
Practical
Event-Driven
Microservices
Architecture

Building Sustainable and Highly
Scalable Event-Driven Microservices
—
Hugo Filipe Oliveira Rocha

Practical Event-Driven
Microservices
Architecture

Building Sustainable and Highly
Scalable Event-Driven Microservices

Hugo Filipe Oliveira Rocha

Practical Event-Driven Microservices Architecture: Building Sustainable and
Highly Scalable Event-Driven Microservices

ISBN-13 (pbk): 978-1-4842-7467-5 			 ISBN-13 (electronic): 978-1-4842-7468-2
https://doi.org/10.1007/978-1-4842-7468-2

Copyright © 2022 by Hugo Filipe Oliveira Rocha

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7467-5. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Hugo Filipe Oliveira Rocha
Ermesinde, Portugal

https://doi.org/10.1007/978-1-4842-7468-2

As with all the best things in my life, this book included,
started with a suggestion from my wife.

To the love of my life, Eduarda, and my dear daughter, Olívia.

v

Table of Contents

Chapter 1: �Embracing Event-Driven Architectures�� 1

1.1 ��The Truth About Monoliths��� 4

1.1.1 ��Anatomy of a Typical Monolith��� 4

1.1.2 ��What They Don’t Tell You About Monoliths; It’s Not All Bad�� 9

1.1.3 ��When Monoliths Become the Business Constrictor Knot��� 13

1.1.4 ��Using Event-Driven Architectures to Move Away from a Monolith�������������������������������� 16

1.2�� What Are Microservices and How Do They Relate to Event-Driven�� 20

1.2.1 ��Deployment��� 21

1.2.2�� Decoupled and Autonomously Developed��� 22

1.2.3 ��Data Ownership��� 22

1.3�� SOA, Microservice, and Event-Driven Architectures��� 22

1.3.1�� SOA�� 23

1.3.2 ��Microservice Architecture��� 24

1.3.3 ��Event-Driven Microservice Architecture�� 26

1.4�� The Promise of Event-Driven Microservices�� 27

1.4.1 ��Evolving Architecture��� 28

1.4.2�� Deployment��� 28

1.4.3�� Team’s Autonomy�� 29

1.4.4�� Flexible Technology Stack��� 30

1.4.5�� Resilience and Availability��� 30

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

https://doi.org/10.1007/978-1-4842-7468-2_1#Sec2922
https://doi.org/10.1007/978-1-4842-7468-2_1#Sec2221

vi

1.4.6 ��Tunable Scaling��� 32

1.4.7 ��The Past on Demand�� 32

1.5 ��When Should You Use Event-Driven Microservices?�� 33

1.6 ��Overview of the Challenges in Event-Driven Architectures�� 36

1.7�� Summary��� 38

Chapter 2: �Moving from a Monolith to an Event-Driven Architecture��������������������� 41

2.1 ��Is Migrating to an Event-Driven Architecture Your Best Option?�� 43

2.2�� Moving to an Event-Driven Architecture, How to Decide Where to Start�������������������������������� 46

2.3 ��Using an Event-Driven Approach to Move Data from a Monolith��� 52

2.4 ��Using Change Data Capture (CDC) to Move Data from a Monolith��� 58

2.4.1 ��Event-Driven and Change Data Capture (CDC), a Real-World Example������������������������ 62

2.5�� Migrating Data from a Monolith: Event-Driven As a Source of Truth for Both Systems��������� 68

2.6�� Incremental Migration from a Monolith to an Event-Driven Architecture: Managing
Dependencies��� 70

2.6.1 ��Managing a Dependency from a New Event-Driven Service to a Legacy Monolith������� 70

2.6.2 ��Managing a Dependency from a Legacy Application to a New Event-Driven Service������ 73

2.7 ��Gradually Moving Traffic to New Microservices��� 76

2.8�� Migrating from a Monolith: Two-Way Synchronization and Living with
Two Sources of Truth��� 79

2.9�� Summary��� 82

Chapter 3: �Defining an Event-Driven Microservice and Its Boundaries������������������� 85

3.1 ��Building Event-Driven Microservices��� 87

3.1.1 ��N-Tier Architectures�� 88

3.1.2�� Clean Architecture��� 89

3.1.3 ��Event-Driven Microservices: Durable vs. Ephemeral Message Brokers and GDPR������� 94

3.1.4 ��Event-Driven Message Types��� 98

3.1.5�� Event-Driven Microservices: When to Use Documents over Events���������������������������� 102

3.1.6�� Common Event-Driven Messaging Patterns�� 104

3.1.7�� Event-Driven Service Topologies��� 107

3.1.8�� Common Event-Driven Pitfalls and Anti-patterns�� 111

Table of Contents

vii

3.2 ��Organizing Event-Driven Microservice Boundaries�� 113

3.2.1�� Organizational Composition��� 114

3.2.2 ��Likelihood of Changes��� 115

3.2.3�� Type of Data��� 115

3.3�� Brief and Practical Introduction to Domain-Driven Design and Bounded Contexts������������� 117

3.3.1 ��How We Can Apply It in Practice�� 118

3.4�� Event-Driven Microservices: The Impact of Aggregate Size and Common Pitfalls�������������� 122

3.5 ��Request-Driven vs. Event-Driven Services�� 124

3.6 ��Deciding When to Create a New Microservice or Add Functionality to an Existing One������ 127

3.7�� Summary��� 130

Chapter 4: �Structural Patterns and Chaining Processes��������������������������������������� 133

4.1 ��The Challenges of Transactional Consistency in Distributed Systems��������������������������������� 135

4.1.1 ��Why Move from a Monolithic Database in the First Place?��� 137

4.1.2�� The Limitations of Distributed Transactions�� 138

4.1.3�� Managing Multi-step Processes with Sagas��� 143

4.2 ��Event-Driven Orchestration Pattern��� 146

4.3�� Event-Driven Choreography Pattern�� 150

4.4�� Event-Driven Microservices: Orchestration, Choreography, or Both?���������������������������������� 154

4.5 ��Data Retrieval in Event-Driven Architectures and Associated Patterns������������������������������� 156

4.5.1�� CQS, CQRS, and When to Use Them��� 160

4.5.2�� The Different Flavors of CQRS��� 164

4.5.3�� When and How to Use Event Sourcing�� 166

4.5.4 ��Concerns and When to Use Event Sourcing��� 171

4.5.5 ��Using Command Sourcing and Its Applicability��� 172

4.6�� Building Multiple Read Models in Event-Driven Microservice Architectures����������������������� 173

4.7 ��The Pitfall of Microservice Spaghetti Architectures and How to Avoid It����������������������������� 179

4.7.1�� Domain Segregation and Clear Boundaries��� 180

4.7.2�� Context Maps��� 182

4.7.3�� Distributed Tracing�� 184

4.8�� Summary��� 185

Table of Contents

https://doi.org/10.1007/978-1-4842-7468-2_4#Sec1421
https://doi.org/10.1007/978-1-4842-7468-2_4#Sec1422
https://doi.org/10.1007/978-1-4842-7468-2_4#Sec1423

viii

Chapter 5: �How to Manage Eventual Consistency��� 187

5.1 ��The Impacts of Eventual Consistency and the Need for Alignment with the Business�������� 190

5.1.2 ��Liveliness��� 193

5.1.3�� The CAP Theorem in the Real World�� 195

5.2�� Using Event Schema in Event-Driven Microservices to Leverage Eventual Consistency����� 199

5.3 ��Applying Microservice Domain Boundaries to Leverage Eventual Consistency������������������� 204

5.4�� Handling Eventual Consistency Delays with Event Versioning��� 209

5.5�� Saving State in Event-Driven Microservices to Avoid Eventual Consistency����������������������� 211

5.5.1 ��Buffering State As an Alternative to Persistence��� 213

5.6�� Tackling Eventual Consistency with the End-to-End Argument: A Real-World Use Case����� 215

5.7�� For Most Use Cases, It’s Not Eventual If Nobody Notices��� 218

5.7.1�� Event-Driven Autoscaling Use Case with Prometheus and Kafka������������������������������� 220

5.8�� Discussing the Tradeoffs of Typical Eventual Consistency Handling Strategies������������������� 222

5.9�� Summary��� 224

Chapter 6: �Dealing with Concurrency and Out-of-Order Messages����������������������� 227

6.1�� Why Is Concurrency Different in a Monolith from an Event-Driven Architecture?���������������� 229

6.2�� Pessimistic vs. Optimistic Concurrency, When and When Not to Use���������������������������������� 236

6.2.1 ��Pessimistic vs. Optimistic Approaches�� 237

6.2.2 ��Solving Concurrency by Implementation and by Design��� 238

6.3�� Using Optimistic Concurrency�� 240

6.4�� Using Pessimistic Concurrency�� 244

6.4.1�� Distributed Locks in Event-Driven Microservices�� 245

6.4.2 ��Database Transactions As a Concurrency Approach in Distributed Microservices������ 250

6.5 ��Dealing with Out-of-Order Events�� 251

6.5.1�� How Can Events Lose Their Order?��� 252

6.5.2 ��Solving Out-of-Order Events with Versioning�� 254

6.6 ��Using End-to-End Message Partitioning to Handle Concurrency and
Guarantee Message Ordering�� 256

6.6.1�� Real-World Example of Event-Driven Message Routing Using Kafka�������������������������� 258

Table of Contents

https://doi.org/10.1007/978-1-4842-7468-2_5#Sec1222

ix

6.6.2�� The Relevance of Message Routing and Partitioning in Event-Driven
Microservices��� 263

6.6.3�� Using End-to-End Partitioning to Handle Concurrency and Ordering�������������������������� 266

6.6.4�� Limitations of End-to-End Partitioning in Event-Driven Microservices����������������������� 269

6.7 ��Summary��� 272

Chapter 7: Achieving Resilience and Event Processing Reliability in
Event-Driven Microservices�� 275

7.1�� Common Failures in Microservice Architectures and How They Relate to
Event-Driven Architectures��� 277

7.1.1 ��Cascading Failures and Event-Driven Services��� 279

7.1.2 ��Load Balancing and Rate Limiters in Event-Driven Services�������������������������������������� 284

7.2�� Understanding Message Delivery Semantics�� 288

7.2.1�� Exactly-Once Delivery Semantics in Kafka�� 293

7.3�� Avoiding Inconsistencies When Saving State and Publishing Events in Event-Driven
Microservices�� 293

7.3.1 ��Event Stream As the Only Source of Truth��� 295

7.3.2 ��Outbox Pattern in Event-Driven Microservices�� 298

7.3.3 ��Transactions and Compensating Actions to Avoid Inconsistencies in
Event-Driven Microservices��� 300

7.4�� Applying ACID 2.0 As a Resilience Strategy in Event-Driven Microservices������������������������ 302

7.5 ��Avoiding Message Leak in Event-Driven Microservices��� 306

7.5.1 ��Poison Events�� 308

7.6�� Applying Common Resilience Patterns in Event-Driven Microservices������������������������������� 308

7.6.1�� Retries As a Resilience Approach in Event-Driven Microservices������������������������������� 309

7.6.2 ��Circuit Breakers in Event-Driven Microservices�� 311

7.7�� Recovering Data and Repairing State in Event-Driven Microservices��������������������������������� 314

7.8�� Bulkhead Pattern in Event-Driven Microservices�� 316

7.8.1 ��Priority Queues�� 318

7.9 ��Conclusion��� 319

7.10�� Summary��� 320

Table of Contents

https://doi.org/10.1007/978-1-4842-7468-2_7#Sec12222
https://doi.org/10.1007/978-1-4842-7468-2_7#Sec3433

x

Chapter 8: Choosing the Correct Event Schema Design in Event-Driven
Microservices�� 323

8.1�� Event Storming and Event-Driven Microservices�� 324

8.1.1 ��What Are the Limitations of Event Storming?�� 329

8.2�� Event Schema: Headers and Envelopes��� 329

8.2.1 ��Headers vs. Envelopes in Event Schema��� 330

8.2.2�� Relevant Contextual Information in Events�� 332

8.3 ��Town Crier Events Pattern�� 334

8.4�� Bee Events Pattern��� 337

8.5�� The Event Schema Goldilocks Principle��� 340

8.6 ��Denormalized Event Schema��� 343

8.7 ��Schema Evolution in Event-Driven Microservices��� 345

8.7.1�� Backward Compatibility��� 346

8.7.2�� Forward Compatibility��� 347

8.7.3�� Full Compatibility��� 347

8.7.4 ��No Compatibility�� 348

8.7.5�� Managing Changes�� 348

8.7.6�� Event Stream Versioning��� 351

8.7.7�� Using a Downscaler/Upscaler When Evolving Event Schema�������������������������������������� 352

8.8 ��Summary��� 354

Chapter 9: How to Leverage the User Interface in Event-Driven Microservice
Architectures��� 357

9.1�� Using an Aggregating Layer to Build a UI in a Distributed Microservice Architecture��������� 359

9.2�� Backends for Frontends (BFFs)�� 362

9.3�� UI Decomposition Pattern in Microservice Architectures��� 365

9.3.1�� UI Application Decomposition Pattern��� 366

9.3.2�� UI Page Decomposition Pattern��� 368

9.3.3�� UI Section Decomposition Pattern��� 369

9.4�� The Limitations of API Composition�� 371

9.5�� Task-Based UIs��� 378

Table of Contents

https://doi.org/10.1007/978-1-4842-7468-2_8#Sec2221

xi

9.6 ��Event-Driven APIs��� 384

9.6.1�� Event-Driven Combined with WebSockets�� 386

9.6.2�� Event-Driven Combined with Server-Sent Events��� 387

9.6.3 ��Event-Driven Combined with WebHooks��� 389

9.7�� Summary��� 391

Chapter 10: �Overcoming the Challenges in Quality Assurance����������������������������� 393

10.1�� Microservice Testing Approaches and How They Relate to Event-Driven�������������������������� 394

10.1.1�� Unit Tests��� 395

10.1.2�� Component Tests��� 397

10.1.3�� Extended Component Tests��� 399

10.1.4�� Integration Tests�� 402

10.1.5 ��Half-Breed Integration Tests�� 404

10.1.6 ��End-to-End Tests��� 408

10.2�� Applying Contract Tests and Consumer-Driven Contracts to Event-Driven������������������������ 414

10.3�� Test Categorization and Purpose�� 417

10.4 ��End-to-End Quality Without End-to-End Tests�� 419

10.5�� Testing in Production�� 423

10.5.1�� Shadowing��� 424

10.5.2�� Canaries�� 429

10.5.3�� Feature Flagging�� 431

10.5.4�� Production Automated Testing��� 432

10.6 ��Summary��� 434

�Index�� 437

Table of Contents

xiii

About the Author

Hugo Rocha has nearly a decade of experience working with

highly distributed event-driven microservice architectures.

He currently is an engineering lead for the leading global

eCommerce platform for luxury products (Farfetch),

providing services to millions of active users, backed by an

event-driven architecture with hundreds of microservices

processing hundreds of changes per second. Before that,

he worked for several reference telecommunications

companies that transitioned from monolithic applications to

microservice-oriented architectures. Hugo has managed several teams that directly face

the caveats of event-driven architectures every day. He designed solutions for critical

pieces of the platform’s highly distributed backoffice platform, handling hundreds of

changes per second, concurrently, scalably, and with high performance.  

xv

About the Technical Reviewer

Daniel Gomes has been working in software development

for 16 years now. He has a degree in Software Engineering

and a post-graduate degree in Software Engineering for

enterprise software applications. 

He started his career working mostly on software

development for an ERP (enterprise resource planning)

in the areas of accounting, human resources, laboratory

management, energy projects, quality assurance, and

innovation certification.

Over the last six years, his focus has mostly been on the

design and implementation of microservice and event-

driven systems to support an eCommerce platform (Farfetch). Currently, he is the

engineering lead for two tech teams that deliver software based on microservice and

event sourcing architectures.

xvii

Acknowledgments

The monumental journey of transforming knowledge into a truly useful book requires an

inconspicuous amount of people besides the sheer will of its author.

I want to thank everyone at Apress for making this book possible, especially Smriti

Srivastava, Shrikant Vishwakarma, and Laura Berendson who were deeply involved in

the book’s development. I also want to thank my technical reviewer, Daniel Gomes, for

his thorough technical review and detailed suggestions.

I want to thank everyone at Farfetch for providing the real-world experience of many

technical subjects, for enabling a trustful and open environment, for giving everyone

the opportunity to tackle the difficult challenges of a highly distributed platform, being

committed to their personal development and doing what’s never been done. A special

thanks to the members of my teams, for embracing every challenge that I throw at them

easily and enthusiastically. And a very special thanks to Daniel Gomes and Ricardo

Felgueiras for being committed to my personal development since the beginning, for

inspiring me and challenging me to tackle new challenges, and for their honest and

heartwarming camaraderie.

I want to thank my parents for their support and love throughout the years. I want

to thank my two-year-old daughter who sat on my lap or next to me watching cartoons

while her father wrote this book and furiously rambled about event-driven microservices

for innumerable hours.

All the greatest achievements in my life, personal and professional, can be traced

back to a conversation with my wife, this book included. More than anyone, I want

to thank my wife, Eduarda, for challenging me to write this book, for her unwavering

support and everlasting patience in the countless hours I spent writing it in the last year,

for her unfaltering faith in me, resolute and undying love and care throughout the years,

and for being everything I ever wished for and much more than I ever deserved.

xix

Introduction

Applications and systems came a long way since the traditional use cases of the turning

of the century. You might recall measuring large data in a few gigabytes, waiting for

a web page to load for a few dozens of seconds, or the scheduled maintenance that

included a few hours of downtime. These were common practices perhaps 20 years

ago; today, however, they are completely unacceptable. In fact, serving functionality

in dozens of milliseconds and 100% uptime are properties users started getting used

to and expect from any application. Achieving them at scale, however, requires a

substantially different approach to how we build software and different paradigms to

software architecture design. When dealing with data in several orders of magnitude

larger than traditional applications, serving information in fractions of seconds globally

and consistently with varying throughputs, and achieving higher availability by being

resilient to most failure modes, is a fundamentally different challenge that traditional

architectures weren't made to solve.

Besides non-functional requirements like performance and scalability, time to

market is paramount to the success of competitive businesses. The evolutionary nature

of event-driven architectures paves the way for the technical infrastructure to react to

changeable business needs. The success of recent tech companies proved that the close

relation of the business and their tech solutions and the solution's inherent flexibility

and adaptability are pivotal for the company's success. The technical decisions are as

essential as the business strategy, and an inadequate strategy can become as disastrous

as a bad business decision, being able to constrict business growth without the proper

concerns and strategies in place.

In recent years, event-driven architectures arose as a powerful approach to software

architecture design and as an answer to the difficult challenges applications face with

increased usage, distributed data, and sharing data at scale. A notable characteristic of

event-driven architectures is the focus on the event streams: it goes beyond applications

simply reacting to events; event streams become the heart of data sharing throughout

the company. Data no longer sits solely on a database and is accessible only through

synchronous interfaces; instead, it is shared in event streams readily available for

every current and future consumer. The event stream becomes a medium to share all

xx

relevant data occurring in real time and provides a way to understand how it changed

in the past. It is also a powerful way to stream data to other services. Each consumer can

plug into the stream and create a personalized view of the state. The highly decoupled

nature provides more resilient properties than traditional architectures and flexibility

to changing requirements. Data is readily available to new consumers in a scalable and

decoupled way.

However, event-driven architectures aren’t without their downsides. Although

single-process applications and monoliths have their limitations, walking into a

distributed architecture is a whole different hell which companies are often not used

to or ready for. An adoption without deliberate strategies to tackle its challenges and

unawareness of its caveats can be a disastrous decision as other companies experienced

in the past. Kelsey Hightower once said “You haven’t mastered a tool until you

understand when it should not be used.” It’s hard to achieve that level of realization

without the experience of using something for long enough in production. This book

proposes to shed light on when and where to use an event-driven architecture and

how to fully reap its benefits. It proposes patterns and approaches to deal with its most

difficult characteristics and how to incrementally and sustainably adopt an event-driven

architecture.

Introduction

1
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_1

CHAPTER 1

Embracing Event-Driven
Architectures
This chapter covers:

•	 How monoliths can hinder business growth and their main

limitations

•	 Understanding microservices, their advantages, and how they relate

to event-driven architectures

•	 Recognizing the potential in adopting event-driven microservices

and how an event-driven architecture works

•	 How to identify the need for your business to move to an event-

driven architecture

•	 Knowing the challenges in adopting a microservice event-driven

architecture

https://doi.org/10.1007/978-1-4842-7468-2_1#DOI

2

You might have struggled, the same way as I did, with the limitations of monoliths.

It starts with a small team delivering value in a fast iterating working mode in a single

application. The business succeeds, and the use cases grow and get more diversified.

More developers join to keep up with demand. High-priority features and urgent fixes

blur the lines of single responsibility and slowly turn the practices of clean code into

remnants of the past. The team outgrows the application, and we soon struggle with

merge requests with hundreds of conflicts and complex lockstep releases. The first time

I migrated a monolith to a distributed microservice architecture, it felt like a glimmer of

hope in the inhospitable big ball of mud1 we so often and easily fall into.

It often starts smoothly: the first microservices stand as living proof of how time to

market and team’s autonomy can be software engineering pillars even in large teams

working with complex architectures. The inconspicuous detail is the fundamentally

different hell we are walking into that most people are oblivious to. While working in a

global eCommerce platform, I recall a situation where one of the teams had to migrate

the product’s stock information to a new service. The operation was simple: the new

service would fetch the stock information from the service holding the inventory data,

perform some straightforward operations, and save the data internally. One of the

operations the service had to do was fetching the location of the warehouse storing

the stock, which involved requesting data from the location service. The inventory

service, a crucial component in the platform, had plenty of resources, and the added

throughput of the operation was accounted for. However, no one considered the impact

in the location service, a component with apparently limited importance and relevance

in the platform. The added throughput of the operation in the location service caused

the service to crash due to high load. What we soon noticed was that the apparently

minor and peripheral location service was being used in the order fulfillment flow and

other vital parts of the platform. The apparent harmless data migration of a new service

ended up stopping the main order fulfillment flow. To me, it felt like the gilding on the

microservice architecture cracked to reveal the imperfections underneath.

When an apparently innocuous change ends up affecting a completely unrelated

functionality, a distributed microservice architecture doesn’t seem all that different from

a monolith. In fact, we might get the worst of both worlds and end up with a distributed

monolith instead. This consequence is one of the many challenges we need to address

1 A common anti-pattern in software architecture, https://en.wikipedia.org/wiki/
Big_ball_of_mud

Chapter 1 Embracing Event-Driven Architectures

https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Big_ball_of_mud

3

when building a distributed microservice architecture. One of the most sustainable ways

to address those challenges is through an event-driven architecture.

In a microservice event-driven architecture, several decoupled services react to

each other and gracefully choreograph to accomplish a business goal. They provide

an immutable sequence of events that enable you to understand the purpose and the

evolution of the data and interpret their business processes. The hauntingly beautiful

potential of event-driven architectures is the ability to provide streaming of data with

history and meaning, enabling each consumer to take the vision that is more fitted to the

consumer’s context and build value on top of it.

Although event-driven architectures aren’t new and were very popular with ESB

(enterprise service bus, detailed in Section 1.3), the ability to provide high volumes

of messages to distributed components sustainably and in real time certainly is new.

Without a doubt, for most use cases, the most valuable data is the most recent one,

but being able to offer an accessible stream with the history of the data unlocks robust

solutions to difficult problems. Take migrating data for example. Instead of complex

syncing solutions that have to deal with data being changed while the migration is

running, doing it with event streams becomes trivial and organic.

Microservices pushed the limits of traditional applications, but sometimes to unravel

more difficult ones. Synchronous communications traditionally used with microservices

(like REST) become problematic due to the inherent coupling. Although much safer

than in a monolith, changes in services might still affect the underlying ecosystem

inadvertently. The complex web of synchronous calls between services is hard to track

and create a breeding ground for cascading failures. We also choose microservices

due to the scalability capabilities, which can become hindered by the synchronous

dependencies between services (further detailed in Section 1.4). Although we still need

deliberate approaches to these problems, event-driven architectures provide a higher

level of decoupling and enable a genuinely evolutionary architecture from the ground

up. New consumers can join without affecting existing services. Old services can be

decommissioned without affecting their dependencies.

However, the asynchronous, distributed nature of event-driven architecture poses

difficult challenges that we often take for granted in a monolith. Event-driven isn’t also

a silver bullet and shouldn’t be used in every use case. In the end, complex businesses

ultimately reflect their complexity in the technical solutions we develop. Our duty and

our mission is to model that complexity in a way that enables the business to grow, either

in scale, velocity, or new functionalities. An event-driven architecture proposes a way to

do just that.

Chapter 1 Embracing Event-Driven Architectures

4

1.1	 �The Truth About Monoliths
This section will discuss the advantages and limits of monoliths and how they can

constrain business growth. Often monoliths are treated as an anti-pattern, strongly

associated with legacy applications. However, there’s a lot of misconception about the

meaning and usage of monoliths. Monoliths can be an adequate architectural decision

depending on the situation, failing to acknowledge this, limits our options. Microservices

and event-driven architectures aren’t a one-size-fits-all solution; neither monoliths are a

one-fits-none solution. We will further detail this in Subsections 1.1.1 and 1.1.2.

We can adopt many strategies to circumvent the monolith’s limits, but some

limitations reach the point where we need a more sustainable approach. The business

growing pains start aching typically in monolithic applications and manifest themselves

through a myriad of symptoms. When not tackled with a deliberate approach, this might

limit the business’s success and be a ball and chain hindering its advance. The common

drawbacks of monoliths are detailed in Subsection 1.1.3.

However, deciding to move to a microservice event-driven architecture requires

a deliberate decision and a strong reason. Event-driven microservices might be the

solution to many of the monolith’s limits, but they are also the source of more complex

challenges. Moving to a distributed architecture requires thoughtful preparation and the

right fertile conditions to strive. We detail the movement to event-driven microservices

in Subsection 1.1.4.

This section approaches these topics to give you an overall context. The detailed

migration from a monolith to an event-driven architecture, with a use case and strategies

to do this, is discussed in Chapter 2.

1.1.1  �Anatomy of a Typical Monolith
Businesses start somewhere, sometimes with a piece of software. New functionality is

added to that software; sometimes it is a success, sometimes it’s not, and the business

chooses a different route. If we are lucky enough, that business prospers and that piece

of software grows. New functionality spawls inside the application, and old functionality,

even when removed, leaves a footprint due to design choices or technical debt. Without

deliberate effort to decouple domains and a disciplined organization, it quickly grows

into an application that’s hard to maintain.

Chapter 1 Embracing Event-Driven Architectures

5

�Patchwork Monoliths

Also known as big ball of mud, the most frequent type of monoliths are the ones that

have been built during several years with no clear boundaries and logic entangled

together. I like to call them patchwork because you usually see cores of domain logic

concentrated in one place and then all over the place, like a patchwork quilt.

They are also the ones most troublesome to deal with and to maintain. The

application is a single artifact and is deployed all at once. All of it is a single process

running in a machine. Through the years, the domain logic becomes entwined and hard

to read.

Figure 1-1 illustrates the example of an eCommerce platform with several domains.

Without a deliberate effort to maintain each domain divided and decoupled, all the logic

from the different domains becomes mushed together.

Chapter 1 Embracing Event-Driven Architectures

6

This kind of monolith is the one that is more susceptible to the drawbacks explored

in Subsection 1.1.3.

Figure 1-1.  Example of an eCommerce patchwork monolith with no clear
boundaries between each domain

Chapter 1 Embracing Event-Driven Architectures

7

Modular Monoliths

Modular monoliths are divided into modules with clear boundaries; the code is

decoupled and able to evolve independently. Modular monoliths benefit from all the

advantages monoliths have (and yes, they do have some, detailed in Subsection 1.1.2)

and don’t suffer from the complex challenges distributed architectures have.

Monoliths usually have a negative connection because most of them are patchwork.

Still, a well-structured modular monolith can be an architectural option as valid as

a microservice, SOA (service-oriented architecture), or event-driven architecture.

Figure 1-2 shows the same example as before, but all the intertwined domains are

organized in clear boundaries.

Chapter 1 Embracing Event-Driven Architectures

8

The dependencies between each module are contained, organized, and visible. The

modules should be able to evolve without affecting the other modules; even when we

need to remove one of the modules, it is possible because the dependencies are explicit

and the domain is contained.

Figure 1-2.  The same eCommerce platform with a modular approach; each
domain has clear boundaries

Chapter 1 Embracing Event-Driven Architectures

9

The common pitfall is how easy it is to violate that principle; the dependencies

need a deliberate strategy to remain decoupled. That can be done with APIs for each

boundary or automate tests for explicit dependency validation (this article2 details how

Root did this). It is still a single application that is deployed together; even if you change

just one module, it often requires the deployment of all modules.

1.1.2  What They Don’t Tell You About Monoliths; It’s Not
All Bad
Although monoliths have a terrible reputation, there are advantages to maintaining

a single application with one codebase. We often miss those advantages due to being

overwhelmed with their limits. There are fundamental, well-known developing

principles that we often use on traditional single-process applications that become

deficient when using a distributed system and require a different approach. A distributed

system is more complex and doesn’t have some of the characteristics we always took for

granted in monoliths. This section will detail the main advantages of monoliths and how

they can ease the delivery of features.

�Business Flow Is Visible

With a single codebase, we can inspect the end-to-end flow quickly. We can effortlessly

find any feature we want since all functionality is in one repository. It is also easier to

see the impacts of new developments since we can see the dependencies of that flow.

The business flow can become hard to read with event-driven architectures due to

the asynchronous interaction between several services. To understand the business

process, we need to understand the flow of events between each service. It is harder to

understand the bigger picture, and the bigger picture is always important when adding

new features, either to account for possible impacts or to understand if the development

is the correct one for the feature. In a monolith, it is possible (although sometimes

laborious) to understand how they fit in the overall flow.

2 See Dan Manges, “The Modular Monolith: Rails Architecture,” Medium, January 23, 2018,
https://medium.com/@dan_manges/the-modular-monolith-rails-architecture-fb1023826fc4

Chapter 1 Embracing Event-Driven Architectures

https://medium.com/@dan_manges/the-modular-monolith-rails-architecture-fb1023826fc4

10

�No Network Overhead and Limited External Dependencies

All the different modules call each other directly inside the application. There are no remote

calls through the network through external APIs or event brokers. This characteristic can

enjoy a performance boost (although constrained to the scaling limits) since there is no

network overhead. It also doesn’t need to deal with API or event versioning and backward

compatibility; if there is the need to do a breaking change, we can do it in a single release; all

dependencies are inside the application. This characteristic simplifies the development and

the release of features that need more profound changes.

We should always avoid a breaking change (as we will detail in Chapter 8), but

sometimes they are unavoidable. In an event-driven architecture, we would need to

support two versions of an event temporarily, or two versions of an API, to allow the

consumers of that event to adapt to the new one. These changes are complex since they

possibly affect several services. There is a need for coordination between different teams

to align the shift to the new event. There is a considerable development overhead due to

the development of the two events’ publication and consumption and then removing the

old one. In a monolith, this is straightforward; we just change that one application and

release it.

�Local Validation

In a monolith, it is possible to locally run the whole environment (although I saw

applications that took several minutes just to build and additional several minutes just to

start up locally). Often we can add and validate a feature by running a single application.

However, on an event-driven architecture, we will be adding the feature to one of the

several services in the workflow. It’s often hard to run the whole workflow locally due

to the complexity of the flow and the high number of services it requires, each with

their specific configurations and unique dependencies (sometimes even in different

languages and environments). Most of the services we might not even know that well

since they belong to other teams.

�Code Reuse

Since all the code is right there inside the application, it is easy to reuse and build on

top of existing functionality. In an event-driven architecture, every service is isolated

with their codebase, many of the services will need similar functionality, and obviously,

it’s not possible to share code. Creating custom frameworks to use across services can

Chapter 1 Embracing Event-Driven Architectures

11

be useful, but it isn’t as straightforward as using the code inside an application like a

monolith and introduces coupling which might be hard to manage later on. Frameworks

can also be difficult to debug and can be a nuisance if we need to update all services

with a new version. Usually microservices prefer to duplicate code rather than reuse to

avoid coupling. Reusing code also makes the code less useful, since it needs to deal with

every possible use case. Frameworks are still a valuable asset on common infrastructural

functionality like logging.

�Monitoring and Troubleshooting

Monitoring a monolith is straightforward since it is only one application. There

is a reduced number of machines to monitor, and the logs are trivial to fetch.

Troubleshooting an issue is also easier since the scope is reduced to one application.

In an event-driven architecture, there are several instances of dozens or hundreds of

microservices. This requires a whole different strategy for monitoring and pinpointing

incidents. There is a need for a pre-existing infrastructure to manage all those

microservices’ signals and metrics. Understanding an incident can also be a detective’s

journey worthy of a short novel without the deliberate approach. On the other hand, a

monolith is much more straightforward since the information is far more localized.

�End-to-End Testing

End-to-end testing in a monolith is considerably simpler than an event-driven

architecture, and I will dare to say, more than simpler, it is actually possible. Since it is

a single application, we can have automated tests that validate the whole application’s

flow. Often end-to-end validations are contained in that application since they don’t

depend on external services (other than databases, caches, etc.) and can be managed as

a single piece. On an event-driven architecture, the approach has to shift from a single

piece approach to not having end-to-end tests (or a significantly reduced amount) and

having other processes to guarantee quality (we will further detail these processes in

Chapter 10).

Chapter 1 Embracing Event-Driven Architectures

12

�Simpler Deployment Strategy

Since there is only one application, the deployment pipeline needs to account only for

that application’s needs. A microservice architecture has to support the deployment of

several different services, possibly written in several other languages and with several

different dependencies. The overhead of building that kind of pipeline can be lesser or

greater depending on the environment’s diversity. The deployment topology is often

much simpler (and cheaper) with a monolith than with a microservice architecture.

�Data Is Centralized

For better or for worse, the data is typically centralized in one or many accessible

databases. If a new feature needs some kind of data, it can just go and fetch it from the

database. It is simpler to develop, but it has dire consequences when the application

reaches a large scale. Although an advantage on the implementation side, it is also one

of the most common reasons to leave a monolithic architecture. One of the challenges

in event-driven architectures is fetching and managing data dependencies from other

services (further detailed in Chapter 8).

�Possible to Scale

We can scale monoliths by installing several instances of that application behind a load

balancer (also known as cookie cutter3 scaling). The application does need to be ready

to deal with concurrent requests. However, it is limited to the scaling of the application,

not the database; when the issue is the database, vertical scaling is often the only option.

On the other hand, event-driven architectures are built for horizontal scaling from the

ground up and are much easier to scale.

�Consistency

Monoliths often use relational OLTP (online transaction processing) databases, which have

strong consistency guarantees. These types of databases on monolithic applications typically

enjoy ACID (atomicity, consistency, isolation, and durability) guarantees, which provide

the traditional consistency guarantees we are used to; for example, a change happens

3 See “Cookie Cutter Scaling,” November 29, 2011, https://paulhammant.com/2011/11/29/
cookie-cutter-scaling/

Chapter 1 Embracing Event-Driven Architectures

https://paulhammant.com/2011/11/29/cookie-cutter-scaling/
https://paulhammant.com/2011/11/29/cookie-cutter-scaling/

13

everywhere at the same time. On event-driven architectures, due to the asynchronous nature

of events, the consistency is often eventual consistency, which can be challenging to deal

with (we further detail approaches to deal with eventual consistency in Chapter 5).

�Concurrency

In monolithic applications, we can deal with concurrency with the traditional strategies

to handle race conditions, like locks or using the database. However, there might be

multiple instances of a service on separate machines in an event-driven system, not

being possible to do an in-memory lock. Also, depending on the database technology the

service uses, it might not support transactions. Dealing with concurrent events requires

different approaches that we further detail in Chapter 6.

1.1.3  When Monoliths Become the Business Constrictor
Knot
This subsection will discuss the usual problems we associate with monoliths and how

they can limit business growth. Monoliths can be an adequate solution in several contexts;

however, as companies outgrow them, their handicaps become an increasing concern,

especially with patchwork type monoliths. Companies typically struggle the most when

reaching a large scale, both in data, usage, and developers. When the business pulls one

of these factors because it needs or was successful, the monolith’s limits pull the other way

around. Like a constrictor knot, the more you pull, the tighter it pulls back. Given enough

time, it can bring the business to a halt. It is essential to have a clear reason or a specific

problem to tackle when migrating to an event-driven microservice architecture; often it is

one or a combination of the ones discussed in this subsection.

�Coupling and Lack of Boundaries

The main issue with monoliths is, given enough time, they become unbearably complex

and coupled. Since all functionality is inside a single application, it is relatively easy to

compromise each domain’s boundaries. With time, they fade and become entwined

and hard to read. A single change might affect several parts of the system and has

unpredictable impacts, for example, changing the subscription logic affects the login.

It becomes a nightmare to maintain and change reliably. Since a microservice event-

driven architecture relies on events, it is decoupled by design, being easier to maintain

the boundaries between domains through time.

Chapter 1 Embracing Event-Driven Architectures

14

�Team’s Autonomy

As the development team grows, it gets increasingly harder to work on a single

application. Even with clearly defined modules, the development still requires

communication and alignment, the deployment of the application needs coordination

between the different teams. Depending on the development workflow, feature merges

also become problematic. Feature branches will often lead to large merges with a

high number of conflicts. The overhead of communication, quality assurance, and

coordination increases with the number of developers working in the application. We

often talk about scaling the application resources, but monolithic applications often

limit the scaling of the team.

�Release Cycle

The release cycle of a single monolithic application is usually larger than a microservice.

Even if a company adopts continuous delivery, the cycles will be inherently larger due to

every release; no matter how small the change, the whole application must be validated

and deployed. Validating the entire application at once requires a gigantic test suite that

can take a considerable amount of time to run (assuming there’s no manual validation

that often there is). Small changes make the deployment more controllable and enable

fast feedback, making it harder to achieve with larger release cycles.

Typically, businesses that rely on monoliths don’t deploy that often (e.g., every day)

due to the risk since we always deploy the whole application. Not deploying that often

accumulates features, and it is harder to have a continuous delivery mindset. That alone

is a common argument to move away from a monolith.

�Scaling

Although scaling is possible, as we mentioned in the previous section, it is limited to the

application. It also implies the monolith has the mechanisms to deal with concurrency

with several different instances. When they don’t, they require extensive changes to be

able to deal with concurrent requests.

Most of the time, monoliths also nurture a monolithic database, which is very hard

to scale. When the data starts to have a very high volume, it becomes problematic,

especially with queries that require a lot of joins. Vertically scaling (increasing the

number of resources, e.g., memory, CPU, etc.) is always an option for both the database

and the application, but it gets costly very fast. If a business grows to a stage that needs

Chapter 1 Embracing Event-Driven Architectures

15

geo-distribution to provide low latency to every location, a monolithic database might

limit its ability to achieve it. A microservice approach shines in this particular aspect

since each microservice owns its own database (or at least should), paving the way

for a more scalable distribution of the data. Event-driven microservices by design are

very easy to scale since they handle events from a queue and largely benefit from the

associated decoupling.

When we scale a monolithic application, we scale the whole application. Most of

the time, only a single or a part of the modules need scaling. But since every module is

bound together, the only option is to scale the whole application. By using a microservice

approach, it is possible to scale only the part of the architecture that needs scaling and

leave the remaining parts with minimal resources, optimizing costs and resources.

�Outdated Technology Stack

Most of the time, monoliths are applications that have several years. Meanwhile, some

of the technologies might have been discontinued. It goes beyond the usual technology

hype of adopting something just because it’s the new best thing. If the application uses

technology that is no longer supported by the company that made it, it is a concern.

Suppose we face a compatibility issue with new versions of the operating systems or

choose to adopt a different way to deploy the application (if we choose to deploy a .net

framework application in a Linux environment, for example). In that case, it will limit

our options if the monolithic technology doesn’t support it. It can be a deal-breaker for

new functionalities and can seriously hamper our ability to evolve. Most of the time,

changing the whole technology stack on a monolith requires a monumental effort with

unimaginable impacts.

Technical debt and no longer needed functionalities can be challenging to

remove due to the coupling between boundaries. Although we can achieve this with a

modular monolith (Shopify did this with their tax engine4), most of the time, removing

or replacing a functionality involves touching the whole application and can have

unforeseen consequences. Although any service can have an outdated technology stack,

event-driven services are highly decoupled; implementing an existing service in a new

technology is greatly simplified.

4 See Kirsten Westeinde, “Deconstructing the Monolith: Designing Software that
Maximizes Developer Productivity,” February 21, 2019, https://shopify.engineering/
deconstructing-monolith-designing-software-maximizes-developer-productivity

Chapter 1 Embracing Event-Driven Architectures

https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity
https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity

16

�Reliability

The risk of deploying a monolith is that any change can bring the whole application

down. Even a change in a less critical part of the application can produce an issue (like

a memory leak or unforeseen CPU usage) that can affect the whole application, and the

whole application is every functionality.

Event-driven architectures might not improve reliability directly since by using

several instances on several different machines, we are increasing the number and

types of failures that might occur. A deliberate approach to solve these issues is crucial.

However, we can deploy smaller parts of the system independently, which (hopefully)

won’t bring the whole application down.

1.1.4  Using Event-Driven Architectures to Move Away
from a Monolith
In the last few subsections, we discussed the advantages and limits of monoliths. In this

subsection, we will discuss the transition phase between a monolith and an event-driven

architecture. We will slightly approach the considerations we need to make to move to

this architecture and how we can start. These topics will be further detailed in Chapter 2

with a real use case.

It is important to notice that an event-driven architecture isn’t the ideal solution for

every use case. As we discussed in Subsection 1.1.2, monoliths have a set of properties

that make development easier, and the limits discussed in Subsection 1.1.3 can also

be managed at least until a point. Moving to an event-driven architecture considerably

increases the complexity and has costs associated with it. For example, it is debatable

if a startup should adopt an event-driven architecture from the beginning. A startup

typically is still trying to understand which products work and which don’t, needs a fast

time to market, needs to be innovative, and might need to restructure a large part of

the solution. All that with limited funding, an event-driven microservice architecture

has associated costs due to the infrastructure (deployment, monitoring, etc.) that

might be overkill in such an early phase. Also, we can apply it best with a considerable

understanding of the domain and its boundaries. Changing the boundaries after they are

in place can be costly and laborious.

Chapter 1 Embracing Event-Driven Architectures

17

It is also essential to understand why we want to move to an event-driven

architecture. Often the potential of this architecture (detailed in Section 1.6) and the

hype generated around it can be enticing. Still, one or combined factors mentioned in

Subsection 1.1.2 are much stronger than the hype. Perhaps we are already struggling

with one of the monolith’s limits, maybe we are already struggling in scaling the

application or the database, maybe our team is getting too large, perhaps we want a

tool that enables us to adopt an Agile and continuous delivery mindset with ease. We

should always have a strong reason to do the shift, and it should be a top priority while

migrating. After electing that reason, we should measure how we are doing against it and

understand if we are making progress or not (this is further detailed in Chapter 2).

To make a move is vital to know where to start, what domains exist, and how they

interact with each other. Figure 1-3 illustrates the possible steps to start the migration

from a patchwork monolith to a modular monolith. If the monolith is a patchwork

monolith and most of the logic is coupled together, an important first move could be to

refactor that monolith into a modular monolith. It wouldn’t be unprecedented if most

of our issues with a monolith disappeared when refactored to a well-structured modular

monolith. Sometimes it’s a complete nightmare to do that shift in a monolith. Either way,

the exercise of trying to do that is pivotal to understanding the domain and associated

boundaries, even if we don’t change to a modular monolith. By knowing the boundaries,

we can reason which would be the most adequate domain to start migrating. By knowing

their dependencies, we can plan how to address them both on the monolith and the

new architecture. If the monolith is modular, then part of this work is already done, the

boundaries are defined, and it’s easier to understand its dependencies.

Chapter 1 Embracing Event-Driven Architectures

18

Figure 1-3.  An example of the steps to start the shift from a monolith to an event-
driven architecture

Chapter 1 Embracing Event-Driven Architectures

19

Choosing which domain to move to the new architecture isn’t always easy; the

decision has to weigh the risk, value, and viability. Risk is the business domain’s

criticality, value is the benefit we might obtain from migrating that domain, and viability

is how practical and viable it is to migrate it.

Once we choose an appropriate domain, we can use an event-driven approach to

decouple that domain from the monolithic application. In the example of Figure 1-3,

we moved the inventory management module to an independent service that reacts

to changes occurring in the original monolith. However, this change introduces all the

challenges distributed event-driven architecture has, which this book approaches.

The process of migrating a monolithic application to a microservice event-driven

one is hardly a full one-shot migration, where we descope the monolith and create the

whole new architecture from scratch. I have rarely seen this happen; most likely, you

already have a monolith and might be starting to migrate it to a distributed architecture.

Doing a greenfield event-driven microservice architecture also isn’t the right option

in most cases. It is essential to have a strong understanding of the domain and its

boundaries before moving to this kind of architecture. It is hard to have an in-depth

mastery of the system’s domain without an existing application. In the beginning, those

domains can change considerably; adopting an event-driven architecture early on can

have substantial costs by reorganizing and redefining the domains.

Adopting a small increment migration enables us to understand what is working and

what is not. It allows us to face the challenges of distributed event-driven architectures

one step at a time while maintaining the business running. It gives us the space to fail,

understand why we fail, and adapt accordingly at a low scale. It gives us room to adapt,

learn, and act without having the world crashing down on us. Event-driven architectures

also introduce a level of decoupling and reliability different from synchronous

microservices. Event streams enable sustainable ways to access the data even from

monolithic applications. We further discuss these strategies and the migration from a

monolith to a microservice event-driven architecture in Chapter 2.

Chapter 1 Embracing Event-Driven Architectures

20

1.2	 What Are Microservices and How Do They
Relate to Event-Driven
In the last section, we discussed the monolith’s characteristics and limits and how they

can constrain business growth. We also approached the various considerations when

starting a migration to a microservice event-driven architecture. In this section, we will

discuss what microservices are and how they fit into an event-driven architecture.

An event-driven microservice is a simple, specific purpose service that reacts to

events to do its work. In an event-driven architecture, several of these services interact

with each other to accomplish a higher-level process. Usually, the interaction is

composed of a sequence of events between the different services.

An event-driven architecture accomplishes its business processes using the flow

of messages through these loosely coupled services. Each service belongs to a given

domain or bounded context and has a specific role and limited responsibilities inside

that domain. Each domain has the responsibility to process the relevant data in that

domain and communicate that change to other domains.

Using the example in Figure 1-4 of an eCommerce platform, when buying a product,

the process of accomplishing that order would be the interaction of several boundaries,

in this case, the order, inventory, and pricing boundary. The order management

boundary processes the order, the inventory boundary manages the stock, and the

pricing boundary manages the taxes and final prices for that country. Instead of being

the synchronous flow in a single application is the choreography or orchestration of

several individual services, each one with its role. Having single-purpose services

enables organic bounds for each service and consequently for each boundary.

Chapter 1 Embracing Event-Driven Architectures

21

In event-driven microservices, each fully decoupled service reacts to each other

through technology-agnostic messaging to complete a higher business process.

1.2.1  �Deployment
We should also make event-driven microservices independently deployable; a common

anti-pattern is the need to deploy several services together. When we need to do so,

it rapidly becomes a nightmare to manage and guarantee reliable releases. Also, the

deployment should be automated; the teams should be focused on delivering business

value rather than laboriously pushing their release live through an intricate release

Figure 1-4.  The user purchasing a product triggers a business process composed of
the interaction between several boundaries

Chapter 1 Embracing Event-Driven Architectures

22

process. The right tools need to be in place for an automated deployment with the

required validations. Developers should rely on those deployment tools rather than

release or DevOps teams.

1.2.2  �Decoupled and Autonomously Developed
We should develop each service autonomously without dependencies from other

services. They should also be fully decoupled, easily achieved due to the message

brokers between the services. Event-driven enables the architecture to be highly

evolvable (as mentioned in the book Building Evolutionary Architectures5); changes in

a given service will hardly affect the whole architecture, and we can deploy the service

independently. This characteristic also makes the architecture highly pluggable since

new services can simply listen to the events already flowing through the architecture.

1.2.3  �Data Ownership
Each service should own the data needed for its domain and expose it through a

straightforward interface, typically messaging in an event-driven architecture (although

an API is also an alternative). Owing the data is pivotal to achieve independent and

autonomous developments. Otherwise, often a change in one service requires other

services to change at the same time. Changes in the schema, manageable when in a

single service, become a nightmare to release.

1.3	 SOA, Microservice, and Event-Driven Architectures
SOA (service-oriented architecture) and microservice architecture often come up

when talking about event-driven architecture. There’s even some confusion about the

differences between SOA and event-driven. This section will detail the characteristics of

these three architectures and mention the differences between them.

Sometimes you might hear, “Yeah, event-driven microservices have already been

doing that since 2000 with SOA, nothing new.” SOA is composed of services that

choreograph to accomplish a complex workflow instead of the synchronous flow of

5 See Neal Ford, Rebecca Parsons, and Patrick Kua, “Building Evolutionary Architectures,”
www.thoughtworks.com/books/building-evolutionary-architectures

Chapter 1 Embracing Event-Driven Architectures

http://www.thoughtworks.com/books/building-evolutionary-architectures

23

a single application like a monolith. It also uses messaging to communicate between

services. At first glance, it indeed sounds similar to event-driven architectures, but they

are fundamentally different.

1.3.1  �SOA
SOA typically tries to build business functionality using reusable components that

communicate through a decoupled medium like a network or service bus. We will focus

on SOA with ESB (enterprise service bus), which is similar to event-driven architectures.

The typical organization of an SOA architecture is illustrated in Figure 1-5.

Figure 1-5.  Typical service organization of SOA architectures

Chapter 1 Embracing Event-Driven Architectures

24

Illustrating with the same example of a user buying a product on an eCommerce

platform, we could define a business service named “ProcessOrder” to handle the

business logic associated with processing the order. This service determines in an

abstract way what is needed for that business to process the order. The enterprise service

bus orchestrates the calls needed to the enterprise services. The enterprise services

implement specific behavior defined by the business services. In this case, the service

bus would call each enterprise service in the correct order to process the user’s order,

and the enterprise services would do the actual work and manage the state. Enterprise

services are designed to be reusable for any workflow; the application services, on the

other hand, implement functionality that does not need to be reusable, like processing

the order specific taxes that would be relevant just for the order workflow, for example.

Infrastructure services implement cross-cutting functionality like logging or monitoring.

The mindset behind the application services is to make functionality reusable, and

this is a core design concern in this kind of architecture, opposed to microservices and

event-driven where sharing functionality is limited (even avoided). While SOA focuses

on abstract, reusable functionality, microservice and event-driven architectures focus on

organizing their components around domains.

Also, in SOA the service bus tends to become increasingly larger. Business logic

tends to be added to the bus instead of the services. The bus also accounts for several

responsibilities besides orchestration. The bus is usually the component that routes and

knows to communicate with each service and often has logic to adapt and transform

requests. The enterprise service bus tends to grow and become a monolith in its own

right although the whole architecture is distributed, often having the worst of both

worlds.

1.3.2  �Microservice Architecture
A microservice architecture comprises several specific purpose services that interact

together to accomplish a given process or workflow. The services are grouped according

to a bounded context and in the scope of a given domain. They are decoupled and

interact with each other using a message broker or HTTP requests. Figure 1-6 illustrates

the same example of an eCommerce platform in a microservice architecture.

Chapter 1 Embracing Event-Driven Architectures

25

The order service is responsible for handling the request for the new order. The

service then communicates with the inventory service to manage the product’s stock and

the pricing service to manage the taxes. Each service is responsible for a single action

and is modeled around a domain concept (order, inventory, and pricing); the workflow

of processing the order is managed through the interaction between the several services.

It is also important to note that each service has a database instead of a shared store;

they also expose interfaces for other services to interact with them and expose only the

relevant data. Opposed to SOA where reusability is a significant priority, microservices

avoid sharing. Instead, they are focused on that domain and bounded context.

This kind of architecture is highly decoupled since there is a physical boundary

between components. They have to communicate through the network; this poses

natural bounds on each service. The organization of specific bounded contexts in the

scope of a given domain allows the domain to change without affecting other unrelated

components.

Figure 1-6.  An example of the same eCommerce platform with specific
microservices for each bounded context

Chapter 1 Embracing Event-Driven Architectures

26

1.3.3  �Event-Driven Microservice Architecture
As defined in the previous section, a microservice event-driven architecture shares many

of the same microservice architectures’ principles. But the interaction between services

is focused on the usage of events. Figure 1-7 illustrates the same example of Figure 1-6

with an event-driven architecture.

Instead of a synchronous call between the order service and the other services, the

inventory and pricing service react to the order created event from the order service.

When consuming the event, they do their work asynchronously, the inventory service

updates the stock, and the pricing service calculates the taxes.

By handling the communication between the services with an event broker, we

further decouple the services. The order service doesn’t know any of its subscribers,

and the inventory and pricing service only know the event contract. It is also easy to

add new consumers; we just plug them into the event queue. Imagine we had to add a

subscription service that notified the users on the order’s reception, we could just plug

Figure 1-7.  An example of the same eCommerce platform with event-driven
microservices

Chapter 1 Embracing Event-Driven Architectures

27

that new service into the message queue, and we don’t need to change the order service.

This further increases the ability to change each component and evolve their domain

without affecting unrelated components or boundaries.

Architectures exclusively composed of event-driven services you will probably find in

books or in proofs of concept. Most real-world architectures are a mix of asynchronous

and synchronous services. Some use cases require synchronous functionality or won’t

simply benefit from the complexity of an asynchronous queue, and an API will suffice.

The interaction between the two types of services raises challenges and needs deliberate

strategies to deal with. The challenges of event-driven architectures are further detailed

in Section 1.6.

Event-driven architectures go beyond just reacting to events; they introduce a novel

way to share their data. Typically, this was done with synchronous requests through an

API, for example. APIs are useful for a real-time fetch of a small set of the latest data.

Moving a large data set is difficult and can have impacts on the service and its database.

We don’t share databases due to the schema coupling or the impact an application can

have on another. Synchronous HTTP requests can have the same effect we try to avoid

when deconstructing a monolithic database.

In an event-driven architecture, it’s also possible to understand the evolution of the

data. Often the most critical data is the most recent data. Typical messaging produces

an event and disappears once the service consumes it. However, the ability to keep the

event and maintain it to be consumed again freely by the same application or future

applications unlocks powerful possibilities. The event stream becomes a medium to

share all relevant data occurring in real time and provides a way to understand how

it changed in the past. It is also a powerful way to stream data to other services. Each

consumer can plug into the stream and create a personalized view of the state. This

property enables the service to combine data from different sources and model it in the

best way to its domain and querying needs.

1.4	 �The Promise of Event-Driven Microservices
Until now, we discussed monoliths’ characteristics, the differences between the types of

architectures, and what defines an event-driven architecture. This section will discuss

the advantages of microservice event-driven architectures and how they can be an

effective solution to many of the limits we usually find in monoliths. We will also discuss

how event-driven can benefit a regular microservice architecture.

Chapter 1 Embracing Event-Driven Architectures

28

When Toyota developed lean manufacturing, the focus was on identifying and

preserving value for each product; a key concept was eliminating waste and everything

that didn’t add value to the customer. For example, if you are buying a car, you don’t care

how long the car’s doors travel inside the factory, although the longer the parts’ path, the

higher the impact on productivity and consequently on the car’s cost. The factory should

be composed so it minimizes the door’s transport; you just care if the car has functional

doors. Sometimes we find event-driven architectures compelling due to the technical

challenge. Still, when a customer submits an order, it doesn’t care if it is processed by a

monolith or a cutting-edge architecture. The focus should be on delivering value quickly,

safely at scale. How do event-driven architectures enable this?

1.4.1  �Evolving Architecture
The services that compose the architecture are contained and decoupled and have a

specific role in a given domain. These characteristics limit the impact of changes in the

architecture; changing one service will hardly affect others. The natural segregation

by bounded contexts enables the domains to change along with the business without

affecting other domains. It is easy to add new services to the architecture; often the only

change needed is to add the new consumer service, which doesn’t require changes in

the upstream services.

Having small components decoupled by message queues also enables an

experimentation mindset; it is easy to try something with a new service, and if it doesn’t

work, decommission it. Technical debt is also naturally contained in a component or

boundary due to the high decoupling between each component since each service is

a different solution and an independent process. It creates the opportunity when the

refactoring is too complicated and involves changing the whole service, to create a new

one and descope the old one, as long as the bootstrap of a new service is straightforward.

1.4.2  �Deployment
As we discussed, monoliths’ deployment is risky and usually is associated with test

regressions and large release cycles. Instead, event-driven microservices, due to each

service’s granular and decoupled nature, enable independent deployments without

the need to coordinate services. It paves the way to continuous delivery; it is possible

to change small increments of functionality throughout the system with little impact,

Chapter 1 Embracing Event-Driven Architectures

29

quickly and sustainably. In the example depicted in Figure 1-7, if there were a new way

to calculate the taxes in the pricing service, we would change the pricing service to

calculate the new taxes and deploy only that service.

It also provides the foundation for a cultural change. When the organization has

one application, where developers typically would be focused on the building stage,

now it has dozens or hundreds. The focus needs to change to the whole application’s

life cycle; the teams need to manage developments and services from the developing

phase until the deployment in production. There is a fascinating article6 from Microsoft

which associates code ownership with more quality. This cultural change enables that

ownership and autonomy.

1.4.3  �Team’s Autonomy
Instead of coordinating changes in a single application, teams will own and

autonomously develop a set of services. Due to the services’ decoupled nature, it is easy

to autonomously develop those services without dependencies and coordination from

other teams. These properties mean decisions can be made quicker and by the people

who get most impacted by them – the ones in the trenches working with the services

every day and who are called to solve their incidents. It also empowers the teams to

make those decisions.

Having teams owning sets of services enables functionality to be added to different

domains simultaneously. Usually, the only coordination needed between teams is the

contract definition; once agreed upon, both teams can develop their own services in

parallel. In the example of Figure 1-7, if the pricing service needed to add a feature to

calculate the shipping costs from the order’s address, the order service might need to

publish the order’s address in the event and the pricing service would need to do the

calculation. But once they agreed on how to reflect the address in the event, they could

do their development in parallel, autonomously without dependencies from each other.

This characteristic is the building block to increase the number of teams. We often

refer to technical scalability, but this allows the engineering team to be scalable. By

enabling a decoupled architecture, with defined boundaries and ownership between

services, we structure the way to add more teams sustainably and grow organically.

6 See “Don’t Touch My Code! Examining the Effects of Ownership on Software Quality,”
September 5, 2011, www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
bird2011dtm.pdf

Chapter 1 Embracing Event-Driven Architectures

http://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bird2011dtm.pdf
http://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bird2011dtm.pdf

30

1.4.4  �Flexible Technology Stack
We often hear the phrase “use the right tool for the right job.” I find it to be very

overrated, there are several tools for the job, there isn’t a right one, it’s often about

weighting the tradeoffs and preference for a set of properties above others. Despite this,

some technologies are clearly more suitable for some roles than others. For example,

if we need geo-distribution between several data centers without significant query

capabilities, using Cassandra for that use case could be a good choice, but it would

hardly be a good choice to use in all the platform services due to the query limitations.

It would be hard to manage different database technologies in a single application like a

monolith (although possible with a modular monolith but we don’t often see that). On

the other hand, on an event-driven architecture since all components are independent

and decoupled, it would be easy to adopt different technologies for each service.

Another argument we might see a few years ago would be to use a full-stack

JavaScript application to facilitate development with a single programming language.

Meanwhile, we learned that it’s not a good approach7 and polyglot programming might

be preferable.8 Having decoupled services enables a polyglot environment, which in a

monolith would be very hard to do.

1.4.5  �Resilience and Availability
An event-driven architecture enables higher resilience in the sense a single fault can’t, or

hardly will, crash the whole system. Monolithic applications are more susceptible to this

since a critical fault in an infrastructure part of the application (like a memory leak) can

crash the whole application, even the modules that weren’t changed. In an event-driven

microservice architecture, these kinds of faults are naturally bound to that component,

so if one fails, the others will keep operating.

Event-driven achieves a higher resilience than synchronous microservice

applications due to the decoupling provided by the message queues. In a distributed

microservice application with a network of HTTP requests, we often see that they are

7 See ThoughtWorks Technology Radar, “Node overload,” May 19, 2020, www.thoughtworks.com/
radar/platforms/node-overload

8 See ThoughtWorks Technology Radar, “Polyglot programming,” April 29, 2020, www.
thoughtworks.com/radar/techniques/polyglot-programming

Chapter 1 Embracing Event-Driven Architectures

http://www.thoughtworks.com/radar/platforms/node-overload
http://www.thoughtworks.com/radar/platforms/node-overload
http://www.thoughtworks.com/radar/techniques/polyglot-programming
http://www.thoughtworks.com/radar/techniques/polyglot-programming

31

susceptible to cascading failures. If one service fails, it will impact all the upstream

services and the failure will propagate along the chain. We illustrate this situation in

Figure 1-8. This topic is further detailed in Chapter 3.

In this case, the location service fails or is offline and propagates that failure to the

upstream services producing a cascading failure. This kind of network of synchronous

requests leads to complex dependencies and to instability. Event-driven microservices

are naturally resilient to this since even if a service has an issue, it will remain localized

to that service due to the event queues.

Figure 1-8.  Cascading failure on microservice architectures with synchronous
requests

Chapter 1 Embracing Event-Driven Architectures

32

The decoupling provided by event brokers also means higher availability; even if

a component or part of the system is unresponding, the remaining components will

continue to process and answer requests. It is further enhanced by the ability to add new

instances of event-driven services organically. We can achieve fault tolerance this way;

one instance might be unavailable, but the remaining instances will keep processing.

1.4.6  �Tunable Scaling
As we saw in Subsection 1.1.2, we can scale a monolith, but it is all or nothing; we scale

the whole application, not just the modules we need. If the platform received a peak in

orders, we would hardly need to scale the reporting module, for example. Microservices

enable to scale only the services that need scaling. This enables the system’s resources

to diminish or expand with the business needs. It is also cost-effective since we are

mobilizing our resources to the components that need them.

Event-driven microservices are often consumers on an event broker; adding new

consumers is usually straightforward. The ability to effortlessly add new consumer

instances provides natural horizontal scaling without the need for load balancers.

Scaling in monoliths is also usually limited by the database; by having services with

independent databases, we distribute the data between the services, removing that

limitation from the system.

1.4.7  �The Past on Demand
As we discussed in the last section, event-driven architectures can share data through

events. The sharing isn’t limited to the information that is happening at the present time;

instead, it provides the full history of events until now. In typical systems, to migrate data

from one service to another, we require long processes that query the originating service

API, usually with throughput limitations to restrict the impact on the system. It also

has complex logic to deal with changes happening during the migration. For example,

if we are running a process to migrate stock, a product might have two units of stock

at the start of the migration. While the migration is running, a user might have bought

those units. So the migration process must account for changes while the migration is

occurring, which is prone to tricky corner cases.

With event-driven architectures, we handle this naturally since we start reading from

the beginning of history; when we reach the end, it is guaranteed that every change that

happened in between is reflected. Streaming data is more sustainable than querying;

Chapter 1 Embracing Event-Driven Architectures

33

it depends solely on the service that needs the data. There is also value in the past; the

business can use it to learn and infer. If a new projection of the data is needed, we can

use that stream to create a unique projection; the data didn’t disappear and is readily

available for anyone to use.

1.5	 When Should You Use Event-Driven
Microservices?
This section will briefly discuss what signs might be relevant when considering a move

to an event-driven architecture. We will also question if it is the right decision to make.

Microservice, in general, has been a fashionable technological choice and has been

adopted by many companies, many times thoughtlessly, what ThoughtWorks names

Microservice Envy.9 As we saw in the previous section, combined with event-driven, it

has powerful properties. But should we blindly rush to adopt it?

When I started using C# Linq (a language component that adds native querying to

.net) many years ago, I started using it for everything. Need to select the first element of

an array? Linq it is. Until someone, much wiser than me, asked me if I wasn’t overdoing

it. Me at the time, a know-it-all youngster, baffled by the comment pretentiously recited

all the benefits of Linq in every possible use case. I did mend my ways regarding Linq,

but isn’t that what we often do with popular technologies? Currently, microservices

suffer the same thoughtless adoption. There’s an interesting quote by Kelsey Hightower

that says, “You haven’t mastered a tool until you understand when it should not be used,”

which symbolizes this very well.

The first thing to ask when moving to an event-driven is why are we adopting that

architecture? As we saw in Subsection 1.1.3, there are limits to monoliths that can draw

the business growth to a halt. We look to solve many of those limits with microservices.

We need to have a clear reason, which should be a top priority to solve while migrating.

As engineers, we try to base our decisions on data and metrics; it would be great to

say “Ok, after 30 days without releases we definitely need to move to microservices.”

Obviously, it doesn’t work that way. However, there might be strong signs indicating we

might benefit from a microservice event-driven architecture:

9 See ThoughtWorks Technology Radar, “Microservice envy,” November 14, 2018,
www.thoughtworks.com/radar/techniques/microservice-envy

Chapter 1 Embracing Event-Driven Architectures

http://www.thoughtworks.com/radar/techniques/microservice-envy

34

•	 The team outgrows the application: The communication and

coordination overhead dramatically exceeds the development

effort. Feature merges are gigantic and error-prone, with common

conflicting touchpoints. These can still be managed with a modular

monolith, assigning modules to different teams promoting

independence and autonomy, but only goes so far. The natural

bounds of microservices are often a good fit.

•	 Scaling: We can’t scale anymore. This is a tricky one; when you

think you can’t scale, most likely you still can; probably it is just

too expensive. As we mentioned, we can scale monoliths with

duplicate instances of the same application; this is a valid alternative.

The database, however, is typically the pain point. Usually, it can

only scale vertically or with a different technology. Event-driven

microservices are designed to be horizontally scalable, which helps

solving this issue.

•	 Deprecated technology stack: The application technology is no

longer supported or is outdated. It would be possible to upgrade the

existing application incrementally, especially in a modular monolith.

However, most of the time, it is challenging and expensive.

•	 Embrace a continuous delivery mindset: Although more challenging,

nothing prevents a monolith from adopting a continuous delivery

mindset. If the release cycles are massive, imply lengthy regressions,

and if the solution is unbearably large, a possible solution could

be a modular monolith. However, often transitioning to a modular

monolith is hard; microservices need a foundation of automated

releases and DevOps culture, which can promote the transition.

Most of these signs require a significant scale; we wouldn’t say every startup needs

to start with a monolith,10 but they often are good examples of how they don’t benefit11

from a complex microservice architecture from the ground up. A recent company is

still trying to figure out what works and what doesn’t; we as developers are still trying

10 Further detailed by Stefan Tilkov, “Don’t start with a monolith,” June 9, 2015, https://
martinfowler.com/articles/dont-start-monolith.html

11 Further detailed by Martin Fowler, “MonolithFirst,” June 3, 2015, https://martinfowler.com/
bliki/MonolithFirst.html

Chapter 1 Embracing Event-Driven Architectures

https://martinfowler.com/articles/dont-start-monolith.html
https://martinfowler.com/articles/dont-start-monolith.html
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html

35

to understand what domains exist and their boundaries. Without stable boundaries

between domains, we might have to redraw them later, which can be costly in existing

microservice architectures.

We discussed how the decoupled nature of event-driven architectures and the

localized scope of microservices can facilitate swapping components. This characteristic

can seem antagonistic to the associated cost of redefining boundaries. Large restructures

of domain boundaries usually impact several services from different boundaries. They

often require the domain to change, and that usually impacts changing the domain logic

and models, database schemas, and event contracts of several services, which often

impact several teams and have complex dependencies. We should avoid this kind of

profound changes to the architecture due to the sheer effort they imply. Often it is more

beneficial to have a single broad application where we can understand what boundaries

exist without hampering time to market. When we have a sound understanding of the

domains, we can start migrating to a distributed architecture.

While a single application is easy to monitor and observe logs, event-driven

microservices require a solid foundation of release maturity through pipeline

automation, centralized logging and monitoring, automated testing, and message

brokers. All of these have an associated cost to bootstrap and maintain that the company

needs to account for. It definitely pays up in complex large businesses but is debatable if

a small business would benefit largely from it.

A large number of components in microservice architectures also benefit autonomy

and ownership, but centralized decision becomes hard. Often, SOA architectures with

ESB had a centralized team that decided the message contracts, for example. With

event-driven microservices, that management becomes problematic and a bottleneck;

although standard guidelines are useful, we should delegate the autonomy of the

decision to the teams, which might not be the best situation for a company that wants to

retain central control.

Chapter 1 Embracing Event-Driven Architectures

36

1.6	 Overview of the Challenges in Event-Driven
Architectures
As we discussed in the last sections, a microservice event-driven architecture can solve

complex problems and be the foundation of a truly scalable, resilient, and evolutionary

architecture. Adopting one also means we are opening a Pandora’s box of new kinds

of challenges. Many of the characteristics we always took for granted in a monolith

suddenly disappear. Distributed systems also carry a new tier of challenges of their own

and require deliberate strategies to deal with. This section will briefly discuss those

challenges.

A fundamental step to designing an event-driven architecture is getting the size and

scope of the services right. There is no formula for this and it can become subjective.

The most useful strategy is to follow DDD (domain-driven design) and get the bounded

contexts between the services right. This, however, requires a strong knowledge of the

system and its domains. As we saw in the previous sections, changing these boundaries

later on might be costly and time-consuming. We detail the service design and DDD in

Chapter 3. Chapter 4 discusses patterns to organize microservices.

In a monolith, we are used to enjoying strong consistency; any change is seen

anywhere in the application instantaneously. The presence of event brokers between

the services turns each service asynchronous. The asynchronous nature of the services

produces what is known as eventual consistency; given enough time, all changes

will eventually propagate throughout the system. However, while the changes are

still propagating, different system parts might return old data to customers and other

services inside the architecture. This raises the challenge of how to deal with stale data.

Chapter 5 further details and proposes solutions to handle eventual consistency.

Eventual consistency and the asynchronous nature of the services require a different

approach to UI design. Typical UIs induce the user into false strong consistency, as

updates might take some time to occur. Messages like “updates might take some time

to be reflected” on the UI are common and also a dubious user experience. Chapter 9

further details this topic.

Dealing with concurrency in a single application is also straightforward; we can

use traditional ways to deal with concurrent threads like locking or mutexes. In an

event-driven architecture, however, we scale by having multiple instances of the same

service. In-memory concurrency mechanisms no longer work since concurrent requests

or events can target different instances. Message ordering can also be an issue if the

Chapter 1 Embracing Event-Driven Architectures

37

order of events is switched, if the service ends up processing an old event after the most

recent one can become inconsistent. Although there are brokers that guarantee the

order, most don’t, and retrying can disorder messages. Chapter 7 details how to achieve

better consistency with idempotent messages. Chapter 6 details strategies to deal with

concurrency and unordered messages.

Event-driven architectures enjoy a high level of decoupling. The domain flow itself

couples them as business processes progress through the boundaries. Often, the only

sharing point between the services is the message’s contracts. Contracts become pivotal

to the system design as the event schema and its size often is a topic of lively discussion.

Events can be small or large; depending on how we design them, both approaches have

tradeoffs. However, they heavily impact the systems that need them and the overall

architecture, as we detail in Chapter 8.

Support teams often need to do quick data fixes on applications. Monolithic

applications support this since a monolithic database typically backs them up. When

we move to a distributed architecture with dozens or hundreds of services, these quick

fixes aren’t so straightforward. In an event-driven architecture, correcting something

often means sending a command with the opposite operation (if we add stock using an

AddStock command incorrectly due to a bug, we need to do the reverse operation and

send a RemoveStock command, for example). Usually, to do so requires custom tooling

from the ground up to allow these kinds of operations.

As we discussed before, in an event-driven architecture, the message brokers allow

the components to be highly decoupled. The decoupling enables the architecture to

be highly evolutionary and the components to come and go as they wish. It is a great

property to allow the system to evolve along with the business. However, when we

have many decoupled components, it gets hard to understand the flow between the

services. Testing the end-to-end flow, it’s impractical due to the interaction of several

components. Each component is also independently deployable, raising the challenge

of guaranteeing the quality of the end-to-end flow every time we deploy a single

component. Chapter 10 further details the challenges and strategies of quality assurance.

Different teams are responsible for different sets of services. Adding a business

feature might impact several teams, as features often involve several domains. Although

the decoupling between the services promotes parallel working, sometimes complex

dependencies between several teams arise. Chapter 10 further details the organizational

impact of event-driven architectures.

Chapter 1 Embracing Event-Driven Architectures

38

When technologies become popular, people tend to see them as a magic solution to

most of our problems. We sometimes rush to turn a blind eye to their issues and focus on

the benefits they can bring. However, it’s always about weighing the tradeoffs. There are

types of challenges that we can only feel their true extent in production. Certainly, proofs

of concept are great to test a specific objective, but most of the time, we need to run a

technology at scale in production to really learn them and understand the reach of their

limitations. The added complexity, the distributed characteristics, and the asynchronous

nature of event-driven architectures pave the way to complex challenges. To manage

them, we require deliberate strategies. This book approaches those challenges and

proposes strategies to deal with them.

1.7	 �Summary
•	 There are different types of monoliths; the hardest to deal with is

patchwork monoliths due to entwined logic and lack of boundaries.

•	 Modular monoliths can be an adequate architecture choice and

offer several advantages and reduced complexity over distributed

architectures.

•	 Businesses can outgrow monoliths, and given enough time,

monoliths’ limits can constrict business growth.

•	 Event-driven architectures can facilitate the migration from

a monolith to a microservice architecture by promoting high

decoupling between components.

•	 Event-driven architectures accomplish higher-level processes

through the flow of events of several small, specific purpose services.

•	 An event-driven architecture facilitates a medium to share past and

present data in real time to any service. By easing the decoupled

sharing of every data that occurred and is occurring in the system

unlocks powerful possibilities.

•	 An event-driven architecture’s components enjoy a set of properties

that are the foundation for a scalable, evolutionary, and decoupled

architecture.

Chapter 1 Embracing Event-Driven Architectures

39

•	 There are situations where event-driven architectures aren’t the best

option. We also need an exact reason when deciding to move to a

microservice event-driven architecture; that reason should be a top

concern while migrating.

