

Machine Learning with PyTorch
and Scikit-Learn

Develop machine learning and deep learning models with Python

Sebastian Raschka
Yuxi (Hayden) Liu
Vahid Mirjalili

BIRMINGHAM—MUMBAI

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Machine Learning with PyTorch and Scikit-Learn
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Saby Dsilva
Project Editor: Janice Gonsalves
Content Development Editor: Bhavesh Amin
Copy Editor: Safis Editing
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Presentation Designer: Pranit Padwal

First published: February 2022

Production reference: 3220222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-931-2

www.packt.com

www.packt.com

Foreword

Over recent years, machine learning methods, with their ability to make sense of vast amounts of data
and automate decisions, have found widespread applications in healthcare, robotics, biology, physics,
consumer products, internet services, and various other industries.

Giant leaps in science usually come from a combination of powerful ideas and great tools. Machine
learning is no exception. The success of data-driven learning methods is based on the ingenious ideas
of thousands of talented researchers over the field’s 60-year history. But their recent popularity is also
fueled by the evolution of hardware and software solutions that make them scalable and accessible.
The ecosystem of excellent libraries for numeric computing, data analysis, and machine learning built
around Python like NumPy and scikit-learn gained wide adoption in research and industry. This has
greatly helped propel Python to be the most popular programming language.

Massive improvements in computer vision, text, speech, and other tasks brought by the recent ad-
vent of deep learning techniques exemplify this theme. Approaches draw on neural network theory
of the last four decades that started working remarkably well in combination with GPUs and highly
optimized compute routines.

Our goal with building PyTorch over the past five years has been to give researchers the most flexible
tool for expressing deep learning algorithms while taking care of the underlying engineering com-
plexities. We benefited from the excellent Python ecosystem. In turn, we’ve been fortunate to see the
community of very talented people build advanced deep learning models across various domains on
top of PyTorch. The authors of this book were among them.

I’ve known Sebastian within this tight-knit community for a few years now. He has unmatched talent
in easily explaining information and making the complex accessible. Sebastian contributed to many
widely used machine learning software packages and authored dozens of excellent tutorials on deep
learning and data visualization.

Mastery of both ideas and tools is also required to apply machine learning in practice. Getting started
might feel intimidating, from making sense of theoretical concepts to figuring out which software
packages to install.

Luckily, the book you’re holding in your hands does a beautiful job of combining machine learning
concepts and practical engineering steps to guide you in this journey. You’re in for a delightful ride
from the basics of data-driven techniques to the most novel deep learning architectures. Within every
chapter, you will find concrete code examples applying the introduced methods to a practical task.

When the first edition came out in 2015, it set a very high bar for the ML and Python book category. But
the excellence didn’t stop there. With every edition, Sebastian and the team kept upgrading and refining
the material as the deep learning revolution unfolded in new domains. In this new PyTorch edition,
you’ll find new chapters on transformer architectures and graph neural networks. These approaches
are on the cutting edge of deep learning and have taken the fields of text understanding and molecular
structure by storm in the last two years. You will get to practice them using new yet widely popular
software packages in the ecosystem like Hugging Face, PyTorch Lightning, and PyTorch Geometric.

The excellent balance of theory and practice this book strikes is no surprise given the authors’ com-
bination of advanced research expertise and experience in solving problems hands-on. Sebastian
Raschka and Vahid Mirjalili draw from their background in deep learning research for computer
vision and computational biology. Hayden Liu brings the experience of applying machine learning
methods to event prediction, recommendation systems, and other tasks in the industry. All of the
authors share a deep passion for education, and it reflects in the approachable way the book goes
from simple to advanced.

I’m confident that you will find this book invaluable both as a broad overview of the exciting field
of machine learning and as a treasure of practical insights. I hope it inspires you to apply machine
learning for the greater good in your problem area, whatever it might be.

Dmytro Dzhulgakov

PyTorch Core Maintainer

Contributors

About the authors
Dr. Sebastian Raschka is an Asst. Professor of Statistics at the University of Wisconsin-Madison
focusing on machine learning and deep learning. His recent research focused on general challenges
such as few-shot learning for working with limited data and developing deep neural networks for
ordinal targets. Sebastian is also an avid open-source contributor, and in his new role as Lead AI Edu-
cator at Grid.ai, he plans to follow his passion for helping people to get into machine learning and AI.

Big thanks to Jitian Zhao and Ben Kaufman, with whom I had the pleasure to work on the new chapters on
transformers and graph neural networks. I’m also very grateful for Hayden’s and Vahid’s help—this book
wouldn’t have been possible without you. Lastly, I want to thank Andrea Panizza, Tony Gitter, and Adam
Bielski for helpful discussions on sections of the manuscript.

Yuxi (Hayden) Liu is a machine learning software engineer at Google and has worked as a machine
learning scientist in a variety of data-driven domains. Hayden is the author of a series of ML books.
His first book, Python Machine Learning By Example, was ranked the #1 bestseller in its category on
Amazon in 2017 and 2018 and was translated into many languages. His other books include R Deep
Learning Projects, Hands-On Deep Learning Architectures with Python, and PyTorch 1.x Reinforcement
Learning Cookbook.

I would like to thank all the great people I worked with, especially my co-authors, my editors at Packt, and
my reviewers. Without them, this book would be harder to read and to apply to real-world problems. Lastly,
I’d like to thank all the readers for their support, which encouraged me to write the PyTorch edition of this
bestselling ML book.

Dr. Vahid Mirjalili is a deep learning researcher focusing on computer vision applications. Va-
hid received a Ph.D. degree in both Mechanical Engineering and Computer Science from Michigan
State University. During his Ph.D. journey, he developed novel computer vision algorithms to solve
real-world problems and published several research articles that are highly cited in the computer
vision community.

Other contributors
Benjamin Kaufman is a Ph.D. candidate at the University of Wisconsin-Madison in Biomedical Data
Science. His research focuses on the development and application of machine learning methods for
drug discovery. His work in this area has provided a deeper understanding of graph neural networks.

Jitian Zhao is a Ph.D. student at the University of Wisconsin-Madison, where she developed her
interest in large-scale language models. She is passionate about deep learning in developing both
real-world applications and theoretical support.

I would like to thank my parents for their support. They encouraged me to always pursue my dream and
motivated me to be a good person.

About the reviewer
Roman Tezikov is an industrial research engineer and deep learning enthusiast with over four
years of experience in advanced computer vision, NLP, and MLOps. As the co-creator of the ML-REPA
community, he organized several workshops and meetups about ML reproducibility and pipeline auto-
mation. One of his current work challenges involves utilizing computer vision in the fashion industry.
Roman was also a core developer of Catalyst – a PyTorch framework for accelerated deep learning.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

Table of Contents

Preface xxiii

Chapter 1: Giving Computers the Ability to Learn from Data 1

Building intelligent machines to transform data into knowledge .. 1
The three different types of machine learning ... 2

Making predictions about the future with supervised learning • 3
Classification for predicting class labels • 4
Regression for predicting continuous outcomes • 5

Solving interactive problems with reinforcement learning • 6
Discovering hidden structures with unsupervised learning • 7

Finding subgroups with clustering • 8
Dimensionality reduction for data compression • 8

Introduction to the basic terminology and notations .. 9
Notation and conventions used in this book • 9
Machine learning terminology • 11

A roadmap for building machine learning systems .. 12
Preprocessing – getting data into shape • 13
Training and selecting a predictive model • 13
Evaluating models and predicting unseen data instances • 14

Using Python for machine learning ... 14
Installing Python and packages from the Python Package Index • 14
Using the Anaconda Python distribution and package manager • 15
Packages for scientific computing, data science, and machine learning • 16

Summary ... 17

Table of Contentsx

Chapter 2: Training Simple Machine Learning Algorithms for Classification 19

Artificial neurons – a brief glimpse into the early history of machine learning 19
The formal definition of an artificial neuron • 20
The perceptron learning rule • 22

Implementing a perceptron learning algorithm in Python ... 25
An object-oriented perceptron API • 25
Training a perceptron model on the Iris dataset • 29

Adaptive linear neurons and the convergence of learning ... 35
Minimizing loss functions with gradient descent • 37
Implementing Adaline in Python • 39
Improving gradient descent through feature scaling • 43
Large-scale machine learning and stochastic gradient descent • 45

Summary ... 51

Chapter 3: A Tour of Machine Learning Classifiers Using Scikit-Learn 53

Choosing a classification algorithm ... 53
First steps with scikit-learn – training a perceptron ... 54
Modeling class probabilities via logistic regression .. 59

Logistic regression and conditional probabilities • 60
Learning the model weights via the logistic loss function • 63
Converting an Adaline implementation into an algorithm for logistic regression • 66
Training a logistic regression model with scikit-learn • 70
Tackling overfitting via regularization • 73

Maximum margin classification with support vector machines .. 76
Maximum margin intuition • 77
Dealing with a nonlinearly separable case using slack variables • 77
Alternative implementations in scikit-learn • 79

Solving nonlinear problems using a kernel SVM .. 80
Kernel methods for linearly inseparable data • 80
Using the kernel trick to find separating hyperplanes in a high-dimensional space • 82

Decision tree learning .. 86
Maximizing IG – getting the most bang for your buck • 88
Building a decision tree • 92
Combining multiple decision trees via random forests • 95

K-nearest neighbors – a lazy learning algorithm .. 98
Summary ... 102

Table of Contents xi

Chapter 4: Building Good Training Datasets – Data Preprocessing 105

Dealing with missing data ... 105
Identifying missing values in tabular data • 106
Eliminating training examples or features with missing values • 107
Imputing missing values • 108
Understanding the scikit-learn estimator API • 109

Handling categorical data ... 111
Categorical data encoding with pandas • 111
Mapping ordinal features • 111
Encoding class labels • 112
Performing one-hot encoding on nominal features • 113

Optional: encoding ordinal features • 116
Partitioning a dataset into separate training and test datasets .. 117
Bringing features onto the same scale ... 119
Selecting meaningful features ... 122

L1 and L2 regularization as penalties against model complexity • 122
A geometric interpretation of L2 regularization • 123
Sparse solutions with L1 regularization • 125
Sequential feature selection algorithms • 128

Assessing feature importance with random forests .. 134
Summary ... 137

Chapter 5: Compressing Data via Dimensionality Reduction 139

Unsupervised dimensionality reduction via principal component analysis 139
The main steps in principal component analysis • 140
Extracting the principal components step by step • 142
Total and explained variance • 144
Feature transformation • 146
Principal component analysis in scikit-learn • 149
Assessing feature contributions • 152

Supervised data compression via linear discriminant analysis ... 154
Principal component analysis versus linear discriminant analysis • 154
The inner workings of linear discriminant analysis • 156
Computing the scatter matrices • 156
Selecting linear discriminants for the new feature subspace • 158
Projecting examples onto the new feature space • 161

Table of Contentsxii

LDA via scikit-learn • 162
Nonlinear dimensionality reduction and visualization ... 163

Why consider nonlinear dimensionality reduction? • 164
Visualizing data via t-distributed stochastic neighbor embedding • 165

Summary ... 169

Chapter 6: Learning Best Practices for Model Evaluation and
Hyperparameter Tuning 171

Streamlining workflows with pipelines ... 171
Loading the Breast Cancer Wisconsin dataset • 172
Combining transformers and estimators in a pipeline • 173

Using k-fold cross-validation to assess model performance .. 175
The holdout method • 175
K-fold cross-validation • 176

Debugging algorithms with learning and validation curves .. 180
Diagnosing bias and variance problems with learning curves • 180
Addressing over- and underfitting with validation curves • 183

Fine-tuning machine learning models via grid search .. 185
Tuning hyperparameters via grid search • 186
Exploring hyperparameter configurations more widely with randomized search • 187
More resource-efficient hyperparameter search with successive halving • 189
Algorithm selection with nested cross-validation • 191

Looking at different performance evaluation metrics .. 193
Reading a confusion matrix • 193
Optimizing the precision and recall of a classification model • 195
Plotting a receiver operating characteristic • 198
Scoring metrics for multiclass classification • 200
Dealing with class imbalance • 201

Summary ... 203

Chapter 7: Combining Different Models for Ensemble Learning 205

Learning with ensembles .. 205
Combining classifiers via majority vote ... 209

Implementing a simple majority vote classifier • 209
Using the majority voting principle to make predictions • 214
Evaluating and tuning the ensemble classifier • 217

Table of Contents xiii

Bagging – building an ensemble of classifiers from bootstrap samples 223
Bagging in a nutshell • 224
Applying bagging to classify examples in the Wine dataset • 225

Leveraging weak learners via adaptive boosting .. 229
How adaptive boosting works • 229
Applying AdaBoost using scikit-learn • 233

Gradient boosting – training an ensemble based on loss gradients ... 237
Comparing AdaBoost with gradient boosting • 237
Outlining the general gradient boosting algorithm • 237
Explaining the gradient boosting algorithm for classification • 239
Illustrating gradient boosting for classification • 241
Using XGBoost • 243

Summary ... 245

Chapter 8: Applying Machine Learning to Sentiment Analysis 247

Preparing the IMDb movie review data for text processing ... 247
Obtaining the movie review dataset • 248
Preprocessing the movie dataset into a more convenient format • 248

Introducing the bag-of-words model ... 250
Transforming words into feature vectors • 250
Assessing word relevancy via term frequency-inverse document frequency • 252
Cleaning text data • 254
Processing documents into tokens • 256

Training a logistic regression model for document classification .. 258
Working with bigger data – online algorithms and out-of-core learning 260
Topic modeling with latent Dirichlet allocation ... 264

Decomposing text documents with LDA • 264
LDA with scikit-learn • 265

Summary ... 268

Chapter 9: Predicting Continuous Target Variables with Regression Analysis 269

Introducing linear regression ... 269
Simple linear regression • 270
Multiple linear regression • 271

Exploring the Ames Housing dataset ... 272
Loading the Ames Housing dataset into a DataFrame • 272

Table of Contentsxiv

Visualizing the important characteristics of a dataset • 274
Looking at relationships using a correlation matrix • 276

Implementing an ordinary least squares linear regression model ... 278
Solving regression for regression parameters with gradient descent • 278
Estimating the coefficient of a regression model via scikit-learn • 283

Fitting a robust regression model using RANSAC ... 285
Evaluating the performance of linear regression models .. 288
Using regularized methods for regression ... 292
Turning a linear regression model into a curve – polynomial regression 294

Adding polynomial terms using scikit-learn • 294
Modeling nonlinear relationships in the Ames Housing dataset • 297

Dealing with nonlinear relationships using random forests .. 299
Decision tree regression • 300
Random forest regression • 301

Summary ... 304

Chapter 10: Working with Unlabeled Data – Clustering Analysis 305

Grouping objects by similarity using k-means ... 305
k-means clustering using scikit-learn • 305
A smarter way of placing the initial cluster centroids using k-means++ • 310
Hard versus soft clustering • 311
Using the elbow method to find the optimal number of clusters • 313
Quantifying the quality of clustering via silhouette plots • 314

Organizing clusters as a hierarchical tree .. 319
Grouping clusters in a bottom-up fashion • 320
Performing hierarchical clustering on a distance matrix • 321
Attaching dendrograms to a heat map • 325
Applying agglomerative clustering via scikit-learn • 327

Locating regions of high density via DBSCAN .. 328
Summary ... 334

Chapter 11: Implementing a Multilayer Artificial Neural Network from Scratch 335

Modeling complex functions with artificial neural networks .. 335
Single-layer neural network recap • 337
Introducing the multilayer neural network architecture • 338
Activating a neural network via forward propagation • 340

Table of Contents xv

Classifying handwritten digits .. 343
Obtaining and preparing the MNIST dataset • 343
Implementing a multilayer perceptron • 347
Coding the neural network training loop • 352
Evaluating the neural network performance • 357

Training an artificial neural network ... 360
Computing the loss function • 360
Developing your understanding of backpropagation • 362
Training neural networks via backpropagation • 363

About convergence in neural networks .. 367
A few last words about the neural network implementation ... 368
Summary ... 368

Chapter 12: Parallelizing Neural Network Training with PyTorch 369

PyTorch and training performance ... 369
Performance challenges • 369
What is PyTorch? • 371
How we will learn PyTorch • 372

First steps with PyTorch ... 372
Installing PyTorch • 372
Creating tensors in PyTorch • 373
Manipulating the data type and shape of a tensor • 374
Applying mathematical operations to tensors • 375
Split, stack, and concatenate tensors • 376

Building input pipelines in PyTorch .. 378
Creating a PyTorch DataLoader from existing tensors • 378
Combining two tensors into a joint dataset • 379
Shuffle, batch, and repeat • 380
Creating a dataset from files on your local storage disk • 382
Fetching available datasets from the torchvision.datasets library • 386

Building an NN model in PyTorch ... 389
The PyTorch neural network module (torch.nn) • 390
Building a linear regression model • 390
Model training via the torch.nn and torch.optim modules • 394
Building a multilayer perceptron for classifying flowers in the Iris dataset • 395
Evaluating the trained model on the test dataset • 398

Table of Contentsxvi

Saving and reloading the trained model • 399
Choosing activation functions for multilayer neural networks .. 400

Logistic function recap • 400
Estimating class probabilities in multiclass classification via the softmax function • 402
Broadening the output spectrum using a hyperbolic tangent • 403
Rectified linear unit activation • 405

Summary ... 406

Chapter 13: Going Deeper – The Mechanics of PyTorch 409

The key features of PyTorch .. 410
PyTorch’s computation graphs .. 410

Understanding computation graphs • 410
Creating a graph in PyTorch • 411

PyTorch tensor objects for storing and updating model parameters 412
Computing gradients via automatic differentiation .. 415

Computing the gradients of the loss with respect to trainable variables • 415
Understanding automatic differentiation • 416
Adversarial examples • 416

Simplifying implementations of common architectures via the torch.nn module 417
Implementing models based on nn.Sequential • 417
Choosing a loss function • 418
Solving an XOR classification problem • 419
Making model building more flexible with nn.Module • 424
Writing custom layers in PyTorch • 426

Project one – predicting the fuel efficiency of a car .. 431
Working with feature columns • 431
Training a DNN regression model • 435

Project two – classifying MNIST handwritten digits ... 436
Higher-level PyTorch APIs: a short introduction to PyTorch-Lightning 439

Setting up the PyTorch Lightning model • 440
Setting up the data loaders for Lightning • 443
Training the model using the PyTorch Lightning Trainer class • 444
Evaluating the model using TensorBoard • 445

Summary ... 449

Table of Contents xvii

Chapter 14: Classifying Images with Deep Convolutional Neural Networks 451

The building blocks of CNNs ... 451
Understanding CNNs and feature hierarchies • 452
Performing discrete convolutions • 454

Discrete convolutions in one dimension • 454
Padding inputs to control the size of the output feature maps • 457
Determining the size of the convolution output • 458
Performing a discrete convolution in 2D • 459

Subsampling layers • 463
Putting everything together – implementing a CNN ... 464

Working with multiple input or color channels • 464
Regularizing an NN with L2 regularization and dropout • 467
Loss functions for classification • 471

Implementing a deep CNN using PyTorch .. 473
The multilayer CNN architecture • 473
Loading and preprocessing the data • 474
Implementing a CNN using the torch.nn module • 476

Configuring CNN layers in PyTorch • 476
Constructing a CNN in PyTorch • 477

Smile classification from face images using a CNN ... 482
Loading the CelebA dataset • 483
Image transformation and data augmentation • 484
Training a CNN smile classifier • 490

Summary ... 497

Chapter 15: Modeling Sequential Data Using Recurrent Neural Networks 499

Introducing sequential data .. 499
Modeling sequential data – order matters • 500
Sequential data versus time series data • 500
Representing sequences • 500
The different categories of sequence modeling • 501

RNNs for modeling sequences .. 502
Understanding the dataflow in RNNs • 502
Computing activations in an RNN • 504

Table of Contentsxviii

Hidden recurrence versus output recurrence • 506
The challenges of learning long-range interactions • 509
Long short-term memory cells • 511

Implementing RNNs for sequence modeling in PyTorch ... 513
Project one – predicting the sentiment of IMDb movie reviews • 513

Preparing the movie review data • 513
Embedding layers for sentence encoding • 517
Building an RNN model • 520
Building an RNN model for the sentiment analysis task • 521

Project two – character-level language modeling in PyTorch • 525
Preprocessing the dataset • 526
Building a character-level RNN model • 531
Evaluation phase – generating new text passages • 533

Summary ... 537

Chapter 16: Transformers – Improving Natural Language Processing
with Attention Mechanisms 539

Adding an attention mechanism to RNNs ... 540
Attention helps RNNs with accessing information • 540
The original attention mechanism for RNNs • 542
Processing the inputs using a bidirectional RNN • 543
Generating outputs from context vectors • 543
Computing the attention weights • 544

Introducing the self-attention mechanism ... 544
Starting with a basic form of self-attention • 545
Parameterizing the self-attention mechanism: scaled dot-product attention • 549

Attention is all we need: introducing the original transformer architecture 552
Encoding context embeddings via multi-head attention • 554
Learning a language model: decoder and masked multi-head attention • 558
Implementation details: positional encodings and layer normalization • 559

Building large-scale language models by leveraging unlabeled data .. 561
Pre-training and fine-tuning transformer models • 561
Leveraging unlabeled data with GPT • 563
Using GPT-2 to generate new text • 566
Bidirectional pre-training with BERT • 569
The best of both worlds: BART • 572

Table of Contents xix

Fine-tuning a BERT model in PyTorch ... 574
Loading the IMDb movie review dataset • 575
Tokenizing the dataset • 577
Loading and fine-tuning a pre-trained BERT model • 578
Fine-tuning a transformer more conveniently using the Trainer API • 582

Summary ... 586

Chapter 17: Generative Adversarial Networks for Synthesizing New Data 589

Introducing generative adversarial networks ... 589
Starting with autoencoders • 590
Generative models for synthesizing new data • 592
Generating new samples with GANs • 593
Understanding the loss functions of the generator and discriminator
networks in a GAN model • 594

Implementing a GAN from scratch .. 596
Training GAN models on Google Colab • 596
Implementing the generator and the discriminator networks • 600
Defining the training dataset • 604
Training the GAN model • 605

Improving the quality of synthesized images using a convolutional and Wasserstein GAN 612
Transposed convolution • 612
Batch normalization • 614
Implementing the generator and discriminator • 616
Dissimilarity measures between two distributions • 624
Using EM distance in practice for GANs • 627
Gradient penalty • 628
Implementing WGAN-GP to train the DCGAN model • 629
Mode collapse • 633

Other GAN applications .. 635
Summary ... 635

Chapter 18: Graph Neural Networks for Capturing Dependencies
in Graph Structured Data 637

Introduction to graph data .. 638
Undirected graphs • 638
Directed graphs • 639

Table of Contentsxx

Labeled graphs • 640
Representing molecules as graphs • 640

Understanding graph convolutions ... 641
The motivation behind using graph convolutions • 641
Implementing a basic graph convolution • 644

Implementing a GNN in PyTorch from scratch ... 648
Defining the NodeNetwork model • 649
Coding the NodeNetwork’s graph convolution layer • 650
Adding a global pooling layer to deal with varying graph sizes • 652
Preparing the DataLoader • 655
Using the NodeNetwork to make predictions • 658

Implementing a GNN using the PyTorch Geometric library .. 659
Other GNN layers and recent developments ... 665

Spectral graph convolutions • 665
Pooling • 667
Normalization • 668
Pointers to advanced graph neural network literature • 669

Summary ... 671

Chapter 19: Reinforcement Learning for Decision Making in
Complex Environments 673

Introduction – learning from experience ... 674
Understanding reinforcement learning • 674
Defining the agent-environment interface of a reinforcement learning system • 675

The theoretical foundations of RL ... 676
Markov decision processes • 677

The mathematical formulation of Markov decision processes • 677
Visualization of a Markov process • 679

Episodic versus continuing tasks • 679
RL terminology: return, policy, and value function • 680

The return • 680
Policy • 682
Value function • 682

Dynamic programming using the Bellman equation • 684

Table of Contents xxi

Reinforcement learning algorithms .. 684
Dynamic programming • 685

Policy evaluation – predicting the value function with dynamic programming • 686
Improving the policy using the estimated value function • 686
Policy iteration • 687
Value iteration • 687

Reinforcement learning with Monte Carlo • 687
State-value function estimation using MC • 688
Action-value function estimation using MC • 688
Finding an optimal policy using MC control • 688
Policy improvement – computing the greedy policy from the action-value function • 689

Temporal difference learning • 689
TD prediction • 689
On-policy TD control (SARSA) • 691
Off-policy TD control (Q-learning) • 691

Implementing our first RL algorithm .. 691
Introducing the OpenAI Gym toolkit • 692

Working with the existing environments in OpenAI Gym • 692
A grid world example • 694
Implementing the grid world environment in OpenAI Gym • 694

Solving the grid world problem with Q-learning • 701
A glance at deep Q-learning .. 706

Training a DQN model according to the Q-learning algorithm • 706
Replay memory • 707
Determining the target values for computing the loss • 708

Implementing a deep Q-learning algorithm • 710
Chapter and book summary .. 714

Other Books You May Enjoy 719

Index 723

Preface

Through exposure to the news and social media, you probably are familiar with the fact that machine
learning has become one of the most exciting technologies of our time and age. Large companies,
such as Microsoft, Google, Meta, Apple, Amazon, IBM, and many more, heavily invest in machine
learning research and applications for good reasons. While it may seem that machine learning has
become the buzzword of our time and age, it is certainly not hype. This exciting field opens the way
to new possibilities and has become indispensable to our daily lives. Talking to the voice assistant on
our smartphones, recommending the right product for our customers, preventing credit card fraud,
filtering out spam from our e-mail inboxes, detecting and diagnosing medical diseases, the list goes
on and on.

If you want to become a machine learning practitioner, a better problem solver, or even consider a
career in machine learning research, then this book is for you! However, for a novice, the theoretical
concepts behind machine learning can be quite overwhelming. Yet, many practical books that have
been published in recent years will help you get started in machine learning by implementing pow-
erful learning algorithms.

Getting exposed to practical code examples and working through example applications of machine
learning is a great way to dive into this field. Concrete examples help to illustrate the broader concepts
by putting the learned material directly into action. However, remember that with great power comes
great responsibility! In addition to offering hands-on experience with machine learning using Python
and Python-based machine learning libraries, this book also introduces the mathematical concepts
behind machine learning algorithms, which is essential for using machine learning successfully. Thus,
this book is different from a purely practical book; it is a book that discusses the necessary details
regarding machine learning concepts, offers intuitive yet informative explanations on how machine
learning algorithms work, how to use them, and most importantly, how to avoid the most common
pitfalls.

In this book, we will embark on an exciting journey that covers all the essential topics and concepts
to give you a head start in this field. If you find that your thirst for knowledge is not satisfied, this
book references many useful resources that you can use to follow up on the essential breakthroughs
in this field.

Prefacexxiv

Who this book is for
This book is the ideal companion for learning how to apply machine learning and deep learning to a
wide range of tasks and datasets. If you are a programmer who wants to keep up with the recent trends
in technology, this book is definitely for you. Also, if you are a student or considering a career transition,
this book will be both your introduction and a comprehensive guide to the world of machine learning.

What this book covers
Chapter 1, Giving Computers the Ability to Learn from Data, introduces you to the main subareas of ma-
chine learning to tackle various problem tasks. In addition, it discusses the essential steps for creating
a typical machine learning model building pipeline that will guide us through the following chapters.

Chapter 2, Training Simple Machine Learning Algorithms for Classification, goes back to the origins of ma-
chine learning and introduces binary perceptron classifiers and adaptive linear neurons. This chapter
is a gentle introduction to the fundamentals of pattern classification and focuses on the interplay of
optimization algorithms and machine learning.

Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn, describes the essential machine
learning algorithms for classification and provides practical examples using one of the most popular
and comprehensive open-source machine learning libraries, scikit-learn.

Chapter 4, Building Good Training Datasets – Data Preprocessing, discusses how to deal with the most
common problems in unprocessed datasets, such as missing data. It also discusses several approach-
es to identify the most informative features in datasets and teaches you how to prepare variables of
different types as proper inputs for machine learning algorithms.

Chapter 5, Compressing Data via Dimensionality Reduction, describes the essential techniques to reduce
the number of features in a dataset to smaller sets while retaining most of their useful and discrim-
inatory information. It discusses the standard approach to dimensionality reduction via principal
component analysis and compares it to supervised and nonlinear transformation techniques.

Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, discusses the do’s and
don’ts for estimating the performances of predictive models. Moreover, it discusses different metrics for
measuring the performance of our models and techniques to fine-tune machine learning algorithms.

Chapter 7, Combining Different Models for Ensemble Learning, introduces you to the different concepts of
combining multiple learning algorithms effectively. It teaches you how to build ensembles of experts
to overcome the weaknesses of individual learners, resulting in more accurate and reliable predictions.

Chapter 8, Applying Machine Learning to Sentiment Analysis, discusses the essential steps to transform
textual data into meaningful representations for machine learning algorithms to predict the opinions
of people based on their writing.

Preface xxv

Chapter 9, Predicting Continuous Target Variables with Regression Analysis, discusses the essential tech-
niques for modeling linear relationships between target and response variables to make predictions on
a continuous scale. After introducing different linear models, it also talks about polynomial regression
and tree-based approaches.

Chapter 10, Working with Unlabeled Data – Clustering Analysis, shifts the focus to a different subarea of
machine learning, unsupervised learning. We apply algorithms from three fundamental families of
clustering algorithms to find groups of objects that share a certain degree of similarity.

Chapter 11, Implementing a Multilayer Artificial Neural Network from Scratch, extends the concept of
gradient-based optimization, which we first introduced in Chapter 2, Training Simple Machine Learn-
ing Algorithms for Classification, to build powerful, multilayer neural networks based on the popular
backpropagation algorithm in Python.

Chapter 12, Parallelizing Neural Network Training with PyTorch, builds upon the knowledge from the
previous chapter to provide you with a practical guide for training neural networks more efficiently.
The focus of this chapter is on PyTorch, an open-source Python library that allows us to utilize mul-
tiple cores of modern GPUs and construct deep neural networks from common building blocks via a
user-friendly and flexible API.

Chapter 13, Going Deeper – The Mechanics of PyTorch, picks up where the previous chapter left off and
introduces more advanced concepts and functionality of PyTorch. PyTorch is an extraordinarily vast
and sophisticated library, and this chapter walks you through concepts such as dynamic computation
graphs and automatic differentiation. You will also learn how to use PyTorch’s object-oriented API to
implement complex neural networks and how PyTorch Lightning helps you with best practices and
minimizing boilerplate code.

Chapter 14, Classifying Images with Deep Convolutional Neural Networks, introduces convolutional neu-
ral networks (CNNs). A CNN represents a particular type of deep neural network architecture that is
particularly well-suited for working with image datasets. Due to their superior performance compared
to traditional approaches, CNNs are now widely used in computer vision to achieve state-of-the-art
results for various image recognition tasks. Throughout this chapter, you will learn how convolutional
layers can be used as powerful feature extractors for image classification.

Chapter 15, Modeling Sequential Data Using Recurrent Neural Networks, introduces another popular
neural network architecture for deep learning that is especially well suited for working with text and
other types of sequential data and time series data. As a warm-up exercise, this chapter introduces
recurrent neural networks for predicting the sentiment of movie reviews. Then, we will teach recurrent
networks to digest information from books in order to generate entirely new text.

Chapter 16, Transformers – Improving Natural Language Processing with Attention Mechanisms, focuses
on the latest trends in natural language processing and explains how attention mechanisms help with
modeling complex relationships in long sequences. In particular, this chapter describes the influential
transformer architecture and state-of-the-art transformer models such as BERT and GPT.

Prefacexxvi

Chapter 17, Generative Adversarial Networks for Synthesizing New Data, introduces a popular adversarial
training regime for neural networks that can be used to generate new, realistic-looking images. The
chapter starts with a brief introduction to autoencoders, which is a particular type of neural network
architecture that can be used for data compression. The chapter then shows you how to combine the
decoder part of an autoencoder with a second neural network that can distinguish between real and
synthesized images. By letting two neural networks compete with each other in an adversarial training
approach, you will implement a generative adversarial network that generates new handwritten digits.

Chapter 18, Graph Neural Networks for Capturing Dependencies in Graph Structured Data, goes beyond
working with tabular datasets, images, and text. This chapter introduces graph neural networks that
operate on graph-structured data, such as social media networks and molecules. After explaining the
fundamentals of graph convolutions, this chapter includes a tutorial showing you how to implement
predictive models for molecular data.

Chapter 19, Reinforcement Learning for Decision Making in Complex Environments, covers a subcategory
of machine learning that is commonly used for training robots and other autonomous systems. This
chapter starts by introducing the basics of reinforcement learning (RL) to become familiar with the
agent/environment interactions, the reward process of RL systems, and the concept of learning from
experience. After learning about the main categories of RL, you will implement and train an agent that
can navigate in a grid world environment using the Q-learning algorithm. Finally, this chapter intro-
duces the deep Q-learning algorithm, which is a variant of Q-learning that uses deep neural networks.

To get the most out of this book
Ideally, you are already comfortable with programming in Python to follow along with the code ex-
amples we provide to both illustrate and apply various algorithms and models. To get the most out of
this book, a firm grasp of mathematical notation will be helpful as well.

A common laptop or desktop computer should be sufficient for running most of the code in this book,
and we provide instructions for your Python environment in the first chapter. Later chapters will
introduce additional libraries and installation recommendations when the need arises.

A recent graphics processing unit (GPU) can accelerate the code runtimes in the later deep learning
chapters. However, a GPU is not required, and we also provide instructions for using free cloud re-
sources.

Download the example code files
All code examples are available for download through GitHub at https://github.com/rasbt/machine-
learning-book. We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

While we recommend using Jupyter Notebook for executing code interactively, all code examples are
available in both a Python script (for example, ch02/ch02.py) and a Jupyter Notebook format (for ex-
ample, ch02/ch02.ipynb). Furthermore, we recommend viewing the README.md file that accompanies
each individual chapter for additional information and updates

https://github.com/rasbt/machine-learning-book
https://github.com/rasbt/machine-learning-book
https://github.com/PacktPublishing/

Preface xxvii

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://static.packt-cdn.com/downloads/9781801819312_ColorImages.
pdf. In addition, lower resolution color images are embedded in the code notebooks of this book that
come bundled with the example code files.

Conventions
There are a number of text conventions used throughout this book.

Here are some examples of these styles and an explanation of their meaning. Code words in text are
shown as follows: “And already installed packages can be updated via the --upgrade flag.”

A block of code is set as follows:

def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

Any input in the Python interpreter is written as follows (notice the >>> symbol). The expected output
will be shown without the >>> symbol:

>>> v1 = np.array([1, 2, 3])
>>> v2 = 0.5 * v1
>>> np.arccos(v1.dot(v2) / (np.linalg.norm(v1) *
... np.linalg.norm(v2)))
0.0

Any command-line input or output is written as follows:

pip install gym==0.20

New terms and important words are shown in bold. Words that you see on the screen, for example,
in menus or dialog boxes, appear in the text like this: “Clicking the Next button moves you to the next
screen.”

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781801819312_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801819312_ColorImages.pdf

Prefacexxviii

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book we would be grateful if you would report this to us. Please visit,
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Share your thoughts
Once you’ve read Machine Learning with PyTorch and Scikit-Learn, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
https://packt.link/r/1801819319

1
Giving Computers the Ability to
Learn from Data

In my opinion, machine learning, the application and science of algorithms that make sense of data,
is the most exciting field of all the computer sciences! We are living in an age where data comes in
abundance; using self-learning algorithms from the field of machine learning, we can turn this data
into knowledge. Thanks to the many powerful open-source libraries that have been developed in recent
years, there has probably never been a better time to break into the machine learning field and learn
how to utilize powerful algorithms to spot patterns in data and make predictions about future events.

In this chapter, you will learn about the main concepts and different types of machine learning. Togeth-
er with a basic introduction to the relevant terminology, we will lay the groundwork for successfully
using machine learning techniques for practical problem solving.

In this chapter, we will cover the following topics:

• The general concepts of machine learning
• The three types of learning and basic terminology
• The building blocks for successfully designing machine learning systems
• Installing and setting up Python for data analysis and machine learning

Building intelligent machines to transform data into
knowledge
In this age of modern technology, there is one resource that we have in abundance: a large amount of
structured and unstructured data. In the second half of the 20th century, machine learning evolved
as a subfield of artificial intelligence (AI) involving self-learning algorithms that derive knowledge
from data to make predictions.

Giving Computers the Ability to Learn from Data2

Instead of requiring humans to manually derive rules and build models from analyzing large amounts
of data, machine learning offers a more efficient alternative for capturing the knowledge in data to
gradually improve the performance of predictive models and make data-driven decisions.

Not only is machine learning becoming increasingly important in computer science research, but it
is also playing an ever-greater role in our everyday lives. Thanks to machine learning, we enjoy ro-
bust email spam filters, convenient text and voice recognition software, reliable web search engines,
recommendations on entertaining movies to watch, mobile check deposits, estimated meal delivery
times, and much more. Hopefully, soon, we will add safe and efficient self-driving cars to this list. Also,
notable progress has been made in medical applications; for example, researchers demonstrated that
deep learning models can detect skin cancer with near-human accuracy (https://www.nature.com/
articles/nature21056). Another milestone was recently achieved by researchers at DeepMind, who
used deep learning to predict 3D protein structures, outperforming physics-based approaches by a
substantial margin (https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-
old-grand-challenge-in-biology). While accurate 3D protein structure prediction plays an essential
role in biological and pharmaceutical research, there have been many other important applications
of machine learning in healthcare recently. For instance, researchers designed systems for predicting
the oxygen needs of COVID-19 patients up to four days in advance to help hospitals allocate resources
for those in need (https://ai.facebook.com/blog/new-ai-research-to-help-predict-covid-19-
resource-needs-from-a-series-of-x-rays/). Another important topic of our day and age is climate
change, which presents one of the biggest and most critical challenges. Today, many efforts are be-
ing directed toward developing intelligent systems to combat it (https://www.forbes.com/sites/
robtoews/2021/06/20/these-are-the-startups-applying-ai-to-tackle-climate-change). One of
the many approaches to tackling climate change is the emergent field of precision agriculture. Here,
researchers aim to design computer vision-based machine learning systems to optimize resource
deployment to minimize the use and waste of fertilizers.

The three different types of machine learning
In this section, we will take a look at the three types of machine learning: supervised learning, un-
supervised learning, and reinforcement learning. We will learn about the fundamental differences
between the three different learning types and, using conceptual examples, we will develop an un-
derstanding of the practical problem domains where they can be applied:

https://www.nature.com/articles/nature21056
https://www.nature.com/articles/nature21056
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://ai.facebook.com/blog/new-ai-research-to-help-predict-covid-19-resource-needs-from-a-series-of-x-rays/
https://ai.facebook.com/blog/new-ai-research-to-help-predict-covid-19-resource-needs-from-a-series-of-x-rays/
https://www.forbes.com/sites/robtoews/2021/06/20/these-are-the-startups-applying-ai-to-tackle-climate-change
https://www.forbes.com/sites/robtoews/2021/06/20/these-are-the-startups-applying-ai-to-tackle-climate-change

Chapter 1 3

Figure 1.1: The three different types of machine learning

Making predictions about the future with supervised learning
The main goal in supervised learning is to learn a model from labeled training data that allows us to
make predictions about unseen or future data. Here, the term “supervised” refers to a set of training
examples (data inputs) where the desired output signals (labels) are already known. Supervised learn-
ing is then the process of modeling the relationship between the data inputs and the labels. Thus, we
can also think of supervised learning as “label learning.”

Figure 1.2 summarizes a typical supervised learning workflow, where the labeled training data is
passed to a machine learning algorithm for fitting a predictive model that can make predictions on
new, unlabeled data inputs:

Figure 1.2: Supervised learning process

Giving Computers the Ability to Learn from Data4

Considering the example of email spam filtering, we can train a model using a supervised machine
learning algorithm on a corpus of labeled emails, which are correctly marked as spam or non-spam,
to predict whether a new email belongs to either of the two categories. A supervised learning task
with discrete class labels, such as in the previous email spam filtering example, is also called a clas-
sification task. Another subcategory of supervised learning is regression, where the outcome signal
is a continuous value.

Classification for predicting class labels
Classification is a subcategory of supervised learning where the goal is to predict the categorical class
labels of new instances or data points based on past observations. Those class labels are discrete, un-
ordered values that can be understood as the group memberships of the data points. The previously
mentioned example of email spam detection represents a typical example of a binary classification
task, where the machine learning algorithm learns a set of rules to distinguish between two possible
classes: spam and non-spam emails.

Figure 1.3 illustrates the concept of a binary classification task given 30 training examples; 15 training
examples are labeled as class A and 15 training examples are labeled as class B. In this scenario, our
dataset is two-dimensional, which means that each example has two values associated with it: x1 and
x2. Now, we can use a supervised machine learning algorithm to learn a rule—the decision boundary
represented as a dashed line—that can separate those two classes and classify new data into each of
those two categories given its x1 and x2 values:

Figure 1.3: Classifying a new data point

Chapter 1 5

However, the set of class labels does not have to be of a binary nature. The predictive model learned by
a supervised learning algorithm can assign any class label that was presented in the training dataset
to a new, unlabeled data point or instance.

A typical example of a multiclass classification task is handwritten character recognition. We can
collect a training dataset that consists of multiple handwritten examples of each letter in the alphabet.
The letters (“A,” “B,” “C,” and so on) will represent the different unordered categories or class labels
that we want to predict. Now, if a user provides a new handwritten character via an input device, our
predictive model will be able to predict the correct letter in the alphabet with certain accuracy. How-
ever, our machine learning system will be unable to correctly recognize any of the digits between 0
and 9, for example, if they were not part of the training dataset.

Regression for predicting continuous outcomes
We learned in the previous section that the task of classification is to assign categorical, unordered
labels to instances. A second type of supervised learning is the prediction of continuous outcomes,
which is also called regression analysis. In regression analysis, we are given a number of predictor
(explanatory) variables and a continuous response variable (outcome), and we try to find a relationship
between those variables that allows us to predict an outcome.

Note that in the field of machine learning, the predictor variables are commonly called “features,” and
the response variables are usually referred to as “target variables.” We will adopt these conventions
throughout this book.

For example, let’s assume that we are interested in predicting the math SAT scores of students. (The
SAT is a standardized test frequently used for college admissions in the United States.) If there is a
relationship between the time spent studying for the test and the final scores, we could use it as train-
ing data to learn a model that uses the study time to predict the test scores of future students who are
planning to take this test.

Figure 1.4 illustrates the concept of linear regression. Given a feature variable, x, and a target variable,
y, we fit a straight line to this data that minimizes the distance—most commonly the average squared
distance—between the data points and the fitted line.

Regression toward the mean

The term “regression” was devised by Francis Galton in his article Regression towards
Mediocrity in Hereditary Stature in 1886. Galton described the biological phenomenon that
the variance of height in a population does not increase over time.

He observed that the height of parents is not passed on to their children, but instead, their
children’s height regresses toward the population mean.

Giving Computers the Ability to Learn from Data6

We can now use the intercept and slope learned from this data to predict the target variable of new data:

Figure 1.4: A linear regression example

Solving interactive problems with reinforcement learning
Another type of machine learning is reinforcement learning. In reinforcement learning, the goal is to
develop a system (agent) that improves its performance based on interactions with the environment.
Since the information about the current state of the environment typically also includes a so-called
reward signal, we can think of reinforcement learning as a field related to supervised learning. How-
ever, in reinforcement learning, this feedback is not the correct ground truth label or value, but a
measure of how well the action was measured by a reward function. Through its interaction with the
environment, an agent can then use reinforcement learning to learn a series of actions that maximizes
this reward via an exploratory trial-and-error approach or deliberative planning.

A popular example of reinforcement learning is a chess program. Here, the agent decides upon a se-
ries of moves depending on the state of the board (the environment), and the reward can be defined
as win or lose at the end of the game:

Chapter 1 7

Figure 1.5: Reinforcement learning process

There are many different subtypes of reinforcement learning. However, a general scheme is that the
agent in reinforcement learning tries to maximize the reward through a series of interactions with
the environment. Each state can be associated with a positive or negative reward, and a reward can
be defined as accomplishing an overall goal, such as winning or losing a game of chess. For instance,
in chess, the outcome of each move can be thought of as a different state of the environment.

To explore the chess example further, let’s think of visiting certain configurations on the chessboard
as being associated with states that will more likely lead to winning—for instance, removing an oppo-
nent’s chess piece from the board or threatening the queen. Other positions, however, are associated
with states that will more likely result in losing the game, such as losing a chess piece to the opponent
in the following turn. Now, in the game of chess, the reward (either positive for winning or negative
for losing the game) will not be given until the end of the game. In addition, the final reward will also
depend on how the opponent plays. For example, the opponent may sacrifice the queen but eventually
win the game.

In sum, reinforcement learning is concerned with learning to choose a series of actions that maxi-
mizes the total reward, which could be earned either immediately after taking an action or via delayed
feedback.

Discovering hidden structures with unsupervised learning
In supervised learning, we know the right answer (the label or target variable) beforehand when we
train a model, and in reinforcement learning, we define a measure of reward for particular actions
carried out by the agent. In unsupervised learning, however, we are dealing with unlabeled data or
data of an unknown structure. Using unsupervised learning techniques, we are able to explore the
structure of our data to extract meaningful information without the guidance of a known outcome
variable or reward function.

Giving Computers the Ability to Learn from Data8

Finding subgroups with clustering
Clustering is an exploratory data analysis or pattern discovery technique that allows us to organize a
pile of information into meaningful subgroups (clusters) without having any prior knowledge of their
group memberships. Each cluster that arises during the analysis defines a group of objects that share a
certain degree of similarity but are more dissimilar to objects in other clusters, which is why clustering
is also sometimes called unsupervised classification. Clustering is a great technique for structuring
information and deriving meaningful relationships from data. For example, it allows marketers to
discover customer groups based on their interests, in order to develop distinct marketing programs.

Figure 1.6 illustrates how clustering can be applied to organizing unlabeled data into three distinct
groups or clusters (A, B, and C, in arbitrary order) based on the similarity of their features, x1 and x2:

Figure 1.6: How clustering works

Dimensionality reduction for data compression
Another subfield of unsupervised learning is dimensionality reduction. Often, we are working with
data of high dimensionality—each observation comes with a high number of measurements—that
can present a challenge for limited storage space and the computational performance of machine
learning algorithms. Unsupervised dimensionality reduction is a commonly used approach in feature
preprocessing to remove noise from data, which can degrade the predictive performance of certain
algorithms. Dimensionality reduction compresses the data onto a smaller dimensional subspace while
retaining most of the relevant information.

Chapter 1 9

Sometimes, dimensionality reduction can also be useful for visualizing data; for example, a high-dimen-
sional feature set can be projected onto one-, two-, or three-dimensional feature spaces to visualize it
via 2D or 3D scatterplots or histograms. Figure 1.7 shows an example where nonlinear dimensionality
reduction was applied to compress a 3D Swiss roll onto a new 2D feature subspace:

Figure 1.7: An example of dimensionality reduction from three to two dimensions

Introduction to the basic terminology and notations
Now that we have discussed the three broad categories of machine learning—supervised, unsuper-
vised, and reinforcement learning—let’s have a look at the basic terminology that we will be using
throughout this book. The following subsection covers the common terms we will be using when
referring to different aspects of a dataset, as well as the mathematical notation to communicate more
precisely and efficiently.

As machine learning is a vast field and very interdisciplinary, you are guaranteed to encounter many
different terms that refer to the same concepts sooner rather than later. The second subsection collects
many of the most commonly used terms that are found in machine learning literature, which may be
useful to you as a reference section when reading machine learning publications.

Notation and conventions used in this book
Figure 1.8 depicts an excerpt of the Iris dataset, which is a classic example in the field of machine
learning (more information can be found at https://archive.ics.uci.edu/ml/datasets/iris).
The Iris dataset contains the measurements of 150 Iris flowers from three different species—Setosa,
Versicolor, and Virginica.

https://archive.ics.uci.edu/ml/datasets/iris

Giving Computers the Ability to Learn from Data10

Here, each flower example represents one row in our dataset, and the flower measurements in cen-
timeters are stored as columns, which we also call the features of the dataset:

Figure 1.8: The Iris dataset

To keep the notation and implementation simple yet efficient, we will make use of some of the basics
of linear algebra. In the following chapters, we will use a matrix notation to refer to our data. We will
follow the common convention to represent each example as a separate row in a feature matrix, X,
where each feature is stored as a separate column.

The Iris dataset, consisting of 150 examples and four features, can then be written as a 150×4 matrix,
formally denoted as 𝜲𝜲 𝜲 𝜲150×4 :

[
 𝑥𝑥1(1) 𝑥𝑥2(1) 𝑥𝑥3(1) 𝑥𝑥4(1)𝑥𝑥1(2) 𝑥𝑥2(2) 𝑥𝑥3(2) 𝑥𝑥4(2)⋮ ⋮ ⋮ ⋮𝑥𝑥1(150) 𝑥𝑥2(150) 𝑥𝑥3(150) 𝑥𝑥4(150)]

Chapter 1 11

Machine learning terminology
Machine learning is a vast field and also very interdisciplinary as it brings together many scientists
from other areas of research. As it happens, many terms and concepts have been rediscovered or re-
defined and may already be familiar to you but appear under different names. For your convenience,
in the following list, you can find a selection of commonly used terms and their synonyms that you
may find useful when reading this book and machine learning literature in general:

• Training example: A row in a table representing the dataset and synonymous with an obser-
vation, record, instance, or sample (in most contexts, sample refers to a collection of training
examples).

• Training: Model fitting, for parametric models similar to parameter estimation.

 Notational conventions

For most parts of this book, unless noted otherwise, we will use the superscript i to refer
to the ith training example, and the subscript j to refer to the jth dimension of the training
dataset.

We will use lowercase, bold-face letters to refer to vectors (𝒙𝒙 𝒙 𝒙𝒏𝒏𝒏𝒏𝒏) and uppercase, bold-
face letters to refer to matrices (𝜲𝜲 𝜲 𝜲𝒏𝒏𝒏𝒏𝒏). To refer to single elements in a vector or matrix,
we will write the letters in italics (x(n) or 𝑥𝑥𝑚𝑚(𝑛𝑛𝑛 , respectively).

For example, 𝑥𝑥1(150) refers to the first dimension of flower example 150, the sepal length.
Each row in matrix X represents one flower instance and can be written as a four-dimen-
sional row vector, 𝒙𝒙(𝑖𝑖𝑖 ∈ ℝ1×4 : 𝑿𝑿(𝑖𝑖𝑖 = [𝑥𝑥1(𝑖𝑖𝑖 𝑥𝑥2(𝑖𝑖𝑖 𝑥𝑥3(𝑖𝑖𝑖 𝑥𝑥4(𝑖𝑖𝑖]
And each feature dimension is a 150-dimensional column vector, 𝑿𝑿(𝑖𝑖𝑖 ∈ ℝ150×1 . For ex-
ample:

𝒙𝒙𝒋𝒋 = [
 𝑥𝑥𝑗𝑗(1)𝑥𝑥𝑗𝑗(2)⋯𝑥𝑥𝑗𝑗(150)]

Similarly, we can represent the target variables (here, class labels) as a 150-dimensional
column vector:

𝒚𝒚 𝒚 𝒚 𝑦𝑦(1)⋯𝑦𝑦(150)] , where 𝑦𝑦(𝑖𝑖) ∈ {Setosa, Versicolor, Virginica}

Giving Computers the Ability to Learn from Data12

• Feature, abbrev. x: A column in a data table or data (design) matrix. Synonymous with predictor,
variable, input, attribute, or covariate.

• Target, abbrev. y: Synonymous with outcome, output, response variable, dependent variable,
(class) label, and ground truth.

• Loss function: Often used synonymously with a cost function. Sometimes the loss function is
also called an error function. In some literature, the term “loss” refers to the loss measured for
a single data point, and the cost is a measurement that computes the loss (average or summed)
over the entire dataset.

A roadmap for building machine learning systems
In previous sections, we discussed the basic concepts of machine learning and the three different
types of learning. In this section, we will discuss the other important parts of a machine learning
system accompanying the learning algorithm.

Figure 1.9 shows a typical workflow for using machine learning in predictive modeling, which we will
discuss in the following subsections:

Figure 1.9: Predictive modeling workflow

Chapter 1 13

Preprocessing – getting data into shape
Let’s begin by discussing the roadmap for building machine learning systems. Raw data rarely comes
in the form and shape that is necessary for the optimal performance of a learning algorithm. Thus,
the preprocessing of the data is one of the most crucial steps in any machine learning application.

If we take the Iris flower dataset from the previous section as an example, we can think of the raw data
as a series of flower images from which we want to extract meaningful features. Useful features could
be centered around the color of the flowers or the height, length, and width of the flowers.

Many machine learning algorithms also require that the selected features are on the same scale for
optimal performance, which is often achieved by transforming the features in the range [0, 1] or a
standard normal distribution with zero mean and unit variance, as we will see in later chapters.

Some of the selected features may be highly correlated and therefore redundant to a certain degree.
In those cases, dimensionality reduction techniques are useful for compressing the features onto a
lower-dimensional subspace. Reducing the dimensionality of our feature space has the advantage that
less storage space is required, and the learning algorithm can run much faster. In certain cases, di-
mensionality reduction can also improve the predictive performance of a model if the dataset contains
a large number of irrelevant features (or noise); that is, if the dataset has a low signal-to-noise ratio.

To determine whether our machine learning algorithm not only performs well on the training dataset
but also generalizes well to new data, we also want to randomly divide the dataset into separate train-
ing and test datasets. We use the training dataset to train and optimize our machine learning model,
while we keep the test dataset until the very end to evaluate the final model.

Training and selecting a predictive model
As you will see in later chapters, many different machine learning algorithms have been developed
to solve different problem tasks. An important point that can be summarized from David Wolpert’s
famous No free lunch theorems is that we can’t get learning “for free” (The Lack of A Priori Distinctions
Between Learning Algorithms, D.H. Wolpert, 1996; No free lunch theorems for optimization, D.H. Wolpert
and W.G. Macready, 1997). We can relate this concept to the popular saying, I suppose it is tempting, if
the only tool you have is a hammer, to treat everything as if it were a nail (Abraham Maslow, 1966). For
example, each classification algorithm has its inherent biases, and no single classification model en-
joys superiority if we don’t make any assumptions about the task. In practice, it is therefore essential
to compare at least a handful of different learning algorithms in order to train and select the best
performing model. But before we can compare different models, we first have to decide upon a metric
to measure performance. One commonly used metric is classification accuracy, which is defined as
the proportion of correctly classified instances.

One legitimate question to ask is this: how do we know which model performs well on the final test
dataset and real-world data if we don’t use this test dataset for the model selection, but keep it for the
final model evaluation? To address the issue embedded in this question, different techniques summa-
rized as “cross-validation” can be used. In cross-validation, we further divide a dataset into training
and validation subsets in order to estimate the generalization performance of the model.

Giving Computers the Ability to Learn from Data14

Finally, we also cannot expect that the default parameters of the different learning algorithms provided
by software libraries are optimal for our specific problem task. Therefore, we will make frequent use
of hyperparameter optimization techniques that help us to fine-tune the performance of our model
in later chapters.

We can think of those hyperparameters as parameters that are not learned from the data but represent
the knobs of a model that we can turn to improve its performance. This will become much clearer in
later chapters when we see actual examples.

Evaluating models and predicting unseen data instances
After we have selected a model that has been fitted on the training dataset, we can use the test dataset
to estimate how well it performs on this unseen data to estimate the so-called generalization error. If
we are satisfied with its performance, we can now use this model to predict new, future data. It is im-
portant to note that the parameters for the previously mentioned procedures, such as feature scaling
and dimensionality reduction, are solely obtained from the training dataset, and the same parameters
are later reapplied to transform the test dataset, as well as any new data instances—the performance
measured on the test data may be overly optimistic otherwise.

Using Python for machine learning
Python is one of the most popular programming languages for data science, and thanks to its very
active developer and open-source community, a large number of useful libraries for scientific com-
puting and machine learning have been developed.

Although the performance of interpreted languages, such as Python, for computation-intensive tasks
is inferior to lower-level programming languages, extension libraries such as NumPy and SciPy have
been developed that build upon lower-layer Fortran and C implementations for fast vectorized oper-
ations on multidimensional arrays.

For machine learning programming tasks, we will mostly refer to the scikit-learn library, which is
currently one of the most popular and accessible open-source machine learning libraries. In the later
chapters, when we focus on a subfield of machine learning called deep learning, we will use the latest
version of the PyTorch library, which specializes in training so-called deep neural network models very
efficiently by utilizing graphics cards.

Installing Python and packages from the Python Package Index
Python is available for all three major operating systems—Microsoft Windows, macOS, and Linux—
and the installer, as well as the documentation, can be downloaded from the official Python website:
https://www.python.org.

The code examples provided in this book have been written for and tested in Python 3.9, and we
generally recommend that you use the most recent version of Python 3 that is available. Some of
the code may also be compatible with Python 2.7, but as the official support for Python 2.7 ended in
2019, and the majority of open-source libraries have already stopped supporting Python 2.7 (https://
python3statement.org), we strongly advise that you use Python 3.9 or newer.

https://www.python.org
https://python3statement.org
https://python3statement.org

Chapter 1 15

You can check your Python version by executing

python --version

or

python3 --version

in your terminal (or PowerShell if you are using Windows).

The additional packages that we will be using throughout this book can be installed via the pip installer
program, which has been part of the Python Standard Library since Python 3.3. More information
about pip can be found at https://docs.python.org/3/installing/index.html.

After we have successfully installed Python, we can execute pip from the terminal to install additional
Python packages:

pip install SomePackage

Already installed packages can be updated via the --upgrade flag:

pip install SomePackage --upgrade

Using the Anaconda Python distribution and package manager
A highly recommended open-source package management system for installing Python for scientific
computing contexts is conda by Continuum Analytics. Conda is free and licensed under a permissive
open-source license. Its goal is to help with the installation and version management of Python pack-
ages for data science, math, and engineering across different operating systems. If you want to use
conda, it comes in different flavors, namely Anaconda, Miniconda, and Miniforge:

• Anaconda comes with many scientific computing packages pre-installed. The Anaconda in-
staller can be downloaded at https://docs.anaconda.com/anaconda/install/, and an An-
aconda quick start guide is available at https://docs.anaconda.com/anaconda/user-guide/
getting-started/.

• Miniconda is a leaner alternative to Anaconda (https://docs.conda.io/en/latest/miniconda.
html). Essentially, it is similar to Anaconda but without any packages pre-installed, which many
people (including the authors) prefer.

• Miniforge is similar to Miniconda but community-maintained and uses a different package
repository (conda-forge) from Miniconda and Anaconda. We found that Miniforge is a great
alternative to Miniconda. Download and installation instructions can be found in the GitHub
repository at https://github.com/conda-forge/miniforge.

After successfully installing conda through either Anaconda, Miniconda, or Miniforge, we can install
new Python packages using the following command:

conda install SomePackage

https://docs.python.org/3/installing/index.html
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/conda-forge/miniforge

Giving Computers the Ability to Learn from Data16

Existing packages can be updated using the following command:

conda update SomePackage

Packages that are not available through the official conda channel might be available via the com-
munity-supported conda-forge project (https://conda-forge.org), which can be specified via the
--channel conda-forge flag. For example:

conda install SomePackage --channel conda-forge

Packages that are not available through the default conda channel or conda-forge can be installed via
pip as explained earlier. For example:

pip install SomePackage

Packages for scientific computing, data science, and machine
learning
Throughout the first half of this book, we will mainly use NumPy’s multidimensional arrays to store and
manipulate data. Occasionally, we will make use of pandas, which is a library built on top of NumPy
that provides additional higher-level data manipulation tools that make working with tabular data
even more convenient. To augment your learning experience and visualize quantitative data, which
is often extremely useful to make sense of it, we will use the very customizable Matplotlib library.

The main machine learning library used in this book is scikit-learn (Chapters 3 to 11). Chapter 12, Paral-
lelizing Neural Network Training with PyTorch, will then introduce the PyTorch library for deep learning.

The version numbers of the major Python packages that were used to write this book are mentioned
in the following list. Please make sure that the version numbers of your installed packages are, ideally,
equal to these version numbers to ensure that the code examples run correctly:

• NumPy 1.21.2
• SciPy 1.7.0
• Scikit-learn 1.0
• Matplotlib 3.4.3
• pandas 1.3.2

After installing these packages, you can double-check the installed version by importing the package
in Python and accessing its __version__ attribute, for example:

>>> import numpy
>>> numpy.__version__
'1.21.2'

For your convenience, we included a python-environment-check.py script in this book’s compli-
mentary code repository at https://github.com/rasbt/machine-learning-book so that you can
check both your Python version and the package versions by executing this script.

https://conda-forge.org
https://github.com/rasbt/machine-learning-book

Chapter 1 17

Certain chapters will require additional packages and will provide information about the installations.
For instance, do not worry about installing PyTorch at this point. Chapter 12 will provide tips and
instructions when you need them.

If you encounter errors even though your code matches the code in the chapter exactly, we recom-
mend you first check the version numbers of the underlying packages before spending more time
on debugging or reaching out to the publisher or authors. Sometimes, newer versions of libraries
introduce backward-incompatible changes that could explain these errors.

If you do not want to change the package version in your main Python installation, we recommend
using a virtual environment for installing the packages used in this book. If you use Python without
the conda manager, you can use the venv library to create a new virtual environment. For example,
you can create and activate the virtual environment via the following two commands:

python3 -m venv /Users/sebastian/Desktop/pyml-book
source /Users/sebastian/Desktop/pyml-book/bin/activate

Note that you need to activate the virtual environment every time you open a new terminal or Power-
Shell. You can find more information about venv at https://docs.python.org/3/library/venv.html.

If you are using Anaconda with the conda package manager, you can create and activate a virtual
environment as follows:

conda create -n pyml python=3.9
conda activate pyml

Summary
In this chapter, we explored machine learning at a very high level and familiarized ourselves with
the big picture and major concepts that we are going to explore in the following chapters in more
detail. We learned that supervised learning is composed of two important subfields: classification and
regression. While classification models allow us to categorize objects into known classes, we can use
regression analysis to predict the continuous outcomes of target variables. Unsupervised learning not
only offers useful techniques for discovering structures in unlabeled data, but it can also be useful for
data compression in feature preprocessing steps.

We briefly went over the typical roadmap for applying machine learning to problem tasks, which
we will use as a foundation for deeper discussions and hands-on examples in the following chapters.
Finally, we set up our Python environment and installed and updated the required packages to get
ready to see machine learning in action.

Later in this book, in addition to machine learning itself, we will introduce different techniques to
preprocess a dataset, which will help you to get the best performance out of different machine learning
algorithms. While we will cover classification algorithms quite extensively throughout the book, we
will also explore different techniques for regression analysis and clustering.

https://docs.python.org/3/library/venv.html

Giving Computers the Ability to Learn from Data18

We have an exciting journey ahead, covering many powerful techniques in the vast field of machine
learning. However, we will approach machine learning one step at a time, building upon our knowledge
gradually throughout the chapters of this book. In the following chapter, we will start this journey by
implementing one of the earliest machine learning algorithms for classification, which will prepare
us for Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn, where we will cover more
advanced machine learning algorithms using the scikit-learn open-source machine learning library.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

2
Training Simple Machine Learning
Algorithms for Classification

In this chapter, we will make use of two of the first algorithmically described machine learning algo-
rithms for classification: the perceptron and adaptive linear neurons. We will start by implementing a
perceptron step by step in Python and training it to classify different flower species in the Iris dataset.
This will help us to understand the concept of machine learning algorithms for classification and how
they can be efficiently implemented in Python.

Discussing the basics of optimization using adaptive linear neurons will then lay the groundwork for
using more sophisticated classifiers via the scikit-learn machine learning library in Chapter 3, A Tour
of Machine Learning Classifiers Using Scikit-Learn.

The topics that we will cover in this chapter are as follows:

• Building an understanding of machine learning algorithms
• Using pandas, NumPy, and Matplotlib to read in, process, and visualize data
• Implementing linear classifiers for 2-class problems in Python

Artificial neurons – a brief glimpse into the early history
of machine learning
Before we discuss the perceptron and related algorithms in more detail, let’s take a brief tour of the
beginnings of machine learning. Trying to understand how the biological brain works in order to de-
sign an artificial intelligence (AI), Warren McCulloch and Walter Pitts published the first concept of
a simplified brain cell, the so-called McCulloch-Pitts (MCP) neuron, in 1943 (A Logical Calculus of the
Ideas Immanent in Nervous Activity by W. S. McCulloch and W. Pitts, Bulletin of Mathematical Biophysics,
5(4): 115-133, 1943).

Training Simple Machine Learning Algorithms for Classification20

Biological neurons are interconnected nerve cells in the brain that are involved in the processing and
transmitting of chemical and electrical signals, which is illustrated in Figure 2.1:

Figure 2.1: A neuron processing chemical and electrical signals

McCulloch and Pitts described such a nerve cell as a simple logic gate with binary outputs; multiple
signals arrive at the dendrites, they are then integrated into the cell body, and, if the accumulated
signal exceeds a certain threshold, an output signal is generated that will be passed on by the axon.

Only a few years later, Frank Rosenblatt published the first concept of the perceptron learning rule
based on the MCP neuron model (The Perceptron: A Perceiving and Recognizing Automaton by F. Rosenblatt,
Cornell Aeronautical Laboratory, 1957). With his perceptron rule, Rosenblatt proposed an algorithm
that would automatically learn the optimal weight coefficients that would then be multiplied with the
input features in order to make the decision of whether a neuron fires (transmits a signal) or not. In
the context of supervised learning and classification, such an algorithm could then be used to predict
whether a new data point belongs to one class or the other.

The formal definition of an artificial neuron
More formally, we can put the idea behind artificial neurons into the context of a binary classifica-
tion task with two classes: 0 and 1. We can then define a decision function, 𝜎𝜎𝜎𝜎𝜎𝜎 , that takes a linear
combination of certain input values, x, and a corresponding weight vector, w, where z is the so-called
net input z = w1x1 + w2x2 + ... + wmxm:

𝒘𝒘 𝒘 𝒘 𝑤𝑤1⋮𝑤𝑤𝑚𝑚] , 𝒙𝒙 𝒘 𝒘 𝑥𝑥1⋮𝑥𝑥𝑚𝑚]

Now, if the net input of a particular example, x(i), is greater than a defined threshold, 𝜃𝜃 , we predict
class 1, and class 0 otherwise. In the perceptron algorithm, the decision function, 𝜎𝜎(∙) , is a variant of
a unit step function: 𝜎𝜎𝜎𝜎𝜎𝜎 𝜎 𝜎1 if 𝜎𝜎 𝑧 𝑧𝑧0 otherwise

Chapter 2 21

To simplify the code implementation later, we can modify this setup via a couple of steps. First, we
move the threshold, 𝜃𝜃 , to the left side of the equation:𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧

Second, we define a so-called bias unit as 𝑏𝑏 𝑏 𝑏𝑏𝑏 and make it part of the net input:

z = w1x1 + ... + wmxm + b = wTx + b

Third, given the introduction of the bias unit and the redefinition of the net input z above, we can
redefine the decision function as follows:𝜎𝜎𝜎𝜎𝜎𝜎 𝜎 𝜎1 if 𝜎𝜎 𝑧 𝑧𝑧 otherwise

Linear algebra basics: dot product and matrix transpose

In the following sections, we will often make use of basic notations from linear algebra.
For example, we will abbreviate the sum of the products of the values in x and w using a
vector dot product, whereas the superscript T stands for transpose, which is an operation
that transforms a column vector into a row vector and vice versa. For example, assume
we have the following two column vectors:

𝒂𝒂𝒂 𝒂 𝒂 𝒂𝑎𝑎1𝑎𝑎2𝑎𝑎3] ,𝒂𝒂𝒂𝒂𝒃𝒃𝒂 𝒂 𝒂 𝒂𝑏𝑏1𝑏𝑏2𝑏𝑏3]

Then, we can write the transpose of vector a as aT = [a1 a2 a3] and write the dot product as𝒂𝒂𝑇𝑇𝒃𝒃𝒃 𝒃 𝒃 𝒃 𝒃𝒃𝑖𝑖𝑏𝑏𝑖𝑖 𝒃 𝒃 𝒃𝒃1 ∙ 𝑏𝑏1 +𝒃 𝒃𝒃2 ∙ 𝑏𝑏2 + 𝒃𝒃𝒃3 ∙ 𝑏𝑏3𝑖𝑖

Furthermore, the transpose operation can also be applied to matrices to reflect it over its
diagonal, for example:

[1 23 45 6]𝑇𝑇 = [1 3 52 4 6]
Please note that the transpose operation is strictly only defined for matrices; however,
in the context of machine learning, we refer to n × 1 or 1 × m matrices when we use the
term “vector.”

In this book, we will only use very basic concepts from linear algebra; however, if you
need a quick refresher, please take a look at Zico Kolter’s excellent Linear Algebra Review
and Reference, which is freely available at http://www.cs.cmu.edu/~zkolter/course/
linalg/linalg_notes.pdf.

http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf

Training Simple Machine Learning Algorithms for Classification22

Figure 2.2 illustrates how the net input z = wTx + b is squashed into a binary output (0 or 1) by the
decision function of the perceptron (left subfigure) and how it can be used to discriminate between
two classes separable by a linear decision boundary (right subfigure):

Figure 2.2: A threshold function producing a linear decision boundary for a binary classification
problem

The perceptron learning rule
The whole idea behind the MCP neuron and Rosenblatt’s thresholded perceptron model is to use a re-
ductionist approach to mimic how a single neuron in the brain works: it either fires or it doesn’t. Thus,
Rosenblatt’s classic perceptron rule is fairly simple, and the perceptron algorithm can be summarized
by the following steps:

1. Initialize the weights and bias unit to 0 or small random numbers
2. For each training example, x(i):

a. Compute the output value, 𝑦𝑦𝑦(𝑖𝑖𝑖
b. Update the weights and bias unit

Here, the output value is the class label predicted by the unit step function that we defined earlier, and
the simultaneous update of the bias unit and each weight, wj, in the weight vector, w, can be more
formally written as: 𝑤𝑤𝑗𝑗 ≔ 𝑤𝑤𝑗𝑗 + ∆𝑤𝑤𝑗𝑗

and 𝑏𝑏 𝑏𝑏 𝑏𝑏 + ∆𝑏𝑏

The update values (“deltas”) are computed as follows: ∆𝑤𝑤𝑗𝑗 = 𝜂𝜂𝜂𝜂𝜂(𝑖𝑖) − 𝜂𝜂𝑦(𝑖𝑖))𝑥𝑥𝑗𝑗(𝑖𝑖)
and ∆𝑏𝑏 = 𝜂𝜂𝜂𝜂𝜂(𝑖𝑖) − 𝜂𝜂𝑦(𝑖𝑖))

Chapter 2 23

Note that unlike the bias unit, each weight, wj, corresponds to a feature, xj, in the dataset, which is
involved in determining the update value, Δ𝑤𝑤𝑗𝑗 , defined above. Furthermore, 𝜂𝜂 is the learning rate
(typically a constant between 0.0 and 1.0), y(i) is the true class label of the ith training example, and 𝑦𝑦𝑦(𝑖𝑖) is the predicted class label. It is important to note that the bias unit and all weights in the weight
vector are being updated simultaneously, which means that we don’t recompute the predicted label, 𝑦𝑦𝑦(𝑖𝑖) , before the bias unit and all of the weights are updated via the respective update values, Δ𝑤𝑤𝑗𝑗 and Δ𝑏𝑏 . Concretely, for a two-dimensional dataset, we would write the update as:∆𝑤𝑤1 = 𝜂𝜂(𝑦𝑦(𝑖𝑖𝑖 − output(𝑖𝑖𝑖𝑖𝑥𝑥1(𝑖𝑖𝑖;∆𝑤𝑤2 = 𝜂𝜂(𝑦𝑦(𝑖𝑖𝑖 − output(𝑖𝑖𝑖𝑖𝑥𝑥2(𝑖𝑖𝑖;∆𝑏𝑏 = 𝜂𝜂(𝑦𝑦(𝑖𝑖𝑖 − output(𝑖𝑖𝑖𝑖

Before we implement the perceptron rule in Python, let’s go through a simple thought experiment to
illustrate how beautifully simple this learning rule really is. In the two scenarios where the percep-
tron predicts the class label correctly, the bias unit and weights remain unchanged, since the update
values are 0:

(1) 𝑦𝑦(𝑖𝑖) = 0, 𝑦𝑦𝑦(𝑖𝑖) = 0, ∆𝑤𝑤𝑗𝑗 = 𝜂𝜂(0 − 0)𝑥𝑥𝑗𝑗(𝑖𝑖) = 0, ∆𝑏𝑏 = 𝜂𝜂(0 − 0) = 0

(2) 𝑦𝑦(𝑖𝑖) = 1, 𝑦𝑦𝑦(𝑖𝑖) = 1, ∆𝑤𝑤𝑗𝑗 = 𝜂𝜂(1 − 1)𝑥𝑥𝑗𝑗(𝑖𝑖) = 0, ∆𝑏𝑏 = 𝜂𝜂(1 − 1) = 0

However, in the case of a wrong prediction, the weights are being pushed toward the direction of the
positive or negative target class:

(3) 𝑦𝑦(𝑖𝑖) = 1, 𝑦𝑦𝑦(𝑖𝑖) = 0, ∆𝑤𝑤𝑗𝑗 = 𝜂𝜂(1 − 0)𝑥𝑥𝑗𝑗(𝑖𝑖) = 𝜂𝜂𝑥𝑥𝑗𝑗(𝑖𝑖), ∆𝑏𝑏 = 𝜂𝜂(1 − 0) = 𝜂𝜂

(4) 𝑦𝑦(𝑖𝑖) = 0, 𝑦𝑦𝑦(𝑖𝑖) = 1, ∆𝑤𝑤𝑗𝑗 = 𝜂𝜂(0 − 1)𝑥𝑥𝑗𝑗(𝑖𝑖) = −𝜂𝜂𝑥𝑥𝑗𝑗(𝑖𝑖), ∆𝑏𝑏 = 𝜂𝜂(0 − 1) = −𝜂𝜂

To get a better understanding of the feature value as a multiplicative factor, 𝑥𝑥𝑗𝑗(𝑖𝑖) , let’s go through an-
other simple example, where: 𝑦𝑦𝑦(𝑖𝑖) = 1, 𝑦𝑦(𝑖𝑖) = 0, 𝜂𝜂 = 1

Let’s assume that 𝑥𝑥𝑗𝑗(𝑖𝑖) = 1.5 and we misclassify this example as class 0. In this case, we would increase
the corresponding weight by 2.5 in total so that the net input, 𝑧𝑧 𝑧 𝑧𝑧𝑗𝑗(𝑖𝑖) × 𝑤𝑤𝑗𝑗 + 𝑏𝑏 , would be more positive
the next time we encounter this example, and thus be more likely to be above the threshold of the
unit step function to classify the example as class 1:∆𝑤𝑤𝑗𝑗 = (1 − 0)1.5 = 1.5, ∆𝑏𝑏 = (1 − 0) = 1

The weight update, ∆𝑤𝑤𝑗𝑗 , is proportional to the value of 𝑥𝑥𝑗𝑗(𝑖𝑖) . For instance, if we have another example, 𝑥𝑥𝑗𝑗(𝑖𝑖) = 2 , that is incorrectly classified as class 0, we will push the decision boundary by an even larger
extent to classify this example correctly the next time:∆𝑤𝑤𝑗𝑗 = (1 − 0)2 = 2, ∆𝑏𝑏 = (1 − 0) = 1

Training Simple Machine Learning Algorithms for Classification24

It is important to note that the convergence of the perceptron is only guaranteed if the two classes
are linearly separable, which means that the two classes cannot be perfectly separated by a linear
decision boundary. (Interested readers can find the convergence proof in my lecture notes: https://
sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf). Figure 2.3
shows visual examples of linearly separable and linearly inseparable scenarios:

Figure 2.3: Examples of linearly and nonlinearly separable classes

If the two classes can’t be separated by a linear decision boundary, we can set a maximum number
of passes over the training dataset (epochs) and/or a threshold for the number of tolerated misclas-
sifications—the perceptron would never stop updating the weights otherwise. Later in this chapter,
we will cover the Adaline algorithm that produces linear decision boundaries and converges even if
the classes are not perfectly linearly separable. In Chapter 3, we will learn about algorithms that can
produce nonlinear decision boundaries.

Now, before we jump into the implementation in the next section, what you just learned can be sum-
marized in a simple diagram that illustrates the general concept of the perceptron:

Downloading the example code

If you bought this book directly from Packt, you can download the example code files
from your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can download all code examples and datasets directly from https://github.com/
rasbt/machine-learning-book.

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf
https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf
http://www.packtpub.com
https://github.com/rasbt/machine-learning-book
https://github.com/rasbt/machine-learning-book

Chapter 2 25

Figure 2.4: Weights and bias of the model are updated based on the error function

The preceding diagram illustrates how the perceptron receives the inputs of an example (x) and com-
bines them with the bias unit (b) and weights (w) to compute the net input. The net input is then passed
on to the threshold function, which generates a binary output of 0 or 1—the predicted class label of
the example. During the learning phase, this output is used to calculate the error of the prediction
and update the weights and bias unit.

Implementing a perceptron learning algorithm in Python
In the previous section, we learned how Rosenblatt’s perceptron rule works; let’s now implement it
in Python and apply it to the Iris dataset that we introduced in Chapter 1, Giving Computers the Ability
to Learn from Data.

