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Introduction

We need men who can dream of things that never were, and ask,
“why not?”

—John F. Kennedy, Speech to the Irish Parliament, June 1963

Today, the quest for data scientists is continuous, the data seems to be
abundant, and cloud computing power is available. Is it the perfect world
for the definitive triumph of machine learning? As we see things, we have
all the necessary ingredients to cook up the “applied AI,” but we still lack a
clear and effective method for combining them.

The purpose of data science is, like the purpose of science, to show that
something is possible. Data science, though, doesn’t productionize
solutions. That’s the purpose of another branch of the machine learning
universe—data engineering.

Companies are wildly looking for data scientists, but the outcome of a
good data science team is typically a runnable model whose software
quality is often that of a prototype rather than of a production-ready artifact.
Algorithms are tightly bound to data, and data must be complete, clean, and
balanced. Who’s in charge of this part of the job is often unclear, and as a
result, the job is often partially done at best. Yet, a data science team
disconnected from the rest of the applied AI pipeline that makes it to
production is still a due investment for a large organization whose business
produces large quantities of data (such as energy utilities, financial
institutions, and manufacturing farms). For smaller companies with
significantly more limited budgets, the outcome of some applied data
science can be cheaper to buy as a service.

From data science to production, there is usually a long way in between
and a lot of work on data. Following are a few points to consider:

How is data stored? On a daily or hourly basis?



Should data be temporarily copied in some intermediate format?
What kind of transformation is required for the model to work? How
can you automate that?
How is the performance of the model once deployed to production?
How often is the model expected to need retrained to stay adherent to
live data?
If retraining is a frequent operation, how to automate any related
tasks?
What about collecting updated datasets, running the training, and
deploying the up-to-date model?

The biggest issue we experience with machine learning models traces
back to the data employed. In July 2021, the MIT Technology Review
published an article about the impact of AI in facing the COVID pandemic.
The article’s bottom line is that many of the problems uncovered by a large
review of aptly developed models are linked to the poor data quality that
researchers used to develop their tools. Hence, nearly all tools were of
nearly no effective use. This leads to a better understanding of the role of
data engineering and data quality. Treating data via CSV sparse files is
sufficient for probing an idea, but in order to build a robust infrastructure,
you need to switch to some database (relational, NoSQL or graph) and
some serious query language, and for this purpose, likely move beyond
Python and enter into classic programming. Data science is not enough
without serious programming and database skills. On the other hand, isn’t
searching for business-specific insights in data all that you do?

AI in general, and machine learning in particular, are now played as a
tradeoff between commodity and direct solutions for vertical problems.
Commoditized cloud services offer security, stability, and acceptable
quality. They don’t cover every possible scenario, though. But they’re
expanding, and more will expand in the near future.

All this is creating the environment for building the same old software
but with more powerful tools. We’re not just talking about the primitives of
programming languages and classes from some frameworks. We’re also
talking about intelligent and predictive tools backed by machine learning
algorithms and commoditized cloud (or containerized) services.



In this scenario, ML.NET acts as a perfect bridge between data
engineering and commoditized data science, and it is fully integrated with
the .NET framework. ML.NET commodities come in different forms: built-
in algorithms for shallow learning, facilitated access to Azure cloud
services, and integration with pre-trained models, such as Keras or
TensorFlow networks.

Who Should Read This Book?
In our vision, if you adopt the .NET stack, then ML.NET is the perfect tool
to do machine learning, whatever that ultimately means in terms of the
internal gears of your chosen algorithms and models.

Hence, this book is for .NET developers willing (or needing) to
approach the world of machine learning. It’s ideal if you’re a software
developer adding data science and machine learning skills to your arsenal.
It’s ideal if you’re a data scientist willing to learn more about software
beyond Python. Both categories, though, need to learn more and more
about the other.

Who Should Not Read This Book?
This book discusses machine learning through the lenses of ML.NET,
which is a platform-specific library. It is tailored more to data engineers and
ML engineers than plain data scientists. To clarify, the core responsibilities
of an ML engineer are to physically incorporate an externally trained model
into client applications and perform the much more delicate task of
supervising the building and training of a model based on data science
specs. The book discusses the tools for doing this.

If you’re not much interested in the actual productionizing of the
machine learning solution, this book is probably not the best you can get. It
doesn’t open your mind to cutting-edge data science techniques, but it
teaches you how to start leveraging what the ML.NET team has been doing
for years—to integrate simple but effective machine learning solutions in
.NET.



Organization of This Book
This book is divided into three sections.

Chapters 1-3 provide a foundational overview of the library.
Chapters 4-10 outline the dedicated tasks for data processing,
training, and evaluation for common problems, such as regression,
classification, ranking, anomaly detection, and more.
Chapters 11-13 are dedicated to neural networks that might come into
play when none of the shallow learning tasks is found to be suitable.
Also, we include an overview of neural networks and an example of
passport recognition that uses both commoditized Azure cognitive
services and a handmade custom Keras network.

Lastly, Appendix A discusses model explainability.

System Requirements
You will need the following hardware and software to complete the practice
exercises in this book:

A computer running Windows 10, Linux, or macOS
Visual Studio 2019, any edition, or superior; Visual Studio Code
Internet connection to download software or chapter examples

Code Samples
All the code included in the book, including possible errata and extensions,
can be found at
MicrosoftPressStore.com/ProgrammingMLNET/downloads.

Errata, updates, & book support
We’ve made every effort to ensure the accuracy of this book and its
companion content. You can access updates to this book—in the form of a
list of submitted errata and their related corrections—at:

http://microsoftpressstore.com/ProgrammingMLNET/downloads


MicrosoftPressStore.com/ProgrammingMLNET/errata

If you discover an error that is not already listed, please submit it to us
at the same page.

For additional book support and information, please visit
http://www.MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is
not offered through the previous addresses. For help with Microsoft
software or hardware, go to http://support.microsoft.com.

Stay in Touch
Let’s keep the conversation going! We’re on Twitter:
http://twitter.com/MicrosoftPress.

http://microsoftpressstore.com/ProgrammingMLNET/errata
http://www.microsoftpressstore.com/Support
http://support.microsoft.com/
http://twitter.com/MicrosoftPress


Chapter 1

Artificially Intelligent Software

Let us calculate, without further ado, to see who is right.

—Gottfried Wilhelm Leibniz, “The Art of Discovery,” 1685

Software is the ultimate result of the embryonal vision that crossed the
minds of a handful of great thinkers since the seventeenth century. A few
mathematicians, philosophers, and scientists in the most general sense of
the word, in various ways and at different levels of abstractions, had the
vision of a universal language able to mechanize the acquisition and sharing
of knowledge. In particular, Gottfried Leibniz (1646 to 1716) concluded (or
was it just a bit less than a dream?) that at least part of the human reasoning
could be mechanized. He even devised an abstract engine—the calculus
ratiocinator—that could act as a universal processor of statements written
in some symbolic language and appropriate notation.

Leibniz’s visionary notes on the calculus ratiocinator remained
unpublished for more than two centuries, but the idea of a symbolic
language found an immediate application in the notation for the calculus of
infinitesimals he introduced in 1684 at nearly the same time that Isaac
Newton was developing his mathematical methods to explain the physics of
motion and gravitation.

In the late 1800s, Leibniz’s work two centuries before stimulated
logicians to boldly move beyond Aristotle’s logic that was still predominant
at the time. In particular, the German scientist Gottlob Frege dedicated his
entire life to devising a comprehensive theory that could be used to
represent all mathematical statements. There was a sort of a bug in his
work, though, that ante litteram beta tester Bertrand Russell found just days
before the whole work went to printers.



Interestingly, Russell’s paradox when going through Frege’s theory was
not identifying some error or misstatement. Decades later, Godel’s
theorems of incompleteness showed that nothing was wrong in either
Frege’s or Russell’s reasoning. Godel, in fact, proved unrealistic the
expectation set by Frege and denied by Russell with a counterexample.

Then, Alan Turing started an immortal journey in abstract mathematics,
culminating in Turing’s machine—the first-ever fully defined model for
symbolic calculation.

Great! But what about software then?

How We Ended Up with Software
Godel’s incomplete theorem draws the line beyond which mathematical
logic can’t just go. In essence, incompleteness means that there are things
that cannot just be proven true or false through any flavor of formal
reasoning. Period.

However, the flip side of such an apparently negative outcome is just
what opened the floodgates of what today we call software. Incompleteness
killed the dream of a sharp seventeenth-century polymath, but, at the same
time, it showed that within the boundaries of a consistent formal system,
any reasoning can always be expressed as a set of formal transformation
rules and then, in some way, mechanized.

This fact represents the theoretical foundation for any computer-based
reasoning and marks the birth of what ended up being the software of today.

The Formalization of Computing Machines
Godel’s theorems of incompleteness (1931) gave the spark to a few
independent research paths that conveyed the same result around the mid-
1930s:

General recursive function Defined by Godel himself, a general
recursive function is a computable logical function that takes a finite
array of natural numbers and returns a natural number.



Lambda calculus Formalism devised by Alonzo Church to define
some mechanic computation on natural numbers.
Turing machine Theoretical model of a computing machine capable
of performing calculations via symbols written on an infinite tape.

Next, in 1936, the Church-Turing thesis unified the three classes of
computable functions. The thesis proved that a function is computable in
the lambda calculus if and only if it is computable in the Turing machine
and if and only if it is a general recursive function. The ultimate effect of
the thesis made imaginable the building of a mechanical device that could
reproduce any conceivable process of mathematical deduction through the
manipulation of symbols.

The explosion of the Second World War accelerated the development of
electrical machines able to crunch numbers and automate tasks. Well-
known ancestors of modern computers were the cypher- and code-breaking
Enigma; its breaking counterpart, The Bombe (built with a significant
contribution from Alan Turing); the German Army’s Lorenz machine; and
the British giant machine Colossus, which ultimately broke the Lorenz
cypher. All these models were built in Europe, whereas the United States
completed the building of the ENIAC computer in the final days of the war
under the supervision of another big name of modern computer science,
John von Neumann.

All these machines were based on the theoretical foundation laid by the
Church-Turing thesis.

The Engineering of Computing Machines
In the 1950s, far from the pressure of the war, research resumed, and
scientists faced the compelling problem of devising the architecture of a
computing machine. Imagine being in the shoes of one of those great
people.

Consider this: It’s the 1950s, and the world is getting a facelift after the
hardships of the war. In the past few years, you and your peers built
dedicated machines starting from the sole theoretical evidence that it was
possible. The contingency of the war forced you to build machines around



the accomplishment of very specific tasks, mostly calculating numbers
from numbers, but you know that more is possible. The same theory that
resulted in building number-crunching agglomerates of electro-mechanical
valves, wires, and rotors can be leveraged to engineer a machine that can
compute anything that can be expressed through a consistent grammar of
symbols. It’s about creation. It’s not about getting numbers from other
numbers.

In the shoes of any such great person, you would probably feel like a
god.

And you would probably foresee a machine that can behave in much the
same way as humans do. And then, probably, you would wonder about this
crucial question: Can machines think?

Faced with engineering a computing machine, it seemed natural to look
at the human brain and imagine such machines as a surrogate of the human
brain. The initial focus was on the engineering part—how to connect the
physical parts in an overall architecture that could afford flexible
processing of numbers and representation of more complex information.
Nobody ever figured out anything like what we call software today.

The goal was to create an intelligent machine, and the model was the
human brain.

The Birth of Artificial Intelligence
The term artificial intelligence (AI) was officially coined in 1956 when
John McCarthy organized a six-week summer research workshop at
Dartmouth College in New Hampshire; this research workshop was open to
a number of mathematicians, engineers, neurologists, and psychologists.

The workshop was devised to be a brainstorming session around the
idea of thinking machines. At the time, the abstract theme of thinking
machines was debated in two distinct and largely opposed research
contexts. The Automata theory directly descended from Church and
Turing’s work and cybernetics, which directly descended from Babbage’s
theory and was turned into concrete hardware by Von Neumann.



In an attempt to please and attract researchers from both camps,
McCarthy chose the new name of artificial intelligence because of its
neutrality. Also, McCarthy wanted to unify the two souls of the ongoing
academic research that he perceived to be the same entity.

Yet, the ultimate purpose of the workshop was to lay the groundwork for
a number of shared methods and practices to build the artificial counterpart
of a brain.

Many declined the invitation to the workshop, and no concrete outcomes
resulted from it. Yet, it is remembered as the birth of artificial intelligence.

Software as a Side Effect
Computing machines were born to emulate the human brain and represent
intelligence in a formal and computable way. But, as in many popular
Internet memes these days, at some point, something went unexpectedly
wrong. The result is just what we currently call software, which was, in a
way, the waste product of the quest for artificial forms of intelligence.

What is software?
We belong to successive generations, and it is interesting to note that

younger developers might still miss the fact that software derives from the
definition of the Von Neumann computer architecture that introduced the
key concept that instructions had to be separated from hardware and not
hard-coded in the physical parts. The Von Neumann architecture is the
same architecture that modern devices use and consists of a processing unit
(CPU) that provides basic computation logic, multiple levels of memory,
and input/output mechanisms.

Programming languages to arrange instructions for the machine to
execute started appearing in the 1950s and rapidly developed until the end
of the next decade. At that point, it was clear that software was necessary to
use computers and an unavoidable tool to build intelligent automated
behavior. In the 1960s, it became evident that writing software to achieve
any minimally acceptable behavior required dedication, discipline, and
method. Not coincidentally, the term software engineering started gaining
popularity around 1968.



Software played a crucial role in getting astronauts to the moon, but it
was nothing like artificial intelligence; the software required the human
brain to dictate action. However, the industry decided that the software was
enough, and the dreams of artificial intelligence could wait. Then the early
1970s brought us relational databases and the definitive direction: Software
is for business, and artificial intelligence moved to the academic back
office.

The Role of Software Today
We’re well into the twenty-first century, and every day we experience the
pervasiveness of software in every aspect of our lives. It was not the same
in the beginning. For a few decades, software was devised to be a relatively
thin layer of abstraction around core and raw data. Storing and reading
business data was the major goal, and software was just the necessary
grease to smooth the gears of business processes. The software was devised
to execute tasks correctly and (ideally) quickly.

There was no care for the user. In a way, some using a computer had to
feel happy and grateful just to be there. Twenty years ago, the Internet—
followed by the iPhone ten years later—changed the landscape in favor of
introducing a bunch of new methodologies and, more than everything else,
woke up engineers and managers to the relevance of users.

To be nice to users and make information that’s available at their
fingertips (an old slogan attributed to Bill Gates), software had to be
designed in different ways and around different—radically different—user
stories. All in all, in modern society, any software has three main goals:

Save people from having to do repetitive and boring tasks
Mirror the processes as they happen in the real world
Assist and empower people

These goals haven’t changed significantly since the early days of
ENIAC, Fortran, IBM mainframes, and workstations. The era of cloud
(and, why not, the possible futuristic era of quantum computing) won’t
change these basic goals. They form the very essence of software and are,
in a way, universal.



What has changed over the past decades and what might further change
is the relevance of these goals for people, companies, organizations, and
businesses in general. The software is not expected to have different goals;
neither is it expected to change its nature. Instead, it is expected to change
to give those goals more and more relevance. Software is expected to be
closer and closer to the real world and empower more and more people
while saving time for other human-specific gigs or just more fun.

For these goals, the software just needs to be more intelligent.
We don’t have artificial intelligence to use as a magic wand; we wish to

have it, but it’s not here yet. At a minimum, though, we should be writing
more intelligent software. One way to do so is to use the tools created by
research under the umbrella of artificial intelligence.

Automating Tasks
In the beginning of the software industry, something as simple as storing
and retrieving data was seen as a successful form of automation. Over the
years, though, the need for automation and the definition of an automatable
task have changed. Today, many tasks that would have been happily taken
over by a human user 20 years ago are considered boring, repetitive, and, as
such, ideal for another smarter software application.

A good example of such tasks for which simple forms of artificial
intelligence might be helpful is the analysis of timelines, scanning of
documents, and standard processing of documents such as resizing photos
or passport reading. In this context, we could compare artificial intelligence
to barcode readers. Years ago, barcode readers incredibly smoothed and
accelerated data-entry processes. Likewise, relatively standard neural
networks—or even implementations of dedicated algorithms—can give a
similar boost to analogous business domains today.

Mirroring the Real World
New cars make it simple: As you turn the key, the embedded software
welcomes you, and if it’s a Saturday, it immediately offers to set up the



same route to the mall you seem to take almost every weekend. Wow, that’s
smart! When you drive and happen to be too close to another car, the same
embedded software warns you or brakes for you, depending on the model
and circumstances. Wow, that’s even smarter!

It’s not so much about being smart. It’s more about understanding and
mimicking things as they happen in the real world. Having been in the
software industry for well over three decades, Dino remembers very well
the early days in which users had to adapt to software—not the other way
around. Doubtless, it still happens—even in the code he writes today,
though the frequency has diminished.

Note that it’s not only the user experience that’s affected, AND it’s not
simply frontend and interfaces. To be able to offer a valuable user
experience, a serious, flexible, and scalable backend is required more often
than not.

On the way to making software closer to the human-level interactions
that people are used to, you should certainly look at existing cognitive
services (chatbots and voice-based input of data). You blissfully fail,
though, if you stop at a cloud service shop and just buy subscriptions. The
intelligence of cognitive services is a tremendous plus, but it shouldn’t be at
the cost of skipping user-friendly forms and menus and implementing
business processes and ubiquitous languages.

Let’s say you are a software engineer who designs a software system
that is still under cover of cognitive services. If that software were to fail to
recognize crucial business entities because it doesn’t name them properly,
that would mean you’re not properly mirroring the real world and you’re
not providing a great service to your customer. As emphatic as it may
sound, a simple misnomer here or the less-than-optimal design of a storage
structure there multiplied by years of everyday use can be measured as
noticeable damage.

These days, it’s too easy to fall into the trap of putting AI everywhere
and to favor the use of a pet technology rather than focusing on what could
solve the problem, at least in the short term. We’ve seen projects stuck
because of inadequate design and product choices. And, unfortunately,
we’re not the only ones.



Empowering People
The more the software is able to mirror the real world, the more it ends up
empowering people in their everyday personal, social, and business
activities. And it also works the other way around: the more people use
software regularly, the more software evolves and improves.

Today, to really empower users, the software has to be intelligent and
proactive. A nice user experience seems more and more like a commodity.
It is assumed to be a nice one, but it makes a difference less and less often.
AI is an effective tool to investigate ways to provide more powerful
features to users and more insights about the data they use.

For nearly any user activity, timely suggestions, recommendations, and
accurate estimations and forecasts are immensely helpful. Today, AI is no
longer an obscure area of research but is fully integrated in a large-use
framework such as .NET 6, so there are no more excuses for not using it.
The challenge is in how to use it in the context of real-world applications
that mirror the real world as closely as possible.

AI Is Just Software
Artificial intelligence is no different from the software that companies are
already using. In fact, AI is just another face of software; it’s a new type of
fuel for the software that can reinforce the benefits for users. In spite of this,
the hype around AI is high.

To be really effective and widely used, AI solutions must be easy to
code and even easier to integrate into new and existing applications. No AI
solution is a stand-alone piece, and the challenge is in making smart
features plug seamlessly into regular software. Even the most sophisticated
neural network is not very usable by users if it’s not nicely hidden behind a
friendly interface.

Expert systems have been the first concrete form of artificial
intelligence put to work in a number of business domains such as cruise
control systems, legal, tax, finance, and healthcare. Those intelligent
software systems do the work of a human expert and can give the same
insightful answer to a fixed number of questions. Expert systems are



expensive to update, but at some point, they face obsolescence. Machine
learning is the next step.

Machine learning is a subset of AI and works by creating a model that
can answer questions it was never explicitly programmed to answer. An
expert system, in fact, for the most part is made of an intricate but fixed
network of branches. Any answer an expert system can give comes at the
end of a hard-coded learning path. In a machine learning system, this is not
true. In action, a machine learning model uses a previously identified
mathematical function to calculate the output from a given input. Before it
can be used, the model is trained on a large sample dataset, and training is
aimed at discovering just that mathematical function that captures the
hidden relationships between input and output.

The point is not which flavor of machine learning you should be using
or whether Python is preferable to ML.NET. The point is to find the most
appropriate technical solution for adding a new smart feature to your
applications that turns the existing software into more intelligent software.

AI, in the end, is just software.
In this first chapter, we barely scratched the surface of intelligence in

modern software. Given the level of sophistication of the average software
of today, the entire challenge is to make it smarter and closer to the user’s
needs. Machine learning techniques—whether shallow learning algorithms
or neural networks—are an effective approach. In the rest of the book, we
delve into the features and capabilities of ML.NET—the machine learning
framework native in the .NET 6 platform.



Chapter 2

An Architectural Perspective of
ML.NET

“In mathematics, the art of asking questions is more valuable
than solving problems.”

—Georg Cantor, Doctoral thesis, 1867

As consumers, we continuously experience the pleasant effects of cognitive
AI (for example, Amazon, Google, Apple, Microsoft, and Netflix). As
people, we hope to see the same power applied to healthcare. In the general
enterprise sector, where companies much smaller and rich than the web
giants strive, the adoption of AI is slow and steady. This is precisely the
feeling that descends from the point of intelligent software. Very few
running businesses need the same level of cognitive AI we find in, say,
Alexa or Cortana. All running businesses, though, would benefit from
smarter features.

What is intelligent software, then?
Any software is statically designed to be aware of the context, but only

intelligent software is designed to run while being dynamically aware of the
business context. On the other hand, isn’t this just what intelligence is
supposed to be—the ability to acquire knowledge and turn it into expertise?
In a nutshell, intelligence combines cognitive capabilities, including
perception, memory, language, and reasoning and uses a specific learning
approach to extract, transform, and store information. Turning all this into
code requires ad hoc tools that are different from the basic logical
equipment provided in any programming language or core framework.



Marketing departments love to generally identify these tools as artificial
intelligence, specifically in the machine learning (ML) section. How do we
do ML?

Most ML solutions today are built using tools from the Python
ecosystem. It’s a matter of convenience, however, rather than a matter of
technological merit. In this chapter, we introduce the ML.NET platform—
the .NET way to machine learning and the core topic of the book. More
than just that, though, we will aim at providing an architectural perspective
of a generic ML solution and presenting the reasons that, in our opinion,
make ML.NET the right thing at the right time.

Life Beyond Python
In the collective imagination, ML is tightly coupled to using the Python
programming language. Even from a surface-level look at job descriptions
in tons of recruitment posts, this is clear. There are both historical and
convenience reasons for languages like Python and C++ to be at the
forefront of ML. However, there’s no strict business reason or technical
argument that prevents .NET and related languages (C# and F#) from being
effectively used to build ML models.

Why Is Python So Popular in Machine Learning?
Python is an interpreted and object-oriented programming language created
by Guido Van Rossum in the late 1980s with the declared goals of syntax
minimalism and readability. The vision of Python as a programming
language is that of a small core language engine with a large standard
library and an easily extensible interpreter.

Python, which was born in a scientific environment, has become the de
facto standard programming language for scientists to practice, explore, and
experiment with numbers. In a way, it took the place that Fortran held in the
1960s and ‘70s. In the beginning, using Python in a hot new scientific field
such as machine learning was a natural choice, and over time—given the
natural extensibility of the language—it led to the creation of a vast



ecosystem of dedicated libraries and tools. In turn, that reinforced the belief
that using Python for building computational models was the best option.

Today, most data scientists find Python comfortable to use for machine
learning projects, and that is probably because of a combination of the
language’s simplicity, the available tools, and plenty of examples. As
developers, we also find Python comfortable to use to reshape data quickly
to find the most appropriate format, test algorithms quickly, and explore
different directions.

Once a clear path is outlined, the ML model must be trained and
integrated into a runtime environment, its performance with live data must
be monitored, and due changes must be applied and redeployed. It’s the ML
life cycle that is also known as MLOps. When you move away from
experimenting with tools and libraries and look just for what enterprises
need—working and maintainable code—Python shows structural limits. At
the very minimum, it’s yet another stack to integrate into .NET or Java
stacks, which is how most business applications are written.

 Note
It’s difficult to go from ML experimentation (often done in Python
and via Notebooks) to deployment. In fact, according to a 2020
State of Enterprise Machine Learning report, only 22 percent of
companies using machine learning have successfully deployed a
machine learning model into production. See https://bit.ly/3y8BxOH

That’s one of the advantages of ML.NET—.NET makes it super
easy to bring projects to production.

Taxonomy of Python Machine Learning Libraries
The ecosystem of tools and libraries available in Python can be divided into
five main areas: data manipulation, data visualization, numerical

https://bit.ly/3y8BxOH


computing, model training, and neural networks. It’s probably not an
exhaustive list because many other libraries exist that perform other tasks
and focus on some specific areas of machine learning, such as natural
language processing and image recognition.

When using Python, the steps to build a machine learning pipeline are
typically performed within the boundaries of a notebook. A notebook is a
document created in a specific web or local interactive environment called
Jupyter Notebook. (See https://jupyter.org.) Each notebook contains a
combination of executable Python code, richly formatted text, data grids,
charts, and pictures through which you build and share your development
story. In some way, a notebook is comparable to a Visual Studio project
solution.

In a notebook, you perform tasks such as data manipulation, plotting,
and training, and you can use a number of predefined and battle-tested
libraries.

Data Manipulation and Analysis
Pandas (https://pandas.pydata.org) is a library centered around the
DataFrame object through which developers can load and manipulate in-
memory tabular data. The object can import content from CSV files, text
files, and SQL databases, and it provides core capabilities, such as
conditional search, filtering, indexing and sorting, data slicing, grouping,
and column operations (such as add, remove, and rename). The DataFrame
object has built-in capability to flexibly reshape and pivot data and merge
multiple frames. It also works well with time-series data.

The Pandas library is ideal for data preparation operations. Its
integration with interactive notebooks enables you to perform on-the-fly
testing of different configurations and data groupings.

Data Visualization
Matplotlib (https://matplotlib.org) is a helper library that isn’t directly
related to any of the common tasks of a machine learning pipeline, but it
comes very handy to visually represent data during the various phases of
the data preparation step or metrics obtained after evaluating trained
models.

https://jupyter.org/
https://pandas.pydata.org/
https://matplotlib.org/


In general terms, it’s a mere data visualization library built for Python
code. It includes a 2D/3D rendering engine and supports common types of
graphs, such as histograms, pie charts, and bar charts. Graphs are fully
customizable in terms of line styles, font properties, axes, legends, and the
like.

Numeric Computing
Because Python is a language that is largely used in scientific environments,
it can’t be without a bunch of extensions specifically designed for
numerical computation. In this area, NumPy and SciPy are popular
libraries, though they have slightly different capabilities.

NumPy (https://www.numpy.org) focuses on array operations and
provides facilities to create, manipulate, and reshape one-dimensional and
multidimensional arrays. Also, the library supplies linear algebra, Fourier
transform, and random number operations.

SciPy (https://scipy.org) extends NumPy with polynomials, file I/O,
image and signal processing, and more advanced features such as
integration, interpolation, optimization, and statistics.

In the area of scientific computation, another Python library that is
worth mentioning is Theano (https://github.com/Theano/Theano). Theano
evaluates mathematical expressions based on multidimensional arrays, very
efficiently making transparent use of the GPU. It also does symbolic
differentiation for functions with one or more inputs.

Model Training
Though it was originally designed for data mining, today, scikit-learn
(https://scikit-learn.org) is a library mainly focused on model training. It
provides implementations of popular algorithms for regression,
classification, and clustering. Also, scikit-learn provides methods for data
preprocessing, such as dimensionality reduction, feature extraction, and
normalization.

In a nutshell, scikit-learn is the Python foundation for shallow learning.

Neural Networks

https://www.numpy.org/
https://scipy.org/
https://github.com/Theano/Theano
https://scikit-learn.org/


Shallow learning is an area of machine learning that covers a broad array of
fundamental problems such as regression and classification. Outside the
realm of shallow learning, there are deep learning and neural networks. For
building neural networks in Python, more specialized libraries exist.

TensorFlow (https://www.tensorflow.org) is probably the most popular
library for training deep neural networks. It is part of a comprehensive
framework that can be programmed at various levels. For example, you can
use the high-level Keras API to build neural networks or manually build the
desired topology and specify via code forward and activation steps, custom
layers, and training loops. Overall, TensorFlow is an end-to-end machine
learning platform providing facilities also to train and deploy.

Keras (https://keras.io) is probably the easiest way to get into the
dazzling world of deep learning. It offers a very straightforward
programming interface that at least comes in handy for quick prototyping.
As mentioned, Keras can be used from within TensorFlow.

Yet another option is PyTorch, available at https://pytorch.org. PyTorch
is the Python adaptation of an existing C-based library specialized in
natural language processing and computer vision. Of the three neural
network options, Keras is, by far, the ideal entry point and the tool of
choice as long as it can deliver what you’re looking for. PyTorch and
TensorFlow do the same job of building sophisticated neural networks, but
they use different approaches to the task. TensorFlow requires you to define
the entire topology of the network before you can train it. In contrast,
PyTorch follows a more agile approach and provides a more dynamic
method for making changes to the graph. In some ways, their differences
can be summarized as “waterfall versus agile.” PyTorch is younger and
doesn’t have TensorFlow’s huge community behind it.

End-to-End Solutions on Top of Python Models
With Python, you can easily find a way to build and train a machine
learning model. Ultimately, a model is a binary file that must be loaded into
a client application and invoked. Usually, a Java or .NET application serves
as the client application for an ML model.

There are three main ways to consume a trained model:

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/


Hosting the trained model in a web service and making it accessible
via a REST or gRPC API.
Importing the trained model as a serialized file in the application and
interacting with it through the programming interface provided by the
infrastructure it is built upon (for example, TensorFlow or scikit-
learn). This is possible only if the founding infrastructure provides
bindings for the language to which the client application.
The trained model is exposed via the new universal ONNX format,
and the client application incorporates a wrapper for consuming
ONNX binaries.

While the web service option is the most commonly used, a direct API
that is specific for the client language of choice might seem the fastest way
to consume a trained model. There are a couple of aspects to review,
however:

Using a direct API can prevent you from taking advantage of
hardware acceleration and network distribution. In fact, if the API is
hosted locally, any dedicated hardware (such as a GPU) is up to you.
For this reason, if you want to invoke a graph at a very high rate in
real-time, then you should consider using an ad hoc, hardware-
accelerated cloud host.
A binding for the specific trained model might not exist for the
language of your choice. For example, TensorFlow natively supports
Python, C , C++, Go, Swift, and Java.

Invoking a Python (or C++) library from within .NET code is not an
unsurmountable technical issue. However, invoking a specific library, such
as a trained machine learning model, is usually harder than calling a plain
Python or C++ class.

In summary, an ML solution doesn’t live on its own and must be framed
in the context of an end-to-end business solution. Because many business
solutions are based on the .NET stack, it was about time that a platform for
training ML models natively in .NET came out. Using ML.NET, you can
stay in the .NET ecosystem and don’t have to deal with integrating Python
into .NET applications.



Introducing ML.NET
First released in the spring of 2019, ML.NET is a free cross-platform and
open-source .NET framework designed to build and train machine learning
models and host them within .NET applications. See
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet.

ML.NET aims to provide the same set of capabilities that data scientists
and developers can find in the Python ecosystem, as described earlier.
Specifically built for .NET developers (for example, the API reflects
common patterns of .NET frameworks and related development practices),
ML.NET is built around the concept of the classic ML pipeline: collect
data, set the algorithm, train, and deploy. In addition, any required
programming steps sound familiar to anybody using the .NET framework
and C# and F# programming languages.

The most interesting aspect of ML.NET is that it offers a quite
pragmatic programming platform arranged around the idea of predefined
learning tasks. The library comes equipped to make it relatively easy—
even for machine learning newbies—to tackle common machine learning
scenarios such as sentiment analysis, fraud detection, or price prediction as
if they were just plain programming.

Compared to the pillars of the Python ecosystem presented earlier,
ML.NET can be seen primarily as the counterpart of the scikit-learn model
building library. The framework, however, also includes some basic
facilities for data preparation and analysis that you can find in Pandas or
NumPy. ML.NET also allows for the consumption of deep-learning models
(specifically, TensorFlow and ONNX). Also, developers can train image
classification and object detection models via Model Builder. It is
remarkable, though, that the whole ML.NET library is built atop the
tremendous power of the whole .NET Core framework.

The ML.NET framework is available as a set of NuGet packages. To
start building models, you don’t need more than that. However, as of
version 16.6.1, Visual Studio also ships the Model Builder wizard that
analyzes your input data and chooses the best available algorithm. We
return to Model Builder in Chapter 3, “The Foundation of ML.NET.”

https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet


The Learning Pipeline in ML.NET
A typical ML.NET solution is commonly articulated in three distinct
projects:

An application that orchestrates the steps of any machine learning
pipeline: data collection, feature engineering, model selection,
training, evaluation, and storage of the trained model
A class library to contain the data types necessary to have the final
model make a prediction once hosted in a client application. Note
though that the input and output schemas do not strictly require its
own project since these classes can be defined in the same project
where training or consumption occurs
A client application (website or a mobile or desktop application)

The orchestrator can be any type of .NET application, but the most
natural choice is to have it coded as a console application.

It is worth noting, though, that this particular piece of code is not a one-
off application that stops existing once it has given birth to the model. More
often than not, the model has to be re-created many times before production
and especially after being run in production. For this reason, the trainer
application must be devised to be reusable and easy to configure and
maintain.

Getting Started
As simple as it sounds, you can start by creating three such projects
manually in Visual Studio and make them look like Figure 2-1. The figure
presents three embryonal projects with many files and references missing
but with sufficient details to deliver the big picture.



FIGURE 2-1 The skeleton of an ML.NET project in Visual Studio

Aside from the core references to the .NET framework of choice
(whether 3.x or 5), the only additional piece you need to bring in is the
Microsoft.ML NuGet package.

The package is not comprehensive, meaning that depending on what you
intend to do, installing more packages might be necessary. However, the
package is sufficient to get you started and enables you to experiment with



the library. Let’s focus on the trainer application and see what it takes to
interact with the ML.NET library.

The Pipeline Entry Point
The entry point in the ML.NET pipeline is the MLContext object. You use it
in much the same way you use the Entity Framework DBContext object or
the connection object to a database library. You need to have an instance of
this class shared across the various objects that participate in the building of
the model. A common practice employed in most tutorials—including the
sample code generated by the aforementioned Model Builder wizard—is
wrapping the model building workflow in a dedicated class, often just
named ModelBuilder.
Click here to view code image

public static class ModelBuilder 
{ 
    private static MLContext Context = new 
MLContext(); 
  
   // Main method 
   public static void CreateModel(string 
inputDataFileName, string outputModelFileName) 
   { 
      // Load data 
  
      // Build training pipeline 
  
      // Train Model 
  
      // QUICK evaluation of the model  
  
      // Save the output model  
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   } 
}

The instance of the MLContext class is global to the class methods, and
the name of the files containing train data and the final output file are
passed as arguments. The body of the CreateModel method (or whatever
name you choose for it) develops around a few steps that involve more
specific classes of the ML.NET library for activities such as data
transformation, feature engineering, model selection, training, evaluation,
and persistence.

Data Preparation
The ML.NET framework can read data from a variety of data sources (for
example, a CSV-style text file, a binary file, or any IEnumerable-based
object) and does that through the services of a few specialized loaders built
around a specific interface—the IDataView interface, a flexible and efficient
way of describing tabular data.

An IDataView-based loader works as a database cursor and supplies
methods to navigate around the data set at any acceptable pace. It also
provides an in-memory cache and methods to write the modified content
back to disk. Here’s a quick example:
Click here to view code image

// Create the context for the pipeline 
Context = new MLContext(); 
  
// Load data into the pipeline via the DataView 
object 
var dataView = 
Context.Data.LoadFromTextFile<ModelInput>
(INPUT_DATA_FILE);

The sample code loads training data from the specified file and manages
it as a collection of ModelInput types. Needless to say, the ModelInput type
is a custom class that reflects the rows of data loaded from the text file. The
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snippet below shows a sample ModelInput class. The LoadColumn attribute
refers to the position of the CSV column to which the property binds.
Click here to view code image

public class ModelInput 
{ 
  [LoadColumn(0)]  
  public string Month { get; set; } 
  
  [LoadColumn(1)]  
  public float Sales { get; set; } 
}

In the code, there’s an even more relevant point to emphasize. The code
makes a key assumption that the loaded data is already in a format that is
acceptable for machine learning operations. More often than not, instead,
some transformation is necessary to perform on top of available data—the
most important of which is that all data must be numeric because
algorithms can only read numbers. Here’s a realistic scenario:

Your customer has a lot of data coming from a variety of data sources,
whether timeline series, sparse Office documents, or database tables
populated by online web frontends. In its raw format, the data—no matter
the amount—might not be very usable. The appropriate format of the data
depends on the desired result and the selected training algorithm. Therefore
before mounting the final pipeline, a number of data transformation actions
might be necessary, such as rendering data in columns, adding ad hoc
feature columns, removing columns, aggregating and normalizing values,
and adding density wherever possible. Depending on the context, these
steps might be accomplished only once or every time the model is trained.

 Note
At first sight, it might seem that integrating data processing in the
pipeline is a waste of time and that there’s no value in doing it every
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time the model is built. More in general, instead, it is a matter of
trade-off. We’re usually talking about large quantities of data, and
processing it to some intermediate format may be expensive. On the
other hand, if the gap between raw and cleaned data is not that big,
transforming data on each build of the model can deliver
tremendous flexibility because you can change the transformation
parameters as is convenient. It’s a pure speed versus flexibility
trade-off.

Trainers and Their Categorization
Training is the crucial phase of a machine learning pipeline. The training
consists of picking an algorithm, setting in some way its configuration
parameters, and running it repeatedly on a given (training) data set. The
output of the training phase is the set of parameters that lead the algorithm
to generate the best results. In the ML.NET jargon, the algorithm is called
the trainer. More precisely, in ML.NET, a trainer is an algorithm plus a
task. The same algorithm (say, L-BFGS) can be used for different tasks,
such as regression or multiclass classification.

Table 2-1 lists some of the supported trainers grouped in a few tasks. We
cover ML.NET tasks in more depth throughout the rest of the book and
investigate their programming interface.

TABLE 2-1 ML.NET Tasks Related to Training

Task Description

AnomalyDet

ection

Aims at detecting unexpected or unusual events or 
behaviors compared to the received training

BinaryClas

sification

Aims at classifying data in one of two categories



Task Description

Clustering Aims at splitting data in a number of possibly correlated 
groups without knowing which aspects could possibly make 
data items related

Forecastin

g

Addresses forecasting problems

Multiclass

Classifica

tion

Aims at classifying data in three or more categories

Ranking Addresses ranking problems

Regression Aims at predicting the value of a data item

Figure 2-2 presents the list of ML.NET task objects as they show up
through IntelliSense from the MLContext pipeline entry point.

FIGURE 2-2 The list of ML.NET task objects



Each of the task objects listed in Table 2-1 has a Trainers property that
lists the predefined algorithms supported by the framework. For example,
for a prediction task, a good algorithm is the Online Gradient Descent
algorithm.
Click here to view code image

var dataProcessPipeline = 
mlContext.Transforms.Text.FeaturizeText(...); 
var trainer = 
mlContext.Regression.Trainers.OnlineGradientDesce
nt(...); 
var trainingPipeline = 
dataProcessPipeline.Append(trainer);

The code snippet selects an instance of the algorithm and then appends
it to the data processing pipeline at the end of which the compiled model
will come out. This short code contains the essence of the whole ML.NET
programming model. This is the way in which the whole pipeline is built
step by step and then run.

It is also worth noting that ML.NET supports several specific algorithms
for each predefined task. In particular, for the regression task the ML.NET
framework also supports the “Poisson Regression” and the “Stochastic
Dual Coordinate Ascent” algorithms, and many more can be added to the
project at any time through new NuGet packages.

Once the pipeline is built and fully configured, it is ready to run on the
provided data. In this regard, the pipeline is a sort of abstract workflow that
processes data in a way comparable to how in .NET LINQ queryable
objects work on collections and data sets.

Once trained, a model is nothing more than the serialization of a
computation graph that represents some sort of mathematical expression or,
in some cases, a decision tree. The exact details of the expression depend
on the algorithm and to some extent, the nature of the problem’s category.

Model Training Executive Summary
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Explaining the mechanics of model training is well beyond the scope of this
book, which remains strictly focused on the ML.NET framework. However,
at least a brief recap of what it means and how it works is in order. For an
in-depth analysis, you can easily find online resources as well as books. In
particular, you can take a look at our book Introducing Machine Learning
(Microsoft Press, 2020), in which we mainly focus on the mathematics
behind most problems and the algorithmic solutions discovered so far for
each class.

Purpose of the Training Phase
Abstractly speaking, an algorithm is the sequence of steps that lead to the
solution of a problem. In artificial intelligence, there are two main classes
of problems: classification of entities and predictions. In each of these
classes, we find several subclasses, such as ranking, forecasting, regression,
anomaly detection, image and text analysis, and so forth.

In fact, the output of a machine learning pipeline is a software artifact
made of an algorithm (or a chain of algorithms) whose parametric parts
(settings and configurable elements) have been adjusted based on the
provided training data. In other words, the output of a machine learning
pipeline is the instance of an algorithm that, much like the instance of an
object-oriented language class, has been initialized to hold a given
configuration. The configuration to use for the instance of the algorithm is
discovered during the training phase. The schema is outlined in Figure 2-3.

FIGURE 2-3 Overall schema of the training phase in a machine
learning process



The Computation Graph
As mentioned, the model is a mathematical black-box—a computation
graph—that takes input and computes an output. Input and output are lists
of numbers, and in an object-oriented context—as in .NET—they are
modeled using classes.

Figure 2-4 presents an abstract and concrete view of how a client
application ultimately uses a trained model. Input data flows in, and the
gears of the graph crunch numbers and produce a response for the
application to deal with.

FIGURE 2-4 Overall schema of a trained model being used in
production

For example, if you have a model trained to detect possible fraudulent
transactions in a financial application, the graph in the model will be called
to process a numeric representation of the transaction and produce some
values that could be interpreted as to whether the transaction should be
approved, denied, or just flagged for further investigation.

Performance of the Model
The term machine learning sounds fascinating, but it is not always fully
representative of what really happens in a low-level ML framework such as
ML.NET or Python’s scikit-learn. At this level, the training phase just
iteratively processes records in the training data set to minimize an error
function.



The function that produces values–the computation graph—is defined
by the selected algorithm.
The error function is yet another element added to the processing
pipeline and also depends, to some extent, on the selected algorithm.
The error function measures the distance between values produced by
the graph on testing data and expected data embedded in the training
data set.
The graph enters the training phase with a default configuration that
is updated if the measured error is too large for the desired goal.
When a good compromise between speed and accuracy is reached,
the training ends, and the current configuration of the graph is frozen
and serialized for production.

The whole process develops iteratively in the training phase within the
ML.NET framework. The steps are summarized in Figure 2-5.



FIGURE 2-5 The generation of an ML model

It should be noted that the evaluation phase depicted here happens
within the ML.NET framework and, more in general, within the boundaries
of the ML framework of choice. The actual performance evaluated is
obtainable on training data with a given set of algorithm parameters
(referred to as hyperparameters) and internally computed coefficients.

This is not the same as measuring the performance of the model in
production. At this stage, you only measure how good the model is at work
on sample data. However, sample data is only expected to be a realistic
snapshot of data the model will face once deployed to production. A more
crucial evaluation phase will take place later and might even take to
rebuilding the model based on different hyperparameters and—why not?—
a different algorithm.

In ML.NET, the quality of the model during the training phase is
measured using special components called evaluators.

A Look at Evaluators
An evaluator is a component that implements a given metric. Evaluation
metrics are specific to the class of the algorithm and, in ML.NET, to the
ongoing ML task. A good introduction on which evaluator is deemed
appropriate for each ML.NET task can be found at

https://docs.microsoft.com/en-us/dotnet/machine-
learning/resources/metrics.

A more in-depth discussion about the mathematical reasons that make
each metric qualified for a given task can be found in the aforementioned
book Introducing Machine Learning.

For example, for a prediction problem such as estimating the cost of a
taxi ride (and in general for regression and ranking/recommendation
problems), a key metric to consider is Squared Loss, also known as Mean
Squared Error (MSE). This metric works by measuring how close a
regression line is to test expected values. For each input test value, the
evaluator takes the distance between the computed and the expected

https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/metrics


response, squares it, and then calculates the mean. The squaring is applied
to increase the relevance of larger differences.

Interestingly, Model Builder, which is embedded in Visual Studio, does
some of the work for you. It first lets you choose the class of the problem
(the ML task) and indicate the training data set. Based on that, it
automatically selects a few matching algorithms, trains them, and measures
the performance according to automatically selected metrics. Then it makes
a final call and recommends how you should start coding your machine
learning solution.

In general, there are a few things that could possibly go bad in a
machine learning project:

The selected algorithm (or algorithm hyperparameters) might not be
the most appropriate to explore the given data set.
The original data set needs more (or less) column transformation.
The original data set is too small for the intended purpose.

As an example, Table 2-2 summarizes the scores of various algorithms
selected by Model Builder for a prediction (regression) task.

TABLE 2-2 Multiple algorithms (and scores) for a sample regression
task

Algorithm Squared 
Loss

Absolute 
Loss

RSquare
d

RMS 
Loss

LightGbmRegression 4.49 0.38 0.9513 2.12

FastTreeTweedieRegres
sion

4.70 0.44 0.9491 2.17

FastTreeRegression 4.83 0.41 0.9486 2.19

SdcaRegression 10.52 0.87 0.8845 3.27



After a test run of Model Builder, it shows that all featured algorithms
ended up with good marks, but Model Builder ranked them in the order
shown, thus suggesting we use the LightGbmRegression algorithm based on
the evidence provided by metrics. Look in particular at the Squared Loss
column. The score is acceptably good for the first three ranked algorithms
and significantly worse for SdcaRegression. On the other hand,
SdcaRegression is much faster to train. The golden rule of machine learning
is that everything is a trade-off.

 Note
Another aspect to consider is that once the model goes to production
—even with the best metrics—there might still be chances that
things go wrong and the predictions are not in line with business
expectations. When this happens, the odds are that an inadequate set
of data rows was used for training. Inadequate, at least, in
comparison to the real data the model was called to manage in
production.

Consuming a Trained Model
At the end of the training phase, you have a model that contains instructions
on which algorithm to run and which configuration to use. The model file is
a zipped file in some serialization format. Note that a universal,
interoperable format exists and is the ONNX format. ML.NET supports it.

As is, however, the model is a dead thing. To bring it to life, you need to
load it in a runtime environment so that an API can be exposed to invoke
the computation from the outside.

Making the Model Callable from the Outside



Once saved to a file—typically a ZIP file—the model is simply the flat
description of a computation to be done on some input data. The first step is
wrapping it into a framework engine that knows how to deserialize the
graph and execute it on some input data.

ML.NET has a tailor-made set of methods ready to use. Here’s the
skeleton of the code you need to invoke a previously trained model in
ML.NET.
Click here to view code image

public ModelOutput RunModel(string modelFileName, 
ModelInput input) 
{ 
    var ml = new MLContext(); 
    var model = ml.Model.Load(modelFileName, out 
var schema); 
    var engine = 
ml.Model.CreatePredictionEngine<ModelInput, 
ModelOutput>(model); 
    return engine.Predict(input); 
}

The sample function takes the path to the serialized model file and the
input data to which a prediction is made. If the model estimates the cost of
a taxi ride, then the class Modelnput describes the ride for which a quote is
required. Typically, you will find that the model uses details such as
distance, time of day, type of service requested, traffic conditions, area of
the city involved, and whatever else is established. The ModelOutput class
describes the output of the algorithm used for training. Usually, it’s a simple
C# class with just a few numeric properties. Here’s an example:
Click here to view code image

public class ModelOutput 
{ 
  public double Prediction { get; set; } 
}
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The ML.NET shell code creates an instance of a prediction engine that
will carry the task of deserializing and executing the graph and return the
calculated value. From the software developer’s perspective, invoking an
ML model is in no way different from calling a class library method.

Other Deployment Scenarios
Direct embedding of a trained model in the client application is one—and
by far the simplest—deployment scenario. There are a couple of potentially
sore points to emphasize.

One is the cost of deserializing the model and turning it into an
executable computation graph for the runtime environment of choice—in
this case, the .NET framework. The other is the (related) cost of setting up a
prediction engine. Both operations can be quite expensive to perform if the
client application is, say, a web application subject to thousands of calls per
second. This is where an artifact like PredictionEnginePool comes in
handly.

Therefore, the code snippet shown earlier is great for understanding the
process but not necessarily good for production. More realistically, a
company trains a model to expose a business-critical process as a service to
various running software applications. This means that the model should be
incorporated in a kind of web service, and proper layers of caching and
balancing should be used to ensure proper performance.

In a nutshell, a trained model can be seen as a business black box to be
used as a local class library, as a web service, or even as a microservice
with its own storage and micro frontend. No option is favorable over the
others, but all are feasible options for the architect to choose.

From Data Science to Programming
If you look at the trained model as an autonomous, black-boxed artifact
integrated in a given type of software application, you should be able to see
also the frontier between data science and programming. Data science



contributes the model; programming makes it usable. Both aspects are
strictly needed and unavoidable.

A trained model is nothing if not surrounded by a decent programming
interface, whether in the form of a class library or a web service. To build
an effective model, specific skills are required. First, you need domain
expertise. Second, statistics and mathematics and the ability to discern
between algorithms and metrics and interpret numbers are required. In
extreme cases, the ability to develop new algorithms (including neural
networks) or customize existing ones are also required. These skills very
rarely belong to developers.

In much the same way, exposing a functional model requires due
attention to the overall performance and scalability of the host application
and care of the user experience. A taxi ride predictor model ultimately
needs numbers to represent any sort of information. But you can hardly
expect that people using the app on the go enter their destination through
numbers. This is programming work.

In this scenario, ML.NET takes an interesting challenge: enabling
developers to code their own machine learning tasks autonomously at least
for relatively simple instances of problems and where a sharp precision is
not the goal. This is just the ultimate purpose of ML tasks and AutoML—
the engine that lies behind Model Builder. In this book, we deeply cover
ML tasks but also dedicate a few final chapters to give problems a more
real-world perspective. High precision, if necessary, comes at a cost!

Summary
ML.NET is now slated to become the reference platform for machine
learning in the .NET space. It is mainly limited to shallow learning and
doesn’t offer direct support for building neural networks and deep learning
(the support is only for consuming existing networks). On the other hand,
also in the Python space there are libraries for shallow learning (scikit-
learn) and libraries for building neural networks.

It is, instead, much more interesting and promising is the overall
approach aimed at making machine learning easy to consume and relatively
easy to design for developers. No developers will turn into expert data



scientists overnight—not even after digesting the content of this book—but
any savvy developer passionate about newer technologies and artificial
intelligence would be incredibly comfortable with getting into the dazzling
world of machine learning through ML.NET.

We’ve already mentioned something, but it helps to reinforce the
concept: Although Python is quite popular among data scientists, there’s no
strict reason why machine learning models can’t be developed and tested in
.NET (or other languages, including Java and Go). It’s all about the
ecosystem and ease of use. ML.NET relies on the .NET Core infrastructure
and Visual Studio.

Let’s now go with a simple but not-so-trivial and complete example: taxi
fare prediction. The next chapter includes a bit of feature engineering,
feature selection, and, more importantly, a client web application.



Chapter 3

The Foundation of ML.NET

“My brain is open.”

—Paul Erdos, Mathematician, 1913—1996

Acommon distinction of roles we observe in applied machine learning is
between data scientists and programmers. The former are perceived as the
wizards who know the (mathematical) tricks to create gold from data,
whereas the latter are no more than helpful and willing assistants.

Without beating around the bush, we think data science and
programming are dichotomous roles that can only hold at a very high level
of abstraction. From a 10,000-foot view, you realize that just modeling the
data is not enough. The ability to engineer data into workable structures and
pipelines is crucial for putting AI-based systems into production.