•	 The distributed, complex, and asynchronous nature of event-driven

architectures has difficult challenges we must address from the

ground up.

Chapter 1 Embracing Event-Driven Architectures

41
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_2

CHAPTER 2

Moving from a Monolith
to an Event-Driven
Architecture
This chapter covers:

•	 How to incrementally adopt an event-driven architecture

•	 How to decide what functionality to move first

•	 How to move data from a monolith to a microservice architecture in

an event-driven mindset

•	 Using CDC (change data capture) to move data

•	 Using events as the source of truth for both the old and new

architecture

•	 How to deal with event-driven microservices that need monolith’s

data and vice versa

•	 How to gradually move traffic from the monolith to the new services

•	 Implementing two-way synchronization and understanding the

impacts associated with it

https://doi.org/10.1007/978-1-4842-7468-2_2#DOI

42

Splitting a monolith is often like an onion. There are legitimate recipes to eat it

whole, depending on the dish we are serving. But to release their flavor compounds and

achieve their true potential, we have to cut it. Onions, like monoliths, are manageable

as a single piece. When we start to cut them down, they become hard to handle. As we

cut them, we are never sure how small is small enough, the layers inside the onion start

to fall apart and run away from our hand, and depending on the way we cut them, it can

rapidly bring tears to our eyes.

In the last chapter, we discussed the advantages and limitations of both monoliths

and event-driven architectures. This chapter will tackle how we can start migrating

functionality to an event-driven architecture and discuss several patterns to migrate data

using an event-driven approach. We will illustrate how we can achieve this by using an

example of an eCommerce platform.

Starting a migration from a monolith can be daunting. Monoliths are often very

intricate with complex and tangled logic, often the result of years of unchecked growth,

with unsure business requirements and pressing urgency. Modular monoliths are the

exception but also rare to find. Even to know where to start the migration and what to

migrate first can be hard to decide. On the other hand, event-driven architectures aren’t

always the best option. Sections 2.1 and 2.2 will help you decide if an event-driven

architecture is the best option and how we can start migrating functionality.

Moving data is one of the parts people most struggle with while migrating to a new

architecture. Stateless functionality, like a service that applies a fixed tax to every order

without relying on state, is relatively straightforward to migrate. It is greatly simplified by

not needing data migrations and keeping data in sync with the old and new architecture.

Event-driven approaches provide an alternative to traditional methods by exposing

data sustainably and seamlessly. They offer an organic way to keep data up to date in

(potentially) real time.

Moving functionality from the monolith to a new architecture usually isn’t done (and

it shouldn’t be done) with a big bang release (transitioning to the new architecture and

descoping the old one instantaneously). Most of the time, we need to deal with the new

services requiring data from the monolithic application and the monolithic application

still using the new service data. Event-driven architectures also aren’t composed of only

event-driven services. Often they are composed of both synchronous and asynchronous

services. Section 2.6 will discuss how we can deal with dependencies between the

monolith and new services in both situations.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

43

Even after moving functionality to the new architecture, users and clients don’t change

all at the same time to the new architecture. We need approaches to gradually move traffic

from the monolith to the new services. Furthermore, there is functionality that depends

on several different boundaries. We might migrate one of them, but we need to maintain

the interaction between the others. Requesting data from the new services is an option, as

discussed in Section 2.6, but depending on the use case, it can be hard to do (e.g., if there

is considerable logic in stored procedures). Section 2.8 illustrates how we can migrate

functionality incrementally and maintain two sources of truth.

2.1  Is Migrating to an Event-Driven Architecture
Your Best Option?
Chapter 1 discussed how a modular monolith might be a good architectural choice

and how it can enjoy several properties we often look for in microservice architectures

without the challenges of distributed components. This section will teach you to

challenge whether an event-driven microservice architecture is the best option and to

question if it is possible to solve the issues we face without the added complexity of a

distributed architecture.

A survey1 by Kong indicates that most technology leaders believe the failure to adopt

a microservice architecture will hurt their company’s ability to compete. Microservice

architectures have been adopted by many companies as a means to solve scalability and

productivity limitations and most of the issues Chapter 1 mentioned. Without a doubt,

they bear advantages other architectures struggle to provide.

However, we often rush to blindly adopt technologies that work for other companies.

By focusing on all the limits the current architecture imposes on us, we often fail to

see the simplicity and safety they always provided. Adopting one without careful

deliberation often leads to dreadful results. As discussed in Chapter 1, the added

complexity, the distributed challenges, and asynchronous nature are often mischievous

challenges and difficult to tackle with the strategies we often use in a monolithic

application.

1 See this article by Kong, December 11, 2019, https://konghq.com/press-release/2020-digital-
innovation-benchmark/

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

https://konghq.com/press-release/2020-digital-innovation-benchmark/
https://konghq.com/press-release/2020-digital-innovation-benchmark/

44

Take Istio, for example; the community decided to change from a microservice

architecture to a monolithic approach gradually. Istio, a service mesh for microservice

communication, would apparently benefit from the same architecture that helps others

build. However, they soon found2 out the deployment overhead and configuration

complexity of several moving parts, the difficulty in debugging, and the overhead of

network requests and caches never fully paid off. So they moved back to a monolithic

deployment for the Istio control plane, which makes sense for that project.

Segment is also another interesting example; they moved from a monolith to a

microservice architecture just to move back to a monolith a couple of years later. They

shared an article3 explaining how a small team struggled to cope with the considerable

increase in complexity. A single update to a shared library with the old architecture would

take a single deployment now would take dozens, one for each service. The developer

productivity greatly plumbed due to the large number of services that kept growing.

Operational overhead increased steadily with each new service. Eventually, they needed to

do something and moved back to a monolith and benefited largely from it.

“Ok, well, obviously you shouldn’t have done things like that” is often a common

(and naive) argument when an architecture fails. Instead, we should be asking: “Is a

microservice architecture right for that use case?” Sometimes it isn’t; a monolithic

approach might be much more adequate. As we mentioned in Chapter 1, it is about

delivering value to the customer and the best way to achieve it.

The questions we should ask are: “What am I trying to solve? What will I get from it?”

And a cutting-edge, cool, brand new, shiny architecture isn’t the answer. Business goals

should support the answer and be in line with the actual value delivered to the customer.

Using the same architecture or refactoring it in a structured way might yield even better

results than a premature microservice adoption.

Let’s illustrate with some examples of answers to that question that might not be a

solid reason to advance with an event-driven microservice architecture:

•	 “We will be able to scale horizontally more efficiently.”: Although that

is true, event-driven microservices allow for selectable scalability; as

we saw in Chapter 1, we can scale a monolith; isn’t that an option?

2 See this article by Christian Posta, “Istio as an Example of When Not to Do
Microservices,” January 8, 2020, https://blog.christianposta.com/microservices/
istio-as-an-example-of-when-not-to-do-microservices/

3 See Alexandra Noonan, “Goodbye Microservices: From 100s of problem children to 1 superstar,”
July 10, 2018, https://segment.com/blog/goodbye-microservices/

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

https://blog.christianposta.com/microservices/istio-as-an-example-of-when-not-to-do-microservices/
https://blog.christianposta.com/microservices/istio-as-an-example-of-when-not-to-do-microservices/
https://segment.com/blog/goodbye-microservices/

45

•	 “We will be able to develop autonomously.”: Teams working in a

modular monolith can also enjoy a high degree of autonomy. The

way the company organizes the teams and how autonomously they

can work is often a shift in the mindset rather than a technological

shift.

•	 “We will deliver features faster.”: Depending on the size of the team,

it can actually hurt productivity moving to a distributed architecture

as segment experienced. It is often valuable to understand the root

cause of why features are slow. A huge team would indeed benefit

from a microservice architecture, while a smaller one might not be

able to gain as much and often suffer from other kinds of limitations

unrelated to the application’s architecture.

•	 “It will be simpler to add features for an isolated domain.”: Despite

this might be true in most cases, the isolated domain systems are still

part of an ecosystem of services, and adding features or new data

to entities often lead to the other systems to adapt to the new data

or features. Sometimes dependencies between services are hard to

manage due to the team roadmap priorities and introducing breaking

changes, for instance.

•	 “We want to adopt a continuous delivery mindset.”: Although a good

reason, we should always ponder if we can’t do that with the existing

architecture. It is possible to adopt a continuous delivery mindset

with a monolith, although it gets more challenging as the teams and

application grow.

Here are some examples that often are strong reasons:

•	 The database can only be scaled vertically and reached a point that it

isn’t cost-effective. Monolithic databases tend not to be horizontally

scalable. Scaling often reaches a point where a better approach is

more effective (especially cost-wise).

•	 The size of the team. Although the number of teams can be

manageable in a modular monolith, it often gets to a point teams

outgrow the application.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

46

•	 Using different languages and technologies or the need to change

deprecated ones. Although it is always possible to update an existing

monolith, it is often tough and error-prone. Also, it might not be

possible to support different technologies in the same application.

We should always question if there aren’t other options and if a microservice

architecture is the best approach. We should also have strong reasons or concrete

limitations to solve. A large scale amplifies most of the advantages we mentioned in

Chapter 1, both in usage and developers. If a company didn’t reach that stage, it will

likely struggle with the complexity more than enjoy the benefits.

As we mentioned in Chapter 1, not having clear domains and boundaries is also a

strong reason to postpone that migration. In the early life of a company, domains are

prone to change. Changing the domains and boundaries in an event-driven microservice

architecture is costly and laborious. Having a monolith (even a bad one) at least

guarantees there is a physical place to validate the existing domains and refactor them

with less effort.

However, often teams tend to outgrow a single application. Managing changes and

releases becomes harder as the teams and application grow. Guaranteeing the isolation

properties of modular monoliths becomes increasingly harder. Event-driven microservices

provide a good alternative to solve these problems, provided we have a clear objective.

2.2  Moving to an Event-Driven Architecture, How
to Decide Where to Start
This section will discuss how we can choose the most appropriate functionality to

migrate from a monolith to an event-driven architecture. We will illustrate an example of

an eCommerce platform monolith and explain how we can choose one of its modules to

create a new service.

Most complex applications have several domains, and they interact with each other

to achieve a higher-level process. A bounded context is focused on a piece of the overall

functionality and contains a given domain model. For example, an eCommerce platform

might have several bounded contexts, being one of them the order management. The

order management bounded context could have a core domain model that conceptually

illustrates orders (bounded context is a domain-driven design term that we detail in

Chapter 3; for now, see it as a domain boundary).

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

47

In a perfect world, we would just stop product development for a few months while

re-architecting the whole system. This situation is rarely the case since the business

must still operate and evolve as the new architecture is being built. An important

consideration is to migrate functionality incrementally; bear in mind that often we need

to have both old and new systems running simultaneously. It is imperative to build a

sustainable way to gradually migrate functionalities to the new architecture to avoid

big bang releases. Migrating gradually also provides a way to deal with the event-driven

architectures’ challenges on a lower scale. It also is easier to guarantee a safe way to roll

back the changes if needed. We will get some parts wrong; it is vital to guarantee the

business’s reliability and give us the space to learn from our mistakes. Event-driven and

the patterns we describe in this chapter are built in this mindset to allow incremental

delivery of functionality.

The first step to start moving functionality to an event-driven architecture is

understanding the existing domains and bounded contexts. Often monoliths feel like the

example illustrated in Figure 2-1.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

48

It might be overwhelming to analyze all the bounded contexts in massive patchwork

monoliths. The first few tries might feel like everything references everything, and there

is no clear distinction. DDD (domain-driven design) has techniques that can help with

this, further detailed in Chapter 3. However, having an existing application that already

describes these relations can help in understanding how a business operates, hence the

importance of sometimes starting with a monolith and then moving incrementally to an

event-driven microservice architecture.

Figure 2-1.  Example of how we often feel about monoliths. Illustrates an example
of an eCommerce platform where everything references everything

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

49

If you are dealing with a patchwork monolith, it might be useful to refactor it to a

modular monolith. By doing so, we might even solve the initial reason that made us

consider moving to an event-driven architecture. It will also underline the existing

bounded contexts and make their dependencies visible. If we can’t build a well-

structured monolith, why do we think we can create a well-structured event-driven

architecture? With that information, we can make an informed choice on which module

to migrate first. Do not underestimate this effort as domain knowledge is essential to

build the new architecture.

Even if we don’t choose to change the existing monolith, trying to understand

how we could change it to a modular monolith and the underlying exercise of

comprehending the boundaries and bounded contexts is pivotal to understanding which

domain to move first. Eventually, we will reach a design similar to pictured in Figure 2-2.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

50

Once the business features and how they map with each bounded context are clear,

we can design the domain model. These steps are fundamental to start the migration.

Those bounded contexts will eventually map to different services responsible for

managing the operations in each domain’s scope.

We have our bounded contexts and dependencies mapped (as detailed in Chapter 3);

now what? We need to decide which module to migrate first. Often it is a weight between

the difficulty in moving a module, how that module would benefit from the move, and

Figure 2-2.  Example of an eCommerce platform with several interactions between
bounded contexts

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

51

how lenient the consistency guarantees can be. As we discussed in Chapter 1, event-driven

architectures feature eventual consistency; a functionality might allow smaller or larger

inconsistency windows depending on the impact of that weak consistency model. It is

wise to start migrating features that allow lower consistency constraints to give us space

to tune the system to guarantee the inconsistency is small enough that won’t impact the

system’s users (how to tackle eventual consistency is discussed in Chapter 5).

In the example in Figure 2-2, the order management module might benefit

significantly from an event-driven architecture to ease the process of scaling in the face

of load peaks. However, it might not be easy to remove the module because it depends

on the other four modules. The shipping or reporting module could be a good alternative

since each one only has one dependency. Shipping might need stronger consistency

guarantees than reporting, which typically is asynchronous; often reports don’t need to

be accurate to the last second. Following this line of reasoning, reporting could be a good

option to migrate first.

We should try to find functionality that is easy to migrate, that largely benefits

from the migration, and it is not critical to have strong consistency guarantees. All

modules are liable to be relocated, but doing an easy part first can be an excellent way

to get feedback on how the migration is going and pave the way for the system’s more

challenging pieces. It also guarantees you face the challenges of distributed architectures

gradually and can sustainably respond to them.

It is also important to understand how the migration to the new architecture is going.

We are doing this because we are trying to deliver value to the customer or solve an issue

in the current architecture. Our gut feeling is important, but as engineers, we try to drive

our decisions with data. What should we measure? It is often related to the answer we

gave to the question in Section 2.1 on the reason we are migrating.

If we are trying to improve the team’s autonomy and productivity, it might be

interesting to measure the dependencies between teams, feature branch longevity, or

merge requests. Long-lived branches are prone to get stale due to other teams conflicting

changes in the master branch. It is often the source of complicated merges and a high

number of conflicts; it is one of the typical challenges teams have when they outgrow

one application.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

52

It can also be useful to measure the deployment process. If we are trying to shift to

a continuous delivery mindset, the number of deployments, cycle time, and lead time

might be interesting metrics. They also relate to the number of dependencies between

teams since with high coupled code typically found on monoliths, features sit on ready-

to-merge state longer. The shift should improve the overall time a feature takes to be

deployed.

If we are trying to improve our scalability capabilities, the number of incidents due to

load peaks or measuring response time might be useful. The tier of the current machines

for both the application and database might also give some insight into the capacity the

application has to support a growing business. As we discussed, often monoliths struggle

with load and when the only way to scale is vertically (by increasing the machine’s

resources) it can constrain the business growth. As we migrate to an event-driven

architecture, gradually the load will be distributed between the new services, so the

high-tier machines shouldn’t be needed anymore.

We also can unconsciously overwork metrics, and with enough creativity, they can

reveal anything. To some extent, we should base our decisions on metrics, but it is as

important to know the feeling of the people working with the system. Understanding

their problems, concerns, and opinions on the state of the migration can give an overall

view of how it is going. Be sure to check with the team regularly to understand their

experience; their feedback is the most valuable metric you can find.

2.3  Using an Event-Driven Approach to Move Data
from a Monolith
The last sections discussed the decision to move to an event-driven architecture and

how we can decide which module to move first. This section will approach how we can

expose and transfer data from the monolithic application to the new architecture.

Using the example in Figure 2-3, let’s say we decided to migrate the reporting module

to a new service. Remember how we discussed why it is essential to do an incremental

migration? We could start by building the reporting service outside the monolith.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

53

By building the reporting service without any interaction with the monolith, we

can avoid any impact on the other teams working on it. We can also incrementally

add functionality to the reporting service. We could first deploy the service in the live

environment without any functionality and then gradually add feature by feature until

the service has all the monolith’s reporting functionality.

Figure 2-3.  First step in migrating the reporting service to an event-driven
architecture. It is important to do the steps incrementally by building the reporting
service independently from the monolith

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

54

A common question is whether to copy the code as is in the monolith or to refactor

it. It depends on the monolith; on a well-structured and organized monolith, it might

make sense to copy the code as is; it will save us time. However, most often than not, the

monolith’s model might not be up to date to the incoming requirements. The migration

is a good opportunity to refactor it and build it more cleanly if needed. We will soon

add an event queue between the reporting service and the monolith so they can have

different models and behaviors as long as the monolith obeys the event’s contracts.

Just bear in mind that while we are migrating, both services have the functionality. A

change in the monolith’s reporting module due to bug fixing or new features means we

have to change the reporting service accordingly until we descope the functionality in

the monolith.

Let’s say the reporting service generates and saves a report for each fulfilled

order. We already migrated the functionality to create the report. But we need the

order information to trigger the report creation and to fill the report’s data. As we

see in Figure 2-3, the monolith’s reporting module has a dependency on the order

management module due to fetching information from that module. We need to

somehow expose the order information to be consumed by the reporting service. The

next step is to step up a queue between the service and the monolith; the reporting

service will use that queue to react to events and generate the reports, illustrated in

Figure 2-4.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

55

An essential step in building the reporting service is defining the contracts that the

service will listen to. Event schema usually triggers a lively debate and is a core design

that affects the downstream services. It is crucial to design them right; otherwise, they

can trigger difficult challenges to the services that consume the event. How to design the

event schema is further discussed in Chapter 8. At this point, let’s worry about creating a

contract that fulfills the needs of the reporting service.

Figure 2-4.  Second step in migrating the reporting service to an event-driven
architecture. Set up a queue with the order management information to be
consumed initially by the reporting service

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

56

Once we set up the order management event publishing and the reporting service

event handling, we are already able to expose functionality in the reporting service. For

recent orders, users can already use the reporting service to obtain the reports. But what

about all the reports that were created until now? We just migrated functionality, not data.

There are several strategies to migrate data from existing databases. You probably

had to do this one time or another and likely will know how hard it is. Section 2.9

approaches some of these alternatives. Without events, we could run a batch from time

to time to synchronize the monolithic database to the new service, introducing higher

complexity with higher delay. We could temporarily access both databases with all the

issues that can cause.

The beauty of event-driven services is that they provide a way to seamlessly expose

that information without these complicated ad hoc processes. Events are the source of

truth, and we can use them to transfer data to any service that needs it. We can leverage

the fact we already handle events and use the same strategy to migrate all the existing

data that we need along with the data that is happening now.

In the example of Figure 2-4, we could trigger a job in the order management service

to publish all the order information to the event queue. When the reporting service starts

to consume, it will consume all orders and generate all reports that it needs. It would also

be a great way to validate the service’s correctness; the generated reports would have to

be the same as those existing in the monolith.

Using an event broker that keeps the events and doesn’t delete them upon

consumption also opens the way for exciting possibilities. Imagine we introduce a bug in

the reporting service, and we need to generate the reports again. We could simply start

reading the queue from the point where the bug was introduced. If there was a feature

to change the reports to have different information, we could simply start reading from

the queue’s beginning and generate the new reports. Operations that otherwise would

be cumbersome to do, with error-prone manual interventions, are suddenly built in and

can occur organically.

But we are not done; we migrated the functionality and the data, but the user

is still using the monolith to obtain the reports. Now we can inform the consuming

applications to change to consume the reporting service. We can also have a proxy on

the layer above the monolith redirecting the calls to the new service. Section 2.8 further

discusses these options.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

57

Once there are no calls to the monolith’s reporting module, we should remove it

from the monolith, as depicted in Figure 2-5. If we incrementally do this to each module,

we gradually decompose the monolith into smaller services.

We also built the foundation for other services to build on top. If another module

needs the order management information, it’s already exposed. We can start building

the service and plug it into the existing message queue. Even the order management

module itself, when we create the new service, can migrate the data by merely streaming

Figure 2-5.  Third step in migrating the reporting service to an event-driven
architecture. We finalize the migration of the reporting functionality by removing
the old module

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

58

the events in the queue by reading it from the beginning. Once we migrate the order

management module, the reporting service would consume events from the new

service rather than the monolith. The decoupled nature of event-driven services allows

the order management service’s migration without changing the reporting service. In

a traditional microservice architecture with synchronous requests, this change would

need coordination to at least shift endpoints from the monolith to the new service.

This way, an event-driven approach enables data streaming from the monolith to the

new services. It avoids other complex alternatives to split or share the database without

a custom batching process or other manual options. Streaming the data serves both as a

way to share real-time information to the new services and as the history of data, easing

the migration process. It is also a very intuitive, scalable, and organic way to distribute

data throughout the architecture.

Adopting an event-driven service has its drawbacks; as we mentioned in Chapter 1,

the reporting information is now asynchronous and might not enjoy the strong

consistency guarantees it enjoyed while inside the monolith. In this particular case,

reports are typically asynchronous, so it seems a good fit. However, other functionalities

might have stronger consistency guarantees, for example, guaranteeing the consistency

with several tables by using transactions. Achieving consistency is still possible through

process managers and Sagas, as detailed in Chapter 7. How to deal with eventual

consistency is discussed in Chapter 5.

2.4  Using Change Data Capture (CDC) to Move Data
from a Monolith
The previous section discussed how we could share the monolith’s data by publishing

events in internal modules. However, capturing every functionality that might change

information can be challenging. Monoliths also tend to have a considerable amount of

logic in the database’s stored procedures, making it even harder to publish changes to an

event broker. This section will discuss how we can use a similar event-driven approach

but using CDC (change data capture) to extract the data.

One of the situations where I experienced firsthand the difficulties of extracting

monolith’s data was when the team was trying to migrate the inventory management

module from the backoffice application (a large patchwork monolith) of an eCommerce

platform. The first approach we tried was to call the new service every time any

functionality changed inventory data. By making two requests, one to the new service

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

59

and maintaining the monolith calls, we were able to verify if both databases held the

same data. After changing a few missing flows, it looked great; the regressions we did

on every functionality were working fine; both databases were the same in every quality

environment.

When we reached production, however, it was a completely different story. The new

service data somehow was slowly diverting from the monolith (the current source of

truth). Although the high majority of flows were calling the new service, we found out

there were still some stored procedures (with some hundreds of lines each) that changed

the data. The support teams, from time to time, also did some data fixing directly on the

database. There were also mushroom applications outside the monolith that changed

the data. Mushroom applications are ad hoc applications that often pop up throughout

the company, created outside the standard architecture to achieve a small objective.

It can even be an excel sheet accessing the database. Many companies have several of

these created by operational teams to help with ad hoc operations like data analysis or

automation of a common task. Due to these reasons and others, we soon found out that

completely covering all flows that accessed that data would take a substantial effort.

There are times where it is overly complex to change an existing monolith to follow, for

example, the approach in Section 2.3. Sometimes it’s not even possible when using

third-party vendor monoliths.

CDC is a pattern to identify and capture individual changes made to a database

or application. Using CDC can be a valid alternative in these situations since we can

capture every change directly on the database. There is also built-in functionality on

many databases that support CDC and provide easily accessible ways to extract data.

Instead of natively extracting and publishing data, there are also several frameworks

to extend this functionality; for example, Kafka Connect uses CDC and connectors to

the database to extract data and load it to Kafka. Apache NiFi is also a reliable option

that provides the same functionality. These frameworks are easy to bootstrap and offer

an easy way to extract data from the database, mostly through configuration. It is also

possible to create our custom transformations.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

60

However, these frameworks have a few drawbacks:

•	 If we are trying to track down a live incident, it’s hard4 to locally

debug the connectors. Building unit and integration tests can be

challenging due to the references to all the internal Kafka classes.

•	 The level of customization might not be the most adequate for our

requirements and might have limitations. If we need to enrich the

data with an external source on the connector, it becomes hard to

extend (although we should keep that logic out of the connector, it

isn’t always easy).

•	 These frameworks tend to expose the underlying database data

models adding additional coupling. We might prefer a custom

application in charge of extracting, creating, and managing its events.

Often it is preferable to endow the events with domain meaning.

An update of a few fields might have more business value than the

technical definition of a few columns that were updated. Maybe

updating the stock column means making a reservation business-

wise. The events themselves should reflect that business intent. That

can become hard to translate using these frameworks.

Depending on your requirements, building a custom solution to analyze the

database CDC can be a preferable option and give you higher flexibility. On the other

hand, using a framework can significantly reduce the implementation overhead and set

up a solution with little effort.

In the same example in Figure 2-2, how could we migrate a module using CDC?

The first step would be to set up a service or a connector to the database, depicted in

Figure 2-6.

4 See “Why We Replaced Our Kafka Connector with a Kafka Consumer,” December 16, 2017,
https://hackernoon.com/why-we-replaced-our-kafka-connector-with-a-kafka-consumer-
972e56bebb23

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

https://hackernoon.com/why-we-replaced-our-kafka-connector-with-a-kafka-consumer-972e56bebb23
https://hackernoon.com/why-we-replaced-our-kafka-connector-with-a-kafka-consumer-972e56bebb23
https://hackernoon.com/why-we-replaced-our-kafka-connector-with-a-kafka-consumer-972e56bebb23

61

The ETL (extract, transform, and load, although the load is to a message queue)

component processes the changes, converts them to events, and publishes them to a

message queue. In the same example with the reporting service, the component would

poll for changes in the databases’ CDC mechanism in the order tables and publish them

to the message queue. It also provides the role of decoupling and hiding the undesired

Figure 2-6.  Using CDC to migrate data from a monolith’s module. We set up
a component to read the databases’ changes with CDC and publish them to a
message queue

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

62

data CDC provides to external events. If we use the frameworks mentioned before, they

might expose more information than needed and leak information about the underlying

data models. A custom component would abstract these concerns and publish events

that made sense to the new services.

The ETL would probably need to bootstrap the current information by fetching

the current state and publishing it to the message queue to bootstrap the new service.

To descope the reporting module on the monolith, we could then build the reporting

service and listen to the events in the queue. After that, we would change the consumers

to the new service and descope the current functionality. Our final mission is to descope

the ETL component and have the new service be the source of data.

An important consideration is as the new architecture grows, we should

continuously add functionality to the same ETL component or add different individual

components. Well, it depends on the use case, but here are some guidelines to help you

decide. If there is only a small team using the ETL component, then one component

is probably preferable; using a framework such as Kafka Connect could also be a good

option. When there are several teams with diverse bounded contexts, building an

ETL per bounded context might be advisable. The implementation overhead will be

larger, but it will give each team independence to create the events for their context

without dependencies between other teams and models. It will also encourage them to

understand how the data is organized on the monolith, what events make sense, and

how they interact with the new services.

2.4.1  Event-Driven and Change Data Capture (CDC), a
Real-World Example
Custom querying is one way to implement CDC. We can extract the data by querying the

database, with or without filters. We can also bulk load all data to the message queue,

sinking all existing information to an event stream. After the bootstrap of all existing

data, the process would load changes after a given watermark, which can be a timestamp

or an incremental id or version. We would publish all changes that occurred after the

watermark to the message queue.

It is also possible to customize the query to filter only a set of records. For example,

if the table has a type, it might be relevant only to publish the records of a given type or

segregate types into different queues.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

63

Any database supports querying, so it is always an option even if the database

technology doesn’t have a built-in CDC process. It is also very flexible since we can

adjust the query to the way we want the data. On the other hand, the more complex the

query is, the higher the impact on the database’s resources.

It also relies on a last updated column, which might skip multiple updates to the

same record. Most of the time, this isn’t an issue, but if we want to capture the user’s

intent and how the data evolves through time, it won’t be as accurate since it might

merge several updates. Squashing several updates might be an issue depending on

the way the old and new architecture is designed. For example, if we have a table with

generic properties that each has a type, we might have decided to separate each property

in independent models on the new architecture. If so, an update to the type would mean

the deletion of the old resource and creating a different one. Having information on only

the latest state might not be enough to apply the same state to the new architecture.

Deletions are also hard to detect for the same reason unless we implement soft

deletes (by having a state column). Soft deletes consume more resources since the

record isn’t removed. Besides that, it surely wouldn’t be unprecedented if someone hard

deleted a soft delete table (by actually deleting instead of updating the column).

Many database technologies have an internal operation log that records every

change operation that occurs in the database. That log is also used to restore the

database to a correct state if a catastrophic failure occurs or to replicate information to

other instances. It is a fascinating mechanism very similar to event sourcing and event-

driven principles. Many of them also provide CDC functionality by using the operation

log to expose the changes that occurred in the database.

Using the CDC functionality, we can fetch every change operation that occurred in

the relevant tables. Unlike custom querying, even if a record is updated multiple times,

it will provide information for each update. It also records deletes, allowing for a more

realistic view of the data evolution without soft deletes. Performance and resource-wise

log scanners have less impact than querying since it relies on the operation log rather

than querying specific tables.

However, they are highly dependent on how the database technology exposes

this information. They might not have all the information needed or rely on internal

identifiers that are hard to track. Most technologies that expose this functionality have

detailed information on each change, which often implies they expose the underlying

data model, raising the need for an adaptation and encapsulation of only the relevant

information.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

64

�CDC Example Using SQL Server and Kafka

Let’s illustrate an example of moving data using CDC with SQL Server. Using the same

example monolith of Figure 2-6 and assuming we want to move the stock data from the

monolithic database to a new service, we could build a topology similar to Figure 2-7.

Figure 2-7.  Example of using CDC to move data from a monolithic database to a
new service (inventory service)

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

65

We can access SQL Server CDC information through CDC specific tables that the

database creates when enabled. SQL Server has a transaction log with every change

that occurs on the database. This log is essential to guarantee that the database is in a

consistent state. CDC uses this log to understand what operations are happening in the

database and populates the CDC tables with this information and some metadata. We

can use the data populated in those tables to understand the changes that occurred in

the database.

Let’s say we have a Stock table that has the stock for each size of each product. Listing 2-1

shows that table and how to enable CDC for the database and that table.

Listing 2-1.  Create Stock table and enable CDC

1 -- Create table stock

2 CREATE TABLE Stock #A

3 (

4 ProductId int,

5 Size varchar(10),

6 StoreId int,

7 Quantity int,

5 primary key (ProductId, Size, StoreId)

4)

7

8 -- Enable CDC at the database level

9 EXEC sys.sp_cdc_enable_db #B

10

11 -- Enable CDC at the table level

12 EXEC sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name =

'Stock', @role_name = NULL, @supports_net_changes = 1 #B

#A Create stock table definition

#B Enabling CDC at the database and table level

Every time a change occurs on the Stock table, the agent records the change in the SQL

Server transaction log (even without CDC enabled). The transaction log reader agent will

read the changelogs from the transaction log and insert those changes in the CDC tables.

The CDC table was created once we ran the command on line 12 in Listing 2-1,

and we can fetch the changes happening in the database by querying that table.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

66

Listing 2-2.  Changes to stock records and retrieval of CDC logs

1 -- Some changes to stock records

2 insert into Stock values(153854, 'XS', 914, 1) #A

3 �update Stock set Quantity = 2 where ProductId = 153854 and Size = 'XS' #A

4 insert into Stock values(153854, 'S', 914, 1) #A

5 delete from Stock where ProductId = 153854 and Size = 'S' #A

6

7 -- Fetch changes

8 SELECT * FROM [cdc].[dbo_Stock_CT] where __$start_lsn >

0x00001058000007110003 #B

#A Some changes done in the Stock table

#B Retrieving the CDC logs in the table dbo_Stock_CT (the value will change

from your use case)

Listing 2-2 shows some changes done to the Stock table. We inserted two rows and

then updated one and deleted another. Querying the CDC table retrieves the result

illustrated in Figure 2-8.

The CDC tables have some columns directly related to SQL Server but might be

relevant to some use cases:

•	 __$start_lsn and __$end_lsn (#A) are the log sequence number (LSN)

assigned by the SQL Service.

•	 __$seqval (#B) gives information about the order of the operation

related to other operations in the same transaction.

Figure 2-8.  CDC table results from the changes in Listing 2-2

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

67

•	 __$operation (#C) indicates what was the operation performed on

that row (1 is delete, 2 is insert, 3 is the row information before the

update, 4 is the row information after the update).

•	 All the stock table columns (#D) with the data when the change

occurred.

The query in line 8 of Listing 2-2 would be in the ETL component. This component

polls the database to fetch the records that happened after the last LSN that it processed

(the SQL Server function fn_cdc_get_all_changes_dbo_stock could also be used to fetch

the changes on a specific interval). The query would return the changes to the table

between the last polling iteration and the current time. An important consideration is

to fetch only a max amount of changes (like 1000 rows each time) due to performance

reasons and resource optimization.

Once we load the changes, we would map the data fetched from the database to the

stock events. For example, operation 2 (insert operation) could generate a StockCreated

event, and operation 4 (update operation) could generate a StockChanged event. Once we

map the data from the database to the events, we could publish them to Kafka. The inventory

service would handle those events and update its internal state with those events.

The CDC table gives a lot of information about each change and how the data was

before the change. Update commands provide details on how the data was before and

after the change. Some use cases might need this kind of detail if we don’t need only

the latest state but also need the state before the change. For example, we could move

stock across two products if we updated the product id in the Stock table. Depending on

how we design the system, it could be necessary to remove stock from one product and

add stock to the other. Reflecting the change on both products might need two different

events with information before and after the update.

CDC has the disadvantage of recording a large amount of information about each

change. This can lead to excessive resource consumption in high usage tables and

databases. We might need to implement an aggressive retention policy in those cases.

In the case of SQL Server, there is also another option using Change Track, which is

relatively similar to CDC but compares changes between two versions. It doesn’t give the

detailed data evolution CDC does, but when we need only the latest state is fairly lighter

than using CDC.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

68

2.5  Migrating Data from a Monolith: Event-Driven
As a Source of Truth for Both Systems
The last sections detailed how we can extract data through events from a monolith. This

section will discuss how we can use events to be the single source of truth for both the

monolith and the new services.

A pivotal mindset to embody while adopting an event-driven architecture is to

embrace events as the source of truth. Until now, we discussed how we could shift

the source of truth from the monolith to the new services. However, as long as the

information relies on the monolith, it will be the source of truth. Shifting consumers to

the new applications might not be an activity we can do autonomously; some of them

might be external consumers that might need to adapt to the new services. If so, the

shifting action can take a considerable amount of time, during which we are stuck with

the monolith being the source of truth or having simultaneously two sources, as we will

discuss at the end of this chapter.

An interesting approach is to have the monolith react to a queue. Adding a queue

can be harder or easier depending on the monolith. Some monoliths already react

to message queues, so plugging a new service into the same queue and routing the

messages accordingly to the new and old architecture would be a good approach. If the

monolith doesn’t have a queue, we could transform the requests into messages. The

transformation could be done by the external consumers, an intermediate component,

or in the monolith itself.

Although similar, it differs substantially from the approach described in Section 2.3;

instead of the event publishing being a new secondary operation from the initial flow, it

becomes the trigger to the existing process. This way, the message becomes the source of

truth for both the old and new flow.

This alternative is illustrated in Figure 2-9 using the same example as before; a

message queue is the input for both the monolith and reporting service. Having a queue

to trigger the process promotes the mindset shift to prioritize event design since the

message is pivotal for both systems to operate.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

69

Once we get the queue set up, we could gradually change the message consumption

from one system to another. We could roll out based on the messages’ content; if we are

publishing order information, then we could roll out by country, for example, starting

with all orders from “CA” instead of all countries at once. Once the reporting service is

consuming all countries, we could remove the monolith’s reporting module.

If it’s not possible to change the upstream systems to publish to a queue or add

an intermediate component, we could split the monolith flow. The first step would

be to receive the request, send a message, and then continue with the rest of the flow

Figure 2-9.  A message queue is the input for both the new architecture and the
monolith, being the only source of truth

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

70

by handling the message. The monolith itself has only limited benefits to having a

queue but would set the new system’s pace. It would also be a good trial to see if the

functionality can deal with the weaker consistency guarantees the queue introduces.

2.6  Incremental Migration from a Monolith to an
Event-Driven Architecture: Managing Dependencies
In the last few sections, we detailed how to migrate data to new services using an event-

driven approach. This section will discuss approaches when a new service might still

need data from the old architecture and when the monolith has the same need for the

new services.

We might find some use cases in the monolith relatively decoupled from the rest of

the functionalities due to not needing many dependencies to work with. The example of

the reporting module, although it needs order management information, is not a central

functionality that is referenced everywhere. As mentioned in Section 2.2, we should

use these modules to start the migration; it’s often better to start with a small, easy part

and build our way on top of that than trying to migrate a central functionality that is

referenced throughout all modules. However, we will reach the point where we might

migrate a functionality but still need data from an unrelated module inside the monolith.

More than reacting to its changes, it requires the module’s data to process its logic. Since

the data is in the monolith, we need strategies to access that data in the service. The

inverse can also be applied; other modules in the monolith might still need data that we

migrated to a new service.

2.6.1  Managing a Dependency from a New Event-Driven
Service to a Legacy Monolith
Using the same example in Figure 2-2, let’s now look at the inventory module. The

inventory module might need product information to process stock changes; every

time someone changes the stock, the inventory module fetches product information

and associates that stock change to the product. This use case differs from the reporting

module since it is not reacting to the system’s changes; the inventory module fetches

information in the flow of its domain.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

71

The order management calls the inventory module to remove the stock quantity the

user bought. Instead of calling the inventory module directly, the order management

module would publish an event signaling the user created an order. The new inventory

service would react to that event but would still need the product management module

information. The first most direct approach would be to request that information from

the monolith, as illustrated in Figure 2-10.

This alternative is very intuitive: we treat the dependency in the inventory service

as we would call any other module inside the monolith, but instead of being inside

the same application, it now makes a remote request. We often are reluctant to add

functionality to the monolith, and we should be; however, adding functionality to the

monolith might be a stepping stone to build the new architecture.

Figure 2-10.  When the inventory service needs additional information that still
exists on the monolith, it requests the information directly through an API

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

72

However, the inventory service now has a direct dependency on the monolith. If

the monolith struggles with performance issues or has a catastrophic failure (like a

memory leak), it will cascade to the inventory service. Scaling the inventory service will

also impact the monolith; if we add more resources to the service, it will trigger more

requests to the monolith. These issues were the very thing we were trying to avoid with

the decoupled nature of event-driven architectures. It is a viable choice, and we might

use it sparingly to promote the migration of functionalities that need this approach.

However, it must be temporary and something we should use only sparingly.

An alternative to this option is to publish the product data and use an internal

view of that data inside the inventory service. This way, the inventory service remains

decoupled, and we avoid the remote request to the monolith, illustrated in Figure 2-11.

Figure 2-11.  Instead of a direct remote request to the monolith, we are able to
avoid a direct dependency through an internal view of the product data inside the
inventory service

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

73

The inventory service, by having an internal view of the product data, would be able

to process its domain logic by using that internal state instead of requesting data to the

monolith. The state doesn’t necessarily need to be saved inside the database; Kafka,

for example (we will discuss Kafka in more detail in Chapters 3 and 6), if we use Kafka

Streams, provides a way to keep that information in KTables. It is also possible to opt for

other solutions to save data, discussed in Chapter 8.

We are preferring to denormalize the data in the service over having a centralized

place to hold it. Besides the higher decoupling, this solution provides a performance

boost since accessing local data is often faster than making a remote external request.

But it also has an infrastructure and maintenance overhead of saving and maintaining

that data.

2.6.2  Managing a Dependency from a Legacy Application
to a New Event-Driven Service
As we discussed, by migrating modules from the monolith, we also move the data

associated with those modules. There might be use cases where other modules

inside the monolith require that data. A common example is UIs that display diverse

information and often aggregate data from several domains.

Using the same example we used before, let’s say the order management module

needed to validate if the product being ordered had enough stock to fulfill the order

when receiving a new order. To do the validation, the module would have to fetch the

current stock information. If we move the inventory service to an independent service,

the data no longer exists in the monolith.

We could follow the same approaches we discussed before. The most intuitive

approach would be to request information from the new service, as illustrated in

Figure 2-12. When the order management module needs the stock information, it would

request data from the inventory service much like it would do if the module was still

inside the monolith, but instead of running the request in memory, it makes a remote

request.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

74

Although this approach suffers from the same issues we mentioned before, they

aren’t as troublesome. We might still have a cascading failure if the inventory service

fails, but it is less likely to happen since the service has a minimal scope. On the other

hand, any change in any bounded context of the monolith has the potential to bring

the whole application down. If we need to add load to the monolith, it will trigger more

requests, but the inventory service is easily scalable; scaling a monolith is harder. Since

this approach is straightforward and easy to implement, we might use it as a building

block, and when we move the order management module, opt for a different strategy.

We could also adopt a strategy to feed the monolith’s existing state with the inventory

service’s events. This way has the advantage of keeping both architectures decoupled, as

illustrated in Figure 2-13.

Figure 2-12.  The monolith requests information from the inventory service
through a remote request

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

75

Often monoliths have internal views that join a large amount of diverse information

together. Joining information is possible since all data is stored in the same database;

when deconstructing the database, maintaining this kind of functionality is challenging.

A sustainable approach is to sync the information back to the monolith and feed its

internal state through the new services’ events. The new services are the source of truth,

making the monolithic database a denormalized view of the different domains. This

approach is often required since joining diverse information through HTTP requests

isn’t possible without requesting a lot of information and joining it in memory, a

cumbersome process both performance and resource-wise.

Figure 2-13.  Monolith handles the events and keeps its internal view of the
inventory data synced

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

76

2.7  �Gradually Moving Traffic to New Microservices
In the last sections, we discussed how we could move functionality from a monolith to

individual services. However, we didn’t detail how to shift traffic from the monolith to

the new services. This section will detail how we can gradually move that traffic without

a big bang release.

Previously, we discussed that we could shift traffic to the new service once the

new service is fully functional and descope the old functionality. However, we should

guarantee the transition has the necessary quality guarantees. Whenever possible, we

should avoid big bang releases; it is much safer to gradually deliver functionally than

releasing it all at once, in a single moment.

The event-driven approaches we discussed in the previous sections allow us to

build the new services gradually without impacting the current application. Exposing

the data on the event queue also enables the service to asynchronous bootstrap its

database. Since the message queue decouples the service and enables it to process the

information asynchronously, as that process advances, it provides a way to compare the

information in both databases to guarantee the data is coherent. Event-driven queues

also retain the messages even after consumption; if we detect an issue that corrupted the

data, we can simply read the queue from the beginning and regenerate the state. Once

we are confident the data is coherent, we can start to shift requests to the new service, as

illustrated in Figure 2-14.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

77

Figure 2-14.  The proxy between the upstream applications and the downstream
services can route the monolith or new service requests

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

78

We also don’t need to route all requests at once; we can route based on the content;

the proxy can filter a subset of requests to the new service and the remaining ones to

the existing application, guaranteeing a gradual rollout. For example, as illustrated in

Figure 2-14, the proxy can forward part of the requests based on the route. If we consult

reports by country, we could forward requests for a country to the new service and keep

the remaining in the existing application.

If it is impossible to set up a proxy between the upstream systems, we can use the

monolith to serve as a proxy and forward the requests to the new service. We can change

it to receive the request and internally call or send a message to the new service. It’s not

ideal since we will still be using the application we want to discontinue, but might help

as a temporary solution. At the same time, the monolith’s consumers can adapt to the

new services.

We can also apply content routing to messages. If the monolith is already receiving

messages, like the approach in Section 2.5, we can forward a subset of messages to the

new service and the remaining to the existing application. For example, messages with

country code “US” would be consumed by the new service and ignore the others, while

the monolith would do the inverse. We could also use different queues, one for the new

service and another for the monolith, although we would have to duplicate the messages

for both queues. This way is also possible to gradually shift message traffic between the

two applications.

It is also important to maintain a rollback strategy in case things go wrong. Event-

driven queues retain the messages in the queue. If we build systems that rely on those

queues to process their domain logic, it’s often straightforward to roll back the system

and reprocess the messages after the point the issue was introduced. Chapter 7 further

details this rollback strategy.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

79

2.8  Migrating from a Monolith: Two-Way
Synchronization and Living with Two Sources
of Truth
In Section 2.6, we discussed how to feed the monolith’s state after migrating the source

of truth to the new services. In the previous sections, we discussed how to migrate

the monolith’s functionality and data to the new architecture. However, we discussed

use cases where the transition is immediate or spans during a short period. There are

situations where this transition isn’t as immediate, and we might need to maintain

both the old and new architecture for a considerable amount of time. We should always

avoid two sources of truth; it’s complicated and hard to maintain; however, in the real

world, often migrating functionality is messier than simply descoping old functionality

instantaneously.

In any migration to an event-driven microservice, our key goal is to turn the new

service into the source of truth; the entry point of that domain’s information is the new

service. A single source of truth is a fundamental objective we always must aim for in

any situation. However, there are times we must maintain functionalities in the old

application that can’t or are too hard to migrate to in a short period. Functionalities

that span several domains can be hard to discontinue since each domain often belongs

to different teams. Some teams may need to advance in the migration at a different

time than the others. As mentioned in Section 2.7, we should always do this migration

gradually, so even if the timing was right, synchronizing a release between several teams

is more often than not a recipe for disaster. Section 2.6 mentions strategies to keep the

monolith’s state synchronized, but how does that play out when we mix strategies like

those mentioned in Sections 2.3 and 2.6? We could descope the monolith’s functionality

and feed the state back to the monolith in a single moment, but this is risky and such

short time migrations are rare.

When we discussed CDC in Section 2.4, we described it as an interesting approach

because there might be functionalities entangled throughout the whole application.

When the monolith’s domain we are trying to split has logic spread across the entire

application and in stored procedures, it can be exceptionally hard to decouple it from the

rest of the application. Several entry points are often dependent on other domain logic

or on consumers that can’t change to the new service quickly. In the company where we

were trying to migrate the inventory management logic I mentioned in Section 2.4, we

used CDC and it was going well; with CDC, we were able to capture every change and

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

80

synchronize it to the new service. However, that also meant the entry points were still in

legacy. Although we were able to change many of the clients to access the service directly

or proxy the monolith’s call to the new service, some of them were unfeasible due to the

associated coupling and complexity. There were stored procedures that changed stock

that joined a large amount of information from different domains like order and product.

These were also business-critical functionalities; descoping or making them unavailable

for a period of time wasn’t acceptable. We were able to descope them later on and move

them to the new applications but only after most of the other domains left the monolith,

which took years to do so; meanwhile, we had to live with two entry points and two

sources of truth.

Doing so allowed the stock information to be available in the new architecture,

enabling the building of new services and applications on top of that information instead

of legacy applications. This while still maintaining some of the monolith’s functionalities

that we couldn’t move.

Using the same example in Figure 2-2, let’s say the user could edit the reports

generated by the reporting service. The user can edit reports in the new service, but

editions can also be done in the monolith due to functionality we couldn’t move.

Combining the approaches we discussed until now, we could publish changes from both

the monolith and the reporting service to a message queue and both would listen from

those queues, but only the changes that weren’t from that system would be consumed.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

81

Figure 2-15.  A way to maintain both systems synchronized. Both systems
publish changes, and both systems process them but ignore the changes that were
originated by themselves

One of the catches in this solution is breaking the cycle; we can do that, for example,

with a header signaling the origin system. In Figure 2-15, if a user edits a report in the

monolith, the monolith would publish the corresponding event to the message queue.

The event would also need to inform the origin system of that change. The reporting

service would consume that change and publish a similar event signaling the same

change to its queue. The monolith is consuming that queue but ignores the change

because it originated in the monolith. Changes in the reporting service have the same

flow and are published to the service’s queue, consumed by the monolith, published

again by the monolith, and ignored at the service.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

82

We aim to descope the monolith’s message queue; all new services should plug

into the reporting service’s queue. As we descope the monolith’s functionalities, fewer

messages should flow in the monolith’s queue. Once no messages are flowing in the

queue means the monolith no longer has any functionality that affects the reporting

service, and we finalized the migration. Then we should also descope the monolith’s

queue.

There are also other details we need to consider; for example, if the user changes the

same report at the same time in both systems, how would we manage the collision? We

should identify events with a version or timestamp and the latest should prevail. So when

consuming the messages, the systems would need to validate the message date and only

update more recent changes than the system’s internal state. However, these challenges

aren’t exclusive to two sources of truth; any horizontally scalable event-driven system can

encounter parallel changes due to concurrency between instances or loss of the event’s

ordering. We will discuss approaches to these challenges in Chapters 5, 6, and 7.

Maintaining two-way synchronization, in the long run, is extremely hard and the

source of ongoing issues. Not only are incidents harder to trace since they can originate

from entirely different systems, but new functionalities are also limited to the monolith’s

design choices. The domain logic also needs to stay coherent between the two systems. It

is possible to evolve the new system without affecting the monolith due to the decoupled

nature of the message queues, as long as the message’s contract remains the same, but

only until a point. Most of the time, we can avoid having two sources of truth, and we

should do the utmost possible to prevent it. It is a solution we might keep in our toolbox,

but near the bottom, other solutions are often preferable.

2.9  �Summary
•	 An event-driven architecture has a complexity boost associated with

it, and we should question whether it is the best option for our use

case. We should always ask ourselves what we are trying to solve and

have a clear reason to advance with the migration.

•	 We should always strive to do an incremental migration. Doing so

will allow us to face the challenges associated with it in a sustainable

manner.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

83

•	 Often good candidates to be migrated first are modules with fewer

dependencies and that largely benefit from the migration.

•	 Event-driven provides a high decoupled solution to free data from

a monolith. It also provides the tools to build the new services

asynchronously without impact to the monolith and the teams

working with it.

•	 When functionalities are too coupled, too complex, or simply can’t be

migrated seamlessly, CDC is a valid option to access the data changes

and convert them to events.

•	 We can use events to trigger both changes in the monolith and new

services. Doing so places the source of truth in the events further

promoting the mindset shift to adopt events as a single source of

truth.

•	 When other modules are depending on the data of the functionality

we are migrating, we can use events to feed that state inside those

applications. A view of the state can be maintained both in the

monolith and new services and be used to solve those dependencies.

•	 Some migrations don’t need to be done fully in a single moment; we

can gradually change traffic to the new applications.

•	 There might be use cases where a full migration can’t be done in a

short timespan and might take several months. It is possible to use

two-way synchronization to maintain the harder functionalities in

the monolith while proceeding with the migration of the remaining

ones. However, it is a complex option with several impacts; we should

always strive for a single source of truth.

Chapter 2 Moving from a Monolith to an Event-Driven Architecture

85
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_3

CHAPTER 3

Defining an Event-Driven
Microservice and Its
Boundaries
This chapter covers:

•	 Understanding the structure of an event-driven microservice,

associated message patterns, and common topologies

•	 Comprehend DDD (domain-driven design), how to apply it, and its

concepts

•	 Using DDD to extract the domain’s bounded contexts and leverage

the services’ boundaries

•	 How to avoid common pitfalls when designing the aggregate size and

understanding its impact on downstream services

•	 What different characteristics to weight when organizing service

boundaries

•	 Understanding the difference and the impacts of request-driven and

event-driven services

•	 How to decide between adding functionality to an existing service or

creating a new one

https://doi.org/10.1007/978-1-4842-7468-2_3#DOI

86

It’s funny how sometimes computer science feels more art than science. Perhaps

not more, but it often has a soft brush of artistic inspiration mixed with it. We often fail

to see the practical value in learning all the computer science fundamentals in class or

learn about new patterns in books or articles. Usually, we use them as building blocks

or extract their underlying ideas to combine and adapt them as solutions to unique

problems. They often serve as an inspiration to other solutions in different contexts.

Sometimes creativity plays a role, and your personal style gets associated with it. How

often have we looked at someone’s code and underline the invisible traces that define a

coworker’s style? We can feel the style the same way we would if we read several poems

of a unique author – who is probably sitting next to you, trying to exit Vim.

When defining domains and boundaries, it can also get fuzzy and often feels more

like art than science. There isn’t a magical formula we can apply and obtain a result, but

there are approaches that can help us extract business domains and decide what is the

best approach. This chapter approaches those strategies and helps us understand the

application’s domain and translate it into a logical model.

In Chapter 2, we discussed how to extract functionality from a monolith to a

new service. The different types of services and topologies we can build in an event-

driven architecture are the building blocks we can use to evolve that architecture.

Understanding them is paramount to maintaining and building these architectures.

As we evolve the architecture and depend on several different components, the need

arises to define the services’ boundaries, how they interact with each other, and what

domain they manage. Different organizations have different priorities; often deciding the

adequate boundaries is a tradeoff between the different approaches. We will discuss the

various considerations when defining boundaries in Section 3.2. DDD is an approach

we can use to understand and extract the domain concepts. When modeling complex

domains, the entity’s size (the aggregate in DDD terms) is often hard to measure. In an

event-driven architecture, how we design it can have repercussions to the downstream

consumers; this impact is detailed in Section 3.4.

Adding new functionality usually falls into one of two choices, creating a new service

or adding functionality to existing services. Sometimes the choice isn’t clear; the high

decoupled nature of event-driven architectures promotes the birth and decommission

of components. However, continuously adding services further increases the system’s

complexity. Section 3.6 further details these tradeoffs.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

87

3.1  Building Event-Driven Microservices
This section will discuss the typical architecture of an event-driven microservice and its

standard modules. We will discuss the typical messaging entities and messaging patterns

that we will use in the rest of the book as building blocks in the architecture. At the end of

this section, we will discuss common pitfalls, their impacts, and how to avoid them.

In Chapter 2, we moved functionality from a monolith to event-driven services. We

represented it with a square, but what is inside that square? Each service is a single-

process application, and inside it, the code is organized typically according to an

architecture. Usually, we divide this architecture into layers. One of our missions is to

model business concepts and processes into code. As the business grows, the application

also grows in complexity. Organizing the application with logical layering is one way to

manage that complexity.

Dividing an application into layers according to its responsibilities aligns with the

separation of concerns principle. It’s also a way to help developers understand the

application and easily find functionality. Maintaining the same architecture through

several microservices minimizes the overhead of understanding an application and

implementing new functionality. If someone never worked in one service and now has

to change it, although the domain might be different, the application’s organization is

the same, so it is easier to understand.

We can use a layered architecture to encapsulate functionality inside each layer,

promoting the code to change without affecting other layers. The functionality can also

be reused throughout the application standardizing common functionality in a single

implementation. We can also use a layered architecture to limit coupling and restrict

how layers communicate with each other. They also become useful to develop unit tests

since the separation of concerns promotes simple single-purpose tests.

There are several types of layered architectures. Due to the natural decoupling of

event-driven services, we don’t need to use the same in every service, as we don’t need

to use the same technology in every service either. However, it is advisable to choose

one and maintain the consistency between services. As we will discuss in Chapter 10, if

other teams need to change services in the ownership of other teams, the development

is more straightforward if every service has similar architecture. If the structure of

applications is familiar, the focus of discussion shifts from technical details to the

domain implementation, which is often more valuable.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

88

3.1.1  �N-Tier Architectures
The most common architectures feature a separation of the application code into several

layers. There are several variations; the number of layers depends on the application’s

needs (thus the name N-tier). Figure 3-1 illustrates a typical three-tier architecture.

Figure 3-1.  Three-tier application architecture with three layers: presentation,
application and domain, and data

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

89

In this architecture, the presentation receives all external requests; if the

microservice has a UI, we also place it in this layer. Microservices without UI expose an

API that other applications and services use to access the data. Typical event-driven

microservices communicate through events. Event handlers receive the events and call

the other layers to process their business logic. The presentation layer only interacts with

the application and domain layer, which has all the business logic. The application and

domain layer manages the state through the data layer, which has all the data access

objects and the database technical implementation.

The most important part is the business logic that resides in the application and

domain layer. One of the drawbacks of this architecture is the direct dependency of

the application and domain layer to the data layer. Often this means the business logic

depends on data access, which shouldn’t be relevant for the domain logic itself. The

database implementation details often influence the implemented business logic. The

existence of a database also often becomes a required prerequisite to the business logic.

Testing might even become an issue due to database coupling. Often to test the business

logic, we require a staging database; we can avoid that with dependency injection, which

often leads to a different kind of architecture that we detail in the following.

3.1.2  �Clean Architecture
An alternative to N-tier architecture is Bob Martin’s clean architecture.1 As we mention

in the following, if we adopt the dependency inversion principle (the I in SOLID2)

and depend upon abstractions rather than implementations, we often reach this

architecture. It is also designed to build the domain logic in the core of the application.

Domain logic shouldn’t depend on or reference anything else; the order management

business logic doesn’t need to know we use SQL, for example.

Other architectures are typically designed upon the same practical concept the clean

architecture translates. The hexagonal architecture3 (also named ports and adapters) or

the onion architecture4 provides a similar approach based on the same principles.

1 See Robert C. Martin, “The Clean Architecture,” August 13, 2012, https://blog.cleancoder.com/
uncle-bob/2012/08/13/the-clean-architecture.html

2 See “SOLID,” https://en.wikipedia.org/wiki/SOLID
3 Further details in “Hexagonal architecture (software),” https://en.wikipedia.org/wiki/
Hexagonal_architecture_(software)

4 Further details in Jeffrey Palermo, “The Onion Architecture: part 1,” July 29, 2008,
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Hexagonal_architecture_
https://en.wikipedia.org/wiki/Hexagonal_architecture_
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

90

They strive to provide a clean separation of concerns through the segregation of

the software into layers. They also emphasize the business logic as the focus of the

application. The business logic also has no dependencies or references, the outer

layer references the domain models, but the domain models don’t reference anything.

Figure 3-2 illustrates a typical microservice with the clean architecture.

Figure 3-2.  An application using clean architecture; the code dependencies are
always inward. The domain layer is the core of the architecture and hasn’t any
references to other layers

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

91

We only reference external dependencies in the outer layer. Code in each layer can

solely depend on references to the inner layers. The core layer holds the domain logic

and domain entities and can’t reference anything in the outer layers. This way, anything

in the outer layer can’t impact the inner layers. Outside layers typically have concrete

implementations, while the inner layers grow more abstract as we advance to the core.

Figure 3-2 only shows three layers, but it is just an example; an application can have as

many layers as needed. The application layer, which holds the application business logic,

can have an additional layer with interface adapters in charge of adapting data between

the presentation layer and application logic.

Having the external dependencies on the outer layer means we reference every tool,

driver, or framework in that layer. Having external dependencies referenced only on the

outer layer promotes the separation of the application and domain logic from external

tools. Often, the limitations of these frameworks or technologies entangle themselves

on the application’s logic. Moving them to the outer layer promotes the modeling and

evolution of the logic without the influence of outside tools. We often hear “If we need

to exchange databases, we can do it without affecting the inner logic.” Separation of

concerns is an essential coding principle, but how often do we exchange databases

anyway? Database constraints tend to leak toward application logic (e.g., managing

transactions between several models) or framework updates that span all applications.

The outer layer helps prevent these common issues.

Also, domain logic shouldn’t know anything about what we implemented in the

outer layers. The independence from outside references (like the data reference in

the N-tier architecture) helps the business rules evolve as needed and reflect what the

business intends. Changes in how we authenticate users, how we publish events, or

how we log changes shouldn’t affect the business rules. Having this kind of separation

and isolation, they won’t. Figure 3-3 illustrates two services using this architecture,

interacting through a message queue.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

92

If, for example, the messaging framework we are using in both services becomes

deprecated, upgrading it will only affect the outer layer. It eases the replacement of

external dependencies, and it also promotes single-purpose unit tests in each layer.

We can apply to each microservice the clean architecture. Still, as we add more

functionalities and new services, we might create smaller services that aren’t that rich

in domain or application logic. First, as we mentioned in Chapter 2, it is advisable to

develop services that encapsulate a subset of the system but a more extensive and

autonomous domain. Creating larger coarse-grained services, in the beginning, will

naturally contain the expansion of the number of services to a sustainable pace. They

will also depend less on external services that are easier to manage while building the

architecture. It will reduce the number of remote calls each service has to do and lessen

the impact of weak consistency since each service will manage its domain locally. As we

mentioned in Chapter 2, we should gradually build the system, adding coarse-grained

services first and then, when needed, advancing to fine-grained services with lesser

responsibilities.

As we evolve the architecture and create more fine-grained services, we might have

smaller services that own part of the overall architecture’s responsibilities. Figure 3-4

illustrates an example where there is a service to manage the domain logic.

Figure 3-3.  Two event-driven services with clean architectures interacting through
a message queue. The domain is isolated from the way the applications send events
and access data

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

93

Other services like the read model and process manager operate the application

logic, and the anti-corruption layer works as an adapter between external and internal

information. The API service exposes the boundary’s information.

There are pitfalls associated with having fine-grained services that we need to

avoid. Such a small scope often increases the risk of having lockstep releases, where a

functionality spans several services and requires coordination to deploy them in the

live environment. Microservices should be autonomous, and a release of one service

shouldn’t affect others. Also, services with a small scope will rapidly increase the

number of services, increasing the system’s complexity, and exponentiate the challenges

of distributed systems discussed in Chapter 1. We can contain those challenges by

organizing the services into boundaries, as illustrated in Figure 3-4. However, creating

coarse-grained services first and using fine-grained services later is a better approach to

decompose the system incrementally.

Figure 3-4.  As we create more fine-grained services, a subset of services inside a
domain boundary might map with one or a subset of clean architecture layers

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

94

3.1.3  Event-Driven Microservices: Durable vs. Ephemeral
Message Brokers and GDPR
The availability of messages after consumption and the underlying messaging semantics

are the foundation for data streaming and provide a novel way to share data. Message

brokers can have durable or ephemeral messages depending on the broker we choose.

Typical messaging has ephemeral messages; however, having durable messages

potentiates the useful use cases we mentioned in Chapter 1 and which we will detail

throughout the book. In this section, we will discuss the two approaches of using durable

or ephemeral message brokers.

Traditional message brokers are built to have short-lived messaging; published

messages typically are removed once consumed. A famous example is RabbitMQ that is

designed for destructive consuming semantics; once the consumer acknowledges the

message, the broker removes the message from the queue. RabbitMQ also features5 an

append-only log data structure and will provide non-destructive messages besides the

current destructive semantics.

With the rise of the Internet and continuous data growth, event streaming became

increasingly relevant, along with durable message brokers. Durable messages remain

readily available even after processed by the consumers. Streaming is about enabling

a distributed and ordered flow of events. Durable messaging allows the stream to be

processed as many times as needed. A famous example is Kafka, which is a distributed

event streaming platform and provides a persisted event log. Like the event stream in

Kafka, durable events are always available even after an application has consumed them.

Other consumers can access the event stream, or existing consumers can reprocess the

same messages if needed.

As with many of the technologies we use, the decision is about weighing tradeoffs.

Using durable or ephemeral message brokers in every use case might not always be

the right decision; it depends on what we need them for and its use case. Ephemeral

message brokers like RabbitMQ have a high focus on point-to-point communications

and routing messages to specific channels. Short-lived messaging is usually best for

consumers who can process the messages fast and don’t retain the broker’s messages

for long periods. These brokers often struggle when large numbers of messages pile up

5 See Brian McClain, “Understanding the Differences Between RabbitMQ vs Kafka,” November 16,
2020, https://tanzu.vmware.com/developer/blog/understanding-the-differences-
between-rabbitmq-vs-kafka/

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

https://tanzu.vmware.com/developer/blog/understanding-the-differences-between-rabbitmq-vs-kafka/
https://tanzu.vmware.com/developer/blog/understanding-the-differences-between-rabbitmq-vs-kafka/

95

in the queues and are best used for instantaneous low-scale communications. In our

experience using RabbitMQ for years in production on a high-throughput platform, we

struggled sparingly with message load peaks that affected the whole cluster. When the

entire cluster struggles, it will likely affect unrelated services and have daunting impacts,

even imperiling the whole platform. Looking back, the use case for RabbitMQ might not

be the best in that situation because we didn’t need short-lived messaging.

For event-driven architectures, durable message brokers have high synergy with

the event-driven mindset. Exposing the application state and maintaining it for

any consumer in the form of events potentiate powerful possibilities and provide a

sustainable way to share data throughout the company. Brokers like Kafka can also

horizontally scale and manage vast amounts of messages, often achieving6 better

throughput and performance than typical short-lived message brokers. However, non-

destructive message semantics usually has an associated cost and overhead of adding

new brokers due to the need to replicate the data between nodes. Overall, event-driven

architectures greatly benefit from durable message brokers, and many use cases become

notoriously simple by having one. As we will see, many of the patterns we discuss in this

book benefit from durable message brokers.

�The Right to Be Forgotten and Other Security Concerns

Durable message brokers imply a challenging concern about securing the data. There

is a lot of value in every event being available in the broker for any consumer even after

consumption and requires dedicated security strategies. Typically, data that is no longer

needed often is a security risk. Durable event brokers also raise several challenges

guaranteeing compliance with regulations like GDPR (general data protection

regulation). Compliance with the right to erasure or right to be forgotten is particularly

challenging in an event-driven mindset. As we discussed, durable event brokers persist

the event stream and provide access to it to any consumer. When a user wants to be

removed from the system, we also store data associated with the user in the message

broker, and we need a way to destroy that data. Ephemeral message brokers naturally

comply with these requirements since they remove messages after consumption.

6 See “Benchmarking Apache Kafka, Apache Pulsar, and RabbitMQ: Which is the Fastest?”, August
21, 2020, www.confluent.io/blog/kafka-fastest-messaging-system/

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

http://www.confluent.io/blog/kafka-fastest-messaging-system/

96

Deleting an entity in an event-driven mindset is often accomplished by an event

signaling the deletion of an entity (e.g., if the entity is an order, the service deleting

the order would publish an order deleted event). This concept is often referred to as a

tombstone; Cassandra, a popular NoSQL database, for example, when deleting a record,

doesn’t immediately purge it from the disk; instead, it writes a value signaling the record

was deleted.

Theoretically, event streams reflect what happened, the history of the entity with

all its evolution; every event is the reflection of a unique operation and shouldn’t be

deleted, the same way we can’t delete history and what happened in times past. Many

durable event brokers don’t have straightforward, built-in ways to delete specific events

and often require ad hoc solutions.

For example, the right to be forgotten introduces a unique challenge; if we shouldn’t

delete events, how can we comply with that requirement? Ephemeral message brokers

deal with this naturally since the broker effectively deletes messages after consumption.

Since the broker deletes them, it organically complies with the requirement, and we do

not need a strategy to deal with data deletion.

An approach to solve this challenge is using crypto shredding. Crypto shredding is

a strategy to destroy data by losing the encryption keys needed to understand the data.

Encrypted data can only be understood by decrypting it with the corresponding key.

By deleting or overriding the key, the data is inoperable. Encryption is also a common

requirement and needed to achieve compliance with GDPR, having a synergy between

encrypting the events and using crypto shredding to destroy data. Figure 3-5 illustrates

how we could apply crypto shredding to event-driven services.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

97

Figure 3-5.  Example of using crypto shredding to destroy messages associated
with a user

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

98

The order service encrypts the data using a key in a key management system. Each

user has a different key, and we encrypt each user’s events with the respective key.

The inventory service to use the data has to decrypt the events by using the same key

used to encrypt. If a user wants to be removed from the system, we can destroy the key

associated with that user and the data will be unusable.

Applying this strategy to a complex architecture with several microservices can

become challenging since each one of them would have to implement this strategy.

Often, not all services need encryption and deal with sensitive data. Identifying and

isolating the sensible data to the services that need them and applying this strategy

only to those services can also be a good approach. There is also the option to use this

strategy at the infrastructure level avoiding the implementation effort in all services. We

can proxy the requests to a common module which has the responsibility to encrypt

the data before publishing them to the broker. David Jacot details this approach in an

interesting presentation7 by shipping containers with that additional module (known as

a sidecar pattern) using Kafka.

3.1.4  Event-Driven Message Types
Traditional messaging uses messages somewhat indifferently; they are just a means

to propagate data. In event-driven architectures however, there are different types of

messages that have different purposes and different meanings. In this subsection, we will

discuss the different types and in which situations they should be used.

Messages are usually composed of a header and a body. We can use the header

to pass additional information common to all messages, much like HTTP headers. A

typical example is the correlation id, which we often use to link several messages related

to the same entity. For example, if we create a product and then edit its brand and

category, each of the changes would publish a different event (e.g., the generated events

correspondingly: ProductCreated, ProductBrandChanged, ProductCategoryChanged);

all three events could have a header with the id of the product signaling they are all

related to the same product. Although there isn’t a formal definition of what headers

should a message have, we benefit from having a predefined set for the entire system.

The correlation id we discussed before is a good example, but having other message

7 See David Jacot, “Handling GDPR with Apache Kafka: How to Comply Without Freaking Out?”,
May 13/14, 2019, www.confluent.io/kafka-summit-lon19/handling-gdpr-apache-kafka-
comply-freaking-out/

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

http://www.confluent.io/kafka-summit-lon19/handling-gdpr-apache-kafka-comply-freaking-out/
http://www.confluent.io/kafka-summit-lon19/handling-gdpr-apache-kafka-comply-freaking-out/

99

headers like a message id that uniquely identifies each message can be useful for

debugging purposes. The headers’ information must be chosen carefully in order to

avoid flowing information that will have logic associated on the consumer side, like

specific flags for specific processes. Often this kind of information can be forgotten,

leading to errors on the consumption process or even assuming default values for the

headers; Chapter 8 will further detail this subject. Having an event version or timestamp

is also helpful for managing idempotency, as we will discuss in Chapters 5 and 6.

The message body has the full information we want to publish. Messages can be

commands, events, or documents. Queries are also a common concept, and typically,

they aren’t a message but a common concept in event-driven architectures.

•	 Commands are orders to perform a given action. We should

name them with a verb in the imperative form, for example,

CreateOrderCommand. A command is a request to a given service

to perform an action and thus can be rejected or fail a validation. We

can change aggregates by sending a command to perform a given

action in that aggregate and often reflect a user’s action. Typically,

commands affect one service and a specific domain; they usually

aren’t published to several subscribers, only one. Although often

commands are messages, a command can also be an HTTP request

if the service receives changes through an API instead of a message

broker.

•	 Events notify something that has changed in a given domain or

aggregate. They are named in the past participle verb and inform that

something has happened, for example, OrderCreatedEvent. They

are facts and, unlike commands, aren’t liable to be rejected; they

are something that already happened. Events are the most common

block of event-driven architectures and are used to pass information

and signal relevant changes throughout the architecture’s

components. They are often published to several consumers and can

accommodate new consumers in the future, unlike commands that

are related to a single system.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

100

•	 Documents are much like events; the service publishes them when

a given aggregate or entity changes, but they contain all the entity’s

information, unlike events which typically only have the information

related to the change that originated the event. Although they often

are triggered by changes in the aggregate, they often don’t give

information about what change triggered the document, unless we

specifically add it to the document. If someone changed an order

address, the generated event could be OrderAddressChanged and

contain the information about the new order’s address. The same

change could trigger a document, for example, OrderDocument,

which would have all the order information; each receiver would

have to interpret it in the way that made sense to that service.

•	 Queries are requests of information issued to a given system to

obtain the service’s data. Typically, they aren’t messages and are

often synchronous requests like an HTTP request. They also don’t

change state; they simply request information.

Figure 3-6 illustrates an example of an interaction between these entities.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

101

A user placing an order would query the product’s stock to the inventory service and

then trigger a CreateOrderCommand by submitting an order that would be consumed

by the order service. Once the service creates the entity, it publishes a CreateOrderEvent

and an OrderDocument which are consumed by the inventory service and the

notification service, respectively. Commands, events, documents, and queries are the

foundation for the patterns and topologies we discuss further in this chapter.

Figure 3-6.  The interaction between commands, events, documents, and queries

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

102

3.1.5  Event-Driven Microservices: When to Use
Documents over Events
In Subsection 3.1.2, we discussed we could use either events or documents to notify

changes in entities. Choosing to publish an event or a document can be debatable, and

they often accomplish the same goal. However, they are fundamentally different, and we

should use them in specific use cases. In this subsection, we will discuss several topics

that will help us decide where to use documents or events.

Events represent a specific change and have domain value by themselves since they

represent something the user did or a change in the domain. Documents just inform

the entity’s latest state, so they lose the domain value carried by the event’s meaning.

For example, in Listing 3-1, there is an example of a partial event and a document

representing the change in an order’s address.

Listing 3-1.  OrderAddressChanged vs. OrderDocument

1 OrderAddressChanged

2 {

3 OrderId: 15251212,

4 Address: "9980 Rock Maple Street",

5 UserId: 12162

6 }

7

8 OrderDocument

9 {

10 OrderId: 15251212,

11 Address: "9980 Rock Maple Street",

12 OrderLines: [

13 {

14 ProductId: 1147421,

15 Quantity: 1,

16 }

17],

18 OrderedAt: "2021-01-23T18:25:43.511Z",

19 UserId: 12168

20 }

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

103

If the receiving system needs to react only to changes in the address, it is more

beneficial to use the event. For example, if a billing service had to update the address in

the invoice, whenever the user changes the order’s address, it would be easier to handle

the OrderAddressChange. Using the OrderDocument would need to save the orders

internally after each event or request the order from the order service to understand the

address had changed.

However, documents often simplify consumers that need more information from

the entity than an event would make available. For example, if we need to notify the user

with all the order information every time an order changes, we would benefit from using

the document in Listing 3-1 since all the information is available in the message. It would

prevent the service to request or store the additional information that wasn’t available

in the event to send the notification; this would greatly simplify the consumer. With

partial events, it also becomes complex to maintain all the entity’s data. For example,

if the order entity would grow and have more and more properties, it would probably

imply that we needed to create more and more partial events. If the consumer needs to

maintain all the order data, it is more complex to handle several different events than

one with all the information. Another advantage of using documents is that if the user

changed the address and quantity simultaneously, that would mean two different partial

events. In contrast, if we use the document, we only need to publish one.