An object-oriented perceptron API
We will take an object-oriented approach to defining the perceptron interface as a Python class, which
will allow us to initialize new Perceptron objects that can learn from data via a fit method and make
predictions via a separate predict method. As a convention, we append an underscore (_) to attributes
that are not created upon the initialization of the object, but we do this by calling the object’s other
methods, for example, self.w_.

Training Simple Machine Learning Algorithms for Classification26

The following is the implementation of a perceptron in Python:

import numpy as np
class Perceptron:
 """Perceptron classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 random_state : int
 Random number generator seed for random weight
 initialization.

 Attributes

 w_ : 1d-array
 Weights after fitting.
 b_ : Scalar
 Bias unit after fitting.

 errors_ : list
 Number of misclassifications (updates) in each epoch.

 """
 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

Additional resources for Python’s scientific computing stack

If you are not yet familiar with Python’s scientific libraries or need a refresher, please see
the following resources:

• NumPy: https://sebastianraschka.com/blog/2020/numpy-intro.html
• pandas: https://pandas.pydata.org/pandas-docs/stable/user_

guide/10min.html

• Matplotlib: https://matplotlib.org/stable/tutorials/introductory/
usage.html

https://sebastianraschka.com/blog/2020/numpy-intro.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
https://matplotlib.org/stable/tutorials/introductory/usage.html
https://matplotlib.org/stable/tutorials/introductory/usage.html

Chapter 2 27

 def fit(self, X, y):
 """Fit training data.

 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples is the number of
 examples and n_features is the number of features.
 y : array-like, shape = [n_examples]
 Target values.

 Returns

 self : object

 """
 rgen = np.random.RandomState(self.random_state)
 self.w_ = rgen.normal(loc=0.0, scale=0.01,
 size=X.shape[1])
 self.b_ = np.float_(0.)
 self.errors_ = []

 for _ in range(self.n_iter):
 errors = 0
 for xi, target in zip(X, y):
 update = self.eta * (target - self.predict(xi))
 self.w_ += update * xi
 self.b_ += update
 errors += int(update != 0.0)
 self.errors_.append(errors)
 return self

 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_

 def predict(self, X):
 """Return class label after unit step"""
 return np.where(self.net_input(X) >= 0.0, 1, 0)

Training Simple Machine Learning Algorithms for Classification28

Using this perceptron implementation, we can now initialize new Perceptron objects with a given
learning rate, eta (𝜂𝜂), and the number of epochs, n_iter (passes over the training dataset).

Via the fit method, we initialize the bias self.b_ to an initial value 0 and the weights in self.w_ to
a vector, ℝ𝑚𝑚 , where m stands for the number of dimensions (features) in the dataset.

Notice that the initial weight vector contains small random numbers drawn from a normal distribution
with a standard deviation of 0.01 via rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1]),
where rgen is a NumPy random number generator that we seeded with a user-specified random seed
so that we can reproduce previous results if desired.

Technically, we could initialize the weights to zero (in fact, this is done in the original perceptron al-
gorithm). However, if we did that, then the learning rate 𝜂𝜂 (eta) would have no effect on the decision
boundary. If all the weights are initialized to zero, the learning rate parameter, eta, affects only the
scale of the weight vector, not the direction. If you are familiar with trigonometry, consider a vector,
v1 =[1 2 3], where the angle between v1 and a vector, v2 = 0.5 × v1, would be exactly zero, as demon-
strated by the following code snippet:

>>> v1 = np.array([1, 2, 3])
>>> v2 = 0.5 * v1
>>> np.arccos(v1.dot(v2) / (np.linalg.norm(v1) *
... np.linalg.norm(v2)))
0.0

Here, np.arccos is the trigonometric inverse cosine, and np.linalg.norm is a function that computes
the length of a vector. (Our decision to draw the random numbers from a random normal distribu-
tion—for example, instead of from a uniform distribution—and to use a standard deviation of 0.01
was arbitrary; remember, we are just interested in small random values to avoid the properties of
all-zero vectors, as discussed earlier.)

As an optional exercise after reading this chapter, you can change self.w_ = rgen.normal(loc=0.0,
scale=0.01, size=X.shape[1]) to self.w_ = np.zeros(X.shape[1]) and run the perceptron train-
ing code presented in the next section with different values for eta. You will observe that the decision
boundary does not change.

NumPy array indexing

NumPy indexing for one-dimensional arrays works similarly to Python lists using the
square-bracket ([]) notation. For two-dimensional arrays, the first indexer refers to the
row number and the second indexer to the column number. For example, we would use
X[2, 3] to select the third row and fourth column of a two-dimensional array, X.

Chapter 2 29

After the weights have been initialized, the fit method loops over all individual examples in the
training dataset and updates the weights according to the perceptron learning rule that we discussed
in the previous section.

The class labels are predicted by the predict method, which is called in the fit method during
training to get the class label for the weight update; but predict can also be used to predict the class
labels of new data after we have fitted our model. Furthermore, we also collect the number of mis-
classifications during each epoch in the self.errors_ list so that we can later analyze how well our
perceptron performed during the training. The np.dot function that is used in the net_input method
simply calculates the vector dot product, wTx + b.

Training a perceptron model on the Iris dataset
To test our perceptron implementation, we will restrict the following analyses and examples in the
remainder of this chapter to two feature variables (dimensions). Although the perceptron rule is not
restricted to two dimensions, considering only two features, sepal length and petal length, will allow
us to visualize the decision regions of the trained model in a scatterplot for learning purposes.

Note that we will also only consider two flower classes, setosa and versicolor, from the Iris dataset for
practical reasons—remember, the perceptron is a binary classifier. However, the perceptron algorithm
can be extended to multi-class classification—for example, the one-versus-all (OvA) technique.

Vectorization: Replacing for loops with vectorized code

Instead of using NumPy to calculate the vector dot product between two arrays, a and b,
via a.dot(b) or np.dot(a, b), we could also perform the calculation in pure Python
via sum([i * j for i, j in zip(a, b)]). However, the advantage of using NumPy
over classic Python for loop structures is that its arithmetic operations are vectorized.
Vectorization means that an elemental arithmetic operation is automatically applied to
all elements in an array. By formulating our arithmetic operations as a sequence of in-
structions on an array, rather than performing a set of operations for each element at a
time, we can make better use of our modern central processing unit (CPU) architectures
with single instruction, multiple data (SIMD) support. Furthermore, NumPy uses highly
optimized linear algebra libraries, such as Basic Linear Algebra Subprograms (BLAS) and
Linear Algebra Package (LAPACK), that have been written in C or Fortran. Lastly, NumPy
also allows us to write our code in a more compact and intuitive way using the basics of
linear algebra, such as vector and matrix dot products.

Training Simple Machine Learning Algorithms for Classification30

First, we will use the pandas library to load the Iris dataset directly from the UCI Machine Learning
Repository into a DataFrame object and print the last five lines via the tail method to check that the
data was loaded correctly:

>>> import os
>>> import pandas as pd
>>> s = 'https://archive.ics.uci.edu/ml/'\
... 'machine-learning-databases/iris/iris.data'
>>> print('From URL:', s)
From URL: https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
data
>>> df = pd.read_csv(s,
... header=None,
... encoding='utf-8')
>>> df.tail()

After executing the previous code, we should see the following output, which shows the last five lines
of the Iris dataset:

Figure 2.5: The last five lines of the Iris dataset

The OvA method for multi-class classification

OvA, which is sometimes also called one-versus-rest (OvR), is a technique that allows us to
extend any binary classifier to multi-class problems. Using OvA, we can train one classifier
per class, where the particular class is treated as the positive class and the examples from
all other classes are considered negative classes. If we were to classify a new, unlabeled
data instance, we would use our n classifiers, where n is the number of class labels, and
assign the class label with the highest confidence to the particular instance we want to
classify. In the case of the perceptron, we would use OvA to choose the class label that is
associated with the largest absolute net input value.

Chapter 2 31

Next, we extract the first 100 class labels that correspond to the 50 Iris-setosa and 50 Iris-versicolor
flowers and convert the class labels into the two integer class labels, 1 (versicolor) and 0 (setosa), that
we assign to a vector, y, where the values method of a pandas DataFrame yields the corresponding
NumPy representation.

Similarly, we extract the first feature column (sepal length) and the third feature column (petal length)
of those 100 training examples and assign them to a feature matrix, X, which we can visualize via a
two-dimensional scatterplot:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> # select setosa and versicolor
>>> y = df.iloc[0:100, 4].values
>>> y = np.where(y == 'Iris-setosa', 0, 1)
>>> # extract sepal length and petal length
>>> X = df.iloc[0:100, [0, 2]].values
>>> # plot data
>>> plt.scatter(X[:50, 0], X[:50, 1],
... color='red', marker='o', label='Setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 1],
... color='blue', marker='s', label='Versicolor')
>>> plt.xlabel('Sepal length [cm]')
>>> plt.ylabel('Petal length [cm]')
>>> plt.legend(loc='upper left')
>>> plt.show()

Loading the Iris dataset

You can find a copy of the Iris dataset (and all other datasets used in this book) in the code
bundle of this book, which you can use if you are working offline or if the UCI server at
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
is temporarily unavailable. For instance, to load the Iris dataset from a local directory,
you can replace this line,

df = pd.read_csv(
 'https://archive.ics.uci.edu/ml/'
 'machine-learning-databases/iris/iris.data',
 header=None, encoding='utf-8')

with the following one:

df = pd.read_csv(
 'your/local/path/to/iris.data',
 header=None, encoding='utf-8')

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

Training Simple Machine Learning Algorithms for Classification32

After executing the preceding code example, we should see the following scatterplot:

Figure 2.6: Scatterplot of setosa and versicolor flowers by sepal and petal length

Figure 2.6 shows the distribution of flower examples in the Iris dataset along the two feature axes: petal
length and sepal length (measured in centimeters). In this two-dimensional feature subspace, we can
see that a linear decision boundary should be sufficient to separate setosa from versicolor flowers. Thus,
a linear classifier such as the perceptron should be able to classify the flowers in this dataset perfectly.

Now, it’s time to train our perceptron algorithm on the Iris data subset that we just extracted. Also,
we will plot the misclassification error for each epoch to check whether the algorithm converged and
found a decision boundary that separates the two Iris flower classes:

>>> ppn = Perceptron(eta=0.1, n_iter=10)
>>> ppn.fit(X, y)
>>> plt.plot(range(1, len(ppn.errors_) + 1),
... ppn.errors_, marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Number of updates')
>>> plt.show()

Note that the number of misclassification errors and the number of updates is the same, since the
perceptron weights and bias are updated each time it misclassifies an example. After executing the
preceding code, we should see the plot of the misclassification errors versus the number of epochs,
as shown in Figure 2.7:

Chapter 2 33

Figure 2.7: A plot of the misclassification errors against the number of epochs

As we can see in Figure 2.7, our perceptron converged after the sixth epoch and should now be able
to classify the training examples perfectly. Let’s implement a small convenience function to visualize
the decision boundaries for two-dimensional datasets:

from matplotlib.colors import ListedColormap
def plot_decision_regions(X, y, classifier, resolution=0.02):
 # setup marker generator and color map
 markers = ('o', 's', '^', 'v', '<')
 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 cmap = ListedColormap(colors[:len(np.unique(y))])

 # plot the decision surface
 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
 np.arange(x2_min, x2_max, resolution))
 lab = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
 lab = lab.reshape(xx1.shape)
 plt.contourf(xx1, xx2, lab, alpha=0.3, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())

Training Simple Machine Learning Algorithms for Classification34

 # plot class examples
 for idx, cl in enumerate(np.unique(y)):
 plt.scatter(x=X[y == cl, 0],
 y=X[y == cl, 1],
 alpha=0.8,
 c=colors[idx],
 marker=markers[idx],
 label=f'Class {cl}',
 edgecolor='black')

First, we define a number of colors and markers and create a colormap from the list of colors via
ListedColormap. Then, we determine the minimum and maximum values for the two features and
use those feature vectors to create a pair of grid arrays, xx1 and xx2, via the NumPy meshgrid function.
Since we trained our perceptron classifier on two feature dimensions, we need to flatten the grid arrays
and create a matrix that has the same number of columns as the Iris training subset so that we can
use the predict method to predict the class labels, lab, of the corresponding grid points.

After reshaping the predicted class labels, lab, into a grid with the same dimensions as xx1 and xx2,
we can now draw a contour plot via Matplotlib’s contourf function, which maps the different decision
regions to different colors for each predicted class in the grid array:

>>> plot_decision_regions(X, y, classifier=ppn)
>>> plt.xlabel('Sepal length [cm]')
>>> plt.ylabel('Petal length [cm]')
>>> plt.legend(loc='upper left')
>>> plt.show()

After executing the preceding code example, we should now see a plot of the decision regions, as
shown in Figure 2.8:

Chapter 2 35

Figure 2.8: A plot of the perceptron’s decision regions

As we can see in the plot, the perceptron learned a decision boundary that can classify all flower
examples in the Iris training subset perfectly.

Adaptive linear neurons and the convergence of
learning
In this section, we will take a look at another type of single-layer neural network (NN): ADAptive LInear
NEuron (Adaline). Adaline was published by Bernard Widrow and his doctoral student Tedd Hoff only
a few years after Rosenblatt’s perceptron algorithm, and it can be considered an improvement on the
latter (An Adaptive “Adaline” Neuron Using Chemical “Memistors”, Technical Report Number 1553-2 by B.
Widrow and colleagues, Stanford Electron Labs, Stanford, CA, October 1960).

Perceptron convergence

Although the perceptron classified the two Iris flower classes perfectly, convergence is
one of the biggest problems of the perceptron. Rosenblatt proved mathematically that
the perceptron learning rule converges if the two classes can be separated by a linear hy-
perplane. However, if the classes cannot be separated perfectly by such a linear decision
boundary, the weights will never stop updating unless we set a maximum number of ep-
ochs. Interested readers can find a summary of the proof in my lecture notes at https://
sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.
pdf.

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf
https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf
https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf

Training Simple Machine Learning Algorithms for Classification36

The Adaline algorithm is particularly interesting because it illustrates the key concepts of defining and
minimizing continuous loss functions. This lays the groundwork for understanding other machine
learning algorithms for classification, such as logistic regression, support vector machines, and mul-
tilayer neural networks, as well as linear regression models, which we will discuss in future chapters.

The key difference between the Adaline rule (also known as the Widrow-Hoff rule) and Rosenblatt’s
perceptron is that the weights are updated based on a linear activation function rather than a unit step
function like in the perceptron. In Adaline, this linear activation function, 𝜎𝜎(𝑧𝑧) , is simply the identity
function of the net input, so that 𝜎𝜎(𝑧𝑧) = 𝑧𝑧 .

While the linear activation function is used for learning the weights, we still use a threshold function
to make the final prediction, which is similar to the unit step function that we covered earlier.

The main differences between the perceptron and Adaline algorithm are highlighted in Figure 2.9:

Figure 2.9: A comparison between a perceptron and the Adaline algorithm

Chapter 2 37

As Figure 2.9 indicates, the Adaline algorithm compares the true class labels with the linear activation
function’s continuous valued output to compute the model error and update the weights. In contrast,
the perceptron compares the true class labels to the predicted class labels.

Minimizing loss functions with gradient descent
One of the key ingredients of supervised machine learning algorithms is a defined objective function
that is to be optimized during the learning process. This objective function is often a loss or cost function
that we want to minimize. In the case of Adaline, we can define the loss function, L, to learn the model
parameters as the mean squared error (MSE) between the calculated outcome and the true class label:

𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘) = 12𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))2 𝑛𝑛
𝑖𝑖𝑖𝑖

The term 12 is just added for our convenience and will make it easier to derive the gradient of the loss
function with respect to the weight parameters, as we will see in the following paragraphs. The main
advantage of this continuous linear activation function, in contrast to the unit step function, is that the
loss function becomes differentiable. Another nice property of this loss function is that it is convex;
thus, we can use a very simple yet powerful optimization algorithm called gradient descent to find
the weights that minimize our loss function to classify the examples in the Iris dataset.

As illustrated in Figure 2.10, we can describe the main idea behind gradient descent as climbing down
a hill until a local or global loss minimum is reached. In each iteration, we take a step in the opposite
direction of the gradient, where the step size is determined by the value of the learning rate, as well as
the slope of the gradient (for simplicity, the following figure visualizes this only for a single weight, w):

Figure 2.10: How gradient descent works

Using gradient descent, we can now update the model parameters by taking a step in the opposite
direction of the gradient, ∇𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿 , of our loss function, L(w, b):𝒘𝒘𝒘 𝒘 𝒘𝒘 𝒘 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒘 𝒘𝒘 𝒘 𝒘𝒘𝒘

Training Simple Machine Learning Algorithms for Classification38

The parameter changes, Δ𝒘𝒘 and ∆𝑏𝑏 , are defined as the negative gradient multiplied by the learning
rate, 𝜂𝜂 : ∆𝒘𝒘 𝒘 𝒘𝒘𝒘𝒘𝑤𝑤𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘)𝒘 ∆𝒘𝒘 𝒘 𝒘𝒘𝒘𝒘𝑏𝑏𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘)

To compute the gradient of the loss function, we need to compute the partial derivative of the loss
function with respect to each weight, wj:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 = −2𝑛𝑛∑(𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖))) 𝑥𝑥𝑗𝑗(𝑖𝑖)𝑖𝑖

Similarly, we compute the partial derivative of the loss with respect to the bias as:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = − 2𝑛𝑛∑(𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑖𝑖

Please note that the 2 in the numerator above is merely a constant scaling factor, and we could omit it
without affecting the algorithm. Removing the scaling factor has the same effect as changing the learn-
ing rate by a factor of 2. The following information box explains where this scaling factor originates.

So we can write the weight update as:Δ𝑤𝑤𝑗𝑗 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝑤𝑤𝑗𝑗 and Δ𝑏𝑏 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝑏𝑏

Since we update all parameters simultaneously, our Adaline learning rule becomes:𝒘𝒘𝒘 𝒘 𝒘𝒘 𝒘 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒘 𝒘𝒘 𝒘 𝒘𝒘𝒘

The mean squared error derivative

If you are familiar with calculus, the partial derivative of the MSE loss function with respect
to the jth weight can be obtained as follows:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 = 𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 1𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))2

𝑖𝑖 = 1𝑛𝑛 𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))2
𝑖𝑖 = 2𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑖𝑖 𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))

 = 2𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 (𝑦𝑦(𝑖𝑖) − ∑ (𝜕𝜕𝑗𝑗𝑥𝑥𝑗𝑗(𝑖𝑖) + 𝑏𝑏)𝑖𝑖)

 = 2𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑖𝑖 (−𝑥𝑥𝑗𝑗(𝑖𝑖)) = − 2𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑖𝑖 𝑥𝑥𝑗𝑗(𝑖𝑖)

The same approach can be used to find partial derivative 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 except that 𝜕𝜕𝜕𝜕𝜕𝜕 (𝑦𝑦(𝑖𝑖) − ∑ (𝑤𝑤𝑗𝑗(𝑖𝑖)𝑥𝑥𝑗𝑗(𝑖𝑖) + 𝑏𝑏)𝑖𝑖) is equal to –1 and thus the last step simplifies to − 2𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑖𝑖 .

Chapter 2 39

Although the Adaline learning rule looks identical to the perceptron rule, we should note that 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖))
with 𝑧𝑧(𝑖𝑖𝑖 = 𝒘𝒘𝑇𝑇𝒙𝒙(𝑖𝑖𝑖 + 𝑏𝑏 is a real number and not an integer class label. Furthermore, the weight up-
date is calculated based on all examples in the training dataset (instead of updating the parameters
incrementally after each training example), which is why this approach is also referred to as batch
gradient descent. To be more explicit and avoid confusion when talking about related concepts later
in this chapter and this book, we will refer to this process as full batch gradient descent.

Implementing Adaline in Python
Since the perceptron rule and Adaline are very similar, we will take the perceptron implementation
that we defined earlier and change the fit method so that the weight and bias parameters are now
updated by minimizing the loss function via gradient descent:

class AdalineGD:
 """ADAptive LInear NEuron classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 random_state : int
 Random number generator seed for random weight initialization.

 Attributes

 w_ : 1d-array
 Weights after fitting.
 b_ : Scalar
 Bias unit after fitting.
 losses_ : list
 Mean squared error loss function values in each epoch.

 """
 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

 def fit(self, X, y):
 """ Fit training data.

Training Simple Machine Learning Algorithms for Classification40

 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples
 is the number of examples and
 n_features is the number of features.
 y : array-like, shape = [n_examples]
 Target values.

 Returns

 self : object

 """
 rgen = np.random.RandomState(self.random_state)
 self.w_ = rgen.normal(loc=0.0, scale=0.01,
 size=X.shape[1])
 self.b_ = np.float_(0.)
 self.losses_ = []

 for i in range(self.n_iter):
 net_input = self.net_input(X)
 output = self.activation(net_input)
 errors = (y - output)
 self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0]
 self.b_ += self.eta * 2.0 * errors.mean()
 loss = (errors**2).mean()
 self.losses_.append(loss)
 return self

 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_

 def activation(self, X):
 """Compute linear activation"""
 return X

 def predict(self, X):
 """Return class label after unit step"""

Chapter 2 41

 return np.where(self.activation(self.net_input(X))
 >= 0.5, 1, 0)

Instead of updating the weights after evaluating each individual training example, as in the perceptron,
we calculate the gradient based on the whole training dataset. For the bias unit, this is done via self.
eta * 2.0 * errors.mean(), where errors is an array containing the partial derivative values 𝜕𝜕𝜕𝜕𝜕𝜕 .

Similarly, we update the weights. However note that the weight updates via the partial derivatives 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗
involve the feature values xj, which we can compute by multiplying errors with each feature value
for each weight:

 for w_j in range(self.w_.shape[0]):
 self.w_[w_j] += self.eta *
 (2.0 * (X[:, w_j]*errors)).mean()

To implement the weight update more efficiently without using a for loop, we can use a matrix-vector
multiplication between our feature matrix and the error vector instead:

self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0]

Please note that the activation method has no effect on the code since it is simply an identity func-
tion. Here, we added the activation function (computed via the activation method) to illustrate the
general concept with regard to how information flows through a single-layer NN: features from the
input data, net input, activation, and output.

In the next chapter, we will learn about a logistic regression classifier that uses a non-identity, nonlin-
ear activation function. We will see that a logistic regression model is closely related to Adaline, with
the only difference being its activation and loss function.

Now, similar to the previous perceptron implementation, we collect the loss values in a self.losses_
list to check whether the algorithm converged after training.

Matrix multiplication

Performing a matrix multiplication is similar to calculating a vector dot-product where
each row in the matrix is treated as a single row vector. This vectorized approach represents
a more compact notation and results in a more efficient computation using NumPy. For
example:

[1 2 34 5 6] × [789] = [1 × 7 + 2 × 8 + 3 × 94 × 7 + 5 × 8 + 6 × 9] = [50122]
Please note that in the preceding equation, we are multiplying a matrix with a vector,
which is mathematically not defined. However, remember that we use the convention
that this preceding vector is regarded as a 3×1 matrix.

Training Simple Machine Learning Algorithms for Classification42

In practice, it often requires some experimentation to find a good learning rate, 𝜂𝜂 , for optimal con-
vergence. So, let’s choose two different learning rates, 𝜂𝜂 𝜂 𝜂𝜂𝜂 and 𝜂𝜂 𝜂 𝜂𝜂𝜂𝜂𝜂1 , to start with and plot
the loss functions versus the number of epochs to see how well the Adaline implementation learns
from the training data.

Let’s now plot the loss against the number of epochs for the two different learning rates:

>>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
>>> ada1 = AdalineGD(n_iter=15, eta=0.1).fit(X, y)
>>> ax[0].plot(range(1, len(ada1.losses_) + 1),
... np.log10(ada1.losses_), marker='o')
>>> ax[0].set_xlabel('Epochs')
>>> ax[0].set_ylabel('log(Mean squared error)')
>>> ax[0].set_title('Adaline - Learning rate 0.1')
>>> ada2 = AdalineGD(n_iter=15, eta=0.0001).fit(X, y)
>>> ax[1].plot(range(1, len(ada2.losses_) + 1),
... ada2.losses_, marker='o')
>>> ax[1].set_xlabel('Epochs')
>>> ax[1].set_ylabel('Mean squared error')
>>> ax[1].set_title('Adaline - Learning rate 0.0001')
>>> plt.show()

As we can see in the resulting loss function plots, we encountered two different types of problems. The
left chart shows what could happen if we choose a learning rate that is too large. Instead of minimizing
the loss function, the MSE becomes larger in every epoch, because we overshoot the global minimum.
On the other hand, we can see that the loss decreases on the right plot, but the chosen learning rate, 𝜂𝜂 𝜂 𝜂𝜂𝜂𝜂𝜂1 , is so small that the algorithm would require a very large number of epochs to converge
to the global loss minimum:

Hyperparameters

The learning rate, 𝜂𝜂 (eta), as well as the number of epochs (n_iter), are the so-called hy-
perparameters (or tuning parameters) of the perceptron and Adaline learning algorithms.
In Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, we
will take a look at different techniques to automatically find the values of different hyper-
parameters that yield optimal performance of the classification model.

Chapter 2 43

Figure 2.11: Error plots for suboptimal learning rates

Figure 2.12 illustrates what might happen if we change the value of a particular weight parameter to
minimize the loss function, L. The left subfigure illustrates the case of a well-chosen learning rate,
where the loss decreases gradually, moving in the direction of the global minimum.

The subfigure on the right, however, illustrates what happens if we choose a learning rate that is too
large—we overshoot the global minimum:

Figure 2.12: A comparison of a well-chosen learning rate and a learning rate that is too large

Improving gradient descent through feature scaling
Many machine learning algorithms that we will encounter throughout this book require some sort of
feature scaling for optimal performance, which we will discuss in more detail in Chapter 3, A Tour of
Machine Learning Classifiers Using Scikit-Learn, and Chapter 4, Building Good Training Datasets – Data
Preprocessing.

Training Simple Machine Learning Algorithms for Classification44

Gradient descent is one of the many algorithms that benefit from feature scaling. In this section, we
will use a feature scaling method called standardization. This normalization procedure helps gradient
descent learning to converge more quickly; however, it does not make the original dataset normally
distributed. Standardization shifts the mean of each feature so that it is centered at zero and each feature
has a standard deviation of 1 (unit variance). For instance, to standardize the jth feature, we can simply
subtract the sample mean, 𝜇𝜇𝑗𝑗 , from every training example and divide it by its standard deviation, 𝜎𝜎𝑗𝑗 :𝑥𝑥𝑗𝑗′ = 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗𝜎𝜎𝑗𝑗

Here, xj is a vector consisting of the jth feature values of all training examples, n, and this standard-
ization technique is applied to each feature, j, in our dataset.

One of the reasons why standardization helps with gradient descent learning is that it is easier to find a
learning rate that works well for all weights (and the bias). If the features are on vastly different scales,
a learning rate that works well for updating one weight might be too large or too small to update the
other weight equally well. Overall, using standardized features can stabilize the training such that the
optimizer has to go through fewer steps to find a good or optimal solution (the global loss minimum).
Figure 2.13 illustrates possible gradient updates with unscaled features (left) and standardized features
(right), where the concentric circles represent the loss surface as a function of two model weights in
a two-dimensional classification problem:

Figure 2.13: A comparison of unscaled and standardized features on gradient updates

Standardization can easily be achieved by using the built-in NumPy methods mean and std:

>>> X_std = np.copy(X)
>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

After standardization, we will train Adaline again and see that it now converges after a small number
of epochs using a learning rate of 𝜂𝜂 𝜂 𝜂𝜂𝜂 :

>>> ada_gd = AdalineGD(n_iter=20, eta=0.5)
>>> ada_gd.fit(X_std, y)

Chapter 2 45

>>> plot_decision_regions(X_std, y, classifier=ada_gd)
>>> plt.title('Adaline - Gradient descent')
>>> plt.xlabel('Sepal length [standardized]')
>>> plt.ylabel('Petal length [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()
>>> plt.plot(range(1, len(ada_gd.losses_) + 1),
... ada_gd.losses_, marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Mean squared error')
>>> plt.tight_layout()
>>> plt.show()

After executing this code, we should see a figure of the decision regions, as well as a plot of the de-
clining loss, as shown in Figure 2.14:

Figure 2.14: Plots of Adaline’s decision regions and MSE by number of epochs

As we can see in the plots, Adaline has now converged after training on the standardized features.
However, note that the MSE remains non-zero even though all flower examples were classified correctly.

Large-scale machine learning and stochastic gradient descent
In the previous section, we learned how to minimize a loss function by taking a step in the opposite
direction of the loss gradient that is calculated from the whole training dataset; this is why this approach
is sometimes also referred to as full batch gradient descent. Now imagine that we have a very large
dataset with millions of data points, which is not uncommon in many machine learning applications.
Running full batch gradient descent can be computationally quite costly in such scenarios, since we
need to reevaluate the whole training dataset each time we take one step toward the global minimum.

Training Simple Machine Learning Algorithms for Classification46

A popular alternative to the batch gradient descent algorithm is stochastic gradient descent (SGD),
which is sometimes also called iterative or online gradient descent. Instead of updating the weights
based on the sum of the accumulated errors over all training examples, x(i):∆𝑤𝑤𝑗𝑗 = 2𝜂𝜂𝑛𝑛 ∑(𝑦𝑦(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑖𝑖 𝑥𝑥𝑗𝑗(𝑖𝑖)
we update the parameters incrementally for each training example, for instance:∆𝑤𝑤𝑗𝑗 = 𝜂𝜂 𝜂𝜂𝜂(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖))) 𝑥𝑥𝑗𝑗(𝑖𝑖), ∆𝑏𝑏 = 𝜂𝜂 𝜂𝜂𝜂(𝑖𝑖) − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))

Although SGD can be considered as an approximation of gradient descent, it typically reaches con-
vergence much faster because of the more frequent weight updates. Since each gradient is calculated
based on a single training example, the error surface is noisier than in gradient descent, which can
also have the advantage that SGD can escape shallow local minima more readily if we are working
with nonlinear loss functions, as we will see later in Chapter 11, Implementing a Multilayer Artificial
Neural Network from Scratch. To obtain satisfying results via SGD, it is important to present training
data in a random order; also, we want to shuffle the training dataset for every epoch to prevent cycles.

Another advantage of SGD is that we can use it for online learning. In online learning, our model is
trained on the fly as new training data arrives. This is especially useful if we are accumulating large
amounts of data, for example, customer data in web applications. Using online learning, the system
can immediately adapt to changes, and the training data can be discarded after updating the model
if storage space is an issue.

Adjusting the learning rate during training

In SGD implementations, the fixed learning rate, 𝜂𝜂 , is often replaced by an adaptive learning
rate that decreases over time, for example:𝑐𝑐1[number of iterations] + 𝑐𝑐2

where c1 and c2 are constants. Note that SGD does not reach the global loss minimum
but an area very close to it. And using an adaptive learning rate, we can achieve further
annealing to the loss minimum.

Chapter 2 47

Since we already implemented the Adaline learning rule using gradient descent, we only need to
make a few adjustments to modify the learning algorithm to update the weights via SGD. Inside the
fit method, we will now update the weights after each training example. Furthermore, we will imple-
ment an additional partial_fit method, which does not reinitialize the weights, for online learning.
In order to check whether our algorithm converged after training, we will calculate the loss as the
average loss of the training examples in each epoch. Furthermore, we will add an option to shuffle the
training data before each epoch to avoid repetitive cycles when we are optimizing the loss function;
via the random_state parameter, we allow the specification of a random seed for reproducibility:

class AdalineSGD:
 """ADAptive LInear NEuron classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 shuffle : bool (default: True)
 Shuffles training data every epoch if True to prevent
 cycles.
 random_state : int
 Random number generator seed for random weight
 initialization.

Mini-batch gradient descent

A compromise between full batch gradient descent and SGD is so-called mini-batch gradi-
ent descent. Mini-batch gradient descent can be understood as applying full batch gradient
descent to smaller subsets of the training data, for example, 32 training examples at a
time. The advantage over full batch gradient descent is that convergence is reached faster
via mini-batches because of the more frequent weight updates. Furthermore, mini-batch
learning allows us to replace the for loop over the training examples in SGD with vector-
ized operations leveraging concepts from linear algebra (for example, implementing a
weighted sum via a dot product), which can further improve the computational efficiency
of our learning algorithm.

Training Simple Machine Learning Algorithms for Classification48

 Attributes

 w_ : 1d-array
 Weights after fitting.
 b_ : Scalar
 Bias unit after fitting.
 losses_ : list
 Mean squared error loss function value averaged over all
 training examples in each epoch.

 """
 def __init__(self, eta=0.01, n_iter=10,
 shuffle=True, random_state=None):
 self.eta = eta
 self.n_iter = n_iter
 self.w_initialized = False
 self.shuffle = shuffle
 self.random_state = random_state

 def fit(self, X, y):
 """ Fit training data.

 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples is the number of
 examples and n_features is the number of features.
 y : array-like, shape = [n_examples]
 Target values.

 Returns

 self : object

 """
 self._initialize_weights(X.shape[1])
 self.losses_ = []
 for i in range(self.n_iter):
 if self.shuffle:

Chapter 2 49

 X, y = self._shuffle(X, y)
 losses = []
 for xi, target in zip(X, y):
 losses.append(self._update_weights(xi, target))
 avg_loss = np.mean(losses)
 self.losses_.append(avg_loss)
 return self

 def partial_fit(self, X, y):
 """Fit training data without reinitializing the weights"""
 if not self.w_initialized:
 self._initialize_weights(X.shape[1])
 if y.ravel().shape[0] > 1:
 for xi, target in zip(X, y):
 self._update_weights(xi, target)
 else:
 self._update_weights(X, y)
 return self

 def _shuffle(self, X, y):
 """Shuffle training data"""
 r = self.rgen.permutation(len(y))
 return X[r], y[r]

 def _initialize_weights(self, m):
 """Initialize weights to small random numbers"""
 self.rgen = np.random.RandomState(self.random_state)
 self.w_ = self.rgen.normal(loc=0.0, scale=0.01,
 size=m)
 self.b_ = np.float_(0.)
 self.w_initialized = True

 def _update_weights(self, xi, target):
 """Apply Adaline learning rule to update the weights"""
 output = self.activation(self.net_input(xi))
 error = (target - output)
 self.w_ += self.eta * 2.0 * xi * (error)
 self.b_ += self.eta * 2.0 * error
 loss = error**2
 return loss

Training Simple Machine Learning Algorithms for Classification50

 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_

 def activation(self, X):
 """Compute linear activation"""
 return X

 def predict(self, X):
 """Return class label after unit step"""
 return np.where(self.activation(self.net_input(X))
 >= 0.5, 1, 0)

The _shuffle method that we are now using in the AdalineSGD classifier works as follows: via the
permutation function in np.random, we generate a random sequence of unique numbers in the range
0 to 100. Those numbers can then be used as indices to shuffle our feature matrix and class label vector.

We can then use the fit method to train the AdalineSGD classifier and use our plot_decision_regions
to plot our training results:

>>> ada_sgd = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
>>> ada_sgd.fit(X_std, y)
>>> plot_decision_regions(X_std, y, classifier=ada_sgd)
>>> plt.title('Adaline - Stochastic gradient descent')
>>> plt.xlabel('Sepal length [standardized]')
>>> plt.ylabel('Petal length [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()
>>> plt.plot(range(1, len(ada_sgd.losses_) + 1), ada_sgd.losses_,
... marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Average loss')
>>> plt.tight_layout()
>>> plt.show()

Chapter 2 51

The two plots that we obtain from executing the preceding code example are shown in Figure 2.15:

Figure 2.15: Decision regions and average loss plots after training an Adaline model using SGD

As you can see, the average loss goes down pretty quickly, and the final decision boundary after 15 ep-
ochs looks similar to the batch gradient descent Adaline. If we want to update our model, for example,
in an online learning scenario with streaming data, we could simply call the partial_fit method on
individual training examples—for instance, ada_sgd.partial_fit(X_std[0, :], y[0]).

Summary
In this chapter, we gained a good understanding of the basic concepts of linear classifiers for super-
vised learning. After we implemented a perceptron, we saw how we can train adaptive linear neurons
efficiently via a vectorized implementation of gradient descent and online learning via SGD.

Now that we have seen how to implement simple classifiers in Python, we are ready to move on to
the next chapter, where we will use the Python scikit-learn machine learning library to get access to
more advanced and powerful machine learning classifiers, which are commonly used in academia
as well as in industry.

The object-oriented approach that we used to implement the perceptron and Adaline algorithms will
help with understanding the scikit-learn API, which is implemented based on the same core concepts
that we used in this chapter: the fit and predict methods. Based on these core concepts, we will learn
about logistic regression for modeling class probabilities and support vector machines for working with
nonlinear decision boundaries. In addition, we will introduce a different class of supervised learning
algorithms, tree-based algorithms, which are commonly combined into robust ensemble classifiers.

Training Simple Machine Learning Algorithms for Classification52

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

3
A Tour of Machine Learning
Classifiers Using Scikit-Learn

In this chapter, we will take a tour of a selection of popular and powerful machine learning algorithms
that are commonly used in academia as well as in industry. While learning about the differences
between several supervised learning algorithms for classification, we will also develop an appreci-
ation of their individual strengths and weaknesses. In addition, we will take our first steps with the
scikit-learn library, which offers a user-friendly and consistent interface for using those algorithms
efficiently and productively.

The topics that will be covered throughout this chapter are as follows:

• An introduction to robust and popular algorithms for classification, such as logistic regression,
support vector machines, decision trees, and k-nearest neighbors

• Examples and explanations using the scikit-learn machine learning library, which provides a
wide variety of machine learning algorithms via a user-friendly Python API

• Discussions about the strengths and weaknesses of classifiers with linear and nonlinear de-
cision boundaries

Choosing a classification algorithm
Choosing an appropriate classification algorithm for a particular problem task requires practice and
experience; each algorithm has its own quirks and is based on certain assumptions. To paraphrase the
no free lunch theorem by David H. Wolpert, no single classifier works best across all possible scenarios
(The Lack of A Priori Distinctions Between Learning Algorithms, Wolpert, David H, Neural Computation 8.7
(1996): 1341-1390). In practice, it is always recommended that you compare the performance of at least
a handful of different learning algorithms to select the best model for the particular problem; these
may differ in the number of features or examples, the amount of noise in a dataset, and whether the
classes are linearly separable.

A Tour of Machine Learning Classifiers Using Scikit-Learn54

Eventually, the performance of a classifier—computational performance as well as predictive pow-
er—depends heavily on the underlying data that is available for learning. The five main steps that are
involved in training a supervised machine learning algorithm can be summarized as follows:

1. Selecting features and collecting labeled training examples
2. Choosing a performance metric
3. Choosing a learning algorithm and training a model
4. Evaluating the performance of the model
5. Changing the settings of the algorithm and tuning the model.

Since the approach of this book is to build machine learning knowledge step by step, we will mainly
focus on the main concepts of the different algorithms in this chapter and revisit topics such as feature
selection and preprocessing, performance metrics, and hyperparameter tuning for more detailed
discussions later in the book.

First steps with scikit-learn – training a perceptron
In Chapter 2, Training Simple Machine Learning Algorithms for Classification, you learned about two relat-
ed learning algorithms for classification, the perceptron rule and Adaline, which we implemented in
Python and NumPy by ourselves. Now we will take a look at the scikit-learn API, which, as mentioned,
combines a user-friendly and consistent interface with a highly optimized implementation of several
classification algorithms. The scikit-learn library offers not only a large variety of learning algorithms,
but also many convenient functions to preprocess data and to fine-tune and evaluate our models. We
will discuss this in more detail, together with the underlying concepts, in Chapter 4, Building Good
Training Datasets – Data Preprocessing, and Chapter 5, Compressing Data via Dimensionality Reduction.

To get started with the scikit-learn library, we will train a perceptron model similar to the one that we
implemented in Chapter 2. For simplicity, we will use the already familiar Iris dataset throughout the
following sections. Conveniently, the Iris dataset is already available via scikit-learn, since it is a simple
yet popular dataset that is frequently used for testing and experimenting with algorithms. Similar to
the previous chapter, we will only use two features from the Iris dataset for visualization purposes.

We will assign the petal length and petal width of the 150 flower examples to the feature matrix, X,
and the corresponding class labels of the flower species to the vector array, y:

>>> from sklearn import datasets
>>> import numpy as np
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [2, 3]]
>>> y = iris.target

Chapter 3 55

>>> print('Class labels:', np.unique(y))
Class labels: [0 1 2]

The np.unique(y) function returned the three unique class labels stored in iris.target, and as we
can see, the Iris flower class names, Iris-setosa, Iris-versicolor, and Iris-virginica, are already
stored as integers (here: 0, 1, 2). Although many scikit-learn functions and class methods also work
with class labels in string format, using integer labels is a recommended approach to avoid technical
glitches and improve computational performance due to a smaller memory footprint; furthermore,
encoding class labels as integers is a common convention among most machine learning libraries.

To evaluate how well a trained model performs on unseen data, we will further split the dataset into
separate training and test datasets. In Chapter 6, Learning Best Practices for Model Evaluation and Hy-
perparameter Tuning, we will discuss the best practices around model evaluation in more detail. Using
the train_test_split function from scikit-learn’s model_selection module, we randomly split the
X and y arrays into 30 percent test data (45 examples) and 70 percent training data (105 examples):

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.3, random_state=1, stratify=y
...)

Note that the train_test_split function already shuffles the training datasets internally before split-
ting; otherwise, all examples from class 0 and class 1 would have ended up in the training datasets,
and the test dataset would consist of 45 examples from class 2. Via the random_state parameter, we
provided a fixed random seed (random_state=1) for the internal pseudo-random number generator
that is used for shuffling the datasets prior to splitting. Using such a fixed random_state ensures that
our results are reproducible.

Lastly, we took advantage of the built-in support for stratification via stratify=y. In this context,
stratification means that the train_test_split method returns training and test subsets that have the
same proportions of class labels as the input dataset. We can use NumPy’s bincount function, which
counts the number of occurrences of each value in an array, to verify that this is indeed the case:

>>> print('Labels counts in y:', np.bincount(y))
Labels counts in y: [50 50 50]
>>> print('Labels counts in y_train:', np.bincount(y_train))
Labels counts in y_train: [35 35 35]
>>> print('Labels counts in y_test:', np.bincount(y_test))
Labels counts in y_test: [15 15 15]

A Tour of Machine Learning Classifiers Using Scikit-Learn56

Many machine learning and optimization algorithms also require feature scaling for optimal perfor-
mance, as we saw in the gradient descent example in Chapter 2. Here, we will standardize the features
using the StandardScaler class from scikit-learn’s preprocessing module:

>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> sc.fit(X_train)
>>> X_train_std = sc.transform(X_train)
>>> X_test_std = sc.transform(X_test)

Using the preceding code, we loaded the StandardScaler class from the preprocessing module and
initialized a new StandardScaler object that we assigned to the sc variable. Using the fit method,
StandardScaler estimated the parameters, 𝜇𝜇 (sample mean) and 𝜎𝜎 (standard deviation), for each
feature dimension from the training data. By calling the transform method, we then standardized
the training data using those estimated parameters, 𝜇𝜇 and 𝜎𝜎 . Note that we used the same scaling
parameters to standardize the test dataset so that both the values in the training and test dataset are
comparable with one another.

Having standardized the training data, we can now train a perceptron model. Most algorithms in
scikit-learn already support multiclass classification by default via the one-versus-rest (OvR) method,
which allows us to feed the three flower classes to the perceptron all at once. The code is as follows:

>>> from sklearn.linear_model import Perceptron
>>> ppn = Perceptron(eta0=0.1, random_state=1)
>>> ppn.fit(X_train_std, y_train)

The scikit-learn interface will remind you of our perceptron implementation in Chapter 2. After load-
ing the Perceptron class from the linear_model module, we initialized a new Perceptron object and
trained the model via the fit method. Here, the model parameter, eta0, is equivalent to the learning
rate, eta, that we used in our own perceptron implementation.

As you will remember from Chapter 2, finding an appropriate learning rate requires some experimen-
tation. If the learning rate is too large, the algorithm will overshoot the global loss minimum. If the
learning rate is too small, the algorithm will require more epochs until convergence, which can make
the learning slow—especially for large datasets. Also, we used the random_state parameter to ensure
the reproducibility of the initial shuffling of the training dataset after each epoch.

Having trained a model in scikit-learn, we can make predictions via the predict method, just like in
our own perceptron implementation in Chapter 2. The code is as follows:

>>> y_pred = ppn.predict(X_test_std)
>>> print('Misclassified examples: %d' % (y_test != y_pred).sum())
Misclassified examples: 1

Executing the code, we can see that the perceptron misclassifies 1 out of the 45 flower examples. Thus,

the misclassification error on the test dataset is approximately 0.022, or 2.2 percent (145 ≈ 0.022).

Chapter 3 57

Note that scikit-learn also implements a large variety of different performance metrics that are available
via the metrics module. For example, we can calculate the classification accuracy of the perceptron
on the test dataset as follows:

>>> from sklearn.metrics import accuracy_score
>>> print('Accuracy: %.3f' % accuracy_score(y_test, y_pred))
Accuracy: 0.978

Here, y_test is the true class labels and y_pred is the class labels that we predicted previously. Alter-
natively, each classifier in scikit-learn has a score method, which computes a classifier’s prediction
accuracy by combining the predict call with accuracy_score, as shown here:

>>> print('Accuracy: %.3f' % ppn.score(X_test_std, y_test))
Accuracy: 0.978

Finally, we can use our plot_decision_regions function from Chapter 2 to plot the decision regions
of our newly trained perceptron model and visualize how well it separates the different flower exam-
ples. However, let’s add a small modification to highlight the data instances from the test dataset via
small circles:

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
def plot_decision_regions(X, y, classifier, test_idx=None,
 resolution=0.02):
 # setup marker generator and color map
 markers = ('o', 's', '^', 'v', '<')
 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 cmap = ListedColormap(colors[:len(np.unique(y))])

Classification error versus accuracy

Instead of the misclassification error, many machine learning practitioners report the
classification accuracy of a model, which is simply calculated as follows:

1–error = 0.978, or 97.8 percent

Whether we use the classification error or accuracy is merely a matter of preference.

Overfitting

Note that we will evaluate the performance of our models based on the test dataset in this
chapter. In Chapter 6, you will learn about useful techniques, including graphical analysis,
such as learning curves, to detect and prevent overfitting. Overfitting, which we will return
to later in this chapter, means that the model captures the patterns in the training data
well but fails to generalize well to unseen data.

A Tour of Machine Learning Classifiers Using Scikit-Learn58

 # plot the decision surface
 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
 np.arange(x2_min, x2_max, resolution))
 lab = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
 lab = lab.reshape(xx1.shape)
 plt.contourf(xx1, xx2, lab, alpha=0.3, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())

 # plot class examples
 for idx, cl in enumerate(np.unique(y)):
 plt.scatter(x=X[y == cl, 0],
 y=X[y == cl, 1],
 alpha=0.8,
 c=colors[idx],
 marker=markers[idx],
 label=f'Class {cl}',
 edgecolor='black')
 # highlight test examples
 if test_idx:
 # plot all examples
 X_test, y_test = X[test_idx, :], y[test_idx]

 plt.scatter(X_test[:, 0], X_test[:, 1],
 c='none', edgecolor='black', alpha=1.0,
 linewidth=1, marker='o',
 s=100, label='Test set')

With the slight modification that we made to the plot_decision_regions function, we can now specify
the indices of the examples that we want to mark on the resulting plots. The code is as follows:

>>> X_combined_std = np.vstack((X_train_std, X_test_std))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X=X_combined_std,
... y=y_combined,
... classifier=ppn,
... test_idx=range(105, 150))
>>> plt.xlabel('Petal length [standardized]')
>>> plt.ylabel('Petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

Chapter 3 59

As we can see in the resulting plot, the three flower classes can’t be perfectly separated by a linear
decision boundary:

Figure 3.1: Decision boundaries of a multi-class perceptron model fitted to the Iris dataset

However, remember from our discussion in Chapter 2 that the perceptron algorithm never converges
on datasets that aren’t perfectly linearly separable, which is why the use of the perceptron algorithm is
typically not recommended in practice. In the following sections, we will look at more powerful linear
classifiers that converge to a loss minimum even if the classes are not perfectly linearly separable.

Modeling class probabilities via logistic regression
Although the perceptron rule offers a nice and easy-going introduction to machine learning algorithms
for classification, its biggest disadvantage is that it never converges if the classes are not perfectly lin-
early separable. The classification task in the previous section would be an example of such a scenario.
The reason for this is that the weights are continuously being updated since there is always at least one
misclassified training example present in each epoch. Of course, you can change the learning rate and
increase the number of epochs, but be warned that the perceptron will never converge on this dataset.

To make better use of our time, we will now take a look at another simple, yet more powerful, algo-
rithm for linear and binary classification problems: logistic regression. Note that, despite its name,
logistic regression is a model for classification, not regression.

Additional perceptron settings

The Perceptron, as well as other scikit-learn functions and classes, often has additional
parameters that we omit for clarity. You can read more about those parameters using
the help function in Python (for instance, help(Perceptron)) or by going through the
excellent scikit-learn online documentation at http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/

A Tour of Machine Learning Classifiers Using Scikit-Learn60

Logistic regression and conditional probabilities
Logistic regression is a classification model that is very easy to implement and performs very well on
linearly separable classes. It is one of the most widely used algorithms for classification in industry.
Similar to the perceptron and Adaline, the logistic regression model in this chapter is also a linear
model for binary classification.

To explain the main mechanics behind logistic regression as a probabilistic model for binary classi-
fication, let’s first introduce the odds: the odds in favor of a particular event. The odds can be written
as 𝑝𝑝(1−𝑝𝑝) , where p stands for the probability of the positive event. The term “positive event” does not

necessarily mean “good,” but refers to the event that we want to predict, for example, the probability
that a patient has a certain disease given certain symptoms; we can think of the positive event as
class label y = 1 and the symptoms as features x. Hence, for brevity, we can define the probability p as
p := p(y = 1|x), the conditional probability that a particular example belongs to a certain class 1 given
its features, x.

We can then further define the logit function, which is simply the logarithm of the odds (log-odds):logit(𝑝𝑝) = log 𝑝𝑝(1 − 𝑝𝑝)
Note that log refers to the natural logarithm, as it is the common convention in computer science. The
logit function takes input values in the range 0 to 1 and transforms them into values over the entire
real-number range.

Under the logistic model, we assume that there is a linear relationship between the weighted inputs
(referred to as net inputs in Chapter 2) and the log-odds:logit(𝑝𝑝) = 𝑤𝑤1𝑥𝑥1 + ⋯+ 𝑤𝑤𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏 =𝑏𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑖𝑗𝑗 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

While the preceding describes an assumption we make about the linear relationship between the
log-odds and the net inputs, what we are actually interested in is the probability p, the class-member-
ship probability of an example given its features. While the logit function maps the probability to a
real-number range, we can consider the inverse of this function to map the real-number range back
to a [0, 1] range for the probability p.

Logistic regression for multiple classes

Note that logistic regression can be readily generalized to multiclass settings, which is
known as multinomial logistic regression, or softmax regression. More detailed coverage
of multinomial logistic regression is outside the scope of this book, but the interested read-
er can find more information in my lecture notes at https://sebastianraschka.com/
pdf/lecture-notes/stat453ss21/L08_logistic__slides.pdf or https://youtu.
be/L0FU8NFpx4E.

Another way to use logistic regression in multiclass settings is via the OvR technique,
which we discussed previously.

https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L08_logistic__slides.pdf
https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L08_logistic__slides.pdf
https://youtu.be/L0FU8NFpx4E
https://youtu.be/L0FU8NFpx4E

Chapter 3 61

This inverse of the logit function is typically called the logistic sigmoid function, which is sometimes
simply abbreviated to sigmoid function due to its characteristic S-shape:𝜎𝜎(𝑧𝑧) = 11 + 𝑒𝑒−𝑧𝑧
Here, z is the net input, the linear combination of weights, and the inputs (that is, the features asso-
ciated with the training examples):

z = wTx + b

Now, let’s simply plot the sigmoid function for some values in the range –7 to 7 to see how it looks:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z):
... return 1.0 / (1.0 + np.exp(-z))
>>> z = np.arange(-7, 7, 0.1)
>>> sigma_z = sigmoid(z)
>>> plt.plot(z, sigma_z)
>>> plt.axvline(0.0, color='k')
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z')
>>> plt.ylabel('$\sigma (z)$')
>>> # y axis ticks and gridline
>>> plt.yticks([0.0, 0.5, 1.0])
>>> ax = plt.gca()
>>> ax.yaxis.grid(True)
>>> plt.tight_layout()
>>> plt.show()

As a result of executing the previous code example, we should now see the S-shaped (sigmoidal) curve:

Figure 3.2: A plot of the logistic sigmoid function

A Tour of Machine Learning Classifiers Using Scikit-Learn62

We can see that 𝜎𝜎(𝑧𝑧) approaches 1 if z goes toward infinity (z→∞) since e–z becomes very small for large
values of z. Similarly, 𝜎𝜎(𝑧𝑧) goes toward 0 for z→–∞ as a result of an increasingly large denominator.
Thus, we can conclude that this sigmoid function takes real-number values as input and transforms
them into values in the range [0, 1] with an intercept at 𝜎𝜎(0) = 0.5 .

To build some understanding of the logistic regression model, we can relate it to Chapter 2. In Adaline,
we used the identity function, 𝜎𝜎(𝑧𝑧) = 𝑧𝑧 , as the activation function. In logistic regression, this activation
function simply becomes the sigmoid function that we defined earlier.

The difference between Adaline and logistic regression is illustrated in the following figure, where
the only difference is the activation function:

Figure 3.3: Logistic regression compared to Adaline

The output of the sigmoid function is then interpreted as the probability of a particular ex-
ample belonging to class 1, 𝜎𝜎(𝑧𝑧) = 𝑝𝑝(𝑦𝑦 = 𝑦|𝒙𝒙𝒙𝒙𝒙𝒙 𝒙𝒙) , given its features, x, and parameterized
by the weights and bias, w and b. For example, if we compute 𝜎𝜎(𝑧𝑧) = 0.8 for a particular flow-
er example, it means that the chance that this example is an Iris-versicolor flower is 80 per-
cent. Therefore, the probability that this flower is an Iris-setosa flower can be calculated as
p(y = 0|x; w, b) = 1 – p(y = 1|x; w, b) = 0.2, or 20 percent.

Chapter 3 63

The predicted probability can then simply be converted into a binary outcome via a threshold function:𝑦𝑦𝑦 𝑦 𝑦1 if 𝜎𝜎(𝑧𝑧) ≥ 0.50 otherwise

If we look at the preceding plot of the sigmoid function, this is equivalent to the following:𝑦𝑦𝑦 𝑦 𝑦1 if 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 otherwise

In fact, there are many applications where we are not only interested in the predicted class labels,
but where the estimation of the class-membership probability is particularly useful (the output of
the sigmoid function prior to applying the threshold function). Logistic regression is used in weather
forecasting, for example, not only to predict whether it will rain on a particular day, but also to report
the chance of rain. Similarly, logistic regression can be used to predict the chance that a patient has
a particular disease given certain symptoms, which is why logistic regression enjoys great popularity
in the field of medicine.

Learning the model weights via the logistic loss function
You have learned how we can use the logistic regression model to predict probabilities and class labels;
now, let’s briefly talk about how we fit the parameters of the model, for instance, the weights and bias
unit, w and b. In the previous chapter, we defined the mean squared error loss function as follows:𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘|𝒙𝒙) =∑12 (𝜎𝜎(𝜎𝜎(𝑖𝑖)) − 𝑦𝑦(𝑖𝑖))2𝑖𝑖

We minimized this function in order to learn the parameters for our Adaline classification model. To
explain how we can derive the loss function for logistic regression, let’s first define the likelihood, ℒ ,
that we want to maximize when we build a logistic regression model, assuming that the individual
examples in our dataset are independent of one another. The formula is as follows:

ℒ(𝒘𝒘𝒘 𝒘𝒘|𝒙𝒙) = 𝑝𝑝(𝑦𝑦|𝒙𝒙𝒙𝒘𝒘𝒘 𝒘𝒘) =∏𝑝𝑝𝑝𝑦𝑦(𝑖𝑖)|𝒙𝒙(𝑖𝑖)𝒙 𝒘𝒘𝒘 𝒘𝒘𝒘𝑛𝑛
𝑖𝑖𝑖𝑖 =∏𝑝𝜎𝜎𝑝𝜎𝜎(𝑖𝑖)𝒘𝒘𝑦𝑦(𝑖𝑖)𝑝1 − 𝜎𝜎𝑝𝜎𝜎(𝑖𝑖)𝒘𝒘𝑖−𝑦𝑦(𝑖𝑖)𝑛𝑛

𝑖𝑖𝑖𝑖

In practice, it is easier to maximize the (natural) log of this equation, which is called the log-likelihood
function: 𝑙𝑙(𝒘𝒘𝒘 𝒘𝒘|𝒙𝒙) = log ℒ(𝒘𝒘𝒘 𝒘𝒘|𝒙𝒙) =∑[𝑦𝑦(𝑖𝑖) log(𝜎𝜎(𝜎𝜎(𝑖𝑖))) + (1 − 𝑦𝑦(𝑖𝑖)) log(1 − 𝜎𝜎(𝜎𝜎(𝑖𝑖)))]𝑖𝑖𝑖𝑖

Firstly, applying the log function reduces the potential for numerical underflow, which can occur if
the likelihoods are very small. Secondly, we can convert the product of factors into a summation of
factors, which makes it easier to obtain the derivative of this function via the addition trick, as you
may remember from calculus.

A Tour of Machine Learning Classifiers Using Scikit-Learn64

Now, we could use an optimization algorithm such as gradient ascent to maximize this log-likelihood
function. (Gradient ascent works exactly the same way as gradient descent explained in Chapter 2,
except that gradient ascent maximizes a function instead of minimizing it.) Alternatively, let’s rewrite
the log-likelihood as a loss function, L, that can be minimized using gradient descent as in Chapter 2:

𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘) =∑[−𝑦𝑦(𝑖𝑖) log(𝜎𝜎(𝜎𝜎(𝑖𝑖))) − (1 − 𝑦𝑦(𝑖𝑖)) log(1 − 𝜎𝜎(𝜎𝜎(𝑖𝑖)))]𝑛𝑛
𝑖𝑖𝑖𝑖

To get a better grasp of this loss function, let’s take a look at the loss that we calculate for one single
training example: 𝐿𝐿(𝜎𝜎(𝑧𝑧) , 𝑦𝑦𝑦𝑦𝑦, 𝑦𝑦) = −𝑦𝑦 𝑦𝑦𝑦(𝜎𝜎(𝑧𝑧)) − (1 − 𝑦𝑦) 𝑦𝑦𝑦(1 − 𝜎𝜎(𝑧𝑧))
Looking at the equation, we can see that the first term becomes zero if y = 0, and the second term
becomes zero if y = 1: 𝐿𝐿(𝜎𝜎(𝑧𝑧) , 𝑦𝑦𝑦 𝑦𝑦, 𝑦𝑦) = {− log(𝜎𝜎(𝑧𝑧)) if 𝑦𝑦 = 𝑦− log(𝑦 − 𝜎𝜎(𝑧𝑧)) if 𝑦𝑦 = 𝑦

Deriving the likelihood function

We can obtain the expression for the likelihood of the model given the data, ℒ(𝐰𝐰𝐰 𝐰𝐰𝐰|𝐰𝐱𝐱) , as
follows. Given that we have a binary classification problem with class labels 0 and 1, we can
think of the label 1 as a Bernoulli variable—it can take on two values, 0 and 1, with the
probability p of being 1: 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 . For a single data point, we can write this probability
as 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃(𝑖𝑖𝑖) 𝑃 𝜎𝜎𝑃𝜎𝜎(𝑖𝑖𝑖) and 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃(𝑖𝑖𝑖) 𝑃 1 − 𝜎𝜎𝑃𝜎𝜎(𝑖𝑖𝑖) .

Putting these two expressions together, and using the shorthand 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃(𝑖𝑖𝑖 | 𝑋𝑋 𝑃 𝑋(𝑖𝑖𝑖) 𝑃 𝑝𝑝𝑃𝑃𝑃(𝑖𝑖𝑖 | 𝑋(𝑖𝑖𝑖) , we get the probability mass function of the Bernoul-
li variable: 𝑝𝑝𝑝𝑝𝑝(𝑖𝑖𝑖 | x(𝑖𝑖𝑖) = (𝜎𝜎𝑝𝜎𝜎(𝑖𝑖𝑖))𝑦𝑦(𝑖𝑖𝑖 (1 − 𝜎𝜎𝑝𝜎𝜎(𝑖𝑖𝑖))1−𝑦𝑦(𝑖𝑖𝑖

We can write the likelihood of the training labels given the assumption that all training
examples are independent, using the multiplication rule to compute the probability that
all events occur, as follows:

ℒ(𝐰𝐰𝐰 𝐰𝐰𝐰|𝐰𝐱𝐱) = ∏ 𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)𝐰|𝐰𝐱𝐱(𝑖𝑖); 𝐰𝐰𝐰 𝐰𝐰𝐰𝑛𝑛
𝑖𝑖𝑖𝑖

Now, substituting the probability mass function of the Bernoulli variable, we arrive at
the expression of the likelihood, which we attempt to maximize by changing the model
parameters:

ℒ(𝐰𝐰𝐰 𝐰𝐰𝐰|𝐰𝐱𝐱) = ∏ (𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))𝑦𝑦(𝑖𝑖) (1 − 𝜎𝜎𝜎𝜎𝜎(𝑖𝑖)))1−𝑦𝑦(𝑖𝑖)𝑛𝑛
𝑖𝑖𝑖1

Chapter 3 65

Let’s write a short code snippet to create a plot that illustrates the loss of classifying a single training
example for different values of 𝜎𝜎(𝑧𝑧) :

>>> def loss_1(z):
... return - np.log(sigmoid(z))
>>> def loss_0(z):
... return - np.log(1 - sigmoid(z))
>>> z = np.arange(-10, 10, 0.1)
>>> sigma_z = sigmoid(z)
>>> c1 = [loss_1(x) for x in z]
>>> plt.plot(sigma_z, c1, label='L(w, b) if y=1')
>>> c0 = [loss_0(x) for x in z]
>>> plt.plot(sigma_z, c0, linestyle='--', label='L(w, b) if y=0')
>>> plt.ylim(0.0, 5.1)
>>> plt.xlim([0, 1])
>>> plt.xlabel('$\sigma(z)$')
>>> plt.ylabel('L(w, b)')
>>> plt.legend(loc='best')
>>> plt.tight_layout()
>>> plt.show()

The resulting plot shows the sigmoid activation on the x axis in the range 0 to 1 (the inputs to the
sigmoid function were z values in the range –10 to 10) and the associated logistic loss on the y axis:

Figure 3.4: A plot of the loss function used in logistic regression

We can see that the loss approaches 0 (continuous line) if we correctly predict that an example belongs
to class 1. Similarly, we can see on the y axis that the loss also approaches 0 if we correctly predict
y = 0 (dashed line). However, if the prediction is wrong, the loss goes toward infinity. The main point
is that we penalize wrong predictions with an increasingly larger loss.

A Tour of Machine Learning Classifiers Using Scikit-Learn66

Converting an Adaline implementation into an algorithm for
logistic regression
If we were to implement logistic regression ourselves, we could simply substitute the loss function, L,
in our Adaline implementation from Chapter 2, with the new loss function:

𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘) = 1𝑛𝑛∑[−𝑦𝑦(𝑖𝑖) log(𝜎𝜎(𝜎𝜎(𝑖𝑖))) − (1 − 𝑦𝑦(𝑖𝑖)) log(1 − 𝜎𝜎(𝜎𝜎(𝑖𝑖)))]𝑛𝑛
𝑖𝑖𝑖𝑖

We use this to compute the loss of classifying all training examples per epoch. Also, we need to swap
the linear activation function with the sigmoid. If we make those changes to the Adaline code, we will
end up with a working logistic regression implementation. The following is an implementation for
full-batch gradient descent (but note that the same changes could be made to the stochastic gradient
descent version as well):

class LogisticRegressionGD:
 """Gradient descent-based logistic regression classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 random_state : int
 Random number generator seed for random weight
 initialization.

 Attributes

 w_ : 1d-array
 Weights after training.
 b_ : Scalar
 Bias unit after fitting.
 losses_ : list
 Mean squared error loss function values in each epoch.

 """
 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

Chapter 3 67

 def fit(self, X, y):
 """ Fit training data.

 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples is the
 number of examples and n_features is the
 number of features.
 y : array-like, shape = [n_examples]
 Target values.

 Returns

 self : Instance of LogisticRegressionGD

 """
 rgen = np.random.RandomState(self.random_state)
 self.w_ = rgen.normal(loc=0.0, scale=0.01, size=X.shape[1])
 self.b_ = np.float_(0.)
 self.losses_ = []

 for i in range(self.n_iter):
 net_input = self.net_input(X)
 output = self.activation(net_input)
 errors = (y - output)
 self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0]
 self.b_ += self.eta * 2.0 * errors.mean()
 loss = (-y.dot(np.log(output))
 - ((1 - y).dot(np.log(1 - output)))
 / X.shape[0])
 self.losses_.append(loss)
 return self

 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_

 def activation(self, z):
 """Compute logistic sigmoid activation"""
 return 1. / (1. + np.exp(-np.clip(z, -250, 250)))

A Tour of Machine Learning Classifiers Using Scikit-Learn68

 def predict(self, X):
 """Return class label after unit step"""
 return np.where(self.activation(self.net_input(X)) >= 0.5, 1, 0)

When we fit a logistic regression model, we have to keep in mind that it only works for binary clas-
sification tasks.

So, let’s consider only setosa and versicolor flowers (classes 0 and 1) and check that our implemen-
tation of logistic regression works:

>>> X_train_01_subset = X_train_std[(y_train == 0) | (y_train == 1)]
>>> y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)]
>>> lrgd = LogisticRegressionGD(eta=0.3,
... n_iter=1000,
... random_state=1)
>>> lrgd.fit(X_train_01_subset,
... y_train_01_subset)
>>> plot_decision_regions(X=X_train_01_subset,
... y=y_train_01_subset,
... classifier=lrgd)
>>> plt.xlabel('Petal length [standardized]')
>>> plt.ylabel('Petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

The resulting decision region plot looks as follows:

Figure 3.5: The decision region plot for the logistic regression model

Chapter 3 69

The gradient descent learning algorithm for logistic regression

If you compared the LogisticRegressionGD in the previous code with the AdalineGD
code from Chapter 2, you may have noticed that the weight and bias update rules remained
unchanged (except for the scaling factor 2). Using calculus, we can show that the param-
eter updates via gradient descent are indeed similar for logistic regression and Adaline.
However, please note that the following derivation of the gradient descent learning rule
is intended for readers who are interested in the mathematical concepts behind the gra-
dient descent learning rule for logistic regression. It is not essential for following the rest
of this chapter.

Figure 3.6 summarizes how we can calculate the partial derivative of the log-likelihood
function with respect to the jth weight:

Figure 3.6: Calculating the partial derivative of the log-likelihood function

Note that we omitted averaging over the training examples for brevity.

Remember from Chapter 2 that we take steps in the opposite direction of the gradient.

Hence, we flip 𝜕𝜕𝜕𝜕𝑤𝑤𝑗𝑗 = −(𝑦𝑦 − 𝑦𝑦)𝑥𝑥𝑗𝑗 and update the jth weight as follows, including the learn-

ing rate 𝜂𝜂 : 𝑤𝑤𝑗𝑗 ≔ 𝑤𝑤𝑗𝑗 + 𝜂𝜂(𝑦𝑦 𝑦 𝑦𝑦)𝑥𝑥𝑗𝑗
While the partial derivative of the loss function with respect to the bias unit is not shown,
bias derivation follows the same overall concept using the chain rule, resulting in the
following update rule: 𝑏𝑏 𝑏 𝑏𝑏 𝑏 𝑏𝑏(𝑦𝑦 𝑦 𝑦𝑦)
Both the weight and bias unit updates are equal to the ones for Adaline in Chapter 2.

A Tour of Machine Learning Classifiers Using Scikit-Learn70

Training a logistic regression model with scikit-learn
We just went through useful coding and math exercises in the previous subsection, which helped to
illustrate the conceptual differences between Adaline and logistic regression. Now, let’s learn how to
use scikit-learn’s more optimized implementation of logistic regression, which also supports multiclass
settings off the shelf. Note that in recent versions of scikit-learn, the technique used for multiclass
classification, multinomial, or OvR, is chosen automatically. In the following code example, we will use
the sklearn.linear_model.LogisticRegression class as well as the familiar fit method to train the
model on all three classes in the standardized flower training dataset. Also, we set multi_class='ovr'
for illustration purposes. As an exercise for the reader, you may want to compare the results with
multi_class='multinomial'. Note that the multinomial setting is now the default choice in scikit-
learn’s LogisticRegression class and recommended in practice for mutually exclusive classes, such
as those found in the Iris dataset. Here, “mutually exclusive” means that each training example can
only belong to a single class (in contrast to multilabel classification, where a training example can be
a member of multiple classes).

Now, let’s have a look at the code example:

>>> from sklearn.linear_model import LogisticRegression

>>> lr = LogisticRegression(C=100.0, solver='lbfgs',

... multi_class='ovr')

>>> lr.fit(X_train_std, y_train)

>>> plot_decision_regions(X_combined_std,

... y_combined,

... classifier=lr,

... test_idx=range(105, 150))

>>> plt.xlabel('Petal length [standardized]')

>>> plt.ylabel('Petal width [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.tight_layout()

>>> plt.show()

Chapter 3 71

After fitting the model on the training data, we plotted the decision regions, training examples, and
test examples, as shown in Figure 3.7:

Figure 3.7: Decision regions for scikit-learn’s multi-class logistic regression model

Algorithms for convex optimization

Note that there exist many different algorithms for solving optimization problems. For
minimizing convex loss functions, such as the logistic regression loss, it is recommended
to use more advanced approaches than regular stochastic gradient descent (SGD). In
fact, scikit-learn implements a whole range of such optimization algorithms, which can
be specified via the solver parameter, namely, 'newton-cg', 'lbfgs', 'liblinear',
'sag', and 'saga'.

While the logistic regression loss is convex, most optimization algorithms should converge
to the global loss minimum with ease. However, there are certain advantages of using
one algorithm over the other. For example, in previous versions (for instance, v 0.21),
scikit-learn used 'liblinear' as a default, which cannot handle the multinomial loss
and is limited to the OvR scheme for multiclass classification. However, in scikit-learn v
0.22, the default solver was changed to 'lbfgs', which stands for the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (https://en.wikipedia.org/
wiki/Limited-memory_BFGS) and is more flexible in this regard.

https://en.wikipedia.org/wiki/Limited-memory_BFGS
https://en.wikipedia.org/wiki/Limited-memory_BFGS

A Tour of Machine Learning Classifiers Using Scikit-Learn72

Looking at the preceding code that we used to train the LogisticRegression model, you might now
be wondering, “What is this mysterious parameter C?” We will discuss this parameter in the next
subsection, where we will introduce the concepts of overfitting and regularization. However, before
we move on to those topics, let’s finish our discussion of class membership probabilities.

The probability that training examples belong to a certain class can be computed using the predict_
proba method. For example, we can predict the probabilities of the first three examples in the test
dataset as follows:

>>> lr.predict_proba(X_test_std[:3, :])

This code snippet returns the following array:

array([[3.81527885e-09, 1.44792866e-01, 8.55207131e-01],
 [8.34020679e-01, 1.65979321e-01, 3.25737138e-13],
 [8.48831425e-01, 1.51168575e-01, 2.62277619e-14]])

The first row corresponds to the class membership probabilities of the first flower, the second row
corresponds to the class membership probabilities of the second flower, and so forth. Notice that
the column-wise sum in each row is 1, as expected. (You can confirm this by executing lr.predict_
proba(X_test_std[:3, :]).sum(axis=1).)

The highest value in the first row is approximately 0.85, which means that the first example belongs
to class 3 (Iris-virginica) with a predicted probability of 85 percent. So, as you may have already
noticed, we can get the predicted class labels by identifying the largest column in each row, for ex-
ample, using NumPy’s argmax function:

>>> lr.predict_proba(X_test_std[:3, :]).argmax(axis=1)

The returned class indices are shown here (they correspond to Iris-virginica, Iris-setosa, and
Iris-setosa):

array([2, 0, 0])

In the preceding code example, we computed the conditional probabilities and converted these into
class labels manually by using NumPy’s argmax function. In practice, the more convenient way of
obtaining class labels when using scikit-learn is to call the predict method directly:

>>> lr.predict(X_test_std[:3, :])
array([2, 0, 0])

Lastly, a word of caution if you want to predict the class label of a single flower example: scikit-learn
expects a two-dimensional array as data input; thus, we have to convert a single row slice into such a
format first. One way to convert a single row entry into a two-dimensional data array is to use NumPy’s
reshape method to add a new dimension, as demonstrated here:

>>> lr.predict(X_test_std[0, :].reshape(1, -1))
array([2])

Chapter 3 73

Tackling overfitting via regularization
Overfitting is a common problem in machine learning, where a model performs well on training data
but does not generalize well to unseen data (test data). If a model suffers from overfitting, we also
say that the model has a high variance, which can be caused by having too many parameters, leading
to a model that is too complex given the underlying data. Similarly, our model can also suffer from
underfitting (high bias), which means that our model is not complex enough to capture the pattern
in the training data well and therefore also suffers from low performance on unseen data.

Although we have only encountered linear models for classification so far, the problems of overfitting
and underfitting can be best illustrated by comparing a linear decision boundary to more complex,
nonlinear decision boundaries, as shown in Figure 3.8:

Figure 3.8: Examples of underfitted, well-fitted, and overfitted models

The bias-variance tradeoff

Often, researchers use the terms “bias” and “variance” or “bias-variance tradeoff” to de-
scribe the performance of a model—that is, you may stumble upon talks, books, or articles
where people say that a model has a “high variance” or “high bias.” So, what does that
mean? In general, we might say that “high variance” is proportional to overfitting and

“high bias” is proportional to underfitting.

In the context of machine learning models, variance measures the consistency (or vari-
ability) of the model prediction for classifying a particular example if we retrain the model
multiple times, for example, on different subsets of the training dataset. We can say that
the model is sensitive to the randomness in the training data. In contrast, bias measures
how far off the predictions are from the correct values in general if we rebuild the model
multiple times on different training datasets; bias is the measure of the systematic error
that is not due to randomness.

If you are interested in the technical specification and derivation of the “bias” and “variance”
terms, I’ve written about it in my lecture notes here: https://sebastianraschka.com/
pdf/lecture-notes/stat451fs20/08-model-eval-1-intro__notes.pdf.

https://sebastianraschka.com/pdf/lecture-notes/stat451fs20/08-model-eval-1-intro__notes.pdf
https://sebastianraschka.com/pdf/lecture-notes/stat451fs20/08-model-eval-1-intro__notes.pdf

A Tour of Machine Learning Classifiers Using Scikit-Learn74

One way of finding a good bias-variance tradeoff is to tune the complexity of the model via regulariza-
tion. Regularization is a very useful method for handling collinearity (high correlation among features),
filtering out noise from data, and eventually preventing overfitting.

The concept behind regularization is to introduce additional information to penalize extreme parameter
(weight) values. The most common form of regularization is so-called L2 regularization (sometimes
also called L2 shrinkage or weight decay), which can be written as follows:𝜆𝜆2𝑛𝑛 ‖𝒘𝒘‖2 = 𝜆𝜆2𝑛𝑛∑𝑤𝑤𝑗𝑗2𝑚𝑚

𝑗𝑗𝑗𝑗

Here, 𝜆𝜆 is the so-called regularization parameter. Note that the 2 in the denominator is merely a
scaling factor, such that it cancels when computing the loss gradient. The sample size n is added to
scale the regularization term similar to the loss.

The loss function for logistic regression can be regularized by adding a simple regularization term,
which will shrink the weights during model training:

𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘) = 1𝑛𝑛∑[−𝑦𝑦(𝑖𝑖) log(𝜎𝜎(𝜎𝜎(𝑖𝑖))) − (1 − 𝑦𝑦(𝑖𝑖)) log(1 − 𝜎𝜎(𝜎𝜎(𝑖𝑖)))]𝑛𝑛
𝑖𝑖𝑖𝑖 + 𝜆𝜆2𝑛𝑛 ‖𝒘𝒘‖2

The partial derivative of the unregularized loss is defined as:𝜕𝜕𝜕𝜕(𝒘𝒘𝒘 𝒘𝒘)𝜕𝜕𝜕𝜕𝑗𝑗 = (1𝑛𝑛∑(𝜎𝜎(𝒘𝒘𝑇𝑇𝒙𝒙(𝑖𝑖)) − 𝑦𝑦(𝑖𝑖))𝑥𝑥𝑗𝑗(𝑖𝑖)𝑛𝑛
𝑖𝑖𝑖𝑖)

Adding the regularization term to the loss changes the partial derivative to the following form:𝜕𝜕𝜕𝜕(𝒘𝒘𝒘 𝒘𝒘)𝜕𝜕𝜕𝜕𝑗𝑗 = (1𝑛𝑛∑(𝜎𝜎(𝒘𝒘𝑇𝑇𝒙𝒙(𝑖𝑖)) − 𝑦𝑦(𝑖𝑖))𝑥𝑥𝑗𝑗(𝑖𝑖)𝑛𝑛
𝑖𝑖𝑖𝑖) + 𝜆𝜆𝑛𝑛𝜕𝜕𝑗𝑗

Regularization and feature normalization

Regularization is another reason why feature scaling such as standardization is import-
ant. For regularization to work properly, we need to ensure that all our features are on
comparable scales.