In Chapter 2, “An Architectural Perspective of ML.NET,” we discussed
Python and introduced ML.NET to point out that convenience has been the
key driver for using Python. Python is great for data science practices,
though it stops being a great tool when moving from prototyping to
production. ML.NET, which is well integrated with the .NET framework,
sits at the beginning of the data engineering field—beyond mere data
science on the way to plain intelligent software.

In this chapter, we analyze the foundation of ML.NET, focusing on data
processing, training, and “productionizing” a machine learning–based
software solution.

On the Way to Data Engineering



To start off, let’s outline the principal professional roles we could
realistically encounter in machine learning projects. We identify three
crucial roles:

Data scientist
Data engineer
ML developer

In this context, a role is just a named collection of skills, and the same
individual can cover multiple roles in the same project or company. In fact,
the actual skills necessary for the various roles tend to overlap to some
extent, as represented in Figure 3-1.

FIGURE 3-1 Roles necessary to an ML project

The Role of a Data Scientist
As the name emphasizes, a data scientist is required to use science to turn
the raw material of data into a commodity for the company. In doing so, the
data scientist borrows techniques from mathematics and statistics to sift



through the raw data available and make reasonable guesses about what that
data can be turned into.

As we see things, the primary responsibility of a data scientist is
determining what a company can learn from its data and ideally point at
which artifacts or, more specifically, which products can be planned and for
which business purpose. Some good knowledge of the domain is a critical
plus for any data scientist. Abstract mathematics is a powerful tool, but a
clear business focus is necessary to provide substance.

The data scientist looks at the data, reshapes it in many different ways,
analyzes quality parameters, attempts to fix what can be fixed, and
identifies additional or alternative sources. The data scientist also likely
builds runnable models to probe ideas and verify assumptions. Python is
the perfect tool for these activities because it’s easy to pick up for
nondevelopers and trivial to manage for everyday tasks.

The outcome of the data scientist’s work is typically a runnable model
whose software quality is often that of a prototype rather than that of a
production-ready product.

In our opinion, a team of data scientists is a due investment for a large
organization producing very large quantities of data (such as an energy
utility, a financial institution, or a manufacturing farm). For smaller
companies with significantly more limited budgets, the outcome of some
applied data science can be cheaper to buy as a service. A smaller
organization willing to set up an ML solution will probably want to
prioritize the acquisition of resources that can start from a prototype or
detailed specs and build up some robust and scalable data processing
pipeline that can be turned into a production-ready deliverable.

The Role of a Data Engineer
Chapter 1 takes you through an historical journey of how artificial
intelligence developed. In short, it was an abstract idea (close to a dream) in
the seventeenth century that a handful of mathematicians turned into a new
branch of mathematical logic in the nineteenth century and became the
theory of computation with Alan Turing in the 1930s. However, the Turing



machine was an abstract model—not even a concrete prototype—but it
proved what we could do with it.

In life, scientists discover and produce the abstract model of new things,
but then it is engineers who do their part to produce actual goods. It is
exactly the same with data.

The role of the data engineer is between a data scientist and a software
engineer who knows some basics of machine learning. A company that has
figured out what can be learned from its data is only halfway done. Here
are a few points that need to be addressed:

How is data collected and stored on a daily or hourly basis?
Should data be temporarily copied in some intermediate format?
What kind of transformation is required for the model to work? How
can that be automated?
How is the performance of the model live?
How often is the model expected to need retraining to stay adherent
to live data?
If retraining is a frequent operation, how can any related tasks—such
as collecting updated datasets, running the training, and deploying the
up-to-date model—be automated?

All these tasks require the manipulation of data in persistent data stores
that are more structured and faster than plain text files. Treating data as
sparse files might be sufficient, but to build a robust infrastructure, you
might want to switch to some flavor of database (whether relational,
NoSQL, or graph) and a related query language.

In general, a dedicated Extract-Transform-Load (ETL) pipeline must be
in place and fully automated to copy, sort, map, and munge raw data into a
more usable format and shape that is easy to maintain and evolve. The term
“data wrangling “is often used to describe this kind of data engineering
work. Bear in mind that data science focuses on a static sample of data that
is representative of the business domain. Companies want applications that
drive dynamic, live data through a model that is scalable enough to support
real workloads.



An ETL pipeline is just software.

The Role of an ML Engineer
Data in an easy-to-process format enables further steps of machine learning,
such as building a training infrastructure, following the guidelines of the
data science team, and more generally productionizing the model for client
applications to consume the solution.

An ML engineer is primarily a software developer with some specific
skills in machine learning. An ML engineer has some degree of familiarity
with machine learning frameworks (including Python-based frameworks)
and the activities of the overall ML pipeline. The engineer can also write
good code by applying best practices such as object orientation,
dependency injection, and unit testing and is comfortable with API
endpoints, web services, REST, and gRPC.

The core responsibility of an ML engineer is that of physically
incorporating an externally trained model into client applications or the
much more delicate task of supervising the building and training of a model
based on data science specs.

Expecting business and learning guidance from an ML engineer is
probably unrealistic, as much as it is unrealistic to hire a data scientist and
believe you’re done. It is unlikely—but far from impossible—that a single
individual would be able to serve in the three aforementioned roles.
However, any professional in any of the roles should be ready to acquire
some knowledge in side sectors. Machine learning is the combination of
many things. A Y-shaped approach to learning sounds like a much more
rewarding alternative than, say, a T-shaped model.

 Note
T-shaped refers to extremely deep professional skills in one area but
relatively flat skill levels in all surrounding areas. In other words, a
Y-shaped set of skills is as deep as a T-shaped set in one area, but



the Y-shaped skills also bring deeper expertise in other sectors that
are closer to the main expertise. Thus, outside the specialty, a Y-
shaped skilled professional is more well-rounded.

If you’re still wondering where ML.NET can help and how it is related
to Python, we believe ML.NET is the perfect tool to support data
engineering efforts in the .NET technology stack.

The Data to Start From
Let’s go through an end-to-end journey in ML.NET to see what it means to
spot available data, build a business idea, proceed to the model’s definition,
the training, and finally, the client application consuming it.

Let’s say your company processes thousands of consumer transactions
every day in a specific geographical area. Your customers are ready to pay
for the service, but the nature of the business is such that the fee for this
service is not fully determined until the service is completed. Yet, you have
the full log of all transactions, day after day.

Is there anything you can learn from your data?

Making Sense of the Available Data
The ultimate goal of data science is to look at the available data from many
different angles and perspectives to spot any hidden value. A data scientist
in front of data is comparable to a sculptor in front of a block of marble.
Legend says that Michelangelo was inspired to shape his sculpture of David
by looking at a marble block from a cave in the Apuan Alps, North
Tuscany. Reportedly, Michelangelo said the marble was talking to him and
guiding his hands to create a masterpiece.

With data and data science, it is much easier. And, above all, there’s no
need to create masterpieces all the time. The definition of a masterpiece is



much looser when we’re talking about data and data science than with
sculpture and marble.

The Way Data Science Looks at Data
Suppose the data owner is a taxi company, and the data consists of the log
of a few million paid transactions for many taxi rides in a certain
geographical area. What stories could the data tell? One possible story is the
density of transactions that may reveal which subarea is in highest demand
at a certain time of day. The money is another story—where and when did
the company get most of the money? In other words, when and where were
the rides the most rewarding?

These two sample stories belong to a well-known class—statistical
market analysis. They’re definitely useful, but there’s nothing new in any of
them. A new story that a data scientist can spot in the data is guessing the
dynamic elements that make the final price. This information—a prediction
descending from data analysis—can be used to forecast earnings but also to
tell customers how much they might be asked to pay.

The story told by a dataset depends on the nature and shape of the data
itself. Clearly, not every dataset will tell you the same story, but every
dataset can have the potential to tell you business-attractive stories. Which
stories and how attractive they are depends on the quality of data science
analysis and is also a matter of causality and creativity.

Exploring a Sample Dataset
As an example, our data science team is given a CSV file made of seven
columns and a couple of million rows. Each row represents a paid
transaction, specifically a taxi ride. The direction of the analysis is driven
by the actual features of the data and the source. In this case, it is realistic to
assume that data comes from the company’s back-end system that tracks
rides, cars, and payments.

Each data row contains the time of day, the number of passengers, the
time it took to complete the ride, the distance traveled, the type of payment
(cash or card), and the fare paid. There’s enough to attempt price
prediction, but at the same time, it’s unrealistic to expect high accuracy
from this data. At the very minimum, the dataset lacks information about



the pick-up and drop-off addresses and an indication of the traffic
conditions and weather at the time of the ride.

The task of data science is measuring the accuracy of the prediction that
results from the available data and, at the same time, exploring ways to get
hold of missing data to integrate with the original dataset.

So much for plain data science and analysis. What about data
engineering?

Raw data must be organized in manageable and tidy data structures.
With ML.NET, each row of the dataset can become a C# class to make it
easier to build and consume the final model. The following class is a
realistic representation:
Click here to view code image

public class TaxiTrip 
{ 
   [LoadColumn(0)] 
   public string VendorId; 
  
   [LoadColumn(1)] 
   public string RateCode; 
  
   [LoadColumn(2)] 
   public float PassengerCount; 
  
   [LoadColumn(3)] 
   public float TripTime; 
  
   [LoadColumn(4)] 
   public float TripDistance; 
  
   [LoadColumn(5)] 
   public string PaymentType; 
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   [LoadColumn(6)] 
   public float FareAmount; 
}

The LoadColumn attribute establishes a static binding between the
specific property and corresponding column in the original dataset. The
position is indicated by name or position if the source is a CSV (comma-
separated value) or TSV (tab-separated value) text file.

This class is important because it represents the smallest data item in the
project, and the entire dataset is described as a collection of TaxiTrip
objects. The TaxiTrip class is also very close to the input passed to the
model to get a response. In programming terms, this class will be placed in
a separate assembly to be referenced by any .NET client applications
entitled to use the final trained model.

Building a Data Processing Pipeline
As mentioned, data engineering is about doing the things envisioned (and
prototyped) by data science. Any machine learning algorithm requires
numbers to work nicely. In this context, therefore, the first aspect to
consider is the rendering of the data.

In most datasets, several columns of data are made of text. In our
example, we have textual features such as the vendor ID, the code for the
paid rate, and the payment type. Therefore, the values in those columns
must be turned into numbers in some way that doesn’t alter the distribution
and relevance of individual values.

Common Data Transformations
The ML.NET library provides helper classes to do these kinds of
transformations. Here’s an example. Note that the mlContext object is the
root object that identifies the ML.NET context:
Click here to view code image

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch03_images.xhtml#p33pro01a


var dataTransformationPipeline = mlContext 
                 .Transforms 
                 .Categorical 
                 
.OneHotEncoding("VendorIdEncoded", "VendorId") 
         .Append(mlContext 
                 .Transforms 
                 .Categorical 
                 
.OneHotEncoding("RateCodeEncoded","RateCode")) 
        .Append(mlContext 
                 .Transforms 
                 .Categorical 
                 
.OneHotEncoding("PaymentTypeEncoded", 
"PaymentType"));

The OneHotEncoding object applies a common data transformation to
categorical values. The algorithm consists of adding one binary (0/1)
column for each distinct categorical value found in the specified column.
The first parameter of the method is the prefix to name new columns.

Another transformation that might make sense to apply is the
normalization of mean variance on numeric columns:
Click here to view code image

pipeline.Append(mlContext.Transforms.NormalizeMea
nVariance("PassengerCount"));

The purpose of normalization is to minimize the impact of outliers in
columns so that the model isn’t skewed outside the normal range of values.
In addition, you might also want to remove outliers from the dataset. An
outlier is a value too far away from the mean. This step may not be
necessary all the time, but if you have reasons to believe that outliers affect
results, by all means, do so. You remove outliers by simply filtering the
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loaded dataset. In the example dataset, we’re removing all rows in which
the FareAmount column value is lower than 1 and higher than 150.
Click here to view code image

mlContext.Data.FilterRowsByColumn(rawData, 
"FareAmount", 1, 150);

Finally, there are a couple of further transformations required because of
the internal mechanics of the ML.NET library. You need to have a column
named Label that represents the target of the prediction. Also, you need a
column named Features containing all row values serialized in an array.
Click here to view code image

mlContext.Transforms.CopyColumns("Label", 
"FareAmount"); 
mlContext.Transforms.Concatenate("Features", 
...);

In this way, we will tell the training algorithm to target the values of the
original FareAmount column (now duplicated in the Label column) and
process the input values in the Features column made by the concatenation
of all other values in the row.

Loading Data for Processing
ML.NET takes a sort of functional approach to training a model. First, you
define a pipeline of actions (loading, transformation, training, and
evaluation). Next, you fire it up and pass the link to the actual data to
process for training. We’ve already touched on the common transformations
applicable to the dataset used for training a model. Now we should focus on
loading the data, which is a foregone point with no fancy comments to
make. Yet, it’s one of the most compelling reasons to consider abandoning
Python even when a full Python solution is acceptable.

Training a dataset is a matter of crunching large quantities of data, and
this large quantity has to be read in memory to become available. Just
loading all the data in memory is often expensive in terms of resources.
ML.NET addresses this aspect—a frequently insurmountable issue in
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Python solutions—in a custom way by means of a dedicated object—the
data view—that acts as a classic database cursor and moves back and forth
one item at a time.

The data view works like a plain enumerable object works in the .NET
framework and provides methods to count and visit all reachable elements
in the collection. The interface behind the data view—the IDataView
interface—represents the fundamental type for input and output in all data
query operations. It wraps an enumerable collection (including schema
information) and provides a cursor-based navigation system that proceeds
row by row. The data view object works hand in hand with the data loader
object, characterized by the IDataLoader interface. The data loader is
responsible for the actual loading of the data from some external data
source and for returning a valid IDataView object.

In ML.NET, navigation of data is cursor-based and centered on the
GetRowCursor method of the data view. This method just returns the cursor
for the client application to use to move over the view in a forward-only
mode. The method also allows access to a subset of the columns available.

Interestingly, the optional method GetRowCursorSet on the data view
interface returns an array of cursors that can be run in parallel to cover a
larger section of the data view through multiple threads. If implemented in
the specific data view object, the method GetRowCursorSet enables you to
set a limit on the number of cursors to be created and returned.

Although from a functional perspective, ML.NET offers the same
capabilities as machine learning frameworks available in other languages
when it comes to technical details, it looks like a very carefully crafted
framework that was specifically designed to overcome reported issues with
other frameworks and languages. This alone makes ML.NET a powerful
tool to use for data engineers, along with database tools and cloud software
facilities.

Further Considerations on the Dataset
Before we focus on the training step of the ML.NET pipeline, a few sparse
considerations on the nature of the training dataset are in order. Considering
that any machine learning model is a transformer that works on whatever
you pass to produce whatever it can figure out, it stands that any time the



input data is inadequate, insufficient, or unbalanced, then you will get
inadequate or insufficient or unbalanced answers. Therefore, the training
dataset must contain information about all possible factors that could
influence the result.

We started this chapter by presenting the three major roles in machine
learning. First, we discussed how data science is at the beginning of the
chain, and data engineering follows. Although this is definitely a quite
common scenario, sometimes things might go differently, and data
engineering might precede any data science analysis. This is true when it’s
not obvious which data can be detached and processed to train some model
in a business context.

Sometimes data engineers can be called to arrange some ETL
infrastructure to flow live data into a manageable container where data
scientists can play their tricks and figure out what can be learned and how.
In doing so, some preliminary data transformations (which require specific
skills of database tooling) may be necessary, such as hot encoding of
categorical values, computed and/or aggregated columns, or normalization
of values.

The skills of transforming data for training purposes can be part of data
engineering and data science, and the neutral term feature engineering is
used to indicate it. While feature engineering refers to data transformation,
the tools employed to perform it may be different if the actor is a data
scientist or a data engineer. It will likely be some Numpy or Pandas
function in the hands of a data scientist; it might be the SQL-related (or
ML.NET-related) tool in the hands of a data engineer.

As a final example, what could be missing from the sample taxi rides
that can’t be extracted easily? The traffic condition at the time of each ride
is one piece of data that’s crucial to have for accurate predictions. This
information can be brought from the outside, or the team can decide to
hard-code it based on information, such as calculating the categorical value
that looks at the time of day the ride took place. This represents an
appropriate example of data transformation that would help the data
scientist do a better job but could be tricky to perform without some solid
knowledge of ETL.



The Training Step
With all data in place and an infrastructure ready to pump it all the way
down the pipeline, it’s time to focus on the trainer—namely, the algorithm
that will try to make sense of the input to output a classification or a
prediction. Let’s focus on a very common use of machine learning—
prediction of the price of a service. In this case, the cost of a taxi ride in a
known geographical area.

When it comes to predicting a numeric value like the price of a service,
the class of algorithms that works most of the time is regression. (We tackle
the internals of the most common classes of machine learning algorithms in
Part II of the book.) Under the umbrella of regression, there are a number of
different algorithms, and choosing the one to try first is a matter of
experience, knowledge of the domain, and sometimes even gut feeling.

Whatever algorithm you choose for the first run of training needs to
survive the metrics of the post-training test. If numbers don’t support the
choice, you might consider trying a different algorithm or shape the training
set differently.

Machine learning is almost always a matter of trial and error.

Picking an Algorithm
All in all, price prediction is a relatively easy problem to solve. If you can
have dense and detailed data, then prediction essentially boils down to
choosing the fastest regression algorithm. In ML.NET, the trainers available
for the regression task are grouped under the Regression property of the
context object. Here’s how to add a regression trainer to the pipeline:
Click here to view code image

// Identify the training algorithm 
var trainer = mlContext 
       .Regression 
       .Trainers 
       .OnlineGradientDescent("Label", 
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"Features", new SquaredLoss()); 
  
// Add it to the current data processing pipeline 
var trainingPipeline = 
dataPipeline.Append(trainer); 
  
// Start training of the model 
var trainedModel = 
trainingPipeline.Fit(dataView);

The selected algorithm—the online gradient descent algorithm—is an
average good choice, but faster and more precise algorithms exist, such as
the LightGbmRegression algorithm. You can use any of those more
sophisticated algorithms by referencing additional NuGet packages. With
the default configuration of ML.NET, the online gradient descent algorithm
is commonly a good option.

The algorithm takes two string parameters to denote the names of the
input and output columns (or features) in the dataset. The output column is
the column to predict. The third parameter indicates the error function that
will be used to measure the distance between the predicted and expected
values during the testing phase. The SquaredLoss object refers to the R-
squared metric—a fairly common metric for regression problems.

When all is ready, you just call the Fit method to start the training of the
model.

 Note
Calling the Fit method on a training pipeline is easy, and we agree
that most of the effort up to this point descends from the expertise of
data science specialists. However, training the model is not just one
method call. The training procedure is hardly a one-off action and,
more often than not, has to be repeated regularly. In other words, it’s
code, and as such, it must be tested and maintained.



Measuring the Actual Value of an Algorithm
The value of a machine learning algorithm results from the combination of
multiple factors. One is the time it takes to converge to an acceptable
outcome. The speed of a trainer is measured through the formula of
computational complexity, namely the number of steps and resources
required for running it.

Another aspect is how the specific algorithm—given its internal steps—
reacts to the actual data it is presented. The same algorithm, in fact, can
produce more (or less) accurate results working on different shapes of the
same raw data. This is not surprising at all if you know at least a bit of the
theory of computational complexity.

Computational Complexity

Because the complexity of an algorithm may significantly vary for
different shapes of the same input, the complexity is expressed for
the best-, average-, and worst-case scenarios. The complexity
calculated for the worst-case scenario indicates the longest it may
take, regardless of the input. The complexity is usually expressed as
a function of the size of the input. Only the asymptotic behavior of
the function is taken into account when the input size grows
indefinitely.

To see how the shape of the data may affect the performance of
algorithms, let’s consider the Quicksort algorithm. Written in the
early 1960s by Tony Hoare, Quicksort remains one of the fastest
sorting algorithms and one of the most commonly used in libraries
and frameworks.

On average, the Quicksort algorithm has a complexity of n*log
(n) where n is the size of the input, that is the array of data to sort. A
complexity of n*log (n) is also known to be the fastest asymptotic



complexity for any sorting algorithm. In the early implementations
of Quicksort, researchers observed an interesting relationship
between the algorithm and the input data. In particular, if the data
was presorted (ascending or descending), or if all elements in the
input dataset were the same, the algorithm had its complexity grow
up to an unacceptable n2.

In more recent real-life implementations of the algorithm, those
edge cases have been ruled out. Today, the Quicksort algorithm can
run a few times faster than any other sorting algorithm while
showing the same (optimal) asymptotic behavior.

The weird behavior of the originally proposed flavor of the Quicksort
algorithm reminds us that a given representation of the training dataset can
make an otherwise super fast algorithm perform worse than another. Hence,
we need to be careful with testing the model and aim at the best possible
metrics we’re able to achieve. The performance may depend on the
organization of data, but the organization of data depends on the raw data
available or how they have been initially extracted and composed for data
science.

Planning the Testing Phase
In any machine learning project, we have a unique heap of data to work
with. Most of this data should be used to train the model; the remaining part
should be used to test the trained model and grab some quick metrics to
evaluate the model’s behavior.

The point is leaving enough data for the trainer to understand and
enough for the evaluator to test. Generally, an 80/20 split is good if data is
evenly distributed so that the “inner nature” of the data items in the training
set matches the “inner nature” o++f the data in the testing set.

Note that a plain 80/20 split refers to a technique called a holdout. A
holdout is quick and easy to code, but it only works effectively if the data is



balanced. And the split keeps both subsets balanced as well. However, it’s
worth recalling that you’re testing the model on only 20 percent of the data.

Cross-validation is another testing technique, longer to run but far more
accurate. All these techniques find hard-coded tools in the ML.NET
framework. In particular, cross-validation is a resampling technique
borrowed from statistics that consists of splitting the original set of data
into a few groups (say, five groups) and iteratively using any group as the
testing dataset and the remaining (say, four) groups as the training dataset.
This technique is recommended in the case of data shortage because it
maximizes the use of the available data using all data items for both
training and testing.

A Look at the Metrics
Once we have a trained model, ML.NET provides a number of predefined
services to evaluate the resulting model’s quality. Here’s how we can run a
testing step and grab metrics:
Click here to view code image

// Run the trained model on the testing dataset 
IDataView predictions = 
trainedModel.Transform(testDataView);  
var metrics = 
mlContext.Regression.Evaluate(predictions, 
"Label", "FareAmount");

The Evaluate method on the Regression object gets the testing dataset
and goes through all the contained items looking at the input values in the
Label column and the expected values as in the FareAmount column. In
ML.NET, the Evaluate method returns a RegressionMetrics object, as
described in Table 3-1.

TABLE 3-1 Properties of the RegressionMetrics Type in ML.NET
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Name 
of 
metric
s

DescriptionName 
of 
metric
s

Description

LossFu

nction

Double value. It indicates the average of values returned by the 
loss function passed to the trainer. In the example, it was a 
SquaredLoss object.

MeanAb

solute

Error

Double value. It indicates the average of the absolute errors 
found between the predicted and the expected values.

MeanSq

uaredE

rror

Double value. It indicates the average of the squares of the 
errors found between the predicted and the expected values.

RootMe

anSqua

redErr

or

Double value. It refers to the square root of the average of 
squared errors found between the predicted and the expected 
values.

Rsquar

ed
Double value. RSquared (or R2) indicates the coefficient of 
determination of the model. It is given by the ratio of mean 
squared error of the model and the variance of the predicted 
feature.

Of all these metrics, the most relevant for a regression algorithm is
RSquared because it tells how good the algorithm is to capture the feature’s
variance to predict. The optimal value of the RSquared metric is as close as
possible to 1.

 Note



How do you know about the relevance of the various metrics for the
various algorithms? It’s expertise, and it’s primarily data science
expertise. However, this knowledge easily flows from the data
science team down the chain to developers and facilitates the
transfer of knowledge that ultimately makes it possible to blur the
boundaries of the machine learning professional roles, as
summarized in Figure 3–1.

Consuming the Model from a Client Application
So, what is a trained model? It’s a binary file that is not made of any
executable code.

A trained model is a file that stores the description of a computational
graph. The information is serialized according to a rigorous, common
schema so that it can be read and processed in multiple host environments.
In ML.NET, the trained model is a serialized ZIP file. It needs to be
deployed as a project file and loaded into a new instance of MLContext to
become usable from any client .NET code.

Let’s see what it takes to create a sample ASP.NET Core application to
consume a taxi fare prediction model we assume to have created. (The full
source code of the sample application is available in the Source Code
section of the book as well as from the /downloads folder on our
https://youbiquitous.net website.)

Getting the Model File
The typical ML.NET project you create in Visual Studio consists of a
console application that leads the training phase. It contains code to load
data from some local or remote source, apply transformations, pick a
trainer, train, evaluate, and persist the model. The output is a ZIP file with
the serialized trained model and a class library containing the C# classes
used to map the training dataset. The following line is an excerpt that shows
the serialization of the model:

https://youbiquitous.net/


Click here to view code image

mlContext.Model.Save(trainedModel, 
trainingDataView.Schema, "model.zip");

The schema parameter describes the schema of the data used to train the
model. This information is necessary to any newly created MLContext
instances that will load the model later.

The Overall Project
As mentioned, a machine learning project is not made of the sole
infrastructure needed to produce a single executable. A typical project may
include a module for training, one shared library, and the client application.
Figure 3-2 shows the solution open in Visual Studio.
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FIGURE 3-2 The sample project in Visual Studio 2019

Under the Training folder, you find the console application that knows
how to train the dataset using a given algorithm. The Output subfolder ends
up containing the zipped model files. The Model folder is the class library—
specifically, a .NET Standard library project—that shares common-use
types necessary to train and invoke the model.



The shared library may not need to reference the ML.NET package.
Under the ASP.NET project, you find the core Microsoft.ML package and
copies of the trained model files in a child directory.

From the perspective of an ASP.NET web application, the trained model
is a static data file and gets processed through the services of a wrapper
engine. In an end-to-end scenario, you should see any trained machine
learning model as a domain service—part of the business layer of your
solution.

The sample application sets up an HTML view to collect some input
data and then invoke a controller endpoint. In turn, the controller endpoint
calls the wrapper ML.NET engine to have the response.

Making a Taxi Fare Prediction
Even though the example is written for ASP.NET Core, you can use the
ML.NET library with .NET framework applications as well, including
classic ASP.NET MVC applications. The following is the controller class
that, in the sample application, deals with the prediction service. In turn, the
prediction service encapsulates the machine learning model:
Click here to view code image

public class FareController : Controller 
{ 
   private readonly FarePredictionService 
_service; 
   public FareController(IWebHostEnvironment 
environment) 
   { 
      _service = new 
FarePredictionService(environment.ContentRootPath
); 
   } 
  
   public IActionResult 
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Suggest(TaxiTripEstimation input) 
   { 
      var response = _service.Predict(input); 
      return Json(response); 
   } 
}

The FarePredictionService class receives the content root path that it
will use to locate the ZIP file with the trained model to load. Here’s the
code necessary to invoke the model:
Click here to view code image

public TaxiTripEstimation 
Predict(TaxiTripEstimation input) 
{ 
   // Map the input received from the UI to the 
input required by the model 
   var trip = FillTaxiTripFromInput(input);  
  
   // Predict the amount of the fare given the 
input parameters  
   var ml = new MLContext(); 
   var fare = MakePrediction(trip, ml, 
_mlFareModelPath); 
  
   // Copy prediction to the input object 
   input.EstimatedFare = fare; 
   input.EstimatedFareForDisplay = 
TaxiTripEstimation.FareForDisplay(fare); 
   return input; 
}

More than the actual prediction, the key thing that’s going on here is the
mapping between the input data coming from the user interface and the data
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required by the model—the TaxiTrip class imported from the referenced
model library. Note that TaxiTripEstimation belongs to the client
application, and it is a helper class that the ASP.NET MVC layer populates
from the HTTP context using ASP.NET MVC model binding. We’ve hidden
the details—a mere copy of fields—in the FillTaxiTripFromInput method.

The actual prediction takes place in the MakePrediction method:
Click here to view code image

float MakePrediction(TaxiTrip trip, MLContext 
mlContext, string modelPath) 
{ 
   // Load the trained model 
   var trainedModel = 
mlContext.Model.Load(modelPath, out var 
modelInputSchema); 
  
   // Create prediction engine related to the 
loaded trained model 
   var predEngine = mlContext 
       .Model 
       .CreatePredictionEngine<TaxiTrip, 
TaxiTripFarePrediction>(trainedModel); 
  
   // Predict 
   var prediction = predEngine.Predict(trip); 
   return prediction.FareAmount; 
}

It should be noted that the preceding code is good for understanding the
mechanics of the interaction between ASP.NET and the ML.NET library,
but it leaves room for a few concerns if the planned use is in a production
environment.

In a real-life scenario, in fact, you might want to load the model and
build the ML.NET prediction engine once and reuse it across multiple calls.
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Scalability Concerns
Specifically, the preceding code has two main issues. One is that the model
is being loaded on every HTTP request that causes it to execute. It’s just a
matter of poor performance that becomes evident when the model is
significantly large. At the very minimum, the trained model should be
coded as a singleton and shared across the application. Technically, a model
in ML.NET is an instance of the ITransformer type, which is known to be
thread-safe, and then sharing it as a singleton is acceptable. In ASP.NET
Core, the easiest method is to load the model at startup and share via
dependency injection. A global variable would also work fine.

The other problem is more serious and relates to the PredictionEngine
type. As mentioned, the type wraps up the trained model and invokes it.
Getting an instance of the type is time-consuming, so it is not
recommended to create a fresh instance every time a specific request comes
in. Unfortunately, though, this type is also not thread-safe, meaning that the
singleton workaround discussed for the model can’t be applied, and a more
sophisticated solution is recommended, such as using object pooling. The
good news is that you don’t have to work out an object pool yourself.

The Microsoft.Extensions.ML package provides a pool object that plugs
into the startup service collection easily:
Click here to view code image

public void ConfigureServices(IServiceCollection 
services) 
{  
   // Other services here  
   // ... 
   
services.AddPredictionEnginePool<TaxiTripDescript
or, FarePrediction>(); 
  
   // More services here 
}
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In this way, you can create a scalable pool of prediction engines that
take one specific type in input and one specific type in output.

Devising an Adequate User Interface
In spite of its overall simplicity, the example still raises a number of
practical questions about the trained model, the client application, and the
whole feedback cycle for the project.

One issue is that the model needs to know the distance of the ride to
make a price prediction. (See the definition of the TaxiTrip class, derived
from the considered dataset.) It’s reasonable, but how would you devise the
user interface around it? Should you ask customers to type the distance they
want to travel?

More realistically, the user interface on top of this sample taxi service
will let users enter two addresses and will calculate the distance using some
third-party geographical information system. In addition, how would you
render the response to the user? Should you go with a plain float number, or
is calculated range preferable? (See Figure 3-3.)



FIGURE 3-3 The user interface of the sample application.

As you can see in the figure, the type of car, payment, and the number of
passengers are collected from the user interface and passed to the controller
via HTTP. Those values are mapped to corresponding properties of the
model-specific TaxiTrip class. The addresses, instead, must be
programmatically converted into a distance. (The JavaScript API of the GIS
service does it in this example.) The Estimate button posts the form back to
the ASP.NET Core application and receives the text to display as the
estimated range for fare and time.

 Note
It is interesting to remark that although the model was trained using
public data from the city of New York, in a number of cases, the
predictions were not much further away from what it would really



take in Rome for similar distances! This should remind us that
machine learning is only about guessing, and despite metrics and
evaluators, it’s the business scenario that determines when a guess is
acceptable.

Summary
This chapter covered the canonical steps of machine learning projects as the
ML.NET library implemented them and provided an end-to-end, full .NET
example of a sample model in action. In this demo, we started from the
model. In the real world, instead, you should start from the problem and
review all aspects of it before you commit to building a machine learning
model.

In spite of the language (and the libraries) employed, the steps are the
same, and data preparation is by far the most time-consuming and
expensive. On the other hand, data preparation is often neglected in demos
as most demos start from ready-made data. Just data preparation, however,
suggests that sticking to one language and platform may not always be a
great idea. In Python, for example, you tend to work with CSV files,
whereas sometimes, a plain relational database (and some Java or C# code
to populate it) would make it cheaper and faster.

Anyway, beyond data preparation, this chapter focused on regression
problems. Starting with the next chapter, we’ll review the whole set of
machine learning tasks that the ML.NET library supports.



Chapter 4

Prediction Tasks

“I know that two and two make four, though I must say that if by
any sort of process I could convert 2 and 2 into five, well, that
would give me much greater pleasure.”

—Lord George Gordon Byron, letter to future Lady Byron, 1812

Machine learning—and everything else that falls under the umbrella of
artificial intelligence—addresses applications of two main scenarios:
prediction and classification.

Prediction is about guessing numbers. More precisely, it is about
identifying a mathematical function whose curve well approximates the
(present and future) distribution of data faced in a specific business context.

Classification is about identifying the category an object belongs to. An
object is intended as a data item and is fully represented by an array of
values (referred to as features). Each value refers to a measurable property
that makes sense to consider in the scenario under analysis. Whereas
prediction returns numbers in a continuous and potentially unbounded
range, classification returns values in a discrete, categorical set.

All machine learning techniques—from shallow learning algorithms to
sophisticated neural networks (and any combination thereof)—are good at
addressing these two general classes of problems. How good they are
depends on the constraints and nonfunctional requirements of the specific
business problem to solve.

Whenever you are faced with a software task—and more than
everything else, a machine learning task—bear in mind that any technology
is a mean and never the ultimate goal. Figure 4-1 is inspired by a cartoon in



which two characters face the problem of passing through a door with a
huge skewer larger than the width.

FIGURE 4-1 Brute-force approach vs. trade-off approach

In the cartoon, the two characters go for a brute-force, kind of blind
approach and break the wall around the door enough to make the skewer
pass horizontally laid out. Perhaps a more thought-out approach would
have conducted them to a simpler solution, such as slightly rotating the
skewer to make it pass diagonally laid out.

Turning to machine learning, a 100-layer neural network might not be
preferable and objectively more precise than a far simpler and quick
regression algorithm for the same (prediction or classification) problem!

In this chapter, we go through the prediction scenario through the
shallow learning algorithms provided by ML.NET. In successive chapters,
we face classification tasks and more specific aspects of both prediction



and classification, such as categorization, anomaly detection,
recommendation systems, and image classification.

The Pipeline and the Chain of Estimators
The ML.NET training infrastructure is centered on three pillars: data views,
transformers, and estimators. A dedicated interface describes the core
capabilities of each component: IDataView, ITransformer, and IEstimator.

Data Views
A data view component guarantees access to data, both input and output,
transformers, and estimators. A data view component provides rather
advanced features as far as data streaming and memory management are
concerned.

Devised as a lazy object, a data view should not be seen as an in-
memory container of data but rather as a tool to view (and, at some point,
access) data. In plain database terms, it is much closer to a view than to a
table. Data views work side by side with data loaders that are ultimately
responsible for defining access paths to physical stores of data (for
example, text files, relational tables, and JSON endpoints).

It is remarkable to note that data view objects are immutable. As
mentioned, a data view doesn’t contain values but limits at transforming
values as read from the source. Immutability of data views is a key factor in
ML.NET because it enables concurrency and guarantees thread safety—no
shared data. In addition, data views as virtual views over physical data
minimizes I/O operations and memory consumption. Read and write
operations still occur, but they’re only on demand and consequently with a
highly reduced frequency.

Transformers
A transformer is a (chainable) object that transforms source input data into
new data that has a different output schema or modified content. The role of



transformers is crucial for feature engineering and data preparation and
their ultimate purpose is turning a source dataset into a transformed dataset
that is appropriate for training. In particular, the ITransformer interface
features (but is not limited to) the following native members:
Click here to view code image

DataViewSchema GetOutputSchema(DataViewSchema 
inputSchema); 
IDataView Transform(IDataView data);

The GetOutputSchema method returns the schema of the data once the
transformations have been completed. The input parameter refers to the
initial schema of data. For example, if the transformation consists of adding
one column, the input schema will list, say, three columns, and the output
schema will have four.

The Transform method takes the data in, applies transformations, and
outputs a modified data view to access the data. It should be noted that the
method doesn’t actually perform changes on the data. All it does is return a
virtual view of the data that must be finalized to provide access to real data.
The pattern here is nearly the same as what you have in LINQ with
IQueryable objects and finalizer methods such as ToList and First.
Therefore, the method doesn’t physically edit data; instead, it checks to see
that requested transformations are compatible with input and output
schemas.

In addition, a transformer object features a couple of interesting
extension methods:
Click here to view code image

DataDebuggerPreview Preview(IDataView data, int 
maxRows); 
TransformerChain<ITransformer> 
Append<ITransformer>(ITransformer 
additionalTransformer);

Devised only for debugging scenarios, the Preview method provides a
preview of the transformations being made on the given data view. The
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effect on performance is attenuated by the maxRows parameter, which limits
the view to the specified number of data rows.

The Append method creates and returns a new chain of transformers, just
appending a new one to the current transformer (or chain thereof).

Estimators
The estimator is also a chainable object, as shown here:
Click here to view code image

interface IEstimator<out TTransformer> where 
TTransformer : ITransformer

The generic type TTransformer, which is prefixed by the out keyword in
the preceding definition, is covariant, meaning that you can use either
ITransformer (as required by the where clause) or any other type that is
more derived.

The term estimator comes from statistics, in which it refers to the rule
for calculating an estimate looking at some available data. A more machine
learning–oriented definition for estimators came from Apache Spark—a
very popular analytics engine. An estimator is an algorithm that can be fit
on a dataset and produces a transformer. In turn, a transformer is an
algorithm that transforms a dataset into another dataset. These same
definitions are used by ML.NET.

In ML.NET, an estimator features the following two methods:
Click here to view code image

TTransformer Fit(IDataView); 
SchemaShape GetOutputSchema(SchemaShape 
inputSchema);

The GetOutputSchema method works in much the same way as the
method of the same name on transformers. The only difference is in the
type that defines the schema. Estimators use the SchemaShape type instead
of DataViewSchema. SchemaShape is only a promise of the output schema—
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merely a collection of columns without a strictly defined type. Both types
refer to a data schema, but SchemaShape supplies a more relaxed definition.

The beating heart of an estimator is the method Fit, which is where the
estimator learns from provided data and builds a chain of transformers that
ultimately form the model. The interesting thing is that the final trained
model is still a transformer and, as such, it can turn other data (for example,
test data) into predictions. This is typically done at the end of the training
phase to evaluate the quality and accuracy of the results against known
metrics that work for the specific training applied.

Pipelines
A composition of transformers and estimators forms a pipeline. The
pipeline, or a chain of estimators, begins with a single transformer or
estimator, and others are appended using the method Append.

The pipeline is an immutable object. This means that whenever you
append a new estimator, it doesn’t append it to the current pipeline instance.
Instead, it creates and returns a new pipeline object. As a developer, you
always need to catch and store this object in a specific variable for further
use.

The Regression ML Task
In a shallow learning scenario (as opposed to a deep learning scenario
where neural networks reign), prediction tasks, such as predicting the price
of goods or services, are tackled through regression algorithms.

Note that regression is not a single, well-defined algorithm; instead, it is
the moniker to a class of different algorithms. ML.NET provides a native
implementation for a number of them, which are grouped under the concept
of a machine learning task (ML task).

General Aspects of ML Tasks



Behind the implementation of an ML task lies the idea of grouping common
machine learning use cases under a common (and familiar) programming
pattern.

Whether you’re a data scientist, data engineer, or ML software
developer, if you’re going to build a trained model for a business problem
using the native shallow learning algorithms of ML.NET, you first have to
choose which of the available tasks works for your scenario. Second, you
cherry-pick the best available algorithm to train the model. Note that the
notion of what is “best” is a moving target and can hardly be determined by
reasoning on paper without evidence of numbers and errors both in training
and production.

We already presented the following table in Chapter 2, but it is useful to
take a second look at it. Table 4-1 lists the supported ML tasks you can find
in ML.NET. In light of this, your first step is mapping the business problem
(that is, predicting the cost of some goods or services) to one of the
following tasks.

TABLE 4-1 ML.NET Tasks

Task Description

AnomalyDe

tection

Aims to detect unexpected or unusual events or behaviors 
compared to the received training.

BinaryCla

ssificati

on

Aims to classify data in one of two categories.

Clusterin

g

Aims to split data in a number of possibly correlated groups 
without knowing which aspects could possibly make data 
items related.

Forecasti

ng

Addresses forecasting problems in which the input being 
passed to the model is a time-series (sequence of values).



Task Description

Multiclas

sClassifi

cation

Aims to classify data in three or more categories.

Ranking Addresses ranking problems in which the ultimate goal is 
computing the relevance of data. To some extent, it can be 
approximated with multiclass classification.

Regressio

n

Aims to predict the value of a data item. To some extent, it 
can be seen as a superclass of forecasting problems.

For the purposes of this chapter, we are entering the realm of the
Regression task.

Supported Regression Algorithms
The Regression task is a catalog with three main endpoints: a list of training
algorithms (property Trainers), an evaluator to score results of training
against the configured error function (method Evaluate), and a cross-
validator tool (method CrossValidate).

Available Trainers
The regression task provides a few algorithms in the core implementation of
the ML.NET library and a lot more via additional NuGet packages. Overall,
you can train a regression model using at least the algorithms shown in
Table 4-2.

TABLE 4-2 Regression Algorithms in ML.NET

Algorithm Method Additional 
Package



Algorithm Method Additional 
Package

FastForestReg

ressionTraine

r

Based on the random forest method Microsoft.ML

.FastTree

FastTreeRegre

ssionTrainer

Based on MART gradient boosting (an 
ensemble method)

Microsoft.ML

.FastTree

FastTreeTweed

ieTrainer

Based on the Tweedie compound Poisson 
model

Microsoft.ML

.FastTree

GamRegression

Trainer

Generalized Additive Model using 
shallow gradient-boosted trees

Microsoft.ML

.FastTree

LbfgsPoissonR

egressionTrai

ner

Based on the Poisson regression method

LightGbmRegre

ssionTrainer

Based on LightGBM, an open-source 
implementation of the gradient-boosting 
decision tree

Microsoft.ML

.LightGbm

OlsTrainer Based on the Ordinary Least Squares 
regression method

Microsoft.ML

.Mkl.Compone

nts

OnlineGradien

tDescentTrain

er

Based on the standard, non-batch, 
stochastic gradient descent

SdcaRegressio

nTrainer

Based on the Stochastic Dual Coordinate 
Ascent method

In a nutshell, a business problem that can be formulated as a regression
problem can be solved through a number of different methods. From Table
4-2, we can list methods like gradient descent, Poisson regression, dual
coordinate ascent and decision trees, random forests, and ensemble



methods. To some extent, each method can be further considered as a base
class of concrete algorithms that are often based on academic papers and
advanced research. From an ML developer’s perspective, all these methods
call from the Regression ML task catalog. Admittedly, choosing the most
appropriate method for the specific problem and available data is often a
task well beyond a software person’s reach. This is where data science
skills kick in.

Configuration of a Trainer
If you decided on the Online Gradient Descent, here’s the code you would
need to have in your ML.NET training application:
Click here to view code image

var trainer = mlContext 
    .Regression 
    .Trainers 
    .OnlineGradientDescent("Label", "Features", 
lossFunction: new SquaredLoss());

In ML.NET, training algorithms take two types of parameters:
Options to control the internal behavior
More foundational parameters, such as the label column name, the
feature column name, and the error function to use to determine when
a sufficiently good result has been obtained, and training can be
stopped

Optional values are specified to pass the trainer object an ad hoc
container class such as OnlineGradientDescentOptions. Specifically, the
online gradient descent training algorithm would accept additional tuning
parameters such as the following:

Whether to accord more relevance to more recent updates.
The number of passes through the training dataset.
Whether to shuffle data for each training iteration (the learning rate).
Namely, this is the step size to apply at each iteration while moving
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toward the minimum of the error function.
The label column refers to the column’s name in the training dataset that

contains the known answer the algorithm has to approximate. In ML.NET,
it is common to duplicate the actual dataset column with answers to a new
column named Label or any other arbitrarily chosen name. For each row in
the training dataset, the error function (SquaredLoss in the preceding code
snippet) takes the calculated value and compares it to the value found in the
Label column of the row. The errors on each data row are then combined
according to the characteristics of the selected error function (for example,
the mean value, the max, the min, and the sum).

Finally, the feature column name refers to a specific trait of the
ML.NET library. All the algorithms designed for ML.NET expect to find
all values to process (commonly referred to as features) available as a
numeric vector. This requires an extra column where all feature values are
concatenated. The name of this additional column defaults to Features.
This column is not done manually but is a service requested by ML.NET.

Preparing the Training Dataset
Some preliminary work is required on the dataset to ensure that the
algorithm can find a label and feature column. In ML.NET, this is done by
configuring a data processing pipeline. The following code shows how to
duplicate and rename an existing column and how to generate a new
computed column that combines the value of multiple individual columns
in the dataset:
Click here to view code image

var pipeline = mlContext.Transforms 
     .CopyColumns("Label", 
nameof(TaxiTripDescriptor.FareAmount)) 
     
.Append(mlContext.Transforms.Concatenate("Feature
s", 
                    "RateCodeEncoded",  
                    "PaymentTypeEncoded",  
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                    "PassengerCount",  
                    "TripTime", 
                    "TripDistance");

The Transforms object on the ML context provides ad hoc methods to
copy and concatenate columns. In the code snippet, strings like
RateCodeEncoded and TripDistance refer to columns in the dataset available
for training.

Note that, in general terms, there would be no need to concatenate
multiple columns into one for machine learning processing purposes. This
is a design choice of the ML.NET internal training engine.

Supported Validation Techniques
The quality of a machine learning model depends on how good it can be at
predicting (or classifying) data it has never seen before. The challenge here
is that you can train the model on one sample dataset and sometimes not
even a particularly large, well-balanced, and highly representative one.

A number of techniques have been developed to make better and more
proficient use of the training dataset and, subsequently, to capture a good
grasp of the precision the model can develop once it’s in production.

Cross-validation is the primary technique used to estimate the
performance of a machine learning trained model.

Holdout Cross-Validation
Cross-validation comes in two flavors: holdout and k-fold. The holdout
technique is fairly trivial to arrange. It basically consists of splitting the
source dataset in two segments: approximately two-thirds of it is used for
training, and the remaining part (approximately one-third) is for test
purposes.

When not used in combination with other techniques, the holdout
presents two key drawbacks. One is that only a subset of the available data
is used to train and test the model and, worse yet, that dataset that might not



even be sufficiently large. A better approach consists of applying the
holdout technique multiple times.

This is the essence of the k-fold cross-validation technique.

K-Fold Cross-Validation
In the k-fold technique, the training dataset is partitioned into k subsets,
and on each partition, the holdout validation is applied. In the end, k-fold
consists of repeating holdout cross-validation k times—each time using one
of the k subsets as the test dataset and the remaining k-1 subsets as the
training data.

The k-fold technique has a number of benefits. In the first place, it is
not subject to the risk of underfitting as long as the algorithm is a good fit
for the problem. In general, fitting (or goodness of fit) refers to the skills
actually learned by the algorithm and indicates how good it is at doing its
job. Underfitting, therefore, describes a condition in which the algorithm is
not particularly good at predicting.

With the k-fold technique, the risk of underfitting is low because the
model is ultimately trained on all the available data. By the same token, the
variance of the model is minimized because the entire dataset is used to test
the model.

In machine learning, the variance refers to the deviation of the model
from the mean. Because the model is trained and tested on the whole
dataset, the variance can only be as low as the adherence of the selected
algorithm to the problem allows.

Furthermore, the k-fold technique is a win even when the dataset is
packed with a relevant percentage of outliers—data rows with values
patently different from the mean of others. For the nature of this technique,
outliers are evenly split across all folds and evenly distribute the noise over
the training and testing data.

There are no strict rules for setting the value of k, but 5 and 10 are
commonly used values. Figure 4-2 offers a visual representation of the k-
fold technique where k equals 5.



FIGURE 4-2 K-fold cross-validation explained

Regularization
Quite obviously, the trained model should not be underfitting the sample
dataset. At the same time, though, we don’t want it to be overfitting the
sample model. Overfitting, in particular, refers to the situation in which the
model is too close (overfits) to the training data. Consequently, it is not
necessarily able to process data accurately that it has never seen before.

Regularization is another excellent technique to detect overfitting—
when the trained model gives excellent performance on the sample data
leaving the (concrete) doubt that it won’t be as precise on other similar-
looking data.

Regularization intervenes in the training phase when results are not
convincing, and the team is tempted to add more features to the model in
the hope of achieving better results. In this case, the risk of a model too
close to the source dataset is concrete.

Regularization works by simply placing a penalty on each new feature
(column) added to the dataset. Of course, adding a penalty increases the
error, so it’s a matter of adding just the features that bring an inherent value
and reduce the error.

Regularization is a guard against making the model uselessly complex.



Permutation Feature Importance
Another aspect to consider when it comes to evaluating the skills of a
trained model is which features have the biggest effect on the final results,
whether a prediction or a classification. This concept is referred to as
feature importance.

Technically, the permutation feature importance is defined as the
decrease of the score of a model when a single feature value is randomly
shuffled. The concept is fairly intuitive: if you scramble the values of a
column and still get a similar score, then it means that the acted feature is
not particularly important in the internal economy of the model. From this
standpoint, a low-importance feature can be removed without worries.
Should you do it, however?

Note that importance here refers to the role played by that feature in that
model. As you switch to another algorithm, all numbers of importance are
canceled and lose all of their relevance. In other words, permutation
importance does not reflect the intrinsic predictive value of a feature.
Instead, it only reflects the importance of that feature for a particular model.

Using the Regression Task
Quite naïvely, many tend to associate artificial intelligence with the
possibility of magical predictions about future events. Unfortunately,
artificial intelligence is not magic, although it can still make reliable
predictions. However, the ability to predict doesn’t come from superpowers.
More simply, it is the result of a few statistical techniques, the most relevant
of which is regression analysis.

At its core, regression measures the strength of the numerical
relationship set between one output variable and a series of input variables.
A regression algorithm attempts to discover such a relationship by
processing sample data and the expected results. The net effect of a
regression algorithm is computing one (or more) output values based on
some input data. Regression is a supervised machine learning technique
(meaning it needs to be provided with exact answers during training) and
can predict a continuous value (as opposed to discrete categorical values
typical of classification algorithms).



Let’s see how to use the regression ML task to tackle a specific
prediction problem. The problem we’ll consider here is the same we
touched on in Chapter 3, ”The Foundation of ML.NET”: predicting how
much a taxi ride in a given city could cost. In the coming pages, we explore
the training pipeline in much more detail.

A Look at the Available Training Data
To try to predict the cost of a taxi ride, you need to look at a relevant
number of past rides in the area of interest. A taxi ride can be realistically
described at least by the following features:

Amount paid
Distance
Pick-up and drop-off addresses
Company
Time of day
Day of the week
Overall traffic conditions
Payment type
Passenger count
Number of bags

A reasonable dataset would then be made by a list of records, including
the aforementioned columns. How many records? The more, the better, we
would say. An acceptable order of magnitude is a few million records.
However, be aware that more data doesn’t always mean you are in a better
situation.

Data You Have and Data You Would Like to Have
The preceding list of features has been determined via pure reasoning and
business analysis and is nothing more than a wish list. The actual list of



features for arranging some regression comes from the company’s back-end
system that tracks (or aggregates) rides, cars, and payments.

We have seven features in the sample dataset we borrowed from the
ML.NET website (and also shared through the source code that comes with
this book). The sample dataset is available as a CSV text file, and a glimpse
of it is shown in Figure 4-3.

FIGURE 4-3 The CSV file with training data opened in Visual Studio
2019

While such a dataset can be used to make some predictions, not much
can be said about the precision and accuracy. Comparing the columns in
Figure 4-3 and the bullet list discussed earlier, we find some relevant pieces
of information missing: pick-up and drop-off addresses, time and day of the
ride, traffic conditions, and the number of bags. This makes a case for some
data engineering work on the original data that natively comes from the
back-end systems.

Augmenting the Dataset



Information such as the number of bags and the time of the ride might
reasonably be available somewhere in the back-end system. Getting a larger
dataset is then an option. If not, the time of the ride might be figured out
from the log of payments, assuming that the payment took place at about
the time the ride ended. Knowing the duration of the trip and the time when
the ride started can be easily obtained.