An exciting approach with Kafka is to use compacted topics. Compacted topics

in Kafka have a periodic mechanism to remove messages with an older version for a

given id, maintaining only the latest ones. So if we combine compacted topics with

documents, we have a message queue with all the orders’ information, much like a

database table but in the form of events in a medium oriented to be shared with other

consumers. In the case of the example in Listing 3-1, we could use the order id and

publish the OrderDocument for each order; this way, the topic would have all the

orders’ information, much like the lines on a SQL table but in the form of messages

ready to be shared. Consumers can plug to the topic and stream the data directly to

their application. This way, we provide a way for applications to receive the data without

impacting the origin service and its database. Since the broker is durable, we can read

the topic from the beginning if we need to replay the data or new consumers need

initialization.

Overall, it becomes simpler to use documents when we need a large part of the

entity’s data. However, we lose the meaning and the inherent change behind the event;

if the consumer needs that meaning to process its logic, it will have to infer the meaning

internally. In those cases, we are better off using partial events. It is often more useful to

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

104

use events that reflect the user’s intent, and this should be our go-to approach. But we

always need to have the event consumer’s needs in mind and adapt accordingly. In some

use cases like we mentioned before, documents are useful; we will further detail this

concept in Chapter 8.

3.1.6  �Common Event-Driven Messaging Patterns
In Subsection 3.1.2, we discussed the types of messages and how they differ from each

other. This subsection will discuss how they are typically used and the different patterns

they are organized into.

As we mentioned in Chapter 1, event-driven architectures are composed of services

that publish events to event brokers. Other services react to those events to accomplish

their business rules. The services are built to be horizontally scalable, and several

instances of the same service can consume from the same queue, having the load

distributed between all of them.

Figure 3-7.  Typical messaging patterns used in an event-driven architecture

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

105

Figure 3-7 illustrates a typical architecture, much like the examples we discussed

until now, using an order, an inventory, and a notification service. Changes are triggered

by the UI, where the user changes, for example, its order information. To change the

order, the UI sends a command to the order service, which publishes an event that is

handled by any application that needs order events. Notice, however, several squares are

representing the services, meaning each service can have multiple instances.

�Send/Receive Pattern

The interaction between the UI and the order service is a send/receive pattern. Typically,

commands are requests to change a given entity or aggregate information and have

a very specific receiver. The request to change the data is only relevant for the order

service; no other service needs or should receive that command. Send/receive is

typically a point-to-point communication between two services with a specific purpose,

often a request to do a given action on that service.

It is essential to distinguish the publication pattern along with the types of

events. Commands are typically send/receive; events are typically publish/subscribe.

Commands often have a very specific purpose and have a close relation with the domain

they are changing; it is important to guarantee only the desired service reacts to the

command.

�Publish/Subscribe Pattern

The interaction between the order service and the inventory and notification service

is a publish/subscribe pattern. The order service publishes changes that happened

in its domain, and interested services subscribe to those changes and process them.

As the previous pattern, typically they are fire-and-forget; the originating service only

guarantees that the message was published to the broker.

Multiple services can handle the events and will process them at different rates. Each

service might have several instances, as depicted in Figure 3-7, and each instance will

receive various events and process them at different rates in parallel. This is the basis

of horizontal scalability, which also introduces complex challenges on how to handle

the concurrency between the several instances, out-of-order events, and eventual

consistency associated with it, which we will discuss further in this book.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

106

�Request/Response Pattern

The interaction between the UI and the order service is intrinsically asynchronous due to

happening through a message queue. The UI also doesn’t know when the changes took

place. The UI can notify the user the changes took place by handling the corresponding

event. Once the service handles the command and applies the changes, it will publish

an event signaling those changes. The command and the event can be correlated by an

id which can be used by the UI to understand that the requested changes were applied.

This way, the UI can be a publisher of commands and a receiver of events, implementing

the request/response pattern. The changes can be linked together by a correlation id that

would be published in the command and transmitted in the event. Figure 3-8 illustrates

how the patterns we discussed before can be applied conceptually.

Figure 3-8.  Simple examples of the patterns we discussed before using the same
example as before

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

107

The UI implements both send/receive and request/response patterns. It sends a

command which is received by the order service and handles the event generated by

that command. The publish/subscribe pattern is implemented by the inventory and

notification service by handling the events published by the order service.

3.1.7  �Event-Driven Service Topologies
As we discussed before, event-driven services typically react to events; the name kind of

gives it away, doesn’t it? However, architectures composed exclusively of microservices

that interact through events are rare. In the real world, often there is a mix between

synchronous and asynchronous requests. As we discussed, event-driven indeed isn’t a

silver bullet, and even in an event-driven architecture, there are simple use cases that

don’t benefit from the added complexity of asynchronous interactions. This section will

detail the ordinary interactions between services we often find and implement.

Typical CRUD (create, read, update, and delete) microservices have synchronous

interactions. Users and other applications interact with them through an API to access

their data. For example, if a service exposed a REST API, we could do an HTTP POST to

create a given resource and an HTTP GET to obtain it, as pictured in Figure 3-9.

Figure 3-9.  We can request and change information synchronously from CRUD
services

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

108

An essential property of this topology is we obtain the response for our requests in

a synchronous manner. If we create a resource, an order, for example, we immediately

receive the response for the create request. If the service needs to validate the request

to create the order, the service making the request obtains immediate feedback. Other

asynchronous topologies we discuss next might need more complex ways to give

feedback to the service issuing the request. This topology is straightforward but lacks the

advantages of event-driven services; it should be applied to simple low-scale use cases.

Simple domains with low amounts of data and fewer dependencies from other services

typically benefit from using this approach.

CRUD services can also publish events, as depicted in Figure 3-10. We can still evolve

typical synchronous services to publish events to allow other services to react to them.

Adding publishing capabilities in existing CRUD services can be a way to include existing

services in a new event-driven architecture.

By publishing the information to an event queue, we can benefit from the advantages

of event streaming and share the data in the form of events to every other service that

needs it. However, this topology and the one before suffer from the disadvantages

we mentioned in Chapter 1. For example, suppose there are many services with

synchronous APIs that call each other. In that case, we slowly but surely grow to a

distributed monolith, where a failure in one service can cascade down to other services

and affect the whole architecture.

Figure 3-10.  CRUD services publishing events when their data changes

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

109

As we mentioned in Subsection 3.1.2, commands are a type of message that request

a given change to a service. Instead of receiving requests to change entities through

a synchronous API like the examples we discussed before, we can receive through

commands, as illustrated in Figure 3-11.

We send commands to a message queue, and like the example we discussed earlier

about the order service, they request changes to a given entity. Once the changes

are applied, the service publishes an event signaling those changes. This makes the

service fully asynchronous and fully decoupled for other services. However, the fully

asynchronous nature of the service can increase the complexity of different use cases

that would be straightforward using a synchronous approach. For example, since

we send each change in the form of a command to a message queue, there is no

synchronous feedback to the user or system that triggered the request. If the command

validation fails, giving feedback on why the verification failed can be tricky.

Services can also handle events and publish commands to other services, as

illustrated in Figure 3-12. These services are typically called process managers or

orchestrators. They react to information on different domains and instruct the services

in its domain to react to those changes by sending commands. For example, in the order

service, each order is an aggregate, and each command should only affect one aggregate

Figure 3-11.  Services can be fully asynchronous and receive changes in the form of
commands. Both the input and output are asynchronous

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

110

or entity. If a user changed its address on the user service, the order domain might

need to reflect the change on all existing user’s orders. To change each order, a process

manager could react to the event and publish a command to each order.

Instead of sending a command, this topology can also make a synchronous request

to the target service depending on how the service exposes the functionality to change

its resources.

The mix between these topologies and the synchronous and asynchronous

interactions between the several services often raise difficult challenges in dealing with

the eventual consistency associated with asynchronous services. Since some services

might react to an event and facilitate APIs to expose their information, the request to

obtain the information is synchronous, but the data is being changed asynchronously.

The inherent eventual consistency can be troublesome to deal with, not only from a user

perspective but also for other services consuming that information. How to deal with

eventual consistency is further detailed in Chapter 5.

Figure 3-12.  Some services can handle events and publish commands to other
services

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

111

3.1.8  �Common Event-Driven Pitfalls and Anti-patterns
Combining the patterns and topologies we just discussed sometimes originates in some

common pitfalls. Most of them are very inconspicuous, and we might not notice they are

there immediately, but they jeopardize the evolution of the architecture in the long run.

In this subsection, we will discuss some pitfalls we often see people fall into.

�Faking Synchronous Responses

As discussed in Chapter 1, an important consequence of event-driven architectures is

the asynchronous nature they imbue in the systems. Often changes requested to the

applications aren’t reflected instantaneously, and feedback about the request often isn’t

returned in the same request flow. Often REST APIs, instead of returning the HTTP status

codes of 200 (OK) or 201 (Created), can return 202 (Accepted). This status code means

the system accepted the request; it was issued to be processed internally but wasn’t yet

processed. Often APIs convert requests to commands and send them to a queue; the

response to that command is processed when the service handles that command. Since

it is a queue, the time to respond can vary depending on the system’s load; if there is a

peak in load, the service might lag behind the number of messages being produced and

might take a while to process it.

Since the response to the original request was accepted, retrieving the feedback

to the issuing system or user might be problematic. For example, suppose you edit

your billing address on an eCommerce platform, and after editing, the changes aren’t

reflected right away. In that case, it might be a bit annoying, but it probably isn’t critical.

However, in other use cases, it might be; if other services depend on that information,

they might infer state based on stale information. In those cases, we might be tempted

to fake synchronous responses by blocking the request and polling until the change is

reflected.

Forging synchronous requests is an approach we often see, and although it gives a

feel of being more consistent, it is very susceptible to issues when there is a higher load

in the system. The minimal increase in message production might trigger timeouts in

the blocked requests waiting for a response. Overall, it makes the system more brittle

and susceptible to failure. If we use an event-driven approach, we should embrace

the asynchronous nature and the eventual consistency they imply and avoid faking

guarantees that no longer exist. Chapter 5 details strategies to deal with these issues.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

112

�Command Publishing

As we mentioned in Subsection 3.1.2, commands target a specific service and a specific

domain. Sometimes we might feel the need to publish a command to several different

services. This often implies that either the command has too much responsibility or

there isn’t a clear domain separation between the services. Services should react to

events, to something that already happened in a domain, and they need to do something

about it. Several different services shouldn’t handle a request to change a given entity.

They should react to each other rather than receiving the same order.

For example, if we bought a product in an eCommerce platform, it would trigger a

command to create an order. Still, only the order service would handle that command;

the inventory and notification service wouldn’t know the command. Neither should they

because the order creation request might be rejected. The only service responsible for

managing the order domain is the order service. The other services should only react to

things that already happened in that domain, like the order created event.

�Passive-Aggressive Events

Events inform that something changed in some service. A common pitfall is to imbue

an event with a hidden responsibility to do something in another service (Martin Fowler

mentions this pitfall in this8 article). Much like when my wife states that there are dirty

dishes in the sink, she is stating the fact that there are dirty dishes in the kitchen, much

like an event, but it has a hidden message behind it – that I really should do the dishes.

This pitfall often happens when an event from a service needs a given action to

happen in another unrelated service. The change is typically modeled as a command,

but the system that receives it needs other services to perform the action and publishes

an event requesting that change. An event shouldn’t request anything; it is a statement

of a fact. To coordinate changes between several services, we should use different

strategies. Although there is a gray area when designing events and guaranteeing we

are not implementing passive-aggressive events, when we need to coordinate changes

between several services, we should be concerned in ensuring the visibility and

reliability of the flow of the messages and accomplishment of the overall process. To do

that, we often need to implement a Saga or a process manager, which we will discuss

further in Chapter 4.

8 See Martin Fowler, “What do you mean by “Event-Driven”?”, February 7, 2017,
https://martinfowler.com/articles/201701-event-driven.html

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

https://martinfowler.com/articles/201701-event-driven.html

113

3.2  Organizing Event-Driven Microservice
Boundaries
Event-driven microservices are highly decoupled from each other, which enables

changing a service without affecting other services. The ability to change and deploy

changes independently is a pivotal characteristic to support a rapidly growing and

evolving business. As the system grows, the complexity can hamper our efforts to achieve

a highly evolutionary and decoupled architecture. Organizing and defining boundaries

between the growing number of services becomes a main concern. This section will

discuss the different approaches to defining microservice boundaries.

Chapter 1 discussed how event-driven architectures have a highly decoupled nature

due to using events as a form of communication and as the source of truth. However,

as the system grows and becomes more complex, we shouldn’t take this characteristic

for granted. Even when decoupled by a message queue, if we need to repeatedly add

functionality that sprawls several services, they will often depend on each other's changes.

This can easily lead to gridlock releases where several services need changes from other

services to be released. They often need a strict order of releases and highlight complicated

dependencies between a complex network of services. We can contain these dependencies

if services have clear boundaries between them, much like the boundaries we create inside

an application to separate the application logic and database logic.

There are several approaches to defining a microservice boundary. A good rule of

thumb is code that changes together stays together. In Chapter 2, we deconstructed

a monolith by using a domain-driven approach. We believe this is a sensible way to

approach a boundary definition. Domains tend to be more stable than other types of

approaches, and boundaries defined by having the company’s domains in mind tend to

accommodate changes without propagating them throughout the whole architecture.

By drawing boundaries around a domain, it gives the space to evolve the domain and, at

the same time, limit the impacts on other domains. They also tend to correlate well with

the company’s organizational composition; often teams are arranged around domain

concepts, which translates well with an architecture with boundaries around those

domains. Domain-driven design relates well with this kind of organization, and we deep

dive into it in Section 3.3.

There are other approaches to organizing boundaries; you will often find that

defining those boundaries and understanding where to fit new functionality are often

a combination of those approaches. Keep in mind there isn’t only one way to define

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

114

something; a domain approach is a quite reasonable option, but it is important to

understand it is not the only way, and often we benefit from combining more than one

approach. In Chapter 2, we discussed we should have a strong reason to adopt an event-

driven architecture, which can also play a role in this definition. Different reasons can

drive different approaches and priorities.

3.2.1  �Organizational Composition
Conway’s law states that “Any organization that designs a system will inevitably produce

a design whose structure is a copy of the organization's communication structure.”

If you look back at the architectures and organizational compositions of those

architectures, you will probably find evidence of Conway's law even in awkward and

funny examples. There was a company I worked with that had a boundary that, in the

domain perspective, it made sense to be together with another existing boundary. No

one could find a good name for it or to give a precise definition of why it was different

from the existing one apart from small details. But why was it a distinct boundary?

Well, it happened that the team that frequently changed it was in a completely different

organizational structure than the teams from the existing boundary. The company’s

organizational composition actually influenced the technical boundaries.

It isn’t necessarily wrong; in that context, teams inside the same organizational

composition that owned services inside the same boundary were more autonomous and

facilitated feature implementation. However, it is essential to understand its implications

and use them to our advantage. That might mean shifting teams to different structures to

achieve the desired architecture. The inverse will inadvertently happen; the way teams

are composed will invariably influence the system’s boundaries.

If we align this concept with the domain approach in the case of an eCommerce

platform, we might have a composition of teams that work with order management,

another for product management, etc. This organization will also allow those teams to

specialize in the domain concepts of the services they work with, which benefits the

overall modeling between the conceptual and technical domains.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

115

3.2.2  �Likelihood of Changes
An approach to design boundaries is to separate services into two groups: services that

change and are likely to change often and services that don’t. This separation allows for a

boundary where most of the business innovation happens and another for services that

don’t and won’t need frequent changes.

Conceptually, it makes sense to group services that are likely to change together. If

our objective to adopt an event-driven microservice architecture is to optimize time to

market, it makes sense to group those services and adopt different approaches for each

boundary. However, in practice, it is hard to foresee which services will belong to each

group. Historically, we can perceive which services were often changed and which ones

currently aren’t. But understanding how they will evolve in the future usually has a high

degree of uncertainty. Also, changing one service that suddenly needs frequent changes

from one boundary to another is often laborious. All the assumptions we made until

now were that the service would hardly change; changing those assumptions can be

problematic. Usually, new functionality ends up affecting services that supposedly don’t

change that often, leading to even higher time overhead.

We did experience some successful use cases when combining this approach with

the domain approach. Typically inside a domain boundary, some services change

more often than others, and we can benefit from having those identified and specific

approaches to deal with them.

3.2.3  �Type of Data
Some services have to deal with sensitive data like PII (personally identifiable

information), PCI DSS (payment card industry data security standard), or PHI (protected

health information). This kind of data often has additional regulations and requires

audits from external parties. Implementing these requirements (like GDPR) can add

a significant effort (as we discussed in Subsection 3.1.1), and we might benefit from

limiting those changes to the services that actually handle that kind of data. Figure 3-13

illustrates several boundaries with different types of data.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

116

By having boundaries that handle the sensitive data and guaranteeing that the data

only flows inside that boundary, we can focus the regulation’s enforcement in a subset

of the system. Some requirements, like the right to be forgotten and external audits to

the system, can be hard to implement and manage. This type of organization enables

to apply those requirements only to the services that need them. For example, inside

the PII boundary, all services would have to apply the requirements, but the services in

the non-sensitive data boundary wouldn’t need to. This way, it is easier to manage and

implement the requirements than addressing them in the whole architecture.

Figure 3-13.  Example of defining boundaries by the type of data existing in the
services

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

117

3.3  Brief and Practical Introduction to
Domain-Driven Design and Bounded Contexts
Eric Evans first introduced DDD (domain-driven design) in his book9 about this subject.

It is an approach to design complex systems that provides a set of techniques to help us

understand the application’s domain and build it into a conceptual model. The complete

details of these techniques and ideas are outside of this book’s scope, but we will

approach how they are important and how we can use them in designing boundaries

between event-driven microservices.

One challenge developers always struggle with is to capture reality and model it into

code. DDD can help us to design the domains that the business comprehends in our

applications. Models and boundaries designed around the domain are likely to be more

stable and translate the business’s reality more accurately. It also facilitates the composition

of the company allowing it to organize teams around those business concepts.

One key aspect of DDD is the focus on the domain. The company’s business value is

in its domain; by focusing on it, we are guaranteeing we are modeling what really matters

or what differentiates the business. Any system has to model some kind of business

value into code. Often the translation from the conceptual domain into code gets lost in

translation. By having close communication between the conceptual and coded world

and sharing the same language, we greatly reduce the area of failure. DDD focuses

on exactly that, having a close communication with the domain experts and together

developing a conceptual model of the domain. DDD also introduces a concept of a

common language used by both business experts and developers (named as ubiquitous

language) to reduce the risk of misunderstandings. Using the same names the business

uses in the code, we reduce the risk of unclear requirements and business rules.

DDD enables us to reason with a complex, intricate domain to conceptually divide it,

allowing several teams to work on it sustainably. Having said that, simple straightforward

systems aren’t likely to benefit much from some of the patterns typically used with DDD,

much like we mentioned in Chapter 1 about event-driven microservice architectures. DDD

provides the tools to model and maintain a complex, long-lasting system. If our project is

small or short-lived, we won’t probably benefit from it. But it might benefit from its mindset.

9 See Eric Evans, “Domain-Driven Design: Tackling Complexity in the Heart of Software,”
August 20, 2003, www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/
dp/0321125215

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

118

Although the patterns associated with DDD like event sourcing or CQRS (we will

detail these in Chapter 4) aren’t a one-fits-all solution, the value we extract with DDD

and the mentality shift it inspires are very important. We might end up with a small,

simple system, but whichever system we are doing, having a clear understanding

of the domain is pivotal to its success. Having a close communication with domain

experts and having a clear understanding of the domain and how it maps to our

implementations enable us to focus on the domain, where the real value is. A design

approached this way enforces the importance of understanding and modeling the

company’s business value.

3.3.1  �How We Can Apply It in Practice
Domain models are the core of the design. These models have detailed business

knowledge and capture the domain knowledge from the domain experts. These models

are converted to code and can scope the boundaries of that knowledge and verify its

integrity. The teams designing the models have close communication with the domain

experts, and they work together to develop these models. As the business evolves, so do

the domain models.

By developing the domain models, we can understand the existing domain and its

interactions. We lightly touched this subject in Chapter 2 when we discussed how to

move from a monolith to an event-driven architecture. The exercise in understanding

the monolith’s existing domain is the same exercise to design the domain models, and

we might end up with something similar to what we discussed in Chapter 2, illustrated in

Figure 3-14.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

119

When analyzing our existing eCommerce platform, we defined several different

domains illustrated in Figure 3-14. Each of them is what DDD defines as a bounded

context, and they usually represent a more extensive business domain concept. This

domain concept often translates to a boundary and abstracts those domain details from

the other bounded contexts. For example, the shipping bounded context might need

to know the different shipping providers, but the order management bounded context

doesn’t or shouldn’t.

Bounded contexts have one or more aggregates. There are many definitions of

aggregate, but they often represent conceptually a domain unit inside the boundary.

For example, in the order management bounded context, we could define the order

aggregate, the product aggregate, etc. The aggregate models a domain concept, and an

entity is an instantiation of that concept. We could define the order aggregate, and the

specific order 231 is an entity.

Typically, services request changes to entities through commands, and changes are

propagated through events. Aggregates can reject requests to changes and are used to

maintain the consistency and to enforce the business rules related to that aggregate.

Figure 3-14.  The same domain models we discussed in Chapter 1. By defining
them, we can have a clear understanding of each bounded context and its
interactions

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

120

Aggregates can also be exposed to other bounded contexts or can be hidden depending

on the domain. For example, the order management bounded context might have an

order and product aggregate. It might make sense to expose the order aggregate in the

order bounded context since it is the core concept in that bounded context. The product

aggregate, however, might be needed just as a reference to another domain (the product

bounded context), and since it is only an internal view of that boundary, it might not be

exposed. Figure 3-15 illustrates an example of an aggregate composition in the order

service.

We could define an order aggregate that relates to two other aggregates, the product

and invoice aggregate. To change an order, we can issue a command to the order aggregate

affecting a single entity (or a specific existing order). The command to change the order

address can be rejected depending on the business rules the order service enforces.

Figure 3-15.  Example of an aggregate composition for the order service. The order
aggregate has two other associated aggregates

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

121

We can communicate changes to aggregates to the other boundaries through events.

Changing the order address triggers an order address changed event, which can be

consumed by other boundaries to apply their own domain logic.

Each bounded context has its domain model. Since bounded contexts have to

communicate with each other, it is essential to guarantee that the domain concepts from

one bounded context don't leak into another. The anti-corruption layer enforces that all

domain-specific logic and information remain inside the boundary.

A boundary can be implemented with a single service or can be composed of

several different microservices. Figure 3-15 shows that the order service and the anti-

corruption layer can be two different independent services or one single service. A piece

of reasonable advice is to take the same approach we discussed in Chapter 2; first create

arguably extensive services that represent a complete boundary. Later, if necessary,

we can decompose that service into smaller parts. In more complex architectures,

boundaries are composed of several services that work together to accomplish

that domain’s purpose and then communicate the changes to that domain to other

boundaries that are also composed of several services. A reasonable approach is to do

that incrementally; first we can understand the existing domain model, then create a

single service to implement that bounded context, and then decompose that single more

extensive service into smaller parts if needed.

Aggregates usually have a strong relation to concurrency and atomicity. Typically,

changes to an entity are performed without concurrency or in single thread. That doesn’t

mean the service is single-threaded, though; the service can change multiple orders

simultaneously as long as the changes are to different orders. If we change three different

orders simultaneously, those changes can happen concurrently, but if we change three

times the same order, those three changes typically occur sequentially. This concurrency

management guarantees each aggregate’s consistency while allowing parallel processing

(how to handle concurrency will be discussed in Chapter 6).

The aggregate decomposition of a bounded context can be highly subjective. In

Figure 3-14, we designed three aggregates, but we could quickly come up with a different

design. As we will discuss in Section 3.4, aggregate design can have a considerable

impact in the system and its performance. An arguably good approach is first to

understand the domain conceptually and work closely with the domain experts to

design a mental model you both agree with. Then map that model to the technical

implementation and understand how the technical and performance implications

influence the model.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

122

3.4  Event-Driven Microservices: The Impact
of Aggregate Size and Common Pitfalls
In Section 3.3, we discussed how to use DDD to understand and design an application’s

domain and boundaries. We discussed how the aggregate definition was a pivotal step

in that design and that it can have a high impact on the whole system. This section will

detail how it can affect the whole architecture’s performance and how to avoid some

common pitfalls.

We discussed that entities are an instantiation of an aggregate; for example, for

the order aggregate, a possible entity could be the order with id 231 submitted by

user John. We also discussed that aggregates have a strong relation with concurrency

since each entity is changed transactionally (when someone is changing an entity, no

other changes can occur simultaneously). Thus, deciding the correct granularity of the

aggregate becomes pivotal and relates closed to the ability to guarantee consistency and

performance in the system.

Let’s illustrate this with an example; imagine we work with an eCommerce platform

that sells beauty products. Each product can have several variants; for example, perfumes

can have different bottle sizes, lipsticks can have different colors, etc. The stock is managed

at the variant level; we could have in stock one small bottle of a given perfume and two

large bottles. Products have a precise categorization, and the business often applies

changes to categories of products. For example, from time to time, they might want every

lipstick to have a given discount, or they might want to block the perfume category to ship

to some countries due to the shipping laws of those countries, etc.

Typically, changes are applied to a single entity; changes that affect several entities

or several aggregates often need the coordination of a Saga pattern or process managers

(we discuss these patterns in Chapter 4). Once something is changed in a given entity,

an event is published informing that change; thus, domain events usually have the same

granularity of the aggregate definition.

There might be three different aggregates we could define: category, product, and

variant. Using the variant as the aggregate would facilitate the stock changes and enable

a high concurrency system to guarantee performance (since changes could be made to

several variants in parallel). But it would also publish several smaller events; depending

on the number of products and variants, this could mean a lot of stress on the message

broker and the consuming services. While defining the category as the aggregate would

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

123

guarantee the consistency of the larger discount and visibility changes and would

publish larger individual events. But it could easily undermine the system’s performance

since each product in each category would be changed sequentially.

An arguably good first step is to define the aggregates conceptually, understanding

the domain and designing it having in mind a real domain concept. But we shouldn’t fall

into the trap of creating using only the context of our service or boundary. For example, if

we were in charge of developing the stock management service, a good aggregate would

be the variant aggregate. The same could be said if we were in charge of designing the

system to manage the product’s categorization; it would certainly make sense to us to

define the category as the aggregate.

However, a second good step is to understand who the consumers of those events are

and the reality of those services and boundaries. What does their aggregate look like? Is

it roughly the same as ours? Is it a larger domain concept or a smaller one? For example,

let’s say the service managing stock had a variant aggregate and published an event for

each variant. The service applying the discount would need to know which variants

have stock but had to apply the discount to a category of products. That could comprise

several hundreds of products, each with several variants. The mismatch between the

aggregates would mean that the discount system would have substantially more work

to understand how each small change applied to their larger concept. Defining an

aggregate as large as a category in the stock boundary might not make sense either.

Still, perhaps if both boundaries adopt a product aggregate, they would benefit from the

simpler communication between each other. Overall, understanding our consumers’

needs and finding a compromise are often best for the overall architecture.

Defining the size of aggregates is always subjective. Changing it later on can also be a

laborious task. However, when in doubt, rely on your domain experts’ support and your

understanding of the domain. Asking these questions often helps to decide:

•	 Does the aggregate translate to a real domain concept?

•	 How many events will we publish, and how granular are they? Can

the message broker and the consuming services handle the load? Are

we publishing an unnecessarily large quantity of events?

•	 How performant and scalable the system can be? If we grow to the

millions of aggregates, does the system remain performant? Can we

change several aggregates at the same time and scale seamlessly?

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

124

Sometimes you will find you got the aggregate size wrong. Often it is hard to foresee

the load and usage of the system accurately. Don’t be afraid to advance and change

later on. Although these changes can be laborious, as we discussed in Chapter 1, the

decoupled nature of event-driven services allows us to replace services reasonably

easily. We will further discuss the impact of the event schema’s size in Chapter 8.

3.5  �Request-Driven vs. Event-Driven Services
In Subsection 3.1.5, we discussed several service topologies. When building a service

in an event-driven architecture, the two main approaches are using a request-driven

or event-driven service. Obviously, event-driven architectures are composed of

event-driven services. However, most architectures aren’t composed of only event-

driven services. They arguably shouldn’t be since the two approaches have different

implications and aren’t adequate for all use cases. In this section, we will discuss the two

approaches and guidelines to which one to choose.

Event-driven architectures are characterized by using events as the source of truth.

As we discussed in Chapter 1, this enables several powerful use cases, and we should

follow this guideline throughout the architecture. Traditional microservices typically

expose synchronous APIs and use them to provide access to their data. These kinds of

services are simpler to use and to reason with, and often there are use cases where an

event-driven approach to a microservice simply isn’t the best way to go. Figure 3-16

illustrates the typical approaches of request-driven and event-driven services.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

125

A request-driven service typically exposes a synchronous API like REST to expose

functionality to other applications. We can access data by issuing requests to the same

API. Functionality exposed by request-driven services is easy to reason with; it is similar

to a call to a local function we would do in the code, but instead of running in memory, it

does a remote network request.

Request-driven services have a place in event-driven architectures; not all use

cases are suitable for event-driven services. Most often than not, you will find and

work with both types of services in the microservice ecosystem. Event-driven services

introduce an asynchronous nature to the interaction between the applications. Some

use cases don’t benefit from the additional complexity or cannot afford the eventual

consistency introduced by event-driven services. Stronger consistency guarantees are

Figure 3-16.  Differences between the communication of typical request-driven
and event-driven services

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

126

hard (or impossible) to maintain in distributed event-driven microservices. If there

is a use case for strong consistency, choosing a synchronous interaction in a request-

driven service is often a better choice than using an event-driven one.

There are several strategies to deal with eventual consistency, and eventual

consistency doesn’t need to be slow (we further detail both points in Chapter 5). Still, there

might be use cases where we simply can’t afford any inconsistency whatsoever. Don’t

misunderstand me; we always need consistency, but it’s relatively debatable whether we

can maintain distributed strong consistency at scale (thus the rise of NoSQL databases).

We did come across some use cases where strong, consistent, and synchronous

responses were needed in low-scale services. In these use cases, a synchronous request-

driven approach is often a better choice due to the simplicity of accomplishing the use

case. For example, if we have a frontend application that makes a couple of hundreds of

requests per day to a service and needs a synchronous response, we probably wouldn’t

benefit much from the added complexity of asynchronous events between the two

applications. We can also publish events in request-driven services to provide an event-

driven approach to share their data.

However, we should avoid the pitfall of using a high quantity of request-driven

services throughout the whole architecture. One important consequence is turning our

microservice architecture into a distributed monolith. Frequent requests between the

services often lead to high coupling between the services, which impacts new features

and leads to complex dependencies. We also discussed in Chapter 1 how request-driven

services are susceptible to cascading failures. A failure in one apparently not critical

service can often bring the whole architecture down by cascading the failure through

the complex network of synchronous requests. When the architecture starts to grow,

it’s often hard to understand the advantages of a complex network of request-driven

services and a monolith.

Sharing data through synchronous APIs can be troublesome when services need

a huge amount of data or frequent lookups. These kinds of requests often impact the

service and limit their resources. Requesting a large chunk of a service’s data can

significantly impact the database, and doing so through regular paging often has bad

performance. Those use cases really shine when streaming data through an event

stream. As we discussed in Chapter 2, using event streams with event-driven services

provides a very organic way to share the data without impacting the service that owns

the data.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

127

Be sure to focus on the event stream being the source of truth and the medium

services share data. Using request-driven services in specific use cases makes sense, and

we shouldn’t be dogmatic on whether choosing only one type of approach.

3.6  Deciding When to Create a New Microservice or
Add Functionality to an Existing One
Once we have an event-driven microservice architecture up and running, where to

incorporate new functionality can be dubious. There are usually two options: either

add new functionality to an existing service or create a new service. The decision often

depends on the functionality being added and the existing architecture. There isn’t a

one-fits-all rule, but a few pointers can help us decide which one to choose.

We can use DDD to map the different bounded contexts in an existing system, but

migrating existing functionality to new services by either creating a new service or

adding it to an existing one can be subjective. For example, suppose a part of our system

manages orders and deals with orders and order lines. In that case, an arguably clear

decision is to maintain both of them in the same service due to the close relationship

between the two entities. However, if we also manage stores and each store has stock,

should we create a separate service for each concept or maintain both in the same

service? And how about adding new functionality? If we received a requirement to add

several complex pricing rules to our system, should we add those rules to the existing

product system or create a separate system to manage those rules? The answer is

subjective, and usually there isn’t a right or wrong answer, just tradeoffs between the two

solutions.

As discussed in Chapter 2, a sensible approach is to create coarse-grained services

and then fine-grained services as needed. It’s better to incrementally evolve and add

complexity to the architecture than starting with several dozens of services early on.

However, suppose our services begin to get too large and suffer from some of the limits

of monoliths we discussed. In that case, it might be advisable to review the service and

understand if it is handling too much responsibility. Either way, don’t be afraid to try and

adapt later; although it might lead to a lot of rework, the high decoupling of event-driven

architectures allows us to swap services as long as we don’t break the event contracts.

Here are some considerations we can keep in mind to help us decide. These points

can help you sway in one solution or another, considering both can help you shift toward

the best decision based on the system’s characteristics you want to prioritize.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

128

Some points that indicate we should add the functionality to an existing service:

•	 There is a very close relationship between the conceptual domain

of the new functionality and an existing service. In the example

we discussed about the order and order lines, they are very related

domain concepts, and in many systems, it might make sense to

keep them together. Typically, we want code that changes together

to be together. So domains that are closely related and are likely to

change together, keeping them in the same place might be a sensible

decision.

•	 The new functionality will need to share another existing service’s

database. We discussed the disadvantages of sharing a database in

Chapter 1. Handling schema changes between several services can

make new functionality difficult to add and produce complicated

lockstep releases. Also, different services that use the same database

are keen to impact each other, for example, with a long-running

transaction, which turns scaling each service into a challenge. If we

need to add a new service that will need to share the same database

as another one, it is a giant red flag, and we should avoid it at all

costs. We can still create a new service if it needs a large amount of

data from an existing service, but by consuming the event stream

and creating an internal view of the data. Adding functionality to an

existing service or using the event stream is almost always a better

option than sharing a database.

•	 The anemic domain model10 is a common object-oriented anti-

pattern and a common pitfall in many services. When building a

microservice architecture, you might find anemic domain services.

These services are characterized by a simple sheath around the

database that only writes or fetches information, lacking domain

logic inside the service. Basically, it looks like a repository pattern

with associated hardware. If the service lacks domain logic, odds are

it is distributed somewhere else in the system. This characteristic can

be a good sign to add functionality to that service and enrich it with

10 More details in Martin Fowler, “AnemicDomainModel,” November 25, 2003, www.martinfowler.
com/bliki/AnemicDomainModel.html

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html

129

domain value. It’s not a rule though; some services aren’t heavy on

domain logic; they can perform more mundane tasks or are endowed

with a more infrastructural nature.

Some points that indicate the functionality might belong in a new service:

•	 If we add functionality to a service that depends on multiple services,

it might be a sign that this service has a lot of responsibility. In

this case, we might benefit from creating a new service and even

migrating some functionality from the existing service. The service

can consume events from a myriad of different sources or request

information from several services; either way, it might indicate we

centralized a large quantity of logic in that service. Increasing its

complexity might not be advisable and can be a sign we should

separate some of that logic.

•	 Several different teams manage the existing service, and there is

no clear ownership. An advantage of a microservice architecture

is having autonomous teams who can deliver fast with minimal

intervention from other teams. If we add functionality to a service

already managed by several teams, it might be advisable to

understand how we can divide the service and its responsibilities.

Just this argument by itself might not be a strong enough reason to

create a new service since we can manage this in other ways, but

combined with others, it might form a strong argument.

•	 The new functionality requires a different technology stack. If we are

adding a new functionality that we want to use a different technology

stack or requires specific technology, adding it to an existing service

can be challenging. Managing two different technology stacks in two

different services makes the maintenance, release, and deployment a

lot easier.

•	 When a new functionality has a very different usage pattern and

needs to scale independently of any other service, it can be a good

sign to separate it into a new service. Suppose we add functionality

that will have several times of magnitude more usage than the current

usage. In that case, it might mean we will need more resources for

that functionality than the existing ones. Another use case is if the

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

130

usage has seasonality associated with it; for example, every Friday

has a large peak of usage. It might be effective to scale only that part

of the system independently of the rest of the system. We can easily

achieve that if the functionality is in a separate service.

It’s fairly apparent where we should add most new functionality. However, from time

to time, the question to create a new service or use an existing one arises. It is important

to understand the implications and be able to build a strong argument. Each of these

arguments alone might not mean much; the goal here is to give us the tools to build a

strong, compelling case for either decision.

3.7  Summary
•	 Services can and should have the code organized in a tiered

architecture. The clean architecture is a good example of an

architecture we can use that promotes decoupling and enables easy

maintenance.

•	 As the architecture grows to more fine-grained services, each service

can translate to a different clean architecture’s layer.

•	 Although we can use either durable or ephemeral message brokers,

they accomplish different purposes. Event-driven architectures

typically have high synergy with durable message brokers.

•	 Complying with some data security standards can be challenging in

event-driven architectures. Crypto shredding is an option we can use

to leverage those requirements.

•	 There are typically four types of entities in an event-driven

architecture: commands, events, documents, and queries.

•	 Using documents or events can be debatable. When a system needs

a large part of the entity’s data, a document is often a reasonable

choice. If a system needs the meaning and the inherent change

behind the event, partial events are often a better choice.

•	 There are typically three types of message patterns we can use: send/

receive, publish/subscribe, and request/response.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

131

•	 Faking synchronous response, command publishing, and passive-

aggressive events are three common pitfalls we should avoid while

designing event-driven systems.

•	 To design a system’s boundaries, we can use four approaches:

organizational composition, likelihood of changes, type of data, and

domain-driven design. Although a domain approach is a sensible

option, we often benefit from combining more than one approach.

•	 We can use domain-driven design to understand the application’s

domain and build it into a conceptual model. Models and

boundaries designed around the domain are likely to be more stable

and translate the business’s reality more accurately.

•	 The aggregate size can have high implications in the system’s

consistency management and performance. There are a few

questions we can ask to help us design those aggregates.

•	 We can use both request-driven or event-driven services. Although

event-driven is our go-to approach, we can benefit from request-

driven services in specific use cases. We shouldn’t be dogmatic about

choosing only one type of approach.

•	 There are several characteristics we can go through to help us decide

to either add new functionality in an existing service or a new one.

Chapter 3 Defining an Event-Driven Microservice and Its Boundaries

133
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_4

CHAPTER 4

Structural Patterns
and Chaining Processes
This chapter covers:

•	 Understanding why strong consistency and transactions shouldn’t be

an option in distributed event-driven systems

•	 Why we should avoid two-phase commit and distributed transactions

in distributed systems

•	 Using orchestration pattern to implement higher-level business

processes

•	 Using choreography pattern as an alternative to orchestration

•	 Understanding CQRS (command query responsibility segregation)

and event sourcing and applying it to an event-driven system

•	 Optimizing read queries by building multiple read models

•	 How to live with invisible domain flow and avoid the pitfall of a

spaghetti architecture

As we start to learn computer science and software engineering, data consistency is

a cornerstone to software development. Strong consistency and ACID guarantees are the

very foundation of most applications. We are used to treating data as a single copy; when

we write something, it is instantaneously available for every client to see. If a write fails,

the data is always kept in a valid state and changes are roll backed. We use transactions

to guarantee consistency across several tables, and often they are the foundation to fulfill

complex business processes.

https://doi.org/10.1007/978-1-4842-7468-2_4#DOI

134

In fact, this way of dealing with data is often wired into our minds. There’s an awe-

inspiring purity in a database schema under the third normal form.1 The referential

integrity and lack of duplication of a well-structured third normal form schema are a

flimsy glimpse of an ideal platonic world. Data and consistency are precious, perishing

the thought of having inconsistent or stale data returned to clients. Knowing the

application will always fetch the latest state and every write will immediately be available

is straightforward to understand, easy to reason with and facilitates developments. We

are used to this bubble of safety and comfort ACID provides. And there’s nothing wrong

with it; actually in simple and small or medium-sized data applications (by medium-

sized, I mean data that fits a single machine without overwhelming infrastructure costs),

there’s arguably little gain in adopting a distributed architecture as we discussed in

Chapters 1 and 2.

However, for distributed or large data applications, it is a different reality. These

strong consistency properties, easiness of joining information, and guarantees of

transactions between disparate domains are often bastions of a dying order. As we walk

toward a distributed architecture, we find we no longer live in that safety bubble a single

database with ACID guarantees provides. We are faced with the challenges of how to

manage processes that span several services with different databases.

In the previous chapters, we mentioned how guaranteeing strong consistency was a

challenge in distributed architectures, but we never detailed why. Section 4.1 will discuss

why guaranteeing a consistent business process that spans several domains might be

challenging and why it is different from a typical single-process application.

We will approach how to manage a business process that needs the intervention of

several different domains in Sections 4.2 and 4.3. These kinds of business processes are

called Sagas, and in event-driven architectures, we can apply two types of solutions to

handle these complicated business processes, either by orchestration or choreography.

We will discuss how to apply both of these solutions in these two sections. Section 4.4

will discuss how we can combine both orchestration and choreography and how they

can complement each other.

The distributed nature of event-driven architectures implies that the data is

distributed throughout several independent services. Obtaining an aggregated view of

data that spans several different services can be a challenge. Sections 4.5 and 4.6 will

approach patterns to build denormalized views in event-driven architectures.

1 Further details in “Third normal form,” https://en.wikipedia.org/wiki/Third_normal_form

Chapter 4 Structural Patterns and Chaining Processes

https://en.wikipedia.org/wiki/Third_normal_form

135

4.1  The Challenges of Transactional Consistency
in Distributed Systems
Chapter 1 discussed the challenges of distributed event-driven architectures and the

importance of an incremental adoption of event-driven services to deal with those

challenges sustainably. One crucial consequence of deconstructing a single monolithic

database into several smaller ones is the loss of the ability to guarantee consistency

across several domains seamlessly.

Let’s illustrate this with an example. If we have a single monolithic eCommerce

platform, with a single monolithic database handling the user’s orders, each order

creation will change the relevant tables. Figure 4-1 illustrates this situation with a stock

and order table.

Figure 4-1.  The creation of the order inserts a line in the order table and updates
the stock quantity in the stock table. Both changes can happen transactionally

Chapter 4 Structural Patterns and Chaining Processes

136

When the user requests a new order, the service inserts a new line in the order table,

and the stock quantity is updated to reflect that user’s order. Since both tables are inside

the same database, we can use its ACID properties to guarantee that both changes

happen simultaneously or don’t happen at all, rejecting the order. Once the changes are

made, they will also be immediately available to every client requesting them.

By moving to a distributed event-driven architecture, we would deconstruct the

monolithic application into several services. We would also divide the monolithic

database and distribute the data between them. Figure 4-2 illustrates how the same

example could look like in an event-driven architecture.

Figure 4-2.  To accomplish the order process, both services need to reflect the
changes in their databases

Chapter 4 Structural Patterns and Chaining Processes

137

Since we separated the order and inventory domain into two distinct services, the

order and inventory data aren’t in the same database anymore. The segregation creates

the challenge of how we can guarantee the strong consistency of fulfilling an order.

The example only illustrates two services, but there might be processes that need the

interaction of several different domains; for instance, if we needed to apply discounts,

change the user information, etc., it might affect several distinct services. When creating

an order with a single database, we could simply wrap a transaction around every table

that needed changes, and we would be sure all changes would happen atomically.

However, with a distributed architecture, we can’t have the same guarantees. The

alternatives to manage these kinds of issues come at the cost of added complexity as we

will discuss in the following sections.

4.1.1  Why Move from a Monolithic Database in the First
Place?
Besides the monolith’s limitations, we discussed in Chapter 1, why forfeit the consistency

guarantees provided by ACID anyway? In use cases that need strong consistency, we

might just be better off by keeping that data together, even in a distributed microservice

architecture. The strong consistency ACID provides can only be achieved by having data in

the same place. Don’t be dogmatic in adopting a distributed solution; if there is a critical use

case for strong consistency, consider if it is feasible to maintain the data together and benefit

from the properties associated with it. However, this is the exception; most use cases can live

with weaker consistency guarantees distributed systems require; most of the time, they are

good enough as long as the system is performant (we will further discuss this in Chapter 5).

In use cases that deal with vast amounts of data, we might need to forfeit the ACID

properties anyway. The purity of the third normal form we discussed at the beginning of

the chapter often doesn’t have a place in the real world. Small and medium-sized data

undoubtedly benefit from it, and in those situations, we often benefit from designing the

database schema under those principles. But when faced with huge amounts of data,

we quickly face its limitations. Often queries on database schemas designed under the

third normal form need several joins between the different tables. I’m sure we all relate

to debugging a given non-performant query with an obscene amount of joins in the past.

A high number of joins between tables with millions of records requires excessive effort

from the hardware. With increased usage, we quickly find we need better hardware. The

only way to typically scale a relational ACID database is often vertically, which becomes

very expensive very fast.

Chapter 4 Structural Patterns and Chaining Processes

138

What were the traditional approaches to deal with this issue? We often add sharding and

replicas to our databases – replicas that suffer from the replication lag the same way as event-

driven architectures do but in systems that were not designed to do so. Often we need to rewrite

or do dubious workarounds to afford the replication lag. To tackle slow queries, we denormalize

data and optimize how data is persisted to enable high read performance. As we throw our

referential integrity and lack of duplication out of the window, often against our inner values,

which are chiseled in the properties of the third normal form, we say, “well just this time, this is

the real world, sometimes we must forfeit these kinds of theoretical concepts.”

I saw terrible implementations in the past due to a stubborn dogmatic approach to

theoretical concepts, and I’m guessing at one time or another you saw it too. Sometimes

in the real world, we need a pragmatic approach to the solutions we implement. But

these kinds of solutions of “implementing as we go” often fail due to the lack of a

deliberate long-term strategy. Instead of trying to fit performance and scalability into

solutions that were not designed to fit them, and only when they become an issue, we

should approach it as a property of the solution we create.

Deconstructing a monolithic database is a step in that direction. In event-driven

architectures, besides having synergy with dividing an extensive database into smaller

ones, the focus of the data is in the event stream, enabling the possibility to disseminate

data without relying solely on the database infrastructure. We do gain complexity, and

we might lose the stronger consistency properties ACID provides, but we won’t constrict

the business growth to a halt. If you don’t see and don’t ever foresee the database being a

limitation, then you are probably better off not dividing it at all.

4.1.2  The Limitations of Distributed Transactions
When faced with the challenge of guaranteeing atomicity between two different

databases, some people might be tempted to use distributed transactions. They provide

a way to reason with a distributed system featuring several databases the same way we

would with a single ACID database. Distributed transactions are often implemented with

the X/Open XA standard,2 which uses a two-phase commit to ensure the atomicity of

all the transaction’s changes. However, the two-phase commit protocol doesn’t provide

all ACID guarantees. It also has numerous failure modes that might need manual

compensation and leave the data in an unexpected state. This subsection will detail how

the two-phase commit protocol works and its limitations on a distributed system.

2 Further details in “X/Open XA,” https://en.wikipedia.org/wiki/X/Open_XA

Chapter 4 Structural Patterns and Chaining Processes

https://en.wikipedia.org/wiki/X/Open_XA

139

The two-phase commit protocol typically uses two types of components: the

transaction manager and the participants. The transaction managers coordinate with

the participants the protocol’s implementation for each transaction. Unsurprisingly, the

protocol has two phases: the voting phase and the completion phase. In the voting phase,

the transaction manager communicates with the participants to confirm that a given

change can be made. Let’s use the same example we discussed earlier in this section to

illustrate this. Figure 4-3 depicts how this would play out with the stock and order tables.

DB

Order Table

OrderId UserId ProductId (...)

121 3212 112162

122 1864 658221

Stock Table

ProductId Quantity (...)

658221 0

658221 1

DB

1 - Request to insert row in orders table 1' - Request to update row in stock table
Transaction Manager

2 - Answer
with yes or no

Participant

2' - Answer
with yes or no

Participant

The transaction manager first requests
the participants to make the changes.

Rows are locked until the commit order
is issued.

Figure 4-3.  Voting phase of a distributed transaction between the order and stock
table

Chapter 4 Structural Patterns and Chaining Processes

140

The transaction manager requests the order and inventory database participants to

insert the new order row and update the existing stock row, respectively. If one of them

responds negatively, the transaction aborts. If both participants respond positively, then

the transaction manager will advance to the completion phase.

In the completion phase, the transaction manager will request both participants to

commit their changes, as illustrated in Figure 4-4. If a participant is unable to commit

their changes for some reason, the transaction manager will have to request a rollback

from all participants. A rollback will undo any changes that were made or release

any locked resources. The transaction ends with all participants acknowledging the

transaction manager’s changes by successfully committing or roll backing the changes.

Chapter 4 Structural Patterns and Chaining Processes

141

This protocol raises several complex issues and might leave the data in an

unexpected state. Since two different processes handle both commit requests, they can

happen at different times. So we don’t have the ACID properties we discussed earlier

anymore. A client can request the order information without the stock being updated, for

example.

Figure 4-4.  Completion phase of the same distributed transaction between the
order and stock table

Chapter 4 Structural Patterns and Chaining Processes

142

Also, since both operations occur separately, an arbitrary amount of time can pass

between the voting and completion phases. Concurrent requests may try to change the

same data while the transaction is running. For example, if someone submitted an order

for the same product simultaneously, another process might try to change the stock

line while the transaction is still running. To avoid concurrent changes, the participants

often lock the resources until the transaction ends. That means while the transaction

is occurring, every other request to access the same data will have to wait. We all know

the associated performance problems with traditional transactions, but taking them

to a distributed environment where they are susceptible to the network conditions

and delays might severely impact the system. Two-phase commit protocol is suited for

fast operations; the longer they take, the longer the data is locked. The examples we

discussed are with two participants, but the more participants involved, the longer the

transaction takes.

Being susceptible to the network conditions also opens a wide range of new failure

modes. Jepsen, a set of tests and analysis on distributed consistency on many popular

databases, did an analysis3 on Postgres which uses a special case of two-phase commit

and highlighted some of these problems (there is also another interesting analysis on

YugaByte DB4 which uses a homegrown commit protocol based on two-phase commit

highlighting similar problems). For example, in Figure 4-4, the participants have to

acknowledge the commit to the transaction manager. If an acknowledgment is lost,

for example, the participant suffered a network partition (more on network partitions

in Chapter 5), the transaction fails. But the participant might already have committed

the data and has no way to receive the rollback request, which can lead to unexpected

results and produce an invalid state that must be solved manually.

Another issue with the two-phase commit protocol is the transaction manager. When

several different services are involved in multiple transactions, the transaction manager

acts as the coordinator between these different services. Event-driven architectures

are naturally decoupled and enable us to build independent services; having a single

component in charge of coordinating synchronous operations between the services is a

step back in this mindset. Distributed transactions often raise more issues than the ones

they solve. As we discussed in Subsection 4.1.1, if we really need the ACID properties for

3 Full analysis in Jepsen, “Jepsen: Postgres,” May 18, 2013, https://aphyr.com/posts/282-
jepsen-postgres

4 Full analysis in Kyle Kingsbury, “YugaByte DB 1.1.9,” March 26, 2019, https://jepsen.io/
analyses/yugabyte-db-1.1.9

Chapter 4 Structural Patterns and Chaining Processes

https://aphyr.com/posts/282-jepsen-postgres
https://aphyr.com/posts/282-jepsen-postgres
https://jepsen.io/analyses/yugabyte-db-1.1.9
https://jepsen.io/analyses/yugabyte-db-1.1.9

143

a given use case, we are often better off by maintaining that data together in a database

that affords ACID guarantees. But don’t be tempted to see this is always the case; most

often than not, we can live with weaker consistency guarantees, as we will discuss in

Chapter 5.

4.1.3  Managing Multi-step Processes with Sagas
We discussed the limitations and why we shouldn’t use distributed transactions, but

what is the alternative? Business processes often span several different services. How can

we maintain the consistency of those processes when multiple services are involved?

This subsection will discuss how Sagas can be an alternative approach to distributed

transactions and coordinating synchronous locks.

Sagas were first introduced in a paper5 by Hector Garcaa-Molrna and Kenneth

Salem, where they suggested the use of Sagas to manage long-living transactions. The

paper argues the use of smaller short-lived transactions as an alternative to long-lived

transactions. Instead of having a single transaction that lasts a considerable amount

of time, we can have smaller ones for each step of the more extensive operation,

minimizing the amount of data affected by locking.

Sagas are a sequence of individual operations to manage a long-running business

process. In a distributed architecture, each of the Sagas’ operations is carried out by a

different service. In an event-driven architecture, the services typically are orchestrated

or choreographed through events to achieve the larger business process. The business

logic itself is located inside the services; each service will manage and validate its own

domain. We define a compensating action for each step of the business process. Suppose

a given service fails to perform the action due to technical or business reasons. In that

case, the Saga’s currently completed steps will execute the compensating action to leave

the system in a stable state.

When used with DDD, Sagas manage operations across several aggregates between

different bounded contexts. When an aggregate is affected by an event of a different

domain, and we need to translate it to a command, it is often seen as a Saga. Operations

that affected multiple aggregates are also commonly seen as a Saga. Although Sagas can

be applied to reflect changes to multiple aggregates, the most common use case is to

manage a long-lived business process between several bounded contexts.

5 Full article in Hector Garcaa-Molrna and Kenneth Salem, “Sagas,” December 1987,
www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

Chapter 4 Structural Patterns and Chaining Processes

http://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
http://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

144

Each operation of the Saga occurs separately and independently. This means the

entire Saga isn’t an ACID transaction nor enjoys its guarantees. As the Saga completes

its steps, the changes each step applies are immediately available, even before the entire

process finishes. Each step can have strong consistency guarantees and be inside the

context of a transaction if the database in question supports ACID guarantees.

Sagas aren’t strongly consistent as a whole, but they provide a way to understand and

model a business process in a way we can act when something goes wrong. Each of the

Sagas’ steps can have a compensating action we can trigger if one of the following steps

fails. This way, when a given step fails, we can maintain the consistency of the whole

process. Let’s illustrate with an example. Figure 4-5 depicts an example of an order

submission process.

Each step in the Saga might map to an action in a specific service or in different

boundaries. For example, the order service might be responsible for saving the order

information, but checking the available stock and updating it might be the responsibility

of the inventory service.

In a monolithic approach, the example in Figure 4-5 could be implemented using

a single transaction. If a step fails, the whole transaction would roll back and would

maintain the consistency. Using a Saga, we must implement a compensating action for

every relevant step. The rollback process has a workflow of its own depending on the

stage that fails.

Figure 4-5.  An example of an order processing Saga

Chapter 4 Structural Patterns and Chaining Processes

145

Figure 4-6 illustrates an example of a rollback in this workflow. Let’s say the order

the system was processing failed in the fraud validation step. The previous steps were

already completed; for example, the stock has already changed.

How can we roll back the process? To maintain the system’s consistency, we would

trigger the rollback process which would do a compensating action for every step that

needs to. In this case, the fraud validation step’s failure would trigger two compensating

actions to undo the stock changes that happened on the third step and remove the order

information that happened on the first step.

Stateless and idempotent actions, like the step to validate the available stock and

calculate pricing fees, are more straightforward to handle since no state rollback is

needed. The order we design the Saga’s steps is also important. Depending on how

Figure 4-6.  Rollback of the order processing Saga by failing to do the fraud
validation

Chapter 4 Structural Patterns and Chaining Processes

146

we model the workflow, the rollback process might be more or less complicated. For

example, if fraud validation was the first step, we wouldn’t need to do any compensating

action, and a rollback process wouldn’t be needed. When modeling a Saga, a vital

consideration is to think about the process and how we can minimize the chance of

rollback and the number of compensating actions we need to do.

An important consideration is what kind of reason can make a step fail. If it fails due

to domain validations or business rules, the compensating actions will suffice to put

the system back in a reliable state. However, if steps can fail due to technical reasons,

for example, if a given service is offline or unreachable, one can ask what we should

do when the rollback process fails. For example, in Figure 4-6 after the fraud validation

fails, what if the inventory service is unreachable or due to a network issue, or a failure

reaching its database, or unable to perform the action due to a bug? We couldn’t undo

the stock changes done by the initial steps of the Saga.

Working with event-driven services and the natural decoupling and asynchronous

nature they imbue in the systems provides a way to be more resilient to transient failures

and enable us to build more failproof processes. Retrying the operation is easier, and

even if the retries fail, the event is persisted in the event stream. If we need to reprocess

a given action, we can retry the same event as long as the event handling is idempotent.

In a synchronous process, the Saga might hang until a retry would work or might need ad

hoc processes to retry the Saga. The asynchronous nature of the event streams naturally

provides a way for the system to continue to respond without blocking while processing

the workflow or cascading the failure to the other components. We will further discuss

resilient message processing in Chapter 7.

4.2  Event-Driven Orchestration Pattern
In Section 4.1, we discussed how we could use Sagas to model a business process that

needs the intervention of multiple independent services. Sagas usually come in two

variants: orchestrated or choreographed. In this section, we will discuss how we can use

orchestration to implement a business process.

Orchestration uses a primary component to manage the steps of the process. This

component instructs the other services to start new steps in the process and triggers

the start of compensation actions when needed. It works much like a supervisor that

oversees the whole process and delegates the actions to subordinate services.

Chapter 4 Structural Patterns and Chaining Processes

147

Let’s use the same example about order processing we discussed in Section 4.1.

Figure 4-7 illustrates how we could model that process with the orchestration pattern.

In this example, the order service assumes the orchestrator role and coordinates

changes between three other services: the inventory, pricing, and shipping service. In

Section 4.1, we modeled the order processing Saga depicted in Figure 4-5. The first step of

the workflow was receiving the order submission request. The order service would handle

the request and coordinate with the other services to accomplish the process steps.

Instead of sending commands, this pattern could be implemented by sending an

order created event to each service. But events aren’t sent, they are published, and

services react to them. If we want to change another service or domain, we should reflect

that with a command rather than an event (as we detailed in Chapter 3). If we used an

event, we would likely fall into the passive-aggressive events anti-pattern.

Figure 4-7.  The order process workflow implemented using an orchestration pattern

Chapter 4 Structural Patterns and Chaining Processes

148

Notice that we also merged several steps into one operation (this wasn’t just

because it was simpler to draw the diagram, despite being a concern). Although we

might conceptually model the order process with every step, we might want to merge

some of them when implementing it. For example, if the check and update stock were

two different operations, two orders for the same product at the same time might

concurrently pass the validation. Since both operations belong to the inventory bounded

context, we can implement them with one command.

The stock operations relate to each other, but what if we had other operations with

the same challenge that we couldn’t merge? If the order service had to validate the stock

and then request it to change, it could lead to orders for products without stock. We

could trigger an error and roll back the process by triggering the compensating actions,

as discussed in Section 4.1, but that’s a design solution for a technical problem. It is

an option, but compensating actions are often better for undoing domain issues; for

example, the customer doesn’t have enough money to make the purchase. We explore

eventual consistency and concurrency issues in Chapters 5 and 6.

The interaction between the services is fully asynchronous, and the process

advances with the asynchronous handling of events from each participant service. The

order service requests the stock changes; once they are processed, the inventory service

publishes an event signaling those changes, which the order service uses to advance to

the next step, requesting the pricing service to charge the customer in the same way. The

same interaction occurs with other services until the order is fully processed.

A strong advantage of this pattern is the ability to easily monitor the process’s

status since only one service is responsible to manage it. It would be straightforward to

understand each order’s current step and result by looking only at the order service. It

is also easy to reason with the logic of the order business process; we can quickly have a

high-level vision of the process by only analyzing the order service.

The trap in this pattern is building the orchestrator to be an aggregator of all the

process’s logic. Code often has gravity; it pulls more code toward it. The more you add,

the more it pulls. Stay with it and you likely end up with a monolith. These types of

orchestrator services often become a quick solution to include new features, sometimes

features that belong somewhere else.

Each service is responsible for maintaining its business rules and its domain’s

consistency. The decoupling provided by the queues promotes that, but it is important to

include new developments in the appropriate domain. The order service only requests

that changes be reflected in that domain and doesn’t explicitly say what that domain

Chapter 4 Structural Patterns and Chaining Processes

149

should do. For example, it instructs the pricing service to charge the customer, but only

the pricing domain knows the country’s taxes, discounts applicable to the customer,

and valid payment methods. Having a central piece to manage the workflow provides a

tempting component to add logic that otherwise belongs to other domains.

A way to manage this is to use an approach similar to the one Cassandra uses to manage

writes. Cassandra is a popular NoSQL database that uses a coordinator node concept instead

of having the typical primary-secondary topology like SQL Server or MongoDB. Primary-

secondary topologies require that all writes go through the primary. In Cassandra, any node

can handle writes by coordinating the write to the node that holds the data.

We can use the same concept by having different services managing different

business processes. It is understandable to include the order fulfillment process in the

order service since the order’s workflow is often closely related to the order domain. By

following the same reasoning, we could include the update of the pricing fees business

process in the pricing service, for example. Having a central agnostic orchestrator that

handles every workflow or a large number of them is an anti-pattern and something we

need to avoid. Falling in that anti-pattern will rapidly take us to a distributed monolith

where we despair with both the disadvantages of monoliths and distributed systems.

If any of the services failed to process, the service would signal that failure sending

an event. In that case, the order service would handle that event and trigger any

corresponding compensating actions.

A synchronous process would wait for each service’s response to complete the

process. Even if we implemented a job style processing (having a job that checks the

process’s status from time to time), the orchestrator would have to poll the services to

know when they finished the operation. The fully asynchronous nature of this process

makes it easier to manage the load by distributing it to the dependent services, making

it easier to scale the parts of the system that need scaling. The queues would also absorb

the added scale; a load peak would only be reflected in the system by an increase in lag.

The flow is also more organic since there is no pooling involved and the orchestrator

manages the progress by reacting to the events being published by the services.

This pattern is an interesting solution to complex processes that need a central

supervisor; however, we need to be aware to not fall into the pitfall of feeding the

orchestrator beyond measure. Small and trivial business processes will hardly benefit

from the orchestration. Often, not having central pieces that orchestrate logic helps to

encourage the distribution of domain logic and the organic evolution of an event-driven

architecture.

Chapter 4 Structural Patterns and Chaining Processes

150

4.3  Event-Driven Choreography Pattern
In the last section, we discussed how we could use orchestration to model a complex

business process. In this section, we will discuss choreography as an alternative to

orchestration. We will detail how the example of the order processing we discussed

before looks like using choreography.

When using choreography, the services involved react to each other to complete the

sequence of steps. Rather than a central piece telling them what to do, like orchestration,

the business process is autonomously coordinated; each service knows what to do once

a service finishes its action. Instead of a supervisor delegating tasks to subordinate

services, the services themselves know when to perform their tasks by reacting to

the preceding service’s events. This pattern’s foundation is closer to the event-driven

mindset than the previous one due to the organic flow of events without a commanding

central piece.

Figure 4-8 illustrates the same order fulfillment process using a choreographed

approach. There is no central component that manages the workflow of the events and

oversees the process’s progress. Instead, each service reacts to the changes happening in

the ecosystem to accomplish its purpose.

Chapter 4 Structural Patterns and Chaining Processes

151

The order service after saving the information publishes an event announcing the

order was created. The inventory service reacts to this event and changes the stock. Once

the stock is altered, the pricing service reacts to the stock changed event to calculate

the pricing fees and charge the customer. Finally, once the customer is charged, the

pricing service publishes an event that the shipping service will use to ship the order and

complete the process.

If something goes wrong and we need to roll back the process, an event from the

service that failed to process would trigger the other services’ compensating actions. For

example, if the pricing service determines it is a fraudulent order, it would publish an

event signaling the process’s failure and the inventory and order service would react to it,

triggering their own compensating actions.

This approach solves the issues we mentioned about logic being centralized in one

place. Since there is no central orchestrator, the logic is naturally distributed throughout

the services. Using orchestration, as we implement new functionality, one way or

Figure 4-8.  The order process workflow implemented using a choreography
pattern

Chapter 4 Structural Patterns and Chaining Processes

152

another, the team managing the orchestrator service ends up influencing the behavior

of the other domains, often heavily biased on their own. Choreography often facilitates

the evolution of the domains based on what is important for each one, without a central

process manager’s influence.

One of the caveats with this approach is we no longer have a straightforward way to

understand the workflow. With orchestration, by analyzing only the orchestrator, we can

follow every step of the workflow. With choreography, the workflow is embedded in the

behavior of each service. The decoupling provided by the event queues also makes this

process difficult. This is one main concern with event-driven architectures; the highly

decoupled nature hinders the understanding of the event stream’s high-level flows. We

will detail strategies to tackle this later in this chapter.

The compensating actions might be harder to implement since each service will

have to implement or react to each new step or change in the workflow. For example,

if we added a new final step to manage the order returns in a new service, the other

services would also need to react to that new domain’s failures, if applicable. On the

other hand, it promotes the mindset to reason with each domain independently; on

an order return, how should the inventory domain react? It promotes the discussion

on how that change affects each domain instead of delegating that responsibility to the

orchestrator.

Another main concern with choreography is the ability to understand the current

state of each Saga. With orchestration, if we needed to know in which step the order

process was in, we would likely implement that feature in the orchestrator. Since it

monitors every step and the overall workflow, it would be straightforward to know each

order process step. With choreography, there is no prominent place to obtain each state.

One solution is to listen to every event being published by each service and materialize

them in an aggregated view, as illustrated in Figure 4-9.

Chapter 4 Structural Patterns and Chaining Processes

153

The example shows the order service listening to every event but could be a

different separate service to consume the events and materialize them into a view.

The component handling the events and materializing the state will likely have to

understand the higher-level workflow but doesn’t manage it as an orchestrator does.

Using this solution is still choreography but definitely has a halfway feel between the two

approaches.

Simpler processes don’t suffer as much with this solution’s caveats. As the workflow

grows more complex, the more challenging it is to deal with the drawbacks. Overall

orchestration tends to be a common pattern in event-driven architectures, and it

synergizes well with its mindset. The caveats can be tackled by the approaches we

discuss further in this book. However, if we have a requirement that needs a central

component to manage the process and keep its state, an orchestration approach might

fit better.

Figure 4-9.  The order service can listen to the other events to understand the
current state of the order process

Chapter 4 Structural Patterns and Chaining Processes

154

4.4  Event-Driven Microservices: Orchestration,
Choreography, or Both?
In Sections 4.2 and 4.3, we detailed how orchestration and choreography work and how

we could apply them. But should we stick to just one approach? This section will discuss

how typically they are implemented in an event-driven architecture and how they can

coexist together.

In event-driven architectures, we typically use choreography since it naturally fits

the event-driven mindset. We publish events to event streams and applications plug

into those streams to access the data. One main benefit in adopting an event-driven

architecture is the highly evolving nature and decoupled properties they provide.

Typically, business processes have no central orchestrator. The lack of a central piece

avoids the logic of being centralized in a single place and doesn’t imperil those benefits.

When we continuously add functionality and new services to the architecture, an

orchestrator typically grows more complex. As we add more people and more teams,

we slowly start to struggle with the monolith’s challenges in the orchestrator. Not

having a central piece eases these issues and enables the domains to grow naturally. It

gives the team’s autonomy to decide what’s best for their domain and deliver features

autonomously without having to deal with a central shared piece.

An orchestrator outside the boundaries, coordinating the changes between them,

will likely grow and potentially turn the boundary service’s domain anemic. Having

a different component in each boundary as the orchestrator for different business

processes can help with this. Still, it also means different sources make changes to the

entities, which can be hard to manage. Often orchestrators fall into the same difficulties

traditional SOA with ESB usually fall. As you might recall, we discussed SOA with ESB in

Chapter 1. Typically, ESBs are a place to centralize business logic and tend to grow as we

add more and more features. Orchestrators are a great place to centralize that logic and

have anemic satellite services.

Depending on the use case, choreography often tends to be the standard in event-

driven architectures. As boundaries grow, it would likely be problematic to manage a

central piece. However, it doesn’t mean orchestration doesn’t have a place in it. It is often

useful to apply it in a more localized context, for example, inside a boundary. Figure 4-10

illustrates an example of this situation.

Chapter 4 Structural Patterns and Chaining Processes

155

Event
Queue

Shiping Boundary

Event
Queue

Event
Queue

Order Management Boundary Inventory Boundary

Pricing Boundary

Pricing
Orchestrator

Pricing
Service

Taxes
Service

We can still use both
patterns. Often

orchestration works best
in a smaller scope.

Discount
Service

Figure 4-10.  Example of applying both patterns. We applied orchestration in a
smaller scope

Chapter 4 Structural Patterns and Chaining Processes

156

Figure 4-10 illustrates the same example we discussed before, but instead of a single

service, each bounded context is composed of several services. We use choreography

between each boundary, but inside a boundary, we can apply orchestration, as

illustrated in the pricing boundary. The more extensive higher-level process uses

choreography, but to manage a smaller scope and more localized process, we could use

orchestration like the pricing calculation.

This use case is just an example, but the main line of reasoning is to use

choreography as default and in higher-level processes and apply orchestration on a

limited scope. This approach allows a high decoupling between the services and enables

the team’s autonomy at the higher level where multiple teams are involved. And it uses

orchestration on a smaller scope, where a small number of people are involved and have

the autonomy to release features without impacting several areas.

4.5  Data Retrieval in Event-Driven Architectures
and Associated Patterns
Until now, we described how event-driven architectures work, and we briefly mentioned

queries as a common artifact of these architectures in Chapter 3. However, we didn’t

detail how to provide query functionality driven by events. Queries are a common

requirement in most applications to provide data to the user or other services. CRUD-

based services simply query the database and return the requested data synchronously.

Event-driven architectures add a layer of complexity to the traditional approach since

data is distributed throughout several services and likely eventually consistent. In this

section, we will describe common patterns that synergize well with the event-driven

approach.

Chapter 2 discussed how to move from a monolithic architecture to a distributed

event-driven microservice architecture. We discussed how to split the monolith into

several services and how to deconstruct the database; the data associated with each

domain was moved to the respective service. When in a monolith and a monolithic

database, all the data is centralized in the same place, and it is straightforward, from

an implementation perspective, to obtain and join data. Typical monolithic platforms

simply expose information through a synchronous API like REST or SOAP. This approach

is arguably the most common and straightforward approach. It suffers, however, from all

the scaling limitations we discussed in Chapter 1.

Chapter 4 Structural Patterns and Chaining Processes

157

By deconstructing the monolith and its database, we are now faced with a challenge;

how can we get an aggregated view of the data? We have a set of independent services,

each owning its domain’s data; each service will only be able to return information about

its domain. For example, Figure 4-11 illustrates four different services; the UI needs to

list a page with all the available products with their current stock and price.

A possible approach to solve this challenge is to use the same strategy as illustrated

in Figure 4-11. The UI application can fetch information from every service and merge

and display it in a UI. This approach is usually called the API composition pattern, and

it’s probably the solution that first comes to our mind.

This kind of approach has severe limitations; as you can imagine when we deal with

large amounts of data, this approach rapidly struggles. If we need to display a listing

page with all the products, let’s say with millions of products (although a lot less would

likely suffice to make the application struggle), the UI would likely need to load several

thousands of those items to memory. Imagine if the user needs to filter all products

with stock and order them from the lowest to the highest price, a standard functionality

Figure 4-11.  Having a distributed architecture poses challenges on how to have a
denormalized view of the data

Chapter 4 Structural Patterns and Chaining Processes

158

in most eCommerce websites. The UI application to support such queries would likely

have to fetch thousands of records from each service and filter them in memory to

display accurate records with filtering, sorting, and paging. If several users did this

simultaneously, the application would likely struggle with the performance overhead

and the memory constraints.

API composition can be relevant for small data sets and can be a cheap solution for

some use cases (although one can ask if we are using small data sets, why are we using a

distributed architecture anyway?). Even for one product, it would mean three requests

to different services. The additional requests can have a performance overhead in the

UI and likely lead to poor user experience. Data at scale and complex searches require a

different approach.

At the beginning of the chapter, we discussed how we needed to sacrifice the third

normal form’s values in the altar of performance and how we created denormalized

models for specific querying requirements. Event-driven architectures with persisted

event streaming provide a sustainable way to implement this. Since every event is

readily available even after consumption, we can use those events to enrich a service’s

information.

Let’s first look at a typical implementation of a synchronous query implementation.

Figure 4-12 illustrates a service, the product service, exposing an API for consumers

to use. Other applications can use that API to change the service’s data or to retrieve

information from the service.

Chapter 4 Structural Patterns and Chaining Processes

159

In a distributed event-driven architecture, it isn’t as straightforward since different

services own different data. The example in Figure 4-12 handles events from an

event queue to enrich its read model with additional data the service doesn’t hold.

For example, the product service might own all the data related to products, but the

inventory information might be managed in a different service. Like a product listing

page on a UI, queries to the product service might need the stock information for each

product. The product service can enrich its information with stock information handling

the events being published by the inventory service, thus the event queue.

Resuming the example we discussed in Figure 4-11, the product service can create a

denormalized view of the data with all the information needed for the UI requirements

by handling both inventory and pricing events. Filtering and sorting would actually be

viable since there is a persistent denormalized model.

Figure 4-12.  The product service can build a denormalized view of the data by
handling events from the other services

Chapter 4 Structural Patterns and Chaining Processes

160

4.5.1  CQS, CQRS, and When to Use Them
An interesting pattern that usually has high synergy with this kind of approach, and

is usually mentioned along with DDD, is CQRS (command query responsibility

segregation). CQRS originated from CQS (command query separation), and people often

are generally confused when distinguishing the two patterns; once you read this section,

let’s hope you’re not one of them. This subsection will detail both patterns, what we

can benefit from them, and how to apply them in the same product listing example we

discussed before.

Bertrand Meyer formulated CQS in his book6 Object-Oriented Software Construction.

This principle states that methods can either be queries or commands but never both.

Queries return a value but don’t change state, and commands change state but don’t

return any value. Basically, asking doesn’t hurt, and if you’re not asking, don’t tell.

CQRS originated from CQS and introduced a slight change; CQRS entities are split

into two main concepts, commands and queries. Having a clear separation between

the objects in code is handy because we can use queries at will; we are sure they don’t

change state. While with commands, we can be more careful about where to use them.

It is also easier to find the code paths that change state and the ones that retrieve

state. CQS can be a valuable approach to apply locally in specific services, the overall

organization helps to reason better with the service, especially in APIs using protocols

like REST where there are clear actions for retrieving (GET, HEAD, etc.) and changing

(POST, PUT, PATCH, etc.) state. We can implement independent paths for reads and

writes, which helps in the service’s organization.