Chapter 3 75

Via the regularization parameter, 𝜆𝜆 , we can then control how closely we fit the training data, while
keeping the weights small. By increasing the value of 𝜆𝜆 , we increase the regularization strength. Please
note that the bias unit, which is essentially an intercept term or negative threshold, as we learned in
Chapter 2, is usually not regularized.

The parameter, C, that is implemented for the LogisticRegression class in scikit-learn comes from
a convention in support vector machines, which will be the topic of the next section. The term C is
inversely proportional to the regularization parameter, 𝜆𝜆 . Consequently, decreasing the value of the
inverse regularization parameter, C, means that we are increasing the regularization strength, which
we can visualize by plotting the L2 regularization path for the two weight coefficients:

>>> weights, params = [], []

>>> for c in np.arange(-5, 5):

... lr = LogisticRegression(C=10.**c,

... multi_class='ovr')

... lr.fit(X_train_std, y_train)

... weights.append(lr.coef_[1])

... params.append(10.**c)

>>> weights = np.array(weights)

>>> plt.plot(params, weights[:, 0],

... label='Petal length')

>>> plt.plot(params, weights[:, 1], linestyle='--',

... label='Petal width')

>>> plt.ylabel('Weight coefficient')

>>> plt.xlabel('C')

>>> plt.legend(loc='upper left')

>>> plt.xscale('log')

>>> plt.show()

By executing the preceding code, we fitted 10 logistic regression models with different values for the
inverse-regularization parameter, C. For illustration purposes, we only collected the weight coefficients
of class 1 (here, the second class in the dataset: Iris-versicolor) versus all classifiers—remember
that we are using the OvR technique for multiclass classification.

A Tour of Machine Learning Classifiers Using Scikit-Learn76

As we can see in the resulting plot, the weight coefficients shrink if we decrease parameter C, that is,
if we increase the regularization strength:

Figure 3.9: The impact of the inverse regularization strength parameter C on L2 regularized model
results

Increasing the regularization strength can reduce overfitting, so we might ask why we don’t strongly
regularize all models by default. The reason is that we have to be careful when adjusting the regular-
ization strength. For instance, if the regularization strength is too high and the weights coefficients
approach zero, the model can perform very poorly due to underfitting, as illustrated in Figure 3.8.

Maximum margin classification with support vector
machines
Another powerful and widely used learning algorithm is the support vector machine (SVM), which
can be considered an extension of the perceptron. Using the perceptron algorithm, we minimized
misclassification errors. However, in SVMs, our optimization objective is to maximize the margin.
The margin is defined as the distance between the separating hyperplane (decision boundary) and
the training examples that are closest to this hyperplane, which are the so-called support vectors.

An additional resource on logistic regression

Since in-depth coverage of the individual classification algorithms exceeds the scope of
this book, Logistic Regression: From Introductory to Advanced Concepts and Applications, Dr.
Scott Menard, Sage Publications, 2009, is recommended to readers who want to learn more
about logistic regression.

Chapter 3 77

This is illustrated in Figure 3.10:

Figure 3.10: SVM maximizes the margin between the decision boundary and training data points

Maximum margin intuition
The rationale behind having decision boundaries with large margins is that they tend to have a lower
generalization error, whereas models with small margins are more prone to overfitting.

Unfortunately, while the main intuition behind SVMs is relatively simple, the mathematics behind
them is quite advanced and would require sound knowledge of constrained optimization.

Hence, the details behind maximum margin optimization in SVMs are beyond the scope of this book.
However, we recommend the following resources if you are interested in learning more:

• Chris J.C. Burges’ excellent explanation in A Tutorial on Support Vector Machines for Pattern
Recognition (Data Mining and Knowledge Discovery, 2(2): 121-167, 1998)

• Vladimir Vapnik’s book The Nature of Statistical Learning Theory, Springer Science+Business
Media, Vladimir Vapnik, 2000

• Andrew Ng’s very detailed lecture notes available at https://see.stanford.edu/materials/
aimlcs229/cs229-notes3.pdf

Dealing with a nonlinearly separable case using slack variables
Although we don’t want to dive much deeper into the more involved mathematical concepts behind
the maximum-margin classification, let’s briefly mention the so-called slack variable, which was intro-
duced by Vladimir Vapnik in 1995 and led to the so-called soft-margin classification. The motivation
for introducing the slack variable was that the linear constraints in the SVM optimization objective
need to be relaxed for nonlinearly separable data to allow the convergence of the optimization in the
presence of misclassifications, under appropriate loss penalization.

https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf
https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

A Tour of Machine Learning Classifiers Using Scikit-Learn78

The use of the slack variable, in turn, introduces the variable, which is commonly referred to as C in
SVM contexts. We can consider C as a hyperparameter for controlling the penalty for misclassification.
Large values of C correspond to large error penalties, whereas we are less strict about misclassification
errors if we choose smaller values for C. We can then use the C parameter to control the width of the
margin and therefore tune the bias-variance tradeoff, as illustrated in Figure 3.11:

Figure 3.11: The impact of large and small values of the inverse regularization strength C on clas-
sification

This concept is related to regularization, which we discussed in the previous section in the context of
regularized regression, where decreasing the value of C increases the bias (underfitting) and lowers
the variance (overfitting) of the model.

Now that we have learned the basic concepts behind a linear SVM, let’s train an SVM model to classify
the different flowers in our Iris dataset:

>>> from sklearn.svm import SVC
>>> svm = SVC(kernel='linear', C=1.0, random_state=1)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std,
... y_combined,
... classifier=svm,
... test_idx=range(105, 150))
>>> plt.xlabel('Petal length [standardized]')
>>> plt.ylabel('Petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

Chapter 3 79

The three decision regions of the SVM, visualized after training the classifier on the Iris dataset by
executing the preceding code example, are shown in Figure 3.12:

Figure 3.12: SVM’s decision regions

Alternative implementations in scikit-learn
The scikit-learn library’s LogisticRegression class, which we used in the previous sections, can
make use of the LIBLINEAR library by setting solver='liblinear'. LIBLINEAR is a highly optimized
C/C++ library developed at the National Taiwan University (http://www.csie.ntu.edu.tw/~cjlin/
liblinear/).

Similarly, the SVC class that we used to train an SVM makes use of LIBSVM, which is an equivalent C/
C++ library specialized for SVMs (http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Logistic regression versus SVMs

In practical classification tasks, linear logistic regression and linear SVMs often yield very
similar results. Logistic regression tries to maximize the conditional likelihoods of the
training data, which makes it more prone to outliers than SVMs, which mostly care about
the points that are closest to the decision boundary (support vectors). On the other hand,
logistic regression has the advantage of being a simpler model and can be implemented
more easily, and is mathematically easier to explain. Furthermore, logistic regression
models can be easily updated, which is attractive when working with streaming data.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

A Tour of Machine Learning Classifiers Using Scikit-Learn80

The advantage of using LIBLINEAR and LIBSVM over, for example, native Python implementations is
that they allow the extremely quick training of large amounts of linear classifiers. However, sometimes
our datasets are too large to fit into computer memory. Thus, scikit-learn also offers alternative im-
plementations via the SGDClassifier class, which also supports online learning via the partial_fit
method. The concept behind the SGDClassifier class is similar to the stochastic gradient algorithm
that we implemented in Chapter 2 for Adaline.

We could initialize the SGD version of the perceptron (loss='perceptron'), logistic regression
(loss='log'), and an SVM with default parameters (loss='hinge'), as follows:

>>> from sklearn.linear_model import SGDClassifier

>>> ppn = SGDClassifier(loss='perceptron')

>>> lr = SGDClassifier(loss='log')

>>> svm = SGDClassifier(loss='hinge')

Solving nonlinear problems using a kernel SVM
Another reason why SVMs enjoy high popularity among machine learning practitioners is that they
can be easily kernelized to solve nonlinear classification problems. Before we discuss the main con-
cept behind the so-called kernel SVM, the most common variant of SVMs, let’s first create a synthetic
dataset to see what such a nonlinear classification problem may look like.

Kernel methods for linearly inseparable data
Using the following code, we will create a simple dataset that has the form of an XOR gate using the
logical_or function from NumPy, where 100 examples will be assigned the class label 1, and 100
examples will be assigned the class label -1:

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> np.random.seed(1)

>>> X_xor = np.random.randn(200, 2)

>>> y_xor = np.logical_xor(X_xor[:, 0] > 0,

... X_xor[:, 1] > 0)

>>> y_xor = np.where(y_xor, 1, 0)

>>> plt.scatter(X_xor[y_xor == 1, 0],

... X_xor[y_xor == 1, 1],

... c='royalblue', marker='s',

... label='Class 1')

Chapter 3 81

>>> plt.scatter(X_xor[y_xor == 0, 0],
... X_xor[y_xor == 0, 1],
... c='tomato', marker='o',
... label='Class 0')
>>> plt.xlim([-3, 3])
>>> plt.ylim([-3, 3])
>>> plt.xlabel('Feature 1')
>>> plt.ylabel('Feature 2')
>>> plt.legend(loc='best')
>>> plt.tight_layout()
>>> plt.show()

After executing the code, we will have an XOR dataset with random noise, as shown in Figure 3.13:

Figure 3.13: A plot of the XOR dataset

Obviously, we would not be able to separate the examples from the positive and negative class very
well using a linear hyperplane as a decision boundary via the linear logistic regression or linear SVM
model that we discussed in earlier sections.

The basic idea behind kernel methods for dealing with such linearly inseparable data is to create
nonlinear combinations of the original features to project them onto a higher-dimensional space via
a mapping function, 𝜙𝜙 , where the data becomes linearly separable. As shown in Figure 3.14, we can
transform a two-dimensional dataset into a new three-dimensional feature space, where the classes
become separable via the following projection:𝜙𝜙(𝑥𝑥1, 𝑥𝑥2) = (𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥12 + 𝑥𝑥22)

A Tour of Machine Learning Classifiers Using Scikit-Learn82

This allows us to separate the two classes shown in the plot via a linear hyperplane that becomes a
nonlinear decision boundary if we project it back onto the original feature space, as illustrated with
the following concentric circle dataset:

Figure 3.14: The process of classifying nonlinear data using kernel methods

Using the kernel trick to find separating hyperplanes in a high-
dimensional space
To solve a nonlinear problem using an SVM, we would transform the training data into a higher-dimen-
sional feature space via a mapping function, 𝜙𝜙 , and train a linear SVM model to classify the data in
this new feature space. Then, we could use the same mapping function, 𝜙𝜙 , to transform new, unseen
data to classify it using the linear SVM model.

Chapter 3 83

However, one problem with this mapping approach is that the construction of the new features is
computationally very expensive, especially if we are dealing with high-dimensional data. This is where
the so-called kernel trick comes into play.

Although we did not go into much detail about how to solve the quadratic programming task to train
an SVM, in practice, we just need to replace the dot product x(i)Tx(j) by 𝜙𝜙𝜙𝜙𝜙(𝑖𝑖))𝑇𝑇 𝜙𝜙𝜙𝜙𝜙(𝑗𝑗)) . To save the
expensive step of calculating this dot product between two points explicitly, we define a so-called
kernel function: 𝜅𝜅𝜅𝜅𝜅(𝑖𝑖), 𝜅𝜅(𝑗𝑗)) = 𝜙𝜙𝜅𝜅𝜅(𝑖𝑖))𝑇𝑇 𝜙𝜙𝜅𝜅𝜅(𝑗𝑗))
One of the most widely used kernels is the radial basis function (RBF) kernel, which can simply be
called the Gaussian kernel:

𝜅𝜅𝜅𝜅𝜅(𝑖𝑖), 𝜅𝜅(𝑗𝑗)) = exp(−‖𝜅𝜅(𝑖𝑖) − 𝜅𝜅(𝑗𝑗)‖22𝜎𝜎2)

This is often simplified to: 𝜅𝜅𝜅𝜅𝜅(𝑖𝑖), 𝜅𝜅(𝑗𝑗)) = exp (−𝛾𝛾𝛾𝜅𝜅(𝑖𝑖) − 𝜅𝜅(𝑗𝑗)𝛾2)

Here, 𝛾𝛾 𝛾 12𝜎𝜎2 is a free parameter to be optimized.

Roughly speaking, the term “kernel” can be interpreted as a similarity function between a pair of exam-
ples. The minus sign inverts the distance measure into a similarity score, and, due to the exponential
term, the resulting similarity score will fall into a range between 1 (for exactly similar examples) and
0 (for very dissimilar examples).

Now that we have covered the big picture behind the kernel trick, let’s see if we can train a kernel
SVM that is able to draw a nonlinear decision boundary that separates the XOR data well. Here, we
simply use the SVC class from scikit-learn that we imported earlier and replace the kernel='linear'
parameter with kernel='rbf':

>>> svm = SVC(kernel='rbf', random_state=1, gamma=0.10, C=10.0)
>>> svm.fit(X_xor, y_xor)
>>> plot_decision_regions(X_xor, y_xor, classifier=svm)
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

A Tour of Machine Learning Classifiers Using Scikit-Learn84

As we can see in the resulting plot, the kernel SVM separates the XOR data relatively well:

Figure 3.15: The decision boundary on the XOR data using a kernel method

The 𝛾𝛾 parameter, which we set to gamma=0.1, can be understood as a cut-off parameter for the Gauss-
ian sphere. If we increase the value for 𝛾𝛾 , we increase the influence or reach of the training examples,
which leads to a tighter and bumpier decision boundary. To get a better understanding of 𝛾𝛾 , let’s apply
an RBF kernel SVM to our Iris flower dataset:

>>> svm = SVC(kernel='rbf', random_state=1, gamma=0.2, C=1.0)

>>> svm.fit(X_train_std, y_train)

>>> plot_decision_regions(X_combined_std,

... y_combined, classifier=svm,

... test_idx=range(105, 150))

>>> plt.xlabel('Petal length [standardized]')

>>> plt.ylabel('Petal width [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.tight_layout()

>>> plt.show()

Chapter 3 85

Since we chose a relatively small value for 𝛾𝛾 , the resulting decision boundary of the RBF kernel SVM
model will be relatively soft, as shown in Figure 3.16:

Figure 3.16: The decision boundaries on the Iris dataset using an RBF kernel SVM model with a small 𝛾𝛾 value

Now, let’s increase the value of 𝛾𝛾 and observe the effect on the decision boundary:

>>> svm = SVC(kernel='rbf', random_state=1, gamma=100.0, C=1.0)

>>> svm.fit(X_train_std, y_train)

>>> plot_decision_regions(X_combined_std,

... y_combined, classifier=svm,

... test_idx=range(105,150))

>>> plt.xlabel('Petal length [standardized]')

>>> plt.ylabel('Petal width [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.tight_layout()

>>> plt.show()

A Tour of Machine Learning Classifiers Using Scikit-Learn86

In Figure 3.17, we can now see that the decision boundary around the classes 0 and 1 is much tighter
using a relatively large value of 𝛾𝛾 :

Figure 3.17: The decision boundaries on the Iris dataset using an RBF kernel SVM model with a large 𝛾𝛾 value

Although the model fits the training dataset very well, such a classifier will likely have a high general-
ization error on unseen data. This illustrates that the 𝛾𝛾 parameter also plays an important role in con-
trolling overfitting or variance when the algorithm is too sensitive to fluctuations in the training dataset.

Decision tree learning
Decision tree classifiers are attractive models if we care about interpretability. As the name “decision
tree” suggests, we can think of this model as breaking down our data by making a decision based on
asking a series of questions.

Chapter 3 87

Let’s consider the following example in which we use a decision tree to decide upon an activity on a
particular day:

Figure 3.18: An example of a decision tree

Based on the features in our training dataset, the decision tree model learns a series of questions to
infer the class labels of the examples. Although Figure 3.18 illustrates the concept of a decision tree
based on categorical variables, the same concept applies if our features are real numbers, like in the
Iris dataset. For example, we could simply define a cut-off value along the sepal width feature axis
and ask a binary question: “Is the sepal width ≥ 2.8 cm?”

Using the decision algorithm, we start at the tree root and split the data on the feature that results in
the largest information gain (IG), which will be explained in more detail in the following section. In
an iterative process, we can then repeat this splitting procedure at each child node until the leaves are
pure. This means that the training examples at each node all belong to the same class. In practice, this
can result in a very deep tree with many nodes, which can easily lead to overfitting. Thus, we typically
want to prune the tree by setting a limit for the maximum depth of the tree.

A Tour of Machine Learning Classifiers Using Scikit-Learn88

Maximizing IG – getting the most bang for your buck
To split the nodes at the most informative features, we need to define an objective function to optimize
via the tree learning algorithm. Here, our objective function is to maximize the IG at each split, which
we define as follows:

𝐼𝐼𝐼𝐼(𝐷𝐷𝑝𝑝, 𝑓𝑓𝑓 𝑓 𝐼𝐼(𝐷𝐷𝑝𝑝𝑓 −∑ 𝑁𝑁𝑗𝑗𝑁𝑁𝑝𝑝 𝐼𝐼(𝐷𝐷𝑗𝑗𝑓𝑚𝑚
𝑗𝑗𝑗𝑗

Here, f is the feature to perform the split; Dp and Dj are the dataset of the parent and jth child node; I
is our impurity measure; Np is the total number of training examples at the parent node; and Nj is the
number of examples in the jth child node. As we can see, the information gain is simply the difference
between the impurity of the parent node and the sum of the child node impurities—the lower the
impurities of the child nodes, the larger the information gain. However, for simplicity and to reduce
the combinatorial search space, most libraries (including scikit-learn) implement binary decision
trees. This means that each parent node is split into two child nodes, Dleft and Dright:𝐼𝐼𝐼𝐼(𝐷𝐷𝑝𝑝, 𝑓𝑓𝑓 𝑓 𝐼𝐼(𝐷𝐷𝑝𝑝𝑓 − 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑝𝑝 𝐼𝐼(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑓 − 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑁𝑁𝑝𝑝 𝐼𝐼(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑓
The three impurity measures or splitting criteria that are commonly used in binary decision trees
are Gini impurity (IG), entropy (IH), and the classification error (IE). Let’s start with the definition of
entropy for all non-empty classes (𝑝𝑝(𝑖𝑖|𝑡𝑡) ≠ 0):

𝐼𝐼𝐻𝐻(𝑡𝑡) = −∑𝑝𝑝(𝑖𝑖|𝑡𝑡) log2 𝑝𝑝(𝑖𝑖|𝑡𝑡)𝑐𝑐
𝑖𝑖𝑖𝑖

Here, p(i|t) is the proportion of the examples that belong to class i for a particular node, t. The entropy
is therefore 0 if all examples at a node belong to the same class, and the entropy is maximal if we have
a uniform class distribution. For example, in a binary class setting, the entropy is 0 if p(i=1|t) = 1 or
p(i=0|t) = 0. If the classes are distributed uniformly with p(i=1|t) = 0.5 and p(i=0|t) = 0.5, the entropy
is 1. Therefore, we can say that the entropy criterion attempts to maximize the mutual information
in the tree.

To provide a visual intuition, let us visualize the entropy values for different class distributions via
the following code:

>>> def entropy(p):

... return - p * np.log2(p) - (1 - p) * np.log2((1 - p))

>>> x = np.arange(0.0, 1.0, 0.01)

>>> ent = [entropy(p) if p != 0 else None for p in x]

>>> plt.ylabel('Entropy')

>>> plt.xlabel('Class-membership probability p(i=1)')

>>> plt.plot(x, ent)

>>> plt.show()

Chapter 3 89

Figure 3.19 below shows the plot produced by the preceding code:

Figure 3.19: Entropy values for different class-membership probabilities

The Gini impurity can be understood as a criterion to minimize the probability of misclassification:

𝐼𝐼𝐺𝐺(𝑡𝑡) =∑𝑝𝑝(𝑖𝑖|𝑡𝑡) (1 − 𝑝𝑝(𝑖𝑖|𝑡𝑡))𝑐𝑐
𝑖𝑖𝑖𝑖 = 1 −∑𝑝𝑝(𝑖𝑖|𝑡𝑡)2𝑐𝑐

𝑖𝑖𝑖𝑖

Similar to entropy, the Gini impurity is maximal if the classes are perfectly mixed, for example, in a
binary class setting (c = 2):

𝐼𝐼𝐺𝐺(𝑡𝑡) = 1 −∑0.52𝑐𝑐
𝑖𝑖𝑖𝑖 = 0.5

However, in practice, both the Gini impurity and entropy typically yield very similar results, and it is
often not worth spending much time on evaluating trees using different impurity criteria rather than
experimenting with different pruning cut-offs. In fact, as you will see later in Figure 3.21, both the
Gini impurity and entropy have a similar shape.

Another impurity measure is the classification error:𝐼𝐼𝐸𝐸(𝑡𝑡) = 1 − max{𝑝𝑝(𝑖𝑖|𝑡𝑡)}
This is a useful criterion for pruning, but not recommended for growing a decision tree, since it is
less sensitive to changes in the class probabilities of the nodes. We can illustrate this by looking at the
two possible splitting scenarios shown in Figure 3.20:

Figure 3.20: Decision tree data splits

A Tour of Machine Learning Classifiers Using Scikit-Learn90

We start with a dataset, Dp, at the parent node, which consists of 40 examples from class 1 and 40
examples from class 2 that we split into two datasets, Dleft and Dright. The information gain using the
classification error as a splitting criterion would be the same (IGE = 0.25) in both scenarios, A and B:𝐼𝐼𝐸𝐸(𝐷𝐷𝑝𝑝) = 1 − 0.5 = 0.5
𝐴𝐴𝐴 𝐼𝐼𝐸𝐸(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 1 − 34 = 0.25
𝐴𝐴𝐴 𝐼𝐼𝐸𝐸(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙) = 1 − 34 = 0.25
𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐸𝐸 = 0.5 − 48 0.25 − 48 0.25 = 0.25
𝐵𝐵𝐴 𝐼𝐼𝐸𝐸(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 1 − 46 = 13𝐵𝐵𝐴 𝐼𝐼𝐸𝐸(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙) = 1 − 1 = 0
𝐵𝐵𝐴 𝐼𝐼𝐼𝐼𝐸𝐸 = 0.5 − 68 × 13 − 0 = 0.25

However, the Gini impurity would favor the split in scenario B (𝐼𝐼𝐼𝐼𝐺𝐺 = 0.16̅) over scenario A (IGG = 0.125),
which is indeed purer:𝐼𝐼𝐺𝐺(𝐷𝐷𝑝𝑝) = 1 − (0.52 + 0.52) = 0.5
𝐴𝐴𝐴 𝐼𝐼𝐺𝐺(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 1 − ((34)2 + (14)2) = 38 = 0.375
𝐴𝐴𝐴 𝐼𝐼𝐺𝐺(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙) = 1 − ((14)2 + (34)2) = 38 = 0.375
𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐺𝐺 = 0.5 − 48 0.375 − 48 0.375 = 0.125
𝐵𝐵𝐴 𝐼𝐼𝐺𝐺(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 1 − ((26)2 + (46)2) = 49 = 0. 4̅
𝐵𝐵𝐴 𝐼𝐼𝐺𝐺(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙) = 1 − (12 + 02) = 0
𝐵𝐵𝐴 𝐼𝐼𝐼𝐼𝐺𝐺 = 0.5 − 68 0. 4̅ − 0 = 0.16̅

Chapter 3 91

Similarly, the entropy criterion would also favor scenario B (IGH = 0.31) over scenario A (IGH = 0.19):𝐼𝐼𝐻𝐻(𝐷𝐷𝑝𝑝) = −(0.5 log2(0.5) + 0.5 log2(0.5)) = 1
𝐴𝐴𝐴 𝐼𝐼𝐻𝐻(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = − (34 log2 (34) + 14 log2 (14)) = 0.81
𝐴𝐴𝐴 𝐼𝐼𝐻𝐻(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙) = − (14 log2 (14) + 34 log2 (34)) = 0.81
𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐻𝐻 = 1 − 48 0.81 − 48 0.81 = 0.19
𝐵𝐵𝐴 𝐼𝐼𝐻𝐻(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = − (26 log2 (26) + 46 log2 (46)) = 0.92
𝐵𝐵𝐴 𝐼𝐼𝐻𝐻(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙) = 0
𝐵𝐵𝐴 𝐼𝐼𝐼𝐼𝐻𝐻 = 1 − 68 0.92 − 0 = 0.31

For a more visual comparison of the three different impurity criteria that we discussed previously,
let’s plot the impurity indices for the probability range [0, 1] for class 1. Note that we will also add a
scaled version of the entropy (entropy / 2) to observe that the Gini impurity is an intermediate measure
between entropy and the classification error. The code is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def gini(p):
... return p*(1 - p) + (1 - p)*(1 - (1-p))
>>> def entropy(p):
... return - p*np.log2(p) - (1 - p)*np.log2((1 - p))
>>> def error(p):
... return 1 - np.max([p, 1 - p])
>>> x = np.arange(0.0, 1.0, 0.01)
>>> ent = [entropy(p) if p != 0 else None for p in x]
>>> sc_ent = [e*0.5 if e else None for e in ent]
>>> err = [error(i) for i in x]
>>> fig = plt.figure()
>>> ax = plt.subplot(111)

A Tour of Machine Learning Classifiers Using Scikit-Learn92

>>> for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err],
... ['Entropy', 'Entropy (scaled)',
... 'Gini impurity',
... 'Misclassification error'],
... ['-', '-', '--', '-.'],
... ['black', 'lightgray',
... 'red', 'green', 'cyan']):
... line = ax.plot(x, i, label=lab,
... linestyle=ls, lw=2, color=c)
>>> ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
... ncol=5, fancybox=True, shadow=False)
>>> ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
>>> ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
>>> plt.ylim([0, 1.1])
>>> plt.xlabel('p(i=1)')
>>> plt.ylabel('impurity index')
>>> plt.show()

The plot produced by the preceding code example is as follows:

Figure 3.21: The different impurity indices for different class-membership probabilities between 0 and 1

Building a decision tree
Decision trees can build complex decision boundaries by dividing the feature space into rectangles.
However, we have to be careful since the deeper the decision tree, the more complex the decision
boundary becomes, which can easily result in overfitting. Using scikit-learn, we will now train a de-
cision tree with a maximum depth of 4, using the Gini impurity as a criterion for impurity.

Chapter 3 93

Although feature scaling may be desired for visualization purposes, note that feature scaling is not a
requirement for decision tree algorithms. The code is as follows:

>>> from sklearn.tree import DecisionTreeClassifier
>>> tree_model = DecisionTreeClassifier(criterion='gini',
... max_depth=4,
... random_state=1)
>>> tree_model.fit(X_train, y_train)
>>> X_combined = np.vstack((X_train, X_test))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X_combined,
... y_combined,
... classifier=tree_model,
... test_idx=range(105, 150))
>>> plt.xlabel('Petal length [cm]')
>>> plt.ylabel('Petal width [cm]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

After executing the code example, we get the typical axis-parallel decision boundaries of the decision
tree:

Figure 3.22: The decision boundaries of the Iris data using a decision tree

A Tour of Machine Learning Classifiers Using Scikit-Learn94

A nice feature in scikit-learn is that it allows us to readily visualize the decision tree model after train-
ing via the following code:

>>> from sklearn import tree
>>> feature_names = ['Sepal length', 'Sepal width',
... 'Petal length', 'Petal width']
>>> tree.plot_tree(tree_model,
... feature_names=feature_names,
... filled=True)
>>> plt.show()

Figure 3.23: A decision tree model fit to the Iris dataset

Setting filled=True in the plot_tree function we called colors the nodes by the majority class label
at that node. There are many additional options available, which you can find in the documentation
at https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html.

Looking at the decision tree figure, we can now nicely trace back the splits that the decision tree de-
termined from our training dataset. Regarding the feature splitting criterion at each node, note that
the branches to the left correspond to “True” and branches to the right correspond to “False.”

https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html

Chapter 3 95

Looking at the root node, it starts with 105 examples at the top. The first split uses a sepal width cut-
off ≤ 0.75 cm for splitting the root node into two child nodes with 35 examples (left child node) and
70 examples (right child node). After the first split, we can see that the left child node is already pure
and only contains examples from the Iris-setosa class (Gini impurity = 0). The further splits on the
right are then used to separate the examples from the Iris-versicolor and Iris-virginica class.

Looking at this tree, and the decision region plot of the tree, we can see that the decision tree does a
very good job of separating the flower classes. Unfortunately, scikit-learn currently does not implement
functionality to manually post-prune a decision tree. However, we could go back to our previous code
example, change the max_depth of our decision tree to 3, and compare it to our current model, but
we leave this as an exercise for the interested reader.

Alternatively, scikit-learn provides an automatic cost complexity post-pruning procedure for decision
trees. Interested readers can find more information about this more advanced topic in the following
tutorial: https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.
html.

Combining multiple decision trees via random forests
Ensemble methods have gained huge popularity in applications of machine learning during the last
decade due to their good classification performance and robustness toward overfitting. While we
are going to cover different ensemble methods, including bagging and boosting, later in Chapter 7,
Combining Different Models for Ensemble Learning, let’s discuss the decision tree-based random forest
algorithm, which is known for its good scalability and ease of use. A random forest can be considered
as an ensemble of decision trees. The idea behind a random forest is to average multiple (deep) deci-
sion trees that individually suffer from high variance to build a more robust model that has a better
generalization performance and is less susceptible to overfitting. The random forest algorithm can
be summarized in four simple steps:

1. Draw a random bootstrap sample of size n (randomly choose n examples from the training
dataset with replacement).

2. Grow a decision tree from the bootstrap sample. At each node:

a. Randomly select d features without replacement.
b. Split the node using the feature that provides the best split according to the objective

function, for instance, maximizing the information gain.

3. Repeat steps 1-2 k times.
4. Aggregate the prediction by each tree to assign the class label by majority vote. Majority voting

will be discussed in more detail in Chapter 7.

https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html

A Tour of Machine Learning Classifiers Using Scikit-Learn96

We should note one slight modification in step 2 when we are training the individual decision trees:
instead of evaluating all features to determine the best split at each node, we only consider a random
subset of those.

Although random forests don’t offer the same level of interpretability as decision trees, a big advantage
of random forests is that we don’t have to worry so much about choosing good hyperparameter values.
We typically don’t need to prune the random forest since the ensemble model is quite robust to noise
from averaging the predictions among the individual decision trees. The only parameter that we
need to care about in practice is the number of trees, k, (step 3) that we choose for the random forest.
Typically, the larger the number of trees, the better the performance of the random forest classifier
at the expense of an increased computational cost.

Sampling with and without replacement

In case you are not familiar with the terms sampling “with” and “without” replacement,
let’s walk through a simple thought experiment. Let’s assume that we are playing a lottery
game where we randomly draw numbers from an urn. We start with an urn that holds
five unique numbers, 0, 1, 2, 3, and 4, and we draw exactly one number on each turn. In
the first round, the chance of drawing a particular number from the urn would be 1/5.
Now, in sampling without replacement, we do not put the number back into the urn after
each turn. Consequently, the probability of drawing a particular number from the set of
remaining numbers in the next round depends on the previous round. For example, if we
have a remaining set of numbers 0, 1, 2, and 4, the chance of drawing number 0 would
become 1/4 in the next turn.

However, in random sampling with replacement, we always return the drawn number
to the urn so that the probability of drawing a particular number at each turn does not
change; we can draw the same number more than once. In other words, in sampling with
replacement, the samples (numbers) are independent and have a covariance of zero. For
example, the results from five rounds of drawing random numbers could look like this:

• Random sampling without replacement: 2, 1, 3, 4, 0
• Random sampling with replacement: 1, 3, 3, 4, 1

Chapter 3 97

Although it is less common in practice, other hyperparameters of the random forest classifier that
can be optimized—using techniques that we will discuss in Chapter 6, Learning Best Practices for Model
Evaluation and Hyperparameter Tuning—are the size, n, of the bootstrap sample (step 1) and the number
of features, d, that are randomly chosen for each split (step 2a), respectively. Via the sample size, n, of
the bootstrap sample, we control the bias-variance tradeoff of the random forest.

Decreasing the size of the bootstrap sample increases the diversity among the individual trees since
the probability that a particular training example is included in the bootstrap sample is lower. Thus,
shrinking the size of the bootstrap samples may increase the randomness of the random forest, and it can
help to reduce the effect of overfitting. However, smaller bootstrap samples typically result in a lower
overall performance of the random forest and a small gap between training and test performance, but
a low test performance overall. Conversely, increasing the size of the bootstrap sample may increase
the degree of overfitting. Because the bootstrap samples, and consequently the individual decision
trees, become more similar to one another, they learn to fit the original training dataset more closely.

In most implementations, including the RandomForestClassifier implementation in scikit-learn, the
size of the bootstrap sample is chosen to be equal to the number of training examples in the original
training dataset, which usually provides a good bias-variance tradeoff. For the number of features, d,
at each split, we want to choose a value that is smaller than the total number of features in the training
dataset. A reasonable default that is used in scikit-learn and other implementations is 𝑑𝑑 𝑑 √𝑚𝑚 , where
m is the number of features in the training dataset.

Conveniently, we don’t have to construct the random forest classifier from individual decision trees
by ourselves because there is already an implementation in scikit-learn that we can use:

>>> from sklearn.ensemble import RandomForestClassifier
>>> forest = RandomForestClassifier(n_estimators=25,
... random_state=1,
... n_jobs=2)
>>> forest.fit(X_train, y_train)
>>> plot_decision_regions(X_combined, y_combined,
... classifier=forest, test_idx=range(105,150))
>>> plt.xlabel('Petal length [cm]')
>>> plt.ylabel('Petal width [cm]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

A Tour of Machine Learning Classifiers Using Scikit-Learn98

After executing the preceding code, we should see the decision regions formed by the ensemble of
trees in the random forest, as shown in Figure 3.24:

Figure 3.24: Decision boundaries on the Iris dataset using a random forest

Using the preceding code, we trained a random forest from 25 decision trees via the n_estimators
parameter. By default, it uses the Gini impurity measure as a criterion to split the nodes. Although
we are growing a very small random forest from a very small training dataset, we used the n_jobs pa-
rameter for demonstration purposes, which allows us to parallelize the model training using multiple
cores of our computer (here, two cores). If you encounter errors with this code, your computer may
not support multiprocessing. You can omit the n_jobs parameter or set it to n_jobs=None.

K-nearest neighbors – a lazy learning algorithm
The last supervised learning algorithm that we want to discuss in this chapter is the k-nearest neigh-
bor (KNN) classifier, which is particularly interesting because it is fundamentally different from the
learning algorithms that we have discussed so far.

KNN is a typical example of a lazy learner. It is called “lazy” not because of its apparent simplicity, but
because it doesn’t learn a discriminative function from the training data but memorizes the training
dataset instead.

Chapter 3 99

The KNN algorithm itself is fairly straightforward and can be summarized by the following steps:

1. Choose the number of k and a distance metric
2. Find the k-nearest neighbors of the data record that we want to classify
3. Assign the class label by majority vote

Figure 3.25 illustrates how a new data point (?) is assigned the triangle class label based on majority
voting among its five nearest neighbors:

Figure 3.25: How k-nearest neighbors works

Parametric versus non-parametric models

Machine learning algorithms can be grouped into parametric and non-parametric models.
Using parametric models, we estimate parameters from the training dataset to learn a
function that can classify new data points without requiring the original training dataset
anymore. Typical examples of parametric models are the perceptron, logistic regression,
and the linear SVM. In contrast, non-parametric models can’t be characterized by a fixed
set of parameters, and the number of parameters changes with the amount of training
data. Two examples of non-parametric models that we have seen so far are the decision
tree classifier/random forest and the kernel (but not linear) SVM.

KNN belongs to a subcategory of non-parametric models described as instance-based
learning. Models based on instance-based learning are characterized by memorizing
the training dataset, and lazy learning is a special case of instance-based learning that is
associated with no (zero) cost during the learning process.

A Tour of Machine Learning Classifiers Using Scikit-Learn100

Based on the chosen distance metric, the KNN algorithm finds the k examples in the training dataset
that are closest (most similar) to the point that we want to classify. The class label of the data point is
then determined by a majority vote among its k nearest neighbors.

By executing the following code, we will now implement a KNN model in scikit-learn using a Euclid-
ean distance metric:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=5, p=2,
... metric='minkowski')
>>> knn.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std, y_combined,
... classifier=knn, test_idx=range(105,150))
>>> plt.xlabel('Petal length [standardized]')
>>> plt.ylabel('Petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

Advantages and disadvantages of memory-based approaches

The main advantage of such a memory-based approach is that the classifier immediately
adapts as we collect new training data. However, the downside is that the computational
complexity for classifying new examples grows linearly with the number of examples in
the training dataset in the worst-case scenario—unless the dataset has very few dimen-
sions (features) and the algorithm has been implemented using efficient data structures
for querying the training data more effectively. Such data structures include k-d tree
(https://en.wikipedia.org/wiki/K-d_tree) and ball tree (https://en.wikipedia.
org/wiki/Ball_tree), which are both supported in scikit-learn. Furthermore, next to
computational costs for querying data, large datasets can also be problematic in terms
of limited storage capacities.

However, in many cases when we are working with relatively small to medium-sized data-
sets, memory-based methods can provide good predictive and computational performance
and are thus a good choice for approaching many real-world problems. Recent examples
of using nearest neighbor methods include predicting properties of pharmaceutical drug
targets (Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition, Bio-
molecules, 2020, Joe Bemister-Buffington, Alex J. Wolf, Sebastian Raschka, and Leslie
A. Kuhn, https://www.mdpi.com/2218-273X/10/3/454) and state-of-the-art language
models (Efficient Nearest Neighbor Language Models, 2021, Junxian He, Graham Neubig, and
Taylor Berg-Kirkpatrick, https://arxiv.org/abs/2109.04212).

https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Ball_tree
https://www.mdpi.com/2218-273X/10/3/454
https://arxiv.org/abs/2109.04212

Chapter 3 101

By specifying five neighbors in the KNN model for this dataset, we obtain a relatively smooth decision
boundary, as shown in Figure 3.26:

Figure 3.26: k-nearest neighbors’ decision boundaries on the Iris dataset

The right choice of k is crucial to finding a good balance between overfitting and underfitting. We also
have to make sure that we choose a distance metric that is appropriate for the features in the dataset.
Often, a simple Euclidean distance measure is used for real-value examples, for example, the flowers
in our Iris dataset, which have features measured in centimeters. However, if we are using a Euclidean
distance measure, it is also important to standardize the data so that each feature contributes equally
to the distance. The minkowski distance that we used in the previous code is just a generalization of
the Euclidean and Manhattan distance, which can be written as follows:

𝑑𝑑𝑑𝑑𝑑(𝑖𝑖), 𝑑𝑑(𝑗𝑗)) = √∑|𝑥𝑥𝑘𝑘(𝑖𝑖) − 𝑥𝑥𝑘𝑘(𝑗𝑗)|𝑝𝑝𝑘𝑘
𝑝𝑝

Resolving ties

In the case of a tie, the scikit-learn implementation of the KNN algorithm will prefer
the neighbors with a closer distance to the data record to be classified. If the neighbors
have similar distances, the algorithm will choose the class label that comes first in the
training dataset.

A Tour of Machine Learning Classifiers Using Scikit-Learn102

It becomes the Euclidean distance if we set the parameter p=2 or the Manhattan distance at p=1.
Many other distance metrics are available in scikit-learn and can be provided to the metric param-
eter. They are listed at https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
DistanceMetric.html.

Lastly, it is important to mention that KNN is very susceptible to overfitting due to the curse of dimen-
sionality. The curse of dimensionality describes the phenomenon where the feature space becomes
increasingly sparse for an increasing number of dimensions of a fixed-size training dataset. We can
think of even the closest neighbors as being too far away in a high-dimensional space to give a good
estimate.

We discussed the concept of regularization in the section about logistic regression as one way to avoid
overfitting. However, in models where regularization is not applicable, such as decision trees and KNN,
we can use feature selection and dimensionality reduction techniques to help us to avoid the curse of
dimensionality. This will be discussed in more detail in the next two chapters.

Summary
In this chapter, you learned about many different machine learning algorithms that are used to tackle
linear and nonlinear problems. You have seen that decision trees are particularly attractive if we care
about interpretability. Logistic regression is not only a useful model for online learning via SGD, but
also allows us to predict the probability of a particular event.

Although SVMs are powerful linear models that can be extended to nonlinear problems via the kernel
trick, they have many parameters that have to be tuned in order to make good predictions. In contrast,
ensemble methods, such as random forests, don’t require much parameter tuning and don’t overfit as
easily as decision trees, which makes them attractive models for many practical problem domains. The
KNN classifier offers an alternative approach to classification via lazy learning that allows us to make
predictions without any model training, but with a more computationally expensive prediction step.

Alternative machine learning implementations with GPU support

When working with large datasets, running k-nearest neighbors or fitting random forests
with many estimators can require substantial computing resources and processing time. If
you have a computer equipped with an NVIDIA GPU that is compatible with recent versions
of NVIDIA’s CUDA library, we recommend considering the RAPIDS ecosystem (https://
docs.rapids.ai/api). For instance, RAPIDS’ cuML (https://docs.rapids.ai/api/
cuml/stable/) library implements many of scikit-learn’s machine learning algorithms
with GPU support to accelerate the processing speeds. You can find an introduction to
cuML at https://docs.rapids.ai/api/cuml/stable/estimator_intro.html. If you
are interested in learning more about the RAPIDS ecosystem, please also see the freely
accessible journal article that we wrote in collaboration with the RAPIDS team: Machine
Learning in Python: Main Developments and Technology Trends in Data Science, Machine
Learning, and Artificial Intelligence (https://www.mdpi.com/2078-2489/11/4/193).

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.DistanceMetric.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.DistanceMetric.html
https://docs.rapids.ai/api
https://docs.rapids.ai/api
https://docs.rapids.ai/api/cuml/stable/
https://docs.rapids.ai/api/cuml/stable/
https://docs.rapids.ai/api/cuml/stable/estimator_intro.html
https://www.mdpi.com/2078-2489/11/4/193

Chapter 3 103

However, even more important than the choice of an appropriate learning algorithm is the available
data in our training dataset. No algorithm will be able to make good predictions without informative
and discriminatory features.

In the next chapter, we will discuss important topics regarding the preprocessing of data, feature
selection, and dimensionality reduction, which means that we will need to build powerful machine
learning models. Later, in Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter
Tuning, we will see how we can evaluate and compare the performance of our models and learn useful
tricks to fine-tune the different algorithms.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

4
Building Good Training Datasets –
Data Preprocessing

The quality of the data and the amount of useful information that it contains are key factors that
determine how well a machine learning algorithm can learn. Therefore, it is absolutely critical to
ensure that we examine and preprocess a dataset before we feed it to a machine learning algorithm.
In this chapter, we will discuss the essential data preprocessing techniques that will help us to build
good machine learning models.

The topics that we will cover in this chapter are as follows:

• Removing and imputing missing values from the dataset
• Getting categorical data into shape for machine learning algorithms
• Selecting relevant features for the model construction

Dealing with missing data
It is not uncommon in real-world applications for our training examples to be missing one or more
values for various reasons. There could have been an error in the data collection process, certain mea-
surements may not be applicable, or particular fields could have been simply left blank in a survey, for
example. We typically see missing values as blank spaces in our data table or as placeholder strings
such as NaN, which stands for “not a number,” or NULL (a commonly used indicator of unknown values
in relational databases). Unfortunately, most computational tools are unable to handle such missing
values or will produce unpredictable results if we simply ignore them. Therefore, it is crucial that we
take care of those missing values before we proceed with further analyses.

In this section, we will work through several practical techniques for dealing with missing values by re-
moving entries from our dataset or imputing missing values from other training examples and features.

Building Good Training Datasets – Data Preprocessing106

Identifying missing values in tabular data
Before we discuss several techniques for dealing with missing values, let’s create a simple example
DataFrame from a comma-separated values (CSV) file to get a better grasp of the problem:

>>> import pandas as pd
>>> from io import StringIO
>>> csv_data = \
... '''A,B,C,D
... 1.0,2.0,3.0,4.0
... 5.0,6.0,,8.0
... 10.0,11.0,12.0,'''
>>> # If you are using Python 2.7, you need
>>> # to convert the string to unicode:
>>> # csv_data = unicode(csv_data)
>>> df = pd.read_csv(StringIO(csv_data))
>>> df
 A B C D
0 1.0 2.0 3.0 4.0
1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

Using the preceding code, we read CSV-formatted data into a pandas DataFrame via the read_csv
function and noticed that the two missing cells were replaced by NaN. The StringIO function in the
preceding code example was simply used for the purposes of illustration. It allowed us to read the
string assigned to csv_data into a pandas DataFrame as if it was a regular CSV file on our hard drive.

For a larger DataFrame, it can be tedious to look for missing values manually; in this case, we can use
the isnull method to return a DataFrame with Boolean values that indicate whether a cell contains
a numeric value (False) or if data is missing (True). Using the sum method, we can then return the
number of missing values per column as follows:

>>> df.isnull().sum()
A 0
B 0
C 1
D 1
dtype: int64

This way, we can count the number of missing values per column; in the following subsections, we
will take a look at different strategies for how to deal with this missing data.

Chapter 4 107

Eliminating training examples or features with missing values
One of the easiest ways to deal with missing data is simply to remove the corresponding features
(columns) or training examples (rows) from the dataset entirely; rows with missing values can easily
be dropped via the dropna method:

>>> df.dropna(axis=0)
 A B C D
0 1.0 2.0 3.0 4.0

Similarly, we can drop columns that have at least one NaN in any row by setting the axis argument to 1:

>>> df.dropna(axis=1)
 A B
0 1.0 2.0
1 5.0 6.0
2 10.0 11.0

The dropna method supports several additional parameters that can come in handy:

>>> # only drop rows where all columns are NaN
>>> # (returns the whole array here since we don't
>>> # have a row with all values NaN)
>>> df.dropna(how='all')
 A B C D
0 1.0 2.0 3.0 4.0
1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

Convenient data handling with pandas’ DataFrame

Although scikit-learn was originally developed for working with NumPy arrays only, it
can sometimes be more convenient to preprocess data using pandas’ DataFrame. Nowa-
days, most scikit-learn functions support DataFrame objects as inputs, but since NumPy
array handling is more mature in the scikit-learn API, it is recommended to use NumPy
arrays when possible. Note that you can always access the underlying NumPy array of a
DataFrame via the values attribute before you feed it into a scikit-learn estimator:

>>> df.values
array([[1., 2., 3., 4.],
 [5., 6., nan, 8.],
 [10., 11., 12., nan]])

Building Good Training Datasets – Data Preprocessing108

>>> # drop rows that have fewer than 4 real values
>>> df.dropna(thresh=4)
 A B C D
0 1.0 2.0 3.0 4.0
>>> # only drop rows where NaN appear in specific columns (here: 'C')
>>> df.dropna(subset=['C'])
 A B C D
0 1.0 2.0 3.0 4.0
2 10.0 11.0 12.0 NaN

Although the removal of missing data seems to be a convenient approach, it also comes with certain
disadvantages; for example, we may end up removing too many samples, which will make a reliable
analysis impossible. Or, if we remove too many feature columns, we will run the risk of losing valuable
information that our classifier needs to discriminate between classes. In the next section, we will look at
one of the most commonly used alternatives for dealing with missing values: interpolation techniques.

Imputing missing values
Often, the removal of training examples or dropping of entire feature columns is simply not feasible,
because we might lose too much valuable data. In this case, we can use different interpolation tech-
niques to estimate the missing values from the other training examples in our dataset. One of the
most common interpolation techniques is mean imputation, where we simply replace the missing
value with the mean value of the entire feature column. A convenient way to achieve this is by using
the SimpleImputer class from scikit-learn, as shown in the following code:

>>> from sklearn.impute import SimpleImputer
>>> import numpy as np
>>> imr = SimpleImputer(missing_values=np.nan, strategy='mean')
>>> imr = imr.fit(df.values)
>>> imputed_data = imr.transform(df.values)
>>> imputed_data
array([[1., 2., 3., 4.],
 [5., 6., 7.5, 8.],
 [10., 11., 12., 6.]])

Here, we replaced each NaN value with the corresponding mean, which is separately calculated for
each feature column. Other options for the strategy parameter are median or most_frequent, where
the latter replaces the missing values with the most frequent values. This is useful for imputing cate-
gorical feature values, for example, a feature column that stores an encoding of color names, such as
red, green, and blue. We will encounter examples of such data later in this chapter.

Chapter 4 109

Alternatively, an even more convenient way to impute missing values is by using pandas’ fillna method
and providing an imputation method as an argument. For example, using pandas, we could achieve
the same mean imputation directly in the DataFrame object via the following command:

>>> df.fillna(df.mean())

Figure 4.1: Replacing missing values in data with the mean

Understanding the scikit-learn estimator API
In the previous section, we used the SimpleImputer class from scikit-learn to impute missing values
in our dataset. The SimpleImputer class is part of the so-called transformer API in scikit-learn, which
is used for implementing Python classes related to data transformation. (Please note that the scikit-
learn transformer API is not to be confused with the transformer architecture that is used in natural
language processing, which we will cover in more detail in Chapter 16, Transformers – Improving Natural
Language Processing with Attention Mechanisms.) The two essential methods of those estimators are
fit and transform. The fit method is used to learn the parameters from the training data, and the
transform method uses those parameters to transform the data. Any data array that is to be trans-
formed needs to have the same number of features as the data array that was used to fit the model.

Additional imputation methods for missing data

For additional imputation techniques, including the KNNImputer based on a k-nearest
neighbors approach to impute missing features by nearest neighbors, we recommend
the scikit-learn imputation documentation at https://scikit-learn.org/stable/
modules/impute.html.

https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html

Building Good Training Datasets – Data Preprocessing110

Figure 4.2 illustrates how a scikit-learn transformer instance, fitted on the training data, is used to
transform a training dataset as well as a new test dataset:

Figure 4.2: Using the scikit-learn API for data transformation

The classifiers that we used in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn, belong
to the so-called estimators in scikit-learn, with an API that is conceptually very similar to the scikit-
learn transformer API. Estimators have a predict method but can also have a transform method, as
you will see later in this chapter. As you may recall, we also used the fit method to learn the parame-
ters of a model when we trained those estimators for classification. However, in supervised learning
tasks, we additionally provide the class labels for fitting the model, which can then be used to make
predictions about new, unlabeled data examples via the predict method, as illustrated in Figure 4.3:

Figure 4.3: Using the scikit-learn API for predictive models such as classifiers

Chapter 4 111

Handling categorical data
So far, we have only been working with numerical values. However, it is not uncommon for real-world
datasets to contain one or more categorical feature columns. In this section, we will make use of sim-
ple yet effective examples to see how to deal with this type of data in numerical computing libraries.

When we are talking about categorical data, we have to further distinguish between ordinal and nom-
inal features. Ordinal features can be understood as categorical values that can be sorted or ordered.
For example, t-shirt size would be an ordinal feature, because we can define an order: XL > L > M. In
contrast, nominal features don’t imply any order; to continue with the previous example, we could
think of t-shirt color as a nominal feature since it typically doesn’t make sense to say that, for example,
red is larger than blue.

Categorical data encoding with pandas
Before we explore different techniques for handling such categorical data, let’s create a new DataFrame
to illustrate the problem:

>>> import pandas as pd
>>> df = pd.DataFrame([
... ['green', 'M', 10.1, 'class2'],
... ['red', 'L', 13.5, 'class1'],
... ['blue', 'XL', 15.3, 'class2']])
>>> df.columns = ['color', 'size', 'price', 'classlabel']
>>> df
 color size price classlabel
0 green M 10.1 class2
1 red L 13.5 class1
2 blue XL 15.3 class2

As we can see in the preceding output, the newly created DataFrame contains a nominal feature (color),
an ordinal feature (size), and a numerical feature (price) column. The class labels (assuming that we
created a dataset for a supervised learning task) are stored in the last column. The learning algorithms
for classification that we discuss in this book do not use ordinal information in class labels.

Mapping ordinal features
To make sure that the learning algorithm interprets the ordinal features correctly, we need to convert
the categorical string values into integers. Unfortunately, there is no convenient function that can
automatically derive the correct order of the labels of our size feature, so we have to define the map-
ping manually. In the following simple example, let’s assume that we know the numerical difference
between features, for example, XL = L + 1 = M + 2:

>>> size_mapping = {'XL': 3,
... 'L': 2,
... 'M': 1}

Building Good Training Datasets – Data Preprocessing112

>>> df['size'] = df['size'].map(size_mapping)
>>> df
 color size price classlabel
0 green 1 10.1 class2
1 red 2 13.5 class1
2 blue 3 15.3 class2

If we want to transform the integer values back to the original string representation at a later stage,
we can simply define a reverse-mapping dictionary, inv_size_mapping = {v: k for k, v in size_
mapping.items()}, which can then be used via the pandas map method on the transformed feature
column and is similar to the size_mapping dictionary that we used previously. We can use it as follows:

>>> inv_size_mapping = {v: k for k, v in size_mapping.items()}
>>> df['size'].map(inv_size_mapping)
0 M
1 L
2 XL
Name: size, dtype: object

Encoding class labels
Many machine learning libraries require that class labels are encoded as integer values. Although most
estimators for classification in scikit-learn convert class labels to integers internally, it is considered
good practice to provide class labels as integer arrays to avoid technical glitches. To encode the class
labels, we can use an approach similar to the mapping of ordinal features discussed previously. We
need to remember that class labels are not ordinal, and it doesn’t matter which integer number we
assign to a particular string label. Thus, we can simply enumerate the class labels, starting at 0:

>>> import numpy as np
>>> class_mapping = {label: idx for idx, label in
... enumerate(np.unique(df['classlabel']))}
>>> class_mapping
{'class1': 0, 'class2': 1}

Next, we can use the mapping dictionary to transform the class labels into integers:

>>> df['classlabel'] = df['classlabel'].map(class_mapping)
>>> df
 color size price classlabel
0 green 1 10.1 1
1 red 2 13.5 0
2 blue 3 15.3 1

Chapter 4 113

We can reverse the key-value pairs in the mapping dictionary as follows to map the converted class
labels back to the original string representation:

>>> inv_class_mapping = {v: k for k, v in class_mapping.items()}
>>> df['classlabel'] = df['classlabel'].map(inv_class_mapping)
>>> df
 color size price classlabel
0 green 1 10.1 class2
1 red 2 13.5 class1
2 blue 3 15.3 class2

Alternatively, there is a convenient LabelEncoder class directly implemented in scikit-learn to achieve
this:

>>> from sklearn.preprocessing import LabelEncoder
>>> class_le = LabelEncoder()
>>> y = class_le.fit_transform(df['classlabel'].values)
>>> y
array([1, 0, 1])

Note that the fit_transform method is just a shortcut for calling fit and transform separately, and
we can use the inverse_transform method to transform the integer class labels back into their orig-
inal string representation:

>>> class_le.inverse_transform(y)
array(['class2', 'class1', 'class2'], dtype=object)

Performing one-hot encoding on nominal features
In the previous Mapping ordinal features section, we used a simple dictionary mapping approach to
convert the ordinal size feature into integers. Since scikit-learn’s estimators for classification treat
class labels as categorical data that does not imply any order (nominal), we used the convenient
LabelEncoder to encode the string labels into integers. We could use a similar approach to transform
the nominal color column of our dataset, as follows:

>>> X = df[['color', 'size', 'price']].values
>>> color_le = LabelEncoder()
>>> X[:, 0] = color_le.fit_transform(X[:, 0])
>>> X
array([[1, 1, 10.1],
 [2, 2, 13.5],
 [0, 3, 15.3]], dtype=object)

Building Good Training Datasets – Data Preprocessing114

After executing the preceding code, the first column of the NumPy array, X, now holds the new color
values, which are encoded as follows:

• blue = 0

• green = 1

• red = 2

If we stop at this point and feed the array to our classifier, we will make one of the most common
mistakes in dealing with categorical data. Can you spot the problem? Although the color values don’t
come in any particular order, common classification models, such as the ones covered in the previous
chapters, will now assume that green is larger than blue, and red is larger than green. Although this
assumption is incorrect, a classifier could still produce useful results. However, those results would
not be optimal.

A common workaround for this problem is to use a technique called one-hot encoding. The idea behind
this approach is to create a new dummy feature for each unique value in the nominal feature column.
Here, we would convert the color feature into three new features: blue, green, and red. Binary values
can then be used to indicate the particular color of an example; for example, a blue example can be
encoded as blue=1, green=0, red=0. To perform this transformation, we can use the OneHotEncoder
that is implemented in scikit-learn’s preprocessing module:

>>> from sklearn.preprocessing import OneHotEncoder
>>> X = df[['color', 'size', 'price']].values
>>> color_ohe = OneHotEncoder()
>>> color_ohe.fit_transform(X[:, 0].reshape(-1, 1)).toarray()
 array([[0., 1., 0.],
 [0., 0., 1.],
 [1., 0., 0.]])

Note that we applied the OneHotEncoder to only a single column, (X[:, 0].reshape(-1, 1)), to avoid
modifying the other two columns in the array as well. If we want to selectively transform columns in a
multi-feature array, we can use the ColumnTransformer, which accepts a list of (name, transformer,
column(s)) tuples as follows:

>>> from sklearn.compose import ColumnTransformer
>>> X = df[['color', 'size', 'price']].values
>>> c_transf = ColumnTransformer([
... ('onehot', OneHotEncoder(), [0]),
... ('nothing', 'passthrough', [1, 2])
...])
>>> c_transf.fit_transform(X).astype(float)
 array([[0.0, 1.0, 0.0, 1, 10.1],
 [0.0, 0.0, 1.0, 2, 13.5],
 [1.0, 0.0, 0.0, 3, 15.3]])

Chapter 4 115

In the preceding code example, we specified that we want to modify only the first column and leave
the other two columns untouched via the 'passthrough' argument.

An even more convenient way to create those dummy features via one-hot encoding is to use the
get_dummies method implemented in pandas. Applied to a DataFrame, the get_dummies method will
only convert string columns and leave all other columns unchanged:

>>> pd.get_dummies(df[['price', 'color', 'size']])
 price size color_blue color_green color_red
0 10.1 1 0 1 0
1 13.5 2 0 0 1
2 15.3 3 1 0 0

When we are using one-hot encoding datasets, we have to keep in mind that this introduces multi-
collinearity, which can be an issue for certain methods (for instance, methods that require matrix
inversion). If features are highly correlated, matrices are computationally difficult to invert, which
can lead to numerically unstable estimates. To reduce the correlation among variables, we can simply
remove one feature column from the one-hot encoded array. Note that we do not lose any important
information by removing a feature column, though; for example, if we remove the column color_blue,
the feature information is still preserved since if we observe color_green=0 and color_red=0, it
implies that the observation must be blue.

If we use the get_dummies function, we can drop the first column by passing a True argument to the
drop_first parameter, as shown in the following code example:

>>> pd.get_dummies(df[['price', 'color', 'size']],
... drop_first=True)
 price size color_green color_red
0 10.1 1 1 0
1 13.5 2 0 1
2 15.3 3 0 0

In order to drop a redundant column via the OneHotEncoder, we need to set drop='first' and set
categories='auto' as follows:

>>> color_ohe = OneHotEncoder(categories='auto', drop='first')
>>> c_transf = ColumnTransformer([
... ('onehot', color_ohe, [0]),
... ('nothing', 'passthrough', [1, 2])
...])
>>> c_transf.fit_transform(X).astype(float)
array([[1. , 0. , 1. , 10.1],
 [0. , 1. , 2. , 13.5],
 [0. , 0. , 3. , 15.3]])

Building Good Training Datasets – Data Preprocessing116

Optional: encoding ordinal features
If we are unsure about the numerical differences between the categories of ordinal features, or the
difference between two ordinal values is not defined, we can also encode them using a threshold
encoding with 0/1 values. For example, we can split the feature size with values M, L, and XL into two
new features, x > M and x > L. Let’s consider the original DataFrame:

>>> df = pd.DataFrame([['green', 'M', 10.1,
... 'class2'],
... ['red', 'L', 13.5,
... 'class1'],
... ['blue', 'XL', 15.3,
... 'class2']])
>>> df.columns = ['color', 'size', 'price',
... 'classlabel']
>>> df

We can use the apply method of pandas’ DataFrame to write custom lambda expressions in order to
encode these variables using the value-threshold approach:

>>> df['x > M'] = df['size'].apply(
... lambda x: 1 if x in {'L', 'XL'} else 0)
>>> df['x > L'] = df['size'].apply(
... lambda x: 1 if x == 'XL' else 0)

Additional encoding schemes for nominal data

While one-hot encoding is the most common way to encode unordered categorical vari-
ables, several alternative methods exist. Some of these techniques can be useful when
working with categorical features that have high cardinality (a large number of unique
category labels). Examples include:

• Binary encoding, which produces multiple binary features similar to one-hot
encoding but requires fewer feature columns, i.e., log2(K) instead of K – 1, where
K is the number of unique categories. In binary encoding, numbers are first con-
verted into binary representations, and then each binary number position will
form a new feature column.

• Count or frequency encoding, which replaces the label of each category by the
number of times or frequency it occurs in the training set.

These methods, as well as additional categorical encoding schemes, are available via the
scikit-learn-compatible category_encoders library: https://contrib.scikit-learn.
org/category_encoders/.

While these methods are not guaranteed to perform better than one-hot encoding in terms
of model performance, we can consider the choice of a categorical encoding scheme as
an additional “hyperparameter” for improving model performance.

https://contrib.scikit-learn.org/category_encoders/
https://contrib.scikit-learn.org/category_encoders/

Chapter 4 117

>>> del df['size']
>>> df

Partitioning a dataset into separate training and test
datasets
We briefly introduced the concept of partitioning a dataset into separate datasets for training and
testing in Chapter 1, Giving Computers the Ability to Learn from Data, and Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-Learn. Remember that comparing predictions to true labels in the test
set can be understood as the unbiased performance evaluation of our model before we let it loose
in the real world. In this section, we will prepare a new dataset, the Wine dataset. After we have
preprocessed the dataset, we will explore different techniques for feature selection to reduce the
dimensionality of a dataset.

The Wine dataset is another open-source dataset that is available from the UCI machine learning re-
pository (https://archive.ics.uci.edu/ml/datasets/Wine); it consists of 178 wine examples with
13 features describing their different chemical properties.

Using the pandas library, we will directly read in the open-source Wine dataset from the UCI machine
learning repository:

>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/'
... 'ml/machine-learning-databases/'
... 'wine/wine.data', header=None)

Obtaining the Wine dataset

You can find a copy of the Wine dataset (and all other datasets used in this book) in the
code bundle of this book, which you can use if you are working offline or the dataset at
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
is temporarily unavailable on the UCI server. For instance, to load the Wine dataset from
a local directory, you can replace this line:

df = pd.read_csv(
 'https://archive.ics.uci.edu/ml/'
 'machine-learning-databases/wine/wine.data',
 header=None
)

with the following one:

df = pd.read_csv(
 'your/local/path/to/wine.data', header=None
)

https://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

Building Good Training Datasets – Data Preprocessing118

>>> df_wine.columns = ['Class label', 'Alcohol',

... 'Malic acid', 'Ash',

... 'Alcalinity of ash', 'Magnesium',

... 'Total phenols', 'Flavanoids',

... 'Nonflavanoid phenols',

... 'Proanthocyanins',

... 'Color intensity', 'Hue',

... 'OD280/OD315 of diluted wines',

... 'Proline']

>>> print('Class labels', np.unique(df_wine['Class label']))

Class labels [1 2 3]

>>> df_wine.head()

The 13 different features in the Wine dataset, describing the chemical properties of the 178 wine
examples, are listed in the following table:

Figure 4.4: A sample of the Wine dataset

The examples belong to one of three different classes, 1, 2, and 3, which refer to the three different
types of grape grown in the same region in Italy but derived from different wine cultivars, as described
in the dataset summary (https://archive.ics.uci.edu/ml/machine-learning-databases/wine/
wine.names).

A convenient way to randomly partition this dataset into separate test and training datasets is to use
the train_test_split function from scikit-learn’s model_selection submodule:

>>> from sklearn.model_selection import train_test_split

>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values

>>> X_train, X_test, y_train, y_test =\

... train_test_split(X, y,

... test_size=0.3,

... random_state=0,

... stratify=y)

First, we assigned the NumPy array representation of the feature columns 1-13 to the variable X and we
assigned the class labels from the first column to the variable y. Then, we used the train_test_split
function to randomly split X and y into separate training and test datasets.

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.names

Chapter 4 119

By setting test_size=0.3, we assigned 30 percent of the wine examples to X_test and y_test, and the
remaining 70 percent of the examples were assigned to X_train and y_train, respectively. Providing
the class label array y as an argument to stratify ensures that both training and test datasets have
the same class proportions as the original dataset.

Bringing features onto the same scale
Feature scaling is a crucial step in our preprocessing pipeline that can easily be forgotten. Decision
trees and random forests are two of the very few machine learning algorithms where we don’t need to
worry about feature scaling. Those algorithms are scale-invariant. However, the majority of machine
learning and optimization algorithms behave much better if features are on the same scale, as we saw
in Chapter 2, Training Simple Machine Learning Algorithms for Classification, when we implemented the
gradient descent optimization algorithm.

The importance of feature scaling can be illustrated by a simple example. Let’s assume that we have
two features where one feature is measured on a scale from 1 to 10 and the second feature is measured
on a scale from 1 to 100,000, respectively.

When we think of the squared error function in Adaline from Chapter 2, it makes sense to say that
the algorithm will mostly be busy optimizing the weights according to the larger errors in the second
feature. Another example is the k-nearest neighbors (KNN) algorithm with a Euclidean distance
measure: the computed distances between examples will be dominated by the second feature axis.

Choosing an appropriate ratio for partitioning a dataset into training and test datasets

If we are dividing a dataset into training and test datasets, we have to keep in mind that
we are withholding valuable information that the learning algorithm could benefit from.
Thus, we don’t want to allocate too much information to the test set. However, the smaller
the test set, the more inaccurate the estimation of the generalization error. Dividing a
dataset into training and test datasets is all about balancing this tradeoff. In practice, the
most commonly used splits are 60:40, 70:30, or 80:20, depending on the size of the initial
dataset. However, for large datasets, 90:10 or 99:1 splits are also common and appropriate.
For example, if the dataset contains more than 100,000 training examples, it might be fine
to withhold only 10,000 examples for testing in order to get a good estimate of the gener-
alization performance. More information and illustrations can be found in section one
of my article Model evaluation, model selection, and algorithm selection in machine learning,
which is freely available at https://arxiv.org/pdf/1811.12808.pdf. Also, we will
revisit the topic of model evaluation and discuss it in more detail in Chapter 6, Learning
Best Practices for Model Evaluation and Hyperparameter Tuning.

Moreover, instead of discarding the allocated test data after model training and evaluation,
it is a common practice to retrain a classifier on the entire dataset, as it can improve the
predictive performance of the model. While this approach is generally recommended, it
could lead to worse generalization performance if the dataset is small and the test dataset
contains outliers, for example. Also, after refitting the model on the whole dataset, we
don’t have any independent data left to evaluate its performance.

https://arxiv.org/pdf/1811.12808.pdf

Building Good Training Datasets – Data Preprocessing120

Now, there are two common approaches to bringing different features onto the same scale: normaliza-
tion and standardization. Those terms are often used quite loosely in different fields, and the meaning
has to be derived from the context. Most often, normalization refers to the rescaling of the features
to a range of [0, 1], which is a special case of min-max scaling. To normalize our data, we can simply
apply the min-max scaling to each feature column, where the new value, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖) , of an example, x(i),
can be calculated as follows:

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) − 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛

Here, x(i) is a particular example, xmin is the smallest value in a feature column, and xmax is the largest
value.

The min-max scaling procedure is implemented in scikit-learn and can be used as follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)

Although normalization via min-max scaling is a commonly used technique that is useful when we
need values in a bounded interval, standardization can be more practical for many machine learning
algorithms, especially for optimization algorithms such as gradient descent. The reason is that many
linear models, such as the logistic regression and SVM from Chapter 3, initialize the weights to 0 or
small random values close to 0. Using standardization, we center the feature columns at mean 0 with
standard deviation 1 so that the feature columns have the same parameters as a standard normal
distribution (zero mean and unit variance), which makes it easier to learn the weights. However, we
shall emphasize that standardization does not change the shape of the distribution, and it does not
transform non-normally distributed data into normally distributed data. In addition to scaling data
such that it has zero mean and unit variance, standardization maintains useful information about
outliers and makes the algorithm less sensitive to them in contrast to min-max scaling, which scales
the data to a limited range of values.

The procedure for standardization can be expressed by the following equation:

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) − 𝜇𝜇𝑥𝑥𝜎𝜎𝑥𝑥

Chapter 4 121

Here, 𝜇𝜇𝑥𝑥 is the sample mean of a particular feature column, and 𝜎𝜎𝑥𝑥 is the corresponding standard
deviation.

The following table illustrates the difference between the two commonly used feature scaling tech-
niques, standardization and normalization, on a simple example dataset consisting of numbers 0 to 5:

Input Standardized Min-max normalized

0.0 -1.46385 0.0

1.0 -0.87831 0.2

2.0 -0.29277 0.4

3.0 0.29277 0.6

4.0 0.87831 0.8

5.0 1.46385 1.0

Table 4.1: A comparison between standardization and min-max normalization

You can perform the standardization and normalization shown in the table manually by executing
the following code examples:

>>> ex = np.array([0, 1, 2, 3, 4, 5])
>>> print('standardized:', (ex - ex.mean()) / ex.std())
standardized: [-1.46385011 -0.87831007 -0.29277002 0.29277002
0.87831007 1.46385011]
>>> print('normalized:', (ex - ex.min()) / (ex.max() - ex.min()))
normalized: [0. 0.2 0.4 0.6 0.8 1.]

Similar to the MinMaxScaler class, scikit-learn also implements a class for standardization:

>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler()
>>> X_train_std = stdsc.fit_transform(X_train)
>>> X_test_std = stdsc.transform(X_test)

Building Good Training Datasets – Data Preprocessing122

Again, it is also important to highlight that we fit the StandardScaler class only once—on the training
data—and use those parameters to transform the test dataset or any new data point.

Other, more advanced methods for feature scaling are available from scikit-learn, such as RobustScaler.
RobustScaler is especially helpful and recommended if we are working with small datasets that
contain many outliers. Similarly, if the machine learning algorithm applied to this dataset is prone
to overfitting, RobustScaler can be a good choice. Operating on each feature column independently,
RobustScaler removes the median value and scales the dataset according to the 1st and 3rd quartile of
the dataset (that is, the 25th and 75th quantile, respectively) such that more extreme values and outliers
become less pronounced. The interested reader can find more information about RobustScaler in
the official scikit-learn documentation at https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.RobustScaler.html.

Selecting meaningful features
If we notice that a model performs much better on a training dataset than on the test dataset, this ob-
servation is a strong indicator of overfitting. As we discussed in Chapter 3, A Tour of Machine Learning
Classifiers Using Scikit-Learn, overfitting means the model fits the parameters too closely with regard
to the particular observations in the training dataset but does not generalize well to new data; we say
that the model has a high variance. The reason for the overfitting is that our model is too complex for
the given training data. Common solutions to reduce the generalization error are as follows:

• Collect more training data
• Introduce a penalty for complexity via regularization
• Choose a simpler model with fewer parameters
• Reduce the dimensionality of the data

Collecting more training data is often not applicable. In Chapter 6, Learning Best Practices for Model
Evaluation and Hyperparameter Tuning, we will learn about a useful technique to check whether more
training data is helpful. In the following sections, we will look at common ways to reduce overfitting
by regularization and dimensionality reduction via feature selection, which leads to simpler models
by requiring fewer parameters to be fitted to the data. Then, in Chapter 5, Compressing Data via Dimen-
sionality Reduction, we will take a look at additional feature extraction techniques.

L1 and L2 regularization as penalties against model complexity
You will recall from Chapter 3 that L2 regularization is one approach to reduce the complexity of a
model by penalizing large individual weights. We defined the squared L2 norm of our weight vector,
w, as follows:

𝐿𝐿𝐿𝐿 ‖𝒘𝒘‖22 = ∑𝑤𝑤𝑗𝑗2𝑚𝑚
𝑗𝑗𝑗𝑗

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

Chapter 4 123

Another approach to reduce the model complexity is the related L1 regularization:

𝐿𝐿𝐿𝐿 ‖𝒘𝒘‖1 =∑|𝑤𝑤𝑗𝑗|𝑚𝑚
𝑗𝑗𝑗1

Here, we simply replaced the square of the weights with the sum of the absolute values of the weights.
In contrast to L2 regularization, L1 regularization usually yields sparse feature vectors, and most fea-
ture weights will be zero. Sparsity can be useful in practice if we have a high-dimensional dataset with
many features that are irrelevant, especially in cases where we have more irrelevant dimensions than
training examples. In this sense, L1 regularization can be understood as a technique for feature selection.

A geometric interpretation of L2 regularization
As mentioned in the previous section, L2 regularization adds a penalty term to the loss function that
effectively results in less extreme weight values compared to a model trained with an unregularized
loss function.

To better understand how L1 regularization encourages sparsity, let’s take a step back and take a look
at a geometric interpretation of regularization. Let’s plot the contours of a convex loss function for
two weight coefficients, w1 and w2.

Here, we will consider the mean squared error (MSE) loss function that we used for Adaline in Chapter
2, which computes the squared distances between the true and predicted class labels, y and 𝑦𝑦𝑦 , aver-
aged over all N examples in the training set. Since the MSE is spherical, it is easier to draw than the
loss function of logistic regression; however, the same concepts apply. Remember that our goal is to
find the combination of weight coefficients that minimize the loss function for the training data, as
shown in Figure 4.5 (the point in the center of the ellipses):

Figure 4.5: Minimizing the mean squared error loss function

Building Good Training Datasets – Data Preprocessing124

We can think of regularization as adding a penalty term to the loss function to encourage smaller
weights; in other words, we penalize large weights. Thus, by increasing the regularization strength via
the regularization parameter, 𝜆𝜆 , we shrink the weights toward zero and decrease the dependence of our
model on the training data. Let’s illustrate this concept in the following figure for the L2 penalty term:

Figure 4.6: Applying L2 regularization to the loss function

The quadratic L2 regularization term is represented by the shaded ball. Here, our weight coefficients
cannot exceed our regularization budget—the combination of the weight coefficients cannot fall outside
the shaded area. On the other hand, we still want to minimize the loss function. Under the penalty
constraint, our best effort is to choose the point where the L2 ball intersects with the contours of the
unpenalized loss function. The larger the value of the regularization parameter, 𝜆𝜆 , gets, the faster the
penalized loss grows, which leads to a narrower L2 ball. For example, if we increase the regularization
parameter toward infinity, the weight coefficients will become effectively zero, denoted by the center
of the L2 ball. To summarize the main message of the example, our goal is to minimize the sum of
the unpenalized loss plus the penalty term, which can be understood as adding bias and preferring a
simpler model to reduce the variance in the absence of sufficient training data to fit the model.

Chapter 4 125

Sparse solutions with L1 regularization
Now, let’s discuss L1 regularization and sparsity. The main concept behind L1 regularization is similar
to what we discussed in the previous section. However, since the L1 penalty is the sum of the absolute
weight coefficients (remember that the L2 term is quadratic), we can represent it as a diamond-shape
budget, as shown in Figure 4.7:

Figure 4.7: Applying L1 regularization to the loss function

In the preceding figure, we can see that the contour of the loss function touches the L1 diamond at
w1 = 0. Since the contours of an L1 regularized system are sharp, it is more likely that the optimum—that
is, the intersection between the ellipses of the loss function and the boundary of the L1 diamond—is
located on the axes, which encourages sparsity.

L1 regularization and sparsity

The mathematical details of why L1 regularization can lead to sparse solutions are beyond
the scope of this book. If you are interested, an excellent explanation of L2 versus L1 reg-
ularization can be found in Section 3.4, The Elements of Statistical Learning by Trevor Hastie,
Robert Tibshirani, and Jerome Friedman, Springer Science+Business Media, 2009.

Building Good Training Datasets – Data Preprocessing126

For regularized models in scikit-learn that support L1 regularization, we can simply set the penalty
parameter to 'l1' to obtain a sparse solution:

>>> from sklearn.linear_model import LogisticRegression
>>> LogisticRegression(penalty='l1',
... solver='liblinear',
... multi_class='ovr')

Note that we also need to select a different optimization algorithm (for example, solver='liblinear'),
since 'lbfgs' currently does not support L1-regularized loss optimization. Applied to the standardized
Wine data, the L1 regularized logistic regression would yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1',
... C=1.0,
... solver='liblinear',
... multi_class='ovr')
>>> # Note that C=1.0 is the default. You can increase
>>> # or decrease it to make the regularization effect
>>> # stronger or weaker, respectively.
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 1.0
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 1.0

Both training and test accuracies (both 100 percent) indicate that our model does a perfect job on
both datasets. When we access the intercept terms via the lr.intercept_ attribute, we can see that
the array returns three values:

>>> lr.intercept_
 array([-1.26317363, -1.21537306, -2.37111954])

Since we fit the LogisticRegression object on a multiclass dataset via the one-versus-rest (OvR)
approach, the first intercept belongs to the model that fits class 1 versus classes 2 and 3, the second
value is the intercept of the model that fits class 2 versus classes 1 and 3, and the third value is the
intercept of the model that fits class 3 versus classes 1 and 2:

>>> lr.coef_
array([[1.24647953, 0.18050894, 0.74540443, -1.16301108,
 0. ,0. , 1.16243821, 0. ,
 0. , 0. , 0. , 0.55620267,
 2.50890638],
 [-1.53919461, -0.38562247, -0.99565934, 0.36390047,
 -0.05892612, 0. , 0.66710883, 0. ,
 0. , -1.9318798 , 1.23775092, 0. ,

Chapter 4 127

 -2.23280039],
 [0.13557571, 0.16848763, 0.35710712, 0. ,
 0. , 0. , -2.43804744, 0. ,
 0. , 1.56388787, -0.81881015, -0.49217022,
 0.]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of weight coefficients,
one weight vector for each class. Each row consists of 13 weights, where each weight is multiplied by
the respective feature in the 13-dimensional Wine dataset to calculate the net input:

𝑧𝑧 𝑧 𝑧𝑧1𝑥𝑥1 + ⋯+𝑧𝑧𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏 𝑧𝑏𝑥𝑥𝑗𝑗𝑧𝑧𝑗𝑗 + 𝑏𝑏𝑚𝑚
𝑗𝑗𝑗1 𝑧 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

As a result of L1 regularization, which, as mentioned, serves as a method for feature selection, we just
trained a model that is robust to the potentially irrelevant features in this dataset. Strictly speaking,
though, the weight vectors from the previous example are not necessarily sparse because they contain
more non-zero than zero entries. However, we could enforce sparsity (more zero entries) by further
increasing the regularization strength—that is, choosing lower values for the C parameter.

