
different 360-degree panorama image, which is the beach:

Figure 10.3 – Hovering over and clicking on 3D elements

Besides rendering 360-degree backgrounds and creating interactive 3D components, we
can also import external 3D objects in React with three.js and animate them. This will be
shown in the next section, by adding react-spring to our application.

Creating a VR application with React and Three.js 351

Animating 3D objects
So far, all the components you've added in this chapter that were created with
three.js didn't have animations. With three.js, you can also import external 3D objects and
animate components with react-spring. This library works similar to the Animated
API that we used for React Native earlier in this book.

Importing 3D objects
Before getting into animating 3D objects in React, let's import an external 3D object with
three.js first. Three.js can import multiple file formats for 3D objects, including .obj,
.gltf, and .glb. These file formats are the most common ones for creating 3D objects
that can be used in other programs. For this chapter, we'll be using a .glb file with a
3D version of the Ingenuity Mars Helicopter from NASA. This file can be found in the
repository for this book in the chapter-10-assets directory, and you can place it in
the public directory next to the 360-degree panorama images that you downloaded in
the previous section.

Both .gltf and .glb files can be loaded into three.js with GLTFLoader, which
can load GLTF objects. GLTF is one of the most popular formats for 3D objects, also
called the JPEG of 3D. The 3D model from NASA that you've placed in the public
directory can be imported into a component, in a new file called Helicopter.js in the
components directory:

import { useLoader } from '@react-three/fiber';

import { GLTFLoader } from

 'three/examples/jsm/loaders/GLTFLoader';

export default function Helicopter() {

 const gltf = useLoader(GLTFLoader, './ Ingenuity_v3.glb'

);

 return (

 <group position={[2, 2, 1]}>

 <primitive object={gltf.scene} />

 </group>

);

}

352 Creating a Virtual Reality Application with React and Three.js

This component again uses the useLoader Hook from @react-three/fiber, and
also imports the GLTFLoader that it needs to render the 3D GLTF object. A primitive
element with the GLTF object is returned within a group element that has a custom
position.

In src/App.js, we can return this new Helicopter component from within a
Suspense component, as the useLoader Hook makes this a dynamic component:

 import { Suspense } from 'react';

 import { Canvas } from '@react-three/fiber';

+ import Helicopter from './components/Helicopter';

 // ...

 export default function App() {

 return (

 <div id='Canvas-container'>

 <Canvas>

 // ...

 <Suspense fallback={null}>

 <Panorama />

+ <Helicopter />

 </Suspense>

 </Canvas>

 </div>

);

 }

This will add the Ingenuity Mars Helicopter from NASA to our application, rendered in a
position close to our 3D box. You can see what this looks like in the following screenshot:

Creating a VR application with React and Three.js 353

Figure 10.4 – Rendering an external 3D object with three.js

In the next part of this section, we'll animate this 3D object using a popular React library
called react-spring.

Animating 3D objects with React
In a previous chapter of this book, we animated components in React Native with the
Animated API. For web-based React applications, we can use another library for this,
which is react-spring. Using this library, we can add animations to, for example,
rotate, move, or fade components in and out of a frame. As has been the case in other
examples of using React, this library provides Hooks to add these interactions.

There is a special library from react-spring that works well with @react-three/
fiber, which we can install from npm:

npm install @react-spring/three

After the installation is complete, we can import the useSpring Hook and the
animated element from this library in our Helicopter component in src/
components/Helicopter.js:

 import { useLoader } from '@react-three/fiber';

 import { GLTFLoader } from

 'three/examples/jsm/loaders/GLTFLoader';

+ import { useSpring, animated } from

 '@react-spring/three';

 export default function Helicopter() {

 // ...

354 Creating a Virtual Reality Application with React and Three.js

We can pass the configuration for our animation to the useSpring Hook, so it will
create the props we can pass to the element that we want to animate:

 // ...

 export default function Helicopter() {

 const gltf =

 useLoader(GLTFLoader, './Ingenuity_v3.glb');

+ const props = useSpring({

+ loop: true,

+ to: [

+ { position: [2, 2, 3] },

+ { position: [2, 2, 6] },

+ { position: [2, 2, 9] },

+ { position: [2, 4, 9] },

+ { position: [2, 6, 9] },

+],

+ from: { position: [2, 2, 1] },

+ });

 return (

 // ...