CQRS, however, is often associated to an architectural point of view instead of just

locally in code. We can take it one step further and segregate commands and queries

into different components. We can have two different services, one that only handles

commands or changes in state and another that only handles queries that only retrieve

data without changing it. Figure 4-13 illustrates how the example we discussed before

with the product service would look like when applying CQRS.

6 Book by Bertrand Meyer, “Object-Oriented Software Construction,” March 21, 2000, www.amazon.
com/gp/product/0136291554

Chapter 4 Structural Patterns and Chaining Processes

http://www.amazon.com/gp/product/0136291554
http://www.amazon.com/gp/product/0136291554

161

Figure 4-13.  When applying CQRS at an architectural level, we can have separate
services for reads and writes

Chapter 4 Structural Patterns and Chaining Processes

162

When applying CQRS at an architectural level, we segregate the writes to one

independent service and the reads to another independent service. The product service

handles writes that can be done from an API or a command queue. The product read

model handles reads and exposes the data through an API. The read model also handles

the events from pricing and inventory service to enrich its model and be able to do the

complex searches we mentioned earlier. But what do we benefit from this?

Having separate read and write models allows us to specialize each model for

each purpose. The objects we return on reads, traditionally called DTOs (data transfer

objects), are often modeled to the use case that needs it, for example, a UI. That

model can be substantially different from the conceptual domain model, which is

often modeled by the domain concept (the aggregate in DDD) and bearing in mind

performance and transactional concerns. Often the query requirements end up

influencing the domain model design negatively. Usually, it is also required mapping

between the two, which can be more or less complex depending on the differences

between them. Often having the same model for both ends up doing neither one well.

Having a separate model for each, we remove a considerable part of that hassle.

Earlier in this chapter, we discussed the need to abandon the third normal form due

to the data’s denormalization. The third normal form minimizes data duplication which

actually benefits writes. Since we have two separate models, we could apply the third

normal form to the write side and denormalize the data on the read side.

Having two separate models with two different databases also allows us to optimize

the model and the technology for each purpose. The write side could have data

modeling optimized for writes, for example, event sourcing (we will detail event sourcing

next) which is basically an append log enabling minimal locking with a technology

optimized for writes. We can denormalize the model on the read side and use a

technology built for fast complex searches (e.g., ElasticSearch).

New features and new query requirements can also be easier to implement. For

example, if we need to launch a new UI with a different model and query needs, we

would only change the read model service. That change wouldn’t impact the service that

handles the writes and has the domain logic.

Consistency can also be a factor with this approach. Usually, the write side has stronger

consistency requirements due to the domain validations and the need to write consistent

data to the database. The read side can often be more lenient to weaker consistency

guarantees like eventual consistency. Besides this, most applications tend to exhibit a

read-intensive behavior; the number of reads vastly surpasses the number of writes.

Having separate services for each allows us to optimize and scale each side independently.

Chapter 4 Structural Patterns and Chaining Processes

163

When to Use CQRS?

CQRS is not a silver bullet, nor should it be applied to every use case. It implies one more

moving piece and increases the complexity of the solution. Having the writes separated

from the reads with an event queue in between means the read side is also eventually

consistent if it wasn’t already. So when should we use CQRS?

Using CQRS has unsurprisingly similar motivations to adopting an event-driven

architecture. Typically, simple and straightforward domains usually don’t benefit much

from it. There’s little benefit in dividing something that’s small and simple to begin with.

Often domains that aren’t close to the business core and don’t have enough complexity

or change too often don’t benefit much from it.

A simple domain with a low scale that often doesn’t change and needs strong

consistency guarantees is a good candidate to not apply CQRS. I experienced simple

services with small amounts of data where the teams applied CQRS and it only added

confusion to both the architecture and to the business. Simple services often are better

off with a traditional CRUD approach.

It’s important when deciding to adopt CQRS to have a strong reason to do so. Some

of the benefits we listed before can be arguably strong reasons, for example, if we have

a service where the reads largely surpass the writes and we have the need to scale

differentially. Having a conceptual write model substantially different from a complex

read model might also be a good reason.

Using event-driven architectures, you will likely have some sort of CQRS or at least

a denormalized model that aggregates information from different places. For example,

the query needs in the example we discussed with the product service, we needed to

merge data from various sources to provide meaningful searches to the business. When

we need to build a similar read model, a good approach is to apply what we learn with

CQRS, to understand if it makes sense to build it in a separate service and whether the

benefits of CQRS are relevant for our use case. Figures 4-12 and 4-13 show two different

approaches; we could ask some questions to help us understand if CQRS makes sense.

For example, by merging everything in the same service, are we polluting the product

domain model? Is the number of events from the other sources sufficiently disparate to

justify independent scaling? Would the searches benefit from a different technology we

are currently using in the product service?

Chapter 4 Structural Patterns and Chaining Processes

164

These are just some questions we should ask ourselves when applying

CQRS. Overall, it has high synergy with event-driven architectures, and it is valuable in

some use cases. But we should always question if the benefits outweigh the complexity

overhead.

4.5.2  The Different Flavors of CQRS
In the previous section, we discussed what CQRS is and how to apply it. We discussed

its advantages and when we should use it. In the example we discussed, we created two

different services with two distinct databases. This solution isn’t the only way to apply

CQRS, and there are some intermediate alternatives that we will discuss in this section.

CQRS is fundamentally about segregating the reads from the writes. In the example

in Figure 4-13, we created one independent service for writes and another one for reads.

This approach is the most flexible and the most complex. It makes a lot of sense in event-

driven architectures because most of the drawbacks with that approach are already

incorporated in the architecture. For example, eventual consistency is often a byproduct

of most event-driven services and needs to be tackled consistently (no pun intended).

The concurrency and ordering challenges of events, which might be hard to tackle in

an architecture not oriented to them, are already a reality, and we likely already have

strategies to address them.

However, it isn’t the only approach. CQRS doesn’t mandate we have a separate

database for each service, for example. Figure 4-14 illustrates an alternative

implementation of CQRS in the same example of the product service we discussed

before.

Chapter 4 Structural Patterns and Chaining Processes

165

Every time I see the same database shared by two independent services, I get

post-traumatic stress flashbacks. But there are advantages to applying the pattern this

way. A troublesome issue by having two separate databases is the associated eventual

consistency. We will discuss strategies to deal with eventual consistency in Chapter 5,

and as we discussed before, most querying needs tend to be lenient weaker consistency

guarantees. The weaker consistency guarantees often hold especially true for UIs.

Eventual consistency isn’t new and wasn’t introduced by events. Caches are a form of

eventual consistency, and we apply it thoroughly. However, when another service needs

to query an eventual consistency model and get stale data, it will do its business logic

based on that stale data, leading to erroneous results.

Figure 4-14.  We can use different approaches to apply CQRS, with different
tradeoffs

Chapter 4 Structural Patterns and Chaining Processes

166

For example, in Figure 4-13, there was a pricing service also listening to the

events being published by the product service and had the need to ask for additional

information from the read model API every time it received an event. If the product read

model didn’t yet process the same event the pricing service is processing, it would return

stale data. The data returned to the pricing service wouldn’t match the event the pricing

service received.

With the approach depicted in Figure 4-14, we can update both the write and read

model before publishing the event; this would solve the inconsistency between the

event and the API response. With this approach, we can still scale the read and write

side independently (although not the database). We do have to live with the same

database in both services, which can be a challenge to manage schema changes. This

approach might be a good option when there is a close relationship between the write

and read model. If there is a situation where a read model listens to events from different

sources (like Figure 4-13), we might benefit more from a more flexible option and more

substantial segregation.

There are other options; we could not have two different services, having only one

and having strict segregation of reads and writes only in code. On the other end of the

spectrum, we can have a third service that handles writes to the read model (one service

that writes to the write model, one that writes to the read model, and one that reads from

the read model). In the last option, I seldom saw the benefits outweigh the drawbacks.

As with most solutions, it’s all about the tradeoffs. The main goal is for you to have

these tools in your toolbox and be able to decide accordingly – whether it’s more fitting

having a highly flexible highly complex solution or a less flexible less complex one or not

using CQRS at all.

4.5.3  When and How to Use Event Sourcing
A typical pattern usually mentioned along with CQRS and DDD is event sourcing. Event

sourcing is also an interesting pattern to apply in event-driven architectures since it has

high synergy with the event-driven mindset. This subsection will detail event sourcing,

its benefits, and how and when to apply it.

Let’s look at the same example we discussed until now with the product service.

When stored in a relational database, the product information would probably look

similar to what’s depicted in Figure 4-15.

Chapter 4 Structural Patterns and Chaining Processes

167

The product service handles a command to change an entity, in this example

product 15231, changes the information in the database, and publishes an event

signaling the product changed its category. The product table stores the latest

information about each product. This is a common way to store data; we store the latest

state and manipulate it when someone requests a change.

Event sourcing proposes an alternative way to store the entity’s data. Instead of

saving the latest state, an entity is the history of changes that generated that state.

Conceptually the entity no longer is materialized with the most recent value of each

property; instead, an entity is a stream of immutable events. If we apply all events of the

stream, we can obtain the latest state.

Figure 4-15.  Typical state storage in a relational database

Chapter 4 Structural Patterns and Chaining Processes

168

For example, to store the product entity, instead of persisting each property’s

latest values, we would persist the events that signal each change. This is illustrated in

Figure 4-16.

Instead of changing the product’s category to the new one, the product service stores

the category changed event that was generated by the change. The database stores the

event type and the payload of the events. Instead of being a representation with the id,

material, category, and so on, the products are the stream of events that occurred until

now. The latest state of the product can be generated by applying all events in the stream.

Figure 4-16.  Instead of saving the latest state of each product, we store the events
generated by the change commands

Chapter 4 Structural Patterns and Chaining Processes

169

At first sight, this sounds like a terrible idea, right? How are we supposed to query

the data? For example, how can we obtain all products with category jackets? All we have

persisted in the database is the history of events. To filter them, we would need to apply

all events for each product to determine the latest state and then query.

That’s one of the reasons event sourcing has high synergy with CQRS. As we

discussed in Subsection 4.5.1, if we separate the write model from the read model, we

can have substantially different models for each. We can use event sourcing on the write

side and use the events to persist the latest state on the read side. By doing so, we can

have an optimized model to query the data and an optimized model to write data.

As we discussed, events represent something that happened in the past and are

immutable. The event stream basically functions as an append log. Write operations are

often faster than update or delete operations; due to this, using event sourcing in the

write model can often benefit from better performance.

An important consideration when building an event-driven architecture is to make

events the source of truth. Event sourcing fully embodies this concept as events are the

entities. The event stream can also provide a comprehensive history of the entities’ state

or be useful for debugging and auditing purposes. But the highest value is the ability to

retain the original data and rebuild different views of the data for current and future use

cases. We have the query requirements we need today, but we can rebuild different views

of the data to future use cases by having the full history of the event stream.

If you are using a relational database, there is also a performance and conceptual

gain in using event sourcing. There is an impedance mismatch (there’s an article7 by

Scott Ambler further detailing this, and Greg Young explores this concept thoroughly

in his CQRS documents8) between the OO (object-oriented) model and the relational

world. How entities are modeled is substantially different between the two. This

difference usually has performance impacts and additional complexity to reason with

the models; complexity ORMs (object-relational mappers) tend to abstract. Using event

sourcing simplifies these issues since the event is the same in both.

Figure 4-16 illustrates events being stored in the database and published in the event

queue. With durable message brokers, we can further improve this topology by not having

a database. Figure 4-17 illustrates this situation with the same example we used before.

7 Full article in Scott Ambler, “The Object-Relational Impedance Mismatch,” www.agiledata.org/
essays/impedanceMismatch.html

8 Full article in Greg Young, “CQRS Documents,” https://cqrs.files.wordpress.com/2010/11/
cqrs_documents.pdf

Chapter 4 Structural Patterns and Chaining Processes

http://www.agiledata.org/essays/impedanceMismatch.html
http://www.agiledata.org/essays/impedanceMismatch.html
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

170

In the Figure 4-16 example, we had the events stored in the database and in the event

queue. Notice in Figure 4-17 that the product service, which is responsible for handling

the commands and applying the business logic, no longer stores the events in an

internal database. Instead, it publishes the events to the message broker, and the events

are stored there. This way, the events no longer are in two different places, benefiting

from the infrastructural gains and the associated issues of guaranteeing both places are

exactly the same. Also, storing and publishing events imply we need to ensure that both

operations happen or fail together; otherwise, the system will become inconsistent. By

only having one operation, this concern is greatly simplified. We also fully embrace a

single event stream as the source of truth.

Storing events only in the message queue begs the question of whether we can fully

trust a message broker to store the core business information. A few years ago, this kind

of option would send a chill down my spine. But the rise of event streaming and the

need to do it at a large scale certainly highlighted the concern and paved the way to do

it reliably. Are durable message brokers a database? They certainly don’t have the query

Figure 4-17.  The same example as before but using the event broker to store the
events

Chapter 4 Structural Patterns and Chaining Processes

171

capabilities we are used to with traditional databases, but they can afford at least as

strong consistency guarantees as distributed databases. Martin Kleppmann has a very

interesting keynote9 about this subject with Kafka, which we recommend to further the

topic.

In Figure 4-17, we also combined CQRS with event sourcing. This way, the product

read model builds a denormalized projection of the product data optimized for

querying. Using a persisted event stream in the write model, we can also rebuild the

same or new models on the read model when needed.

4.5.4  Concerns and When to Use Event Sourcing
The main concern of event sourcing is the ability to query the data. This concern is

mostly mitigated by using the read model and building projections to answer those

querying needs. However, the read model is eventually consistent. When business logic

requires to query the data, doing so in an eventually consistent read model can be hard

to deal with. For example, if the product service had a business rule that only 25% of the

products can have a price above 400$, it would have to validate that rule every time a

product is created or its price changed. It would be hard or infeasible to do that query on

the write model. We could query the read model, but the inherent eventual consistency

could generate erroneous results. We further detail how to deal with eventual

consistency in Chapter 5, but it always has a complexity increase.

Saving every single event of every single entity can also be impactful both cost-wise

and performance-wise. This solution often requires retention strategies and the usage of

snapshots. Although feasible and retention policies are probably already a concern on

non-event sourced systems, snapshots require dedicated implementations and add to

the system’s overall complexity.

We don’t need and shouldn’t embrace event sourcing in every single service in the

architecture. Usually, services with complex querying requirements might benefit from

event sourcing and CQRS. Services that deal with core domain concepts and where the

business might need to extract different projections from that information in the future

also might be a good indicator. Having strong audit requirements is also a good fit since the

event stream is the source of truth it can provide a detailed audit. Simple isolated services

are likely not to be a good fit since they won’t likely benefit from the associated complexity.

9 Footnote available in Martin Kleppmann, “Is Kafka a Database?”, October 17, 2018,
www.confluent.io/kafka-summit-SF18/is-kafka-a-database/

Chapter 4 Structural Patterns and Chaining Processes

http://www.confluent.io/kafka-summit-SF18/is-kafka-a-database/
http://www.confluent.io/kafka-summit-SF18/is-kafka-a-database/

172

In event-driven architectures with durable message brokers, we already face many of

these concerns since we have persisted event streams. Using event sourcing is stepping

up a notch to model our entities with event streams and fully embrace them as the

source of truth.

4.5.5  Using Command Sourcing and Its Applicability
A very similar pattern related to event sourcing is command sourcing. Unsuspectingly,

command sourcing uses the same approach event sourcing uses, but instead of

persisting events, we persist commands. This subsection will discuss command sourcing

and apply it in the same example we discussed previously.

In Subsection 4.5.3, we discussed how to apply event sourcing in the example with

the product service. Using the same example, we could apply command sourcing by

saving the commands reaching the service. Figure 4-18 illustrates how we could apply it.

Figure 4-18.  Command sourcing applied to the same example with the product
service

Chapter 4 Structural Patterns and Chaining Processes

173

Write requests are modeled as commands and sent to a command queue. The

commands can be stored in the queue, as discussed previously with durable message

brokers, or stored in the database. The product service consumes the commands from the

queue and generates events. The events are published to an event queue and consumed by

the read model where the data can be queried the same way we discussed before.

Command sourcing adds an additional layer of complexity and asynchronism to

the flow. Write requests to the service can be refused if they fail the domain validations.

If the request is synchronous, it is easy to return the feedback to the application issuing

request. However, if it sits in a queue, it will be processed later. Returning feedback about

validation errors might be troublesome. The concern is not because it is asynchronous,

but the application will have to handle asynchronous feedback about failures to accept

the commands and handle the regular events to understand when the request is applied.

Although feasible, by handling the events and differentiating them, we might be walking

very close to the line that separates a good solution from over engineering.

Command sourcing saves the user’s original request before the application manipulates

it, applies its logic, and transforms it into an event. It is often useful when the service

receiving the commands has complex logic or intricate algorithms. Saving the original

request allows us to regenerate the state if we introduce a bug in the service. It might also be

useful if we want to try different versions of the algorithm and understand the results.

If there is an imperative reason to save the request precisely as the user submitted

it, then command sourcing might be a good option. However, depending on the

application needs more often than not, event sourcing is enough, and the complexity

overhead doesn’t pay off. In event-driven architectures, especially the parts using

choreography, events are the glue that connects the different services throughout the

flow. Commands are used less often in the places that we use commands; command

sourcing can be a useful pattern; however, be aware of the complexity overhead and

weigh whether it is worth it.

4.6  Building Multiple Read Models in Event-Driven
Microservice Architectures
In Section 4.5, we discussed the difficulties of satisfying query requirements on data that is

dispersed throughout several distributed microservices. We discussed that we could build

a denormalized read model by handling events from different sources. This section will

detail how to do it and how we can apply some of the concepts we discussed previously.

Chapter 4 Structural Patterns and Chaining Processes

174

Let’s use the practical example we worked with in Section 4.5. We have the

requirement to list all products with stock and sort them by descending price. The

relevant information is in three different services, the product, inventory, and pricing

service. As we discussed, to be able to sustainably do that query, we could use an

independent service to handle the events from each service and build a denormalized

read model optimized for it. This situation is illustrated in Figure 4-19.

Figure 4-19.  A read model handles events from different services and builds a
denormalized model

Chapter 4 Structural Patterns and Chaining Processes

175

In event-driven architectures, and often in microservice architectures also, these

kinds of queries are often a common challenge (many of them similar to the ones raised

when we discussed the API composition pattern). They are often solved by opting to

build this denormalized read model. Event-driven architectures provide a way to do

this by sharing information through events and offer a practical way to make the data

readily available. The event streams provide a decoupled way to process data and

transform it into something else, dedicated to a different purpose. They also do it in a

continuous manner and in real time (as long as the subscriber is able to keep up with

the throughput, which shouldn’t be a problem since they are horizontally scalable). The

associated decoupling of the services also guarantees that they don’t impact each other

by doing so.

But what kind of events would be best to build that denormalized view? As you’ll

recall, in Section 3.1, we discussed the differences between events and documents. Let’s

go through this practical example and discuss the tradeoffs.

As we discussed in Chapter 3, partial events are relevant when a service needs to

react to that specific change. Read models typically have little or no business logic, as the

business rules should be in the service that owns the domain and is the source of truth.

We also discussed that documents are often relevant when the consumer uses most of

the entity’s data and is only interested in the most recent one. From this perspective, it

would make sense to use documents to feed the read model. For example, Listing 4-1

illustrates a possible document the product service could publish.

Listing 4-1.  ProductDocument schema definition

1 ProductDocument

2 {

3 Id: 152397,

4 Brand: "Nike",

5 Category: "Shirt",

6 Material: "Cotton",

7 Season: "Spring/Summer",

8 Sizes: ["XS", "S", "M", "L", "XL"],

9 Colors: ["Black", "Gray"],

10 CreatedAt: "2021-01-30T11:41:21.442Z"

11 }

Chapter 4 Structural Patterns and Chaining Processes

176

If we had a partial event for each property, the read model would have to handle

possibly six different events with different logic. A single document with all the

information dramatically simplifies the effort to update the read model. It also reduced

the number of events we have to publish and consume. For example, if the user edits

several fields in one action, only one product document needs to be published, while if

we had several partial events, we would need to publish one for each changed property.

An interesting solution is to combine this approach with Kafka’s compacted topics. As

we discussed in Chapter 3, when using compacted topics, Kafka removes older messages

that share the same partition key. Figure 4-20 illustrates how this mechanic works.

Chapter 4 Structural Patterns and Chaining Processes

177

Figure 4-20.  Removal of older messages with Kafka compacted topics

Chapter 4 Structural Patterns and Chaining Processes

178

Notice that this is the same diagram we discussed earlier in Figure 4-19 but

highlights the event queue’s inner workings. We have a queue with only product

documents, since we decided to publish just the document and don’t use partial events.

The numbers above the documents are the partition keys, which in this case translate

to the product id, and the numbers below are the offsets. When the product service

produces messages, it uses the product id as the partition key. Kafka internally uses

this key to distribute the messages between different partitions (a concept similar to

sharding, we will further detail how this works in Chapter 6).

When using compacted topics, Kafka removes the older messages with the same

partition key. In the example in Figure 4-20, we have three documents with the same

partition key (223346). The product service generated the three documents because the

users changed the same product three times, so the product service published three

documents informing each change. The two documents with offsets 3 and 5 are removed

since they are older, and we only retain in the queue the latest one, with offset 8.

Compacted topics only remove older messages from repeated partition keys and

always keep the most recent message per partition key. The product document we

designed gives a comprehensive view of the product and its information. By combining

both, the compacted topic acts as a product database but built in a way that is ready

to be shared with other applications, and in a streaming fashion, new updates will be

published as new documents at the end of the topic.

How could we build a similar denormalized model in a traditional microservice

application using synchronous requests? Perhaps the read model would have to poll

the product, pricing, and inventory service and fetch information about each product.

This alternative would create a direct dependency between the read model and the

other services, which would make it susceptible to cascading failures. It would also be

less performant since the read model would have to request information even when no

update was made. The time between editing information and being available in the read

model (the inconsistency window) would be larger since it would be based on a specific

interval rather than reacting to real-time changes. Scaling is also a challenge. The more

requests we do to the services, the more the strain on the database; using this solution

frequently might eventually impact the service responding to the requests, which begs

the question of whether the solution is genuinely horizontally scalable.

Chapter 4 Structural Patterns and Chaining Processes

179

Using an event queue and a streaming solution, we solve these problems in an

organic way; changes are published and the services react to them. They are fully

decoupled and don’t need or impact each other directly. Adding more instances to the

read model service, for example, would never impact the product service.

Rebuilding the model in case of an issue is also straightforward. Imagine if we

introduce a bug in the read model service and the data is corrupted. If we need to rebuild

the whole model, we can simply consume the topic from the beginning. Compacted topics

retain the latest document from each product; by reading it from the beginning, we will

consume the data from each product. There is no need for an ad hoc process or specific

built application to migrate the data; neither is there the need for downtime. The code to

rebuild the model is the same as the regular routine events. If we need to do it faster, we

can add more service instances to consume the events more quickly during the rebuild.

If we receive a different search requirement from the business that our current

model isn’t optimized to fulfill, we can use the same strategy to generate the new model.

Suppose we need to denormalize a different projection of the product data; we have the

product information in the queue. In that case, we can use the same strategy to read it

from the beginning and build that new projection.

Overall, this solution follows the same principles we have been discussing throughout

this chapter; when data reaches a given scale, it often requires denormalized projections.

Approaching the solution in an event-driven mindset provides us with the flexibility to

build it according to the search requirements in a scalable and more reliable way.

4.7  The Pitfall of Microservice Spaghetti
Architectures and How to Avoid It
In this chapter and the previous ones, we discussed how to transition to a microservice

event-driven architecture, and we discussed how to build event-driven services and

apply structural patterns. As we grow the microservice ecosystem by adding new

functionality or creating more fine-grained services, the overall system’s complexity

continually increases. Besides all the challenges distributed architectures have,

continuously adding more moving parts to the system can become hard to read and

understand the overall picture. In this section, we will discuss this challenge, its impacts,

and how to address it.

Chapter 4 Structural Patterns and Chaining Processes

180

In a complex network of microservices, you often fail to find the correct flow. The

same way we often struggle to understand the flow and logic of a single application’s

spaghetti code, a complex architecture can be even more challenging to read. When a

business process spans several services, analyzing the code of several different services

to understand the high-level flow can be a real detective’s work.

Yuri Shkuro from Uber has a very interesting presentation10 about tracing 2000+

services. The service network generated by Jaeger shows this difficulty and the

associated complexity of such a high number of different components. Although the

difficulty of understanding a complex web of distributed components is a drawback of

distributed architectures and something we have to live with, we can take several actions

that help us reason with that architecture more sustainably.

As discussed in Chapter 1, a drawback of monoliths is that they often have the right

conditions to create spaghetti code without the right mindset and discipline in place.

Microservices solve that since each service is physically separated from one another.

In truth, they arguably delegate the challenge to a higher level, to the microservice

organization and higher-level architecture. It certainly has many advantages; for

example, it’s easier for the teams working with the services to organize code and build

new features. However, it’s also easier for everyone to lose track of the overall flow and

how the services impact each other, often creating complex corner cases. There are many

resources and documented strategies to address spaghetti code. However, addressing

spaghetti architectures often falls into a more dubious and more complex scope.

4.7.1  Domain Segregation and Clear Boundaries
In Chapter 3, we discussed DDD as a way to organize service boundaries. This

organization can also be an excellent way to manage the microservice complexity. As we

discussed in Chapter 3, services organized according to their domains are likely to be

more stable than other types of organizations or not having one at all. They often prevent

the impacts of new development to ripple through several components throughout the

architecture.

10 Presentation available in Yuri Shkuro, “Conquering Microservices Complexity @Uber with
Distributed Tracing,” September 4, 2019, www.infoq.com/presentations/uber-
microservices-distributed-tracing/

Chapter 4 Structural Patterns and Chaining Processes

http://www.infoq.com/presentations/uber-microservices-distributed-tracing/
http://www.infoq.com/presentations/uber-microservices-distributed-tracing/

181

Often in event-driven architectures, the domain’s flow and the business processes

are translated into the message flow between the several components. The highly

evolutionary nature of these architectures also paves the way for them to change

seamlessly. Losing track of the domain flow is easy, and understanding it is often tricky

because it requires analyzing the message flow between several components.

Understanding the overall flow is often facilitated when services are clustered

according to their domains. For example, in the practical example we discussed when

detailing Sagas in Subsection 4.1.3, for fulfilling an order, we know we have to do a

series of steps, for example, saving the order information, validating and updating stock,

calculating pricing fees, etc. If services are organized using domain segregation, it’s

easier to map the business process flow to the services that implement it. Each service, or

set of services, belongs to a bounded context related to a business concept. Even though

there might be many services, each bounded context communicates to each other the

same way the business process conceptually does, and the message flow advances

the same way. This way, it’s easier to reason with the architecture and the interactions

between the services.

Another essential principle is to build clear boundaries across domains. One

typically good practice in software engineering is to use dependency inversion (the D in

SOLID11). It states that the code should depend upon abstractions rather than concrete

implementations. Applying this to a high-level architecture, one boundary should access

the other through the public interfaces, never by the internal service’s implementations

or endpoints.

You might recall when we discussed modular monoliths in Chapter 1. Modular

monoliths are typically built by defining these boundaries and maintaining strict

isolation between them. Shopify even built12 a way to programmatically enforce these

boundaries by validating code that doesn’t access the public interfaces. It’s easier to

bypass these boundaries in a monolith since the code is centralized in a single solution.

However, in a complex microservice architecture, we can struggle with the same

issue by having a chaotic network of dependencies between the services. Domain

organization and strict boundaries mitigate this issue. Boundaries should be explicit

on the endpoints they expose and clarify what functionalities are public and which

11 See “SOLID,” https://en.wikipedia.org/wiki/SOLID
12 Full article in Kirsten Westeinde, “Deconstructing the Monolith: Designing Software that

Maximizes Developer Productivity,” February 21, 2019, https://shopify.engineering/
deconstructing-monolith-designing-software-maximizes-developer-productivity

Chapter 4 Structural Patterns and Chaining Processes

https://en.wikipedia.org/wiki/SOLID
https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity
https://shopify.engineering/deconstructing-monolith-designing-software-maximizes-developer-productivity

182

ones aren’t (similar as they would be in a single code solution). This encapsulation

helps contain the dependencies and lowers the likelihood of breaking contracts. A good

approach is often guaranteeing the boundary has exclusive ownership of its domain’s

data and has clean dedicated endpoints that expose the boundaries’ functionalities.

Overall, having domain segregation and enforcing the separation of concerns

between bounded contexts can be useful in containing the architecture’s complexity and

a sustainable way to evolve the architecture without losing track of the high-level flow.

4.7.2  Context Maps
The patterns we discussed, like CQRS and event sourcing, aren’t applicable in every use

case, but DDD and its techniques have essential benefits that we can often use. DDD

highlights the need to understand the system’s domains and bounded contexts and their

relationships. Its practices can often help us understand them even if we don’t apply the

more complex patterns like CQRS.

Context maps are typically mentioned in DDD, and they describe the existing bounded

contexts, their relationships, and interactions in the form of a diagram or simply text. They

can depict the higher-level relationships, dependencies, and flow of messages between

the different bounded contexts. They are often similar to the diagrams we have been using

throughout the book; an example is depicted in Figure 4-21.

Chapter 4 Structural Patterns and Chaining Processes

183

This example also details the entities in each bounded context. Also, an interesting

note is the product entity, which is present in several bounded contexts but might have

different information on each, depending on what is relevant. We can start by only

drawing out the relations between the bounded contexts and later add more information

like domains and entities. The details about relationships and their dependencies are

often described in text or in a table that follows the diagram.

Figure 4-21.  Example of a possible context map for the eCommerce platform we
have been discussing

Chapter 4 Structural Patterns and Chaining Processes

184

Context maps help to reason with the system, understand each boundary, and

highlight where the boundaries share data. They also help to picture how the most

important parts of the system relate to each other. In event-driven architectures, we can

enrich the context map with the external event streams exposed and handled by the

different bounded contexts. This approach can help provide a reference to reason and

organize the architecture without losing track of the relationships between the services.

4.7.3  Distributed Tracing
In event-driven architectures, there is often no direct communication between services;

this and the high decoupling between components can make the data flow hard to

understand. Especially when using choreography, it is easy to lose the high-level flow of

the events. Distributed tracing can be useful to tackle these challenges and help to map

and understand these flows.

Distributed tracing collects and records services and operations that are in the scope

of the events. That data can then be used to be searched and visualized. It can be a

valuable method to reason with a distributed system, especially a highly decoupled one

driven by events. It can also help to understand the relationships between the services.

Several tools can help us implement and record tracing. For example, we can use

Zipkin along with Kafka’s interceptor API13 to record traces for every event produced

and consumed. Another interesting example is using OpenTracing along with Jaeger.14

OpenTracing can be used to add correlation data to the event’s headers and use them in

Jaeger to have a high-level visualization.

Distributed tracing can be a valuable tool to visualize how services interact, the flow

of the data, and a high-level perception of how architecture evolved throughout time. We

can use that high-level view provided by distributed tracing to organize and reason with

the architecture in a more sustainable way. We can’t improve what we don’t measure; if

we have that information and if the architecture has a chaotic network of dependencies,

we can use that information to design a strategy to organize and make sense of the

architecture’s functionality.

13 Interesting article on how to implement it in Jorge Quilcate, “The Importance of Distributed
Tracing for Apache Kafka Based Applications,” March 26, 2019, www.confluent.io/blog/
importance-of-distributed-tracing-for-apache-kafka-based-applications/

14 Interesting article on how to implement it in Aaron Burk, “Fault Tolerance in Distributed
Systems: Tracing with Apache Kafka and Jaeger,” July 24, 2019, www.confluent.io/blog/
fault-tolerance-distributed-systems-tracing-with-apache-kafka-jaeger/

Chapter 4 Structural Patterns and Chaining Processes

http://www.confluent.io/blog/importance-of-distributed-tracing-for-apache-kafka-based-applications/
http://www.confluent.io/blog/importance-of-distributed-tracing-for-apache-kafka-based-applications/
http://www.confluent.io/blog/fault-tolerance-distributed-systems-tracing-with-apache-kafka-jaeger/
http://www.confluent.io/blog/fault-tolerance-distributed-systems-tracing-with-apache-kafka-jaeger/

185

4.8  Summary
•	 Transactional consistency is a complex challenge in distributed

systems. Distributed transactions and two-phase commit protocols

are an alternative, but a very limited one often raising more issues

than it solves.

•	 Sagas are a sequence of individual operations to manage a long-

running process. We can use them to divide a long-running or

traditional single database transaction into smaller ones, being more

suitable for a distributed environment. Two common patterns of

implementing Sagas are orchestration and choreography.

•	 Orchestration uses a primary component to manage the steps of the

process. It is often valuable in complex processes that need a central

supervisor.

•	 Services using choreography react to each other to complete

the Saga’s sequence of steps. Each service reacts to the changes

happening in the ecosystem to accomplish its tasks. Choreography

tends to be a typical pattern in event-driven architectures, and it

synergizes well with its mindset.

•	 We can combine orchestration and choreography as we see fit.

Choreography can be applied more commonly and in higher-level

processes. We can use orchestration on a more limited scope and

specific use cases.

•	 In event-driven architectures, having a set of independent services,

each owning its domain’s data, can pose a challenge to getting an

aggregated view of the data. API composition can be a possible

solution, albeit a very limited one.

•	 We can apply CQRS to segregate writes from reads. This segregation

allows an optimized model and approach for each. CQRS isn’t

limited to segregating databases for reads and writes; there are other

intermediate patterns that we can use.

Chapter 4 Structural Patterns and Chaining Processes

186

•	 Event sourcing is a valuable pattern that synergizes well with event-

driven architectures. It is important to understand the concerns and

advantages of event sourcing as they might be useful in some use

cases but also produce some complex limitations.

•	 Command sourcing relates to event sourcing and can also be a useful

pattern when it is essential to save the requests exactly as the user

submitted them. As with event sourcing, it is important to weigh its

benefits and apply it only when it outweighs its concerns.

•	 Documents and Kafka’s compacted topics can be a good approach to

build several read models.

•	 Continuously adding more moving parts to the system can become

hard to read and understand the overall picture. Domain segregation,

clear boundaries, context maps, and distributed tracing can be

valuable tools to tackle this challenge.

Chapter 4 Structural Patterns and Chaining Processes

187
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_5

CHAPTER 5

How to Manage Eventual
Consistency
This chapter covers:

•	 Why eventual consistency is a consequence of event-driven systems

and its impact on the business and consumers

•	 Using event schema to avoid eventual consistency

•	 Applying domain boundaries to manage eventual consistency

•	 Using event versioning as a mean to react to inconsistent information

•	 Applying the end-to-end principle to guarantee a consistent flow

•	 Appearing consistent by maintaining a small inconsistency window

The funny thing about consistency in software engineering is that the meaning is not

very consistent. Puns aside, the definition of consistency varies from context to context,

and there are several levels of strong and weak consistency. Strong consistency is the

consistency we are usually used to and provided by the traditional ACID (atomicity,

consistency, isolation, and durability) properties. There are several degrees of weak

consistency1 that offer different levels of safety. Similar to what we would configure in a

transaction isolation level, strong consistency would be the serializable level, while an

example of weak consistency could be read uncommitted or read committed.

When dealing with distributed systems, there are several degrees of consistency,

each with its peculiarities. I won’t detail each of them since it’s not in the scope of this

1 Check this article by Jepsen which details the different degrees, “Consistency Models,”
https://jepsen.io/consistency

https://doi.org/10.1007/978-1-4842-7468-2_5#DOI
https://jepsen.io/consistency

188

book’s contents. Still, the duality between availability and strong consistency usually

triggers a lively debate illustrated by the CAP theorem detailed in Section 5.1.

Typical monolithic applications enjoy the comfort of ACID properties and the

traditional meaning of consistency. Transactional and relational databases usually treat

data as a single copy; changes are atomic and instantaneous. If you change a record,

you don’t have to worry about any concurrent write since the operation is atomic. No

one else can modify it simultaneously, and it will be available to anyone reading it

instantaneously. When you read that record, you are guaranteed to read the last possible

value.

These kinds of guarantees are typically available on monolithic applications.

They simplify most developments and provide an easy solution to otherwise complex

problems. This meaning of consistency is the foundation for many applications and is

wired into our minds and our customers’ minds while using the software. Looking back,

this level of consistency is a warm fuzzy blanket on a dark cold night. When moving to

an event-driven architecture, you most likely will need to leave that blanket behind and

embrace the cold. Don’t worry, the cold is always better than the heat of a SQL database

CPU running at 100%.

Interactions between components in an event-driven architecture are often with

asynchronous communications. Traditionally, communications between microservices

are point-to-point synchronous communications. Often microservices expose APIs

so other services can use their functionality and access their data. As exemplified in

Figure 5-1, these APIs usually use synchronous communication like REST, and service

1 sends a request and obtains the response immediately. When using event-driven

microservices, service 1 publishes an event which is handled by service 2, but no direct

communication happens between the two services, and is always mediated through the

event broker; the services don’t know each other.

Chapter 5 How to Manage Eventual Consistency

189

It is often preached about the advantages of decoupling components through

message queues; while this is undoubtedly useful, it also has the consequence of making

the propagation of changes in the system asynchronous. The asynchronous decoupling

produces what is usually named eventual consistency; reads on different parts of the

system might return stale data, but given enough time, all reads will eventually return the

same value. In event-driven architectures, all services processing events for a given entity

will eventually converge to the same state as soon as they process those events. Eventual

consistency is a specific form of weak consistency since it doesn’t guarantee the stronger

guarantees of ACID properties, for example. NoSQL databases have widely adopted

eventual consistency as a means to enable high scalability and provide availability

guarantees that are hard (or impossible) to achieve with strong consistency models in a

distributed environment. Section 5.1 will further detail this topic and its relation to the

CAP theorem.

Figure 5-1.  Comparison between synchronous and asynchronous microservice
communication

Chapter 5 How to Manage Eventual Consistency

190

Having components that possibly return stale values impacts the system’s users and

has an even higher impact on other services that depend on that information. When

a service’s domain logic depends on information from an eventually consistent read

model, it might produce erroneous results due to the stale information. It is fundamental

to know how to handle eventual consistency to leverage these impacts.

This chapter provides several techniques to deal with and leverage eventual

consistency in an event-driven architecture. In Section 5.2, you will learn how event

schema design can avoid eventual consistency. The impacts of event schema design are

further detailed in Chapter 8.

In Section 5.3, you will learn to use domain boundaries to contain the impacts of

eventual consistency. This relates to the choreography pattern described in Chapter 4.

Section 5.4 will detail how to use event versioning to detect stale information and use

compensation strategies to deal with eventual consistency.

The end-to-end principle can guarantee consistency in the end-to-end flow while

allowing eventual consistency on the system’s smaller components. This will be detailed

in Section 5.5 and include a real-world example of its use. Section 5.6 will weigh eventual

consistency with small inconsistency windows and show how real-world uses of NoSQL

databases can apply it in production. You will learn how the same strategy can be

applied to event-driven architectures.

5.1  The Impacts of Eventual Consistency and the
Need for Alignment with the Business
In this section, you will learn the impacts of eventual consistency and understand that not

every component needs or should be eventually consistent. There’s no magic solution to

eventual consistency, just ways to leverage it. It should be a conscious decision to adopt

it and needs alignment with the system’s business owners. There is also the need for a

deliberate strategy to deal with your system’s future consumers and should be clear to

them that the service might return stale data. This section will also detail and illustrate the

impact of eventual consistency and teach you to weigh the tradeoffs.

Let’s illustrate eventual consistency with an example. Figure 5-2 depicts a user

buying a product on an eCommerce platform based on a single application. At the

moment of the purchase, the system would need to validate the available stock and

create the order. The subscription service would also need to validate the remaining

stock and notify interested parties if the product has just one stock unit left.

Chapter 5 How to Manage Eventual Consistency

191

Since there is only one application, each operation is synchronous. The logic and the

domain flow of the order are sequential inside that application. The database changes

can occur atomically, and the information about, for example, the product’s stock on

the platform will be updated when the user orders the product. The new stock will be

instantly visible to every user on the platform.

Figure 5-2.  Monolithic application with several different modules

Chapter 5 How to Manage Eventual Consistency

192

Now let’s see the same example as before but with each module with an independent

event-driven microservice as pictured in Figure 5-3. The order service would create the order

and then publish an event informing about the operation. Inventory service would then handle

that event and update the stock for that product. Since these two operations are asynchronous

between the moment the user created the order and the moment the service updated the stock,

there could be another order for the same product. Since the stock model wasn’t up to date yet,

the user could view and order stock for that product. The stale data and the concurrency of the

orders would produce a duplicate order for stock that might not be available.

Figure 5-3.  Event-driven approach to the same application

Chapter 5 How to Manage Eventual Consistency

193

Distributed systems like event-driven architectures have two core properties2: safety

and liveliness. These two properties provide the foundation to understand why eventual

consistency is a challenge.

5.1.1  Safety
The safety property guarantees that no “bad things” happen in the system. Bad things

are situations that could make the data invalid or to have a state that was never on the

system (e.g., concurrency issues inside the system, possibility of deadlocks, unordered

operations, etc.). Typical eventual consistency has no safety properties; however, in an

event-driven system, we can avoid most of these issues. How to solve them is explored

in Chapters 6, 7, and 8. An important consideration is while the system is inside the

inconsistency window (the time between an update occurs and the change propagates

throughout the system), the state returned can be invalid, which might be an issue

depending on the use case. This chapter discusses possible solutions for these issues. If

we model events to be small, the partial state of the entity we build through them might

be temporarily invalid. For example, if you change your profile’s full address and the

system processing it sends partial events for the street name and the city, the built model

might have the new street name and the old city temporarily. Chapter 8 explores this

subject in greater detail.

5.1.2  Liveliness
The liveliness property guarantees that “good things” happen in the system. In this

context, the most important consequence is higher availability. Availability is one of the

most useful advantages of event-driven microservices as they endow the system with

higher resilience, enabling for higher percentages of the service’s availability.

The first most obvious consequence is for the users of the system. Changes by the

system’s users might take time to propagate to every service in the ecosystem, impacting

the tools. I’m guessing you probably used an application that after doing an update took

a few refreshes of the page to see those changes reflected. Although it is a dubious user

experience and mildly infuriating, it might be acceptable to live with depending on the

2 These two properties were first described in this article by Bowen Alpern and Fred B. Schneider,
“Defining Liveness,” October 7, 1985

Chapter 5 How to Manage Eventual Consistency

194

business. There might also be the case that it is better not to be available than displaying

stale information. The most crucial property in this situation is the length of the

inconsistency window; if it is small enough, it won’t be noticeable, and as far as users are

concerned, fast eventually consistency is strong consistency as explored in Section 5.6.

There are also ways to design UIs to be more compatible with asynchronous systems, as

will be discussed in Chapter 9.

When there is business-critical functionality built on top of eventual consistency,

you need to weigh whether forfeiting consistency in favor of availability is acceptable

to the business. There might be use cases where not accessing the data is preferable to

base decisions on stale information. We saw this firsthand on a system that managed

an eCommerce platform products’ visibility. The business had several agreements with

brands to not allow certain categories of products to be available in specific regions.

The punctual delays in the UIs due to peaks in load made the business completely stop

using that feature to manage it in more error-prone manual alternatives because they

simply couldn’t trust the system. This example highlights the need to understand the

functionality’s criticality and to weigh if another solution is preferable.

The issue also gains a different magnitude in synchronous HTTP calls between

services. The example in Figure 5-3 illustrates this issue; the UI application does an

HTTP call to the inventory service API to obtain the stock after creating the order to

validate if there is just only one stock unit left to notify customers. The stock returned

by the inventory service might not be up to date since both the subscription service and

inventory service are processing it. The stale data might result in two possible faults if the

subscription service processes the order created event faster than the inventory service:

•	 The stock quantity is two, resulting in no notification sent since it

wasn’t the last stock unit.

•	 The stock quantity is one, resulting in the service sending a repeated

notification for a stock quantity no longer available.

When a service has domain logic that depends on synchronous data from a different

service, this issue will always have a chance to happen even if the inconsistency window

is small. A peak in the service load might cause it to lag, producing stale responses for

every dependent service.

In this case, living with eventual consistency won’t be enough, and we require more

deliberate strategies that are discussed further in the next chapters.

Chapter 5 How to Manage Eventual Consistency

195

5.1.3  The CAP Theorem in the Real World
This subsection will detail further the impacts of eventual consistency and how they

relate to the CAP theorem. Eventual consistency has been highly debated in the context

of the CAP theorem as a means to justify its presence on event-driven architectures. By

learning its meaning and real-world impacts on real production databases that deal with

the same challenges, you will be able to understand the tradeoffs between availability

and consistency, as pictured in Figure 5-4.

Distributed databases with high-availability requirements typically provide several

copies of the original data in different nodes in geographically separated locations.

This feature allows the system to maintain the data’s integrity even when a node is

lost and enjoy lower network latency for clients close to those geographical locations.

However, the system has to copy the data to different nodes; the replication doesn’t

occur instantaneously and might produce inconsistent results across other nodes; one

update that happened in one node might not yet be available for a read on a different

node. Maintaining a consistent response from several nodes is even more hampered by

network faults, typically known as network partitions. When a network partition occurs

(due to, for example, failure in a hardware component), it can split the cluster’s nodes

into smaller groups that cannot communicate with each other; changes in one group’s

data will be invisible to the other and vice versa. The question arises on what strategy

to choose, to either wait out the fault in the network and thus be unavailable or return a

possible less consistent version of the data allowing the system to respond to requests.

Figure 5-4.  CAP theorem and the duality between consistency and
availability

Chapter 5 How to Manage Eventual Consistency

196

This dilemma is illustrated by the CAP theorem, which appeared in 2000 by a

keynote3 presented by Dr. Eric Brewer and greatly influenced how engineers design

distributed storage systems since that time. It laid the foundations for many NoSQL

databases that appeared and evolved since then and contributed to the general

acceptance of weak consistency models. The reasoning behind adopting an AP

(available and tolerant to network partitions) data store is very similar to the logic to

adopt an asynchronous event-driven solution and lays out the fundamentals of why

eventual consistency is needed. Also, the properties raised by the CAP theorem are

unavoidable in any distributed system.

The CAP theorem is based on three properties: consistency, availability, and

tolerance of network partitions. It states that a distributed system can either be available

or consistent in the presence of network partitions. It is not possible to choose two

properties out of the three since network partitions are inevitable on a distributed

system; instead, you have to decide whether availability or consistency prevails. Let’s dig

down on those three properties:

•	 Consistency: The word consistency is broad and usually is the source

of misunderstandings; in the scope of the CAP theorem, it means

linearizability (differs from the consistency in ACID4). It guarantees

that any single operation like a read or write on an entity occurs in

real time, similar to what would happen if there was just one copy of

the data. For example, if there are two updates on an object after one

node returns the latest update, all nodes must return that update as

well. It seems simple but in the context of distributed computing is a

challenging problem to solve.

•	 Availability: The system is available 100% of the time, in the scope of

network partitions. An important detail of this definition is that there

is no limit to latency.5 A response is considered available even if it

takes several days to return, for theoretical purposes is fitting, but for

a realistic view of the real world is counter-intuitive.

3 See Dr. Eric A. Brewer, “Towards Robust Distributed Systems,” July 19, 2000, https://people.
eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

4 Further details in “CAP Twelve Years Later: How the “Rules” Have Changed,” May 30, 2012,
www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/

5 See Martin Kleppmann, “A Critique of the CAP Theorem,” September 18, 2015, https://arxiv.
org/pdf/1509.05393.pdf

Chapter 5 How to Manage Eventual Consistency

https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed/
https://arxiv.org/pdf/1509.05393.pdf
https://arxiv.org/pdf/1509.05393.pdf

197

•	 Tolerance to network partitions: A network partition occurs when the

connectivity between two nodes gets interrupted and are unable to

communicate. Network partitions can happen due to various reasons

like failures in network hardware.

This definition splits distributed systems into two groups AP or CP, by either

choosing availability or consistency. Due to the demanding availability requirements of

Internet applications, we often see AP distributed systems as a necessary consequence

of the high volume of current applications’ data. AP systems typically use eventual

consistency as a means to be both available and tolerant to network partitions. Eventual

consistency is also a natural consequence of the asynchronous nature of event-driven

systems and nowadays is an accepted characteristic of most event-driven solutions. But

should it be so lightly accepted?

The CAP theorem’s availability isn’t the operational availability we are used to but

limited to the scope of network-related problems. Usually, we define availability as the

ability of a system to respond to requests successfully. In the CAP theorem, the definition is

more blurred than that. It refers to the availability of the theorem’s algorithm6 that is closely

related to faults in the network. That means 100% availability in the CAP context doesn’t

guarantee 100% overall availability. Several failures can jeopardize the system’s availability

besides network-related problems like wrong configurations, bugs on the application code,

limited resources, etc. But what does that mean in real use cases? Google revealed that its

Google Spanner database of all the incidents occurred only 7.6% were due to the network,

and more than half were due to human-related7 issues like misconfigurations.

In practice, the difference in availability between CP and AP systems isn’t as significant

as we are led to believe; both systems can guarantee availability levels in the 99.999%;

for example, Facebook’s HBase8 CP system also reached similar levels of availability.

6 See Martin Kleppmann, “A Critique of the CAP Theorem,” September 18, 2015, https://arxiv.
org/pdf/1509.05393.pdf

7 Full article in Eric Brewer, “Spanner, TrueTime & The CAP Theorem,” February 14, 2017,
https://static.googleusercontent.com/media/research.google.com/en//pubs/
archive/45855.pdf

8 Full article in Rishit Shroff and Zelaine Fong, “HydraBase – The evolution of HBase@Facebook,”
 June 5, 2014, https://engineering.fb.com/2014/06/05/core-data/
hydrabase-the-evolution-of-hbase-facebook/

Chapter 5 How to Manage Eventual Consistency

https://arxiv.org/pdf/1509.05393.pdf
https://arxiv.org/pdf/1509.05393.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45855.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45855.pdf
https://engineering.fb.com/2014/06/05/core-data/hydrabase-the-evolution-of-hbase-facebook/
https://engineering.fb.com/2014/06/05/core-data/hydrabase-the-evolution-of-hbase-facebook/

198

The limited meaning of the CAP theorem’s availability raises the question of whether

it supports a sufficiently compelling case to adopt AP systems at the expense of

consistency. This question has been raised more and more9 often due to the impacts of

the loss of consistency in solution design.

It is undeniable that network partitions are an unavoidable concern10 and have a

considerable effect in any distributed system; however, we should question if it is reason

enough to blindly embrace weaker consistency models like eventual consistency.

Traditional monolith applications typically enjoyed ACID guarantees that we

took for granted. Consistency was the very foundation of software and was imbued in

our way of thinking and interacting with a system or database. Arguably, consistency

should be handled at the database level; not doing so is pushing the responsibility and

a significant increment of complexity to every client using that system. The question of

whether to adopt a CP or AP system and the impact of availability in the CAP theorem’s

scope illustrates the same ramifications whether we should apply an event-driven

architecture to a given system. The inherent asynchronous nature of event-driven

systems can and most likely will produce eventually consistent models. This nature

will push the complexity to handle inconsistent results to every client using that system

similarly as AP systems do. It impacts the users and other applications that interact

with the system since they will have to manage the possibility of inconsistent responses

leading to complex and intricate solutions to dubious user experiences or convoluted

business processes. Before turning business functionality eventually consistent, we

should question whether the business can effectively live with it. Either way, there are

approaches we can take to minimize its impact, as we will discuss in this chapter.

9 See Robert Yokota, “Don’t settle for eventual consistency,” February 17, 2017, https://
yokota.blog/2017/02/17/dont-settle-for-eventual-consistency/#fn-517-10, and Ben
Darnell, “The Limits of the CAP Theorem,” June 27, 2017, www.cockroachlabs.com/blog/
limits-of-the-cap-theorem/

10 Further details in “The network is reliable,” June 2, 2013, https://aphyr.com/posts/288-the-
network-is-reliable&ved=2ahUKEwjY7sjEvKfsAhVOcBQKHf78AxIQFjAEegQIAxAB&usg=AOvVaw3
159NbJwFhJotfpzh8iCBR&cshid=1602245361376

Chapter 5 How to Manage Eventual Consistency

https://yokota.blog/2017/02/17/dont-settle-for-eventual-consistency/#fn-517-10
https://yokota.blog/2017/02/17/dont-settle-for-eventual-consistency/#fn-517-10
http://www.cockroachlabs.com/blog/limits-of-the-cap-theorem/
http://www.cockroachlabs.com/blog/limits-of-the-cap-theorem/
https://aphyr.com/posts/288-the-network-is-reliable&ved=2ahUKEwjY7sjEvKfsAhVOcBQKHf78AxIQFjAEegQIAxAB&usg=AOvVaw3159NbJwFhJotfpzh8iCBR&cshid=1602245361376
https://aphyr.com/posts/288-the-network-is-reliable&ved=2ahUKEwjY7sjEvKfsAhVOcBQKHf78AxIQFjAEegQIAxAB&usg=AOvVaw3159NbJwFhJotfpzh8iCBR&cshid=1602245361376
https://aphyr.com/posts/288-the-network-is-reliable&ved=2ahUKEwjY7sjEvKfsAhVOcBQKHf78AxIQFjAEegQIAxAB&usg=AOvVaw3159NbJwFhJotfpzh8iCBR&cshid=1602245361376

199

5.2  Using Event Schema in Event-Driven
Microservices to Leverage Eventual Consistency
In this section, you will learn how event schema can avoid eventual consistency on

downstream consumers of events. Adapting event schema to your consumers’ needs

and real use cases is often more useful than following a strict guideline on how to design

event schema. This section will illustrate with an example and discuss two different

approaches to schema design.

In Section 5.1, we used an example of a user buying a product on an eCommerce

platform. Let’s drill down on the inventory and subscription service. Since most

inventory management systems require audit on stock movements, they are often a

typical use case to apply event sourcing. As discussed in Chapter 4, event sourcing can

be paired with CQRS to allow more flexible reads. Figure 5-5 depicts inventory service

with CQRS and its relation to the subscription service.

Chapter 5 How to Manage Eventual Consistency

200

Having the read and write model decoupled by a message queue makes the read

model eventually consistent. The system will apply changes in the stock first to the write

model, which is also the owner of the inventory domain logic. If the change complies

Figure 5-5.  Event-driven approach mixing a synchronous request

Chapter 5 How to Manage Eventual Consistency

201

with the domain rules, the service will apply the change, and an event will be published,

signaling the change in stock. All interested parties can consume that event and do what

their domain needs to do with that information.

A common best practice is to design events to be small and fine-grained. Fine-

grained events have many advantages; performance-wise, it’s faster to handle small

events than large ones, serialization and deserialization are quicker and lightweight, and

they have less impact on the message broker. It is also a common best practice to design

events to reflect the user’s intent when using a DDD approach (domain-driven design;

refer to Chapter 3 for more details). This way, the events and commands will have

domain value and highlight the business flow throughout the architecture.

Applying these concepts to the example of Figure 5-3, we would model the stock

changed event to be small and fine-grained and reflect the user’s intent. Typically, stock

changes occur at the product’s stock-keeping unit level; for example, if the user was

buying a shirt, it would be of a given size like XS. A possible event for this situation would

look like Listing 5-1.

Listing 5-1.  StockPurchased event

1 StockPurchased #A

2 {

3 ProductId: 15251212,

4 Size: "XS",

5 Quantity: 1

6 }

#A Stock purchased event with minimal information

This event reflects the intent of the user; the user bought one product of size XS. It

also is fine-grained and only has minimal information needed. Usually, these kinds of

events are the easiest to publish due to all the required information being available in

the publishing service at the moment of the change; the service has no additional effort

to create the event.

Let’s now discuss how the subscription service would consume this event. The

subscription service needs to alert every user that subscribed to the alert of the product’s

last available stock unit. As seen earlier, the event only provides the quantity that the

user bought of that size. And here lies the challenge of the subscription service domain

logic; from that event, the service has no way to know the total quantity of the product.

Chapter 5 How to Manage Eventual Consistency

202

A product has several sizes, for example, they can range from XXS to XXL; the event’s

quantity is only referring to that specific size. The event also only provides the quantity

that the user bought, not the size’s current quantity.

A developer who needs to implement this functionality in the subscription service

would probably fetch the current stock quantity for that product through the inventory

service API. But since the inventory service read model is eventually consistent, it

might return stale data. Since the inventory read model and the subscription service are

consuming the same event in parallel, they will consume it at different rates. The event

the subscription service is consuming might not be reflected in the read model at the

time of the request. When the inventory read model returns stale data, the subscription

service will incur in one of the two faults described in Section 5.1.

This logic is in line with the reasoning of NoSQL databases adopting eventual

consistency and delegating the complexity of achieving strong consistency to the

applications that use them explained in Subsection 5.1. In this case, the choice of

fine-grained schema on inventory service delegates the complexity of handling stale

information to the consumers. If we deal with this only on subscription service, it

will add significant complexity to the service to solve a purely technical and not

business-related issue.

Most resources advise to create small fine-coursed events, mostly due to

performance and other considerations. However, in the real world, what most teams find

out is as the microservice ecosystem grows, so this concern becomes more pressing. One

highly beneficial approach is to approach it by designing event schema with consumers’

needs in mind.

Going back to the inventory and subscription service example as seen in Figure 5-3,

since inventory service has the stock information for all sizes, it would be arguably easy

to send an event with additional details, illustrated in Listing 5-2.

Listing 5-2.  StockPurchased event denormalized

1 StockPurchased #A

2 {

3 ProductId: 15251212,

4 Size: "XS",

5 Quantity: 1,

6 ProductCurrentQuantity: 5,

7 ProductSizes:[

Chapter 5 How to Manage Eventual Consistency

203

8 {

9 Size: "S",

10 Quantity: 3

11 },

12 {

13 Size: "M",

14 Quantity: 2

15 },

16]

17 }

#A Stock purchased event with information adapted to the consumer needs

The property indicating the product’s current stock information for every size would

greatly ease the implementation in subscription service because it would be able to

know the product’s total stock instead of a single size. Instead of requesting the current

stock information from an eventually consistent model, the service would process its

domain logic by relying solely on the event’s data. Besides removing a great deal of

complexity from the subscription service, this approach also gives it a performance

boost since it avoids the need for a network request.

Adding additional information to the event is a good strategy when the information

is available but depends on the inventory service design. The aggregate size becomes a

pivotal decision in this situation:

•	 If we design the aggregate in the inventory service to be the product,

it would be trivial to obtain the total product’s stock.

•	 If we design the aggregate in the inventory service to be the product’s

size, it would require a more complex solution. Since the product

stock comprises each size’s stock information, we would require

interaction between several aggregates. To obtain this information,

we would need to apply a more complicated solution like a process

manager. We further detail this topic in Chapter 8.

Adapting the event schema to consumer applications’ needs can be one of the

most powerful patterns you can use to avoid eventual consistency. It easily contains the

complexity of the architecture and the applications while retaining the advantages of

event-driven systems.

Chapter 5 How to Manage Eventual Consistency

204

The full implications and additional alternatives to event schema are also discussed

further in Chapter 8.

5.3  Applying Microservice Domain Boundaries
to Leverage Eventual Consistency
In this section, you will learn to contain the impact of eventual consistency by

segregating the services into domain boundaries. Bounded contexts are a core concept

in DDD and you can use the same rationale to an event-driven architecture, especially

when the system starts to have a high number of components. Using a boundary

organization enhances the autonomy of the teams working in those components and

can contain the impact of eventually consistent models. This section will detail how

domain segregation can control that impact, illustrating it with an example.

In the last section, you learned how to solve the challenge of fetching stale data

from an eventually consistent read model by adapting the event schema. We can use

additional options to solve the need to fetch additional data; using the same example

we used before with a user buying a product on an eCommerce platform, we can simply

have the subscription service consume an event after the read model is updated. By

changing the sequence of consumers between the services, we guarantee that the model

is up to date with the event’s information, illustrated in Figure 5-6.

Chapter 5 How to Manage Eventual Consistency

205

Figure 5-6.  Subscription service processing the change only after it is reflected on
inventory read model

Chapter 5 How to Manage Eventual Consistency

206

This approach also solves possible inconsistency issues by informing the user too

early if the subscription service would notify the user with a link to the product. If the

user accesses it while inside the inconsistency window, the user would see incorrect

stock. Changing the sequence of components, the subscription service would only notify

the user when the data is updated.

However, this solution has some pitfalls:

•	 It is fairly debatable whether a read model should send an event.

If we look at it in purely DDD terms, only a change in an aggregate

should trigger an event; in this case, the only event that should be

published would be from the write model that is the owner of the

domain. It is arguably justifiable if it is not an event just a notification

that the read model is up to date. However, it usually is a sign

that something is out of place (in this case, we should avoid the

synchronous call).

•	 You should use this approach sparingly and inside a specific context.

Using it often will rapidly increase the complexity of the overall

architecture and the flow of the information. The architecture

should have clear boundaries and manage these issues inside

each boundary. The data should flow between the boundaries and

not have a tangled flow between the read models and the domain

owners.

•	 The overall time to reflect the change throughout the system will

increase.

In DDD, a bounded context is the contextual relationship of a specific domain

model. It usually represents a subset of the domain of the overall system with its

individual domain model. It’s also segregated from other bounded contexts with clear

boundaries between them. Although the bounded context refers exclusively to the

domain model, in a microservice event-driven architecture, one bounded context can

span various individual components. For example, when applying CQRS, we can have

one component responsible for the write model and another component responsible for

the read model. They both use and represent the same domain, so the two components

are part of the same bounded context.

Chapter 5 How to Manage Eventual Consistency

207

In a growing microservice architecture, it’s important to understand the system’s

bounded contexts and which services belong to each one of them. Having clear domain

boundaries between slices of the system will facilitate the evolution of the business. The

decoupling between boundaries is the stepping stone to the seamless business evolution

and limiting the technical impacts of that evolution. We detailed DDD and domain

boundaries on an event-driven architecture in Chapter 3.

An alternative solution for this problem could be defining two separate boundaries,

one for the inventory domain and another for the subscription domain. This separation

has high synergy with a DDD approach, forcing you to understand the business and

think about what kind of boundaries make sense and where to draw the boundaries.

The business process is the flow between all needed domain boundaries. This is similar

to the event choreography pattern detailed in Chapter 4. The anti-corruption layers

guarantee that concepts from a given domain don’t leak to another domain. Chapter 3

details this concept. We illustrate this solution in Figure 5-7.

Chapter 5 How to Manage Eventual Consistency

208

This solution is a more structured way to evolve the domains without losing track

of the overall flow. The order created event is forwarded inside the boundary by the

anti-corruption layer that adapts the event to keep only the needed information for that

boundary. Inside the boundary, the inventory services will process the event accordingly

with their logic. The write model will change the aggregate’s stock and publish an

internal event. The read model will use the internal event to update its information

and publish an external event only when the data is reflected in the read model.

Figure 5-7.  Applying domain boundaries to the same use case

Chapter 5 How to Manage Eventual Consistency

209

The complexity inside the inventory boundary is abstracted from external boundaries,

like the subscription boundary, and can evolve as needed without impacting other

boundaries.

Each domain can change; we can add or remove more components, but the business

process’s overall flow will remain the same. We also deal with eventual consistency

inside the boundary; changes that happen are notified to external consumers only

when all the services inside the boundary processed it. This feature contains eventual

consistency for external consumers; this way, we can guarantee the change the

consumer is reacting to is already propagated inside the domain.

5.4  Handling Eventual Consistency Delays
with Event Versioning
In this section, you will learn how to use event versioning to understand delayed

responses and possible actions to mitigate its impacts. The most direct approach to

eventual consistency is simply to try the operation later when it is no longer eventual.

This solution is very straightforward and would probably be the most obvious alternative

to deal with temporarily stale data. However, it has two not so obvious caveats: knowing

the data is not up to date and when you should use it. We will illustrate this solution with

an example and discuss possible approaches to avoid these caveats.

There is a fascinating article11 named “The Tail at Scale” from Jeffrey Dean and Luiz

André Barroso detailing how Google managed to obtain 99.9% latency SLA on some

of their services by optimizing the slowest requests on the 95th percentile. Distributed

systems typically have latency fluctuations beyond the scope of the service. In a perfect

world, we would avoid those fluctuations entirely, but these fluctuations are unavoidable

in a complex distributed system, much like the fault-tolerant techniques we often

employ. The article details several tail-tolerant methods to minimize or mask the impact

of these temporary latency spikes. Some of them rely on retrying requests to the replicas

when the original request takes longer than a specified time. The retrying strategy has a

higher resource consumption due to the additional requests, which, the article explains,

can be as low as just 2% with the right approach.

11 Full article in Jeffrey Dean and Luiz André Barroso, “The Tail at Scale,” February 2013,
https://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Chapter 5 How to Manage Eventual Consistency

https://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

210

We can draw an analogy from this article to retrying strategies in an event-driven

architecture. Event-driven services should keep up with the message load and not lag

behind the changes that occur in the system (as discussed in Section 5.7). However, the

services will likely lag eventually one time or another due to unforeseen peaks in load,

but that should be the exception rather than the rule; it should be the curve’s tail. If

this is in fact the case, we can argue that we can opt for an optimistic approach; we can

assume there isn’t eventual consistency. When a request fetches stale data, it can react to

it with a retry.

Using the same example with the inventory and subscription service, when requesting

the information to the inventory service if the data is stale, the service should make an

additional request after a predefined amount of time. However, this assumes that the

inventory service is faster and is usually up to date; the retry would be the exception.

The first caveat is how to know the data is stale. To solve that, we can use event

versioning; each event should have a version (it is also essential to manage idempotency

detailed in Chapter 7) that identifies the entity’s version. In DDD terms, it could be

the aggregate version; for every change that happens on the aggregate, the service

increments the version. It can also be a timestamp, which is more practical, although not

sequential. This version should also be available on the API; the subscription service,

when making the request, would compare both versions; if the version of the event were

higher than the version of the API, the service would need to retry the request. This

means the service didn’t reflect the change in the event on the read model yet.

Retrying the requests is the most straightforward strategy you can do but is also

riskier. We often hear how retrying strategies can improve resilience, however, more

often than not it sets the system up for failure. We can apply it only in less critical

components or as a quick bandage. The consequence is that the service is considerably

more susceptible to its dependencies’ load peaks. The implementation should have a

circuit breaker and a backoff strategy. Used throughout, the architecture will make the

system brittle and vulnerable to cascading failures. Retrying is the symptom of the lack of

a more sustainable approach; we should use it wisely and sparingly.

There is also the issue of what to do when all retries fail. I saw some services that simply

failed the message processing or delegated the failure to a business process, like a manual

operation. Although they might be acceptable in some contexts (e.g., some less critical use

cases like logging), I find these kinds of approaches disheartening and half-hearted. There

are some compensation alternatives like scheduling the handling of the failure to a later

date; ultimately, consistency is well, eventual, so at some point in time, the lag will clear.

Chapter 5 How to Manage Eventual Consistency

211

Ordering is also an important consideration; retries make sense when message

consumption is associative, commutative, and idempotent. Otherwise, the service might

not be able to retry with consistent results. For more details, refer to Chapter 6.

Event versioning isn’t a definite solution on its own, just a tool that we can use to

manage delays. We should apply it as a tactical solution for an urgent matter; more often

than not, we require a more sustainable and reliable solution like the others mentioned

in this chapter.

5.5  Saving State in Event-Driven Microservices
to Avoid Eventual Consistency
In this section, you will learn how to prevent eventual consistency by storing state

external to the service. Typically, microservices are faced with eventual consistency due

to the hybrid nature of most real-world architectures. Some services react to events, and

others make synchronous calls depending on the use case. By storing state, we can spare

the synchronous call, avoiding dealing with an eventually consistent model.

Using the same example with the inventory and subscription service. depicted in

Figure 5-5, the issue with eventual consistency rises due to the synchronous call between

the subscription service and the inventory read model. To avoid doing the synchronous

call, we could store the product’s stock internally in the subscription service. When the

subscription service needs the stock information for all product sizes, it could fetch it

locally, as in Figure 5-8.

Chapter 5 How to Manage Eventual Consistency

212

This approach is the most adherent to the event-driven mindset. By removing the

synchronous request, the service becomes entirely decoupled from the dependency.

It becomes more resilient since it won’t be affected if the inventory read model is

unavailable. Performance-wise is also better since fetching the database’s data is often

faster than a remote network call. Similarly to the solution adapting event schema, the

subscription service is only dependent on the upstream inventory events.

However, the subscription service must maintain and internally store all the

inventory information. When there is a large amount of data, storing it will impact the

infrastructure and its costs. The subscription service will also need to maintain that data

up to date, which has a considerable development overhead than just requesting the

inventory read model data.

This approach gives precedence to the service’s autonomy and performance. It is a

useful alternative to solve this kind of challenge; however, we must avoid the pitfall of

applying it blindly in every use case. Otherwise, several copies of the service’s data will

spread throughout the architecture, becoming hard to manage and maintain. We discuss

further the tradeoffs of using events to provide state transfer in Chapter 8.

Figure 5-8.  Storing external state to avoid the synchronous request

Chapter 5 How to Manage Eventual Consistency

213

5.5.1  Buffering State As an Alternative to Persistence
We discussed how storing state could avoid the dependency of synchronous requests to

an eventually consistent model. We also discussed the drawbacks of storing that data. An

alternative to persisting the state is buffering it to memory. Storing every external state

a service needs as an internal view of that state can be difficult to manage, to initialize,

and to maintain up to date. An alternative to persisting the state is to load it in memory.

There are two strategies to achieve this:

•	 A predefined buffering window: The service keeps in memory all

events that arrive inside that window’s timespan. This strategy is

relevant when a use case applies a batch of operations to the same

or related entities in a small time frame, for example, bulk actions or

uploads of information. If the service needs the data from the entity

it is processing or a related entity, it can load directly from that buffer.

This strategy’s success is directly related to the timespan’s size and

the likelihood of the entity changing in that timespan. There’s always

the chance the service doesn’t find the needed entity in memory and

might have to fall back to a request, thus being limited to specific

use cases. This strategy is also useful in data-intensive applications

that write to data stores. Usually, a bulk change is faster than several

single changes; the buffer can help cluster changes and update them

on a single operation.

•	 Loading the full state: The service can load all the dependent states

to memory. This solution implies all the event streams are available

on the event broker. The service can read all the information from

the beginning of the topic and keep it in memory. Other events

would keep the in-memory view up to date. This strategy is only

relevant to small data sets that aren’t expected to grow in the future.

For example, if the subscription service would alert users only for

products in the “shoes” category, it might need the product’s category

information. Assuming there won’t be more than a few hundred

categories in the platform, the service could load them to memory

and use that view when needed. The service needs to load all the

information on startup, which can be too cumbersome in large

data sets.

Chapter 5 How to Manage Eventual Consistency

214

Figure 5-9 illustrates this solution applied to the same example using the subscription

and inventory service. The subscription service loads the events in memory and, instead of

making the synchronous request to the inventory read model, uses that information. This

way, the service can decide whether it is the last stock unit left and if it should alert the user.

However, this alternative depends on whether the subscription service has all the

information of all sizes in memory. In this case, a buffering window would only be an

adequate choice if the system changes all sizes simultaneously; otherwise, most likely

the service won’t have all the information needed. If we read the event stream and load

all stock information to memory, we would address that problem. However, it would

only make sense if the stock information isn’t excessive; otherwise, we risk occupying a

significant percentage of the service’s memory.

Figure 5-9.  Subscription service saves the stock event stream in memory

Chapter 5 How to Manage Eventual Consistency

215

By keeping the information in memory, the service doesn’t need to request the

information or persist it in a data store, making it easier to manage and contain costs.

However, this is only relevant for small data sets; use cases with or more than hundreds

of thousands of entities are better off by either persisting the information in a database

or using another alternative. This alternative is also the most performant since all

information is in memory; it is faster than fetching it from the database or doing a

remote request.

5.6  Tackling Eventual Consistency with the
End-to-End Argument: A Real-World Use Case
In this section, you will learn how to reduce the impact of smaller, eventually consistent

parts of the system by guaranteeing the end-to-end flow’s correctness. You will learn

what the end-to-end argument is and how we can use it in an event-driven architecture.

We will illustrate its application by using an example of an eCommerce platform.

Until now we discussed a retail eCommerce platform that sells products to a general

audience. When buying a product on that platform, the user creates an order which is

processed by the order management boundary. To complete the full order workflow,

several other boundaries would have to handle the event and process accordingly to their

own domain; for example, the order boundary would publish an event signaling an order

was created that would be consumed by the pricing boundary to apply the relevant taxes

on the order, then the inventory would update the stock information, and so on. The

product boundary would aggregate all the product information and provide read models

to search on several product properties. By accessing the UI application, the user would be

able to request information from these read models. Figure 5-10 illustrates this example.

Chapter 5 How to Manage Eventual Consistency

216

By reaping all the benefits event-driven provides, the product read models are

eventually consistent. When the user browses the platform’s product catalog, it might see

inaccurate information due to the data’s eventually consistent nature. The users might

even try to buy products that don’t have stock anymore because the upstream services

are still processing them. We can take several approaches; an interesting approach in

this situation is the end-to-end argument.

The end-to-end argument was first articulated in an exciting paper12 by Saltzer,

Reed, and Clark in the context of computer networking design. In it, they described

how strong guarantees at low levels of the system might be hard to implement and

have a negligible impact by providing them at that low level. The reliability guarantees

could be implemented in the end-to-end flow rather than in smaller, low-level

components. Doing so opens the opportunity for those smaller components to have

more straightforward and more performant approaches by forfeiting those stronger

guarantees.

In the paper, the authors describe the use case of a file transfer. There are several

intermediate components between the transmitting and receiving computer to transfer

one file between two computers. Each of those components can be the victim of several

12 Full paper in J.H. Saltzer, D.P. Reed, and D.D. Clark, “End-to-end arguments in system design,”
May/June 1998, https://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Figure 5-10.  User browses and buys a product on an eCommerce platform with
several event-driven domain boundaries

Chapter 5 How to Manage Eventual Consistency

https://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

217

types of faults like system crashes or network faults. One can argue that to achieve a

careful file transfer, we need to guarantee each component’s resilience and endow each

component with retry strategies and duplicate copies to ensure it is fault-proof. However,

providing those kinds of guarantees to each component will significantly harm those

components’ performance and complexity. Besides, guaranteeing the fault tolerance

in one component doesn’t ensure the end-to-end file transfer success. Thus, the

implementation overhead of being exceptionally reliable in a single component does not

reduce the end-to-end functionality burden to guarantee reliability.