In the last example on regularization in this chapter, we will vary the regularization strength and plot
the regularization path—the weight coefficients of the different features for different regularization
strengths:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = plt.subplot(111)
>>> colors = ['blue', 'green', 'red', 'cyan',
... 'magenta', 'yellow', 'black',
... 'pink', 'lightgreen', 'lightblue',
... 'gray', 'indigo', 'orange']
>>> weights, params = [], []
>>> for c in np.arange(-4., 6.):
... lr = LogisticRegression(penalty='l1', C=10.**c,
... solver='liblinear',
... multi_class='ovr', random_state=0)
... lr.fit(X_train_std, y_train)
... weights.append(lr.coef_[1])
... params.append(10**c)

Accessing the bias unit and weight parameters of scikit-learn estimators

In scikit-learn, intercept_ corresponds to the bias unit and coef_ corresponds to the
values wj.

Building Good Training Datasets – Data Preprocessing128

>>> weights = np.array(weights)
>>> for column, color in zip(range(weights.shape[1]), colors):
... plt.plot(params, weights[:, column],
... label=df_wine.columns[column + 1],
... color=color)
>>> plt.axhline(0, color='black', linestyle='--', linewidth=3)
>>> plt.xlim([10**(-5), 10**5])
>>> plt.ylabel('Weight coefficient')
>>> plt.xlabel('C (inverse regularization strength)')
>>> plt.xscale('log')
>>> plt.legend(loc='upper left')
>>> ax.legend(loc='upper center',
... bbox_to_anchor=(1.38, 1.03),
... ncol=1, fancybox=True)
>>> plt.show()

The resulting plot provides us with further insights into the behavior of L1 regularization. As we can
see, all feature weights will be zero if we penalize the model with a strong regularization parameter
(C < 0.01); C is the inverse of the regularization parameter, 𝜆𝜆 :

Figure 4.8: The impact of the value of the regularization strength hyperparameter C

Sequential feature selection algorithms
An alternative way to reduce the complexity of the model and avoid overfitting is dimensionality
reduction via feature selection, which is especially useful for unregularized models. There are two
main categories of dimensionality reduction techniques: feature selection and feature extraction. Via
feature selection, we select a subset of the original features, whereas in feature extraction, we derive
information from the feature set to construct a new feature subspace.

Chapter 4 129

In this section, we will take a look at a classic family of feature selection algorithms. In the next chapter,
Chapter 5, Compressing Data via Dimensionality Reduction, we will learn about different feature extraction
techniques to compress a dataset onto a lower-dimensional feature subspace.

Sequential feature selection algorithms are a family of greedy search algorithms that are used to
reduce an initial d-dimensional feature space to a k-dimensional feature subspace where k<d. The
motivation behind feature selection algorithms is to automatically select a subset of features that are
most relevant to the problem, to improve computational efficiency, or to reduce the generalization
error of the model by removing irrelevant features or noise, which can be useful for algorithms that
don’t support regularization.

A classic sequential feature selection algorithm is sequential backward selection (SBS), which aims to
reduce the dimensionality of the initial feature subspace with a minimum decay in the performance
of the classifier to improve upon computational efficiency. In certain cases, SBS can even improve
the predictive power of the model if a model suffers from overfitting.

The idea behind the SBS algorithm is quite simple: SBS sequentially removes features from the full
feature subset until the new feature subspace contains the desired number of features. To determine
which feature is to be removed at each stage, we need to define the criterion function, J, that we want
to minimize.

The criterion calculated by the criterion function can simply be the difference in the performance of
the classifier before and after the removal of a particular feature. Then, the feature to be removed at
each stage can simply be defined as the feature that maximizes this criterion; or in more simple terms,
at each stage we eliminate the feature that causes the least performance loss after removal. Based on
the preceding definition of SBS, we can outline the algorithm in four simple steps:

1. Initialize the algorithm with k = d, where d is the dimensionality of the full feature space, Xd.
2. Determine the feature, x–, that maximizes the criterion: x– = argmax J(Xk – x), where 𝒙𝒙 𝒙 𝒙𝒙𝑘𝑘 .
3. Remove the feature, x–, from the feature set: Xk–1 = Xk – x–; k = k – 1.
4. Terminate if k equals the number of desired features; otherwise, go to step 2.

Greedy search algorithms

Greedy algorithms make locally optimal choices at each stage of a combinatorial search
problem and generally yield a suboptimal solution to the problem, in contrast to exhaustive
search algorithms, which evaluate all possible combinations and are guaranteed to find
the optimal solution. However, in practice, an exhaustive search is often computationally
not feasible, whereas greedy algorithms allow for a less complex, computationally more
efficient solution.

Building Good Training Datasets – Data Preprocessing130

To practice our coding skills and ability to implement our own algorithms, let’s go ahead and imple-
ment it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

class SBS:
 def __init__(self, estimator, k_features,
 scoring=accuracy_score,
 test_size=0.25, random_state=1):
 self.scoring = scoring
 self.estimator = clone(estimator)
 self.k_features = k_features
 self.test_size = test_size
 self.random_state = random_state
 def fit(self, X, y):
 X_train, X_test, y_train, y_test = \
 train_test_split(X, y, test_size=self.test_size,
 random_state=self.random_state)

 dim = X_train.shape[1]
 self.indices_ = tuple(range(dim))
 self.subsets_ = [self.indices_]
 score = self._calc_score(X_train, y_train,
 X_test, y_test, self.indices_)
 self.scores_ = [score]
 while dim > self.k_features:
 scores = []
 subsets = []

 for p in combinations(self.indices_, r=dim - 1):
 score = self._calc_score(X_train, y_train,

A resource on sequential feature algorithms

You can find a detailed evaluation of several sequential feature algorithms in Compara-
tive Study of Techniques for Large-Scale Feature Selection by F. Ferri, P. Pudil, M. Hatef, and J.
Kittler, pages 403-413, 1994.

Chapter 4 131

 X_test, y_test, p)
 scores.append(score)
 subsets.append(p)

 best = np.argmax(scores)
 self.indices_ = subsets[best]
 self.subsets_.append(self.indices_)
 dim -= 1

 self.scores_.append(scores[best])
 self.k_score_ = self.scores_[-1]

 return self

 def transform(self, X):
 return X[:, self.indices_]

 def _calc_score(self, X_train, y_train, X_test, y_test, indices):
 self.estimator.fit(X_train[:, indices], y_train)
 y_pred = self.estimator.predict(X_test[:, indices])
 score = self.scoring(y_test, y_pred)
 return score

In the preceding implementation, we defined the k_features parameter to specify the desired number
of features we want to return. By default, we use accuracy_score from scikit-learn to evaluate the
performance of a model (an estimator for classification) on the feature subsets.

Inside the while loop of the fit method, the feature subsets created by the itertools.combination
function are evaluated and reduced until the feature subset has the desired dimensionality. In each
iteration, the accuracy score of the best subset is collected in a list, self.scores_, based on the inter-
nally created test dataset, X_test. We will use those scores later to evaluate the results. The column
indices of the final feature subset are assigned to self.indices_, which we can use via the transform
method to return a new data array with the selected feature columns. Note that, instead of calculating
the criterion explicitly inside the fit method, we simply removed the feature that is not contained in
the best performing feature subset.

Now, let’s see our SBS implementation in action using the KNN classifier from scikit-learn:

>>> import matplotlib.pyplot as plt
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=5)
>>> sbs = SBS(knn, k_features=1)
>>> sbs.fit(X_train_std, y_train)

Building Good Training Datasets – Data Preprocessing132

Although our SBS implementation already splits the dataset into a test and training dataset inside
the fit function, we still fed the training dataset, X_train, to the algorithm. The SBS fit method
will then create new training subsets for testing (validation) and training, which is why this test set
is also called the validation dataset. This approach is necessary to prevent our original test set from
becoming part of the training data.

Remember that our SBS algorithm collects the scores of the best feature subset at each stage, so let’s
move on to the more exciting part of our implementation and plot the classification accuracy of the
KNN classifier that was calculated on the validation dataset. The code is as follows:

>>> k_feat = [len(k) for k in sbs.subsets_]
>>> plt.plot(k_feat, sbs.scores_, marker='o')
>>> plt.ylim([0.7, 1.02])
>>> plt.ylabel('Accuracy')
>>> plt.xlabel('Number of features')
>>> plt.grid()
>>> plt.tight_layout()
>>> plt.show()

As we can see in Figure 4.9, the accuracy of the KNN classifier improved on the validation dataset as
we reduced the number of features, which is likely due to a decrease in the curse of dimensionality
that we discussed in the context of the KNN algorithm in Chapter 3. Also, we can see in the following
plot that the classifier achieved 100 percent accuracy for k = {3, 7, 8, 9, 10, 11, 12}:

Figure 4.9: Impact of number of features on model accuracy

Chapter 4 133

To satisfy our own curiosity, let’s see what the smallest feature subset (k=3), which yielded such a good
performance on the validation dataset, looks like:

>>> k3 = list(sbs.subsets_[10])
>>> print(df_wine.columns[1:][k3])
Index(['Alcohol', 'Malic acid', 'OD280/OD315 of diluted wines'],
dtype='object')

Using the preceding code, we obtained the column indices of the three-feature subset from the 11th
position in the sbs.subsets_ attribute and returned the corresponding feature names from the column
index of the pandas Wine DataFrame.

Next, let’s evaluate the performance of the KNN classifier on the original test dataset:

>>> knn.fit(X_train_std, y_train)
>>> print('Training accuracy:', knn.score(X_train_std, y_train))
Training accuracy: 0.967741935484
>>> print('Test accuracy:', knn.score(X_test_std, y_test))
Test accuracy: 0.962962962963

In the preceding code section, we used the complete feature set and obtained approximately 97 percent
accuracy on the training dataset and approximately 96 percent accuracy on the test dataset, which
indicates that our model already generalizes well to new data. Now, let’s use the selected three-feature
subset and see how well KNN performs:

>>> knn.fit(X_train_std[:, k3], y_train)
>>> print('Training accuracy:',
... knn.score(X_train_std[:, k3], y_train))
Training accuracy: 0.951612903226
>>> print('Test accuracy:',
... knn.score(X_test_std[:, k3], y_test))
Test accuracy: 0.925925925926

When using less than a quarter of the original features in the Wine dataset, the prediction accuracy
on the test dataset declined slightly. This may indicate that those three features do not provide less
discriminatory information than the original dataset. However, we also have to keep in mind that the
Wine dataset is a small dataset and is very susceptible to randomness—that is, the way we split the
dataset into training and test subsets, and how we split the training dataset further into a training
and validation subset.

While we did not increase the performance of the KNN model by reducing the number of features,
we shrank the size of the dataset, which can be useful in real-world applications that may involve
expensive data collection steps. Also, by substantially reducing the number of features, we obtain
simpler models, which are easier to interpret.

Building Good Training Datasets – Data Preprocessing134

Assessing feature importance with random forests
In previous sections, you learned how to use L1 regularization to zero out irrelevant features via logistic
regression and how to use the SBS algorithm for feature selection and apply it to a KNN algorithm.
Another useful approach for selecting relevant features from a dataset is using a random forest, an en-
semble technique that was introduced in Chapter 3. Using a random forest, we can measure the feature
importance as the averaged impurity decrease computed from all decision trees in the forest, without
making any assumptions about whether our data is linearly separable or not. Conveniently, the random
forest implementation in scikit-learn already collects the feature importance values for us so that we
can access them via the feature_importances_ attribute after fitting a RandomForestClassifier. By
executing the following code, we will now train a forest of 500 trees on the Wine dataset and rank the
13 features by their respective importance measures—remember from our discussion in Chapter 3 that
we don’t need to use standardized or normalized features in tree-based models:

>>> from sklearn.ensemble import RandomForestClassifier
>>> feat_labels = df_wine.columns[1:]
>>> forest = RandomForestClassifier(n_estimators=500,
... random_state=1)
>>> forest.fit(X_train, y_train)
>>> importances = forest.feature_importances_
>>> indices = np.argsort(importances)[::-1]
>>> for f in range(X_train.shape[1]):
... print("%2d) %-*s %f" % (f + 1, 30,
... feat_labels[indices[f]],

Feature selection algorithms in scikit-learn

You can find implementations of several different flavors of sequential feature selec-
tion related to the simple SBS that we implemented previously in the Python package
mlxtend at http://rasbt.github.io/mlxtend/user_guide/feature_selection/
SequentialFeatureSelector/. While our mlxtend implementation comes with many
bells and whistles, we collaborated with the scikit-learn team to implement a simplified,
user-friendly version, which has been part of the recent v0.24 release. The usage and be-
havior are very similar to the SBS code we implemented in this chapter. If you would like
to learn more, please see the documentation at https://scikit-learn.org/stable/
modules/generated/sklearn.feature_selection.SequentialFeatureSelector.
html.

There are many more feature selection algorithms available via scikit-learn. These include
recursive backward elimination based on feature weights, tree-based methods to select
features by importance, and univariate statistical tests. A comprehensive discussion of the
different feature selection methods is beyond the scope of this book, but a good summary
with illustrative examples can be found at http://scikit-learn.org/stable/modules/
feature_selection.html.

http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html

Chapter 4 135

... importances[indices[f]]))
>>> plt.title('Feature importance')
>>> plt.bar(range(X_train.shape[1]),
... importances[indices],
... align='center')
>>> plt.xticks(range(X_train.shape[1]),
... feat_labels[indices], rotation=90)
>>> plt.xlim([-1, X_train.shape[1]])
>>> plt.tight_layout()
>>> plt.show()
 1) Proline 0.185453
 2) Flavanoids 0.174751
 3) Color intensity 0.143920
 4) OD280/OD315 of diluted wines 0.136162
 5) Alcohol 0.118529
 6) Hue 0.058739
 7) Total phenols 0.050872
 8) Magnesium 0.031357
 9) Malic acid 0.025648
 10) Proanthocyanins 0.025570
 11) Alcalinity of ash 0.022366
 12) Nonflavanoid phenols 0.013354
 13) Ash 0.013279

After executing the code, we created a plot that ranks the different features in the Wine dataset by their
relative importance; note that the feature importance values are normalized so that they sum up to 1.0:

Figure 4.10: Random forest-based feature importance of the Wine dataset

Building Good Training Datasets – Data Preprocessing136

We can conclude that the proline and flavonoid levels, the color intensity, the OD280/OD315 diffraction,
and the alcohol concentration of wine are the most discriminative features in the dataset based on
the average impurity decrease in the 500 decision trees. Interestingly, two of the top-ranked features
in the plot are also in the three-feature subset selection from the SBS algorithm that we implemented
in the previous section (alcohol concentration and OD280/OD315 of diluted wines).

However, as far as interpretability is concerned, the random forest technique comes with an import-
ant gotcha that is worth mentioning. If two or more features are highly correlated, one feature may
be ranked very highly while the information on the other feature(s) may not be fully captured. On
the other hand, we don’t need to be concerned about this problem if we are merely interested in the
predictive performance of a model rather than the interpretation of feature importance values.

To conclude this section about feature importance values and random forests, it is worth mentioning
that scikit-learn also implements a SelectFromModel object that selects features based on a user-spec-
ified threshold after model fitting, which is useful if we want to use the RandomForestClassifier as
a feature selector and intermediate step in a scikit-learn Pipeline object, which allows us to connect
different preprocessing steps with an estimator, as you will see in Chapter 6, Learning Best Practices
for Model Evaluation and Hyperparameter Tuning. For example, we could set the threshold to 0.1 to
reduce the dataset to the five most important features using the following code:

>>> from sklearn.feature_selection import SelectFromModel
>>> sfm = SelectFromModel(forest, threshold=0.1, prefit=True)
>>> X_selected = sfm.transform(X_train)
>>> print('Number of features that meet this threshold',
... 'criterion:', X_selected.shape[1])
Number of features that meet this threshold criterion: 5
>>> for f in range(X_selected.shape[1]):
... print("%2d) %-*s %f" % (f + 1, 30,
... feat_labels[indices[f]],
... importances[indices[f]]))
 1) Proline 0.185453
 2) Flavanoids 0.174751
 3) Color intensity 0.143920
 4) OD280/OD315 of diluted wines 0.136162
 5) Alcohol 0.118529

Chapter 4 137

Summary
We started this chapter by looking at useful techniques to make sure that we handle missing data
correctly. Before we feed data to a machine learning algorithm, we also have to make sure that we
encode categorical variables correctly, and in this chapter, we saw how we can map ordinal and nom-
inal feature values to integer representations.

Moreover, we briefly discussed L1 regularization, which can help us to avoid overfitting by reducing
the complexity of a model. As an alternative approach to removing irrelevant features, we used a
sequential feature selection algorithm to select meaningful features from a dataset.

In the next chapter, you will learn about yet another useful approach to dimensionality reduction:
feature extraction. It allows us to compress features onto a lower-dimensional subspace, rather than
removing features entirely as in feature selection.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

5
Compressing Data via
Dimensionality Reduction

In Chapter 4, Building Good Training Datasets – Data Preprocessing, you learned about the different ap-
proaches for reducing the dimensionality of a dataset using different feature selection techniques. An
alternative approach to feature selection for dimensionality reduction is feature extraction. In this chap-
ter, you will learn about two fundamental techniques that will help you to summarize the information
content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the
original one. Data compression is an important topic in machine learning, and it helps us to store and
analyze the increasing amounts of data that are produced and collected in the modern age of technology.

In this chapter, we will cover the following topics:

• Principal component analysis for unsupervised data compression
• Linear discriminant analysis as a supervised dimensionality reduction technique for maxi-

mizing class separability
• A brief overview of nonlinear dimensionality reduction techniques and t-distributed stochastic

neighbor embedding for data visualization

Unsupervised dimensionality reduction via principal
component analysis
Similar to feature selection, we can use different feature extraction techniques to reduce the number
of features in a dataset. The difference between feature selection and feature extraction is that while
we maintain the original features when we use feature selection algorithms, such as sequential back-
ward selection, we use feature extraction to transform or project the data onto a new feature space.

In the context of dimensionality reduction, feature extraction can be understood as an approach to
data compression with the goal of maintaining most of the relevant information. In practice, feature
extraction is not only used to improve storage space or the computational efficiency of the learning
algorithm but can also improve the predictive performance by reducing the curse of dimensionali-
ty—especially if we are working with non-regularized models.

Compressing Data via Dimensionality Reduction140

The main steps in principal component analysis
In this section, we will discuss principal component analysis (PCA), an unsupervised linear transfor-
mation technique that is widely used across different fields, most prominently for feature extraction
and dimensionality reduction. Other popular applications of PCA include exploratory data analysis and
the denoising of signals in stock market trading, and the analysis of genome data and gene expression
levels in the field of bioinformatics.

PCA helps us to identify patterns in data based on the correlation between features. In a nutshell, PCA
aims to find the directions of maximum variance in high-dimensional data and projects the data onto
a new subspace with equal or fewer dimensions than the original one. The orthogonal axes (principal
components) of the new subspace can be interpreted as the directions of maximum variance given
the constraint that the new feature axes are orthogonal to each other, as illustrated in Figure 5.1:

Figure 5.1: Using PCA to find the directions of maximum variance in a dataset

In Figure 5.1, x1 and x2 are the original feature axes, and PC 1 and PC 2 are the principal components.

If we use PCA for dimensionality reduction, we construct a d×k-dimensional transformation matrix,
W, that allows us to map a vector of the features of the training example, x, onto a new k-dimensional
feature subspace that has fewer dimensions than the original d-dimensional feature space. For instance,
the process is as follows. Suppose we have a feature vector, x:𝒙𝒙 𝒙 [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑], 𝒙𝒙 𝒙 𝒙𝑑𝑑

which is then transformed by a transformation matrix, 𝑾𝑾 𝑾 𝑾𝑑𝑑𝑑𝑑𝑑 :

xW = z

resulting in the output vector: 𝒛𝒛 𝒛 [𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑘𝑘], 𝒛𝒛 𝒛 𝒛𝑘𝑘

Chapter 5 141

As a result of transforming the original d-dimensional data onto this new k-dimensional subspace
(typically k << d), the first principal component will have the largest possible variance. All consequent
principal components will have the largest variance given the constraint that these components are
uncorrelated (orthogonal) to the other principal components—even if the input features are correlated,
the resulting principal components will be mutually orthogonal (uncorrelated). Note that the PCA
directions are highly sensitive to data scaling, and we need to standardize the features prior to PCA if
the features were measured on different scales and we want to assign equal importance to all features.

Before looking at the PCA algorithm for dimensionality reduction in more detail, let’s summarize the
approach in a few simple steps:

1. Standardize the d-dimensional dataset.
2. Construct the covariance matrix.
3. Decompose the covariance matrix into its eigenvectors and eigenvalues.
4. Sort the eigenvalues by decreasing order to rank the corresponding eigenvectors.
5. Select k eigenvectors, which correspond to the k largest eigenvalues, where k is the dimension-

ality of the new feature subspace (𝑘𝑘 𝑘 𝑘𝑘).
6. Construct a projection matrix, W, from the “top” k eigenvectors.
7. Transform the d-dimensional input dataset, X, using the projection matrix, W, to obtain the

new k-dimensional feature subspace.

In the following sections, we will perform a PCA step by step using Python as a learning exercise.
Then, we will see how to perform a PCA more conveniently using scikit-learn.

Eigendecomposition: Decomposing a Matrix into Eigenvectors and Eigenvalues

Eigendecomposition, the factorization of a square matrix into so-called eigenvalues and
eigenvectors, is at the core of the PCA procedure described in this section.

The covariance matrix is a special case of a square matrix: it’s a symmetric matrix, which
means that the matrix is equal to its transpose, A = AT.

When we decompose such a symmetric matrix, the eigenvalues are real (rather than
complex) numbers, and the eigenvectors are orthogonal (perpendicular) to each other.
Furthermore, eigenvalues and eigenvectors come in pairs. If we decompose a covariance
matrix into its eigenvectors and eigenvalues, the eigenvectors associated with the highest
eigenvalue corresponds to the direction of maximum variance in the dataset. Here, this

“direction” is a linear transformation of the dataset’s feature columns.

While a more detailed discussion of eigenvalues and eigenvectors is beyond the scope of this
book, a relatively thorough treatment with pointers to additional resources can be found
on Wikipedia at https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Compressing Data via Dimensionality Reduction142

Extracting the principal components step by step
In this subsection, we will tackle the first four steps of a PCA:

1. Standardizing the data
2. Constructing the covariance matrix
3. Obtaining the eigenvalues and eigenvectors of the covariance matrix
4. Sorting the eigenvalues by decreasing order to rank the eigenvectors

First, we will start by loading the Wine dataset that we worked with in Chapter 4, Building Good Training
Datasets – Data Preprocessing:

>>> import pandas as pd
>>> df_wine = pd.read_csv(
... 'https://archive.ics.uci.edu/ml/'
... 'machine-learning-databases/wine/wine.data',
... header=None
...)

Obtaining the Wine dataset

You can find a copy of the Wine dataset (and all other datasets used in this book) in the
code bundle of this book, which you can use if you are working offline or the UCI server at
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
is temporarily unavailable. For instance, to load the Wine dataset from a local directory,
you can replace the following lines:

df = pd.read_csv(
 'https://archive.ics.uci.edu/ml/'
 'machine-learning-databases/wine/wine.data',
 header=None
)

with these ones:

df = pd.read_csv(
 'your/local/path/to/wine.data',
 header=None
)

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

Chapter 5 143

Next, we will process the Wine data into separate training and test datasets—using 70 percent and 30
percent of the data, respectively—and standardize it to unit variance:

>>> from sklearn.model_selection import train_test_split
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
... train_test_split(X, y, test_size=0.3,
... stratify=y,
... random_state=0)
>>> # standardize the features
>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.transform(X_test)

After completing the mandatory preprocessing by executing the preceding code, let’s advance to the
second step: constructing the covariance matrix. The symmetric d×d-dimensional covariance matrix,
where d is the number of dimensions in the dataset, stores the pairwise covariances between the dif-
ferent features. For example, the covariance between two features, xj and xk, on the population level
can be calculated via the following equation:

𝜎𝜎𝑗𝑗𝑗𝑗 = 1𝑛𝑛 𝑛 1∑(𝑥𝑥𝑗𝑗(𝑖𝑖) 𝑛 𝜇𝜇𝑗𝑗)𝑛𝑛
𝑖𝑖𝑖𝑖 (𝑥𝑥𝑗𝑗(𝑖𝑖) 𝑛 𝜇𝜇𝑗𝑗)

Here, 𝜇𝜇𝑗𝑗 and 𝜇𝜇𝑘𝑘 are the sample means of features j and k, respectively. Note that the sample means
are zero if we standardized the dataset. A positive covariance between two features indicates that
the features increase or decrease together, whereas a negative covariance indicates that the features
vary in opposite directions. For example, the covariance matrix of three features can then be writ-
ten as follows (note that Σ is the Greek uppercase letter sigma, which is not to be confused with the
summation symbol):

Σ = [𝜎𝜎12 𝜎𝜎12 𝜎𝜎13𝜎𝜎21 𝜎𝜎22 𝜎𝜎23𝜎𝜎31 𝜎𝜎32 𝜎𝜎32]
The eigenvectors of the covariance matrix represent the principal components (the directions of
maximum variance), whereas the corresponding eigenvalues will define their magnitude. In the case
of the Wine dataset, we would obtain 13 eigenvectors and eigenvalues from the 13×13-dimensional
covariance matrix.

Compressing Data via Dimensionality Reduction144

Now, for our third step, let’s obtain the eigenpairs of the covariance matrix. If you have taken a linear
algebra class, you may have learned that an eigenvector, v, satisfies the following condition:Σ𝒗𝒗 𝒗 𝒗𝒗𝒗𝒗

Here, 𝜆𝜆 is a scalar: the eigenvalue. Since the manual computation of eigenvectors and eigenvalues is
a somewhat tedious and elaborate task, we will use the linalg.eig function from NumPy to obtain
the eigenpairs of the Wine covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n', eigen_vals)
Eigenvalues
[4.84274532 2.41602459 1.54845825 0.96120438 0.84166161
 0.6620634 0.51828472 0.34650377 0.3131368 0.10754642
 0.21357215 0.15362835 0.1808613]

Using the numpy.cov function, we computed the covariance matrix of the standardized training data-
set. Using the linalg.eig function, we performed the eigendecomposition, which yielded a vector
(eigen_vals) consisting of 13 eigenvalues and the corresponding eigenvectors stored as columns in
a 13×13-dimensional matrix (eigen_vecs).

Total and explained variance
Since we want to reduce the dimensionality of our dataset by compressing it onto a new feature sub-
space, we only select the subset of the eigenvectors (principal components) that contains most of the
information (variance). The eigenvalues define the magnitude of the eigenvectors, so we have to sort the
eigenvalues by decreasing magnitude; we are interested in the top k eigenvectors based on the values
of their corresponding eigenvalues. But before we collect those k most informative eigenvectors, let’s
plot the variance explained ratios of the eigenvalues. The variance explained ratio of an eigenvalue, 𝜆𝜆𝑗𝑗 , is simply the fraction of an eigenvalue, 𝜆𝜆𝑗𝑗 , and the total sum of the eigenvalues:Explained variance ratio = 𝜆𝜆𝑗𝑗∑ 𝜆𝜆𝑗𝑗𝑑𝑑𝑗𝑗𝑗𝑗

Eigendecomposition in NumPy

The numpy.linalg.eig function was designed to operate on both symmetric and non-sym-
metric square matrices. However, you may find that it returns complex eigenvalues in
certain cases.

A related function, numpy.linalg.eigh, has been implemented to decompose Hermetian
matrices, which is a numerically more stable approach to working with symmetric matri-
ces such as the covariance matrix; numpy.linalg.eigh always returns real eigenvalues.

Chapter 5 145

Using the NumPy cumsum function, we can then calculate the cumulative sum of explained variances,
which we will then plot via Matplotlib’s step function:

>>> tot = sum(eigen_vals)
>>> var_exp = [(i / tot) for i in
... sorted(eigen_vals, reverse=True)]
>>> cum_var_exp = np.cumsum(var_exp)
>>> import matplotlib.pyplot as plt
>>> plt.bar(range(1,14), var_exp, align='center',
... label='Individual explained variance')
>>> plt.step(range(1,14), cum_var_exp, where='mid',
... label='Cumulative explained variance')
>>> plt.ylabel('Explained variance ratio')
>>> plt.xlabel('Principal component index')
>>> plt.legend(loc='best')
>>> plt.tight_layout()
>>> plt.show()

The resulting plot indicates that the first principal component alone accounts for approximately 40
percent of the variance.

Also, we can see that the first two principal components combined explain almost 60 percent of the
variance in the dataset:

Figure 5.2: The proportion of the total variance captured by the principal components

Compressing Data via Dimensionality Reduction146

Although the explained variance plot reminds us of the feature importance values that we computed in
Chapter 4, Building Good Training Datasets – Data Preprocessing, via random forests, we should remind
ourselves that PCA is an unsupervised method, which means that information about the class labels
is ignored. Whereas a random forest uses the class membership information to compute the node
impurities, variance measures the spread of values along a feature axis.

Feature transformation
Now that we have successfully decomposed the covariance matrix into eigenpairs, let’s proceed with
the last three steps to transform the Wine dataset onto the new principal component axes. The re-
maining steps we are going to tackle in this section are the following:

1. Select k eigenvectors, which correspond to the k largest eigenvalues, where k is the dimension-
ality of the new feature subspace (𝑘𝑘 𝑘 𝑘𝑘).

2. Construct a projection matrix, W, from the “top” k eigenvectors.
3. Transform the d-dimensional input dataset, X, using the projection matrix, W, to obtain the

new k-dimensional feature subspace.

Or, in less technical terms, we will sort the eigenpairs by descending order of the eigenvalues, con-
struct a projection matrix from the selected eigenvectors, and use the projection matrix to transform
the data onto the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> # Make a list of (eigenvalue, eigenvector) tuples

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i])

... for i in range(len(eigen_vals))]

>>> # Sort the (eigenvalue, eigenvector) tuples from high to low

>>> eigen_pairs.sort(key=lambda k: k[0], reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest eigenvalues, to capture about
60 percent of the variance in this dataset. Note that two eigenvectors have been chosen for the purpose
of illustration, since we are going to plot the data via a two-dimensional scatterplot later in this sub-
section. In practice, the number of principal components has to be determined by a tradeoff between
computational efficiency and the performance of the classifier:

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis],

... eigen_pairs[1][1][:, np.newaxis]))

>>> print('Matrix W:\n', w)

Matrix W:

[[-0.13724218 0.50303478]

 [0.24724326 0.16487119]

 [-0.02545159 0.24456476]

 [0.20694508 -0.11352904]

 [-0.15436582 0.28974518]

Chapter 5 147

 [-0.39376952 0.05080104]
 [-0.41735106 -0.02287338]
 [0.30572896 0.09048885]
 [-0.30668347 0.00835233]
 [0.07554066 0.54977581]
 [-0.32613263 -0.20716433]
 [-0.36861022 -0.24902536]
 [-0.29669651 0.38022942]]

By executing the preceding code, we have created a 13×2-dimensional projection matrix, W, from the
top two eigenvectors.

Using the projection matrix, we can now transform an example, x (represented as a 13-dimensional
row vector), onto the PCA subspace (the principal components one and two) obtaining x′, now a
two-dimensional example vector consisting of two new features:

x′ = xW

>>> X_train_std[0].dot(w)
array([2.38299011, 0.45458499])

Similarly, we can transform the entire 124×13-dimensional training dataset onto the two principal
components by calculating the matrix dot product:

X′ = XW

>>> X_train_pca = X_train_std.dot(w)

Mirrored projections

Depending on which versions of NumPy and LAPACK you are using, you may obtain the
matrix, W, with its signs flipped. Please note that this is not an issue; if v is an eigenvector
of a matrix, Σ , we have: Σ𝒗𝒗 𝒗 𝒗𝒗𝒗𝒗

Here, v is the eigenvector, and –v is also an eigenvector, which we can show as follows.
Using basic algebra, we can multiply both sides of the equation by a scalar, 𝛼𝛼 :𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼

Since matrix multiplication is associative for scalar multiplication, we can then rearrange
this to the following: Σ(𝛼𝛼𝛼𝛼) = 𝜆𝜆(𝛼𝛼𝛼𝛼)
Now, we can see that 𝛼𝛼𝛼𝛼 is an eigenvector with the same eigenvalue, 𝜆𝜆 , for both 𝛼𝛼 𝛼 𝛼 and 𝛼𝛼 𝛼 𝛼𝛼 . Hence, both v and –v are eigenvectors.

Compressing Data via Dimensionality Reduction148

Lastly, let’s visualize the transformed Wine training dataset, now stored as an 124×2-dimensional
matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g']
>>> markers = ['o', 's', '^']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
... plt.scatter(X_train_pca[y_train==l, 0],
... X_train_pca[y_train==l, 1],
... c=c, label=f'Class {l}', marker=m)
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.tight_layout()
>>> plt.show()

As we can see in Figure 5.3, the data is more spread along the first principal component (x axis) than
the second principal component (y axis), which is consistent with the explained variance ratio plot
that we created in the previous subsection. However, we can tell that a linear classifier will likely be
able to separate the classes well:

Figure 5.3: Data records from the Wine dataset projected onto a 2D feature space via PCA

Although we encoded the class label information for the purpose of illustration in the preceding
scatterplot, we have to keep in mind that PCA is an unsupervised technique that doesn’t use any class
label information.

Chapter 5 149

Principal component analysis in scikit-learn
Although the verbose approach in the previous subsection helped us to follow the inner workings of
PCA, we will now discuss how to use the PCA class implemented in scikit-learn.

The PCA class is another one of scikit-learn’s transformer classes, with which we first fit the model
using the training data before we transform both the training data and the test dataset using the
same model parameters. Now, let’s use the PCA class from scikit-learn on the Wine training dataset,
classify the transformed examples via logistic regression, and visualize the decision regions via the
plot_decision_regions function that we defined in Chapter 2, Training Simple Machine Learning
Algorithms for Classification:

from matplotlib.colors import ListedColormap
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):

 # setup marker generator and color map
 markers = ('o', 's', '^', 'v', '<')
 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 cmap = ListedColormap(colors[:len(np.unique(y))])

 # plot the decision surface
 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
 np.arange(x2_min, x2_max, resolution))
 lab = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
 lab = lab.reshape(xx1.shape)
 plt.contourf(xx1, xx2, lab, alpha=0.3, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())

 # plot class examples
 for idx, cl in enumerate(np.unique(y)):
 plt.scatter(x=X[y == cl, 0],
 y=X[y == cl, 1],
 alpha=0.8,
 c=colors[idx],
 marker=markers[idx],
 label=f'Class {cl}',
 edgecolor='black')

Compressing Data via Dimensionality Reduction150

For your convenience, you can place the preceding plot_decision_regions code into a separate code
file in your current working directory, for example, plot_decision_regions_script.py, and import
it into your current Python session:

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.decomposition import PCA
>>> # initializing the PCA transformer and
>>> # logistic regression estimator:
>>> pca = PCA(n_components=2)
>>> lr = LogisticRegression(multi_class='ovr',
... random_state=1,
... solver='lbfgs')
>>> # dimensionality reduction:
>>> X_train_pca = pca.fit_transform(X_train_std)
>>> X_test_pca = pca.transform(X_test_std)
>>> # fitting the logistic regression model on the reduced dataset:
>>> lr.fit(X_train_pca, y_train)
>>> plot_decision_regions(X_train_pca, y_train, classifier=lr)
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.tight_layout()
>>> plt.show()

By executing this code, we should now see the decision regions for the training data reduced to two
principal component axes:

Figure 5.4: Training examples and logistic regression decision regions after using scikit-learn’s PCA
for dimensionality reduction

Chapter 5 151

When we compare the PCA projections via scikit-learn with our own PCA implementation, we might
see that the resulting plots are mirror images of each other. Note that this is not due to an error in
either of those two implementations; the reason for this difference is that, depending on the eigen-
solver, eigenvectors can have either negative or positive signs.

Not that it matters, but we could simply revert the mirror image by multiplying the data by –1 if we
wanted to; note that eigenvectors are typically scaled to unit length 1. For the sake of completeness,
let’s plot the decision regions of the logistic regression on the transformed test dataset to see if it can
separate the classes well:

>>> plot_decision_regions(X_test_pca, y_test, classifier=lr)
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.tight_layout()
>>> plt.show()

After we plot the decision regions for the test dataset by executing the preceding code, we can see
that logistic regression performs quite well on this small two-dimensional feature subspace and only
misclassifies a few examples in the test dataset:

Figure 5.5: Test datapoints with logistic regression decision regions in the PCA-based feature space

If we are interested in the explained variance ratios of the different principal components, we can
simply initialize the PCA class with the n_components parameter set to None, so all principal components
are kept and the explained variance ratio can then be accessed via the explained_variance_ratio_
attribute:

>>> pca = PCA(n_components=None)
>>> X_train_pca = pca.fit_transform(X_train_std)
>>> pca.explained_variance_ratio_
array([0.36951469, 0.18434927, 0.11815159, 0.07334252,

Compressing Data via Dimensionality Reduction152

 0.06422108, 0.05051724, 0.03954654, 0.02643918,
 0.02389319, 0.01629614, 0.01380021, 0.01172226,
 0.00820609])

Note that we set n_components=None when we initialized the PCA class so that it will return all principal
components in a sorted order, instead of performing a dimensionality reduction.

Assessing feature contributions
In this section, we will take a brief look at how we can assess the contributions of the original features
to the principal components. As we learned, via PCA, we create principal components that represent
linear combinations of the features. Sometimes, we are interested to know about how much each orig-
inal feature contributes to a given principal component. These contributions are often called loadings.

The factor loadings can be computed by scaling the eigenvectors by the square root of the eigenvalues.
The resulting values can then be interpreted as the correlation between the original features and
the principal component. To illustrate this, let us plot the loadings for the first principal component.

First, we compute the 13×13-dimensional loadings matrix by multiplying the eigenvectors by the
square root of the eigenvalues:

>>> loadings = eigen_vecs * np.sqrt(eigen_vals)

Then, we plot the loadings for the first principal component, loadings[:, 0], which is the first col-
umn in this matrix:

>>> fig, ax = plt.subplots()
>>> ax.bar(range(13), loadings[:, 0], align='center')
>>> ax.set_ylabel('Loadings for PC 1')
>>> ax.set_xticks(range(13))
>>> ax.set_xticklabels(df_wine.columns[1:], rotation=90)
>>> plt.ylim([-1, 1])
>>> plt.tight_layout()
>>> plt.show()

In Figure 5.6, we can see that, for example, Alcohol has a negative correlation with the first principal
component (approximately –0.3), whereas Malic acid has a positive correlation (approximately 0.54).
Note that a value of 1 describes a perfect positive correlation whereas a value of –1 corresponds to a
perfect negative correlation:

Chapter 5 153

Figure 5.6: Feature correlations with the first principal component

In the preceding code example, we compute the factor loadings for our own PCA implementation.
We can obtain the loadings from a fitted scikit-learn PCA object in a similar manner, where pca.
components_ represents the eigenvectors and pca.explained_variance_ represents the eigenvalues:

>>> sklearn_loadings = pca.components_.T * np.sqrt(pca.explained_variance_)

To compare the scikit-learn PCA loadings with those we created previously, let us create a similar bar
plot:

>>> fig, ax = plt.subplots()

>>> ax.bar(range(13), sklearn_loadings[:, 0], align='center')

>>> ax.set_ylabel('Loadings for PC 1')

>>> ax.set_xticks(range(13))

>>> ax.set_xticklabels(df_wine.columns[1:], rotation=90)

>>> plt.ylim([-1, 1])

>>> plt.tight_layout()

>>> plt.show()

Compressing Data via Dimensionality Reduction154

As we can see, the bar plots look the same:

Figure 5.7: Feature correlations to the first principal component using scikit-learn

After exploring PCA as an unsupervised feature extraction technique, the next section will introduce
linear discriminant analysis (LDA), which is a linear transformation technique that takes class label
information into account.

Supervised data compression via linear discriminant
analysis
LDA can be used as a technique for feature extraction to increase computational efficiency and reduce
the degree of overfitting due to the curse of dimensionality in non-regularized models. The general
concept behind LDA is very similar to PCA, but whereas PCA attempts to find the orthogonal component
axes of maximum variance in a dataset, the goal in LDA is to find the feature subspace that optimizes
class separability. In the following sections, we will discuss the similarities between LDA and PCA in
more detail and walk through the LDA approach step by step.

Principal component analysis versus linear discriminant analysis
Both PCA and LDA are linear transformation techniques that can be used to reduce the number of di-
mensions in a dataset; the former is an unsupervised algorithm, whereas the latter is supervised. Thus,
we might think that LDA is a superior feature extraction technique for classification tasks compared
to PCA. However, A.M. Martinez reported that preprocessing via PCA tends to result in better clas-
sification results in an image recognition task in certain cases, for instance, if each class consists of
only a small number of examples (PCA Versus LDA by A. M. Martinez and A. C. Kak, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(2): 228-233, 2001).

Chapter 5 155

Figure 5.8 summarizes the concept of LDA for a two-class problem. Examples from class 1 are shown
as circles, and examples from class 2 are shown as crosses:

Figure 5.8: The concept of LDA for a two-class problem

A linear discriminant, as shown on the x axis (LD 1), would separate the two normal distributed class-
es well. Although the exemplary linear discriminant shown on the y axis (LD 2) captures a lot of the
variance in the dataset, it would fail as a good linear discriminant since it does not capture any of the
class-discriminatory information.

One assumption in LDA is that the data is normally distributed. Also, we assume that the classes have
identical covariance matrices and that the training examples are statistically independent of each oth-
er. However, even if one, or more, of those assumptions is (slightly) violated, LDA for dimensionality
reduction can still work reasonably well (Pattern Classification 2nd Edition by R. O. Duda, P. E. Hart,
and D. G. Stork, New York, 2001).

Fisher LDA

LDA is sometimes also called Fisher’s LDA. Ronald A. Fisher initially formulated Fisher’s
Linear Discriminant for two-class classification problems in 1936 (The Use of Multiple Mea-
surements in Taxonomic Problems, R. A. Fisher, Annals of Eugenics, 7(2): 179-188, 1936). In 1948,
Fisher’s linear discriminant was generalized for multiclass problems by C. Radhakrishna
Rao under the assumption of equal class covariances and normally distributed classes,
which we now call LDA (The Utilization of Multiple Measurements in Problems of Biological
Classification by C. R. Rao, Journal of the Royal Statistical Society. Series B (Methodological),
10(2): 159-203, 1948).

Compressing Data via Dimensionality Reduction156

The inner workings of linear discriminant analysis
Before we dive into the code implementation, let’s briefly summarize the main steps that are required
to perform LDA:

1. Standardize the d-dimensional dataset (d is the number of features).
2. For each class, compute the d-dimensional mean vector.
3. Construct the between-class scatter matrix, SB, and the within-class scatter matrix, SW.
4. Compute the eigenvectors and corresponding eigenvalues of the matrix, 𝑺𝑺𝑊𝑊−1𝑺𝑺𝐵𝐵 .
5. Sort the eigenvalues by decreasing order to rank the corresponding eigenvectors.
6. Choose the k eigenvectors that correspond to the k largest eigenvalues to construct a d×k-di-

mensional transformation matrix, W; the eigenvectors are the columns of this matrix.
7. Project the examples onto the new feature subspace using the transformation matrix, W.

As we can see, LDA is quite similar to PCA in the sense that we are decomposing matrices into ei-
genvalues and eigenvectors, which will form the new lower-dimensional feature space. However, as
mentioned before, LDA takes class label information into account, which is represented in the form
of the mean vectors computed in step 2. In the following sections, we will discuss these seven steps
in more detail, accompanied by illustrative code implementations.

Computing the scatter matrices
Since we already standardized the features of the Wine dataset in the PCA section at the beginning of
this chapter, we can skip the first step and proceed with the calculation of the mean vectors, which
we will use to construct the within-class scatter matrix and between-class scatter matrix, respectively.
Each mean vector, mi, stores the mean feature value, 𝜇𝜇𝑚𝑚 , with respect to the examples of class i:𝒎𝒎𝑖𝑖 = 1𝑛𝑛𝑖𝑖 ∑ 𝒙𝒙𝑚𝑚𝒙𝒙𝒙𝒙𝒙𝑖𝑖

This results in three mean vectors:

𝒎𝒎𝑖𝑖 = [𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖⋮𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖 {1𝑖2𝑖3}

These mean vectors can be computed by the following code, where we compute one mean vector for
each of the three labels:

>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):
... mean_vecs.append(np.mean(
... X_train_std[y_train==label], axis=0))
... print(f'MV {label}: {mean_vecs[label - 1]}\n')

Chapter 5 157

MV 1: [0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516
0.5416 0.2338 0.5897 0.6563 1.2075]
MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946
0.0703 -0.8286 0.3144 0.3608 -0.7253]
MV 3: [0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287
-0.7795 0.9649 -1.209 -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix, SW:

𝑺𝑺𝑊𝑊 =∑𝑺𝑺𝑖𝑖𝒄𝒄
𝑖𝑖𝑖𝑖

This is calculated by summing up the individual scatter matrices, Si, of each individual class i:𝑺𝑺𝑖𝑖 = ∑(𝒙𝒙 𝒙𝒙𝒙𝑖𝑖)(𝒙𝒙 𝒙𝒙𝒙𝑖𝑖)𝑇𝑇𝒙𝒙𝒙𝒙𝒙𝑖𝑖

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label, mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.zeros((d, d))
... for row in X_train_std[y_train == label]:
... row, mv = row.reshape(d, 1), mv.reshape(d, 1)
... class_scatter += (row - mv).dot((row - mv).T)
... S_W += class_scatter
>>> print('Within-class scatter matrix: '
... f'{S_W.shape[0]}x{S_W.shape[1]}')
Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices is that the class labels
in the training dataset are uniformly distributed. However, if we print the number of class labels, we
see that this assumption is violated:

>>> print('Class label distribution:',
... np.bincount(y_train)[1:])
Class label distribution: [41 50 33]

Thus, we want to scale the individual scatter matrices, Si, before we sum them up as the scatter matrix,
SW. When we divide the scatter matrices by the number of class-examples, ni, we can see that com-
puting the scatter matrix is in fact the same as computing the covariance matrix, Σ𝑖𝑖 —the covariance
matrix is a normalized version of the scatter matrix:Σ𝑖𝑖 = 1𝑛𝑛𝑖𝑖 𝑺𝑺𝑖𝑖 = 1𝑛𝑛𝑖𝑖 ∑(𝒙𝒙 𝒙𝒙𝒙𝑖𝑖)(𝒙𝒙 𝒙𝒙𝒙𝑖𝑖)𝑇𝑇𝒙𝒙𝒙𝒙𝒙𝑖𝑖

Compressing Data via Dimensionality Reduction158

The code for computing the scaled within-class scatter matrix is as follows:

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.cov(X_train_std[y_train==label].T)
... S_W += class_scatter
>>> print('Scaled within-class scatter matrix: '
... f'{S_W.shape[0]}x{S_W.shape[1]}')
Scaled within-class scatter matrix: 13x13

After we compute the scaled within-class scatter matrix (or covariance matrix), we can move on to
the next step and compute the between-class scatter matrix SB:

𝑺𝑺𝐵𝐵 =∑𝑛𝑛𝑖𝑖(𝒎𝒎𝑖𝑖 −𝒎𝒎)(𝒎𝒎𝑖𝑖 −𝒎𝒎)𝑇𝑇𝒄𝒄
𝑖𝑖𝑖𝑖

Here, m is the overall mean that is computed, including examples from all c classes:

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> mean_overall = mean_overall.reshape(d, 1)

>>> d = 13 # number of features
>>> S_B = np.zeros((d, d))
>>> for i, mean_vec in enumerate(mean_vecs):
... n = X_train_std[y_train == i + 1, :].shape[0]
... mean_vec = mean_vec.reshape(d, 1) # make column vector
... S_B += n * (mean_vec - mean_overall).dot(
... (mean_vec - mean_overall).T)
>>> print('Between-class scatter matrix: '
... f'{S_B.shape[0]}x{S_B.shape[1]}')
Between-class scatter matrix: 13x13

Selecting linear discriminants for the new feature subspace
The remaining steps of the LDA are similar to the steps of the PCA. However, instead of performing
the eigendecomposition on the covariance matrix, we solve the generalized eigenvalue problem of
the matrix, 𝑺𝑺𝑊𝑊−1𝑺𝑺𝐵𝐵 :

>>> eigen_vals, eigen_vecs =\
... np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

After we compute the eigenpairs, we can sort the eigenvalues in descending order:

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i])
... for i in range(len(eigen_vals))]

Chapter 5 159

>>> eigen_pairs = sorted(eigen_pairs,
... key=lambda k: k[0], reverse=True)
>>> print('Eigenvalues in descending order:\n')
>>> for eigen_val in eigen_pairs:
... print(eigen_val[0])
Eigenvalues in descending order:
349.617808906
172.76152219
3.78531345125e-14
2.11739844822e-14
1.51646188942e-14
1.51646188942e-14
1.35795671405e-14
1.35795671405e-14
7.58776037165e-15
5.90603998447e-15
5.90603998447e-15
2.25644197857e-15
0.0

In LDA, the number of linear discriminants is at most c – 1, where c is the number of class labels, since
the in-between scatter matrix, SB, is the sum of c matrices with rank one or less. We can indeed see
that we only have two nonzero eigenvalues (the eigenvalues 3-13 are not exactly zero, but this is due
to the floating-point arithmetic in NumPy.)

To measure how much of the class-discriminatory information is captured by the linear discriminants
(eigenvectors), let’s plot the linear discriminants by decreasing eigenvalues, similar to the explained
variance plot that we created in the PCA section. For simplicity, we will call the content of class-dis-
criminatory information discriminability:

>>> tot = sum(eigen_vals.real)
>>> discr = [(i / tot) for i in sorted(eigen_vals.real,
... reverse=True)]
>>> cum_discr = np.cumsum(discr)
>>> plt.bar(range(1, 14), discr, align='center',
... label='Individual discriminability')

Collinearity

Note that in the rare case of perfect collinearity (all aligned example points fall on a
straight line), the covariance matrix would have rank one, which would result in only one
eigenvector with a nonzero eigenvalue.

Compressing Data via Dimensionality Reduction160

>>> plt.step(range(1, 14), cum_discr, where='mid',
... label='Cumulative discriminability')
>>> plt.ylabel('"Discriminability" ratio')
>>> plt.xlabel('Linear Discriminants')
>>> plt.ylim([-0.1, 1.1])
>>> plt.legend(loc='best')
>>> plt.tight_layout()
>>> plt.show()

As we can see in Figure 5.9, the first two linear discriminants alone capture 100 percent of the useful
information in the Wine training dataset:

Figure 5.9: The top two discriminants capture 100 percent of the useful information

Let’s now stack the two most discriminative eigenvector columns to create the transformation matrix,
W:

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
... eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
 [[-0.1481 -0.4092]
 [0.0908 -0.1577]
 [-0.0168 -0.3537]
 [0.1484 0.3223]
 [-0.0163 -0.0817]
 [0.1913 0.0842]
 [-0.7338 0.2823]
 [-0.075 -0.0102]

Chapter 5 161

 [0.0018 0.0907]
 [0.294 -0.2152]
 [-0.0328 0.2747]
 [-0.3547 -0.0124]
 [-0.3915 -0.5958]]

Projecting examples onto the new feature space
Using the transformation matrix W that we created in the previous subsection, we can now transform
the training dataset by multiplying the matrices:

X′ = XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['o', 's', '^']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
... plt.scatter(X_train_lda[y_train==l, 0],
... X_train_lda[y_train==l, 1] * (-1),
... c=c, label= f'Class {l}', marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower right')
>>> plt.tight_layout()
>>> plt.show()

As we can see in Figure 5.10, the three Wine classes are now perfectly linearly separable in the new
feature subspace:

Figure 5.10: Wine classes perfectly separable after projecting the data onto the first two discriminants

Compressing Data via Dimensionality Reduction162

LDA via scikit-learn
That step-by-step implementation was a good exercise to understand the inner workings of LDA and
understand the differences between LDA and PCA. Now, let’s look at the LDA class implemented in
scikit-learn:

>>> # the following import statement is one line
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
>>> lda = LDA(n_components=2)
>>> X_train_lda = lda.fit_transform(X_train_std, y_train)

Next, let’s see how the logistic regression classifier handles the lower-dimensional training dataset
after the LDA transformation:

>>> lr = LogisticRegression(multi_class='ovr', random_state=1,
... solver='lbfgs')
>>> lr = lr.fit(X_train_lda, y_train)
>>> plot_decision_regions(X_train_lda, y_train, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.tight_layout()
>>> plt.show()

Looking at Figure 5.11, we can see that the logistic regression model misclassifies one of the examples
from class 2:

Figure 5.11: The logistic regression model misclassifies one of the classes

Chapter 5 163

By lowering the regularization strength, we could probably shift the decision boundaries so that the
logistic regression model classifies all examples in the training dataset correctly. However, and more
importantly, let’s take a look at the results on the test dataset:

>>> X_test_lda = lda.transform(X_test_std)
>>> plot_decision_regions(X_test_lda, y_test, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.tight_layout()
>>> plt.show()

As we can see in Figure 5.12, the logistic regression classifier is able to get a perfect accuracy score for
classifying the examples in the test dataset by only using a two-dimensional feature subspace, instead
of the original 13 Wine features:

Figure 5.12: The logistic regression model works perfectly on the test data

Nonlinear dimensionality reduction and visualization
In the previous section, we covered linear transformation techniques, such as PCA and LDA, for fea-
ture extraction. In this section, we will discuss why considering nonlinear dimensionality reduction
techniques might be worthwhile.

One nonlinear dimensionality reduction technique that is particularly worth highlighting is t-dis-
tributed stochastic neighbor embedding (t-SNE) since it is frequently used in literature to visualize
high-dimensional datasets in two or three dimensions. We will see how we can apply t-SNE to plot
images of handwritten images in a 2-dimensional feature space.

Why consider nonlinear dimensionality reduction?
Many machine learning algorithms make assumptions about the linear separability of the input data.

Compressing Data via Dimensionality Reduction164

You have learned that the perceptron even requires perfectly linearly separable training data to con-
verge. Other algorithms that we have covered so far assume that the lack of perfect linear separability
is due to noise: Adaline, logistic regression, and the (standard) SVM to just name a few.

However, if we are dealing with nonlinear problems, which we may encounter rather frequently in
real-world applications, linear transformation techniques for dimensionality reduction, such as PCA
and LDA, may not be the best choice:

Figure 5.13: The difference between linear and nonlinear problems

The scikit-learn library implements a selection of advanced techniques for nonlinear dimensionality
reduction that are beyond the scope of this book. The interested reader can find a nice overview of the
current implementations in scikit-learn, complemented by illustrative examples, at http://scikit-
learn.org/stable/modules/manifold.html.

The development and application of nonlinear dimensionality reduction techniques is also often
referred to as manifold learning, where a manifold refers to a lower dimensional topological space
embedded in a high-dimensional space. Algorithms for manifold learning have to capture the compli-
cated structure of the data in order to project it onto a lower-dimensional space where the relationship
between data points is preserved.

http://scikit-learn.org/stable/modules/manifold.html
http://scikit-learn.org/stable/modules/manifold.html

Chapter 5 165

A classic example of manifold learning is the 3-dimensional Swiss roll illustrated in Figure 5.14:

Figure 5.14: Three-dimensional Swiss roll projected into a lower, two-dimensional space

While nonlinear dimensionality reduction and manifold learning algorithms are very powerful, we
should note that these techniques are notoriously hard to use, and with non-ideal hyperparameter
choices, they may cause more harm than good. The reason behind this difficulty is that we are often
working with high-dimensional datasets that we cannot readily visualize and where the structure is not
obvious (unlike the Swiss roll example in Figure 5.14). Moreover, unless we project the dataset into two
or three dimensions (which is often not sufficient for capturing more complicated relationships), it is
hard or even impossible to assess the quality of the results. Hence, many people still rely on simpler
techniques such as PCA and LDA for dimensionality reduction.

Visualizing data via t-distributed stochastic neighbor embedding
After introducing nonlinear dimensionality reduction and discussing some of its challenges, let’s take
a look at a hands-on example involving t-SNE, which is often used for visualizing complex datasets
in two or three dimensions.

Compressing Data via Dimensionality Reduction166

In a nutshell, t-SNE is modeling data points based on their pair-wise distances in the high-dimen-
sional (original) feature space. Then, it finds a probability distribution of pair-wise distances in the
new, lower-dimensional space that is close to the probability distribution of pair-wise distances in the
original space. Or, in other words, t-SNE learns to embed data points into a lower-dimensional space
such that the pairwise distances in the original space are preserved. You can find more details about
this method in the original research paper Visualizing data using t-SNE by Maaten and Hinton, Jour-
nal of Machine Learning Research, 2018 (https://www.jmlr.org/papers/volume9/vandermaaten08a/
vandermaaten08a.pdf). However, as the research paper title suggests, t-SNE is a technique intended for
visualization purposes as it requires the whole dataset for the projection. Since it projects the points
directly (unlike PCA, it does not involve a projection matrix), we cannot apply t-SNE to new data points.

The following code shows a quick demonstration of how t-SNE can be applied to a 64-dimensional
dataset. First, we load the Digits dataset from scikit-learn, which consists of low-resolution handwrit-
ten digits (the numbers 0-9):

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()

The digits are 8×8 grayscale images. The following code plots the first four images in the dataset, which
consists of 1,797 images in total:

>>> fig, ax = plt.subplots(1, 4)
>>> for i in range(4):
>>> ax[i].imshow(digits.images[i], cmap='Greys')
>>> plt.show()

As we can see in Figure 5.15, the images are relatively low resolution, 8×8 pixels (that is, 64 pixels per
image):

Figure 5.15: Low resolution images of handwritten digits

Note that the digits.data attribute lets us access a tabular version of this dataset where the examples
are represented by the rows, and the columns correspond to the pixels:

>>> digits.data.shape
(1797, 64)

https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

Chapter 5 167

Next, let us assign the features (pixels) to a new variable X_digits and the labels to another new
variable y_digits:

>>> y_digits = digits.target
>>> X_digits = digits.data

Then, we import the t-SNE class from scikit-learn and fit a new tsne object. Using fit_transform, we
perform the t-SNE fitting and data transformation in one step:

>>> from sklearn.manifold import TSNE
>>> tsne = TSNE(n_components=2, init='pca',
... random_state=123)
>>> X_digits_tsne = tsne.fit_transform(X_digits)

Using this code, we projected the 64-dimensional dataset onto a 2-dimensional space. We specified
init='pca', which initializes the t-SNE embedding using PCA as it is recommended in the research
article Initialization is critical for preserving global data structure in both t-SNE and UMAP by Kobak and
Linderman, Nature Biotechnology Volume 39, pages 156–157, 2021 (https://www.nature.com/articles/
s41587-020-00809-z).

Note that t-SNE includes additional hyperparameters such as the perplexity and learning rate (often
called epsilon), which we omitted in the example (we used the scikit-learn default values). In practice,
we recommend you explore these parameters as well. More information about these parameters and
their effects on the results can be found in the excellent article How to Use t-SNE Effectively by Watten-
berg, Viegas, and Johnson, Distill, 2016 (https://distill.pub/2016/misread-tsne/).

Finally, let us visualize the 2D t-SNE embeddings using the following code:

>>> import matplotlib.patheffects as PathEffects
>>> def plot_projection(x, colors):

... f = plt.figure(figsize=(8, 8))

... ax = plt.subplot(aspect='equal')

... for i in range(10):

... plt.scatter(x[colors == i, 0],

... x[colors == i, 1])

... for i in range(10):

... xtext, ytext = np.median(x[colors == i, :], axis=0)

... txt = ax.text(xtext, ytext, str(i), fontsize=24)

... txt.set_path_effects([

... PathEffects.Stroke(linewidth=5, foreground="w"),

... PathEffects.Normal()])

https://www.nature.com/articles/s41587-020-00809-z
https://www.nature.com/articles/s41587-020-00809-z
https://distill.pub/2016/misread-tsne/

Compressing Data via Dimensionality Reduction168

>>> plot_projection(X_digits_tsne, y_digits)
>>> plt.show()

Like PCA, t-SNE is an unsupervised method, and in the preceding code, we use the class labels y_digits
(0-9) only for visualization purposes via the functions color argument. Matplotlib’s PathEffects are
used for visual purposes, such that the class label is displayed in the center (via np.median) of data
points belonging to each respective digit. The resulting plot is as follows:

Figure 5.16: A visualization of how t-SNE embeds the handwritten digits in a 2D feature space

As we can see, t-SNE is able to separate the different digits (classes) nicely, although not perfectly. It
might be possible to achieve better separation by tuning the hyperparameters. However, a certain
degree of class mixing might be unavoidable due to illegible handwriting. For instance, by inspecting
individual images, we might find that certain instances of the number 3 indeed look like the number
9, and so forth.

Uniform manifold approximation and projection

Another popular visualization technique is uniform manifold approximation and pro-
jection (UMAP). While UMAP can produce similarly good results as t-SNE (for example,
see the Kobak and Linderman paper referenced previously), it is typically faster, and it
can also be used to project new data, which makes it more attractive as a dimensionality
reduction technique in a machine learning context, similar to PCA. Interested readers
can find more information about UMAP in the original paper: UMAP: Uniform manifold
approximation and projection for dimension reduction by McInnes, Healy, and Melville, 2018
(https://arxiv.org/abs/1802.03426). A scikit-learn compatible implementation of
UMAP can be found at https://umap-learn.readthedocs.io.

https://arxiv.org/abs/1802.03426
https://umap-learn.readthedocs.io

Chapter 5 169

Summary
In this chapter, you learned about two fundamental dimensionality reduction techniques for feature
extraction: PCA and LDA. Using PCA, we projected data onto a lower-dimensional subspace to maxi-
mize the variance along the orthogonal feature axes, while ignoring the class labels. LDA, in contrast
to PCA, is a technique for supervised dimensionality reduction, which means that it considers class
information in the training dataset to attempt to maximize the class separability in a linear feature
space. Lastly, you also learned about t-SNE, which is a nonlinear feature extraction technique that
can be used for visualizing data in two or three dimensions.

Equipped with PCA and LDA as fundamental data preprocessing techniques, you are now well prepared
to learn about the best practices for efficiently incorporating different preprocessing techniques and
evaluating the performance of different models in the next chapter.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

6
Learning Best Practices for Model
Evaluation and Hyperparameter
Tuning

In the previous chapters, we learned about the essential machine learning algorithms for classifica-
tion and how to get our data into shape before we feed it into those algorithms. Now, it’s time to learn
about the best practices of building good machine learning models by fine-tuning the algorithms
and evaluating the performance of the models. In this chapter, we will learn how to do the following:

• Assess the performance of machine learning models
• Diagnose the common problems of machine learning algorithms
• Fine-tune machine learning models
• Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines
When we applied different preprocessing techniques in the previous chapters, such as standardiza-
tion for feature scaling in Chapter 4, Building Good Training Datasets – Data Preprocessing, or principal
component analysis for data compression in Chapter 5, Compressing Data via Dimensionality Reduction,
you learned that we have to reuse the parameters that were obtained during the fitting of the training
data to scale and compress any new data, such as the examples in the separate test dataset. In this
section, you will learn about an extremely handy tool, the Pipeline class in scikit-learn. It allows us
to fit a model including an arbitrary number of transformation steps and apply it to make predictions
about new data.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning172

Loading the Breast Cancer Wisconsin dataset
In this chapter, we will be working with the Breast Cancer Wisconsin dataset, which contains 569 ex-
amples of malignant and benign tumor cells. The first two columns in the dataset store the unique ID
numbers of the examples and the corresponding diagnoses (M = malignant, B = benign), respectively.
Columns 3-32 contain 30 real-valued features that have been computed from digitized images of the
cell nuclei, which can be used to build a model to predict whether a tumor is benign or malignant.
The Breast Cancer Wisconsin dataset has been deposited in the UCI Machine Learning Repository,
and more detailed information about this dataset can be found at https://archive.ics.uci.edu/
ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).

In this section, we will read in the dataset and split it into training and test datasets in three simple steps:

1. We will start by reading in the dataset directly from the UCI website using pandas:

>>> import pandas as pd
>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/'
... 'machine-learning-databases'
... '/breast-cancer-wisconsin/wdbc.data',

... header=None)

Obtaining the Breast Cancer Wisconsin dataset

You can find a copy of the dataset (and all other datasets used in this book) in the code
bundle of this book, which you can use if you are working offline or the UCI server at
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-
wisconsin/wdbc.data is temporarily unavailable. For instance, to load the dataset from
a local directory, you can replace the following lines:

df = pd.read_csv(
 'https://archive.ics.uci.edu/ml/'
 'machine-learning-databases'
 '/breast-cancer-wisconsin/wdbc.data',
 header=None
)

with these:

df = pd.read_csv(
 'your/local/path/to/wdbc.data',
 header=None
)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data

Chapter 6 173

2. Next, we will assign the 30 features to a NumPy array, X. Using a LabelEncoder object, we will
transform the class labels from their original string representation ('M' and 'B') into integers:

>>> from sklearn.preprocessing import LabelEncoder

>>> X = df.loc[:, 2:].values

>>> y = df.loc[:, 1].values

>>> le = LabelEncoder()

>>> y = le.fit_transform(y)

>>> le.classes_

array(['B', 'M'], dtype=object)

3. After encoding the class labels (diagnosis) in an array, y, the malignant tumors are now rep-
resented as class 1, and the benign tumors are represented as class 0, respectively. We can
double-check this mapping by calling the transform method of the fitted LabelEncoder on
two dummy class labels:

>>> le.transform(['M', 'B'])

array([1, 0])

4. Before we construct our first model pipeline in the following subsection, let’s divide the dataset
into a separate training dataset (80 percent of the data) and a separate test dataset (20 percent
of the data):

>>> from sklearn.model_selection import train_test_split

>>> X_train, X_test, y_train, y_test = \

... train_test_split(X, y,

... test_size=0.20,

... stratify=y,

... random_state=1)

Combining transformers and estimators in a pipeline
In the previous chapter, you learned that many learning algorithms require input features on the same
scale for optimal performance. Since the features in the Breast Cancer Wisconsin dataset are measured
on various different scales, we will standardize the columns in the Breast Cancer Wisconsin dataset
before we feed them to a linear classifier, such as logistic regression. Furthermore, let’s assume that
we want to compress our data from the initial 30 dimensions into a lower two-dimensional subspace
via principal component analysis (PCA), a feature extraction technique for dimensionality reduction
that was introduced in Chapter 5.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning174

Instead of going through the model fitting and data transformation steps for the training and test
datasets separately, we can chain the StandardScaler, PCA, and LogisticRegression objects in a
pipeline:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.decomposition import PCA
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.pipeline import make_pipeline
>>> pipe_lr = make_pipeline(StandardScaler(),
... PCA(n_components=2),
... LogisticRegression())
>>> pipe_lr.fit(X_train, y_train)
>>> y_pred = pipe_lr.predict(X_test)
>>> test_acc = pipe_lr.score(X_test, y_test)
>>> print(f'Test accuracy: {test_acc:.3f}')
Test accuracy: 0.956

The make_pipeline function takes an arbitrary number of scikit-learn transformers (objects that sup-
port the fit and transform methods as input), followed by a scikit-learn estimator that implements the
fit and predict methods. In our preceding code example, we provided two scikit-learn transformers,
StandardScaler and PCA, and a LogisticRegression estimator as inputs to the make_pipeline func-
tion, which constructs a scikit-learn Pipeline object from these objects.

We can think of a scikit-learn Pipeline as a meta-estimator or wrapper around those individual
transformers and estimators. If we call the fit method of Pipeline, the data will be passed down a
series of transformers via fit and transform calls on these intermediate steps until it arrives at the
estimator object (the final element in a pipeline). The estimator will then be fitted to the transformed
training data.

When we executed the fit method on the pipe_lr pipeline in the preceding code example,
StandardScaler first performed fit and transform calls on the training data. Second, the trans-
formed training data was passed on to the next object in the pipeline, PCA. Similar to the previous
step, PCA also executed fit and transform on the scaled input data and passed it to the final element
of the pipeline, the estimator.

Finally, the LogisticRegression estimator was fit to the training data after it underwent transfor-
mations via StandardScaler and PCA. Again, we should note that there is no limit to the number of
intermediate steps in a pipeline; however, if we want to use the pipeline for prediction tasks, the last
pipeline element has to be an estimator.

Similar to calling fit on a pipeline, pipelines also implement a predict method if the last step in the
pipeline is an estimator. If we feed a dataset to the predict call of a Pipeline object instance, the data
will pass through the intermediate steps via transform calls. In the final step, the estimator object
will then return a prediction on the transformed data.

Chapter 6 175

The pipelines of the scikit-learn library are immensely useful wrapper tools that we will use frequently
throughout the rest of this book. To make sure that you’ve got a good grasp of how the Pipeline ob-
ject works, please take a close look at Figure 6.1, which summarizes our discussion from the previous
paragraphs:

Figure 6.1: The inner workings of the Pipeline object

Using k-fold cross-validation to assess model performance
In this section, you will learn about the common cross-validation techniques holdout cross-validation
and k-fold cross-validation, which can help us to obtain reliable estimates of the model’s generalization
performance, that is, how well the model performs on unseen data.

The holdout method
A classic and popular approach for estimating the generalization performance of machine learning
models is the holdout method. Using the holdout method, we split our initial dataset into separate
training and test datasets—the former is used for model training, and the latter is used to estimate its
generalization performance. However, in typical machine learning applications, we are also inter-
ested in tuning and comparing different parameter settings to further improve the performance for
making predictions on unseen data. This process is called model selection, with the name referring
to a given classification problem for which we want to select the optimal values of tuning parameters
(also called hyperparameters). However, if we reuse the same test dataset over and over again during
model selection, it will become part of our training data and thus the model will be more likely to
overfit. Despite this issue, many people still use the test dataset for model selection, which is not a
good machine learning practice.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning176

A better way of using the holdout method for model selection is to separate the data into three parts:
a training dataset, a validation dataset, and a test dataset. The training dataset is used to fit the dif-
ferent models, and the performance on the validation dataset is then used for model selection. The
advantage of having a test dataset that the model hasn’t seen before during the training and model
selection steps is that we can obtain a less biased estimate of its ability to generalize to new data. Figure
6.2 illustrates the concept of holdout cross-validation, where we use a validation dataset to repeatedly
evaluate the performance of the model after training using different hyperparameter values. Once
we are satisfied with the tuning of hyperparameter values, we estimate the model’s generalization
performance on the test dataset:

Figure 6.2: How to use training, validation, and test datasets

A disadvantage of the holdout method is that the performance estimate may be very sensitive to how
we partition the training dataset into the training and validation subsets; the estimate will vary for
different examples of the data. In the next subsection, we will take a look at a more robust technique
for performance estimation, k-fold cross-validation, where we repeat the holdout method k times on
k subsets of the training data.

K-fold cross-validation
In k-fold cross-validation, we randomly split the training dataset into k folds without replacement.
Here, k – 1 folds, the so-called training folds, are used for the model training, and one fold, the so-called
test fold, is used for performance evaluation. This procedure is repeated k times so that we obtain k
models and performance estimates.

Sampling with and without replacement

We looked at an example to illustrate sampling with and without replacement in Chapter
3. If you haven’t read that chapter, or want a refresher, refer to the information box titled
Sampling with and without replacement in the Combining multiple decision trees via random
forests section.

Chapter 6 177

We then calculate the average performance of the models based on the different, independent test
folds to obtain a performance estimate that is less sensitive to the sub-partitioning of the training data
compared to the holdout method. Typically, we use k-fold cross-validation for model tuning, that is,
finding the optimal hyperparameter values that yield a satisfying generalization performance, which
is estimated from evaluating the model performance on the test folds.

Once we have found satisfactory hyperparameter values, we can retrain the model on the complete
training dataset and obtain a final performance estimate using the independent test dataset. The
rationale behind fitting a model to the whole training dataset after k-fold cross-validation is that first,
we are typically interested in a single, final model (versus k individual models), and second, providing
more training examples to a learning algorithm usually results in a more accurate and robust model.

Since k-fold cross-validation is a resampling technique without replacement, the advantage of this
approach is that in each iteration, each example will be used exactly once, and the training and test
folds are disjoint. Furthermore, all test folds are disjoint; that is, there is no overlap between the
test folds. Figure 6.3 summarizes the concept behind k-fold cross-validation with k = 10. The training
dataset is divided into 10 folds, and during the 10 iterations, 9 folds are used for training, and 1 fold
will be used as the test dataset for model evaluation.

Also, the estimated performances, Ei (for example, classification accuracy or error), for each fold are
then used to calculate the estimated average performance, E, of the model:

Figure 6.3: How k-fold cross-validation works

In summary, k-fold cross-validation makes better use of the dataset than the holdout method with a
validation set, since in k-fold cross-validation all data points are being used for evaluation.

A good standard value for k in k-fold cross-validation is 10, as empirical evidence shows. For instance,
experiments by Ron Kohavi on various real-world datasets suggest that 10-fold cross-validation offers
the best tradeoff between bias and variance (A Study of Cross-Validation and Bootstrap for Accuracy Esti-
mation and Model Selection by Kohavi, Ron, International Joint Conference on Artificial Intelligence (IJCAI),
14 (12): 1137-43, 1995, https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf).

https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf

Learning Best Practices for Model Evaluation and Hyperparameter Tuning178

However, if we are working with relatively small training sets, it can be useful to increase the number
of folds. If we increase the value of k, more training data will be used in each iteration, which results
in a lower pessimistic bias toward estimating the generalization performance by averaging the individ-
ual model estimates. However, large values of k will also increase the runtime of the cross-validation
algorithm and yield estimates with higher variance, since the training folds will be more similar to
each other. On the other hand, if we are working with large datasets, we can choose a smaller value
for k, for example, k = 5, and still obtain an accurate estimate of the average performance of the model
while reducing the computational cost of refitting and evaluating the model on the different folds.

A slight improvement over the standard k-fold cross-validation approach is stratified k-fold cross-val-
idation, which can yield better bias and variance estimates, especially in cases of unequal class pro-
portions, which has also been shown in the same study by Ron Kohavi referenced previously in this
section. In stratified cross-validation, the class label proportions are preserved in each fold to ensure
that each fold is representative of the class proportions in the training dataset, which we will illustrate
by using the StratifiedKFold iterator in scikit-learn:

>>> import numpy as np
>>> from sklearn.model_selection import StratifiedKFold
>>> kfold = StratifiedKFold(n_splits=10).split(X_train, y_train)
>>> scores = []
>>> for k, (train, test) in enumerate(kfold):
... pipe_lr.fit(X_train[train], y_train[train])
... score = pipe_lr.score(X_train[test], y_train[test])
... scores.append(score)
... print(f'Fold: {k+1:02d}, '
... f'Class distr.: {np.bincount(y_train[train])}, '
... f'Acc.: {score:.3f}')
Fold: 01, Class distr.: [256 153], Acc.: 0.935
Fold: 02, Class distr.: [256 153], Acc.: 0.935
Fold: 03, Class distr.: [256 153], Acc.: 0.957
Fold: 04, Class distr.: [256 153], Acc.: 0.957

Leave-one-out cross-validation

A special case of k-fold cross-validation is the leave-one-out cross-validation (LOOCV)
method. In LOOCV, we set the number of folds equal to the number of training examples
(k = n) so that only one training example is used for testing during each iteration, which
is a recommended approach for working with very small datasets.

Chapter 6 179

Fold: 05, Class distr.: [256 153], Acc.: 0.935
Fold: 06, Class distr.: [257 153], Acc.: 0.956
Fold: 07, Class distr.: [257 153], Acc.: 0.978
Fold: 08, Class distr.: [257 153], Acc.: 0.933
Fold: 09, Class distr.: [257 153], Acc.: 0.956
Fold: 10, Class distr.: [257 153], Acc.: 0.956
>>> mean_acc = np.mean(scores)
>>> std_acc = np.std(scores)
>>> print(f'\nCV accuracy: {mean_acc:.3f} +/- {std_acc:.3f}')
CV accuracy: 0.950 +/- 0.014

First, we initialized the StratifiedKFold iterator from the sklearn.model_selection module with
the y_train class labels in the training dataset, and we specified the number of folds via the n_splits
parameter. When we used the kfold iterator to loop through the k folds, we used the returned indices
in train to fit the logistic regression pipeline that we set up at the beginning of this chapter. Using the
pipe_lr pipeline, we ensured that the examples were scaled properly (for instance, standardized) in
each iteration. We then used the test indices to calculate the accuracy score of the model, which we
collected in the scores list to calculate the average accuracy and the standard deviation of the estimate.