The object with our animation configuration describes that we want to change the
position prop of our 3D object. The starting position is described and the different
positions it should also move to. This animation will also be looped.

The animated element from react-spring can then be used to extend the group
element from three.js that is wrapping our 3D object. This group element will become an
animated element that also takes the props that were created by the useSpring Hook:

 // ...

 return (

- <group position={[2, 2, 1]}>

+ <animated.group {...props}>

Summary 355

 <primitive object={gltf.scene} />

+ </animated.group>

- </group>

);

 }

Now, when you open the application, the helicopter will be moving around in different
positions on the 360-degree panorama image.

Summary
In this final chapter, you've combined all of the knowledge you have gathered from this
book to create a VR application with React. We were able to do this by combining it with
three.js, which is a JavaScript library for creating 3D applications. The project we created
in this chapter serves a different and more niche use case than the other React projects in
this book. It has basic animations, as well as a 3D helicopter object that flies away into the
distance.

With this final chapter, you've completed all 10 chapters of this book and have created 10
projects with React and React Native. Now, you have a solid understanding of everything
that you can do with React and how to use it across different platforms. While React and
React Native are already mature libraries, new features are added continuously. Even as
you finish reading this book, there will probably be new features you can check out. My
main advice would be to never stop learning and keep a close eye on the documentation
whenever a new feature is announced.

Further reading
•	 Three.js: https://threejs.org/

•	 @react-three/fiber: https://docs.pmnd.rs/react-three-fiber/
getting-started/introduction

•	 NASA 3D images: https://mars.nasa.gov/3d/images/

https://threejs.org/
https://docs.pmnd.rs/react-three-fiber/getting-started/introduction
https://docs.pmnd.rs/react-three-fiber/getting-started/introduction
https://mars.nasa.gov/3d/images/

Index

Symbols
3D objects

animating 351
animating, with React 353-355
creating, with Three.js 334-342
importing 351-353

360-degree panorama images
rendering 343-350

A
advanced animations

handling, with Lottie 282-287
advanced routing

with authentication 296
advanced state

using, with useReducer 151-162
Android Studio emulator

reference link 251
animated game application

advanced animations, creating
with Lottie 282-287

animations, adding in React Native 270
animations, creating 270-277
creating, with Expo 251

creating, with React Native 251
gestures, adding in React Native 270
gestures, handling with Expo 277-281
project overview 250

Apollo Client
GraphQL, consuming with 218
setting up 218-220

application Context
creating 168-170

assertions
components, testing with 187-191

authentication, GraphQL
handling 236-247

B
bottom tabs

about 296
adding 297-302

built-in state management
reference link 17

C
code splitting

with React Suspense 170-173

358 Index

community feed application
about 104
creating, with Next.js 104

components
reusing, in React 43-55

Context
mutating, with Hooks 148

Create React App
installing 33-35
project overview 32
structuring 36-43
used, for creating portfolio 33

cross-handler interactions 281
custom Hook

creating 78-82
reusing 83-85

Cypress
installing 198
used, for writing

end-to-end tests 198-206

D
data

mutating, in Provider 162-168

E
end-to-end tests

about 197
adding to hotel review application,

Cypress used 198-206
ESLint

about 28
configuring 28
installing 28

Expo
mobile social media application,

building 296
used, for creating animated

game application 251
used, for handling gestures 277-281
used, for setting up React

Native 252-254

F
full stack e-commerce application

building 210
GraphQL, consuming with

Apollo Client 218
GraphQL server, creating

with Next.js 210-217
functional components

life cycles, using 148-151

G
gestures 277
GraphQL API

reference link 212
GraphQL, consuming with Apollo Client

Apollo Client, setting up 218-220
authentication, handling 236-247
GraphQL queries, sending

with React 220-227
mutations, handling 227-236

GraphQL server
creating, with Next.js 210-217
reference link 211

Index 359

H
head tags

adding, for Search Engine
Optimization (SEO) 132-135

hello.js file
reference link 210

Higher-Order Components (HOCs) 78
Hooks

Context, mutating with 148
reference link 17

hotel review application
components, unit testing 180
end-to-end testing, with

Cypress 197-206
Hooks, testing 191-197
initial application 177, 178
integration testing, adding 179
overview 176
React state, testing 192-197
structure 178, 179
unit testing, adding 179