If not natively tracked by the system, pick-up and drop-off information
is hard to obtain. However, traffic conditions can be read from some free or
paid services and incorporated into the training dataset.

Data scientists and/or data engineers are responsible for an
Extract/Transform/Load (ETL) pipeline that consists of the following:

Exporting data from the original back-end system
Adding computed columns
Integrating with external data (that is, traffic conditions)

Loading the Dataset in ML.NET
The first step in the training application is loading training and testing
datasets into a new ML context. In its simplest yet effective form, a training
ML.NET application is a console program. The first instructions look like
the following:
Click here to view code image

// Main container for ML operations 
var mlContext = new MLContext();  
  
// Load data to be used for training  
IDataView dataForTraining = mlContext.Data 
   .LoadFromTextFile<TaxiTripDescriptor>
(_trainDataPath, hasHeader: true, separatorChar: 
','); 
  
// Load data to be used for testing the model 
IDataView dataForTesting = mlContext.Data 
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   .LoadFromTextFile<TaxiTripDescriptor>
(_testDataPath, hasHeader: true, separatorChar: 
',');

The TaxiTripDescriptor class describes in C# the structure of the
training record: the columns in the CSV file:
Click here to view code image

public class TaxiTripDescriptor 
{ 
   public string VendorId; 
   public string RateCode; 
   public float PassengerCount; 
   public float TripTime; 
   public float TripDistance; 
   public string PaymentType; 
   public float FareAmount; 
}

To simplify the binding between C# properties and the columns in the
source CSV file, you can use the aptly provided LoadColumn attribute. Any
property decorated with the attribute will receive as a value the content of
the CSV column at the specified ordinal position.
Click here to view code image

[LoadColumn(4)] 
public float TripDistance;

Loading data from a single static file describes a basic, common
scenario. More likely, you have multiple files to deal with or an entire
folder dynamically populated by some background task and integrated into
some MLOps context.

ML.NET provides a bunch of ad hoc data loaders to deal with multiple
files, folders, and databases.
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Supported Data Sources
In general, ML.NET is designed to allow data access from a variety of data
sources, such as multiple text files, databases, JSON, XML, and even in-
memory collections. Regardless of the data source, data in ML.NET is
always presented through an IDataView object—an ad hoc frontend
specifically designed to deal with potentially large sets of tabular data.

Each dataset is associated with a schema. As long as the schema is the
same, in ML.NET, you can load rows of data from multiple files in the
same folder or even scattered through multiple folders. The following line
shows how to load all text files from the Dataset folder:
Click here to view code image

IDataView data = mlContext.Data 
     .LoadFromTextFile<TaxiTripDescriptor>
("dataset/*", hasHeader: true, separatorChar: 
',');

It takes a bit more code to enable the loading of text files from multiple
disk folders. In this case, you first create a text loader component and then
have it load content from a variety of places:
Click here to view code image

TextLoader = mlContext.Data 
     .CreateTextLoader<TaxiTripDescriptor>
(hasHeader: true, separatorChar: ','); 
IDataView data = textLoader 
     .Load("dataset/week01/data.csv", 
"dataset/week02/data.csv", 
"dataset/week03/data.csv");

Similarly, you can access data stored in a number of relational
databases. ML.NET supports all databases from which the .NET
System.Data namespace provides a driver. The list grows over time and, at
a minimum, includes SQL Server, Azure SQL Database, Oracle, SQLite,
PostgreSQL, Progress, and IBM DB2.
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From a programming standpoint, you first create a database loader
object, as shown here:
Click here to view code image

DatabaseLoader loader = 
mlContext.Data.CreateDatabaseLoader<TaxiTripDescr
iptor>();

Next, you set up a database source and load data:
Click here to view code image

var source = new 
DatabaseSource(SqlClientFactory.Instance, 
connectionString, sqlCommand); 
IDataView data = loader.Load(source);

In addition to the connection string and the command to query data, you
pass a reference to the factory to be used to create the necessary
DbConnection object. For a SQL Server database, it is the SqlClientFactory
object.

As far as loading data from other common sources such as JSON and
XML files is concerned, you have to go through in-memory collections:
Click here to view code image

var list = LoadJsonOrXml(...); 
IDataView data = 
mlContext.Data.LoadFromEnumerable<TaxiTripDescrip
tor>(list);

The idea is that you write a loader for JSON or XML files or endpoints
and turn the content into a list of instances of the specified type.

Feature Engineering
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Machine learning algorithms can work only on numbers, whereas training
data often contains some text fields. For example, in the sample dataset, a
couple of columns are made of text: the vendor ID and payment type. Those
values must be turned into numbers.

Suppose a reference to a street address is added to enrich the dataset. In
that case, the reference has to be converted into numbers, whether a
numerical code that identifies the ZIP Code or latitude and longitude. If you
find a way to collect traffic information, you should also think of how to
render it as a normalized value, typically in the 0 to 1 interval.

In general, the values in all text columns must be turned into numbers
before proceeding with training. However, any applied transformation
mustn’t alter the distribution and relevance of individual values.

The whole set of transformations performed on the selected dataset goes
under the name of feature engineering.

Preliminary Physical Operations
Before you get into data transformation, sometimes you might want to do
some preliminary work on the dataset. The most common operation is
identifying and removing (or normalizing) outliers.

Envisioning a data row with N features as a point in an N-dimensional
space, an outlier is a point located too far away from the rest of the points.
Put another way: An outlier data row refers to a tracked record that deviates
significantly from the other rows.

Any quantitative measures involved in the preceding definition are to be
agreed on: What is intended by ”the other rows”? What is the distance?
What is the maximum tolerable distance? Removing (or normalizing)
outliers is a common technique to reduce variance in the final model. (See
Figure 4-4.)



FIGURE 4-4 Graphical representation of outlier data rows

In ML.NET, removing outliers should not be considered the same as a
data transformation step because removing outliers is a direct change to the
loaded dataset. In contrast, the application of a data transformation step
occurs on the whole set of rows you actually intend to process. Here’s some
code that removes all transactions higher than $150 and lower than $1 from
the taxi ride dataset:
Click here to view code image

// Removing outliers for fares higher than $150 
and lower than $1 
private static IDataView RemoveOutliers(MLContext 
context, IDataView data) 
{ 
    var modifiedDataView = 
context.Data.FilterRowsByColumn(data, 
"FareAmount", 1, 150); 
    return modifiedDataView; 
}
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Conceptually, removal (or, in general, addition) of rows is an optional
operation that precedes the execution of any transformation pipeline.

Building the Transformation Pipeline
In ML.NET, the output of feature engineering is the data transformation
pipeline. The pipeline is the description of the sequence of actions that will
happen when the pipeline is actually run—a promise of transformations on
data to take place later.

If you are familiar with .NET and LINQ, then you should recognize here
a conceptual similarity between an IQueryable tree and related executor
methods such as ToList and First and the ML.NET pipeline. Building a
pipeline is like building an IQueryable tree.

Which operations concur to feature engineering?

Normalization and Featurization
There are quite a few different types of operations, the majority of which
are usable across the entire set of ML tasks. Feature engineering methods
are exposed out of the Transforms catalog object in the ML context:

Adding and removing columns The CopyColumns method of
Transforms duplicates an existing column to a new column with a
given name. The DropColumns method, instead, removes the listed
columns from the dataset.
Normalization Refers to adding a column of normalized numeric
column values. Normalization uses various techniques to fit all values
in the column to a common interval, typically the 0 to 1 interval. The
original distribution of values is maintained. The goal of
normalization is improving the accuracy of the training algorithm of
choice. MinMax normalization operates by finding minimum and
maximum values in each column and setting the minimum to 0 and
the maximum to 1; all other values are scaled in between. Another
type of normalization is MeanVariance, which first subtracts the mean
of the column values and then divides by the variance. Yet another



variation is LogMeanVariance, which operates on the logarithm of the
column values.
Binning Refers to partitioning actual values of a column of data into
a number of reference values (bins). It works by normalizing all
values in a given range to a fixed, common value. The canonical
example is age, such as 0 to 18 turns to 1; 19 to 25 turns to 2, and the
like.
Missing values Any input dataset may have a missing value here and
there. This feature engineering step aims at filling the gaps in some
algorithmic way. In ML.NET, the native missing values estimator
works only with numerical columns and offers to replace missing
values either with the default value of the type (0 for numbers) or
with the mean of values in the column. Other options are possible but
require ad hoc estimators or some preliminary batch procedure run on
the dataset.

The normalizers mentioned so far act on numeric data. However,
categorical data are also fairly common in datasets. In machine learning,
categorical data refers to an enumeration of fixed values, much like enum
types in C# and other high-level programming languages. When it comes to
columns made of categorical values, other normalization techniques apply:

Key-value mapping Used to map string values in a column to a
unique integer value for training purposes, such as CRD to 1 and CASH
to 2.
One hot encoding This technique maps each distinct value of the
column of possible values to a number whose binary representation
has just a single 1 value in a unique position. It is the same as when in
C# you define an enum type with values that are powers of 2. For
example, 1, 2, and 4 in binary format are 001, 010, and 100. One hot
encoding is typically the ideal choice if there is no implicit ordering
of values.
Hashing The hashing technique condenses a categorical value
(including strings) to a number of a fixed size. ML.NET has a
normalizer that can deal with strings, numbers, and dates.



A whole different space is reserved for text transforms. We delve deeper
into this family of normalizers in later chapters when we cover sentiment
analysis—a specific branch of classification problems founded on text.

Accessing the Content of Datasets
In ML.NET, actual data access is performed through the services of classes
that implement the IDataView interface, designed from the ground up with
the declared goal of handling as efficiently as possible large datasets both in
width and depth. All ML.NET training algorithms consume data through
the methods of the interface. IDataView objects can contain numbers, text,
Booleans, vectors, and more.

 Important
The IDataView interface is designed with cursoring and laziness in
mind but does not directly address more sophisticated aspects, such
as dealing with distributed data and distributed computation. At the
same time, it is suitable for single-node processing of data partitions
belonging to larger, distributed datasets. Put another way, if the
dataset is already partitioned and distributed, then each
agglomeration of data can be treated via IDataView, but the interface
doesn’t automatically split and distribute your data in autonomy.

Working with Data Views
The IDataView subsystem comprehends different flavors of software
components to compose data processing pipelines. The most relevant are
the aforementioned loaders and transformers (for example, normalizer and
featurizer components).

Even though the IDataView subsystem is crucial for the internal working
of the ML.NET machinery, as a developer, your contact with it is very



limited. First, you define necessary data loaders and get a data view
reference:
Click here to view code image

var dataViewTraining = 
mlContext.Data.LoadFromTextFile<TaxiTripDescripto
r>(_trainDataPath);

Second, you optionally pass the data view reference to any method that
might physically remove or add rows. You obtain back a modified data
view. Note that the data view reference doesn’t carry actual data around.
Compared to a classic database table, a data view is a virtual data container
much like a database view. Whereas tables physically contain the values in
the rows, a (data) view computes values on demand and doesn’t own any.

The net effect of the next line is modifying the logical tree of actions
behind the view so that when asked to materialize data, the data view filters
out any data rows that looks like an outlier:
Click here to view code image

// Modify the view adding the command that will 
filter out outliers when actually reading data 
dataViewTraining = RemoveOutliers(mlContext, 
dataViewTraining);

Third, you further modify the data view processing pipeline by adding
data transformations. Here’s a good example for a taxi ride prediction
scenario:
Click here to view code image

var pipeline = 
mlContext.Transforms.CopyColumns("Label", 
"TripTime") 
        
.Append(context.Transforms.Categorical.OneHotEnco
ding("IdEncoded", "VendorId"))  
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.Append(context.Transforms.Categorical.OneHotEnco
ding("RateEncoded", "RateCode")) 
        
.Append(context.Transforms.Categorical.OneHotEnco
ding("PaymentEncoded", "PaymentType")) 
        
.Append(context.Transforms.NormalizeMeanVariance(
"PassengerCount")) 
        
.Append(context.Transforms.NormalizeMeanVariance(
"TripDistance")) 
        
.Append(context.Transforms.Concatenate("Features"
,  
                        "IdEncoded",  
                        "RateEncoded",  
                        "PaymentEncoded",  
                        "PassengerCount", 
                        "TripDistance"));

At the end of transformations, the data available to the training
algorithm consists of the original columns plus a few new columns: one
named Label and one named Features. Also, a new column (with the name
suffixed by Encoded) has been added for each of the listed normalizers. The
Features column contains a numeric vector composed from the values of
the listed columns.

The pipeline object now fully defines the set of operations that the
original data will undergo to serve data to the training algorithm we’ll
select in a moment.

Dealing with Very Large Datasets
One of the major issues you might encounter while doing shallow machine
learning is that Python might run short of memory when the dataset to



process is particularly large—in the order of gigabytes.
The ML.NET team was aware of this pure memory shortage, so it

designed the data view subsystem to efficiently handle high-dimensional
data and large datasets containing many columns and many rows.

A data view can be used in two different ways. You can load and
enumerate data as a classic in-memory collection object would do, but you
can also stream data from the original data source via a cursoring
mechanism conceptually similar to database cursors and ADO.NET data
readers. Streaming data is what most algorithms do during training.

This native feature allows ML.NET training applications to easily
handle huge datasets that go well beyond the gigabyte order of magnitude
and get into terabytes.

Composing the Training Pipeline
The data processing pipeline is the logical container that brings data to the
training algorithm. Yet picking the algorithm is the most delicate choice. If
you lack direct machine learning experience and theoretical knowledge of
statistical learning, picking a training algorithm for a business problem is
like taking a shot in the dark, even when you have correctly identified the
problem’s class.

Identifying the Training Algorithm
The ML task components in ML.NET do a good preliminary job of
selecting a few algorithms that might be appropriate for regression, binary
classification, ranking, or image detection problems. It’s not a definitive
analysis, though. You might decide to try a neural network or a Support
Vector Machine (SVM) algorithm—the most sophisticated class of shallow
learning algorithms. ML.NET comes with an integrated Visual Studio tool
—Model Builder—that helps choose from the available algorithm options
in the ML.NET framework. (See Figure 4-5.)



FIGURE 4-5 The home page of the Visual Studio Model Builder

Model Builder is a valuable attempt to guide developers with limited
data science skills to select a valid algorithm to try for a given scenario,
whether value prediction, text or image classification, or recommendation.

In a nutshell, picking the algorithm is a decision in between
implementation and architecture. It can even be seen as an implementation
detail once the class of the problem has been correctly identified. At the
same time, the selection of the algorithm is comparable to an architectural,
hard-to-change decision because if scores prove poor in production, a
relevant subsystem of the deployed solution must be amended.

Fitting the Model
Let’s suppose we have identified, in some way, the training algorithm to
start with and assume we want to use the SDCA trainer for the taxi ride cost
prediction problem. Here’s how we code it:



Click here to view code image

// Get the trainer reference 
var trainer = mlContext 
                .Regression 
                .Trainers 
                .Sdca("Label", "Features", 
lossFunction: new SquaredLoss()); 
  
// Attach the trainer to the data processing 
pipeline and get a modified pipeline 
var trainingPipeline = pipeline.Append(trainer); 
  
// Train the model fitting to the training 
dataset 
var model = 
trainingPipeline.Fit(trainingDataView);

First, we obtain a reference to a configured instance of the algorithm.
This is the trainer variable. The trainer is then appended to the data
processing pipeline and produces a modified pipeline that knows how to
prepare data and run the algorithm on it. Finally, the Fit method gets the
data view pointing to the sample dataset and runs it through the trainer. The
output of the Fit method is the trained model, which has to be serialized to
be made available to client applications.

The Loss Function of the Model
Let’s return to the configuration of the trainer. As shown earlier, the Sdca
method receives the scoring column (Label) and the input column
(Features). The scoring column is the name of the column that contains the
expected output to compare with the computed values. In other words, the
Label column contains the actual fares paid given the input values, namely
passenger count, taxi company, rate, and the like.

The score of the model—how good it is at predicting values—is
measured through an error function. This is the loss function—the third
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parameter passed to the Sdca method. The error function measures the
distance between the actual value computed by the algorithm on the
provided features and the expected value as set in the Label column.

Each algorithm (and more generally, each class of machine learning
problems) has its own preferred set of loss functions. Choosing the most
appropriate is, again, a matter of data science skills. In particular, the
SquaredLoss function passed to Sdca measures the distance between
computed and expected values using the square of the numerical difference.

The error (or loss) function acts as a controller and determines when the
algorithm has reached an acceptable accuracy in the processing of a given
set of input features.

Validation of the Model
The code shown earlier for the prediction problem at hand uses a basic
holdout approach in which training and testing datasets are provided as
distinct entities. The same application that runs the code discussed so far
that produces a trained model has the responsibility of running some
automated tests on the model to score its inherent quality. In brief, we want
to verify that a model trained on a sample dataset behaves well enough on
different test data. Here’s the code that runs the trained model on a test data
view and evaluates the results:
Click here to view code image

IDataView predictions = 
trainedModel.Transform(testDataView);

The Transform method validates the schema of the provided data view to
be used for testing the model. It ensures the compatibility between the
model schema and the data schema. The method is lazy and performs no
actual operation other than checking the schema of data. The returned data
view must be passed to the Evaluate method of the ML regression task to
get some task-specific metrics:
Click here to view code image
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var metrics = mlContext.Regression 
        .Evaluate(predictions, labelColumnName: 
"Label", scoreColumnName: "Score");

In addition to the test data, the Evaluate method also receives
instructions about the column to use as the source of true values and the
column to populate with scores.

The method returns a RegressionMetrics object. The object contains
five metrics, as shown in Table 4-3.

TABLE 4-3 Regression Metrics Properties
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Gets the result of user-defined loss function. In our example, this 
is an instance of the SquaredLoss class.
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Gets the R-squared value of the model. In statistics, the R-squared 
value is also known as the coefficient of determination and is the 
ratio between the values calculated by the model and the mean of 
the target values. In our scenario, this value is the actual fares 
paid. The value of this indicator is ideally close to 1. However, 
having it close to 1 is not sufficient to guarantee high quality, but 
having it close to 0 is a clear indicator that something doesn’t 
work.
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Gets the absolute loss of the model. The absolute loss is defined as 
the mean of the sum of absolute errors (difference between 
calculated and target values).
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Gets the squared loss of the model defined as the mean of the sum 
of the squares of the errors (difference between calculated and 
target values).
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Gets the root mean square loss, namely the square root of 
MeanSquaredError.

No metrics are universally valid by themselves, but all indicators
provide insights to an expert eye. Some clear ranges of acceptability exist
for all metrics, but it is not realistic to expect all numbers to be close to
their ideal thresholds. For example, the RSquared value is expected to be



close to 1, but determining whether any value near 1 is really good is often
beyond the reach of an ML.NET developer.

(Not much different from having blood tests and trying to make sense of
the overall health. While you can easily check whether all values are within
an acceptable range, you might want to see a doctor to have an expert
evaluation of your health.)

Cross-Validation of the Model
As mentioned earlier, the holdout approach to select, train, and test data
might not always be realistic. In some cases, you just have a relatively small
dataset to be used for training and testing. In this case, cross-validation is a
valid technique. In ML.NET, using cross-validation to select training and
testing data requires some slightly different lines of code.

Let’s say we have reasons to try out a different algorithm—the online
gradient descent. Here’s the code that sets up the trainer reference:
Click here to view code image

var trainer = mlContext 
        .Regression 
        .Trainers 
        .OnlineGradientDescent("Label", 
"Features", lossFunction: new SquaredLoss());

In the previous example, we considered a single pipeline for both data
preparation and model training. We took the data processing pipeline,
added the selected trainer, and then ran the Fit method to get a trained
model. A single pipeline is just a possibility and probably the simplest to
use for prediction scenarios.

However, for completeness, let’s just show what it takes to use separate
data processing and model training pipelines. One of the benefits of
separate pipelines is that it’s easier to inspect the learned model parameters.
The following code deals with the data preparation:
Click here to view code image
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// Obtain a transformer that fits on provided 
data (ie, normalized columns in the dataset) 
ITransformer dataPrepTransformer = 
dataProcessPipeline.Fit(trainingDataView); 
  
// Transforms data ready for training 
IDataView transformedData = 
dataPrepTransformer.Transform(data);

The first step is preparing the transformer to operate on a given data
schema; the second step relates to getting a modified data view ready to be
processed by the training algorithm. This modified data view is the visible
effect of separate preparation and training pipelines.

To split the data view into training and validation datasets and use all the
data for both training and testing (the cross-validation approach to training),
you don’t use the Fit method but the CrossValidate method.
Click here to view code image

// The trainer here is the OnlineGradientDescent 
class referenced above 
var results = mlContext 
      .Regression 
      .CrossValidate(transformedData, trainer, 
numberOfFolds: 5);

The provided data is split into five folds, and the folds are used
interchangeably for training and testing. As a result, the entire set of data is
used to train and test over five iterations. The method’s return value is an
object that contains five trained models and related regression metrics—one
for each iteration.

The results variable is a collection, so it can be processed using LINQ
for whatever purposes you may have. For example, to pick up the best
model (and related metrics) according to the RSquared metrics, you proceed
as follows:
Click here to view code image

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch04_images.xhtml#p65pro03a
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch04_images.xhtml#p66pro01a


var listOfModels = results 
            .OrderByDescending(fold => 
fold.Metrics.RSquared) 
            .Select(fold => fold.Model) 
            .ToArray(); 
var listOfMetrics = results 
            .OrderByDescending(fold => 
fold.Metrics.RSquared) 
            .Select(fold => fold.Metrics) 
            .ToArray(); 
  
// Get the best model and related metrics 
ITransformer trainedModel = listOfModels[0]; 
RegressionMetrics metrics = listOfMetrics[0];

Needless to say, you can arrange any sort of automatic analysis of
models and metrics or just print it out and let some data science experts
come to their conclusion.

 Note
A pipeline is always a chain of estimators, even when it is only
made up of data transformers, as was the case of the
dataPrepTransformer in the earlier code snippet. Because a pipeline
is always a chain of estimators, you can fit it on the dataset to obtain
trained transformers. When do you need it? For example, when you
have transformers that are not simply value converters or column
managers but need to look at the entire dataset, such as one-hot
encoders or normalizers.

Packaging the Trained Model



That crazy little thing called the trained model is ultimately the expression
of a computation graph. In simplest scenarios, such as linear regression, it
can be as simple as a polynomial or a decision tree. In contrast, it can be a
much more sophisticated mathematical model if neural networks are used.
Training a model is about discovering the most appropriate coefficients to
complete a computation graph whose composition depends on the specific
algorithm used with a sufficiently high level of accuracy.

Once returned by the Fit or CrossValidate method, a model in ML.NET
is an in-memory object. It needs to be saved to disk to be made available to
client applications. Here’s the code you use to save a model to disk:
Click here to view code image

mlContext.Model.Save(trainedModel, 
trainingDataView.Schema, modelPath);

The saved model is a ZIP file (see Figure 4-5) and contains serialized
data in a proprietary way, the list of necessary transformers, and the data
schema. The saved model will be deployed to reach a client application
(that is, a web application). As long as the client application is a .NET
application, the model can be loaded in process, which results in much
faster predictions. Otherwise, it can be embedded in a .NET web service or
gRPC shell and be consumable from clients regardless of their hosting
platform.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch04_images.xhtml#p66pro02a


FIGURE 4-6 Internals of a saved ML.NET model produced by the
Regression ML task

Setting Up a Client Application
There are two main scenarios for using an ML.NET trained model and, in
both cases, you need to take the same programming steps. One scenario is
when you host the model in a web service. The other is when you host the
model in a native .NET executable. In both cases, the model host needs to
take the following actions:

Instantiating a prediction engine
Invoking the prediction engine using input data and receiving output
data, as dictated by the model’s schema

The way you instantiate the prediction engine depends on whether the
client is a desktop application or runs in a server environment, such as a



web application or an Azure function.
In a nonserver environment, or whenever you don’t have scalability

concerns, you go with the following rather intuitive code:
Click here to view code image

ITransformer trainedModel = 
mlContext.Model.Load(modelPath, out var 
modelInputSchema); 
  
// Create prediction engine related to the loaded 
trained model 
var predEngine = mlContext 
          .Model 
          
.CreatePredictionEngine<TaxiTripDescriptor, 
FarePrediction>(trainedModel); 
  
// Predict 
var prediction = predEngine.Predict(trip);

First, you load the model (previously saved as a ZIP file) and pass it to
the CreatePrediction-Engine method in the Model catalog of the ML.NET
context object. Once you’ve got a prediction engine, you simply call the
method Predict to have a prediction out of some input data.

What you pass and what you receive from Predict depends on the
schema supported by the model and the classes defined in the training
phase to represent feature and score columns.

In our example, the TaxiTripDescriptor is the class that describes the
training data. The FarePrediction data is as shown here:
Click here to view code image

public class FarePrediction 
{ 
    [ColumnName("Score")] 
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    public float FareAmount; 
}

Both TaxiTripDescriptor and FarePrediction may go in the same
assembly shared by the training application and the client.

A Better Way to Invoke a Model
In a server, multithreaded environment such as an ASP.NET application, a
web API, or Azure functions, for performance and scalability reasons, you
need to minimize the impact of creating a new instance of the prediction
engine for every HTTP request. Real-life models can be significantly large,
and loading one on each request could negatively impact the total time the
request takes to complete.

The trained model object in the example (the trainedModel variable)
should be made a singleton and shared across the whole application. Its
type, in fact, is ITransformer, which is thread-safe and can be safely
declared as a singleton or a global variable. If you make it a singleton,
however, you can easily plug it into the dependency injection framework of
ASP.NET Core. In a desktop application, instead, you can just treat it as a
global reference.

An even bigger issue is the creation of the prediction engine. The
method CreatePredictionEngine is relatively time-consuming, and calling
it on every request might affect the overall performance. Worse yet, the
returned type, the PredictionEngine type, is not thread-safe, so the
singleton shortcut is not an option here. Again, this is probably not a big
deal for a desktop application, but it’s a relevant drawback for a web
application. For multithreaded applications, like web applications, a more
advanced approach is recommended, such as using object pooling.

The good news, though, is that the ML.NET team has created an
ASP.NET Core integration package that provides a prediction engine pool
out of the box that is well-integrated with the dependency injection layer in
ASP.NET Core. As a result, here’s the recommended way to call the
prediction engine from within an ASP.NET Core application.

In Startup.cs, you add a pool of prediction engines for each scenario: in
this case, one engine for predicting the time (length) of ride and one for



predicting the cost of the ride.
Click here to view code image

public void ConfigureServices(IServiceCollection 
services) 
{ 
    // Other startup code here 
    // ... 
  
    services.AddPredictionEnginePool<TaxiTrip, 
TaxiTripTimePrediction>() 
            .FromFile(modelName: "TimeModel",  
                      
filePath:"ml/TaxiFair.Model.Time.zip",  
                      watchForChanges: true); 
    services.AddPredictionEnginePool<TaxiTrip, 
TaxiTripFarePrediction>() 
            .FromFile(modelName: "FareModel",  
                      
filePath:"ml/TaxiFair.Model.Fare.zip",  
                      watchForChanges: true); 
}

The controller takes the following form:
Click here to view code image

public class FareController : Controller 
{ 
    private readonly FarePredictionService 
_service; 
  
    public FareController( 
        PredictionEnginePool<TaxiTrip, 
TaxiTripTimePrediction> timeEngine, 
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        PredictionEnginePool<TaxiTrip, 
TaxiTripFarePrediction> fareEngine) 
    { 
        _service = new 
FarePredictionService(timeEngine, fareEngine); 
    } 
  
    public IActionResult 
Suggest(TaxiTripEstimation input) 
    { 
       var response = _service.DoWork(input); 
       return Json(response); 
    } 
}

The two prediction engine pools are injected into the controller, and the
controller injects in a worker service class that ultimately does the job:
Click here to view code image

public TaxiTripEstimation 
DoWork(TaxiTripEstimation input) 
{ 
    var trip = new TaxiTrip() 
    { 
        VendorId = "VTS", 
        RateCode = input.CarType.ToString(), 
        PassengerCount = 
input.NumberOfPassengers, 
        PaymentType = input.PaymentType, 
        TripDistance = input.Distance, 
  
        // To predict 
        FareAmount = 0, 
        TripTime = 0 
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    }; 
  
    // Predict time 
    trip.TripTime = 
_timeEngine.GetPredictionEngine(modelName:"TimeMo
del") 
                               
.Predict(trip).Time; 
  
    // Predict amount 
    trip.FareAmount = 
_fareEngine.GetPredictionEngine(modelName:"FareMo
del") 
                                 
.Predict(trip).FareAmount; 
    
    // Prepare for UI 
    input.EstimatedFare = trip.FareAmount; 
    input.EstimatedTime = trip.TripTime; 
    input.EstimatedFareForDisplay = 
TaxiTripEstimation.FareForDisplay(trip.FareAmount
); 
    input.EstimatedTimeForDisplay = 
TaxiTripEstimation.TimeForDisplay(trip.TripTime); 
    return input; 
}

Now, imagine you use this prediction model in a taxi app on the go. As a
user, are you really interested in the exact fare amount, or do you want a
human-readable price range, such as $5 to $10? Likely, you want the latter.
As a developer, you also would probably be more comfortable if you
returned a range rather than a precise value such as $7.36. Here’s how to
make the actual numerical prediction more user-friendly:
Click here to view code image
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input.EstimatedFare = trip.FareAmount; 
input.EstimatedFareForDisplay = 
TaxiTripEstimation.FareForDisplay(trip.FareAmount
); 
return input;

The preceding code goes right at the bottom of the implementation of
the Predict method that was shown earlier. The user will receive the exact
prediction and a human-readable string for display.

As a final note, from the client application’s perspective, there’s only
one more dedicated class to call, and there’s no real perception of artificial
intelligence. It’s just (slightly more intelligent) code!

The ML Devil’s Advocate
Regression, as well as classification, is a huge area that encompasses
myriad practical problems. In this chapter, we showed how to implement
the apparent magic of predicting the cost of a taxi fare in a specific city of
the world. But the fundamental question remains: Is this sufficient to say
that you’re making use of AI in your application? The answer is both yes
and no.

Yes, this is AI because you’re using models trained with machine
learning. No, because with a single shallow learning algorithm—by
construction—you can do only small things and subsequently address only
relatively simple problems.

Simple and Linear Regression
Regression is the task of predicting a continuous value, whether a quantity,
a price, or a temperature. Here are some examples:

Price prediction (houses, stocks, taxi fares, energy)
Production prediction (food, goods, energy, availability of water)
Income prediction



Time series forecasting
Time series regression is interesting because it can help understand and,

better yet, predict the behavior of sophisticated dynamic systems that
periodically report their status. This is fairly common in industrial plants,
where thanks to IoT devices, there’s plenty of observational data. Time
series regression is also commonly used in the forecasts of financial,
industrial, and medical systems. Time series regression is so interesting that
ML.NET provides a dedicated task that we cover in Chapter 8,
“Forecasting Tasks.”

To help put in perspective the different scopes of simple and not-so-
simple prediction scenarios, let’s consider (again) the problem of price
prediction.

Linear regression is great for quick-and-dirty predictions, such as
estimating the time and cost of a taxi ride, though it would have a very
limited effect on the people and the business. Predicting the price of houses
(or, worse yet, stocks) is a different story. It’s quite another to make long-
term predictions about the variation of the prices in a given geographical
area.

Nonlinear Regression
Linear regression is not applicable to all real-world scenarios because of its
structural rigidity and the inherent linearity of the involved mathematical
models. Hence, it’s often used as a baseline model to address basic
scenarios and tasks or to demonstrate the need for a different approach.
Instead, regression implemented via neural networks has the advantage of
nonlinearity, and data modeling flows closer to reality.

How are real-world prices predicted on various length timelines?
For example, forecasting the price of energy is a problem that requires a

cascading approach. Energy is a multifaceted commodity contributed by
conventional and renewable sources; predicting the price the customer will
pay requires knowing the dynamics of prices for all the possible sources—
hence, the cascading approach. In addition, the price of some energy
sources depends on the price of other sources and raw materials. This



requires sufficient data from a number of different areas of the business
world, cleaned and synchronized.

In machine learning, to reduce the error and return an acceptable and
usable prediction, you must be able to model real-world processes and data
flows. The world is continuous, not discrete. Although sometimes
discreteness is a good enough approximation.

Summary
This is the first chapter of the second part of the book fully dedicated to
ML.NET tasks. An ML.NET task is a catalog object that exposes all that a
developer may need to build and train a machine learning model for a
specific class of problems. In this chapter, we went through the canonical
steps of machine learning projects as proposed by the ML.NET library and
focused on regression (prediction) tasks.

We showed how to massage sample data coming from thousands of taxi
ride transactions into a dataset that could make acceptable predictions about
the cost of a ride in a restricted given geographical area.

As this is the first of multiple, similarly structured chapters, we
presented more general ML.NET information even beyond the strict needs
of the Regression tasks. We covered data loaders (files, databases,
collections), validation methods (k-fold, holdout), the foundation of feature
engineering (normalizers, one-hot encoding), and the composition of data
processing pipelines.

Then we moved to consider the algorithms available for a regression
task and showed the details of how to build, run, and evaluate a training
pipeline. We discussed saving a model and loading it into a client
application, specifically an ASP.NET Core application. In doing so, we
touched on the topic of smoothly integrating machine learning predictions
into the user interface of the client application and what it takes to
effectively host ML.NET prediction engines in a server-side, multithreaded
application.

Finally, we introduced the “Machine Learning Devil’s Advocate”
sections, which appear in all the chapters in the second part of this book.
These sections aim to provide a deeper and broader vision of the class of



problems addressed in the chapter and put them into a real-world
perspective. There’s a huge difference (in business and performance)
between guessing how much a taxi ride could cost to a traveler and
predicting how much electricity would cost in the coming days for, say, an
energy utility to plan maintenance and shut down of power plants.

In Chapter 5, “Classification Tasks,” we’ll take the same approach for
classification problems.



Chapter 5

Classification Tasks

“A man provided with paper, pencil, and rubber, and subject to
strict discipline, is in effect a universal machine.”

—Alan Turing, “Intelligent Machinery: A Report by A. M. Turing,” 1948

For humans, classification is the act of systematically arranging objects in
homogeneous groups according to a number of established criteria. For
software applications, it is nearly the same. Machine learning would be no
different, except that the number of expected groups gives the problem
different connotations, leads to different approaches to the solution, and
leads to different algorithms.

In particular, if the number of expected groups in which analyzed
objects will be partitioned is exactly two, then the problem goes under the
name of binary classification. Otherwise, when the number of output
groups is larger than two, the problem becomes multiclass classification.

In ML.NET, there are two distinct ML tasks: one for binary and one for
multiclass classification.

Let’s focus on binary classification first.

The Binary Classification ML Task
Binary classification is a very common task in everyday life that people
often accomplish without even realizing they’re doing it. Any time you are
posed with a yes/no question, you are using binary classification. A real-
world example is whether a given email should be classified as spam or a
financial transaction should be flagged as suspicious.



However, in this chapter, we focus on sentiment analysis, which tries to
train the model to classify the feedback received about a given item as
positive or negative.

In ML.NET, the BinaryClassification task is exposed as a catalog
property from the ML context object.

Supported Algorithms
As with any ML task, the BinaryClassification task is a catalog with three
main endpoints: a list of training algorithms (property Trainers), an
evaluator to score results of training against the configured error function
(method Evaluate), and a cross-validator tool (method CrossValidate).

In addition, the BinaryClassification task supports two variations of
Evaluate and CrossValidate methods: normal and noncalibrated.
Therefore, a new concept appears with the task—the calibrator.

Available Trainers
The binary classification task provides a few algorithms, all of which
appear in the standard library of trainers without requiring additional NuGet
packages. Overall, you can train a binary classification model using at least
the following algorithms. (See Table 5-1.)

TABLE 5-1 Binary Classification Algorithms in ML.NET

Algorithm Method

AveragedPer

ceptron

Based on the Perceptron classification algorithm

FieldAwareF

actorizatio

nMachine

Based on the factorization machine strategy for supervised 
learning



Algorithm Method

LbfgsLogist

icRegressio

n

Based on the linear logistic regression strategy

LdSvm Based on the Local Deep (LD) Support Vector Machine 
(SVM) approach; specializes in non-linear SVM

LinearSvm Based on a Support Vector Machine (SVM) approach 
complemented by a particular descent strategy that 
alternates stochastic gradient and projection steps

Prior Based on the concept of prior probability, namely the 
likelihood that a label is 0/1 regardless of actual features

SdcaLogisti

cRegression

Based on the calibrated Stochastic Dual Coordinate Ascent 
(SDCA) method

SdcaNonCali

brated

Based on a noncalibrated Stochastic Dual Coordinate 
Ascent (SDCA) method

SgdCalibrat

ed

Based on the Stochastic Gradient Descent (SGD) method

SgdNoncalib

rated

Based on noncalibrated Stochastic Gradient Descent 
(SGD) method

Sometimes, a binary classification problem can be reduced to a
simplified version of a linear regression problem in which all values below
or over a given threshold are mapped to one of the binary classes.
Consequently, the algorithms presented in the previous chapter might also
work as binary classifiers and should ideally be added to Table 5-1.

However, the final call on this kind of decision belongs to the data
science team.

Available Calibrators



In classification, calibration means turning classifier scores into values that
indicate the likelihood of some class membership. In ML.NET, for binary
classifiers, a number of predefined calibrator objects can calculate
probabilities from scores and return the likelihood that a data row belongs
to one particular class. Table 5-2 shows the list of calibrators exposed by the
BinaryClassification task.

TABLE 5-2 Calibrators for binary classification in ML.NET

Calibr
ator

Method

Isotonic Based on monotonic calibration

Naïve Based on binning calibration

Platt Based on the popular Platt’s scaling method that applies logistic 
regression model to scores

In classification, getting a direct (binary) answer to whether an object
belongs to a certain class might not be ideal. Sometimes it is more
convenient to calculate the probability that the object belongs to any
available class. Models with this characteristic are referred to as calibrated.

Calibration can be obtained through a number of methods. Isotonic
calibration is the standard method and uses a monotonic logic in which
objects with higher predicted scores are more likely to be positive. Naïve
calibration, instead, follows the binning logic discussed in Chapter 4,
“Prediction Tasks,” for feature engineering. Feature binning turns
continuous values into categorical values by essentially grouping all values
in a range into a dedicated bin. For binary classification, there are only two
possible bins.

Supported Validation Techniques



The BinaryClassification task supports two flavors of k-fold cross-
validation: calibrated and noncalibrated. From the task object, two self-
describing methods let you choose which strategy you want to use.

The CrossValidate method runs cross-validation over the specified
number of folds and returns a tailor-made evaluation object, including
probabilistic metrics.

The CrossValidateNonCalibrated method does the same job except that
its returned evaluation object doesn’t include any probabilistic metrics.

Binary Classification for Sentiment Analysis
A great example of binary classification is sentiment analysis, which is the
process that analyzes text by trying to extract the sentiment hidden in
words. Sentiment analysis can be conducted on any sort of text, including
sentences synthesized from a voice conversation.

The intended output of the analysis is generally aimed at finding
whether the mood is positive or negative, which is what makes it a perfect
fit for binary classification.

A Look at the Available Training Data
In the sample application, the dataset consists of a few thousand sentences
extracted from the feedback module of a restaurant website. The input file
being processed is a text file with a very simple schema: a sentence and a
0/1 value separated by a tab character.

A 0 flags the comments considered negative, whereas a 1 marks those
considered positive. The goal of the binary classifier is to evaluate a string
of text and return 0 or 1, qualifying the text as positive or negative.

It is important to note that the sample dataset we’ll be working on only
contains sentences that rate a restaurant. In general, any sentence can be
associated with a number of like/dislike scenarios. A blind, context-
insensitive interpretation can easily lead to a wrong result. In other words,
the same sentence might be labeled as driving positive sentiment when



referring to a restaurant, but it might not be labeled positive when referring
to another subject. For example, consider the following sentence:

This vacuum cleaner sucks a lot of dirt.
This would be a positive evaluation for any machine learning model

targeting some types of household appliances, specifically vacuum
cleaners. However, the presence of the words “sucks” and “dirt” might
easily lead to some negative sentiment if applied brutally and blindly to any
text or to a different context than cleaning appliances.

Schema of the Data
The sample code uses the following familiar lines to load the text file:
Click here to view code image

var filePath = ...; 
var mlContext = new MLContext(); 
var dataView = 
mlContext.Data.LoadFromTextFile<SentimentData>
(filePath);

Remember, loading training data from a file is the easiest way to get
started and the fastest (and most comfortable) way to proof a concept.
However, beyond the boundaries of data science is the territory of data
engineering, where loading and processing data can only be a highly
automated process. Here, ML.NET can help immensely by bringing the
power of database loaders and the flexibility of in-memory collections.

Any machine learning model is characterized by a schema that defines
the data flowing in and out of the model once it is trained and deployed.
The preceding code—loading data from a text file—is a generic method of
working on the SentimentData class. The layout of this class shapes the data
being read from the data source.

As mentioned, we’re talking about a tab-separated line of text resulting
in two columns of data. Here’s the implementation of the SentimentData
class we’ll use to build up the data view:
Click here to view code image
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public class SentimentData 
{ 
    [LoadColumn(0)] 
    public string SentimentText; 
  
    [LoadColumn(1), ColumnName("Label")] 
    public bool Sentiment; 
}

The LoadColumn attribute (not necessary if data is loaded from a
database) maps the column’s ordinal position to a class property. The first
column of data goes into the SentimentText property, and the second one
(feasible values 0/1) sets the Sentiment property.

Note that we’re also using the ColumnName attribute to declaratively
rename the Sentiment property as Label for the machine learning pipeline.
Note that in the previous example, we used a data transformation and the
CopyColumns method.

Partitioning the Dataset
For the regression example discussed in the previous chapter, we assumed
that we had two distinct datasets: one for training and a smaller one for
testing. This configures a holdout scenario. In the regression example, we
had these distinct datasets coming in as independent files from the start.

We then also discussed how to train using a cross-validation approach
where initially, you hold just one dataset, and then you must split it into
training and testing datasets. The cross-validation approach—specifically
the k-fold method—partitions the dataset into a fixed (K) number of groups
and uses all but one for training; the remaining one is used for testing.
Furthermore, the cross-validation method rotates the groups so that all data
sections have been used for both training and testing.

Here are some general—and to some extent, abstract—definitions for
machine learning datasets:

Training dataset A training dataset is the data from which the
machine learning algorithm learns and discovers any hidden



relationships between the features and the target value.
Validation dataset A validation dataset is the data used to validate
the model during the training phase. Sometimes, the validation
dataset is a subset of the training set, although it can be a different
one that’s as large as the training dataset. The validation dataset is
mainly used to fine-tune the model hyperparameters. In software
development jargon, a validation dataset finds a close analogy with
unit tests.
Test dataset A test dataset is the data used for an unbiased evaluation
of the trained model. It provides the measure of how the model will
work in the real world. Values and distribution of the test dataset must
be comparable to training. In software development jargon, this is
analogous to acceptance tests. In literature, this concept is sometimes
referred to as a holdout dataset. Test (holdout) datasets should never
be used to make decisions about which algorithms to use or for
tuning the selected algorithm. It’s just a plain test of how good the
model would be in production. It just gets you a binary answer. Of
course, if the answer is negative enough, you might want to
reconsider the model (and the algorithm and/or its parameters), the
test (holdout) dataset, or both.

 Note
The model testing we’re referring to here is comparable to unit tests
in programming languages like Java and C#. The ultimate purpose
of unit tests is not to ensure the application satisfies all the
customers’ requirements. More simply, its purpose is to keep the
team confident about what they’re doing and have a formidable tool
to catch regression errors later if there is some deep refactoring. It’s
nearly the same here—the testing dataset only provides a necessary
measure of quality, but there is no guarantee the model will perform
that well when facing production data.



Validation Set and Testing Set

The terms validation dataset and testing dataset are often used
interchangeably in literature, as we have done here.

We used (and will use) the term testing dataset to refer to, more
abstractly, a validation set—namely, a dataset used to validate the
model within the training application. A testing dataset refers to yet
another level of tests that is triggered when the model is determined
to be valid (passed all validation tests) just before putting it into
production.

We won’t be referring to this scenario in the book. In this book, a
testing dataset actually maps to the definition of a validation dataset
shown above.

Programmatic Holdout
In this binary classification example, we assume to have a single dataset file
coming from some existing data warehouse and split it into training and
testing datasets programmatically using the methods in the ML.NET
framework. A common way to split data is by taking 80 percent of the
dataset for training and leaving the remaining 20 percent of the dataset for
testing.

The split can be done manually before getting into the training phase
and would generate two distinct files, as described in Chapter 4. A manual
split is a flexible solution because it gives you full control over the data
rows that go into each file, though it also raises some serious concerns.

The sore point is that the split must return two truly randomly
distributed datasets.

If you do the split manually, you take this responsibility on your own.
On the other hand, machine learning libraries usually provide ad hoc tools,
and ML.NET is no exception. The Data catalog exposes the TrainTestSplit



method, which takes an IDataView and a percentage and returns a
TrainTestData object.
Click here to view code image

TrainTestData split = 
mlContext.Data.TrainTestSplit(dataView, 0.2);

The percentage you provide (0.2 in the preceding line) indicates the
share of the testing dataset. The net effect of the code is that the dataset
undergoes an 80/20 split where 80 percent of the data is retained for
training and the remaining 20 percent is used for testing. The TrainTestData
class is a mere container object made of two IDataView objects: TrainSet
and TestSet.

Feature Engineering
Machine learning algorithms work on numbers. So, how can they deal with
plain text? The (fairly) obvious answer is, they can’t.

Text Featurization
To enable (binary) classification algorithms, another preliminary step is
required—text featurization. The ML.NET library provides the
FeaturizeText method from the Text catalog, as shown here:
Click here to view code image

var pipeline = mlContext 
    .Transforms 
    .Text 
    .FeaturizeText("Features", "SentimentText");

The method takes the SentimentText column of the dataset and
transforms it into a new column called Features made of an array of float
values. The Features column—required as the input values carried by all
ML.NET trainers—is then added to the transformation pipeline.
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Every value in the array saved to the Features column represents the
normalized count of a discovered n-gram. An n-gram is a contiguous
sequence of n words that appear in the text.

To convert text into numeric values, FeaturizeText uses an instance of
TextFeaturizingEstimator set to its default parameters. (See Table 5-3.)

TABLE 5-3 Text Featurizing Options

Setting Description Defa
ult 
valu
e

CaseMod

e

How to change the case of the text (lower, upper, as-is) Low
er 
case

CharFea

tureExt

ractor

Produces a numerical vector in which each number refers 
to a distinct sequence of n consecutive characters (n-
gram)

n=3

KeepDia

critics

Whether to keep or remove diacritics in text False

KeepNum

bers

Whether to keep or remove numbers from text True

KeepPun

ctuatio

ns

Whether to keep or remove punctuation False

StopWor

dsRemov

er

Indicates how to deal with stop words (words commonly 
filtered out before processing natural language text): 
ignore, default, or custom vocabulary

None

WordFea

tureExt

ractor

Produces a numerical vector in which each number refers 
to a distinct sequence of n consecutive words (n-gram)

n=1



As far as feature extractors are concerned, note that vector numbers
identify the n-gram by the index it has been given in a dictionary the
extractor creates internally.

Let’s do some debugging on the following code to help you get a clear
idea of what this means:
Click here to view code image

var preview = mlContext 
    .Transforms 
    .Text 
    .FeaturizeText("Features", "SentimentText") 
    .Preview(splitDataView.TrainSet);

With a breakpoint placed right after the preceding line of code, you can
inspect the effect of text featurization on the rows of the training dataset. To
make inspection even easier, you can add a call to the method Preview.
Specifically designed for debugging scenarios, this method applies the
transformations to the provided data view and saves the snapshot to a local
variable. (The method Preview is not for production and should only be
used during debugging sessions.)

Snooping into Featurized Text
Figure 5-1 shows a screenshot of the data view as it is being transformed.
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FIGURE 5-1 The effect of text featurization on a sample dataset

After the featurization, the items in the data view are made of four
columns: SentimentText, Label (originally, Sentiment), SamplingKeyColumn



(which has been added for internal purposes during the training/testing
split), and Features (which contains vectors of numbers). Figure 5-1 shows
the content of the Features column for the sample row whose original text
is the following:
Click here to view code image

My tortillas were falling apart from the grease 
and from the large quantity of the meat, cheese, 
and cabbage.

If you expand the content, you find more than one hundred float values,
each one representing the occurrence of n-grams in the content of the
SentimentText column. Note also that values have been normalized in the 0
to 1 range.

Composing the Training Pipeline
The next step is appending a trainer to the machine learning pipeline,
training the model, and evaluating the results. We face the usual hard-to-
answer question: which algorithm?

Selecting the Algorithm
The logistic regression algorithm is one of the trainers you can use from the
BinaryClassification catalog, and it is considered one of the best-fit
algorithms for the problem at hand, or at least the first option to try.
Logistic regression works by modeling the probability of the default class in
the dataset. In our example, the default class is the label value we consider
default (or just more common) between positive or negative.

Here’s the code you need if you go with the logistic regression
algorithm.
Click here to view code image

// Appending the trainer to the pipeline 
(logistic regression algorithm) 
var pipeline = mlContext 
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    .Transforms 
    .Text 
    .FeaturizeText("Features", "SentimentText"); 
    .Append(mlContext.BinaryClassification 
            .Trainers 
            .SdcaLogisticRegression("Sentiment", 
"Features")); 
  
// Fitting the model on the training dataset 
var model = pipeline.Fit(splitDataView.TrainSet);

The logistic regression trainer takes two column names: the name of the
column with correct answers to learn from (Sentiment) and the name of the
column with input values (Features).

Support Vector Machine (SVM) is another binary classification
algorithm you should try. SVM is offered by ML.NET through the method
LinearSvm in the BinaryClassification catalog.

SVM Versus Logistic Regression
Support Vector Machine is quite an intimidating name for what is more or
less the mathematics behind the algorithm. SVM is a supervised algorithm
with a proven success record on both classification and regression
problems. It shines, however, at text classification, spam detection, and
where sentiment analysis is involved. It also performs well when used on
images to recognize regular patterns, such as handwritten notes or digits.
SVM usually delivers accurate responses, even when trained on relatively
small datasets, as long as the data has limited overlapping.

SVM and logistic regression provide nearly the same performance and
the same accuracy on similar datasets. Neither are affected by outliers in
the dataset. Furthermore, both algorithms are linear, so they can be trained
well, even on fairly large datasets.

The interesting thing is that the two algorithms come to their solutions
using radically different approaches. Logistic regression uses a probabilistic
approach and returns the likelihood that a data item falls in the default



class. Instead, SVM tries to find the widest possible separating margin
between data items that fall in each class.

 Note
For more details about the internals of classes of machine learning
algorithms—including their mathematical foundations—you might
want to have a look at Introducing Machine Learning from
Microsoft Press (2020).

Evaluating the Model
In binary classification, the method Evaluate (as well as its twin method
EvaluateNonCalibrated) can be used to get some metrics to evaluate the
quality and accuracy of the algorithm. The following code shows how to
use the trained model to generate predictions based on the test dataset and
how to evaluate. It’s worth recalling the difference between Evaluate and
EvaluateNonCalibrated. The latter returns a metrics object that doesn’t
include any probabilities.
Click here to view code image

// Generate predictions based on the test dataset 
IDataView predictions = 
model.Transform(splitDataView.TestSet); 
  
// Evaluating the model on testing data 
var metrics = 
mlContext.BinaryClassification.Evaluate(predictio
ns, "Sentiment");

The method Evaluate returns a
CalibratedBinaryClassificationMetrics object, which groups a number of
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relevant metrics for the problem.
In particular, the metrics object tells us the proportion of correct

predictions in the test set (regardless of the value, positive or negative). It
also tells us about positive and negative recalls, namely the proportion of
positives (and negatives) detected as positives (and negatives). The
harmonic mean of precision and recall is summarized in the F1-score (or F-
score) metrics.