Although the previous code example was useful to illustrate how k-fold cross-validation works, scikit-
learn also implements a k-fold cross-validation scorer, which allows us to evaluate our model using
stratified k-fold cross-validation less verbosely:

>>> from sklearn.model_selection import cross_val_score
>>> scores = cross_val_score(estimator=pipe_lr,
... X=X_train,
... y=y_train,
... cv=10,
... n_jobs=1)
>>> print(f'CV accuracy scores: {scores}')
CV accuracy scores: [0.93478261 0.93478261 0.95652174
 0.95652174 0.93478261 0.95555556
 0.97777778 0.93333333 0.95555556
 0.95555556]
>>> print(f'CV accuracy: {np.mean(scores):.3f} '
... f'+/- {np.std(scores):.3f}')
CV accuracy: 0.950 +/- 0.014

Learning Best Practices for Model Evaluation and Hyperparameter Tuning180

An extremely useful feature of the cross_val_score approach is that we can distribute the evalua-
tion of the different folds across multiple central processing units (CPUs) on our machine. If we set
the n_jobs parameter to 1, only one CPU will be used to evaluate the performances, just like in our
StratifiedKFold example previously. However, by setting n_jobs=2, we could distribute the 10 rounds
of cross-validation to two CPUs (if available on our machine), and by setting n_jobs=-1, we can use
all available CPUs on our machine to do the computation in parallel.

Debugging algorithms with learning and validation
curves
In this section, we will take a look at two very simple yet powerful diagnostic tools that can help us to
improve the performance of a learning algorithm: learning curves and validation curves. In the next
subsections, we will discuss how we can use learning curves to diagnose whether a learning algorithm
has a problem with overfitting (high variance) or underfitting (high bias). Furthermore, we will take
a look at validation curves, which can help us to address the common issues of learning algorithms.

Diagnosing bias and variance problems with learning curves
If a model is too complex for a given training dataset—for example, think of a very deep decision
tree—the model tends to overfit the training data and does not generalize well to unseen data. Often,
it can help to collect more training examples to reduce the degree of overfitting.

However, in practice, it can often be very expensive or simply not feasible to collect more data. By
plotting the model training and validation accuracies as functions of the training dataset size, we can
easily detect whether the model suffers from high variance or high bias, and whether the collection
of more data could help to address this problem.

Estimating generalization performance

Please note that a detailed discussion of how the variance of the generalization perfor-
mance is estimated in cross-validation is beyond the scope of this book, but you can refer
to a comprehensive article about model evaluation and cross-validation (Model Evalua-
tion, Model Selection, and Algorithm Selection in Machine Learning by S. Raschka), which we
share at https://arxiv.org/abs/1811.12808. This article also discusses alternative
cross-validation techniques, such as the .632 and .632+ bootstrap cross-validation methods.

In addition, you can find a detailed discussion in an excellent article by M. Markatou and
others (Analysis of Variance of Cross-validation Estimators of the Generalization Error by M.
Markatou, H. Tian, S. Biswas, and G. M. Hripcsak, Journal of Machine Learning Research, 6: 1127-
1168, 2005), which is available at https://www.jmlr.org/papers/v6/markatou05a.html.

https://arxiv.org/abs/1811.12808
https://www.jmlr.org/papers/v6/markatou05a.html

Chapter 6 181

But before we discuss how to plot learning curves in scikit-learn, let’s discuss those two common
model issues by walking through the following illustration:

Figure 6.4: Common model issues

The graph in the upper left shows a model with a high bias. This model has both low training and
cross-validation accuracy, which indicates that it underfits the training data. Common ways to address
this issue are to increase the number of model parameters, for example, by collecting or constructing
additional features, or by decreasing the degree of regularization, for example, in support vector
machine (SVM) or logistic regression classifiers.

The graph in the upper-right shows a model that suffers from high variance, which is indicated by the
large gap between the training and cross-validation accuracy. To address this problem of overfitting,
we can collect more training data, reduce the complexity of the model, or increase the regularization
parameter, for example.

For unregularized models, it can also help to decrease the number of features via feature selection
(Chapter 4) or feature extraction (Chapter 5) to decrease the degree of overfitting. While collecting more
training data usually tends to decrease the chance of overfitting, it may not always help, for example,
if the training data is extremely noisy or the model is already very close to optimal.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning182

In the next subsection, we will see how to address those model issues using validation curves, but let’s
first see how we can use the learning curve function from scikit-learn to evaluate the model:

>>> import matplotlib.pyplot as plt
>>> from sklearn.model_selection import learning_curve
>>> pipe_lr = make_pipeline(StandardScaler(),
... LogisticRegression(penalty='l2',
... max_iter=10000))
>>> train_sizes, train_scores, test_scores =\
... learning_curve(estimator=pipe_lr,
... X=X_train,
... y=y_train,
... train_sizes=np.linspace(
... 0.1, 1.0, 10),
... cv=10,
... n_jobs=1)
>>> train_mean = np.mean(train_scores, axis=1)
>>> train_std = np.std(train_scores, axis=1)
>>> test_mean = np.mean(test_scores, axis=1)
>>> test_std = np.std(test_scores, axis=1)
>>> plt.plot(train_sizes, train_mean,
... color='blue', marker='o',
... markersize=5, label='Training accuracy')
>>> plt.fill_between(train_sizes,
... train_mean + train_std,
... train_mean - train_std,
... alpha=0.15, color='blue')
>>> plt.plot(train_sizes, test_mean,
... color='green', linestyle='--',
... marker='s', markersize=5,
... label='Validation accuracy')
>>> plt.fill_between(train_sizes,
... test_mean + test_std,
... test_mean - test_std,
... alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xlabel('Number of training examples')
>>> plt.ylabel('Accuracy')
>>> plt.legend(loc='lower right')
>>> plt.ylim([0.8, 1.03])
>>> plt.show()

Chapter 6 183

Note that we passed max_iter=10000 as an additional argument when instantiating the
LogisticRegression object (which uses 1,000 iterations as a default) to avoid convergence issues for
the smaller dataset sizes or extreme regularization parameter values (covered in the next section). After
we have successfully executed the preceding code, we will obtain the following learning curve plot:

Figure 6.5: A learning curve showing training and validation dataset accuracy by the number of
training examples

Via the train_sizes parameter in the learning_curve function, we can control the absolute or
relative number of training examples that are used to generate the learning curves. Here, we set
train_sizes=np.linspace(0.1, 1.0, 10) to use 10 evenly spaced, relative intervals for the training
dataset sizes. By default, the learning_curve function uses stratified k-fold cross-validation to cal-
culate the cross-validation accuracy of a classifier, and we set k = 10 via the cv parameter for 10-fold
stratified cross-validation.

Then, we simply calculated the average accuracies from the returned cross-validated training and
test scores for the different sizes of the training dataset, which we plotted using Matplotlib’s plot
function. Furthermore, we added the standard deviation of the average accuracy to the plot using the
fill_between function to indicate the variance of the estimate.

As we can see in the preceding learning curve plot, our model performs quite well on both the training
and validation datasets if it has seen more than 250 examples during training. We can also see that the
training accuracy increases for training datasets with fewer than 250 examples, and the gap between
validation and training accuracy widens—an indicator of an increasing degree of overfitting.

Addressing over- and underfitting with validation curves
Validation curves are a useful tool for improving the performance of a model by addressing issues such
as overfitting or underfitting. Validation curves are related to learning curves, but instead of plotting
the training and test accuracies as functions of the sample size, we vary the values of the model pa-
rameters, for example, the inverse regularization parameter, C, in logistic regression.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning184

Let’s go ahead and see how we create validation curves via scikit-learn:

>>> from sklearn.model_selection import validation_curve

>>> param_range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]

>>> train_scores, test_scores = validation_curve(

... estimator=pipe_lr,

... X=X_train,

... y=y_train,

... param_name='logisticregression__C',

... param_range=param_range,

... cv=10)

>>> train_mean = np.mean(train_scores, axis=1)

>>> train_std = np.std(train_scores, axis=1)

>>> test_mean = np.mean(test_scores, axis=1)

>>> test_std = np.std(test_scores, axis=1)

>>> plt.plot(param_range, train_mean,

... color='blue', marker='o',

... markersize=5, label='Training accuracy')

>>> plt.fill_between(param_range, train_mean + train_std,

... train_mean - train_std, alpha=0.15,

... color='blue')

>>> plt.plot(param_range, test_mean,

... color='green', linestyle='--',

... marker='s', markersize=5,

... label='Validation accuracy')

>>> plt.fill_between(param_range,

... test_mean + test_std,

... test_mean - test_std,

... alpha=0.15, color='green')

>>> plt.grid()

>>> plt.xscale('log')

>>> plt.legend(loc='lower right')

>>> plt.xlabel('Parameter C')

>>> plt.ylabel('Accuracy')

>>> plt.ylim([0.8, 1.0])

>>> plt.show()

Chapter 6 185

Using the preceding code, we obtained the validation curve plot for the parameter C:

Figure 6.6: A validation curve plot for the SVM hyperparameter C

Similar to the learning_curve function, the validation_curve function uses stratified k-fold cross-val-
idation by default to estimate the performance of the classifier. Inside the validation_curve function,
we specified the parameter that we wanted to evaluate. In this case, it is C, the inverse regularization
parameter of the LogisticRegression classifier, which we wrote as 'logisticregression__C' to ac-
cess the LogisticRegression object inside the scikit-learn pipeline for a specified value range that we
set via the param_range parameter. Similar to the learning curve example in the previous section, we
plotted the average training and cross-validation accuracies and the corresponding standard deviations.

Although the differences in the accuracy for varying values of C are subtle, we can see that the model
slightly underfits the data when we increase the regularization strength (small values of C). However,
for large values of C, it means lowering the strength of regularization, so the model tends to slightly
overfit the data. In this case, the sweet spot appears to be between 0.01 and 0.1 of the C value.

Fine-tuning machine learning models via grid search
In machine learning, we have two types of parameters: those that are learned from the training data,
for example, the weights in logistic regression, and the parameters of a learning algorithm that are op-
timized separately. The latter are the tuning parameters (or hyperparameters) of a model, for example,
the regularization parameter in logistic regression or the maximum depth parameter of a decision tree.

In the previous section, we used validation curves to improve the performance of a model by tuning
one of its hyperparameters. In this section, we will take a look at a popular hyperparameter optimi-
zation technique called grid search, which can further help to improve the performance of a model
by finding the optimal combination of hyperparameter values.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning186

Tuning hyperparameters via grid search
The grid search approach is quite simple: it’s a brute-force exhaustive search paradigm where we spec-
ify a list of values for different hyperparameters, and the computer evaluates the model performance
for each combination to obtain the optimal combination of values from this set:

>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import SVC
>>> pipe_svc = make_pipeline(StandardScaler(),
... SVC(random_state=1))
>>> param_range = [0.0001, 0.001, 0.01, 0.1,
... 1.0, 10.0, 100.0, 1000.0]
>>> param_grid = [{'svc__C': param_range,
... 'svc__kernel': ['linear']},
... {'svc__C': param_range,
... 'svc__gamma': param_range,
... 'svc__kernel': ['rbf']}]
>>> gs = GridSearchCV(estimator=pipe_svc,
... param_grid=param_grid,
... scoring='accuracy',
... cv=10,
... refit=True,
... n_jobs=-1)
>>> gs = gs.fit(X_train, y_train)
>>> print(gs.best_score_)
0.9846153846153847
>>> print(gs.best_params_)
{'svc__C': 100.0, 'svc__gamma': 0.001, 'svc__kernel': 'rbf'}

Using the preceding code, we initialized a GridSearchCV object from the sklearn.model_selection
module to train and tune an SVM pipeline. We set the param_grid parameter of GridSearchCV to a list
of dictionaries to specify the parameters that we’d want to tune. For the linear SVM, we only evaluated
the inverse regularization parameter, C; for the radial basis function (RBF) kernel SVM, we tuned both
the svc__C and svc__gamma parameters. Note that the svc__gamma parameter is specific to kernel SVMs.

GridSearchCV uses k-fold cross-validation for comparing models trained with different hyperparam-
eter settings. Via the cv=10 setting, it will carry out 10-fold cross-validation and compute the average
accuracy (via scoring='accuracy') across these 10-folds to assess the model performance. We set
n_jobs=-1 so that GridSearchCV can use all our processing cores to speed up the grid search by fitting
models to the different folds in parallel, but if your machine has problems with this setting, you may
change this setting to n_jobs=None for single processing.

After we used the training data to perform the grid search, we obtained the score of the best-perform-
ing model via the best_score_ attribute and looked at its parameters, which can be accessed via the
best_params_ attribute. In this particular case, the RBF kernel SVM model with svc__C = 100.0
yielded the best k-fold cross-validation accuracy: 98.5 percent.

Chapter 6 187

Finally, we use the independent test dataset to estimate the performance of the best-selected model,
which is available via the best_estimator_ attribute of the GridSearchCV object:

>>> clf = gs.best_estimator_
>>> clf.fit(X_train, y_train)
>>> print(f'Test accuracy: {clf.score(X_test, y_test):.3f}')
Test accuracy: 0.974

Please note that fitting a model with the best settings (gs.best_estimator_) on the training set manual-
ly via clf.fit(X_train, y_train) after completing the grid search is not necessary. The GridSearchCV
class has a refit parameter, which will refit the gs.best_estimator_ to the whole training set auto-
matically if we set refit=True (default).

Exploring hyperparameter configurations more widely with
randomized search
Since grid search is an exhaustive search, it is guaranteed to find the optimal hyperparameter configu-
ration if it is contained in the user-specified parameter grid. However, specifying large hyperparameter
grids makes grid search very expensive in practice. An alternative approach for sampling different
parameter combinations is randomized search. In randomized search, we draw hyperparameter
configurations randomly from distributions (or discrete sets). In contrast to grid search, randomized
search does not do an exhaustive search over the hyperparameter space. Still, it allows us to explore a
wider range of hyperparameter value settings in a more cost- and time-effective manner. This concept
is illustrated in Figure 6.7, which shows a fixed grid of nine hyperparameter settings being searched
via grid search and randomized search:

Figure 6.7: A comparison of grid search and randomized search for sampling nine different hyper-
parameter configurations each

The main takeaway is that while grid search only explores discrete, user-specified choices, it may
miss good hyperparameter configurations if the search space is too scarce. Interested readers can
find additional details about randomized search, along with empirical studies, in the following article:
Random Search for Hyper-Parameter Optimization by J. Bergstra, Y. Bengio, Journal of Machine Learning
Research, pp. 281-305, 2012, https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a

Learning Best Practices for Model Evaluation and Hyperparameter Tuning188

Let’s look at how we can use randomized search for tuning an SVM. Scikit-learn implements a
RandomizedSearchCV class, which is analogous to the GridSearchCV we used in the previous subsec-
tion. The main difference is that we can specify distributions as part of our parameter grid and specify
the total number of hyperparameter configurations to be evaluated. For example, let’s consider the
hyperparameter range we used for several hyperparameters when tuning the SVM in the grid search
example in the previous section:

>>> param_range = [0.0001, 0.001, 0.01, 0.1,
... 1.0, 10.0, 100.0, 1000.0]

Note that while RandomizedSearchCV can accept similar discrete lists of values as inputs for the pa-
rameter grid, which is useful when considering categorical hyperparameters, its main power lies in
the fact that we can replace these lists with distributions to sample from. Thus, for example, we may
substitute the preceding list with the following distribution from SciPy:

>>> param_range = scipy.stats.loguniform(0.0001, 1000.0)

For instance, using a loguniform distribution instead of a regular uniform distribution will ensure
that in a sufficiently large number of trials, the same number of samples will be drawn from the
[0.0001, 0.001] range as, for example, the [10.0, 100.0] range. To check its behavior, we can draw 10
random samples from this distribution via the rvs(10) method, as shown here:

>>> np.random.seed(1)
>>> param_range.rvs(10)
array([8.30145146e-02, 1.10222804e+01, 1.00184520e-04, 1.30715777e-02,
 1.06485687e-03, 4.42965766e-04, 2.01289666e-03, 2.62376594e-02,
 5.98924832e-02, 5.91176467e-01])

Let’s now see the RandomizedSearchCV in action and tune an SVM as we did with GridSearchCV in
the previous section:

>>> from sklearn.model_selection import RandomizedSearchCV
>>> pipe_svc = make_pipeline(StandardScaler(),
... SVC(random_state=1))

Specifying distributions

RandomizedSearchCV supports arbitrary distributions as long as we can sample from
them by calling the rvs() method. A list of all distributions currently available via scipy.
stats can be found here: https://docs.scipy.org/doc/scipy/reference/stats.
html#probability-distributions.

https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions
https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions

Chapter 6 189

>>> param_grid = [{'svc__C': param_range,
... 'svc__kernel': ['linear']},
... {'svc__C': param_range,
... 'svc__gamma': param_range,
... 'svc__kernel': ['rbf']}]
>>> rs = RandomizedSearchCV(estimator=pipe_svc,

... param_distributions=param_grid,

... scoring='accuracy',

... refit=True,

... n_iter=20,

... cv=10,

... random_state=1,

... n_jobs=-1)

>>> rs = rs.fit(X_train, y_train)

>>> print(rs.best_score_)

0.9670531400966184

>>> print(rs.best_params_)

{'svc__C': 0.05971247755848464, 'svc__kernel': 'linear'}

Based on this code example, we can see that the usage is very similar to GridSearchCV, except that we
could use distributions for specifying parameter ranges and specified the number of iterations—20
iterations—by setting n_iter=20.

More resource-efficient hyperparameter search with successive
halving
Taking the idea of randomized search one step further, scikit-learn implements a successive halving
variant, HalvingRandomSearchCV, that makes finding suitable hyperparameter configurations more
efficient. Successive halving, given a large set of candidate configurations, successively throws out
unpromising hyperparameter configurations until only one configuration remains. We can summarize
the procedure via the following steps:

1. Draw a large set of candidate configurations via random sampling
2. Train the models with limited resources, for example, a small subset of the training data (as

opposed to using the entire training set)
3. Discard the bottom 50 percent based on predictive performance
4. Go back to step 2 with an increased amount of available resources

Learning Best Practices for Model Evaluation and Hyperparameter Tuning190

The steps are repeated until only one hyperparameter configuration remains. Note that there is also
a successive halving implementation for the grid search variant called HalvingGridSearchCV, where
all specified hyperparameter configurations are used in step 1 instead of random samples.

In scikit-learn 1.0, HalvingRandomSearchCV is still experimental, which is why we have to enable it first:

>>> from sklearn.experimental import enable_halving_search_cv

(The above code may not work or be supported in future releases.)

After enabling the experimental support, we can use randomized search with successive halving as
shown in the following:

>>> from sklearn.model_selection import HalvingRandomSearchCV

>>> hs = HalvingRandomSearchCV(pipe_svc,
... param_distributions=param_grid,
... n_candidates='exhaust',
... resource='n_samples',
... factor=1.5,
... random_state=1,
... n_jobs=-1)

The resource='n_samples' (default) setting specifies that we consider the training set size as the re-
source we vary between the rounds. Via the factor parameter, we can determine how many candidates
are eliminated in each round. For example, setting factor=2 eliminates half of the candidates, and set-
ting factor=1.5 means that only 100%/1.5 ≈ 66% of the candidates make it into the next round. Instead
of choosing a fixed number of iterations as in RandomizedSearchCV, we set n_candidates='exhaust'
(default), which will sample the number of hyperparameter configurations such that the maximum
number of resources (here: training examples) are used in the last round.

We can then carry out the search similar to RandomizedSearchCV:

>>> hs = hs.fit(X_train, y_train)
>>> print(hs.best_score_)
0.9617647058823529

>>> print(hs.best_params_)
{'svc__C': 4.934834261073341, 'svc__kernel': 'linear'}

Chapter 6 191

>>> clf = hs.best_estimator_
>>> print(f'Test accuracy: {hs.score(X_test, y_test):.3f}')
Test accuracy: 0.982

If we compare the results from GridSearchCV and RandomizedSearchCV from the previous two sub-
sections with the model from HalvingRandomSearchCV, we can see that the latter yields a model that
performs slightly better on the test set (98.2 percent accuracy as opposed to 97.4 percent).

Algorithm selection with nested cross-validation
Using k-fold cross-validation in combination with grid search or randomized search is a useful ap-
proach for fine-tuning the performance of a machine learning model by varying its hyperparam-
eter values, as we saw in the previous subsections. If we want to select among different machine
learning algorithms, though, another recommended approach is nested cross-validation. In a nice
study on the bias in error estimation, Sudhir Varma and Richard Simon concluded that the true
error of the estimate is almost unbiased relative to the test dataset when nested cross-validation is
used (Bias in Error Estimation When Using Cross-Validation for Model Selection by S. Varma and R. Si-
mon, BMC Bioinformatics, 7(1): 91, 2006, https://bmcbioinformatics.biomedcentral.com/articl
es/10.1186/1471-2105-7-91).

Hyperparameter tuning with hyperopt

Another popular library for hyperparameter optimization is hyperopt (https://github.
com/hyperopt/hyperopt), which implements several different methods for hyperpa-
rameter optimization, including randomized search and the Tree-structured Parzen Es-
timators (TPE) method. TPE is a Bayesian optimization method based on a probabilistic
model that is continuously updated based on past hyperparameter evaluations and the
associated performance scores instead of regarding these evaluations as independent
events. You can find out more about TPE in Algorithms for Hyper-Parameter Optimization.
Bergstra J, Bardenet R, Bengio Y, Kegl B. NeurIPS 2011. pp. 2546–2554, https://dl.acm.
org/doi/10.5555/2986459.2986743.

While hyperopt provides a general-purpose interface for hyperparameter optimization,
there is also a scikit-learn-specific package called hyperopt-sklearn for additional conve-
nience: https://github.com/hyperopt/hyperopt-sklearn.

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-91
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-91
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://dl.acm.org/doi/10.5555/2986459.2986743
https://dl.acm.org/doi/10.5555/2986459.2986743
https://github.com/hyperopt/hyperopt-sklearn

Learning Best Practices for Model Evaluation and Hyperparameter Tuning192

In nested cross-validation, we have an outer k-fold cross-validation loop to split the data into training
and test folds, and an inner loop is used to select the model using k-fold cross-validation on the training
fold. After model selection, the test fold is then used to evaluate the model performance. Figure 6.8
explains the concept of nested cross-validation with only five outer and two inner folds, which can
be useful for large datasets where computational performance is important; this particular type of
nested cross-validation is also known as 5×2 cross-validation:

Figure 6.8: The concept of nested cross-validation

In scikit-learn, we can perform nested cross-validation with grid search as follows:

>>> param_range = [0.0001, 0.001, 0.01, 0.1,
... 1.0, 10.0, 100.0, 1000.0]
>>> param_grid = [{'svc__C': param_range,
... 'svc__kernel': ['linear']},
... {'svc__C': param_range,
... 'svc__gamma': param_range,
... 'svc__kernel': ['rbf']}]
>>> gs = GridSearchCV(estimator=pipe_svc,
... param_grid=param_grid,
... scoring='accuracy',
... cv=2)

Chapter 6 193

>>> scores = cross_val_score(gs, X_train, y_train,
... scoring='accuracy', cv=5)
>>> print(f'CV accuracy: {np.mean(scores):.3f} '
... f'+/- {np.std(scores):.3f}')
CV accuracy: 0.974 +/- 0.015

The returned average cross-validation accuracy gives us a good estimate of what to expect if we tune
the hyperparameters of a model and use it on unseen data.

For example, we can use the nested cross-validation approach to compare an SVM model to a simple
decision tree classifier; for simplicity, we will only tune its depth parameter:

>>> from sklearn.tree import DecisionTreeClassifier
>>> gs = GridSearchCV(
... estimator=DecisionTreeClassifier(random_state=0),
... param_grid=[{'max_depth': [1, 2, 3, 4, 5, 6, 7, None]}],
... scoring='accuracy',
... cv=2
...)
>>> scores = cross_val_score(gs, X_train, y_train,
... scoring='accuracy', cv=5)
>>> print(f'CV accuracy: {np.mean(scores):.3f} '
... f'+/- {np.std(scores):.3f}')
CV accuracy: 0.934 +/- 0.016

As we can see, the nested cross-validation performance of the SVM model (97.4 percent) is notably
better than the performance of the decision tree (93.4 percent), and thus, we’d expect that it might be
the better choice to classify new data that comes from the same population as this particular dataset.

Looking at different performance evaluation metrics
In the previous sections and chapters, we evaluated different machine learning models using predic-
tion accuracy, which is a useful metric with which to quantify the performance of a model in general.
However, there are several other performance metrics that can be used to measure a model’s relevance,
such as precision, recall, the F1 score, and Matthews correlation coefficient (MCC).

Reading a confusion matrix
Before we get into the details of different scoring metrics, let’s take a look at a confusion matrix, a
matrix that lays out the performance of a learning algorithm.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning194

A confusion matrix is simply a square matrix that reports the counts of the true positive (TP), true neg-
ative (TN), false positive (FP), and false negative (FN) predictions of a classifier, as shown in Figure 6.9:

Figure 6.9: The confusion matrix

Although these metrics can be easily computed manually by comparing the actual and predicted class
labels, scikit-learn provides a convenient confusion_matrix function that we can use, as follows:

>>> from sklearn.metrics import confusion_matrix
>>> pipe_svc.fit(X_train, y_train)
>>> y_pred = pipe_svc.predict(X_test)
>>> confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
>>> print(confmat)
[[71 1]
[2 40]]

The array that was returned after executing the code provides us with information about the different
types of error the classifier made on the test dataset. We can map this information onto the confusion
matrix illustration in Figure 6.9 using Matplotlib’s matshow function:

>>> fig, ax = plt.subplots(figsize=(2.5, 2.5))
>>> ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
>>> for i in range(confmat.shape[0]):
... for j in range(confmat.shape[1]):
... ax.text(x=j, y=i, s=confmat[i, j],
... va='center', ha='center')
>>> ax.xaxis.set_ticks_position('bottom')
>>> plt.xlabel('Predicted label')
>>> plt.ylabel('True label')
>>> plt.show()

Chapter 6 195

Now, the following confusion matrix plot, with the added labels, should make the results a little bit
easier to interpret:

Figure 6.10: A confusion matrix for our data

Assuming that class 1 (malignant) is the positive class in this example, our model correctly classified
71 of the examples that belong to class 0 (TN) and 40 examples that belong to class 1 (TP), respectively.
However, our model also incorrectly misclassified two examples from class 1 as class 0 (FN), and it
predicted that one example is malignant although it is a benign tumor (FP). In the next subsection,
we will learn how we can use this information to calculate various error metrics.

Optimizing the precision and recall of a classification model
Both the prediction error (ERR) and accuracy (ACC) provide general information about how many
examples are misclassified. The error can be understood as the sum of all false predictions divided
by the number of total predictions, and the accuracy is calculated as the sum of correct predictions
divided by the total number of predictions, respectively:𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹

The prediction accuracy can then be calculated directly from the error:𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 𝐴 1 − 𝐸𝐸𝐸𝐸𝐸𝐸

The true positive rate (TPR) and false positive rate (FPR) are performance metrics that are especially
useful for imbalanced class problems: 𝐹𝐹𝐹𝐹𝐹𝐹 𝐹 𝐹𝐹𝐹𝐹𝑁𝑁 𝐹 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝐹𝐹𝐹𝐹 𝐹 𝑇𝑇𝐹𝐹𝐹𝐹 𝐹 𝑇𝑇𝐹𝐹𝐹𝐹𝑁𝑁 + 𝑇𝑇𝐹𝐹

Learning Best Practices for Model Evaluation and Hyperparameter Tuning196

In tumor diagnosis, for example, we are more concerned about the detection of malignant tumors
in order to help a patient with the appropriate treatment. However, it is also important to decrease
the number of benign tumors incorrectly classified as malignant (FP) to not unnecessarily concern
patients. In contrast to the FPR, the TPR provides useful information about the fraction of positive (or
relevant) examples that were correctly identified out of the total pool of positives (P).

The performance metrics precision (PRE) and recall (REC) are related to those TP and TN rates, and
in fact, REC is synonymous with TPR:𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

In other words, recall quantifies how many of the relevant records (the positives) are captured as such
(the true positives). Precision quantifies how many of the records predicted as relevant (the sum of
true and false positives) are actually relevant (true positives):𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

Revisiting the malignant tumor detection example, optimizing for recall helps with minimizing the
chance of not detecting a malignant tumor. However, this comes at the cost of predicting malignant
tumors in patients although the patients are healthy (a high number of FPs). If we optimize for preci-
sion, on the other hand, we emphasize correctness if we predict that a patient has a malignant tumor.
However, this comes at the cost of missing malignant tumors more frequently (a high number of FNs).

To balance the up- and downsides of optimizing PRE and REC, the harmonic mean of PRE and REC
is used, the so-called F1 score: 𝐹𝐹𝐹 𝐹 𝐹𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑅𝑅

Lastly, a measure that summarizes a confusion matrix is the MCC, which is especially popular in
biological research contexts. The MCC is calculated as follows:𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇√(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

Further reading on precision and recall

If you are interested in a more thorough discussion of the different performance metrics,
such as precision and recall, read David M. W. Powers’ technical report Evaluation: From
Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation, which is freely
available at https://arxiv.org/abs/2010.16061.

https://arxiv.org/abs/2010.16061

Chapter 6 197

In contrast to PRE, REC, and the F1 score, the MCC ranges between –1 and 1, and it takes all elements
of a confusion matrix into account—for instance, the F1 score does not involve the TN. While the MCC
values are harder to interpret than the F1 score, it is regarded as a superior metric, as described in the
following article: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy
in binary classification evaluation by D. Chicco and G. Jurman, BMC Genomics. pp. 281-305, 2012, https://
bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7.

Those scoring metrics are all implemented in scikit-learn and can be imported from the sklearn.
metrics module as shown in the following snippet:

>>> from sklearn.metrics import precision_score
>>> from sklearn.metrics import recall_score, f1_score
>>> from sklearn.metrics import matthews_corrcoef

>>> pre_val = precision_score(y_true=y_test, y_pred=y_pred)
>>> print(f'Precision: {pre_val:.3f}')
Precision: 0.976
>>> rec_val = recall_score(y_true=y_test, y_pred=y_pred)
>>> print(f'Recall: {rec_val:.3f}')
Recall: 0.952
>>> f1_val = f1_score(y_true=y_test, y_pred=y_pred)
>>> print(f'F1: {f1_val:.3f}')
F1: 0.964
>>> mcc_val = matthews_corrcoef(y_true=y_test, y_pred=y_pred)
>>> print(f'MCC: {mcc_val:.3f}')
MCC: 0.943

Furthermore, we can use a different scoring metric than accuracy in the GridSearchCV via the scoring
parameter. A complete list of the different values that are accepted by the scoring parameter can be
found at http://scikit-learn.org/stable/modules/model_evaluation.html.

Remember that the positive class in scikit-learn is the class that is labeled as class 1. If we want to
specify a different positive label, we can construct our own scorer via the make_scorer function, which
we can then directly provide as an argument to the scoring parameter in GridSearchCV (in this ex-
ample, using the f1_score as a metric):

>>> from sklearn.metrics import make_scorer
>>> c_gamma_range = [0.01, 0.1, 1.0, 10.0]
>>> param_grid = [{'svc__C': c_gamma_range,
... 'svc__kernel': ['linear']},
... {'svc__C': c_gamma_range,
... 'svc__gamma': c_gamma_range,
... 'svc__kernel': ['rbf']}]

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6413-7
http://scikit-learn.org/stable/modules/model_evaluation.html

Learning Best Practices for Model Evaluation and Hyperparameter Tuning198

>>> scorer = make_scorer(f1_score, pos_label=0)
>>> gs = GridSearchCV(estimator=pipe_svc,
... param_grid=param_grid,
... scoring=scorer,
... cv=10)
>>> gs = gs.fit(X_train, y_train)
>>> print(gs.best_score_)
0.986202145696
>>> print(gs.best_params_)
{'svc__C': 10.0, 'svc__gamma': 0.01, 'svc__kernel': 'rbf'}

Plotting a receiver operating characteristic
Receiver operating characteristic (ROC) graphs are useful tools to select models for classification
based on their performance with respect to the FPR and TPR, which are computed by shifting the
decision threshold of the classifier. The diagonal of a ROC graph can be interpreted as random guessing,
and classification models that fall below the diagonal are considered as worse than random guessing.
A perfect classifier would fall into the top-left corner of the graph with a TPR of 1 and an FPR of 0.
Based on the ROC curve, we can then compute the so-called ROC area under the curve (ROC AUC) to
characterize the performance of a classification model.

Similar to ROC curves, we can compute precision-recall curves for different probability thresholds
of a classifier. A function for plotting those precision-recall curves is also implemented in scikit-learn
and is documented at http://scikit-learn.org/stable/modules/generated/sklearn.metrics.
precision_recall_curve.html.

Executing the following code example, we will plot a ROC curve of a classifier that only uses two fea-
tures from the Breast Cancer Wisconsin dataset to predict whether a tumor is benign or malignant.
Although we are going to use the same logistic regression pipeline that we defined previously, we
are only using two features this time. This is to make the classification task more challenging for the
classifier, by withholding useful information contained in the other features, so that the resulting
ROC curve becomes visually more interesting. For similar reasons, we are also reducing the number
of folds in the StratifiedKFold validator to three. The code is as follows:

>>> from sklearn.metrics import roc_curve, auc
>>> from numpy import interp
>>> pipe_lr = make_pipeline(
... StandardScaler(),
... PCA(n_components=2),
... LogisticRegression(penalty='l2', random_state=1,
... solver='lbfgs', C=100.0)
...)
>>> X_train2 = X_train[:, [4, 14]]

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html

Chapter 6 199

>>> cv = list(StratifiedKFold(n_splits=3).split(X_train, y_train))
>>> fig = plt.figure(figsize=(7, 5))
>>> mean_tpr = 0.0
>>> mean_fpr = np.linspace(0, 1, 100)
>>> all_tpr = []
>>> for i, (train, test) in enumerate(cv):
... probas = pipe_lr.fit(
... X_train2[train],
... y_train[train]
...).predict_proba(X_train2[test])
... fpr, tpr, thresholds = roc_curve(y_train[test],
... probas[:, 1],
... pos_label=1)
... mean_tpr += interp(mean_fpr, fpr, tpr)
... mean_tpr[0] = 0.0
... roc_auc = auc(fpr, tpr)
... plt.plot(fpr,
... tpr,
... label=f'ROC fold {i+1} (area = {roc_auc:.2f})')
>>> plt.plot([0, 1],
... [0, 1],
... linestyle='--',
... color=(0.6, 0.6, 0.6),
... label='Random guessing (area=0.5)')
>>> mean_tpr /= len(cv)
>>> mean_tpr[-1] = 1.0
>>> mean_auc = auc(mean_fpr, mean_tpr)
>>> plt.plot(mean_fpr, mean_tpr, 'k--',
... label=f'Mean ROC (area = {mean_auc:.2f})', lw=2)
>>> plt.plot([0, 0, 1],
... [0, 1, 1],
... linestyle=':',
... color='black',
... label='Perfect performance (area=1.0)')
>>> plt.xlim([-0.05, 1.05])
>>> plt.ylim([-0.05, 1.05])
>>> plt.xlabel('False positive rate')
>>> plt.ylabel('True positive rate')
>>> plt.legend(loc='lower right')
>>> plt.show()

Learning Best Practices for Model Evaluation and Hyperparameter Tuning200

In the preceding code example, we used the already familiar StratifiedKFold class from scikit-learn
and calculated the ROC performance of the LogisticRegression classifier in our pipe_lr pipeline
using the roc_curve function from the sklearn.metrics module separately for each iteration. Fur-
thermore, we interpolated the average ROC curve from the three folds via the interp function that we
imported from SciPy and calculated the area under the curve via the auc function. The resulting ROC
curve indicates that there is a certain degree of variance between the different folds, and the average
ROC AUC (0.76) falls between a perfect score (1.0) and random guessing (0.5):

Figure 6.11: The ROC plot

Note that if we are just interested in the ROC AUC score, we could also directly import the roc_auc_
score function from the sklearn.metrics submodule, which can be used similarly to the other scoring
functions (for example, precision_score) that were introduced in the previous sections.

Reporting the performance of a classifier as the ROC AUC can yield further insights into a classifier’s
performance with respect to imbalanced samples. However, while the accuracy score can be inter-
preted as a single cutoff point on a ROC curve, A. P. Bradley showed that the ROC AUC and accuracy
metrics mostly agree with each other: The Use of the Area Under the ROC Curve in the Evaluation of Ma-
chine Learning Algorithms by A. P. Bradley, Pattern Recognition, 30(7): 1145-1159, 1997, https://reader.
elsevier.com/reader/sd/pii/S0031320396001422.

Scoring metrics for multiclass classification
The scoring metrics that we’ve discussed so far are specific to binary classification systems. However,
scikit-learn also implements macro and micro averaging methods to extend those scoring metrics
to multiclass problems via one-vs.-all (OvA) classification. The micro-average is calculated from the
individual TPs, TNs, FPs, and FNs of the system. For example, the micro-average of the precision score
in a k-class system can be calculated as follows:𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑃𝑃1 + ⋯+ 𝑇𝑇𝑃𝑃𝑘𝑘𝑇𝑇𝑃𝑃1 + ⋯+ 𝑇𝑇𝑃𝑃𝑘𝑘 + 𝐹𝐹𝑃𝑃1 + ⋯+ 𝐹𝐹𝑃𝑃𝑘𝑘

https://reader.elsevier.com/reader/sd/pii/S0031320396001422
https://reader.elsevier.com/reader/sd/pii/S0031320396001422

Chapter 6 201

The macro-average is simply calculated as the average scores of the different systems:𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑃𝑃𝑃𝑃1 + ⋯+ 𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘

Micro-averaging is useful if we want to weight each instance or prediction equally, whereas macro-av-
eraging weights all classes equally to evaluate the overall performance of a classifier with regard to
the most frequent class labels.

If we are using binary performance metrics to evaluate multiclass classification models in scikit-learn,
a normalized or weighted variant of the macro-average is used by default. The weighted macro-av-
erage is calculated by weighting the score of each class label by the number of true instances when
calculating the average. The weighted macro-average is useful if we are dealing with class imbalances,
that is, different numbers of instances for each label.

While the weighted macro-average is the default for multiclass problems in scikit-learn, we can specify
the averaging method via the average parameter inside the different scoring functions that we import
from the sklearn.metrics module, for example, the precision_score or make_scorer functions:

>>> pre_scorer = make_scorer(score_func=precision_score,

... pos_label=1,

... greater_is_better=True,

... average='micro')

Dealing with class imbalance
We’ve mentioned class imbalances several times throughout this chapter, and yet we haven’t actually
discussed how to deal with such scenarios appropriately if they occur. Class imbalance is a quite com-
mon problem when working with real-world data—examples from one class or multiple classes are
over-represented in a dataset. We can think of several domains where this may occur, such as spam
filtering, fraud detection, or screening for diseases.

Imagine that the Breast Cancer Wisconsin dataset that we’ve been working with in this chapter con-
sisted of 90 percent healthy patients. In this case, we could achieve 90 percent accuracy on the test
dataset by just predicting the majority class (benign tumor) for all examples, without the help of a
supervised machine learning algorithm. Thus, training a model on such a dataset that achieves ap-
proximately 90 percent test accuracy would mean our model hasn’t learned anything useful from the
features provided in this dataset.

In this section, we will briefly go over some of the techniques that could help with imbalanced data-
sets. But before we discuss different methods to approach this problem, let’s create an imbalanced
dataset from our dataset, which originally consisted of 357 benign tumors (class 0) and 212 malignant
tumors (class 1):

>>> X_imb = np.vstack((X[y == 0], X[y == 1][:40]))

>>> y_imb = np.hstack((y[y == 0], y[y == 1][:40]))

Learning Best Practices for Model Evaluation and Hyperparameter Tuning202

In this code snippet, we took all 357 benign tumor examples and stacked them with the first 40 ma-
lignant examples to create a stark class imbalance. If we were to compute the accuracy of a model
that always predicts the majority class (benign, class 0), we would achieve a prediction accuracy of
approximately 90 percent:

>>> y_pred = np.zeros(y_imb.shape[0])
>>> np.mean(y_pred == y_imb) * 100
89.92443324937027

Thus, when we fit classifiers on such datasets, it would make sense to focus on other metrics than
accuracy when comparing different models, such as precision, recall, the ROC curve—whatever we
care most about in our application. For instance, our priority might be to identify the majority of pa-
tients with malignant cancer to recommend an additional screening, so recall should be our metric of
choice. In spam filtering, where we don’t want to label emails as spam if the system is not very certain,
precision might be a more appropriate metric.

Aside from evaluating machine learning models, class imbalance influences a learning algorithm
during model fitting itself. Since machine learning algorithms typically optimize a reward or loss
function that is computed as a sum over the training examples that it sees during fitting, the decision
rule is likely going to be biased toward the majority class.

In other words, the algorithm implicitly learns a model that optimizes the predictions based on the
most abundant class in the dataset to minimize the loss or maximize the reward during training.

One way to deal with imbalanced class proportions during model fitting is to assign a larger penalty
to wrong predictions on the minority class. Via scikit-learn, adjusting such a penalty is as convenient
as setting the class_weight parameter to class_weight='balanced', which is implemented for most
classifiers.

Other popular strategies for dealing with class imbalance include upsampling the minority class,
downsampling the majority class, and the generation of synthetic training examples. Unfortunately,
there’s no universally best solution or technique that works best across different problem domains.
Thus, in practice, it is recommended to try out different strategies on a given problem, evaluate the
results, and choose the technique that seems most appropriate.

The scikit-learn library implements a simple resample function that can help with the upsampling of
the minority class by drawing new samples from the dataset with replacement. The following code
will take the minority class from our imbalanced Breast Cancer Wisconsin dataset (here, class 1) and
repeatedly draw new samples from it until it contains the same number of examples as class label 0:

>>> from sklearn.utils import resample
>>> print('Number of class 1 examples before:',
... X_imb[y_imb == 1].shape[0])
Number of class 1 examples before: 40
>>> X_upsampled, y_upsampled = resample(
... X_imb[y_imb == 1],

Chapter 6 203

... y_imb[y_imb == 1],

... replace=True,

... n_samples=X_imb[y_imb == 0].shape[0],

... random_state=123)
>>> print('Number of class 1 examples after:',
... X_upsampled.shape[0])
Number of class 1 examples after: 357

After resampling, we can then stack the original class 0 samples with the upsampled class 1 subset to
obtain a balanced dataset as follows:

>>> X_bal = np.vstack((X[y == 0], X_upsampled))
>>> y_bal = np.hstack((y[y == 0], y_upsampled))

Consequently, a majority vote prediction rule would only achieve 50 percent accuracy:

>>> y_pred = np.zeros(y_bal.shape[0])
>>> np.mean(y_pred == y_bal) * 100
50

Similarly, we could downsample the majority class by removing training examples from the dataset.
To perform downsampling using the resample function, we could simply swap the class 1 label with
class 0 in the previous code example and vice versa.

Summary
At the beginning of this chapter, we discussed how to chain different transformation techniques and
classifiers in convenient model pipelines that help us to train and evaluate machine learning models
more efficiently. We then used those pipelines to perform k-fold cross-validation, one of the essential
techniques for model selection and evaluation. Using k-fold cross-validation, we plotted learning
and validation curves to diagnose common problems of learning algorithms, such as overfitting and
underfitting.

Generating new training data to address class imbalance

Another technique for dealing with class imbalance is the generation of synthetic training
examples, which is beyond the scope of this book. Probably the most widely used algorithm
for synthetic training data generation is Synthetic Minority Over-sampling Technique
(SMOTE), and you can learn more about this technique in the original research article by
Nitesh Chawla and others: SMOTE: Synthetic Minority Over-sampling Technique, Journal of
Artificial Intelligence Research, 16: 321-357, 2002, which is available at https://www.jair.
org/index.php/jair/article/view/10302. It is also highly recommended to check
out imbalanced-learn, a Python library that is entirely focused on imbalanced datasets,
including an implementation of SMOTE. You can learn more about imbalanced-learn at
https://github.com/scikit-learn-contrib/imbalanced-learn.

https://www.jair.org/index.php/jair/article/view/10302
https://www.jair.org/index.php/jair/article/view/10302
https://github.com/scikit-learn-contrib/imbalanced-learn

Learning Best Practices for Model Evaluation and Hyperparameter Tuning204

Using grid search, randomized search, and successive halving, we further fine-tuned our model. We
then used confusion matrices and various performance metrics to evaluate and optimize a model’s
performance for specific problem tasks. Finally, we concluded this chapter by discussing different
methods for dealing with imbalanced data, which is a common problem in many real-world applica-
tions. Now, you should be well equipped with the essential techniques to build supervised machine
learning models for classification successfully.

In the next chapter, we will look at ensemble methods: methods that allow us to combine multiple
models and classification algorithms to boost the predictive performance of a machine learning
system even further.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

7
Combining Different Models for
Ensemble Learning

In the previous chapter, we focused on the best practices for tuning and evaluating different models
for classification. In this chapter, we will build upon those techniques and explore different methods
for constructing a set of classifiers that can often have a better predictive performance than any of its
individual members. We will learn how to do the following:

• Make predictions based on majority voting
• Use bagging to reduce overfitting by drawing random combinations of the training dataset

with repetition
• Apply boosting to build powerful models from weak learners that learn from their mistakes

Learning with ensembles
The goal of ensemble methods is to combine different classifiers into a meta-classifier that has better
generalization performance than each individual classifier alone. For example, assuming that we col-
lected predictions from 10 experts, ensemble methods would allow us to strategically combine those
predictions by the 10 experts to come up with a prediction that was more accurate and robust than the
predictions by each individual expert. As you will see later in this chapter, there are several different
approaches for creating an ensemble of classifiers. This section will introduce a basic explanation
of how ensembles work and why they are typically recognized for yielding a good generalization
performance.

In this chapter, we will focus on the most popular ensemble methods that use the majority voting
principle. Majority voting simply means that we select the class label that has been predicted by the
majority of classifiers, that is, received more than 50 percent of the votes. Strictly speaking, the term

“majority vote” refers to binary class settings only. However, it is easy to generalize the majority voting
principle to multiclass settings, which is known as plurality voting. (In the UK, people distinguish
between majority and plurality voting via the terms “absolute” and “relative” majority, respectively.)

Combining Different Models for Ensemble Learning206

Here, we select the class label that received the most votes (the mode). Figure 7.1 illustrates the concept
of majority and plurality voting for an ensemble of 10 classifiers, where each unique symbol (triangle,
square, and circle) represents a unique class label:

Figure 7.1: The different voting concepts

Using the training dataset, we start by training m different classifiers (C1, ..., Cm). Depending on the
technique, the ensemble can be built from different classification algorithms, for example, decision
trees, support vector machines, logistic regression classifiers, and so on. Alternatively, we can also use
the same base classification algorithm, fitting different subsets of the training dataset. One prominent
example of this approach is the random forest algorithm combining different decision tree classifiers,
which we covered in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn. Figure 7.2
illustrates the concept of a general ensemble approach using majority voting:

Figure 7.2: A general ensemble approach

To predict a class label via simple majority or plurality voting, we can combine the predicted class
labels of each individual classifier, Cj, and select the class label, 𝑦𝑦𝑦 , that received the most votes:𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦{𝐶𝐶1(𝒙𝒙) , 𝐶𝐶2(𝒙𝒙) ,… , 𝐶𝐶𝑚𝑚(𝒙𝒙)}
(In statistics, the mode is the most frequent event or result in a set. For example, mode{1, 2, 1, 1, 2,
4, 5, 4} = 1.)

Chapter 7 207

For example, in a binary classification task where class1 = –1 and class2 = +1, we can write the majority
vote prediction as follows:

𝐶𝐶(𝒙𝒙) = sign [∑ 𝐶𝐶𝑗𝑗(𝒙𝒙)𝑚𝑚
𝑗𝑗] = { 1 if ∑ 𝐶𝐶𝑗𝑗(𝒙𝒙) ≥ 0𝑗𝑗−1 otherwise

To illustrate why ensemble methods can work better than individual classifiers alone, let’s apply some
concepts of combinatorics. For the following example, we will make the assumption that all n-base
classifiers for a binary classification task have an equal error rate, 𝜀𝜀 . Furthermore, we will assume
that the classifiers are independent and the error rates are not correlated. Under those assumptions,
we can simply express the error probability of an ensemble of base classifiers as a probability mass
function of a binomial distribution:

𝑃𝑃(𝑦𝑦 𝑦 𝑦𝑦) =∑⟨𝑛𝑛𝑦𝑦⟩ 𝜀𝜀𝑘𝑘(1 − 𝜀𝜀)𝑛𝑛𝑛𝑘𝑘𝑛𝑛
𝑘𝑘 = 𝜀𝜀ensemble

Here, ⟨𝑛𝑛𝑘𝑘⟩ is the binomial coefficient n choose k. In other words, we compute the probability that the
prediction of the ensemble is wrong. Now, let’s take a look at a more concrete example of 11 base
classifiers (n = 11), where each classifier has an error rate of 0.25 (𝜀𝜀 𝜀 𝜀𝜀25):

𝑃𝑃(𝑦𝑦 𝑦 𝑦𝑦) =∑⟨11𝑦𝑦 ⟩ 0.25𝑘𝑘(1 − 0.25)11−𝑘𝑘11
𝑘𝑘𝑘𝑘 = 0.034

As you can see, the error rate of the ensemble (0.034) is much lower than the error rate of each indi-
vidual classifier (0.25) if all the assumptions are met. Note that, in this simplified illustration, a 50-50
split by an even number of classifiers, n, is treated as an error, whereas this is only true half of the
time. To compare such an idealistic ensemble classifier to a base classifier over a range of different
base error rates, let’s implement the probability mass function in Python:

>>> from scipy.special import comb
>>> import math
>>> def ensemble_error(n_classifier, error):

The binomial coefficient

The binomial coefficient refers to the number of ways we can choose subsets of k unordered
elements from a set of size n; thus, it is often called “n choose k.” Since the order does
not matter here, the binomial coefficient is also sometimes referred to as combination or
combinatorial number, and in its unabbreviated form, it is written as follows:𝑛𝑛𝑛(𝑛𝑛 𝑛 𝑛𝑛)𝑛 𝑛𝑛𝑛
Here, the symbol (!) stands for factorial—for example, 3! = 3×2×1 = 6.

Combining Different Models for Ensemble Learning208

... k_start = int(math.ceil(n_classifier / 2.))

... probs = [comb(n_classifier, k) *

... error**k *

... (1-error)**(n_classifier - k)

... for k in range(k_start, n_classifier + 1)]

... return sum(probs)
>>> ensemble_error(n_classifier=11, error=0.25)
0.03432750701904297

After we have implemented the ensemble_error function, we can compute the ensemble error rates
for a range of different base errors from 0.0 to 1.0 to visualize the relationship between ensemble and
base errors in a line graph:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> error_range = np.arange(0.0, 1.01, 0.01)
>>> ens_errors = [ensemble_error(n_classifier=11, error=error)
... for error in error_range]
>>> plt.plot(error_range, ens_errors,
... label='Ensemble error',
... linewidth=2)
>>> plt.plot(error_range, error_range,
... linestyle='--', label='Base error',
... linewidth=2)
>>> plt.xlabel('Base error')
>>> plt.ylabel('Base/Ensemble error')
>>> plt.legend(loc='upper left')
>>> plt.grid(alpha=0.5)
>>> plt.show()

As you can see in the resulting plot, the error probability of an ensemble is always better than the error
of an individual base classifier, as long as the base classifiers perform better than random guessing
(𝜀𝜀 𝜀 𝜀𝜀𝜀).

Chapter 7 209

Note that the y axis depicts the base error (dotted line) as well as the ensemble error (continuous line):

Figure 7.3: A plot of the ensemble error versus the base error

Combining classifiers via majority vote
After the short introduction to ensemble learning in the previous section, let’s start with a warm-up
exercise and implement a simple ensemble classifier for majority voting in Python.

Implementing a simple majority vote classifier
The algorithm that we are going to implement in this section will allow us to combine different clas-
sification algorithms associated with individual weights for confidence. Our goal is to build a stronger
meta-classifier that balances out the individual classifiers’ weaknesses on a particular dataset. In more
precise mathematical terms, we can write the weighted majority vote as follows:

𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 ∑ 𝑤𝑤𝑗𝑗𝜒𝜒𝐴𝐴(𝐶𝐶𝑗𝑗(𝒙𝒙) 𝑦 𝑖𝑖𝑖𝑚𝑚
𝑗𝑗𝑗𝑗

Plurality voting

Although the majority voting algorithm that we will discuss in this section also general-
izes to multiclass settings via plurality voting, the term “majority voting” will be used for
simplicity, as is often the case in the literature.

Combining Different Models for Ensemble Learning210

Here, wj is a weight associated with a base classifier, Cj; 𝑦𝑦𝑦 is the predicted class label of the ensemble;
A is the set of unique class labels; 𝜒𝜒𝐴𝐴 (Greek chi) is the characteristic function or indicator function,
which returns 1 if the predicted class of the jth classifier matches i (Cj(x) = i). For equal weights, we
can simplify this equation and write it as follows:𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦{𝐶𝐶1(𝒙𝒙) , 𝐶𝐶2(𝒙𝒙) ,… , 𝐶𝐶𝑚𝑚(𝒙𝒙)}
To better understand the concept of weighting, we will now take a look at a more concrete example.
Let’s assume that we have an ensemble of three base classifiers, 𝐶𝐶𝑗𝑗(𝑗𝑗 𝑗 {1, 2, 3}) , and we want to predict
the class label, 𝐶𝐶𝑗𝑗(𝒙𝒙) ∈ {0, 1} , of a given example, x. Two out of three base classifiers predict the class
label 0, and one, C3, predicts that the example belongs to class 1. If we weight the predictions of each
base classifier equally, the majority vote predicts that the example belongs to class 0:𝐶𝐶1(𝒙𝒙) → 0, 𝐶𝐶2(𝒙𝒙) → 0, 𝐶𝐶3(𝒙𝒙) → 1𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦{0, 0, 1} 𝑦 0

Now, let’s assign a weight of 0.6 to C3, and let’s weight C1 and C2 by a coefficient of 0.2:

𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 ∑ 𝑤𝑤𝑗𝑗𝜒𝜒𝐴𝐴(𝐶𝐶𝑗𝑗(𝒙𝒙) 𝑦 𝑖𝑖𝑖𝑚𝑚
𝑗𝑗𝑗𝑗𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 [0.2 × 𝑖𝑖0 + 0.2 × 𝑖𝑖0, 0.6 × 𝑖𝑖𝑗] 𝑦 1

More simply, since 3×0.2 = 0.6, we can say that the prediction made by C3 has three times more weight
than the predictions by C1 or C2, which we can write as follows:𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦{0, 0, 1, 1, 1} 𝑦 1

To translate the concept of the weighted majority vote into Python code, we can use NumPy’s con-
venient argmax and bincount functions, where bincount counts the number of occurrences of each
class label. The argmax function then returns the index position of the highest count, corresponding
to the majority class label (this assumes that class labels start at 0):

>>> import numpy as np
>>> np.argmax(np.bincount([0, 0, 1],
... weights=[0.2, 0.2, 0.6]))
1

As you will remember from the discussion on logistic regression in Chapter 3, certain classifiers in
scikit-learn can also return the probability of a predicted class label via the predict_proba method.
Using the predicted class probabilities instead of the class labels for majority voting can be useful
if the classifiers in our ensemble are well calibrated. The modified version of the majority vote for
predicting class labels from probabilities can be written as follows:

𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 ∑ 𝑤𝑤𝑗𝑗𝑝𝑝𝑖𝑖𝑗𝑗𝑚𝑚
𝑗𝑗𝑗𝑗

Chapter 7 211

Here, pij is the predicted probability of the jth classifier for class label i.

To continue with our previous example, let’s assume that we have a binary classification problem
with class labels 𝑖𝑖 𝑖 {0, 1} and an ensemble of three classifiers, 𝐶𝐶𝑗𝑗(𝑗𝑗 𝑗 {1, 2, 3}) . Let’s assume that the
classifiers Cj return the following class membership probabilities for a particular example, x:𝐶𝐶1(𝒙𝒙) → [0.9, 0.1], 𝐶𝐶2(𝒙𝒙) → [0.8, 0.2], 𝐶𝐶3(𝒙𝒙) → [0.4, 0.6]
Using the same weights as previously (0.2, 0.2, and 0.6), we can then calculate the individual class
probabilities as follows: 𝑝𝑝(𝑖𝑖0|𝒙𝒙) = 0.2 × 0.9 + 0.2 × 0.8 + 0.6 × 0.4 = 0.58𝑝𝑝(𝑖𝑖1|𝒙𝒙) = 0.2 × 0.1 + 0.2 × 0.2 + 0.6 × 0.6 = 0.42𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 [𝑝𝑝(𝑖𝑖0|𝒙𝒙) , 𝑝𝑝(𝑖𝑖1|𝒙𝒙)] = 0

To implement the weighted majority vote based on class probabilities, we can again make use of
NumPy, using np.average and np.argmax:

>>> ex = np.array([[0.9, 0.1],
... [0.8, 0.2],
... [0.4, 0.6]])
>>> p = np.average(ex, axis=0, weights=[0.2, 0.2, 0.6])
>>> p
array([0.58, 0.42])
>>> np.argmax(p)
0

Putting everything together, let’s now implement MajorityVoteClassifier in Python:

from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.preprocessing import LabelEncoder
from sklearn.base import clone
from sklearn.pipeline import _name_estimators
import numpy as np
import operator
class MajorityVoteClassifier(BaseEstimator, ClassifierMixin):
 def __init__(self, classifiers, vote='classlabel', weights=None):

 self.classifiers = classifiers
 self.named_classifiers = {
 key: value for key,
 value in _name_estimators(classifiers)
 }
 self.vote = vote

Combining Different Models for Ensemble Learning212

 self.weights = weights

 def fit(self, X, y):
 if self.vote not in ('probability', 'classlabel'):
 raise ValueError(f"vote must be 'probability' "
 f"or 'classlabel'"
 f"; got (vote={self.vote})")
 if self.weights and
 len(self.weights) != len(self.classifiers):
 raise ValueError(f'Number of classifiers and'
 f' weights must be equal'
 f'; got {len(self.weights)} weights,'
 f' {len(self.classifiers)} classifiers')
 # Use LabelEncoder to ensure class labels start
 # with 0, which is important for np.argmax
 # call in self.predict
 self.lablenc_ = LabelEncoder()
 self.lablenc_.fit(y)
 self.classes_ = self.lablenc_.classes_
 self.classifiers_ = []
 for clf in self.classifiers:
 fitted_clf = clone(clf).fit(X,
 self.lablenc_.transform(y))
 self.classifiers_.append(fitted_clf)
 return self

We’ve added a lot of comments to the code to explain the individual parts. However, before we im-
plement the remaining methods, let’s take a quick break and discuss some of the code that may look
confusing at first. We used the BaseEstimator and ClassifierMixin parent classes to get some base
functionality for free, including the get_params and set_params methods to set and return the classi-
fier’s parameters, as well as the score method to calculate the prediction accuracy.

Next, we will add the predict method to predict the class label via a majority vote based on the class
labels if we initialize a new MajorityVoteClassifier object with vote='classlabel'. Alternatively,
we will be able to initialize the ensemble classifier with vote='probability' to predict the class
label based on the class membership probabilities. Furthermore, we will also add a predict_proba
method to return the averaged probabilities, which is useful when computing the receiver operating
characteristic area under the curve (ROC AUC):

 def predict(self, X):
 if self.vote == 'probability':
 maj_vote = np.argmax(self.predict_proba(X), axis=1)
 else: # 'classlabel' vote

Chapter 7 213

 # Collect results from clf.predict calls
 predictions = np.asarray([
 clf.predict(X) for clf in self.classifiers_
]).T

 maj_vote = np.apply_along_axis(
 lambda x: np.argmax(
 np.bincount(x, weights=self.weights)
),
 axis=1, arr=predictions
)
 maj_vote = self.lablenc_.inverse_transform(maj_vote)
 return maj_vote

 def predict_proba(self, X):
 probas = np.asarray([clf.predict_proba(X)
 for clf in self.classifiers_])
 avg_proba = np.average(probas, axis=0,
 weights=self.weights)
 return avg_proba

 def get_params(self, deep=True):
 if not deep:
 return super().get_params(deep=False)
 else:
 out = self.named_classifiers.copy()
 for name, step in self.named_classifiers.items():
 for key, value in step.get_params(
 deep=True).items():
 out[f'{name}__{key}'] = value
 return out

Also, note that we defined our own modified version of the get_params method to use the _name_
estimators function to access the parameters of individual classifiers in the ensemble; this may look
a little bit complicated at first, but it will make perfect sense when we use grid search for hyperpa-
rameter tuning in later sections.

Combining Different Models for Ensemble Learning214

Using the majority voting principle to make predictions
Now it is time to put the MajorityVoteClassifier that we implemented in the previous section
into action. But first, let’s prepare a dataset that we can test it on. Since we are already familiar with
techniques to load datasets from CSV files, we will take a shortcut and load the Iris dataset from
scikit-learn’s datasets module. Furthermore, we will only select two features, sepal width and pet-
al length, to make the classification task more challenging for illustration purposes. Although our
MajorityVoteClassifier generalizes to multiclass problems, we will only classify flower examples
from the Iris-versicolor and Iris-virginica classes, with which we will compute the ROC AUC
later. The code is as follows:

>>> from sklearn import datasets
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.preprocessing import LabelEncoder
>>> iris = datasets.load_iris()
>>> X, y = iris.data[50:, [1, 2]], iris.target[50:]
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)

VotingClassifier in scikit-learn

Although the MajorityVoteClassifier implementation is very useful for demonstration
purposes, we implemented a more sophisticated version of this majority vote classifier in
scikit-learn based on the implementation in the first edition of this book. The ensemble
classifier is available as sklearn.ensemble.VotingClassifier in scikit-learn version
0.17 and newer. You can find out more about VotingClassifier at https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html

Class membership probabilities from decision trees

Note that scikit-learn uses the predict_proba method (if applicable) to compute the
ROC AUC score. In Chapter 3, we saw how the class probabilities are computed in logistic
regression models. In decision trees, the probabilities are calculated from a frequency
vector that is created for each node at training time. The vector collects the frequency
values of each class label computed from the class label distribution at that node. Then,
the frequencies are normalized so that they sum up to 1. Similarly, the class labels of the
k-nearest neighbors are aggregated to return the normalized class label frequencies in the
k-nearest neighbors algorithm. Although the normalized probabilities returned by both
the decision tree and k-nearest neighbors classifier may look similar to the probabilities
obtained from a logistic regression model, we have to be aware that they are actually not
derived from probability mass functions.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html

Chapter 7 215

Next, we will split the Iris examples into 50 percent training and 50 percent test data:

>>> X_train, X_test, y_train, y_test =\
... train_test_split(X, y,
... test_size=0.5,
... random_state=1,
... stratify=y)

Using the training dataset, we now will train three different classifiers:

• Logistic regression classifier
• Decision tree classifier
• k-nearest neighbors classifier

We will then evaluate the model performance of each classifier via 10-fold cross-validation on the
training dataset before we combine them into an ensemble classifier:

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> clf1 = LogisticRegression(penalty='l2',
... C=0.001,
... solver='lbfgs',
... random_state=1)
>>> clf2 = DecisionTreeClassifier(max_depth=1,
... criterion='entropy',
... random_state=0)
>>> clf3 = KNeighborsClassifier(n_neighbors=1,
... p=2,
... metric='minkowski')
>>> pipe1 = Pipeline([['sc', StandardScaler()],
... ['clf', clf1]])
>>> pipe3 = Pipeline([['sc', StandardScaler()],
... ['clf', clf3]])
>>> clf_labels = ['Logistic regression', 'Decision tree', 'KNN']
>>> print('10-fold cross validation:\n')
>>> for clf, label in zip([pipe1, clf2, pipe3], clf_labels):
... scores = cross_val_score(estimator=clf,
... X=X_train,
... y=y_train,

Combining Different Models for Ensemble Learning216

... cv=10,

... scoring='roc_auc')

... print(f'ROC AUC: {scores.mean():.2f} '

... f'(+/- {scores.std():.2f}) [{label}]')

The output that we receive, as shown in the following snippet, shows that the predictive performances
of the individual classifiers are almost equal:

10-fold cross validation:
ROC AUC: 0.92 (+/- 0.15) [Logistic regression]
ROC AUC: 0.87 (+/- 0.18) [Decision tree]
ROC AUC: 0.85 (+/- 0.13) [KNN]

You may be wondering why we trained the logistic regression and k-nearest neighbors classifier as
part of a pipeline. The reason behind it is that, as discussed in Chapter 3, both the logistic regression
and k-nearest neighbors algorithms (using the Euclidean distance metric) are not scale-invariant, in
contrast to decision trees. Although the Iris features are all measured on the same scale (cm), it is a
good habit to work with standardized features.

Now, let’s move on to the more exciting part and combine the individual classifiers for majority rule
voting in our MajorityVoteClassifier:

>>> mv_clf = MajorityVoteClassifier(
... classifiers=[pipe1, clf2, pipe3]
...)
>>> clf_labels += ['Majority voting']
>>> all_clf = [pipe1, clf2, pipe3, mv_clf]
>>> for clf, label in zip(all_clf, clf_labels):
... scores = cross_val_score(estimator=clf,
... X=X_train,
... y=y_train,
... cv=10,
... scoring='roc_auc')
... print(f'ROC AUC: {scores.mean():.2f} '
... f'(+/- {scores.std():.2f}) [{label}]')
ROC AUC: 0.92 (+/- 0.15) [Logistic regression]
ROC AUC: 0.87 (+/- 0.18) [Decision tree]
ROC AUC: 0.85 (+/- 0.13) [KNN]
ROC AUC: 0.98 (+/- 0.05) [Majority voting]

Chapter 7 217

As you can see, the performance of MajorityVotingClassifier has improved over the individual
classifiers in the 10-fold cross-validation evaluation.

Evaluating and tuning the ensemble classifier
In this section, we are going to compute the ROC curves from the test dataset to check that
MajorityVoteClassifier generalizes well with unseen data. We must remember that the test data-
set is not to be used for model selection; its purpose is merely to report an unbiased estimate of the
generalization performance of a classifier system:

>>> from sklearn.metrics import roc_curve
>>> from sklearn.metrics import auc
>>> colors = ['black', 'orange', 'blue', 'green']
>>> linestyles = [':', '--', '-.', '-']
>>> for clf, label, clr, ls \
... in zip(all_clf, clf_labels, colors, linestyles):
... # assuming the label of the positive class is 1
... y_pred = clf.fit(X_train,
... y_train).predict_proba(X_test)[:, 1]
... fpr, tpr, thresholds = roc_curve(y_true=y_test,
... y_score=y_pred)
... roc_auc = auc(x=fpr, y=tpr)
... plt.plot(fpr, tpr,
... color=clr,
... linestyle=ls,
... label=f'{label} (auc = {roc_auc:.2f})')
>>> plt.legend(loc='lower right')
>>> plt.plot([0, 1], [0, 1],
... linestyle='--',
... color='gray',
... linewidth=2)
>>> plt.xlim([-0.1, 1.1])
>>> plt.ylim([-0.1, 1.1])
>>> plt.grid(alpha=0.5)
>>> plt.xlabel('False positive rate (FPR)')
>>> plt.ylabel('True positive rate (TPR)')
>>> plt.show()

Combining Different Models for Ensemble Learning218

As you can see in the resulting ROC, the ensemble classifier also performs well on the test dataset
(ROC AUC = 0.95). However, you can see that the logistic regression classifier performs similarly well
on the same dataset, which is probably due to the high variance (in this case, the sensitivity of how
we split the dataset) given the small size of the dataset:

Figure 7.4: The ROC curve for the different classifiers

Since we only selected two features for the classification examples, it would be interesting to see what
the decision region of the ensemble classifier actually looks like.

Although it is not necessary to standardize the training features prior to model fitting, because our
logistic regression and k-nearest neighbors pipelines will automatically take care of it, we will stan-
dardize the training dataset so that the decision regions of the decision tree will be on the same scale
for visual purposes. The code is as follows:

>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> from itertools import product
>>> x_min = X_train_std[:, 0].min() - 1
>>> x_max = X_train_std[:, 0].max() + 1
>>> y_min = X_train_std[:, 1].min() - 1
>>>
>>> y_max = X_train_std[:, 1].max() + 1

Chapter 7 219

>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
... np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(nrows=2, ncols=2,
... sharex='col',
... sharey='row',
... figsize=(7, 5))
>>> for idx, clf, tt in zip(product([0, 1], [0, 1]),
... all_clf, clf_labels):
... clf.fit(X_train_std, y_train)
... Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... Z = Z.reshape(xx.shape)
... axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.3)
... axarr[idx[0], idx[1]].scatter(X_train_std[y_train==0, 0],
... X_train_std[y_train==0, 1],
... c='blue',
... marker='^',
... s=50)
... axarr[idx[0], idx[1]].scatter(X_train_std[y_train==1, 0],
... X_train_std[y_train==1, 1],
... c='green',
... marker='o',
... s=50)
... axarr[idx[0], idx[1]].set_title(tt)
>>> plt.text(-3.5, -5.,
... s='Sepal width [standardized]',
... ha='center', va='center', fontsize=12)
>>> plt.text(-12.5, 4.5,
... s='Petal length [standardized]',
... ha='center', va='center',
... fontsize=12, rotation=90)
>>> plt.show()

Interestingly, but also as expected, the decision regions of the ensemble classifier seem to be a hy-
brid of the decision regions from the individual classifiers. At first glance, the majority vote decision
boundary looks a lot like the decision of the decision tree stump, which is orthogonal to the y axis
for sepal width ≥ 1.

Combining Different Models for Ensemble Learning220

However, you can also notice the nonlinearity from the k-nearest neighbor classifier mixed in:

Figure 7.5: The decision boundaries for the different classifiers

Before we tune the individual classifier’s parameters for ensemble classification, let’s call the get_
params method to get a basic idea of how we can access the individual parameters inside a GridSearchCV
object:

>>> mv_clf.get_params()
{'decisiontreeclassifier':
 DecisionTreeClassifier(class_weight=None, criterion='entropy',
 max_depth=1, max_features=None,
 max_leaf_nodes=None, min_samples_leaf=1,
 min_samples_split=2,
 min_weight_fraction_leaf=0.0,
 random_state=0, splitter='best'),
 'decisiontreeclassifier__class_weight': None,
 'decisiontreeclassifier__criterion': 'entropy',
 [...]
 'decisiontreeclassifier__random_state': 0,
 'decisiontreeclassifier__splitter': 'best',
 'pipeline-1':
 Pipeline(steps=[('sc', StandardScaler(copy=True, with_mean=True,
 with_std=True)),
 ('clf', LogisticRegression(C=0.001,

Chapter 7 221

 class_weight=None,
 dual=False,
 fit_intercept=True,
 intercept_scaling=1,
 max_iter=100,
 multi_class='ovr',
 penalty='l2',
 random_state=0,
 solver='liblinear',
 tol=0.0001,
 verbose=0))]),
 'pipeline-1__clf':
 LogisticRegression(C=0.001, class_weight=None, dual=False,
 fit_intercept=True, intercept_scaling=1,
 max_iter=100, multi_class='ovr',
 penalty='l2', random_state=0,
 solver='liblinear', tol=0.0001, verbose=0),
 'pipeline-1__clf__C': 0.001,
 'pipeline-1__clf__class_weight': None,
 'pipeline-1__clf__dual': False,
 [...]
 'pipeline-1__sc__with_std': True,
 'pipeline-2':
 Pipeline(steps=[('sc', StandardScaler(copy=True, with_mean=True,
 with_std=True)),
 ('clf', KNeighborsClassifier(algorithm='auto',
 leaf_size=30,
 metric='minkowski',
 metric_params=None,
 n_neighbors=1,
 p=2,
 weights='uniform'))]),
 'pipeline-2__clf':
 KNeighborsClassifier(algorithm='auto', leaf_size=30,
 metric='minkowski', metric_params=None,
 n_neighbors=1, p=2, weights='uniform'),
 'pipeline-2__clf__algorithm': 'auto',
 [...]
 'pipeline-2__sc__with_std': True}

Combining Different Models for Ensemble Learning222

Based on the values returned by the get_params method, we now know how to access the individual
classifier’s attributes. Let’s now tune the inverse regularization parameter, C, of the logistic regression
classifier and the decision tree depth via a grid search for demonstration purposes:

>>> from sklearn.model_selection import GridSearchCV
>>> params = {'decisiontreeclassifier__max_depth': [1, 2],
... 'pipeline-1__clf__C': [0.001, 0.1, 100.0]}
>>> grid = GridSearchCV(estimator=mv_clf,
... param_grid=params,
... cv=10,
... scoring='roc_auc')
>>> grid.fit(X_train, y_train)

After the grid search has completed, we can print the different hyperparameter value combinations
and the average ROC AUC scores computed via 10-fold cross-validation as follows:

>>> for r, _ in enumerate(grid.cv_results_['mean_test_score']):
... mean_score = grid.cv_results_['mean_test_score'][r]
... std_dev = grid.cv_results_['std_test_score'][r]
... params = grid.cv_results_['params'][r]
... print(f'{mean_score:.3f} +/- {std_dev:.2f} {params}')
0.983 +/- 0.05 {'decisiontreeclassifier__max_depth': 1,
 'pipeline-1__clf__C': 0.001}
0.983 +/- 0.05 {'decisiontreeclassifier__max_depth': 1,
 'pipeline-1__clf__C': 0.1}
0.967 +/- 0.10 {'decisiontreeclassifier__max_depth': 1,
 'pipeline-1__clf__C': 100.0}
0.983 +/- 0.05 {'decisiontreeclassifier__max_depth': 2,
 'pipeline-1__clf__C': 0.001}
0.983 +/- 0.05 {'decisiontreeclassifier__max_depth': 2,
 'pipeline-1__clf__C': 0.1}
0.967 +/- 0.10 {'decisiontreeclassifier__max_depth': 2,
 'pipeline-1__clf__C': 100.0}
>>> print(f'Best parameters: {grid.best_params_}')
Best parameters: {'decisiontreeclassifier__max_depth': 1,
 'pipeline-1__clf__C': 0.001}
>>> print(f'ROC AUC : {grid.best_score_:.2f}')
ROC AUC: 0.98

Chapter 7 223

As you can see, we get the best cross-validation results when we choose a lower regularization strength
(C=0.001), whereas the tree depth does not seem to affect the performance at all, suggesting that a
decision stump is sufficient to separate the data. To remind ourselves that it is a bad practice to use
the test dataset more than once for model evaluation, we are not going to estimate the generalization
performance of the tuned hyperparameters in this section. We will move on swiftly to an alternative
approach for ensemble learning: bagging.

Bagging – building an ensemble of classifiers from
bootstrap samples
Bagging is an ensemble learning technique that is closely related to the MajorityVoteClassifier that
we implemented in the previous section. However, instead of using the same training dataset to fit the
individual classifiers in the ensemble, we draw bootstrap samples (random samples with replacement)
from the initial training dataset, which is why bagging is also known as bootstrap aggregating.

Building ensembles using stacking

The majority vote approach we implemented in this section is not to be confused with
stacking. The stacking algorithm can be understood as a two-level ensemble, where the
first level consists of individual classifiers that feed their predictions to the second lev-
el, where another classifier (typically logistic regression) is fit to the level-one classifier
predictions to make the final predictions. For more information on stacking, see the
following resources:

• The stacking algorithm has been described in more detail by David H. Wolp-
ert in Stacked generalization, Neural Networks, 5(2):241–259, 1992 (https://www.
sciencedirect.com/science/article/pii/S0893608005800231).

• Interested readers can find our video tutorial about stacking on YouTube at
https://www.youtube.com/watch?v=8T2emza6g80.

• A scikit-learn compatible version of a stacking classifier is available from
mlxtend: http://rasbt.github.io/mlxtend/user_guide/classifier/
StackingCVClassifier/.

• Also, a StackingClassifier has recently been added to scikit-learn (available in
version 0.22 and newer); for more information, please see the documentation at
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
StackingClassifier.html.

https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.youtube.com/watch?v=8T2emza6g80
http://rasbt.github.io/mlxtend/user_guide/classifier/StackingCVClassifier/
http://rasbt.github.io/mlxtend/user_guide/classifier/StackingCVClassifier/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html

Combining Different Models for Ensemble Learning224

The concept of bagging is summarized in Figure 7.6:

Figure 7.6: The concept of bagging

In the following subsections, we will work through a simple example of bagging by hand and use
scikit-learn for classifying wine examples.

Bagging in a nutshell
To provide a more concrete example of how the bootstrap aggregating of a bagging classifier works,
let’s consider the example shown in Figure 7.7. Here, we have seven different training instances (de-
noted as indices 1-7) that are sampled randomly with replacement in each round of bagging. Each
bootstrap sample is then used to fit a classifier, Cj, which is most typically an unpruned decision tree:

Figure 7.7: An example of bagging

Chapter 7 225

As you can see from Figure 7.7, each classifier receives a random subset of examples from the training
dataset. We denote these random samples obtained via bagging as Bagging round 1, Bagging round 2,
and so on. Each subset contains a certain portion of duplicates and some of the original examples don’t
appear in a resampled dataset at all due to sampling with replacement. Once the individual classifiers
are fit to the bootstrap samples, the predictions are combined using majority voting.

Note that bagging is also related to the random forest classifier that we introduced in Chapter 3. In
fact, random forests are a special case of bagging where we also use random feature subsets when
fitting the individual decision trees.