To solve the issue for the use case in Figure 5-10, we could try to force the product

boundary to be strongly consistent and provide consistent results. Every time any

change occurred in the system, it would have to be reflected instantaneously on the

product boundary. That strategy would also mean complex interactions and forfeiting

decoupling between every other boundary and the product boundary. It would likely

mean every other component of the workflow would have to guarantee consistency

across boundaries, so each one provides consistent results all around. In a distributed

system, this situation would mean sacrificing performance, availability, and the ability to

scale seamlessly. It would also significantly increase the complexity of each component.

The end-to-end argument draws a compelling proposition that is applicable

in a distributed microservice event-driven architecture. Instead of increasing each

component’s complexity substantially, we could loosen the constraints on intermediate

components of the flow as long as we guarantee the end-to-end flow’s consistency. In

this concrete example, illustrated in Figure 5-11, we could maintain the decoupling

between boundaries and keep the product boundary eventual consistent as long

as at the moment of the purchase, the system would have a way to guarantee the

information’s consistency, for example, the product having stock.

Chapter 5 How to Manage Eventual Consistency

218

The order management system would validate the conditions of the order before

advancing with the flow. This example is the typical situation where you are browsing

items on a website and, although the UI displayed that item as having stock, the

checkout might fail because the UI wasn’t up to date anymore. This way, the component

responsible for aggregating information from several different sources the UI needs

(product information, stock, price, descriptions, etc.) can enjoy the decoupling and

performance boost for not guaranteeing strong consistency, as long as there is an end-

to-end process that ensures the business rule is satisfied.

5.7  For Most Use Cases, It’s Not Eventual If Nobody
Notices
In this section, we will put eventual consistency into perspective and understand how

the business can coexist with it without considerable impact. We will discuss eventual

consistency in NoSQL databases and detail how we can apply the same reasoning to

event-driven systems.

As we discussed in Subsection 5.1, eventual consistency provides no safety

guarantees. The very meaning of eventual is daunting; it states that sometime in the

future the system will return a consistent result, but it doesn’t say when. It is hard

for a business to come to terms with such a vague notion of something so pivotal as

Figure 5-11.  End-to-end validation of the product’s stock

Chapter 5 How to Manage Eventual Consistency

219

consistency. It is also hard to manage the users’ expectations; an ordinary user expects

changes to be instantaneous. It doesn’t expect them to take an indefinite amount of time

to be reflected throughout the system, and surely explaining the CAP theorem to them

isn’t the solution. Considering this, it might sound odd how NoSQL databases adopted

eventual consistency and why it is widely deployed to production.

In NoSQL databases, it is observed that in practice, with real-world use cases,

eventual consistency looks like strong consistency. Some studies show that the

inconsistency window in eventually consistent databases is small and can often

be neglected. For example, one study13 found that about 98% of requests have an

inconsistency window between zero and one millisecond when within a single

availability zone for Cassandra. For MongoDB, the same study shows an inconsistency

window of 5ms or less in 96% of requests. Another study14 showed that out of the curve

requests, Cassandra’s inconsistency window was almost always less than 200ms.

As we discussed in Subsection 5.1, it is fairly debatable if we should settle for

eventual consistency in databases. But the fact they are widely adopted, and we can see

eventual consistency as good enough for many use cases, raises the question of why. It

is because, in practice, the inconsistency windows in these use cases are small. So small

most often are deemed insignificant.

Eventual consistency is a consequence of event-driven systems. The best way to

deal with it is by designing the system to be fast and guaranteeing the inconsistency

windows are small. As proven by eventually consistent databases, if eventual consistency

is fast enough, it appears strongly consistent, having a neglectable impact. Eventual

consistency doesn’t need to be slow; if it is fast enough to appear strongly consistent, as

far as users and developers are concerned, it isn’t eventually consistent.

What does it mean to be fast on an event-driven microservice? We need to build two

fundamental characteristics from the ground up: the ability to scale and meaningful

metrics. As discussed in Chapter 1, we design microservices to be autonomously

developed and individually deployed. Also, they should be horizontally scalable. By

providing these characteristics on an event-driven microservice, we can scale it on

demand to face unforeseen peaks in load. We need meaningful metrics to react to

13 Full paper in David Bermbach, Liang Zhao, and Sherif Sakr, “Towards Comprehensive
Measurement of Consistency Guarantees for Cloud-Hosted Data Storage Services,”
August 2013, www.researchgate.net/figure/Distribution-of-Inconsistency-Windows-
in-MongoDB_fig5_259540354

14 Full paper in “Toward a Principled Framework for Benchmarking Consistency,” October 2012,
www.usenix.org/system/files/conference/hotdep12/hotdep12-final17.pdf

Chapter 5 How to Manage Eventual Consistency

http://www.researchgate.net/figure/Distribution-of-Inconsistency-Windows-in-MongoDB_fig5_259540354
http://www.researchgate.net/figure/Distribution-of-Inconsistency-Windows-in-MongoDB_fig5_259540354
http://www.usenix.org/system/files/conference/hotdep12/hotdep12-final17.pdf

220

the system’s delay and use them to deploy new instances. One important metric is

the number of messages waiting to be processed; if it is large, likely the inconsistency

window also is. The best way to guarantee this happens seamlessly is to have an

autoscale system in place and use it to react to unforeseen load peaks. When a metric, for

example, the consumer lag, is above a given threshold, new instances will be deployed.

We will work through a practical example in Subsection 5.7.1.

If we guarantee the size of inconsistency windows isn’t a concern; we can reduce the

impact of eventual consistency with the best approach possible, by living with it.

5.7.1  Event-Driven Autoscaling Use Case
with Prometheus and Kafka
In the last section, we discussed the importance of having a small inconsistency window

to reduce the impact of eventual consistency. We also discussed how an autoscale

system could help achieve this. In this section, we will explain how we could implement

an autoscale system using Prometheus, Kubernetes, and Kafka.

In the example in Figure 5-5, the subscription service uses stock events to

understand if the product has only one stock unit left in order to alert users. If the team

managing the product’s stock does a massive stock import, it is very likely that the

subscription service lags behind the unexpected load of messages. If we have a system

in place to monitor the subscription service consumer lag (e.g., Prometheus and Kafka

Exporter), we could react to the delay by deploying new service instances. We can make

the detection and deployment of new instances automatic (e.g., Kubernetes and HPA). In

Figure 5-12, we illustrate this example.

Relevant technologies mentioned in Figure 5-12:

Chapter 5 How to Manage Eventual Consistency

221

•	 Kubernetes: A platform for managing containerized services. This

example will use it to read the relevant metrics for scaling and

horizontally scale the application with new instances.

•	 HPA (horizontal pod autoscaler): Used by Kubernetes;

automatically scales the number of instances of the application.

•	 Prometheus: Systems monitoring and alerting toolkit. This example

will use it to import Kafka’s metrics and make them available to HPA.

•	 Kafka: An event streaming platform; can be used to publish and

subscribe to streams of events. We will use it as the event broker

where the service reads and publishes messages.

Figure 5-12.  Autoscaling subscription service example with Kubernetes,
Prometheus, and Kafka

Chapter 5 How to Manage Eventual Consistency

222

•	 Kafka Exporter: Application to extract metrics from Kafka (e.g.,

topics and consumer lag) and expose them.

In the example, Kafka Exporter reads metrics from Kafka and exposes them to

Prometheus. The most relevant metric in this example is the consumer lag; we want to

deploy additional instances of the subscription service when the lag goes above a given

threshold. Prometheus creates custom metrics for Kubernetes; we used Prometheus

in this case because it is a powerful monitoring tool that can be combined with several

other metric capabilities and exposes simple functionality to configure custom metrics.

HPA will use the custom metrics exposed by Prometheus to add additional instances of

subscription service when needed.

Subscription service lag will increase when inventory service publishes an

unforeseen load of messages. When the lag reaches the specified threshold, the HPA will

deploy additional subscription service instances to consume the lag faster. When below

the threshold, it will remove the additional instances. Since there isn’t a throughput

higher than expected and we dealt with the load peak, there is no need to oversize

the service. So the HPA will automatically deallocate the resources, guaranteeing the

additional cost for the other resources occurs only on the peak. This use case is one

example of how we can use autoscaling to maintain the system fast and guarantee that

the services don’t lag behind the changes the users do on the system.

5.8  Discussing the Tradeoffs of Typical Eventual
Consistency Handling Strategies
In this section, we will discuss the tradeoffs of each solution we discussed until now and

quickly sum up their advantages and limitations. This quick sum up will make it easier

for you to weigh the tradeoffs when applying to a given use case.

In this chapter, we discussed several patterns of dealing with eventual consistency

in several different use cases. Each of them has advantages and limitations, summed up

in Table 5-1. The use cases you will find in real life sometimes will be easy to understand

which one is the most adequate for that situation; some use cases won’t be so easy. Most

of the time, several solutions can be applied to a use case making it hard to know which

one to apply. Most of the time, there isn’t a perfect fit; it is about weighing the tradeoffs

and making the best decision with the information we have.

Chapter 5 How to Manage Eventual Consistency

223

Table 5-1.  Tradeoffs of the different patterns

Pattern Advantages Limitations

Denormalized

event schema

Straightforward to implement

Higher decoupling

Better performance due to the

removal of the external request

Scaling is more linear due to the

removal of a dependency

Larger events have a performance hit on

the broker and producing and consuming

messages (although much lesser than the

external request)

The information has to be available on

the upstream service; otherwise, it will

significantly increase the complexity

Events might lose their meaning if they

become too generic

Saving state Future use cases might benefit

from the local data

Higher decoupling

Better performance due to the

external request removal

Scaling is more linear due to the

dependency removal

More resiliency due to the

dependency removal

Increase in storage cost

Development and maintenance overhead

Applied throughout the architecture, data

will be copied several times; substantial

changes to the source system schema might

impact several services

Applying domain

boundaries

None or little developments

needed, just a clear strategy

Often comes for free if boundaries

was a concern since the beginning

Overall time to process the flow will increase

Without boundaries and a clear strategy

to manage the flow, it will soon become

complex and hard to track

Event versioning Straightforward to implement

Useful when in need of an easy

fast solution to an incident or

urgent requirement

Doesn’t solve the eventual consistency; it’s

just a band-aid

Without compensation actions might fail

with load peaks

With compensation actions substantially

increases the application complexity

Impacts performance

(continued)

Chapter 5 How to Manage Eventual Consistency

224

5.9  Summary
•	 Eventual consistency can impact the business, and we need to

weigh the tradeoffs between using an event-driven or a synchronous

approach.

•	 The tradeoffs between availability and consistency illustrated by the

CAP theorem are significant when designing event-driven solutions,

although the CAP theorem itself has limits.

•	 We can adapt the schema of events to avoid synchronous calls to

eventually consistent read models, thus avoiding processing stale

data.

•	 We can organize and structure our services so that downstream

services don’t need to deal with eventual consistency, having in mind

the flow of the business process.

•	 Event version and entity versioning are essential to understand if the

service is processing stale data. Retries can be an alternative to deal

with delays, although we often need a more sustainable approach.

•	 Saving a view of the external information can avoid the need to

request synchronous information from eventual consistent read

models. We can further optimize this by keeping the information in

memory for small data sets.

Table 5-1.  (continued)

Pattern Advantages Limitations

End-to-end

argument

Easy to implement

Gives the tools for intermediate

components of the flow to be

flexible about their consistency

guarantees

Better performance on the overall

flow

It is often needed a synchronous way to

validate the business rule

Chapter 5 How to Manage Eventual Consistency

225

•	 With the end-to-end argument, instead of increasing each

component’s complexity substantially, we could loosen the

constraints on intermediate components of the flow as long as we

guarantee the end-to-end flow’s consistency.

•	 Eventual consistency doesn’t need to be slow; if it is fast enough

to appear strongly consistent, as far as users and developers are

concerned, it isn’t eventually consistent.

Chapter 5 How to Manage Eventual Consistency

227
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_6

CHAPTER 6

Dealing with Concurrency
and Out-of-Order
Messages
This chapter covers:

•	 Why tackling concurrency in a monolithic application is different

than tackling it in a distributed microservice architecture

•	 The impacts of concurrency in distributed event-driven services

•	 The differences between pessimistic and optimistic concurrency and

when to use each

•	 How to apply pessimistic and optimistic concurrency strategies

•	 Using event versioning to handle out-of-order messages

•	 Applying end-to-end partitioning to avoid concurrency and out-of-

order messages

•	 How to avoid hotspotting as a consequence of routing events

In Greek mythology, when Zeus sent Pandora to earth to be married, he wanted

to punish the human race for accepting fire from Prometheus. Pandora, oblivious of

his real intent, gratefully accepted his wedding gift, a mysterious jar that Zeus warned

never to open. Pandora, who was created to be curious, couldn’t resist the desire to

open the jar. When she finally did open it, all the world’s greatest evils and life’s most

devious afflictions flew from that jar and cursed the world: envy, pain, hatred, war, event

consumption concurrency, and unordered messages. However, Pandora was able to

close the jar before the last thing flew out, the thing that killed message partitioning.

https://doi.org/10.1007/978-1-4842-7468-2_6#DOI

228

Mythology apart, concurrency is often a dreaded topic, an obscure concern

banished to a scarce number of use cases and to those unlucky enough to need to face

it. Reasoning with code that runs in parallel is challenging and often requires a trained

mind. Concurrency issues can occur when two threads or services use the same resource

or change the same state simultaneously (typically referred to as race conditions). Race

conditions are often hard to understand, replicate, and tackle consistently.

Usually, race conditions are very challenging to pin down due to happening very

sparingly. I’m sure you came across the argument “well, this will probably never

happen” a time or another. There are probably race conditions on the software used

today due to never being detected or the user just ignoring it and restarting the app or

refreshing the page. However, when you move to a high-throughput, high-availability

ecosystem with hundreds of changes per minute, that “probably never” becomes “almost

certain.” For example, I had a team struggling with a bug that occurred once every one

million calls; the service consumed approximately one hundred messages per second,

which means it happened on average nine times per day. Now I can’t even tell you how

hard it was to reproduce locally. If I had to design an experience to prove Murphy’s law,

event-driven systems would likely be a viable candidate. The “everything that can go

wrong will go wrong” plays an essential role in these situations. Event-driven services

usually handle enormous loads turning near impossible chances into very likely, which

many of the issues are related to parallel message processing. These issues must be dealt

with upfront and must be tackled in the solution design with deliberate strategies. This

chapter works through those strategies and explains how you can apply them to event-

driven services.

We often use and work with sequential programs and applications without the need

to worry about concurrency. In truth, without the performance requirements and relevant

scale, concurrency is mostly unnecessary. Concurrency is performance; we use concurrent

execution to increase throughput or reduce execution times, often to use all available

physical resources and turn the system as fast as it can be. Performance often only

becomes a concern with the relevant scale. Some applications might avoid concurrency

issues; however, in event-driven architectures, they are an omnipresent concern.

Performance aside, concurrency can also become a concern with parallel requests

to the same resource, for example, two users buying the same product at the same time.

Monolithic applications traditionally tackle this issue with the traditional ways to deal

with concurrency, like locking resources. We also often deal with this at the database

level, for example, with transactions.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

229

Messages are consumed in parallel and, most likely, by several instances of the same

service. Each service needs to maintain a valid state while processing multiple events

that access the same resources simultaneously. Processing multiple messages that

access the same entities across different instances raises a different problem than we

usually face in monolithic applications.

Concurrency is often a primary concern in event-driven services due to the scale

and the performance requirements. The way we handle concurrency needs to have the

lowest performance impact it possibly can. Event-driven services are also horizontally

scalable; the services that can extensively use the available physical resources and

provide satisfying performance have better scaling properties. Having both acceptable

performance and linear scaling is essential in managing eventual consistency and

increasing demand.

As we discussed at the beginning of this chapter, Pandora closed the box right before

the last thing came out. In the original mythology, it was the thing that killed hope. We

distorted the story and said the last thing to fly from the box was the thing that killed

message partitioning, which, as you will see in Section 6.6, is the equivalent of hope in

event-driven architectures.

6.1  Why Is Concurrency Different in a Monolith
from an Event-Driven Architecture?
There are many ways to deal with concurrency in traditional single-process applications.

However, it’s a substantially different challenge dealing with concurrency in a distributed

architecture. It is essential to understand this difference when dealing with event-driven

services; not being aware of the parallel event processing consequences can trigger some

difficult corner cases and intricate bugs. This section will detail the differences between

managing concurrency in a single-process application, like a monolith, and managing it

in an event-driven service.

As discussed in Chapter 1, monoliths are single-process applications where all

applications’ functionality is deployed together. Often, all the application requests go

through the same single application. In this type of application, we can use the standard

strategies to deal with concurrency. Let’s illustrate this with an example.

Let’s say we are buying a product on an eCommerce platform. When we submit a

new order, the application has to save the order information and check the available

stock for the item we just requested. The product can have stock in several different

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

230

warehouses. For example, if we were buying a shirt with size M, we could have a US

warehouse with one stock unit, another one in the UK with one stock unit, and another

one in Japan with five stock units. To minimize the order’s shipping costs, the application

would have to retrieve the available stock from every warehouse and apply a routing

algorithm to understand which warehouse to retrieve the stock. Once it figured out

which warehouse to use, it would decrease the stock and ship the order. Figure 6-1

illustrates this example.

Figure 6-1.  Example of an order fulfillment flow in a monolith

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

231

The order fulfillment process follows the flow we just discussed:

	 1.	 The user submits an order which the order module receives.

	 2.	 The order module requests the stock information from every

warehouse from the inventory module and validates if there is

enough stock to fulfill the order.

	 3.	 The order module requests the routing module to calculate the

best warehouse for that customer’s address and the available

warehouses.

	 4.	 When the routing module calculates the best warehouse, the

order module requests the shipping module to ship the order.

	 5.	 The shipping module (could also be the order module if we were

following the orchestrator pattern) requests the stock changes to

the inventory module and ships the order.

Hopefully, our eCommerce platform doesn’t have one user at a time using it; that

would mean it had only minimal success, although it would make things a lot easier.

A random number of users would be browsing and submitting their own orders. Let’s

say another user submitted an order for the same item we were buying simultaneously.

The application would receive and process both orders in parallel. Unfortunately, both

orders are from the United States, and the product we are buying has only one stock unit

left in the closest warehouse. With the preceding process in place, the system would

fulfill which order?

If we are unlucky enough, and we are always unlucky enough in production, it

could be both orders. Imagine if two orders go through the workflow in parallel, the

order module would retrieve the stock and request the routing module to calculate the

best warehouse to retrieve the stock. Let’s say there is one stock unit available in the US

warehouse and one stock available in the UK warehouse. If the users placed both orders

in the United States, the routing module would likely answer that the best warehouse for

both orders was the warehouse in the United States. When advancing, both orders would

retrieve stock from the same warehouse. Since only one stock unit is available, one

order would either advance for an unexisting stock unit or would fail, depending on the

implementation. Despite the fact, there might still be stock available to fulfill that order

in other warehouses.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

232

In a single-process application, it is easier to manage this issue, and there are several

strategies we can use. We can use a pessimistic approach and lock the order processing

for each product (or product size, depending if the products vary by size). If we receive

a second order for a product we are already processing, it will have to wait for the

processing of the first order to finish. An important detail is to lock per product; we can

still process different products in parallel; we just avoid processing the same product

simultaneously. This detail ensures the application retains some of the performance and

isn’t severely impacted.

Alternatively, we could use an optimistic approach and assume there is no

concurrency. The workflow would normally run without any lock or validation. In the

last step, the shipping module could detect if no stock was available and request the

routing algorithm to run again with the latest stock, retriggering the process.

We could also partition our requests so that the application never processes orders

for the same product simultaneously. This way, it is possible to build highly concurrent,

highly scalable systems without the need for locks or retries; we solve concurrency

by architecture rather than implementation. We won’t go into much detail on how to

achieve this now, but we will work through a practical example at the end of the chapter

and detail this concept.

How is concurrency different in event-driven services? In fact, some of these

strategies are still applicable in event-driven services, at least in some use cases. Others

can’t be applied due to the distributed and horizontally scalable nature of the services.

Let’s work through an example to illustrate this. Figure 6-2 shows the order created event

consumption workflow in the inventory service.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

233

The inventory service needs to change the stock for each order submitted to the

system. To do that, it handles order created events from an event queue. For each event,

the service has to retrieve the current product’s available stock from all warehouses,

calculate the best warehouse to satisfy the order, and update the product’s stock in that

warehouse.

In this example, we can have a concurrency issue the same way we did in the last

example with the monolithic application. For example, if we receive two events for

orders created for the same product simultaneously, the service will fetch the product’s

stock for both orders and calculate the best warehouse. If the warehouse is the same, the

service will try to retrieve stock from the same warehouse simultaneously, potentially

originating a concurrency issue if there isn’t enough stock.

Figure 6-2.  Consumption of the order created event for a given product inside the
inventory service

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

234

For some services, it might be sufficient to work in a single thread and completely

avoid concurrency issues; however, this isn’t the most frequent use case. As we discussed

at the beginning of the chapter, we design event-driven services to be horizontally

scalable and respond promptly to varying load or usage needs. We often adopt event-

driven architectures to have systems that have these characteristics. The need to scale

and deal with increasing amounts of requests usually means we need performant

services. Single-threaded services won’t likely cut it; as we discussed, concurrency is

performance.

We can horizontally scale single-threaded services, but we would likely need a much

higher number of services than we would need when using concurrency and parallelism.

Even when hosted in cloud providers, single-threaded services won’t probably use all the

available physical resources. Depending on what the services do, they often only use a

modest percentage of the CPU and memory, even on lower-tier machines. As you might

guess, this isn’t cost-effective, and we aren’t making the best usage of the resources we

have available. Also, by being single-threaded, we can’t tune the service to make the

most of the available resources. When using parallelism, we can adjust the number of

services, and the degree of parallelism in each service to optimize the minimum number

of machines (or containers) needed with the max usage of physical resources, optimizing

the cost and performance metrics accordingly.

The example pictured in Figure 6-2, and the concurrency issue it can produce,

has the same nature as the one we discussed when using a single-process application,

illustrated in Figure 6-1. In what way an event-driven service is different from the

situation we discussed before? Having multiple instances of the same service can add

an additional layer of complexity when tackling concurrency. Figure 6-3 illustrates this

situation.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

235

Figure 6-3 illustrates three instances of the inventory service. All three instances process

events independently from each other. They can also be processing multiple events in

parallel inside each instance, so we have two parallelism degrees, inside each instance

and between instances. In this example, the service receives two order created events

simultaneously for the same product (product A), one for user John and one for user Sara.

Inside a service’s instance, we can use the same strategies we would use in a

single-process application like a monolith. But they don’t guarantee we won’t have

concurrency because other instances might be simultaneously processing concurrent

changes. For example, if we locked product A in instance 1, the lock would only work

on that instance; instance 2 would have no knowledge of it due to being a separate

independent process.

Figure 6-3.  Multiple instances of the inventory service consuming events in
parallel

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

236

To an inexperienced developer, this kind of concurrency problem might seem

far-fetched and unlikely. To be fair, some of these problems have a minimal chance

of happening. How likely is it to have two different users buying the same variant

of a product with the limited stock at the exact same time? Often it comes down to

windows of a few milliseconds. Is it worth it to solve a problem with such low chances

of happening, even if it happens occasionally? There are solutions to problems that are

more costly than living with the bug happening once or twice per year.

In the end, it’s all about scale. We discussed in Chapter 1 how event-driven

architectures could be the answer for challenging scalability problems and might be

best applied when an existing application struggles with a given scale. When we are

consuming dozens, hundreds, or thousands of events per second, it’s not about how it

likely won’t happen. It will, several times per hour or minute.

It’s not just about saying our solution is performant and horizontally scalable, it’s

also about saying that it is consistent and trustworthy at scale. No matter how much

scale the business will need in the future, this kind of issue won’t happen no matter how

much load you throw at it. We can’t take concurrency lightly, and we need deliberate and

sustainable strategies to tackle it from the ground up.

6.2  Pessimistic vs. Optimistic Concurrency, When
and When Not to Use
Traditionally, there are two types of strategies to deal with concurrency, pessimistic and

optimistic. In fact, I propose a third, which is avoiding concurrency altogether, handling

concurrency by design as opposed to handling concurrency by implementation. This

section will detail what differentiates pessimistic and optimistic concurrency, when to use

each, and how the architecture and data model design can avoid concurrency altogether.

Pessimistic and optimistic concurrency is the difference between apologizing and

asking permission.1 Pessimistic strategies request access to the resource and will only

act based on the response, while optimistic strategies assume they have access to the

resource, and when they don’t, they apologize by acting accordingly.

1 Full article exploring this concept in Maurice Herlihy, “Apologizing Versus Asking Permission:
Optimistic Concurrency Control for Abstract Data Types,” March 1990, www.researchgate.net/
publication/234778080_Apologizing_Versus_Asking_Permission_Optimistic_Concurrency_
Control_for_Abstract_Data_Types

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

http://www.researchgate.net/publication/234778080_Apologizing_Versus_Asking_Permission_Optimistic_Concurrency_Control_for_Abstract_Data_Types
http://www.researchgate.net/publication/234778080_Apologizing_Versus_Asking_Permission_Optimistic_Concurrency_Control_for_Abstract_Data_Types
http://www.researchgate.net/publication/234778080_Apologizing_Versus_Asking_Permission_Optimistic_Concurrency_Control_for_Abstract_Data_Types

237

Let’s illustrate this with the example we discussed in the last section. In Figure 6-2,

we discussed how the inventory service had to fetch the stock, calculate the best

warehouse, and update the stock for that warehouse. We could take a pessimistic

approach by locking the product’s stock quantity during the operation. Or we could

assume there is no concurrency, calculate the best warehouse, and try to update the

stock. If the stock changed in the meantime, we could fail or retry the operation.

Pessimistic concurrency strategies lock the resource upfront. The services request

access to the resource; if it is available, the application locks it, and it becomes

unavailable for every other access that might happen until the application frees the

resource. Suppose the resource is unavailable (another consumer or thread already has a

lock on it). In that case, the access will fail, and the application will either wait to release

the lock or fail the operation.

Optimistic concurrency strategies assume there is no concurrency and act when

concurrency occurs. Typically, there is no locking involved; the flow of the application

runs without synchronization. When the application is about to persist the changes, it

validates if anything has changed since the start of the operation. If it did, the application

aborts or retries the operation.

6.2.1  Pessimistic vs. Optimistic Approaches
A pessimistic approach is the easiest to reason with since once the application acquires

the lock, we can reason with the program’s flow in a single-threaded mindset. This

attribute dramatically eases the way we understand and develop the service’s logic.

However, it might have a considerable impact on performance. Since we are locking

a resource and preventing other requests from accessing it, the higher the number of

requests for the same resource, the higher the time it will take the application to respond.

An optimistic approach typically doesn’t involve any kind of locking and doesn’t

block the application. The lack of locks, under certain circumstances, can lead to much

higher performance; under the right conditions (we will detail them next), it will behave

as no concurrency prevention strategy is in place. However, every time a write collision is

detected, it has to retry the operation, which can be costly. Also, reasoning with concurrent

code while developing the service’s logic is more complex and can easily introduce bugs

without a constant concern on concurrency issues. Retries must also be idempotent, a

common concern in event-driven services, which we will detail in Chapter 7.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

238

Retrying the operation is often more expensive than acquiring and maintaining a

lock. For example, in the situation we discussed earlier, using a pessimistic approach

and locking the inventory service’s execution will affect performance. But retrying the

operation when the service detects conflicts implies the service has to fetch the stock,

calculate the best warehouse, and try to save the information again. If this happens

frequently enough, it will likely be slower than restricting the resource’s access through

locking. Imagine if we have ten concurrent users trying to buy the same product, in an

optimistic approach, one of the ten would succeed, but the other nine would fail and

would have to retry. On the next retry, some would likely fail and would have to retry again.

In these situations, it would be best to lock the resource upfront and mediate the access.

Optimistic strategies are only cost-effective if the chances of the operation succeeding

are sufficiently high. A good rule to follow is to use a pessimistic approach when there is

a high chance of conflicting requests and use an optimistic approach when the chances

are low. If it is very likely that a request conflicts, we restrict access to the resource, which

guarantees orderly access and prevents consecutive retries. In use cases where it is still

possible but unlikely for the requests to conflict, we can use an optimistic approach and

enjoy the same performance as if we have no mechanism to prevent concurrency to begin

with, unless for the unlikely requests that cause concurrency. Using a pessimistic approach

in an environment with low chances of concurrency may severely impact the performance

for a small percentage of occurrences; thus, the cost-benefit ratio is smaller.

6.2.2  Solving Concurrency by Implementation and by
Design
For example, suppose our eCommerce platform has a small quantity of highly sought-

after products with thousands of active users, and the chances of several users ordering

the same product simultaneously are high. In that case, we might benefit more from

using a pessimistic approach. On the other hand, suppose products are expected to be

on sale for a more extended period, like a real estate selling platform, where houses are

on sale for considerable periods with a handful of users actually requesting to buy the

house. In that case, an optimistic approach might be best.

As with most solutions, it isn’t a black and white kind of choice. We can use both

approaches or combine them as we see fit. There might be use cases in the architecture,

or even in a specific service, that benefit from applying a pessimistic approach in one

place and an optimistic one in another.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

239

Often, the hard part is not about deciding which kind of approach is more beneficial

but rather how long it stands to the varying needs through time. Different systems and

applications exhibit different patterns of usage. The likelihood of concurrency and

the conflict patterns often change over time; a highly concurrent use case might be so

during a limited window of time. For example, our real estate platform might have low

concurrency patterns, unless for sporadic, once-in-a-lifetime deal houses that have

a vast demand and attract hundreds of users at the same time. It’s complex to have a

strategy that varies not by use case but by specific timespans.

To deal with these cases, concurrency is best solved by design rather than

implementation. In the specific case of event-driven services, routing messages and

using end-to-end partitioning is the best approach as it avoids concurrency as a whole

in a performant and transparent way. However, as we discussed before, event-driven

architectures often aren’t composed of only event-driven services. Sometimes, in the

real world, we need to combine both asynchronous and synchronous functionalities. In

those use cases, we might need to use the traditional optimistic or pessimistic strategies,

but they are the exception rather than the rule.

Solving concurrency by design isn’t always possible or practical. As we will detail

in Section 6.6, it also has several limitations that might not apply to every use case.

Handling concurrency by design relies on being able to design the system in a way

concurrency is impossible. In event-driven architectures, it is often based on event

routing. Routing events isn’t always possible in various use cases, for example, when we

don’t have a suitable routing key or integrate from external systems. In those situations,

solving concurrency by implementation is preferable. Concurrency by implementation

is also simpler to reason with since it’s similar to the traditional concurrency handling

approaches. In the following sections, we will approach by implementation strategies

first since they will exercise your thought process toward concurrency issues, are easier

to grasp, and are valuable tools for you to have in your toolbox when by architecture

strategies are impractical.

Data modeling also plays a part in concurrency; the way we model the data can

impact the performance and how we deal with concurrency. In Chapter 3, we discussed

aggregates’ size and how changes to the same aggregate shouldn’t be done in parallel

when we detailed DDD. The aggregate size also impacts how concurrent a system is,

thus affecting the system’s performance. For example, let’s say our platform sells clothes,

and we can choose to design the aggregate to reflect either a product or a product’s size

(like an XS). If we choose the product granularity, we can process different products

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

240

simultaneously, and if we choose the size granularity, we can process different sizes,

even from the same product, simultaneously. The smaller aggregate size has higher

throughput but also has all the implications in the consumers that we discussed in

Chapter 5 and will further detail in Chapter 8.

Finally, the strategies to handle concurrency we discuss in this chapter are in

the scope of several distributed instances of the same service (e.g., several inventory

service instances). You might ask how to solve concurrency across different services

(e.g., between the order and inventory service). These strategies (except end-to-end

partitioning, as you will see) aren’t effective across different services. Although we can

use them, one service shouldn’t lock another; they are self-sufficient and should be able

to scale independently. To manage concurrency across different services, we should use

a higher-level approach, like a Saga, as discussed in Chapter 4.

6.3  Using Optimistic Concurrency
Section 6.2 discussed how optimistic and pessimistic concurrency prevention strategies

work and when to apply them. But how do we use them in practice? In this section, you

will learn how to apply optimistic concurrency as we work through a practical example.

Let’s look at the same example we discussed in Section 6.2 involving the inventory

service. When processing an order created event, the service has to retrieve the product

stock, calculate the best warehouse, and remove the stock for that product in the

corresponding warehouse. Figure 6-4 illustrates this process when the service processes

two order events for the same product.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

241

Two instances of the service process simultaneously one order created event each:

one from Sara and one from John. Both ordered the same product, which has only one

stock unit left in one warehouse. If the fourth step that updates the stock only decreases

the quantity, the product will end up with negative stock. An immediate solution could

be to add an additional step before updating the stock to check whether there was still

enough stock to perform the operation. Nonetheless, we would only decrease

Figure 6-4.  The inventory service consuming two order created events, from two
different users, for the same product

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

242

the chances of having concurrency issues and wouldn’t remove it entirely. As we

discussed, even if the chances are small, the scale and number of events the service

processes will make an unlikely incident certain. Even if we currently have low scale, we

leave the chances for it to happen in the future when the scale and throughput increase.

How could we solve it using an optimistic approach? As we discussed in Section 6.2,

optimistic prevention strategies assume there is no concurrency and act when

concurrency is detected. In this case, when the service is updating the stock, it would

only apply the change if the stock for that product wasn’t changed since we fetched it in

step 2. If it was, the service wouldn’t decrease the stock and would, for example, retry the

operation.

Let’s work through this solution if the service was using SQL Server, for example. The

inventory database would save the stock information in a table containing information

about the product, warehouse, and stock quantity. Listing 6-1 illustrates an example

schema of this table.

Listing 6-1.  Stock table schema and possible updates

1 -- Create table stock

2 CREATE TABLE Stock #A

3 (

4 ProductId int,

5 WarehouseId int,

6 Quantity int,

7 LatestChangeTimestamp bigint, #B

8 primary key (ProductId, WarehouseId)

9)

10

11 �UPDATE Stock SET Quantity = Quantity - ? WHERE ProductId = ? AND

WarehouseId = ? #C

12 UPDATE Stock SET Quantity = ? WHERE ProductId = ? AND WarehouseId = ? #D

#A Stock table definition

#B Unix timestamp column

#C Update stock by decreasing the current quantity from the ordered amount

#D Update stock by setting the quantity to the calculated value by the service

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

243

After fetching the stock and calculating the warehouse, the inventory service would

update the quantity column in this table. It could do it in two ways, by choosing one of

the two updates in Listing 6-1. If the service updated the stock using the first, the stock

quantity could turn negative (1-1 and then 0-1). If it used the last, both operations would

succeed by setting the stock to zero, although there was only one quantity available.

With an optimistic approach, we need to know if the data changed when doing the

second update. We could do that using the LatestChangeTimestamp column. Every

time the stock quantity changes, that column is also updated with the timestamp of

the change. In step 2 of Figure 6-4, the service fetches the current stock along with

the timestamp of the last update. In step 4, the service only changes the stock if the

timestamp is still the same. It could use an update operation similar to the one illustrated

in Listing 6-2.

Listing 6-2.  Optimistic update operation

1 UPDATE Stock SET Quantity = ?

3 WHERE ProductId = ?

4 AND WarehouseId = ?

5 AND LatestChangeTimestamp = ? #A

#A Version clause

With the condition using the LatestChangeTimestamp, the update will only apply if

the timestamp is still the same; otherwise, it won’t find and consequently won’t affect

any row. We used the timestamp, but it could be an incremental version or another field

that made sense. The Unix timestamp is a straightforward property to use as a version

since we easily generate it from a timestamp; it’s an integer and always increases. After

the operation, if no rows were affected, then the record was the target of concurrency,

and we could retry the operation. In this case, the last order wouldn’t be fulfilled due to

lack of stock.

Optimistic approaches like we detailed here are very simple and straightforward to

use. They don’t rely on a specific technology or external dependency. If we understand

the mechanism, we can apply it regardless of the technology. When concurrency is an

issue, this can be a simple and performant solution.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

244

In this example, we used SQL Server, but it can be applied in most database

technologies. In fact, this strategy is used under the hood by many technologies. For

example, ElasticSearch has a way to manage concurrency using a sequence number2

(the same version or timestamp we discussed) to address concurrency in a very

similar way we detailed here. Cassandra has the concept of lightweight transactions3

that is very similar to the mechanism we just discussed. The concept of optimistic

locking4 is also discussed in the context of Cassandra, which uses the same similar

approach. NEventStore,5 a popular event sourcing framework, which can be used with

the persistence engine for MongoDB, uses the same concept to manage concurrent

changes to the same aggregate. EntityFramework also has an optimistic concurrency

management approach6 similar to what we discussed.

This approach’s simplicity and flexibility makes it a viable solution to have in

our toolbox and apply it where we see fit. As we discussed in Section 6.2, optimistic

concurrency shines in environments with low chances of concurrency. Environments

with operations that are likely to conflict and how they benefit from pessimistic

approaches are detailed next.

6.4  Using Pessimistic Concurrency
Pessimistic concurrency prevention strategies are usually the standard way to deal with

concurrency. They are easier to reason with since they guarantee no other operation

happens simultaneously. This section will discuss how to use a pessimistic approach

to handle concurrency. We will work through a practical example similar to the one we

discussed when detailing optimistic concurrency in Section 6.3.

2 Full technical reference in Elastic.co, “Optimistic concurrency control,” www.elastic.co/guide/
en/elasticsearch/reference/current/optimistic-concurrency-control.html

3 Full technical reference in Datastax.com, “Using lightweight transactions,”
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertLWT.html

4 More details in Sandeep Yarabarla, “Learning Apache Cassandra - Second Edition,”
April 2017, https://learning.oreilly.com/library/view/learning-apache-
cassandra/9781787127296/5e5991cb-eb1e-4459-9114-1d86e974e927.xhtml

5 GitHub project and details here: https://github.com/NEventStore/NEventStore
6 Full technical reference in “Handling Concurrency Conflicts (EF6),” October 23,
https://docs.microsoft.com/en-us/ef/ef6/saving/concurrency

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

http://www.elastic.co/guide/en/elasticsearch/reference/current/optimistic-concurrency-control.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/optimistic-concurrency-control.html
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertLWT.html
https://docs.datastax.com/en/cql-oss/3.3/cql/cql_using/useInsertLWT.html
https://learning.oreilly.com/library/view/learning-apache-cassandra/9781787127296/5e5991cb-eb1e-4459-9114-1d86e974e927.xhtml
https://learning.oreilly.com/library/view/learning-apache-cassandra/9781787127296/5e5991cb-eb1e-4459-9114-1d86e974e927.xhtml
https://github.com/NEventStore/NEventStore
https://docs.microsoft.com/en-us/ef/ef6/saving/concurrency
https://docs.microsoft.com/en-us/ef/ef6/saving/concurrency

245

Let’s use the same example illustrated in Figure 6-4. Two instances of the inventory

service fetch, manipulate, and update the stock quantity for the same product. In a

single-process application (e.g., if we had only one instance of the inventory service),

the typical approach would be locking a resource while the service is processing that

call. But since an in-memory lock would only work for the local instance, it isn’t the right

approach when we have two or more service instances.

6.4.1  Distributed Locks in Event-Driven Microservices
A similar approach we could use is a distributed lock. A distributed lock works the

same way a local lock would (like a mutex) but relies on an external dependency to

manage the lock across several instances. Figure 6-5 illustrates this approach in the same

example we discussed before.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

246

The first instance handling Sara’s event acquires the lock successfully. Then it

proceeds to process the event by fetching the stock. The second instance receives John’s

order and tries to obtain the same lock. Since the first instance already acquired it, the

service will block until it is released. Meanwhile, in the first instance, Sara’s order is

fully processed and removes the only stock unit left from the product. The first instance

advances to the last step and releases the lock. By releasing the lock, the second instance

Figure 6-5.  A distributed lock applied to the same example with the inventory
service

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

247

starts to process John’s order and fetches the stock. Since Sara’s order already removed

the stock, the second instance will reject the order.

Let’s deep dive into how this situation could work in the code. Listing 6-3 illustrates

how we could implement the lock logic in the inventory service.

Listing 6-3.  Acquiring and releasing lock in inventory service

1 public async Task Consume(

2 CancellationToken cancellationToken,

3 OrderCreatedEvent orderCreatedEvent)

4 {

5 // Generate lock key based on product id

6 var lockKey = orderCreatedEvent.ProductId.ToString(); #A

7

8 // Create consult client and lock

10 var distributedLock = consulClient.CreateLock(lockKey);

11

12 try

13 {

14 // Acquire lock for that product

15 await distributedLock.Acquire(cancellationToken); #B

16

17 // Fetch product's stock

18 var stockList = await this.stockRepository

19 .GetStockAsync(orderCreatedEvent.ProductId);

20

21 // Calculate best warehouse for that order

22 var bestWarehouseId = this.routingService

23 �.CalculateBestWarehouse(stockList, orderCreatedEvent.

OrderId);

24

25 // Change stock for that warehouse

26 await this.stockRepository

27 .UpdateStockAsync(

28 orderCreatedEvent.ProductId,

29 bestWarehouseId,

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

248

30 orderCreatedEvent.Quantity);

31 }

32 catch (Exception)

33 {

34 // �Any exception occurring during the execution of the

process

35 // is handled here

36 }

37

38 // Release the lock

39 await distributedLock.Release(cancellationToken); #C

40 }

#A Generate lock key

#B Acquire lock based on the generated key

#C Release the lock once the operation finishes

The way we create and release the lock is very similar to how it would work in a

local, in-memory lock using a mutex or a lock statement. Instead of managing the lock

locally, the service relies on an external dependency to manage the synchronization,

in this case, Consul. The statements using the distributedLock are requests to Consul.

In the distributedLock.Acquire method, the instance requests to acquire the lock; if it

succeeds, it will advance with the remaining operations. If the lock is already in use by

another instance, it will block until it is freed. The instance releases the lock and makes

it available for other instances once the service completes the event processing, with the

distributedLock.Release method.

An important point is how we generate the lock key. In this example, the lock key

is the product id, illustrated by the lockKey variable. Instead of generating a different

one on each event, we could choose a static key, for example, “InventoryServiceKey.”

That would mean the service would try to lock the event consumption independent of

the event’s contents for every event. This way, the service would act as a single thread

service, and the service’s performance would deteriorate significantly. We also wouldn’t

gain much from blocking the consumption for every event since concurrency issues

might occur for processing simultaneous changes for the same product, not across

different products.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

249

Using the lock key as the product id guarantees only one instance is processing

one product simultaneously, but different products are processed concurrently. It is

an important detail since it dramatically benefits the service’s performance. This detail

also relates to what we discussed in Chapters 3 and 4 about the aggregate size. If the

aggregate scope is considerably large, it will negatively affect the service’s performance

since it limits the ability to have higher levels of concurrent changes.

We used Consul to manage the lock, but there are other options. ZooKeeper, a

popular tool to provide distributed synchronization and configurations, is another

viable option. Kafka in the past used ZooKeeper to manage information about the

cluster, topics, and partitions across nodes. It also can provide fully distributed locks

that are globally synchronous.7 Redis can also be an option, and there are several

implementations of distributed locks with Redis.8 Martin Kleppmann also has an

interesting article9 about fencing locks approach with Redis, which is worth checking if

you want more details about the implementation and its impacts.

You might recall when we discussed the Jepsen tests in the previous chapters and

their usefulness in validating distributed systems’ safety. In fact, the Jepsen tests found

issues with Consul in the past,10 for example, and although they are surpassed and

Consul fully complies11 with the Jepsen tests, they raise an interesting concern on how

our distributed services might interact with an external lock management system. In fact,

what would happen if the service crashes, is unavailable, or suffers a network partition?

In that case, Consul would free the lock, but that instance of the service might still

change information concurrently with other instances.

Kyle Kingsbury has a fascinating talk12 about distributed databases that highlight

many of these problems and the associated limitations of distributed locks. Distributed

locks might be useful in some use cases and, as we discussed, can be a straightforward

way to apply a pessimistic approach to concurrency. However, they also suffer from

  7 Referenced in ZooKeeper documentation in “ZooKeeper Recipes and Solutions,”
https://zookeeper.apache.org/doc/r3.5.5/recipes.html#sc_recipes_Locks

  8 Further details in Redis.io, “Distributed locks with Redis,” https://redis.io/topics/distlock
  9 Full article in Martin Kleppmann, “How to do distributed locking,” February 8, 2016,
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

10 Further details in aphyr.com, “Jepsen: etcd and Consul,” June 9, 2014, https://aphyr.com/
posts/316-jepsen-etcd-and-consul

11 Full analysis in consul.io, www.consul.io/docs/architecture/jepsen
12 Full talk in Kyle Kingsbury, “GOTO 2018 Jepsen 9: A Fsyncing Feeling,” May 8, 2018,
www.youtube.com/watch?v=tRc0O9VgzB0&t=1526s

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

https://zookeeper.apache.org/doc/r3.5.5/recipes.html#sc_recipes_Locks
https://zookeeper.apache.org/doc/r3.5.5/recipes.html#sc_recipes_Locks
https://redis.io/topics/distlock
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://aphyr.com/posts/316-jepsen-etcd-and-consul
https://aphyr.com/posts/316-jepsen-etcd-and-consul
http://www.consul.io/docs/architecture/jepsen
http://www.youtube.com/watch?v=tRc0O9VgzB0&t=1526s
http://www.youtube.com/watch?v=tRc0O9VgzB0&t=1526s

250

problematic limitations and can lead the service to process invalid states. Techniques

to handle inconsistency and transient errors can help, like event idempotency and

versioning, which will be detailed in Chapter 7. They also introduce an additional

dependency of a third-party tool to manage locks. Distributed locks can be useful when

used sparingly and in specific use cases where locking is a must. However, in most use

cases, other alternatives are more straightforward and less impactful.

6.4.2  Database Transactions As a Concurrency Approach
in Distributed Microservices
Perhaps the most common way and what first comes to mind as a solution to deal with

concurrency issues is the use of transactions. In fact, they can be a very straightforward

and performant way to solve some concurrency issues. When we horizontally scale a

service and add more instances, they all share the same database. We can use it as a

point of synchronization between all instances, and transactions are easy to reason with

to most developers due to their widespread usage. We are excluding here the distributed

transactions and the two-phase commit protocol we discussed in Chapter 4.

How could we solve the concurrency issues we detailed with the inventory service

in Figure 6-5? We could open a transaction when fetching the stock, calculate the best

warehouse, and commit the transaction when updating it. This way, the database

guarantees no other instance changes the same information while the transaction is

running. Often we hear the issues of transactions and the performance impacts they

have; however, more often than not, it’s more a theoretical concern than a practical one.

Transactions are a very optimized tool that can achieve fantastic performance even in

high-throughput systems. Relational databases are often associated with monolithic

databases (as we discussed in Chapters 4 and 5), but they are as valid as any other

database when applied in a specific service if that service benefits from using it.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

251

Some databases also enable locking and unlocking the service based on a given

resource specified by the application. One example of this is the sp_getapplock13 from

SQL Server, which can act as a distributed lock much like what we discussed with

Consul. We observed some success with some use cases using this approach. Still, there

are more sustainable and straightforward ways to deal with concurrency than using the

database as a distributed lock.

Although useful and straightforward, transactions can be troublesome with long-

running operations and severely affect the system’s performance. The example we

discussed was relatively simple, but imagine if calculating the best warehouse involved

more complex operations or communication with external systems. The transaction

might lock data for an unfeasible amount of time.

Also, the transaction management in this kind of system tends to leak toward the

application or domain logic. In practice, how could we replace the lock for a transaction?

One of the easiest ways is to wrap the operations in a TransactionScope (in C#). If we

exchanged database technologies, would that code live unchanged as it was supposed

to? Likely it wouldn’t. To be fair, we don’t change database technologies often, if ever.

However, it hints at how easily the database’s transactional logic spreads to the domain

and application logic, which can make the code difficult to maintain.

Transactions are also limited to the technologies that support them. Many NoSQL

databases don’t support transactions. Overall, if we are using a database that uses

transactions, it can be a simple way to deal with concurrency issues and a quick fix to

some pressing issues. Still, as we saw when discussing distributed locks, a better solution

is to avoid concurrency altogether, as we will also discuss at the end of the chapter.

6.5  Dealing with Out-of-Order Events
A related concept that can also derive from concurrency is out-of-order events. Until now,

when we discussed the service consumption from an event stream, we always assumed

the events in the stream were in order. However, this isn’t always the case; services can

consume unordered events due to several reasons. This section will discuss how events

can become unordered and how we can deal with and mitigate their impacts.

13 Further details in Microsoft documentation, March 14, 2017, https://docs.
microsoft.com/en-us/sql/relational-databases/system-stored-procedures/
sp-getapplock-transact-sql?view=sql-server-ver15

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-getapplock-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-getapplock-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-getapplock-transact-sql?view=sql-server-ver15

252

Why does event ordering matter? Let’s illustrate with an example. Let’s say we have

a product service that has an aggregated view of the product’s information and exposes

that information to other services. It also handles stock events from the inventory service

and saves the product and stock information locally in a denormalized read model. The

inventory service publishes stock changed events every time a product’s stock changes.

For example, a given product has three stock units, and the users buy it two times. The

inventory service will publish one stock changed event with remaining stock quantity

two for the first purchase and a stock changed event with remaining stock quantity one

for the second one. The product service handles those events and updates the product

stock to quantity two and then to quantity one similar to what we discussed in Figure 6-5.

But what if the two events arrive in an incorrect order? If the earliest event (the

stock changed to quantity two) arrives after the latest (the stock changed with quantity

one), the product service will update the stock to quantity two, which doesn’t reflect the

product’s real quantity.

6.5.1  How Can Events Lose Their Order?
Incorrect ordering can happen due to several reasons. Multiple publishers for the same

queue can also have a desynchronized clock. Clock synchronization across machines

is typically done with the NTP (network time protocol); the considerations about this

protocol and how it achieves clock synchronization across machines are beyond the scope

of this book; however, the median for most providers is in the millisecond range or under.

For most use cases, this synchronization is enough and provides satisfactory results.

Besides clock synchronization issues, the event stream might not be in the correct

order in the first place. Ordering issues can also be related to the message broker

technology we are using. For example, individual consumers using RabbitMQ can

observe out-of-order messages when multiple subscribers requeue messages.14 Network

partitions can also cause ordering issues depending on the broker’s configurations.

Resilience strategies can also impact ordering. For example, depending on the

way retries are implemented, the order can be lost when retrying a message. We often

discussed the ability to replay an event stream to rebuild a view of the data. In a way,

expected or not, it jeopardizes message ordering since we will start to consume older

messages.

14 Further details in RabbitMQ documentation, “Broker Semantics,” www.rabbitmq.com/
semantics.html

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

http://www.rabbitmq.com/semantics.html
http://www.rabbitmq.com/semantics.html

253

Concurrency can, and often will, play a factor in ordering events. Even if events are

published and stored in order in the event stream, two instances of the same service

(or even two threads of the same service) concurrently consuming the messages can

unorder them due to different processing rates. Figure 6-6 illustrates this example.

Figure 6-6.  Two instances of the same service consuming from a queue with
out-of-order events and different consumption rates

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

254

Two events might have different operations depending on the event’s processing

logic. Even if the two events have the exact same operations, the associated data will

likely be different, which implies different times in fetching and handling that data. Two

instances, or even two threads, will execute the same operations at slightly different

rates (due to the associated data and even due to the underlying hardware and operating

system characteristics). Consuming both events concurrently is enough for one

consumer to occasionally handle a concurrent older event faster than a more recent one.

6.5.2  Solving Out-of-Order Events with Versioning
Since events can lose their order due to several factors, what can we do to prevent

invalid states? One way is using event versioning. Events reflect a change that happened

to an entity. Conceptually, the event’s version is the version of the entity at the time of

the change. For example, if our entity is a product, a product created event could have

version 1; if someone changed the product’s category, it would publish an event with

version 2; and so on.

The concept of a sequential version per entity relates to the DDD aggregate concept.

The entities are related to the aggregates we define in the domain. Every time an entity

changes, the version increases. Each version represents the state of the entity at that

given moment in time. Events can use the same version and relate to the state change

that triggered the event.

However, managing a sequential, unique, and incremental version can be tricky15

in distributed systems. Twitter Snowflake,16 for example, highlights the challenge of

generating unique ids in a distributed database like Cassandra. Consistently generating

these ids can also have performance impacts in heavy workloads. A timestamp, or using

the number of milliseconds since the epoch, for example, can be a valid alternative. This

way, each service can easily generate a version always higher than the previous, although

not sequential.

15 Further details in João Reis, “Unique Integer Generation in Distributed Systems,” September 20,
2018, www.farfetchtechblog.com/en/blog/post/unique-integer-generation-in-
distributed-systems/

16 Further details in Twitter blog, Ryan King, “Announcing Snowflake,” June 1, 2010,
https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

http://www.farfetchtechblog.com/en/blog/post/unique-integer-generation-in-distributed-systems/
http://www.farfetchtechblog.com/en/blog/post/unique-integer-generation-in-distributed-systems/
https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html
https://blog.twitter.com/engineering/en_us/a/2010/announcing-snowflake.html

255

A sequential version can be relevant in partial events where the event doesn’t have

the entity’s full information. For example, if the inventory service published stock in

events and stock out events, a service building the product’s stock couldn’t skip any

version. Otherwise, the stock wouldn’t add up to the correct value. In those use cases,

services often need to consume every event in the stream in the exact order (can’t skip

versions). When a service exhibits this behavior, it can be harder to reason with and is

often less resilient, as we will discuss in Chapter 7.

The way we design events can also have an impact on the importance of order. We

would need to consume every stock in and stock out in the stream to have the latest

stock quantity (this has other implications; for example, we would need to allow negative

stock at least temporarily). But notice that a stock in and stock out event, contrary to

a stock change, aren’t idempotent, which is an important property to have, as we will

discuss in Chapter 7.

Event versioning provides a way to understand if the event the service is processing is

older or more recent than our internal state. In the example we discussed with the inventory

service in Figure 6-6, when consuming the event with version 21, we could detect that the

current version of the product’s stock is 22. Then we could decide on what to do.

Some business processes might benefit from still processing the event or all events

that arrive late within a given window. For example, if we needed to send a notification

every time a product has one last stock unit, the ordering wouldn’t be that relevant and

we might want to process every event despite the order the events arrive. However, in

this example where we are updating the current stock for each product, we are only

interested in the latest state, so we could ignore older events.

Notice that even with event versioning and validating the version on each event,

we wouldn’t absolutely guarantee that we wouldn’t process older versions. Two

services could be processing sequential versions concurrently and process the most

recent version faster than the older one. We would still have to combine this with one

concurrency prevention strategy we discussed before.

Versioning events is always relevant, and, either by using an aggregate version or

a timestamp, it is useful for consumers to use. It is important to manage idempotency

and out-of-order events on the consumer side. We can also delegate the responsibility

to order events to the event broker by routing messages to specific partitions, as we will

discuss in Section 6.6.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

256

6.6  Using End-to-End Message Partitioning
to Handle Concurrency and Guarantee Message
Ordering
Until now, we discussed solutions to ordering and concurrency using by implementation

strategies. We discussed patterns we can apply to solve the concurrency and ordering

issues. A better and more sustainable approach is to avoid concurrency and ordering

issues altogether, solving concurrency by design. This section will work through a similar

example to the ones we discussed in this chapter and detail the inner workings of a

message stream and how we can partition messages to avoid concurrency altogether.

Let’s work through the same example we discussed before with the inventory service

handling multiple order created events. Instead of just focusing only on the inventory

service, let’s look at the flow since the order service. Figure 6-7 illustrates this flow.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

257

Figure 6-7.  Multiple instances of the order service process multiple orders. The
inventory service handles concurrently the events for those orders

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

258

The order service, such as the inventory service, can be scaled horizontally and can

have multiple instances; in Figure 6-7, each of them has two. Each instance of the order

service handles multiple order requests; in this case, Sara and John both submit an order.

The order service handles the requests and publishes events signaling the order was

created and is ready to follow the order fulfillment flow. The inventory service handles

those events and changes the stock according to those orders. Since both John and Sara

ordered the same product, which only has one stock unit left, processing both orders

simultaneously can produce a concurrency issue the same way we discussed before.

How can we solve this by partitioning messages? To understand this concept, it’s

important to understand how the message broker works internally. To illustrate this, let’s

look at Kafka and detail how it arranges messages.

6.6.1  Real-World Example of Event-Driven Message
Routing Using Kafka
In the example in Figure 6-7, the order service produces events to an event queue; in

Kafka, it’s called a topic. The inventory service subscribes to that topic and consumes

the events. Events are stored durably and remain available after consumption (as we

discussed in Chapter 3). The order service has multiple producers (since there are

several instances of the order service) and has multiple consumers, in this case, the

various inventory service instances.

In this case, the only consumer is the inventory service, but there could be other

services also with multiple instances reading from the topic. The anatomy of a Kafka

topic and its interactions with different services is illustrated in Figure 6-8.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

259

The order service publishes messages to the Kafka topic. Kafka distributes those

messages to different partitions. Partitions enable good scalability since they allow

producers to write data, and consumers to read, to multiple nodes at the same time.

Partitions are also crucial for high availability; partitions can be replicated across several

machines to guarantee fault tolerance.

Figure 6-8.  Detail of a Kafka topic and its interactions with other services

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

260

Topics are basically a distributed append log; when services publish a message, the

broker appends it to the end of the stream. Each message has an offset which represents the

message position in the stream for each partition. For example, if a given partition has ten

messages, when a producer writes a new one at the end of the stream, it will have offset 11.

Consumers read from the topic and consume messages from the different partitions.

Messages are distributed to service instances with the same consumer group, and each

consumer group acts as a single consumer. The example depicted in Figure 6-8 shows

three instances of the inventory service and three instances of the product service.

Instances of the same services have the same consumer group; different services have

different consumer groups. For example, each of the three instances of the inventory

service consumes different messages; they advance in the stream as a group; thus, different

instances with the same consumer group never receive the same messages. Different

consumer groups will consume from the stream independently and concurrently. For

example, the message with offset 1 will be delivered to inventory service’s instance 1 and

product service instance 2, but never to more than one service instance within the same

consumer group. Figure 6-9 illustrates the offsets of the two services.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

261

The arrows in Figure 6-9 illustrate the consumer’s position in the stream. In fact,

in Kafka, consumers are cheap; you can reason as if they were a pointer in the event

stream – opposed to ephemeral message brokers, where consumers often require an

additional effort by the broker and often struggle if consumers start to pile up messages

in the queues. As illustrated in Figure 6-9, consumers only advance in the stream, and

messages remain in the topic and aren’t removed. If a new service needed to consume

from the stream, it would have the messages available. If the inventory service needs to

rebuild its state, it could merely set its offset to zero and reread the stream.

Figure 6-9.  Offset detail of each consumer group for both services

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

262

The topic’s number of partitions is an essential factor to the scalability and

performance of the system. Kafka assigns a number of partitions to each consumer. For

example, if a topic has six partitions and the inventory service has three instances, it

will likely be assigned two partitions to each inventory service instance. In the example

in Figure 6-9, we have three partitions to three service instances; each instance will

likely have one partition. However, what if we decided to further horizontally scale the

inventory service by adding one more instance? Although one consumer can consume

messages from several partitions, each partition is consumed by exactly one consumer.

So if we add another instance to the inventory service, there would be no partition to

assign it to; hence, the new instance wouldn’t have any load whatsoever. We wouldn’t be

able to scale the service further.

We can change the number of partitions after the topic is created, but adding

partitions doesn’t change the partitioning of the existing data, which might be

troublesome to the consumers as we will see in the next section. The number of

partitions limits our ability to scale; an arguably reasonable decision when creating a

topic is to plan beforehand the scalability needs of the topic and create it with a larger

number of partitions than it currently needs. This planning will give space to scale the

service in the future.

Kafka has two pivotal characteristics that can help to deal with out-of-order events

and concurrency. In a partition, Kafka guarantees events are read in the same order

they were written. This guarantees ordering on the broker side; events can still lose

the order on the consumer side, as we discussed in Section 6.5. It is essential to notice

that Kafka only guarantees ordering inside a partition. A topic has several partitions, so

ordering is not guaranteed across partitions and throughout the whole topic. However,

when publishing, we are also able to define the event’s routing key. The broker ensures

it delivers events with the same routing key to the same partition. This property is a

fundamental characteristic we can use to avoid concurrency and out-of-order messages

as we will detail in the next section.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

263

6.6.2  The Relevance of Message Routing and Partitioning
in Event-Driven Microservices
At the beginning of the section, in the example in Figure 6-7, we discussed how the

inventory service could have a concurrency issue by simultaneously processing the order

service’s events. The concurrency issue occurs because two instances of the inventory

service process order for the same product at the same time; in this case, both John and

Sara ordered the same product. John’s order was processed by one instance and Sara’s

order by another instance.

But how would this example play out if we defined a routing key in the order service?

Every message with the same key will be routed to the same partition by specifying a

routing key. As we discussed, each partition has exactly one consumer. If we use the

product id as the routing key, every order for the same product would be routed to the

same partition and consequently to the same consumer instance. Figure 6-10 illustrates

this flow.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

264

Figure 6-10.  Flow of the order events when published with a routing key

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

265

John and Sara are both trying to buy product 16253, which only has one stock unit

left. The order service publishes events using the product id as the routing key, in this

case, 16253. Since both events have the same partition key, they are both routed to the

same partition, in this case, partition 1. Each partition has only one consumer; inventory

service instance 1 is handling events from partition 1, so this instance will assuredly

receive both events. The instance will also receive the events by the order they were

published since ordering is guaranteed in the same partition.

Looking just at this example, we might think the other service’s instances won’t

receive any load, but they will continue to receive events, just not for that product id.

The other instances are still processing other products with other ids. This strategy

guarantees every event with the same partition key will be processed by the same

instance, but every instance will continue to process events for the partitions assigned

to them; hence, they will continue to process other products. We can reason as if we

assigned a range of products to each instance; events from products inside the range will

be processed only by the corresponding instance.

Using this strategy, we just transformed the distributed concurrency issue into a

local one. Is this sufficient to eliminate concurrency and ordering issues altogether?

Each service instance will likely have parallelism, so concurrency issues can still occur

inside each instance. For example, we might receive John’s and Sara’s order in the

correct order and in one instance, but two threads might process the events concurrently

inside the instance. However, this way, there isn’t the need to synchronize the several

instances through the database or a distributed lock manager. By routing messages, we

avoid distributed concurrency issues and only deal with local ones, where the traditional

mechanisms to deal with concurrency are relevant.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

266

6.6.3  Using End-to-End Partitioning to Handle
Concurrency and Ordering
Distributed synchronization is complex and is often the root of complicated issues

and corner cases. It isn’t arguably suited to the distributed event-driven mindset since

it creates strong dependencies between the instances. Partitioning messages is one

way to avoid distributed synchronization through architecture design. However, as

we discussed, even in a local scope, concurrency is still an issue. Solving concurrency

by implementation often implies complicated developments and is often hard to

reason with and to maintain. This subsection will take one step further the partitioning

approach and detail how we can avoid concurrency altogether.

To handle concurrency in the service’s local scope, we can use the traditional

approaches like an in-memory lock or one of the techniques we discussed in Sections 6.3

and 6.4. However, an arguably good way to handle concurrency by design is to follow the

same approach we discussed when we detailed the broker’s event routing. Following this

approach, we can route the events we receive in the service to specific paths. Figure 6-11

illustrates this situation.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

267

Figure 6-11.  Flow of the events from the producer to the consumer using end-to-
end partitioning

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

268

Inside instance 1 of inventory service, we detailed several thread paths that

correspond to the service’s parallelism. In this case, the service processes four events

in parallel. Figure 6-11 highlights two paths, the path for the two events of orders for

the same product (with id 16253) with the solid line and the path for a third order for

the product with id 32881 with a dashed line. The three instances of the order service

publish the three events using the product id as the partition key. The broker routes

the events to partition 1, which is assigned to the first inventory service instance. The

inventory service can handle the three events concurrently since the parallelism degree

can process four events simultaneously.

However, when handling the events, we can route them to specific thread paths

based on a routing key. We can forward the events with the same key to the same thread

so we can process them sequentially. By handling them in a single-threaded manner,

there are no concurrency issues. The service itself is multi-thread since the other threads

will process different ranges of routing keys. For example, events with product id 32881

will be processed simultaneously with events with product id 16253 (as illustrated in the

diagram), but the two events for id 16253 will be processed sequentially; the second will

only start to be consumed when the first finishes. We can route the messages using the

same routing key the broker uses or even the partition number, as long as the number of

partitions is higher than the number of parallelism of all instances.

If we guarantee the order service publishes events in order, we also avoid ordering

issues. The broker ensures that inside a partition, the order is maintained; if we have the

same consideration when assigning messages in-memory threads, we maintain the end-

to-end ordering.

With end-to-end partitioning, we can achieve greater performance by enabling

parallelism inside and outside of the service and tune the parallelism to take the most

out of the physical resources while completely avoiding concurrency and ordering

issues. It also avoids the dependency of an external dependency, locks of any sort and

retries. This approach has high synergy with the event-driven mindset; reasoning with

the service is always in the context of the event flow. It is an exceptionally simple way to

use an event-driven mindset to completely remove ordering and concurrency concerns

without performance overhead. Developments can be implemented in a no concurrency

context which greatly reduces the complexity and allows developers to focus on the

business logic rather than technical concerns.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

269

6.6.4  Limitations of End-to-End Partitioning in Event-
Driven Microservices
As we discussed, end-to-end partitioning entirely avoids concurrency and guarantees

ordering. In a fully event-driven architecture, it can be an excellent approach to apply

consistently across services, but it does have some limitations in some use cases. It also

has some inconspicuous caveats that are easy to miss. This subsection will discuss those

limitations and propose possible solutions.

Hotspotting

The event broker uses the partition key to route events to one partition; hence, every

event with the same key will be routed to the same partition. You might imagine what

happens if a large percentage of the entire set of events has the same key; the data

distribution will be largely unbalanced.

For example, in the use case we discussed until now, we used the product id as

the partition key. But imagine we needed to guarantee concurrency across product

categories, and we didn’t want to process products simultaneously with the same

category. We could use the category id as the partition key. Let’s say most of our product

catalog is composed of clothing, while the other categories, like shoes and accessories,

represent a considerable small fraction of the entire catalog. By this design, most of our

events would have the clothing category id. Since every event with the same id would

be routed to the same partition, the partition with the clothing products would be fairly

larger than the remaining partitions.

This unbalance between the partitions is called hotspotting. As you might recall

from the previous sections, the number of partitions is pivotal to performance and

scalability concerns. In this case, a large percentage of our data would be assigned to a

single partition which only has one consumer by the broker’s design. This unbalance

also means a single instance would handle a large portion of our events, which will

undoubtedly degrade the system’s performance. It also limits the ability to scale since

no more consumers can be assigned to that partition. When the number of messages

is extensively large, the broker might also struggle with it; Kafka, for example, has to fit

one partition in a single machine. If we have a considerably large number of messages,

it might be impracticable or costly to fit them in one machine, and the broker might

struggle to deal with it properly.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

270

In our example, we used the product id as a routing key; it is natural that some

products are more sought-after than others and thus have more orders. Having more

orders also means more events with the same key. However, with a large number of

products, the number of messages in the partitions will eventually even out; products

with less orders will compensate for the ones that have more.

Two important considerations when choosing a partition key are the key’s

granularity and diversity. The partition key needs to be granular enough to

accommodate for an even distribution across partitions. It also needs to have enough

diversity (several times greater than the number of partitions) and sufficient different

values to enable adequate routing options.

There might be use cases where an adequate routing key is not available (as we

discussed with the category’s example), but this is often the exception. Event-driven

systems often imply a large scale, which, despite all its challenges, provides adequate

data diversity to enable suitable routing keys. However, be mindful when choosing a

routing key.

Momentary Hotspots

We often think of solutions in their clean and platonic state. If we receive three events

and have three partitions, the broker will route one event to each partition. Balanced,

as all things should be. However, in the real world, things are messy, unpredictable, and

often chaotic. Solutions might not behave as we expect they would all of the time.

Although most of the time predictable, traffic can be erratic and unpredictable

patterns might occur from time to time. For example, in the example we discussed in

this section, we published order events and used the product id as the partition key.

Most of the time, traffic might be somewhat stable. However, imagine we drop a highly

sought-after product in our platform, which users order intensively. This will temporarily

generate a large amount of events with the same routing key, creating a momentary

hotspot.

The performance of the system might drop while this is occurring if the load is

sufficiently disparate. This is often a rare event and one that the system might afford.

However, we should understand its implications and understand if there are relevant

consequences for the business. We should also design our systems not to produce

momentary hotspots often. For example, we should avoid recovery processes that

unload an impactful number of events with the same key.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

271

The Mix of Event-Driven and Synchronous APIs

An apparent limitation of the end-to-end partitioning approach is when the service

needs to handle events and process synchronous requests through an API. Although

this kind of services might be the exception in an event-driven architecture, they are

relatively common and might make the end-to-end partitioning approach inviable.

This use case is illustrated in Figure 6-12. We should avoid these kinds of configurations

and preferentially use a fully event-driven approach or a synchronous API; having both

can be particularly challenging, especially when we need to prevent concurrency and

ordering issues. Having said that, in the real world, we might find this kind of approach.

In this topology, we can’t directly apply end-to-end partitioning since routing and

mixing synchronous requests with events might be unsuitable.

Figure 6-12.  Service handling events and processing synchronous requests

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

272

One possible approach is to convert the synchronous request into a command

and publish it to the queue. For example, the inventory service would receive a POST

request to change stock, but instead of synchronously satisfying the request, it would

send a command to the command queue. This way, we would have only one entry point,

and it would be possible to route the commands accordingly. However, this approach

might not be viable if the API needs to respond synchronously. If this is the case, we can

still apply a pessimistic or optimistic concurrency prevention strategy to manage both

scenarios.

6.7  Summary
•	 Handling concurrency in a single application has different

implications than handling it in a distributed architecture. The

traditional strategies to prevent concurrency are often unsuitable for

distributed event-driven services.

•	 We can solve concurrency by implementation or by design.

Implementation strategies often involve either optimistic or

pessimistic approaches. The end-to-end partitioning pattern can be

an effective way to handle concurrency by design in event-driven

systems.

•	 Optimistic concurrency prevention strategies shine in environments

with low chances of concurrency. They don’t involve locking and

often require retrying the process when concurrency is detected.

•	 Pessimistic concurrency prevention strategies are suited to

environments with high chances of concurrency; they lock a

given resource and block access. They often rely on an external

dependency to manage the synchronization.

•	 We can achieve pessimistic concurrency with distributed locks by

resorting to an external tool like Consul or ZooKeeper. Instead, we

can also use some database technologies or use transactions.

•	 Out-of-order events can be troublesome and jeopardize the

consistency of the system. We can use event versioning to tackle

ordering issues.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

273

•	 End-to-end partition is a way to solve both concurrency and ordering

issues by architecture design. In event-driven architectures, it’s

arguably our go-to solution to solve these issues. It can be a clean,

performant strategy to handle ordering and concurrency.

•	 Hotspotting can be an impactful consequence of routing events. We

should be mindful of this issue when defining the partition key and

design the routing strategy accordingly.

Chapter 6 Dealing with Concurrency and Out-of-Order Messages

275
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_7

CHAPTER 7

Achieving Resilience
and Event Processing
Reliability in Event-Driven
Microservices
This chapter covers:

•	 Understanding common failures in distributed microservice

architectures

•	 How event-driven architectures can provide more reliable processes

•	 Understanding the impacts of the several message delivery semantics

and how to apply each of them to event-driven services

•	 Maintaining correctness when saving state and publishing events

•	 What we can use from ACID 2.0 and apply to event processing

•	 How to avoid message leak

•	 Applying common resilience patterns in event-driven services

•	 How to repair state in event-driven services

•	 Using the bulkhead pattern to contain failures

https://doi.org/10.1007/978-1-4842-7468-2_7#DOI

276

The Banqiao Dam is a major dam in China. After its construction, it suffered from

some construction and engineering errors, which were repaired and made the dam

undergo a significant redesign. After the new design, it was dubbed the “iron dam”

and considered unbreakable. In 1975, typhoon Nina affected the nearby location, and

although the hurricane-force winds are arguably the most infamous characteristic of

typhoons, another unsung consequence of tropical cyclones is torrential rains. Typhoon

Nina stopped moving due to a cold front, which made it pour down torrential rain on

the same location for three days. That location was the region of the Banqiao Dam. The

immense quantity of water eventually compromised the dam’s integrity and led to a

catastrophic failure. Seven hundred million cubic meters of water flowed through the

surrounding areas. The destruction of the dam triggered a domino effect which provoked

the collapse of other 61 dams throughout the region. The dam failure triggered a chain

reaction that caused the third deadliest flood in world history.

An unavoidable challenge of typical microservice architectures is dealing with

cascading failures, which resembles this particular episode of the Banqiao Dam.

Sometimes one nonessential and somewhat isolated service can bring the whole

architecture down due to the chain of synchronous requests between components.

The failure of that inconspicuous service is propagated across the complex network of

synchronous calls, eventually spreading the failure to critical components that stop vital

business processes.

Event-driven architectures are naturally resilient to these issues due to their

asynchronous nature. The event queues between the services are a natural barrier

to load peaks and limit direct dependencies between services. One failure in a single

service isn’t propagated across the architecture; instead, it often affects only that service,

endowing the architecture with higher resilience.

However, as with most things in software engineering, it’s about tradeoffs and

deciding what’s best on a given use case. As we discussed in Chapter 1, event-driven

architectures have their own set of limitations and challenges. One of them is to perceive

events as the source of truth. Events aren’t simple signals anymore; they carry meaning

and are as paramount to the system as databases in traditional applications. Consistency

in an event stream is pivotal and as necessary as consistency in a database. Failing a

database write in a monolithic application when a customer saves information is as

critical as not publishing an event in an event-driven architecture.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

277

Guaranteeing a coherent approach is pivotal to achieve consistency across the

architecture. As discussed in Chapter 5, microservice architectures’ distributed nature

forces us to look at consistency differently. This different view on consistency often

translates into relying on a different set of properties we can apply to event-driven

architectures. The state can become invalid due to issues with new releases. In these

situations, event-driven services provide a unique and powerful way to recover data

by rewinding the event stream to repair state. Resilience also relates to the system’s

availability and how it deals with its dependencies; patterns like the bulkhead pattern

can help provide stability when dependencies fail, which we will discuss in this chapter.