On the sample test dataset, the logistic regression algorithm returns an
accuracy of more than 85 percent. However, the sample test set returns a
low F-score—about 0.3—whereas the ideal value of the F-score is 1.
What’s the most appropriate reading of these numbers? What should we
do? Change the algorithm? Add or remove transformations? Use a larger
dataset? Again, this is where data science fits in nicely!

If you don’t have the support of an expert team, you can use ML.NET to
take advantage of AutoML, either through the Visual Studio Model Builder
plug-in or via the ML.NET command-line interface (CLI). Provided that
you run it for enough time (not just seconds), AutoML suggests the ideal
algorithm and the set of hyperparameters to use for a given dataset.

Binary Classification Metrics
Table 5-4 briefly defines the measures you might be interested in when
using binary classification.

TABLE 5-4 Common Measures for Binary Classification

M
ea
su
re

Description

Ac

cu

ra

cy

Indicates the percentage of items classified correctly in relationship 
to the entire test set. The ideal value is close to 100 percent.



M
ea
su
re

Description

Pr

ec

is

io

n

Indicates the percentage of positives/negatives classified correctly in 
relationship to the number of predicted positives/negatives. In other 
words, it indicates how many of the positives/negatives detected 
were effectively so. The ideal value is close to 100 percent.

Re

ca

ll

Indicates the percentage of items classified correctly in relation to 
the items in the predicted class. In other words, it indicates the 
percentage of positives/negatives in the dataset correctly detected as 
positives/negatives. The ideal value is close to 100 percent.

F1

-

sc

or

e

Indicates the harmonic mean of precision and recall. It can be 
calculated on each of the options. The ideal value is close to 100 
percent.

The simplest measure to make sense of is accuracy, which just indicates
how often the model makes good predictions, whether positive or negative.
However, a result of, say, 85 percent, can be considered quite good, but it’s
certainly not an enthusiastically good one. At the same time, achieving an
accuracy near 100 percent, especially in a large test dataset, is less than
ideal and probably a sign of overfitting. So, ideally, you want to get close to
100 percent, but not too close.

The metric of accuracy is more than acceptable if the labels are
balanced. However, for imbalanced datasets—those with many “false” and
only a few “true” values or vice versa—you could have a high accuracy but
still have a model that is not well-trained to detect anomalies in the data. In
fact, an imbalanced dataset is typical of anomaly detection scenarios such
as credit card fraud.



When a Combined Metric Helps
The F1-score is a combined metric, meaning it doesn’t represent a direct
measure. Therefore, if accuracy (or precision or recalls) is crucial, it can be
blissfully ignored. F1-score, however, gains importance and comes into
play when the problem at hand doesn’t give strict guidance on the ideal
training approach and when you want to compare multiple algorithms.

For example, the role of the F1-score is crucial when the dataset is
unbalanced, and one of the two scenarios occurs much more frequently than
the other. In the case of unbalanced datasets, it’s all about the importance of
each option for the problem at hand. A good example is fraud detection,
where effectively labeling fraudulent transactions is much more important
than dealing in any way with nonfraudulent transactions. In this case, you
should look at the F1-score only for the more important option and pick the
algorithm that maximizes the value.

However, when the dataset is balanced, F1 can be ignored because, in
the presence of good accuracy, the risk of erroneous classifications is really
low. When both scenarios should be taken into careful account, then the F1-
score should be sufficiently high on both options to be safe about the
quality of the model.

Setting Up a Client Application
Figure 5-2 presents a sample ASP.NET application that consumes the
binary classification model we have just built. An HTML form captures the
text to submit as feedback and invokes a controller action method. The
controller is injected with a prediction engine, as discussed in Chapter 4:
Click here to view code image

// From the ConfigureServices method of 
Startup.cs 
services.AddPredictionEnginePool<SentimentData, 
SentimentPrediction>() 
    .FromFile(modelName: 
"SampleClassify.Sentiment", filePath: 
mlSentimentModelPath);
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The class SentimentPrediction is defined in the next code snippet. The
schema of the class depends on the selected algorithm, which outputs
specific columns. In particular, the (calibrated) logistic regression algorithm
sets two columns—PredictedLabel, holding the Boolean answer, and
Probability, indicating the confidence of the predicted value. Those
columns must be mapped to properties in the SentimentPrediction class
returned by the trained ML.NET model. The trainer also returns a Score
column, which contains a float value that is the raw, unbounded score
calculated by the model from which sentiment and probability are derived.
Click here to view code image

public class SentimentPrediction 
{ 
    [ColumnName("PredictedLabel")] 
    public bool ActualSentiment; 
  
    [ColumnName("Score")] 
    public float ActualScore; 
  
    [ColumnName("Probability")] 
    public float ActualProbability; 
}

The web page in Figure 5-2 receives a JSON-serialized version of the
preceding class and sets up a user interface.
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FIGURE 5-2 A sample ASP.NET application using the binary
classifier

The Multiclass Classification ML Task
Abstractly speaking, binary classification can be seen as a special case of
multiclass classification where there are only two classes to choose from.
Nonetheless, dealing with more than two target classes makes a huge
implementation difference and leads to a distinct family of algorithms.

The same sentiment analysis problem we just approached as a binary
classification instance can be reformulated as a multiclass classification
problem by growing the range of choices—positive, negative, neutral, and
any other level of sentiment that could make sense. The response of a



multiclass classification model is the name of one target class chosen from
a collection of more than two feasible classes.

As weird as it may sound, increasing the number of feasible classes to
choose from dramatically impacts the various steps of the machine learning
pipeline.

Supported Algorithms
Multiclass classification applies to any real-world scenarios in which a data
item must be assigned to an existing category. To train an algorithm, you
provide a sufficiently large set of classified elements and let the algorithm
figure out where the new data item fits better. Unlike clustering (which we
discuss next), multiclass classification is a form of supervised learning,
meaning that the classes to choose from are known in advance.

Multiclass Versus Multilabel

In spite of similar-looking names, multiclass classification is
different from multilabel classification. In particular, multilabel
classification is when a single data item can be assigned to one or
more categories. Assigning multiple genres to a song or product
categorization when a product can fit into multiple marketing
categories is a good example of multilabel classification.

Multilabel is usually approached through binary classification on
tailormade learning pipelines and aptly transformed data. Most
commonly, the solution comes from building a binary classification
model for each of the possible categories and running them in a
composed pipeline.

Available Trainers



At least, you can train a multiclass classification model using the algorithms
shown in Table 5-5. All of them belong to the standard library and do not
require additional NuGet packages.

TABLE 5-5 Multiclass Classification Algorithms in ML.NET

Algorithm Method

LbfgsMaximumEn

tropy

Based on the maximum entropy model

NaiveBayes Based on the Naïve Bayes probabilistic classifier 
method

OneVersusAll Based on the One-Versus-All method

PairwiseCoupli

ng

Based on the One-Versus-One method

SdcaMaximumEnt

ropy

Based on a linear model that returns probabilities 
features belong to a class

SdcaNonCalibra

ted

Based on a linear model noncalibrated to return 
probabilities

If you compare the names of algorithms in this list and in Table 5-1, you
might spot some similarities. In particular, a few algorithms (LbfgsXxx and
SdcaXxx) have different monikers in the two tables: maximum entropy for
multiclass classification and logistic regression for binary classification.

The maximum entropy method is a generalization of the linear logistic
regression and its adaptation to the multiple classes scenario. Let’s take a
slightly deeper look at other families of multiclass algorithms.

The Naïve Bayes Method
At some point, long before machine learning became as popular as it is
now, the scientific community felt the need to add a probabilistic dimension
to classification problems. This brought the definition of Bayes classifiers,



often also referred to as naïve classifiers. Bayesian statistics is the
foundation of this method of classification.

In a nutshell, a Bayesian classifier calculates the probability that a given
set of features belongs to each of a specified set of outcome classes. Not
only does it tell which of the predefined classes a given data item belongs
to, but it also tells the related probability. As expected, all probabilities sum
to 1.

Why is it considered a naïve technique?
This is because such classifiers assume that all the features are

independent from one another. From a purely statistical standpoint, this is a
strong assumption that prevents an effective modeling of the real world.
Yet, naïve Bayesian classifiers work quite well in machine learning,
especially for classification problems and performing the first scan on large
volumes of data.

The One-Versus-All Method
This method reduces multiclass classification to multiple instances of
binary classification. As a result, a binary classifier is trained to give a
yes/no prediction for each target class. Next, for each feature, the binary
classifier runs to predict the likelihood for any given class. Finally, the class
with the highest probability is chosen and returned as the outcome for the
multiclass problem.

In ML.NET, the One-Versus-All method can be used with any of the
available binary classifiers listed in Table 5-1. Interestingly, the
Microsoft.ML.LightGbm NuGet package includes additional binary
classifiers such as LightGbmBinaryTrainer and the multiclass variation
based on the one-versus-all method—the LightGbmMulticlassTrainer
classifier. Both algorithms (binary and multiclass) are based on
LightGBM—an open-source implementation of the gradient-boosting
decision tree method.

The One-Versus-One Method
Also referred to as pairwise coupling, this strategy works by splitting a
multiclass classification problem into a number of binary classification



problems—one per (unique) pair of target classes.
For example, given four classes such as Red, Orange, Yellow, and Green,

the method would run a binary classifier for the following pairs:
Red versus Orange
Red versus Yellow
Red versus Green
Orange versus Yellow
Orange versus Green
Yellow versus Green

One-Versus-One (OVO) predicts the class that wins the most
comparisons. Suppose two (or more) classes get the same number of wins.
In that case, OVO picks up the class with the highest aggregate confidence
obtained, summing over the confidence levels computed by the underlying
binary classifiers.

The OVO method requires more work than One-Versus-All. In fact, it
requires running n * (n– 2) / 2 binary classifiers (where n is the number of
output classes) for an overall O (n2) computational complexity. Instead, the
One-Versus-All method runs the n binary classifiers exactly.

There’s another aspect to consider, though.
OVO triggers more binary classifiers than the One-Versus-All method,

but each classifier is set to work on a smaller dataset that only comprises
the rows having any of the two classes as their target value. Instead, the
One-Versus-All method requires all its binary classifiers to always work on
the entire dataset. The trade-off is given by the actual trainer used by the
binary classifiers. A binary classifier such as SVM doesn’t scale well with
the number of rows. Therefore, if SVM is selected as the binary classifier,
the OVO method is preferable over One-Versus-All regardless of the higher
computational complexity.

Using the Multiclass Classification Task



Classification is about assigning the entity under observation to one of
multiple (more than two) feasible target classes. For an effective result, the
set of feasible labels must be well-defined beforehand, and data must be
organized for supervised learning. In other words, the available dataset must
contain a column with the known answer to let the model learn.

Typical instances of multiclass classification regard large chunks of
textual information such as emails, feedback notes, or product descriptions
to be cataloged into one of a few known categories that make sense for the
business scenario. Likewise, images, voice, and videos can be processed for
multiclass classification. The specific nature of the source, though, opened
up a whole new algorithmic space—object detection and image
classification—which we touch on later in the book.

A Look at the Available Data
The sample application we discuss here covers a common scenario—
cataloging the feedback that a company may have received through a
number of possible channels: websites, bots, social networks, and even
tickets entered into some system by some operator following up on
customers’ phone calls.

As you can guess, for a classification model to be well integrated in a
company’s business processes, a fully automated collection system must be
in place to convey all the feedback received from a variety of channels into
a single data warehouse. Data that flows in from users and customers must
be cleaned up, structured, anonymized, and then stored. Next, once run
through the classification system, the text of the feedback is analyzed and
classified as appropriate.

The data we work on in the example is a large text file made of a few
tab-separated columns, including description and type of feedback. The
dataset comes from the repository of ML.NET samples and contains a
collection of over 13,000 GitHub issues.

Schema of the Data



The C# class that describes the features we’re considering for multiclass
classification is shown in the following code. The property we want the
model to predict is Area. We also ignore the ID column in the dataset:
Click here to view code image

public class TicketData 
{ 
    [LoadColumn(1)] 
    public string Area { get; set; } 
  
    [LoadColumn(2)] 
    public string Title { get; set; } 
  
    [LoadColumn(3)] 
    public string Description { get; set; } 
}

Figure 5-3 shows a glimpse of the source dataset in Microsoft Excel. It’s
a 15 MB tab-separated TSV file; distinct values in the Area column form
the list of target classes. There are 22 options.

The columns Title and Description describe—with different levels of
detail—an issue in a specific technical area. We expect the final mode to
take the title and description and suggest the most appropriate area.
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FIGURE 5-3 Content of the dataset viewed in Microsoft Excel

Featurizing Text Columns
Loading the data into a new ML.NET data context is in no way different
from what we have seen in previous examples. You can use file or database
loaders depending on the actual storage location of the data:
Click here to view code image

var filePath = ...; 
var mlContext = new MLContext(); 
var dataView = 
mlContext.Data.LoadFromTextFile<TicketData>
(filePath);

Text properties such as Title and Description need to be featurized—a
necessary step to enable the training algorithm to learn the relevance of
words:
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Click here to view code image

var pipeline = mlContext 
    .Transforms 
    .Text 
    .FeaturizeText("TitleFeaturized", "Title") 
.Append(mlContext 
    .Transforms 
    .Text 
    .FeaturizeText("DescriptionFeaturized", 
"Description"));

The FeaturizeText method adds instructions to the pipeline to create
two new columns from the values in Title and Description.

Mapping Target Classes to Numerical Values
Most of the time, target classes are just text, as is the case with the Area
column. Therefore, one more step is required: mapping the nonnumerical
column to unique numbers for the ease of prediction. We face a similar
problem in Chapter 4 while converting the text describing the payment
mode of the taxi ride. In that case, we use the one-hot encoding technique.

One-hot encoding works beautifully for categorical data (sort of C#
enumerated types) because it creates additional 0/1 columns for each
possible categorical value. One-hot encoding is acceptable as long as the
options are limited to just a few. Multiclass classification (and the Area
column) is a different story because a multiclass column can take hundreds
of distinct values—or even thousands for large datasets. For the 15 MB
we’re considering here, there are just 22 distinct values. One-hot encoding
is highly problematic for handling a large number of features. Therefore,
we have to opt for adding a new column to map each distinct value in the
Area column to a distinct numeric value, typically a progressive index:
Click here to view code image

// Map input column "Area" to output column 
"IndexOfArea" 
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pipeline.Append(mlContext.Transforms.Conversion.M
apValueToKey("Area", "IndexOfArea"));

The IndexOfArea column ends up holding values like 1, 2, and 3 for each
distinct value found in the Area column.

Composing the Training Pipeline
It’s that time again! We need to choose a trainer and append it to the
ML.NET learning pipeline to train the model and evaluate its results. Which
algorithm should we start with?

 Note
Model training is made of several logical levels, and the meaning of
business terms being used is sometimes slightly different when not
blurred in different contexts. For example, an algorithm refers to the
sequence of steps that, following some mathematical technique,
produces an executable computation graph—the model. Different
algorithms produce different models. In ML.NET, the same
algorithm can be applied to different scenarios, referred to as tasks.
For example, methods based on the Stochastic Dual Coordinate
Ascent algorithm are available to work for binary classification,
multiclass classification, and regression. In each scenario, however,
the output of the algorithm is interpreted differently. The layer of
code that ties a specific algorithm with the appropriate interpretation
for a given task in ML.NET takes the name of a trainer.

Selecting the Algorithm
Multiclass classification is a special scenario. Most of the trainers available
require multiple passes on the training dataset. To avoid reloading the same



data over and over from the file on disk, ML.NET provides the tools to
force the algorithm to work on cached data within a given pipeline. The
primary tool is the method AppendCacheCheckpoint. Bear in mind that the
cache checkpoint must be added to the pipeline before the trainer is
appended.

To add a cache, you build the chain of estimators in the data processing
pipeline as shown here:
Click here to view code image

var dataPipeline = 
_mlContext.Transforms.Conversion.MapValueToKey("I
ndexOfArea", "Area") 
      
.Append(_mlContext.Transforms.Text.FeaturizeText(
"Title", "TitleFeaturized")) 
      
.Append(_mlContext.Transforms.Text.FeaturizeText(
"Description", "DescriptionFeaturized")) 
      
.Append(_mlContext.Transforms.Concatenate("Featur
es",  
                       "TitleFeaturized", 
"DescriptionFeaturized")) 
      .AppendCacheCheckpoint(_mlContext);

 Note
All in all, a cache can be used for small or medium datasets. When
you are dealing with large datasets, you must not use cache. Here, a
large dataset means it is intended to be larger than the machine’s
memory, which is pretty common with real-life datasets. In this case,
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most trainers will be streaming data from the source (file or
database) as needed while training.

Which algorithm should we use?
As in Table 5-3, the Trainers collection on the

MulticlassClassification catalog provides several options. However,
most of the algorithms work by training one binary classifier for each class
or combination of classes. This is the approach taken by the OneVersusAll
and PairwiseCoupling trainers. Repeated use of a binary classifier,
however, could be less than ideal performance-wise if the client application
only needs a default/suggested value to categorize a new data item.

Another option is the NaiveBayes algorithm.
Based on probabilistic theory, this trainer is a valid option for small

datasets and also for some quick categorization that might be necessary for
a larger and more sophisticated learning pipeline. For example, think of an
anomaly detection model aimed at flagging fraudulent transactions. Given
the large volumes of transactions flowing in, the majority of which are fine,
a Bayesian filter at the gate may widely simplify any further learning,
whether it happens via other shallow learning algorithms or neural
networks.

For multiclass scenarios, a common way to start is using a linear
algorithm such as the Stochastic Dual Coordinate Ascent (SDCA) trainer.

Linearity Is King
A linear algorithm generates a linear combination of the input data and a set
of weights. The training effort is then aimed at finding the ideal weights to
complete the linear formula. For a linear algorithm to work effectively, all
features should be normalized to avoid one having more influence over the
result than others. In general, linear algorithms are cheap to train and fast to
predict. Given their inherent linearity, they also scale well with the number
of features and the size of the training dataset. It is also worth noting that
linear algorithms perform multiple passes over the dataset. Hence, if the



size of the dataset allows it, you might want to cache it in memory for a
better training performance.

Let’s opt for the SdcaMaximumEntropy trainer. The algorithm receives the
name of the (numerical) column with the known answers and the name of
the column (aptly created) with all the input values.
Click here to view code image

var trainer = mlContext 
     .MulticlassClassification 
     .Trainers 
     .SdcaMaximumEntropy("IndexOfArea", 
"Features");

SdcaMaximumEntropy is the calibrated version of the SDCA algorithm. If
you’re not interested in the probability of the choice, you can opt for the
noncalibrated version.

Switching Back to Text
There’s a final missing piece to have in the pipeline. Earlier in the data
processing pipeline, the names of the target classes were turned into
numbers using the MapValueToKey converter. We now need to add the
reverse functionality to the training pipeline so that the predicted numerical
value (the index previously assigned to any target class) can be converted
back to a human-readable name.
Click here to view code image

// Map the index of the predicted label to the 
property with the [PredictedLabel] attribute 
// in the prediction class 
var trainingPipeline = dataPipeline 
        .Append(trainer) 
        
.Append(_mlContext.Transforms.Conversion.MapKeyTo
Value("PredictedLabel"));
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A call to MapKeyToValue will do the reverse job.

Evaluating the Model
The SDCA algorithm combines several of the best properties and
capabilities of logistic regression and SVM algorithms and, in most cases, is
a very good fit for multiclass problems. However, how do you determine if
a multiclass model is good enough for the problem at hand? Let’s grab
some metrics.
Click here to view code image

// Train the model 
ITransformer model = 
pipeline.Fit(trainingDataSet); 
  
// Grab some metrics 
var testMetrics = mlContext 
      .MulticlassClassification 
      .Evaluate(model.Transform(testDataSet));

The Evaluate method returns a MulticlassClassificationMetrics
object. Table 5-6 lists some of the most used metrics reported by the object.

TABLE 5-6 Some Metrics for Multiclass Classification

Property Description

ConfusionM

atrix

Returns the confusion matrix for the classifier

LogLoss Indicates the mean of the log loss values calculated for each 
class

LogLossRed

uction

Indicates the percentage of the advantage the classifier 
provides over a random prediction
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Property Description

MacroAccur

acy

Indicates the average of the F1-score calculated for each 
class

MicroAccur

acy

Indicates the F1-score for all predictions made by the 
model

PerClassLo

gLoss

Gets the log-loss of the classifier for each class

Both micro- and macro-accuracy refer to the harmonic mean of
precision and recall (F1-score). Micro-accuracy refers to the whole set of
predictions, whereas macro-accuracy considers classes individually. In
general, micro-accuracy is preferable if you have a large dataset with some
relevant degree of class imbalance (that is, many more examples of one
class than of other classes). Macro-accuracy, instead, counts more if you are
interested in evaluating the model’s performance on the various classes,
including those with few occurrences in the training dataset.

The LogLoss metric measures the average level of uncertainty about the
results of the classifier. The lower the value, the best. The ideally lowest
possible value is 0. Figure 5-4 presents some LogLoss values reported for all
the classes in the sample dataset. The average is 0.91.



FIGURE 5-4 Values of the LogLoss metric for all the classes in the
sample application

Accuracy refers to the quantity of errors, and loss refers more to the
quality of errors and how huge they were. Hence, low macro-accuracy and
high loss denote large errors on a lot of data, which is the worst-case
scenario. On the contrary, low accuracy but low loss denotes small errors
on a lot of data. In case of great accuracy, you have few errors but as large
as the loss amount indicates.

Looking at the Confusion Matrix
Yet another tool to evaluate the performance of a classifier is the confusion
matrix. The matrix combines predictions and labels on the rows and



columns of a square matrix, as shown in Figure 5-5.

FIGURE 5-5 A sample confusion matrix for a multiclass classifier

The values in the columns (for example, Green) indicate how many
times elements in the class have been predicted as any of the values in the
rows. The matrix in the figure indicates that an Orange input was
recognized twice as Green, three times as Orange, and once as Red. The
MulticlassClassificationMetrics object exposes a property called
ConfusionMatrix that gathers all values for such a matrix. In the sample
application, the matrix is 22 by 22. The matrix is represented by an
ML.NET class named ConfusionMatrix with predefined properties to
calculate precision and recall on a per-class basis. (See Table 5-7.)

TABLE 5-7 Properties of a Confusion Matrix

Propert
y

Description

Counts Returns an array of arrays, in which every element refers to a 
row and contains an array of values for each of the columns



Propert
y

Description

NumberOf

Classes

Indicates the dimension of the matrix (number of 
rows/columns)

PerClass

Precisio

n

Returns an array with the precision calculated for each class

PerClass

Recall

Returns an array with the recall calculated for each class

As a reminder, recall indicates the percentage of true class positives the
model predicts with respect to the total number of actual, real positives
found in the dataset for the given class. The precision, instead, refers to the
percentage of true class positives the model predicts with respect to the
total number of positives detected for the given class. For example, suppose
a dataset contains images of 10 real cats, but the model only identifies 7 of
them as cats. Of these, only 4 are real cats; the other 3 are, say, rabbits
mistaken for cats. In this case, the precision of the model is 4/7, whereas
the recall is 4/10.

Setting Up a Client Application
In Figure 5-2, we presented a sample application showcasing the binary
classifier. The same application is now extended to incorporate some action
that triggers the multiclass classifier. (See Figure 5-6.)

Written in ASP.NET, the web page contains an HTML form that posts
back to a controller action method which, in turn, ends up invoking the
trained model.
Click here to view code image

// Method belonging to a controller class which 
is injected all necessary prediction engines 
public IActionResult 
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SuggestTicketClassification(SubmittedTicket 
input) 
{ 
    // The _service object is an instance of a 
helper service class that receives the  
    // prediction engine(s) references through 
the constructor. 
    var response = 
_service.MulticlassPrediction(input); 
    return Json(response); 
}

The response variable is an instance of the TicketPrediction class
created by the following code:
Click here to view code image

// This method belongs to a service class invoked 
from the controller 
public TicketPrediction 
MulticlassPrediction(SubmittedTicket input) 
{ 
    var modelInput = new TicketData 
    { 
        Title = input.Title, 
        Description = input.Description 
    }; 
  
    // The service class this method belongs 
received the _ticketEngine object below 
    // through the constructor. 
  
    // Predict class 
    var prediction = 
_ticketEngine.Predict("SampleClassify.Ticket", 
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modelInput); 
    return prediction; 
}

The TicketPrediction class is the following:
Click here to view code image

public class TicketPrediction 
{ 
    [ColumnName("Score")] 
    public float[] ActualScores { get; set; } 
  
    [ColumnName("PredictedLabel")] 
    public string Area { get; set; } 
}

Serialized to JSON, an instance of TicketPrediction lands in the
browser and produces the output of Figure 5-6.
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FIGURE 5-6 Multiclass classification in an ASP.NET application

Managing Multiple Prediction Engine Pools
As stated earlier in the book, in a server and multithreaded environment
such as ASP.NET using a prediction engine object pool helps performance
significantly. Each application pool, however, is strictly defined in terms of
input and output classes. What if you have multiple models with different
input and output classes?

In Startup.cs, you are not allowed to place multiple distinct calls to the
AddPredictionEngine middleware, but you have to resort to following
approach:
Click here to view code image
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services.AddPredictionEnginePool<SentimentData, 
SentimentPrediction>() 
    .FromFile(modelName: 
"SampleClassify.Sentiment", filePath: 
mlSentimentModelPath) 
    .Services 
    .AddPredictionEnginePool<TicketData, 
TicketPrediction>() 
    .FromFile(modelName: "SampleClassify.Ticket", 
filePath: mlTicketModelPath);

Finally, note that the FromFile method also has one overload that
watches the model file path for changes and a companion method—FromUri

—which can load the model from a URL.

The ML Devil’s Advocate
Together regression and classification cover nearly the whole set of
practical problems for which a more intelligent solution might be desirable.
Classification, in particular, takes a huge area that encompasses myriad
practical problems in the form of binary, multiclass, or even multilabel
classification.

As a user, you have a more pleasant experience when the page indicates
it understood your input and provides either positive or negative feedback
or some automatic (and hopefully faithful) categorization of your tickets.
As a developer, it’s mostly a matter of getting familiar with a few more
classes and methods and taking advantage of the model that someone else
(or your team) created. Finally, as a data scientist, it’s mostly about the data
you have available and how you’re able to think about transformations. But
here comes the fundamental question—again:

Is this sufficient to say that you’re making use of AI in your application?
Again, the answer is mixed.

Yes, you’re using AI because you’re using models trained with machine
learning. However, the answer is also “no” because you can do only small



things and consequently address only basic tasks with a single shallow
learning algorithm.

The Many Faces of Classification
In the end, classification is an easy concept to grasp. It refers to a modeling
problem in which you’re given sample data and you predict the category it
belongs to in a specific context. From a pure modeling perspective, all that
classification requires is a training dataset with (really) many examples of
inputs and outputs to learn from.

That said, you should be aware that there is no known super theory that
explains how to map algorithms and classification problems. Hence, it is
generally recommended that everyone start with experiments and discover
which algorithm and related configuration leads to the most acceptable
performance for the problem at hand.

Everyone? Including experts?
Yes, especially experts do that because they know that nothing is easy,

and all you want is modeling input toward a realistically appropriate
prediction.

Classification is a very generic term—the more you raise the abstraction
level, the more complex the model’s classification. Determining whether
the text of an email makes it qualify for the spam folder is one thing, but
it’s quite another to classify an image or a video frame. It’s conceptually the
same classification task, but the underlying data (and its internal intricacy)
is quite different and makes for radically different approaches.

Let’s now reconsider the problem of sentiment analysis that we tackled
in this chapter with a basic logistic regression algorithm.

That is probably enough if you just want to give some nice visual
feedback to a person who leaves a comment on your website (or for a quick
and naïve count of good/bad feedback for internal purposes). But what if
the entire company is exposed to the quality of automatic sentiment
analysis? Think of a customer care service, for example!



Another Perspective on Sentiment Analysis
Sentiment analysis can certainly be solved using a shallow learning
algorithm, whether logistic regression trainer or SVM. SVM, in particular,
is a great choice if you want a more accurate response with various levels of
sentiment, such as poor, mediocre, passable, good, great, or outstanding.
Logistic regression is a valid candidate if you’re looking for a binary
answer, such as good or bad.

In both cases, the quality of the response depends primarily on the size
of the training dataset. However, the gears of shallow learning algorithms
might not be able to deal properly with rhetorical figures, such as
euphemisms, litotes, hyperboles, oxymorons, and in general, anything that
is an understatement or overstatement.

At any rate, a clear difference of learning power exists between shallow
and deep algorithms. For sure, a neural network has the potential to learn to
predict a more accurate response than any other family of algorithms.
Sentiment analysis is a delicate matter in which a too sharp response may
sometimes be pointless. Therefore, a neural network sounds like a savvier
option than a plain classifier when the accuracy of the response is critical
for the decision taken based on the response.

The cost of a solution based on neural networks is higher than the cost
for a shallow algorithm. But what if you embark on shallow development,
and you hardly get the quality you expect? You can insist on changing
configuration, tightening screws, and greasing the gears, but all of this
would come at some extra cost that just adds up to the total.

There are no certain rules in machine learning. And expecting to find the
silver bullet in a regular weapons shop is, well, unrealistic. But even
unrealistic things sometimes just happen!

Summary
In this chapter, we presented two ML tasks available in ML.NET: the
BinaryClassification and MulticlassClassification catalogs. After
briefly presenting the public API of both objects, we went through the



canonical workflow of training and using a machine learning model that
takes advantage of the services of the two ML tasks.

In the first part of the chapter, we discussed binary classification and
went through data loading, validation, and feature engineering for a
sentiment analysis problem. We then presented supported algorithms and
their high-level pros and cons. Packaging of the model and using it from
within a sample ASP.NET Core application completed the section.

The second part of the chapter was instead dedicated to the multiclass
classification problem, and we went through the same workflow and steps
for another family of problems.

Finally, the Devil’s Advocate section took a deeper look at the sentiment
analysis problem, particularly the impact that a poor prediction can have on
the decisions that people (such as executives) must make for business
reasons. Inevitably, the need for extremely accurate predictions (not strictly
required by just any business context) moves practical solutions toward
neural networks.

In the next chapter, we tackle clustering.



Chapter 6

Clustering Tasks

“It is only prudent never to place complete confidence in that by
which we have even once been deceived.”

—René Descartes, Meditations on First Philosophy, 1641

There are many different approaches to classify data, each with its own pros
and cons. ML.NET supports quite a few of these approaches and
implements them in native trainers. In Chapter 5, we use logistic regression
and the Stochastic Dual Coordinate Ascent (SDCA) algorithm to classify
items, but other options, which sometimes are more effective, exist as well
—specifically, the Support Vector Machine (SVM) algorithm. SVM and
other aforementioned algorithms have one trait in common: they need to
know the expected value to predict for each row being processed during
training.

However, there are circumstances in which the dataset lacks any
preexisting knowledge for a classifier to learn from. Yet, in these
circumstances, we sometimes need to group data in possibly homogeneous
groups for business reasons. This makes a case for algorithms of
unsupervised learning.

Clustering is an unsupervised machine learning technique that attempts
to partition data rows into groups (referred to as clusters) made by elements
reckoned to be in some way similar. The action of clustering develops
without any previous knowledge of how the groups should look. In other
words, you expect the clustering technique to tell you about groups of
possibly related data rows you have in the dataset.

Let’s focus on the ML.NET native tools to implement clustering and
unsupervised learning.



The Clustering ML Task
In the classification and regression scenarios we examined so far, the
resulting model connects input features to an expected outcome to let any
sort of structural pattern hidden within the data emerge. Clustering, though,
is a different kind of animal.

Unsupervised Learning
In a way, clustering algorithms perform a kind of creative work as they
autonomously decide how to split data rows into the specified number of
groups. Rows are fitted into a given cluster based on the algorithm’s
relationships with other data rows. In this context, the term unsupervised
refers just to the fact that the algorithm proceeds without human supervision
and returns a take-or-leave output. Various clustering algorithms depend on
the definition of the distance applied to groups of data rows and the size of
these groups.

Clustering returns rows partitioned in a given number of clusters, but
each of these clusters is left unlabeled and is only identified by index. This
means that the (business) reason for that specific way of grouping may not
be obvious. It’s up to the data science team to figure out what all the rows
in each cluster have in common and put any meaningful label on each
group.

There are two macro classes of unsupervised algorithms: those that need
to receive the number of clusters as a hyperparameter and those that can
both partition data rows and determine the ideal number of groups. It is
crucial to remark that returned clusters always form a partition, meaning
that the entire dataset is covered, and each element belongs to exactly one
cluster.

A Look at the Available Training Data
For demonstrating the capabilities of the ML.NET clustering task, we’re
using a sample dataset available on Kaggle at



https://www.kaggle.com/roshansharma/mall-customers-clustering-analysis.
The dataset comes in the form of a comma-separated CSV file and
represents the output of some initial processing of customers’ data. Only a
few columns have been selected from the raw data store, and aggregated
columns have been computed. Still, all customers now belong to a unique
group to be appropriately segmented into specific profiles.

Customer Segmentation
Customer segmentation is a canonical marketing activity that consists of
dividing customers into groups. The logic behind the segmentation may
vary according to a broad range of factors but is always in line with the
company’s business needs. Segmentation serves the purpose of targeting
each group of customers through tailor-made campaigns. The dataset used
in this chapter represents the customers of a mall, and customers are
described through gender, age, and annual income.

In addition, each customer is assigned a calculated score that indicates
the spending capacity. In the dataset, the spending capacity is a numeric
value in the 1 to 100 range, where a higher value indicates a higher
capacity. This is a good example of some other algorithm applied in
advance to the dataset and based on some built-in views on top of the
native data store.

Schema of the Data
The following C# class sets a 1:1 correspondence between the rows in the
sample CSV file and the properties:
Click here to view code image

public class MallCustomerData 
{ 
    [LoadColumn(0)]  
    public int CustomerID { get; set; } 
  
    [LoadColumn(1)] 
    public string GenderText { get; set; } 

https://www.kaggle.com/roshansharma/mall-customers-clustering-analysis
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    [LoadColumn(2)] 
    public float Age { get; set; } 
  
    [LoadColumn(3)] 
    public float AnnualIncomeInK { get; set; } 
  
    [LoadColumn(4)] 
    public float SpendingScore { get; set; } 
  
    [LoadColumn(5)] 
    public float Gender { get; set; } 
}

As you may have noticed, the class has two properties that refer to the
gender of the anonymous customer: one is a string column named
GenderText, and one is a float column named Gender. Why is that?

Applying Persistent Transformations
The original file available on Kaggle features a single gender column that
contains Male and Female string values. (See Figure 6-1.)



FIGURE 6-1 A view of the sample dataset in Microsoft Excel

Clustering algorithms in ML.NET need float values so the original
numeric values in the dataset must be turned into floats. Hence, the
Male/Female string value must be rendered as a number. However, in this
case, it’s all about using two different numbers to indicate Male or Female.
This is a transformation we can seriously consider making just once
directly in the stored dataset instead of dynamically applying it repeatedly
to any data processing pipeline. Therefore, we just add one column to the
CSV file to render 1 for Male and 2 for Female. Starting from a CSV file, it
is as easy as adding an Excel formula to the new column:

=IF(B2="Male", 1, 2)

The next step is to turn all numeric (integer) values into floats. Again,
it’s a simple transformation to make in Microsoft Excel. The dataset looks
like Figure 6-2.



FIGURE 6-2 The dataset with float columns and categorized gender
information

The same result can be achieved—and sometimes is even more
desirable—via code-building a conversion pipeline, as shown here:
Click here to view code image

// Programming conversion of numeric columns into 
floats 
var conversionPipeline = 
mlContext.Transforms.Conversion.ConvertType(new[] 
   { 
       new InputOutputColumnPair("GenderAsFloat", 
"Gender"), 
       new InputOutputColumnPair("AgeAsFloat", 
"Age"), 
       new 
InputOutputColumnPair("AnnualIncomeAsFloat", 
"AnnualIncomeInK"), 
       new 
InputOutputColumnPair("SpendingScoreAsFloat", 
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"SpendingScore"), 
   }, 
   DataKind.Single);

The obtained pipeline must be appended to the training pipeline because
it is not directly chainable to other feature engineering transformations you
likely need to do, such as with one in particular: adding the Features
column.

Modeling Data to Classes
A quick look at Figure 6-2 reveals that two columns in the original dataset
may not be strictly needed for training: CustomerID and GenderAsText. The
role of the latter has now been taken by the numerical column named
Gender. As for CustomerID, that anonymous information about the actual
customer may be interesting to maintain in the final clusters but doesn’t
help the trainer much. In fact, the column carries (anonymized) identity
information but no informational content useful to clustering. Anyway,
following is the revised version of the C# class we’re using with the
ML.NET trainer. Note that the CustomerID column, which is not being used
for training, retains its original integer type:
Click here to view code image

public class MallCustomerData 
{ 
    [LoadColumn(0)] 
    public uint CustomerID { get; set; } 
  
    [LoadColumn(2)] 
    public float Age { get; set; } 
  
    [LoadColumn(3)] 
    public float AnnualIncomeInK { get; set; } 
  
    [LoadColumn(4)] 
    public float SpendingScore { get; set; } 
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    [LoadColumn(5)] 
    public float Gender { get; set; } 
}

Now, the second column in the original source—GenderAsText—is not
mapped and will be ignored.

The selected dataset is not particularly large because it counts just 200
rows. In addition, it’s all that we have, and no test dataset is also available.
However, it should be noted that clustering is a very special type of
problem closer to canonical data mining than to machine learning.
Clustering is unsupervised. As a result, a clustering training algorithm
won’t get you a model you can call later to get a data prediction on input
data. A clustering algorithm will just partition data in a way it determines to
be appropriate. There’s really no need to apply programmatic holdout and
extract a dataset for testing or to apply more sophisticated techniques, such
as k-fold validation in a clustering scenario. Clustering is just about making
a run on the data and examining the results.

In light of this, what’s the real purpose of data?

The Real Purpose of Data in Clustering
Most examples out there treat clustering as any other family of machine
learning algorithms. Examples, therefore, show how to train and save a
model and then how to invoke it later on some input data to get a
prediction. One of the tutorials on the ML.NET website does this.

It starts from a very popular small dataset—the Iris dataset—that lists
the measurements in centimeters of the length and width of sepals and
petals for 50 flowers from 3 species of iris. Interestingly, the Iris dataset
was created in 1936 by Ronald Fisher, a British statistician and biologist, to
demonstrate the use of measurements in taxonomic problems.

Starting from the Iris dataset, the tutorial on the ML.NET website trains
a model using the K-Means algorithm, saves a zip file out of it, and then
calls it back passing a sample iris flower. While good for making sense of
the core functionalities of the Clustering ML.NET task, the example goes
more in the direction of unlabeled multiclass classification than clustering.



Used in such a way, the available dataset discovers a fixed number of
clusters, and then the model maps input data to one of these clusters
identified by a numeric index rather than by name.

It should be clear that for clustering scenarios, the training phase is all
you need. Also, it should be clear that the output is not a computation graph
to invoke repeatedly. Instead, the output is subsets of the original dataset.
Such subsets (clusters) are unlabeled, and it’s up to the data science team to
make sense of their content and assign each a meaningful label, which will
ultimately reduce the starting problem to a multiclass classification
scenario.

Clustering is particularly attractive when you end up with large and
unstructured datasets to make sense of. At the end of the training, a
clustering algorithm has detected similarities between rows and returns
clusters. That’s it—clustering is always the first step of a longer machine
learning pipeline that typically ends in some sort of multiclass
classification.

Let’s see how to get clusters out of the mall customer data.

Feature Engineering
The inherent simplicity of the sample dataset reduces the data
transformation phase to just one action—concatenating the input columns
into a single array of numeric values. Here’s how to obtain the Features
column out of the data in the MallCustomerData class.
Click here to view code image

var pipeline = context.Transforms 
          .Concatenate("Features", "Gender", 
"Age", "AnnualIncomeInK", "SpendingScore");

It is worth remarking that in this case, the data transformation pipeline is
so short because we applied other possible data transformations directly to
the original dataset file. Another reason for a very minimal data
transformation pipeline lies in the nature of the problem itself. Clustering is
for data segmentation, and the data to act on usually is extracted from some
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other data store using an Extract-Transform-Load (ETL) procedure. There’s
no reason why the ETL process should not return data readymade for
machine learning training or very close to the expected machine learning
format.

Also, it is worth recalling that having a Features column populated with
a numeric array of processing columns is a strict requirement of the training
infrastructure of ML.NET. Figure 6-3 shows the value of the Features
column during training.

The tree-based view represents the content of the first dataset row with
columns such as Age, AnnualIncomeInK, SpendingScore, and Gender. In
addition, the figure expands the content of the programmatically added
Features column. As you can see, it is a vector of numeric values
composed of the aforementioned columns. This vector is what any
ML.NET trainer actually works on.



FIGURE 6-3 A sneak preview of the Features column during the
training phase

Clustering Algorithms
The most popular clustering algorithm is K-Means. A frequently used
variation of it is K-Modes. Yet another option is DBSCAN or, better yet, a
generalization known as OPTICS.



The K-Means Algorithm
The K-Means algorithm works iteratively moving data rows across K
assigned clusters. The purpose of iterations and moves is ensuring that all
rows in each cluster fit uniformly around a center point. More specifically,
as its initialization step, the algorithm selects K rows and sets each as the
center of an empty cluster. The algorithm’s jargon refers to the center of the
cluster as the centroid.

Past the initialization step, remaining rows are iteratively assigned to
one of the K clusters. Each row goes in the cluster for which the distance
between the row and the centroid is minimal. When all rows have been
assigned, K-Means recalculates the new centroid for each cluster. The
centroid is now intended as the (virtual) data row in which each feature
equals the mean of all feature values for all the rows in the cluster.
Successive iterations move rows between clusters in such a way that each
row still belongs to the cluster with the closest centroid. The algorithm ends
after a fixed number of iterations or when no row is moved from the
currently assigned cluster. Stop conditions are usually configurable as
hyperparameters.

In K-Means, the distance between rows and centroids is expressed as the
square of the Euclidean distance between points in an M-dimensional
space, where M is the number of features in the dataset. The square is added
for computational reasons to ensure a quicker convergence of the
minimization function.

K-Means is a relatively seasoned algorithm that has been around since
the 1960s. Despite its worst-case scenario complexity, which makes it an
exponential NP-hard problem, the algorithm is usually fast and converges
to a reasonable output in a polynomial time. However, there’s no guarantee
that convergence is to the global optimum.

The actual performance of K-Means, and the accuracy of its response,
also depends on the initial selection of centroids. For this reason, some
implementations run it multiple times with different starting conditions.
Choosing initial centroids randomly is common but not certainly the best
choice.

The K-Modes Algorithm



Based on the Euclidean distance, the K-Means algorithm requires features
expressed through continuous float values. Instead, the K-Modes algorithm
also works with categorical values or largely discrete numeric values.

The workflow of the two algorithms is nearly identical except for two
aspects. One is the distance function being used. The other is the use of the
mode rather than the mean in the definition of new centroids. (The mean is
the average of a set of values; the mode is the most common number in a
set of values.)

K-Modes measures the distance between centroids and data rows using
a variation of the Hamming distance known as dissimilarity. In information
theory, dissimilarity expresses the distance between two strings of equal
length as the number of positions at which the corresponding symbols are
different.

The (Right) Value of K

In K-Means and K-Modes, the value of K is a hyperparameter. Yet,
picking the most appropriate value is a bit like stabbing in the dark.
The ideal value would depend on the nature of the available data. At
the same time, though, you use unsupervised learning, especially
when you don’t know much about the data!

As weird as it may sound, a random value for K is a common start—
preferably a small number like 3 that will grow after a few attempts.
However, there are some methods with a more solid mathematical
foundation to evaluate the feasibility of the number of clusters once
a first partition of the dataset has been obtained. One of these is the
elbow method.

The elbow method works by computing the sum of the distances
between the points in each cluster and the centroid. The more you
grow K, the more the distances shrink because more attraction
points (centroids) reduce the distance between rows in each cluster.
However, the marginal gain that any additional cluster produces



drops at some point, meaning that the elbow is reached, and we’re
really near the optimal K value for the dataset.

Another approach is the silhouette method that uses a metric to
estimate how well each data row lies with its peers within the
cluster. A value close to 1 means the row likely fits in the ideal
cluster; a value close to –1 indicates that the row is probably placed
in the wrong cluster. Based on the number of misplaced data rows,
you can decide whether to increase the value of K.

The DBSCAN Algorithm
Both K-Means and K-Modes require that the number K of clusters is
specified as a hyperparameter. This is often a problem, especially when you
have no idea of the number of clusters that may be (reasonably) hidden in
the dataset. Another family of algorithms, known as density algorithms, can
perform clustering without requiring that a fixed number of clusters is set in
advance. DBSCAN is the most popular density algorithm; OPTICS
(discussed in the next section) is a generalization of DBSCAN that just
attempts to fix the major downside of DBSCAN.

Short for Density-Based Spatial Clustering of Applications with Noise,
DBSCAN is a relatively recent algorithm first proposed in the late 1990s.
At the foundation of density-based clustering is the idea of grouping data
rows that lie in a neighborhood defined by a distance. However, even
density-based clustering algorithms need a barrier that stops the (inevitable)
proliferation of clusters towards the ideal of one row per cluster.

The control that a fixed value of K exercises in K-Means and K-Modes
algorithms is exercised in DBSCAN by the minimum number of points
each cluster is required to have. During the iterations, rows in clusters with
fewer elements than the minimum are considered outliers and moved to
other clusters. The minimum number of points is referred to as the density.
The value of the density is recommended to stay between three and the
number of features in the dataset.



Another viable parameter of density-based algorithms is the proximity.
Proximity refers to the maximum distance allowed between two data rows
to consider them as neighbors and therefore part of the same cluster. In
literature proximity is also often referred to as eps or ε.

It is crucial to note that in DBSCAN, proximity and density parameters
can only be set for the entire dataset. This is the root cause of the major
downside of DBSCAN. In fact, the algorithm might lose accuracy when set
to work on a dataset with large differences in the density of data. (See
Figure 6-4.)

FIGURE 6-4 Representing a dataset with largely different data
densities

In Figure 6-4, the gray circle and its radius provide a visual
representation of a DBSCAN neighborhood. The radius indicates the
proximity. When the dataset has largely sparse values finding the most
appropriate (and dataset-wide) value for the parameter of proximity may be
hard. From a high-level perspective, the dataset clearly has two groups, but
the value of proximity that ideally captures the first is not good to get all



the remaining points as a single group. However, growing the parameter of
proximity would likely add points to a group that may just be outliers.

 Note
How can we end up with largely different densities in a dataset? It’s
easier than one may think. For example, it suffices that the sampling
rate of some kind of data collection changes at some point.
Suddenly, that would generate more (or less) dense sequences of
data points. Ideally, you should process different datasets or opt for
a different algorithm that can better identify clusters with varying
densities.

The OPTICS Algorithm
Short for Ordering Points To Identify the Clustering Structure, the OPTICS
algorithm can be seen as a generalization of DBSCAN specifically designed
to work around the varying densities drawback. Essentially, it does that by
letting the proximity parameter grow dynamically on each cluster until it
can reach out at least the predetermined minimum number of points. As a
result, in dense regions of data (such as the top-left circle of Figure 6-4) the
proximity value will be smaller than in other regions of the dataset.

The concept of proximity (or ε as in DBSCAN) evolves to the concept
of core distance and is conventionally indicated as ε’. The core distance is
intended as the smallest distance away from a data row that includes the
predetermined minimum number of cluster elements. In other words, core
distance is the variable version of the fixed proximity in DBSCAN. Hence,
unlike DBSCAN, the OPTICS algorithm only has one mandatory
hyperparameter—the density or the minimum number of rows in a cluster.



 Note
Most implementations of OPTICS still require developers to specify
a value for the minimum proximity. Although the parameter is not
strictly required to guarantee the convergence of the algorithm,
having it set to a reasonably small value reduces the algorithm’s
runtime. The computational complexity of OPTICS is NlogN, but it
grows to N2 if the proximity is left unspecified and then assumed to
be infinite.

While more accurate in cases of largely variable densities, the OPTICS
algorithm is more resource-consuming than DBSCAN. It eats more
memory and uses a more expensive logic for nearest neighbor queries. At
the same time, it depends only on one hyperparameter.

Another aspect to consider about OPTICS is that it doesn’t return an
array of row collections. Instead, it merely extracts an ordered sequence of
reachability distances whose interpretation is left to the developer or, more
likely, to the data science team. Technically, the reachability distance is the
maximum of the core distance and the distance between two rows.

Composing the Training Pipeline
The choice of the trainer is usually a delicate step because, as an ML.NET
engineer, you have many choices from IntelliSense and often limited
knowledge about the internals of the various algorithms and the impact that
available data may have on each of them. Data science skills are required to
make a savvy choice.

However, as far as clustering in ML.NET is concerned, things are much
easier because the offering of algorithms is limited to just one. While the
number of supported algorithms will likely increase in the future, the
current downside is that if the only supported algorithm (K-Means) doesn’t
work well, you have to code it on your own, perhaps starting from some



open-source implementation. As an alternative, you can build and train a
model in Python using scikit-learn (where more clustering algorithms are
available) and import it in ML.NET through the NimbusML module.

 Note
NimbusML is a Python library that provides bindings for ML.NET,
thus enabling smooth integration of scikit-learn pipelines into
ML.NET code. Therefore, by means of NimbusML, you have access
to the whole set of algorithms in scikit-learn, including those for
clustering that are missing in the native ML.NET packages.

Running the K-Means Algorithm
It doesn’t take that many lines of code to run K-Means over a dataset. You
need to get an instance of the selected trainer object and append it to the
data processing pipeline, as shown here:
Click here to view code image

// Configure the pipeline with data 
transformations and trainer 
var trainer = 
mlContext.Clustering.Trainers.KMeans("Features", 
numberOfClusters: 5); 
var pipeline = mlContext.Transforms 
    .Concatenate("Features", "Gender", "Age", 
"AnnualIncomeInK", "SpendingScore") 
    .Append(trainer);

Invoking the Fit method on the pipeline generates the trained model. If
you intend to save it to a zip file, you just add the same code used in past
chapters:
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Click here to view code image

var model = pipeline.Fit(dataset); 
mlContext.Model.Save(model, dataset.Schema, 
modelPath);

We’ve repeatedly mentioned that training algorithms are driven by
hyperparameters. However, we haven’t provided an example of how
hyperparameters can be configured. Each ML.NET trainer has an
overloaded constructor that accepts an Options class. The KMeans trainer is
no exception. Interestingly, the list of hyperparameters is not limited to
known parametric input of the general algorithm (clusters, tolerance,
iterations), but also includes configurable parameters specific to the
ML.NET internal implementation of trainers (memory budget, threads).

K-Means Options in ML.NET
In our sample code, the K-Means trainer is explicitly passed two
parameters: the name of the feature column and the desired number of
clusters. However, more parameters are available as listed in the
KMeansTrainer.Options class. Values in the code below refer to the default
configuration of the class and the actual values being passed to the trainer if
not otherwise specified.
Click here to view code image

// Default options for K-Means in ML.NET 
var kmo = new KMeansTrainer.Options 
{ 
     NumberOfClusters = 5, 
     FeatureColumnName = "Features", 
     MaximumNumberOfIterations = 1000, 
     InitializationAlgorithm = 
KMeansTrainer.InitializationAlgorithm.KMeansPlusP
lus, 
     OptimizationTolerance = (float) Math.Pow(10, 
-7), 
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     AccelerationMemoryBudgetMb = 4096, 
     NumberOfThreads = null, 
     ExampleWeightColumnName = null 
}; 
var trainer = 
mlContext.Clustering.Trainers.KMeans(kmo);

Let’s find out more about each single option parameter.
As mentioned, FeatureColumnName sets the name of the aptly created

column containing each row’s input values to be taken into account for
training the model. The NumberOfClusters property refers to the desired
number of clusters. The MaximumNumberOfIterations property sets an
unsurmountable, upper limit to the iterations, after which the K-Means
algorithm has to stop and return the current configuration of clusters. The
InitializationAlgorithm parameter indicates how initial centroids are
chosen. ML.NET offers three options for the InitializationAlgorithm, as
shown in Table 6-1.