I
initial React application

structure 209
working with 208

iOS simulator
reference link 251

J
JPEG of 3D 351
JSON Web Tokens (JWTs) 237, 303
JSX Transform functionality

reference link 8

L
life cycles

using, in functional
components 148-151

Lottie
used, for handling advanced

animations 282-287
LottieFiles library

about 282
URL 282

M
mobile social media application

advanced routing, with
authentication 296

authentication flow 303-311
bottom tabs, adding 297-302
building, with Expo 296
building, with React Native 296
camera, using with React Native

and Expo 313-322
differences, in styling for iOS

and Android 322-328
initial project 291-296
navigation, between nested

routes 311, 312
project overview 290

mutations, GraphQL
handling 228-236

My JSON Server
reference link 73

My JSON Server service 179

360 Index

N
Next.js

GraphQL server, creating with 210-217
installing 105, 106
query strings, handling 120-127
routing with 111-120
setting up 104
styled-components, adding 106-111
used, for creating community

feed application 104
used, for fetching server

side data 127-132
npm run dev

reference link 208

P
package.json

reference link 4
personal shopping list

Context API, using for state
management 141

Context, creating 142-145
Context, nesting 145-148
project overview 138-141

portfolio
creating, with Create React App 33

project management board application
creating 72
data, displaying 72-78
data flow, handling 72
data loading 72-78
dynamic board, creating 86-94
overview 70, 71

Provider
data, mutating 162-168

Q
query strings

handling 120-127

R
React

components, reusing 43-55
styling, with styled-components 94-101
used, for animating 3D objects 353-355
used, for creating VR application 332

React component
rendering, for unit testing 182-187
unit testing 180
unit testing, with assertions 187-191

React Developer Tools plugin
reference link 2

React Native
basic routing, adding 254-258
mobile social media application,

building 296
navigation, between screens 259-264
setting up, with Expo 252-254
styling, adding 264-269
used, for creating animated

game application 251
React project, for single-page application

components, adding 13-16
data, retrieving 16-23
development server, creating 11, 12
ESLint, adding 28, 29
rendering 9-11
setting up 3
structuring 13
styling, adding 23-27
Webpack, setting up 4-8

Index 361

react-router
routing with 55-66

React Suspense
using, for code splitting 170-173

React Testing Library
using 180

REST endpoint
reference link 209

reusable React components
building 35

Rick and Morty REST API
reference link 16

S
Search Engine Optimization (SEO)

head tags, adding for 132-135
server side data

fetching, with Next.js 127-132
Server-Side Rendering (SSR)

enabling 127
head tags, adding for SEO 132-135
server side data, fetching

with Next.js 127
single-page application

creating 3
overview 2
React project, setting up 3
React project, structuring 13
requisites 2

Stack Exchange API v2.3
reference link 104

Stack Overflow API 104
state management 137
styled-components

installing 94, 95

T
Three.js

used, for creating 3D objects 334-342
used, for creating VR

application 332, 333

U
unit testing

about 180
components, testing with

assertions 187-191
React component, rendering 182-187
test, creating 180, 181

useReducer
advanced state, using with 151-162

V
VR application

3D objects, animating 351
3D objects, animating with

React 353-355
3D objects, creating with

Three.js 334-342
3D objects, importing 351-353
360-degree panorama images,

rendering 343-350
creating, with React 332
creating, with Three.js 332, 333
overview 332
working with 332

W
WebGL 332

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

364 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Elevating React Web Development with Gatsby
Samuel Larsen-Disney
ISBN: 978-1-80020-909-1

•	 Understand what GatsbyJS is, where it excels, and how to use it

•	 Structure and build a GatsbyJS site with confidence

•	 Elevate your site with an industry-standard approach to styling

•	 Configure your GatsbyJS projects with search engine optimization to improve
their ranking