7.1  Common Failures in Microservice Architectures
and How They Relate to Event-Driven Architectures
While we are building functionality, we often focus on the solution’s design, its

reusability, and cleanness. Thinking about how it can go wrong, it’s often unnatural, like

throwing mud into a pristine masterpiece. We are often inclined to assume things for

granted, the database, the event broker, the network, etc. Things are bound to go wrong;

in production, nothing is taken for granted. Our applications’ success is directly related

to its ability to mitigate the impact of the failure. This section will discuss common

failures in distributed microservice architectures and how relevant they are in an event-

driven architecture.

Let’s analyze a typical topology of the services we discussed until now. A regular

service has its own physical resources, might have a database, and communicates with

an event broker. It communicates to several types of external dependencies through

different protocols. Figure 7-1 illustrates this topology.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

278

Event-driven services typically interact with the message broker, either by reading or

writing events or both (A). They might need to store some data by writing and reading

data from a database (B). Although more sparingly, services might synchronously

request data from other services through, for example, an HTTP request (C). They also

might change data on other services through synchronous requests (D). Besides other

services, they might have different dependencies, for example, a distributed cache like

Redis (E).

Each of these interactions can fail due to several reasons. The broker might face

a catastrophic failure and be unreachable. The same can happen to each of the other

services or the database. The service itself can suffer a catastrophic failure due to

issues in the underlying hardware. Even if both the service and its dependencies are

healthy, the communication between them can fail. We typically write software with

unmentioned assumptions like our trust in the network’s reliability (illustrated in the

Figure 7-1.  Typical service topology and common dependencies

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

279

fallacies of distributed computing).1 The network can fail, and it will fail eventually like

every other dependency we mention in Figure 7-1. As we said in Chapter 6, with enough

scale and time, unlikely and far-fetched problems become certain.

Infrastructure components and hardware can fail due to their physical components,

although they only affect the applications on rare and isolated occasions. However,

network issues like virtual hosts’ failure or connectivity issues, like network partitions

and similar, are more frequent. Besides physical components failing, maintenance

operations can introduce instability; I’m sure we all relate to some kind of patch or

upgrade gone wrong. Sparingly the very update of the operating system running the

services and upgrading versions can introduce issues, and, of course, human errors

while operating these infrastructure components. Other teams operate other services in

the architecture; new releases can introduce bugs or make the service unavailable.

Direct dependencies, like synchronous requests, overall increase the likelihood of

the system’s instability. In the use case of Figure 7-1, we depict an inventory service;

other services might request data from it, like the order service to fetch the current

product’s stock. The inventory service might depend on other services, for example, a

location service to fetch the warehouses’ addresses. The location service itself might

depend on other services. Each of those services has its own dependencies, which can

all fail and will fail eventually. The overall system’s availability is often translated into the

combined availability of all services, which is lower and harder to manage. This kind of

cascading failure, which we will detail next, is a common failure mode in microservice

architectures that event-driven services can mitigate.

7.1.1  Cascading Failures and Event-Driven Services
The services and their dependencies can fail due to many reasons. This failure can make

the service unavailable and fail requests. A local failure has limited impact, depending

on the service’s business function. However, as we discussed with the Banqiao Dam,

when that failure triggers a cascading failure to other services in the architecture, the

impact grows exponentially and can bring the whole system to a halt. This subsection

will work through a practical example of typical microservice architecture and how it

would play out in an event-driven architecture.

1 �Further details in “Fallacies of distributed computing,” https://en.wikipedia.org/wiki/
Fallacies_of_distributed_computing

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

280

In typical microservice architectures, communication between services is

synchronous, through, for example, HTTP requests. This kind of architecture is prone

to develop a complex network of synchronous requests. You might recall the example

we mentioned when detailing distributed tracing in Chapter 4, how Uber traces 1000

microservices2 and its complex network. In the network, there are large nodes that

several services depend upon; if one of these becomes unavailable, it will likely affect

the whole architecture. But it can also be the other way around; less critical and more

isolated services might cascade issues to other more essential services and aggravate

the problem. Let’s detail how a cascading failure could affect an eCommerce workflow

similar to the ones we discussed until now in a microservice architecture.

2 �Full presentation by Yuri Shkuro, September 9, 2019, “Conquering Microservices Complexity
@Uber with Distributed Tracing,” www.infoq.com/presentations/uber-microservices-
distributed-tracing/

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

http://www.infoq.com/presentations/uber-microservices-distributed-tracing/
http://www.infoq.com/presentations/uber-microservices-distributed-tracing/

281

The order fulfillment flow requests the pricing service to calculate the fees for

each order it receives. The pricing service depends on the shipping service to process

the shipping and address information, which depends on the location service, which

manages more generic information about geographic and country locations. The

location service also depends on an external provider to fetch the country’s information.

In the example, the location service fails to fetch data from the external provider. By

failing to fetch the information, it will also fail to respond successfully to the shipping

service. The failure is cascaded to the other upstream services, eventually failing the

order fulfillment process. In this case, a relatively isolated issue, and not very relevant

business-wise, ends up affecting the main order fulfillment flow.

Figure 7-2.  A failure in an external provider cascade to the other upstream
services

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

282

In this case, it was an external provider that failed. But it could happen to any of

the other service’s dependencies we discussed earlier. For example, the database could

also fail, and although the database becoming unavailable is relatively uncommon, a

load peak can make the database struggle due to limited physical resources. In these

cases, a peculiar phenomenon often occurs. A common approach to deal with failing

requests is to retry the request. As the service struggling with the excessive load starts

to fail some requests, the requesting services also increase their throughput due to the

retry strategy. A particular situation where I’ve experienced this was when a service

became unavailable due to connectivity issues. Once the team solved those issues and

the service started to recover, the additional retry throughput of every dependency fully

occupied the service’s resources and crashed the service again due to an overwhelming

load. This issue highlighted the need for appropriate coping strategies like backoff retries

and circuit breakers (further discussed in the next sections).

Unexpected load affecting services with modest resources is also a common reason

for cascading failures. Imagine if, with the same example of Figure 7-2, the platform had

a higher usage due to a sales season. The order service would likely have a peak in usage,

which often translates into higher numbers of requests to the downstream services. If

the order service received a peak in orders, it would likely request more information

from the pricing service to fulfill those orders. The pricing service would likely translate

that load peak to the shipping service and the shipping service to the location service.

The order, pricing, and shipping service would likely have ample resources due to their

criticality. Their importance is also obvious in the order fulfillment flow. However, if the

location service is outside of the critical radar and has a modest impact, it will likely have

modest resources to be cost-effective. This way, the excess of requests can impact the

service, deteriorating its response time or even making it unavailable, which would likely

cascade to the upstream services.

The load peak can even occur due to other operations happening in the architecture.

For example, imagine the taxes service needed to update all the system’s taxes and

temporarily request information from the location service. The bulk operation and the

added load might impact the location service in the same way, cascading the failure to

the critical order fulfillment flow. A complex network of synchronous requests is often

very susceptible to these kinds of issues. When an apparently innocuous operation in

one end of the system ends up impacting the other end, or the whole system, it might

make us wonder if a distributed microservice architecture is any better than a monolithic

application. In fact, when we suffer from these kinds of challenges, we are closer to a

distributed monolith than a real decoupled and horizontally scalable architecture.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

283

Event-driven architectures are still susceptible to these kinds of issues; synchronous

requests are often a reality in most architectures. However, an event-driven approach offers

a way to mitigate the impact of cascading failures naturally. How would the previous failure

affect an event-driven architecture? Figure 7-3 illustrates the same use case.

Figure 7-3.  The same failure in the external provider remains isolated in the
location service due to the decoupling provided by the event queues

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

284

The failure in the external provider and the requests by the location service remain

isolated in that service. The decoupling provided by the event queue mitigates the

cascading effect of the failure. Let’s say the shipping service used the location service to

retrieve additional information about the geographical details of each country. Using the

event queue and building an internal state with that information (in a similar way that

we discussed in Section 4.6 about building multiple read models), the service becomes

autonomous and avoids the direct dependency. There is still an impact; new changes

to those geographical locations aren’t updated while the location service is unavailable

since no new events reach the shipping service. However, the impact is significantly

smaller than stopping the whole order fulfillment flow.

7.1.2  Load Balancing and Rate Limiters in Event-Driven
Services
The previous subsection mentioned how additional load to synchronous microservices

could trigger cascading failures. A strategy to typically manage additional load and

load peaks is the use of load balancers. Rate limiters can also be a valuable strategy to

guarantee the service keeps responding to some requests while denying others. This

subsection will detail this concept in a typical microservice architecture and how it

relates to event-driven architectures.

As we discussed, a service can fail due to a myriad of reasons. In production, we

should always have more than one instance per service to guarantee high availability.

If one instance fails, becomes unresponsive, or has connectivity issues, the remaining

ones can satisfy requests while the struggling instance is recovering. Microservice

architectures typically accomplish this with load balancers. Load balancers keep track of

the responsiveness of the service and route traffic accordingly. If one instance has issues,

the load balancer routes the unavailable instance’s traffic to the other healthy instances.

Figure 7-4 illustrates the order service requesting information from the inventory service

through a load balancer.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

285

When the inventory service instance 3 becomes unavailable, the load balancer

routes the instance’s traffic to the other healthy instances. Having three instances of

the service provides higher availability. For the inventory service to be completely

unavailable, all three instances would have to fail simultaneously, which is much more

unlikely than one instance failing. Load balancers can also understand if the service

response time is degrading instead of only reacting if the instance is unavailable.

Load balancers are usually relevant to instances that use synchronous requests. In

event-driven services, the load balancing is generally managed by the event broker. The

broker knows each instance’s state and distributes messages to each one, as illustrated in

Figure 7-5.

Figure 7-4.  The order service requests stock information through a load
balancer

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

286

You might recall when we detailed the anatomy of a Kafka topic in Chapter 6, a

topic in the message broker can be divided into several partitions, and each partition

is assigned to one consumer. In this case, instance 3 becomes unavailable; the broker

can detect that the instance is down and reassigns the partition to another instance.

The event broker can act as a load balancer without an external tool to manage it; the

event consumption enables the balancing to occur more naturally. If it was a temporary

failure, for example, the service loses connection to the broker temporarily, the broker

will reassign a partition to the recovered instance when the service becomes available

again.

A common reason for service failures is unexpected load peaks or large amounts

of requests. DDoS (distributed denial of service attack) is often accounted for by the

exterior architecture’s security layers against external attacks. However, a similar

common issue is excessive requests by internal services, a sort of internal DDoS attack

but unintentional. Typical microservices often establish and enforce rate limits to

guarantee the reliability of the service.

Figure 7-5.  Load balancing through a message broker

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

287

However, rate limiters typically imply rejecting some requests; when they surpass

a specified threshold, the service denies a part of the requests. There are different

strategies the service can apply besides blindly refusing a portion of the requests. It can

prioritize critical business traffic or prioritize pivotal clients. However, it implies failing

a segment of the requests and informing clients the request was refused (through an

HTTP status code 429 – too many requests, for example). Upon receiving this response,

the clients should adapt and moderate the number of requests. This strategy is known as

backpressure and is applicable depending on the use case; rejecting requests is often (or

always) not ideal. Applying backpressure also pushes the complexity to the clients; they

need the rejected requests, so it often forces clients to use ad hoc retry-later strategies.

These kinds of approaches often seem like a workaround; we have a synchronous

process that can’t handle the required throughput, so we refuse requests, which forces

the clients to apply a semi-synchronous approach by retrying the request later. Fully

embracing an asynchronous approach is often more resilient and transparent. Rate

limiters are arguably irrelevant in event-driven systems. If the service is receiving a

higher throughput than it can handle, the impact is to build up lag (an increase in the

number of messages to process) rather than failing. The broker naturally queues higher

throughput than the service can handle. The queue piles up events to be processed later

rather than pushing that responsibility to the clients. This strategy is far more resilient

and avoids rejecting or failing requests. The services’ horizontal scalability also provides

the opportunity to increase or decrease the number of instances (even automatically)

to guarantee that the lag doesn’t grow to troublesome values since it can impact the

eventual consistency, as discussed in Chapter 5.

The services that expose synhronous requests benefit from having a deliberate load

balancing and rate limit strategy in place. However, for fully event-driven services, load

balancing and rate limits are naturally imbued in how event streams work and don’t

need an ad hoc or external dependency to manage it, unlike typical microservices. This

characteristic enables the system to be more resilient and adapt to varying throughput

needs or unexpected unavailability situations.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

288

7.2  Understanding Message Delivery Semantics
Until now, we described the interactions with the event broker as atomic and one-time

operations. However, as you might imagine, it’s not that simple. As we discussed in the

previous section, services and other components can fail, and it can impact the overall

system’s availability and the reliability of the message communication. Services, and

the broker itself, can fail and become unavailable while publishing and consuming

messages. This section will detail how these failures can affect message consumption

and production.

Let’s work through a simple publish/subscribe example. Figure 7-6 illustrates a

common use case of the examples we discussed in the previous chapters; the order

service publishes an event to the message broker and the inventory service consumes it.

Figure 7-6.  Detail of the interactions with the message broker

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

289

As depicted in the example, when the order service publishes an event, there are

usually two steps associated with it: the transmission of the message from the order

service to the broker and the broker’s acknowledgment of the message reception. On the

consumer side, it works similarly; the inventory service receives the message from the

message broker and acknowledges it.

Each of these steps can fail and can originate different consistency issues:

	 1.	 The broker, or the connection between the order service and the

broker, can be unavailable. The order service will fail to publish

the message to the broker.

	 2.	 After receiving the message, the broker can lose the connection

with the order service, or the service can crash, failing to

acknowledge the message’s reception.

	 3.	 The inventory service, or the connection between the inventory

service and the broker, can be unavailable. The broker will fail to

deliver the message to the consumer.

	 4.	 The consumer, in this case the inventory service, can fail to

acknowledge the reception and processing of the message to the

broker.

If the order service failed to deliver the message to the broker, it would likely retry

the message since each of these failures can be, and often are, transient. Even on a

prolonged outage, arriving requests would need to be retried sooner or later. Retrying

step 1 wouldn’t likely impact the stream consistency since no message arrived at the

broker yet.

However, what if step 2 failed? The message arrived at the broker, the broker

persisted it internally, but when it acknowledged the message, the order service crashed,

or the network became temporarily unavailable. When the service recovered, it wouldn’t

have a way to know if the message publication failed or the acknowledgment failed. It

would likely retry the message publication, but in this case, the message had already

arrived at the broker; the order service just didn’t know it had. The publication retry

would generate a duplicate message on the broker.

A similar situation can happen on the consumer side. After receiving the message,

the inventory service can crash or lose connection to the broker. If so, it has no way

to confirm the message reception. In case of a crash, it would likely reprocess the last

messages it was processing, leading to duplicate message consumption.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

290

Depending on the behavior of the producer and the consumer, we can have different

message delivery semantics:

•	 At-most-once delivery: Messages might fail to be delivered but won’t

be delivered more than once. For example, in Figure 7-6, if the order

service publishes a message but the message broker has an internal

error persisting the message and returns an error, the message might

not have been processed by the broker. With at-most-once semantics,

the order service when faced with this error won’t retry the operation.

Meaning messages will never be duplicated, but not all messages

will reach the consumers. We avoid duplicate messages, but we also

accept that we can lose messages.

•	 At-least-once delivery: Messages will always be delivered but might

be delivered more than once. In the same use case we discussed

before, if the order service didn’t receive an acknowledgment from

the broker, it could retry the operation. The broker already received

the message and only failed to acknowledge it. By retrying, we

would end up publishing a duplicate message. Thus, we guarantee

messages are always delivered but might be more than once.

•	 Exactly-once delivery: Messages will always be delivered to the

consumers without duplicates. In this case, the order service might

receive an error, and even by retrying the operation, the message

would arrive only once to the inventory service. Exactly-once is the

most desirable delivery semantic but is also exceptionally hard to

guarantee in a distributed system.

Table 7-1 resumes the impacts of each delivery semantic.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

291

These kinds of problems are related to the two generals’ problem.3 The challenges

of coordinating several distributed components through an unreliable network make

it exceptionally hard to achieve a strategy with strong consistency, like implementing

exactly-once delivery semantics.

At-most-once delivery is often associated with higher performance due to the lack

of verifications (waiting for timeouts, for example) or retries. However, it also means we

might lose messages from time to time. For example, when deploying a new version of

a service or application, the service might be processing messages; with this approach,

you might lose some messages because of the processing interruption when the service

or application stops for the deploy. Losing messages, more often than not, is not

acceptable, especially in streams with business-critical data where history is important.

However, it might be valuable to less critical and high-load use cases. For example, like

telemetry data, if new recent data is published frequently and there is no value in the

history, some use cases might afford losing messages in failure scenarios.

At-least-once delivery often has a performance hit, but it usually isn’t very

significant; after all, failures happen but don’t happen that often. It states that messages

will always be delivered but might have duplicates. Duplicate messages, depending on

the implementation, can generate erroneous results or duplicate work.

Exactly-once delivery is exceptionally hard to guarantee in a distributed system.

Even if we only focus on the interaction between the producer and the message broker,

in order to guarantee exactly-once delivery, we likely need the coordination between our

services and the message broker. Not all message brokers expose this functionality; some

3 Check “Two Generals’ Problem,” https://en.wikipedia.org/wiki/Two_Generals%27_Problem

Table 7-1.  Recap of the characteristics of the different delivery semantics

Delivery Semantic Pros Cons

At-most-once No message duplication

High performance

Practical to implement

Might lose messages in failure scenarios

At-least-once Guaranteed delivery

Practical to implement

Might have message duplication in failure scenarios

Performance hit

Exactly-once No message duplication

Guaranteed delivery

Exceptionally hard to guarantee and implement

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

https://en.wikipedia.org/wiki/Two_Generals%27_Problem

292

do, as we will discuss next with Kafka. Typically, end-to-end exactly-once semantics is

only possible when all components in the flow participate in the coordination. Even with

brokers that enable it, they usually do so in the message production and consumption. In

use cases where consumers depend on external dependencies to process the event (like

a database or an external service), it is extraordinarily hard to extend these guarantees

to those dependencies. Exactly-once delivery provides the ideal guarantees but is often

impractical.

Where does that leave us then? Two out of the three delivery semantics might leave

us with incorrect or missing data, and the last one is exceptionally hard to achieve. It

really depends on the use case, and we can’t give you a one-fits-all rule, but here are

some arguably practical pointers to help you decide. Exactly-once is excellent if the

message broker supports it, doesn’t have a considerable performance hit associated with

it, and we don’t need an overly complex solution to support it. At-most-once is suitable

for use cases where you can afford to lose messages (data that is refreshed often, for

example, the telemetry data we discussed). However, losing data is a terrifying thought

and not viable in many scenarios.

If we rely on exactly-once semantics, we might implement event consumption with

stronger assumptions that we likely need and make the system less flexible. For example,

it might be harder to recover from a wrong state introduced by a bug (i.e., retries and

event replays might become impracticable). At-least-once is arguably the most flexible

and standard solution. Achieving at-least-once delivery can be straightforward, and by

designing the event consumption to be idempotent (more on this in Section 7.4), we can

avoid incorrect states if duplicates are found. We might have duplicate work, but it likely

won’t be significant if we process a handful of messages twice in a range of thousands or

millions of events. Designing for idempotency makes the overall system more resilient

and flexible (rewinding the event stream can be a valid approach, for example).

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

293

7.2.1  Exactly-Once Delivery Semantics in Kafka
Kafka introduced exactly-once semantics in the 0.11 release. It achieves exactly-once

by implementing message idempotency with a sequence number similar to TCP and

combining transactions across different topics. The throughput performance hit is arguably

low, only 3% comparing with at-least-once and 20% comparing with at-most-once.4

For systems that explicitly need exactly-once is a good alternative with arguably

low impact. Implementing exactly once with Kafka is mostly configuration and

straightforward.5 It has the caveat we discussed before when the consumption has the

dependency of an external system; we need additional coordination to effectively achieve

exactly-once semantics,6 which can be troublesome or impossible in some use cases.

However, as we discussed, we might benefit from designing for at-least-once and

following ACID 2.0 (more on this in Section 7.4) to guarantee reliability and resilience.

We imbue the message processing with additional flexibility, and we aren’t tied down to

more strict message processing guarantees.

7.3  Avoiding Inconsistencies When Saving
State and Publishing Events in Event-Driven
Microservices
Event-driven services usually react to events and apply their own domain logic,

usually generating a different state in the domain’s entities. They often need to save

state and publish an event reflecting that change. We discussed the importance of the

event stream’s consistency and how we use it as a medium to share state across the

organization. When we save state and publish an event, we are doing two different

operations where any can fail. If one fails, we end up with an event stream that doesn’t

reflect the service’s internal state. This section will discuss approaches to avoid this

inconsistency, work through a use case, and discuss the possible solutions.

4 �Full details in this article by Neha Narkhede, June 30, 2017, “Exactly-Once Semantics Are Possible:
Here’s How Kafka Does It,” www.confluent.io/blog/exactly-once-semantics-are-possible-
heres-how-apache-kafka-does-it/

5 �Full walkthrough in “How to maintain message ordering and no message duplication,”
https://kafka-tutorials.confluent.io/message-ordering/kafka.html

6 Full documentation in https://kafka.apache.org/documentation/#semantics

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

http://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
http://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://kafka-tutorials.confluent.io/message-ordering/kafka.html
https://kafka.apache.org/documentation/#semantics

294

Most stateful services handle requests made to them by saving some sort of state. For

example, Figure 7-7 illustrates the order service handling order submission requests.

The service saves the order information in the database and then publishes an

event informing the ecosystem that an order was created. The challenge of having

two steps in the order fulfillment process (saving state and publishing an event) is

guaranteeing the atomicity of both operations. If the service faced an issue saving the

information in the database, it would fail the request but wouldn’t compromise the

coherency between the database and the event stream. The failure is troublesome

and needs to be addressed but wouldn’t generate inconsistent states. However, if the

service saved the new order but failed to publish an event, the event stream would

diverge from the database. The stream would no longer represent the actual state of

the orders and would be inconsistent.

Figure 7-7.  The order service handles order requests by saving state and
publishing an event

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

295

This situation poses an additional complexity to the system’s recovery. The service’s

connectivity to the message broker would need to be addressed, but that alone wouldn’t

be enough to return the system to a valid state. While the event broker, or the service’s

connection, was unavailable, the service already saved the order information to the

database, but the service didn’t publish the related events. Failing the request might not

be admissible since the changes were already persisted. The event stream is the source

of data for every other service depending on the order information. If the event stream is

inconsistent, we propagate the issue to the whole ecosystem.

This issue is especially relevant for a choreography pattern we discussed in Chapter 4.

Suppose the order fulfillment process depends on a series of choreographed steps. In that

case, one service failing to inform it has finished processing the order, and without other

mechanisms in place, it might stall the following operations.

7.3.1  Event Stream As the Only Source of Truth
As we discussed, event-driven also relates to the change of mindset in having a database

as the source of truth and changing it to an event stream. In light of that, we could use

the event stream as the primary source of information as opposed to the database.

What does that mean to the example we discussed? We could publish the event and

then update the current state by reacting to the same event. Figure 7-8 illustrates this

situation.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

296

The order information is only saved by reacting to the order created event. This

way, we guarantee the event stream is the source of truth; the current state is derived

from the same stream. If the update to the database fails, we shouldn’t acknowledge the

processing of the event. Successful processing requires handling the event and updating

the state (we will detail how to accomplish this in Section 7.5).

This use case is very similar to the event sourcing and CQRS pattern we discussed in

Chapter 4. The event queue effectively acts as an event sourcing store if the events are

durably retained indefinitely. The event stream is also the system’s write model, while

the database is the read model. We could further segregate the responsibilities if we fully

apply the CQRS pattern and detach writes and reads into separate services. Figure 7-9

illustrates this segregation.

Figure 7-8.  By saving state only when reacting to events, we turn the event stream
into the source of truth

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

297

The order service receives orders and publishes events, while the order read model

reacts to those events and updates each order’s current state. The order service has

the responsibility to publish events and the order read model to update the state in the

database. This way, we can handle each failure separately and in a resilient way.

Although this solution aligns closely with the event-driven mindset, it has some

associated caveats. This approach is a good solution as long as the service involved is a

stateless stream processor, that is, it doesn't rely on a local state to apply its domain logic.

If it does, it will depend on an eventual consistent store, and we risk performing domain

validations against stale data. For example, in Figure 7-7, if the order service received a

change to an order and needed to fetch the current order, there could be events in the

queue that weren’t yet applied against the read model.

Figure 7-9.  The same example but with fully segregated writes and reads

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

298

Event sourcing typically loads all events from an aggregate (in this case, the order)

and applies them sequentially, generating the latest state. However, most message

brokers don’t have this type of querying functionality. Unless we use the database as a

queue, although not unheard of,7 other technologies are arguably more suited to do so.

It often comes down to reading the whole queue and filtering the correct entity (or order

id) with durable message brokers. Although this is possible, it is highly impractical and

resource-consuming for large quantities of events. It’s often discussed whether Kafka, for

example, can be used as an event sourcing store. There is an interesting article8 on how

to achieve this with Kafka Streams and state stores; with it, we can avoid the challenge of

consuming the whole topic.9 However, we might also run into the eventual consistency

issue we mentioned. The services should apply domain logic and validations against

the source of truth; if we can’t retrieve the current entity’s event stream, it can be

troublesome to guarantee the correctness of the domain logic.

7.3.2  Outbox Pattern in Event-Driven Microservices
The outbox pattern is a standard solution when it’s necessary to fetch state, apply

domain logic, update the state first, and then publish an event. It typically involves two

sets of updates, one for the entity’s data and another for an outbox event table. The

operation’s atomicity is usually guaranteed with a transaction wrapping both operations,

although we will also explore an alternative for non-transactional databases.

In the example we discussed involving the order service, let’s say we save the order

information in an order table. To apply this pattern, we would also create an outbox table

that saves the events to be published. When receiving an order submission, the order

service would insert the new order into the order table and the event into the outbox

table. Figure 7-10 illustrates the two order service tables.

  7 �Detailed example in this article by Microsoft, 2012, “Exploring CQRS and Event Sourcing,”
http://download.microsoft.com/download/e/a/8/ea8c6e1f-01d8-43ba-992b-
35cfcaa4fae3/cqrs_journey_guide.pdf

  8 �Full article by Adam Warski, March 13, 2018, “Event Sourcing Using Apache Kafka,”
www.confluent.io/blog/event-sourcing-using-apache-kafka/

9 �Further details on why Kafka isn’t suitable for event sourcing in this article by Jesper
Hammarbäck, August 18, 2020, “Apache Kafka Is Not for Event Sourcing,” https://dzone.com/
articles/apache-kafka-is-not-for-event-sourcing

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

http://download.microsoft.com/download/e/a/8/ea8c6e1f-01d8-43ba-992b-35cfcaa4fae3/cqrs_journey_guide.pdf
http://download.microsoft.com/download/e/a/8/ea8c6e1f-01d8-43ba-992b-35cfcaa4fae3/cqrs_journey_guide.pdf
http://www.confluent.io/blog/event-sourcing-using-apache-kafka/
http://www.confluent.io/blog/event-sourcing-using-apache-kafka/
https://dzone.com/articles/apache-kafka-is-not-for-event-sourcing
https://dzone.com/articles/apache-kafka-is-not-for-event-sourcing

299

When receiving an order submission request, the order service saves the order

information in the order table and the event in the outbox table. Since both operations

occur in the same database, we can use a transaction to make them atomic; they either

fail or succeed together. An asynchronous process inside the order service can fetch

events from the outbox table and publish them to the message broker. If the service saves

the information in the database and fails to publish the event, it will still be saved in the

outbox table. When the connection recovers, the process can fetch and publish events

that failed. Once the events are published, the service can delete them from the table.

If the service crashed, there might be events in the outbox table that weren’t

published because the service might stop between saving the information in the

database and publishing the events. When starting, the service can fetch the events and

publish them to the broker. To fetch the outbox table’s events, we can implement an

Figure 7-10.  The outbox pattern uses an outbox table to make the operation
atomic

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

300

ad hoc process that polls the table. An arguably better solution is to do so only when a

failure occurs, and the service starts. During regular operation, the service can save and

publish directly without waiting for the polling process; this avoids delaying the process

by the poll interval.

Instead of implementing an ad hoc polling process, we can use CDC (change data

capture), as we discussed in Chapter 2. For example, Kafka supports this out of the box if

we use a connector with debezium.10 It can detect changes in the database and publish

the messages to Kafka directly.

This pattern guarantees the reliability of the process by relying on the ACID

properties of transactional databases. However, what if we use a database that doesn’t

support transactions across different tables? A possible solution is to guarantee the

database writes are idempotent (applying the operation several times always produces

the same result; we will detail this in Section 7.4) and not acknowledge the successful

processing of the message until both writes succeed.

Let’s say when saving the information in the order table, the operation is an upsert;

that is, saving two times the same order produces the same result and doesn’t fail due

to a duplicate key error, for example. If the service saved the order information and

then was unable to write to the outbox table (e.g., the service crashed), there would be

an inconsistency; the service changed state but didn’t publish an event reflecting that

change. However, the service didn’t acknowledge the command creating the order

either. When the service recovered, it would process the same command again and write

to both tables. Since the first operation is idempotent, it wouldn’t effectively change

anything, and the remaining operations would resume and publish the missing event.

We will further detail these strategies in Sections 7.4 and 7.5.

7.3.3  Transactions and Compensating Actions to Avoid
Inconsistencies in Event-Driven Microservices
The first option that likely comes to mind to solve this kind of consistency issue is to

use transactions. If we are using a database that supports them, one possible solution

to avoid this problem is to wrap the whole operation in a transaction. The service

would open a transaction, write to the database (the save state step we discussed in

10 �Further details on how to implement in this article by Rod Shokrian, October 1, 2019, “Event-
Driven Architecture and the Outbox Pattern,” https://medium.com/engineering-varo/
event-driven-architecture-and-the-outbox-pattern-569e6fba7216

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

https://medium.com/engineering-varo/event-driven-architecture-and-the-outbox-pattern-569e6fba7216
https://medium.com/engineering-varo/event-driven-architecture-and-the-outbox-pattern-569e6fba7216

301

the beginning of the section), publish the event, and commit the transaction. If the

publishing fails, so will the transaction. However, we can’t forget the database and the

event stream are two separate components. An important detail is that we can publish

the event, and then the transaction can fail to commit. The connection to the database

can fail transiently or be unavailable after publishing. In that situation, we would have

inconsistency, but the other way around, the event stream could have changes that were

persisted by the service.

When the event publishing fails, instead of using transactions, we could undo the

changes that were persisted in the database. We could have a series of compensating

actions that reverted what was done before the event publishing. Compensating

actions are also applicable to databases that don’t support transactions. However, they

suffer from a similar limitation; if the compensating actions fail, we end up with an

inconsistent state.

Although still having a chance to fail, transactional and compensating actions

significantly reduce the likelihood of leaving an inconsistent state. Saving state without

publishing an event and vice versa only happens if the connectivity to both the database

and the message broker fails at the same time. In Chapter 6, we discussed how unlikely

events are almost inevitable with enough scale. If that scenario can happen, then it will

certainly happen eventually.

However, we should also have a pragmatic view of problems and solutions. If

the chance of an issue occurring is remote enough, it might not be worth the effort

of a flawless solution; we might be able to live with some issues if their impact isn’t

relevant enough. This kind of reasoning sends a chill upon my spine, and if you

dealt with production systems for long enough, it probably sends a chill upon your

spine too. I wouldn’t advise following this line of reasoning as a standard, obviously,

but we also need to be pragmatic and choose the right tradeoffs. Transactions and

compensating actions might be a viable solution in that scope; they are often familiar

and straightforward to implement when a more sustainable approach is impractical.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

302

7.4  Applying ACID 2.0 As a Resilience Strategy in
Event-Driven Microservices
Failure in distributed systems is given for granted as a variable we must incorporate and

account for in our solutions. Typical resilience strategies incorporate retrying strategies

in some way. Retrying techniques are also applicable in event-driven services; when

processing a message if a service’s dependency or the service itself fails, a common

resilience strategy is to retry the message consumption. Consuming a message that was

already consumed in the past can be troublesome depending on the service design. This

section will discuss how to apply the concepts of ACID 2.0 (associativity, commutativity,

idempotence, and distributed) in event processing and use them to achieve fault tolerance.

Consuming repeated messages can become a common use case, for example, if we

need to replay the event stream to repair data that was corrupted due to a bug. Retrying

is fairly helpful when transient failures occur; in fact, transient failures are typically

more common than outages that span a considerable amount of time. However, if the

proper measures aren’t in place, doing the same operation more than once can generate

erroneous results.

Imagine if we have a service that manages the product’s inventory and publishes

events for stock changes. The product service stores information of all the product

catalog, including stock. To update the stock information, it handles the stock events

published by the inventory service. Figure 7-11 illustrates this example.

Figure 7-11.  The product service retrying a stock event after a transient failure
acknowledging the message

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

303

The example illustrates the product service facing a transient error acknowledging

the event processing when consuming an event from the inventory service. On the first

attempt, the product service can retrieve the event and write the changes to the database

but fails to acknowledge the successful processing to the event broker. As a resilience

strategy, the product service retries to consume the same event. The retry process will

consume the same event and process it from the beginning. On the second attempt, the

service can acknowledge and successfully process the event. However, the service wrote

the stock changes to the database twice, producing a wrong value for the product’s stock

depending on how the product service consumes the event. For example, if the inventory

service published a stock out event signaling the product stock was decreased, it would

subtract the stock twice.

As we discussed in Section 7.2, exactly-once semantics is often complex to

guarantee. To assure every message is processed, we often rely on at-least-once message

delivery semantics. A service may receive repeated messages due to the message

broker’s failures or the upstream services, thus the at-least-once semantic. Under

those circumstances, services should be able to receive and generate valid states with

duplicated messages.

Event processing often benefits from understanding a set of principles about

maintaining distributed consistency captured by the CALM11 theorem. CALM

(consistency as logical monotonicity) states that systems which process a progressive

set of facts without changing what already happened are safe to run on an eventually

consistent store. This concept closely relates to the event-driven approach; events

reflect the evolving state of the entities and represent a fact that already happened

which shouldn’t be changed. ACID 2.0 (associativity, commutativity, idempotence, and

distributed12) embodies a set of design patterns closely related to the CALM theorem. By

applying these properties to distributed systems, we can achieve distributed consistency

and logical monotonicity.13

11 �Full article by Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak,
January 9–12, 2011, “Consistency Analysis in Bloom: a CALM and Collected Approach,”
https://people.ucsc.edu/~palvaro/cidr11.pdf

12 �Very interesting article by Pat Helland and Dave Campbell, June 7–10, 2009, “Building on
Quicksand,” https://database.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf

13 �Full article by Peter Bailis and Ali Ghodsi, April 9, 2013, “Eventual Consistency Today:
Limitations, Extensions, and Beyond,” https://queue.acm.org/detail.cfm?id=2462076

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

https://people.ucsc.edu/~palvaro/cidr11.pdf
https://database.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf
https://queue.acm.org/detail.cfm?id=2462076

304

Chapter 5 discussed the impacts of distributed systems in traditional consistency

and the difficulties of maintaining regular atomic consistency under the CAP theorem.

The clever acronym behind ACID 2.0 raises the challenge of reflecting on a new kind of

consistency under distributed systems, opposed to the traditional ACID in relational

databases. ACID 2.0 is based on three main properties, associativity, commutativity, and

idempotence, which happen in a distributed system (the D in ACID 2.0).

Associativity and commutativity translate the system’s ability to perform out-of-order

operations, which translates to the ability to tolerate unordered events in an event-

driven system. Idempotence is the ability of a system to perform the same operation

multiple times and obtain the same outcome. In event-driven systems, it translates to the

ability to process the same event multiple times and obtain the same result.

How can we apply the ACID 2.0 properties to event processing? One possible

approach is related to the event schema and how events are designed. In the example

we discussed before, the stock out event (an event signaling the user removed or bought

stock; basically the stock for this item was decreased by a quantity) isn’t idempotent. If

we process the same stock out event multiple times, the service will decrease the stock

by the number of times it processes it, producing a different result each time. Instead of

publishing a stock out event, the inventory service could publish a stock changed event

that informs the product’s current stock quantity. Listing 7-1 illustrates an example of

both events.

Listing 7-1.  StockOut vs. StockChanged event

StockOut

{

 ProductId: 15251212,

 Size: "XS",

 Quantity: 1

}

StockChanged

{

 ProductId: 15251212,

 Size: "XS",

 CurrentQuantity: 5

}

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

305

The events have similar information, but the stock out event represents a removal

of stock quantity from an item. The stock changed event signals the current stock of the

product. If the product service consumes the same stock changed event multiple times,

it will always produce the same result; it will constantly update the product’s stock to

the same quantity. We changed the event schema to be idempotent. We also made the

retry operation safe. However, we also changed the event’s meaning; a stock changed

event has typically less domain value than a stock out event. If the user is buying a stock

unit and decreases the stock, the stock out event reflects clearly the intent of the user; a

stock changed event doesn’t translate it as plainly. Nevertheless, it is essential to adapt

to our consumers’ needs, and in this case, the stock changed event is arguably the most

reasonable choice (we will further discuss event schema design in Chapter 8).

A critical consideration also related to the event schema is the fact that the stock

out events are order agnostic. We just need to process them once; it doesn’t matter in

which order (not taking into account negative stock validations). If the service publishes

a stock changed, the order matters; we only want the latest quantity, thus the newest

stock changed event. We can manage the order with event versioning as we discussed

in Chapter 6. In this case, as with most decisions, it’s about weighing the tradeoffs and

choosing a set of properties above others. Order is often easy to manage; idempotency is

more challenging and provides strong resilience properties, being more useful in similar

situations.

However, changing the event schema isn’t always possible. An alternative is to

make the event consumption idempotent. In Chapter 6, we discussed how to use event

versioning to handle unordered messages. We can use a similar strategy to guarantee the

processing is idempotent. For example, if we only process each event version once, we

can turn the event handling idempotent. In the stock out event example, if we store the

versions we already processed, we can ignore it when receiving a repeated event. This way,

consuming the same event multiple times has no impact. We can also achieve the same

result by ignoring repeated changes by the id or the event’s date, depending on the event.

When duplicated events can generate invalid results and we don’t enjoy

ordered, exactly-once guarantees, we may need to reason how we can turn the event

consumption idempotent and order agnostic. Event schema or event versioning can be

the solution; sometimes we can change the way we are consuming the events and make

it idempotent; sometimes it can even be solved as a business process. One of the main

takeaways we should interiorize is comprehending the impact of repeated events and

establishing a strategy to make the consumption idempotent.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

306

7.5  Avoiding Message Leak in Event-Driven
Microservices
An inconspicuous detail we can often miss is how to guarantee messages aren’t lost in

the presence of errors. Message leak occurs when the service acknowledges an event as

successful and then fails to process it due to an error; the service might lose that event

without the correct approach. When processing messages, the standard way to retrieve

messages from the message broker is to acknowledge them promptly. Although efficient

and straightforward, when faced with unexpected failures, it can generate message leaks.

This section will work through an example illustrating this situation and how we can

address it.

You might recall when we detailed the interactions between the services and

the message broker in Section 7.2 (Figure 7-6) and discussed how the consumers

acknowledge the event’s processing after retrieving them from the broker. Figure 7-12

illustrates this situation with the pricing service.

The service retrieves an order created event from the message broker, acknowledges

the event, and then proceeds to carry out the operations to process the event. This

implementation is often the standard way to interact with message brokers; for example,

Figure 7-12.  Example of an auto acknowledge interaction

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

307

Kafka has an auto-commit consumer configuration, which by default is enabled, which

periodically and automatically commits offsets upon message reception. In RabbitMQ,

you can choose between automatic and manual acknowledgments in the consumer

(manual acknowledgments are the default).

This detail is essential because if the service crashes or one of the dependencies

fails, we already acknowledged the message, the broker already marked it as consumed.

In Kafka, the offset was already committed; in RabbitMQ, the broker already removed

the message from the queue; etc. The service acknowledges the message to the broker,

but it is still processing it in memory. Any issue that makes the service lose the message

from memory will leak that message. This issue can happen if the services crash, or,

depending on the deployment process, it may happen by deploying a new version. This

means we might lose messages every time the service crashes or even when we deploy

the service.

A more suitable approach is only to acknowledge the message after the processing is

completed. The service retrieves the message; does all the processing it needs to, in this

case, the pricing logic related to the order; and acknowledges the message. The service

might have parallelism and process multiple messages but will only acknowledge each

one after completing all operations involved in the event’s processing. This way, if the

service crashes, it will reprocess the events it was processing before it crashed instead of

losing them.

Imagine the pricing service also publishes an event signaling the prices calculated

for each order. These two approaches mark the difference between at-least-once

and at-most-once semantics in the pricing service event publishing. If the service

acknowledges the order event immediately, the service might crash before sending the

pricing event but will never send repeated events. However, if the service acknowledges

the order event after publishing the pricing event, it might send it twice. If the service

crashes after the event publishing, it will reprocess the same event sending a duplicate

event. Depending on the message delivery semantics we need, we can automatically

or manually acknowledge messages. However, to not lose messages, acknowledgments

should be manual.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

308

7.5.1  Poison Events
There is a subtle difference between not losing events and ignoring events with

corrupted or unexpected information. There might be events the service fails to process

due to unforeseen data or failing validations. In those cases, should we ignore the event?

If the service can’t process the event due to failing validations, it might make sense to

ignore it, but there can also be the case the service is failing to process events due to a

bug or unexpected data.

We can fix the service and replay or change the offset to reprocess those events in

those cases. Having a dead letter queue14 is also an option. When failing to process an

event, we can publish it to a queue that only has failed events and resume regular work.

Then an ad hoc process or a specific consumer can process or requeue the events. Uber

has an article explaining how they implemented this with Kafka.15 Dead letter queues

might make sense when a large number of events have been published after the failing

events since it might require reprocessing many events that already succeeded. However,

with durable message brokers, since the events are persisted and still available, moving

back the offset and reprocessing when possible is often a more simple solution.

7.6  Applying Common Resilience Patterns in
Event-Driven Microservices
As we discussed at the beginning of the chapter, event-driven services might have a set

of external dependencies. Each dependency or the network connection between the

service and the dependency might fail. When a failure of this type occurs, there is a set

of traditional approaches we can adopt. This section will detail these strategies and work

through a practical example of applying them to event-driven services.

Event-driven services enjoy a higher level of decoupling and independence that

avoids cascading errors to the upstream services. However, the service itself might face

unexpected errors from its dependencies. The impact of those failures is often limited

to the service’s scope; for example, a read model might still respond to requests even

14 �Article on how to implement it by Robin Moffatt, March 13, 2019, “Kafka Connect Deep Dive –
Error Handling and Dead Letter Queues,” www.confluent.io/blog/kafka-connect-deep-dive-
error-handling-dead-letter-queues/

15 �Full article by Ning Xia, February 16, 2018, “Building Reliable Reprocessing and Dead Letter
Queues with Apache Kafka,” https://eng.uber.com/reliable-reprocessing/

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

http://www.confluent.io/blog/kafka-connect-deep-dive-error-handling-dead-letter-queues/
http://www.confluent.io/blog/kafka-connect-deep-dive-error-handling-dead-letter-queues/
https://eng.uber.com/reliable-reprocessing/

309

though an upstream service is failing. Data will become stale since the service is no

longer processing updates, but the event-driven architecture’s nature allows the system

to respond. It is often far more valuable to have the platform continue to respond even

though a part of the system is unavailable.

Even though the scope is often smaller, the services have their own role and pivotal

business value. The service dependencies might fail, and the service should be reliable

enough to maintain correct operation and recover as soon as possible. We should also

maximize availability and be resilient when facing a failure in a local dependency.

7.6.1  Retries As a Resilience Approach in Event-Driven
Microservices
Retries are the standard approach to deal with transient errors. You likely implemented

some kind of retry mechanism when accessing an external service or dependency. In

fact, the constant presence of transient and network errors highlights the usefulness of

retries. A request might fail from time to time due to numerous reasons; retrying the

request is often better than a manual process to recover data.

In event-driven services, we can apply a retry strategy in different operations of the

processing flow. As illustrated in Figure 7-13, we can use a retry strategy while accessing

external dependencies like other services or the database or applying a retry strategy to

the event consumption itself.

Figure 7-13.  The retry strategy can be applied in different scopes

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

310

Applying retry strategies to external dependencies is often more useful when dealing

with transient issues. We can also have retries at the event consumption level; when

consuming, we can retry the whole event processing flow if an error occurs. This kind

of retries is often more helpful when dealing with eventual consistency, optimistic

concurrency, or invalid domain logic where we need to perform all the operations in the

flow again.

There is a fascinating article16 detailing how Google achieved 99.9% latency SLA

on some of their services by using retry strategies (we also mentioned this article in

Chapter 5). Retries have higher resource consumption since the service has to make

another request; however, as the article details, with the right approach, it can be

significantly small (only 2% in the article use case) and significantly improve reliability

and availability. Retries are often related to timeouts; when defining and triggering a

timeout, we can retry the request. An arguably good approach discussed in the article

is understanding the typical latency and specifying timeouts for the 95th-percentile

expected latency before canceling and retrying the request.

As discussed with cascading failures, retries can be troublesome by adding additional

load to an already struggling service. A common approach is to use retries with exponential

backoff and a maximum limit. The retry strategy should always have a maximum number

of retries to avoid more significant impacts or halting consumption. Imagine the service

receives an event with unexpected data; if we indefinitely retry the consumption, the

service will indefinitely try to process the event, impacting the throughput. Retries should

also only be performed against conditions that are likely to succeed by repeating a request.

We should be able to filter the conditions that will always fail.

Exponential backoff retries are also useful to limit the impact of the additional load

on dependencies. We can successively make additional requests but separated by an

exponentially increasing time interval between the requests. We can also increment a

random value (also known as jitter) to randomize the time interval. The jitter helps to

avoid accidental choreographed load peaks across different services.

We can also have different strategies when all retries fail. We might have

dependencies critical for the service’s logic or others that we might be able to continue

processing, although with some degradation. For example, if the connection to the

database fails, it might impact all types of events consumed by the service. However, if

the caching mechanism fails, we might still process events without cache, but perhaps

16 Fascinating article by Jeffrey Dean and Luiz André Barroso, February 2013, “The Tail at Scale,”
https://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

https://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

311

with reduced throughput. When a critical component fails, an arguably good approach

is to apply a circuit breaker (we will detail circuit breakers next) and not acknowledge

the messages that failed (as discussed in Section 7.5). This way, the service won’t try to

process additional messages and reprocess the messages that failed once the service

recovers.

7.6.2  Circuit Breakers in Event-Driven Microservices
Retries are great for transient failures or short-timed unavailability. However, providing

resilience while facing more extended outages (a failure that persists after several retries)

might require different approaches. Retrying an operation that is unlikely to succeed

might be pointless or aggravate an already difficult situation. Instead, the application

should avoid frequent requests and handle the failure in the most suitable way possible.

The circuit breaker pattern can be a safety net to prevent the service from making

excessive requests. This subsection will detail how the pattern works and how we can

apply it to event-driven services.

Event-driven services can have external dependencies, like the database or a

distributed cache. For example, suppose we have a pricing service responsible for

calculating the order’s price according to country and discount rules. In that case, it

could have a dependency on a distributed cache like Redis. Transient connection issues

to Redis can be handled using retries, but we might benefit from applying a circuit

breaker pattern to deal with longer outages. This example is illustrated in Figure 7-14.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

312

Figure 7-14.  The different states of a circuit breaker pattern applied to an event-
driven service

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

313

The pricing service reacts to order events and uses Redis and the database to process

its domain logic. While in normal working mode, the circuit is considered closed;

external requests are successful and events are processed. The concept of opened and

closed circuits originates from actual electrical circuit breakers. They were electrical

switches designed to interrupt current flow when faced with an issue; thus, when in a

closed state, the current flows, and in an open state, the current stops. The pattern uses

the same concept: when the service is processing normally, the circuit breaker is closed,

and when faced with an issue, the circuit breaker opens and stops the processing flow.

If the pricing service has an issue reaching Redis, the requests will start to fail. When

the number of failed requests goes above a defined threshold, the circuit breaker opens.

In this case, it stops message consumption and consequently the requests to Redis.

When in this state, the circuit breaker is considered opened. However, the service can’t

remain in this state forever; from time to time, the service will try to reach Redis. While

the requests fail, the circuit will stay in the open state. When the requests finally succeed,

it will close the circuit and resume message consumption.

One of the advantages of reacting to events in a queue is the service won’t lose data

or fail requests. The upstream services will continue to publish events; once the service

recovers and resumes message consumption, it can process the events queued during

the outage. The service can lag behind the latest changes happening in the ecosystem

and might pile up work; however, it’s better than failing or losing those requests. If the

number of messages is significantly high, we can horizontally scale by adding more

instances to reduce the lag faster and remove them when the lag clears.

Circuit breakers also open the opportunity to create a more resilient service by

providing the possibility to choose a suitable fallback when applicable. In this case,

instead of stopping event consumption, we can replace the external dependency with a

fallback. For example, while facing a Redis outage, the service can fall back to an in-

memory cache; it might not be as efficient as a distributed one but might be enough for

the service to cope with regular demand while the outage recovers.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

314

7.7  Recovering Data and Repairing State in
Event-Driven Microservices
The previous sections discussed how to guarantee messages are sent and processed

reliably. We also discussed how not to lose events and to ensure every event received is

processed. With these approaches, we provide tools to control failures and avoid data

repair processes. However, data can still be corrupted, or the services can generate an

undesirable state (due to a bug, for example). This section will discuss how we can use

durable event brokers to recover data and repair the service’s state.

Let’s work through a practical example similar to the ones we discussed in the

previous sections. The pricing service handles order created events from a queue,

processes the charges, generates an internal state in a database, and publishes an event

informing the order’s charges. We released new functionality that changes the way taxes

are calculated, and, unfortunately, we introduced a bug. We quickly noticed the issue

due to our comprehensive monitoring and alarmistic and rolled back the release. This

situation is illustrated in Figure 7-15.

Figure 7-15.  The pricing service generated invalid state while processing a set of
events

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

315

However, the pricing service ran with an invalid version against a set of events. The

service stored the state generated by those events, and it is safe to assume part of our

data is corrupted. This situation has an additional aggravating factor; since the charges

were wrong, the events the service published are also impacted, which might also affect

the downstream services.

In a traditional monolithic application, a possible solution would be to identify

the affected orders and run an ad hoc process to recover them by running a database

script. In that case, it might be somewhat straightforward since all data is in a single

database, and we can correct everything in a single operation, even though it’s often

an error-prone process. In a synchronous microservice architecture, it might be

more challenging; a database script wouldn’t likely suffice since the pricing service’s

dependencies wouldn’t be affected (in a synchronous architecture, the event queue

would be replaced by a direct request to the service that needs the pricing data). The

alternative could be running an ad hoc process to call the service to repair the affected

orders. Identifying the orders with an invalid state can also be challenging if there aren't

the querying capabilities to do so or there is an overwhelming number of orders.

In an event-driven service, an arguably straightforward solution is to change the

service’s offset to the offset before the bug was introduced. In the case of Figure 7-15, we

could change the pricing service’s offset from 147 to 137, and the service would reprocess

the affected events (from 137 to 141), and the state would be repaired. The drawback is

events from offset 142 to 146 would be reprocessed even though they were successful,

hence the importance of idempotence we discussed in Section 7.4.

The service already published invalid events, and if we are not using documents,

they should remain as is. As you might recall from Chapter 3, documents have the

entity's complete state, and the event broker only retains the latest ones (as we discussed

with Kafka compacted topics). It might seem odd, but events represent facts that

happened in the past; if charges were effectively wrong, then the event history should

reflect that fact. To repair the state, by going back in the offset, the service will publish

new events with the correct information, thus repairing the downstream services that

will react to those events. As we discussed before, the service only publishes an event

if the state changed. In this case, the service would only publish events related to the

invalid orders that the service corrected. Although the service reprocesses the already

successful orders, it won’t change any state, reflecting in no new events, and thus won’t

affect the downstream services with additional load.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

316

We mentioned the wrong events should remain as is, except for documents. In

those use cases, the queue doesn’t retain the history but rather the newest state. Since

we would publish a new document with the correct information, the service would also

correct the data in the document queue since the broker would only retain the latest

documents. The invalid ones would be older and thus would be purged by the broker.

If we apply the other strategies we discussed in this chapter, this approach is likely

limited to bugs and similar issues since outages are already accounted for. However,

even if we don’t have those strategies in place, this solution can be a valuable approach

to recovering from leaked events or random outages.

Notice that this approach doesn’t involve any ad hoc manual process or specific

developments to recover the state. We use the same flow the service uses to process

regular events; we just rewind the event queue and reprocess. The beauty of having a

durable event queue, besides being able to derive value from history and generating new

views of the data, is having all the tools needed to recover state sustainably.

7.8  Bulkhead Pattern in Event-Driven Microservices
Bulkheads are usually employed in ships as a means to contain failures. They separate

the ship into several isolated partitions; if the hull takes damage and one section is

compromised, the bulkheads guarantee the failure doesn’t spread to the rest of the ship.

A ship can still sail with some flooded partitions; the bulkheads avoid an otherwise

catastrophic failure. This section will discuss how we can apply a similar concept to an

event-driven architecture.

On a side note, the Titanic had bulkheads, but they didn’t prevent the ship from

sinking. Titanic’s bulkheads didn’t go full length due to mainly not hindering the

passenger's comfort and movement throughout the ship. Since they weren’t tall

enough, the bulkheads didn’t contain the water in the damaged partitions, the software

engineering equivalent of marking resilience developments as “nice to have” in planning

meetings.

Anyhow, how do bulkheads apply to event-driven services? Let’s use the same

example with the pricing service. The service handles order created events, processes

the charges for each order, and saves state in a database. Let’s say we also have a taxes

service in charge of managing changes in taxes across every country. We discussed

why each service should have its own database; however, the database cluster can have

multiple databases. For example, if we use MongoDB, we might want to group several

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

317

domain-related databases in the same cluster. Perhaps more theoretical references

might refer to this as an anti-pattern, and truth be told, the ideal situation is to have

complete segregated database clusters for each service. However, this is often not the

case due to practical and monetary reasons, and it isn’t due to solid reasons. Although

often oblivious to us, a solution that has a considerable cost to maintain, even though

with excellent performance and scalability properties, isn’t a very good solution. After

all, we are building the tools for a business to strive.

When the taxes change, they produce a bulk operation in the taxes service, which

is very database heavy. The additional load starves the cluster’s resources and might

impact both the taxes and pricing service, as illustrated in Figure 7-16.

Figure 7-16.  The taxes service produces additional load on the database cluster
due to a bulk operation

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

318

In order to mitigate the impact done by the taxes service, we could apply the

bulkhead pattern by adjusting the parallelism degree in the taxes service. We discussed

in Chapter 6 we might have several instances of a service, and each service instance

has parallelism to optimize physical resources. By decreasing the parallelism degree,

we would also reduce the impact the service has on the database cluster. If the service

has several instances, we can also reduce their number. The parallelism degree and the

number of instances are essential parameters we should include in our solutions from

the ground up to adjust the service performance and mitigate this kind of impact.

Obviously, the taxes service will process slower, but a bulk action might be more

permissible to be processed slower than the charges applied to each order. The bulkhead

pattern is about containing failure; the service might process slower, but it won't

propagate the issue to the pricing service or other processes running in the taxes service.

In this case, as a more sustainable solution, we could upscale the database or separate

it into different clusters in order to avoid the impact, as we discussed before. However,

it might not justify the cost and might be more reasonable and cost-effective to say a

bulk operation might take a while to finish with modest parallelism. We can apply this

approach to any kind of dependency, a distributed cache, or a synchronous request

to another service. When using synchronous requests to other services, the bulkhead

pattern might be an arguably good solution since those services might be susceptible to

cascading failures. A bulkhead approach in the upstream services might quickly avoid

widespread impacts.

7.8.1  Priority Queues
Another way to manage the impact of the unexpected load is to segregate operations into

different queues. In the previous example, the taxes service received a bulk operation

which might reflect an abnormal message arrival rate. Since, typically, a bulk operation

has lower priority than the changes happening in real time in the ecosystem, we could

delegate them to a lower priority queue.

By having segregated queues, we can allocate different resources to each queue. The

queue with the regular everyday changes might have a higher degree of parallelism than

the queue handling bulk operations. This way, we can adjust each queue’s parallelism

degree to guarantee there is no lag in the higher priority queues. The lower priority

queues get processed at a sustainable rate without affecting the service’s dependencies

and resources. The assumption is the service might lag in the low priority queue, which

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

319

should be alright since the changes don’t need to be processed in real time. We can

delegate longer-running processes to low priority queues and significant business

changes to higher priority ones.

7.9  Conclusion
How all the patterns we discussed throughout the chapter are applied to the service’s

dependencies? Figure 7-17 illustrates how these patterns relate to the initial discussion

of a typical service topology and its dependencies (Figure 7-1).

In typical external dependencies like other services, distributed caches, the database,

etc., it’s often relevant to use retries, circuit breakers, and the bulkhead pattern. When

publishing messages, we can use the event stream as the source of truth, the outbox

pattern, and publish in at-least-once semantics. We can consume messages according to

Figure 7-17.  How the patterns discussed throughout the chapter relate to the
service’s dependencies

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

320

ACID 2.0, do manual acknowledgments/commits, retry the message consumption, and

use the data recovery strategy.

If we apply the patterns we discussed in this chapter, we can guarantee we

process events reliably and without leaks. We also guarantee the safety of the service’s

dependencies and ways to regulate traffic and load.

7.10  Summary
•	 Services have several dependencies, and each one of them can fail

due to a number of reasons. We need to guarantee these failures

don’t affect the reliability and the correctness of the service.

•	 Event-driven services are less likely to suffer from cascading failures

due to their decoupled nature.

•	 Load balancing and rate limiting are often already incorporated in

the design of event-driven services due to their interaction with the

event broker.

•	 Event delivery can have three different semantics: at-least-once,

at-most-once, and exactly-once. Exactly-once is the most useful and

the hardest to guarantee. At-most-once loses messages but typically

enjoys higher performance. At-least-once might generate repeated

work, but it’s straightforward to achieve and ensures no messages are

lost.

•	 The service’s state must reflect the event stream. We can achieve

this by making the event stream the source of truth, with the outbox

pattern, or using transactions and compensating actions.

•	 Applying ACID 2.0 properties to message consumption can provide

higher resilience and flexibility, especially when associated with

retrying strategies.

•	 Manual acknowledgments or commits can guarantee messages

aren’t lost in a failure scenario.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

321

•	 Retries and circuit breakers are common resilience patterns we can

apply to make the service more resilient and regulate throughput

to external dependencies. We can combine circuit breakers with

fallbacks to make the service resilient to common failures.

•	 Rewinding the event stream can be a powerful tool to recover data.

•	 The bulkhead pattern can contain the proliferation of local failures.

Priority queues can also be a viable option to regulate traffic with

different urgency without overwhelming the service’s resources.

Chapter 7 Achieving Resilience and Event Processing Reliability in Event-Driven Microservices

323
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_8

CHAPTER 8

Choosing the Correct
Event Schema Design
in Event-Driven
Microservices
This chapter covers:

•	 Model events using event storming

•	 Using and understanding which information benefits from being

transferred in event headers

•	 Designing small events and their impacts

•	 Designing large and denormalized events and their impacts

•	 Understanding the importance of involving consumers in the event

schema design

•	 Avoiding breaking changes and how to evolve event schema

https://doi.org/10.1007/978-1-4842-7468-2_8#DOI

324

Darwin once said it isn’t the stronger or most intelligent species that survive but the

most adaptable. Events are much like it; there isn’t a one-fits-all rule to design events; they

often need to be adapted to each use case and have the requirements of the consuming

application in mind. Events are the essence of every event-driven architecture; as we

discussed in the previous chapters, they are a meaningful and sustainable way to share

data throughout the company. They represent the business’s very history retaining its

value and exposing it in a decoupled and scalable way. Exposing data in a streaming and

scalable medium provides the foundation for powerful use cases. Events are the blood

flow in an event-driven architecture; designing the correct event schema for each use case

becomes a key design consideration.

We discussed the advantages of having durable event brokers and retaining the history

of events. It’s a powerful concept, until you have to insert a breaking change in the event

schema, and then history seems a lot less valuable compared to the challenge of handling

multiple event schemas. This chapter will also discuss how to approach schema changes

and work through a use case illustrating how we can approach schema evolution.

Designing events is often a gray area; there are standard best practices, but

following them blindly can severely impact the architecture and produce complicated

workarounds. Understanding the implications of the different design approaches,

weighing the tradeoffs, and making deliberate decisions is fundamental to achieve a

maintainable and scalable solution. This chapter will discuss these tradeoffs and work

through a use case using different approaches explaining the advantages and downsides.

Although it won’t give you a silver bullet to always design the correct schema, it will

provide you with the considerations to make sustained decisions and choose the

appropriate implications for each use case.

8.1  Event Storming and Event-Driven Microservices
Event storming is a technique to model complex business processes that has high synergy

with event-driven architectures. It shares some of the DDD concepts, but it’s focused on a

timeline of events that we can often directly translate to code. The full implementation of event

storming is out of this book’s scope, and it’s fully addressed in Alberto Brandolini’s book,1 its

original creator. This section will give you the foundations for exploring it further and why event

storming can be relevant in modeling an event-driven architecture and its events.

1 Book by Alberto Brandolini, “Event Storming,” www.eventstorming.com/book/

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

http://www.eventstorming.com/book/

325

Event storming is a tool to gain a higher level of understanding of a complex domain

and promote shared understanding around the domain’s business processes. It involves

modeling a business process as a flow of events represented by stickies on a whiteboard.

The technical and business experts use different colored stickers to model the sequence

of domain events, commands, components, external systems, and questions in a

business process. In a relatively short session, around one hour, a rather complex

business process can be modeled, as long as the right people are in the room and the

appropriate mediation is provided. Further sessions can be scheduled to dive down on

unclear subjects or to further detail higher-level flows.

It’s also about gathering the right people in the same room and doing temporal

modeling of the business process. Instead of focusing on a structure like typical

modeling approaches (like UML, sequence diagrams, etc.), focuses on mapping the

timeline of successive events that happen in the process. It can be highly beneficial as

a tool for collective learning and modeling the whole end-to-end process. It also helps

identify possible early gaps, blockers, misunderstandings, and gray areas that might

become a problem later in the project.

So, how can we apply it? The crucial point about event storming is the presence of the

right people in the event storming session. There should be elements of the development

team and the domain experts. If we don’t have the correct people in the session, we should

postpone it and guarantee everyone is present. Once we gather all relevant people and

clearly define the session’s objective (e.g., event map the order fulfillment process), we

should ask the participants to model the process with events. Events are represented by

orange stickies and should be placed on a large open area. A large area is important; we

want the participants to map the process and not discuss it fruitlessly without physical

support. A cramped space to put the stickies limits the thought process; discussions

without physical support often have no real conclusions or action points; we want to avoid

that. Then the participants should map the process as a sequence of events. Figure 8-1

illustrates the sequence of events in an order fulfillment flow.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

326

The most valuable first step is to model the business process as a sequence of

domain events. The sequence by itself vastly increases the knowledge of the process of

everyone in the session. An arguably good first interaction is to have the moderator ask

the participants an event of the business process and write it down, which typically helps

break the ice and kick off the activity. Domain events are a business occurrence that is

relevant for the business experts. Domain experts can explain the process according to

these events as they flow in a timeline. Presenting the business process with this mindset

provides a valuable framework for storytelling and is easy for anyone, even without a

technical background, to understand. An important moderation tip is to let the domain

experts map the events, and the developers explore their meaning instead of developers

guiding the thought process.

Once you have the main flow of domain events, you can add the other typical

elements of an event storming session:

•	 Domain events, which we just discussed (typically represented by

orange stickies)

•	 User commands, a user action (typically represented by blue stickies)

Figure 8-1.  Domain events example of an order fulfillment flow

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

327

•	 Questions, risks, assumptions, and concerns, which we use to signal

possible gaps or parts of the process that need further analysis

(typically represented by pink stickies)

•	 Persona/actor, who initiated the action (typically represented by

yellow stickies)

•	 External systems, events from an external system (typically

represented by light blue/cyan stickies)

•	 Data, data consultation to make a decision or a read model (typically

represented by light green stickies)

I find that typically it’s best to map the domain event sequence and then iterate on

adding detail about the other types of artifacts. Eventually, it can evolve to something

similar to Figure 8-2.

Figure 8-2.  Event storming example of an order fulfillment flow with additional
artifacts

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

328

An important detail is the question/pink stickies; if the participants get stuck

discussing a subject, write it on one of those stickies. It promotes everyone’s

collaboration, and if the discussion takes too long, we can mark it and move on. Also,

following the typical diverge, explore, and converge approach can be beneficial. You

want the participants to discuss the overall process and the sequence of events (diverge

and explore). Next, try to make sense of the confusion and group everyone to organize

the event flow (converge).

This process promotes active collaboration to discover the right thing to do. In large

microservice architectures, developers tend to implement projects focused on a single or

few services, and it is easy to lose the whole picture of the end-to-end process. It is also

easy to do what they are told, which might not be the right thing. Event storming greatly

benefits the dissemination of knowledge and clarifies the main objective of the project.

One thing DDD often mentions is the domain expert. In fact, in large organizations,

there isn’t one domain expert; typically, there are knowledge silos. In each silo, there

is one or a few domain experts specialized in that silo; there is hardly anyone with

knowledge of all silos. Event storming shines in these environments where we can bring

each domain expert to the session. Each person in the session individually might not

know everything, but everyone’s combined knowledge provides to be exceptionally

insightful. It also provides a platform for group validation, much like a code review to a

process modeling done by domain experts.

Event storming has high synergy with event-driven architectures since the domain

events often map to the technical domain events, and what better way to design

those events than with the domain experts’ input? It also highlights some beneficial

architectural decisions. For example, in Figure 8-2, we have an order created domain

event and a check order status data model; this might directly translate to a CQRS

pattern. It often proves to be a smooth translation from the model to the actual

implementation.

For further details and moderation guidelines, we highly recommend Alberto

Brandolini’s book; he also has a great talk at a NewCrafts conference worth checking

out.2 Paul Rayner also has a fascinating talk with several moderation tips and detailing

event storming concepts.3

2 �Talk in NewCrafts Conferences, Alberto Brandolini, “Introducing EventStorming,” June 9, 2015,
https://vimeo.com/130202708

3 �Talk in Saturn 2017, Paul Rayner, “EventStorming: Collaborative Learning for Complex Domains,”
May 31, 2017, www.youtube.com/watch?v=vf6x0i2d9VE

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

https://vimeo.com/130202708
http://www.youtube.com/watch?v=vf6x0i2d9VE

329

8.1.1  What Are the Limitations of Event Storming?
Event storming might not be suitable for simple and straightforward domains. For

example, if a domain can be clearly expressed by a CRUD implementation, modeling

it by events might not be adequate. However, much like DDD, the understanding and

knowledge acquired by the exercise are often extremely valuable.

In more extensive processes and domains with intricate interactions, moderation

becomes especially relevant. Experienced moderation can be hard to find and might

be a challenge for people trying out event storming4 for the first time. The book Game

Storming can help with some frameworks.

One challenge is often having the right people in the session; the domain experts are

often hard to pin down. The presence of the right domain experts is usually a do or break

requirement; we need the right people in the session to be productive. It also becomes an

issue with distributed teams; having people physically in the same room produces a unique

atmosphere and promotes a different type of collaboration than having people collaborating

remotely. You might still benefit from the exercise, but it might not be as valuable.

8.2  Event Schema: Headers and Envelopes
The event’s payload is obviously the pivotal part of the event. However, an often

overlooked detail is the event’s headers. In some use cases, the event benefits from having

some generic properties available in the headers or the event’s envelope. This section will

discuss the advantages and drawbacks of having an envelope and will work through a use

case illustrating which information can be relevant to add to an envelope or headers.

There is some information relevant for every event, independent of their content

or origin. This type of generic information or metadata can be shared using a generic

structure like an event’s headers or an envelope, as illustrated in Figure 8-3. Having

standardized properties across the organization can help generic processes or utilities

(like tracing) without digging down to the event’s payload. It also provides better

segregation; the event’s payload will only have the information related to the occurrence

and the domain, while we can segregate infrastructure information with a more abstract

nature to an isolated structure.

4 �Book by Dave Gray, Sunni Brown, and James Macanufo, “Gamestorming: A Playbook for
Innovators, Rulebreakers, and Changemakers,” August 17, 2010, www.amazon.com/Gamestorming-
Playbook-Innovators-Rulebreakers-Changemakers/dp/0596804172

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

http://www.amazon.com/Gamestorming-Playbook-Innovators-Rulebreakers-Changemakers/dp/0596804172
http://www.amazon.com/Gamestorming-Playbook-Innovators-Rulebreakers-Changemakers/dp/0596804172

330

The metadata provides contextual information about the event, while the payload

provides the event’s information. It’s similar to an HTTP request; the body of the request

carries the request’s payload, and the HTTP headers have more contextual information

about the request. The event’s metadata can be transferred using an envelope or through

message headers. A message envelope is like a wrapper around or inside the event’s

payload with a standard structure common to all events. Most message brokers also

support message headers, and much like HTTP headers, they are often modeled in a

key-value approach with the flexibility to define custom values.

8.2.1  Headers vs. Envelopes in Event Schema
There are typically two approaches to implement event envelopes, either by a composed

or flat structure. A flat structure adds the information next to the event’s payload, with

a property containing all metadata information. The composed structure is more

popular and resembles an actual envelope; the envelope is a wrapper with contextual

information and an abstract payload. Listing 8-1 illustrates the two types of envelopes

applied to an order created event.

Listing 8-1.  Composed vs. flat envelope structure

1 Composed OrderCreatedEvent

2 {

3 Metadata:

4 {

5 EventId: 1231,

6 Timestamp: "2021-01-30T11:41:21.442Z"

Metadata

Payload

Order Created
Event

Event Id
Created Timestamp
Correlation Id
...

Order Id
Product Id
Quantity
...

Figure 8-3.  Segregation of the event’s metadata and payload

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

331

7 },

8 Payload:

9 {

10 OrderId: 3621,

11 ProductId: 2184,

12 Quantity: 2,

13 UserId: 164

14 }

15 }

16

17 Flat OrderCreatedEvent

18 {

19 �Metadata: [{"EventId": 1231}, { "Timestamp":

"2021-01-30T11:41:21.442Z"}],

20 OrderId: 3621,

21 ProductId: 2184,

22 Quantity: 2,

23 UserId: 164

24 }

Every event with a flat structure has a property specific to the event’s metadata.

While the composed structure segregates it at a higher level, the event has two root

fields: one for the metadata and one for the payload. The metadata in the composed

field can also be a generic array of dynamic properties, although there are advantages

of defining static metadata fields. For example, if we define a standard envelope for the

company, we can enforce specific fields like the correlation id or the user id for audit

purposes. It also incites collaboration on the envelope definition (although this can be

an advantage or drawback depending on the company).

However, the envelope tends to get in the way of the event and sometimes can be

challenging to deal with. It introduces extra information to serialize and deserialize

having a performance hit; also changes in the envelope tend to be difficult to manage.

If changing an event’s schema requires a lot of communication and alignment, imagine

changing the envelope’s schema when all events share the same envelope. Also it can

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

332

become hard to simultaneously handle sources that use envelopes and sources that

don’t use envelopes, often leading to additional code overhead. There is an interesting

Confluent article5 further exploring the different envelopes worth checking out.

Headers often tend to ease this process; we can share common contextual

information in event headers and typically offer better segregation of concepts; the

payload has the event and the headers have the metadata. Headers are a common

feature in most brokers, and since they are dynamic and optional, they make different

use cases easier to handle. To guarantee coherence across services, most use cases might

benefit from a common definition with the custom headers and the ones the company

wants to implement. However, it is harder to enforce the presence of specific headers;

if a requirement requires the absolute presence of given information across all services,

then an envelope might help to enforce that requirement. It depends on the use case, but

overall, using headers tends to be a more flexible and less intrusive approach.

8.2.2  Relevant Contextual Information in Events
Envelopes and headers are great for sharing common contextual information. But what

kind of information is relevant to use as metadata or contextual data? It heavily depends

on the use case, and you might even find it helpful to define specific custom headers

only relevant for your domain or business. However, there’s often common information

useful for most use cases; this subsection will detail some common use cases of

contextual information. This way, you can reason whether it makes sense for your use

case and which kind of information is typically sent in the metadata.

HTTP has a reasonably detailed definition in terms of requests, responses, and even

common headers. This definition provides interoperability across systems, companies,

and services. Having a clear contract to adhere to and some assumptions on how the

system works facilitates communication and developments. Events, being the medium

for communication across companies, especially in event-driven architectures, could

arguably benefit from a similar definition. CloudEvents6 is an approach giving this

definition and provides a specification for describing event data. It provides some

examples of mandatory and optional contextual attributes. Here are some examples

typically relevant to most use cases:

5� Full article by Alexei Zenin, “How to Choose Between Strict and Dynamic Schemas,” November 9,
2020, www.confluent.io/blog/spring-kafka-protobuf-part-1-event-data-modeling/

6 Project in GitHub, https://github.com/cloudevents/spec/blob/master/spec.md

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

http://www.confluent.io/blog/spring-kafka-protobuf-part-1-event-data-modeling/
https://github.com/cloudevents/spec/blob/master/spec.md

333

•	 Id: The event’s id. Having an event id is often useful for debugging,

tracing, and even managing idempotency (like we mentioned in

Chapter 6). It has to be unique per event; generating a unique

incremental id can be troublesome; using a UUID (universally

unique identifier) can be helpful.

•	 Correlation id: An id associating different operations together. For

example, when we discussed the choreography pattern, several

services choreographed to fulfill an order. The order service created

the order, the inventory service managed the order’s stock, the

pricing service calculated the fees, etc. Each service would publish

an event; having a correlation id across all services is a way to quickly

obtain all operations in the scope of a single order.