TABLE 6-1 Supported K-Means initialization algorithms

Al
go
rit
h
m

Description

KMe

ans

Plu

sPl

us

Default value; refers to the KMeans++ algorithm proposed in 2007 
and is considered the most popular and reliable to make the most out 
of the traditional K-Means. It is demonstrated that the method 
reshapes K-Means to make it deliver a solution that is at most only 
O(log K) worse than the optimal solution.



Al
go
rit
h
m

Description

KMe

ans

Yin

yan

g

Refers to an even more recent algorithm (proposed in 2015 by a 
Microsoft Research team). The Yinyang algorithm delivers a 
significant performance gain, the key of which is the initial 
clustering of centroids that makes a good deal of subsequent 
distance computations unnecessary.

Ran

dom

Initial centroids are selected randomly. This might lead to 
potentially bad approximations with respect to the optimal 
clustering.

The OptimizationTolerance parameter refers to the accepted tolerance
that would ensure the convergence of the trainer. The algorithm ends after
the maximum number of iterations or when no data rows need to be moved
because they are sufficiently close to the centroid. The optimization
tolerance sets the minimum accepted distance.

The AccelerationMemoryBudgetMb property represents the maximum
amount of memory to reserve for speeding up the algorithm. The
NumberOfThreads property is a nullable integer referring to the number of
threads to use and gives a measure of allowed lock-free parallelism. By
default, trainers figure it out automatically.

Finally, the ExampleWeightColumnName refers to the name of an optional
column that ML.NET allows you to specify to assign a specific coefficient
(weight) to each data column in the dataset. In this way, you can tell the
algorithm to give more (or less) relevance to some specific columns of the
dataset.

Setting Up a Client Application



By design, in ML.NET, all training pipelines return a chain of transformers
good for serialization and later calls. This pattern is great for scenarios like
regression and classification but not for clustering. In clustering, we’re not
typically interested in serializing a set of transformations to replicate later
on unseen input data. Instead, we’re mainly interested in one-off processing
of the dataset that returns a fixed number of partitions based on some
detected similarity among the rows.

In other words, the typical output of a clustering algorithm is a list of
files that forms a partition of the original dataset. In ML.NET, some extra
code is required to get this.

Inspecting the Transformed Dataset
Unlike the other chapters in this book, the sample code for this chapter
won’t be a web application. Instead, the sample code is just the trainer
program we’re discussing here. It takes an input dataset and creates many
text files partitioning the original dataset into the specified number of
clusters.
Click here to view code image

// Runs K-Means and returns the transformed 
dataset 
var transformedDataView = 
pipeline.Fit(dataset).Transform(dataset);

The code above first builds a model (chain of transformers trained on
the given dataset) and then applies the obtained transformations to the same
input dataset. The output is a lazy object you can turn into a familiar .NET
enumerable collection.
Click here to view code image

var enumerable = mlContext.Data 
    .CreateEnumerable<MallCustomerPrediction>
(transformedDataView, reuseRowObject: false) 
    .ToList();
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Figure 6-5 shows a sneak preview of the data stored in the
transformedDataView variable of type IDataView.

The actual type of the transformedDataView variable is
ClusteringScorer—an internal type of ML.NET that implements
IDataView. The two schema properties you see in Figure 6-5 are the
DataViewSchema type. Interestingly, after running K-Means on the given
customer’s dataset, the output schema contains eight columns—the five
defined in the MallCustomersData class plus Features, and the two output
columns generated by the K-Means algorithm (PredictedLabel and Score).
All these columns will be bounded by the properties of any output
prediction class.

FIGURE 6-5 The schema of transformed data view

Binding Output Columns to a C# Class
The following code shows our C# class used to capture the rows of the
transformed dataset:



Click here to view code image

public class MallCustomerPrediction 
{ 
    [KeyType(5)] // 5 is the number of clusters 
    [ColumnName("PredictedLabel")] 
    public uint PredictedClusterId; 
  
    [ColumnName("Score")] 
    public float[] Distances; 
  
    // Copy columns from source data 
(automatically bound to source data) 
    public uint CustomerID { get; set; } 
    public float Gender { get; set; } 
    public float Age { get; set; } 
    public float AnnualIncomeInK { get; set; } 
    public float SpendingScore { get; set; } 
}

The autogenerated PredictedLabel column is mapped to the (custom)
PredictedClusterId property, whereas the other autogenerated column
Score maps to Distances. All other columns map one to one to the output
columns as in the schema in Figure 6-5.

The KeyType attribute instructs the ML.NET training engine to consider
the marked integer property as theKeyDataViewType—a special type of
enum ranging from 1 to the specified number. In this case, the upper bound
is the number of requested clusters. In our example, the
PredictedClusterId property takes values in the range 1 to 5.

Saving Clusters to Separate Files
The next step is to enable our code to access the transformed data and
manipulate it as easily and effectively as possible with .NET enumerable
collections and LINQ. Here’s how to extract an IEnumerable collection from
the transformed dataset:
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Click here to view code image

// Turn the transformed model into a .NET 
enumerable list 
var enumerable = mlContext.Data 
    .CreateEnumerable<MallCustomerPrediction>
(transformedDataView, reuseRowObject: false) 
    .ToList();

At this point, using the grouping capabilities of LINQ, we can easily
obtain distinct datasets, one per cluster, ready to save to disk as text or CSV
files:
Click here to view code image

// Create one CSV file per identified cluster 
var clusters = enumerable.GroupBy(r => 
r.PredictedClusterId); 
foreach (var cluster in clusters) 
{ 
    var writer = 
File.CreateText(string.Format(clusterPath, 
cluster.Key)); 
    writer.WriteLine($"CustomerID, Gender, Age, 
Annual Income (K), Spending Score"); 
    foreach (var row in cluster) 
    {  
        writer.WriteLine($"{row.CustomerID}, 
{row.Gender}, {row.Age}, {row.AnnualIncomeInK},  
                           {row.SpendingScore}"); 
    } 
  
    writer.Close(); 
}

Figure 6-6 shows the output folder when the training program ends.
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FIGURE 6-6 The output folder of the training folder with freshly
created cluster files

What happens if you run clustering multiple times on the same dataset
and with the same hyperparameters? The partition remains the same, but
the indexes of the clusters may be shuffled. Figure 6-7 shows the content of
one of the cluster files created by the training program.



FIGURE 6-7 A sample cluster file created by the K-Means algorithm

The ML Devil’s Advocate
To make our usual counter-exam of the clustering task, let’s just start from
the five text files listed in Figure 6-6, each containing a subset of the
original dataset as created by the K-Means algorithm.



Clustering Is Always the First Step
As most datasets in the real world are—at least initially—large, sparse, and
poorly structured, clustering is an effective tool for marketing and business
analysts to perform surface-level scans of data and to mine data insights. As
the sample dataset used in this chapter proves, clustering excels at profiling
customers, whether for spending capacity, demographics, or geographical
location.

Clustering has virtually infinite fields of applications in domains ranging
from market segmentations to social network analysis, from detection of
any sort of anomalies to document grouping and, in general, in any
applications where filtering, grouping, and/or ranking of data is required.

By the rule of thumb, if you land on machine learning, then inevitably,
at some point, you’ll be using clustering. Even though ML.NET presents
clustering as one algorithmic task, the reality is that clustering is different
from all other tasks such as regression, classification, ranking, and the like.
From a business perspective, clustering is in a way closer to data
preparation than it is a prediction for a specific problem. In this regard, it is
mostly the means, and rarely the end, of a machine learning task.

Although clustering may belong to any real-world machine learning
pipeline, it is often only the first step of a longer workflow. We already said
(and will repeat it here): There’s no such thing as a single algorithm trained
and put in production in the real world. Even problems that can be easily
matched to one well-known task (for example, regression, anomaly
detection, or classification) in the real world requires a multistep pipeline
and the involvement of multiple machine learning modules. One of these is
almost always a clustering module.

Want an example?
Figure 6-6 presents five text files created from an initial dataset. The

original dataset has therefore been split into five subsets. Presumably, K-
Means detected relevant similarities in the data rows placed in each subset.
Yet, each subset is unlabeled and only identified by index. The content of
each cluster should be carefully analyzed from a business perspective, and
appropriate labels should be defined to reflect the actual content. At that



point, you have a fully labeled dataset ready for a canonical form of
supervised learning.

Unsupervised Reduction of the Dataset
The practical problem that clustering addresses is helping make sense of
large and unstructured data. So now imagine you have a very large dataset
with plans to run it on some canonical forms of supervised learning. The
humongous size of the dataset is a big obstacle. You might not have
sufficient computer power or the time it could take to train such a huge
block of data.

This is where unsupervised learning comes into play.
Other techniques exist side by side with clustering to simplify the

dataset’s structure —for example, cutting down the number of features
(columns) and/or the number of rows.

Reducing the Number of Features
There are two nonexclusive approaches to reduce the number of features in
a dataset: feature selection and feature extraction. Feature selection
comprises a set of techniques aimed at selecting columns of data that look
more relevant. Feature extraction, instead, is about merging more columns
into one or adding new columns that better represent the same information
than a few existing ones.

When there is no reliable domain knowledge to state the limited value of
some features, you can use a number of techniques to evaluate the
relevance of a given feature algorithmically:

Heatmaps A heatmap shows the correlation between a feature and
the target value the model is expected to predict. A low correlation
might indicate that the feature can be safely dropped.
Variance threshold Variance threshold addresses features whose
values always fall into a limited range of values. Columns whose
variance falls below a given threshold can be flagged for removal.



Correlation analysis Measures the level of correlation of two
features. If they look particularly correlated, then the same model
accuracy can be obtained by keeping only one of the two.

Sometimes, though, a deeper refactoring is necessary to go beyond the
simple removal of a few columns. Feature extraction focuses on the need to
keep information constant while reducing the number of columns that carry
it. Here are a few specific techniques:

Grouping of sparse data When a column has categorical content,
you might want to merge some of the distinct options into a larger
category.
Computed features You may decide that the information spread over
two or more columns can be safely represented by a new column with
a new set of values, and you replace all such columns with a new one.
For example, imagine you have columns with the cost and time of a
taxi ride. You may decide that a new column may effectively
represent the same information that is valuable in a given scenario at
hand. Therefore, you may replace cost and time with a categorical
value, such as short-, medium-, or long-range.
Dimensionality reduction It’s the umbrella term for a number of
data transformation techniques aimed at algorithmically compressing
two or more columns into one. An extremely popular technique is
Principal Component Analysis (PCA), which essentially projects the
dataset originally sitting in an N-dimensional space to a space with a
smaller number of dimensions. Note, though, that dimensionality
reduction is not simply about dropping some of the least relevant
columns. Instead, the projection algorithm tries to linearly combine
multiple columns to render the same information through a smaller
number of columns. It’s clearly lossy transformation, but hopefully,
it’s not painfully impacting the prediction capabilities of the resulting
model.

Using Clusters to Reduce Rows
If the dataset is too large for effective processing, how can you cut rows
from it without altering the actual knowledge in the dataset?



You can make a pass of K-Means (or another unsupervised algorithm)
on the dataset and get a number of clusters of rows. The success record of
K-Means guarantees that data in the clusters are sufficiently homogeneous.
Then, you build a new, smaller dataset by picking a few rows from each
cluster. This ensures you get a smaller dataset with the same level of
homogeneity as the original one.

Summary
In this chapter, we discussed unsupervised learning and presented and
commented on a number of clustering algorithms. Of the various known
(classes of) algorithms, only the K-Means algorithm is natively supported
by ML.NET.

More importantly, we stressed the role that unsupervised learning plays
in machine learning projects. Clustering is not directly the solution to a
business problem but, more often than not, it is only a preliminary step of a
longer and more sophisticated machine learning pipeline. In light of this,
most of the tutorials and examples that train a clustering model and then
use it as a plain classifier, just don’t make sense. Although they can still
make predictions, they do not actually solve any real-world problems.

The most common scenario for clustering is to run a surface-level
analysis of a dataset, get unlabeled clusters of presumably homogeneous
rows, make sense of the content, add a label column, and reformulate the
original problem as an instance of multiclass classification.

Clustering is not free of issues.
For example, dealing with large number of dimensions and a large

number of data rows can make any solution overwhelmingly problematic
because of time complexity. In addition, the method’s effectiveness depends
on the definition of the “distance.” Subsequently, a deep knowledge of the
domain is required. Finally, the results of the clustering algorithm (often
arbitrary) must be interpreted by experts and can be interpreted in different
ways by different people.



Chapter 7

Anomaly Detection Tasks

“Truths of this kind should be drawn from notions rather than
from notations”.

—Carl Friedrich Gauss, Disquisitiones Arithmeticae, 1801

In data mining and machine learning, anomaly detection refers to the steps
necessary to identify unusual occurrences of items in an amount of data that
might be quite large. At the same time, many high-level business problems
can be formulated as instances of the core anomaly detection problem, such
as detecting bots in web pages, spotting outliers in sales reports, flagging
suspicious fraudulent behaviors, and monitoring the health of industrial
machines. Furthermore, in machine learning, anomaly detection is also used
to remove outliers from a dataset to augment the accuracy of a model being
trained on it.

In a nutshell, anomaly detection is the umbrella term for a class of
machine learning methods and algorithms aimed at solving—directly or as
part of a more sophisticated pipeline—a number of complex real-world
problems. In ML.NET, these methods are grouped under the programming
interface of the AnomalyDetection catalog.

In this chapter, we just focus only on anomaly detection and introduce
concepts such as spikes and change points. This chapter is tightly related to
Chapter 8, where we discuss time series analysis.

What Is an Anomaly?
While “anomaly detection” is the moniker for a specific class of machine
learning methods, the common definition of “anomaly detection” leads to a
variety of domain-specific problems—often in a restricted and very specific



business context, such as fraud detection, predictive maintenance, or unusual
activities like bots and cyberattacks.

However, such (complex) business problems can hardly be solved by
picking and training a single (numerical) algorithm from a catalog. More
realistically, such problems sometimes find a solution in a pipeline of neural
networks and sometimes are reformulated (and then solved) as regression or
classification problems.

Therefore, the meaning of the expression “anomaly detection” is prone
to a broader interpretation than are the names of other machine learning
tasks such as “regression” or “classification.” On the one hand, anomaly
detection is the umbrella that covers a number of statistical techniques to
spot anomalous values in a column of data. On the other hand, in the
collective imagination, anomaly detection refers to concrete business
problems. Being aware of these two levels of abstraction is crucial to
finding effective solutions to business problems.

All this said, let’s focus on the mathematical techniques known to
identify spikes and outliers in a given dataset.

General Approaches to Detect Anomalies
Anomalies found in an otherwise regular flow of data are not necessarily the
post-mortem sign of an occurred incident. They can also be the indicator of
some new trend in data, such as the functioning of a machine (indicating a
possible upcoming fault) or the behavior of customers (denoting a possible
business opportunity).

A precondition to detecting anomalies is the availability of a large
dataset that tracks the operational performance of systems and/or machines.
An anomaly in this volume of data is any significant deviation of logged
data from the usual pattern.

Time Series Data
A time series is a series of values captured sequentially at successive (and
possibly equidistant) points in time. Examples of time series are the audit



log of a software service, intraday values of a stock in an exchange market,
or the historical status of critical indicators in a mechanical component, such
as a pump or turbine. At its core, each record in a time series is made of two
data items: the value and the time it refers to.

What is a deviation from the usual pattern? And more importantly, how
do we define the “usual pattern”?

The Usual Pattern
For a baseline to make educated guesses from time-series data, it should be
initially set to define what is meant by normal behavior in the specific
business context. Normally, this is done through one or more Key
Performance Indicators (KPI). A KPI is any measurable value determined to
be helpful to demonstrate the effectiveness of a business activity. Anomalies
are recorded deviations from the expected value of a KPI at a given point in
time.

A KPI, however, is more than just numbers in a given range. A KPI
needs context to be effective. The number of sales, for example, is normally
a good indicator of the health of the business. However, a number that is just
above average is not good for each day of the year. For example, sales that
are just a bit over average on Black Friday aren’t necessarily a good sign
and likely aren’t following the expected trend.

Therefore, the “usual pattern“ is not simply a min/max pair of lines, with
everything outside the range being considered unusual. Deep analysis of
time series data should also be able to recognize expected cyclical
occurrences of data, such as a significant growth of sales at certain times of
the year.

A per standard usage, I've been marking this tailor-made, but this
nonstandard usage has been pretty consistent throughout. anomaly detection
software system should be aware of KPIs, and because it knows the
information in time series data, it should catch true outliers in KPIs and
report various levels of alarms. Machine learning is not strictly needed to do
effective anomaly detection. Expert systems (and manually crafted decision
trees) might easily do the job. If small quantities of data are involved,
simple statistical methods (such as what lies outside the interquartile range)



—and even an expert human eye—can be enough to report anomalies
effectively.

Unfortunately, though, data can deviate from the usual pattern in
different ways, and businesses need to react promptly to moving trends—
creating a need for automated anomaly detection tools.

Classification of Outliers
Broadly speaking, anomalies (or outliers) can be classified into three
different groups:

Point outliers The simplest and most intuitive scenario is when a
single instance of data is caught too far off from the rest of the dataset.
For example, an exceptionally high consumption of electricity or a
not-so-common amount spent on a credit card are point outliers.
Contextual outliers Suppose you have a vacation home you live in
only in the summer. The consumption of electricity is very low most
of the year and higher for a few weeks, say, in July. If you blindly
focus only on numbers, then a significantly higher summer
consumption looks odd. However, it is normal if you consider that
someone is living in the house at that time. Another example of a
contextual outlier is the sales of a grocery shop during the year. An
average of $200 per customer per day might be considered normal in
the holiday season but not during the rest of the year. More generally,
outliers can be context-specific and follow seasonal patterns.
Collective outliers Collective outliers refer to data items that, taken
individually, are neither point nor contextual outliers. However, if
considered as a collection, they look unusual and deviate remarkably
from the other data items within the dataset.

Figure 7-1 offers a graphical representation of the various types of
outliers. Point outliers are clearly visible spikes in an otherwise regular line
chart. A contextual outlier breaks the regularity of some repeating pattern in
the line chart. As in the Contextual Outlier section of the figure, an
unexpected low point appears where a significantly higher was expected,
well rendered by the grayed segment. Finally, let's focus on the collectinve
outlier section. All values plotted fall in an acceptable range and don’t even
abruptly break a repeating pattern. The problem, however, is that out-of-



schema values last for too long, and the temporal amplitude of the deviation
makes it an anomalous situation.

FIGURE 7-1 Graphical view of different types of outliers

 Note



The dashed gray lines you can see in Figure 7-1 are not simply a
visual aid to help you make sense of why an outlier was detected.
They also provide a rather intuitive explanation of why anomaly
detection algorithms mark certain values as outliers. Algorithms
track the expected value internally and measure the deviation!

Statistical Techniques
Time series datasets are built by sampling data very frequently. For example,
the sensors embedded in industrial machines (such as turbines, pumps, and
elevators) save their state at least every few minutes. Typically, the state is
made by a few dozen signals. Each signal makes for a distinct time series.
How would you go through this mass of data?

There are a number of statistical methods to spot irregularities in a time
series quickly. In the end, it’s all about identifying the data points that
deviate by a certain quantity from one of many well-known statistical
properties of a distribution, such as the mean, median, or mode. (As a
reminder, the mean is the average of values in a data series, the mode is the
value that appears more often, and the median is the middle number in a
sorted series.)

However, static observation of data is not necessarily accurate because
data values can be subject to random, short-term fluctuations because of
occasional working conditions and unpredictable electronic glitches. A
moving average is a type of data analysis that doesn’t look at point values
but computes the average across multiple data points. When you have
established the amplitude of the moving window—namely the number of
sequential data points to consider—the resulting time series delivers a more
stable view of the data because it smooths short-term fluctuations and
highlights long-term fluctuations.

There are different types of moving averages. The simplest just uses the
arithmetic mean of values detected in the established window of time. More
sophisticated types of moving averages assign some weights to more recent
values. This is the case for the exponential moving average.



 Note
A data trend is an indicator of how values increase/decrease over
time in a time series, whether linearly, exponentially, or stabilizing at
some point (damped trend).

Machine Learning Approaches
Beyond basic statistical techniques, any approach to anomaly detection falls
in the realm of machine learning and hits supervised or unsupervised
learning.

Supervised Classification
As we’ve seen in Chapter 5, “Classification Tasks,” supervised classification
(whether binary or multiclass) starts from the foundation of having one label
column in the dataset that determines the truth. An anomaly detection–
specific problem can be formulated as a binary or multiclass classification
problem as long as a dataset exists with labels that clarify what should be
intended as normal and what is abnormal. It goes without saying that a basic
normal/abnormal label makes for a binary classification instance, whereas
the presence of more types of abnormal behavior makes for a multiclass
classification instance.

Another supervised approach to anomaly detection passes through
density-based exploration algorithms, the most popular of which is K-
nearest neighbor (KNN). KNN assumes that similar data items lie together
in a relatively small neighborhood. Hence, the distance between data items
(whatever measure of a distance is appropriate for the type of data) is
significantly higher for data items that represent an abnormal status.

 Note



The K-nearest neighbor algorithm finds its natural fit in the context
of recommendation problems. For this reason, we’ll return to it in
much greater detail in Chapter 9, “Recommendation Tasks,” which is
entirely devoted to the most effective techniques for suggesting
relevant items to users.

Unsupervised Clustering
When no prior knowledge of the data exists, and it is impossible (or just
impractical) to label data items as normal or abnormal, an unsupervised
learning approach is in order. In Chapter 6, “Clustering Tasks,” we presented
K-Means and discussed other clustering, density-based algorithms. In the
context of clustering, an outlier is a data item that doesn’t fall into any
identified clusters.

Local Outlier Factor (LOF) is an interesting variation of density-based
algorithms specifically devised to capture outliers. Conceptually based on
the same principles of DBSCAN and OPTICS (see Chapter 6), LOF labels a
data item as an outlier if the item is farther from its neighbors than the
average distance between every other pair of neighbors (see Figure 7-2).

FIGURE 7-2 DBSCAN and LOF clusters around the same set of data
points



The same set of data items is rendered in Figure 7-2 with a cluster as
computed by DBSCAN and LOF. As you can see, DBSCAN includes all
points falling with a radius of a globally set length in the cluster. As a result,
no outliers are detected. Instead, LOF defines a cluster as made by all the
data items that are close enough to form a very dense agglomerate. As a
result, just one data item slightly farther from all the others is flagged as
being a potential outlier. In other words, DBSCAN works on data globally,
whereas LOF works locally and can be (in some cases) much more precise
than DBSCAN or OPTICS. At the same time, the same figure clearly raises
the doubt as to whether the point detected as an outlier should really be
considered as such. As usual, it depends!

Isolation Forest should be applied. This approach assumes the data has a
static distribution, which statistical models can describe, and flags the data
points with values that are not within the approved range of the distribution
as outliers. The most popular ML algorithms applicable to this approach
include K-means clustering, proximity-based techniques (such as
Gaussian/Elliptic Envelope), Isolation Forest (a class of the decision tree-
based method), and One Class Support Vector Machine (SVM).

Semi-supervised Learning
Algorithms that start from a known notion of normality but lack an accurate
definition of abnormality also fall under the umbrella of semi-supervised
learning. The dataset might contain labels for data items regarded as normal
and might miss labels for other items that might be normal.

In general, semi-supervised learning applied to anomaly detection
consists of first running a canonical supervised algorithm to spot what is
normal, followed by an unsupervised method (such as K-Means) that
separates normal items from the rest. Therefore, the semi-supervised
approach works well in abundant normal data, but it’s very hard to find
abnormal data. A real-world example of this is fault detection in industrial
machines. Technically, these scenarios are referred to as noise removal or
novelty detection.

To be precise, there is a difference between noise removal and novelty
detection. The former refers to the process of cleaning the dataset from
unwanted or patently abnormal observations that in a real-world monitoring



system can be due to malfunctioning or occasional electronic peaks. Novelty
detection is more concerned with discovering very rare patterns in data or,
even better, the appearance of previously never observed data patterns.

A popular algorithm for such forms of semi-supervised learning is the
One Class Support Vector Machine (OCSVM), which is a special
(unsupervised) variation of a famous supervised algorithm—the Support
Vector Machine (SVM). The logic employed by OCSVM departs from the
logic of SVM. Instead of looking for a hyperplane to split the dataset in two
—leaving the maximum possible margin between subspaces—it uses the
concept of a hypersphere to include the maximum possible data points. All
remaining points are flagged as outliers.

The Anomaly Detection ML Task
In the rest of this chapter, we’ll focus on the built-in features of ML.NET,
which is tailored to face anomaly detection problems. In particular, we’ll
look at some of the methods exposed by the AnomalyDetection catalog. In
this chapter, we’ll focus on detecting spikes (point anomalies) and change
points, meaning when the behavior of a time series changes significantly.

 Note
Until now, we haven’t mentioned change points, so let’s define it
now. In statistics, a change point is where the behavior of a time
series changes significantly and, more importantly, persistently. A
change point is not simply an outlier and not even a collective
outlier. Outliers are anomalous observations, even repeated over a
certain amount of time, after which the time series returns to its
previous pattern. Instead, a change point sets a definitive deviation
from a previously recognized pattern. In change point detection,
different approaches are used for offline detection (post-mortem
analysis) and online detection (stream analysis).



A Look at the Available Training Data
In this chapter, we’ll be using a popular time series dataset packed with three
years of total shampoo sales. It is very similar to the dataset used by one of
the ML.NET anomaly detection tutorials.

 Note
Originally created by Rob Hyndman, Professor of Statistics at
Monash University, Australia, the dataset can be found at
https://github.com/FinYang/tsdl/blob/master/data-
raw/data/shampoo.dat. Note that the same GitHub repository
contains an amazing number of other time-series datasets.

Univariate and Multivariate Time Series
In any time-series datasets, all data items (such as observations) are ordered
by the time they occurred. The order is immutable and part of the
informational content. Typically, a time series has two columns—time and
value. These simple time series are referred to as univariate time series.

Univariate time series are easy to plot, and the resulting chart intuitively
and clearly indicates the data trends and clues of possible seasonality. Figure
7-3 shows the line chart directly built from the value of columns of the
sample shampoo dataset. As you can see, this univariate time series shows a
linearly growing trend and shows a seasonal pattern because of the
succession of higher and lower values.

https://github.com/FinYang/tsdl/blob/master/data-raw/data/shampoo.dat


FIGURE 7-3 Line chart of the shampoo sales dataset

A multivariate time series is a time series in which multiple values are
recorded over time at equidistant intervals. Wind turbine monitoring is a
good example of a multivariate time series when data such as weather
temperature and pressure, wind speed and direction, salinity and humidity,
plus a ton of other mechanical parameters are dumped every few seconds.
Realistically, it can be over 50 different signals often captured every 10 to
30 seconds.

Techniques to deal with multivariate time series need to be much more
sophisticated than with univariate series because each observed signal
depends not only on its past values but also on other signals. The issue is not
just the horizontal complexity that can result from intra-signal
dependencies, especially with multivariate time series. The higher relevance
of (cross signal) changes that can occur over subsequent observations also is
an issue. For example, a stop in a turbine is a singular point anomaly.
However, in order to effectively predict when a similar turbine could fail,
you might want to look also at how multiple related values have changed in



the past hour to determine the recorded stop. Consider that for a wind
turbine, the interval to look should be no smaller than a couple of hours.

The majority of anomaly detection of real-world problems (such as the
prediction of faults in industrial machines, effective scheduling of
maintenance work, suspicious financial transactions, and detection of
cyberattacks) are based on large multivariate time series. A multivariate
time series is the natural sweet spot of a neural network.

Schema of the Data
The univariate time series of shampoo sales comes in the form of a CSV
file. Table 7-1 shows the first few rows in a tabular format for ease of
reading.

TABLE 7-1 Top rows of the shampoo sales dataset

Month Sales

1-Y1 266

2-Y1 145.9

3-Y1 183.1

4-Y1 119.3

5-Y1 180.3

To represent the content of a data row, we used the following
straightforward C# class:
Click here to view code image

public class SalesData 
{ 
    [LoadColumn(0)] 
    public string Month { get; set; } 
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    [LoadColumn(1)] 
    public float Sales { get; set; } 
}

Each public property binds to the ordinal column in the original CSV file
via the LoadColumn attribute.

Loading Data and Feature Engineering
ML.NET solutions for anomaly detection work a bit differently from other
examples we have seen in the previous chapters. In particular, you hardly
need to apply column transformations via feature engineering techniques. In
our example, we might have felt the need for some data transformation to
turn possible integer source values in the series into floats.

All we need to do here is load the source dataset into an IDataView
descriptor and move on to the training phase.
Click here to view code image

IDataView timeSeries = 
mlContext.Data.LoadFromTextFile<SalesData>( 
    _salesDataRelativePath, hasHeader: true, 
separatorChar: ',');

It helps to recall that the content of an IDataView object can also be set
by reading from a database source or from any of the IEnumerable
collections, such as JSON data that is read from a local or remote endpoint.

Composing the Training Pipeline
As mentioned, anomaly detection is the process of detecting those points
within a given time series where the value doesn’t go well with the others.
What we intend by “doesn’t go well” and “others” makes a whole world of a
difference in specific instances of the problem. We’ll return to this in a
moment.

Meanwhile, the class below describes the response from ML.NET
algorithms after running on a time-series dataset.
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Click here to view code image

public class SalesPrediction 
{ 
    [VectorType(3)] 
    public double[] Prediction { get; set; } 
}

Essentially, the response from an ML.NET anomaly detector contains at
least three values, all stored in the Prediction property array of the response
class. One is a 0/1 value (referred to as an alert) to indicate whether the
specific value should be considered an outlier. The p-value indicates the
probability that the current value is an outlier. A third value being returned
is the actual raw value (referred to as score).

Let’s see what we can do to detect spikes and change points using the
ML.NET tools.

 Note
There’s no specific reason why the predictions should flow into an
array of doubles instead of being distinct properties. The ML.NET
design dictates this.

Detecting Spikes
A spike is a point outlier, namely a temporary peak value (high or low) in an
otherwise standard data flow. The simplest way to detect a spike is by
scanning the time-series values, looking at the density of the values. The
preparatory work for calculating density estimations is performed by the
method DetectIidSpike. Note that this is an extension method in the
Transforms catalog that requires the additional Microsoft.ML.TimeSeries
NuGet package to be installed.
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The IID in the name stands for independent and identically distributed
random variables, meaning that the values in the time series are assumed to
be independent from one another and equally spaced in their sampling rate.
The following code returns an estimator that sets the grounds for calculating
density estimations necessary for getting spikes.
Click here to view code image

var spikeEstimator = 
mlContext.Transforms.DetectIidSpike("Prediction", 
"Sales", 95d, 9);

The method doesn’t do any physical work on any physical data yet. It
just receives the name of the output column to be added to the predictions
and the column’s name in the input dataset containing time-series values.

As for the final two numeric values, the former (95) is a double value in
the 0–100 range that refers to the requested level of confidence you want
from the library for any detected spike. The latter parameter (9) is the size of
the sliding window to be used for computing the probability that the given
row is a spike. With a value of 9, the probability (p-value) refers to a
moving slice of 9 values.

The DetectIidSpike method also accepts a fifth parameter, an
enumerated value from AnomalySide. The enum accepts Negative, Positive,
and TwoSided (default), meaning that both negative or positive spikes should
be detected.
Click here to view code image

// Trains the estimator on the schema of the 
actual data being passed 
ITransformer detector = 
spikeEstimator.Fit(timeSeries);

One more transformation step is required in which the internal structure
of the spike estimator is further modified based on the schema of the data it
will be called to work on. Note that this particular implementation of spike
detection is not really a supervised form of learning. No trainer goes through
canonical training and testing steps to produce a model that will be invoked

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch07_images.xhtml#p128pro02a
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch07_images.xhtml#p129pro01a


later to predict new data. It looks more like an unsupervised pass on the
time series to identify spikes.

The call to the Fit method shown earlier can be dramatically simplified
by not passing the real time series; instead, pass an empty data view. In fact,
the method doesn’t work on data; instead, it just needs to know about the
data schema. To save some memory during the run, we can pass an empty
enumerable object.
Click here to view code image

// Create an empty, schema-only dataview 
var emptyView = 
mlContext.Data.LoadFromEnumerable(new 
List<SalesData>());  
  
// Get a further modified transformer 
ITransformer detector = 
spikeEstimator.Fit(emptyView);

We’re now ready to make a run on the actual time-series values. The
returned data view contains the additional column with estimations for alerts
and p-values.
Click here to view code image

var transformedData = 
detector.Transform(timeSeries);

For the sake of further analysis, we can even save the data view to a text
file in much the same way we did in Chapter 6 for the clusters of a K-Means
algorithm.
Click here to view code image

// Extract a .NET enumerable from the data view 
var analyzedSeries = mlContext 
      .Data 
      .CreateEnumerable<SalesPrediction>
(transformedData, reuseRowObject: false); 
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// Save the output to a TXT file 
var filename = string.Format(outputPath, 
"spikes"); 
var writer = File.CreateText(filename); 
writer.WriteLine($"Value\tAlert\tP-value"); 
foreach (var row in analyzedSeries) 
{ 
   writer.WriteLine($"
{row.Prediction[1]:f2}\t{row.Prediction[0]}\t{row
.Prediction[2]:F2}"); 
} 
writer.Close();

Figure 7-4 shows the content of the text file with detected spikes. The
file is made of three columns for the actual value, and a 0/1 flag for whether
the row has been detected as a spike. The final column indicates the
confidence the detector has about the 0/1 alert. The value is a probability
distribution, and the closer it is to 0, the more likely the row is to be
regarded as a spike by the detector.



FIGURE 7-4 Dump of the spike detection process

Detecting Change Points
In a time series, an occasional burst of the curve might simply be the final
effect of a technical glitch, such as the temporary failure of an electronic
sensor. An occasional burst, though, is just occasional. What if a spike lasts
over several time intervals? There are two possibilities. One is that at some
point, the values return to flow as before. The other possibility is that values
tend to repeat and remain around the spike—this is a persistent change in the
flow and the sign of a different data trend. This latter situation is referred to
as a change point.

A change point that persists for too long, though, might be the root cause
of some relevant damage. For example, the temperature of a wind turbine
generator that is reported too hot for too long may be the sign of
overheating, which can take the cooling system down and even result in fire.



When the generator fails, no power is produced, which possibly costs the
wind farm operator good revenues.

A software module that monitors the time series of the internal
temperature of the generator and can spot change points is immensely
helpful to many businesses. Let’s see how ML.NET addresses the problem.

The structure of the change point detector is nearly identical to the spike
detector above. First and foremost, you get an estimator to set the grounds
for calculating change points:
Click here to view code image

var cpEstimator = 
mlContext.Transforms.DetectIidChangePoint("Predic
tion", "Sales", 95d, 9);

The numeric values are the same as with spikes. The remaining code is
identical:
Click here to view code image

IidChangePointDetector detector = 
cpEstimator.Fit(emptyView);  
var transformedData = 
detector.Transform(timeSeries); 
var analyzedSeries = mlContext 
    .Data 
    .CreateEnumerable<SalesPrediction>
(transformedData, reuseRowObject: false);

Figure 7-5 shows the output from the text file created after making a pass
on the time-series data.
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FIGURE 7-5 Dump of the change point detection process

The change point detector also returns a fourth column with the
Martingale score. Built upon the p-value, the Martingale score detects a
change of distribution over a sequence of independently and identically
distributed values. The calculated value beyond a computed threshold is
used internally to decide whether a candidate point is really a change point.
The method DetectIidChangePoint also takes two additional parameters
(with respect to our example above) to configure the Martingale scorer. One
parameter is an enum value for the scorer type (the default is
MartingaleType.Power), and the other is a threshold parameter (the default is
0.1) for the Martingale power method.

Using the SSA Method



The spike and change point detectors we used (based on IID) are not
particularly good at capturing the seasonality of data. In other words, a spike
is a spike regardless. Another transformation method exists in the same
NuGet package Microsoft.ML.TimeSeries and is called DetectSpikeBySsa.

Short for Singular Spectrum Analysis, SSA decomposes the time series
into various components: trend, seasonality, and noise. In addition, it
attempts to forecast the future values of the time series. SSA performs
spectral analysis on the time series to discover any periodicities. In doing so,
it first transforms data internally, moving from a time-based representation
to a to frequency-based one. A time-based representation shows how a
signal changes over time. A frequency-based representation, instead, shows
how the signal is distributed over a range of frequencies. A frequency-
domain analysis is particularly useful for spotting the cyclic behavior of a
signal. The Fourier transform is a function commonly used to convert from
time to frequency domain.

ML.NET provides SSA for spike detection as well as change point
detection. In the latter case, the transformation method is called
DetectChangePointBySsa.

Using the SR-CNN Service
SR-CNN refers to a dedicated service built at Microsoft for continuous
observation of a time series and instantaneous alerts in case of anomalies.
The method focuses on point anomalies but works in a more traditional way
compared to all the detectors considered so far. In other words, you need to
train the model based on the SR-CNN algorithm (as wrapped by the
method), create a prediction engine, and pass live data to get a response
whether the value is a spike or not.

SR-CNN stands for Spectral Residual and Convolutional Neural
Network. It’s a system that processes data in two steps. First, the input data
is grouped by the SR unsupervised algorithm (using the Fast Fourier
Transform internally), and then the output is processed by a CNN that is
pretrained to work on visual saliency detection problems in a supervised
way. Visual saliency detection is a computer vision step aimed at finding
salient objects in an image. Specifically, the service assigns artificially
generated anomaly labels to the unsupervised clusters and has an SR-CNN
to work as a supervised algorithm.



There are two key innovations in this approach. One is reducing the
time-series anomaly detection problem to the visual saliency detection
problem. The other is pipelining the unsupervised SR algorithm to a
pretrained supervised CNN good at saliency detection problems.

The code to use in ML.NET is below:
Click here to view code image

var estimator = 
mlContext.Transforms.DetectAnomalyBySrCnn("Predic
tions", "Sales"); 
var model = estimator.Fit(timeSeries);

A number of hyperparameters can be specified as the sliding window’s
size to generate a saliency map for the series, the number of points to add to
the back of the training window, and the threshold to determine anomalies.

Using Randomized PCA
Principal component analysis (PCA) is a learning process aimed at
identifying the principal features of a dataset in order to reduce the
complexity and dimensionality of a dataset. Typically, after running PCA,
you get a smaller dataset of fewer new columns obtained through some sort
of mathematical combination of original columns. In ML.NET, the
RandomizedPca trainer is the implementation of a PCA algorithm that uses
the Singular Value Decomposition (SVD) technique (with a random number
generator) to decompose a matrix into a lower rank matrix.

Applied to machine learning, SVD (a linear algebra algorithm) has the
effect of reducing the training time series to a subset of salient facts. The
trainer saves in the model three pieces of information. One is the projection
matrix that will be used to transpose any input data from the original space
to the lower-dimensional space of salient facts. In addition, the trainer stores
the two vectors in the original and reduced spaces representing the
normality. These vectors are essentially made of columns’ mean values in
the two spaces. When the model is invoked in production on a set of live
values, the model first projects the input values into the reduced space
where salient facts are condensed. An anomaly score is then computed,
measuring and mathematically combining the distances between input and
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mean in the original and reduced space. The higher the anomaly score in the
0–1 interval, the more likely it is an outlier. By default, the threshold value
is 0.5. (See Figure 7-6.)

FIGURE 7-6 Overall architecture of the Randomized PCA trainer

Unlike most of the DetectXxx methods considered so far—which are
extension methods of the Transforms catalog—RandomizedPca is a method
on the Trainers catalog of the AnomalyDetection task. To use the
RandomizedPca method, you follow a programming approach identical to
what we have seen for classification and regression tasks. First, you identify
a dataset; next, you build a data processing pipeline, add a trainer to it, and
fit the method. The saved model is then deployed to production, and a
prediction engine is built out of it to predict anomalies on live data.

 Note



RandomizedPca, as well as the other approaches discussed in this
chapter, are all forms of unsupervised learning. However, as we’ll
see in the upcoming “The ML Devil’s Advocate” section, anomaly
detection can also be approached and solved using a form of
supervised learning.

Setting Up a Client Application
The spike and change point detectors we have seen can be easily integrated
—as is—in a client application that receives a series of data from some
external source. Plain detectors work easily on static sequences of data (such
as historical data analysis). Trained models (such as those created with SR-
CNN) work better for real-time analysis.

Our sample ASP.NET Core application will work on the same static time
series of three years of shampoo sales, render it as a line chart, and highlight
spikes and change points on demand. The sample application features a
controller class with three methods like this:
Click here to view code image

public IActionResult Plain() 
{ 
    return 
Json(ChartService.FromFile(_timeSeriesPath,  
           "Shampoo Sales 3y")); 
} 
public IActionResult Spikes() 
{ 
   return 
Json(ChartService.FromFile(_timeSeriesPath,  
          "Shampoo Sales 3y",  
          AlertType.Spike)); 
} 
public IActionResult ChangePoints() 
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{ 
   return 
Json(ChartService.FromFile(_timeSeriesPath,  
         "Shampoo Sales 3y",  
          AlertType.ChangePoint)); 
}

The Plain method reads the time series data and builds a chart-friendly
data transfer object. Similarly, the Spikes and ChangePoints methods read
the time series and calculate the alert points, which are then embedded in
the JSON response.

On the frontend, a line chart object backed by the Chart JS library plots
the data as provided by the transfer object below.
Click here to view code image

public class ChartDescriptor 
{ 
    public IList<string> Labels { get; set; } 
    public IList<float> Values { get; set; } 
    public IList<int> Alerts { get; set; } 
    public string Title { get; set; } 
}

The collections Labels and Values are used to plot the chart, whereas
Alerts indicates the points to highlight.

Here’s a glimpse of the FromFile method above that reads the time series
and calculates spikes and change points using the detectors seen earlier in
the chapter.
Click here to view code image

public static ChartDescriptor FromFile(string 
path,  
      string title = "---", AlertType alertType = 
AlertType.None) 
{ 
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   var cd = new ChartDescriptor {Title = title}; 
   var lines = 
File.ReadAllLines(path).AsQueryable().Skip(1).ToA
rray(); 
  
   var salesData = new List<SalesData>(); 
  
   foreach (var l in lines) 
   { 
       var tokens = l.Split(','); 
       var month = tokens[0]; 
       var sales = float.Parse(tokens[1]); 
       var sd = new SalesData {Month = month, 
Sales = sales}; 
  
       salesData.Add(sd); 
       cd.Labels.Add(month); 
       cd.Values.Add(sales); 
   }  
  
   // Detect alerts 
   switch (alertType) 
   { 
       case AlertType.Spike: 
           cd.Alerts = 
AnomalyService.GetSpikes(salesData); 
           break; 
       case AlertType.ChangePoint: 
           cd.Alerts = 
AnomalyService.GetChangePoints(salesData); 
           break; 
       default: 
           return cd; 



   } 
   return cd; 
}

The code is intuitive: after reading the lines of the time series. The
FromFile method splits each line in column values (month and sales) and
creates further data shapes. Independent arrays are required for charting
labels and values, and a list of reference SalesData objects is required to
extract spikes and change points from the detector.

Hidden in the folds of the AnomalyService helper class, we have the same
core code we presented earlier in the chapter. Here’s a sample method.
Click here to view code image

public static IList<int> 
GetSpikes(IList<SalesData> series) 
{ 
    var alerts = new List<int>(); 
    alerts.AddRange(FindSpikes(series)); 
    return alerts; 
} 
private static IList<int> 
FindSpikes(IList<SalesData> series) 
{ 
    var mlContext = new MLContext(); 
    var emptyView = 
mlContext.Data.LoadFromEnumerable(new 
List<SalesData>()); 
    var spikeEstimator = mlContext.Transforms 
                .DetectIidSpike("Prediction", 
"Sales", 95d, 9, AnomalySide.TwoSided);  
    var dataview = 
mlContext.Data.LoadFromEnumerable(series); 
    var detector = spikeEstimator.Fit(emptyView);  
    var transformedData = 
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detector.Transform(dataview); 
    var analyzedSeries = mlContext 
           .Data 
           .CreateEnumerable<SalesPrediction>
(transformedData, reuseRowObject: false); 
  
    // LINQ query the indexes of alert rows 
    var alerts = analyzedSeries 
        .Select((r, i) => new {Row = r, Index = 
i}) 
        .Where(r => r.Row.Prediction[0] > 0) 
        .Select(r => r.Index) 
        .ToArray(); 
  
    return alerts; 
}

Figure 7-7 shows the sample application in action. By clicking any of the
three buttons, you get three different views of the same time series.



FIGURE 7-7 Detected spikes on the time series

The ML Devil’s Advocate
Anomaly detection is really one of the sweetest spots for machine learning.
Many real-world problems can be effectively formulated as anomaly
detection instances, though at various levels of abstraction. The level of
abstraction is crucial.

In this chapter, we have discussed alert detectors and trainers that operate
on a time series and return a 0/1 answer associated with a probability. Is this
dry 0/1 response good enough in the specific business domain? With
reference to Figure 7-7, is knowing the position of spikes as in the chart
sufficient for the purposes of the business? Is it insightful enough? Is it a



definitive answer or just the input to a pipeline of machine learning
components?

The bottom line is that anomaly detection is not a single machine
learning problem with just a few algorithms to choose from and train. More
often, it is about predicting (or just recognizing) an anomalous sequence of
values that appear over a given window of time

In general, we can distinguish three different macro areas of influence
for anomaly detection:

Monitoring the performance of industrial systems (regardless of
whether we’re talking about power plants or IT departments)
Monitoring the flow of business transactions (such as sales or
financial operations)
Checking the quality of products (such as manufacturing or web sites)

Another critical parameter to consider is whether the analysis to spot
anomalies is conducted over historical or real-time data. A statistical-
oriented solution method is preferable for historical data, whereas machine
learning methods are recommended for live data.

Let’s delve a bit deeper in a couple of real-world problems.

Predictive Maintenance
Industrial machines are expected to work uninterruptedly, and every second
of work produces revenues—directly or indirectly. So, if a machine breaks,
you want any damage repaired as soon as possible. This means rushing to
send technicians on site, have them inspect the device carefully, diagnose the
fault, possibly order new hardware, and most importantly, deploy the
hardware on site. Now, what if it happens on a rough winter day in a power
plant located in the mountains?

The biggest challenge with predictive maintenance is that dozens of
different signals are logged every few seconds. It’s a huge volume of data
and correlated signals to be tracked.

Beyond Condition-based Analysis



IoT sensors make it possible to track the status of components in mechanical
and electronic systems. For the industry, this means shifting from dummy
calendar-based maintenance to condition-based maintenance. It’s not
enough, though. The major drawback of condition-based maintenance is that
any sensor reports just one signal, even though many physical components
may contribute to it. Hence, a reliable model would be desirable that can
quantify the risk of failure for a machine in any moment in time. In a
nutshell, the model must be able to correlate multiple signals and monitor a
number of business rules and KPIs.

This can be achieved via a dynamically configurable expert system that
relies on human expertise but is also an attractive field for machine learning.
When it comes to machine learning, though, it becomes critical to define a
clear objective. You want the machine to learn about what, exactly?

Here are a few options: minimizing downtime and/or production losses,
optimizing operation scheduling and/or stock of spare parts, and avoiding
major damages. As you can see, what was generically called “anomaly
detection” has become predictive maintenance and then one of the other five
options (neglecting combinations thereof).

Regression or Classification?
Let’s suppose we’re interested in trying machine learning to minimize
downtime and keep the system up and running as long as possible. The
perspective of the problem changes: is it better formulated as a regression or
classification instance?

Regression Given a number of real-time signals captured every N
second, the model will predict how much time is left before the device
fails.
Classification Given a number of real-time signals captured every N
second, the model will classify the device as subject to fail, break
down, or work normally in the next prefixed amount of time.

At a glance, predicting the remaining useful life seems like it is much
more accurate information to have, but it requires a lot of data, especially
when it comes to failures because the system needs to learn, from numbers,
what can cause a failure. The problem is that the number of failures is
usually very small (remember, novelty detection), and collecting the decent



number of instances that can drive a machine learning process takes time
(years).

On the other hand, getting to know the state of the device in a fixed
future window of time can return a greater accuracy with less data. From a
business perspective, this might be acceptable because it gives the status of
your devices in the near future and the margin to intervene.

Whether classification or regression, though, the use of a sophisticated
neural network for getting answers is realistically necessary. For example,
you might want to compact the definition of a good state to a smaller chunk
of information, which is what auto-encoder neural networks do. Predictive
maintenance is a tough problem that can only be approached per domain, no
matter the abundance of tutorials out there showing in 1,000 words how to
predict a mechanical failure.

 Note
The goal of our “ML Devil’s Advocate” section is to raise the doubt
that it is one thing is to solve problems on paper and get acceptable
numbers from training, but it is quite another to get numbers that are
useful and realistic.

Fraudulent Financial Operations
In this context, a credit card payment is not the same as a money transfer
operation. In the former scenario, the purpose is to detect the theft and abuse
of credit card details. The latter, instead, is typically aimed at spotting
money laundering operations. A fraudulent credit card operation has more of
a canonical anomaly because it typically involves any of the following:
unusual goods, unusual places, unusual amounts. A fraudulent financial
transaction has a more blurred definition. It’s not a spot operation but should
be seen correlated to other operations. In addition, the response about a
financial transaction must be based on public or private block lists, the



response of existing bank expert systems, and directives expressed by local
and international laws. However, both scenarios share a common solution
architecture.

Structure of the Response
The response of the transaction validator is not typically a blind 0/1. More
likely, the system returns the likelihood that the input transaction falls in one
of multiple possible states. So far, it looks like a classification instance. But
there should be much more.

The response will often go through an automatic but human-controlled
workflow, namely an algorithm crafted to be comprehensible and updatable
by humans. The workflow will drive the response to a Boolean state:
approved/suspect. In the end, the client system that consumes the machine
learning pipeline will actually get some 0/1 flag, but that is never the
response of a plain anomaly detection algorithm.

Facts of a Common Solution
A fraud detection system plugs into the existing flow of live operations. If
the final response is positive, it just lets the incoming transaction pass and be
processed as usual. Otherwise, the transaction can be run as usual but still be
flagged as suspicious or be routed to an alternate pipeline that is reserved for
strongly suspicious transactions.

Inside the fraud detection black box, it’s reasonable to find a network of
neural networks with different layers and characteristics. The black box
ultimately responsible for the final response will be likely fed input
parameters resulting from three main sources in addition to the actual data
of the transaction:

Recommender system A relatively simple neural network, or even a
simpler chain of shallow learning algorithms, that skims across the
surface of transactions and provides a first, possibly naïve, response to
the fundamental question, “Is this transaction fraudulent?” This piece
of information, which can be just rated as the layman’s opinion, is one
more piece of input contributing to the final output. The combined use
of shallow and deep learning algorithms is a common pattern for



problems that need to look at data from many angles to find an ideal
yet articulated answer.
Expert system(s) Any existing expert system(s) that have been on
duty for years and are still able to provide a valuable opinion for the
overall system to crunch.
Encoders An encoder is a type of neural network that encodes large
information in a compact but highly representative format. Encoders
are used to codify laws, block lists, and other similar information to be
taken into account while rating the transaction.

These three sources represent facts that the system has processed along
with live data. Finally, the core engine of the fraud detection system can be
devised as a graph of neural networks of probably different types.

Summary
Anomaly detection flags unexpected and unusual events in a set of data. The
issue is going from the abstract definition of anomaly detection down to an
actual machine learning project for real-world problems that may have a
huge impact on various businesses: finance, manufacturing, energy and
general industry, health, and intrusion detection, to name a few.

In this chapter, we’ve first discussed a few general approaches to detect
anomalies and introduced time series data and concepts like the outlier and
different types of outliers. Then, we moved to revise the common ways to
approach anomaly detection using machine learning. Finally, we opened up
Visual Studio and used the tools of ML.NET to detect spikes and change
points in a historical time series.

As for the live analysis of data, well, that’s a different story, and a trained
model is required. However, as the “ML Devil’s Advocate” section
mentioned, any realistic anomaly detection system—especially one that
processes real-time data—is complex machinery that needs be crafted case
by case.