Applying bagging to classify examples in the Wine dataset
To see bagging in action, let’s create a more complex classification problem using the Wine dataset
that was introduced in Chapter 4, Building Good Training Datasets – Data Preprocessing. Here, we will
only consider the Wine classes 2 and 3, and we will select two features – Alcohol and OD280/OD315
of diluted wines:

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/'
... 'machine-learning-databases/'
... 'wine/wine.data',
... header=None)
>>> df_wine.columns = ['Class label', 'Alcohol',
... 'Malic acid', 'Ash',
... 'Alcalinity of ash',
... 'Magnesium', 'Total phenols',
... 'Flavanoids', 'Nonflavanoid phenols',
... 'Proanthocyanins',
... 'Color intensity', 'Hue',
... 'OD280/OD315 of diluted wines',
... 'Proline']
>>> # drop 1 class
>>> df_wine = df_wine[df_wine['Class label'] != 1]
>>> y = df_wine['Class label'].values
>>> X = df_wine[['Alcohol',
... 'OD280/OD315 of diluted wines']].values

Model ensembles using bagging

Bagging was first proposed by Leo Breiman in a technical report in 1994; he also showed
that bagging can improve the accuracy of unstable models and decrease the degree of
overfitting. We highly recommend that you read about his research in Bagging predictors
by L. Breiman, Machine Learning, 24(2):123–140, 1996, which is freely available online, to
learn more details about bagging.

Combining Different Models for Ensemble Learning226

Next, we will encode the class labels into binary format and split the dataset into 80 percent training
and 20 percent test datasets:

>>> from sklearn.preprocessing import LabelEncoder
>>> from sklearn.model_selection import train_test_split
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)
>>> X_train, X_test, y_train, y_test =\
... train_test_split(X, y,
... test_size=0.2,
... random_state=1,
... stratify=y)

A BaggingClassifier algorithm is already implemented in scikit-learn, which we can import from the
ensemble submodule. Here, we will use an unpruned decision tree as the base classifier and create an
ensemble of 500 decision trees fit on different bootstrap samples of the training dataset:

>>> from sklearn.ensemble import BaggingClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
... random_state=1,
... max_depth=None)
>>> bag = BaggingClassifier(base_estimator=tree,
... n_estimators=500,
... max_samples=1.0,
... max_features=1.0,
... bootstrap=True,

Obtaining the Wine dataset

You can find a copy of the Wine dataset (and all other datasets used in this book) in the
code bundle of this book, which you can use if you are working offline or the UCI server at
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
is temporarily unavailable. For instance, to load the Wine dataset from a local directory,
take the following lines:

df = pd.read_csv('https://archive.ics.uci.edu/ml/'
 'machine-learning-databases'
 '/wine/wine.data',
 header=None)

and replace them with these:

df = pd.read_csv('your/local/path/to/wine.data',
 header=None)

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

Chapter 7 227

... bootstrap_features=False,

... n_jobs=1,

... random_state=1)

Next, we will calculate the accuracy score of the prediction on the training and test datasets to com-
pare the performance of the bagging classifier to the performance of a single unpruned decision tree:

>>> from sklearn.metrics import accuracy_score
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print(f'Decision tree train/test accuracies '
... f'{tree_train:.3f}/{tree_test:.3f}')
Decision tree train/test accuracies 1.000/0.833

Based on the accuracy values that we printed here, the unpruned decision tree predicts all the class
labels of the training examples correctly; however, the substantially lower test accuracy indicates high
variance (overfitting) of the model:

>>> bag = bag.fit(X_train, y_train)
>>> y_train_pred = bag.predict(X_train)
>>> y_test_pred = bag.predict(X_test)
>>> bag_train = accuracy_score(y_train, y_train_pred)
>>> bag_test = accuracy_score(y_test, y_test_pred)
>>> print(f'Bagging train/test accuracies '
... f'{bag_train:.3f}/{bag_test:.3f}')
Bagging train/test accuracies 1.000/0.917

Although the training accuracies of the decision tree and bagging classifier are similar on the training
dataset (both 100 percent), we can see that the bagging classifier has a slightly better generalization
performance, as estimated on the test dataset. Next, let’s compare the decision regions between the
decision tree and the bagging classifier:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
... np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(nrows=1, ncols=2,
... sharex='col',
... sharey='row',

Combining Different Models for Ensemble Learning228

... figsize=(8, 3))
>>> for idx, clf, tt in zip([0, 1],
... [tree, bag],
... ['Decision tree', 'Bagging']):
... clf.fit(X_train, y_train)
...
... Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... Z = Z.reshape(xx.shape)
... axarr[idx].contourf(xx, yy, Z, alpha=0.3)
... axarr[idx].scatter(X_train[y_train==0, 0],
... X_train[y_train==0, 1],
... c='blue', marker='^')
... axarr[idx].scatter(X_train[y_train==1, 0],
... X_train[y_train==1, 1],
... c='green', marker='o')
... axarr[idx].set_title(tt)
>>> axarr[0].set_ylabel('Alcohol', fontsize=12)
>>> plt.tight_layout()
>>> plt.text(0, -0.2,
... s='OD280/OD315 of diluted wines',
... ha='center',
... va='center',
... fontsize=12,
... transform=axarr[1].transAxes)
>>> plt.show()

As we can see in the resulting plot, the piece-wise linear decision boundary of the three-node deep
decision tree looks smoother in the bagging ensemble:

Figure 7.8: The piece-wise linear decision boundary of a decision tree versus bagging

Chapter 7 229

We only looked at a very simple bagging example in this section. In practice, more complex classifi-
cation tasks and a dataset’s high dimensionality can easily lead to overfitting in single decision trees,
and this is where the bagging algorithm can really play to its strengths. Finally, we must note that
the bagging algorithm can be an effective approach to reducing the variance of a model. However,
bagging is ineffective in reducing model bias, that is, models that are too simple to capture the trends
in the data well. This is why we want to perform bagging on an ensemble of classifiers with low bias,
for example, unpruned decision trees.

Leveraging weak learners via adaptive boosting
In this last section about ensemble methods, we will discuss boosting, with a special focus on its most
common implementation: Adaptive Boosting (AdaBoost).

In boosting, the ensemble consists of very simple base classifiers, also often referred to as weak
learners, which often only have a slight performance advantage over random guessing—a typical
example of a weak learner is a decision tree stump. The key concept behind boosting is to focus on
training examples that are hard to classify, that is, to let the weak learners subsequently learn from
misclassified training examples to improve the performance of the ensemble.

The following subsections will introduce the algorithmic procedure behind the general concept of
boosting and AdaBoost. Lastly, we will use scikit-learn for a practical classification example.

How adaptive boosting works
In contrast to bagging, the initial formulation of the boosting algorithm uses random subsets of train-
ing examples drawn from the training dataset without replacement; the original boosting procedure
can be summarized in the following four key steps:

1. Draw a random subset (sample) of training examples, d1, without replacement from the training
dataset, D, to train a weak learner, C1.

2. Draw a second random training subset, d2, without replacement from the training dataset and
add 50 percent of the examples that were previously misclassified to train a weak learner, C2.

AdaBoost recognition

The original idea behind AdaBoost was formulated by Robert E. Schapire in 1990 in The
Strength of Weak Learnability, Machine Learning, 5(2): 197-227, 1990, URL: http://rob.
schapire.net/papers/strengthofweak.pdf. After Robert Schapire and Yoav Freund
presented the AdaBoost algorithm in the Proceedings of the Thirteenth International Confer-
ence (ICML 1996), AdaBoost became one of the most widely used ensemble methods in the
years that followed (Experiments with a New Boosting Algorithm by Y. Freund, R. E. Schapire,
and others, ICML, volume 96, 148-156, 1996). In 2003, Freund and Schapire received the
Gödel Prize for their groundbreaking work, which is a prestigious prize for the most out-
standing publications in the field of computer science.

http://rob.schapire.net/papers/strengthofweak.pdf
http://rob.schapire.net/papers/strengthofweak.pdf

Combining Different Models for Ensemble Learning230

3. Find the training examples, d3, in the training dataset, D, which C1 and C2 disagree upon, to
train a third weak learner, C3.

4. Combine the weak learners C1, C2, and C3 via majority voting.

As discussed by Leo Breiman (Bias, variance, and arcing classifiers, 1996), boosting can lead to a decrease
in bias as well as variance compared to bagging models. In practice, however, boosting algorithms such
as AdaBoost are also known for their high variance, that is, the tendency to overfit the training data
(An improvement of AdaBoost to avoid overfitting by G. Raetsch, T. Onoda, and K. R. Mueller. Proceedings
of the International Conference on Neural Information Processing, CiteSeer, 1998).

In contrast to the original boosting procedure described here, AdaBoost uses the complete training
dataset to train the weak learners, where the training examples are reweighted in each iteration to
build a strong classifier that learns from the mistakes of the previous weak learners in the ensemble.

Before we dive deeper into the specific details of the AdaBoost algorithm, let’s take a look at Figure 7.9
to get a better grasp of the basic concept behind AdaBoost:

Figure 7.9: The concept of AdaBoost to improve weak learners

To walk through the AdaBoost illustration step by step, we will start with subfigure 1, which represents
a training dataset for binary classification where all training examples are assigned equal weights.
Based on this training dataset, we train a decision stump (shown as a dashed line) that tries to classify
the examples of the two classes (triangles and circles), as well as possibly minimizing the loss function
(or the impurity score in the special case of decision tree ensembles).

For the next round (subfigure 2), we assign a larger weight to the two previously misclassified examples
(circles). Furthermore, we lower the weight of the correctly classified examples. The next decision
stump will now be more focused on the training examples that have the largest weights—the training
examples that are supposedly hard to classify.

Chapter 7 231

The weak learner shown in subfigure 2 misclassifies three different examples from the circle class,
which are then assigned a larger weight, as shown in subfigure 3.

Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we then combine
the three weak learners trained on different reweighted training subsets by a weighted majority vote,
as shown in subfigure 4.

Now that we have a better understanding of the basic concept of AdaBoost, let’s take a more detailed
look at the algorithm using pseudo code. For clarity, we will denote element-wise multiplication by
the cross symbol (×) and the dot-product between two vectors by a dot symbol (⋅):

1. Set the weight vector, w, to uniform weights, where ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 .
2. For j in m boosting rounds, do the following:

a. Train a weighted weak learner: Cj = train(X, y, w).
b. Predict class labels: �̂�𝒚 = predict(𝐶𝐶𝑗𝑗, 𝑿𝑿𝑿 .
c. Compute the weighted error rate: 𝜀𝜀 𝜀 𝜀𝜀 𝜀 (�̂�𝒚 ≠ 𝒚𝒚) .
d. Compute the coefficient: 𝛼𝛼𝑗𝑗 = 0.5 log 1−𝜀𝜀𝜀𝜀 .
e. Update the weights: 𝒘𝒘 𝒘 𝒘𝒘𝒘 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝑗𝑗 𝒘 �̂�𝒚 𝒘 𝒚𝒚𝒚 .
f. Normalize the weights to sum to 1: 𝒘𝒘 𝒘 𝒘𝒘 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖⁄ .

3. Compute the final prediction: �̂�𝒚 = (∑ (𝛼𝛼𝑗𝑗 × predict(𝐶𝐶𝑗𝑗, 𝑿𝑿𝑿𝑿 𝑿 𝑿𝑚𝑚𝑗𝑗𝑗𝑗 𝑿 .
Note that the expression (�̂�𝒚 ≠ 𝒚𝒚) in step 2c refers to a binary vector consisting of 1s and 0s, where a 1
is assigned if the prediction is incorrect and 0 is assigned otherwise.

Although the AdaBoost algorithm seems to be pretty straightforward, let’s walk through a more con-
crete example using a training dataset consisting of 10 training examples, as illustrated in Figure 7.10:

Figure 7.10: Running 10 training examples through the AdaBoost algorithm

Combining Different Models for Ensemble Learning232

The first column of the table depicts the indices of training examples 1 to 10. In the second column,
you can see the feature values of the individual samples, assuming this is a one-dimensional dataset.
The third column shows the true class label, yi, for each training sample, xi, where 𝑦𝑦𝑖𝑖 ∈ {1,−1} . The
initial weights are shown in the fourth column; we initialize the weights uniformly (assigning the
same constant value) and normalize them to sum to 1. In the case of the 10-sample training dataset,
we therefore assign 0.1 to each weight, wi, in the weight vector, w. The predicted class labels, �̂�𝒚 , are
shown in the fifth column, assuming that our splitting criterion is 𝑥𝑥 𝑥 𝑥𝑥𝑥 . The last column of the
table then shows the updated weights based on the update rules that we defined in the pseudo code.

Since the computation of the weight updates may look a little bit complicated at first, we will now
follow the calculation step by step. We will start by computing the weighted error rate, 𝜀𝜀 (epsilon),
as described in step 2c:

>>> y = np.array([1, 1, 1, -1, -1, -1, 1, 1, 1, -1])
>>> yhat = np.array([1, 1, 1, -1, -1, -1, -1, -1, -1, -1])
>>> correct = (y == yhat)
>>> weights = np.full(10, 0.1)
>>> print(weights)
[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]
>>> epsilon = np.mean(~correct)
>>> print(epsilon)
0.3

Note that correct is a Boolean array consisting of True and False values where True indicates that a
prediction is correct. Via ~correct, we invert the array such that np.mean(~correct) computes the
proportion of incorrect predictions (True counts as the value 1 and False as 0), that is, the classifica-
tion error.

Next, we will compute the coefficient, 𝛼𝛼𝑗𝑗 —shown in step 2d—which will later be used in step 2e to update
the weights, as well as for the weights in the majority vote prediction (step 3):

>>> alpha_j = 0.5 * np.log((1-epsilon) / epsilon)
>>> print(alpha_j)
0.42364893019360184

After we have computed the coefficient, 𝛼𝛼𝑗𝑗 (alpha_j), we can now update the weight vector using the
following equation: 𝒘𝒘 𝒘 𝒘𝒘𝒘 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝑗𝑗 𝒘 �̂�𝒚 𝒘 𝒚𝒚𝒚
Here, �̂�𝒚 × 𝒚𝒚 is an element-wise multiplication between the vectors of the predicted and true class labels,
respectively. Thus, if a prediction, 𝑦𝑦𝑦𝑖𝑖 , is correct, 𝑦𝑦𝑦𝑖𝑖 × 𝑦𝑦𝑖𝑖 will have a positive sign so that we decrease
the ith weight, since 𝛼𝛼𝑗𝑗 is a positive number as well:

>>> update_if_correct = 0.1 * np.exp(-alpha_j * 1 * 1)
>>> print(update_if_correct)
0.06546536707079771

Chapter 7 233

Similarly, we will increase the ith weight if 𝑦𝑦𝑦𝑖𝑖 predicted the label incorrectly, like this:

>>> update_if_wrong_1 = 0.1 * np.exp(-alpha_j * 1 * -1)
>>> print(update_if_wrong_1)
0.1527525231651947

Alternatively, it’s like this:

>>> update_if_wrong_2 = 0.1 * np.exp(-alpha_j * 1 * -1)
>>> print(update_if_wrong_2)

We can use these values to update the weights as follows:

>>> weights = np.where(correct == 1,
... update_if_correct,
... update_if_wrong_1)
>>> print(weights)
array([0.06546537, 0.06546537, 0.06546537, 0.06546537, 0.06546537,
 0.06546537, 0.15275252, 0.15275252, 0.15275252, 0.06546537])

The code above assigned the update_if_correct value to all correct predictions and the update_if_
wrong_1 value to all wrong predictions. We omitted using update_if_wrong_2 for simplicity, since it
is similar to update_if_wrong_1 anyway.

After we have updated each weight in the weight vector, we normalize the weights so that they sum
up to 1 (step 2f): 𝒘𝒘 𝒘 𝒘𝒘∑ 𝑤𝑤𝑖𝑖𝑖𝑖

In code, we can accomplish that as follows:

>>> normalized_weights = weights / np.sum(weights)
>>> print(normalized_weights)
[0.07142857 0.07142857 0.07142857 0.07142857 0.07142857 0.07142857
 0.16666667 0.16666667 0.16666667 0.07142857]

Thus, each weight that corresponds to a correctly classified example will be reduced from the initial
value of 0.1 to 0.0714 for the next round of boosting. Similarly, the weights of the incorrectly classified
examples will increase from 0.1 to 0.1667.

Applying AdaBoost using scikit-learn
The previous subsection introduced AdaBoost in a nutshell. Skipping to the more practical part, let’s
now train an AdaBoost ensemble classifier via scikit-learn. We will use the same Wine subset that we
used in the previous section to train the bagging meta-classifier.

Combining Different Models for Ensemble Learning234

Via the base_estimator attribute, we will train the AdaBoostClassifier on 500 decision tree stumps:

>>> from sklearn.ensemble import AdaBoostClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
... random_state=1,
... max_depth=1)
>>> ada = AdaBoostClassifier(base_estimator=tree,
... n_estimators=500,
... learning_rate=0.1,
... random_state=1)
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print(f'Decision tree train/test accuracies '
... f'{tree_train:.3f}/{tree_test:.3f}')
Decision tree train/test accuracies 0.916/0.875

As you can see, the decision tree stump seems to underfit the training data in contrast to the unpruned
decision tree that we saw in the previous section:

>>> ada = ada.fit(X_train, y_train)
>>> y_train_pred = ada.predict(X_train)
>>> y_test_pred = ada.predict(X_test)
>>> ada_train = accuracy_score(y_train, y_train_pred)
>>> ada_test = accuracy_score(y_test, y_test_pred)
>>> print(f'AdaBoost train/test accuracies '
... f'{ada_train:.3f}/{ada_test:.3f}')
AdaBoost train/test accuracies 1.000/0.917

Here, you can see that the AdaBoost model predicts all class labels of the training dataset correctly
and also shows a slightly improved test dataset performance compared to the decision tree stump.
However, you can also see that we introduced additional variance with our attempt to reduce the model
bias—a greater gap between training and test performance.

Although we used another simple example for demonstration purposes, we can see that the perfor-
mance of the AdaBoost classifier is slightly improved compared to the decision stump and achieved
very similar accuracy scores as the bagging classifier that we trained in the previous section. However,
we must note that it is considered bad practice to select a model based on the repeated usage of the test
dataset. The estimate of the generalization performance may be overoptimistic, which we discussed
in more detail in Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning.

Chapter 7 235

Lastly, let’s check what the decision regions look like:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
... np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(1, 2,
... sharex='col',
... sharey='row',
... figsize=(8, 3))
>>> for idx, clf, tt in zip([0, 1],
... [tree, ada],
... ['Decision tree', 'AdaBoost']):
... clf.fit(X_train, y_train)
... Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... Z = Z.reshape(xx.shape)
... axarr[idx].contourf(xx, yy, Z, alpha=0.3)
... axarr[idx].scatter(X_train[y_train==0, 0],
... X_train[y_train==0, 1],
... c='blue',
... marker='^')
... axarr[idx].scatter(X_train[y_train==1, 0],
... X_train[y_train==1, 1],
... c='green',
... marker='o')
... axarr[idx].set_title(tt)
... axarr[0].set_ylabel('Alcohol', fontsize=12)
>>> plt.tight_layout()
>>> plt.text(0, -0.2,
... s='OD280/OD315 of diluted wines',
... ha='center',
... va='center',
... fontsize=12,
... transform=axarr[1].transAxes)
>>> plt.show()

Combining Different Models for Ensemble Learning236

By looking at the decision regions, you can see that the decision boundary of the AdaBoost model
is substantially more complex than the decision boundary of the decision stump. In addition, note
that the AdaBoost model separates the feature space very similarly to the bagging classifier that we
trained in the previous section:

Figure 7.11: The decision boundaries of the decision tree versus AdaBoost

As concluding remarks about ensemble techniques, it is worth noting that ensemble learning increases
the computational complexity compared to individual classifiers. In practice, we need to think care-
fully about whether we want to pay the price of increased computational costs for an often relatively
modest improvement in predictive performance.

An often-cited example of this tradeoff is the famous $1 million Netflix Prize, which was won using
ensemble techniques. The details about the algorithm were published in The BigChaos Solution to the
Netflix Grand Prize by A. Toescher, M. Jahrer, and R. M. Bell, Netflix Prize documentation, 2009, which
is available at http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf. The winning
team received the $1 million grand prize money; however, Netflix never implemented their model
due to its complexity, which made it infeasible for a real-world application:

 “We evaluated some of the new methods offline but the additional accuracy gains that
we measured did not seem to justify the engineering effort needed to bring them into a
production environment.”

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-
stars.html

http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html

Chapter 7 237

Gradient boosting – training an ensemble based on loss
gradients
Gradient boosting is another variant of the boosting concept introduced in the previous section, that
is, successively training weak learners to create a strong ensemble. Gradient boosting is an extremely
important topic because it forms the basis of popular machine learning algorithms such as XGBoost,
which is well-known for winning Kaggle competitions.

The gradient boosting algorithm may appear a bit daunting at first. So, in the following subsections, we
will cover it step by step, starting with a general overview. Then, we will see how gradient boosting is
used for classification and walk through an example. Finally, after we’ve introduced the fundamental
concepts of gradient boosting, we will take a brief look at popular implementations, such as XGBoost,
and we will see how we can use gradient boosting in practice.

Comparing AdaBoost with gradient boosting
Fundamentally, gradient boosting is very similar to AdaBoost, which we discussed previously in this
chapter. AdaBoost trains decision tree stumps based on errors of the previous decision tree stump. In
particular, the errors are used to compute sample weights in each round as well as for computing a clas-
sifier weight for each decision tree stump when combining the individual stumps into an ensemble. We
stop training once a maximum number of iterations (decision tree stumps) is reached. Like AdaBoost,
gradient boosting fits decision trees in an iterative fashion using prediction errors. However, gradient
boosting trees are usually deeper than decision tree stumps and have typically a maximum depth of
3 to 6 (or a maximum number of 8 to 64 leaf nodes). Also, in contrast to AdaBoost, gradient boosting
does not use the prediction errors for assigning sample weights; they are used directly to form the
target variable for fitting the next tree. Moreover, instead of having an individual weighting term for
each tree, like in AdaBoost, gradient boosting uses a global learning rate that is the same for each tree.

As you can see, AdaBoost and gradient boosting share several similarities but differ in certain key as-
pects. In the following subsection, we will sketch the general outline of the gradient boosting algorithm.

Outlining the general gradient boosting algorithm
In this section, we will look at gradient boosting for classification. For simplicity, we will look at a
binary classification example. Interested readers can find the generalization to the multi-class setting
with logistic loss in Section 4.6. Multiclass logistic regression and classification of the original gradient
boosting paper written by Friedman in 2001, Greedy function approximation: A gradient boosting ma-
chine, https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-
function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full.

https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full
https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boostingmachine/10.1214/aos/1013203451.full

Combining Different Models for Ensemble Learning238

In essence, gradient boosting builds a series of trees, where each tree is fit on the error—the difference
between the label and the predicted value—of the previous tree. In each round, the tree ensemble
improves as we are nudging each tree more in the right direction via small updates. These updates
are based on a loss gradient, which is how gradient boosting got its name.

The following steps will introduce the general algorithm behind gradient boosting. After illustrating
the main steps, we will dive into some of its parts in more detail and walk through a hands-on example
in the next subsections.

1. Initialize a model to return a constant prediction value. For this, we use a decision tree root
node; that is, a decision tree with a single leaf node. We denote the value returned by the tree as 𝑦𝑦𝑦 , and we find this value by minimizing a differentiable loss function L that we will define later:

𝐹𝐹0(𝑥𝑥) = arg min�̂�𝑦 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖, �̂�𝑦)𝑛𝑛
𝑖𝑖𝑖𝑖

Here, n refers to the n training examples in our dataset.

2. For each tree m = 1, ..., M, where M is a user-specified total number of trees, we carry out the
following computations outlined in steps 2a to 2d below:

a. Compute the difference between a predicted value 𝐹𝐹(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑦𝑖𝑖 and the class label yi. This
value is sometimes called the pseudo-response or pseudo-residual. More formally, we can
write this pseudo-residual as the negative gradient of the loss function with respect to
the predicted values:𝑟𝑟𝑖𝑖𝑖𝑖 = − [𝜕𝜕 𝜕𝜕(𝑦𝑦𝑖𝑖, 𝐹𝐹(𝑥𝑥𝑖𝑖))𝜕𝜕 𝐹𝐹(𝑥𝑥𝑖𝑖)]𝐹𝐹(𝑥𝑥)=𝐹𝐹𝑚𝑚𝑚𝑚(𝑥𝑥) for 𝑖𝑖 = 𝑖, 𝑖 , 𝑖𝑖

Note that in the notation above F(x) is the prediction of the previous tree, Fm–1(x). So, in
the first round, this refers to the constant value from the tree (single leaf node) from
step 1.

b. Fit a tree to the pseudo-residuals rim. We use the notation Rjm to denote the j = 1 ... Jm
leaf nodes of the resulting tree in iteration m.

Gradient boosting for regression

Note that the procedure behind gradient boosting is a bit more complicated than AdaBoost.
We omit a simpler regression example, which was given in Friedman’s paper, for brevity,
but interested readers are encouraged to also consider my complementary video tutorial
on gradient boosting for regression, which is available at: https://www.youtube.com/
watch?v=zblsrxc7XpM.

https://www.youtube.com/watch?v=zblsrxc7XpM
https://www.youtube.com/watch?v=zblsrxc7XpM

Chapter 7 239

c. For each leaf node Rjm, we compute the following output value:𝛾𝛾𝑗𝑗𝑗𝑗 = arg min𝛾𝛾 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖, 𝐹𝐹𝑗𝑗𝑚𝑚(𝑥𝑥𝑖𝑖) + 𝛾𝛾)𝑥𝑥𝑖𝑖∈𝑅𝑅𝑗𝑗𝑗𝑗

In the next subsection, we will dive deeper into how this 𝛾𝛾𝑗𝑗𝑗𝑗 is computed by minimizing
the loss function. At this point, we can already note that leaf nodes Rjm may contain
more than one training example, hence the summation.

d. Update the model by adding the output values 𝛾𝛾𝑚𝑚 to the previous tree:𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚𝑚𝑚(𝑥𝑥) + 𝜂𝜂𝜂𝜂𝑚𝑚

However, instead of adding the full predicted values of the current tree 𝛾𝛾𝑚𝑚 to the previ-
ous tree 𝐹𝐹𝑚𝑚𝑚𝑚 , we scale 𝛾𝛾𝑚𝑚 by a learning rate 𝜂𝜂 , which is typically a small value between
0.01 and 1. In other words, we update the model incrementally by taking small steps,
which helps avoid overfitting.

Now, after looking at the general structure of gradient boosting, we will adopt these mechanics to look
at gradient boosting for classification.

Explaining the gradient boosting algorithm for classification
In this subsection, we will go over the details for implementing the gradient boosting algorithm for
binary classification. In this context, we will be using the logistic loss function that we introduced for
logistic regression in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn. For a single
training example, we can specify the logistic loss as follows:𝐿𝐿𝑖𝑖 = −𝑦𝑦𝑖𝑖 log 𝑝𝑝𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑝𝑝𝑖𝑖)
In Chapter 3, we also introduced the log(odds):𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦(𝑦dds) 𝑦 𝑦𝑦𝑦 (𝑝𝑝1 − 𝑝𝑝)

For reasons that will make sense later, we will use these log(odds) to rewrite the logistic function as
follows (omitting intermediate steps here):𝐿𝐿𝑖𝑖 = log(1 + 𝑒𝑒�̂�𝑦𝑖𝑖) − 𝑦𝑦𝑖𝑖�̂�𝑦𝑖𝑖
Now, we can define the partial derivative of the loss function with respect to these log(odds), 𝑦𝑦𝑦 . The
derivative of this loss function with respect to the log(odds) is:𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝜕𝑖𝑖 = 𝑒𝑒𝑦𝑦𝜕𝑖𝑖1 + 𝑒𝑒𝑦𝑦𝜕𝑖𝑖 − 𝜕𝜕𝑖𝑖 = 𝑝𝑝𝑖𝑖 − 𝜕𝜕𝑖𝑖

Combining Different Models for Ensemble Learning240

After specifying these mathematical definitions, let us now revisit the general gradient boosting steps
1 to 2d from the previous section and reformulate them for this binary classification scenario.

1. Create a root node that minimizes the logistic loss. It turns out that the loss is minimized if
the root node returns the log(odds), 𝑦𝑦𝑦 .

2. For each tree m = 1, ..., M, where M is a user-specified number of total trees, we carry out the
following computations outlined in steps 2a to 2d:

a. We convert the log(odds) into a probability using the familiar logistic function that we
used in logistic regression (in Chapter 3):𝑝𝑝 𝑝 11 + 𝑒𝑒−�̂�𝑦

Then, we compute the pseudo-residual, which is the negative partial derivative of the
loss with respect to the log(odds), which turns out to be the difference between the
class label and the predicted probability:−𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝜕𝑖𝑖 = 𝜕𝜕𝑖𝑖 − 𝑝𝑝𝑖𝑖

b. Fit a new tree to the pseudo-residuals.
c. For each leaf node Rjm, compute a value 𝛾𝛾𝑗𝑗𝑗𝑗 that minimizes the logistic loss function.

This includes a summarization step for dealing with leaf nodes that contain multiple
training examples: 𝛾𝛾𝑗𝑗𝑗𝑗 = arg min𝛾𝛾 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖, 𝐹𝐹𝑗𝑗𝑚𝑚(𝑥𝑥𝑖𝑖) + 𝛾𝛾)𝑥𝑥𝑖𝑖∈𝑅𝑅𝑗𝑗𝑗𝑗 = log(1 + 𝑒𝑒�̂�𝑦𝑖𝑖+𝛾𝛾) − 𝑦𝑦𝑖𝑖(�̂�𝑦𝑖𝑖 + 𝛾𝛾)

Skipping over intermediate mathematical details, this results in the following:𝛾𝛾𝑗𝑗𝑗𝑗 = ∑ 𝑦𝑦𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖∑ 𝑝𝑝𝑖𝑖(𝑖𝑖 − 𝑝𝑝𝑖𝑖)𝑖𝑖

Note that the summation here is only over the examples at the node corresponding to
the leaf node Rjm and not the complete training set.

d. Update the model by adding the gamma value from step 2c with learning rate 𝜂𝜂 :𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚𝑚𝑚(𝑥𝑥) + 𝜂𝜂𝜂𝜂𝑚𝑚

Chapter 7 241

In this section, we adopted the general gradient boosting algorithm and specified it for binary classi-
fication, for instance, by replacing the generic loss function with the logistic loss and the predicted
values with the log(odds). However, many of the individual steps may still seem very abstract, and in
the next section, we will apply these steps to a concrete example.

Illustrating gradient boosting for classification
The previous two subsections went over the condensed mathematical details of the gradient boosting
algorithm for binary classification. To make these concepts clearer, let’s apply it to a small toy example,
that is, a training dataset of the following three examples shown in Figure 7.12:

Figure 7.12: Toy dataset for explaining gradient boosting

Let’s start with step 1, constructing the root node and computing the log(odds), and step 2a, converting
the log(odds) into class-membership probabilities and computing the pseudo-residuals. Note that based
on what we have learned in Chapter 3, the odds can be computed as the number of successes divided
by the number of failures. Here, we regard label 1 as success and label 0 as failure, so the odds are
computed as: odds = 2/1. Carrying out steps 1 and 2a, we get the following results shown in Figure 7.13:

Figure 7.13: Results from the first round of applying step 1 and step 2a

Outputting log(odds) vs probabilities

Why do the trees return log(odds) values and not probabilities? This is because we cannot
just add up probability values and arrive at a meaningful result. (So, technically speaking,
gradient boosting for classification uses regression trees.)

Combining Different Models for Ensemble Learning242

Next, in step 2b, we fit a new tree on the pseudo-residuals r. Then, in step 2c, we compute the output
values, 𝛾𝛾 , for this tree as shown in Figure 7.14:

Figure 7.14: An illustration of steps 2b and 2c, which fits a tree to the residuals and computes the
output values for each leaf node

(Note that we artificially limit the tree to have only two leaf nodes, which helps illustrate what happens
if a leaf node contains more than one example.)

Then, in the final step 2d, we update the previous model and the current model. Assuming a learning
rate of 𝜂𝜂 𝜂 𝜂𝜂𝜂 , the resulting prediction for the first training example is shown in Figure 7.15:

Figure 7.15: The update of the previous model shown in the context of the first training example

Chapter 7 243

Now that we have completed steps 2a to 2d of the first round, m = 1, we can proceed to execute steps 2a
to 2d for the second round, m = 2. In the second round, we use the log(odds) returned by the updated
model, for example, 𝐹𝐹1(𝑥𝑥1) = 0.839 , as input to step 2A. The new values we obtain in the second round
are shown in Figure 7.16:

Figure 7.16: Values from the second round next to the values from the first round

We can already see that the predicted probabilities are higher for the positive class and lower for the
negative class. Consequently, the residuals are getting smaller, too. Note that the process of steps 2a
to 2d is repeated until we have fit M trees or the residuals are smaller than a user-specified threshold
value. Then, once the gradient boosting algorithm has completed, we can use it to predict the class
labels by thresholding the probability values of the final model, FM(x) at 0.5, like logistic regression in
Chapter 3. However, in contrast to logistic regression, gradient boosting consists of multiple trees and
produces nonlinear decision boundaries. In the next section, we will look at how gradient boosting
looks in action.

Using XGBoost
After covering the nitty-gritty details behind gradient boosting, let’s finally look at how we can use
gradient boosting code implementations.

In scikit-learn, gradient boosting is implemented as sklearn.ensemble.GradientBoostingClassifier
(see https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html for more details). It is important to note that gradient boosting
is a sequential process that can be slow to train. However, in recent years a more popular implemen-
tation of gradient boosting has emerged, namely, XGBoost.

XGBoost proposed several tricks and approximations that speed up the training process substantially.
Hence, the name XGBoost, which stands for extreme gradient boosting. Moreover, these approxima-
tions and tricks result in very good predictive performances. In fact, XGBoost gained popularity as it
has been the winning solution for many Kaggle competitions.

Next to XGBoost, there are also other popular implementations of gradient boosting, for ex-
ample, LightGBM and CatBoost. Inspired by LightGBM, scikit-learn now also implements a
HistGradientBoostingClassifier, which is more performant than the original gradient boosting
classifier (GradientBoostingClassifier).

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

Combining Different Models for Ensemble Learning244

You can find more details about these methods via the resources below:

• XGBoost: https://xgboost.readthedocs.io/en/stable/
• LightGBM: https://lightgbm.readthedocs.io/en/latest/
• CatBoost: https://catboost.ai
• HistGradientBoostingClassifier: https://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.HistGradientBoostingClassifier.html

However, since XGBoost is still among the most popular gradient boosting implementations, we will
see how we can use it in practice. First, we need to install it, for example via pip:

pip install xgboost

Fortunately, XGBoost’s XGBClassifier follows the scikit-learn API. So, using it is relatively straight-
forward:

>>> import xgboost as xgb
>>> model = xgb.XGBClassifier(n_estimators=1000, learning_rate=0.01,
... max_depth=4, random_state=1,
... use_label_encoder=False)

>>> gbm = model.fit(X_train, y_train)
>>> y_train_pred = gbm.predict(X_train)
>>> y_test_pred = gbm.predict(X_test)

>>> gbm_train = accuracy_score(y_train, y_train_pred)
>>> gbm_test = accuracy_score(y_test, y_test_pred)
>>> print(f'XGboost train/test accuracies '
... f'{gbm_train:.3f}/{gbm_test:.3f}')
XGboost train/test accuracies 0.968/0.917

Here, we fit the gradient boosting classifier with 1,000 trees (rounds) and a learning rate of 0.01. Typi-
cally, a learning rate between 0.01 and 0.1 is recommended. However, remember that the learning rate
is used for scaling the predictions from the individual rounds. So, intuitively, the lower the learning
rate, the more estimators are required to achieve accurate predictions.

 Installing XGBoost

For this chapter, we used XGBoost version 1.5.0, which can be installed via:

pip install XGBoost==1.5.0

You can find more information about the installation details at https://xgboost.
readthedocs.io/en/stable/install.html

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/latest/
https://catboost.ai
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://xgboost.readthedocs.io/en/stable/install.html
https://xgboost.readthedocs.io/en/stable/install.html

Chapter 7 245

Next, we have the max_depth for the individual decision trees, which we set to 4. Since we are still
boosting weak learners, a value between 2 and 6 is reasonable, but larger values may also work well
depending on the dataset.

Finally, use_label_encoder=False disables a warning message which informs users that XGBoost is
not converting labels by default anymore, and it expects users to provide labels in an integer format
starting with label 0. (There is nothing to worry about here, since we have been following this format
throughout this book.)

There are many more settings available, and a detailed discussion is out of the scope of this book.
However, interested readers can find more details in the original documentation at https://xgboost.
readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier.

Summary
In this chapter, we looked at some of the most popular and widely used techniques for ensemble
learning. Ensemble methods combine different classification models to cancel out their individual
weaknesses, which often results in stable and well-performing models that are very attractive for
industrial applications as well as machine learning competitions.

At the beginning of this chapter, we implemented MajorityVoteClassifier in Python, which allows
us to combine different algorithms for classification. We then looked at bagging, a useful technique
for reducing the variance of a model by drawing random bootstrap samples from the training dataset
and combining the individually trained classifiers via majority vote. Lastly, we learned about boosting
in the form of AdaBoost and gradient boosting, which are algorithms based on training weak learners
that subsequently learn from mistakes.

Throughout the previous chapters, we learned a lot about different learning algorithms, tuning, and
evaluation techniques. In the next chapter, we will look at a particular application of machine learn-
ing, sentiment analysis, which has become an interesting topic in the internet and social media era.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier
https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier
https://packt.link/MLwPyTorch

8
Applying Machine Learning to
Sentiment Analysis

In the modern internet and social media age, people’s opinions, reviews, and recommendations have
become a valuable resource for political science and businesses. Thanks to modern technologies, we are
now able to collect and analyze such data most efficiently. In this chapter, we will delve into a subfield
of natural language processing (NLP) called sentiment analysis and learn how to use machine learning
algorithms to classify documents based on their sentiment: the attitude of the writer. In particular, we
are going to work with a dataset of 50,000 movie reviews from the Internet Movie Database (IMDb)
and build a predictor that can distinguish between positive and negative reviews.

The topics that we will cover in this chapter include the following:

• Cleaning and preparing text data
• Building feature vectors from text documents
• Training a machine learning model to classify positive and negative movie reviews
• Working with large text datasets using out-of-core learning
• Inferring topics from document collections for categorization

Preparing the IMDb movie review data for text
processing
As mentioned, sentiment analysis, sometimes also called opinion mining, is a popular subdiscipline
of the broader field of NLP; it is concerned with analyzing the sentiment of documents. A popular task
in sentiment analysis is the classification of documents based on the expressed opinions or emotions
of the authors with regard to a particular topic.

Applying Machine Learning to Sentiment Analysis248

In this chapter, we will be working with a large dataset of movie reviews from IMDb that has been
collected by Andrew Maas and others (Learning Word Vectors for Sentiment Analysis by A. L. Maas, R. E.
Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA,
Association for Computational Linguistics, June 2011). The movie review dataset consists of 50,000
polar movie reviews that are labeled as either positive or negative; here, positive means that a movie
was rated with more than six stars on IMDb, and negative means that a movie was rated with fewer
than five stars on IMDb. In the following sections, we will download the dataset, preprocess it into
a useable format for machine learning tools, and extract meaningful information from a subset of
these movie reviews to build a machine learning model that can predict whether a certain reviewer
liked or disliked a movie.

Obtaining the movie review dataset
A compressed archive of the movie review dataset (84.1 MB) can be downloaded from http://
ai.stanford.edu/~amaas/data/sentiment/ as a gzip-compressed tarball archive:

• If you are working with Linux or macOS, you can open a new terminal window, cd into the
download directory, and execute tar -zxf aclImdb_v1.tar.gz to decompress the dataset.

• If you are working with Windows, you can download a free archiver, such as 7-Zip (http://
www.7-zip.org), to extract the files from the download archive.

• Alternatively, you can unpack the gzip-compressed tarball archive directly in Python as follows:

>>> import tarfile
>>> with tarfile.open('aclImdb_v1.tar.gz', 'r:gz') as tar:
... tar.extractall()

Preprocessing the movie dataset into a more convenient format
Having successfully extracted the dataset, we will now assemble the individual text documents from
the decompressed download archive into a single CSV file. In the following code section, we will be
reading the movie reviews into a pandas DataFrame object, which can take up to 10 minutes on a
standard desktop computer.

To visualize the progress and estimated time until completion, we will use the Python Progress Indica-
tor (PyPrind, https://pypi.python.org/pypi/PyPrind/) package, which was developed several years
ago for such purposes. PyPrind can be installed by executing the pip install pyprind command:

>>> import pyprind
>>> import pandas as pd
>>> import os
>>> import sys
>>> # change the 'basepath' to the directory of the
>>> # unzipped movie dataset
>>> basepath = 'aclImdb'

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://www.7-zip.org
http://www.7-zip.org
https://pypi.python.org/pypi/PyPrind/

Chapter 8 249

>>>
>>> labels = {'pos': 1, 'neg': 0}
>>> pbar = pyprind.ProgBar(50000, stream=sys.stdout)
>>> df = pd.DataFrame()
>>> for s in ('test', 'train'):
... for l in ('pos', 'neg'):
... path = os.path.join(basepath, s, l)
... for file in sorted(os.listdir(path)):
... with open(os.path.join(path, file),
... 'r', encoding='utf-8') as infile:
... txt = infile.read()
... df = df.append([[txt, labels[l]]],
... ignore_index=True)
... pbar.update()
>>> df.columns = ['review', 'sentiment']
0% 100%
[##############################] | ETA: 00:00:00
Total time elapsed: 00:00:25

In the preceding code, we first initialized a new progress bar object, pbar, with 50,000 iterations, which
was the number of documents we were going to read in. Using the nested for loops, we iterated over
the train and test subdirectories in the main aclImdb directory and read the individual text files
from the pos and neg subdirectories that we eventually appended to the df pandas DataFrame, together
with an integer class label (1 = positive and 0 = negative).

Since the class labels in the assembled dataset are sorted, we will now shuffle the DataFrame using the
permutation function from the np.random submodule—this will be useful for splitting the dataset into
training and test datasets in later sections, when we will stream the data from our local drive directly.

For our own convenience, we will also store the assembled and shuffled movie review dataset as a
CSV file:

>>> import numpy as np
>>> np.random.seed(0)
>>> df = df.reindex(np.random.permutation(df.index))
>>> df.to_csv('movie_data.csv', index=False, encoding='utf-8')

Since we are going to use this dataset later in this chapter, let’s quickly confirm that we have success-
fully saved the data in the right format by reading in the CSV and printing an excerpt of the first three
examples:

>>> df = pd.read_csv('movie_data.csv', encoding='utf-8')
>>> # the following column renaming is necessary on some computers:
>>> df = df.rename(columns={"0": "review", "1": "sentiment"})
>>> df.head(3)

Applying Machine Learning to Sentiment Analysis250

If you are running the code examples in a Jupyter notebook, you should now see the first three exam-
ples of the dataset, as shown in Figure 8.1:

Figure 8.1: The first three rows of the movie review dataset

As a sanity check, before we proceed to the next section, let’s make sure that the DataFrame contains
all 50,000 rows:

>>> df.shape
(50000, 2)

Introducing the bag-of-words model
You may remember from Chapter 4, Building Good Training Datasets – Data Preprocessing, that we have
to convert categorical data, such as text or words, into a numerical form before we can pass it on to a
machine learning algorithm. In this section, we will introduce the bag-of-words model, which allows
us to represent text as numerical feature vectors. The idea behind bag-of-words is quite simple and
can be summarized as follows:

1. We create a vocabulary of unique tokens—for example, words—from the entire set of documents.
2. We construct a feature vector from each document that contains the counts of how often each

word occurs in the particular document.

Since the unique words in each document represent only a small subset of all the words in the bag-of-
words vocabulary, the feature vectors will mostly consist of zeros, which is why we call them sparse.
Do not worry if this sounds too abstract; in the following subsections, we will walk through the process
of creating a simple bag-of-words model step by step.

Transforming words into feature vectors
To construct a bag-of-words model based on the word counts in the respective documents, we can use
the CountVectorizer class implemented in scikit-learn. As you will see in the following code section,
CountVectorizer takes an array of text data, which can be documents or sentences, and constructs
the bag-of-words model for us:

>>> import numpy as np
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count = CountVectorizer()
>>> docs = np.array(['The sun is shining',

Chapter 8 251

... 'The weather is sweet',

... 'The sun is shining, the weather is sweet,'

... 'and one and one is two'])
>>> bag = count.fit_transform(docs)

By calling the fit_transform method on CountVectorizer, we constructed the vocabulary of the
bag-of-words model and transformed the following three sentences into sparse feature vectors:

• 'The sun is shining'

• 'The weather is sweet'

• 'The sun is shining, the weather is sweet, and one and one is two'

Now, let’s print the contents of the vocabulary to get a better understanding of the underlying concepts:

>>> print(count.vocabulary_)
{'and': 0,
'two': 7,
'shining': 3,
'one': 2,
'sun': 4,
'weather': 8,
'the': 6,
'sweet': 5,
'is': 1}

As you can see from executing the preceding command, the vocabulary is stored in a Python dictionary
that maps the unique words to integer indices. Next, let’s print the feature vectors that we just created:

>>> print(bag.toarray())
[[0 1 0 1 1 0 1 0 0]
 [0 1 0 0 0 1 1 0 1]
 [2 3 2 1 1 1 2 1 1]]

Each index position in the feature vectors shown here corresponds to the integer values that are stored
as dictionary items in the CountVectorizer vocabulary. For example, the first feature at index position
0 resembles the count of the word 'and', which only occurs in the last document, and the word 'is',
at index position 1 (the second feature in the document vectors), occurs in all three sentences. These
values in the feature vectors are also called the raw term frequencies: tf(t, d)—the number of times a
term, t, occurs in a document, d. It should be noted that, in the bag-of-words model, the word or term
order in a sentence or document does not matter. The order in which the term frequencies appear in
the feature vector is derived from the vocabulary indices, which are usually assigned alphabetically.

Applying Machine Learning to Sentiment Analysis252

Assessing word relevancy via term frequency-inverse document
frequency
When we are analyzing text data, we often encounter words that occur across multiple documents
from both classes. These frequently occurring words typically don’t contain useful or discriminatory
information. In this subsection, you will learn about a useful technique called the term frequency-in-
verse document frequency (tf-idf), which can be used to downweight these frequently occurring
words in the feature vectors. The tf-idf can be defined as the product of the term frequency and the
inverse document frequency:

tf-idf(t, d) = tf(t, d) × idf(t, d)

Here, tf(t, d) is the term frequency that we introduced in the previous section, and idf(t, d) is the inverse
document frequency, which can be calculated as follows:𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡 𝑖𝑖) = log 𝑛𝑛𝑑𝑑1 + 𝑖𝑖𝑖𝑖(𝑖𝑖𝑡 𝑡𝑡)
Here, nd is the total number of documents, and df(d, t) is the number of documents, d, that contain
the term t. Note that adding the constant 1 to the denominator is optional and serves the purpose of
assigning a non-zero value to terms that occur in none of the training examples; the log is used to
ensure that low document frequencies are not given too much weight.

N-gram models

The sequence of items in the bag-of-words model that we just created is also called the
1-gram or unigram model—each item or token in the vocabulary represents a single word.
More generally, the contiguous sequences of items in NLP—words, letters, or symbols—are
also called n-grams. The choice of the number, n, in the n-gram model depends on the
particular application; for example, a study by Ioannis Kanaris and others revealed that
n-grams of size 3 and 4 yield good performances in the anti-spam filtering of email mes-
sages (Words versus character n-grams for anti-spam filtering by Ioannis Kanaris, Konstantinos
Kanaris, Ioannis Houvardas, and Efstathios Stamatatos, International Journal on Artificial
Intelligence Tools, World Scientific Publishing Company, 16(06): 1047-1067, 2007).

To summarize the concept of the n-gram representation, the 1-gram and 2-gram repre-
sentations of our first document, “the sun is shining”, would be constructed as follows:

• 1-gram: “the”, “sun”, “is”, “shining”
• 2-gram: “the sun”, “sun is”, “is shining”

The CountVectorizer class in scikit-learn allows us to use different n-gram models via
its ngram_range parameter. While a 1-gram representation is used by default, we could
switch to a 2-gram representation by initializing a new CountVectorizer instance with
ngram_range=(2,2).

Chapter 8 253

The scikit-learn library implements yet another transformer, the TfidfTransformer class, which takes
the raw term frequencies from the CountVectorizer class as input and transforms them into tf-idfs:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer(use_idf=True,
... norm='l2',
... smooth_idf=True)
>>> np.set_printoptions(precision=2)
>>> print(tfidf.fit_transform(count.fit_transform(docs))
... .toarray())
[[0. 0.43 0. 0.56 0.56 0. 0.43 0. 0.]
 [0. 0.43 0. 0. 0. 0.56 0.43 0. 0.56]
 [0.5 0.45 0.5 0.19 0.19 0.19 0.3 0.25 0.19]]

As you saw in the previous subsection, the word 'is' had the largest term frequency in the third
document, being the most frequently occurring word. However, after transforming the same feature
vector into tf-idfs, the word 'is' is now associated with a relatively small tf-idf (0.45) in the third
document, since it is also present in the first and second document and thus is unlikely to contain
any useful discriminatory information.

However, if we’d manually calculated the tf-idfs of the individual terms in our feature vectors, we
would have noticed that TfidfTransformer calculates the tf-idfs slightly differently compared to
the standard textbook equations that we defined previously. The equation for the inverse document
frequency implemented in scikit-learn is computed as follows:𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡 𝑖𝑖) = log 1 + 𝑛𝑛𝑑𝑑1 + 𝑖𝑖𝑖𝑖(𝑖𝑖𝑡 𝑡𝑡)
Similarly, the tf-idf computed in scikit-learn deviates slightly from the default equation we defined
earlier:

tf-idf(t, d) = tf(t, d) × (idf(t, d) + 1)

Note that the “+1” in the previous idf equation is due to setting smooth_idf=True in the previous code
example, which is helpful for assigning zero weight (that is, idf(t, d) = log(1) = 0) to terms that occur
in all documents.

While it is also more typical to normalize the raw term frequencies before calculating the tf-idfs,
the TfidfTransformer class normalizes the tf-idfs directly. By default (norm='l2'), scikit-learn’s
TfidfTransformer applies the L2-normalization, which returns a vector of length 1 by dividing an
unnormalized feature vector, v, by its L2-norm:𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑣𝑣‖𝑣𝑣‖2 = 𝑣𝑣√𝑣𝑣12 + 𝑣𝑣22 + ⋯+ 𝑣𝑣𝑛𝑛2 = 𝑣𝑣(∑ 𝑣𝑣𝑖𝑖2𝑛𝑛𝑖𝑖𝑖1)1/2

Applying Machine Learning to Sentiment Analysis254

To make sure that we understand how TfidfTransformer works, let’s walk through an example and
calculate the tf-idf of the word 'is' in the third document. The word 'is' has a term frequency of 3
(tf = 3) in the third document, and the document frequency of this term is 3 since the term 'is' occurs
in all three documents (df = 3). Thus, we can calculate the inverse document frequency as follows:𝑖𝑖𝑖𝑖𝑖𝑖("is", 𝑖𝑖3) = log 1 + 31 + 3 = 0

Now, in order to calculate the tf-idf, we simply need to add 1 to the inverse document frequency and
multiply it by the term frequency:𝑡𝑡𝑡𝑡-𝑖𝑖𝑖𝑖𝑡𝑡("is", 𝑖𝑖3) = 3 × (0 + 1) = 3

If we repeated this calculation for all terms in the third document, we’d obtain the following tf-idf
vectors: [3.39, 3.0, 3.39, 1.29, 1.29, 1.29, 2.0, 1.69, 1.29]. However, notice that the values
in this feature vector are different from the values that we obtained from TfidfTransformer that we
used previously. The final step that we are missing in this tf-idf calculation is the L2-normalization,
which can be applied as follows:𝑡𝑡𝑡𝑡-𝑖𝑖𝑖𝑖𝑡𝑡(𝑖𝑖3)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = [3.39, 3.0, 3.39, 1.29, 1.29, 1.29, 2.0, 1.69, 1.29]√3.392 + 3.02 + 3.392 + 1.292 + 1.292 + 1.292 + 2.02 + 1.692 + 1.292 = [0.5, 0.45, 0.5, 0.19, 0.19, 0.19, 0.3, 0.25, 0.19]

𝑡𝑡𝑡𝑡-𝑖𝑖𝑖𝑖𝑡𝑡("is", 𝑖𝑖3) = 0.45

As you can see, the results now match the results returned by scikit-learn’s TfidfTransformer, and
since you now understand how tf-idfs are calculated, let’s proceed to the next section and apply those
concepts to the movie review dataset.

Cleaning text data
In the previous subsections, we learned about the bag-of-words model, term frequencies, and tf-idfs.
However, the first important step—before we build our bag-of-words model—is to clean the text data
by stripping it of all unwanted characters.

To illustrate why this is important, let’s display the last 50 characters from the first document in the
reshuffled movie review dataset:

>>> df.loc[0, 'review'][-50:]
'is seven.

Title (Brazil): Not Available'

As you can see here, the text contains HTML markup as well as punctuation and other non-letter
characters. While HTML markup does not contain many useful semantics, punctuation marks can
represent useful, additional information in certain NLP contexts. However, for simplicity, we will now
remove all punctuation marks except for emoticon characters, such as :), since those are certainly
useful for sentiment analysis.

Chapter 8 255

To accomplish this task, we will use Python’s regular expression (regex) library, re, as shown here:

>>> import re
>>> def preprocessor(text):
... text = re.sub('<[^>]*>', '', text)
... emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
... text)
... text = (re.sub('[\W]+', ' ', text.lower()) +
... ' '.join(emoticons).replace('-', ''))
... return text

Via the first regex, <[^>]*>, in the preceding code section, we tried to remove all of the HTML markup
from the movie reviews. Although many programmers generally advise against the use of regex to parse
HTML, this regex should be sufficient to clean this particular dataset. Since we are only interested in
removing HTML markup and do not plan to use the HTML markup further, using regex to do the job
should be acceptable. However, if you prefer to use sophisticated tools for removing HTML markup
from text, you can take a look at Python’s HTML parser module, which is described at https://docs.
python.org/3/library/html.parser.html. After we removed the HTML markup, we used a slightly
more complex regex to find emoticons, which we temporarily stored as emoticons. Next, we removed all
non-word characters from the text via the regex [\W]+ and converted the text into lowercase characters.

Eventually, we added the temporarily stored emoticons to the end of the processed document string.
Additionally, we removed the nose character (- in :-)) from the emoticons for consistency.

Dealing with word capitalization

In the context of this analysis, we assume that the capitalization of a word—for example,
whether it appears at the beginning of a sentence—does not contain semantically relevant
information. However, note that there are exceptions; for instance, we remove the notation
of proper names. But again, in the context of this analysis, it is a simplifying assumption
that the letter case does not contain information that is relevant for sentiment analysis.

Regular expressions

Although regular expressions offer an efficient and convenient approach to searching for
characters in a string, they also come with a steep learning curve. Unfortunately, an in-
depth discussion of regular expressions is beyond the scope of this book. However, you
can find a great tutorial on the Google Developers portal at https://developers.google.
com/edu/python/regular-expressions or you can check out the official documentation
of Python’s re module at https://docs.python.org/3.9/library/re.html.

https://docs.python.org/3/library/html.parser.html
https://docs.python.org/3/library/html.parser.html
https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://docs.python.org/3.9/library/re.html

Applying Machine Learning to Sentiment Analysis256

Although the addition of the emoticon characters to the end of the cleaned document strings may not
look like the most elegant approach, we must note that the order of the words doesn’t matter in our
bag-of-words model if our vocabulary consists of only one-word tokens. But before we talk more about
the splitting of documents into individual terms, words, or tokens, let’s confirm that our preprocessor
function works correctly:

>>> preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
>>> preprocessor("This :) is :(a test :-)!")
'this is a test :) :(:)'

Lastly, since we will make use of the cleaned text data over and over again during the next sections,
let’s now apply our preprocessor function to all the movie reviews in our DataFrame:

>>> df['review'] = df['review'].apply(preprocessor)

Processing documents into tokens
After successfully preparing the movie review dataset, we now need to think about how to split the
text corpora into individual elements. One way to tokenize documents is to split them into individual
words by splitting the cleaned documents at their whitespace characters:

>>> def tokenizer(text):
... return text.split()
>>> tokenizer('runners like running and thus they run')
['runners', 'like', 'running', 'and', 'thus', 'they', 'run']

In the context of tokenization, another useful technique is word stemming, which is the process of
transforming a word into its root form. It allows us to map related words to the same stem. The origi-
nal stemming algorithm was developed by Martin F. Porter in 1979 and is hence known as the Porter
stemmer algorithm (An algorithm for suffix stripping by Martin F. Porter, Program: Electronic Library
and Information Systems, 14(3): 130–137, 1980). The Natural Language Toolkit (NLTK, http://www.
nltk.org) for Python implements the Porter stemming algorithm, which we will use in the following
code section. To install the NLTK, you can simply execute conda install nltk or pip install nltk.

The following code shows how to use the Porter stemming algorithm:

>>> from nltk.stem.porter import PorterStemmer
>>> porter = PorterStemmer()

NLTK online book

Although the NLTK is not the focus of this chapter, I highly recommend that you visit the
NLTK website as well as read the official NLTK book, which is freely available at http://
www.nltk.org/book/, if you are interested in more advanced applications in NLP.

http://www.nltk.org
http://www.nltk.org
http://www.nltk.org/book/
http://www.nltk.org/book/

Chapter 8 257

>>> def tokenizer_porter(text):
... return [porter.stem(word) for word in text.split()]
>>> tokenizer_porter('runners like running and thus they run')
['runner', 'like', 'run', 'and', 'thu', 'they', 'run']

Using the PorterStemmer from the nltk package, we modified our tokenizer function to reduce words
to their root form, which was illustrated by the simple preceding example where the word 'running'
was stemmed to its root form 'run'.

Before we jump into the next section, where we will train a machine learning model using the bag-
of-words model, let’s briefly talk about another useful topic called stop word removal. Stop words
are simply those words that are extremely common in all sorts of texts and probably bear no (or only
a little) useful information that can be used to distinguish between different classes of documents.
Examples of stop words are is, and, has, and like. Removing stop words can be useful if we are working
with raw or normalized term frequencies rather than tf-idfs, which already downweight the frequently
occurring words.

To remove stop words from the movie reviews, we will use the set of 127 English stop words that is
available from the NLTK library, which can be obtained by calling the nltk.download function:

>>> import nltk
>>> nltk.download('stopwords')

Stemming algorithms

The Porter stemming algorithm is probably the oldest and simplest stemming algorithm.
Other popular stemming algorithms include the newer Snowball stemmer (Porter2 or
English stemmer) and the Lancaster stemmer (Paice/Husk stemmer). While both the
Snowball and Lancaster stemmers are faster than the original Porter stemmer, the Lan-
caster stemmer is also notorious for being more aggressive than the Porter stemmer, which
means that it will produce shorter and more obscure words. These alternative stemming
algorithms are also available through the NLTK package (http://www.nltk.org/api/
nltk.stem.html).

While stemming can create non-real words, such as 'thu' (from 'thus'), as shown in
the previous example, a technique called lemmatization aims to obtain the canonical
(grammatically correct) forms of individual words—the so-called lemmas. However, lem-
matization is computationally more difficult and expensive compared to stemming and,
in practice, it has been observed that stemming and lemmatization have little impact on
the performance of text classification (Influence of Word Normalization on Text Classification,
by Michal Toman, Roman Tesar, and Karel Jezek, Proceedings of InSciT, pages 354–358, 2006).

http://www.nltk.org/api/nltk.stem.html
http://www.nltk.org/api/nltk.stem.html

Applying Machine Learning to Sentiment Analysis258

After we download the stop words set, we can load and apply the English stop word set as follows:

>>> from nltk.corpus import stopwords
>>> stop = stopwords.words('english')
>>> [w for w in tokenizer_porter('a runner likes'
... ' running and runs a lot')
... if w not in stop]
['runner', 'like', 'run', 'run', 'lot']

Training a logistic regression model for document
classification
In this section, we will train a logistic regression model to classify the movie reviews into positive and
negative reviews based on the bag-of-words model. First, we will divide the DataFrame of cleaned text
documents into 25,000 documents for training and 25,000 documents for testing:

>>> X_train = df.loc[:25000, 'review'].values
>>> y_train = df.loc[:25000, 'sentiment'].values
>>> X_test = df.loc[25000:, 'review'].values
>>> y_test = df.loc[25000:, 'sentiment'].values

Next, we will use a GridSearchCV object to find the optimal set of parameters for our logistic regression
model using 5-fold stratified cross-validation:

>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> tfidf = TfidfVectorizer(strip_accents=None,
... lowercase=False,
... preprocessor=None)
>>> small_param_grid = [
... {
... 'vect__ngram_range': [(1, 1)],
... 'vect__stop_words': [None],
... 'vect__tokenizer': [tokenizer, tokenizer_porter],
... 'clf__penalty': ['l2'],
... 'clf__C': [1.0, 10.0]
... },
... {
... 'vect__ngram_range': [(1, 1)],
... 'vect__stop_words': [stop, None],
... 'vect__tokenizer': [tokenizer],

Chapter 8 259

... 'vect__use_idf':[False],

... 'vect__norm':[None],

... 'clf__penalty': ['l2'],

... 'clf__C': [1.0, 10.0]

... },

...]
>>> lr_tfidf = Pipeline([
... ('vect', tfidf),
... ('clf', LogisticRegression(solver='liblinear'))
...])
>>> gs_lr_tfidf = GridSearchCV(lr_tfidf, small_param_grid,
... scoring='accuracy', cv=5,
... verbose=2, n_jobs=1)
>>> gs_lr_tfidf.fit(X_train, y_train)

Note that for the logistic regression classifier, we are using the LIBLINEAR solver as it can perform
better than the default choice ('lbfgs') for relatively large datasets.

When we initialized the GridSearchCV object and its parameter grid using the preceding code, we
restricted ourselves to a limited number of parameter combinations, since the number of feature
vectors, as well as the large vocabulary, can make the grid search computationally quite expensive.
Using a standard desktop computer, our grid search may take 5-10 minutes to complete.

In the previous code example, we replaced CountVectorizer and TfidfTransformer from the previous
subsection with TfidfVectorizer, which combines CountVectorizer with the TfidfTransformer. Our
param_grid consisted of two parameter dictionaries. In the first dictionary, we used TfidfVectorizer
with its default settings (use_idf=True, smooth_idf=True, and norm='l2') to calculate the tf-idfs; in
the second dictionary, we set those parameters to use_idf=False, smooth_idf=False, and norm=None
in order to train a model based on raw term frequencies. Furthermore, for the logistic regression
classifier itself, we trained models using L2 regularization via the penalty parameter and compared
different regularization strengths by defining a range of values for the inverse-regularization parameter
C. As an optional exercise, you are also encouraged to add L1 regularization to the parameter grid by
changing 'clf__penalty': ['l2'] to 'clf__penalty': ['l2', 'l1'].

Multiprocessing via the n_jobs parameter

Please note that we highly recommend setting n_jobs=-1 (instead of n_jobs=1, as in the
previous code example) to utilize all available cores on your machine and speed up the
grid search. However, some Windows users reported issues when running the previous
code with the n_jobs=-1 setting related to pickling the tokenizer and tokenizer_porter
functions for multiprocessing on Windows. Another workaround would be to replace those
two functions, [tokenizer, tokenizer_porter], with [str.split]. However, note
that replacement by the simple str.split would not support stemming.

Applying Machine Learning to Sentiment Analysis260

After the grid search has finished, we can print the best parameter set:

>>> print(f'Best parameter set: {gs_lr_tfidf.best_params_}')
Best parameter set: {'clf__C': 10.0, 'clf__penalty': 'l2', 'vect__ngram_range':
(1, 1), 'vect__stop_words': None, 'vect__tokenizer': <function tokenizer at
0x169932dc0>}

As you can see in the preceding output, we obtained the best grid search results using the regular
tokenizer without Porter stemming, no stop word library, and tf-idfs in combination with a logistic
regression classifier that uses L2-regularization with the regularization strength C of 10.0.

Using the best model from this grid search, let’s print the average 5-fold cross-validation accuracy
scores on the training dataset and the classification accuracy on the test dataset:

>>> print(f'CV Accuracy: {gs_lr_tfidf.best_score_:.3f}')
CV Accuracy: 0.897
>>> clf = gs_lr_tfidf.best_estimator_
>>> print(f'Test Accuracy: {clf.score(X_test, y_test):.3f}')
Test Accuracy: 0.899

The results reveal that our machine learning model can predict whether a movie review is positive
or negative with 90 percent accuracy.

Working with bigger data – online algorithms and out-
of-core learning
If you executed the code examples in the previous section, you may have noticed that it could be
computationally quite expensive to construct the feature vectors for the 50,000-movie review dataset
during a grid search. In many real-world applications, it is not uncommon to work with even larger
datasets that can exceed our computer’s memory.

The naïve Bayes classifier

A still very popular classifier for text classification is the naïve Bayes classifier, which
gained popularity in applications of email spam filtering. Naïve Bayes classifiers are easy
to implement, computationally efficient, and tend to perform particularly well on rela-
tively small datasets compared to other algorithms. Although we don’t discuss naïve Bayes
classifiers in this book, the interested reader can find an article about naïve Bayes text
classification that is freely available on arXiv (Naive Bayes and Text Classification I – Intro-
duction and Theory by S. Raschka, Computing Research Repository (CoRR), abs/1410.5329, 2014,
http://arxiv.org/pdf/1410.5329v3.pdf). Different versions of naïve Bayes classifiers
referenced in this article are implemented in scikit-learn. You can find an overview page
with links to the respective code classes here: https://scikit-learn.org/stable/
modules/naive_bayes.html.

http://arxiv.org/pdf/1410.5329v3.pdf
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html

Chapter 8 261

Since not everyone has access to supercomputer facilities, we will now apply a technique called out-of-
core learning, which allows us to work with such large datasets by fitting the classifier incrementally
on smaller batches of a dataset.

Back in Chapter 2, Training Simple Machine Learning Algorithms for Classification, the concept of sto-
chastic gradient descent was introduced; it is an optimization algorithm that updates the model’s
weights using one example at a time. In this section, we will make use of the partial_fit function
of SGDClassifier in scikit-learn to stream the documents directly from our local drive and train a
logistic regression model using small mini-batches of documents.

First, we will define a tokenizer function that cleans the unprocessed text data from the movie_data.
csv file that we constructed at the beginning of this chapter and separates it into word tokens while
removing stop words:

>>> import numpy as np
>>> import re
>>> from nltk.corpus import stopwords
>>> stop = stopwords.words('english')
>>> def tokenizer(text):
... text = re.sub('<[^>]*>', '', text)
... emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
... text.lower())
... text = re.sub('[\W]+', ' ', text.lower()) \
... + ' '.join(emoticons).replace('-', '')
... tokenized = [w for w in text.split() if w not in stop]
... return tokenized

Next, we will define a generator function, stream_docs, that reads in and returns one document at
a time:

>>> def stream_docs(path):
... with open(path, 'r', encoding='utf-8') as csv:
... next(csv) # skip header
... for line in csv:
... text, label = line[:-3], int(line[-2])
... yield text, label

Text classification with recurrent neural networks

In Chapter 15, Modeling Sequential Data Using Recurrent Neural Networks, we will revisit this
dataset and train a deep learning-based classifier (a recurrent neural network) to classify
the reviews in the IMDb movie review dataset. This neural network-based classifier fol-
lows the same out-of-core principle using the stochastic gradient descent optimization
algorithm, but does not require the construction of a bag-of-words model.

Applying Machine Learning to Sentiment Analysis262

To verify that our stream_docs function works correctly, let’s read in the first document from the
movie_data.csv file, which should return a tuple consisting of the review text as well as the corre-
sponding class label:

>>> next(stream_docs(path='movie_data.csv'))
('"In 1974, the teenager Martha Moxley ... ',1)

We will now define a function, get_minibatch, that will take a document stream from the stream_docs
function and return a particular number of documents specified by the size parameter:

>>> def get_minibatch(doc_stream, size):
... docs, y = [], []
... try:
... for _ in range(size):
... text, label = next(doc_stream)
... docs.append(text)
... y.append(label)
... except StopIteration:
... return None, None
... return docs, y

Unfortunately, we can’t use CountVectorizer for out-of-core learning since it requires holding the
complete vocabulary in memory. Also, TfidfVectorizer needs to keep all the feature vectors of the
training dataset in memory to calculate the inverse document frequencies. However, another useful
vectorizer for text processing implemented in scikit-learn is HashingVectorizer. HashingVectorizer
is data-independent and makes use of the hashing trick via the 32-bit MurmurHash3 function by Austin
Appleby (you can find more information about MurmurHash at https://en.wikipedia.org/wiki/
MurmurHash):

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> from sklearn.linear_model import SGDClassifier
>>> vect = HashingVectorizer(decode_error='ignore',
... n_features=2**21,
... preprocessor=None,
... tokenizer=tokenizer)
>>> clf = SGDClassifier(loss='log', random_state=1)
>>> doc_stream = stream_docs(path='movie_data.csv')

Using the preceding code, we initialized HashingVectorizer with our tokenizer function and set the
number of features to 2**21. Furthermore, we reinitialized a logistic regression classifier by setting
the loss parameter of SGDClassifier to 'log'. Note that by choosing a large number of features in
HashingVectorizer, we reduce the chance of causing hash collisions, but we also increase the number
of coefficients in our logistic regression model.

https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash

Chapter 8 263

Now comes the really interesting part—having set up all the complementary functions, we can start
the out-of-core learning using the following code:

>>> import pyprind
>>> pbar = pyprind.ProgBar(45)
>>> classes = np.array([0, 1])
>>> for _ in range(45):
... X_train, y_train = get_minibatch(doc_stream, size=1000)
... if not X_train:
... break
... X_train = vect.transform(X_train)
... clf.partial_fit(X_train, y_train, classes=classes)
... pbar.update()
0% 100%
[##############################] | ETA: 00:00:00
Total time elapsed: 00:00:21

Again, we made use of the PyPrind package to estimate the progress of our learning algorithm. We
initialized the progress bar object with 45 iterations and, in the following for loop, we iterated over
45 mini-batches of documents where each mini-batch consists of 1,000 documents. Having completed
the incremental learning process, we will use the last 5,000 documents to evaluate the performance
of our model:

>>> X_test, y_test = get_minibatch(doc_stream, size=5000)
>>> X_test = vect.transform(X_test)
>>> print(f'Accuracy: {clf.score(X_test, y_test):.3f}')
Accuracy: 0.868

As you can see, the accuracy of the model is approximately 87 percent, slightly below the accuracy
that we achieved in the previous section using the grid search for hyperparameter tuning. However,
out-of-core learning is very memory efficient, and it took less than a minute to complete.

NoneType error

Please note that if you encounter a NoneType error, you may have executed the X_test,
y_test = get_minibatch(...) code twice. Via the previous loop, we have 45 iterations
where we fetch 1,000 documents each. Hence, there are exactly 5,000 documents left for
testing, which we assign via:

>>> X_test, y_test = get_minibatch(doc_stream, size=5000)

If we execute this code twice, then there are not enough documents left in the generator,
and X_test returns None. Hence, if you encounter the NoneType error, you have to start
at the previous stream_docs(...) code again.

Applying Machine Learning to Sentiment Analysis264

Finally, we can use the last 5,000 documents to update our model:

>>> clf = clf.partial_fit(X_test, y_test)

Topic modeling with latent Dirichlet allocation
Topic modeling describes the broad task of assigning topics to unlabeled text documents. For example,
a typical application is the categorization of documents in a large text corpus of newspaper articles.
In applications of topic modeling, we then aim to assign category labels to those articles, for example,
sports, finance, world news, politics, and local news. Thus, in the context of the broad categories of
machine learning that we discussed in Chapter 1, Giving Computers the Ability to Learn from Data, we
can consider topic modeling as a clustering task, a subcategory of unsupervised learning.

In this section, we will discuss a popular technique for topic modeling called latent Dirichlet allocation
(LDA). However, note that while latent Dirichlet allocation is often abbreviated as LDA, it is not to be
confused with linear discriminant analysis, a supervised dimensionality reduction technique that was
introduced in Chapter 5, Compressing Data via Dimensionality Reduction.

Decomposing text documents with LDA
Since the mathematics behind LDA is quite involved and requires knowledge of Bayesian inference,
we will approach this topic from a practitioner’s perspective and interpret LDA using layman’s terms.
However, the interested reader can read more about LDA in the following research paper: Latent
Dirichlet Allocation, by David M. Blei, Andrew Y. Ng, and Michael I. Jordan, Journal of Machine Learning
Research 3, pages: 993-1022, Jan 2003, https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf.

LDA is a generative probabilistic model that tries to find groups of words that appear frequently to-
gether across different documents. These frequently appearing words represent our topics, assuming
that each document is a mixture of different words. The input to an LDA is the bag-of-words model
that we discussed earlier in this chapter.

The word2vec model

A more modern alternative to the bag-of-words model is word2vec, an algorithm that
Google released in 2013 (Efficient Estimation of Word Representations in Vector Space by T.
Mikolov, K. Chen, G. Corrado, and J. Dean, https://arxiv.org/abs/1301.3781).

The word2vec algorithm is an unsupervised learning algorithm based on neural networks
that attempts to automatically learn the relationship between words. The idea behind
word2vec is to put words that have similar meanings into similar clusters, and via clever
vector spacing, the model can reproduce certain words using simple vector math, for
example, king – man + woman = queen.

The original C-implementation with useful links to the relevant papers and alternative
implementations can be found at https://code.google.com/p/word2vec/.

https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://arxiv.org/abs/1301.3781
https://code.google.com/p/word2vec/

Chapter 8 265

Given a bag-of-words matrix as input, LDA decomposes it into two new matrices:

• A document-to-topic matrix
• A word-to-topic matrix

LDA decomposes the bag-of-words matrix in such a way that if we multiply those two matrices to-
gether, we will be able to reproduce the input, the bag-of-words matrix, with the lowest possible error.
In practice, we are interested in those topics that LDA found in the bag-of-words matrix. The only
downside may be that we must define the number of topics beforehand—the number of topics is a
hyperparameter of LDA that has to be specified manually.

LDA with scikit-learn
In this subsection, we will use the LatentDirichletAllocation class implemented in scikit-learn to
decompose the movie review dataset and categorize it into different topics. In the following example,
we will restrict the analysis to 10 different topics, but readers are encouraged to experiment with
the hyperparameters of the algorithm to further explore the topics that can be found in this dataset.

First, we are going to load the dataset into a pandas DataFrame using the local movie_data.csv file of
the movie reviews that we created at the beginning of this chapter:

>>> import pandas as pd
>>> df = pd.read_csv('movie_data.csv', encoding='utf-8')
>>> # the following is necessary on some computers:
>>> df = df.rename(columns={"0": "review", "1": "sentiment"})

Next, we are going to use the already familiar CountVectorizer to create the bag-of-words matrix as
input to the LDA.

For convenience, we will use scikit-learn’s built-in English stop word library via stop_words='english':

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count = CountVectorizer(stop_words='english',
... max_df=.1,
... max_features=5000)
>>> X = count.fit_transform(df['review'].values)

Notice that we set the maximum document frequency of words to be considered to 10 percent (max_
df=.1) to exclude words that occur too frequently across documents. The rationale behind the removal
of frequently occurring words is that these might be common words appearing across all documents
that are, therefore, less likely to be associated with a specific topic category of a given document.
Also, we limited the number of words to be considered to the most frequently occurring 5,000 words
(max_features=5000), to limit the dimensionality of this dataset to improve the inference performed
by LDA. However, both max_df=.1 and max_features=5000 are hyperparameter values chosen arbi-
trarily, and readers are encouraged to tune them while comparing the results.

Applying Machine Learning to Sentiment Analysis266

The following code example demonstrates how to fit a LatentDirichletAllocation estimator to the
bag-of-words matrix and infer the 10 different topics from the documents (note that the model fitting
can take up to 5 minutes or more on a laptop or standard desktop computer):

>>> from sklearn.decomposition import LatentDirichletAllocation
>>> lda = LatentDirichletAllocation(n_components=10,
... random_state=123,
... learning_method='batch')
>>> X_topics = lda.fit_transform(X)

By setting learning_method='batch', we let the lda estimator do its estimation based on all available
training data (the bag-of-words matrix) in one iteration, which is slower than the alternative 'online'
learning method, but can lead to more accurate results (setting learning_method='online' is anal-
ogous to online or mini-batch learning, which we discussed in Chapter 2, Training Simple Machine
Learning Algorithms for Classification, and previously in this chapter).