•	 Source: The service and operation that published the event.

Especially relevant when different processes in a single service can

generate an event.

•	 Version: The aggregate’s version. Often valuable for managing

idempotency and for debugging purposes.

•	 Timestamp: The date when the event occurred. Also relevant

for debugging and tracing purposes. It can be helpful to manage

concurrency when a version is absent.

•	 Priority: The importance of the event. We can assign events to different

streams with different priorities (as we discussed in Chapter 6).

•	 User id: Id of the user that triggered the event. Often useful for

auditing and debugging purposes.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

334

8.3  Town Crier Events Pattern
Several questions can arise when designing event schema. A common design question

is how much information the event should have and how large it should be. An often

discussed best practice is to design events to be small and carry only the information

about the change that triggered it. Following this approach usually produces town

crier events (also known as event notifications7). The term comes from real town

criers, who typically inform people of important announcements by shouting them in

the streets. In medieval England, most people couldn’t read newspapers; town criers

were an essential way of communicating news. The town crier shouted the central part

of the announcement, and an additional note was usually posted at the local inn in

case anyone would like to have more information. Town crier events follow a similar

approach; events are published with minimal details, and the subscribing services can

request additional information about the change to the producing service. This section

will discuss this approach to design event schema and illustrate it with a use case using

an order submission process.

Let’s work through a similar example to the ones we discussed in the previous

chapters. The order service manages the orders of an eCommerce platform. Users submit

orders and can edit their information as long as the order doesn’t reach a given state.

In this case, the user changed the street door number of the order’s address. Listing 8-2

illustrates a possible event reflecting this change using only minimal information.

Listing 8-2.  Example of an OrderStreetNumberChanged event

1 OrderStreetNumberChanged

2 {

3 OrderId: 3621,

4 AddressStreetNumber: 21

5 }

Keeping the event schema small and single-purpose is excellent for the overall

system. Small events are easy to process and are faster in terms of serialization and

deserialization. They also usually have less impact on the message broker and the

service’s resources. An often good approach aligned with the DDD mindset is to

7 Article by Martin Fowler, “What do you mean by “Event-Driven”?”, February 7, 2017, https://
martinfowler.com/articles/201701-event-driven.html

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html

335

design events according to the user’s intent. In this case, think of it in designing an

OrderUpdated vs. OrderStreetNumberChanged; the first we don’t know which was the

exact intent of the user, and the latter represents cleanly the intent of changing only the

address street number. Designing events this way captures the business value of the

process and imbues events with domain value. The event stream will cleanly capture the

user’s intent and the flow of the business process. The domain itself doesn’t sit solely on

the service’s logic but in the event stream as well. Retaining this domain value can be

highly beneficial as an audit or when rebuilding different views of the data according to

business needs. However, depending on the use case, this minimal design might also

pose some challenges to the consumers.

The event has only the essential information related to the change, the id of the order

that the user changed and the new street number. Let’s say the inventory service handles

order events to reflect stock changes and calculates the best warehouse to satisfy the

order. Every time the order address changes, it has to recalculate the best warehouse and

reflect the changes in the product’s stock. The routing algorithm to calculate the best

warehouse to satisfy the order is based on its full address. In this case, this event schema

design poses a challenge to the inventory service. The service needs the complete

address to calculate the best warehouse, but the event only has the new address street

number. When handling a partial event, the inventory service would have to request the

whole order’s address from the order service, as illustrated in Figure 8-4.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

336

The additional remote request to fetch the remaining address information has

the impacts we discussed in the previous chapters. The inventory service now has a

synchronous dependency on the order service, being susceptible to cascading failures.

If the order service has an issue, the inventory service might be directly affected instead

of just processing the events asynchronously. Scaling might also become an issue; if

we need to horizontally scale the inventory service by adding more instances, it will

trigger additional requests to the order service, which might need to be scaled as well.

This topology is closer to the distributed monolith we discussed before. Consuming

the event might also need additional complexity if the order service’s read model is

eventually consistent. For example, suppose the order service applies a CQRS pattern

and asynchronously updates a read model API that the inventory service uses. In that

case, the information in the API might not be up to date with the event. Ideally, we want

the consumers to be able to process events without recurring to external dependencies.

Figure 8-4.  The interaction between the order and inventory service with a town
crier event

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

337

Partial and small events are usually helpful when consumers need to react to the

specific change that triggers the event. For example, the order service could publish

an OrderUpdated event every time the user changed anything in an order. Still, in this

case, the only thing the inventory service cares about is the address. If the inventory

service were consuming an OrderUpdated, it would have to understand what changed;

any data in the order could have changed, not only the address. It would likely need to

store some metadata of the order’s address to understand the address changed and not

something else in the order data to react accordingly. In this situation, an arguably better

option would be to publish an OrderAddressChanged instead of an OrderUpdated or

OrderStreetNumberChanged.

Town crier events are relevant when consumers need to react to the domain process

that triggered the change. Designing them according to that change is a good approach,

but we need to be aware to make the event sufficiently relevant for the consumers to rely

on it without depending on synchronous dependencies.

8.4  Bee Events Pattern
An alternative to requesting additional data upon handling an event with minimal

information is to keep an internal state about the event’s entity. This approach produces

an interesting effect where the event’s state is persisted across several services. It is

in many ways similar to the effect bees have on flower pollination. Pollination is the

transfer of pollen grains between flowers by animal activity that generates fertilization.

Pollination isn’t carried deliberately by bees, it is the unplanned consequence of the

bee’s travels. Pollen sticks to the bee’s body, and it is spread from one blossom to another

as the bee moves. Bee events (also known as event-carried state transfer8) are fairly

similar; consumers handle events and persist the event’s data locally, actively spreading

the event’s state across several services, even though that might not be the producing

system’s intent. This section will work through an example with bee events and detail the

impacts on overall architecture and consumers.

In Figure 8-4, we discussed a practical use case using the order service. Upon

receiving the OrderStreetNumberChanged event, the inventory service made a

synchronous request to the order service to fetch the additional address information.

8 �Article by Martin Fowler, “What do you mean by “Event-Driven”?”, February 7, 2017, https://
martinfowler.com/articles/201701-event-driven.html

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html

338

In order to avoid the synchronous request’s limitations we discussed before, the

inventory service could save the address of each order internally. With each partial

event published by the order service, the inventory service would update each

order’s address internally. The OrderCreated event would update the address

for that order, the OrderStreetNameChanged would update the street name, the

OrderStreetNumberChanged the street number, etc. This way, the inventory service

could fetch the complete address from its local database to calculate the best warehouse

to satisfy the order.

This solution preserves the decoupling properties of event-driven services. The

services depend only on their resources to do their business logic without relying on

external dependencies, effectively avoiding the drawbacks of synchronous requests.

It also has a performance boost since fetching information from a local database is

typically faster than a remote request. Storing a view of the order information also

provides the opportunity to materialize it in the most beneficial way for the service. Each

service would only store the relevant information for its use case in the granularity that

it needed. One obvious consequence is the order information will be scattered across

several services, as illustrated in Figure 8-5.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

339

In this case, the inventory, shipping, and pricing service need the order address

to calculate the stock changes, ship the order, and calculate the country’s taxes,

respectively. To access the order’s full address, they save it internally and keep it updated

by applying each new event to their internal state. Bee events end up transferring the

order state to each consumer.

Figure 8-5.  Several services persisting a view of the order information

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

340

Having the order state distributed across all consuming services has an impact on

the service’s resources; it will require additional database space, although currently

disk space isn’t as concerning as it used to be. The real challenge can be initializing and

maintaining the data accurately. In traditional applications, this could be troublesome;

however, as we discussed in Chapter 7, a new service could initialize the order state by

reading the event stream from the start; new events would both trigger the business

logic and update the order metadata. A bug in the order service might affect the other

services’ metadata, but guaranteeing the event stream is the source of truth; fixes are

also published to the stream, which will automatically heal the consumer’s state.

There are more complicated situations where the order service has to do a

substantial restructuring of its internal schema, which can end up affecting other

services. These situations can be troublesome to manage and end up needing the

coordination of several teams. To avoid complex challenges, we need to guarantee each

domain is segregated and has clear boundaries. The order state in the inventory service

should be relevant only to the inventory service and not a copy of the order service.

Anti-corruption layers should guarantee that only the relevant information exists in each

boundary. Clear segregation should avoid internal schema changes in the order service

to propagate to other services. If consumers rely solely on the event contracts, the order

service can incrementally migrate its schema along with the event contracts (we will

further discuss schema evolution in Section 8.6).

The impact of having a small event schema can be solved with this approach. It is more

aligned with the event-driven mindset than requesting the information with a remote

request. Although usually requesting data through a remote request is easier and faster

development-wise, this solution tends to be more sustainable when applied frequently. It

preserves the services’ domain segregation and fosters more resilient properties.

8.5  The Event Schema Goldilocks Principle
In Sections 8.4 and 8.5, we discussed how a small event schema can be beneficial to

each service but can impact the overall architecture. We could easily argue if it was

worth designing a small event schema if it affects the architecture in a way that makes

the consuming services request or store a view of the data. This section will discuss a

different approach by finding a middle ground between large and small event schema.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

341

The Goldilocks principle9 also applies to event schema; we should avoid large

events and small events can be challenging to consume, but in some use cases, the

event schema size can be just right. Let’s continue with the example we discussed in

Sections 8.3 and 8.4; using town crier or bee events solves the challenge of consuming a

partial event. In event-driven architectures, teams typically have ownership of different

services usually related to their domain (as discussed in Chapter 4). Different teams

might maintain the order service and the inventory service, and it is easy for the team

managing the order service to design events most beneficial to their context, in this case

for publishing. Publishing small events is often easier and more straightforward from the

producer perspective; as we discussed, the issue is in the consumer. An often ignored

and essential consideration while designing event schema is always having consumers’

needs and use cases in mind. Involving current and future consumers in the discussion

can avoid intricate solutions. For example, instead of the order service publishing an

OrderStreetNumberChanged event, it could publish an OrderAddressChangedEvent as

illustrated in Listing 8-3.

Listing 8-3.  Example of an OrderAddressChanged event

1 OrderAddressChanged

2 {

3 OrderId: 3621,

4 StreetName: "Palm Avenue",

5 StreetNumber: 21,

6 State: "FL",

7 City: "Tampa",

8 Postal: 33619,

9 }

Instead of publishing only the information that changed, for example, the street

number, the order service could publish the order’s full address, even though the only

information the user changed was the street number. Designing a more comprehensive

event adapted to the consumer’s needs can be advisable in most use cases. In this

example, the inventory service would avoid any external dependency or additional

internal state, as pictured in Figure 8-6.

9 Wikipedia page at https://en.wikipedia.org/wiki/Goldilocks_principle

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

https://en.wikipedia.org/wiki/Goldilocks_principle

342

This way, the inventory service would be able to calculate the best warehouse using

only the event’s information, avoiding the complexity overhead of the other solutions.

Depending on the use case, it might be harder to enrich the event with additional

information on the producing side, and it can be highly beneficial on the consumer side.

The caveat is to not add too much information to the event, especially information

not in the service’s scope or domain. If the inventory service needs the country’s

geographical position, which is another service domain, adding that information in the

order event would be inadvisable. Large events might also reflect that the service has too

much responsibility and might need to review its boundaries.

The event might also lose its domain meaning; an OrderAddressChange carries

less domain value than an OrderStreetNumberChanged since it’s no longer clear which

field the user changed. If consumers need to react specifically to changes in the street

number, the latter is typically more advisable than the first.

Figure 8-6.  The consumer is able to apply its domain logic using only the event’s
information

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

343

As a consumer, you might not be able to request changes to the existing events. For

example, if they come from an external tool or a legacy application or the additional

information requires breaking changes, it might not be practical to adapt them to the

consumer needs. In those situations, you might have to follow one of the town crier

or bee events patterns. An arguably sound reasoning would be to give precedence to

bee events and avoid direct dependencies between services. As a faster, more tactical

approach, town crier events might be more advisable since they are typically quicker to

implement but avoid applying it frequently.

Finding a middle ground or the Goldilocks sweet zone might be tricky and require a

more profound knowledge of the overall architecture, thus the importance of involving

the consumers. We often argue if the solution will survive the test of time and try to do

futurology of possible use cases. Still, sometimes a more pragmatic approach of the

current use cases might wield better results than optimizing the solution for use cases

that might never happen. Try to follow an incremental approach, involve the existing

consumers and design for those use cases, and then iterate on the most appropriate

design.

8.6  Denormalized Event Schema
As the microservice architecture becomes more complex and services become more

fine-grained, you might encounter the challenge of needing the information of several

event streams. Handling several event streams can be a challenge due to the difficulty of

managing concurrency and consistency of the different data sources. This section will

discuss how we can overcome this challenge by denormalizing the event schema.

Data being distributed across different components is a consequence of moving to a

microservice architecture. As we discussed, this has several advantages but also proves

to be one of the most difficult challenges of distributed architectures. Although many

use cases adapt well to this distributed nature, some use cases don’t. Instead, they need

a more comprehensive and aggregated view of the information. Providing an aggregated

and denormalized view can prove extremely difficult without complicated solutions or

falling into the trap of building a monolithic service. Also, the strategies we discuss in

Chapter 6 are extremely useful to solve concurrency and ordering; however, they require

the consumption of a single event stream. If a service consumes data from different

services, the various events can have different granularities and routing keys.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

344

For example, the shipping service is in charge of shipping orders from a warehouse

to the user’s address after the payment is processed. The service would likely need to

consume events from three different services: the order, inventory, and product service.

The service would require a denormalized view of order with the information of the

products, stock, and warehouses to process each order. This example is illustrated in

Figure 8-7.

Figure 8-7.  A process manager can make a denormalized view of an entity
relevant for a boundary

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

345

To build an aggregated view of the order, we can use a process manager to join the

information from the different streams in a larger denormalized schema. The order

service events would only contain information about the order, the inventory events

about the stock, and the product events about the products. The process manager would

be responsible for merging each order’s information into a larger event relevant to the

shipping domain logic.

We mentioned before how each boundary could have a view of the entities of other

boundaries with only part of the information relevant to that boundary. However,

the inverse is also true; the view of an entity can also be larger. The order entity in the

shipping boundary is larger and more comprehensive than the remaining services,

reflecting in larger denormalized event schemas.

The process manager acts as an anti-corruption layer and enriches the order data.

This way, the shipping service that owns the shipping domain logic can process the

orders without dealing with the complexity of merging several event streams. The

internal order event stream in the shipping boundary also effectively reflects the view of

the order inside the shipping boundary and might be useful for other services, such as a

read model.

The caveat is guaranteeing the process manager doesn’t accrue extensive

responsibility. The process manager is in charge of adapting and merging information

and creating a denormalized view of the events; it shouldn’t have substantial domain

logic if any. Using denormalized event schema often produces larger events which have

the challenges we discussed in Section 8.3. Still, the advantage of applying event routing

and dealing with concurrency and order by design often surpasses the impacts of larger

events.

8.7  Schema Evolution in Event-Driven
Microservices
Event schema is as essential as API contracts and often as difficult to change. Inserting

a breaking change on an API can be highly complex and require the alignment of all

consumers. The same applies to event schema, although there are some strategies we

can follow to ease that transition. This section will discuss which kinds of changes are

safe to do on event schema and detail those strategies working through some practical

use cases.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

346

Event schema changes through time; we might need to add new information or

descope old one in light of new use cases. The changes to the event schema can have

larger or lesser impacts depending on the change’s nature. More often than not, we can’t

simply change schema and consumers at the exact same time. Changes to the event

schema are prolonged during a period where services adapt to the new changes. It is also

vital that anyone changing event schema is aware of the impacts. Enforcing compatibility

rules is also a good approach to avoid accidental or unforeseen impacts. Some

serialization systems, like Avro,10 can implement these rules and make them transparent

across producers and consumers and avoid harsher changes in the schema.11 There are

typically four compatibility types when evolving schema: backward, forward, full, and no

compatibility.

8.7.1  Backward Compatibility
Consumers can read events produced with an old schema with the new schema. It

allows consumers to read events with both old and new schema. Let’s illustrate an

example of a backward compatibility change with the event in Listing 8-4.

Listing 8-4.  Order created event example

1 OrderCreatedEvent

2 {

3 OrderId: 15251212,

4 ProductId: 1147421,

5 Address: "9980 Rock Maple Street",

6 Quantity: 1,

7 OrderedAt: "2021-01-23T18:25:43.511Z",

8 UserId: 12168,

9 UserName: "John Allan"

10 }

Let’s say we create a new service to manage the user information and no longer want

to publish the user’s name in the order events. Removing the UserName field would be a

10 Avro home page in http://avro.apache.org/
11 Article in confluent documentation, “Schema Evolution and Compatibility,” https://docs.
confluent.io/platform/current/schema-registry/avro.html

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

http://avro.apache.org/
https://docs.confluent.io/platform/current/schema-registry/avro.html
https://docs.confluent.io/platform/current/schema-registry/avro.html

347

backward compatible change. Consumers that have already updated to the new schema

(the OrderCreatedEvent without the UserName) would be able to consume events with

an old schema (event with a UserName field); they would ignore the old field.

Backward compatible changes can be especially useful when producers and

consumers design a new schema and make it available before the functionality. The

event schema is available; consumers can update to the new schema even though the

producers are still publishing events with the old one. Once the functionality is available,

the service can publish the new schema since the consumers were already updated.

It also might be helpful when replaying events from a stream with an old event

schema. If the event schema evolved to different versions and wasn’t upscaled (old

events converted to the latest schema), backward compatible changes allow consumers

to reprocess old event streams if needed.

8.7.2  Forward Compatibility
Consumers can read events produced with the new schema with an old schema. Even

though consumers didn’t update to the new schema, they can still receive events with

the new schema.

For example, in Listing 8-4, if we needed to add a country field in the event, it would

be a forward compatible change. In most situations, consumers with the old schema

(without the country field) would be able to consume events with the new field; they can

simply ignore it.

Forward compatibility is especially relevant when producers develop new features

and publish events with the new schema, and consumers will be updated in the future.

Since this is frequently how new features are implemented, guaranteeing forward

compatibility is often incredibly useful to manage new developments.

8.7.3  Full Compatibility
Full compatibility is the combination of backward and forward compatibility.

Consumers can read new events with old schema and old events with new schema.

Since full compatibility requires the ability to define a default value for removing or

adding new fields, it is only supported by some message formats. The JSON format,

for example, doesn’t support fully compatible changes, unlike Protobuf and Avro, for

instance, which support optional fields.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

348

Imagine if we wanted to add a description field in the event in Listing 8-4. It is a

forward compatible change, but it isn’t backward compatible since consumers with a

new schema wouldn’t know what to fill in the description field when receiving old events

without that field. However, if we were able to define a default description when the

description isn’t present, that would make the change fully compatible. The same can be

said for non-forward changes when we remove a field.

8.7.4  No Compatibility
There might be changes that aren’t in any way compatible. Some updates to the

schema change it in a way they are utterly incompatible for consumers with a different

version. For example, if we changed the UserId in Listing 8-4 to an UUID, it would be an

incompatible change. Consumers with the new schema wouldn’t be able to handle old

events, and consumers with the old schema wouldn’t be able to handle new events.

Incompatible changes can be hard to manage since, with a typical topology,

consumers and producers would have to update the schema simultaneously. In a

distributed architecture, this is often impossible. Since each service is independent

and has segregated deployment procedures, coordinating a simultaneous change is

exceptionally challenging.

8.7.5  Managing Changes
Forward, backward, and full compatible types are illustrated in Figure 8-8. These

compatibility types with careful coordination support the incremental evolution of the

schema. If we support any of these three compatibility types, we can manage schema

evolution without substantial changes, just coordination.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

349

But what about cases where we need more structural and non-compatible changes?

For example, in Listing 8-4, how could we change the address field from a string

to a structured object containing the address data in segregated fields? Listing 8-5

exemplifies the new event schema.

Listing 8-5.  Order created event example

1 OrderCreatedEvent

2 {

3 OrderId: 15251212,

4 ProductId: 1147421,

5 Address:

Figure 8-8.  Backward, forward, and full compatibility types

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

350

6 {

7 "StreetName": "Rock Maple Street",

8 "StreetNumber": 12,

9 "City": "Orlando",

10 "State": "FL",

11 "Country": "USA",

12 }

13 Quantity: 1,

14 OrderedAt: "2021-01-23T18:25:43.511Z",

15 UserId: 12168,

16 UserName: "John Allan"

17 }

The change in the address field type is an example of an incompatible change; the

only way to apply it to the event is to change consumers and producers simultaneously.

However, changing both consumers and producers is likely risky and impossible or

impractical. Instead of applying the change in a single transition, we can divide it into

two steps: transforming the incompatible change into a forward compatible change and

then into a backward compatible change.

We can add the new address structure along with the existing one. Adding a new

field is a forward compatible change; consumers with the old schema can still process

this event. Publishing events with the new field allows consumers to adapt to the new

structure sequentially. We might have several different applications consuming our

events; each of them will have different priorities and roadmaps; by exposing a new field,

we give the flexibility to each consumer to change to the new structure in the correct

timing. Once all consumers adjust to the new format, we can remove the old address

field being a backward compatible change.

A reasonable approach is to define a max period to maintain the old field and let

consumers adapt. Having a period instead of doing the change in a single moment is

easier to manage; we let consumers adjust to the new data incrementally. If anything

goes wrong, they can roll back to the old field, being also a safer and more resilient

approach.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

351

8.7.6  Event Stream Versioning
Applying the incremental evolution we discussed before can be a good approach. Still,

it might not be practical when we need to do a substantial redesign of the event schema

or discontinue an event and replace it with a new one. In those situations, we need a

more sustainable approach to manage schema evolution. This subsection will detail how

event versioning can be a relevant approach to those situations.

Migrating schema can be risky, even traumatic when not managed correctly. As with

most developments we deploy to live, we want to avoid big bang releases. We want to

guarantee changes are incremental, and when they go wrong, we can roll back to the

previous version. One way to safeguard these guarantees is to use stream versioning.

Each event schema version is published to one stream; when we need to evolve the

schema and create a new version, we create a new stream with the new schema.

Figure 8-9 illustrates an example of this approach.

Figure 8-9.  Using one stream per event schema version

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

352

The order service evolves the schema of an event from version 1 to 2. Initially,

it starts to publish the version 2 events to a separate stream while also maintaining

the version 1 stream. The consumers, in this case the shipping service, can make the

required changes to adapt to the new schema. Once all consumers use the new event

schema, the order service can descope the old schema and only use the latest one. The

order service should also republish all the existing events in the old schema stream

to the new one in order to guarantee the event history and that the new stream has all

relevant data.

This approach allows the consumers to gradually move to the new stream without a

big bang release. If anything goes wrong, they can also roll back the consumption to the

old stream. Publishing to two streams has the disadvantage of guaranteeing every event

is published to both streams or none; we have to ensure both are consistent and have the

same data. To do so, we can use one of the strategies we discussed in Chapter 7. Kafka

also supports transactions when publishing events to two streams12 simultaneously.

8.7.7  Using a Downscaler/Upscaler When Evolving Event
Schema
Profound changes in the event schema are often associated with a change in a domain

concept or leaving some kind of legacy representation we no longer want to support.

Using stream versioning has the disadvantage of the service in charge of the domain

having to maintain the logic to generate the old event schema until all consumers adapt

to the new one, which can take a considerable amount of time. An alternative to this

approach is to segregate the legacy logic into a separate component commonly known as

a downscaler. This subsection will work through the same use case in Figure 8-9 but with

a downscaler approach.

Sometimes it can be challenging to maintain the old schema when we do substantial

changes. For example, imagine if we moved the logic that managed the user’s address

to a service that manages users. We would need to remove the address information

from the event in Listing 8-5. Publishing events with the old schema would require

maintaining (or fetching) the address information from that service. It wouldn’t be

beneficial to the order service to maintain that logic until all consumers adapt to the

12 Article by Apurva Mehta and Jason Gustafson, “Transactions in Apache Kafka,” November 17,
2017, www.confluent.io/blog/transactions-apache-kafka/

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

http://www.confluent.io/blog/transactions-apache-kafka/

353

new paradigm. In order to maintain the responsibility of the order service focused on

managing the orders, we could delegate the legacy logic to a different component, a

downscaler. Figure 8-10 illustrates the same example but with a downscaler.

The downscaler uses the information from the new order events and the user events

to maintain the old order events. This pattern has the advantage of keeping the order

service (the owner of the domain) clean and focused only on the vision we have for the

domain, without the additional complexity of dealing with legacy events. Once all the

consumers use the new version, we can discontinue the downscaler. The downscaler

Figure 8-10.  Using a downscaler to segregate the logic to maintain the events with
the old schema

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

354

only has the responsibility to maintain the old schema and is only relevant while they

are needed. This approach is an example of leveraging the high decoupling nature of

event-driven architectures and the flexibility of microservices to segregate legacy logic

to contained services. Once the old logic is no longer needed, we only discontinue

the service; we don’t have to change anything in the order service. It can evolve freely

without waiting for the consumers to adapt. The inverse (adapting an old version

schema to a newer version) is also possible with the same approach using an upscaler.

This pattern is relevant when consumers are expected to take a considerable

amount of time to adapt to the new schema. Otherwise, it might not be worth the effort

of creating and releasing an individual service. We also don’t need to create a separate

component; the downscaler can be a separate module on the order service as long as

we can maintain it decoupled from the surrounding logic. The pivotal point is when

we want to discontinue the logic, it should be straightforward and not affect the main

service logic.

8.8  Summary
•	 Event storming can be a valuable strategy to model your business

process according to the flow of events. It provides a collaborative

way to obtain a higher level of understanding of the domains and

temporal business flow. The event storming session’s output events

are also valuable to design the service’s domain events and technical

schema.

•	 There is common information relevant to most events, like the

correlation id or version. These generic properties are often best

shared with a generic structure like an envelope or event headers.

•	 Consumers handling town crier events are notified of changes in

an upstream domain. The service requests additional information

when the event schema doesn’t have all the required data. Partial and

small events are usually useful when consumers need to react to the

specific change that triggers the event. But when the consumer needs

to request additional information through synchronous requests,

other options are typically more beneficial.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

355

•	 Consumers handling bee events keep an internal state about the

event’s entity. It is more aligned with the event-driven mindset than

requesting the information through a remote request but has the

disadvantage of spreading the event’s state across several services.

•	 Having the consumer’s needs and use cases in mind is a pivotal

concern to design event schema. It can significantly simplify the

architecture and avoid complicated solutions on the consumer’s side.

•	 Consumers should be able to make the decisions they need using

only the information in their domain and the event’s information.

This approach will contain the dependencies between each service

and enable a truly decoupled scalable architecture.

•	 We can use a process manager to denormalize event schema and

enrich events with additional information to simplify consumers.

•	 There are four compatibility types: forward, backward, full, and no

compatibility. Forward, backward, and full are useful to evolve the

schema incrementally without substantial changes in the ecosystem.

The no compatibility type requires more complex solutions.

•	 To manage more profound and structural changes in event schema,

we can use stream versioning or a downscaler/upscaler.

Chapter 8 Choosing the Correct Event Schema Design in Event-Driven Microservices

357
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_9

CHAPTER 9

How to Leverage the User
Interface in Event-Driven
Microservice
Architectures
This chapter covers:

•	 Using an aggregating layer with API composition to build information

for the UI

•	 Applying UI composition both by modules, pages, and sections to

interact with distributed data

•	 Using backends for frontends to provide a denormalized view of the

data

•	 How task-based UIs can be relevant to manage the asynchronicity of

event-driven architectures

•	 Using event-driven APIs to support responsive UIs

As we build a fully segregated, highly scalable, top-of-the-line microservice

architecture platform, we tend to forget who’s at the end, using the functionality,

often a user interface. You might have heard of the three-mile island incident in

Pennsylvania in 1979, where a nuclear power station’s reactor partially melted and

caused a radiation leak that led to the evacuation of thousands. It is the most significant

incident of commercial nuclear power plant history of the United States. Even though

there were no injuries, it had the potential to make the whole area uninhabitable for

https://doi.org/10.1007/978-1-4842-7468-2_9#DOI

358

the foreseeable future. The entire chain of events that caused the incident originated in

a misunderstanding in a UI. The nuclear reactor primary system’s relief valve became

stuck and stayed open for an extended period after a failing close command, allowing

large quantities of nuclear reactor coolant to escape. The lack of coolant led to the

reactor meltdown. Why didn't the operators close the valve manually? A light in the

interface lit up when the valve was open and went out when the valve was closed. But

the light went out when the system sent the signal to close the valve, not when the valve

was physically closed. So, the computer sent the signal, the light went out, but the valve

didn’t actually close, which led to the operators not noticing the valve was open. If you

work around event-driven services and eventual consistency for enough time, this type

of issue feels too familiar. There is a difference between informing the user that an action

was done and waiting to signal the change only after it took place.

Not all of us have the sole mission to build a microservice platform; some of us have

the pristine purpose of delighting users with aweing interfaces. Although I would take

the challenge of handling eventual consistency over aligning every element in a reactive

web page every day, there is an eye-watering wonder in watching a complex architecture

do its work through a UI perspective.

Microservices add a layer of complexity to traditional UI approaches; fetching

information becomes a non-trivial task due to the high data fragmentation. Some

use cases might need an aggregated view of data from different domains. When each

domain is isolated by a segregated service with an independent database, retrieving

an aggregated view of the data across domains can be exceptionally challenging. The

platform exposed by the microservice architecture should be agnostic of the user

interface since a myriad of clients can access it; there can be desktop users, mobile

users, even outside interactions with APIs. The platform should support those use cases.

However, being abstract enough for the different use cases often brings challenges on

how to answer specific use cases with acceptable performance.

This chapter will work through some examples of how we can overcome these

challenges and explore some approaches to implement communication with the

user interfaces. Although some of them can be tackled by the UI layer, they might be

inappropriate for more complex, data-intensive use cases. Event-driven architectures

are built in a way where we can easily share, transform, and build different views of data

accommodated for more complex use cases. Events are also aligned with the reactive

nature of UIs; building a bridge between the two can be exceptionally valuable, as we

will discuss at the end of the chapter.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

359

9.1  Using an Aggregating Layer to Build a UI
in a Distributed Microservice Architecture
In a typical monolithic application, the backend could feed the UI with aggregated

information in a trivial way since all data often sits in the same database. As we segregate

each domain and distribute the domain’s data into separate services with independent

databases, fetching information from different domains can be cumbersome. This

section will approach the use of an aggregating layer to facilitate the fetch of data in the

UI and discuss the impacts of API composition.

Let’s say we have a UI for an eCommerce platform that displays the product listing,

the user’s current order information, and the recommendations for similar products that

the user bought recently. Ideally, we want to retrieve all data from the backend in a single

request and display it in the interface. However, different parts of the data will likely sit in

different domains and different services. Figure 9-1 illustrates this example.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

360

The filtering and aggregation logic would also be centralized in the single frontend

application and in one deployable unit. This kind of approach usually suffers from the

drawbacks of monoliths we discussed in Chapter 1. Releasing new functionality when

several teams have ownership of the same application might be challenging to manage.

Also, the UI has to make three separate requests to fill a single screen. The excess

of requests can be troublesome due to mobile users’ network speed and bandwidth

limitations, for example. The data fetched from the microservices might not be adapted

to the needs of the UI, for example, the product service might return all the product

information even though the UI might only need the product name.

Figure 9-1.  A UI fetching different information from several services

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

361

A typical approach we can use to improve this situation is to use an aggregating

layer between the microservices and the UI. Instead of the UI requesting information

from each microservice and aggregating it, it would request the information from the

aggregating layer, as illustrated in Figure 9-2.

Figure 9-2.  Using an aggregating layer to fetch and transform data for the UI

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

362

The aggregating layer has the logic to fetch, join, and transform data in the best

format for the UI. This way, instead of making three separate requests, the UI makes one

that returns only the required information. By decreasing the number of requests and

the size of the data requested by the UI, we optimize the request’s response time and the

required bandwidth.

Although we optimized the requests for the UI, this generic component in charge

of orchestrating the requests to the microservices might become a monolith in its

own right. As we add more microservices and the different types of UIs keep growing,

so does the aggregating layer. As the UI supports various use cases, user experiences,

and devices, managing all the different requirements in a single application can be

challenging. This kind of segregating layer between the internal microservice platform

and the outside clients tends to grow and become a bottleneck to delivery.

These two patterns, a single frontend application and using an aggregation layer, are

typically best for small applications with full-stack teams that develop both the UI and

the platform. As with monoliths, it’s often beneficial to resort to these patterns while the

application is simple and doesn’t support many requirements. As the application grows,

the more challenging it is to manage.

9.2  Backends for Frontends (BFFs)
An aggregating layer can be challenging to manage as the application grows and

incorporates more use cases and different user experiences. Chapter 1 discussed how a

monolith could become a constricting knot to business growth; an aggregating layer can

suffer from the same drawbacks. Since it is a piece that glues the frontend and backend

together, it has a pivotal role in the continuous delivery of value. For example, if we need

to add more product information to a product listing, we might not only need to change

the product listing UI and the product service but also the aggregating layer. If every

other UI needs to do the same, all deliveries touch the aggregating layer, potentially

becoming a bottleneck. This section will discuss backends for frontends as a way to solve

that challenge.

The functionalities we expose on our microservice platform are often designed

to be generic and agnostic of the use case. For example, our platform might expose

several REST endpoints with conceptual resources for the external applications to

interact with, like order, product, stock, etc. In fact, the functionalities supported by the

microservices are focused on their domain and usually exposed as a generic concept any

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

363

interface can interact with. For example, we might design the order service in light of the

order fulfillment business flow and expose it according to that design, which might or

might not be aligned with the needs of the UIs. This mismatch is not necessarily a bad

thing; the microservice platform should follow the domain concepts and expose more

conceptual functionalities since it can be used by a myriad of use cases, ranging from

graphical user interfaces to integrations with external systems. However, the mismatch

between the platform functionalities and the needs of the UIs needs to be addressed

somewhere. As we discussed, an aggregating layer could be an option; however, it can

quickly become bloated and struggle to keep up with each different use case.

That’s where backends for frontends come in. Instead of grouping every use case

in a single application or delegating that responsibility to the UI, individual backends

support the functionalities for specific UIs. For example, the product listing UI we

discussed in Section 9.1 could be supported by a specific backend built for that use case.

Other UIs like the order details UI and mobile interfaces would be supported each by its

own backend, as illustrated in Figure 9-3.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

364

In the example, we have a product listing and an order details UI hosted on a

web browser and a product listing on a mobile device. Each of the three use cases is

supported by its own backend, tailored for that purpose. There’s usually concern about

avoiding coupling the microservice platform design to the needs of the UI applications.

For example, the order management platform functionalities should be agnostic of

the order management application UI design. If another UI or even an integration

with an external system decides to use the platform’s functionalities, it should do so

without further developments. Backends for frontends can fill that gap and adapt the

requirements of the UI and platform without the concern of coupling to specific UI

needs, since they are built for that purpose.

Figure 9-3.  Each of the different UIs is supported by a backend built for that use case

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

365

The example raises the question of how granular we should go on the design of

the backend. For example, do we really need two product listing backends? Well, a

reasonably good approach is to understand the use case and how the user interacts with

the application. The web UI would have information about recommendations and the

order details; however, we might not display all of those sections in a mobile UI due to size

and bandwidth constraints. The mobile UI would also likely show fewer products than a

web UI would, and perhaps with a different interface (the way we go through the products

could be different; on a web UI, we could use paging, while in a mobile, scrolling could be

more appropriate). Those might be strong reasons to have an independent backend for

each. The organization of the teams is also an important factor. If the same team develops

both the web and mobile UI, it might be reasonable to have only one backend. As with

microservices, having a backend accruing too much responsibility and several teams

working on it can be good indicators to build a finer-grained one.

When there are separated teams for backend and frontend, BFFs can bring benefits

to abstract the downstream platform functionalities and provide higher segregation of

responsibilities. BFFs might not benefit simple applications where all functionality can

be centralized in a single layer without dependencies, since they add complexity to the

overall architecture. A reasonable approach is to use them when there is a complex logic

to aggregate several services and a high diversity of use cases and frontend technologies.

BFFs still have limitations in larger data sets with more comprehensive search

requirements. Saving state in BFFs, which is not unheard of with Redis and other

technologies, might not be the best approach to a backend dedicated to serving a

UI. BFFs and the patterns we discussed in Section 9.1 both rely on API composition,

which can be hard to manage in certain use cases. Section 9.4 will detail these limitations

and discuss an approach to solve them in event-driven architectures.

9.3  UI Decomposition Pattern in Microservice
Architectures
As we discussed, one way to fetch information for a UI is to request data from the

microservices. We can further optimize the requests by using an aggregating layer

that fetches, joins, and shapes data to the UI needs. However, as our UI grows and

requirements evolve, so do the responsibilities of the UI. The UI application can grow

and suffer from the same limitations of monoliths. This section will discuss how we can

decompose a single UI application into smaller parts.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

366

When UIs are responsible for a limited array of responsibilities and are simple and

straightforward, we might benefit from using a single UI application. Like backend

monoliths, a small team working in a single application might benefit from having a

single application rather than dealing with the complexity of managing several smaller

ones. However, as the application grows and accrues more responsibility, the developing

teams also grow. Boundaries might become faded, releases become more complex and

less common, and teams spend increasing amounts of time coordinating developments.

A pattern that arose to answer those difficulties is micro frontends. It relies on

segregating the UI into smaller independently developed and deployed applications.

Different teams own different micro frontends. It also provides the opportunity to have

full-stack teams that own a smaller domain in the architecture and can implement

both the UI and platform functionalities. Full-stack teams often can deliver value more

consistently than having different teams for the backend and frontend and manage

dependencies between the two. However, this approach requires the right company’s

context and ability to do so; but it might be more flexible delivery-wise than segregated

platform and UI teams. Micro frontends can typically be implemented by application

decomposition, page decomposition, and section decomposition, which are detailed by

the following sections.

9.3.1  UI Application Decomposition Pattern
Application decomposition relates to segregating different purposes to different

applications. It can be a valid approach when decomposing a single larger UI application

into smaller ones. A comprehensive UI might aggregate several distinct responsibilities,

which might benefit from having a segregated codebase, different team ownership and

release cycle. It shares the same mindset of deconstructing a monolith into microservices;

building smaller UI applications with a clear purpose for a set of domains can promote

domain segregation. It can also be a catalyst for smaller teams to build functionality from

top to bottom, from the microservices to the UI, as we discussed before.

Clearly independent domains, use cases, and even user groups gathered in the

same application can be signals that the UI application has too much responsibility and

might benefit from segregation. For example, an eCommerce management application

might benefit from having a segregated order fulfillment application and a customer

management application, as illustrated in Figure 9-4.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

367

In this example, the order fulfillment flow and the customer management

application have two different purposes and business flows. Situations like this might

benefit from dividing applications and building micro frontends for each use case.

Ideally, each application would map to a single microservice; however, it can be hard to

achieve as microservices get more fine-grained. The customer management application

is a good choice for this approach; the team that develops the user service can also

build the customer management application. The order fulfillment application, since

it comprises more significant responsibilities and concepts, might depend on several

services; in those cases, we might benefit from finer-grained segregation like the

following two patterns, page and section decomposition.

Figure 9-4.  Using different applications for different purposes and business flows

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

368

9.3.2  UI Page Decomposition Pattern
Page decomposition decomposes the application into a more fine-grained level by each

page. We can look at an application by having different pages. For example, an order

fulfillment application might have the functionality to manage stock, oversee the flow of

the order, request order shipments, organize shipping providers, etc. Each functionality

might be supported by a different set of pages, as illustrated in Figure 9-5.

Figure 9-5.  Different use cases are supported by different pages, which relate to
segregated services

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

369

The functionality to manage stock is supported by the inventory and product service;

the order management pages are supported by the order service. In this case, the

inventory service might depend on the product service to support the full functionality

of the stock management pages, since the stock by itself might not mean much and

might need to be enriched in the product information. However, this dependency

doesn’t need to be a direct synchronous dependency; the inventory service can build a

custom view of the product data using the product event stream to support the UI.

The main advantage of this approach is not having the UI or an intermediate layer

to request and aggregate data from several sources. The decomposition by page helps

to have finer-grained segregation inside the same application, which might help to

segregate responsibilities and boundaries. It also often translates more cleanly to the

service platform. If we have pages for stock management, they will most likely rely on

the inventory service, order fulfillment on the order service, shipping on the shipping

service, and so on.

Page segregation often has a good translation to the Web; the navigation will be

page-based which is aligned with the nature of the Web and has further synergy if

different services are involved for each page. SPAs (single-page applications) became

popular as a way to design applications to fit in a single page. SPAs have several

advantages; for example, most resources (like scripts, CSS, HTML, etc.) are loaded

one time which often makes the application faster. However, they can quickly become

bloated for more complex applications; navigation often involves scripting. Multi-paged

applications, on the other hand, often lead to simple developments; to navigate, we

simply go to a different location on a separate page without the complex logic SPAs often

have. Although they might not map so cleanly for mobile applications, they can be a

good choice for more comprehensive applications on the Web.

9.3.3  UI Section Decomposition Pattern
There are use cases that might translate cleanly to a page and a microservice. A stock

management page, for instance, might be a reasonable use case to apply it. However,

there might be use cases where the entire page functionality might rely on several

different services. This kind of aggregated view becomes an increasing concern as we

build more fine-grained services. Another similar, more fine-grained approach we can

take is to segregate the UI by sections.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

370

The example we discussed in Figure 9-1 had a UI that had a product listing, current

order information, and recommendations for relevant products. Each section of the page

has a reasonably segregated functionality which translates to different services, thus

the need to aggregate results from various services on the UI or an intermediate layer.

A different approach could be to compose the UI into different micro frontends for each

section, which have their source in different services, as illustrated in Figure 9-6.

Figure 9-6.  Relationship of different UI sections to independent services

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

371

Each section uses functionality provided by different services; for example, to list the

product information, the product listing frontend can rely solely on the product service. We

might still need to do three separate requests to provide the UI’s full functionality. Still, having

segregated sections for each use case, we can adapt to show only a subset of the sections on

UIs more sensible to bandwidth limitations (like mobile), depending on the page’s use case.

An important consideration is the ability to build independent sections backed by

independent micro frontends. Each section can be individually deployed, meaning we

can implement new functionality on the recommendation section and deploy it without

changing the product listing and order information section. There’s still the need of

a UI to stitch the sections together; however, the main functionality is supported by

the section’s frontend. This flexibility to segregate into different frontends facilitates

the collaboration of different teams to the same UI, which could be hard to do with an

application or page decomposition.

It also promotes the build of full-stack teams; the product listing and the product

service could be developed by the same team and deliver value independently. The ability

to have a team with autonomy to deliver new features from top to bottom often facilitates

delivery and makes delivering value faster and more straightforward for the business.

When we can segregate use cases into different pages, a page decomposition can be

more beneficial. With page decomposition, we can avoid the complexity of composing

and supporting the communication of different sections. Section decomposition can be

a valuable approach in complex and more comprehensive single page UIs that provide

a wide range of features. It can be a good approach to segregate responsibilities and

provide a scalable way for different teams to contribute to the same UI.

9.4  The Limitations of API Composition
Section 9.1 discussed how the UI or an aggregating layer fetched information from

the microservice platform using synchronous requests. Aggregating data from several

microservices can be a valid approach when the data is small and is centralized in a

small number of services. For example, to build a UI to provide the details of an order,

we would likely need a couple of requests to the order and product service. On the other

hand, large sets of data and requirements to aggregate data from different sources can be

troublesome to deal with. Fetching and aggregating information from different sources is

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

372

usually referred to as the API composition pattern. As you might recall, we briefly discuss

API composition in Chapter 4; this section will further detail and work through a use

case detailing the limitations of this approach and when it is most helpful.

In the example we discussed in the beginning of the chapter in Figure 9-1, different

areas of the UI use different information. In that situation, it might be manageable

since each section doesn’t have a strong relation to the other ones. The product listing

doesn’t have a strong relationship with the recommendation and order section, for

example. But aggregating data from different sources can be extensively limiting when

a single component has to merge the information and provide it in the same section.

For example, the listing page would likely have to provide a more aggregated view of the

product catalog with information relevant from different domains. An example of a UI

with this functionality is illustrated in Figure 9-7.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

373

The product listing page provides information about the product description,

current available stock, and price of the item for the user’s country. It also allows the

user to filter products by category and define a price range. These kinds of requirements

are fairly simple use cases; in a real situation, a more comprehensive list of filters would

likely be available along with sorting capabilities.

Figure 9-7.  Example of a product listing page providing information from
different sources

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

374

Using API composition, the application would request the information from each

individual service, which in simple use cases might be straightforward. However, when

there is a need to do more comprehensive operations on the data across several services,

it becomes extensively challenging or even prohibiting in data-intensive use cases. In

this example, the listing page displays six products; it might be affordable to request

the six products from the product service and the price and stock quantity from the

pricing and inventory service; it would likely only take three requests. What if we apply

a category filter? It would be similar; we apply the filter in the request to the product

service and fetch the results information from the other services. However, what if we

filter by category and use a price range, for example, all clothing items with a price

lower than 50$? We would need to apply the category filter to the product service and

the price filter to the pricing service. If we request the six clothing products from the

product service and then fetch the price, only a subset of them might be lower than 50$.

We would need to make a series of subsequent requests until we find a set of products

that oblige all criteria; the number of needed requests can quickly become infeasible.

Imagine now we only want to display products with stock; we would need to fetch results

from the three services that oblige to all filters. If we add sorting, it gets even trickier.

Eventually, more comprehensive searches are required by the business. Using

API composition in these use cases with considerable quantities of data will require

overwhelming requests by the UI or the aggregating layer, often leading to poor

performance. Perhaps we can afford making a few requests to fetch information,

but when there are hundreds of thousands of entities in each service, it becomes

unacceptable to fetch all data from the downstream services and join it in memory. It

also would have a considerable impact on the resources of the component aggregating

the responses. Imagine if the products that fulfill the results aren’t on the first pages,

the component would have to fetch page by page, keep the results, join them with the

responses of the other services (which might also be at the end of the result list), and

select the ones that comply with the filters. If hundreds of users made the same request,

it would definitely impact the component’s memory and CPU. ElasticSearch actually

works in a similar way1 and warns about the impacts of deep paging, which might bring

down nodes due to lack of memory. By applying this strategy to complex requirements,

we would likely suffer from similar limitations.

1 �Article in ElasticSearch documentation, “Paginate search results,” www.elastic.co/guide/en/
elasticsearch/reference/current/paginate-search-results.htm

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

http://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.htm
http://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.htm

375

Some requirements might need an aggregated view of the data to support more

comprehensive ways to look at the information. Event-driven architectures are designed

in a way that supports data sharing efficiently. We could continuously build an optimized

view of the data by handling the different event streams, as illustrated in Figure 9-8.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

376

Figure 9-8.  We could build a denormalized view of the data using the event
streams of each service

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

377

This approach is very similar to the CQRS pattern. Each service acts as the write

model and owns the rules and logic of each domain, while the catalog service simply

builds a denormalized view of the information of each service. This view is optimized

to the searching requirements and is able to support a more comprehensive view of

the data. An essential consideration in this approach is guaranteeing the domain logic

exclusively relies on the respective service; for example, the pricing domain logic can’t

exist in the catalog service, solely in the pricing service. The catalog service should

only handle the information relevant to the use case it is supporting. For example, the

discount rate might be relevant information, but if there isn’t any use case to support it,

then the catalog service should ignore it (using an anti-corruption layer, for example).

An important pitfall is to transform the catalog service into a monolith in its own

right. If more fine-grained services start to appear, we might feel the need to increasingly

add functionality and different kinds of searches to the catalog service. It really depends

on the use case, but following the same approach of BFFs, using a model per use case or

user experience might be a sensible approach. If the service has too much responsibility,

we should consider splitting it.

Another important concern is the ownership of the service. Ideally, the same team

would be able develop the UI and own this component to allow the implementation

of new functionalities without dependencies on other teams. Developing the backend

functionalities based on the event streams and the UI, features tend to be delivered

faster. However, depending on the organization might be hard to find the skills to

develop both components.

API composition is still valid; for example, a UI that displays the user’s order details

might only need a couple of requests to the downstream services to retrieve the required

information, and we would hardly benefit from having a dedicated service to build a

denormalized view. However, it has limitations; if you find API composition has enough

performance to support the use case, it usually is the easiest and most straightforward

solution. In use cases that require a more comprehensive view and filtering, building a

dedicated model might be a reasonable approach to guarantee acceptable performance.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

378

9.5  Task-Based UIs
Until now, we discussed the difficulties we can find when adapting the backend

functionalities to the frontend UI requirements and the patterns we can use to overcome

those challenges. However, we haven't detailed how the UI could actually look like.

Although UI design and the concepts of UI user experience are beyond the concepts

of this book, event-driven architectures introduce different challenges in the way users

interact with the application and the overall system. A reasonable understanding of

those challenges and a deliberate approach to UI design can substantially smooth the

interaction users have with the platform. This section will discuss how task-based UIs

can help ease that interaction and provide a smooth transition to an event-driven,

domain-oriented architecture.

Traditional UIs are typically CRUD-based. We open a UI, the application fetches

the current state, we change the data in some forms and submit the changes, and the

application persists the new state in the database. For example, imagine we had an

application to create products for an eCommerce platform, we could have a UI with

several forms to submit the product’s information, for example, the brand, category,

price, stock units, etc. Once we filled in the required fields, we could submit the product

data, as illustrated in Figure 9-9.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

379

The product information is submitted in a single interaction; it’s limited to data entry

rather than a business process. This kind of approach is simple, straightforward, and

easy to understand and benefits simple use cases where the application doesn’t need to

model a complex domain. The process is limited to transferring and manipulating a DTO

(data transfer object); the service fetches the data, maps to a DTO, and passes it to the UI;

the UI changes it and sends it back to the service to be saved.

As you might recall, when we discussed DDD, commands and events should reflect

the user’s intent; the very business domain value is imbued in their design. In CRUD

style UI, the user’s intent is often lost or has very limited meaning; the interaction is

resumed in manipulating the current state.

Figure 9-9.  Example of a CRUD UI to submit a product edition

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

380

Following this approach with more complex domains and more intricate business

processes often leads to the application failing to capture the real domain workflow.

You probably experienced this firsthand a time or another when the people operating

the software had to edit information on a series of applications or UIs. The workflow of

the operations is written down on a piece of paper or in someone’s mind (like go to UI

X and edit something, go to UI Y and change something else). Is that an intricacy of a

given system/business, or just the failure of the system to model what the user needs to

do? Certainly, this kind of design is valuable in simpler systems; more complex domains

and processes might benefit from different approaches. The example in Figure 9-10 also

highlights an additional challenge when mapping to a microservice architecture; there

are different sets of information belonging to different domains.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

381

Having a UI aggregating different domains together isn’t necessarily bad, and it often

is a requirement by the business. But changing information in different domains usually

implies different actions and intentions. It also begs the question of how to guarantee

the consistency of a single update. For example, by pressing the Submit button, the

inventory service might save the stock information successfully, while the product

Figure 9-10.  CRUD UI coupling together different domains

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

382

service might fail to submit the product information due to an error. What should we

show when one service fails but the others succeed? Displaying an error message saying

“Submission failed for part of the information” might be an approach but certainly is a

dubious user experience.

Task-based UIs are typically built to help the user advance in a journey and guide

him to accomplish a process. Each change also maps more cleanly to the user’s intent,

making it easier to map to commands for each domain. For example, we could model

the UI to translate each user’s action by segregating the different tasks, as illustrated in

Figure 9-11.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

383

Figure 9-11.  Example of task-based UI for product creation

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

384

Each context has a different screen and maps to a respective service and domain. For

example, the screen to manage the product’s price is dedicated to that task, reflecting

the user’s intent more clearly. This design also helps to translate the user actions to

commands. A change product price command semantic is more meaningful and has

more domain value than an edit product command.

Task-based UIs usually map more cleanly and have higher synergy with distributed

architectures due to building commands for each segregated task. Each task has a

separate command, which most likely will translate to an event with similar meaning,

paving the way for more meaningful and domain-rich event streams. Event streams

that capture the user’s intent tend to be more valuable and more relevant for future

requirements.

Typically, simple domains with straightforward processes don’t benefit much

from this kind of approach. If the user’s operations are CRUD in nature, then a CRUD

approach is obviously more beneficial. Event-driven architectures typically model

complex domains; however, don’t fall into the trap of applying this kind of design

everywhere. In complex architectures, there are several domains; some are intricate

enough to benefit from this approach, while others might hardly benefit from it.

Arguably, the most useful benefit we can extract from task-based UIs, even when we

end up not using them, is the focus on why and how the user is trying to achieve its goal.

The usability and the nature of the business process are the cornerstones of the design.

9.6  Event-Driven APIs
The asynchronous nature of event-driven APIs often transforms an otherwise

synchronous operation into an asynchronous one. For example, the order fulfillment

process in a single-process application like a monolith could be a synchronous process

for the order submissions that have all the conditions to be fulfilled. However, in an

event-driven architecture, the order fulfillment is likely the choreography of several

event-driven services. Asynchronous operations might be more common throughout

the architecture. To ensure a friendly web experience, we might shift from synchronous

CRUD UIs, where feedback was immediate, to UIs that show the progress of the request

as it advances in the workflow, displaying a status or alerts to the user.

With the advent of reactive UIs, event-driven frontend implementations are

becoming increasingly popular. They have high synergy with the asynchronous

approach; as the state advances, asynchronous updates can be delivered to the user

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

385

seamlessly. Although older protocols like XMPP (Extensible Messaging and Presence

Protocol) are still popular and traditionally used to provide this functionality, more

recent and lightweight alternatives are available. WebSockets2 have become quite

popular recently as a solution for two-way communication and bi-directional traffic.

Server-Sent Events3 is also a valuable alternative approach, although focused on pushing

new data to the client in one-way communication. WebHooks4 are also an interesting

approach to implement one-way notifications to clients using custom callbacks. All three

approaches are valid choices for asynchronous real-time communication, much like

event-driven microservice architectures.

It’s peculiar how both backend and frontend embrace event-driven mindsets

(although with very distinct use cases, tools, and at different scales), but the

communication between them often uses synchronous HTTP API calls. In fact, for a long

time, there was a scarce number of options to provide seamless backend asynchronous

interfaces for UI applications to use. Microservice message brokers like Kafka or

RabbitMQ might not be suitable to deliver asynchronous events to UI applications due to

challenges with firewalls, lack of granular role or resource-based access control, and lack

of clear standards and straightforward ways to access asynchronous events.

In fact, traditional synchronous APIs like REST are a common functionality in most

platforms in no small measure due to clear, well-established standards. Standards like

OpenAPI5 simplified the development and integration of different systems without

the need for complex coordination. AsyncAPI6 is increasingly filling that gap in

asynchronous APIs. It is an open source project based on OpenAPI that seeks to provide

a specification for asynchronous implementations with a message-driven foundation.

It supports several messaging protocols and provides tools to define the event schema

and semantics to connect, subscribe, publish, and interact with the API. It also supports

a wide range of tooling, similar to OpenAPI, like code generation, API discovery, and

event management. It can be a valuable approach for documenting and designing your

asynchronous APIs.

2 �Protocol definition in “The WebSocket Protocol,” December 2011, https://datatracker.ietf.
org/doc/html/rfc6455

3 �More information in “Server-send events,” https://developer.mozilla.org/en-US/docs/Web/
API/Server-sent_events

4 �Wikipedia page in “WebHook,” https://en.wikipedia.org/wiki/Webhook
5 �Specification in “OpenAPI Specification,” February 15, 2021, https://spec.openapis.org/oas/
v3.1.0

6 Specification in “AsyncAPI Specification,” www.asyncapi.com/docs/specifications/v2.0.0

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://en.wikipedia.org/wiki/Webhook
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
http://www.asyncapi.com/docs/specifications/v2.0.0

386

9.6.1  Event-Driven Combined with WebSockets
Let’s work through an example of how an asynchronous functionality could interact with

the UI using WebSockets. Let’s say we have a UI to create products and the business only

considers the product created once it is available on the product catalog to be managed.

The product catalog is updated asynchronously, so it would be useful for the user to

know when the product is available on the catalog. Figure 9-12 illustrates this example.

The user creates the product through the UI application, which triggers a request

to the API component and the product service. The product service creates the product

and publishes an event signaling that change, which the product catalog service uses to

Figure 9-12.  Asynchronous product creation using WebSockets

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

387

register that product in the catalog. The product catalog, which likely handles different

streams to enrich a denormalized model of the products (similar to what we discussed in

Figure 9-8), also publishes an event signaling the product creation.

The UI application first registers itself on the API and requests a WebSocket

connection. The client manager is responsible for keeping track of the registered clients

and handling the event signaling the product creation in the catalog. Each time a

product is created, the client manager handles the event and informs the UI of successful

product creation.

Why do we need the client manager component? Can’t we just handle the events

from the API? The challenge of delivering events to the frontend applications is

delivering the correct events to the right clients. All components can (and likely will) be

horizontally scaled, meaning there will be several instances of each component. If there

are several product catalog services, UI applications, and API instances, how can we

guarantee the events will be delivered to the correct client that created the product?

A possible solution could be for each of the API instances to handle all events and

filter those that correspond to the clients connected to that instance. It can be an option

for low-scale use cases; however, it quickly becomes impracticable for large event

streams. The client manager can help manage all existing clients and deliver each event

to the corresponding API instance, which has a WebSocket connection to the client.

9.6.2  Event-Driven Combined with Server-Sent Events
In use cases, we don’t need a bi-directional communication channel; Server-Sent

Events can be a valid alternative. Server-Sent Events is a subscribe-only protocol that

provides a way to subscribe to an event stream and is a lightweight approach to deliver

asynchronous data to the frontend applications.

The approach to the use case we discussed in the previous section with Server-Sent

Events remains largely unaltered. Instead of using a two-way connection to the backend,

the UI application opens a persistent connection to the API with the EventSource7

object. The client manager component forwards the event stream to the API. Figure 9-13

illustrates the same use case we discussed before.

7 More information in https://developer.mozilla.org/en-US/docs/Web/API/EventSource

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

https://developer.mozilla.org/en-US/docs/Web/API/EventSource

388

Instead of having a bi-directional connection, the delivery of the event stream is

one-way. Server-Sent Events also supports straightforward error handling, generating

error events that can be more sustainable dealt with in the frontend application. One

main difference from WebSockets is they use HTTP requests to maintain a persistent

connection (also getting multiplexing over HTTP/2) instead of a dedicated protocol.

WebSockets tend to be more heavyweight in mobile use cases; since they establish

a two-way connection, they require a full-duplex antenna, which in most use cases

impacts the bandwidth and power consumption. Server-Sent Events implements

Figure 9-13.  Asynchronous product creation using Server-Sent Events

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

389

unidirectional traffic through HTTP which, compared with WebSockets, tends to reduce

the total data usage and battery power.8

9.6.3  Event-Driven Combined with WebHooks
Another alternative to implementing one-way asynchronous communication to the

frontend applications is through WebHooks. WebHooks work in a reverse flow that we

are used to; the subscriber registers a callback that the server will call to deliver the

event stream (they are often dubbed as reverse APIs). Similar to Server-Sent Events, the

communication occurs through HTTP and doesn’t apply any specialized protocol.

The main difference from the other alternatives is the callback mechanism. Let’s

work through the same example we discussed in the previous section using WebHooks.

The product creation flows through the product and product catalog service, and we

deliver the corresponding event to the frontend application, as illustrated in Figure 9-14.

8 �Full article in Martin Chaov, “Using SSE Instead Of WebSockets For Unidirectional Data Flow
Over HTTP/2,” February 12, 2018, www.smashingmagazine.com/2018/02/sse-websockets-
data-flow-http2/

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

http://www.smashingmagazine.com/2018/02/sse-websockets-data-flow-http2/
http://www.smashingmagazine.com/2018/02/sse-websockets-data-flow-http2/

390

The frontend application subscribes to the event stream with an HTTP request to

the API and registers a callback URL, which the backend will use to deliver the event

stream. The product creation flows through the services, and the product catalog service

will eventually generate an event signaling the change. The client manager will handle

that event and deliver it to the callback module responsible for delivering the stream to

the frontend application. To do so, the module will typically make a POST request to the

callback API providing the new events.

The limitation of WebHooks resides in relying on an HTTP callback endpoint

to deliver the events. Hosting a publicly exposed HTTP endpoint in user-facing

applications like mobile apps or a browser is often impractical or even infeasible due to

implementation and security concerns. Typically, WebHooks are applied to frontends or

BFFs which are servers and can sustainably implement this feature. However, they are

an interesting option when we need one-way communication for push notifications or

event delivery.

Figure 9-14.  Asynchronous product creation using WebHooks

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

391

9.7  Summary
•	 An aggregating layer can help optimize the bandwidth and response

time when we need to aggregate data from different services. It’s

typically best applied to simple applications and contained use cases.

We should avoid the pitfall of adding too much responsibility to the

aggregating layer; if code has a place to gravitate to, it typically will.

•	 BFFs can abstract the downstream platform functionalities and

provide higher segregation of responsibilities, thus avoiding adding

too much responsibility to a single aggregating layer. They also

enable a close optimization of the UI needs without the worry of

coupling platform features to specific UI use cases.

•	 We can decompose a UI application into smaller components to best

adapt to the underlying microservice platform. Decomposition can

be done at the application, page, and section level; we can adapt each

pattern to the most adequate use case.

•	 API composition is a useful and straightforward solution for

obtaining the data to display in a small number of requests. However,

in use cases that require comprehensive filtering and ordering

requirements, building a dedicated model might be a reasonable

approach to guarantee acceptable performance.

•	 Task-based UIs usually have higher synergy with distributed

architectures due to building commands for each segregated task.

They also are typically built to help the user advance in a journey and

guide him to accomplish a process. Each change also maps more

cleanly to the user’s intent, making it easier to map to commands for

each domain.

•	 Event-driven APIs can be a valuable alternative to traditional

synchronous APIs in event-driven architectures. We can use them

to asynchronously inform the user of changes in the ecosystems in a

sustainable manner.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

392

•	 To implement event-driven APIs, we can use WebSockets, Server-

Sent Events, and WebHooks. WebSockets provide a way to implement

two-way communication between the UI and the backend. Server-

Sent Events and WebHooks are good options for one-way event

delivery and push notifications.

Chapter 9 How to Leverage the User Interface in Event-Driven Microservice Architectures

393
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2_10

CHAPTER 10

Overcoming the
Challenges in Quality
Assurance
This chapter covers:

•	 Understanding the different kinds of tests and their scope in the

overall architecture

•	 The challenges of guaranteeing the quality of the end-to-end flow in

event-driven services

•	 Using contract testing and consumer-driven contracts as core

concepts in the quality assurance process

•	 Strategies to safely validate functionality in the production

environment

As systems evolved from overly complex single units to constellations of highly

distributed smaller components, in many ways and in many businesses, quality

assurance seems to be left behind. It’s peculiar how we evolved our architecture designs,

development processes, and deployment strategies to accommodate the paradigm shift

of highly scalable distributed architectures, but the practices of quality assurance remain

roughly the same.

https://doi.org/10.1007/978-1-4842-7468-2_10#DOI

394

We came a long way from the manual validations and lengthy regression testing

of traditional applications and embraced, as we should, the joys of automated testing.

However, to guarantee the correctness of the end-to-end flow as the end user sees it,

we often rely on the same approaches we always did, by deploying all functionality in a

quality environment and running manual or automated validations against the whole

system. There is a mismatch between this approach and the very core principles of

distributed microservice architectures and of independent deployment procedures and

autonomous release cycles.

Despite the other kind of difficulties and limitations, monoliths provide the means

to easily perform end-to-end validations. By having a single deployable unit, it’s often

possible (although not always easy) to deploy the application and its dependencies to

test the end-to-end flow. When dealing with an architecture composed of dozens or

even hundreds of independent components, it easily gets extremely complex to perform

pre-production validations against the whole end-to-end flow. The practices of DevOps

and continuous delivery promote a fast feature delivery flow in order to provide fast

feedback. The autonomous release cycle of each independent service in microservice

architectures is a way to achieve it. However, how are we able to accomplish

independent deployments of each component while validating the integrity of the end-

to-end flow?

The typical test categories ranging from unit to integration tests still apply to

event-driven architectures. They provide higher decoupling characteristics which we

can combine to achieve the more sustainable approaches we discuss in this chapter.

Depending on the use case and the conditions of your company, you might still need to

invest in complex end-to-end tests; however, as we will discuss at the end of the chapter,

we will challenge you to adopt more sustainable and scalable approaches by combining

a pre-production quality assurance process with safe production validations.

10.1  Microservice Testing Approaches and How
They Relate to Event-Driven
There’s a lot of confusion in the definition of the several types of tests. Integration,

component, and end-to-end tests are often used interchangeably and change their

meaning depending on the context. In this section, we will explain the different

categories of tests, their scope, and how they apply to event-driven services.

Chapter 10 Overcoming the Challenges in Quality Assurance

395

There are several categories of tests in software engineering; you most likely came

across several of them while developing new functionality. In the past, manual testing

was a substantial step of the quality assurance process, although thankfully most

businesses have been focusing on a more automation mindset. Most types of tests still

apply to event-driven services, the same as they would in a traditional application or a

monolith.

Event-driven architectures often imply a considerable number of components and

frequent releases. As we will discuss in the next section, a strong automation mindset

is pivotal for the success of these systems. Manual testing is still useful, but rather than

having people doing a suite of repetitive tasks on every release, test automation frees

them to do more meaningful work by interacting with the application in unexpected or

creative ways (through, for example, exploratory testing).

10.1.1  Unit Tests
Unit tests validate functionality on a section of code inside a service. Typically, in the

context of a function or class, there isn’t any hard rule on how small they should be.

Unit tests should be present throughout the several layers of the service’s architecture.

You might recall when we discussed the event-driven service’s architecture in Chapter 3

and worked through the N-tier and clean architecture. Each service typically has several

layers with dedicated responsibilities. Each of these layers will have unit tests to validate

the layer’s functionality on the smallest possible scope. Figure 10-1 illustrates how unit

tests fit in the overall event-driven architecture.

Chapter 10 Overcoming the Challenges in Quality Assurance

396

Figure 10-1 illustrates the inventory service with several layers. It consumes events

from the order service and publishes events to the product catalog service. It also

does a synchronous request to the location service. Unit tests sit on each of the service

layers validating solely the layer’s functionality. If the piece of code the test is validating

has a dependency on an external resource, like the database or external service or

even another layer, the test mocks that request and focuses solely on the functionality

implemented by that piece of code.

Although unit tests are fast and usually performant, it doesn’t mean they are free. A

pitfall I often see companies with strong unit testing culture fall into is creating unit tests

for every line of code, whether it makes sense or not. Remember unit tests are code and

Figure 10-1.  Unit tests on an event-driven service

Chapter 10 Overcoming the Challenges in Quality Assurance

397

have a maintenance cost; we need to maintain them. Code with hardly any logic likely

doesn’t need a test. People often measure quality by test code coverage; although it can

be an indicator (among many) alone, it doesn’t mean much, and struggling to have 100%

code coverage won’t benefit you much. Instead, it might hinder your velocity due to

the maintenance overhead. Be pragmatic, measure the cost, and understand if the test

makes sense.

Having said that, unit tests are the fastest feedback loop we have access to, they

usually are extremely fast to run, and we can expect applications to have large quantities

of them. They are extremely useful to validate small scoped functionality. They also are

good as an indicator of the code organization; if a unit test is considerably large or has

extensive responsibility, it’s often an indicator the code might need to be refactored and

divided.

10.1.2  Component Tests
Unit tests are great to validate localized and small scoped functionality inside a service

layer but provide no guarantees on how the several layers interact with each other to

compose the overall service features. Component tests fill that gap; they validate the full

code flow inside a service, going through every layer, but only in that service’s scope,

removing external dependencies.

Component tests don’t exert external dependencies like the database, external

services, or message brokers; they focus only on the functionality inside the boundaries

of the service. You can see it as testing anything the service does as a single process,

without running anything else. Figure 10-2 illustrates the component tests scope.

Chapter 10 Overcoming the Challenges in Quality Assurance

398

In this case, suppose the inventory service reacts to order created events to process

stock, saves state in the database, and publishes a stock changed event. A component

test for this flow could be the full flow of the order event processing without using the

database, the message broker, or the location service.

A way to easily abstract the external dependencies is using dependency injection.

While running the tests, the service can inject mock implementations and fake the

normal or abnormal responses of external dependencies validating the correctness of

the service.

Figure 10-2.  Component tests scope in an event-driven service

Chapter 10 Overcoming the Challenges in Quality Assurance

399

Component tests are useful to validate the soundness of the sequence of steps or

overall workflow of the service in a way unit tests aren’t supposed to due to their limited

scope. Well implemented, they can also be extremely fast due to the lack of direct

dependencies; everything can be run in memory.

However, since they abstract the dependencies to the external resources, they don’t

prevent bugs in their direct implementation. For example, if the inventory service is

using a SQL database, we could write a component test to validate the order created

event processing logic, but if we had an issue in the SQL query, the test wouldn’t likely be

able to detect it since the repository would be mocked.

10.1.3  Extended Component Tests
A way to mitigate the risk of issues in the implementation of the external dependencies

(like the example of the SQL query we just discussed) is to use an extended version of

the component tests. Instead of completely removing the external dependencies, we

can use the in-memory version of those dependencies. For example, if the service has a

database, we can use an in-memory implementation of the database. It can behave the

same way a database would, and it would allow validating the soundness of the query.

Figure 10-3 illustrates the same use case but with in-memory components of the external

dependencies.

Chapter 10 Overcoming the Challenges in Quality Assurance

400

As you can see in the example, the external dependencies were replaced by their

in-memory equivalent. The exception is the location service; it likely won’t have an

in-memory equivalent available since it is a service built in-house, but we can replace it

with a mock or a stub. Extended component tests can paint a comprehensive scenario of

the service and provide exceptionally valuable validations while not suffering from the

drawbacks of managing external dependencies. They are able to validate the interactions

with external dependencies while still being able to run extremely fast. The lack of

external dependencies also facilitates the setup, running the tests locally, and simplifies

Figure 10-3.  Extended component tests with in-memory dependencies

Chapter 10 Overcoming the Challenges in Quality Assurance

401

the release process; since the release pipeline won’t need to manage the dependencies,

only the service and the tests.

If they sound too good to be true, it’s perhaps they often are. In theory, it’s a great

setup, but implementing them in practice is often hard due to the inexistence of the

in-memory replacements of the external dependencies. There are some providers

of in-memory database equivalents, for example, Microsoft’s in-memory entity

framework provider,1 that can provide similar features of a real database without using

external components. However, these providers often fall short of the actual, real-

life implementations. Often implementations don’t fully match the full features of a

real database. Transactions, the ACID guarantees, aren’t real when run in memory;

everything works instantaneously and without the restraints of a real database.2 H2

database engine3 is also an interesting alternative to emulate databases in memory;

however, it suffers from similar limitations and doesn’t provide compatibility to all

functionality. What people often end up doing is having an integration test against a

real database validating the same thing, which raises the question of why to have the

extended component test in the first place.

If you are using Java, Kafka has an embedded Kafka implementation which is a very

interesting in-memory equivalent. Since both Kafka and ZooKeeper (for older Kafka

versions) are Java applications, it is possible to run them from Java code. However,

it doesn’t reflect all implications of a real Kafka cluster.4 ElasticSearch also had an

embedded alternative that could be used for testing; however, it was discontinued due

to the difficulties of maintaining compatibility with new features (in this case security-

related5).

A very promising alternative is using Testcontainers.6 They can provide an easy way

for tests to use and run containerized instances of most databases. RabbitMQ, Kafka,

and most message brokers provide containers that are compatible with this approach.

1 �More information in “EF Core In-Memory Database Provider,” October 27, 2016,
https://docs.microsoft.com/en-us/ef/core/providers/in-memory/?tabs=dotnet-core-cli

2 �Full article by Jimmy Bogard, “Avoid In-Memory Databases for Tests,” March 18, 2020,
https://jimmybogard.com/avoid-in-memory-databases-for-tests/

3 �Home page at www.h2database.com/html/main.html
4 �Full article by Ivan Ponomarev and John Roesler, “Testing Kafka Streams – A Deep Dive,” August 18,

2020, www.confluent.io/blog/testing-kafka-streams/
5 �More details by Clinton Gormley, “Elasticsearch, the server,” August 30, 2016, www.elastic.co/
pt/blog/elasticsearch-the-server

6 Home page at www.testcontainers.org/

Chapter 10 Overcoming the Challenges in Quality Assurance

https://docs.microsoft.com/en-us/ef/core/providers/in-memory/?tabs=dotnet-core-cli
https://docs.microsoft.com/en-us/ef/core/providers/in-memory/?tabs=dotnet-core-cli
https://jimmybogard.com/avoid-in-memory-databases-for-tests/
https://jimmybogard.com/avoid-in-memory-databases-for-tests/
http://www.h2database.com/html/main.html
http://www.confluent.io/blog/testing-kafka-streams/
http://www.elastic.co/pt/blog/elasticsearch-the-server
http://www.elastic.co/pt/blog/elasticsearch-the-server
http://www.testcontainers.org/

402

Although they aren’t actually component tests but are perhaps halfway between

integration and component tests (half-breed integration tests as we will discuss in

Subsection 10.1.5), they can provide a reliable way to set up real dependencies with real-

life scenarios. Unlike the H2 database engine, they provide full database compatibility,7

since the actual database runs in a container.

For most use cases we’ve seen, teams tend to struggle to find reliable alternatives

for external dependencies. But it really depends on the dependency; some of them

might have valuable in-memory alternatives which we can use. They can complement

integration tests well by limiting the number of integration tests and move most

validations to faster and more reliable component tests. But most often than not, the

alternatives are limited and can be used on somewhat niche or simple use cases.

10.1.4  Integration Tests
The meaning of integration tests has a lot of ambiguity, different references mention

different scopes, and there’s usually some confusion between component, integration,

and end-to-end tests. We will define them with arguably the most consensual

definition; tests designed to validate the communication and relationship with external

dependencies. The tests validate the actual interaction with external components like

databases, message brokers, other services, distributed caches, etc. We can approach

them in two ways, on a smaller scope by validating only the interaction with each

external dependency and nothing else or on a broader scope by validating the full

business flow including the external components.