In the next chapter, we’ll discuss time series, but this time, we’ll talk
about forecasting and detecting data trends.



Chapter 8

Forecasting Tasks

“Complete chaos is impossible.”

—Theodore Motzkin, talking about Ramsey’s theory, 1951

In Chapter 7, where we discussed spotting anomalous values in data series,
we introduced the concept of time series. As a reminder, a time series is a
sequence of values captured at successive, ideally equidistant points in
time. Therefore, a time series is a discrete (as opposed to continuous)
collection of values. The wind speed values reported every 30 seconds by
the anemometer installed on a specific wind turbine in a specific farm is a
good example of a time series.

There are two types of information that can be extracted from a time
series. One type of information is spikes and change points, namely
anomalous values. A spike indicates a measurement that differs too much
from the others; a change point is a point when the flow of data starts
changing direction. The other type of information that can be extracted is
what we cover in this chapter: extrapolating values and predicting future
data trends.

Predicting the Future
Predicting the future is a delicate art whose roots date back to 2000 BCE
when Babylon soothsayers observed maggots’ (naturally trained)
movements in the rotten livers of dead animals to make predictions.

You can’t be too generic about what you would like to know when it
comes to forecasts. Moreover, you must also be very specific about the
expected horizon of the prediction. For example, do you want sales



forecasts for one specific product or an entire line of products? Do you
want those forecasts taken at a specific outlet or in a geographical region?
Do you want those forecasts to be based on daily or monthly data? And for
how far in advance do you want these forecasts? One month? One year? A
few hours? Precise answers are necessary.

Simple Forecasting Methods
Using machine learning for forecasting values is a more and more popular
option these days, but from a pure business perspective, it’s far from being
the only option. Well beyond the naivety of inspecting a sheep’s liver or
listening to the rantings of a likely intoxicated oracle in the Delphi’s temple,
a few mathematical methods exist to attempt forecasts that are simple and
relatively effective.

One is the average method, which consists of taking the average of the
historical data for the time horizon of choice (the mean value of the last six
months). Taking the value of the last observation is another even simpler
method that is surprisingly effective, especially for some financial time
series.

Yet another method that works well for strongly seasonal data is taking
the last observed value from the same time of the year. For example, why
should you consume a significantly different amount of electricity this
summer compared to the last one? Assuming the consumption will be the
same is a good starting point that all energy utilities use to estimate your
needs and charge you in advance.

Mathematical Foundation of Forecasting
To make more accurate guesses about the future values of a time series, it is
necessary to separate the time series into components. The decomposition
of a time series has the ultimate purpose of bringing hidden trends and
cyclic behavior to light while filtering out noisy and dirty data. The
following sections discuss a few technical attributes of a time series that
deserve more attention.



Trends and Cycles
In time-series data, a trend indicates a long-term, structural change of
direction of the observed values. When it happens, you see values that start
increasing or decreasing in a way that can be linear or nonlinear and more
or less slow. The point in time when the change of direction begins is
referred to as a change point.

There might be multiple trends over time, though. One trend might
range from time T1 to time T2 and be growing, while another trend might
occur later and be declining. Such fluctuations that repeat over time
indicate cyclic behavior. A cycle encompasses multiple trends.

In the real world, cycles are typically bound to economic or business
conditions. For example, in a sports scenario, a cycle can be the
performance of a great team of players over a few years—going up slowly,
reaching the peak, staying around the peak, and then decreasing. Although
domain and context-specific, the duration of a cycle is generally no less
than two years.

Seasonality
Seasonality refers to a pattern that fully describes a periodic fluctuation of
values, such as higher sales in the holiday season or low electricity
consumption during the night. Seasonality is a special type of cyclic
behavior. In particular, there are two key differences:

First off, seasonality is any predictable fluctuation of values that
regularly repeats over a period. Second, a seasonal fluctuation is periodic,
whereas a cycle might not be of some fixed length, and guessing its peaks
and troughs might not be obvious. Put another way, each cycle is unique
and has its own period and peak values. On the contrary, a season has peaks
and troughs, but they are regular and predictable. A season is a cycle that
repeats time after time.

Stationarity
Stationarity is another mathematical piece of information that’s useful to
know about a time series. It indicates the fluctuation of key statistical
attributes such as mean or variance. In particular, a time series is said to be



stationary if the two properties are nearly constant over time. Put another
way, a time series is stationary if the observed values do not depend on the
time at which they have been observed.

A stationary time series has no long-term patterns such as trends or
seasons, and its values are laid out around some horizontal line. Minimal
cycles are still possible—but with nearly constant variance (the squared
distance of values from the mean).

Why is stationarity crucial?
The very same idea of forecasting starts from the assumption that some

sort of continuity exists between values of today and values to predict for
tomorrow. If surrounding conditions might change between today and
tomorrow, then observed values will depend on the observation time. This
makes reliable forecasts impossible to obtain by definition, and the best you
can get is a guess.

The something that remains constant over time is usually combinations
of individual signal values in the series. One way to have the desired
invariance that enables forecasts is to have the mean and variance constant
and independent of time (stationarity).

A non-stationary time series can be turned into a stationary one by
applying differencing techniques. Differencing consists of computing the
differences between consecutive observations. (See Figure 8-1.)



FIGURE 8-1 Applying differencing to a non-stationary time series

The leftmost chart plots the absolute values of the time series, whereas
the rightmost chart plots the difference between two consecutive points in
the series. The original time series is not stationary and counts a few
increasing trends. The chart on the right—after differencing was applied—
has its values nearly constantly laid out around a horizontal line.
Differencing helps stabilize the mean of a time series, eliminating (or just
reducing) trends and seasonality.

Common Decomposition Algorithms
To make sense of the values in a time series, the time series must be
decomposed in a number of components—trend (and cycles), seasonality,
and the remainder part. In a way, we can represent the time series as shown
below:

In the formula, yt the element indicates the whole time series at time t.
The other elements in the formula refer to the seasonal, trend, and
remainder component, respectively.

A number of methods exist to decompose a time series and have been in
the works for about a century now. For example, the X-11 method is an
iterative process based on moving averages that decomposes a time series
into trend/cycle, seasonal, and irregular components for quarterly and
monthly data. Another method is STL, short for Seasonal and Trend
decomposition using the Loess method. Unlike X-11, STL can handle any
type of seasonality and is not limited to quarterly and monthly data.

A more advanced decomposition method is based on the Singular
Spectrum Analysis (SSA) algorithm. We already met the SSA acronym in
the past chapter, but we’ll say more about the internals of the algorithm



here. Interestingly, in ML.NET, spikes, change points, and forecasts share
the same algorithmic foundation—the SSA algorithm.

The SSA Algorithm
SSA works by decomposing any time series into its trend and seasonal,
oscillatory components. The work is accomplished through two main steps:
decomposition and subsequent reconstruction of the time series.

 Note
The following two sections attempt to provide a mathematical
description of the SSA algorithm. Admittedly, it’s a very high-level
(and compact) explanation that might sound obscure if you’re
looking for details. In this case, you might want to take a look at
https://www.researchgate.net/publication/260124592_Singular_Spe
ctrum_Analysis_for_Time_Series.

The Decomposition Step
The time series is first mapped to a matrix called the trajectory matrix. The
building of the matrix contributes a parameter known as the window length,
which ultimately determines the size of the matrix. The window length is a
hyperparameter usually assigned based on experience. The choice of the
window length depends on the size of the time series and the specific
analysis to perform. The window length impacts the quality of the
decomposition. Figure 8-2 shows a sample trajectory matrix for a window
length of K and a time series size of N.

https://www.researchgate.net/publication/260124592_Singular_Spectrum_Analysis_for_Time_Series


FIGURE 8-2 A sample trajectory matrix for a window length of K

A common value for the window length is N/4, where N is the number
of elements in the time series, but it’s been recommended that the value is
as large as possible but never larger than N/2. The larger the window length
is, the longer cycles can be resolved. On the other hand, a value that is too
large value might capture too few cycles.

The trajectory matrix is further processed using the Singular Value
Decomposition (SVD) method. In particular, the SVD applied to the
trajectory matrix multiplied by its transposed matrix (rows and columns
swapped) yields a collection of K eigenvectors and related eigenvalues.

This becomes the input of the reconstruction step of the algorithm.

 Note
An eigenvector of a linear transformation (a function between
vectorial spaces) is a nonzero vector that changes at most by a scalar
factor when the transformation is applied to it. The scalar factor is
called eigenvalue.

The Reconstruction Step



Starting from the calculated eigenvectors, the algorithm attempts to create a
new matrix that represents a valid approximation of the original trajectory
matrix representative of the original time series. In particular, a subset of
eigenvectors is selected, and the number is another critical hyperparameter
to define.

The new matrix contains an embedded time series similar to the
structure of Figure 8-2. The embedded time series, however, is not the
original one but takes into account principal values.

At a higher level of abstraction, the algorithm has done a plain
transformation of the original time series from a time-based space to a
frequency-based space where values indicate how often certain values are
found.

Now, the interesting thing is that the values of the reconstructed matrix
satisfy some linear formula according to the net effect that the next element
of a time series results from a linear transformation of all previous values.
In the end, this is the mechanism that yields forecasting capabilities.

The Forecast ML Task
SSA is a very flexible algorithm that can be employed to decompose a time
series into trend and cyclic components to make forecasts but also to
identify change points and outliers. In Chapter 7, “Anomaly Detection
Tasks,” we just explored these two latter capabilities. Now, let’s proceed
with forecasting. In particular, we’ll look at some of the methods exposed
by the Forecasting catalog.

Note that in order to use ML.NET forecasting capabilities, you should
install the additional Microsoft.ML.TimeSeries NuGet package.

 Note
For this chapter, we’ll follow the same approach used in previous
chapters: reusing the same dataset presented by the official ML.NET
documentation or a very close one. We do this for two reasons: to



make it simpler for the reader to follow and to move easily across
the steps. The added value we strive to provide is in the comments,
where we can provide more detail.

A Look at the Available Data
In the ML.NET official documentation, forecasting is illustrated by
resorting to a dataset created by Hadi Fanaee-T and Joao Gama in 2013.
The actual data refers to a two-year usage log of a bike-sharing system
(Capital Bikeshare) active in the Washington, D.C. area. The dataset is
particularly appropriate because of the time interval it covers—the full two-
year life cycle of the system.

The Actual Database
The original dataset on which the aforementioned scientists built their
analysis also included columns to reflect seasonal and environmental
factors such as weather conditions, weekdays, and holidays. We’re using
here a simplified version that counts only date and total rentals in the day.
The information about the year has been hot-encoded to an enumeration
value (0 for the first year, 1 for the second year). Any preliminary work has
been done already, and all we have is an MDF database file ready to be
attached in a SQL Server local or network instance.

 Note
Reducing to use a simplified version of the dataset is good for
showing the training step, but admittedly, it lowers the whole
example to the level of a toy application. As you’ll see later, we
won’t even be using the year information for the purpose of
predictions.



The sample DailyDemand.mdf file available for download opened up in
Visual Studio 2019, as shown in Figure 8-3. It is made of a single table, the
Rentals table, with three columns.

FIGURE 8-3 A view of the MDF sample dataset in Visual Studio 2019

Helper Classes
The following C# class is used to model the individual rows of the dataset.
Click here to view code image

public class RentalData 
{ 
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    public DateTime RentalDate { get; set; } 
    public float Year { get; set; } 
    public float TotalRentals { get; set; } 
}

The forecast model will ultimately return a response modeled after the
following C# class:
Click here to view code image

public class RentalPrediction 
{ 
    public float[] ForecastedRentals { get; set; 
} 
    public float[] LowerBoundRentals { get; set; 
} 
    public float[] UpperBoundRentals { get; set; 
} 
}

Each member of the RentalPrediction class is defined as an array
because it is expected to contain values (exact, lower, and upper) for all the
days in the forecasted period.

Let’s turn to the building of the training pipeline.

Composing the Training Pipeline
We need to train a model for a forecasting problem and then deploy it to the
production environment. The overall approach is similar to what we have
done in the past chapters for regression and classification.

Loading Data from a Database Source
We hinted already at ML.NET being able to load data into a data view from
a database source. We also showed some code snippets, but now it’s
different as we’re doing it in a real application.
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Click here to view code image

var mlContext = new MLContext(); 
DatabaseLoader loader = 
mlContext.Data.CreateDatabaseLoader<RentalData>
();

The code above creates an instance of the loader object capable of
running a query on the source and returns a data view of RentalData
objects. Here’s the actual SQL query:
Click here to view code image

var query = "SELECT RentalDate,  
                    CAST(Year as REAL) as Year,  
                    CAST(TotalRentals as REAL) as 
TotalRentals 
             FROM Rentals";

Query command and connection string are encapsulated in a dedicated
DatabaseSource object.
Click here to view code image

DatabaseSource dbSource = new DatabaseSource( 
           SqlClientFactory.Instance,  
           _connectionString, 
           query);

Needless to say, you need to reference in the project some client
database NuGet package. Specifically, here you need the
System.Data.SqlClient NuGet package. You only need this as we’re
silently assuming that we use a local DB file. If the database is attached to
an instance of SQL Server—and you plan to use an O/RM to deal with it—
then you also need to reference the package of the O/RM of choice (such as
Entity Framework, Dapper, and so on). Here’s the connection string we’re
using:
Click here to view code image
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private static readonly string _connectionString 
=  
     $"Data Source=
(LocalDB)\\MSSQLLocalDB;AttachDbFilename=
{_dataPath}; 
       Integrated Security=True;";

Finally, here’s how you get the data view wrapper for the content of the
dataset.

IDataView dataView = loader.Load(dbSource);

At this point, the data view references the entire dataset, two years of
bike rentals data.

Separating Training and Testing Data
Should we use the whole dataset to train? Should we opt for a manual 80/20
split or perhaps go for a cross-validation approach? In the end, our current
dataset is two full years, so it’s not bad to take the first year for training and
the second year for testing.
Click here to view code image

IDataView year1 = 
mlContext.Data.FilterRowsByColumn(dataView, 
"Year", upperBound: 1); 
IDataView year2 = 
mlContext.Data.FilterRowsByColumn(dataView, 
"Year", lowerBound: 1);

The FilterRowsByColumn method is a facility provided by the data view
object to slice the rows of the view between a lower (inclusive) and upper
bound (exclusive) value. It works only on numeric columns.

Applying the Algorithm

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch08_images.xhtml#p148pro05a


Curiously, in ML.NET, the Trainers collection of the Forecasting catalog
is empty and doesn’t list any method. However, when installing the
additional time-series package, you get an extension method called
ForecastBySsa directly exposed out of the catalog. SSA is the only trainer
available for forecasting problems. Here’s how to append it to the training
pipeline.
Click here to view code image

var forecastingPipeline = 
mlContext.Forecasting.ForecastBySsa( 
     outputColumnName: "ForecastedRentals", 
     inputColumnName: "TotalRentals", 
     windowSize: 7, 
     seriesLength: 30, 
     trainSize: 365, 
     horizon: 5, 
     confidenceLevel: 0.95f, 
     confidenceLowerBoundColumn: 
"LowerBoundRentals", 
     confidenceUpperBoundColumn: 
"UpperBoundRentals");

As you can see, there are quite a few parameters to specify and make
sense of. Some of them map easily to some concepts of the general SSA
algorithm we summarized earlier. Table 8-1 details the purpose of the
parameters used in the example.

TABLE 8-1 Parameters of ForecastBySsa

Parame
ter

Description

outputCo

lumnName

Name of the dataset column that will receive the forecasts of 
the model.
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Parame
ter

Description

inputCol

umnName

Name of the dataset column that will provide the input to the 
model.

windowSi

ze

The size of the window length required for building the 
trajectory matrix.

seriesLe

ngth

The number of data points that are used when performing a 
forecast.

trainSiz

e

The total number of points in the time series used for training.

Horizon The time horizon to aim at. In this case, it indicates the 
number of days in advance for which we want the model to 
forecast rentals (for example, the next five days).

confiden

ceLevel

0–1 value denoting the target confidence level to aim at during 
forecasting. The confidence level refers to the certainty with 
which you can take the predicted value being between lower- 
and upper-bound.

confiden

ceLowerB

oundColu

mn

Name of the output column that will receive lower values of 
the forecast.

If not specified, the confidence intervals will not be calculated.

confiden

ceUpperB

oundColu

mn

Name of the output column that will receive upper values of 
the forecast.

If not specified, the confidence intervals will not be calculated.

The pipeline above will decompose the whole 365-day time series
assuming a reasonable seasonal cycle of 7 days as per the value of the
windowSize parameter. Instead, the value of the seriesLength parameter sets
that values in the last 30 days should be used for any predictions. Finally,



the horizon parameter set to 5 indicates that the model will be able to make
a forecast for the next 5 days.

The parameter windowSize is the most important to tune the accuracy of
the model and should be carefully chosen for each scenario. Its value
depends on the seasonal cycle known (or expected) to be in the time series.
Typically, you start the training of the algorithm using the largest window
size that is representative of the seasonal business cycle for your scenario.

For example, if the business cycle is known to have weekly periods, and
the data is collected daily as in the presented time series, then 7 might be an
acceptable value. At any rate, the actual seasonality found in the data is less
important than the way the model is expected to work. An ideal window
size is 30 rather than 90 if the real data has, say, a quarter seasonality, but
we’re interested in looking at data monthly.

 Note
Generally, you should refer to time periods instead of days. Here,
we can safely talk about days because they’re implicit given the
content of the dataset. If time-series values were taken every hour,
then the time period would have been the hour.

Other parameters can be specified as well. In particular, there are three
more parameters related to each other. They all refer to the desired rank of
the subspace used to reconstruct the time series after decomposition. More
technically, the rank refers to the number of eigenvectors being picked up.
One parameter sets the method for choosing the value. The enum
RankSelectionMethod gives value to the parameter rankSelectionMethod.
Feasible values are Fixed, Fast, or Exact (default). If set to Fixed, the rank
parameter also must be specified to indicate the number of eigenvectors. If
omitted, the actual value of rank becomes maxRank, which, in turn, if not
specified, defaults to windowSize - 1. If the rank method is not fixed, it is
automatically determined based on prediction error minimization.



Another optional parameter is whether the model being built should be
adaptive and stabilized. The adaptive flag forces the ML.NET trainer to
pick up a special, adaptive version of the SSA algorithm. Stabilization,
instead, refers to an internal characteristic of the algorithm and how it treats
values used to reconstruct the time series.

Saving and Evaluating the Model
The training pipeline is then fitted on the training dataset and produces an
output transformer that is ready to be saved to a ZIP file on disk.
Click here to view code image

// Training time series can be what we called 
year1 earlier 
SsaForecastingTransformer model = 
forecastingPipeline.Fit(trainTimeSeries); 
mlContext.Model.Save(model, 
trainTimeSeries.Schema, outputPath);

Here’s a quick analysis of the performance of the model.
Click here to view code image

// Build up a data view of the test data 
// Testing time series can be what we called 
year2 earlier 
IDataView predictions = model.Transform(testData) 
  
// Extracting an enumerable list of actual values 
from the test dataset 
IEnumerable<float> actual = mlContext.Data 
    .CreateEnumerable<RentalData>(testData, true) 
    .Select(observed => observed.TotalRentals); 
  
// Extracting an enumerable of values predicted 
by the model for test data 
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IEnumerable<float> forecast = mlContext.Data 
     .CreateEnumerable<RentalPrediction>
(predictions, true) 
     .Select(prediction => 
prediction.ForecastedRentals[0]);

To compare errors—namely, the difference between actual and predicted
values—we use the code below. What we do is take the rentals in the test
dataset (second year of real data) and compare each value, day by day, to
the prediction obtained from the model trained on the time series of the first
year.
Click here to view code image

var metrics = actual.Zip(forecast,  
                         (actualValue, 
forecastValue) => actualValue - forecastValue) 
                    .ToArray();

The method Zip is defined on any IEnumerable object that applies a
specified function to the corresponding elements of two sequences,
producing a sequence of the results. The metrics array usually contains the
difference between the actual and predicted values.
Click here to view code image

var meanAbsError = metrics.Average(error => 
Math.Abs(error)); 
var squaredMeanError = 
Math.Sqrt(metrics.Average(error => 
Math.Pow(error, 2)));

To examine the outcome and evaluate the quality of the model, you can
look at the mean absolute error and/or the root mean squared error.

Setting Up a Client Application
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So, now we have trained a model and have saved it to a disk that is ready to
be deployed to production. However, how would you consume a forecasting
model in a client application? Looking at past chapters, we should be able
to create a pool of prediction engines, get one instance for each request,
trigger it, collect any response, and refresh the user interface.

Sounds easy, doesn’t it? Unfortunately, the devil is in the details.

Forecasting Is a Highly Dynamic Task
As our sample dataset contains bike rentals data for 2011 and 2012, let’s say
we spent the first day of 2013 training the model, and on January 2, we
internally deployed a new admin application. The application shows the
charts of past years and offers to make predictions for the next five days.

The first time we click the button, we get predictions until January 7.
What happens if we click the button 10 times the same day and then click it
10 more times the next day? How do we learn from what happened in the
first days of January?

A forecasting model needs some sort of state to be kept and updated
over time. In addition, we should be ready to provide the trained model
with the starting day of the horizon. More importantly, we need to be ready
to provide the latest values we know so that we get a more accurate
prediction. Our question to the model should be like this: “Given these
most recent rental values and your knowledge of the business gained during
training, what can we expect for the next five days?”

Next, we should find a way to update the model so that it incorporates
the most recent observations in the internal state and is ready to use for
future predictions.

Creating a Time Series Engine
The web client application will load the model any time it is requested to
forecast. The following code belongs to the controller responsible for
carrying the forecasting task.
Click here to view code image
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DataViewSchema schema; 
_model = new MLContext().Model.Load(modelPath, 
out schema);

The returned ITransformer exposes a new method we have never met
before—an extension method added by the time series NuGet package.
Click here to view code image

var mlContext = new MLContext(); 
var forecastEngine = 
_model.CreateTimeSeriesEngine<RentalData, 
RentalPrediction>(mlContext);

The forecast engine can be seen as a wrapper around the trained model.
It can be used to make plain predictions, but it also can update the
embedded model with newer information.
Click here to view code image

var predictions = forecastEngine.Predict();

The interesting thing about the previous line of code is that the model
does its job and returns a forecast for the default horizon. The time series
the forecasts are based on is just the one used for training. So, in our
example, no matter what day you ask the engine to make the forecast, any
prediction will be based no later than 2012 because that is the time range in
the sample data. Forecasts make sense in a continuous flow of data. You
contribute new observations to the system and make the time series longer.
The engine then returns predictions based on the latest entries. For this to
happen, though, a new concept must be introduced—the checkpoint.

Creating Checkpoints
In machine learning, particularly in neural networks, a checkpoint refers to
taking a snapshot of the system and its internal state. When applied to
forecasting, a checkpoint refers to updating the model with a new
observation.
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The sample application has a textbox where the user enters the number
of the latest bike rentals for the day. The page calls back an endpoint that
controls the forecast engine.
Click here to view code image

// Make a prediction based on latest observation 
var predictions = forecastEngine.Predict(latest, 
horizon);

The engine is called to make a forecast based on the latest value and for
the specified horizon (say, five days). The variable predictions are an
instance of the RentalPrediction class the model was trained on. It has a
property ForecastRentals, which is an array of float values, one for each
day on the horizon.

The method will likely want to save the observation back to some
database and have an updated time series, which can be used for whatever
purpose, including retraining the model at some point.
Click here to view code image

// Save model back and return 
forecastEngine.CheckPoint(mlContext, _modelPath);

Finally, the controller endpoint will update the state of the current model
with the latest observation and save it back to the same ZIP file where it
was originally loaded. This is the result of calling the method CheckPoint.

The net effect is that the model can take into account any new value, and
after any value is recorded, new fresher forecasts are returned. Figure 8-4
gives an idea of the achievements.
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FIGURE 8-4 A sample client application using the forecast engine

The darker bars refer to the latest values of bike rentals based on which
the engine offered forecasts. Lighter bars refer to predicted values. Each bar
is for one day. The checkpoint allows us to keep the model uptodate
without retraining from scratch. Without checkpoints, any forecast would
be the same after the first hit of the model following any initial training.

 Note
In a neural network context, the checkpoint is a snapshot of the
internal state of the network. In this context, it can also be seen as a
form of reinforced learning—not a full retraining from new data but



a way to calculate more accurate coefficients for more accurate
predictions.

The Discount Factor
In forecasting, the initially trained model must be updated regularly with
new data points. How should the engine value dynamically add points? In
the ML.NET implementation, the SSA algorithm also supports a
discountFactor optional parameter. You should see it as one more row in
Table 8-1.

The discountFactor parameter is a float value and falls in the 0–1
interval. The default value is 1. The parameter sets the weight to be
assigned to online updates (new logged observations) compared to those
taken into account in the originally trained model.

The ML Devil’s Advocate
The SSA algorithm was born for processing a single value over time, but
extensions of it exist for dealing with multivariate time series. In ML.NET,
the implementation of SSA only allows you to deal with a single time
series, even though the support for multivariate time series might come in
the near future. Frankly, single time series analysis is not very useful in the
vast majority of real-world applications, including financial and industrial
scenarios. In fact, both stocks and machines are subject to the changes of a
myriad of factors and working components whose status vary dynamically.

Therefore, this ML.NET section has two main warnings: The first is
about multivariate time series, and the other is about the inherent
predictability of the time series. Let’s just start with the inherent
predictability of the time series.

Nota a Random Walk in the Park?



A random walk is a random (stochastic) process that consists of a sequence
of randomly occurring values that are modeled through a time series.
Random here should be intended as the lack of a clearly predictable pattern.
So, the fluctuation of stock prices, scores of sports games, and sales of
products can be all approximated as random walks.

Now a random walk is unpredictable by definition, and there’s no form
of learning built on any sort of historical data that can reliably predict
future values of a random walk sequence. The interesting thing is that most
real-world time series are random walks, but predictions on their future
values are still attempted in some way.

The bottom line is that machine learning is not magic, especially when
we consider forecasting. Any model you put in production should be
carefully verified, and any results it delivers should be treated very
skeptically.

So, what about the evaluation of the model against test data?
Common metrics such as R-squared might even configure a good match,

but this does not necessarily indicate good prediction powers for random
walks. You can make a few quick tests on the time series to see if it can be
considered a random walk.

If any correlation between two successive data points tends to be zero
over time and the last observed value is still the best prediction you can
have, then the odds are that the time series is really a random walk.
Furthermore, if you switch to a differencing view—where differences
between two points are plotted rather than absolute values—this still
doesn’t deliver a clearly learnable model. This just reinforces the idea that
you have a random walk and, therefore, it is impossible to predict.

Other Approaches to Time Series
Beyond the SSA algorithm and its multivariate flavor that you can see well
explained at https://bit.ly/3eQZj8x, there are other methods to approach
forecasting in the case of time series. A common starting point is using a
special type of neural network called LSTM (Long Short-Term Memory).

https://bit.ly/3eQZj8x


As we’ll see in more detail in Chapter 11, an LSTM is a neural network
capable of maintaining and using some internal state so that it can output
values based on both input features and the current state. An LSTM neural
network is quite appealing here for its innate ability to learn from sequences
of data. LSTMs were developed in the late 1990s to deal with time-series
data.

However, every time series is a different project and its own scenario, so
using a basic neural network might also be reasonable, though a neural
network is not necessarily more accurate on a random walk sequence than a
much simpler tree-based random forest algorithm.

Back in the 1950s, researchers at Rand Corporation developed a new
method (the Delphi method) to make forecasts in the absence of sufficient
data. They did it for a specific military problem, and the actual method was
never implemented in software. However, the core idea revived forty years
later in the foundational concept behind random forests: a group forecast is
generally more accurate than any forecast from individuals.

This is what a random forest actually does. A random decision forest is
made of a multitude of individual decision trees, and the final response is
given by the mean of the responses predicted by the individual trees.

All this said, let’s figure out the key design challenges for a real-world
prediction system that forecast the number of megawatts being generated
on the following days by a wind (or solar) farm.

Energy Production Prediction
There are three important sources of data that can be used to arrange an
energy production forecast algorithm:

Punctual weather forecasts
Power plant data in the form of multivariate time series for each
turbine (or inverter)
Company’s expertise and knowledge

Quite surprisingly, the most delicate of all these sources is weather
forecasts. The most commoditized, instead, is power plant data. People



expertise is the most valuable.

Extremely Accurate Weather Forecasts
All the weather forecasts we find on web sites and mobile apps result from
a standard mathematical model of the atmosphere and oceans and refer to a
coordinate system that divides the globe into a 3D grid. The precision of
forecasts strictly depends on the size of the cell being used.

The default (and cheapest) size of the cell makes the precision of
weather forecasts acceptable for the news but not for the more delicate
scenario of forecasting energy production. Default forecasts are based on
30-kilometer square of cells, but commercial choices exist that restrict to a
square of fewer than 3 kilometers. It’s much better, but still not enough for
production forecasts.

Despite the cell size, the point is that the forecast is more accurate if the
model can effectively predict, say, the wind flow (speed, direction, gust)
near the ground and the turbine. However, this information is hard to get
via physical models because of the typically complex terrain where wind
turbines are located. A similar—though less impactful problem—exists for
irradiation and solar plants.

Real-world forecasting solutions must necessarily build a probabilistic
model on top of high-resolution weather forecasts in order to make quite
accurate predictions for specific geographical points. The probabilistic
model uses measurements of historical weather data for each specific point
of interest. At worst, there is one point for each physical wind turbine. In
fact, the wind can be very different at different heights. In particular, at 80
meters, the nature of the terrain, valleys, or trees can create different
conditions and effects, thus increasing or decreasing speed and changing
gust and direction. And different conditions might exist even for nearby
turbines.

Collecting Power Plant Data
Real-time and historical records of effective production for each generation
unit (such as wind turbines or inverters for solar plants) are the second type
of information needed for a production forecast system. As mentioned, this
data is today near to being a true commodity.



Power plant data is collected via monitoring whether through custom
and commercial IoT devices, SCADA tools, and various sensor data. The
information is collected and cataloged by dedicated monitoring applications
and turns out to be a huge amount of time series data showing the power
output of units and functional parameters.

A comprehensive model for a production forecast can be completed
without a specific client’s knowledge. However, to predict the production
level of a given turbine, the direct knowledge of operators and technicians
can’t be ignored because it can explain the whys and wherefores of a
particular set of outliers or the relevance of a set of feature values that are
crucial to engineer a machine learning model that predicts numbers
effectively.

The Forecasting Pipeline
Production forecast is a predictive problem but can hardly be reduced to a
multi-linear form of regression trained on historical data. To be honest,
multi-linear regression can even be a solution but accuracy of prediction is
not guaranteed. In this way, historical data can tell how much a unit might
produce if historically tracked hardware and weather conditions persist.

What if one of the generation units unexpectedly slows down or even
stops working? No matter what the regressor might state, you’re not getting
any megawatts from that generation unit. What if the weather changes and
you actually get different sun or wind conditions? But there’s more.

How often should you (re)train the model if weather forecasts change?
How would you normalize weather information to reduce the impact on
you of inaccurate forecasts that suggested, say, a much stronger wind than
you’re getting? And what if the power curve you use to calculate the
expected performance of the turbine, and then the exact amount of energy
produced, is inaccurate?

There are so many intricate aspects to consider that linear regression and
more sophisticated regression algorithms such as Naïve Bayes, Random
Forests, or Support Vector Machine might be unreliable overall. Maybe
neural networks are the answer? An LSTM network is a viable approach
here, but training a neural network is a huge and expensive task. How often
should you adjust and retrain the model in a system so strictly dependent on



real-time and volatile data (such as weather and telemetry data)? Can you
afford it?

It turns out that the engine of a renewable energy production forecaster
is more effective if given a design fairly different from that of a canonical
machine learning model. In fact, most commercial products out there tend
to use a lean pipeline where training is minimal, but processing of live data
occurs for every forecast. This approach is acceptable from a performance
point of view if a proper hardware and software platform provides
sufficient computing power, which is the case for most cloud platforms and,
where it applies, for on-premise data centers of involved utilities.

Overall, in renewable energy production, forecasting is considered to be
a relatively exact science even though the approaches to making actual
predictions may differ across vendors and companies. If you’re a utility and
need to predict how much your power plant will produce, you can find a
valid solution in the marketplace.

Summary
Forecasting is not the same as, say, regression. Both approaches are called
to make predictions, but the time factor is much more relevant in
forecasting than in regression. Time series are representative of a
continuous flow of data, and incoming data points are relevant as much as
input features.

Historical data is important, but even more important is understanding
the nature of the actual data in depth to figure out how much causality
exists between values. There’s no generally agreed-upon solution that
works for forecasting, though the SSA algorithm we presented here is one
of the most advanced that doesn’t involve the design of some ad hoc neural
network. More often than not, a forecast problem is tightly coupled to its
surrounding business context that requires multiple data sources and a
dedicated, business-specific pipeline to be solved appropriately.

Just because you usually want predictions for the sake of the business,
you don’t want just one prediction; you want a really accurate one. No
certainties exist for the simple reason that the real world is full of random
walks, and random walks, by definition, are unpredictable. For the same



reason, the idea that you can then make some accurate prediction work
using a single univariate time series sounds quite naïve.

Hence, even when you think you have a model that seems to give
accurate answers, well, you’d better stay skeptical and look for real
matches before you claim you solved the problem. Metrics in forecasting is
a number and not necessarily a solid and reliable number.



Chapter 9

Recommendation Tasks

“The determination of the value of an item must not be based on
its price, but rather on the utility it ultimately yields.”

—Daniel Bernoulli, Exposition of a New Theory on the Measurement of
Risk, 1738

An old quote attributed to St. Francis of Assisi says that the ideal way to
approach life is to start by doing what’s necessary and moving later to
what’s possible. Skipping over the final statement that by doing so, one
would suddenly be doing the impossible, it’s inevitable to see here some sort
of implicit ranking applied to the things of life.

When you have a large volume of data to make sense of, you have to
start somewhere and just starting from the beginning is not always an option
because no end and no beginning is often obvious to find. Motivational
speech apart, this chapter is about the core task of learning to rank available
data items in order to extract and/or predict insightful information.

A number of web-based services we consume every day make intensive
use of ranking functions—from search to e-commerce and from media
entertainment to social feeds. In a way, the core task of ranking has been
shaped to the form we’ll be discussing shortly by the need to work well
when classifying data items by relevance and spotting related items in an
incredibly large volume of continuously growing data.

Two similar terms find their place in this context: ranking and
recommendation. Both refer to different but closely related tasks. We could
even see recommendation as the system frontend and ranking as the system
backend that is globally aimed at learning and communicating the actual
relevance of processed data.



Inside Information Retrieval Systems
Ranking and recommendation find their sweet spots in any kind of
information retrieval system. You find ranking in Google’s page
classifications and TripAdvisor’s ratings, Amazon’s suggestions, and
Instagram’s advertising. As harsh as it might sound, no web search you ever
perform today results from the pure matching of features; instead, it’s
always a result of rank-filtered lists of fewer relevant items. On the other
hand, the massive amount of available raw data would make it impossible to
even plan pure feature match research.

Machine learning has become a formidable tool for lending attribute-
weighted relevance to data items in order to guess the hidden sentiment of
data, settle down collaboratively gathered feedback, and present realistically
interesting opportunities to potential consumers.

The mechanics that are commonly referred to through the
interchangeably used terms of ranking and recommendation are actually
articulated in three distinct functions—ranking, recommendation, and
collaborative filtering—each with slightly different training needs and goals.
Figure 9-1 shows how the three functions relate to each other. Ranking
functionality is leveraged to some extent by recommendation and
collaborative filtering.



FIGURE 9-1 Connection graph of ranking, recommendation and
collaborative filtering

The Basic Art of Ranking
Ranking is the most basic task used as a sort of backend engine on top of
which both the recommender and collaborative filtering systems thrive. The
results are from the output of a ranking algorithm, regardless of the
recommendation you get as a consumer or the product or service you find on
the marketplace.

Therefore, the ranking is the core engine of top-level modules such as
recommender systems that provide users with an ordered list of items.
Typically, a ranking algorithm is a supervised algorithm that learns to
produce a score for each item in the dataset. Depending on the algorithm’s
configuration, the final score might just define the relevance as a binary
entity (relevant/not relevant), or it might use a broader form of judgment
through a numerical or ordinal score.



Typically, training data is made of data items with some partial order
specified in binary or numerical form. The trained model’s ultimate goal is
to assign a score to an unseen item and order an unseen list of data items by
relevance.

The critical point of ranking algorithms is to discover and properly
handle the mutual relationship between items that have structural context, as
well as handle the role of users’ preferences and/or the specific intents in the
context. A blind scoring function that applies to each item while ignoring
the context will not be very useful in real-world scenarios.

The Flexible Art of Recommendation
A recommendation is a personalized form of ranking that produces a list of
products or services expected to align with the user’s preferences and intents
in the application context. The recommendation comes from some historical
rating or activity data collected for the user. Anytime you get a “you may
like this, too” kind of message from an online service, you can be sure that
you unknowingly interacted with a recommender system built in the
backend of the site or app you were using.

Ranking Versus Recommendation
The key difference between ranking and recommendation lies in the fact that
ranking is global, whereas recommendation is mostly personal. Ranking
tends to address ratings aggregated over large populations of users and
produces a kind of general-purpose rating. Recommendation tends to
override the default ranking for the specifically recognized preferences and
intents of each user.

A ranking algorithm uses a search query that is provided by users who
know what they are looking for. A ranking algorithm extracts information
from what users actually search for. Recommender systems, on the other
hand, work without explicit input from the user and attempt to provide
information the user wouldn’t have found otherwise. Recommender systems
are primarily used in e-commerce applications.

Another difference between ranking and recommendation is that ranking
algorithms normally put more relevant items at the top of the list. Instead,



the overall notion of relevance is different in a recommendation system
where the goal is to find items that are related to other items while not being
too similar. In fact, a good recommender system would not typically suggest
the top thriller books if you bought one of the top thrillers, but it would
propose related books that might have a number of common aspects. For
example, if you bought a legal thriller book, you might be given suggestions
for other equally suspenseful and plot-driven books with some bearing to
the legal domain.

More concretely, if you give the Amazon’s recommender reason to
believe you’re interested in, say, domain-driven design, Amazon would also
propose a bunch of books on microservices, event-driven systems, and
design patterns, along with books that seem to offer domain-driven design
coverage from a different angle. In a nutshell, a recommender still uses
ranking, but the scoring function is much more sophisticated as it doesn’t
count pure relevance but aims at a broader and diversified idea of relevance.

Personalization
Ranking and recommendation move on distinct lines that intersect in some
way. Google, for example, started as a general-purpose page ranker 20 years
ago. but at some point, it started slowly but steadily moving toward
becoming a personal recommender service. Hence, personalization is a key
factor in a recommender system, and an emphasis on personalization makes
a system more exposed to more sparse data.

Typically, personalization is achieved in two steps. First, filtering
methods decompose data items in features, and then the consumer activity is
matched to a number of those features. For example, a book can be
featurized by author, genre, leading character, and year of release. This
information is then matched to consumer browsing or buying history to find
out how many books of that author, those genres, that year the customer has
shown interest in. Interestingly, in a content-filtering recommender system,
no user personal information (such as gender, nationality, or age) is used.

 Note



A recommender system is personal by definition, but what about
ranking? When we get a ranking, are we sure it is valid globally, at
least for a given domain? Is it biased in some way? In which way?
More, is it deliberately biased? As you can see, this way of reasoning
will soon lead to AI ethics. At the same time, when we add the
capability to control what’s ranked (and how it’s ranked), we move
away from ranking and get into personalization, where no idea of
generality exists by definition.

The Delicate Art of Collaborative Filtering
A content-filtered recommender relies heavily on any known past activity of
the user within the host system, whether an e-commerce site, media
platform, or social network. This scenario presents a clear drawback: final
recommendations may be inaccurate for inactive users because of a lack of
core information to match to data features. However, new users are
problematic to handle, too, because a content-based filtering system would
experience the same lack of information for both inactive and new users.
(This is also known as the cold start problem.)

Collaborative filtering is a method specifically designed to address both
limitations above. It does that by turning the principle of content filtering
upside down and heavily leveraging cross-user information. More generally,
we can consider collaborative filtering as a special form of a
recommendation system that is best suited to scenarios where user data is
known, such as age, gender, earnings, occupation, and residence, but there’s
a shortage of user-specific activity within the host platform.

Unlike a classic content-based recommendation system, a collaborative
recommender attempts to predict how much a given consumer might be
interested in an item based on other consumers’ previous interest in the
same item. Essentially, such a recommender uses some heuristics to predict
a user’s rating for an item, starting from the ratings of other users who have
similar personal traits, such as age, gender, earnings, and so on.

Finally, note that collaborative filtering is not free of issues when it
comes to data. In fact, less popular items with only a few ratings risk being



inaccurately mapped to users.

The ML Recommendation Task
A common example to make sense of recommenders is taking a list of
movies and predicting which of them would be of interest to a given user.
Or, the other way around, when any user logs in, the system presents a list of
movies that might be interesting to watch. At its core, it is a matter of
getting a software module that is capable of taking a user ID and a movie ID
and scoring the match between the two. If the score turns out to be higher
than a fixed threshold, then the movie makes it to the list of
recommendations; otherwise, it will just be ignored.

In order to go through the following example, you will need to install an
extra NuGet package on top of the default ML.NET library. From the NuGet
frontend, you pick up the package named Microsoft.ML.Recommender.

A Look at the Available Data
The sample application we discuss here covers a canonical use case for a
recommendation system: Predict if a user is going to like a given movie that
they haven’t watched yet. Technically, the recommender works by
estimating the user’s movie rating and voting for “like” if the rating exceeds
a fixed satisfaction threshold.

The data we’ll work on in the example is a CSV text file made of a few
comma-separated columns, including user ID, movie ID, rating in the 1
through 5 interval, and time of the rating. The dataset comes from the
repository of ML.NET samples and contains a collection of about 100,000
ratings. The database is fully anonymized, and both movies and users are
identified with a numeric ID. As a side note, the number of distinct users is
in the order of a few hundred; the number of distinct movies is in the order
of a few thousand.

Schema of the Data
The C# class that describes the features we’re considering for
recommendation is shown below. The property we want the model to predict



is Rating. We also ignore the Timestamp column in the dataset.
Click here to view code image

public class RatingData 
{ 
    [LoadColumn(0)] 
    public float UserId; 
  
    [LoadColumn(1)] 
    public float MovieId; 
  
    [LoadColumn(2)] 
    public float Rating; 
}

Figure 9-2 shows a glimpse of the source dataset in Microsoft Excel.
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FIGURE 9-2 An interior view of the dataset used for the movie
recommender system

The UserId and MovieId columns identify users and movies
anonymously, whereas the Rating column indicates the level of satisfaction
the given user expressed about the given movie in a scale that ranges from 1
(poor) to 5 (excellent). It goes without saying that any client application
calling into the finalized model will have to provide a real user ID and a real
movie ID from the same production database where the data to train the
model originally came. Typically, a recommender system works on a per-
user basis. Therefore, the users whose movie preferences have been used for
training should be the same for which movie predictions are requested (with
the obvious exception being new users of the system and new and unrated
movies in the catalog). In this case, it becomes a matter of guesswork.

Selecting Columns of Data
In our example, the timestamp column still found in the dataset is ignored by
the model because we decided counting the time of rating was not relevant.
Remember, though, that this is only a demo. In a real-world scenario, the
time of rating might be used to assign a different weight to each row. For
example, you might want to count different ratings from last year versus the
ratings made two or more years ago.

The dataset’s timestamp column reports a UNIX epoch date (number of
seconds elapsed since January 1, 1970). If you go through the sample
dataset, you find that it covers ratings until about 2017. Hence, you might
want to give more relevance to those entered after, say, 2014.

 Important
In each of our “ML Devil’s Advocate” chapter sections, we stress the
difference in the scale of complexity between easy-to-arrange-and-
explain demos (including these) and real-world business scenarios.
The simple change is that adding a different weight to older and
newer dates could make the solution significantly more complex.



The extra layer of complexity could range from an additional data
transformation step on top of a shallow learning algorithm (such as
matrix factorization that we’ll be using here) to using a tailormade
neural network.

A Bit of Feature Engineering
Loading the data into a new ML.NET data context is in no way different
from what we have seen in previous examples. You can use file or database
loaders depending on the actual storage location of the data. In this case,
we’ll proceed with a CSV text file:
Click here to view code image

var filePath = ...; 
var mlContext = new MLContext(); 
var dataView = 
mlContext.Data.LoadFromTextFile<RatingData>
(filePath, 
                         hasHeader: true, 
separatorChar: ',');

Using the training dataset shown in Figure 9-2, there’s not much to do
with feature engineering. However, in a real-world system, the user ID and
movie ID are not always plain numbers. If they’re expressed as
alphanumeric strings, then you need to map those unique strings to
numbers.
Click here to view code image

private IEstimator<ITransformer> 
ComposeDataProcessingPipeline(MLContext 
mlContext) 
{ 
    IEstimator<ITransformer> pipeline = mlContext 
        .Transforms 
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        .Conversion 
        .MapValueToKey(outputColumnName: 
"userIdEncoded", inputColumnName: "UserId") 
        .Append(context 
            .Transforms 
            .Conversion 
            .MapValueToKey(outputColumnName: 
"movieIdEncoded", inputColumnName: "MovieId")); 
  
    // More stuff possibly goes here.  
    // For example, making small values smaller 
and high values higher  
  
 return pipeline; 
}

Note that if you run the above code on the dataset of Figure 9-2, you get
two identical copies of the UserId and MovieId columns. However, if ID
columns were text-based, you get two equivalent numeric columns more
comfortably processed by any algorithm.

Relevance by Date
The column Timestamp in Figure 9-2 presents apparently weird numbers. As
mentioned, they represent dates saved as UNIX epochs, namely the number
of seconds after the UNIX’s Big Bang of the digital world—January 1,
1970. In .NET, the DateTimeOffset class lets you easily convert dates to and
from the UNIX representation, which, incidentally, is the same used in
JavaScript.

What if you want to give more relevance to more recent ratings and
disregard older ones? First and foremost, it’s not a trivial issue to address,
and there’s not much you can do using a shallow learning algorithm for
training. We’ll say more on the relevance of rating by date later in the “ML
Devil’s Advocate” section. For now, suffice it to say that if you decide that
ratings older than a specific date are irrelevant, you can just rule them out
with a data filter. The code below sets Jan 1, 2014, as a UNIX date.



Click here to view code image

// Numeric timestamp threshold for Jan 1, 2014 
var unix2014 = new DateTimeOffset(2014, 1, 1, 0, 
0, 0, TimeSpan.Zero); 
var after2014 = unix2014.ToUnixTimeSeconds();

The IDataView’s method FilterRowsByColumn allows you to keep only
those rows following a given date. Here’s an example.
Click here to view code image

var filteredData = mlContext 
             .Data 
             .FilterRowsByColumn(dataView, 
"Timestamp", after2014);

It is worth noting that this approach just reduces the number of rows
eligible for training. It doesn’t really attribute a different weight to each
rating based on age. As mentioned, that’s a far more wicked problem to
tackle.

Composing the Training Pipeline
We now need to choose a trainer and append it to the ML.NET learning
pipeline in order to train the model and evaluate its results. Which algorithm
should we start with?

The Matrix Factorization Algorithm
A common (collaborative filtering) algorithm for recommender systems is
Matrix Factorization (MF). The algorithm works on a dataset like the one
used here by decomposing the entire matrix of user/movie interaction into
the product of the two lower-ranked matrices. The lowest-ranked dimension
of these two matrices is one of the algorithm’s hyperparameters.

In ML.NET, you find an implementation of the MF algorithm that we’ll
be using here. The ML.NET code for the training and testing pipelines is
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shown below:
Click here to view code image

private static void 
TrainEvaluateSaveModel(MLContext mlContext,  
    IDataView trainingDataView,  
    IDataView testDataView,  
    IEstimator<ITransformer> dataProcessPipeline,  
    string modelPath) 
{ 
    var options = new 
MatrixFactorizationTrainer.Options 
    { 
        MatrixColumnIndexColumnName = 
"userIdEncoded", 
        MatrixRowIndexColumnName = 
"movieIdEncoded", 
        LabelColumnName = "Rating", 
        NumberOfIterations = 20, 
        ApproximationRank = 300 
    }; 
  
    // Training 
    var trainer = 
mlContext.Recommendation().Trainers.MatrixFactori
zation(options); 
    var trainingPipeline = 
dataProcessPipeline.Append(trainer); 
    var model = 
trainingPipeline.Fit(trainingDataView); 
  
    // Evaluate model 
    var prediction = 
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model.Transform(testDataView); 
    var metrics = 
mlContext.Regression.Evaluate(prediction,  
              labelColumnName: "Rating",  
              scoreColumnName: "Score"); 
  
    Console.WriteLine("MSE... : " + 
metrics.RootMeanSquaredError); 
    Console.WriteLine("R2.....: " + 
metrics.RSquared); 
  
    // Save the trained model to a .ZIP file 
    mlContext.Model.Save(model, 
trainingDataView.Schema, modelPath); 
}

We set the MF trainer to work on data rows represented as triplets of
values such as user ID, movie ID, and known rating. We also set two
hyperparameters, such as the maximum number of iterations to run until
returning and the rank of the approximation matrices to use for internal
purposes. More precisely, if the dataset is M × N then the algorithm
internally builds two approximation matrices to express the original dataset
as a product of matrices: M × k and k × N in size, where k is the
approximation rank provided.

 Note
On an historical note, the MF family of algorithms gained popularity
back in the early 2000s during the Netflix prize challenge. Netflix set
up the challenge in 2006 as an attempt to find a way to improve the
accuracy of watch suggestions made to users. Put another way: The
challenge was about predictions of how much someone would have
enjoyed watching a given movie. The 1-million-dollar prize was
awarded to a combined team from various research institutes



globally known as BellKor’s Pragmatic Chaos team. The algorithm
they proposed is a rather sophisticated variation of a classic MF
algorithm that uses an Ensemble approach to train multiple MF
models simultaneously and applies a nonlinear blending to make the
final decision.

Any Missing Pieces?
In a nutshell, the algorithm does the following. First, it gets a user and a
movie and looks for other users in the dataset that rated the same movies the
given user rated. If the user has not rated the specified movie, but any of the
other users with similar preferences did, then an average of the available
ratings is taken. What if there are no ratings whatsoever (such as a new and
inactive user and/or a new and unpopular movie)? Frankly, in this case, it’s
not much different from tossing a coin. Yet, it can be acceptable for a media
platform or a web site. In the end, it’s a mere suggestion!

If you want to (try to) be as accurate as possible, an ad hoc algorithm
must be arranged that likely connects various pieces in a cascade. Therefore,
it’s not simply about training an algorithm; it’s about building, testing, and
finally, training a learning machine.

Evaluating the Model
Recommender systems pose a challenge when splitting up the available data
into training and test datasets. In this example, we started with predefined
datasets and didn’t perform any splitting on our own, but in general, you
have a list of ratings (such as participants for the Netflix prize could count
on 100 million ratings back in 2006) and must make a typical 80/20 split
manually.

For a recommender system, you should always reason in terms of
user/movie pairs and pick them randomly from the well of data. You mustn’t
select users or movies individually at random. The issue is that if a user is
found only in the test dataset, the trained model might be unable to
accurately predict the preferences of a user it knows nothing about. This
leads us to consider ranking and recommendation problems that make it



unique in the machine learning landscape. You always need information
about the user; the actual production prediction should be effectively based
on a personal time series of ratings rather than on a model that has been
generically trained to predict preferences. As the name itself suggests, a
recommender system is up close and personal. Training must reflect that,
and generally, the whole idea of collaborative filtering is about using
provided ratings to predict the rating a user would give to movies they
haven’t watched yet.

The actual performance of a recommender system depends on the
(limited) sparseness of the user/movie matrix being built internally. Often,
this matrix (all movies and all users) is fairly sparse, with lots of empty
spaces for all those users who haven’t rated a movie. However, many other
aspects contribute to the effectiveness of a recommender system. Any
platform (media, e-commerce, or social) you recommend on is unique and is
subject to different parameters. In this regard, reading some technical
reports of the Netflix prize challenge algorithms would be highly
instructive. You need to come up with ways to handle aspects like human
bias, tendency to enter bulk ratings, and subsequent temporal memory
effects. For example, days after watching a movie, a user might only
remember what they liked most and then skip rating what they watched but
didn’t enjoy. (We’ll return to this point later in the “ML Devil’s Advocate”
section.)