•	 Get to grips with advanced GatsbyJS concepts to create powerful and dynamic sites

•	 Supercharge your site with translations for a global audience

•	 Discover how to use third-party services that provide interactivity to users

https://subscription.packtpub.com/product/web_development/9781800209091

Other Books You May Enjoy 365

React 17 Design Patterns and Best Practices – Third Edition

Carlos Santana Roldán

ISBN: 978-1-80056-044-4

•	 Get to grips with the techniques of styling and optimizing React components

•	 Create components using the new React Hooks

•	 Get to grips with the new React Suspense technique and using GraphQL in
your projects

•	 Use server-side rendering to make applications load faster

•	 Write a comprehensive set of tests to create robust and maintainable code

•	 Build high-performing applications by optimizing components

https://www.packtpub.com/product/react-17-design-patterns-and-best-practices-third-edition/9781800560444

366

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished React Projects, we'd love to hear your thoughts! If you purchased the
book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801070636

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Chapter 1: Creating a Single-Page Application in React
	Project overview
	Getting started
	Creating a single-page application
	Setting up a project

	Structuring a project
	Creating new components

	Summary
	Further reading

	Chapter 2: Creating a Portfolio in React with Reusable Components
and Routing
	Project overview
	Getting started
	Creating a portfolio in React
	Creating a portfolio with Create React App
	Installing Create React App
	Building reusable React components
	Structuring our application
	Reusing components in React
	Routing with react-router

	Summary
	Further reading

	Chapter 3: Building a
Dynamic Project Management Board
	Project overview
	Getting started
	Creating a project management board application
	Handling the data flow
	Loading and displaying the data

	Working with custom Hooks
	Creating custom Hooks
	Reusing a custom Hook
	Making the board dynamic

	Styling in React with styled-components
	Summary
	Further reading

	Chapter 4: Building a Server-Side-Rendered Community Feed Using Next.js
	Project overview
	Getting started
	Community feed application
	Setting up Next.js
	Installing Next.js
	Adding styled-components

	Routing with Next.js
	Handling query strings

	Enabling SSR
	Fetching data server side with Next.js
	Adding head tags for SEO

	Summary
	Further reading

	Chapter 5: Building a Personal Shopping List Application Using Context and Hooks
	Project overview
	Getting started
	Personal shopping list
	Using the Context API for state management
	Creating Context
	Nesting Context

	Mutating Context with Hooks
	Using life cycles in functional components
	Using advanced state with useReducer

	Mutating data in the Provider
	Creating an application Context
	Code splitting with React Suspense
	Summary
	Further reading

	Chapter 6: Building an Application Exploring TDD Using the React Testing Library and Cypress
	Project overview
	Getting started
	The hotel review application
	Unit testing components
	Testing React state and Hooks
	End-to-end testing with Cypress

	Summary
	Further reading

	Chapter 7: Building a Full Stack E-Commerce Application with Next.js and GraphQL
	Project overview
	Getting started
	Getting started with the initial React application

	Building a full stack e-commerce application with React, Apollo, and GraphQL
	Creating a GraphQL server with Next.js
	Consuming GraphQL with Apollo Client

	Summary
	Further reading

	Chapter 8: Building an Animated Game Using React Native and Expo
	Project overview
	Getting started
	Creating an animated game application with React Native and Expo
	Setting up React Native with Expo
	Adding gestures and animations in React Native
	Advanced animations with Lottie

	Summary
	Further reading

	Chapter 9: Building a
Full-Stack Social Media Application with React Native and Expo
	Project overview
	Getting started
	Checking out the initial project

	Building a full-stack social media application with React Native and Expo
	Advanced routing with authentication
	Using the camera with React Native and Expo
	Differences in styling for iOS and Android

	Summary
	Further reading

	Chapter 10: Creating a
Virtual Reality Application with React and Three.js
	Project overview
	Getting started
	Creating a VR application with React and Three.js
	Getting started with Three.js
	Creating 3D objects with Three.js
	Rendering 360-degree panorama images
	Animating 3D objects

	Summary
	Further reading

	Index
	About Packt
	Other Books You May Enjoy