After fitting the LDA, we now have access to the components_ attribute of the lda instance, which stores
a matrix containing the word importance (here, 5000) for each of the 10 topics in increasing order:

>>> lda.components_.shape
(10, 5000)

To analyze the results, let’s print the five most important words for each of the 10 topics. Note that the
word importance values are ranked in increasing order. Thus, to print the top five words, we need to
sort the topic array in reverse order:

>>> n_top_words = 5
>>> feature_names = count.get_feature_names_out()
>>> for topic_idx, topic in enumerate(lda.components_):
... print(f'Topic {(topic_idx + 1)}:')
... print(' '.join([feature_names[i]
... for i in topic.argsort()\
... [:-n_top_words - 1:-1]]))
Topic 1:

Expectation-maximization

The scikit-learn library’s implementation of LDA uses the expectation-maximization (EM)
algorithm to update its parameter estimates iteratively. We haven’t discussed the EM algo-
rithm in this chapter, but if you are curious to learn more, please see the excellent over-
view on Wikipedia (https://en.wikipedia.org/wiki/Expectation–maximization_
algorithm) and the detailed tutorial on how it is used in LDA in Colorado Reed’s tutorial,
Latent Dirichlet Allocation: Towards a Deeper Understanding, which is freely available at
http://obphio.us/pdfs/lda_tutorial.pdf.

https://en.wikipedia.org/wiki/Expectation–maximization_algorithm
https://en.wikipedia.org/wiki/Expectation–maximization_algorithm
http://obphio.us/pdfs/lda_tutorial.pdf

Chapter 8 267

worst minutes awful script stupid
Topic 2:
family mother father children girl
Topic 3:
american war dvd music tv
Topic 4:
human audience cinema art sense
Topic 5:
police guy car dead murder
Topic 6:
horror house sex girl woman
Topic 7:
role performance comedy actor performances
Topic 8:
series episode war episodes tv
Topic 9:
book version original read novel
Topic 10:
action fight guy guys cool

Based on reading the five most important words for each topic, you may guess that the LDA identified
the following topics:

1. Generally bad movies (not really a topic category)
2. Movies about families
3. War movies
4. Art movies
5. Crime movies
6. Horror movies
7. Comedy movie reviews
8. Movies somehow related to TV shows
9. Movies based on books
10. Action movies

To confirm that the categories make sense based on the reviews, let’s plot three movies from the horror
movie category (horror movies belong to category 6 at index position 5):

>>> horror = X_topics[:, 5].argsort()[::-1]
>>> for iter_idx, movie_idx in enumerate(horror[:3]):
... print(f'\nHorror movie #{(iter_idx + 1)}:')
... print(df['review'][movie_idx][:300], '...')
Horror movie #1:
House of Dracula works from the same basic premise as House of Frankenstein
from the year before; namely that Universal's three most famous monsters;
Dracula, Frankenstein's Monster and The Wolf Man are appearing in the movie
together. Naturally, the film is rather messy therefore, but the fact that ...

Applying Machine Learning to Sentiment Analysis268

Horror movie #2:
Okay, what the hell kind of TRASH have I been watching now? "The Witches'
Mountain" has got to be one of the most incoherent and insane Spanish
exploitation flicks ever and yet, at the same time, it's also strangely
compelling. There's absolutely nothing that makes sense here and I even doubt
there ...
Horror movie #3:

Horror movie time, Japanese style. Uzumaki/Spiral was a total
freakfest from start to finish. A fun freakfest at that, but at times it was
a tad too reliant on kitsch rather than the horror. The story is difficult to
summarize succinctly: a carefree, normal teenage girl starts coming fac ...

Using the preceding code example, we printed the first 300 characters from the top three horror mov-
ies. The reviews—even though we don’t know which exact movie they belong to—sound like reviews
of horror movies (however, one might argue that Horror movie #2 could also be a good fit for topic
category 1: Generally bad movies).

Summary
In this chapter, you learned how to use machine learning algorithms to classify text documents based
on their polarity, which is a basic task in sentiment analysis in the field of NLP. Not only did you learn
how to encode a document as a feature vector using the bag-of-words model, but you also learned
how to weight the term frequency by relevance using tf-idf.

Working with text data can be computationally quite expensive due to the large feature vectors that are
created during this process; in the last section, we covered how to utilize out-of-core or incremental
learning to train a machine learning algorithm without loading the whole dataset into a computer’s
memory.

Lastly, you were introduced to the concept of topic modeling using LDA to categorize the movie reviews
into different categories in an unsupervised fashion.

So far, in this book, we have covered many machine learning concepts, best practices, and supervised
models for classification. In the next chapter, we will look at another subcategory of supervised learn-
ing, regression analysis, which lets us predict outcome variables on a continuous scale, in contrast to
the categorical class labels of the classification models that we have been working with so far.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

9
Predicting Continuous Target
Variables with Regression Analysis

Throughout the previous chapters, you learned a lot about the main concepts behind supervised
learning and trained many different models for classification tasks to predict group memberships or
categorical variables. In this chapter, we will dive into another subcategory of supervised learning:
regression analysis.

Regression models are used to predict target variables on a continuous scale, which makes them
attractive for addressing many questions in science. They also have applications in industry, such as
understanding relationships between variables, evaluating trends, or making forecasts. One example
is predicting the sales of a company in future months.

In this chapter, we will discuss the main concepts of regression models and cover the following topics:

• Exploring and visualizing datasets
• Looking at different approaches to implementing linear regression models
• Training regression models that are robust to outliers
• Evaluating regression models and diagnosing common problems
• Fitting regression models to nonlinear data

Introducing linear regression
The goal of linear regression is to model the relationship between one or multiple features and a con-
tinuous target variable. In contrast to classification—a different subcategory of supervised learning—
regression analysis aims to predict outputs on a continuous scale rather than categorical class labels.

In the following subsections, you will be introduced to the most basic type of linear regression, sim-
ple linear regression, and understand how to relate it to the more general, multivariate case (linear
regression with multiple features).

Predicting Continuous Target Variables with Regression Analysis270

Simple linear regression
The goal of simple (univariate) linear regression is to model the relationship between a single feature
(explanatory variable, x) and a continuous-valued target (response variable, y). The equation of a
linear model with one explanatory variable is defined as follows:𝑦𝑦𝑦 𝑦 𝑦 𝑦𝑦1𝑥𝑥 𝑥 𝑦𝑥𝑥

Here, the parameter (bias unit), b, represents the y axis intercept and w1 is the weight coefficient of
the explanatory variable. Our goal is to learn the weights of the linear equation to describe the rela-
tionship between the explanatory variable and the target variable, which can then be used to predict
the responses of new explanatory variables that were not part of the training dataset.

Based on the linear equation that we defined previously, linear regression can be understood as finding
the best-fitting straight line through the training examples, as shown in Figure 9.1:

Figure 9.1: A simple one-feature linear regression example

This best-fitting line is also called the regression line, and the vertical lines from the regression line
to the training examples are the so-called offsets or residuals—the errors of our prediction.

Chapter 9 271

Multiple linear regression
The previous section introduced simple linear regression, a special case of linear regression with
one explanatory variable. Of course, we can also generalize the linear regression model to multiple
explanatory variables; this process is called multiple linear regression:

𝑦𝑦𝑦 𝑦 𝑦 𝑦𝑦1𝑥𝑥1 + 𝑦…𝑦+ 𝑦𝑦𝑦𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑦𝑏𝑏𝑦 𝑦 𝑦 𝑏 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖𝑖1 + 𝑦𝑏𝑏𝑦 𝑦 𝑦 𝑦𝑦𝑇𝑇𝒙𝒙𝑦 + 𝑦𝑏𝑏

Figure 9.2 shows how the two-dimensional, fitted hyperplane of a multiple linear regression model
with two features could look:

Figure 9.2: A two-feature linear regression model

As you can see, visualizations of multiple linear regression hyperplanes in a three-dimensional scatter-
plot are already challenging to interpret when looking at static figures. Since we have no good means
of visualizing hyperplanes with two dimensions in a scatterplot (multiple linear regression models fit
to datasets with three or more features), the examples and visualizations in this chapter will mainly
focus on the univariate case, using simple linear regression. However, simple and multiple linear
regression are based on the same concepts and the same evaluation techniques; the code implemen-
tations that we will discuss in this chapter are also compatible with both types of regression model.

Predicting Continuous Target Variables with Regression Analysis272

Exploring the Ames Housing dataset
Before we implement the first linear regression model, we will discuss a new dataset, the Ames Housing
dataset, which contains information about individual residential property in Ames, Iowa, from 2006
to 2010. The dataset was collected by Dean De Cock in 2011, and additional information is available
via the following links:

• A report describing the dataset: http://jse.amstat.org/v19n3/decock.pdf
• Detailed documentation regarding the dataset’s features: http://jse.amstat.org/v19n3/

decock/DataDocumentation.txt

• The dataset in a tab-separated format: http://jse.amstat.org/v19n3/decock/AmesHousing.
txt

As with each new dataset, it is always helpful to explore the data through a simple visualization, to get
a better feeling of what we are working with, which is what we will do in the following subsections.

Loading the Ames Housing dataset into a DataFrame
In this section, we will load the Ames Housing dataset using the pandas read_csv function, which is
fast and versatile and a recommended tool for working with tabular data stored in a plaintext format.

The Ames Housing dataset consists of 2,930 examples and 80 features. For simplicity, we will only
work with a subset of the features, shown in the following list. However, if you are curious, follow the
link to the full dataset description provided at the beginning of this section, and you are encouraged
to explore other variables in this dataset after reading this chapter.

The features we will be working with, including the target variable, are as follows:

• Overall Qual: Rating for the overall material and finish of the house on a scale from 1 (very
poor) to 10 (excellent)

• Overall Cond: Rating for the overall condition of the house on a scale from 1 (very poor) to
10 (excellent)

• Gr Liv Area: Above grade (ground) living area in square feet
• Central Air: Central air conditioning (N=no, Y=yes)
• Total Bsmt SF: Total square feet of the basement area
• SalePrice: Sale price in U.S. dollars ($)

For the rest of this chapter, we will regard the sale price (SalePrice) as our target variable—the vari-
able that we want to predict using one or more of the five explanatory variables. Before we explore
this dataset further, let’s load it into a pandas DataFrame:

import pandas as pd

columns = ['Overall Qual', 'Overall Cond', 'Gr Liv Area',
 'Central Air', 'Total Bsmt SF', 'SalePrice']

http://jse.amstat.org/v19n3/decock.pdf
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt
http://jse.amstat.org/v19n3/decock/AmesHousing.txt
http://jse.amstat.org/v19n3/decock/AmesHousing.txt

Chapter 9 273

df = pd.read_csv('http://jse.amstat.org/v19n3/decock/AmesHousing.txt',
 sep='\t',
 usecols=columns)

df.head()

To confirm that the dataset was loaded successfully, we can display the first five lines of the dataset,
as shown in Figure 9.3:

Figure 9.3: The first five rows of the housing dataset

After loading the dataset, let’s also check the dimensions of the DataFrame to make sure that it contains
the expected number of rows:

>>> df.shape
(2930, 6)

As we can see, the DataFrame contains 2,930 rows, as expected.

Another aspect we have to take care of is the 'Central Air' variable, which is encoded as type string,
as we can see in Figure 9.3. As we learned in Chapter 4, Building Good Training Datasets – Data Prepro-
cessing, we can use the .map method to convert DataFrame columns. The following code will convert
the string 'Y' to the integer 1, and the string 'N' to the integer 0:

>>> df['Central Air'] = df['Central Air'].map({'N': 0, 'Y': 1})

Lastly, let’s check whether any of the data frame columns contain missing values:

>>> df.isnull().sum()
Overall Qual 0
Overall Cond 0
Total Bsmt SF 1
Central Air 0
Gr Liv Area 0
SalePrice 0
dtype: int64

Predicting Continuous Target Variables with Regression Analysis274

As we can see, the Total Bsmt SF feature variable contains one missing value. Since we have a relatively
large dataset, the easiest way to deal with this missing feature value is to remove the corresponding
example from the dataset (for alternative methods, please see Chapter 4):

>>> df = df.dropna(axis=0)
>>> df.isnull().sum()

Overall Qual 0
Overall Cond 0
Total Bsmt SF 0
Central Air 0
Gr Liv Area 0
SalePrice 0
dtype: int64

Visualizing the important characteristics of a dataset
Exploratory data analysis (EDA) is an important and recommended first step prior to the training of
a machine learning model. In the rest of this section, we will use some simple yet useful techniques
from the graphical EDA toolbox that may help us to visually detect the presence of outliers, the dis-
tribution of the data, and the relationships between features.

First, we will create a scatterplot matrix that allows us to visualize the pair-wise correlations be-
tween the different features in this dataset in one place. To plot the scatterplot matrix, we will use the
scatterplotmatrix function from the mlxtend library (http://rasbt.github.io/mlxtend/), which
is a Python library that contains various convenience functions for machine learning and data science
applications in Python.

You can install the mlxtend package via conda install mlxtend or pip install mlxtend. For this
chapter, we used mlxtend version 0.19.0.

Once the installation is complete, you can import the package and create the scatterplot matrix as
follows:

>>> import matplotlib.pyplot as plt
>>> from mlxtend.plotting import scatterplotmatrix
>>> scatterplotmatrix(df.values, figsize=(12, 10),
... names=df.columns, alpha=0.5)
>>> plt.tight_layout()
plt.show()

http://rasbt.github.io/mlxtend/

Chapter 9 275

As you can see in Figure 9.4, the scatterplot matrix provides us with a useful graphical summary of
the relationships in a dataset:

Figure 9.4: A scatterplot matrix of our data

Using this scatterplot matrix, we can now quickly see how the data is distributed and whether it con-
tains outliers. For example, we can see (fifth column from the left of the bottom row) that there is a
somewhat linear relationship between the size of the living area above ground (Gr Liv Area) and
the sale price (SalePrice).

Predicting Continuous Target Variables with Regression Analysis276

Furthermore, we can see in the histogram—the lower-right subplot in the scatterplot matrix—that the
SalePrice variable seems to be skewed by several outliers.

Looking at relationships using a correlation matrix
In the previous section, we visualized the data distributions of the Ames Housing dataset variables
in the form of histograms and scatterplots. Next, we will create a correlation matrix to quantify and
summarize linear relationships between variables. A correlation matrix is closely related to the covari-
ance matrix that we covered in the section Unsupervised dimensionality reduction via principal component
analysis in Chapter 5, Compressing Data via Dimensionality Reduction. We can interpret the correlation
matrix as being a rescaled version of the covariance matrix. In fact, the correlation matrix is identical
to a covariance matrix computed from standardized features.

The correlation matrix is a square matrix that contains the Pearson product-moment correlation
coefficient (often abbreviated as Pearson’s r), which measures the linear dependence between pairs
of features. The correlation coefficients are in the range –1 to 1. Two features have a perfect positive
correlation if r = 1, no correlation if r = 0, and a perfect negative correlation if r = –1. As mentioned
previously, Pearson’s correlation coefficient can simply be calculated as the covariance between two
features, x and y (numerator), divided by the product of their standard deviations (denominator):

𝑟𝑟 𝑟 ∑ [(𝑥𝑥(𝑖𝑖𝑖 − 𝜇𝜇𝑥𝑥𝑖(𝑦𝑦(𝑖𝑖𝑖 − 𝜇𝜇𝑦𝑦)]𝑛𝑛𝑖𝑖𝑖𝑖√∑ (𝑥𝑥(𝑖𝑖𝑖 − 𝜇𝜇𝑥𝑥𝑖2𝑛𝑛𝑖𝑖𝑖𝑖 √∑ (𝑦𝑦(𝑖𝑖𝑖 − 𝜇𝜇𝑦𝑦)2𝑛𝑛𝑖𝑖𝑖𝑖 𝑟 𝜎𝜎𝑥𝑥𝑦𝑦𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

Here, 𝜇𝜇 denotes the mean of the corresponding feature, 𝜎𝜎𝑥𝑥𝑥𝑥 is the covariance between the features x
and y, and 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the features’ standard deviations.

The normality assumption of linear regression

Note that in contrast to common belief, training a linear regression model does not re-
quire that the explanatory or target variables are normally distributed. The normality
assumption is only a requirement for certain statistics and hypothesis tests that are beyond
the scope of this book (for more information on this topic, please refer to Introduction
to Linear Regression Analysis by Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey
Vining, Wiley, pages: 318-319, 2012).

Chapter 9 277

In the following code example, we will use NumPy’s corrcoef function on the five feature columns
that we previously visualized in the scatterplot matrix, and we will use mlxtend’s heatmap function to
plot the correlation matrix array as a heat map:

>>> import numpy as np
>>> from mlxtend.plotting import heatmap

>>> cm = np.corrcoef(df.values.T)
>>> hm = heatmap(cm, row_names=df.columns, column_names=df.columns)
>>> plt.tight_layout()
>>> plt.show()

Covariance versus correlation for standardized features

We can show that the covariance between a pair of standardized features is, in fact, equal
to their linear correlation coefficient. To show this, let’s first standardize the features x
and y to obtain their z-scores, which we will denote as x’ and y’, respectively:𝑥𝑥′ = 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥 , 𝑦𝑦′ = 𝑦𝑦 𝑥 𝑥𝑥𝑦𝑦𝜎𝜎𝑦𝑦

Remember that we compute the (population) covariance between two features as follows:

𝜎𝜎𝑥𝑥𝑥𝑥 = 1𝑛𝑛∑(𝑥𝑥(𝑖𝑖𝑖 − 𝜇𝜇𝑥𝑥)(𝑦𝑦(𝑖𝑖𝑖 − 𝜇𝜇𝑥𝑥)𝑛𝑛
𝑖𝑖

Since standardization centers a feature variable at mean zero, we can now calculate the
covariance between the scaled features as follows:

𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 1𝑛𝑛∑(𝑥𝑥𝜎(𝑖𝑖𝑖 − 0)(𝑦𝑦𝜎(𝑖𝑖𝑖 − 0)𝑛𝑛
𝑖𝑖

Through resubstitution, we then get the following result:

𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 1𝑛𝑛 ∑ (𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥) (𝑦𝑦 𝑥 𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥)𝑛𝑛
𝑖𝑖

𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 1𝑛𝑛 𝑛 𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥 ∑(𝑥𝑥(𝑖𝑖𝑖 𝑥 𝑥𝑥𝑥𝑥)(𝑦𝑦(𝑖𝑖𝑖 𝑥 𝑥𝑥𝑥𝑥)𝑛𝑛
𝑖𝑖

Finally, we can simplify this equation as follows:𝜎𝜎′𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥

Predicting Continuous Target Variables with Regression Analysis278

As you can see in Figure 9.5, the correlation matrix provides us with another useful summary graphic
that can help us to select features based on their respective linear correlations:

Figure 9.5: A correlation matrix of the selected variables

To fit a linear regression model, we are interested in those features that have a high correlation with
our target variable, SalePrice. Looking at the previous correlation matrix, we can see that SalePrice
shows the largest correlation with the Gr Liv Area variable (0.71), which seems to be a good choice
for an exploratory variable to introduce the concepts of a simple linear regression model in the fol-
lowing section.

Implementing an ordinary least squares linear
regression model
At the beginning of this chapter, we mentioned that linear regression can be understood as obtaining
the best-fitting straight line through the examples of our training data. However, we have neither
defined the term best-fitting nor have we discussed the different techniques of fitting such a model.
In the following subsections, we will fill in the missing pieces of this puzzle using the ordinary least
squares (OLS) method (sometimes also called linear least squares) to estimate the parameters of the
linear regression line that minimizes the sum of the squared vertical distances (residuals or errors)
to the training examples.

Solving regression for regression parameters with gradient
descent
Consider our implementation of the Adaptive Linear Neuron (Adaline) from Chapter 2, Training Simple
Machine Learning Algorithms for Classification. You will remember that the artificial neuron uses a linear
activation function. Also, we defined a loss function, L(w), which we minimized to learn the weights
via optimization algorithms, such as gradient descent (GD) and stochastic gradient descent (SGD).

Chapter 9 279

This loss function in Adaline is the mean squared error (MSE), which is identical to the loss function
that we use for OLS:

𝐿𝐿(𝒘𝒘𝒘 𝒘𝒘) = 12𝑛𝑛 ∑(𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑦(𝑖𝑖))2 𝑛𝑛
𝑖𝑖𝑖𝑖

Here, 𝑦𝑦𝑦 is the predicted value 𝑦𝑦𝑦 𝑦 𝑦𝑦𝑇𝑇𝒙𝒙𝒙 𝒙 𝒙𝒙𝒙 (note that the term 12 is just used for convenience to derive
the update rule of GD). Essentially, OLS regression can be understood as Adaline without the threshold
function so that we obtain continuous target values instead of the class labels 0 and 1. To demonstrate
this, let’s take the GD implementation of Adaline from Chapter 2 and remove the threshold function
to implement our first linear regression model:

class LinearRegressionGD:
 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

 def fit(self, X, y):
 rgen = np.random.RandomState(self.random_state)
 self.w_ = rgen.normal(loc=0.0, scale=0.01, size=X.shape[1])
 self.b_ = np.array([0.])
 self.losses_ = []

 for i in range(self.n_iter):
 output = self.net_input(X)
 errors = (y - output)
 self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0]
 self.b_ += self.eta * 2.0 * errors.mean()
 loss = (errors**2).mean()
 self.losses_.append(loss)
 return self

 def net_input(self, X):
 return np.dot(X, self.w_) + self.b_

 def predict(self, X):
 return self.net_input(X)

Predicting Continuous Target Variables with Regression Analysis280

To see our LinearRegressionGD regressor in action, let’s use the Gr Living Area (size of the living
area above ground in square feet) feature from the Ames Housing dataset as the explanatory variable
and train a model that can predict SalePrice. Furthermore, we will standardize the variables for
better convergence of the GD algorithm. The code is as follows:

>>> X = df[['Gr Liv Area']].values
>>> y = df['SalePrice'].values
>>> from sklearn.preprocessing import StandardScaler
>>> sc_x = StandardScaler()
>>> sc_y = StandardScaler()
>>> X_std = sc_x.fit_transform(X)
>>> y_std = sc_y.fit_transform(y[:, np.newaxis]).flatten()
>>> lr = LinearRegressionGD(eta=0.1)
>>> lr.fit(X_std, y_std)

Notice the workaround regarding y_std, using np.newaxis and flatten. Most data preprocessing
classes in scikit-learn expect data to be stored in two-dimensional arrays. In the previous code ex-
ample, the use of np.newaxis in y[:, np.newaxis] added a new dimension to the array. Then, after
StandardScaler returned the scaled variable, we converted it back to the original one-dimensional
array representation using the flatten() method for our convenience.

We discussed in Chapter 2 that it is always a good idea to plot the loss as a function of the number of
epochs (complete iterations) over the training dataset when we are using optimization algorithms,
such as GD, to check that the algorithm converged to a loss minimum (here, a global loss minimum):

>>> plt.plot(range(1, lr.n_iter+1), lr.losses_)
>>> plt.ylabel('MSE')
>>> plt.xlabel('Epoch')
>>> plt.show()

Weight updates with gradient descent

If you need a refresher about how the weights are updated—taking a step in the opposite
direction of the gradient—please revisit the Adaptive linear neurons and the convergence of
learning section in Chapter 2.

Chapter 9 281

As you can see in Figure 9.6, the GD algorithm converged approximately after the tenth epoch:

Figure 9.6: The loss function versus the number of epochs

Next, let’s visualize how well the linear regression line fits the training data. To do so, we will define a
simple helper function that will plot a scatterplot of the training examples and add the regression line:

>>> def lin_regplot(X, y, model):
... plt.scatter(X, y, c='steelblue', edgecolor='white', s=70)
... plt.plot(X, model.predict(X), color='black', lw=2)

Now, we will use this lin_regplot function to plot the living area against the sale price:

>>> lin_regplot(X_std, y_std, lr)
>>> plt.xlabel(' Living area above ground (standardized)')
>>> plt.ylabel('Sale price (standardized)')
>>> plt.show()

Predicting Continuous Target Variables with Regression Analysis282

As you can see in Figure 9.7, the linear regression line reflects the general trend that house prices tend
to increase with the size of the living area:

Figure 9.7: A linear regression plot of sale prices versus living area size

Although this observation makes sense, the data also tells us that the living area size does not explain
house prices very well in many cases. Later in this chapter, we will discuss how to quantify the per-
formance of a regression model. Interestingly, we can also observe several outliers, for example, the
three data points corresponding to a standardized living area greater than 6. We will discuss how we
can deal with outliers later in this chapter.

In certain applications, it may also be important to report the predicted outcome variables on their
original scale. To scale the predicted price back onto the original price in U.S. dollars scale, we can
simply apply the inverse_transform method of StandardScaler:

>>> feature_std = sc_x.transform(np.array([[2500]]))
>>> target_std = lr.predict(feature_std)
>>> target_reverted = sc_y.inverse_transform(target_std.reshape(-1, 1))
>>> print(f'Sales price: ${target_reverted.flatten()[0]:.2f}')
Sales price: $292507.07

Chapter 9 283

In this code example, we used the previously trained linear regression model to predict the price of
a house with an aboveground living area of 2,500 square feet. According to our model, such a house
will be worth $292,507.07.

As a side note, it is also worth mentioning that we technically don’t have to update the intercept pa-
rameter (for instance, the bias unit, b) if we are working with standardized variables, since the y axis
intercept is always 0 in those cases. We can quickly confirm this by printing the model parameters:

>>> print(f'Slope: {lr.w_[0]:.3f}')
Slope: 0.707
>>> print(f'Intercept: {lr.b_[0]:.3f}')
Intercept: -0.000

Estimating the coefficient of a regression model via scikit-learn
In the previous section, we implemented a working model for regression analysis; however, in a
real-world application, we may be interested in more efficient implementations. For example, many
of scikit-learn’s estimators for regression make use of the least squares implementation in SciPy
(scipy.linalg.lstsq), which, in turn, uses highly optimized code optimizations based on the Linear
Algebra Package (LAPACK). The linear regression implementation in scikit-learn also works (better)
with unstandardized variables, since it does not use (S)GD-based optimization, so we can skip the
standardization step:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> y_pred = slr.predict(X)
>>> print(f'Slope: {slr.coef_[0]:.3f}')
Slope: 111.666
>>> print(f'Intercept: {slr.intercept_:.3f}')
Intercept: 13342.979

As you can see from executing this code, scikit-learn’s LinearRegression model, fitted with the un-
standardized Gr Liv Area and SalePrice variables, yielded different model coefficients, since the
features have not been standardized. However, when we compare it to our GD implementation by
plotting SalePrice against Gr Liv Area, we can qualitatively see that it fits the data similarly well:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Living area above ground in square feet')
>>> plt.ylabel('Sale price in U.S. dollars')
>>> plt.tight_layout()
>>> plt.show()

Predicting Continuous Target Variables with Regression Analysis284

For instance, we can see that the overall result looks identical to our GD implementation:

Figure 9.8: A linear regression plot using scikit-learn

Analytical solutions of linear regression

As an alternative to using machine learning libraries, there is also a closed-form solution
for solving OLS involving a system of linear equations that can be found in most intro-
ductory statistics textbooks: 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑇𝑇𝑤𝑤𝑋−1𝑤𝑤𝑇𝑇𝑦𝑦

We can implement it in Python as follows:

adding a column vector of "ones"
>>> Xb = np.hstack((np.ones((X.shape[0], 1)), X))
>>> w = np.zeros(X.shape[1])
>>> z = np.linalg.inv(np.dot(Xb.T, Xb))
>>> w = np.dot(z, np.dot(Xb.T, y))
>>> print(f'Slope: {w[1]:.3f}')
Slope: 111.666
>>> print(f'Intercept: {w[0]:.3f}')
Intercept: 13342.979

Chapter 9 285

Fitting a robust regression model using RANSAC
Linear regression models can be heavily impacted by the presence of outliers. In certain situations, a
very small subset of our data can have a big effect on the estimated model coefficients. Many statistical
tests can be used to detect outliers, but these are beyond the scope of the book. However, removing
outliers always requires our own judgment as data scientists as well as our domain knowledge.

As an alternative to throwing out outliers, we will look at a robust method of regression using the
RANdom SAmple Consensus (RANSAC) algorithm, which fits a regression model to a subset of the
data, the so-called inliers.

We can summarize the iterative RANSAC algorithm as follows:

1. Select a random number of examples to be inliers and fit the model.
2. Test all other data points against the fitted model and add those points that fall within a us-

er-given tolerance to the inliers.
3. Refit the model using all inliers.
4. Estimate the error of the fitted model versus the inliers.
5. Terminate the algorithm if the performance meets a certain user-defined threshold or if a

fixed number of iterations was reached; go back to step 1 otherwise.

The advantage of this method is that it is guaranteed to find the optimal solution analyti-
cally. However, if we are working with very large datasets, it can be computationally too
expensive to invert the matrix in this formula (sometimes also called the normal equation),
or the matrix containing the training examples may be singular (non-invertible), which
is why we may prefer iterative methods in certain cases.

If you are interested in more information on how to obtain normal equations, take a look
at Dr. Stephen Pollock’s chapter The Classical Linear Regression Model, from his lectures at
the University of Leicester, which is available for free at http://www.le.ac.uk/users/
dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf.

Also, if you want to compare linear regression solutions obtained via GD, SGD, the
closed-form solution, QR factorization, and singular vector decomposition, you can use
the LinearRegression class implemented in mlxtend (http://rasbt.github.io/
mlxtend/user_guide/regressor/LinearRegression/), which lets users toggle between
these options. Another great library to recommend for regression modeling in Python is
statsmodels, which implements more advanced linear regression models, as illustrated
at https://www.statsmodels.org/stable/examples/index.html#regression.

http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf
http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf
http://rasbt.github.io/mlxtend/user_guide/regressor/LinearRegression/
http://rasbt.github.io/mlxtend/user_guide/regressor/LinearRegression/
https://www.statsmodels.org/stable/examples/index.html#regression

Predicting Continuous Target Variables with Regression Analysis286

Let’s now use a linear model in combination with the RANSAC algorithm as implemented in scikit-
learn’s RANSACRegressor class:

>>> from sklearn.linear_model import RANSACRegressor
>>> ransac = RANSACRegressor(
... LinearRegression(),
... max_trials=100, # default value
... min_samples=0.95,
... residual_threshold=None, # default value
... random_state=123)
>>> ransac.fit(X, y)

We set the maximum number of iterations of the RANSACRegressor to 100, and using min_samples=0.95,
we set the minimum number of the randomly chosen training examples to be at least 95 percent of
the dataset.

By default (via residual_threshold=None), scikit-learn uses the MAD estimate to select the inlier
threshold, where MAD stands for the median absolute deviation of the target values, y. However, the
choice of an appropriate value for the inlier threshold is problem-specific, which is one disadvantage
of RANSAC.

Many different approaches have been developed in recent years to select a good inlier threshold au-
tomatically. You can find a detailed discussion in Automatic Estimation of the Inlier Threshold in Robust
Multiple Structures Fitting by R. Toldo and A. Fusiello, Springer, 2009 (in Image Analysis and Processing–
ICIAP 2009, pages: 123-131).

Once we have fitted the RANSAC model, let’s obtain the inliers and outliers from the fitted RANSAC
linear regression model and plot them together with the linear fit:

>>> inlier_mask = ransac.inlier_mask_
>>> outlier_mask = np.logical_not(inlier_mask)
>>> line_X = np.arange(3, 10, 1)
>>> line_y_ransac = ransac.predict(line_X[:, np.newaxis])
>>> plt.scatter(X[inlier_mask], y[inlier_mask],
... c='steelblue', edgecolor='white',
... marker='o', label='Inliers')
>>> plt.scatter(X[outlier_mask], y[outlier_mask],
... c='limegreen', edgecolor='white',
... marker='s', label='Outliers')
>>> plt.plot(line_X, line_y_ransac, color='black', lw=2)
>>> plt.xlabel('Living area above ground in square feet')
>>> plt.ylabel('Sale price in U.S. dollars')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

Chapter 9 287

As you can see in Figure 9.9, the linear regression model was fitted on the detected set of inliers, which
are shown as circles:

Figure 9.9: Inliers and outliers identified via a RANSAC linear regression model

When we print the slope and intercept of the model by executing the following code, the linear re-
gression line will be slightly different from the fit that we obtained in the previous section without
using RANSAC:

>>> print(f'Slope: {ransac.estimator_.coef_[0]:.3f}')
Slope: 106.348
>>> print(f'Intercept: {ransac.estimator_.intercept_:.3f}')
Intercept: 20190.093

Remember that we set the residual_threshold parameter to None, so RANSAC was using the MAD to
compute the threshold for flagging inliers and outliers. The MAD, for this dataset, can be computed
as follows:

>>> def mean_absolute_deviation(data):
... return np.mean(np.abs(data - np.mean(data)))
>>> mean_absolute_deviation(y)
58269.561754979375

Predicting Continuous Target Variables with Regression Analysis288

So, if we want to identify fewer data points as outliers, we can choose a residual_threshold value
greater than the preceding MAD. For example, Figure 9.10 shows the inliers and outliers of a RANSAC
linear regression model with a residual threshold of 65,000:

Figure 9.10: Inliers and outliers determined by a RANSAC linear regression model with a larger re-
sidual threshold

Using RANSAC, we reduced the potential effect of the outliers in this dataset, but we don’t know whether
this approach will have a positive effect on the predictive performance for unseen data or not. Thus,
in the next section, we will look at different approaches for evaluating a regression model, which is
a crucial part of building systems for predictive modeling.

Evaluating the performance of linear regression models
In the previous section, you learned how to fit a regression model on training data. However, you
discovered in previous chapters that it is crucial to test the model on data that it hasn’t seen during
training to obtain a more unbiased estimate of its generalization performance.

As you may remember from Chapter 6, Learning Best Practices for Model Evaluation and Hyperparam-
eter Tuning, we want to split our dataset into separate training and test datasets, where we will use
the former to fit the model and the latter to evaluate its performance on unseen data to estimate the
generalization performance. Instead of proceeding with the simple regression model, we will now
use all five features in the dataset and train a multiple regression model:

>>> from sklearn.model_selection import train_test_split
>>> target = 'SalePrice'
>>> features = df.columns[df.columns != target]
>>> X = df[features].values
>>> y = df[target].values

Chapter 9 289

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.3, random_state=123)
>>> slr = LinearRegression()
>>> slr.fit(X_train, y_train)
>>> y_train_pred = slr.predict(X_train)
>>> y_test_pred = slr.predict(X_test)

Since our model uses multiple explanatory variables, we can’t visualize the linear regression line (or
hyperplane, to be precise) in a two-dimensional plot, but we can plot the residuals (the differences or
vertical distances between the actual and predicted values) versus the predicted values to diagnose
our regression model. Residual plots are a commonly used graphical tool for diagnosing regression
models. They can help to detect nonlinearity and outliers and check whether the errors are randomly
distributed.

Using the following code, we will now plot a residual plot where we simply subtract the true target
variables from our predicted responses:

>>> x_max = np.max(
... [np.max(y_train_pred), np.max(y_test_pred)])
>>> x_min = np.min(
... [np.min(y_train_pred), np.min(y_test_pred)])

>>> fig, (ax1, ax2) = plt.subplots(
... 1, 2, figsize=(7, 3), sharey=True)

>>> ax1.scatter(
... y_test_pred, y_test_pred - y_test,
... c='limegreen', marker='s',
... edgecolor='white',
... label='Test data')
>>> ax2.scatter(
... y_train_pred, y_train_pred - y_train,
... c='steelblue', marker='o', edgecolor='white',
... label='Training data')
>>> ax1.set_ylabel('Residuals')

>>> for ax in (ax1, ax2):
... ax.set_xlabel('Predicted values')
... ax.legend(loc='upper left')
... ax.hlines(y=0, xmin=x_min-100, xmax=x_max+100,\
... color='black', lw=2)
>>> plt.tight_layout()
>>> plt.show()

Predicting Continuous Target Variables with Regression Analysis290

After executing the code, we should see residual plots for the test and training datasets with a line
passing through the x axis origin, as shown in Figure 9.11:

Figure 9.11: Residual plots of our data

In the case of a perfect prediction, the residuals would be exactly zero, which we will probably never
encounter in realistic and practical applications. However, for a good regression model, we would
expect the errors to be randomly distributed and the residuals to be randomly scattered around the
centerline. If we see patterns in a residual plot, it means that our model is unable to capture some ex-
planatory information, which has leaked into the residuals, as you can see to a degree in our previous
residual plot. Furthermore, we can also use residual plots to detect outliers, which are represented
by the points with a large deviation from the centerline.

Another useful quantitative measure of a model’s performance is the mean squared error (MSE) that
we discussed earlier as our loss function that we minimized to fit the linear regression model. The
following is a version of the MSE without the 12 scaling factor that is often used to simplify the loss
derivative in gradient descent:

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 1𝑛𝑛∑(𝑦𝑦(𝑖𝑖𝑖 − 𝑦𝑦𝑦(𝑖𝑖𝑖𝑖2𝑛𝑛
𝑖𝑖𝑖𝑖

Similar to prediction accuracy in classification contexts, we can use the MSE for cross-validation and
model selection as discussed in Chapter 6.

Like classification accuracy, MSE also normalizes according to the sample size, n. This makes it pos-
sible to compare across different sample sizes (for example, in the context of learning curves) as well.

Let’s now compute the MSE of our training and test predictions:

>>> from sklearn.metrics import mean_squared_error
>>> mse_train = mean_squared_error(y_train, y_train_pred)
>>> mse_test = mean_squared_error(y_test, y_test_pred)

Chapter 9 291

>>> print(f'MSE train: {mse_train:.2f}')
MSE train: 1497216245.85
>>> print(f'MSE test: {mse_test:.2f}')
MSE test: 1516565821.00

We can see that the MSE on the training dataset is larger than on the test set, which is an indicator
that our model is slightly overfitting the training data in this case. Note that it can be more intuitive to
show the error on the original unit scale (here, dollar instead of dollar-squared), which is why we may
choose to compute the square root of the MSE, called root mean squared error, or the mean absolute
error (MAE), which emphasizes incorrect prediction slightly less:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀 1𝑛𝑛 ∑ |𝑦𝑦(𝑖𝑖𝑖 − 𝑦𝑦𝑦(𝑖𝑖𝑖|𝑛𝑛
𝑖𝑖𝑖𝑖

We can compute the MAE similar to the MSE:

>>> from sklearn.metrics import mean_absolute_error
>>> mae_train = mean_absolute_error(y_train, y_train_pred)
>>> mae_test = mean_absolute_error(y_test, y_test_pred)
>>> print(f'MAE train: {mae_train:.2f}')
MAE train: 25983.03
>>> print(f'MAE test: {mae_test:.2f}')
MAE test: 24921.29

Based on the test set MAE, we can say that the model makes an error of approximately $25,000 on
average.

When we use the MAE or MSE for comparing models, we need to be aware that these are unbounded
in contrast to the classification accuracy, for example. In other words, the interpretations of the MAE
and MSE depend on the dataset and feature scaling. For example, if the sale prices were presented as
multiples of 1,000 (with the K suffix), the same model would yield a lower MAE compared to a model
that worked with unscaled features. To further illustrate this point,|$500K − 550K| < |$500,000 − 550,000|
Thus, it may sometimes be more useful to report the coefficient of determination (R2), which can be
understood as a standardized version of the MSE, for better interpretability of the model’s perfor-
mance. Or, in other words, R2 is the fraction of response variance that is captured by the model. The
R2 value is defined as: 𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Predicting Continuous Target Variables with Regression Analysis292

Here, SSE is the sum of squared errors, which is similar to the MSE but does not include the normal-
ization by sample size n:

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑(𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑦(𝑖𝑖))2 𝑛𝑛
𝑖𝑖𝑖𝑖

And SST is the total sum of squares:

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑(𝑦𝑦(𝑖𝑖) − 𝜇𝜇𝑦𝑦)2 𝑛𝑛
𝑖𝑖𝑖𝑖

In other words, SST is simply the variance of the response.

Now, let’s briefly show that R2 is indeed just a rescaled version of the MSE:𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 = 1𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑦(𝑖𝑖))2 𝑛𝑛𝑖𝑖𝑖𝑖1𝑛𝑛 ∑ (𝑦𝑦(𝑖𝑖) − 𝜇𝜇𝑦𝑦)2 𝑛𝑛𝑖𝑖𝑖𝑖 = 1 − 𝑀𝑀𝑆𝑆𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦)

For the training dataset, R2 is bounded between 0 and 1, but it can become negative for the test dataset.
A negative R2 means that the regression model fits the data worse than a horizontal line representing
the sample mean. (In practice, this often happens in the case of extreme overfitting, or if we forget
to scale the test set in the same manner we scaled the training set.) If R2 = 1, the model fits the data
perfectly with a corresponding MSE = 0.

Evaluated on the training data, the R2 of our model is 0.77, which isn’t great but also not too bad giv-
en that we only work with a small set of features. However, the R2 on the test dataset is only slightly
smaller, at 0.75, which indicates that the model is only overfitting slightly:

>>> from sklearn.metrics import r2_score
>>> train_r2 = r2_score(y_train, y_train_pred)
>>> test_r2 = r2_score(y_test, y_test_pred)
>>> print(f'R^2 train: {train_r2:.3f}, {test_r2:.3f}')
R^2 train: 0.77, test: 0.75

Using regularized methods for regression
As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn, regularization
is one approach to tackling the problem of overfitting by adding additional information and thereby
shrinking the parameter values of the model to induce a penalty against complexity. The most popular
approaches to regularized linear regression are the so-called ridge regression, least absolute shrinkage
and selection operator (LASSO), and elastic net.

Chapter 9 293

Ridge regression is an L2 penalized model where we simply add the squared sum of the weights to
the MSE loss function:

𝐿𝐿(𝒘𝒘)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ∑(𝑦𝑦(𝑅𝑅) − 𝑦𝑦𝑦(𝑅𝑅))2 + 𝜆𝜆𝜆𝜆𝒘𝒘𝜆𝜆22𝑛𝑛
𝑅𝑅𝑖𝑖

Here, the L2 term is defined as follows:

𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆22 = 𝜆𝜆 𝜆 𝜆𝜆𝑗𝑗2𝑚𝑚
𝑗𝑗𝑗𝑗

By increasing the value of hyperparameter 𝜆𝜆 , we increase the regularization strength and thereby shrink
the weights of our model. Please note that, as mentioned in Chapter 3, the bias unit b is not regularized.

An alternative approach that can lead to sparse models is LASSO. Depending on the regularization
strength, certain weights can become zero, which also makes LASSO useful as a supervised feature
selection technique:

𝐿𝐿(𝒘𝒘)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∑(𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑦(𝑖𝑖))2 + 𝜆𝜆𝜆𝜆𝒘𝒘𝜆𝜆1𝑛𝑛
𝑖𝑖𝑖1

Here, the L1 penalty for LASSO is defined as the sum of the absolute magnitudes of the model weights,
as follows:

𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆1 = 𝜆𝜆 𝜆𝜆𝜆𝜆𝑗𝑗𝜆𝑚𝑚
𝑗𝑗𝑗1

However, a limitation of LASSO is that it selects at most n features if m > n, where n is the number of
training examples. This may be undesirable in certain applications of feature selection. In practice,
however, this property of LASSO is often an advantage because it avoids saturated models. The satura-
tion of a model occurs if the number of training examples is equal to the number of features, which is
a form of overparameterization. As a consequence, a saturated model can always fit the training data
perfectly but is merely a form of interpolation and thus is not expected to generalize well.

A compromise between ridge regression and LASSO is elastic net, which has an L1 penalty to generate
sparsity and an L2 penalty such that it can be used for selecting more than n features if m > n:

𝐿𝐿(𝒘𝒘)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸 ∑(𝑦𝑦(𝐸𝐸) 𝐸− 𝐸𝑦𝑦𝑦(𝐸𝐸))2 + 𝐸 𝜆𝜆2||𝒘𝒘||22 𝐸+ 𝐸 𝜆𝜆1||𝒘𝒘||1𝑛𝑛
𝐸𝐸𝑖1

Those regularized regression models are all available via scikit-learn, and their usage is similar to the
regular regression model except that we have to specify the regularization strength via the parameter 𝜆𝜆 , for example, optimized via k-fold cross-validation.

Predicting Continuous Target Variables with Regression Analysis294

A ridge regression model can be initialized via:

>>> from sklearn.linear_model import Ridge
>>> ridge = Ridge(alpha=1.0)

Note that the regularization strength is regulated by the parameter alpha, which is similar to the
parameter 𝜆𝜆 . Likewise, we can initialize a LASSO regressor from the linear_model submodule:

>>> from sklearn.linear_model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear_model import ElasticNet
>>> elanet = ElasticNet(alpha=1.0, l1_ratio=0.5)

For example, if we set l1_ratio to 1.0, the ElasticNet regressor would be equal to LASSO regression.
For more detailed information about the different implementations of linear regression, please refer
to the documentation at http://scikit-learn.org/stable/modules/linear_model.html.

Turning a linear regression model into a curve –
polynomial regression
In the previous sections, we assumed a linear relationship between explanatory and response vari-
ables. One way to account for the violation of linearity assumption is to use a polynomial regression
model by adding polynomial terms:𝑦𝑦𝑦 𝑦 𝑦 𝑦𝑦1𝑥𝑥𝑦 𝑥 𝑦𝑦𝑦2𝑥𝑥2 𝑥 𝑦…𝑦𝑥𝑦 𝑦𝑦𝑑𝑑𝑥𝑥𝑑𝑑 𝑥 𝑦𝑏𝑏

Here, d denotes the degree of the polynomial. Although we can use polynomial regression to model a
nonlinear relationship, it is still considered a multiple linear regression model because of the linear
regression coefficients, w. In the following subsections, we will see how we can add such polynomial
terms to an existing dataset conveniently and fit a polynomial regression model.

Adding polynomial terms using scikit-learn
We will now learn how to use the PolynomialFeatures transformer class from scikit-learn to add a
quadratic term (d = 2) to a simple regression problem with one explanatory variable. Then, we will
compare the polynomial to the linear fit by following these steps:

http://scikit-learn.org/stable/modules/linear_model.html

Chapter 9 295

1. Add a second-degree polynomial term:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.array([258.0, 270.0, 294.0, 320.0, 342.0,
... 368.0, 396.0, 446.0, 480.0, 586.0])\
... [:, np.newaxis]
>>> y = np.array([236.4, 234.4, 252.8, 298.6, 314.2,
... 342.2, 360.8, 368.0, 391.2, 390.8])
>>> lr = LinearRegression()
>>> pr = LinearRegression()
>>> quadratic = PolynomialFeatures(degree=2)
>>> X_quad = quadratic.fit_transform(X)

2. Fit a simple linear regression model for comparison:

>>> lr.fit(X, y)
>>> X_fit = np.arange(250, 600, 10)[:, np.newaxis]
>>> y_lin_fit = lr.predict(X_fit)

3. Fit a multiple regression model on the transformed features for polynomial regression:

>>> pr.fit(X_quad, y)
>>> y_quad_fit = pr.predict(quadratic.fit_transform(X_fit))

4. Plot the results:

>>> plt.scatter(X, y, label='Training points')
>>> plt.plot(X_fit, y_lin_fit,
... label='Linear fit', linestyle='--')
>>> plt.plot(X_fit, y_quad_fit,
... label='Quadratic fit')
>>> plt.xlabel('Explanatory variable')
>>> plt.ylabel('Predicted or known target values')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

Predicting Continuous Target Variables with Regression Analysis296

In the resulting plot, you can see that the polynomial fit captures the relationship between the response
and explanatory variables much better than the linear fit:

Figure 9.12: A comparison of a linear and quadratic model

Next, we will compute the MSE and R2 evaluation metrics:

>>> y_lin_pred = lr.predict(X)
>>> y_quad_pred = pr.predict(X_quad)
>>> mse_lin = mean_squared_error(y, y_lin_pred)
>>> mse_quad = mean_squared_error(y, y_quad_pred)
>>> print(f'Training MSE linear: {mse_lin:.3f}'
 f', quadratic: {mse_quad:.3f}')
Training MSE linear: 569.780, quadratic: 61.330
>>> r2_lin = r2_score(y, y_lin_pred)
>>> r2_quad = r2_score(y, y_quad_pred)
>>> print(f'Training R^2 linear: {r2_lin:.3f}'
 f', quadratic: {r2_quad:.3f}')
Training R^2 linear: 0.832, quadratic: 0.982

As you can see after executing the code, the MSE decreased from 570 (linear fit) to 61 (quadratic fit);
also, the coefficient of determination reflects a closer fit of the quadratic model (R2 = 0.982) as opposed
to the linear fit (R2 = 0.832) in this particular toy problem.

Chapter 9 297

Modeling nonlinear relationships in the Ames Housing dataset
In the preceding subsection, you learned how to construct polynomial features to fit nonlinear relation-
ships in a toy problem; let’s now take a look at a more concrete example and apply those concepts to
the data in the Ames Housing dataset. By executing the following code, we will model the relationship
between sale prices and the living area above ground using second-degree (quadratic) and third-degree
(cubic) polynomials and compare that to a linear fit.

We start by removing the three outliers with a living area greater than 4,000 square feet, which we
can see in previous figures, such as in Figure 9.8, so that these outliers don’t skew our regression fits:

>>> X = df[['Gr Liv Area']].values
>>> y = df['SalePrice'].values
>>> X = X[(df['Gr Liv Area'] < 4000)]
>>> y = y[(df['Gr Liv Area'] < 4000)]

Next, we fit the regression models:

>>> regr = LinearRegression()

>>> # create quadratic and cubic features
>>> quadratic = PolynomialFeatures(degree=2)
>>> cubic = PolynomialFeatures(degree=3)
>>> X_quad = quadratic.fit_transform(X)
>>> X_cubic = cubic.fit_transform(X)

>>> # fit to features
>>> X_fit = np.arange(X.min()-1, X.max()+2, 1)[:, np.newaxis]
>>> regr = regr.fit(X, y)
>>> y_lin_fit = regr.predict(X_fit)
>>> linear_r2 = r2_score(y, regr.predict(X))
>>> regr = regr.fit(X_quad, y)
>>> y_quad_fit = regr.predict(quadratic.fit_transform(X_fit))
>>> quadratic_r2 = r2_score(y, regr.predict(X_quad))
>>> regr = regr.fit(X_cubic, y)
>>> y_cubic_fit = regr.predict(cubic.fit_transform(X_fit))
>>> cubic_r2 = r2_score(y, regr.predict(X_cubic))

>>> # plot results
>>> plt.scatter(X, y, label='Training points', color='lightgray')
>>> plt.plot(X_fit, y_lin_fit,
... label=f'Linear (d=1), R^2={linear_r2:.2f}',

Predicting Continuous Target Variables with Regression Analysis298

... color='blue',

... lw=2,

... linestyle=':')
>>> plt.plot(X_fit, y_quad_fit,
... label=f'Quadratic (d=2), R^2={quadratic_r2:.2f}',
... color='red',
... lw=2,
... linestyle='-')
>>> plt.plot(X_fit, y_cubic_fit,
... label=f'Cubic (d=3), R^2={cubic_r2:.2f}',
... color='green',
... lw=2,
... linestyle='--')
>>> plt.xlabel('Living area above ground in square feet')
>>> plt.ylabel('Sale price in U.S. dollars')
>>> plt.legend(loc='upper left')
>>> plt.show()

The resulting plot is shown in Figure 9.13:

Figure 9.13: A comparison of different curves fitted to the sale price and living area data

Chapter 9 299

As we can see, using quadratic or cubic features does not really have an effect. That’s because the
relationship between the two variables appears to be linear. So, let’s take a look at another feature,
namely, Overall Qual. The Overall Qual variable rates the overall quality of the material and finish
of the houses and is given on a scale from 1 to 10, where 10 is best:

>>> X = df[['Overall Qual']].values
>>> y = df['SalePrice'].values

After specifying the X and y variables, we can reuse the previous code and obtain the plot in Figure 9.14:

Figure 9.14: A linear, quadratic, and cubic fit on the sale price and house quality data

As you can see, the quadratic and cubic fits capture the relationship between sale prices and the overall
quality of the house better than the linear fit. However, you should be aware that adding more and
more polynomial features increases the complexity of a model and therefore increases the chance of
overfitting. Thus, in practice, it is always recommended to evaluate the performance of the model on
a separate test dataset to estimate the generalization performance.

Dealing with nonlinear relationships using random
forests
In this section, we are going to look at random forest regression, which is conceptually different from
the previous regression models in this chapter. A random forest, which is an ensemble of multiple
decision trees, can be understood as the sum of piecewise linear functions, in contrast to the global
linear and polynomial regression models that we discussed previously. In other words, via the deci-
sion tree algorithm, we subdivide the input space into smaller regions that become more manageable.

Predicting Continuous Target Variables with Regression Analysis300

Decision tree regression
An advantage of the decision tree algorithm is that it works with arbitrary features and does not re-
quire any transformation of the features if we are dealing with nonlinear data because decision trees
analyze one feature at a time, rather than taking weighted combinations into account. (Likewise,
normalizing or standardizing features is not required for decision trees.) As mentioned in Chapter 3,
A Tour of Machine Learning Classifiers Using Scikit-Learn, we grow a decision tree by iteratively splitting
its nodes until the leaves are pure or a stopping criterion is satisfied. When we used decision trees for
classification, we defined entropy as a measure of impurity to determine which feature split maximizes
the information gain (IG), which can be defined as follows for a binary split:𝐼𝐼𝐼𝐼(𝐷𝐷𝑝𝑝, 𝑥𝑥𝑖𝑖) = 𝐼𝐼(𝐷𝐷𝑝𝑝) − 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁𝑝𝑝 𝐼𝐼(𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) − 𝑁𝑁𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑙𝑙𝑁𝑁𝑝𝑝 𝐼𝐼(𝐷𝐷𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑙𝑙)
Here, xi is the feature to perform the split, Np is the number of training examples in the parent node,
I is the impurity function, Dp is the subset of training examples at the parent node, and Dleft and Dright
are the subsets of training examples at the left and right child nodes after the split. Remember that
our goal is to find the feature split that maximizes the information gain; in other words, we want to
find the feature split that reduces the impurities in the child nodes most. In Chapter 3, we discussed
Gini impurity and entropy as measures of impurity, which are both useful criteria for classification. To
use a decision tree for regression, however, we need an impurity metric that is suitable for continuous
variables, so we define the impurity measure of a node, t, as the MSE instead:𝐼𝐼(𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) = 1𝑁𝑁𝑡𝑡 ∑(𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑦𝑡𝑡)2𝑖𝑖𝑖𝑖𝑖𝑡𝑡

Here, Nt is the number of training examples at node t, Dt is the training subset at node t, 𝑦𝑦(𝑖𝑖𝑖 is the
true target value, and 𝑦𝑦�̂�𝑡 is the predicted target value (sample mean):𝑦𝑦𝑦𝑡𝑡 = 1𝑁𝑁𝑡𝑡 ∑ 𝑦𝑦(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

In the context of decision tree regression, the MSE is often referred to as within-node variance, which
is why the splitting criterion is also better known as variance reduction.

To see what the line fit of a decision tree looks like, let’s use the DecisionTreeRegressor implemented
in scikit-learn to model the relationship between the SalePrice and Gr Living Area variables. Note
that SalePrice and Gr Living Area do not necessarily represent a nonlinear relationship, but this
feature combination still demonstrates the general aspects of a regression tree quite nicely:

>>> from sklearn.tree import DecisionTreeRegressor
>>> X = df[['Gr Liv Area']].values
>>> y = df['SalePrice'].values
>>> tree = DecisionTreeRegressor(max_depth=3)
>>> tree.fit(X, y)

Chapter 9 301

>>> sort_idx = X.flatten().argsort()
>>> lin_regplot(X[sort_idx], y[sort_idx], tree)
>>> plt.xlabel('Living area above ground in square feet')
>>> plt.ylabel('Sale price in U.S. dollars')>>> plt.show()

As you can see in the resulting plot, the decision tree captures the general trend in the data. And we
can imagine that a regression tree could also capture trends in nonlinear data relatively well. However,
a limitation of this model is that it does not capture the continuity and differentiability of the desired
prediction. In addition, we need to be careful about choosing an appropriate value for the depth of
the tree so as to not overfit or underfit the data; here, a depth of three seemed to be a good choice.

Figure 9.15: A decision tree regression plot

You are encouraged to experiment with deeper decision trees. Note that the relationship between Gr
Living Area and SalePrice is rather linear, so you are also encouraged to apply the decision tree to
the Overall Qual variable instead.

In the next section, we will look at a more robust way of fitting regression trees: random forests.

Random forest regression
As you learned in Chapter 3, the random forest algorithm is an ensemble technique that combines
multiple decision trees. A random forest usually has a better generalization performance than an
individual decision tree due to randomness, which helps to decrease the model’s variance. Other ad-
vantages of random forests are that they are less sensitive to outliers in the dataset and don’t require
much parameter tuning. The only parameter in random forests that we typically need to experiment
with is the number of trees in the ensemble. The basic random forest algorithm for regression is almost
identical to the random forest algorithm for classification that we discussed in Chapter 3. The only
difference is that we use the MSE criterion to grow the individual decision trees, and the predicted
target variable is calculated as the average prediction across all decision trees.

Predicting Continuous Target Variables with Regression Analysis302

Now, let’s use all the features in the Ames Housing dataset to fit a random forest regression model on
70 percent of the examples and evaluate its performance on the remaining 30 percent, as we have done
previously in the Evaluating the performance of linear regression models section. The code is as follows:

>>> target = 'SalePrice'
>>> features = df.columns[df.columns != target]
>>> X = df[features].values
>>> y = df[target].values
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.3, random_state=123)

>>> from sklearn.ensemble import RandomForestRegressor
>>> forest = RandomForestRegressor(
... n_estimators=1000,
... criterion='squared_error',
... random_state=1,
... n_jobs=-1)
>>> forest.fit(X_train, y_train)
>>> y_train_pred = forest.predict(X_train)
>>> y_test_pred = forest.predict(X_test)
>>> mae_train = mean_absolute_error(y_train, y_train_pred)
>>> mae_test = mean_absolute_error(y_test, y_test_pred)
>>> print(f'MAE train: {mae_train:.2f}')
MAE train: 8305.18
>>> print(f'MAE test: {mae_test:.2f}')
MAE test: 20821.77
>>> r2_train = r2_score(y_train, y_train_pred)
>>> r2_test =r2_score(y_test, y_test_pred)
>>> print(f'R^2 train: {r2_train:.2f}')
R^2 train: 0.98
>>> print(f'R^2 test: {r2_test:.2f}')
R^2 test: 0.85

Unfortunately, you can see that the random forest tends to overfit the training data. However, it’s still
able to explain the relationship between the target and explanatory variables relatively well (𝑅𝑅2 = 0.85
on the test dataset). For comparison, the linear model from the previous section, Evaluating the perfor-
mance of linear regression models, which was fit to the same dataset, was overfitting less but performed
worse on the test set (𝑅𝑅2 = 0.75).

Lastly, let’s also take a look at the residuals of the prediction:

>>> x_max = np.max([np.max(y_train_pred), np.max(y_test_pred)])
>>> x_min = np.min([np.min(y_train_pred), np.min(y_test_pred)])

>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3), sharey=True)

Chapter 9 303

>>> ax1.scatter(y_test_pred, y_test_pred - y_test,
... c='limegreen', marker='s', edgecolor='white',
... label='Test data')
>>> ax2.scatter(y_train_pred, y_train_pred - y_train,
... c='steelblue', marker='o', edgecolor='white',
... label='Training data')
>>> ax1.set_ylabel('Residuals')

>>> for ax in (ax1, ax2):
... ax.set_xlabel('Predicted values')
... ax.legend(loc='upper left')
... ax.hlines(y=0, xmin=x_min-100, xmax=x_max+100,
... color='black', lw=2)

>>> plt.tight_layout()
>>> plt.show()

As it was already summarized by the R2 coefficient, you can see that the model fits the training data
better than the test data, as indicated by the outliers in the y axis direction. Also, the distribution of
the residuals does not seem to be completely random around the zero center point, indicating that
the model is not able to capture all the exploratory information. However, the residual plot indicates
a large improvement over the residual plot of the linear model that we plotted earlier in this chapter.

Figure 9.16: The residuals of the random forest regression

Predicting Continuous Target Variables with Regression Analysis304

Ideally, our model error should be random or unpredictable. In other words, the error of the predic-
tions should not be related to any of the information contained in the explanatory variables; rather,
it should reflect the randomness of the real-world distributions or patterns. If we find patterns in the
prediction errors, for example, by inspecting the residual plot, it means that the residual plots contain
predictive information. A common reason for this could be that explanatory information is leaking
into those residuals.

Unfortunately, there is not a universal approach for dealing with non-randomness in residual plots, and
it requires experimentation. Depending on the data that is available to us, we may be able to improve
the model by transforming variables, tuning the hyperparameters of the learning algorithm, choosing
simpler or more complex models, removing outliers, or including additional variables.

Summary
At the beginning of this chapter, you learned about simple linear regression analysis to model the
relationship between a single explanatory variable and a continuous response variable. We then dis-
cussed a useful explanatory data analysis technique to look at patterns and anomalies in data, which
is an important first step in predictive modeling tasks.

We built our first model by implementing linear regression using a gradient-based optimization ap-
proach. You then saw how to utilize scikit-learn’s linear models for regression and also implement a
robust regression technique (RANSAC) as an approach for dealing with outliers. To assess the predictive
performance of regression models, we computed the mean sum of squared errors and the related R2
metric. Furthermore, we also discussed a useful graphical approach for diagnosing the problems of
regression models: the residual plot.

After we explored how regularization can be applied to regression models to reduce the model com-
plexity and avoid overfitting, we also covered several approaches for modeling nonlinear relationships,
including polynomial feature transformation and random forest regressors.

We discussed supervised learning, classification, and regression analysis in detail in the previous
chapters. In the next chapter, we are going to learn about another interesting subfield of machine
learning, unsupervised learning, and also how to use cluster analysis to find hidden structures in data
in the absence of target variables.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

10
Working with Unlabeled Data –
Clustering Analysis

In the previous chapters, we used supervised learning techniques to build machine learning models,
using data where the answer was already known—the class labels were already available in our training
data. In this chapter, we will switch gears and explore cluster analysis, a category of unsupervised
learning techniques that allows us to discover hidden structures in data where we do not know the
right answer upfront. The goal of clustering is to find a natural grouping in data so that items in the
same cluster are more similar to each other than to those from different clusters.

Given its exploratory nature, clustering is an exciting topic, and in this chapter, you will learn about
the following concepts, which can help us to organize data into meaningful structures:

• Finding centers of similarity using the popular k-means algorithm
• Taking a bottom-up approach to building hierarchical clustering trees
• Identifying arbitrary shapes of objects using a density-based clustering approach

Grouping objects by similarity using k-means
In this section, we will learn about one of the most popular clustering algorithms, k-means, which
is widely used in academia as well as in industry. Clustering (or cluster analysis) is a technique that
allows us to find groups of similar objects that are more related to each other than to objects in other
groups. Examples of business-oriented applications of clustering include the grouping of documents,
music, and movies by different topics, or finding customers that share similar interests based on
common purchase behaviors as a basis for recommendation engines.

k-means clustering using scikit-learn
As you will see in a moment, the k-means algorithm is extremely easy to implement, but it is also com-
putationally very efficient compared to other clustering algorithms, which might explain its popularity.
The k-means algorithm belongs to the category of prototype-based clustering.

Working with Unlabeled Data – Clustering Analysis306

We will discuss two other categories of clustering, hierarchical and density-based clustering, later
in this chapter.

Prototype-based clustering means that each cluster is represented by a prototype, which is usually either
the centroid (average) of similar points with continuous features, or the medoid (the most representative
or the point that minimizes the distance to all other points that belong to a particular cluster) in the
case of categorical features. While k-means is very good at identifying clusters with a spherical shape,
one of the drawbacks of this clustering algorithm is that we have to specify the number of clusters, k,
a priori. An inappropriate choice for k can result in poor clustering performance. Later in this chapter,
we will discuss the elbow method and silhouette plots, which are useful techniques to evaluate the
quality of a clustering to help us determine the optimal number of clusters, k.

Although k-means clustering can be applied to data in higher dimensions, we will walk through the
following examples using a simple two-dimensional dataset for the purpose of visualization:

>>> from sklearn.datasets import make_blobs
>>> X, y = make_blobs(n_samples=150,
... n_features=2,
... centers=3,
... cluster_std=0.5,
... shuffle=True,
... random_state=0)
>>> import matplotlib.pyplot as plt
>>> plt.scatter(X[:, 0],
... X[:, 1],
... c='white',
... marker='o',
... edgecolor='black',
... s=50)
>>> plt.xlabel('Feature 1')
>>> plt.ylabel('Feature 2')
>>> plt.grid()
>>> plt.tight_layout()
>>> plt.show()

Chapter 10 307

The dataset that we just created consists of 150 randomly generated points that are roughly grouped
into three regions with higher density, which is visualized via a two-dimensional scatterplot:

Figure 10.1: A scatterplot of our unlabeled dataset

In real-world applications of clustering, we do not have any ground-truth category information (in-
formation provided as empirical evidence as opposed to inference) about those examples; if we were
given class labels, this task would fall into the category of supervised learning. Thus, our goal is to
group the examples based on their feature similarities, which can be achieved using the k-means
algorithm, as summarized by the following four steps:

1. Randomly pick k centroids from the examples as initial cluster centers
2. Assign each example to the nearest centroid, 𝜇𝜇(𝑗𝑗), 𝑗𝑗 𝑗 {1,… , 𝑘𝑘}
3. Move the centroids to the center of the examples that were assigned to it
4. Repeat steps 2 and 3 until the cluster assignments do not change or a user-defined tolerance

or maximum number of iterations is reached

Now, the next question is, how do we measure similarity between objects? We can define similarity as the
opposite of distance, and a commonly used distance for clustering examples with continuous features
is the squared Euclidean distance between two points, x and y, in m-dimensional space:

𝑑𝑑(𝒙𝒙𝒙 𝒙𝒙)2 =∑(𝑥𝑥𝑗𝑗 − 𝑦𝑦𝑗𝑗)2𝑚𝑚
𝑗𝑗𝑗𝑗 = ‖𝒙𝒙 − 𝒙𝒙‖22

Working with Unlabeled Data – Clustering Analysis308

Note that, in the preceding equation, the index j refers to the jth dimension (feature column) of the
example inputs, x and y. In the rest of this section, we will use the superscripts i and j to refer to the
index of the example (data record) and cluster index, respectively.

Based on this Euclidean distance metric, we can describe the k-means algorithm as a simple optimi-
zation problem, an iterative approach for minimizing the within-cluster sum of squared errors (SSE),
which is sometimes also called cluster inertia:

𝑆𝑆𝑆𝑆𝑆𝑆 =∑∑𝑤𝑤(𝑖𝑖𝑖𝑖𝑖)‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(𝑖𝑖)‖22𝑘𝑘
𝑖𝑖𝑗𝑗

𝑛𝑛
𝑖𝑖𝑗𝑗

Here, 𝝁𝝁(𝑗𝑗) is the representative point (centroid) for cluster j. w(i, j) = 1 if the example, x(i), is in cluster
j, or 0 otherwise. 𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = {1𝑖 if 𝒙𝒙(𝑖𝑖) ∈ 𝑗𝑗0𝑖 otherwise

Now that you have learned how the simple k-means algorithm works, let’s apply it to our example
dataset using the KMeans class from scikit-learn’s cluster module:

>>> from sklearn.cluster import KMeans
>>> km = KMeans(n_clusters=3,
... init='random',
... n_init=10,
... max_iter=300,
... tol=1e-04,
... random_state=0)
>>> y_km = km.fit_predict(X)

Using the preceding code, we set the number of desired clusters to 3; having to specify the number of
clusters a priori is one of the limitations of k-means. We set n_init=10 to run the k-means clustering
algorithms 10 times independently, with different random centroids to choose the final model as the
one with the lowest SSE. Via the max_iter parameter, we specify the maximum number of iterations
for each single run (here, 300). Note that the k-means implementation in scikit-learn stops early if it
converges before the maximum number of iterations is reached. However, it is possible that k-means
does not reach convergence for a particular run, which can be problematic (computationally expen-
sive) if we choose relatively large values for max_iter. One way to deal with convergence problems
is to choose larger values for tol, which is a parameter that controls the tolerance with regard to the
changes in the within-cluster SSE to declare convergence. In the preceding code, we chose a tolerance
of 1e-04 (=0.0001).

A problem with k-means is that one or more clusters can be empty. Note that this problem does not
exist for k-medoids or fuzzy C-means, an algorithm that we will discuss later in this section. However,
this problem is accounted for in the current k-means implementation in scikit-learn. If a cluster is
empty, the algorithm will search for the example that is farthest away from the centroid of the empty
cluster. Then, it will reassign the centroid to be this farthest point.

Chapter 10 309

Having predicted the cluster labels, y_km, and discussed some of the challenges of the k-means algo-
rithm, let’s now visualize the clusters that k-means identified in the dataset together with the cluster
centroids. These are stored under the cluster_centers_ attribute of the fitted KMeans object:

>>> plt.scatter(X[y_km == 0, 0],
... X[y_km == 0, 1],
... s=50, c='lightgreen',
... marker='s', edgecolor='black',
... label='Cluster 1')
>>> plt.scatter(X[y_km == 1, 0],
... X[y_km == 1, 1],
... s=50, c='orange',
... marker='o', edgecolor='black',
... label='Cluster 2')
>>> plt.scatter(X[y_km == 2, 0],
... X[y_km == 2, 1],
... s=50, c='lightblue',
... marker='v', edgecolor='black',
... label='Cluster 3')
>>> plt.scatter(km.cluster_centers_[:, 0],
... km.cluster_centers_[:, 1],
... s=250, marker='*',
... c='red', edgecolor='black',
... label='Centroids')
>>> plt.xlabel('Feature 1')
>>> plt.ylabel('Feature 2')
>>> plt.legend(scatterpoints=1)
>>> plt.grid()
>>> plt.tight_layout()
>>> plt.show()

Feature scaling

When we are applying k-means to real-world data using a Euclidean distance metric, we
want to make sure that the features are measured on the same scale and apply z-score
standardization or min-max scaling if necessary.

Working with Unlabeled Data – Clustering Analysis310

In Figure 10.2, you can see that k-means placed the three centroids at the center of each sphere, which
looks like a reasonable grouping given this dataset:

Figure 10.2: The k-means clusters and their centroids

Although k-means worked well on this toy dataset, we still have the drawback of having to specify
the number of clusters, k, a priori. The number of clusters to choose may not always be so obvious in
real-world applications, especially if we are working with a higher-dimensional dataset that cannot
be visualized. The other properties of k-means are that clusters do not overlap and are not hierar-
chical, and we also assume that there is at least one item in each cluster. Later in this chapter, we
will encounter different types of clustering algorithms, hierarchical and density-based clustering.
Neither type of algorithm requires us to specify the number of clusters upfront or assume spherical
structures in our dataset.

In the next subsection, we will cover a popular variant of the classic k-means algorithm called
k-means++. While it doesn’t address those assumptions and drawbacks of k-means that were discussed
in the previous paragraph, it can greatly improve the clustering results through more clever seeding
of the initial cluster centers.

A smarter way of placing the initial cluster centroids using
k-means++
So far, we have discussed the classic k-means algorithm, which uses a random seed to place the initial
centroids, which can sometimes result in bad clusterings or slow convergence if the initial centroids
are chosen poorly. One way to address this issue is to run the k-means algorithm multiple times on a
dataset and choose the best-performing model in terms of the SSE.

Chapter 10 311

Another strategy is to place the initial centroids far away from each other via the k-means++ algorithm,
which leads to better and more consistent results than the classic k-means (k-means++: The Advantag-
es of Careful Seeding by D. Arthur and S. Vassilvitskii in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 1027-1035. Society for Industrial and Applied Mathematics, 2007).

The initialization in k-means++ can be summarized as follows:

1. Initialize an empty set, M, to store the k centroids being selected.
2. Randomly choose the first centroid, 𝝁𝝁(𝑗𝑗) , from the input examples and assign it to M.
3. For each example, x(i), that is not in M, find the minimum squared distance, d(x(i), M)2, to any

of the centroids in M.
4. To randomly select the next centroid, 𝝁𝝁(𝑝𝑝) , use a weighted probability distribution equal to 𝑑𝑑𝑑𝑑𝑑(𝑝𝑝),𝐌𝐌𝐌2∑ 𝑑𝑑𝑑𝑑𝑑(𝑖𝑖),𝐌𝐌𝐌2𝑖𝑖 . For instance, we collect all points in an array and choose a weighted random sam-

pling, such that the larger the squared distance, the more likely a point gets chosen as the
centroid.

5. Repeat steps 3 and 4 until k centroids are chosen.
6. Proceed with the classic k-means algorithm.

To use k-means++ with scikit-learn’s KMeans object, we just need to set the init parameter to 'k-means++'.
In fact, 'k-means++' is the default argument to the init parameter, which is strongly recommended
in practice. The only reason we didn’t use it in the previous example was to not introduce too many
concepts all at once. The rest of this section on k-means will use k-means++, but you are encouraged
to experiment more with the two different approaches (classic k-means via init='random' versus
k-means++ via init='k-means++') for placing the initial cluster centroids.

Hard versus soft clustering
Hard clustering describes a family of algorithms where each example in a dataset is assigned to exactly
one cluster, as in the k-means and k-means++ algorithms that we discussed earlier in this chapter. In
contrast, algorithms for soft clustering (sometimes also called fuzzy clustering) assign an example
to one or more clusters. A popular example of soft clustering is the fuzzy C-means (FCM) algorithm
(also called soft k-means or fuzzy k-means). The original idea goes back to the 1970s, when Joseph C.
Dunn first proposed an early version of fuzzy clustering to improve k-means (A Fuzzy Relative of the
ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, 1973). Almost a decade later,
James C. Bedzek published his work on the improvement of the fuzzy clustering algorithm, which is
now known as the FCM algorithm (Pattern Recognition with Fuzzy Objective Function Algorithms, Springer
Science+Business Media, 2013).

The FCM procedure is very similar to k-means. However, we replace the hard cluster assignment
with probabilities for each point belonging to each cluster. In k-means, we could express the cluster
membership of an example, x, with a sparse vector of binary values:

[𝑥𝑥 𝑥 𝑥𝑥(1) → 𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = 0𝑥𝑥 𝑥 𝑥𝑥(2) → 𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = 1𝑥𝑥 𝑥 𝑥𝑥(3) → 𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = 0]

Working with Unlabeled Data – Clustering Analysis312

Here, the index position with value 1 indicates the cluster centroid, 𝝁𝝁(𝑗𝑗) , that the example is assigned to
(assuming k = 3, 𝑗𝑗 𝑗 {1, 2, 3}). In contrast, a membership vector in FCM could be represented as follows:

[𝑥𝑥 𝑥 𝑥𝑥(1) → 𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = 0.1𝑥𝑥 𝑥 𝑥𝑥(2) → 𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = 0.85𝑥𝑥 𝑥 𝑥𝑥(3) → 𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = 0.05]
Here, each value falls in the range [0, 1] and represents a probability of membership of the respective
cluster centroid. The sum of the memberships for a given example is equal to 1. As with the k-means
algorithm, we can summarize the FCM algorithm in four key steps:

1. Specify the number of k centroids and randomly assign the cluster memberships for each point
2. Compute the cluster centroids, 𝝁𝝁(𝑗𝑗), 𝑗𝑗 𝑗 {1,… , 𝑘𝑘}
3. Update the cluster memberships for each point
4. Repeat steps 2 and 3 until the membership coefficients do not change or a user-defined tolerance

or maximum number of iterations is reached

The objective function of FCM—we abbreviate it as Jm—looks very similar to the within-cluster SSE
that we minimize in k-means:

𝐽𝐽𝑚𝑚 =∑∑𝑤𝑤(𝑖𝑖𝑖𝑖𝑖)𝑚𝑚‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(𝑖𝑖)‖22𝑘𝑘
𝑖𝑖𝑗𝑗

𝑛𝑛
𝑖𝑖𝑗𝑗

However, note that the membership indicator, w(i, j), is not a binary value as in k-means (𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) ∈ {0𝑖 1}
), but a real value that denotes the cluster membership probability (𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) ∈ [0𝑖 1]). You also may have
noticed that we added an additional exponent to w(i, j); the exponent m, any number greater than or
equal to one (typically m = 2), is the so-called fuzziness coefficient (or simply fuzzifier), which controls
the degree of fuzziness.

The larger the value of m, the smaller the cluster membership, w(i, j), becomes, which leads to fuzzier
clusters. The cluster membership probability itself is calculated as follows:

𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = [∑(‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(𝑖𝑖)‖2‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(𝑐𝑐)‖2)
2𝑚𝑚𝑚𝑚𝑘𝑘

𝑐𝑐𝑐𝑚]𝑚𝑚

For example, if we chose three cluster centers, as in the previous k-means example, we could calculate
the membership of 𝒙𝒙(𝑖𝑖) belonging to the 𝝁𝝁(𝑗𝑗) cluster as follows:

𝑤𝑤(𝑖𝑖𝑖𝑖𝑖) = [(‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(𝑖𝑖)‖2‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(1)‖2)
2𝑚𝑚𝑚1 + (‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(𝑖𝑖)‖2‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(2)‖2)

2𝑚𝑚𝑚1 + (‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(𝑖𝑖)‖2‖𝒙𝒙(𝑖𝑖) − 𝝁𝝁(3)‖2)
2𝑚𝑚𝑚1]𝑚1

Chapter 10 313

The center, 𝝁𝝁(𝑗𝑗) , of a cluster itself is calculated as the mean of all examples weighted by the degree to
which each example belongs to that cluster (𝑤𝑤(𝑖𝑖𝑖𝑖𝑖)𝑚𝑚):

𝝁𝝁(𝑗𝑗) = ∑ 𝑤𝑤(𝑖𝑖𝑖𝑗𝑗)𝑚𝑚𝒙𝒙(𝑖𝑖)𝑛𝑛𝑖𝑖𝑖𝑖∑ 𝑤𝑤(𝑖𝑖𝑖𝑗𝑗)𝑚𝑚𝑛𝑛𝑖𝑖𝑖𝑖

Just by looking at the equation to calculate the cluster memberships, we can say that each iteration in
FCM is more expensive than an iteration in k-means. On the other hand, FCM typically requires fewer
iterations overall to reach convergence. However, it has been found, in practice, that both k-means
and FCM produce very similar clustering outputs, as described in a study (Comparative Analysis of
k-means and Fuzzy C-Means Algorithms by S. Ghosh and S. K. Dubey, IJACSA, 4: 35–38, 2013). Unfortu-
nately, the FCM algorithm is not implemented in scikit-learn currently, but interested readers can try
out the FCM implementation from the scikit-fuzzy package, which is available at https://github.
com/scikit-fuzzy/scikit-fuzzy.