The most common way to give a passing evaluation to a
recommendation algorithm is the root mean square error (RMSE), namely
the mean from the sum over the squared error of known entries in the test
set (distance between the predicted and expected). The smaller the value, the
better the alleged performance. Here’s code to get predictions out of the test
dataset and calculate regression metrics (which delivers R-squared and
RMSE values) using the Rating source column as the truth and the column
Score as the container of the computed prediction.
Click here to view code image

var predictions = model.Transform(testDataView); 
var metrics = 
mlContext.Regression.Evaluate(predictions, 
"Rating", "Score");
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Where does Score come from?
Actually, in this chapter, we haven’t yet mentioned the C# class that the

MF algorithm uses to return computed predictions.
Click here to view code image

public class RatingPrediction 
{ 
    public float Label { get; set; } 
    public float Score { get; set; } 
}

As a curiosity, the algorithm that won the Netflix prize scored an RMSE
of 0.8567 on the test dataset.

Other Algorithms
A possible reading of the final stage of the Netflix prize (which ran for three
consecutive years ending in 2009) is that matrix factorization, while not
perfect, is probably the best performing algorithm in terms of both physical
performance and accuracy. Which are alternatives?

K-Nearest Neighbors (KNN) is an excellent starting point for the
development of a recommender system. In itself, KNN separates the rows in
a dataset into several clusters and is an unsupervised method. Applied to a
recommender system, it turns out that its outcome can be used to infer the
cluster where new data points may fall in. KNN makes no assumptions
about the distribution of data but just measures the distance between items
to spot possible similarities. KNN calculates the distance between the movie
to consider and all other movies in the database and returns the top K
movies that the employed distance reported as nearby and then similar.

 Important
KNN is powerful, especially in this context of recommenders but
leaves an open point. Which parameters can you really use to
compute the distance? It can only be fragments of information about
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the movie itself, things like category, actors, director, year, and the
like.

The effectiveness of a KNN method is strictly dependent on the
effectiveness of the selected distance function. The classic choice of a
Euclidean distance might not be optimal in recommenders with a high
degree of sparseness, and a cosine distance might be preferable sometimes
(or something different as the actual quality of data might suggest). In a
way, the challenge is improving KNN so that also scales well with very
large datasets like those commonly involved with recommenders.

Anyway, one of the facts that surfaced clearly from the Netflix challenge
as a way to improve the accuracy of a recommender system, beyond
optimization in the computational aspects of the training process, is the idea
of using ensemble methods. In machine learning, ensemble refers to a few
classes of algorithms that generate a predictive model from the combination
of multiple learning techniques. Essentially, they group weak learners
together to form one stronger learner.

 Note
Generally, there seems to be agreement on the fact that matrix
factorization techniques can be trained efficiently, and predictions
can be generated more quickly than with KNN or other methods
such as a Restricted Boltzman Machine (RBM). Also, the integration
of additional data features and filters on the data is easier.

Setting Up a Client Application
There are many different ways in which one can create a recommender. For
example, should the recommender return a list of suggestions (say, top 5) of



movies the user may want to see? Should this happen as soon as the user has
finished watching a movie and/or when they log in to the system? Or should
the system predict how much the user is going to enjoy a given movie they
have not watched yet? It’s a mere matter of what the business demands. Our
example supports the latter scenario, but supporting the former is a matter of
adding some more work and access to the database of users and movies.

Skeleton of the App
The sample web application follows the same pattern we have seen in past
chapters. It has a prediction engine picked up from the pool of engines and
injected into the controller:
Click here to view code image

public class RateController : Controller 
{ 
   private readonly RatingService _service; 
  
   public 
RateController(PredictionEnginePool<RatingData, 
RatingPrediction> ratingEngine) 
   { 
     _service = new RatingService(ratingEngine); 
   } 
  
   // ... 
}

The RatingService class does the job of calling the model from the data
it has received from the frontend.
Click here to view code image

public RatingPredictionInfo 
Recommend(UserMovieInput input) 
{ 
   var modelInput = new RatingData {MovieId = 
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input.MovieId, UserId = input.UserId}; 
  
   // Predict movie rating 
   var prediction = 
_ratingEngine.Predict("SampleRanking.Recommender"
, modelInput); 
  
   // Cut some decimals 
   var score = (float) 
Math.Round(prediction.Score, 2); 
  
   // ... 
}

The model we trained can only return a movie rating for a given user.
The Score variable in the snippet above is the predicted rating the user
would give to the movie and is a number in the 1..5 interval.

The User Interface
The sample page contains an HTML form through which user ID and movie
ID are collected. Admittedly, the user interface you can see in Figure 9-3 is
fairly scanty and just uses input fields to accept ID values. In a realistic
scenario, you likely have a drop-down menu for the movies with titles
displayed and hidden IDs. The user ID instead would likely result from the
currently logged-in user. At any rate, the two pieces of input data in the
figure can be assumed to be always available.



FIGURE 9-3 A sample movie recommender in action

User and movie IDs are posted to a controller endpoint and processed as
discussed before. The result is a float number representing the predicted
level of preference. How should we present the raw response to the user?
The following code provides a human-readable version of the computed
score.
Click here to view code image

if (prediction.Score >= 0 && prediction.Score <= 
1.5) 
     info.HumanReadableScore = new HumanScore 
{Text = "You'd rather skip this!",  
                                               
Style = "fa fa-2x fa-thumbs-down"}; 
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else if (prediction.Score <= 2.74) 
     info.HumanReadableScore = new HumanScore 
{Text = "Give it a try, but may not like it",  
                                               
Style = "fa fa-2x fa-thumbs-down"}; 
else if (prediction.Score <= 4.0) 
     info.HumanReadableScore = new HumanScore 
{Text = "Give it a try.",  
                                               
Style = "fa fa-2x fa-thumbs-up"}; 
else 
     info.HumanReadableScore = new HumanScore 
{Text = "You're going to LOVE this movie.", 
                                               
Style = "fa fa-2x fa-heart"};

The class HumanScore is a plain data-transfer object with only two string
properties (Text and Style) created just for the purposes of the user
interface.

ML Devil’s Advocate
Even though matrix factorization is likely the most effective algorithm for
collaborative filtering, building up a recommender system is not easy. It can
be so complex at times that a rather naïve solution is often regarded as more
than acceptable. In the end, it’s all about how accurate you need to be in
your specific context. Let’s start from the aforementioned Netflix challenge.

If You’re Like Netflix
If you have to design a recommender system expected to generate an
average of 30 billion predictions per day, you must be at the top. You must
be able to penetrate the mind of individuals and try to read the content. It’s a
matter of business survival; it’s just what can help you make the difference



with competitors. More, it has to become your unique, distinctive trait.
Therefore, you can even set up a public competition and challenge
participants to improve by 10 percent or more the best result you currently
have. You’re not just interested in a better solution; you want it to be
significantly better than anything you may have.

Isn’t it what we just played with so far? What else should you consider if
you’re Netflix?

All models based on collaborative filtering ultimately try to capture the
sense of interactions taking place between users and movies (in general,
items to recommend). Each user is different, however, and each may be
subject to a form of bias. For example, some users may show a systematic
tendency to give ratings higher (or lower) than others for the same effective
feelings. This is an aspect of rating that you want to moderate if you’re
Netflix. This likely means that you want to organize the prediction around a
user-specific time series that only comprehends real user-movies interaction.
In this case, the scale of rating is likely the same across the entire dataset. It
may mean grouping users and training multiple models or perhaps keeping
clusters of movies created via KNN and finding a match between global and
user-specific clusters. One way to do this is using an auto-encoder neural
network to reduce user and movie information to a new, smaller
representation. This encoder will convey personal user information (gender,
age, profession, and residence) and movie facts (director, year, and genre).
The user representation might even be further enriched with previous ratings
to form an expression for the user that is as comprehensive of all aspects of
the user being a consumer of the media platform.

Another aspect you want to look at is bulk rating. Users don’t typically
rate right at the end of the movie. Sometimes several days separate the
actual watching experience and the rating. It is generally believed (and
psychology confirms) that even when doing bulk rating, users still tend to
express their natural preferences. The issue here is that you may experience
asymmetry in the number of ratings per movie. Typically, a movie for which
strong feedback is provided (whether positive or negative) is remembered
longer and consequently tends to get more reviews. As a result, some
movies end up with fewer ratings, thus creating a discrepancy in the
available dataset.



Yet another aspect is when users share the same account. Over time,
ratings for the same user might not follow a recognizable pattern, or they
might follow multiple patterns. Furthermore, it should also be taken into
account that users might change their moods and preferences over time, so
their ratings follow different patterns even when they do not share the
account. Should the algorithm consider the same ratings provided years
before? Should you remove those old ratings from the count? There’s no
obvious answer, and to some extent, all answers are good. It depends on
who you are and what you’re going to build.

What If You’re Not Like Netflix?
If your business is economically centered on what users do with your
suggestions (watch more stuff, buy more things, or do more work) then
accuracy is a key element, and you should also take into account every
single wrinkle that may alter the data you own. Otherwise, more naïve
solutions are acceptable as well. In this case, you may even avoid machine
learning altogether and opt for an expert system.

To put it another way, it’s like the level of accuracy you need from a
regression algorithm that attempts to predict the cost of a taxi ride. If you’re
a competing and compelling ride-hailing company, predicting near-exact
prices is a must. In other business scenarios, it might still be helpful to offer
a cost prediction, but a less accurate prediction is also acceptable. In
Chapter 4, “Prediction Tasks,” we found out that once trained, the algorithm
produces a prediction model whose results work well for New York (where
the dataset originated) but are still acceptable for Rome, too, once you have
changed USD for EUR. Again, it’s all about expectations.

Anyway, for recommenders, if you need to go beyond naivety, it might
be fairly complex. And do not forget that Netflix put up its challenge more
than 15 years ago! It’s vision, not just technology.

Summary
Terms like “ranking” (or “search ranking”) and “recommenders” are
sometimes used interchangeably, and the difference between the two is often



blurred. While both algorithms are trying to present items in a sorted way,
there are some key differences between these two terms. In particular, a
recommender system collects data from many users to guess the preferences
of each user. A ranking system measures the relevance of documents in an
information retrieval system of any kind. A recommender won’t receive any
input from the user; a ranker will.

Both systems try to help users of a system to get what they’re looking
for. Both systems (especially recommenders) suffer from a possible lack of
interpretation of the results. The interesting thing is that users have no way
to check the quality of the suggestion other than by following it. In doing so,
though, they break the core statement that a recommendation (or a
suggested document) is good (or relevant for the search). However, adding
explainability is problematic and is still a subject of deep research. Probably
for this reason, in the whole spectrum of ranking solutions across the
industry, you might jump from naïve to fairly sophisticated solutions with
nothing left in the middle.

With the next chapter, our tour of ML.NET tasks comes to its end. The
next chapter is again about classification, but it’s a very special type of
classification: image classification.



Chapter 10

Image Classification Tasks

“Speculations? I have none. I am resting on certainties.”

—Michael Faraday

The saying, “A picture is worth a thousand words,” works well for humans,
but its application is much more complicated in software. Humans feature
highly parallel brains capable of carrying extremely complex operations
instantaneously. For computers, certain operations—standing their current
internal architecture—require much more effort and/or a lot of training. The
quintessential example is recognizing what’s featured in an image. This
macro area can be further split into at least two more specific areas: image
classification and object detection.

Image classification aims at automatically classifying images into one or
more categories based on the content represented. Conceptually, it’s no
different from the classification task we discussed in Chapter 5, except that
we don’t have a number of feature columns for classification algorithms to
work on to extract similarities. An image is a different kind of animal and
requires a different kind of environment to be processed.

Object detection is the primary form of computer vision and refers to the
ability to recognize the object featured in the image (or video frame) in
much the same way a human brain would do.

Dealing with images in machine learning poses a crucial problem.
Realistically, no team outside IT giants can start from scratch. First, it’s
deep learning, and no straight algorithm exists for it. Second, you need to
set up a neural network with certain characteristics (we’ll tackle neural
networks in the next chapter) and train it for hundreds of hours on millions



of images. It’s a relevant computational cost that no individual and not even
the majority of teams can easily pay.

The way out—fully supported by ML.NET—is to use a sort of shortcut
known as transfer learning or retraining. Though not perfect, it works
acceptably well.

Transfer Learning
Both image classification and object detection are commonly tackled in
custom applications taking publicly available, pre-trained models for image
processing and retraining them to achieve a more specific purpose. This is
the approach we’ll demonstrate in this chapter.

Popular Image Processing Neural Networks
Transfer learning requires a foundation model to build on. As far as images
are concerned, the most popular model is Inception. In particular, Inception
v3 is an image recognition model that has proven already capable of
offering significant accuracy. The model was built and refined over the
years and now sets the ground for solid computer vision implementation.
The paper describing the internal architecture of Inception can be found
here: https://arxiv.org/pdf/1512.00567.pdf.

Inception has been trained on the ImageNet dataset available at
https://image-net.org/download.php. The dataset contains over 1,200,000
images and recognizes more than 1,000 object classes. In other words, it
means that the Inception model is sufficiently capable of recognizing over a
thousand common-use objects and entities in submitted images. The power
of transfer learning lies just in the ease through which you can extend the
core capabilities of Inception to fit your needs. You also save hours of
training—typically by one order of magnitude. You must be aware of what
you intend to achieve and on which images. The cost of adapting Inception
to your needs is affordable to nearly everyone.

Other Image Neural Networks
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Inception is only the most popular image processing predefined neural
network. Other networks exist for you to choose and build your own
tailormade solution. All these networks support retraining, so in the end, it’s
about defining your objectives, pursuing them, and leveraging the
programmability of such neural networks.

The following link groups a few links to image processing neural
networks alternatives to Inception.

https://tfhub.dev/s?module-type=image-feature-vector&tf-version=tf2
Most of them have been initially trained on the ImageNet database.

Each neural network features an alternative internal neural architecture
which ends up in different costs of training and, from the user perspective,
in different levels of accuracy in recognizing images.

Without further ado, let’s see how to work with Inception in an
ML.NET-based C# application.

Transfer Learning via Composition
Transfer Learning can take place in either of two ways. One way is through
the ML Image Classification task; the other is via explicit model
composition. The ML Image Classification task hides most of the
underlying details, whereas the composition approach requires that a new
explicit model is built on top of the results of the pretrained model. Let’s
tackle composition first.

As mentioned, model composition performs nearly the same tasks as the
ML Image Classification task except that it makes most of the steps
explicit, whereas the task cuts them off by convention or parameterization.
In the model composition scenario, first, the application loads the prebuilt
Inception model in the training pipeline. Second, it turns the problem into a
more manageable canonical classification problem like the one we looked
at in Chapter 5, “Classification Tasks.” To put it another way, the preloaded
Inception model allows you to extract image-related features that can then
be worked on as plain classification matter.

https://tfhub.dev/s?module-type=image-feature-vector&tf-version=tf2


The Transfer Learning Pattern in ML.NET
In order to unleash the power of image classification and transfer learning
in ML.NET, you need to install a few additional NuGet packages in the
.NET solution. In particular,

Microsoft.ML.ImageAnalytics

SciSharp.TensorFlow.Redist

Microsoft.ML.TensorFlow

Inception is a neural network model built with TensorFlow, which is one
of the most popular frameworks for such tasks. You need the bits of the
model and the ML.NET bindings necessary for the ML.NET framework to
interact with the model and the TensorFlow framework. Figure 10.1 shows
the overall connecting parts. Ultimately, the custom application code will
receive the retrained ML.NET model built from the Inception binaries and
ML.NET bindings.

FIGURE 10-1 The overall architecture for model composition from
TensorFlow models in ML.NET



The top of the chain is the source-trained model as it comes from the
Inception project. It’s a free download of files to be incorporated into the
ML.NET training project. The additional NuGet packages referenced above
provide the bindings between the native TensorFlow framework (the
framework used to build Inception) and the host ML.NET framework (the
framework used to build the new retrained model). Instead, the
ImageAnalytics Nuget package contains just the facilities to operate the
image classification task in ML.NET.

Overall Purpose of the New Image Classifier
The idea is fairly simple: Use the trained model (Inception) to extract
features from the custom image dataset and turn it into suitable input for a
classical machine learning algorithm such as a multiclass classifier. The
final goal is building a dedicated, farsimpler image classifier that can tag
images with one of a few categories. The net result of such a transfer
learning operation is performing a plain multiclass classification except that
it takes place on top of images rather than text.

 Note
Building your own neural network for processing images is
realistically out of the question for small teams. An image
processing tool is a complex and tailor-made neural network that
results from the composition of multiple types of neural networks
combined through connectors of many types. This is not exactly an
exercise you can run for fun. To experiment with neural networks,
you need to resort to dedicated frameworks like Tensor- Flow or
PyTorch. There’s also a tentative roadmap to offer neural network
building infrastructure in future versions of ML.NET as well.



Mapping to a Canonical Classification Problem

In order to analyze the content of an image, a neural network builds
a mathematical representation of the image—let’s call it an encoding
of the image.

This representation travels across the layers of the network and
gets more precise at every step. When the encoding reaches the final
layer, it gets used to classify the original image within the prefixed
tags of the network. When we use a large pre-trained network, we
can safely assume that the encoding that makes it to the final layer
effectively offers a consistent representation of the processed image.
Transfer learning just overrides the way the encoding is mapped to
tags. In a transfer learning scenario, custom tags are used instead of
the tags originally supported by the network.

In model composition, the override of the final layer is explicitly
coded; with the ML Image Classification task, it’s conducted via
parameters and configuration.

A Look at the Available Data
Any transfer learning project has two blocks of input data—one is the
trained model, and the other is the (few) sample images to classify. To use
the Inception model as the trained model, you need to get ahold of the
model files and save them in one of the folders of the ML.NET project.

The download URL for the latest version of the Inception model is
https://bit.ly/2ShnXSA. When you unzip the file, you find the serialized
model—a Protobuf .pb binary file—and a couple of text files. One is the
license, and the other is the list of the 1,000 categories that the model can
recognize in a submitted image.

Let’s build our necessary C# tools.

https://bit.ly/2ShnXSA


The Sample Image Dataset
The following C# class defines the typical data row in our training dataset.
As mentioned, there are two string properties.
Click here to view code image

public class ImageData 
{ 
    [LoadColumn(0)] 
    public string ImagePath; 
  
    [LoadColumn(1)] 
    public string Label; 
}

In a transfer learning scenario, you don’t need to put a large dataset on
the table. You are relying on a fully trained and fully functional model; a
dozen images may be enough for a quick demo, a thousand (or, better, a
few thousand) are sufficient for a more detailed composed model. Here’s an
example of a dataset. It takes the form of a TSV (tab-separated) text file.
One column refers to the sample image file and the second column is about
the expected category.
Click here to view code image

veggie.jpg         food 
pizza.jpg          food 
pizza2.jpg         food 
teddy2.jpg         toy 
teddy3.jpg         toy 
teddy4.jpg         toy 
toaster.jpg        appliance 
toaster2.png       appliance

We load this file into the pipeline using the familiar LoadFromTextFile
method on the Data catalog.
Click here to view code image
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var mlContext = new MLContext(); 
var data = 
mlContext.Data.LoadFromTextFile<ImageData>
(trainingDataPath);

As in the multiclass example seen in Chapter 5, we need to map the
names of the class to predict unique numbers. Any model—and neural
networks are no exception—can only work on numbers! The dataset
column to turn into numbers is Label—the second column, as seen in the
ImageData class declaration. The name for the new column is LabelKey.
Click here to view code image

// Add new column LabelKey with a numeric value 
for each distinct value in column Label 
var converter1 = 
mlContext.Transforms.Conversion.MapValueToKey("La
belKey", "Label");

This is only the first step of our data transformation process. More work
is required to add all necessary transformations that will enable the
TensorFlow model to work properly.

Making Necessary Image Transformations
The image classifier we are building is not natively able to deal with
images. It will rely on the Inception Model library for that. However, for
this to happen, the training dataset must also include image information in a
format that the underlying neural network can understand.

By referencing the Microsoft.ML.ImageAnalytics NuGet package, you
have access to three estimators tailormade for the Inception Model. The
first transformation, carried by the LoadImages method, adds a new feature
to the dataset named input. The content of this column is then iteratively
transformed by the chained action of the remaining estimators.
Click here to view code image
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// Create dedicated estimators for the Inception 
Model  
var loading = mlContext 
    .Transforms 
    .LoadImages("input", _trainImagesFolder, 
"ImagePath"); 
var resizing = mlContext 
    .Transforms 
    .ResizeImages("input",  
                  InceptionSettings.ImageWidth,  
                  InceptionSettings.ImageHeight, 
                  "input"); 
var extracting = mlContext 
                 .Transforms 
                 .ExtractPixels("input", 
                     null, 
                     
ImagePixelExtractingEstimator.ColorBits.Rgb, 
                     
ImagePixelExtractingEstimator.ColorsOrder.ARGB);

The LoadImages estimator uses the content of the ImagePath column to
locate the image and load its bitmap into the new Input feature. The
ResizeImages estimator resizes the bitmap in the Input feature, and the
ExtractPixels estimator extracts color information. At the end of the chain,
the originally added Input feature contains pixel information about the
image loaded from the path specified by the ImagePath column. The net
effect is shown in Figure 10-2.



FIGURE 10-2 Image-specific transformations to invoke the Inception
Model

Composing the Training Pipeline
Now, let’s compose the training infrastructure for the final custom image
classifier. First, we need to append the TensorFlow model to the ML.NET
pipeline, and then we bring in the specific trainer we intend to use for the
multiclass classification.

Adding the TensorFlow Model to the Pipeline
The TensorFlow model to import is saved as a file somewhere in the
project. To load it into the ML.NET pipeline, all that’s required is knowing
the path and calling the LoadTensorFlowModel method from the Model
catalog.
Click here to view code image

var inceptionPipeline = mlContext 
   .Model 
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   .LoadTensorFlowModel(tfModelPath) 
   .ScoreTensorFlowModel(new[] { 
"softmax2_pre_activation" }, new[] { "input" }, 
true);

The ScoreTensorFlowModel method invokes the previously loaded
TensorFlow model by passing an array of output columns and a set of input
columns. In the specific example, each array is made by one column. The
output column is softmax2_pre_activation. (The name of the column
depends on the actual network used, which in this case is Inception.) The
input column is input. (The input column has been obtained after the
image transformations above.) These two columns form the output and
input of the TensorFlow pre-trained model. Via the input column, the
model receives the images to process, and via softmax2_pre_activation
column, it returns the output of the neural network on those images.

Retraining the TensorFlow Model
The final step consists of taking the output of the Inception Model library
and further using it for our goal of building a custom image classifier. To do
so, we need to add the same operations we have seen earlier in the
multiclass classification example.
Click here to view code image

var trainer = mlContext 
        .MulticlassClassification 
        .Trainers 
        .LbfgsMaximumEntropy("LabelKey", 
"softmax2_pre_activation"); 
var converter2 = mlContext 
        .Transforms 
        .Conversion 
        .MapKeyToValue("PredictedLabelValue", 
"PredictedLabel"); 
  
// Build up the whole pipeline 
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var trainingPipeline = converter1 
    .Append(loading) 
    .Append(resizing) 
    .Append(extracting) 
    .Append(inceptionPipeline) 
    .Append(trainer) 
    .Append(converter2) 
    .AppendCacheCheckpoint(mlContext); 
  
// Train and save the model 
var model = trainingPipeline.Fit(data); 
mlContext.Model.Save(model, 
dataViewTraining.Schema, _modelPath);

We opt for using the LbfgsMaximumEntropy classification algorithm. The
algorithm takes the name of the column it will fill with the response. It is
the aptly created numeric column, LabelKey. It also takes the name of the
column it will use as its input. In this case, it gets the output of the
TensorFlow model as the input.

According to documentation, the algorithm returns a response that is
made of an index named PredictedLabel and an array of float values, each
indicating the score for any of the possible classes. This property is named
Score. The class index is not enough for us, though, and that’s why we turn
the index into a string value using the call to MapKeyToValue. As a result, the
response of the model can be mapped to the following C# class.
Click here to view code image

public class ImagePrediction  
{ 
   public float[] Score; 
   public string PredictedLabelValue;  
}

So in the end, we call the composed model, pass an ImageData object
and receive back an ImagePrediction object.
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Setting Up a Client Application
An image classifier sample client application will silently accept (or
retrieve) images and add proper tags from a finite short list of labels. A
possible real-world example could be a frontend application where users are
asked to upload headshots, document photos, and personal photos to share
with other users. An easy-to-use user interface could allow users to just
upload photos in no special order and with whatever name. A machine
learning module under the hood could then properly categorize the
uploaded pictures. This is the scenario that we’ll address in this chapter.

Skeleton of the App
The web application we’re building follows the same pattern we have seen
in past chapters. A prediction engine is picked up from the pool of engines
and injected into the controller along with the web host container object:
Click here to view code image

public class ImageController : Controller 
{ 
   private readonly ImageService _service; 
   private readonly IWebHostEnvironment _env; 
  
 public 
ImageController(PredictionEnginePool<ImageData, 
ImagePrediction> imgClassifierEngine,  
                       IWebHostEnvironment env) 
 { 
    _service = new 
ImageService(imgClassifierEngine); 
    _env = env; 
 } 
  
 // ... 
}
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The ImageService class does the job of calling the model from the data
it has received from the frontend via the HTML file uploader.
Click here to view code image

public async Task<IActionResult> 
Suggest(IFormFile imageFile) 
{ 
   if (imageFile == null) 
       return null; 
   // Save the image locally to the server 
   var filePath = $"{_env.WebRootPath}\\uploads\\
{imageFile.FileName}"; 
   await using var fs = 
System.IO.File.Create(filePath); 
   await imageFile.CopyToAsync(fs); 
   fs.Close(); 
  
   // Prepares a call to the model 
   var input = new ClassifiedImage {ImageFile = 
filePath}; 
   var response = _service.Predict(input); 
   return Json(response); 
}

The model we trained can only recognize three categories of pictures:
food, appliances, and toys. Admittedly, the number of images used in the
sample code is ridiculously small; therefore, expect some funny responses
until you retrain it with at least a few hundred additional relevant images.
You can even change the target classes to whatever works for you (such as
headshots and documents).
Click here to view code image

public class ClassifiedImage 
{ 
   // Source picture 
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   public string ImageFile { get; set; } 
  
   // Predicted class 
   public string TargetClass { get; set; } 
  
   // Score for each possible class (ie, food, 
toys, appliance) 
   public float[] Score { get; set;  
  
   // Web-based URL of the server-side image for 
rendering purposes 
   public string ImageUrl { get; set; } 
}

The class above renders the response made available to the client and
displayed in the user interface.

The User Interface
The sample page contains an HTML form through which users can upload
an image. The backend will classify the image and return the target class, as
well as the URL to the server-side stored image for rendering purposes.
Needless to say, saving the image as a file on the server is arbitrary. More
likely, you would have saved it to some blob storage and tagged the file
with the response of the model.

 Note
Saving the image server-side builds a free database of images for
future retraining. In particular, you can find an interactive way to
ask the users to comment on whether the image was categorized
well.



Figure 10-3 shows the index page of the sample application. Note that in
the client project, you need to reference the same three additional NuGet
packages you referenced in the trainer project:
Microsoft.ML.ImageAnalytics, Microsoft.ML.TensorFlow, and
SciSharp.TensorFlow.Redist.

FIGURE 10-3 The sample application using the image classifier model

The ML Image Classification Task
Model composition was the first way provided by ML.NET to do transfer
learning. Later, the team added a new native transfer learning method. It’s
still a matter of transferring knowledge from one model to another, which
takes a fraction of the time to train and work. However, with native transfer
learning, no explicit composition of the pipeline is required via C# code.
Instead, all the magic takes place via the Image Classification API, which
makes use of TensorFlow.NET, a low-level library that provides C#
bindings for the TensorFlow C++ API.

The Image Classification API
Internally, the Image Classification API conducts the training process by
loading a pre-trained TensorFlow model and then retraining as commanded
by the programmer. The activity of the Image Classification API is
therefore articulated in two steps:



Bottleneck phase
Training phase

Altogether, both phases deliver the same service we described earlier
through model composition.

The Bottleneck Phase
The name “bottleneck” informally identifies the penultimate layer of a
neural network. The API works through the pre-trained model up to the
penultimate layer. There, it injects some custom code for the required
custom form of training. The bottleneck phase does the job we described
earlier on the pixels of the input images and runs images through the
preliminary, frozen layers of the neural network.

The term “frozen” here means that preliminary neural network layers
are used as in production, and no training occurs on them. Only training
(actually, retraining) takes place in the new final layer.

The nice thing about the Image Classification API is that it is designed
to work with multiple image analysis pre-trained models and not just
Inception. The denser the number of frozen layers, the more accurate the
preliminary image analysis is. This analysis extracts lower-level features
from the submitted images, which are then finalized later in the overridden
layer. It should also be noted that more layers require more computation,
and performance can be further improved by adding a cache layer.

The Training Phase
During the training phase of a new image classifier, the pre-trained model
works as it would do in a production environment. The output values
computed by the bottleneck layer are used as input to retrain the final,
custom layer of the model. Note that this process is iterative and runs for
the number of times specified as a parameter to the API.

During each run, both loss and accuracy are evaluated, and appropriate,
automatic adjustments are made with the purpose of improving the quality
of the final result. The interesting thing is that the output is twofold. You
get both a ZIP file which represents the native format of ML.NET, and a
Protobuf (.pb) file, which represents a TensorFlow source model. This



makes it possible to re-import the ML.NET trained model outside ML.NET
and use it natively in, say, Python environments.

Using the Image Classification API
Here’s some code that shows the use of the image classification API:
Click here to view code image

var pipeline = mlContext 
     .MulticlassClassification 
     .Trainers 
     .ImageClassification(classifierOptions) 
     
.Append(mlContext.Transforms.Conversion.MapKeyToV
alue("PredictedLabel")); 
ITransformer trainedModel = 
pipeline.Fit(trainSet);

As you can see, the code is much more compact, and many details
we’ve run through with the model composition example are now
incorporated in the ImageClassification task. Let’s have a look at the
parameters you can pass to the task.
Click here to view code image

var classifierOptions = new 
ImageClassificationTrainer.Options() 
{ 
    FeatureColumnName = "Image", 
    LabelColumnName = "LabelAsKey", 
    Arch = 
ImageClassificationTrainer.Architecture.Inception
V3, 
    ReuseTrainSetBottleneckCachedValues = true, 
    ReuseValidationSetBottleneckCachedValues = 
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true 
};

The most relevant parameter is Arch, which refers to the underlying
neural network to use for the bottleneck phase. Multiple public image
classifiers are supported as shown in Figure 10-4

FIGURE 10-4 Supported model architectures in the ML.NET Image
Classification API

Aside from properties that set label names, it is relevant to point out the
ReuseTrainSetBottleneckCachedValues and
ReuseValidationSetBottleneckCachedValues properties, which allow you
to enable caching of frozen values for performance speed.

 Note
In order to use the Image Classification API, you should also install
an additional NuGet package: Microsoft.ML.Vision.



The ML Devil’s Advocate
Searching for photos, whether for personal fun or business reasons, is
challenging because the information being sought is purely visual. Accept it
as a fact or not, but there’s really little true intelligence in current artificial
intelligence. Machine learning, in particular, is the most formidable tool to
evolve artificial intelligence towards new peaks, but for the time being, it
has more of brute-force than smart analysis of information. As far as images
are concerned, the human eye, in cooperation with the human brain, can do
infinitely better and much faster.

The Magic of the Human Brain
About a decade ago (around 2013), Google launched a new service
enabling logged users to search for their photos stored in the cloud. The
service was surprisingly able to retrieve photos based on the content and
was, therefore, able to recognize most of the objects present in the photo. It
was never advertised as AI, but it was definitely the first sign of modern AI
made in some way visible to the masses.

It was proof that computer vision was possible and software could
classify images close to human standards. From a pure feature perspective,
the service was bringing a number of benefits to the table. First and
foremost, thanks to the service, users could stop going with the extremely
annoying manual task of tagging photos and could query for photos they
never tagged using content-oriented terms that came naturally given the
context they were thinking of.

The process through which the human brain recognizes objects is still
largely unknown. In a 2019 study, researchers at MIT stated to have found
evidence of the crucial involvement of a specific region of the brain—the
inferotemporal cortex—in the process of object detection. In particular, in
this region, small groups of neurons each seem to recognize specific items,
such as faces or objects. While the details of human vision are largely a
gray area, in general, the retina feeds visual information to the brain, and
the visual cortex transforms the input into coherent perceptions. In other
words, it encodes the information in some way that produces the perception



of the item seen at the end of a neuronal computation chain. For more
details, you might want to check out the following report:
https://news.mit.edu/2019/inferotemporal-brain-object-recognition-0313.

In software, image classification works in much the same way. A neural
network is used to implement a multi-step computation in which the
original input is transformed up to the final answer.

Handcrafted Neural Networks
Image classification is tackled as a supervised problem where the image is
assigned to a target class based on its pixel content. The training dataset is
made of images (pixel-based files) and the known target class. However, the
neural network doesn’t process raw pixels because they are a too rigid piece
of information. Any image is subject to having many small variations of
pixels that should not be accounted for. A slightly smaller dog in a photo
taken from a larger distance is still a dog, but pixel-wise, it is a significantly
different from another photo of a dog. The same holds for the position of
the object, the background, ambient lighting, camera angle, and even the
camera’s focus. Pure RGB values are patently insufficient for the job.

Textures, shapes, and color histograms offer a more stable
representation of the information than raw pixel colors, but the downside is
that it just shifts the burden on feature engineering. Which colors are most
relevant? Which shapes and how large or small? What about the rotation?
How flexible should ideally be the definition of a shape? The boost to
image classification came only in recent years with the discovery of a
particular type of neural network—convolutional neural networks (CNNs).
We’ll discuss neural networks and explore their taxonomy in Chapter 11
“Overview of Neural Networks.”

In summary, handcrafting neural networks is possible, but it comes
much easier if you’re Google, and even if you’re Google, it turns out to be
fairly expensive. And it can still be inaccurate without apt and heavyweight
techniques. The biggest cost items of a neural network for image
classification are the thousands of hours of training (both CPU and GPU)
and similar-looking images’ availability. As controversial as it might sound,
a computer needs thousands of similar images and hours of training to
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recognize the same cat that small children spot immediately, regardless of
its position or size or the image’s background or ambiance.

Retraining
If you’re Google (or any other giant company), you can probably take the
route of building an in-house neural network of some kind to teach it how
to recognize images in a specific domain (for example, certain sport
gestures). It’s not cheap, but it might be worth the cost.

If you’re not a giant company, retraining is the best option, although it’s
not perfect. Retraining forces you to consciously sit on top of an existing
and frozen neural network, and it just lets you change the final step,
overriding and customizing the result.

So, you typically take a consolidated and pre-trained image neural
network built for general object detection, add your own custom target
classes, and train for your own specific types of images. It still takes you
hundreds (if not thousands) of custom images to process, but in a few hours
of training (and most likely without expensive GPU activity), you can
surely get good results.

Summary
Most of the beauty of machine learning is crafting your own model to make
it behave the way you want. In a way, this reminds us of the old days of
software in which every single procedure had to be handcrafted and was
rarely reused. Transfer learning is the same concept of software reuse (and  ‐
modularity) applied to machine learning.

In this chapter, we tackled the rather fascinating problem of software
that recognizes objects  present in pictures. It’s a tough problem that
requires a sophisticated neural network and millions of images and
thousands of hours of training. Therefore, a handcrafted solution is simply
not affordable for small teams. Large organizations are aware of this, so
they have worked out public image neural networks that are pre-trained and
accurate enough and have made them customizable. This is the essence of
retraining or transfer learning.



In TensorFlow, you can completely replace the penultimate layer, grab
the features as the previous layers have computed them, and just change the
final step to your needs. In ML.NET, this customization step has been
wrapped up in a built-in module (the Image Classification task), and
customization is exposed via hyperparameters.

In this chapter, we also looked at model composition, which is another
way to transfer learning that consists of running a pre-trained neural
network on custom images and then mapping the problem to plain
multiclass classification.

That’s it for ML tasks. The final two chapters of this book will cover the
fascinating theme of neural networks.



Chapter 11

Overview of Neural Networks

“Mathematics is a place where you can do things which you can’t
do in the real world.”

—Marcus du Sautoy

In the previous chapters, we went with the idea that for every machine
learning task, one of a few  possible algorithms that, when properly
configured, return a sufficiently accurate response. As intimidating as it
might sound, this is a decidedly optimistic perspective. The chances that
you will not find algorithms that perform acceptably are higher than many
seem to think. This is not to mention that all the algorithms we explored for
the various problems work only on numbers and tabular data. What if the
input is not numbers but images, videos, or sound?

Beyond a certain level of inherent complexity—in the problem and/or in
the data source—you need to go beyond straight algorithms and shallow
learning and move toward a deeper form of learning. So, welcome to the
dazzling world of neural networks!

Feed-forward Neural Networks
The history of neural networks is surprisingly long and even longer than the
history of computers. Embryos of modern computers appeared in the 1950s
devised around the Von Neumann machine model. Well, believe it or not, an
embryo of a neural network appeared a decade before in the peak of the
Second World War.

In 1943, in the United States, Warren McCulloch (neuroscientist) and
Walter Pitts (mathematician) devised a mathematical model to describe the



processing that takes place when the brain deals with the recognition of
highly complex patterns. The model was designed to connect many basic
cells in the same topological way that neurons are connected in the physical
brain. McCulloch and Pitts also gave an elementary but functional model of
an artificial neuron. It was only a mathematical model with no concrete
mapping to anything physical such as valves, diodes, and resistors but
sufficient to be, years later, the starting point for modern neural networks.

The first family of neural networks derived from the McCulloch and
Pitts model is the feed-forward neural network (FFNN). Today, FFNNs
represent the most common type of neural network, though it is often not
sufficiently powerful to tackle the real-world problems of the 21st century.

Artificial Neurons
A neural network is made of layers of artificial neurons. You can think of an
artificial neuron as a function that takes a few values in input and returns a
single binary value. (See Figure 11-1.) Originally, input values were also
devised to be binary values. Today, they’re just real numbers.

FIGURE 11-1 Overall schema of a perceptron, the first-ever type of
artificial neuron

Tightly related to artificial neurons is the concept of an activation
function.



The Activation Function
The perceptron—the first-ever type of artificial neuron—does two key
things:

It multiplies each value it receives in input for a corresponding
coefficient called weight and calculates the sum of all products. You
can think of this operation as a scalar product of two vectors—input
data and weights.
It returns 1 if the calculated value equals or exceeds a given
threshold; otherwise, it returns 0.

Expressed through a formula, it turns out to be the following:

We can make the function a bit more general by adding an arbitrary term
—the bias—which is independent of input and weights. When this arbitrary
term is added, the formula above changes to the one below. Note that in the
formula below, we used a more compact notation for the scalar product of
the input vector X and vector of weights W.

Such a function is called an activation function. The threshold reminds
us of the electrical threshold necessary to activate a synapse (synapse =
space where brain cells meet; synapsis = the pairing of two chromosomes
during meiosis) in the human brain. The perceptron weighs any received
input and makes a decision (that is, it returns 1) only if the actual value is
beyond a given level of confidence. The perceptron is a very simple
neuron; it is merely a binary and linear classifier, and all it does is draw a



hyperplane. In its simplicity, though, the perceptron has a very interesting
property: It can be used to simulate a NAND gate.

NAND and Functional Completeness
In electronics, a NAND gate is a logic gate that returns false if all of its inputs
are true; otherwise, it returns true. A NAND is the combination of an AND gate
and a NOT gate. NAND gates are functionally complete, meaning that all other
logic gates (AND, NOT, and OR) can be implemented through a combination of
NAND gates. For example, the AND gate can be obtained as a concatenation
of two NAND gates. Once you have NAND gates, you can implement any
logical expression.

By choosing the proper combination of weights and bias, a perceptron
can be used to simulate a NAND gate. Here’s an example:

The perceptron in Figure 11-2 has a bias of 3, and –2 is the weight for
X1, X2 input parameters. Supposing a binary input of 00 (all false), we see
that in the former case, the total calculated is 3, which equals the threshold
and results in a response of 1. Conversely, assuming an input of 11 (all
true), we obtain –, which is not equal to or greater than the threshold,
resulting in a response of 0. The same happens for any other variation of 0
and 1 in the input. Hence, the perceptron works as a NAND gate.

FIGURE 11-2 Using the perceptron to simulate the NAND gate



The NAND equivalence gives perceptrons full expressivity, and by fine-
tuning weights and biases, you can calibrate the neuron to make it calculate
certain things. In other words, a training process is built on top of
perceptrons and can be driven to discover the ideal values of weights and
biases that more accurately compute what we want or expect.

Layers of the Network
The power of perceptrons lies in the chance it gives us to approach the flow
of any function by simply adding more layers, more inputs, and more
connections. The idea is to forward a neuron’s output and make it the input
of another neuron in a subsequent layer of perceptrons. In this way, the
information only travels forward until it reaches the end of the chain.

In essence, that is a feed-forward neural network.

Hidden Layers
The first layer of neurons is the network’s input, and the last layer is the
output. All intermediate  layers—those whose neurons are neither the
network’s input nor its output as a whole—are known as hidden layers. In
Figure 11-3, these neurons are rendered as empty circles.



FIGURE 11-3 A sample feed-forward neural network

All neurons belonging to a successive layer receive as input the output
calculated by the previous layer’s connected neurons. The output of a
neuron is obtained through the activation function. Each layer of neurons
has its own activation function.
Each layer of a feed-forward neural network adds both complexity and
abstraction because you don’t work with the raw input data; instead, you are
only working with some of its transformations. This is also where the term
deep learning comes from: the depth of the neural network (or the number
of layers in the network) influences and determines the ability to learn.
Finally, note that in Figure 11-3, the output layer shows more than just one
value. In general, both the input and output of a neural network should be
seen as vectors or sequences of vectors.



 Note
Feed-forward neural networks are networks in which the
information travels only forward and never backward. In other, more
complex types of neural networks, the information can travel back
and forth.

Enabling the Network to Learn
So, we now have a neural network that can perform a large set of
calculations. The accuracy of those calculations, though, depends on
weights and bias. While we can set these values beforehand, it would be
great if the network could learn those values by itself. In fact, in real-life
scenarios, manually setting weights and bias might be highly impractical
given the huge number of connections and weights to deal with.

To set up an effective learning mechanism, though, we need more
control over the output. In other words, if we slightly change one of the
weights or biases, we also want the output to change slightly and
continuously. In this way, through successive refinements, we could
manage to obtain just the value we were looking for by simply acting on a
specific input without drastically altering all the others and their
connections to the output layer.

To enable learning across a neural network, a more sophisticated
activation function is needed and consequently (consequently = as a result
of; subsequently = following in time not necessarily as a result of) a more
sophisticated type of artificial neuron.

The Logistic Neuron
As we’ve seen, the perceptron employs a step function as its activation
function. In mathematics, a step function is a piecewise constant function
whose entire output is determined by applying constant subfunctions to



specific input segments. A step function is neither continuous nor
differentiable. To enable learning, instead, we intuitively need more
(mathematical) regularity.

Mathematical regularity is the key factor to avoid having a minor
change in the input induce a large change in the output. To enable learning,
a binary 0/1 choice is no longer enough; we need to attack the entire space
of real numbers between 0 and 1.

The Sigmoid Activation Function
Here’s then a new type of neuron that replaces the perceptron. The new
neuron we consider is called logistic (or sigmoid) and has a mathematically
continuous activation function.

In the formula, Z is given by X⋅W + b where b is the bias, X is the input
vector, W is the vector of weights, and X⋅W is the scalar product. The
function above is a sigmoid, and its curve is plotted below in Figure 11-4.

A sigmoid function is a bounded and differentiable function defined for
all real input values. Its output varies between 0 and 1 with continuity even
though neither 0 nor 1 are ever reached.



FIGURE 11-4 The sigmoid function

From Step Functions to Sigmoids
Using a sigmoid only modifies the value that each neuron forwards to its
connected peers on the next layer, but it doesn’t change the number of
layers and connections of the feed-forward neural network. The value is no
longer a binary value but a continuous value in the 0–1 range. As you see in
Figure 11-4, for large values, the sigmoid activation function approaches 1,
and for very small values, it stays close to 0. Therefore, at the extremes, the
function’s behavior is the same as the step function in perceptrons.

We started our discussion of feed-forward neural networks with
perceptrons because of their inherent learning value. However, nobody uses



perceptrons anymore in real life. The mathematical value of working with
continuous values is invaluable and will prove even more useful when
dealing with the actual training of a neural network.

Training a Neural Network
For the most part, neural networks are only for supervised learning, and the
training is not different from the training of any other machine learning
supervised artifacts. The key step of training consists in the identification of
the function that represents the best measure of the distance between the
predictions made by the network and expected values.

The most common algorithm to train a multi-layer feed-forward network
leverages the backward propagation of errors—a technique known as
backpropagation.

The Backpropagation Algorithm
The backpropagation algorithm was first devised in the late 1960s, but it
was never seriously applied to machine learning until the mid-1980s. Today,
it’s the most commonly used technique.

The algorithm is built around an implementation of the gradient descent.
In other words, it is a mathematical tool to find the minimum of a function
by exploring values in the direction of the steepest descent. Within the
backpropagation algorithm, the calculation of the gradient proceeds
backward through the network, from the last to the first layer of neurons.
The gradient is first calculated on the final layer’s weights, and the error
information is pushed backward on the previous layer, where the
calculation is repeated on the local weights. The process goes on and on
until it reaches the initial layer. In backpropagation, the rule to change the
values of the various weights is recursive and proceeds backward from the
output layer towards the input layer. (See Figure 11-5.)



FIGURE 11-5 Error information flows backward from the final layer to
the first layer.

Steps of the Algorithm
The backpropagation algorithm is articulated in four key steps nested in
three different loops. The outermost loop is on the entire dataset and is
referred to as an epoch. For each epoch, the training dataset is divided into
mini-batches of a given m size. The second loop works on every mini-batch
of rows. Finally, the innermost loop goes over the data rows in the current
mini-batch. Here’s some pseudo-code.
Click here to view code image

foreach(var epoch in epochs)  
{ 
    var batches = 
SplitDatasetInMiniBatches(sizeOfBatches); 
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    foreach(var batch in batches) 
    { 
       foreach(var row in batch) 
    { 
       // Step 1: Calculate the output for the 
given row 
       // Step 2: Calculate the final vector of 
errors 
       // Step 3: Calculate the error vector for 
all intermediate layers 
       // Step 4: Apply updated weights 
proceeding backwards  
     } 
   } 
}

The first step is the classic feed-forward calculation shown in Figure 11-
5. The neural network receives the features of a given data row and returns
an output vector (or, in simpler cases, just a scalar value).

The heart of backpropagation is in steps 2 and 3. The error vector is first
calculated for the final layer of the network, and then, proceeding
backward, it is calculated for all intermediate layers. The reason is that
getting errors is easy once the computation has reached the final stage.
However, we need to update the weights along the entire set of layers, and
we can only do that by proceeding backward from the final layer to the
input.

Once all errors at all stages are known, the algorithm proceeds with the
gradient descent calculation and finds the weights that minimize the cost
function. Even this step is accomplished recursively from the final layer of
neurons to the first. (See Figure 11-6.)



FIGURE 11-6 Schema of the backpropagation algorithm

More Sophisticated Neural Networks
A feed-forward neural network has some limitations, the most relevant of
which is that they’re essentially stateless and keep no memory of whatever
happens. Every prediction is independent of any previous and subsequent
predictions. In addition, a feed-forward neural network can’t handle images
or audio files and is not designed to generate new content.

To overcome these limitations, other types of neural networks have been
arranged, such as recurrent neural networks (for stateful networks),
convolutional neural networks (for computer vision), and generative
adversarial neural networks (for content creation).



Stateful Neural Networks
Unless it is properly architected, a neural network doesn’t hold state and
works much like an HTTP server. Two consecutive requests are treated as
fully independent requests over HTTP, and two consecutive predictions are
treated as fully independent predictions by a trained network. The point of
(lack of) state applies to both training and production.

The Need for State
Let’s consider the following example. To reliably predict a given stock’s
price, the sole history of the stock used in training may not be sufficient.
You might also want to access some of the most recent quotes of the stock.
This data is not necessarily incorporated in the trained model unless you
retrain and redeploy the model frequently.

As humans, we continually make predictions. When we listen to
someone speaking, sometimes we can rightly guess her next few words.
When we make decisions, we don’t simply evaluate the pros and cons as
they appear from the available input data, but we integrate that data with
experience and past memories of similar or related facts. We wish a neural
network to be able to do the same.

A stateful neural network is referred to as a recurrent network (RNN).
The information flows forward from the input layer to the output, but every
prediction is made based on the input that results from the combination of
the direct input and the state that previous predictions may have
determined. Hence, every prediction leaves a track in the new memory
layer.

The Memory Context
The memory context is a logical component of the architecture and not
necessarily a distinct piece of software. In fact, in some RNN
implementations, it is treated just as an additional hidden layer of a feed-
forward neural network placed right after the input layer.

At the time t of the ongoing prediction, the component receives a vector
of values X from the client application. The input X, combined with the



current state Ht-1 determined at the time X-1 of the last prediction, produces
an update of the current state to Ht. The component’s output is a modified
version of the original input transformed in some way based on the state.
(We’ll see details of this in a moment.)

The output of the component is typically used as input of a regular feed-
forward neural network.

Architecture of a Recurrent Network
Figure 11-7 presents the basic component architecture of a recurrent neural
network. At least in its simplest form, a recurrent neural network is the
concatenation of a memory context and a classic feed-forward neural
network.

FIGURE 11-7 Component architecture of RNN

The bottom line is that a recurrent neural network is a feed-forward
neural network plus an additional component that deals with the state of the
network. The schema in the figure can be made as complex as needed, and
multiple memory contexts can be concatenated. Moreover, the same FFNN
can be split into smaller pieces, and memory contexts can be added in
between. The state is a property of the memory context and is sometimes
referenced as a hidden state vector.

Given an input Xt, the memory context combines it with the pre-existing
state Ht–1 and obtains the snapshot of a new state Ht. The new state, which



absorbed the input, is passed to the activation function and becomes the
input for the next network architecture component. It’s interesting to
observe the behavior of an RNN once put on a timeline. (See Figure 11-8.)

FIGURE 11-8 Impact of state management on the sequence of
predictions made by RNN

The cumulative nature of the memory context ensures that every new
prediction is done taking into account all the previous predictions.

From RNN to Deep RNN
Figure 11-7 shows the simplest form a recurrent neural network can take.
The schema can be extended in various ways as it most suits your needs.
For example, you can add one or more hidden layers between the input and
the memory context. Or you can configure multiple memory contexts
differently (see Figure 11-9). Speech recognition is a real-life scenario in
which a more complex RNN architecture is necessary. In fact, in this case, it
could make sense for the network to try to predict the next word based on
what has been pronounced to date.



FIGURE 11-9 Possible schema of a “deep” RNN

From an algorithmic point of view, training an RNN is pretty much the
same as training a classic feed-forward neural network, and
backpropagation is still the key approach. In particular, unrolled over time,
as shown in Figure 11-8, the RNN can be assimilated to a chain of feed-
forward neural networks that develop the internal state (possibly, multiple
hidden states) over the course of the dataset. The variation of the
backpropagation algorithm used here is called “backpropagation over
time.”

Long Short-Term Memory
So far, the RNN architecture discussed presents a unsurmountable
drawback in some business contexts: inputs that come sufficiently spaced
out may not influence each other as expected. In other words, the hidden
state held by the memory context component has a lifetime that is too short.
This led to a new branch of research that culminated with the definition of a
Long Short-Term Memory (LSTM) neural network.

Overall, an LSTM neural network differs from a plain RNN for a more
sophisticated version of the memory context. To prolong the lifetime of the
hidden state, the neural network architecture adds a second level of memory
referred to as the cell state.