In the context of event-driven services, they usually include the interaction with the

message broker but not with the service publishing messages. However, they usually

include services with a synchronous dependency like an HTTP request. Event-driven

services are decoupled by the event broker so it is a sound decision to relinquish other

services in the message flow to the broader end-to-end tests. The consequence of direct

synchronous requests between two services is higher coupling; thus, the requesting

service can be directly affected by an issue with the target service. Hence, integration

tests often include synchronous dependencies in their scope. Figure 10-4 illustrates the

scope of integration tests.

7 Further details at www.testcontainers.org/modules/databases/

Chapter 10 Overcoming the Challenges in Quality Assurance

http://www.testcontainers.org/modules/databases/

403

These tests are often slower and more brittle than the ones we discussed until

now. We need to guarantee there are the right conditions for the execution of the tests,

the database needs to have the relevant data, caches need to be cleared, the existing

messages in the broker must not affect the result of the tests, and so on. Guaranteeing

these kinds of conditions on a daily basis can be complex to manage and often originate

false positives. Containers can help with this; if we run containers and then remove them

on a per test or per test session basis, it can help with these issues.

The direct dependency on the location service can be even harder to tackle. We

need to guarantee we have a valid live version of the location service with relevant data

for our test cases. If the location service has several dependencies, it can be even harder

Figure 10-4.  Scope of integration tests

Chapter 10 Overcoming the Challenges in Quality Assurance

404

to manage since we have to guarantee each dependency is in a valid condition for the

service to respond. Guaranteeing all of these conditions is no small feat and raises

several questions on how to release the inventory and the location service. Should we

run these tests in every release of both services? We will further discuss these concerns

in Section 10.3.

10.1.5  Half-Breed Integration Tests
There’s a distinction between the service’s mainstream dependencies, like databases

or message brokers, and synchronous dependencies to other services, for example, the

dependency between the inventory and location service. Mainstream dependencies are

typically more stable and predictable. We aren’t continuously changing our databases or

message broker’s version; it remains stable for a considerable amount of time, and when

we change them, it often is a carefully scheduled operation.

However, other services on the architecture are being developed by fellow teams

in the organization which might deploy their services frequently. Each has its own

peculiarities in schema, data, configurations, and dependencies. Setting up a test

to validate the interaction between two or several services can be exceptionally

challenging due to the need to get everything right plus the need to maintain the quality

environment synced with the newly released versions.

A variation of integration tests that ease that process is to delegate the responsibility

to integrate other services in the ecosystem to the realm of end-to-end tests. Half-breed

integration tests mock or stub external service dependencies but maintain mainstream

dependencies like databases or message brokers. They can validate the service’s

functionalities on a broader scope and be more reliable since these dependencies are

often more predictable and easier to set up with containers. Figure 10-5 illustrates this

scenario.

Chapter 10 Overcoming the Challenges in Quality Assurance

405

These tests still need to maintain valid external components and guarantee the

coherency of the data and message queues. However, it’s only in the service’s direct

ownership, which greatly simplifies the test’s development for the team governing the

service. They don’t need to worry about other services outside their ownership.

The tests still validate the interaction with the location service, but by mocking

the request. In this case, using mocks is a good approach to simplify the overall setup

while guaranteeing the correctness of some interactions between the two services. We

no longer need to worry about deploying and maintaining a correct configuration and

relevant data on the location service; we simply mock the calls we need to validate the

flow of the inventory service. However, mocks suffer heavily from confirmation bias.

Figure 10-5.  Scope of half-breed integration tests

Chapter 10 Overcoming the Challenges in Quality Assurance

406

The teams will develop the mock’s expectations according to what they believe the

service will return, which can be troublesome when those assumptions are, or become,

wrong. Either way, it’s a great way to complement unit and component tests in a broader

scope and guarantee the correctness of the overall flow of the service.

An interesting way I observed teams implementing them is having the tests bootstrap

all the required preconditions for the tests and validating the end result. Figure 10-6

illustrates this approach with the inventory service handling of order created events.

Figure 10-6.  Example of half-breed integration tests with the order created event
flow in the inventory service

Chapter 10 Overcoming the Challenges in Quality Assurance

407

Before running the actual tests, we bootstrap the inventory database by setting up

data. For example, if the test case is when a new order is created, we decrease the stock

quantity by one; we might need to set up the existing stock quantity before actually

running the test. We also set up the expectations in the location service mock.

To trigger the start of the test, we publish an order created event to the inventory

message queue. The service will handle the event and produce a set of expected results.

For example, the service might decrease the stock and publish a stock changed event.

We can then wait for the stock changed event by consuming the inventory service event

queue. Once we receive the event, which signals the processing finished, we can validate

the event’s data and the state in the database. The main difficulty is to know when to

stop waiting for the event; some test cases might not even publish anything, and we

might want to validate that no event was published. For example, if the stock didn’t

change, the service won’t send a stock changed event. Typically, we use a timeout but

can increase the time the tests run significantly. An alternative can be sending a testing

purpose event at the end of processing the order event. When the service finishes the

processing, it publishes an event signaling the finish of the operation, whether it sent a

stock changed event or not. Changing the code to be testable is a common practice in

unit tests; however, in this case, it adds some complexity and adds code that is only used

by the tests.

An interesting alternative is to monitor the order created event queue and wait for

the inventory service consumer to acknowledge the successful processing of the event

(e.g., in Kafka, wait for the consumer group to run out of lag). This way, we can be sure

the service ended the processing without introducing additional developments in the

service.

Guaranteeing the tests are autonomous has high synergy with applying a container

approach to dependencies. We can run the database and message broker containers,

set up the initial schema and data, run the tests, and in the end clean everything by

disposing of the containers. This way, we guarantee no garbage data remains in a quality

environment or data from older test runs don’t end up affecting the current tests.

Mocking or stubbing the synchronous requests, like the dependency to the location

service, provides the decoupling of the service with the rest of the ecosystem and enables

autonomous releases. We no longer need to worry about configuring services out of

the scope of the service we are releasing, and overall the tests enjoy higher stability and

consistency. However, mocks are heavily biased, especially when defined only by the

consuming team, and releases are susceptible to defects in the interface interaction

Chapter 10 Overcoming the Challenges in Quality Assurance

408

between both services. No guarantee is made if the location service makes a change in

its contract or behavior. A new release of the location service can be deployed live with

its tests passing and break every other consumer.

To overcome this limitation, we can complement these tests with contract tests,

consumer-driven contracts, and production tests. We will further these subjects in

the remainder of the chapter. Another alternative is to use end-to-end tests, but they

suffer from even more constraining issues. Overall half-breed integration tests are a

great complement to component and unit tests, especially when we can’t use extended

component tests. They can provide broader scope validations of the behavior of the

service along with the correct usage of its external dependencies.

10.1.6  End-to-End Tests
End-to-end tests validate the system as a whole, typically its correctness according

to broad business rules. They often go well beyond the scope of a single service; they

validate the business flow across multiple services and provide high-level, technology-

agnostic, and business-facing validations. They are the type of tests that give the

most confidence in the system since they cover a large ground. However, they have a

mismatch with the distributed event-driven mindset, often have an overwhelming cost,

and maintaining them is often extremely challenging.

Except for integration tests, all test categories we discussed until now are in the

service’s scope; if we include any of those tests in the service release pipeline, the

service would only depend on itself. On the other hand, end-to-end tests include the

collaboration with several services; if we are to release any service, we need to run the

end-to-end tests. Figure 10-7 illustrates the end-to-end tests scope in the example we

discussed until now.

Chapter 10 Overcoming the Challenges in Quality Assurance

409

Not only the tests include the inventory service, its database, and message broker but

also the location, order, and product catalog service. It would likely also include other

upstream and downstream services, for example, the UI where the user submitted the

order and the shipping and pricing services.

Figure 10-7.  End-to-end tests scope

Chapter 10 Overcoming the Challenges in Quality Assurance

410

Releases

Since end-to-end tests target the entire microservice ecosystem, we must run the tests every

time we release any service within the test’s scope. These kinds of tests are slow by nature;

they typically involve several services with several dependencies, ranging from databases,

message brokers, distributed caches, etc. When the tests run into an issue, for example, if we

are doing a release of the location service and the tests are failing, every other release of the

order, inventory, and product catalog service would have to wait for the fix.

Remember when we discussed in Chapters 3 and 4 how services must be

independent and autonomous, how event-driven architectures potentiate this

characteristic and facilitate a truly continuous delivery mindset? This can easily escalate

to a step back in that mindset; a service is no longer autonomously released; it depends

on the successful implementation of several other services. It also leads to complex

lockstep releases and quickly escalates to releasing everything in a single moment, which

is what we need to avoid by adopting an event-driven architecture.

Data and Environments

Another substantially cumbersome challenge of end-to-end tests is state management.

Services without state are easier to handle in an end-to-end context since no data

bootstrap is needed. However, many services have data and need to have data initialized

in order to run test cases. This is a common challenge; we discussed it before when we

discussed integration tests, but in that case, the service only had to manage its data. In

end-to-end tests, each service has to have relevant data, and worse, all data need to be

consistent with each other.

In an integration test, the tests may initialize test data and run the tests against that

data set. With end-to-end tests, the services not only need to initialize their state but

need to make sure it is coherent with every other service. For example, it’s not enough

to set up test stock data in the inventory service, we also need to guarantee the external

identifiers like the products we assign stock to must be the same as the ones in the order

and product catalog service. The tests aren’t in charge of only one service but require an

orchestration across all services in the test scope just to set up the conditions for the test to

run. This necessity often requires intrinsic coupling between the overall flow and business

logic and the tests. This makes the tests exceptionally brittle and susceptible to changing

requirements. Often tests become more complex than the functionality under test.

Chapter 10 Overcoming the Challenges in Quality Assurance

411

The complexity of distributed architectures often makes teams build an integrated

quality environment where the end-to-end tests run. Maintaining this environment is

often complex and time-consuming. We need to guarantee the services are updated

every time a release is deployed live. It can be done automatically, but often the

intricacies of each service, their configurations, lack of discipline managing the data

stores and message brokers end up breaking the quality environment frequently.

It quickly leads to having individuals or full teams dedicated to maintaining the

environment stable.

Another downside of the data bootstrap in quality environments is leftover data

from previous test runs. Message brokers and data stores tend to be a dumping ground

for test data that often is responsible for causing the tests to fail with false positives. It

also further deviates the quality environment from production. A good approach to

this challenge is to build a system on demand, deploying containerized versions of the

services and dependencies to an environment, and clean everything up in the end.

However, the tests may take longer to run.

Governance

Since end-to-end tests span several services, it makes sense to run the tests in the release

of every service in the scope of the test. But that will likely mean several teams might

be involved in the development and ownership of those tests. Deciding who has the

direct ownership of the tests can be troublesome; we can assign it to a team that is highly

involved in the overall flow; for example, assign the order fulfillment test to the team

that owns the order service. However, it can get tricky to manage when those tests fail

because the stock wasn’t reflected on the product catalog service. That team has limited

context of that service; requesting assistance from the respective team might be the way

to go but harder to effectively do if they don’t have skin in the game.

Another alternative people sometimes take is to have a dedicated team to develop

those tests. This can be even more difficult to manage; that team has limited context

about the effective implementation of the services and makes the teams that own

the services even more detached from the whole process. This team often becomes a

gatekeeper for releases making teams losing even more autonomy.

A better approach can be to have the tests with shared ownership; each team is

responsible to contribute and develop the tests. If the tests fail, the team who is releasing

the feature is the driver to find the issue; if it involves other services, the corresponding

teams must help understand the issue; communication is key. A possible downside of

Chapter 10 Overcoming the Challenges in Quality Assurance

412

this approach is the lack of drive to resolve flaky tests; people trying to make the tests

pass for their release even if they have to retry the tests a few times (“a dog with two

owners dies of hunger”). However, it is a preferable approach to deal with the test’s

governance.

Approaches to Mitigate the End-to-End Tests Challenges

These are a few examples of the challenges of end-to-end tests. The context of end-

to-end tests often varies from company to company; however, here is some advice to

address these concerns:

•	 Do you really need end-to-end tests? Distributed architectures

require the correct approaches and techniques to quality assurance

rather than trying to apply old ones to a new context. We will detail

alternatives to them in this chapter and make an informed decision

whether they are worth the cost. Of course each company has its own

context and risk tradeoffs, so will yours, but ask yourself how many

end-to-end tests you need and if (or how) you can replace them.

Often it’s not about losing quality but making quality sustainable.

•	 Perhaps you don’t need to run end-to-end tests on every release

but rather on the end of larger projects or technical revamps. An

approach I saw used to some success in larger projects, is to have

each service deliver its features live, but disabled. Before enabling

the functionality, the teams ran an end-to-end test to guarantee there

are no issues in the high-level flow; if any is found, the team would

develop a component or unit test to guarantee it doesn’t happen

again. Typically, large projects or major restructurings benefit from

end-to-end tests; using them on an ad hoc basis and guaranteeing

continuous quality through other means might be a useful approach.

•	 Perhaps you don’t need to validate the whole end-to-end flow. Often

a segment of the whole flow is more critical than the remaining flow;

validating that segment has more value than exercising the complete

flow. Measure stability over test coverage and make informed

decisions.

Chapter 10 Overcoming the Challenges in Quality Assurance

413

•	 Using a containerized environment that bootstraps, runs the test

suite, and cleans everything up can be a good approach to difficult

state management issues later on. It can also be a stepping stone

for running the tests locally in the developers’ computers instead of

using a shared quality environment. Running the tests locally can

also be a good approach to avoid lockstep releases where an issue

in one service blocks the releases of the other services. However,

even when adopting infrastructure-as-code practices, this approach

gets trickier with complex flows. Not only bootstrapping the whole

constellation of services can be extremely confusing and time-

consuming, but also maintaining it requires substantial effort. With

high numbers of services, it might be hard to have a machine with

resources capable of running every service and its dependencies.

Focusing on a critical part of the end-to-end flow can be a reasonable

option.

•	 Guarantee autonomous management of data and event schemas,

event streams, and data stores. You must strive for guaranteeing the

setup of the environment is automatic. Every change in the schema

by the teams must have an associated script or process; the process

to deal with event’s breaking changes must be accounted for in

the quality environments in an automatic way, avoiding manual

corrections in the quality environments.

•	 If you do need end-to-end tests, guarantee you only have a very

limited amount. Most validations can be done by combining the

other types of tests (unit, component, and integration) and highly

contain the responsibility of end-to-end tests. Use them only for

critical high-level flows and focus on clear business processes.

End-to-end tests can be applied successfully to small architectures with a very

limited number of components which likely only one team manages. If this is your case,

it might make sense to have them; however, they tend to get worse as we add more

components and the architecture evolves. It gets even worse when we lose autonomy

to release functionality, which typically is severely aggravated when multiple teams are

involved in the same tests.

Chapter 10 Overcoming the Challenges in Quality Assurance

414

10.2  Applying Contract Tests and Consumer-Driven
Contracts to Event-Driven
Contract tests are often associated with schema validations, like breaking, forward, or

backward changes, as we discussed in Chapter 8. But they go further than that; they

validate the correctness of a producing service against the expectation of a consumer.

Automatic schema validation is pivotal in event-driven services and can be provided

by schema registries (like Avro in Kafka8). Contract tests go beyond agnostic schema

validation rules; they validate the inputs and outputs of producing services against the

needs of consumers. This section will discuss their scope in event-driven architectures

and how we can combine them with consumer-driven contracts.

Contract tests typically sit in the boundary of a service with an external interface. Their

focus is the compliance of the producing service with what consumers expect. Figure 10-8

illustrates the scope of contract tests in the same example we discussed until now.

8 �More details in “Schema Validation on Confluent Server,” https://docs.confluent.io/
platform/current/schema-registry/schema-validation.html

Figure 10-8.  Contract tests scope

Chapter 10 Overcoming the Challenges in Quality Assurance

https://docs.confluent.io/platform/current/schema-registry/schema-validation.html
https://docs.confluent.io/platform/current/schema-registry/schema-validation.html

415

In this case, the product catalog service consumes stock events produced by the

inventory service. An interesting contract test we could add to the inventory service

is guaranteeing every information needed by the product catalog service is being

published. We can use mock or in-memory replacements of the message broker to

achieve better performance and stability. However, many use cases benefit from having

a dependency to a message broker due to serialization and compatibility concerns. The

tests can guarantee the consumer is able to read the message by consuming the events in

the same way, using the same schema, serialization protocol, headers, etc. For example,

sometimes different consumers have different serialization protocols for different event

streams, and it’s easy to mess up the configuration. This way, we can have a broader

guarantee that the consumer will be able to read the message.

It can also guarantee some business logic the consumer is relying upon. Some events

might have data in some fields in certain situations. For example, if we have multiple

steps in the creation of a product, the first step might fill only the mandatory data, and

the remainder of the information will be enriched later in the process; for example, we

can create the product and add stock later. However, stock requires the size to exist in the

product; for example, we add stock to an XS size. In this case, the product service might

expect that all stock to be associated with a product size. A possible validation could be

when the stock is greater than zero, the size is also published. These kinds of validations

go further than direct schema validations; they guarantee an expected behavior in the

producer, which if broken will cause issues in the downstream components.

Until now, we discussed how the team managing the inventory service could

unilaterally add contract tests to the service. A valuable iteration of contract tests is

to align them with consumers, typically referred to as consumer-driven contracts. In

Chapter 8, we discussed the importance of consumer collaboration in the schema

definition. This approach takes that collaboration one step further; the team managing

the producing services has the mission to understand and guarantee the expectations

of the consumer services in direct cooperation with the consumer teams. Consumers

can even implement the tests in the producing service to guarantee their expectations.

Figure 10-9 illustrates this scenario.

Chapter 10 Overcoming the Challenges in Quality Assurance

416

If we run the contract tests for each release of the inventory service, we have greater

confidence that the functionality we are releasing won’t break existing consumers. They

also encourage communication between both teams. Communication is pivotal in

guaranteeing quality and understanding the needs of consumers; coding them down in

the form of tests is a great way to guarantee their expectations are being met. Ownership

of a correct message flow in every release is distributed to the different teams involved,

which usually helps to guarantee everyone is on the same page.

Business processes are often choreographed with a series of events in event-

driven architectures. Applying contract tests and consumer-driven contracts to every

component in the flow can be a way to guarantee more scalable validations of the end-

to-end flow.

Figure 10-9.  Inventory service consumer-driven contracts with multiple
consumers

Chapter 10 Overcoming the Challenges in Quality Assurance

417

10.3  Test Categorization and Purpose
The types of tests we discussed until now have different purposes and scope.

Categorizing the different kinds of tests can help make sense on how and when to

apply them. Brian Marick defined four quadrants for test categorization9 that helped to

clear a lot of misunderstandings when discussing the various categories. We can think

of it by having tests focused on verifying what is expected against finding unforeseen

corner cases or unexpected use cases. In the original Marick’s categorization, those

test categories can also be more oriented to business or technology, as illustrated in

Figure 10-10.

Using this categorization, we can find some examples for each quadrant:

•	 Q1: Fully automated tests oriented to verifying what we developed

works as we expect it to work. Can be unit, component, or integration

tests.

9 �See article “Agile testing directions: tests and examples,” August 22, 2003, www.exampler.com/
old-blog/2003/08/22/#agile-testing-project-2

Figure 10-10.  Test categories divided by their focus and purpose

Chapter 10 Overcoming the Challenges in Quality Assurance

http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2

418

•	 Q2: Automated (or manual) tests to verify if we developed the correct

functionality as defined by the business. Typically, functional and

acceptance tests, including business validations of the application.

•	 Q3: Manual exploratory tests dedicated to finding issues with the

application. These tests are creative in nature and are oriented to

people interacting with the application in unexpected ways.

•	 Q4: Tests to verify the non-functional requirements and technical

limits of the application. Can be performance and load tests, security

validations, and other quality attributes like availability, correctness,

or reliability. It usually relies on automation or specialized tools.

Although this categorization makes a lot of sense, some areas can be subjective. For

example, if an acceptance test finds an issue with the application, we could, if possible

and if small scoped enough, develop an automated unit test to guarantee the issue

doesn’t happen again. Unit tests can be used to guarantee the soundness of business

rules as long as they are small scoped enough (typically in the context of a specific part

of the code like a function), although that unit test would now be technology-focused

rather than business-focused.

Quality assurance practices have come a long way from the extensive manual testing

plans. It’s actually pretty obvious the advantages of not having a single person or a

team of individuals performing a repetitive set of actions every time there’s a release

(there’s even the tale of a test engineer who automated his job for six years without the

company noticing10). Test automation isn’t just smart, it becomes a necessary condition

to successfully scale a distributed architecture. If you think about it, extensive manual

regression tests might be an option in a single deployable component like a monolith,

but when you have to operate dozens or even hundreds of autonomous components

with several daily releases, it quickly becomes unviable to scale the number of manual

testers to cope with the growing number of releases.

However, it doesn’t mean there’s no place for manual testing. Repetitive tasks should

and need to be automated, but there’s a rightful place for curious and creative ways to

break the application. Automating repetitive tasks frees quality engineers to do much

more meaningful and creative work of interacting with the application in unforeseen

and unexpected ways through, for example, exploratory tests. Manual testing can also be

10 News in www.payscale.com/career-news/2016/05/programmer-fired-after-6-years-
realizes-he-doesnt-know-how-to-code

Chapter 10 Overcoming the Challenges in Quality Assurance

http://www.payscale.com/career-news/2016/05/programmer-fired-after-6-years-realizes-he-doesnt-know-how-to-code
http://www.payscale.com/career-news/2016/05/programmer-fired-after-6-years-realizes-he-doesnt-know-how-to-code

419

relevant for use cases where we simply can’t automate due to the effort or cost involved;

I mostly saw this happening with extensively large legacy applications. In event-

driven architectures due to the component’s high decoupling and the large number of

independent components, a strong test automation culture is advisable.

All the categories discussed in this and the previous sections are in the context of

pre-production testing. As we will discuss at the end of the chapter, production testing

approaches that we will discuss in this chapter can be categorized into the different

quadrants of Figure 10-10. Production testing is an increasingly adopted practice that

helps overcome the challenges of quality assurance in complex distributed systems and

can be extremely valuable as a complement to traditional pre-production approaches.

10.4  End-to-End Quality Without End-to-End Tests
For years, end-to-end testing was the quintessential bastion of quality and a beacon of

trust in the tempestuous releases of new functionality. In truth, they can be a valuable

quality assurance strategy in monolithic applications. However, as we discussed in

Section 10.1, they have serious downsides when applied to fully distributed microservice

architecture. Event-driven architectures nurture several fully decoupled, independent,

and scalable components, and as we will see in this section, end-to-end tests have strong

dissonance with the event-driven approach. The approach to quality assurance requires

different strategies and a shift in the traditional mindset.

Despite the adoption of microservice architectures, many companies continue to

have an approach to quality the same way they always did, by deploying all functionality

in an environment and running the test suite against the whole system. I always found

it peculiar how we faced the limits of monolithic databases with ACID properties by

moving to highly distributed architectures, featuring high numbers of components

asynchronously communicating with each other, often with different database

technologies with weaker consistency guarantees, and still managed to maintain the

consistency needs for the business to run. But our approach to quality is still deploying

and running tests against every single functionality in a single place. We were able

to develop patterns to deal with something as complex as consistency and state

management across distributed components, but why are we unable to have a similar

approach to quality assurance? Why do we need to apply the old quality assurance

approaches to a fundamentally new context?

Chapter 10 Overcoming the Challenges in Quality Assurance

420

In the same way, we don’t lock every single microservice database to achieve

atomicity; we shouldn’t deploy every single component and block each service’s release

to guarantee quality. The distributed nature of event-driven architectures requires

an approach to quality and quality assurance strategies that preserve boundaries

and independent releases. One of the most valuable characteristics of event-driven

architectures is the decoupled nature of its components. This enables the architecture

to be truly evolutionary; features can be implemented separately from each other;

services are autonomous and independently released. It allows for teams to truly own

their services and do their work without the shackles of dependencies, approvals, or

gatekeeping processes. End-to-end testing is a deliberate and confident step in the

opposite direction. We face all the challenges we discussed throughout this book

to achieve this clear segregation, single responsibility focus, well-defined domains,

autonomy, and decoupling and, many times, to throw it away in the quality assurance

process.

Adopting a truly decoupled and distributed architecture requires the correct

approaches to quality assurance, instead of forcing traditional techniques to a radically

different environment. One way to do this is to combine some of the strategies we

discussed in Section 10.1. We can approach end-to-end quality as the sum of the quality

of each component, as illustrated in Figure 10-11.

Chapter 10 Overcoming the Challenges in Quality Assurance

421

Each component needs to guarantee its quality independently, through unit,

component, and half-breed integration tests. Integration tests across several services

were intentionally left out since they suffer from many of the same downsides as end-

to-end tests, but at a smaller scale. Each service must guarantee its correctness through

its own tests, including its part in the end-to-end flow. It is pivotal that each team

has a higher-level vision of the larger flow in order to understand and implement the

validations of their components (this builds on the concepts we discussed in Chapter 4).

The compatibility with other services is guaranteed through schema validations,

contract tests, and consumer-driven contracts. Not only do they guarantee there are

Figure 10-11.  End-to-end quality as the combination of quality assurance
practices in each component

Chapter 10 Overcoming the Challenges in Quality Assurance

422

no unexpected changes in the event’s schema but also guarantee the expectations and

behavior of downstream services are maintained. This is the situation where the sum of

the parts is greater than the whole.

Typically, failures in the end-to-end flow map to one or a set of components,

which can validate that condition in the scope of only the corresponding components.

However, this approach requires close communication and alignment with each team,

which consumer-driven contracts intend to tackle, at least partially.

I wouldn’t say this approach is failproof, it isn’t; however, neither are end-to-

end tests. Maintaining a copy of the live environment is extremely expensive and

time-consuming, and the result is a poor reproduction of the live environment at

best. Production tends to be highly dynamic with differing usages, throughputs,

and conditions that vary through time. An environment that only runs the tests

doesn’t really stand near to the live conditions. These environments often use a small

number of machines with resources far smaller than production (to contain costs)

but fail considerably in replicating the performance and concurrent conditions of

live environments. They also typically stand in the same network host or in network

conditions that minimize or eliminate several network failures like network partitions.

They often only have a subset of the production data (if any) which can’t really

reproduce all the possibilities of data existing in production, for example, event streams

covering every current or past use case. Configurations, network topologies, and

connectivity conditions are often replicated but without any guarantee they remain the

same as the live environment. After all, how many times did we run end-to-end tests

only to find there were still issues after releasing the functionality?

End-to-end quality as the sum of its parts doesn’t guarantee there won’t be issues

either. Would you be able to write a test for every single condition a service can fail?

Probably not. Test suites excel in validating the known failures of the system. End-to-end

tests are just one approach, perhaps valuable in monolithic applications, but extremely

inadequate in distributed systems.

So, am I saying the only way is to live with the problem? Not at all. Pre-production

quality assurance techniques can be complemented with testing in production

approaches to mitigate many of these issues, which we will discuss in the next section.

Chapter 10 Overcoming the Challenges in Quality Assurance

423

10.5  Testing in Production
I know what you’re thinking, “I don’t always test my code, but when I do, I do it in

production.” Well, I’m pretty sure you probably have your own tales of testing in

production the same way as I have, but that’s not quite it. Testing in production has

become increasingly relevant in the context of microservice distributed architectures as

a way to complement pre-production tests or even as the only feasible way to provide

comprehensive end-to-end quality assurance guarantees. This section will discuss those

approaches and how we can use them in event-driven architectures.

As we discussed in the previous section, pre-production tests can have limited

coverage of the possible failure modes of a complex distributed system. It can become

even more challenging when usage patterns change over time. Trying to cover every

possible failure mode often requires such a complex testing logic and infrastructure

that can even match the system under test. Besides being limited, leaving the burden of

end-to-end quality assurance to exclusively pre-production strategies will invariably and

substantially delay the release and feedback cycles. With the right tools and practices,

we can use the production environment to increase our confidence in our quality and

release process in a sustainable and comprehensive way, instead of trying to use a poor

imitation of the live environment.

The most challenging aspect of implementing this practice is often getting people on

board with the approaches. People used to the traditional testing practices and oblivious

to the challenges of distributed architectures often frown at the very suggestion of testing

in production. Sometimes we put unmeasured faith in automated testing, perhaps the

same way as we did in dedicated quality teams that did manual regression testing in an

era before automated tests, without honestly facing the viability of alternatives. The live

environment is often looked at as a pristine forbidden artifact that shouldn’t be touched

(sometimes with good reason), but we should also consider that the correct approaches

can greatly benefit quality assurance processes without endangering the live conditions

(Cindy Sridharan has a great series of articles that further these topics that I recommend11).

To be fair, health checks to services deployed in the live environment are a way to test in

production. Often features are behind feature toggles, or we release functionality to only

a segment of users; all of this can be seen as testing in production. Business validations

occurring behind testing or sandbox users aren’t unheard of. Testing in production might

11 �Full articles by Cindy Sridharan, “Testing Microservices, the sane way,” December 31, 2017,
https://copyconstruct.medium.com/testing-microservices-the-sane-way-9bb31d158c16

Chapter 10 Overcoming the Challenges in Quality Assurance

https://copyconstruct.medium.com/testing-microservices-the-sane-way-9bb31d158c16

424

seem radical, but often they already are part of our processes, embracing them as what

they really are; a powerful tool to fully achieve end-to-end quality can provide a more

sustainable and transparent approach to quality assurance.

10.5.1  Shadowing
A common challenge of pre-production testing is the diversity, quantity, and accuracy

of the data. Shadowing (also known as mirroring) is a strategy to expose new releases to

production data without impacting the user. It can be extremely useful to guarantee new

releases are able to interact successfully with real, real-time requests.

We often use mock data or generate data for our tests. There is a range of tools to

generate random data based on given contracts (e.g., AutoFixture), which simplifies the

data generation process. Despite its usefulness, generated data is random or manually set

up, which always struggles to represent a comprehensive sample of the real production

data. Random data can easily generate scenarios that don’t make sense and even cause

instability in the test suite. For example, if we are generating a stock changed event, the tool

can easily generate random values for product identifiers with unexpected size. Although

it might be useful to test those scenarios, a test like that might fail in one run and pass

in the next. It is better to test deliberate scenarios than generating brittle tests through

random data generation, thus the need to carefully set up the random data. Random data

also tends to deviate considerably from real production traffic, and even when they are

accurate, they hardly mirror the variety of scenarios we find in production.

Mocked or stubbed data suffer from similar challenges. They are also particularly

susceptible to bias; we often set up mocked data with what we are expecting to

receive. What we receive and what actually exists in production can be very distinct. In

production, there are also edge cases with data that we don’t expect, and thus we don’t

create test cases for those use cases. This is often a source of issues with teams with a

high test automation culture. Unfortunately, when this happens, we can only detect

it in production, despite the high coverage we think our tests have. As an alternative

approach, we can also copy data from production. But typically we copy only a sample of

data, which differs greatly in quantity and might not have samples for every use case.

With shadowing, we can help prevent these issues by replaying current production

traffic to new releases. Let’s work through a use case; imagine we are deploying a new

version of the inventory service and its consuming order created events. Figure 10-12

illustrates this scenario.

Chapter 10 Overcoming the Challenges in Quality Assurance

425

In this example, we have the inventory service with three instances in the live

environment and a new version of the service we want to deploy. Before actually

installing live and replacing the existing instances with the new version, the new release

consumes concurrently the same events the live instances are consuming. For example,

if we are using Kafka, we can simply have a separate configuration for the pre-production

environment and use a different consumer group configuration for the new release.

Since the new version will have a consumer group and the three instances will share

a different one, the new version will consume the same events the three instances are

consuming.

It is important to notice the new release is deployed in the live environment the same

as a live instance and has access to all its resources, but with different configurations.

The main goal is guaranteeing the service is able to correctly process live traffic with the

Figure 10-12.  Shadowing in an event-driven service

Chapter 10 Overcoming the Challenges in Quality Assurance

426

new features. So the service will process the live event stream, and we can automatically

detect changes in error rate and have automatic validations of the service behavior.

We also need to guarantee the pre-production instance doesn’t effectively change

the live state. The new instance will consume the messages, apply its business logic,

but shouldn’t save state in the database or publish events to the event stream. We can

implement that by having different configurations that inject fake message broker and

database implementations.

An interesting metric to monitor could be the throughput of the service. But since we

are using fake implementations of the external dependencies, it wouldn’t be accurate.

We also wouldn’t be able to validate the implementation against a real database or

message broker. We can further elaborate on this pattern by having a separate data

structure or event queue with the pre-production data. Figure 10-13 illustrates this

scenario.

Chapter 10 Overcoming the Challenges in Quality Assurance

427

In this example, the new release reads from the live event stream and the live

database but writes to different structures than the live instances. For example, the new

release can publish to a staging queue inside the same broker and write to a staging table

inside the same database. This guarantees the new release is able to write successfully to

the external dependencies. We can also monitor relevant deviations in the new release’s

throughput since it should be roughly the same as the live instances (lag will be different

and likely to increase in pre-production since only one instance is processing against

three). We can also run automatic validations to compare both event streams and detect

Figure 10-13.  Shadowing in an event-driven service with live dependencies
interaction

Chapter 10 Overcoming the Challenges in Quality Assurance

428

deviations. If we are generating unexpected events or events with incorrect data, when

compared to the real live event stream, it would be an indication to invalidate the release

and automatically fail the deploy. We can do the same with the database’s state.

Shadowing can also be applied to synchronous requests, albeit with the support

of an external tool like a proxy. The proxy can duplicate requests to a pre-production

instance similar to what we discussed with the inventory service. Figure 10-14 illustrates

this scenario.

Figure 10-14.  Shadowing in with synchronous requests

Chapter 10 Overcoming the Challenges in Quality Assurance

429

In this example, the inventory service exposes an API to both writes and reads. With

the help of the proxy, we can duplicate a segment of the live traffic to the pre-production

instance. Some tools support this functionality out of the box; for example, HAProxy

supports this kind of functionality seamlessly.12 Reads don’t have any impact; we can

simply redirect a portion of the reads to the new version and validate its results against

the live instances. If we want to validate writes, we can take an approach similar to what

we discussed with purely event-driven services by writing to a staging structure and

validating both.

Shadowing is exceptionally useful by allowing us to test new functionalities against

real-time, live traffic without impacting the user. The downside is we have a new instance

consuming from live resources; although they usually can (and should) handle the

load of an additional instance, we need to guarantee the dependencies (like the broker

and database) are prepared for it. Either way, it is an especially valuable and simple

technique to guarantee new releases won’t run into issues when exposed to live traffic,

without the limitations of sampling data from production to quality environments.

10.5.2  Canaries
A popular approach to production validation is canaries. Canary involves exposing only

a segment of end users to new functionality, instead of making it available to everyone

instantly. Unlike shadowing, this approach only minimizes risk; end users are still

exposed to the new functionality, but on a smaller scale. This section will detail the

several approaches we can take in implementing canaries.

One possible approach is to deploy one instance with the new version and add it

to the pool of production instances. Since traffic is distributed across all instances, the

new version will receive a part of the live traffic where the already existing instances will

receive the remaining, as illustrated in Figure 10-15.

12 �More details by Nick Ramirez, “HAProxy Traffic Mirroring for Real-world Testing,” July 23, 2019,
www.haproxy.com/blog/haproxy-traffic-mirroring-for-real-world-testing/

Chapter 10 Overcoming the Challenges in Quality Assurance

http://www.haproxy.com/blog/haproxy-traffic-mirroring-for-real-world-testing/

430

Typically, traffic is approximately equal across all instances. In this example, since

there were three instances in live and we added the new one to the instance pool, the

new instance will receive only one fourth of the live traffic. In case there’s an issue, only

one fourth of the traffic will be impacted and we can roll back the release.

Alternative approaches can forward only a selected segment of traffic to the new

version. We can first direct only internal traffic to the new instance; for example,

the internal teams can first interact with the new version before rolling it out for the

entire public. This approach is easier with synchronous requests and a proxy that can

selectively deliver requests to specific instances using a location or header. With event-

driven services, it can be harder since services would have to selectively process or

ignore events that weren’t directed to them or implement a custom routing algorithm. A

further iteration of this approach is to divide traffic by relevant business information, like

country or user segment. This approach is even more relevant with a lower number of

instances (in this case, 25% of the traffic would be processed with an error).

Figure 10-15.  Canarying by sharing the live instances pool

Chapter 10 Overcoming the Challenges in Quality Assurance

431

The main issue with canaries is when there are issues, end users will be faced with

an error. In event-driven services, it also means an invalid build was temporarily running

against live data. Roll backing no longer completely solves the issue since downstream

event streams or the database might be corrupted. An approach to mitigate this is what

we discussed in Chapter 7 by rewinding the queue to the state before the deployment.

A further challenge is to deal with database or event schema changes which require a

more careful approach. A possible solution is to avoid breaking changes and do forward

and backward schema changes instead of deploying the breaking change in a single

deployment, as we discussed in Chapter 8. However, it adds complexity in favor of

security and stability.

10.5.3  Feature Flagging
A common way to implement testing in production is through feature flagging, where

new features are deployed but disabled by a feature flag. We can test the functionality’s

correctness and compliance with non-business requirements like throughput and

response time and activate it when we are confident the feature works as expected.

Deactivating the feature is also straightforward since it only involves switching a

configuration.

Feature flagging varies in scope; it can be all or nothing where we either activate or

deactivate the functionality. Or it can be more intricate processes where we roll out new

functionality to increasing amounts of end users for a given time period, similarly to

canaries. There are also several types of toggles; they can range from toggling business

functionality and non-functional requirements to security and experimentation features.

The concept is straightforward; we have a set of configurations that activate

functionality depending on whether they are active or not. They can be more elaborate

configurations when we only want to activate a segment of live traffic, for example,

a configuration with all the countries we want to activate the feature to at that time.

When processing an event, we decide which path to follow based on the event’s data or

headers; if it is an event from a configured country, we activate the new features.

A common pitfall is the complexity some toggles have and how they sometimes

become entwined with the core business logic. Following especially closely the single

responsibility principles and dependency inversion can help decouple the toggle logic

with the reminder service’s functionality. It is also important to have a strict rule to

clean old flags when they are no longer needed. The build-up of several feature toggles

Chapter 10 Overcoming the Challenges in Quality Assurance

432

through time can make the service needlessly complex. The added complexity will

also reflect in the test suite since it should test both paths while the toggle exists. Thus,

a strong discipline to refactor and clean old toggles is important. Although feature

flagging is often a simple and straightforward strategy, some toggles extend through

long periods of time, making extensive use of this approach more complex than it needs

to be. However, with the right code refactoring concerns, it is a simple and incremental

approach to expose functionality to live data.

10.5.4  Production Automated Testing
A further development of production testing practices is to run automated tests directly

against production instances. This approach is arguably the most radical and requires

strong alarmistic, monitoring, metrics gathering and control over the release process.

With the right approach, combined with the traditional pre-production strategies, it can

provide the most comprehensive coverage of the test cases that we can’t or are too costly

to set up in pre-production environments.

To be fair, this approach is perhaps one of the most mature stages a company

can implement. A common evolution path is typically to start with traditional end-

to-end testing and automated component tests and then implementing strong logs

collection, metrics, and tracing. Then move to more straightforward approaches like

feature flagging and canaries. Shadowing could arguably be the next logical step, while

production automated testing is the very last.

The approach involves having a test suite that runs directly on new releases on

production instances. This way, we can have test cases that test the full integration with

the service dependencies. If the tests pass, we are sure there are no unforeseen cases

that weren’t picked up in the pre-production tests. Let’s work through the use case of the

inventory service we discussed until now. The service receives events, processes them,

and publishes stock changed events to downstream services, in this case, the shipping

service, as illustrated in Figure 10-16.

Chapter 10 Overcoming the Challenges in Quality Assurance

433

The new release is deployed alongside the remaining inventory service live

instances. The test suite publishes events to the test event queue which are processed by

the new version. If the service publishes events, it will publish to the real event stream

and, in this case, should include a header indicating they are test events. The shipping

service will use that header to ignore those events. The interaction with the database

gets trickier, reads are fine, but when handling writes, there’s the concern of polluting

the database with testing data. We can have a staging structure like we discussed in

the shadowing strategy or ignore test data by signaling those records. An alternative

could be having specific users or segments of data dedicated to testing, for example,

sandbox clients that we know are only for testing. Many companies already do some

kind of business validations directly in live recurring to these kinds of clients; running

automated tests against them instead of manual validations might not sound so far-

reaching.

Figure 10-16.  Production automated testing example

Chapter 10 Overcoming the Challenges in Quality Assurance

434

With this approach, we can validate that the interfaces with other services are

working according to the expectations of the inventory service. All validations also occur

in concurrency with the whole ecosystem instead of having only the tests running.

We can also realistically validate non-functional requirements like response time or

throughput. As we discussed, besides all the things that can go wrong with traditional

quality assurance approaches, distributed systems have a myriad of failure modes that

are infeasible to reproduce in quality environments. These types of approaches can be a

valuable addition to assure new functionality works as expected.

10.6  Summary
•	 There are several quality assurance strategies we can implement

in event-driven services. They can range in scope and quantity;

combining them can be a valuable approach to guarantee

comprehensive test coverage.

•	 Unit and component tests only depend on the service, are usually fast

and stable, but have limited scope. Extended component tests can be

a valuable way to validate the interaction with external dependencies

but can be hard to find the right in-memory replacements.

•	 Half-breed integration tests can be a good compromise between

including standard dependencies and other services. Standard

dependencies like message brokers or databases are typically easier

to set up and are more stable than other services in the architecture.

•	 Integration and end-to-end tests are extremely challenging to

implement consistently. They also quickly restrict the release process

and the team’s autonomy. There are approaches we can take to

minimize these challenges, but they will always be costly to maintain.

A more sustainable approach is to combine pre-production with

testing in production approaches.

•	 Contract testing and consumer-driven contracts are a great way

to validate the interfaces with other services and encourage

collaboration and communication with both the producing and

consumer teams.

Chapter 10 Overcoming the Challenges in Quality Assurance

435

•	 An alternative approach to full end-to-end tests in event-driven

services is to combine pre-production approaches like unit,

component, and half-breed integration tests with interface

validations like schema validations, contract tests, and consumer-

driven contracts.

•	 Shadowing can be an excellent approach to validate new

functionality with live traffic without impacting the end user.

•	 Canaries and feature flagging can be valuable to gradually expose

new functionality to increasing quantities of users. They can

minimize the risk with new releases and limit the footprint of

possible issues.

•	 One of the most mature approaches to quality assurance in event-

driven architectures is automated testing in production. It can

help in guaranteeing the coverage of failure modes pre-production

approaches aren’t able or are too costly to detect.

Chapter 10 Overcoming the Challenges in Quality Assurance

437
© Hugo Filipe Oliveira Rocha 2022
H. F. Oliveira Rocha, Practical Event-Driven Microservices Architecture,
https://doi.org/10.1007/978-1-4842-7468-2

Index

A
AddStock command, 37
Anemic domain model, 128
Anemic satellite services, 154
Apache NiFi, 59
API composition

aggregating data, 372
denormalized view, data, 375–377
ElasticSearch, 374
event-driven architectures, 375
filtering, 374
information, 374
limitations, 377
ownership, 377
pitfall, 377
pricing domain logic, 377
product listing page, 372, 373
requests, 374
user’s order details, 377

Asynchronism, 173
Atomicity, consistency, isolation, and

durability (ACID), 187
Atomicity, consistency, isolation, and

durability (ACID) 2.0
at-least-once semantics, 303
business process, 305
CALM, 303
consuming messages, 302
distributed systems, 304
duplicated events, 305
event handling, 305

event processing, 303, 304
event schema, 305
event versioning, 305
exactly-once semantics, 303
order, 305
product service, 302, 303, 305
properties, 304
retrying, 302
StockOut vs. StockChanged event,

304, 305
Automated testing, 394
Availability, 196
Avoiding message leak

acknowledgement, 307
at-least-once/at-most-once

semantics, 307
auto acknowledge interaction, 306
issues, 307
Kafka, 307
message broker, 306
poison events, 308
pricing service, 307
RabbitMQ, 307

B
Backends for frontends (BFFs)

benefits, 365
design, 365
functionalities, 362
limitations, 365

https://doi.org/10.1007/978-1-4842-7468-2#DOI

438

microservice, 363
mobile UI, 365
order management platform, 364
product information, 362
product listing, 363, 364
saving state, 365
UIs, 363, 364
use cases, 364
web UI, 365

Banqiao Dam, 276
Bee events pattern

anti-corruption layers, 340
data, 340
event-driven services, 338
event schema, 340
event’s state, 337
internal schema, 340
metadata, 340
OrderCreated event, 338
order information, 338, 339
order state, 340
OrderStreetNumberChanged

event, 337
pollination, 337
synchronous request, 338

Bob Martin’s clean architecture, 89
Bulkhead pattern

bulkheads, 316
cost, 318
instances, 318
MongoDB, 316
pricing service, 316
priority queues, 318
ships, 316
synchronous requests, 318
taxes service, 317, 318

Business rules, 146, 148

C
Canaries, 429–431
CAP theorem

availability, 195, 197
consistency, 195, 198
distributed databases, 195
distributed systems, 197, 198
monolith applications, 198
network partitions, 198
nodes, 195
NoSQL databases, 196
properties, 196

Cassandra, 149
Change data capture

(CDC), 41, 300
custom querying, 62
ETL, 62
event-driven approach, 58
functionality, 63
Kafka, 59, 60
monoliths module, 61, 68, 69
pattern, 59
SQL server, 64–67

Choreography, 150–152, 156
C# Linq, 33
Command query responsibility

segregation (CQRS), 160, 161
flavors, 164–166
use, 163, 164

Command query separation
(CQS), 160

Command sourcing, 172, 173
Common resilience patterns

circuit breaker
event-driven services, 311
fallback, 313
opened/closed circuits, 313

Backends for frontends (BFFs) (cont.)

INDEX

439

pricing service, 313
Redis, 311, 313
states, 311, 312
upstream services, 313

data, 309
event-driven services, 308
retries

cascading failures, 310
definition, 309
event-driven services, 309
exponential backoff, 310
external dependencies, 310
resource consumption, 310
scopes, 309
strategies, 310
timeouts, 310

scope, 309
Compacted topics, 178, 179
Completion phase, 141
Component tests, 397–399
Concurrency

bug, 228
event-driven services

inexperienced developer, 236
inventory service, 232–235
scale, 236
single-threaded services, 234

inventory service
instances, 234, 235
order created events, 233

issues, 228
monoliths

eCommerce platform, 229, 231
optimistic approach, 232
order fulfillment process, 230, 231
pessimistic approach, 232
requests, 232
warehouses, 230, 231

out-of-order events
clock synchronization, 252
denormalized read

model, 252
instances, 253
inventory service, 252
operations, 254
ordering issues, 252
product service, 252
resilience strategies, 252
versioning, 254, 255

performance, 228
race conditions, 228
resources, 228

Concurrent changes, 142
Consistency, 196, 276
Consistency as logical monotonicity

(CALM), 303
Consumer-driven contracts, 416

business processes, 416
inventory service, 415, 416
producing services, 415

Context maps, 182, 184
Contract tests

business logic, 415
business processes, 416
inventory service, 415, 416
messages, 415
mock/in-memory

replacements, 415
producing service, 414
product catalog service, 415
product creation, 415
schema validations, 414
scope, 414

CreateOrderCommand, 99
Create, read, update, and

delete (CRUD), 107

INDEX

440

D
Data modeling, 239
Data transfer objects (DTO), 162, 379
Decoupling, 148
Denormalized model, 174
Denormalized projection, 171
Designing events, 324
Distributed denial of service attack

(DDoS), 286
Distributed systems, 302
Distributed tracing, 184
Domain-driven design (DDD), 48, 201
Domain events, 326
Domain experts, 326
Domain models, 118
Domain segregation, 182
Domain validations, 146

E
eCommerce platform, 42, 183, 199, 229,

231, 238
eCommerce websites, 157
End-to-End message partitioning

concurrency/ordering
broker, 268
developments, 268
distributed synchronization, 266
flow of events, 266, 267
inventory service, 268
issues, 268
parallelism, 268
routing key, 268
traditional approaches, 266

inventory service, 257, 258
Kafka

anatomy/interactions, 258, 259
characteristics, 262

consumers, 260, 261
instances, 260
inventory service, 258, 260
offset detail, 260, 261
order service, 259
partitions, 262
product service, 260
topics, 260, 262

limitations
hotspotting, 269, 270
momentary hotspots, 270
synchronous APIs, 271, 272

message broker, 258
order service, 256–258
routing, 263–265

End-to-end quality
adopting, 420
atomicity, 420
compatibility, 421
consistency, 419
decoupled nature, 420
deliberate/confident step, 420
each component, 420, 421
end-to-end flow, 421, 422
environments, 422
event-driven approach, 419
event streams, 422
integration tests, 421
microservice architectures, 419
network partitions, 422
production, 422
test suites excel, 422

End-to-end tests, 11
business flow, 408
challenges, 412, 413
data/environments, 410, 411
distributed event-driven

mindset, 408

INDEX

441

downsides, 419
releases, 410
scope, 408, 409
UI, 409

Event brokers, 324
Event-driven APIs

AsyncAPI, 385
asynchronous nature, 384
asynchronous operations, 384
HTTP, 385
message brokers, 385
OpenAPI, 385
order fulfillment process, 384
reactive UIs, 384
REST, 385
Server-Sent Events, 387–389
WebHooks, 385, 389, 390
WebSockets, 385–387

Event-driven architecture
asynchronous, 3
challenges, 36–38
choreography, 150–153
clear boundaries, 181
CQRS, 160–166
CQS, 160
data retrieval, 156–159
data streaming, 58
decoupled solution, 83
deployment process, 52
domain segregation, 181
DTO, 162
eCommerce

platform, 46, 48, 50
event sourcing, 166–168
functionalities, 47
managing dependencies

legacy monolith, 70–75
module, 70

microservices, 1–3, 24–27, 76–78,
154–156, 173, 174, 176, 180

data ownership, 22
decoupled/autonomously

developed, 22
deployment, 21, 28, 29
evolving architecture, 28
example, 20, 21
flexible technology stack, 30
limits, 27
Ling, 33–35
resilience/availability, 30, 31
teams autonomy, 29
tunable scaling, 32
typical system, 32

monoliths, 2, 4, 52–54
orchestration, 146–149
order management module, 51
order management service, 56
reporting service, 55–57
SOA, 23, 24
transition phase, 16, 18, 19
two-way synchronization, 79, 80, 82
well-structured monolith, 49

Event-driven architectures, 153
Event-driven message types, 98–101
Event-driven microservices

aggregate size, 122, 123
boundaries

communication, 113
likelihood changes, 115
organizational composition, 114
type of data, 115, 116

cascading failures
connectivity issues, 282
database, 282
eCommerce workflow, 280
event queues, 283

INDEX

442

external provider, 281
geographical locations, 284
HTTP requests, 280
innocuous operation, 282
internal state, 284
load affecting services, 282
load peak, 282
location services, 281, 282
network, 280
order fulfillment flow, 281
order services, 282
pricing services, 281, 282
service unavailable/fail

requests, 279
shipping service, 284
synchronous requests, 282, 283

clean architecture, 89–93
common failures

catastrophic failure, 278
common dependencies, 277, 278
communication, 278
direct dependencies, 279
hardware, 279
infrastructure components, 279
inventory service, 279
location service, 279
message broker, 278
network, 279
physical components, 279
typical topology, 277, 278

consistency, 276, 277
documents/events, 130
domain driven design/bounded

contexts, 117, 119–121
durable vs. ephemeral message

broker/GDPR, 94, 95
event queues, 276

external dependencies, 319
functionality, 127–129
layered architecture, 87
limitations/challenges, 276
load balancing

event broker, 286
inventory service, 285
load balancers, 284, 285
message broker, 285, 286
order service request, 284, 285
peaks/requests, 286
production, 284
synchronous requests, 287

models, 131
modules, 87
N-tier architecture, 88, 89
order’s address, 102, 103
rate limiters

asynchronous approach, 287
backpressure, 287
clients, 287
instances, 287
requests, 287
semi-synchronous approach, 287
strategies, 287
synchronous requests, 287

vs. request-driven services, 124–126
resilience, 277
security, 95–97
service dependencies, 319
service topologies, 107–110
solution’s design, 277

Event-Driven Pitfalls and Anti-patterns
command publishing, 112
faking synchronization response, 111
passive-aggressive events, 112

Event-driven services, 146, 228, 229
Events, 324

Event-driven microservices (cont.)

INDEX

443

Event schema
changes, 346
contextual information, 332, 333
denormalizing

aggregated view, 343, 345
boundaries, 345
caveat, 345
data, 343
process manager, 344, 345
shipping service, 344

design, 354, 355
event’s payload, 329, 330
evolution

backward compatibility, 346, 347
downscaler/upscaler, 352–354
enforcing compatibility, 346
event stream

versioning, 351, 352
forward compatibility, 347
full compatibility, 347
managing changes, 348–350
no compatibility, 348

generic structure, 329
headers vs. envelopes, 330–332
message envelope, 330
metadata, 330
segregation, 329, 330

Event Schema Goldilocks Principle
caveat, 342
consumers’ needs/use cases, 341
domain meaning, 342
event schema size, 341
event’s information, 341, 342
inventory service, 342
large events, 342
OrderAddressChangedEvent, 341
order service, 341
small events, 341

town crier/bee events, 341, 343
use cases, 343

Event sourcing, 167, 169, 171
Event storming

active collaboration, 328
architectural decisions, 328
artifacts, 327
benefits, 328
business process, 325
definition, 324, 325
domain events, 326
domain experts, 326, 328
end-to-end process, 325
implementation, 324
limitations, 329
order fulfillment flow, 325, 326
session, 325
silos, 328
stickies, 325, 328
typical elements, 326
typical modeling approaches, 325

Event stream
event queue, 296
event sourcing, 298
Kafka, 298
message brokers, 298
order information, 296
order service, 297
saving state, 295, 296
segregation, 296, 297
stateless stream processor, 297

Eventual consistency
alternative to persisting

information, 215
strategies, 213
subscription service, 214

asynchronous communications,
188, 189

INDEX

444

autoscaling
HPA, 221, 222
Kafka, 220–222
Kubernetes, 220–222
Prometheus, 220–222
subscription service lag, 222

CAP theorem (see CAP theorem)
decoupling components, 189
distributed systems, 187, 193
end-to-end argument

boundaries, 215, 217
eCommerce platform, 215, 216
file transfer, 216
guarantees, 216
order management

system, 218
product’s stock, 217, 218
UI, 218
users, 216

end-to-end principle, 190
event-driven approach, 192
event-driven architectures, 188, 189
event schema

adapting, 199, 203
DDD approach, 201
developer, 202
eCommerce platform, 199
event-driven approach, 199, 200
fine-coursed events, 202
fine-grained events, 201
inventory service, 202, 203
NoSQL databases, 202
product sizes, 202
read and write model, 200
stock information, 203
StockPurchased event, 201–203
subscription service, 201

event versioning
backoff strategy, 210
caveats, 209
compensation alternatives, 210
distributed systems, 209
event-driven services, 210
inventory service, 210
manual operation, 210
ordering, 211
resilience, 210
retrying strategy, 209
subscription service, 210
tail-tolerant methods, 209

inventory service, 192
liveliness property, 193, 194
management, 224
monolithic application, 190, 191
order service, 192
product’s stock, 191
safety property, 193
service’s domain logic, 190
stock model, 192
storing state

inventory service, 211
microservices, 211
pitfall, 212
subscription service, 211, 212
synchronous request, 211, 212

strong consistency, 187
subscription service, 190
synchronous communications, 188, 189
tradeoffs, 222, 223
use cases

autoscale system, 220
databases, 219
daunting, 218
inconsistency windows, 219
microservices, 219

Eventual consistency (cont.)

INDEX

445

MongoDB, 219
NoSQL databases, 219

weak consistency, 187
Extended component tests

ElasticSearch, 401
external dependencies, 399, 400
H2 database engine, 401
in-memory dependencies, 399, 400
integration tests, 402
Java, 401
providers, 401
Testcontainers, 401
use cases, 402

Extract, transform, and load (ETL), 61

F
Failproof processes, 146
Full-stack teams, 366

G
Governance, 411

H
Half-breed integration tests

end-to-end tests, 408
guarantees, 407
inventory service, 406
limitation, 408
mainstream dependencies, 404
mocks, 405, 407
monitoring, 407
No guarantee, 408
order created events, 407
ownership, 405
scope, 404, 405

setting up, 404
stock changed event, 407
stock quantity, 407
synchronous requests, 407

Horizontal pod autoscaler (HPA), 221, 222
Hotspotting, 269, 270

I, J
Integration tests, 402, 403

K
Kafka, 103, 178, 221, 293, 300
Kafka Exporter, 222
Key management system, 98
Kubernetes, 221

L
Load balancers, 284, 285
Log sequence number (LSN), 66

M
Manual testing, 395
Message brokers, 172
Message delivery semantics

at-least-once delivery, 290–292
at-most-once delivery, 290–292
consistency issues, 289
distributed components, 291
exactly-once delivery, 290–293
inventory service, 289
message broker, 288, 289
message publication, 289
one-fits-all rule, 292
order service, 289

INDEX

446

Messages, 229
Microservice architecture

database, 45
definition, 43
domain, 46
Istio, 44
modular monolith, 45

Microservice domain boundaries
anti-corruption layers, 207, 208
bounded contexts, 204, 206
business process, 207, 209
complexity, 209
CQRS, 206
DDD, 206
decoupling, 207
inconsistency issues, 206
inventory domain, 207
pitfalls, 206
subscription domain, 207
subscription service, 204, 205

Modular monoliths, 7
Momentary hotspots, 270
Monolith

business flow is visible, 9
centralized data, 12
code reuse, 10
concurrency, 13
consistency, 12
coupling/lack of boundaries, 13
end-to-end testing, 11
limits, 4
local validation, 10
modular, 7, 8
monitoring/troubleshooting, 11
no network/limited external

dependencies, 10
outdated technology stack, 15
patchwork, 5, 6

release cycle, 14
reliability, 16
scaling, 12, 14
simple deployment strategy, 12
teams autonomy, 14
typical, 4

Monolithic applications, 188, 198,
228, 276

Monolithic database, 136
deconstructing, 138

Monoliths, 394

N
Network partitions, 195, 197
NoSQL databases, 189, 196, 219
Nuclear reactor, 357, 358

O
Object-oriented model (OO), 169
Object-relational mappers (ORM), 169
OpenTracing, 184
Optimistic concurrency

apologizing/asking permission, 236
architecture/implementation, 238–240
cost, 238
ElasticSearch, 244
EntityFramework, 244
inventory service, 240, 241
lack of locks, 237
LatestChangeTimestamp, 243
NEventStore, 244
retries, 237, 238
simplicity/flexibility, 243, 244
SQL Server, 242, 244
stock table/updates, 242
stock updates, 242

INDEX

447

Unix timestamp, 243
update operation, 243

Orchestration, 146, 147, 151, 156
Order fulfillment process, 150
Order service, 153

P
Participants, 139
Pessimistic concurrency

apologizing/asking permission, 236
architecture/implementation, 238–240
cost, 238
database transactions, 250, 251
distributed locks

acquiring/releasing, 247, 248
Consul., 248
inventory service, 245, 246
Jepsen tests, 249
limitations, 250
lock key, 248, 249
Redis, 249
uses, 249
ZooKeeper, 249

locking, 237
product’s stock quantity, 237
resource, 237
retries, 238
single-process application, 245

Postgres, 142
Pricing service, 149
Primary-secondary topologies, 149
Production automated testing, 432–434
Production testing

aspect, 423
automated testing, 423
business validations, 423
canaries, 429–431

feature flagging, 431
live environment, 423
pre-production tests, 423
shadowing (see Shadowing)

Prometheus, 221
Publishing events, 170

Q
Quality assurance, 393, 418

R
RabbitMQ, 95
Rate limiters, 284
Real estate selling platform, 238
Recovering data/repairing state

event-driven service, 315
invalid events, 315
invalid state, 314
monolithic application, 315
orders, 315
pricing service, 314, 315
publishing events, 315
strategies, 316
synchronous microservice

architecture, 315
wrong events, 316

RemoveStock command, 37
Retrying techniques, 302
Rollback process, 145

S
Sagas, 134, 143, 144
Saving state/publishing event

choreographed steps, 295
event broker, 295

INDEX

448

event stream, 295
issues, 294
order fulfillment process, 294
order service, 294
outbox pattern

ACID properties, 300
asynchronous process, 299
atomic operation, 299
CDC, 300
crashing, 299
duplicate key error, 300
order service, 298
order tables, 298, 299
updates, 298
upsert, 300

service’s connectivity, 295
stateful services, 294
transactions/compensating

action, 300, 301
Scaling, 178
Server-Sent Events, 387–389
Service-oriented architecture (SOA), 22
Shadowing

automatic validations, 427
definition, 424
edge cases, 424
event-driven services, 424, 425
generate data, 424
HAProxy, 429
implementation, 426
inventory service, 425
Kafka, 425
live dependencies interaction, 426, 427
live event stream, 426
mock data, 424
new release, 425, 427
random data, 424

relevant deviations, 427
stock changed event, 424
stubbed data, 424
synchronous requests, 428
uses, 429

Single monolithic eCommerce
platform, 135

Software engineering, 187, 276, 395
SQL Server, 242, 244
Stock operations, 148
Synchronous process, 149

T
Test automation, 418
Test categorization

acceptance test, 418
exploratory testing, 418
focus/purpose, 417
manual testing, 418
Marick’s categorization, 417
production testing, 419
quadrant, 417, 418
quality assurance, 418
repetitive tasks, 418
test automation, 418
unit tests, 418

Town crier events pattern
CQRS pattern, 336
designing events, 335
eCommerce platform, 334
event stream, 335
inventory service, 335, 336
order service, 335, 336
OrderStreetNumberChanged event, 334
OrderUpdated vs. OrderStreet

NumberChanged, 335, 337
partial events, 337

Saving state/publishing event (cont.)

INDEX

449

routing algorithm, 335
scaling, 336
small events, 334, 337
town crier events, 334
town criers, 334

Transactional and relational
databases, 188

Transaction managers, 139, 140
Trivial business processes, 149
Two-phase commit protocol, 142
Typhoons, 276
Typical messaging patterns

publish/subscribe pattern, 105
request/response pattern, 106
send/receive pattern, 105

Typical resilience strategies, 302

U, V
Unit tests, 395, 396
User interface (UI)

aggregating layer
domains/services, 359, 360
eCommerce platform, 359
fetch/transform data, 361
filtering, 360
microservices, 361, 362
optimization, 362
patterns, 362
requests, 360, 362

CRUD-based
domains, 380, 381
DTO, 379
eCommerce platform, 378
inventory service, 381
product edition, 378, 379
product service, 381
user’s intent, 379
workflow, 380

decomposition patterns
application decomposition

pattern, 366, 367
page decomposition pattern,

368, 369
section decomposition

pattern, 369–371
full-stack teams, 366
micro frontends, 366
microservices, 358
monoliths, 366
task-based

benefits, 384
domains, 384
mapping, 384
product creation, 382, 383

W, X, Y, Z
WebHooks, 385, 389, 390
WebSockets, 385–387

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Embracing Event-Driven Architectures
	1.1	 The Truth About Monoliths
	1.1.1 Anatomy of a Typical Monolith
	Patchwork Monoliths
	Modular Monoliths

	1.1.2 What They Don’t Tell You About Monoliths; It’s Not All Bad
	Business Flow Is Visible
	No Network Overhead and Limited External Dependencies
	Local Validation
	Code Reuse
	Monitoring and Troubleshooting
	End-to-End Testing
	Simpler Deployment Strategy
	Data Is Centralized
	Possible to Scale
	Consistency
	Concurrency

	1.1.3 When Monoliths Become the Business Constrictor Knot
	Coupling and Lack of Boundaries
	Team’s Autonomy
	Release Cycle
	Scaling
	Outdated Technology Stack
	Reliability

	1.1.4 Using Event-Driven Architectures to Move Away from a Monolith

	1.2	 What Are Microservices and How Do They Relate to Event-Driven
	1.2.1 Deployment
	1.2.2 Decoupled and Autonomously Developed
	1.2.3 Data Ownership

	1.3	 SOA, Microservice, and Event-Driven Architectures
	1.3.1 SOA
	1.3.2 Microservice Architecture
	1.3.3 Event-Driven Microservice Architecture

	1.4	 The Promise of Event-Driven Microservices
	1.4.1 Evolving Architecture
	1.4.2 Deployment
	1.4.3 Team’s Autonomy
	1.4.4 Flexible Technology Stack
	1.4.5 Resilience and Availability
	1.4.6 Tunable Scaling
	1.4.7 The Past on Demand

	1.5	 When Should You Use Event-Driven Microservices?
	1.6	 Overview of the Challenges in Event-Driven Architectures
	1.7	 Summary

	Chapter 2: Moving from a Monolith to an Event-Driven Architecture
	2.1 Is Migrating to an Event-Driven Architecture Your Best Option?
	2.2 Moving to an Event-Driven Architecture, How to Decide Where to Start
	2.3 Using an Event-Driven Approach to Move Data from a Monolith
	2.4 Using Change Data Capture (CDC) to Move Data from a Monolith
	2.4.1 Event-Driven and Change Data Capture (CDC), a Real-World Example
	CDC Example Using SQL Server and Kafka

	2.5 Migrating Data from a Monolith: Event-Driven As a Source of Truth for Both Systems
	2.6 Incremental Migration from a Monolith to an Event-Driven Architecture: Managing Dependencies
	2.6.1 Managing a Dependency from a New Event-Driven Service to a Legacy Monolith
	2.6.2 Managing a Dependency from a Legacy Application to a New Event-Driven Service

	2.7 Gradually Moving Traffic to New Microservices
	2.8 Migrating from a Monolith: Two-Way Synchronization and Living with Two Sources of Truth
	2.9 Summary

	Chapter 3: Defining an Event-Driven Microservice and Its Boundaries
	3.1 Building Event-Driven Microservices
	3.1.1 N-Tier Architectures
	3.1.2 Clean Architecture
	3.1.3 Event-Driven Microservices: Durable vs. Ephemeral Message Brokers and GDPR
	The Right to Be Forgotten and Other Security Concerns

	3.1.4 Event-Driven Message Types
	3.1.5 Event-Driven Microservices: When to Use Documents over Events
	3.1.6 Common Event-Driven Messaging Patterns
	Send/Receive Pattern
	Publish/Subscribe Pattern
	Request/Response Pattern

	3.1.7 Event-Driven Service Topologies
	3.1.8 Common Event-Driven Pitfalls and Anti-patterns
	Faking Synchronous Responses
	Command Publishing
	Passive-Aggressive Events

	3.2 Organizing Event-Driven Microservice Boundaries
	3.2.1 Organizational Composition
	3.2.2 Likelihood of Changes
	3.2.3 Type of Data

	3.3 Brief and Practical Introduction to Domain-Driven Design and Bounded Contexts
	3.3.1 How We Can Apply It in Practice

	3.4 Event-Driven Microservices: The Impact of Aggregate Size and Common Pitfalls
	3.5 Request-Driven vs. Event-Driven Services
	3.6 Deciding When to Create a New Microservice or Add Functionality to an Existing One
	3.7 Summary

	Chapter 4: Structural Patterns and Chaining Processes
	4.1 The Challenges of Transactional Consistency in Distributed Systems
	4.1.1 Why Move from a Monolithic Database in the First Place?
	4.1.2 The Limitations of Distributed Transactions
	4.1.3 Managing Multi-step Processes with Sagas

	4.2 Event-Driven Orchestration Pattern
	4.3 Event-Driven Choreography Pattern
	4.4 Event-Driven Microservices: Orchestration, Choreography, or Both?
	4.5 Data Retrieval in Event-Driven Architectures and Associated Patterns
	4.5.1 CQS, CQRS, and When to Use Them
	When to Use CQRS?

	4.5.2 The Different Flavors of CQRS
	4.5.3 When and How to Use Event Sourcing
	4.5.4 Concerns and When to Use Event Sourcing
	4.5.5 Using Command Sourcing and Its Applicability

	4.6 Building Multiple Read Models in Event-Driven Microservice Architectures
	4.7 The Pitfall of Microservice Spaghetti Architectures and How to Avoid It
	4.7.1 Domain Segregation and Clear Boundaries
	4.7.2 Context Maps
	4.7.3 Distributed Tracing

	4.8 Summary

	Chapter 5: How to Manage Eventual Consistency
	5.1 The Impacts of Eventual Consistency and the Need for Alignment with the Business
	5.1.1 Safety
	5.1.2 Liveliness
	5.1.3 The CAP Theorem in the Real World

	5.2 Using Event Schema in Event-Driven Microservices to Leverage Eventual Consistency
	5.3 Applying Microservice Domain Boundaries to Leverage Eventual Consistency
	5.4 Handling Eventual Consistency Delays with Event Versioning
	5.5 Saving State in Event-Driven Microservices to Avoid Eventual Consistency
	5.5.1 Buffering State As an Alternative to Persistence

	5.6 Tackling Eventual Consistency with the End-to-End Argument: A Real-World Use Case
	5.7 For Most Use Cases, It’s Not Eventual If Nobody Notices
	5.7.1 Event-Driven Autoscaling Use Case with Prometheus and Kafka

	5.8 Discussing the Tradeoffs of Typical Eventual Consistency Handling Strategies
	5.9 Summary

	Chapter 6: Dealing with Concurrency and Out-of-Order Messages
	6.1 Why Is Concurrency Different in a Monolith from an Event-Driven Architecture?
	6.2 Pessimistic vs. Optimistic Concurrency, When and When Not to Use
	6.2.1 Pessimistic vs. Optimistic Approaches
	6.2.2 Solving Concurrency by Implementation and by Design

	6.3 Using Optimistic Concurrency
	6.4 Using Pessimistic Concurrency
	6.4.1 Distributed Locks in Event-Driven Microservices
	6.4.2 Database Transactions As a Concurrency Approach in Distributed Microservices

	6.5 Dealing with Out-of-Order Events
	6.5.1 How Can Events Lose Their Order?
	6.5.2 Solving Out-of-Order Events with Versioning

	6.6 Using End-to-End Message Partitioning to Handle Concurrency and Guarantee Message Ordering
	6.6.1 Real-World Example of Event-Driven Message Routing Using Kafka
	6.6.2 The Relevance of Message Routing and Partitioning in Event-Driven Microservices
	6.6.3 Using End-to-End Partitioning to Handle Concurrency and Ordering
	6.6.4 Limitations of End-to-End Partitioning in Event-Driven Microservices
	Hotspotting
	Momentary Hotspots
	The Mix of Event-Driven and Synchronous APIs

	6.7 Summary

	Chapter 7: Achieving Resilience and Event Processing Reliability in Event-Driven Microservices
	7.1 Common Failures in Microservice Architectures and How They Relate to Event-Driven Architectures
	7.1.1 Cascading Failures and Event-Driven Services
	7.1.2 Load Balancing and Rate Limiters in Event-Driven Services

	7.2 Understanding Message Delivery Semantics
	7.2.1 Exactly-Once Delivery Semantics in Kafka

	7.3 Avoiding Inconsistencies When Saving State and Publishing Events in Event-Driven Microservices
	7.3.1 Event Stream As the Only Source of Truth
	7.3.2 Outbox Pattern in Event-Driven Microservices
	7.3.3 Transactions and Compensating Actions to Avoid Inconsistencies in Event-Driven Microservices

	7.4 Applying ACID 2.0 As a Resilience Strategy in Event-Driven Microservices
	7.5 Avoiding Message Leak in Event-Driven Microservices
	7.5.1 Poison Events

	7.6 Applying Common Resilience Patterns in Event-Driven Microservices
	7.6.1 Retries As a Resilience Approach in Event-Driven Microservices
	7.6.2 Circuit Breakers in Event-Driven Microservices

	7.7 Recovering Data and Repairing State in Event-Driven Microservices
	7.8 Bulkhead Pattern in Event-Driven Microservices
	7.8.1 Priority Queues

	7.9 Conclusion
	7.10 Summary

	Chapter 8: Choosing the Correct Event Schema Design in Event-Driven Microservices
	8.1 Event Storming and Event-Driven Microservices
	8.1.1 What Are the Limitations of Event Storming?

	8.2 Event Schema: Headers and Envelopes
	8.2.1 Headers vs. Envelopes in Event Schema
	8.2.2 Relevant Contextual Information in Events

	8.3 Town Crier Events Pattern
	8.4 Bee Events Pattern
	8.5 The Event Schema Goldilocks Principle
	8.6 Denormalized Event Schema
	8.7 Schema Evolution in Event-Driven Microservices
	8.7.1 Backward Compatibility
	8.7.2 Forward Compatibility
	8.7.3 Full Compatibility
	8.7.4 No Compatibility
	8.7.5 Managing Changes
	8.7.6 Event Stream Versioning
	8.7.7 Using a Downscaler/Upscaler When Evolving Event Schema

	8.8 Summary

	Chapter 9: How to Leverage the User Interface in Event-Driven Microservice Architectures
	9.1 Using an Aggregating Layer to Build a UI in a Distributed Microservice Architecture
	9.2 Backends for Frontends (BFFs)
	9.3 UI Decomposition Pattern in Microservice Architectures
	9.3.1 UI Application Decomposition Pattern
	9.3.2 UI Page Decomposition Pattern
	9.3.3 UI Section Decomposition Pattern

	9.4 The Limitations of API Composition
	9.5 Task-Based UIs
	9.6 Event-Driven APIs
	9.6.1 Event-Driven Combined with WebSockets
	9.6.2 Event-Driven Combined with Server-Sent Events
	9.6.3 Event-Driven Combined with WebHooks

	9.7 Summary

	Chapter 10: Overcoming the Challenges in Quality Assurance
	10.1 Microservice Testing Approaches and How They Relate to Event-Driven
	10.1.1 Unit Tests
	10.1.2 Component Tests
	10.1.3 Extended Component Tests
	10.1.4 Integration Tests
	10.1.5 Half-Breed Integration Tests
	10.1.6 End-to-End Tests
	Releases
	Data and Environments
	Governance
	Approaches to Mitigate the End-to-End Tests Challenges

	10.2 Applying Contract Tests and Consumer-Driven Contracts to Event-Driven
	10.3 Test Categorization and Purpose
	10.4 End-to-End Quality Without End-to-End Tests
	10.5 Testing in Production
	10.5.1 Shadowing
	10.5.2 Canaries
	10.5.3 Feature Flagging
	10.5.4 Production Automated Testing

	10.6 Summary

	Index