Convolutional Neural Networks



FFNNs have been introduced to help with nonlinear regression and
classification problems, and flavors of RNNs are commonly used for speech
recognition and natural language processing. What about images? A
tailormade type of neural network exists to deal with images and pixel-
based content— convolutional neural networks (CNN).

Much like a recurrent neural network, a CNN results from the
combination of a plain FFNN with multiple, dedicated components. A
convolutional neural network incorporates a special layer aimed at reducing
large images to a more manageable form without losing relevant
information, which might be critical for making a good prediction.

The Convolution Operation
The problem with images is that they are cumbersome objects to deal with.
Think, for example, of one of those 4K images taken by a high-end
smartphone. It’s 16M pixels, and each pixel takes at least 3 bytes for the
RGB channel—another 16M points. There should be a way to reduce such a
huge amount of data. Mathematics comes to the rescue through the
convolution operation.

In mathematics, convolution takes two functions and produces a third
function that overall indicates how the shape of one is modified by the
other. In real-life, convolution finds multiple applications. It’s used to
figure out the correlation between two signals, to perform pattern matching
or, in our case here, to apply filters to incoming data. In this context, a filter
is a process that removes some unwanted information from incoming data.
For continuous functions, the convolution is calculated as the integral of the
product of the two functions after one is rotated by 180 degrees. If the
functions involved are not continuous; instead, pieces of their product are
simply summed. This is just what happens when images are involved.

Convolution of Images
Let’s say we have a matrix that represents an image. We take another
(arbitrarily smaller) matrix called the kernel. For images, the convolution
consists of moving the kernel matrix over the entire surface of the original
image, starting from position 0,0. The kernel will move one cell at a time
along the width first and move one cell down once it has reached the right



edge. Kernel movement is repeated for each color channel (i.e., RGB). The
operation is summarized in Figure 11-10.

FIGURE 11-10 The convolution operation on one level of depth

At each step, the kernel matrix is multiplied element by element
(Hadamard product) to the corresponding section of the original image.
Note that the color depth of the kernel has to be the same as the color depth
of the original image. The resulting intermediate matrix has the same size
of the kernel. All the resulting matrix elements are then summed up, and
the value is written to a new matrix—the convolved matrix.

The size of the convolved matrix depends on the both the size of the
image and the kernel. The formula is



The dimension of the kernel is a hyperparameter of the CNN, whereas
its values are figured out during the training.

Max and Average Pooling
The convolution layer is only the first step that a CNN performs. The
second step is pooling. The purpose of pooling is to reduce the convolved
matrix’s size even more to get rid of all noise and keep only the relevant
and dominant features.

Pooling consists of moving another smaller matrix over the surface of
the convolved matrix. In this case, we won’t call it a kernel matrix because
all that matters is the size and not the content. The moving matrix is a sort
of window that shows what’s underneath applying one of two simple
mathematical filters.

One is Max Pooling and returns the maximum value found in the section
of the convolved matrix. The other is Average Pooling and returns the
arithmetic mean of the values observed. Figure 11-11 shows how to extract
a pooling matrix from a 4x4 convolved matrix using a window size of 2x2.



FIGURE 11-11 Max pooling versus verage pooling

Even though convolutional and pooling layers are conceptually distinct,
they are often combined in a single comprehensive layer. In a single CNN,
there might be multiple convolutional and pooling layers. The more layers,
the more powerful the network and, conversely, the more computing power
it requires.

Auto-Encoders
An auto-encoder is a system made by two connected neural networks in
which the output of the first becomes the input of the second. You can see it
as two interacting networks—an encoder and a decoder. An auto-encoder
network is depicted in Figure 11-12.



FIGURE 11-12 Schema of an auto-encoder neural network

Schema of an Auto-Encoder
The overall auto-encoder receives an input X1 and passes it to the first layer
(the encoder). The encoder encodes the input creating a sort of more
compact representation known as encoding. Typically, the encoding is a
single dimension data compared to n-dimensional data being the input. The
encoding is then passed to the second layer (the decoder), which tries to re-
create the original input as X2. If X1 and X2.

It is important to notice that Figure 11-12 illustrates the schema of the
network as we train it. Once the network is trained and deployed to
production, it gets an input X1 and outputs its compact representation (the
encoding). Therefore, the point of the auto-encoder is to reduce the feature
dimensions.

Applications of Auto-Encoders
The primary business application of auto-encoders is a dimensionality
reduction—a classic unsupervised problem—where we aim to condense
larger data into fewer features, possibly without loss of important
information. Other applications are anomaly detection, information
retrieval, and image processing.



Training an auto-encoder for anomaly detection requires only canonical
data points to ensure optimal performance on standard elements and poor
on unseen and anomalous data. Hence the auto-encoder for anomaly
detection will return a Boolean answer based on the distance between the
original input value and the value reconstructed from the encoding.

Information retrieval, especially when large objects are involved (such
as images), is simplified by checking the encoding rather than the whole
object. This leads to the third application—image processing and, in
particular, image compression. Other scenarios are image denoising and
increased resolution. Ultimately, image compression is a form of
dimensionality reduction, and interesting experiments with auto-encoders
have been run to compress images that are competitive with the JPEG
standard.

Summary
Neural networks are not a recent discovery in computer science, but they
have received a boost in the past decade for business and computing
reasons. New types of neural networks flourished, expanding the
capabilities of the first canonical type of network created—the feed-forward
neural network. In a feed-forward neural network, information flows in
only one direction from the input nodes to the output nodes traversing any
layer of intermediate nodes that may be defined.

In this chapter, we first reviewed the structure of a feed-forward neural
network, the types of  neurons you can have, and how the training of a
neural network takes place through the  backpropagation technique. Next,
we provided an overview of more sophisticated types of neural networks,
such as recurrent and convolutional networks.

In the next chapter, we’ll add some practical considerations and
examples of solving problems using neural networks



Chapter 12

A Neural Network to Recognize
Passports

“In math, you’re either right or you’re wrong.”

—Katherine Johnson

Most of the hype around AI refers to making some common operations
simpler and faster. It’s about automating chores and reducing the number of
manual steps required to accomplish a task. One of the plusses of AI is just
in simplifying and streamlining workflows obtaining the same results with
less effort and more error-prone actions from human operators.

In this final chapter, we just aim at illustrating one of these scenarios: a
canonical array of form fields automatically filled by some smarter-than-
usual software. The specific scenario we’ll address in the chapter is a
registration form that requires users to upload a passport photo. Usually, the
backend service needs a plain photo of the passport. Also, it requires some
text information to be extracted from the photo and stored as independent
information, such as the first and last name, birth date, country of residence,
and, of course, release date, expiry date, and number.

Often, users are presented with a file upload input field and additional
input fields to insert first, last name, and even number and dates of the
passport. Instead, why not simply upload the photo and let some other
software do the rest of the job? Isn’t this just what happens in hotels and
airport check-in desks? However, in such environments, it’s a dedicated
Optical Character Recognition (OCR) reader that does the job of
recognizing the information and passing it via cable to connected PC
software.



Machine learning extends the core capabilities of OCR and makes the
use of a dedicated reader unnecessary.

Using Azure Cognitive Services
There are two main ways to build a pure software solution for extracting
personal information from a passport and use it to, say, create a prefilled
user profile record. One way is to take advantage of the Azure Cognitive
Services API, passing an image via URL or stream and receiving a JSON
object with the content recognized in all detected text zones. The other way
is to craft a handmade neural network to do the same. It’s the umpteenth
implementation of the old buy-or-build dilemma.

Let’s start by seeing what it takes to go the Azure Cognitive Services
route.

Anatomy and Solution of the Problem
Given a passport photo, we want to figure out the crucial personal
information stored in it. In particular, we want to be able to receive the
entire content of the passport’s Machine-Readable Zone (MRZ) in a
structured, property-based way. Ideally, we want to place a single call, pass
the input, and get the response in the expected format.

 Note
In a passport (and a variety of other documents), an MRZ consists of
two (in some cases, three) lines of vital personal information
encoded into a standardized format that is made to measure for a
quick read and automated machine-led verification. In passports, the
MRZ is placed at the bottom of the first page. Historically, the MRZ
was introduced in the 1980s to speed up operations at borders and
airports.



The Image Input
From a computer perspective, an image is not simply a photo. A computer
image has a width and height, a density of colors, and, of particular
relevance, might be vertical or horizontal and rotated by any angle. It can
also be a single-page or two-page photo of a paper passport.

If you manage to build your own black-box software for passport
analysis, then the various sizes and orientations of the input image are
aspects you have to find a way to neutralize. This is mostly conventional
software work—sort of a morphologic manipulation of image data. Its
output is an image with fixed settings as far as size, orientation, and colors
are concerned.

The ability to process input images of any size and orientation is crucial
for the success of the solution. In the real world, users would upload
passport images taken in myriad ways, and the software must be able to
normalize the content somehow.

Text Detection
Any passport is made of two distinct types of content—plain text and MRZ.
Here, the term “plain text” refers to whatever personal information appears
on the passport pages, including details such as residence, eye color, and
height. In addition to plain text fields, passports feature the machine-
readable zone, which stores a subset of the information about the holder’s
identity.

A passport analysis software must be able to spot all zones in the images
where some text appears. The output is a list of bounding boxes within the
image that are estimated to contain text.

Text Recognition
Finally, the text in each detected bounding box must be turned into literals.
This is just the type of job that an Optical Character Recognition (OCR) is
designed to perform. The recognition process will turn prints of text into
literal strings that another piece of software can further process.

An interesting plus of OCR systems, when embedded into broader
services such as Azure Cognitive Services, is giving some interpretation



over the raw text. The OCR turns font drawings into literals, but some
sequences of literals (for example, dates) are special. A smart cognitive
service at work on a known type of document can turn, say, 061074 into a
DateTime object or a human-friendly representation of the date.

Working with the ID Form Recognizer
The Azure Form Recognizer cloud service analyzes information from
government-issued ID documents such as passports. The service uses a
prebuilt ID model as the learning foundation for each supported document
type to look for bounding text boxes. The service combines OCR
capabilities with ID knowledge coming from dozens of countries and U.S.
states. Furthermore, the API extracts key information from IDs, such as first
and last name, number, and birth and expiry dates, and returns this data in a
JSON-structured format. The MRZ is sent as one of the fields in the JSON
feed.

Let’s see what it takes to work with the Azure service.

Preliminary Work
The first step is to register your own dedicated machine learning Azure
service from the portal. Conceptually, it is not really different from creating
an app service for hosting a web application. (See Figure 12-1.)



FIGURE 12-1 Creating a new Form Recognizer service

After successfully completing the procedure, you get the actual endpoint
used for further calls and the personal API key.

To build a client application that consumes the service, you also need to
install the Azure.AI.FormRecognizer NuGet package in the Visual Studio
solution.

All that remains is the plain coding.

A Sample Client Application
The following code shows a form recognizer service created in Visual
Studio:



Click here to view code image

class Program 
{ 
    // Any "xxxx" is specific to your account 
    const string Endpoint = 
"https://xxxxxxxx.cognitiveservices.azure.com/"; 
    const string ApiKey = 
"xxxxxxxxxxxxxxxxxxxxxxxxx"; 
  
    static async Task Main(string[] args) 
    { 
        if (args == null) 
        { 
           Console.WriteLine("No file 
specified"); 
           return; 
        } 
  
        var passportFile = args[0]; 
   
        Console.WriteLine("Uploading and 
parsing..."); 
        var response = await 
ParsePassportFile(passportFile); 
        Console.WriteLine("\n"); 
  
        // Parse MRZ to some intelligible data 
structure 
        var mrz = new 
PassportResponse(response.Data.Replace(" ," "")); 
        Console.WriteLine(mrz); 
        Console.WriteLine($"CONFIDENCE: 

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch12_images.xhtml#p208pro01a


{response.Confidence}"); 
  
        Console.WriteLine("\n\nPress any key!"); 
        Console.ReadLine(); 
    } 
  
    // More code here ... 
}

The code above receives the file name from the command line and
passes it up to the internal helper named ParsePassportFile. The helper
method returns a tuple in which the first element (Data) contains the raw
MRZ sequence, and the latter (Confidence) expresses the level of
confidence the neural network has in the result. Finally, the raw sequence is
parsed into an instance of the custom PassportResponse class, which
removes filler characters and checksum digits and delivers just actual data
packed in a comfortable structure.

The passport file can be a PDF or image file and will be uploaded to the
cloud service to be  analyzed. Here’s the code:
Click here to view code image

static async Task<(string Data, float 
Confidence)> ParsePassportFile(string file) 
{ 
    // Upload the passport file 
    await using var stream = new FileStream(file, 
FileMode.Open); 
    var client = new FormRecognizerClient(new 
Uri(Endpoint), new AzureKeyCredential(ApiKey)); 
    var operation = await 
client.StartRecognizeIdentityDocumentsAsync(strea
m); 
  
   // Get a document as a response 

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_xv4ic4cs/yj83_pfu_pdf_out/OEBPS/Images/ch12_images.xhtml#p209pro01a


   var response = await 
operation.WaitForCompletionAsync(); 
   RecognizedFormCollection documents = 
response.Value; 
   if (identityDocuments.Count == 0) 
       return (null, 0); 
   RecognizedForm document = documents.Single(); 
  
   // Extract MRZ info 
   if 
(!document.Fields.TryGetValue("MachineReadableZon
e," out FormField mrz))  
       return (null, 0); 
  
   if (mrz.Value.ValueType == 
FieldValueType.Dictionary) 
       return (mrz.ValueData.Text, 
mrz.Confidence); 
  
   return (null, 0); 
}

The service returns a list of documents, the first of which is of interest to
us. The document provides a list of fields from which we select
MachineReadableZone. The ParsePassportFile method returns the raw text
of the MRZ field. The full list of document fields beyond the
MachineReadableZone is documented here: https://docs.microsoft.com/en-
us/azure/cognitive-services/form-recognizer/concept-identification-cards.

After obtaining the raw MRZ sequence, the remaining steps consist of
parsing the sequence and extracting the actual pieces of information stored
there, such as name, surname, gender, expiry date, and number. A helper
PassportResponse class and an internal MrzParser class will do the job. The
full source code of these classes is included in the book samples, but the
core of the code is shown here:

https://docs.microsoft.com/en-us/azure/cognitive-services/form-recognizer/concept-identification-cards


Click here to view code image

// Parsing step 
var mrz = new 
PassportResponse(response.Data.Replace(" ," "")); 
  
// Render out facts 
Console.WriteLine(mrz); 
Console.WriteLine($"CONFIDENCE: 
{response.Confidence}");

An interesting point to emphasize is that that blank spaces must be
removed from the raw MRZ sequence. The MRZ is laid out in two rows in
passports, but the form recognizer returns it as a single string with a blank
sequence to denote the break on a new line. Instead, our handcrafted MRZ
parser assumes a canonical MRZ sequence is passed, which is exactly 88
characters long. Instead, the sequence returned by the form recognizer is 89
because of the extra space. Figure 12-2 shows the sample application at
work on a specimen passport template.

FIGURE 12-2 A sample application that encapsulates the Azure ID
Form Recognizer cloud service
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 Note
The Form Recognizer service comes with a free plan that allows up
to 500 pages per month at a rate of a maximum of 20 calls per
minute. Likely, you don’t need training for standard passports, but
the free plan allows for a maximum of 1 call per minute. Also, note
that container support has been added to Form Recognizers to allow
you run this AI engine right in your environment.

Crafting Your Own Neural Network
To be honest, if your business problem is extracting clean passport data
from a PDF or image file all you want to do is using the ID Form
Recognizer, whether as a cloud service or embedded in your environment
via a licensed Docker container. Are there edge situations in which you
want to look somewhere else and consider crafting your own neural
network?

We’ll return to the aforementioned buy-or-build dilemma of neural
networks in the “ML Devil’s Advocate” section later in this chapter, but for
now, suffice it to say that we see three main reasons for considering a
custom solution:

For some reason, you can’t use any existing cloud service or on-
premises third-party container
You can’t afford the costs of the service and the latency it might
introduce
You have ad hoc documents to deal with and find the response you’re
getting to be inaccurate.

In general, we’re talking about very specific and rare conditions that are
more likely to happen with custom forms and receipts than with
government-issued ID documents. Anyway, here are a few considerations



and some practical experience on crafting a dedicated neural network for
extracting the MRZ sequence from a passport photo.

Topology of the Neural Network
A neural network is a software artifact that gets some well-defined numeric
input and returns some well-defined numeric output. More often than not,
the well-defined numeric input is not natively available in the right format
but results from some preliminary software manipulation or is the output of
some other neural network. Likewise, the well-defined numeric output can
become the input of another neural network or be subject to further
software manipulation that turns it into data usable for the purposes of the
application.

The Neural Pipeline
In the real world, a neural network is almost always the heart of a learning
pipeline with canonical (non-machine learning) pieces of software sprinkled
all around. The whole pipeline has a well-defined business-specific input
(such as an image file) and a business-acceptable response, whether in a
string (sequence) or an array of numbers. In our case, the input is the
passport file; the output is the MRZ raw sequence.

Processing the Input Image
Let’s say it up front: The Azure ID Form Recognizer makes it look trivially
easy and straightforward, but it is not likely so. The Azure service blissfully
accepts passport files in a variety of formats, including PDF and JPG.
Doing the same in a custom pipeline poses a number of challenges:

Having or writing libraries to extract pixel or meta information for
each of the file types you intend to support
Writing methods to normalize the position of the image
Writing methods to neutralize colors and fonts
Writing methods to perform morphological operations on the image
(for example, erosion, dilation)



Reading and writing files in a given format is not the most challenging
problem. However, things get much more complicated when it comes to
understanding and neutralizing the possible rotation of the image, reducing
color spaces, and understanding the essence of shapes rendered with fonts
beyond the glyphs.

We often use OpenCV, an open-source library released under the BSD
3-clause license and free for commercial applications. The library is
available for multiple programming languages here: https://opencv.org.

The OpenCV Library
The OpenCV library provides an amazing number of services that range
from reading and displaying images and videos to image processing
functions such as changing color spaces, geometric transformations, finding
edges, smoothing, and thresholding.

The library is also good at doing morphological transformations like
erosion and dilation on binary, black-whited images. Erosion eats away the
boundaries of any foreground object, making its thickness decrease.
Dilation does the exact opposite and enlarges the size of the foreground
object. Erosion and dilation are sometimes performed one after the other.

Video analysis, plotting, 3D visualization, image stitching, and blending
complete the image processing module. Additional modules deal more with
machine learning-oriented functionalities such as object and barcode
detection, face analysis, and text recognition.

Extracting the MRZ Region
For our purposes, an MRZ is of type 3 (see
https://en.wikipedia.org/wiki/Machine-readable_passport) and develops on
two lines of text, each of which is 44 characters long. At first, one may
think that some deep (or just shallow) learning is unavoidable to detect the
MRZ region in a passport photo. The reality is a bit different, and with the
help of a great computer vision framework, such as OpenCV, the task can
be accomplished with the sole use of image processing techniques,
including morphological erosion, blurring, and contours detection.

https://opencv.org/
https://en.wikipedia.org/wiki/Machine-readable_passport


Let’s review the necessary steps for image processing that spot the
location of the MRZ region in the file.

1. Resize the image to a fixed dimension.
2. Apply a 3x3 pixel Gaussian blurring to reduce high-frequency noise.
3. Apply a black-hat filter to find dark regions (MRZ text) on a light

background (passport paper).
The black-hat filter is a common edge-detection filter that most image

processing programs provide. The combined effect on some original image
of Gaussian blurring and black-hat is analogous to Figure 12-3.

FIGURE 12-3 Morphological black-hat operator applied to a sample
passport image

Next up, we compute the Scharr gradient along the x-axis of the black-
hat image. The purpose is to get rid of all the regions that do not represent
text.



1. Apply the gradient to mark those regions that are not simply dark on a
light background but also contain changes in the vertical gradient.

2. Scale the image back into the range 0–255 (black/white) using
min/max scaling.

3. Apply a closing operator (erosion followed by dilation) using a
rectangular kernel.

The ultimate purpose of the Closing operation is to close the gaps
between characters in the MRZ region. Figure 12-4 shows a realistic
example of the current state of the original image.

FIGURE 12-4 An intermediate rendering of the passport image after
the closing operator is applied

At this stage, the image spots all areas with some text. Instead, we want
a single region for the whole MRZ and get rid of all the rest.

4. Apply another closing operator with a square kernel.
Figure 12-5 shows the new stage of the original passport photo.



FIGURE 12-5 The MRZ region is now a single area of the image, and
all other text has been darkened as irrelevant

The final step of the process is finding the area’s contours, defining the
coordinates of the bounding box, and extracting the actual pixels from the
original image.

 Note
One crucial point we have so far left behind is: what if the original
image is rotated at some angle? The approach followed largely
shields us from this (rather common) occurrence. In fact, what we
actually do is find the minimum area rectangle that fits the MRZ and
crop it. The cropped image, though, is now perfectly horizontal.

Recognizing the MRZ Content
All the work done so far has nothing to do with pure machine learning.
However, manual machine learning becomes necessary for the concrete step
of figuring out the text in the selected region of the original image. In other



words, we now hold a smaller image of the passport that contains the sole
MRZ area. On that, we now need to do text recognition.

The OpenCV library does have a module for text recognition that is
slated to parse an image and turn recognized shapes of literals into a string.
However, it’s a rather generic OCR library and not fully appropriate for a
delicate task such as extracting personal data from a passport. Not just
OpenCV but also most consolidated, yet general-purpose, OCR libraries
have the same drawback.

Then to reliably parse out the text, we need some dedicated OCR library
tailor-made for MRZ captures of a passport document. For this, we just
want to build up our neural network. Beyond reading MRZ content, a
custom neural network is also useful for, say, reading CAPTCHAs. In
general, if you need to be substantially sure about what you parse—and you
parse small texts—a custom neural network is a reasonable way to go.

To build a neural network, TensorFlow is an excellent choice, especially
if coded using the topmost layer of Keras. Figure 12-6 presents the list of
layers in the Keras-based neural network. Each block in the middle column
represents a Keras layer of the specified type (such as Conv 2D, Dense, and
the like).



FIGURE 12-6 Schema of an OCR neural network

The neural network is quite articulated and composed of several distinct
layers involved in  processing the input image to produce a sequence of
characters. The image is rendered as an array of values in a single black-
white color channel (no RGB). We also need a second piece of input for
training purposes, which is the expected MRZ sequence (the label). Under
normal conditions, this would not be necessary, but in this case, we have to
use a custom loss function (see later), and this label serves to optimize the
performance of the loss function. Both the label and loss function layer will
be removed in production.

Right after the input layer, there are a couple of 2D convolution layers,
each of which runs a convolution kernel on its input data. Both layers use a
3x3 kernel and a ReLU activation function. (The ReLU function is a
piecewise linear function that will output the same input if positive and
zero if negative.) The output dimensionality of the first Conv2D layer is 64,
whereas the second produces 32 values. Each Conv2D is followed by a
MaxPooling2D layer, which downsamples the input along the height and



width by taking the maximum value over an input window of 2x2. Both
MaxPooling2D layers are configured in the same way.

At this point, the image is four times smaller, so the Reshape and Dense
layers will reduce the input size accordingly before getting into the
recurrent (LSTM) part of the neural network. The Dropout is only used
during training to prevent overfitting. The recurrent LSTM layers provide
the crucial part of the network. The first has 128 output values, which
become the input for the second LSTM, which outputs 64 values. Both
layers use the default hyperbolic tangent activation function and return the
full state sequence. A softmax activation on the final layer produces the
output. The softmax function turns a vector of N values into a vector of N
values that sum to 1.

As mentioned, for training purposes, we need to add a custom error
layer—the CTC layer. A Connectionist Temporal Classification (CTC) loss
function is ideal to use whenever a good alignment between sequences is
required and key for the quality of the response. A canonical example is
aligning each character to its location in an image file. No predefined CTC
layer exists in Keras, and it must be written manually as a Python class.
(See the source code included on this book’s web site for details.)

Training Pains
While designing a functional neural network for specific text recognition
tasks is not a mission-impossible task, training such a network for passport
images poses additional and nontrivial issues. Where do you get data to
train a passport neural network? No such dataset exists, and none should
actually exist for security and privacy reasons!

Using an MRZ Generator
An MRZ sequence is not simply the combination of first, last name, birth
date, document number, and the like. It contains filler characters and, more
importantly, a few checksum digits in specific locations. Arranging an MRZ
generator is a two-step operation.



First, you create a C# class that can randomly generate a valid MRZ
sequence, and then you use some publicly available tool (or write your
own) to turn those strings into JPG or PNG images. In this way, you can
create a dataset of the desired size and make it even larger in the case of
retraining. (One tool for Python solutions is
TextRecognitionDataGenerator, which is available at
https://github.com/Belval/TextRecognitionDataGenerator.)

Using TensorFlow Generators
Another aspect to consider is how to feed hundreds of thousands of images
to the TensorFlow training pipeline that Keras relies on. Unless you have
unlimited RAM and computing power, it is far more preferable to use a
cursor-based approach and feed items of the dataset only on-demand.

In TensorFlow, you pass the dataset through a generator, which produces
any due item on demand. This dramatically reduces the amount of memory
needed to train the network. However, the TensorFlow data generator is
only a shell (conceptually similar to ML.NET DataView objects), and it
must be connected to some real generator that does the actual job.

We have two options here: One is to accumulate all the sample MRZ
images into a folder and use a built-in folder-based generator or pass the list
of MRZ strings as the dataset and connect it to a custom generator capable
of turning text into images.

The ML Devil’s Advocate
So far in this chapter, we have presented two ways to solve the same
problem: using a dedicated cloud service or crafting a bespoken neural
network. In doing so, we recalled the old software dilemma of build-or-buy.
Paraphrasing it for machine learning, it becomes close to another
commodity-or-vertical dilemma.

Commodity Versus Vertical Solutions

https://github.com/Belval/TextRecognitionDataGenerator


Applied AI solutions become more and more standardized and general
enough to be adaptable to multiple scenarios just via hyperparameters.
More and more shards of vertical problems, immersed in specific business
contexts, are taken out of their native environment and commoditized.
When this is the case, then there’s no real reason to insist on creating
custom solutions.

Let us tell you a story about software commodities.
A year before we actually embarked on writing this chapter, passport

detection was not as efficient and shrink-wrapped as it is today. At that
time, the only option was to use a general-purpose OCR, which returned
bounding boxes and text recognized in it. It was good enough but not as
good as it should be for a crucial task such as parsing a passport file.

Today, the situation is fairly different, and the ID Form Recognizer does
a much better job. A year ago, crafting a dedicated neural network seemed
reasonable. Today, it is likely overkill.

In our opinion, the trend of commoditizing aspects of real problems with
cloud services will  continue indefinitely. In light of this, most applied AI
solutions will end up being just some orchestration software around one or
more cloud services.

Does this mean that just everything is destined to be commoditized?
In nearly any industry segment, there are problems that only apparently

lend themselves to being commoditized. For example, think of predictive
maintenance, price prediction, anomaly, or fraud detection. You can find
challenges on Kaggle for most of them, but in reality, it is radically
different. You need a dedicated solution for each scenario. The more you
reuse, the more you risk losing in terms of accuracy. For example, in wind
turbine predictive maintenance, it is ideal to have a model for each turbine
in a wind farm with a dataset that logs time series every five seconds or so.

Commercial solutions exist, but more often than not, what works for
customer X doesn’t work the same for customer Y. So, if you’re a company
with enough budget, you can seriously plan to craft the ideal solution for
your scenario, given your context, business model, and specific settings.



When Are Custom Solutions Inevitable?
In a nutshell, custom neural networks remain necessary to solve problems
you can’t solve otherwise or that haven’t yet been commoditized in some
way. Existing services can give you the direct or partial solution that can be
adapted to final with some surrounding standard code. In any other case, a
custom solution is an option to consider seriously.

In earlier chapters, we solved anomaly detection problems with a simple
chunk of ML.NET code. The point is that not everything that falls under the
umbrella of “anomaly detection” is really solvable effectively with a
shallow learning algorithm. And not everything you can envision as a
business instance of “anomaly detection” can be effectively solved with a
direct, plain algorithm or even a single multi-layer neural network.

The bottom line is that, in the end, AI is just software written using
more powerful tools than the primitives of programming languages, class
libraries, and software frameworks.

Summary
In this chapter, we attempted to illustrate two different approaches to solve
a common problem in many web forms: figuring out the vital information
stored in a passport from an image file. Too often, we are still required to
upload a passport photo on many web desks and then manually enter the
same information (name, dates, and numbers) that are already recognizable
via software from the image itself.

We first used a new Azure service—the ID Form Recognizer cloud
service—to upload a file and receive the sequence of characters in the
machine-readable zone of the document. The operation comprehends two
steps—extraction of the MRZ region from the original image and an OCR
pass to turn pixels into a string.

Next, we attempted to do the same using a custom neural network.
Aside from the effort (and skills) necessary for creating a brand-new neural
network, training is the key differentiator. You don’t need any training if
you call a service. However, if you want to do it yourself, you need a high-
quality dataset and sufficient computing time.



The world of AI is split into two main families of solutions:
commodities and vertical solutions. If you have a good enough commodity,
by all means, use it. Be aware, though, that platforms and cloud services
exist that may not be specific to the business workflows of the specific
company you work for. If you can’t solve the problem in any consolidated
and commoditized way, then it’s time to try a custom neural network.

AI, in the end, is just software.



Appendix A

Model Explainability

“Anyone who attempts to generate random numbers by
deterministic means is, of course, living in a state of sin..”

—John Von Neumann

We could put it down abruptly like this: machine learning today is not really
as intelligent as media (and even common sense) lead us to think. Worse
yet, from a pure perspective of applied intelligence, an expert system—a
primordial form of software intelligence than deep learning and neural
networks—are more intelligent. So, what is intelligence, and what is
intelligence in software?

Although with slightly different wording, nearly all worldwide
dictionaries provide a definition of intelligence that goes with the following
statement:

The ability to acquire knowledge and turn that into expertise.
However, in the folds of the definition, there’s another layer of meaning

that is worth surfacing and that we can summarize in the three further
points:

Form judgment and opinions out of the acquired knowledge
Act based on that
React to unknown events

In a nutshell, human intelligence combines cognitive capabilities,
including perception, memory, language, and reasoning, and uses an
unparalleled learning schema to extract, transform and store information.



Software Intelligence
In software, intelligence is close to sensing the surrounding environment
and reacting to detected changes. An expert system does that by deducing
the appropriate behavior from a finite and hard-coded (though high) number
of cases and scenarios. Instead, machine learning–based software—what
media love to call artificial intelligence—is software that can learn from
what it processes. In other words, the number of cases and scenarios from
which answers are deduced is not hard-coded by a human team of
developers but is determined programmatically via training. Training, in
turn, is driven by the data you provide. It goes without saying that if data is
biased (willingly or not), then answers are biased (willingly or not).

A trained model that goes into production is a total black box that not
even developers know what they are going to return in front of a certain
input. All we know is that the model during training showed an acceptable
degree of error compared to provided expected results. Nobody knows—for
sure—if all that was however correct, honest, or biased, and in which
direction. Nobody knows—for sure—why neural networks make the
decisions they actually make.

All this is scary if you think of the critical business systems these
algorithms can interact with (or be a constituent part of), such as security
surveillance, insurance/financial decision systems, and medical diagnostics.

Today’s huge emphasis on ethics in AI starts with the lack of a broadly
accepted explainability model that could help make sense of and accept the
output of deep-learning models.

The Super Theory of Artificial Intelligence
Neural networks—the most sophisticated way to do machine learning—
have been in the works for several decades, approximately since the 1960s.
It is curious to note that the will to build intelligent machines came up even
before building comprehensive software applications for common tasks. We
could even say that software engineering in itself is a byproduct of the quest
for intelligent machines!



For many years, though, the focus on AI has been primarily academic
and theoretical. The most prominent result of this first stage of research is
surely the back-propagation training method of neural networks. There
have been two major winter seasons in AI (namely, a substantial stopping
of funding and research) before the 2000s. After that, much more
computing power, better learning algorithms, as well as the availability of
large volumes of data radically changed the landscape and produced
significant advances. Around 2012, deep learning started becoming the
dominant approach to getting accurate and even superhuman results.
Hence, the number of domains in which deep learning was employed
proliferated—from healthcare to finance, energy to general industry, and to
retail.

However, the key factor is that such an improved accuracy in prediction
brought a significantly increased complexity in the underlying model as a
side effect. The increased power mostly comes from two sources: more
sophisticated network topologies and ridiculously vast amounts of data
provided in training. In other words, the boost in the prediction power
comes more from brute force than from effective improvements in the
learning techniques. The bottom line is that we know very little about the
inner workings of neural networks, and we get results but do not fully
understand why those results have been produced. And we don’t actually
know how to interpret them. Should we blindly trust or refuse all results?
At what costs?

The cheap answer to this yet unsolvable problem is ethics in AI (or
Responsible AI). But ethics only scratches the surface of things.

Instead, a more thoughtful answer is that we currently lack a
comprehensive and well-defined mathematical model that explains the
actual dynamics of deep neural networks. This is just what we pompously
called the “super theory of artificial intelligence” in the title of this section.
Prominent  scientists also said, with trepidation, that we risk incurring in a
third winter of AI if this fails to move the bar from a brute-force approach
to a more mathematical approach. The pontifical statement that AI will take
over humans and change the way we live and work is seriously at risk
because of the lack of this super theory.



Machine Learning Black Boxes
In machine learning, a model is a computational graph, much more complex
in structure, but it is conceptually analogous to a plain polynomial. A black-
box model is a model that an algorithm creates directly from data. The
black-box nature lies in the fact that even those who design the network
can’t really explain how variables are combined to produce numbers
interpreted as predictions or classifications.

Developers do define the list of the input variables, but black-box
models are usually such intricated functions of the input that no human can
realistically understand how input variables are jointly related to each other.
Internally, the state of a neural network at work is comparable to a chaotic
system. And, as in chaotic systems, a minimal change anywhere—in input
as well as in one of the thousands of interconnections—could end up in
radically different outputs.

Interpretability and Explainability
Two concepts are invoked when it comes to making sense of machine
learning black box models: interpretability and explainability. While these
two terms are often used interchangeably, a subtle yet neat difference exists
between them. It is crucial to note that there is currently no rigorous
mathematical definition or measurable metric for both terms. Some broadly
accepted definitions stand, however. A model is interpretable if the
connections between input and output are obvious, understandable, and
reproducible.

Lack of interpretability is not an issue in low-risk scenarios where
machine learning is applied. For example, a model that recommends that
you stay in a hotel that you would not stay in is not a big issue unless
you’re a large company like Booking.com, and you don’t want your
recommendations to disappoint customers. Likewise, getting a naïve price
prediction for a taxi ride might not be a disaster unless you’re Uber and
want to give an edge to competitors. At the same time, predicting the
evolution of the market price of energy is a different story. You want
accuracy and to know what makes the suggested price a reasonable value
and whether a model is better than another. Interpretability must be high in
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high-risk scenarios such as healthcare or insurance/finance. The model
gives a prediction, but a human subscribes to that prediction and uses it to
make an actual decision. Would you trust a machine? What if you do? And
what if you don’t? An AI system with high interpretability would also
allow users to try the system as sort of what-if game.

Explainability, instead, relates to the internal mechanics of a machine
learning system. Internally to a neural network, the back-propagation step
—the core learning algorithm—updates the weights on neurons based on its
error function. The setting of these values is largely uncontrolled by
developers and hardly reproducible. Yet, assigning these values is key to
obtaining an output from a given input. As shown in Figure A-1, everything
in a neural network but the input and the output values are hidden dynamics
(and largely unknown details). Ultimately, lack of explainability means that
nobody can easily predict the effect of changing a single weight on one of
the hidden connections.



FIGURE A-1 Input and output in the learning of a neural network

The hidden layers (the black box) allow a model to make associations
among the given data points, and based on that, predict better results. Note
that here “better” refers to minimizing an error function. Explainability
measures the level of understanding engineers have about the internal flow
of data that takes place while the network is training.

What’s the relationship between interpretability and explainability?
An interpretable model is not necessarily a model whose internals

engineers know in detail. Yet, it is a model whose cause-and-effect
relationship between input and output is relatively easy to spot. On the
other hand, an explainable model is a model in which the role played by
input values in the calculation of the output is intelligible, but it’s not
necessarily the cause-and-effect relationship between input and output. In
summary, machine learning interpretability does not axiomatically entail
machine learning explainability and vice versa. However, interpretability
tends to be considered a broader term than explainability.

Explainability Techniques
There are actually a few different ways to make sense of the decisions a
model makes. Some of them are already implemented in ML.NET, and
others will likely appear in the future. However, the overall idea is finding
ways to understand which features are the most salient for a given model to
predict.

Basically, you have two options when it comes to building a model. You
can go for an interpretable model, namely a model whose decisional steps
can be explained to a human to reproduce the results. Alternatively, you can
go for a black-box model and make a post-mortem analysis on how
explainable it is. The canonical example of interpretable models is a
decision tree. In general, shallow learning algorithms are more interpretable
than neural networks and are much less accurate and effective in some
cases.



This leads us straight to enumerate a few common methods for model
explainability:

Decision-tree visualization
Training pipeline visualization
Feature contribution calculation
Permutation feature importance

A decision tree is a supervised shallow algorithm that uses a binary tree
graph to assign each data sample a target value. Decision-tree learning is
the process of finding the optimal rules for splitting the data sample
according to the metric in use. Visualizing the final tree is relatively
automatic, and many tools exist to plot the tree either graphically or via a
text console. For example, in Python scikit-learn, there’s the plot_tree
method, which when used in a Jupyter notebook, gives you an instant view
of the final tree.

Another Python package useful for both decision-tree and training
pipeline visualization is  Graphviz. Using it, you can take the training
pipeline of an ML.NET solution and render it in a Python Jupyter notebook
via NimbusML, which is a Microsoft Python framework that makes
ML.NET models available in a Python environment. To mix .NET and
Python, you can also count on .NET Interactive Notebooks and the .NET
DataFrame API.

Feature contribution calculation is a method that computes model-
specific contribution scores for each feature of the input vector. The idea is
to process a dataset with a trained model and predict each data item. It can
be useful to inspect which features significantly influenced the prediction to
understand and explain these predictions. In ML.NET, you find a built-in
transformer for this method in the ExplainabilityCatalog object. The
transformer returns positive scores if the feature increases the accuracy of
the prediction or a negative value if the feature negatively impacts the
prediction. A near-zero value indicates that the feature is not relevant for
the prediction.

While feature contribution measures the actual contribution that a
feature gives to the prediction, feature importance refers to measuring how
useful a given feature is at predicting a target variable. The foundation of



permutation feature importance (PFI) is that valuable information only
useful for prediction comes from certain features, and you want to know
which. So, if you randomly shuffle the feature values and the quality of
your predictions decreases, then that means you removed a crucial feature.
Conversely, if the decrease in quality is small, then the information in the
original dropped features wasn’t very relevant for the predictions, and you
can even remove them definitely simplifying the model. In ML.NET,
regression, classification, and ranking catalogs present a
PermutationFeatureImportance method for the purpose.

Conclusion
As members of a global society, we are under the effect of two opposite
forces. One is the hype of progress driven by artificial intelligence, making
everything easier and smoother for everyone. The other is the force of
singularity, which warns us about the risks of giving machines more and
more decisional power, allowing them to decide for us and take control of
our lives and jobs.

Lack of explainability is a fact, and no mathematical theory exists that
either defines or overcomes it. So, most sophisticated models—such as
those used in vital scenarios—are at risk of blind trust, and nobody really
likes that. So, ethics are a bold theme when it comes to AI.

While explainability can be achieved mostly as a post-training
explanation, ethics in AI is primarily the stimulus to search for explainable
and interpretable models as much and often as possible. As for the direct
impact of AI on people’s lives and our positions, AI is slated to replace
tasks much more than actual jobs in most cases.
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transfer learning, 177
transformers, 47

MLOps, 10
Model Builder, 22, 24
ModelBuilder class, 15–16
ModelInput class, 16–17
model(s). See also Inception v3; testing; training

composition, 176, 178
computational graph, 20
cross-validation, 65–66
error function, 63–64
explainability, 222–223
feature importance, 53–54
fitting, 63
instantiation, 68–70
interpretability, 221–222
packaging, 66–67
regularization, 53
TensorFlow, 181–182
training, 12, 17–19



performance and, 20–21
purpose of, 19

user interface, 42–43
validation, 64–65

moving average, 122–123
MRZ (Machine-Readable Zone), 212–214
multiclass classification, 85, 87–88

composing the training pipeline, 90
evaluating the model, 92–94
selecting the algorithm, 90–91
switching back to text, 92

confusion matrix, 94–95
dataset, 88
metrics, 93–94
object pooling, 96
setting up a client application, 95–96
supported algorithms, 85
text featurization, 89
trainers, 85–86, 90–91

multivariate time series, 126–127

N
naïve Bayesian classification, 86
NAND gate, 191
Netflix prize challenge, 167, 169, 172
.NET, 9
neural networks, 7, 12, 45, 165, 178, 187, 189, 191, 211



activation function, 190–191
artificial neurons, 190
auto-encoders, 202

applications, 202–203
schema, 202

building, 178
checkpoints, 152–154
convolutional, 199–202
crafting your own, 210
custom, 217
enabling to learn, 193
feed-forward, 189
handcrafting, 187
hidden layers, 192
image processing, 176
Inception v3, 176
logistic neuron, 193–194
LSTM (Long Short-Term Memory), 155, 157, 199
NAND gate, 191
perceptron, 190
predictive maintenance, 137–138
Python libraries, 12
recurrent, 197

architecture, 198
“deep”, 199
memory context, 197–198

stateful, 197
topology, 211



training, 194, 215
backpropagation algorithm, 195–196
using an MRZ generator, 215–216
using TensorFlow generators, 216

Newton, Isaac, 1
NimbusML library, 109
noise removal, 124
nonlinear regression, 71
normalization, 59–60
notebook, 11
NuGet packages, image classification, 177
numeric computing libraries, 11–12
NumPy, 12

O
object

detection, 175, 187
pooling, 42, 96

OCR (optical character recognition), 205, 206–207
OCSVM (One Class Support Vector Machine) algorithm, 125
one hot encoding, 60
One-Versus-All classification, 86–87
One-Versus-One classification, 87
OpenCV library, 211–212
OPTICS algorithm, 106–108
orchestrator, 14
outliers



change points and, 125
collective, 121
contextual, 121
point, 121
in a time series, 121–122

overfitting, 53

P
Pandas, 11
partitioning a dataset, 77–78. See also clustering
passport recognition system, 205–206

extracting the MRZ region, 212–214
form recognizer service, 207–210
image input, 206
MRZ (Machine-Readable Zone), 206
OCR (optical character recognition), 205–207
processing the input image, 211
recognizing the MRZ content, 214–215
text detection, 206
training

using an MRZ generator, 215–216
using TensorFlow generators, 216

PCA (principle component analysis), 132–134
perceptron, 1, 190–191
personalization, 161–162
pipelines, 48

chain of estimators, 66



multiple, 65–66
Pitts, Walter, 189
Plain method, 134
point outliers, 121
Predict method, 68
prediction, 19, 21–22, 45, 141. See also forecasting

algorithms, 22, 35, 36
data science and, 31
energy production, 156

forecasting pipeline, 157
power plant data, 156–157
weather forecasts, 156

regression, 48, 54
augmenting the dataset, 55–56
datasets, 54–55

taxi fare, 40–41
predictive maintenance, 137–138
Preview method, 47
programmatic holdout, 78–79
programming languages, 4, 9–10. See also Python
projects, 39
Python, 9–10

libraries, 11, 14
Matplotlib, 11
model training, 12
neural network, 12
NimbusML, 109
numeric computing, 11–12



Pandas, 11
scikit-learn, 12

notebook, 11
popularity of, 10

PyTorch, 12

Q-R
Quicksort algorithm, 37
random forest algorithm, 155
random walk, 154–155
randomized PCA (principle component analysis), 132–134
ranking, 159–161, 162

information retrieval systems, 159–160
versus recommendation, 161

recommender system, 161, 163
accuracy and, 173
bulk rating, 173
collaborative filterring, 162, 172
composing the training pipeline, 166
dataset, 163

schema, 163–164
selecting columns of data, 164–165

evaluating the model, 168–169
feature engineering, 165
information retrieval systems, 159–160
KNN (K-nearest neighbor) algorithm, 169–170
MF (Matrix Factorization) algorithm, 166–168



personalization and, 161–162
versus ranking, 161
relevance by date, 166
setting up a client application, 170

skeleton of the app, 170–171
user interface, 171–172

regression, 48–49, 54, 70
dataset, 54–56
linear, 71
logistic, 81–82
metrics, 38, 64
nonlinear, 71
time series, 71
trainers, 49–50

regularization, 53
retraining, 188. See also transfer learning
RNN (recurrent neural network), 197

architecture, 198
“deep”, 199
memory context, 197–198

roles
data engineer, 29
data scientist, 28
ML engineer, 29–30

Russell, Bertrand, 1

S



schema, 57
auto-encoder, 202
time series data, 127

scikit-learn, 12, 14
SciPy, 12
SDCA (Stochastic Dual Coordinate Ascent) trainer, 91–92, 99
SdcaMaximumEntropy trainer, 92
seasonality, 142
semi-supervised learning, 124–125
sentiment analysis, 75, 98
shallow learning, 12
sigmoid function, 193–194
silhouette method, 106
software, 1–2, 4

AI and, 7
in cars, 5–6
cognitive services, 6
empowerment and, 6
goals of, 5
Godel’s theorems of incompleteness, 1
intelligent, 9
programming languages, 4
role of, 4–5

solutions
commoditization of, 216–217
custom, 217

spikes, detecting, 128–130
SR-CNN (Spectral Residual and Convolutional Neural Network), 132



SSA (Singular Spectrum Analysis) algorithm, 132, 144, 149–150, 154
decomposition step, 144–145
reconstruction step, 145

stateful neural networks, 197. See also RNN (recurrent neural network)
stationarity, 143
statistical market analysis, 31
supervised classification, 123
SVD (Singular Value Decomposition), 132–133
SVM (Support Vector Machine) algorithm, 81–82, 99
symbolic calculation, 1

T
tasks, 49

anomaly detection, 119–120
change points, detecting, 130–131
composing the training pipeline, 128
fraud and, 139–140
loading data and feature engineering, 127–128
outliers in time series data, 121–122
semi-supervised learning, 124–125
setting up a client application, 134–136
spikes, detecting, 128–130
SR-CNN (Spectral Residual and Convolutional Neural Network),

132
SSA (Singular Spectrum Analysis), 132
statistical techniques, 122–123
supervised classification, 123



in a time series, 120–121
unsupervised clustering, 124

binary classification, 73
calibrators, 74–75
choosing the algorithm, 81
dataset, 75–77
evaluating the model, 82
metrics, 83
partitioning the dataset, 77–78
programmatic holdout, 78–79
for sentiment analysis, 75
setting up a client application, 84
supported algorithms, 73–74
text featurization, 79–81
trainers, 74
validation techniques, 75

classification, unsupervised learning, 99–100
clustering, 114–115

applying persistent transformations, 101–102
binding output columns to a C# class, 112
customer segmentation, 100
DBSCAN algorithm, 107–108
elbow method, 106
feature engineering, 104
inspecting the transformed dataset, 111
K-Means algorithm, 109–111
K-Modes algorithm, 106
modeling data to classes, 103



OPTICS algorithm, 106–108
purpose of data in, 103–104
reducing the number of features, 115–116
reducing the number of rows, 116
saving clusters to separate files, 113–114
setting up a client application, 111
silhouette method, 106

forecasting, 146
applying the algorithm, 149–150
dataset, 146–147
helper classes, 147
loading data from a database source, 148
saving and evaluating the model, 150–151
separating training and testing data, 148–149
weather, 156

image classification, 175
composing the training pipeline, 180, 181–182
dataset, 178–179
mapping to a canonical classification problem, 178
setting up a client application, 182–184
transfer learning and, 175

multiclass classification, 85, 87–88
confusion matrix, 94–95
dataset, 88
metrics, 93–94
object pooling, 96
setting up a client application, 95–96
supported algorithms, 85



trainers, 85–86
naïve Bayesian classification, 86
One-Versus-All classification, 86–87
One-Versus-One classification, 87
ranking, 160–162

information retrieval systems, 159–160
versus recommendation, 161

recommendation, 159, 161, 163
accuracy and, 173
bulk rating, 173
client application, 170–172
collaborative filtering, 162, 172
composing the training pipeline, 166
dataset, 163–165
evaluating the model, 168–169
feature engineering, 165
information retrieval systems, 159–160
KNN (K-nearest neighbor) algorithm, 169–170
MF (Matrix Factorization) algorithm, 166–168
personalization and, 161–162
versus ranking, 161
relevance by date, 166

regression, 49–50, 54
TensorFlow model, 12, 181

neural network training, 216
retraining, 181–182

testing, 37, 52
cross-validation, 38, 65–66



holdout, 37, 52
k-fold, 52–53

datasets, 77–78
metrics, 38
validation, 64–65

text featurization, 79–81
mapping target classes to numerical values, 90
multiclass classification and, 89

Theano, 12
thinking machines, 3. See also AI (artificial intelligence)
time series

anomaly detection
change points, detecting, 130–131
randomized PCA (principle component analysis), 132–134
spikes, detecting, 128–130
SR-CNN (Spectral Residual and Convolutional Neural Network),

132
SSA (Singular Spectrum Analysis), 132
statistical techniques, 122–123

cycles, 142
multivariate, 126–127
outliers, 121–122
random walk, 154–155
regression, 71
seasonality, 142
stationarity, 143
trends, 142
univariate, 126–127



usual pattern, 120–121
trainers

binary classification, 74
configuration, 50–51
multiclass classification, 85–86, 90–91
regression, 49–50
SDCA (Stochastic Dual Coordinate Ascent), 91

training, 12, 17–19. See also consuming a trained model; ETL (Extract-
Transform-Load) pipeline; testing
algorithms, 35

choosing, 36
measuring the value of, 36–37

anomaly detection, 128
detecting change points, 130–132
detecting spikes, 128–130
setting up a client application, 134–136
using randomized PCA, 132–134
using the SR-CNN service, 132

classification, 90–92
confusion matrix, 94–95
evaluating the model, 92–94
managing multiple prediction engine pools, 96
selecting the algorithm, 90–91
setting up a client application, 95–96
switching back to text, 92

clustering, 109
inspecting the transformed dataset, 111
running the K-Means algorithm, 109



setting up a client application, 111
data transformation, 17
dataset, 77
forecasting, 148

applying the algorithm, 149–150
loading data from a database source, 148
saving and evaluating the model, 150–151
separating training and testing data, 148–149

image classification, 180
adding the TensorFlow model to the pipeline, 181
retraining the TensorFlow model, 181–182

multiclass classification, 90–91
neural networks, 194

backpropagation algorithm, 195–196
using an MRZ generator, 215–216
using TensorFlow generators, 216

overfitting, 53
performance and, 20–21
prediction, 62

cross-validation of the model, 65–66
fitting the model, 63
identifying the training algorithm, 62–63
invoking a trained model, 68–70
loss function of the model, 63–64
packaging the trained model, 66–67
setting up a client application, 67–68
validation of the model, 64–65

preparing the dataset, 51



purpose of, 19
recommender system, 166

evaluating the model, 168–169
MF (Matrix Factorization) algorithm, 166–168

regularization, 53
transfer learning, 175, 178

dataset, 178–179
in ML.NET, 177
via composition, 176

Transform method, 47
trends, 142
T-shaped skill set, 30
Turing, Alan, 1, 3, 29
Turing machine, 1–2

U
univariate time series, 126–127
unsupervised clustering, 124
unsupervised learning, 99–100, 115
user interface, 42–43

V
validation. See also cross-validation

binary classification and, 75
dataset, 77–78

Van Rossum, Guido, 10



variance, 52, 58
vertical solutions, 216–217
Visual Studio, 15, 22, 62–63
Von Neumann architecture, 4
von Neumann, John, 2–3

W-X-Y-Z
weather forecasting, 156
Y-shaped skill set, 30
Zip method, 151









Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.
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