Using the elbow method to find the optimal number of clusters
One of the main challenges in unsupervised learning is that we do not know the definitive answer. We
don’t have the ground-truth class labels in our dataset that allow us to apply the techniques that we
used in Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, to evaluate
the performance of a supervised model. Thus, to quantify the quality of clustering, we need to use
intrinsic metrics—such as the within-cluster SSE (distortion)—to compare the performance of different
k-means clustering models.

Conveniently, we don’t need to compute the within-cluster SSE explicitly when we are using scikit-learn,
as it is already accessible via the inertia_ attribute after fitting a KMeans model:

>>> print(f'Distortion: {km.inertia_:.2f}')
Distortion: 72.48

Based on the within-cluster SSE, we can use a graphical tool, the so-called elbow method, to estimate
the optimal number of clusters, k, for a given task. We can say that if k increases, the distortion will
decrease. This is because the examples will be closer to the centroids they are assigned to. The idea
behind the elbow method is to identify the value of k where the distortion begins to increase most
rapidly, which will become clearer if we plot the distortion for different values of k:

>>> distortions = []
>>> for i in range(1, 11):
... km = KMeans(n_clusters=i,
... init='k-means++',
... n_init=10,
... max_iter=300,
... random_state=0)
... km.fit(X)
... distortions.append(km.inertia_)

https://github.com/scikit-fuzzy/scikit-fuzzy
https://github.com/scikit-fuzzy/scikit-fuzzy

Working with Unlabeled Data – Clustering Analysis314

>>> plt.plot(range(1,11), distortions, marker='o')
>>> plt.xlabel('Number of clusters')
>>> plt.ylabel('Distortion')
>>> plt.tight_layout()
>>> plt.show()

As you can see in Figure 10.3, the elbow is located at k = 3, so this is supporting evidence that k = 3 is
indeed a good choice for this dataset:

Figure 10.3: Finding the optimal number of clusters using the elbow method

Quantifying the quality of clustering via silhouette plots
Another intrinsic metric to evaluate the quality of a clustering is silhouette analysis, which can also
be applied to clustering algorithms other than k-means that we will discuss later in this chapter. Sil-
houette analysis can be used as a graphical tool to plot a measure of how tightly grouped the examples
in the clusters are. To calculate the silhouette coefficient of a single example in our dataset, we can
apply the following three steps:

1. Calculate the cluster cohesion, a(i), as the average distance between an example, x(i), and all
other points in the same cluster.

2. Calculate the cluster separation, b(i), from the next closest cluster as the average distance
between the example, x(i), and all examples in the nearest cluster.

3. Calculate the silhouette, s(i), as the difference between cluster cohesion and separation divided
by the greater of the two, as shown here:

𝑠𝑠(𝑖𝑖) = 𝑏𝑏(𝑖𝑖) − 𝑎𝑎(𝑖𝑖)𝑚𝑚𝑎𝑎𝑚𝑚{𝑏𝑏(𝑖𝑖), 𝑎𝑎(𝑖𝑖)}

Chapter 10 315

The silhouette coefficient is bounded in the range –1 to 1. Based on the preceding equation, we can see
that the silhouette coefficient is 0 if the cluster separation and cohesion are equal (b(i) = a(i)). Furthermore,
we get close to an ideal silhouette coefficient of 1 if b(i) >> a(i), since b(i) quantifies how dissimilar an
example is from other clusters, and a(i) tells us how similar it is to the other examples in its own cluster.

The silhouette coefficient is available as silhouette_samples from scikit-learn’s metric module, and
optionally, the silhouette_scores function can be imported for convenience. The silhouette_scores
function calculates the average silhouette coefficient across all examples, which is equivalent to numpy.
mean(silhouette_samples(...)). By executing the following code, we will now create a plot of the
silhouette coefficients for a k-means clustering with k = 3:

>>> km = KMeans(n_clusters=3,
... init='k-means++',
... n_init=10,
... max_iter=300,
... tol=1e-04,
... random_state=0)
>>> y_km = km.fit_predict(X)

>>> import numpy as np
>>> from matplotlib import cm
>>> from sklearn.metrics import silhouette_samples
>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(
... X, y_km, metric='euclidean'
...)
>>> y_ax_lower, y_ax_upper = 0, 0
>>> yticks = []
>>> for i, c in enumerate(cluster_labels):
... c_silhouette_vals = silhouette_vals[y_km == c]
... c_silhouette_vals.sort()
... y_ax_upper += len(c_silhouette_vals)
... color = cm.jet(float(i) / n_clusters)
... plt.barh(range(y_ax_lower, y_ax_upper),
... c_silhouette_vals,
... height=1.0,
... edgecolor='none',
... color=color)
... yticks.append((y_ax_lower + y_ax_upper) / 2.)
... y_ax_lower += len(c_silhouette_vals)

Working with Unlabeled Data – Clustering Analysis316

>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg,
... color="red",
... linestyle="--")
>>> plt.yticks(yticks, cluster_labels + 1)
>>> plt.ylabel('Cluster')
>>> plt.xlabel('Silhouette coefficient')
>>> plt.tight_layout()
>>> plt.show()

Through a visual inspection of the silhouette plot, we can quickly scrutinize the sizes of the different
clusters and identify clusters that contain outliers:

Figure 10.4: A silhouette plot for a good example of clustering

However, as you can see in the preceding silhouette plot, the silhouette coefficients are not close to 0
and are approximately equally far away from the average silhouette score, which is, in this case, an
indicator of good clustering. Furthermore, to summarize the goodness of our clustering, we added
the average silhouette coefficient to the plot (dotted line).

Chapter 10 317

To see what a silhouette plot looks like for a relatively bad clustering, let’s seed the k-means algorithm
with only two centroids:

>>> km = KMeans(n_clusters=2,
... init='k-means++',
... n_init=10,
... max_iter=300,
... tol=1e-04,
... random_state=0)
>>> y_km = km.fit_predict(X)
>>> plt.scatter(X[y_km == 0, 0],
... X[y_km == 0, 1],
... s=50, c='lightgreen',
... edgecolor='black',
... marker='s',
... label='Cluster 1')
>>> plt.scatter(X[y_km == 1, 0],
... X[y_km == 1, 1],
... s=50,
... c='orange',
... edgecolor='black',
... marker='o',
... label='Cluster 2')
>>> plt.scatter(km.cluster_centers_[:, 0],
... km.cluster_centers_[:, 1],
... s=250,
... marker='*',
... c='red',
... label='Centroids')
>>> plt.xlabel('Feature 1')
>>> plt.ylabel('Feature 2')
>>> plt.legend()
>>> plt.grid()
>>> plt.tight_layout()
>>> plt.show()

As you can see in Figure 10.5, one of the centroids falls between two of the three spherical groupings
of the input data.

Working with Unlabeled Data – Clustering Analysis318

Although the clustering does not look completely terrible, it is suboptimal:

Figure 10.5: A suboptimal example of clustering

Please keep in mind that we typically do not have the luxury of visualizing datasets in two-dimensional
scatterplots in real-world problems, since we typically work with data in higher dimensions. So, next,
we will create the silhouette plot to evaluate the results:

>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(
... X, y_km, metric='euclidean'
...)
>>> y_ax_lower, y_ax_upper = 0, 0
>>> yticks = []
>>> for i, c in enumerate(cluster_labels):
... c_silhouette_vals = silhouette_vals[y_km == c]
... c_silhouette_vals.sort()
... y_ax_upper += len(c_silhouette_vals)
... color = cm.jet(float(i) / n_clusters)
... plt.barh(range(y_ax_lower, y_ax_upper),
... c_silhouette_vals,
... height=1.0,
... edgecolor='none',
... color=color)

Chapter 10 319

... yticks.append((y_ax_lower + y_ax_upper) / 2.)

... y_ax_lower += len(c_silhouette_vals)
>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg, color="red", linestyle="--")
>>> plt.yticks(yticks, cluster_labels + 1)
>>> plt.ylabel('Cluster')
>>> plt.xlabel('Silhouette coefficient')
>>> plt.tight_layout()
>>> plt.show()

As you can see in Figure 10.6, the silhouettes now have visibly different lengths and widths, which is
evidence of a relatively bad or at least suboptimal clustering:

Figure 10.6: A silhouette plot for a suboptimal example of clustering

Now, after we have gained a good understanding of how clustering works, the next section will intro-
duce hierarchical clustering as an alternative approach to k-means.

Organizing clusters as a hierarchical tree
In this section, we will look at an alternative approach to prototype-based clustering: hierarchical
clustering. One advantage of the hierarchical clustering algorithm is that it allows us to plot dendro-
grams (visualizations of a binary hierarchical clustering), which can help with the interpretation of
the results by creating meaningful taxonomies. Another advantage of this hierarchical approach is
that we do not need to specify the number of clusters upfront.

Working with Unlabeled Data – Clustering Analysis320

The two main approaches to hierarchical clustering are agglomerative and divisive hierarchical clus-
tering. In divisive hierarchical clustering, we start with one cluster that encompasses the complete
dataset, and we iteratively split the cluster into smaller clusters until each cluster only contains one
example. In this section, we will focus on agglomerative clustering, which takes the opposite approach.
We start with each example as an individual cluster and merge the closest pairs of clusters until only
one cluster remains.

Grouping clusters in a bottom-up fashion
The two standard algorithms for agglomerative hierarchical clustering are single linkage and complete
linkage. Using single linkage, we compute the distances between the most similar members for each
pair of clusters and merge the two clusters for which the distance between the most similar members
is the smallest. The complete linkage approach is similar to single linkage but, instead of comparing
the most similar members in each pair of clusters, we compare the most dissimilar members to per-
form the merge. This is shown in Figure 10.7:

Figure 10.7: The complete linkage approach

In this section, we will focus on agglomerative clustering using the complete linkage approach. Hier-
archical complete linkage clustering is an iterative procedure that can be summarized by the following
steps:

1. Compute a pair-wise distance matrix of all examples.
2. Represent each data point as a singleton cluster.

Alternative types of linkages

Other commonly used algorithms for agglomerative hierarchical clustering include average
linkage and Ward’s linkage. In average linkage, we merge the cluster pairs based on the
minimum average distances between all group members in the two clusters. In Ward’s
linkage, the two clusters that lead to the minimum increase of the total within-cluster
SSE are merged.

Chapter 10 321

3. Merge the two closest clusters based on the distance between the most dissimilar (distant)
members.

4. Update the cluster linkage matrix.
5. Repeat steps 2-4 until one single cluster remains.

Next, we will discuss how to compute the distance matrix (step 1). But first, let’s generate a random
data sample to work with. The rows represent different observations (IDs 0-4), and the columns are
the different features (X, Y, Z) of those examples:

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(123)
>>> variables = ['X', 'Y', 'Z']
>>> labels = ['ID_0', 'ID_1', 'ID_2', 'ID_3', 'ID_4']
>>> X = np.random.random_sample([5, 3])*10
>>> df = pd.DataFrame(X, columns=variables, index=labels)
>>> df

After executing the preceding code, we should now see the following DataFrame containing the ran-
domly generated examples:

Figure 10.8: A randomly generated data sample

Performing hierarchical clustering on a distance matrix
To calculate the distance matrix as input for the hierarchical clustering algorithm, we will use the
pdist function from SciPy’s spatial.distance submodule:

>>> from scipy.spatial.distance import pdist, squareform
>>> row_dist = pd.DataFrame(squareform(
... pdist(df, metric='euclidean')),
... columns=labels, index=labels)
>>> row_dist

Working with Unlabeled Data – Clustering Analysis322

Using the preceding code, we calculated the Euclidean distance between each pair of input examples
in our dataset based on the features X, Y, and Z.

We provided the condensed distance matrix—returned by pdist—as input to the squareform function
to create a symmetrical matrix of the pair-wise distances, as shown here:

Figure 10.9: The calculated pair-wise distances of our data

Next, we will apply the complete linkage agglomeration to our clusters using the linkage function
from SciPy’s cluster.hierarchy submodule, which returns a so-called linkage matrix.

However, before we call the linkage function, let’s take a careful look at the function documentation:

>>> from scipy.cluster.hierarchy import linkage
>>> help(linkage)
[...]
Parameters:
 y : ndarray
 A condensed or redundant distance matrix. A condensed
 distance matrix is a flat array containing the upper
 triangular of the distance matrix. This is the form
 that pdist returns. Alternatively, a collection of m
 observation vectors in n dimensions may be passed as
 an m by n array.

 method : str, optional
 The linkage algorithm to use. See the Linkage Methods
 section below for full descriptions.

 metric : str, optional
 The distance metric to use. See the distance.pdist
 function for a list of valid distance metrics.

 Returns:
 Z : ndarray

Chapter 10 323

 The hierarchical clustering encoded as a linkage matrix.
[...]

Based on the function description, we understand that we can use a condensed distance matrix (up-
per triangular) from the pdist function as an input attribute. Alternatively, we could also provide the
initial data array and use the 'euclidean' metric as a function argument in linkage. However, we
should not use the squareform distance matrix that we defined earlier, since it would yield different
distance values than expected. To sum it up, the three possible scenarios are listed here:

• Incorrect approach: Using the squareform distance matrix as shown in the following code
snippet leads to incorrect results:

>>> row_clusters = linkage(row_dist,
... method='complete',
... metric='euclidean')

• Correct approach: Using the condensed distance matrix as shown in the following code ex-
ample yields the correct linkage matrix:

>>> row_clusters = linkage(pdist(df, metric='euclidean'),
... method='complete')

• Correct approach: Using the complete input example matrix (the so-called design matrix)
as shown in the following code snippet also leads to a correct linkage matrix similar to the
preceding approach:

>>> row_clusters = linkage(df.values,
... method='complete',
... metric='euclidean')

To take a closer look at the clustering results, we can turn those results into a pandas DataFrame (best
viewed in a Jupyter notebook) as follows:

>>> pd.DataFrame(row_clusters,
... columns=['row label 1',
... 'row label 2',
... 'distance',
... 'no. of items in clust.'],
... index=[f'cluster {(i + 1)}' for i in
... range(row_clusters.shape[0])])

As shown in Figure 10.10, the linkage matrix consists of several rows where each row represents one
merge. The first and second columns denote the most dissimilar members in each cluster, and the
third column reports the distance between those members.

Working with Unlabeled Data – Clustering Analysis324

The last column returns the count of the members in each cluster:

Figure 10.10: The linkage matrix

Now that we have computed the linkage matrix, we can visualize the results in the form of a dendro-
gram:

>>> from scipy.cluster.hierarchy import dendrogram
>>> # make dendrogram black (part 1/2)
>>> # from scipy.cluster.hierarchy import set_link_color_palette
>>> # set_link_color_palette(['black'])
>>> row_dendr = dendrogram(
... row_clusters,
... labels=labels,
... # make dendrogram black (part 2/2)
... # color_threshold=np.inf
...)
>>> plt.tight_layout()
>>> plt.ylabel('Euclidean distance')
>>> plt.show()

If you are executing the preceding code or reading an e-book version of this book, you will notice that
the branches in the resulting dendrogram are shown in different colors. The color scheme is derived
from a list of Matplotlib colors that are cycled for the distance thresholds in the dendrogram. For
example, to display the dendrograms in black, you can uncomment the respective sections that were
inserted in the preceding code:

Chapter 10 325

Figure 10.11: A dendrogram of our data

Such a dendrogram summarizes the different clusters that were formed during the agglomerative
hierarchical clustering; for example, you can see that the examples ID_0 and ID_4, followed by ID_1
and ID_2, are the most similar ones based on the Euclidean distance metric.

Attaching dendrograms to a heat map
In practical applications, hierarchical clustering dendrograms are often used in combination with a
heat map, which allows us to represent the individual values in the data array or matrix containing
our training examples with a color code. In this section, we will discuss how to attach a dendrogram
to a heat map plot and order the rows in the heat map correspondingly.

Working with Unlabeled Data – Clustering Analysis326

However, attaching a dendrogram to a heat map can be a little bit tricky, so let’s go through this pro-
cedure step by step:

1. We create a new figure object and define the x axis position, y axis position, width, and height
of the dendrogram via the add_axes attribute. Furthermore, we rotate the dendrogram 90
degrees counterclockwise. The code is as follows:

>>> fig = plt.figure(figsize=(8, 8), facecolor='white')
>>> axd = fig.add_axes([0.09, 0.1, 0.2, 0.6])
>>> row_dendr = dendrogram(row_clusters,
... orientation='left')
>>> # note: for matplotlib < v1.5.1, please use
>>> # orientation='right'

2. Next, we reorder the data in our initial DataFrame according to the clustering labels that can be
accessed from the dendrogram object, which is essentially a Python dictionary, via the leaves
key. The code is as follows:

>>> df_rowclust = df.iloc[row_dendr['leaves'][::-1]]

3. Now, we construct the heat map from the reordered DataFrame and position it next to the
dendrogram:

>>> axm = fig.add_axes([0.23, 0.1, 0.6, 0.6])
>>> cax = axm.matshow(df_rowclust,
... interpolation='nearest',
... cmap='hot_r')

4. Finally, we modify the aesthetics of the dendrogram by removing the axis ticks and hiding
the axis spines. Also, we add a color bar and assign the feature and data record names to the
x and y axis tick labels, respectively:

>>> axd.set_xticks([])
>>> axd.set_yticks([])
>>> for i in axd.spines.values():
... i.set_visible(False)
>>> fig.colorbar(cax)
>>> axm.set_xticklabels([''] + list(df_rowclust.columns))
>>> axm.set_yticklabels([''] + list(df_rowclust.index))
>>> plt.show()

Chapter 10 327

After following the previous steps, the heat map should be displayed with the dendrogram attached:

Figure 10.12: A heat map and dendrogram of our data

As you can see, the order of rows in the heat map reflects the clustering of the examples in the den-
drogram. In addition to a simple dendrogram, the color-coded values of each example and feature in
the heat map provide us with a nice summary of the dataset.

Applying agglomerative clustering via scikit-learn
In the previous subsection, you saw how to perform agglomerative hierarchical clustering using
SciPy. However, there is also an AgglomerativeClustering implementation in scikit-learn, which
allows us to choose the number of clusters that we want to return. This is useful if we want to prune
the hierarchical cluster tree.

Working with Unlabeled Data – Clustering Analysis328

By setting the n_cluster parameter to 3, we will now cluster the input examples into three groups
using the same complete linkage approach based on the Euclidean distance metric as before:

>>> from sklearn.cluster import AgglomerativeClustering
>>> ac = AgglomerativeClustering(n_clusters=3,
... affinity='euclidean',
... linkage='complete')
>>> labels = ac.fit_predict(X)
>>> print(f'Cluster labels: {labels}')
Cluster labels: [1 0 0 2 1]

Looking at the predicted cluster labels, we can see that the first and the fifth examples (ID_0 and
ID_4) were assigned to one cluster (label 1), and the examples ID_1 and ID_2 were assigned to a sec-
ond cluster (label 0). The example ID_3 was put into its own cluster (label 2). Overall, the results are
consistent with the results that we observed in the dendrogram. We should note, though, that ID_3 is
more similar to ID_4 and ID_0 than to ID_1 and ID_2, as shown in the preceding dendrogram figure;
this is not clear from scikit-learn’s clustering results. Let’s now rerun the AgglomerativeClustering
using n_cluster=2 in the following code snippet:

>>> ac = AgglomerativeClustering(n_clusters=2,
... affinity='euclidean',
... linkage='complete')
>>> labels = ac.fit_predict(X)
>>> print(f'Cluster labels: {labels}')
Cluster labels: [0 1 1 0 0]

As you can see, in this pruned clustering hierarchy, label ID_3 was assigned to the same cluster as ID_0
and ID_4, as expected.

Locating regions of high density via DBSCAN
Although we can’t cover the vast number of different clustering algorithms in this chapter, let’s at
least include one more approach to clustering: density-based spatial clustering of applications with
noise (DBSCAN), which does not make assumptions about spherical clusters like k-means, nor does
it partition the dataset into hierarchies that require a manual cut-off point. As its name implies, den-
sity-based clustering assigns cluster labels based on dense regions of points. In DBSCAN, the notion
of density is defined as the number of points within a specified radius, 𝜀𝜀 .

According to the DBSCAN algorithm, a special label is assigned to each example (data point) using
the following criteria:

• A point is considered a core point if at least a specified number (MinPts) of neighboring points
fall within the specified radius, 𝜀𝜀

• A border point is a point that has fewer neighbors than MinPts within 𝜀𝜀 , but lies within the 𝜀𝜀
radius of a core point

• All other points that are neither core nor border points are considered noise points

Chapter 10 329

After labeling the points as core, border, or noise, the DBSCAN algorithm can be summarized in two
simple steps:

1. Form a separate cluster for each core point or connected group of core points. (Core points
are connected if they are no farther away than 𝜀𝜀 .)

2. Assign each border point to the cluster of its corresponding core point.

To get a better understanding of what the result of DBSCAN can look like, before jumping to the im-
plementation, let’s summarize what we have just learned about core points, border points, and noise
points in Figure 10.13:

Figure 10.13: Core, noise, and border points for DBSCAN

One of the main advantages of using DBSCAN is that it does not assume that the clusters have a spher-
ical shape as in k-means. Furthermore, DBSCAN is different from k-means and hierarchical clustering
in that it doesn’t necessarily assign each point to a cluster but is capable of removing noise points.

For a more illustrative example, let’s create a new dataset of half-moon-shaped structures to compare
k-means clustering, hierarchical clustering, and DBSCAN:

>>> from sklearn.datasets import make_moons
>>> X, y = make_moons(n_samples=200,
... noise=0.05,
... random_state=0)
>>> plt.scatter(X[:, 0], X[:, 1])
>>> plt.xlabel('Feature 1')
>>> plt.ylabel('Feature 2')
>>> plt.tight_layout()
>>> plt.show()

Working with Unlabeled Data – Clustering Analysis330

As you can see in the resulting plot, there are two visible, half-moon-shaped groups consisting of 100
examples (data points) each:

Figure 10.14: A two-feature half-moon-shaped dataset

We will start by using the k-means algorithm and complete linkage clustering to see if one of those
previously discussed clustering algorithms can successfully identify the half-moon shapes as separate
clusters. The code is as follows:

>>> f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3))
>>> km = KMeans(n_clusters=2,
... random_state=0)
>>> y_km = km.fit_predict(X)
>>> ax1.scatter(X[y_km == 0, 0],
... X[y_km == 0, 1],
... c='lightblue',
... edgecolor='black',
... marker='o',
... s=40,
... label='cluster 1')

Chapter 10 331

>>> ax1.scatter(X[y_km == 1, 0],
... X[y_km == 1, 1],
... c='red',
... edgecolor='black',
... marker='s',
... s=40,
... label='cluster 2')
>>> ax1.set_title('K-means clustering')
>>> ax1.set_xlabel('Feature 1')
>>> ax1.set_ylabel('Feature 2')

>>> ac = AgglomerativeClustering(n_clusters=2,
... affinity='euclidean',
... linkage='complete')
>>> y_ac = ac.fit_predict(X)
>>> ax2.scatter(X[y_ac == 0, 0],
... X[y_ac == 0, 1],
... c='lightblue',
... edgecolor='black',
... marker='o',
... s=40,
... label='Cluster 1')
>>> ax2.scatter(X[y_ac == 1, 0],
... X[y_ac == 1, 1],
... c='red',
... edgecolor='black',
... marker='s',
... s=40,
... label='Cluster 2')
>>> ax2.set_title('Agglomerative clustering')
>>> ax2.set_xlabel('Feature 1')
>>> ax2.set_ylabel('Feature 2')
>>> plt.legend()
>>> plt.tight_layout()
>>> plt.show()

Working with Unlabeled Data – Clustering Analysis332

Based on the visualized clustering results, we can see that the k-means algorithm was unable to
separate the two clusters, and also, the hierarchical clustering algorithm was challenged by those
complex shapes:

Figure 10.15: k-means and agglomerative clustering on the half-moon-shaped dataset

Finally, let’s try the DBSCAN algorithm on this dataset to see if it can find the two half-moon-shaped
clusters using a density-based approach:

>>> from sklearn.cluster import DBSCAN
>>> db = DBSCAN(eps=0.2,
... min_samples=5,
... metric='euclidean')
>>> y_db = db.fit_predict(X)
>>> plt.scatter(X[y_db == 0, 0],
... X[y_db == 0, 1],
... c='lightblue',
... edgecolor='black',
... marker='o',
... s=40,
... label='Cluster 1')
>>> plt.scatter(X[y_db == 1, 0],
... X[y_db == 1, 1],
... c='red',
... edgecolor='black',
... marker='s',
... s=40,
... label='Cluster 2')
>>> plt.xlabel('Feature 1')
>>> plt.ylabel('Feature 2')
>>> plt.legend()
>>> plt.tight_layout()
>>> plt.show()

Chapter 10 333

The DBSCAN algorithm can successfully detect the half-moon shapes, which highlights one of the
strengths of DBSCAN—clustering data of arbitrary shapes:

Figure 10.16: DBSCAN clustering on the half-moon-shaped dataset

However, we should also note some of the disadvantages of DBSCAN. With an increasing number of
features in our dataset—assuming a fixed number of training examples—the negative effect of the
curse of dimensionality increases. This is especially a problem if we are using the Euclidean distance
metric. However, the problem of the curse of dimensionality is not unique to DBSCAN: it also affects
other clustering algorithms that use the Euclidean distance metric, for example, k-means and hier-
archical clustering algorithms. In addition, we have two hyperparameters in DBSCAN (MinPts and 𝜀𝜀)
that need to be optimized to yield good clustering results. Finding a good combination of MinPts and 𝜀𝜀 can be problematic if the density differences in the dataset are relatively large.

Graph-based clustering

So far, we have seen three of the most fundamental categories of clustering algorithms:
prototype-based clustering with k-means, agglomerative hierarchical clustering, and den-
sity-based clustering via DBSCAN. However, there is also a fourth class of more advanced
clustering algorithms that we have not covered in this chapter: graph-based clustering.
Probably the most prominent members of the graph-based clustering family are the spec-
tral clustering algorithms.

Although there are many different implementations of spectral clustering, what they all
have in common is that they use the eigenvectors of a similarity or distance matrix to
derive the cluster relationships. Since spectral clustering is beyond the scope of this book,
you can read the excellent tutorial by Ulrike von Luxburg to learn more about this topic
(A tutorial on spectral clustering, Statistics and Computing, 17(4): 395-416, 2007). It is freely
available from arXiv at http://arxiv.org/pdf/0711.0189v1.pdf.

http://arxiv.org/pdf/0711.0189v1.pdf

Working with Unlabeled Data – Clustering Analysis334

Note that, in practice, it is not always obvious which clustering algorithm will perform best on a given
dataset, especially if the data comes in multiple dimensions that make it hard or impossible to visu-
alize. Furthermore, it is important to emphasize that a successful clustering does not only depend on
the algorithm and its hyperparameters; rather, the choice of an appropriate distance metric and the
use of domain knowledge that can help to guide the experimental setup can be even more important.

In the context of the curse of dimensionality, it is thus common practice to apply dimensionality
reduction techniques prior to performing clustering. Such dimensionality reduction techniques for
unsupervised datasets include principal component analysis and t-SNE, which we covered in Chapter
5, Compressing Data via Dimensionality Reduction. Also, it is particularly common to compress datasets
down to two-dimensional subspaces, which allows us to visualize the clusters and assigned labels using
two-dimensional scatterplots, which are particularly helpful for evaluating the results.

Summary
In this chapter, you learned about three different clustering algorithms that can help us with the
discovery of hidden structures or information in data. We started with a prototype-based approach,
k-means, which clusters examples into spherical shapes based on a specified number of cluster cen-
troids. Since clustering is an unsupervised method, we do not enjoy the luxury of ground-truth labels
to evaluate the performance of a model. Thus, we used intrinsic performance metrics, such as the
elbow method or silhouette analysis, as an attempt to quantify the quality of clustering.

We then looked at a different approach to clustering: agglomerative hierarchical clustering. Hierar-
chical clustering does not require specifying the number of clusters upfront, and the result can be
visualized in a dendrogram representation, which can help with the interpretation of the results. The
last clustering algorithm that we covered in this chapter was DBSCAN, an algorithm that groups points
based on local densities and is capable of handling outliers and identifying non-globular shapes.

After this excursion into the field of unsupervised learning, it is now time to introduce some of the most
exciting machine learning algorithms for supervised learning: multilayer artificial neural networks.
After their recent resurgence, neural networks are once again the hottest topic in machine learning
research. Thanks to recently developed deep learning algorithms, neural networks are considered
state of the art for many complex tasks such as image classification, natural language processing, and
speech recognition. In Chapter 11, Implementing a Multilayer Artificial Neural Network from Scratch, we
will construct our own multilayer neural network. In Chapter 12, Parallelizing Neural Network Training
with PyTorch, we will work with the PyTorch library, which specializes in training neural network
models with multiple layers very efficiently by utilizing graphics processing units.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

11
Implementing a Multilayer
Artificial Neural Network from
Scratch

As you may know, deep learning is getting a lot of attention from the press and is, without doubt, the
hottest topic in the machine learning field. Deep learning can be understood as a subfield of machine
learning that is concerned with training artificial neural networks (NNs) with many layers efficiently.
In this chapter, you will learn the basic concepts of artificial NNs so that you are well equipped for the
following chapters, which will introduce advanced Python-based deep learning libraries and deep
neural network (DNN) architectures that are particularly well suited for image and text analyses.

The topics that we will cover in this chapter are as follows:

• Gaining a conceptual understanding of multilayer NNs
• Implementing the fundamental backpropagation algorithm for NN training from scratch
• Training a basic multilayer NN for image classification

Modeling complex functions with artificial neural
networks
At the beginning of this book, we started our journey through machine learning algorithms with ar-
tificial neurons in Chapter 2, Training Simple Machine Learning Algorithms for Classification. Artificial
neurons represent the building blocks of the multilayer artificial NNs that we will discuss in this chapter.

Implementing a Multilayer Artificial Neural Network from Scratch336

The basic concept behind artificial NNs was built upon hypotheses and models of how the human
brain works to solve complex problem tasks. Although artificial NNs have gained a lot of popularity
in recent years, early studies of NNs go back to the 1940s, when Warren McCulloch and Walter Pitts
first described how neurons could work. (A logical calculus of the ideas immanent in nervous activity, by
W. S. McCulloch and W. Pitts, The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.)

However, in the decades that followed the first implementation of the McCulloch-Pitts neuron
model—Rosenblatt’s perceptron in the 1950s—many researchers and machine learning practitioners
slowly began to lose interest in NNs since no one had a good solution for training an NN with multiple
layers. Eventually, interest in NNs was rekindled in 1986 when D.E. Rumelhart, G.E. Hinton, and R.J.
Williams were involved in the (re)discovery and popularization of the backpropagation algorithm to
train NNs more efficiently, which we will discuss in more detail later in this chapter (Learning rep-
resentations by backpropagating errors, by D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Nature, 323
(6088): 533–536, 1986). Readers who are interested in the history of artificial intelligence (AI), machine
learning, and NNs are also encouraged to read the Wikipedia article on the so-called AI winters, which
are the periods of time where a large portion of the research community lost interest in the study of
NNs (https://en.wikipedia.org/wiki/AI_winter).

However, NNs are more popular today than ever thanks to the many breakthroughs that have been
made in the previous decade, which resulted in what we now call deep learning algorithms and archi-
tectures—NNs that are composed of many layers. NNs are a hot topic not only in academic research
but also in big technology companies, such as Facebook, Microsoft, Amazon, Uber, Google, and many
more that invest heavily in artificial NNs and deep learning research.

As of today, complex NNs powered by deep learning algorithms are considered state-of-the-art solutions
for complex problem solving such as image and voice recognition. Some of the recent applications
include:

• Predicting COVID-19 resource needs from a series of X-rays (https://arxiv.org/
abs/2101.04909)

• Modeling virus mutations (https://science.sciencemag.org/content/371/6526/284)
• Leveraging data from social media platforms to manage extreme weather events (https://

onlinelibrary.wiley.com/doi/abs/10.1111/1468-5973.12311)
• Improving photo descriptions for people who are blind or visually impaired (https://tech.

fb.com/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-
blind-or-visually-impaired/)

https://en.wikipedia.org/wiki/AI_winter
https://arxiv.org/abs/2101.04909
https://arxiv.org/abs/2101.04909
https://science.sciencemag.org/content/371/6526/284
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-5973.12311
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-5973.12311
https://tech.fb.com/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/
https://tech.fb.com/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/
https://tech.fb.com/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/

Chapter 11 337

Single-layer neural network recap
This chapter is all about multilayer NNs, how they work, and how to train them to solve complex
problems. However, before we dig deeper into a particular multilayer NN architecture, let’s briefly
reiterate some of the concepts of single-layer NNs that we introduced in Chapter 2, namely, the ADAp-
tive LInear NEuron (Adaline) algorithm, which is shown in Figure 11.1:

Figure 11.1: The Adaline algorithm

In Chapter 2, we implemented the Adaline algorithm to perform binary classification, and we used the
gradient descent optimization algorithm to learn the weight coefficients of the model. In every epoch
(pass over the training dataset), we updated the weight vector w and bias unit b using the following
update rule: 𝒘𝒘 𝒘 𝒘𝒘 𝒘 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒘 𝒘𝒘 𝒘 𝒘𝒘𝒘

where ∆𝑤𝑤𝑗𝑗 = −𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 and ∆𝑏𝑏 𝑏 𝑏𝑏𝑏 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 for the bias unit and each weight wj in the weight vector w.

In other words, we computed the gradient based on the whole training dataset and updated the weights
of the model by taking a step in the opposite direction of the loss gradient ∇𝐿𝐿(𝒘𝒘) . (For simplicity, we
will focus on the weights and omit the bias unit in the following paragraphs; however, as you remem-
ber from Chapter 2, the same concepts apply.) In order to find the optimal weights of the model, we
optimized an objective function that we defined as the mean of squared errors (MSE) loss function
L(w). Furthermore, we multiplied the gradient by a factor, the learning rate 𝜂𝜂 , which we had to choose
carefully to balance the speed of learning against the risk of overshooting the global minimum of the
loss function.

Implementing a Multilayer Artificial Neural Network from Scratch338

In gradient descent optimization, we updated all weights simultaneously after each epoch, and we
defined the partial derivative for each weight wj in the weight vector, w, as follows:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 = 𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 1𝑛𝑛∑(𝑦𝑦(𝑖𝑖) − 𝑎𝑎(𝑖𝑖))2𝑖𝑖 = −2𝑛𝑛∑(𝑦𝑦(𝑖𝑖) − 𝑎𝑎(𝑖𝑖))𝑥𝑥𝑗𝑗(𝑖𝑖)𝑖𝑖

Here, y(i) is the target class label of a particular sample x(i), and a(i) is the activation of the neuron, which
is a linear function in the special case of Adaline.

Furthermore, we defined the activation function 𝜎𝜎(⋅) as follows:𝜎𝜎(⋅) = 𝑧𝑧 = 𝑧𝑧

Here, the net input, z, is a linear combination of the weights that are connecting the input layer to
the output layer: 𝑧𝑧 𝑧𝑧𝑧𝑧𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑗𝑗 𝑧 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

While we used the activation 𝜎𝜎(⋅) to compute the gradient update, we implemented a threshold func-
tion to squash the continuous-valued output into binary class labels for prediction:𝑦𝑦𝑦 𝑦 𝑦1 if 𝑧𝑧 𝑧 𝑧𝑧𝑧 otherwise

Also, we learned about a certain trick to accelerate the model learning, the so-called stochastic gra-
dient descent (SGD) optimization. SGD approximates the loss from a single training sample (online
learning) or a small subset of training examples (mini-batch learning). We will make use of this concept
later in this chapter when we implement and train a multilayer perceptron (MLP). Apart from faster
learning—due to the more frequent weight updates compared to gradient descent—its noisy nature is
also regarded as beneficial when training multilayer NNs with nonlinear activation functions, which
do not have a convex loss function. Here, the added noise can help to escape local loss minima, but
we will discuss this topic in more detail later in this chapter.

Introducing the multilayer neural network architecture
In this section, you will learn how to connect multiple single neurons to a multilayer feedforward NN;
this special type of fully connected network is also called MLP.

Single-layer naming convention

Note that although Adaline consists of two layers, one input layer and one output layer, it is
called a single-layer network because of its single link between the input and output layers.

Chapter 11 339

Figure 11.2 illustrates the concept of an MLP consisting of two layers:

Figure 11.2: A two-layer MLP

Next to the data input, the MLP depicted in Figure 11.2 has one hidden layer and one output layer.
The units in the hidden layer are fully connected to the input features, and the output layer is fully
connected to the hidden layer. If such a network has more than one hidden layer, we also call it a
deep NN. (Note that in some contexts, the inputs are also regarded as a layer. However, in this case,
it would make the Adaline model, which is a single-layer neural network, a two-layer neural network,
which may be counterintuitive.)

Adding additional hidden layers

We can add any number of hidden layers to the MLP to create deeper network architectures.
Practically, we can think of the number of layers and units in an NN as additional hyper-
parameters that we want to optimize for a given problem task using the cross-validation
technique, which we discussed in Chapter 6, Learning Best Practices for Model Evaluation
and Hyperparameter Tuning.

However, the loss gradients for updating the network’s parameters, which we will calcu-
late later via backpropagation, will become increasingly small as more layers are added
to a network. This vanishing gradient problem makes model learning more challenging.
Therefore, special algorithms have been developed to help train such DNN structures; this
is known as deep learning, which we will discuss in more detail in the following chapters.

Implementing a Multilayer Artificial Neural Network from Scratch340

As shown in Figure 11.2, we denote the ith activation unit in the lth layer as 𝑎𝑎𝑖𝑖(𝑙𝑙) . To make the math and
code implementations a bit more intuitive, we will not use numerical indices to refer to layers, but we
will use the in superscript for the input features, the h superscript for the hidden layer, and the out
superscript for the output layer. For instance, 𝑥𝑥𝑖𝑖(𝑖𝑖𝑖𝑖) refers to the ith input feature value, 𝑎𝑎𝑖𝑖(ℎ) refers to
the ith unit in the hidden layer, and 𝑎𝑎𝑖𝑖(𝑜𝑜𝑜𝑜𝑜𝑜) refers to the ith unit in the output layer. Note that the b’s in
Figure 11.2 denote the bias units. In fact, b(h) and b(out) are vectors with the number of elements being
equal to the number of nodes in the layer they correspond to. For example, b(h) stores d bias units,
where d is the number of nodes in the hidden layer. If this sounds confusing, don’t worry. Looking at
the code implementation later, where we initialize weight matrices and bias unit vectors, will help
clarify these concepts.

Each node in layer l is connected to all nodes in layer l + 1 via a weight coefficient. For example, the
connection between the kth unit in layer l to the jth unit in layer l + 1 will be written as 𝑤𝑤𝑗𝑗𝑗𝑗𝑗(𝑙𝑙) . Referring
back to Figure 11.2, we denote the weight matrix that connects the input to the hidden layer as W(h),
and we write the matrix that connects the hidden layer to the output layer as W(out).

While one unit in the output layer would suffice for a binary classification task, we saw a more gen-
eral form of an NN in the preceding figure, which allows us to perform multiclass classification via a
generalization of the one-versus-all (OvA) technique. To better understand how this works, remember
the one-hot representation of categorical variables that we introduced in Chapter 4, Building Good
Training Datasets – Data Preprocessing.

For example, we can encode the three class labels in the familiar Iris dataset (0=Setosa, 1=Versicol-
or, 2=Virginica) as follows:

0 = [100] , 1 = [010] , 2 = [001]
This one-hot vector representation allows us to tackle classification tasks with an arbitrary number
of unique class labels present in the training dataset.

If you are new to NN representations, the indexing notation (subscripts and superscripts) may look
a little bit confusing at first. What may seem overly complicated at first will make much more sense
in later sections when we vectorize the NN representation. As introduced earlier, we summarize the
weights that connect the input and hidden layers by a d×m dimensional matrix W(h), where d is the
number of hidden units and m is the number of input units.

Activating a neural network via forward propagation
In this section, we will describe the process of forward propagation to calculate the output of an MLP
model. To understand how it fits into the context of learning an MLP model, let’s summarize the MLP
learning procedure in three simple steps:

1. Starting at the input layer, we forward propagate the patterns of the training data through the
network to generate an output.

2. Based on the network’s output, we calculate the loss that we want to minimize using a loss
function that we will describe later.

Chapter 11 341

3. We backpropagate the loss, find its derivative with respect to each weight and bias unit in the
network, and update the model.

Finally, after we repeat these three steps for multiple epochs and learn the weight and bias parame-
ters of the MLP, we use forward propagation to calculate the network output and apply a threshold
function to obtain the predicted class labels in the one-hot representation, which we described in the
previous section.

Now, let’s walk through the individual steps of forward propagation to generate an output from the
patterns in the training data. Since each unit in the hidden layer is connected to all units in the input
layers, we first calculate the activation unit of the hidden layer 𝑎𝑎1(ℎ) as follows:𝑧𝑧1(ℎ) = 𝑥𝑥1(𝑖𝑖𝑖𝑖)𝑤𝑤1,1(ℎ) + 𝑥𝑥2(𝑖𝑖𝑖𝑖)𝑤𝑤1,2(ℎ) + ⋯+ 𝑥𝑥𝑚𝑚(𝑖𝑖𝑖𝑖)𝑤𝑤1,𝑚𝑚(ℎ)𝑎𝑎1(ℎ) = 𝜎𝜎𝜎𝑧𝑧1(ℎ))

Here, 𝑧𝑧1(ℎ) is the net input and 𝜎𝜎(⋅) is the activation function, which has to be differentiable to learn
the weights that connect the neurons using a gradient-based approach. To be able to solve complex
problems such as image classification, we need nonlinear activation functions in our MLP model, for
example, the sigmoid (logistic) activation function that we remember from the section about logistic
regression in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn:𝜎𝜎(𝑧𝑧) = 11 + 𝑒𝑒−𝑧𝑧
As you may recall, the sigmoid function is an S-shaped curve that maps the net input z onto a logistic
distribution in the range 0 to 1, which cuts the y axis at z = 0, as shown in Figure 11.3:

Figure 11.3: The sigmoid activation function

Implementing a Multilayer Artificial Neural Network from Scratch342

MLP is a typical example of a feedforward artificial NN. The term feedforward refers to the fact that
each layer serves as the input to the next layer without loops, in contrast to recurrent NNs—an archi-
tecture that we will discuss later in this chapter and discuss in more detail in Chapter 15, Modeling
Sequential Data Using Recurrent Neural Networks. The term multilayer perceptron may sound a little bit
confusing since the artificial neurons in this network architecture are typically sigmoid units, not
perceptrons. We can think of the neurons in the MLP as logistic regression units that return values in
the continuous range between 0 and 1.

For purposes of code efficiency and readability, we will now write the activation in a more compact
form using the concepts of basic linear algebra, which will allow us to vectorize our code implementa-
tion via NumPy rather than writing multiple nested and computationally expensive Python for loops:𝑧𝑧(ℎ) = 𝒙𝒙(𝑖𝑖𝑖𝑖)𝑾𝑾(ℎ)𝑇𝑇 + 𝒃𝒃(ℎ)𝑎𝑎(ℎ) = 𝜎𝜎𝜎𝜎𝜎(ℎ))

Here, z(h) is our 1×m dimensional feature vector. W(h) is a d×m dimensional weight matrix where d is
the number of units in the hidden layer; consequently, the transposed matrix W(h)T is m×d dimensional.
The bias vector b(h) consists of d bias units (one bias unit per hidden node).

After matrix-vector multiplication, we obtain the 1×d dimensional net input vector z(h) to calculate the
activation a(h) (where 𝒂𝒂(ℎ) ∈ ℝ1×𝑑𝑑).

Furthermore, we can generalize this computation to all n examples in the training dataset:

Z(h) = X(in)W(h)T + b(h)

Here, X(in) is now an n×m matrix, and the matrix multiplication will result in an n×d dimensional net
input matrix, Z(h). Finally, we apply the activation function 𝜎𝜎(⋅) to each value in the net input matrix
to get the n×d activation matrix in the next layer (here, the output layer):𝑨𝑨(ℎ) = 𝜎𝜎𝜎𝜎𝜎(ℎ))
Similarly, we can write the activation of the output layer in vectorized form for multiple examples:

Z(out) = A(h)W(out)T + b(out)

Here, we multiply the transpose of the t×d matrix W(out) (t is the number of output units) by the n×d
dimensional matrix, A(h), and add the t dimensional bias vector b(out) to obtain the n×t dimensional
matrix, Z(out). (The columns in this matrix represent the outputs for each sample.)

Lastly, we apply the sigmoid activation function to obtain the continuous-valued output of our network:𝑨𝑨(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜎𝜎𝜎𝜎𝜎(𝑜𝑜𝑜𝑜𝑜𝑜))
Similar to Z(out), A(out) is an n×t dimensional matrix.

Chapter 11 343

Classifying handwritten digits
In the previous section, we covered a lot of the theory around NNs, which can be a little bit over-
whelming if you are new to this topic. Before we continue with the discussion of the algorithm for
learning the weights of the MLP model, backpropagation, let’s take a short break from the theory and
see an NN in action.

In this section, we will implement and train our first multilayer NN to classify handwritten digits
from the popular Mixed National Institute of Standards and Technology (MNIST) dataset that has
been constructed by Yann LeCun and others and serves as a popular benchmark dataset for machine
learning algorithms (Gradient-Based Learning Applied to Document Recognition by Y. LeCun, L. Bottou,
Y. Bengio, and P. Haffner, Proceedings of the IEEE, 86(11): 2278-2324, 1998).

Obtaining and preparing the MNIST dataset
The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/ and consists of the
following four parts:

1. Training dataset images: train-images-idx3-ubyte.gz (9.9 MB, 47 MB unzipped, and 60,000
examples)

2. Training dataset labels: train-labels-idx1-ubyte.gz (29 KB, 60 KB unzipped, and 60,000
labels)

3. Test dataset images: t10k-images-idx3-ubyte.gz (1.6 MB, 7.8 MB unzipped, and 10,000 ex-
amples)

4. Test dataset labels: t10k-labels-idx1-ubyte.gz (5 KB, 10 KB unzipped, and 10,000 labels)

Additional resources on backpropagation

The NN theory can be quite complex; thus, we want to provide readers with additional
resources that cover some of the topics we discuss in this chapter in more detail or from
a different perspective:

• Chapter 6, Deep Feedforward Networks, Deep Learning, by I. Goodfellow, Y. Bengio,
and A. Courville, MIT Press, 2016 (manuscripts freely accessible at http://www.
deeplearningbook.org).

• Pattern Recognition and Machine Learning, by C. M. Bishop, Springer New York, 2006.
• Lecture video slides from Sebastian Raschka’s deep learning course:

https://sebastianraschka.com/blog/2021/dl-course.html#l08-
multinomial-logistic-regression--softmax-regression

https://sebastianraschka.com/blog/2021/dl-course.html#l09-
multilayer-perceptrons-and-backpropration

http://yann.lecun.com/exdb/mnist/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://sebastianraschka.com/blog/2021/dl-course.html#l08-multinomial-logistic-regression--softmax-regression
https://sebastianraschka.com/blog/2021/dl-course.html#l08-multinomial-logistic-regression--softmax-regression
https://sebastianraschka.com/blog/2021/dl-course.html#l09-multilayer-perceptrons-and-backpropration
https://sebastianraschka.com/blog/2021/dl-course.html#l09-multilayer-perceptrons-and-backpropration

Implementing a Multilayer Artificial Neural Network from Scratch344

The MNIST dataset was constructed from two datasets of the US National Institute of Standards and
Technology (NIST). The training dataset consists of handwritten digits from 250 different people, 50
percent high school students, and 50 percent employees from the Census Bureau. Note that the test
dataset contains handwritten digits from different people following the same split.

Instead of downloading the abovementioned dataset files and preprocessing them into NumPy arrays
ourselves, we will use scikit-learn’s new fetch_openml function, which allows us to load the MNIST
dataset more conveniently:

>>> from sklearn.datasets import fetch_openml
>>> X, y = fetch_openml('mnist_784', version=1,
... return_X_y=True)
>>> X = X.values
>>> y = y.astype(int).values

In scikit-learn, the fetch_openml function downloads the MNIST dataset from OpenML (https://www.
openml.org/d/554) as pandas DataFrame and Series objects, which is why we use the .values attribute to
obtain the underlying NumPy arrays. (If you are using a scikit-learn version older than 1.0, fetch_openml
downloads NumPy arrays directly so you can omit using the .values attribute.) The n×m dimensional
X array consists of 70,000 images with 784 pixels each, and the y array stores the corresponding 70,000
class labels, which we can confirm by checking the dimensions of the arrays as follows:

>>> print(X.shape)
(70000, 784)
>>> print(y.shape)
(70000,)

The images in the MNIST dataset consist of 28×28 pixels, and each pixel is represented by a grayscale
intensity value. Here, fetch_openml already unrolled the 28×28 pixels into one-dimensional row
vectors, which represent the rows in our X array (784 per row or image) above. The second array (y)
returned by the fetch_openml function contains the corresponding target variable, the class labels
(integers 0-9) of the handwritten digits.

Next, let’s normalize the pixels values in MNIST to the range –1 to 1 (originally 0 to 255) via the fol-
lowing code line:

>>> X = ((X / 255.) - .5) * 2

The reason behind this is that gradient-based optimization is much more stable under these conditions,
as discussed in Chapter 2. Note that we scaled the images on a pixel-by-pixel basis, which is different
from the feature-scaling approach that we took in previous chapters.

Previously, we derived scaling parameters from the training dataset and used these to scale each
column in the training dataset and test dataset. However, when working with image pixels, centering
them at zero and rescaling them to a [–1, 1] range is also common and usually works well in practice.

https://www.openml.org/d/554
https://www.openml.org/d/554

Chapter 11 345

To get an idea of how those images in MNIST look, let’s visualize examples of the digits 0-9 after re-
shaping the 784-pixel vectors from our feature matrix into the original 28×28 image that we can plot
via Matplotlib’s imshow function:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=5,
... sharex=True, sharey=True)
>>> ax = ax.flatten()
>>> for i in range(10):
... img = X[y == i][0].reshape(28, 28)
... ax[i].imshow(img, cmap='Greys')
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

We should now see a plot of the 2×5 subfigures showing a representative image of each unique digit:

Figure 11.4: A plot showing one randomly chosen handwritten digit from each class

In addition, let’s also plot multiple examples of the same digit to see how different the handwriting
for each really is:

>>> fig, ax = plt.subplots(nrows=5,
... ncols=5,
... sharex=True,
... sharey=True)
>>> ax = ax.flatten()

Implementing a Multilayer Artificial Neural Network from Scratch346

>>> for i in range(25):
... img = X[y == 7][i].reshape(28, 28)
... ax[i].imshow(img, cmap='Greys')
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

After executing the code, we should now see the first 25 variants of the digit 7:

Figure 11.5: Different variants of the handwritten digit 7

Finally, let’s divide the dataset into training, validation, and test subsets. The following code will split
the dataset such that 55,000 images are used for training, 5,000 images for validation, and 10,000
images for testing:

>>> from sklearn.model_selection import train_test_split
>>> X_temp, X_test, y_temp, y_test = train_test_split(
... X, y, test_size=10000, random_state=123, stratify=y
...)
>>> X_train, X_valid, y_train, y_valid = train_test_split(
... X_temp, y_temp, test_size=5000,
... random_state=123, stratify=y_temp
...)

Chapter 11 347

Implementing a multilayer perceptron
In this subsection, we will now implement an MLP from scratch to classify the images in the MNIST
dataset. To keep things simple, we will implement an MLP with only one hidden layer. Since the ap-
proach may seem a little bit complicated at first, you are encouraged to download the sample code
for this chapter from the Packt Publishing website or from GitHub (https://github.com/rasbt/
machine-learning-book) so that you can view this MLP implementation annotated with comments
and syntax highlighting for better readability.

If you are not running the code from the accompanying Jupyter Notebook file or don’t have access to
the internet, copy the NeuralNetMLP code from this chapter into a Python script file in your current
working directory (for example, neuralnet.py), which you can then import into your current Python
session via the following command:

from neuralnet import NeuralNetMLP

The code will contain parts that we have not talked about yet, such as the backpropagation algo-
rithm. Do not worry if not all the code makes immediate sense to you; we will follow up on certain
parts later in this chapter. However, going over the code at this stage can make it easier to follow
the theory later.

So, let’s look at the following implementation of an MLP, starting with the two helper functions to
compute the logistic sigmoid activation and to convert integer class label arrays to one-hot encoded
labels:

import numpy as np

def sigmoid(z):
 return 1. / (1. + np.exp(-z))

def int_to_onehot(y, num_labels):

 ary = np.zeros((y.shape[0], num_labels))
 for i, val in enumerate(y):
 ary[i, val] = 1

 return ary

https://github.com/rasbt/machine-learning-book
https://github.com/rasbt/machine-learning-book

Implementing a Multilayer Artificial Neural Network from Scratch348

Below, we implement the main class for our MLP, which we call NeuralNetMLP. There are three class
methods, .__init__(), .forward(), and .backward(), that we will discuss one by one, starting with
the __init__ constructor:

class NeuralNetMLP:

 def __init__(self, num_features, num_hidden,
 num_classes, random_seed=123):
 super().__init__()

 self.num_classes = num_classes

 # hidden
 rng = np.random.RandomState(random_seed)

 self.weight_h = rng.normal(
 loc=0.0, scale=0.1, size=(num_hidden, num_features))
 self.bias_h = np.zeros(num_hidden)

 # output
 self.weight_out = rng.normal(
 loc=0.0, scale=0.1, size=(num_classes, num_hidden))
 self.bias_out = np.zeros(num_classes)

The __init__ constructor instantiates the weight matrices and bias vectors for the hidden and the
output layer. Next, let’s see how these are used in the forward method to make predictions:

 def forward(self, x):
 # Hidden layer

 # input dim: [n_hidden, n_features]
 # dot [n_features, n_examples] .T
 # output dim: [n_examples, n_hidden]
 z_h = np.dot(x, self.weight_h.T) + self.bias_h
 a_h = sigmoid(z_h)

 # Output layer
 # input dim: [n_classes, n_hidden]
 # dot [n_hidden, n_examples] .T
 # output dim: [n_examples, n_classes]
 z_out = np.dot(a_h, self.weight_out.T) + self.bias_out
 a_out = sigmoid(z_out)
 return a_h, a_out

Chapter 11 349

The forward method takes in one or more training examples and returns the predictions. In fact, it
returns both the activation values from the hidden layer and the output layer, a_h and a_out. While
a_out represents the class-membership probabilities that we can convert to class labels, which we
care about, we also need the activation values from the hidden layer, a_h, to optimize the model pa-
rameters; that is, the weight and bias units of the hidden and output layers.

Finally, let’s talk about the backward method, which updates the weight and bias parameters of the
neural network:

 def backward(self, x, a_h, a_out, y):

 #########################
 ### Output layer weights
 #########################

 # one-hot encoding
 y_onehot = int_to_onehot(y, self.num_classes)

 # Part 1: dLoss/dOutWeights
 ## = dLoss/dOutAct * dOutAct/dOutNet * dOutNet/dOutWeight
 ## where DeltaOut = dLoss/dOutAct * dOutAct/dOutNet
 ## for convenient re-use

 # input/output dim: [n_examples, n_classes]
 d_loss__d_a_out = 2.*(a_out - y_onehot) / y.shape[0]

 # input/output dim: [n_examples, n_classes]
 d_a_out__d_z_out = a_out * (1. - a_out) # sigmoid derivative

 # output dim: [n_examples, n_classes]
 delta_out = d_loss__d_a_out * d_a_out__d_z_out

 # gradient for output weights

 # [n_examples, n_hidden]
 d_z_out__dw_out = a_h

 # input dim: [n_classes, n_examples]
 # dot [n_examples, n_hidden]
 # output dim: [n_classes, n_hidden]
 d_loss__dw_out = np.dot(delta_out.T, d_z_out__dw_out)
 d_loss__db_out = np.sum(delta_out, axis=0)

Implementing a Multilayer Artificial Neural Network from Scratch350

 #################################
 # Part 2: dLoss/dHiddenWeights
 ## = DeltaOut * dOutNet/dHiddenAct * dHiddenAct/dHiddenNet
 # * dHiddenNet/dWeight

 # [n_classes, n_hidden]
 d_z_out__a_h = self.weight_out

 # output dim: [n_examples, n_hidden]
 d_loss__a_h = np.dot(delta_out, d_z_out__a_h)

 # [n_examples, n_hidden]
 d_a_h__d_z_h = a_h * (1. - a_h) # sigmoid derivative

 # [n_examples, n_features]
 d_z_h__d_w_h = x

 # output dim: [n_hidden, n_features]
 d_loss__d_w_h = np.dot((d_loss__a_h * d_a_h__d_z_h).T,
 d_z_h__d_w_h)
 d_loss__d_b_h = np.sum((d_loss__a_h * d_a_h__d_z_h), axis=0)

 return (d_loss__dw_out, d_loss__db_out,
 d_loss__d_w_h, d_loss__d_b_h)

The backward method implements the so-called backpropagation algorithm, which calculates the gra-
dients of the loss with respect to the weight and bias parameters. Similar to Adaline, these gradients
are then used to update these parameters via gradient descent. Note that multilayer NNs are more
complex than their single-layer siblings, and we will go over the mathematical concepts of how to
compute the gradients in a later section after discussing the code. For now, just consider the backward
method as a way for computing gradients that are used for the gradient descent updates. For simplic-
ity, the loss function this derivation is based on is the same MSE loss that we used in Adaline. In later
chapters, we will look at alternative loss functions, such as multi-category cross-entropy loss, which
is a generalization of the binary logistic regression loss to multiple classes.

Looking at this code implementation of the NeuralNetMLP class, you may have noticed that this
object-oriented implementation differs from the familiar scikit-learn API that is centered around
the .fit() and .predict() methods. Instead, the main methods of the NeuralNetMLP class are the
.forward() and .backward() methods. One of the reasons behind this is that it makes a complex neu-
ral network a bit easier to understand in terms of how the information flows through the networks.

Chapter 11 351

Another reason is that this implementation is relatively similar to how more advanced deep learning
libraries such as PyTorch operate, which we will introduce and use in the upcoming chapters to im-
plement more complex neural networks.

After we have implemented the NeuralNetMLP class, we use the following code to instantiate a new
NeuralNetMLP object:

>>> model = NeuralNetMLP(num_features=28*28,
... num_hidden=50,
... num_classes=10)

The model accepts MNIST images reshaped into 784-dimensional vectors (in the format of X_train,
X_valid, or X_test, which we defined previously) for the 10 integer classes (digits 0-9). The hidden
layer consists of 50 nodes. Also, as you may be able to tell from looking at the previously defined
.forward() method, we use a sigmoid activation function after the first hidden layer and output layer
to keep things simple. In later chapters, we will learn about alternative activation functions for both
the hidden and output layers.

Figure 11.6 summarizes the neural network architecture that we instantiated above:

Figure 11.6: The NN architecture for labeling handwritten digits

In the next subsection, we are going to implement the training function that we can use to train the
network on mini-batches of the data via backpropagation.

Implementing a Multilayer Artificial Neural Network from Scratch352

Coding the neural network training loop
Now that we have implemented the NeuralNetMLP class in the previous subsection and initiated a
model, the next step is to train the model. We will tackle this in multiple steps. First, we will define
some helper functions for data loading. Second, we will embed these functions into the training loop
that iterates over the dataset in multiple epochs.

The first function we are going to define is a mini-batch generator, which takes in our dataset and divides
it into mini-batches of a desired size for stochastic gradient descent training. The code is as follows:

>>> import numpy as np
>>> num_epochs = 50
>>> minibatch_size = 100

>>> def minibatch_generator(X, y, minibatch_size):
... indices = np.arange(X.shape[0])
... np.random.shuffle(indices)
... for start_idx in range(0, indices.shape[0] - minibatch_size
... + 1, minibatch_size):
... batch_idx = indices[start_idx:start_idx + minibatch_size]
... yield X[batch_idx], y[batch_idx]

Before we move on to the next functions, let’s confirm that the mini-batch generator works as intended
and produces mini-batches of the desired size. The following code will attempt to iterate through the
dataset, and then we will print the dimension of the mini-batches. Note that in the following code
examples, we will remove the break statements. The code is as follows:

>>> # iterate over training epochs
>>> for i in range(num_epochs):
... # iterate over minibatches
... minibatch_gen = minibatch_generator(
... X_train, y_train, minibatch_size)
... for X_train_mini, y_train_mini in minibatch_gen:
... break
... break
>>> print(X_train_mini.shape)
(100, 784)
>>> print(y_train_mini.shape)
(100,)

As we can see, the network returns mini-batches of size 100 as intended.

Chapter 11 353

Next, we have to define our loss function and performance metric that we can use to monitor the
training process and evaluate the model. The MSE loss and accuracy function can be implemented
as follows:

>>> def mse_loss(targets, probas, num_labels=10):
... onehot_targets = int_to_onehot(
... targets, num_labels=num_labels
...)
... return np.mean((onehot_targets - probas)**2)

>>> def accuracy(targets, predicted_labels):
... return np.mean(predicted_labels == targets)

Let’s test the preceding function and compute the initial validation set MSE and accuracy of the model
we instantiated in the previous section:

>>> _, probas = model.forward(X_valid)
>>> mse = mse_loss(y_valid, probas)
>>> print(f'Initial validation MSE: {mse:.1f}')
Initial validation MSE: 0.3

>>> predicted_labels = np.argmax(probas, axis=1)
>>> acc = accuracy(y_valid, predicted_labels)
>>> print(f'Initial validation accuracy: {acc*100:.1f}%')
Initial validation accuracy: 9.4%

In this code example, note that model.forward() returns the hidden and output layer activations.
Remember that we have 10 output nodes (one corresponding to each unique class label). Hence,
when computing the MSE, we first converted the class labels into one-hot encoded class labels in
the mse_loss() function. In practice, it does not make a difference whether we average over the row
or the columns of the squared-difference matrix first, so we simply call np.mean() without any axis
specification so that it returns a scalar.

The output layer activations, since we used the logistic sigmoid function, are values in the range [0, 1].
For each input, the output layer produces 10 values in the range [0, 1], so we used the np.argmax()
function to select the index position of the largest value, which yields the predicted class label. We then
compared the true labels with the predicted class labels to compute the accuracy via the accuracy()
function we defined. As we can see from the preceding output, the accuracy is not very high. Howev-
er, given that we have a balanced dataset with 10 classes, a prediction accuracy of approximately 10
percent is what we would expect for an untrained model producing random predictions.

Implementing a Multilayer Artificial Neural Network from Scratch354

Using the previous code, we can compute the performance on, for example, the whole training set if
we provide y_train as input to targets and the predicted labels from feeding the model with X_train.
However, in practice, our computer memory is usually a limiting factor for how much data the model
can ingest in one forward pass (due to the large matrix multiplications). Hence, we are defining our
MSE and accuracy computation based on our previous mini-batch generator. The following function
will compute the MSE and accuracy incrementally by iterating over the dataset one mini-batch at a
time to be more memory-efficient:

>>> def compute_mse_and_acc(nnet, X, y, num_labels=10,
... minibatch_size=100):
... mse, correct_pred, num_examples = 0., 0, 0
... minibatch_gen = minibatch_generator(X, y, minibatch_size)
... for i, (features, targets) in enumerate(minibatch_gen):
... _, probas = nnet.forward(features)
... predicted_labels = np.argmax(probas, axis=1)
... onehot_targets = int_to_onehot(
... targets, num_labels=num_labels
...)
... loss = np.mean((onehot_targets - probas)**2)
... correct_pred += (predicted_labels == targets).sum()
... num_examples += targets.shape[0]
... mse += loss
... mse = mse/i
... acc = correct_pred/num_examples
... return mse, acc

Before we implement the training loop, let’s test the function and compute the initial training set MSE
and accuracy of the model we instantiated in the previous section and make sure it works as intended:

>>> mse, acc = compute_mse_and_acc(model, X_valid, y_valid)
>>> print(f'Initial valid MSE: {mse:.1f}')
Initial valid MSE: 0.3
>>> print(f'Initial valid accuracy: {acc*100:.1f}%')
Initial valid accuracy: 9.4%

As we can see from the results, our generator approach produces the same results as the previously
defined MSE and accuracy functions, except for a small rounding error in the MSE (0.27 versus 0.28),
which is negligible for our purposes.

Let’s now get to the main part and implement the code to train our model:

>>> def train(model, X_train, y_train, X_valid, y_valid, num_epochs,
... learning_rate=0.1):
... epoch_loss = []

Chapter 11 355

... epoch_train_acc = []

... epoch_valid_acc = []

...

... for e in range(num_epochs):

... # iterate over minibatches

... minibatch_gen = minibatch_generator(

... X_train, y_train, minibatch_size)

... for X_train_mini, y_train_mini in minibatch_gen:

... #### Compute outputs ####

... a_h, a_out = model.forward(X_train_mini)

... #### Compute gradients ####

... d_loss__d_w_out, d_loss__d_b_out, \

... d_loss__d_w_h, d_loss__d_b_h = \

... model.backward(X_train_mini, a_h, a_out,

... y_train_mini)

...

... #### Update weights ####

... model.weight_h -= learning_rate * d_loss__d_w_h

... model.bias_h -= learning_rate * d_loss__d_b_h

... model.weight_out -= learning_rate * d_loss__d_w_out

... model.bias_out -= learning_rate * d_loss__d_b_out

...

... #### Epoch Logging ####

... train_mse, train_acc = compute_mse_and_acc(

... model, X_train, y_train

...)

... valid_mse, valid_acc = compute_mse_and_acc(

... model, X_valid, y_valid

...)

... train_acc, valid_acc = train_acc*100, valid_acc*100

... epoch_train_acc.append(train_acc)

... epoch_valid_acc.append(valid_acc)

... epoch_loss.append(train_mse)

... print(f'Epoch: {e+1:03d}/{num_epochs:03d} '

... f'| Train MSE: {train_mse:.2f} '

... f'| Train Acc: {train_acc:.2f}% '

... f'| Valid Acc: {valid_acc:.2f}%')

...

... return epoch_loss, epoch_train_acc, epoch_valid_acc

Implementing a Multilayer Artificial Neural Network from Scratch356

On a high level, the train() function iterates over multiple epochs, and in each epoch, it used the pre-
viously defined minibatch_generator() function to iterate over the whole training set in mini-batches
for stochastic gradient descent training. Inside the mini-batch generator for loop, we obtain the out-
puts from the model, a_h and a_out, via its .forward() method. Then, we compute the loss gradients
via the model’s .backward() method—the theory will be explained in a later section. Using the loss
gradients, we update the weights by adding the negative gradient multiplied by the learning rate. This
is the same concept that we discussed earlier for Adaline. For example, to update the model weights
of the hidden layer, we defined the following line:

model.weight_h -= learning_rate * d_loss__d_w_h

For a single weight, wj, this corresponds to the following partial derivative-based update:𝑤𝑤𝑗𝑗 ≔ 𝑤𝑤𝑗𝑗 − 𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝑤𝑤𝑗𝑗
Finally, the last portion of the previous code computes the losses and prediction accuracies on the
training and test sets to track the training progress.

Let’s now execute this function to train our model for 50 epochs, which may take a few minutes to finish:

>>> np.random.seed(123) # for the training set shuffling
>>> epoch_loss, epoch_train_acc, epoch_valid_acc = train(
... model, X_train, y_train, X_valid, y_valid,
... num_epochs=50, learning_rate=0.1)

During training, we should see the following output:

Epoch: 001/050 | Train MSE: 0.05 | Train Acc: 76.17% | Valid Acc: 76.02%
Epoch: 002/050 | Train MSE: 0.03 | Train Acc: 85.46% | Valid Acc: 84.94%
Epoch: 003/050 | Train MSE: 0.02 | Train Acc: 87.89% | Valid Acc: 87.64%
Epoch: 004/050 | Train MSE: 0.02 | Train Acc: 89.36% | Valid Acc: 89.38%
Epoch: 005/050 | Train MSE: 0.02 | Train Acc: 90.21% | Valid Acc: 90.16%
...
Epoch: 048/050 | Train MSE: 0.01 | Train Acc: 95.57% | Valid Acc: 94.58%
Epoch: 049/050 | Train MSE: 0.01 | Train Acc: 95.55% | Valid Acc: 94.54%
Epoch: 050/050 | Train MSE: 0.01 | Train Acc: 95.59% | Valid Acc: 94.74%

The reason why we print all this output is that, in NN training, it is really useful to compare training
and validation accuracy. This helps us judge whether the network model performs well, given the
architecture and hyperparameters. For example, if we observe a low training and validation accuracy,
there is likely an issue with the training dataset, or the hyperparameters’ settings are not ideal.

In general, training (deep) NNs is relatively expensive compared with the other models we’ve discussed
so far. Thus, we want to stop it early in certain circumstances and start over with different hyperpa-
rameter settings. On the other hand, if we find that it increasingly tends to overfit the training data
(noticeable by an increasing gap between training and validation dataset performance), we may want
to stop the training early, as well.

Chapter 11 357

In the next subsection, we will discuss the performance of our NN model in more detail.

Evaluating the neural network performance
Before we discuss backpropagation, the training procedure of NNs, in more detail in the next section,
let’s look at the performance of the model that we trained in the previous subsection.

In train(), we collected the training loss and the training and validation accuracy for each epoch so
that we can visualize the results using Matplotlib. Let’s look at the training MSE loss first:

>>> plt.plot(range(len(epoch_loss)), epoch_loss)
>>> plt.ylabel('Mean squared error')
>>> plt.xlabel('Epoch')
>>> plt.show()

The preceding code plots the loss over the 50 epochs, as shown in Figure 11.7:

Figure 11.7: A plot of the MSE by the number of training epochs

As we can see, the loss decreased substantially during the first 10 epochs and seems to slowly converge
in the last 10 epochs. However, the small slope between epoch 40 and epoch 50 indicates that the loss
would further decrease with training over additional epochs.

Next, let’s take a look at the training and validation accuracy:

>>> plt.plot(range(len(epoch_train_acc)), epoch_train_acc,
... label='Training')
>>> plt.plot(range(len(epoch_valid_acc)), epoch_valid_acc,
... label='Validation')
>>> plt.ylabel('Accuracy')
>>> plt.xlabel('Epochs')
>>> plt.legend(loc='lower right')
>>> plt.show()

Implementing a Multilayer Artificial Neural Network from Scratch358

The preceding code examples plot those accuracy values over the 50 training epochs, as shown in
Figure 11.8:

Figure 11.8: Classification accuracy by the number of training epochs

The plot reveals that the gap between training and validation accuracy increases as we train for more
epochs. At approximately the 25th epoch, the training and validation accuracy values are almost equal,
and then, the network starts to slightly overfit the training data.

Finally, let’s evaluate the generalization performance of the model by calculating the prediction ac-
curacy on the test dataset:

>>> test_mse, test_acc = compute_mse_and_acc(model, X_test, y_test)
>>> print(f'Test accuracy: {test_acc*100:.2f}%')
Test accuracy: 94.51%

We can see that the test accuracy is very close to the validation set accuracy corresponding to the last
epoch (94.74%), which we reported during the training in the last subsection. Moreover, the respec-
tive training accuracy is only minimally higher at 95.59%, reaffirming that our model only slightly
overfits the training data.

To further fine-tune the model, we could change the number of hidden units, the learning rate, or use
various other tricks that have been developed over the years but are beyond the scope of this book. In
Chapter 14, Classifying Images with Deep Convolutional Neural Networks, you will learn about a different
NN architecture that is known for its good performance on image datasets.

Reducing overfitting

One way to decrease the effect of overfitting is to increase the regularization strength via L2
regularization, which we introduced in Chapter 3, A Tour of Machine Learning Classifiers Using
Scikit-Learn. Another useful technique for tackling overfitting in NNs is dropout, which
will be covered in Chapter 14, Classifying Images with Deep Convolutional Neural Networks.

Chapter 11 359

Also, the chapter will introduce additional performance-enhancing tricks such as adaptive learning
rates, more sophisticated SGD-based optimization algorithms, batch normalization, and dropout.

Other common tricks that are beyond the scope of the following chapters include:

• Adding skip-connections, which are the main contribution of residual NNs (Deep residual learn-
ing for image recognition by K. He, X. Zhang, S. Ren, and J. Sun, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770-778, 2016)

• Using learning rate schedulers that change the learning rate during training (Cyclical learning
rates for training neural networks by L.N. Smith, 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 464-472, 2017)

• Attaching loss functions to earlier layers in the networks as it’s being done in the popular In-
ception v3 architecture (Rethinking the Inception architecture for computer vision by C. Szegedy, V.
Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2818-2826, 2016)

Lastly, let’s take a look at some of the images that our MLP struggles with by extracting and plotting
the first 25 misclassified samples from the test set:

>>> X_test_subset = X_test[:1000, :]
>>> y_test_subset = y_test[:1000]
>>> _, probas = model.forward(X_test_subset)
>>> test_pred = np.argmax(probas, axis=1)
>>> misclassified_images = \
... X_test_subset[y_test_subset != test_pred][:25]
>>> misclassified_labels = test_pred[y_test_subset != test_pred][:25]
>>> correct_labels = y_test_subset[y_test_subset != test_pred][:25]

>>> fig, ax = plt.subplots(nrows=5, ncols=5,
... sharex=True, sharey=True,
... figsize=(8, 8))
>>> ax = ax.flatten()
>>> for i in range(25):
... img = misclassified_images[i].reshape(28, 28)
... ax[i].imshow(img, cmap='Greys', interpolation='nearest')
... ax[i].set_title(f'{i+1}) '
... f'True: {correct_labels[i]}\n'
... f' Predicted: {misclassified_labels[i]}')

>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

Implementing a Multilayer Artificial Neural Network from Scratch360

We should now see a 5×5 subplot matrix where the first number in the subtitles indicates the plot
index, the second number represents the true class label (True), and the third number stands for the
predicted class label (Predicted):

Figure 11.9: Handwritten digits that the model fails to classify correctly

As we can see in Figure 11.9, among others, the network finds 7s challenging when they include a
horizontal line as in examples 19 and 20. Looking back at an earlier figure in this chapter where we
plotted different training examples of the number 7, we can hypothesize that the handwritten digit 7
with a horizontal line is underrepresented in our dataset and is often misclassified.

Training an artificial neural network
Now that we have seen an NN in action and have gained a basic understanding of how it works by look-
ing over the code, let’s dig a little bit deeper into some of the concepts, such as the loss computation
and the backpropagation algorithm that we implemented to learn the model parameters.

Computing the loss function
As mentioned previously, we used an MSE loss (as in Adaline) to train the multilayer NN as it makes the
derivation of the gradients a bit easier to follow. In later chapters, we will discuss other loss functions,
such as the multi-category cross-entropy loss (a generalization of the binary logistic regression loss),
which is a more common choice for training NN classifiers.

Chapter 11 361

In the previous section, we implemented an MLP for multiclass classification that returns an output
vector of t elements that we need to compare to the t×1 dimensional target vector in the one-hot
encoding representation. If we predict the class label of an input image with class label 2, using this
MLP, the activation of the third layer and the target may look like this:

𝑎𝑎(𝑜𝑜𝑜𝑜𝑜𝑜) = [0.10.9⋮0.3] , 𝑦𝑦 = [01⋮0]

Thus, our MSE loss either has to sum or average over the t activation units in our network in addition
to averaging over the n examples in the dataset or mini-batch:

𝐿𝐿(𝑾𝑾𝑾 𝑾𝑾) = 1𝑛𝑛∑1𝑡𝑡∑(𝑦𝑦𝑗𝑗[𝑖𝑖] − 𝑎𝑎𝑗𝑗(𝑜𝑜𝑜𝑜𝑜𝑜)[𝑖𝑖])2𝑜𝑜
𝑗𝑗𝑗𝑗

𝑛𝑛
𝑗

Here, again, the superscript [i] is the index of a particular example in our training dataset.

Remember that our goal is to minimize the loss function L(W); thus, we need to calculate the partial
derivative of the parameters W with respect to each weight for every layer in the network:𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗𝑗(𝑗𝑗) = 𝐿𝐿(𝑾𝑾𝑗 𝑾𝑾)
In the next section, we will talk about the backpropagation algorithm, which allows us to calculate
those partial derivatives to minimize the loss function.

Note that W consists of multiple matrices. In an MLP with one hidden layer, we have the weight matrix,
W(h), which connects the input to the hidden layer, and W(out), which connects the hidden layer to the
output layer. A visualization of the three-dimensional tensor W is provided in Figure 11.10:

Figure 11.10: A visualization of a three-dimensional tensor

Implementing a Multilayer Artificial Neural Network from Scratch362

In this simplified figure, it may seem that both W(h) and W(out) have the same number of rows and col-
umns, which is typically not the case unless we initialize an MLP with the same number of hidden
units, output units, and input features.

If this sounds confusing, stay tuned for the next section, where we will discuss the dimensionality of
W(h) and W(out) in more detail in the context of the backpropagation algorithm. Also, you are encouraged
to read through the code of NeuralNetMLP again, which is annotated with helpful comments about the
dimensionality of the different matrices and vector transformations.

Developing your understanding of backpropagation
Although backpropagation was introduced to the neural network community more than 30 years ago
(Learning representations by backpropagating errors, by D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
Nature, 323: 6088, pages 533–536, 1986), it remains one of the most widely used algorithms for training
artificial NNs very efficiently. If you are interested in additional references regarding the history of
backpropagation, Juergen Schmidhuber wrote a nice survey article, Who Invented Backpropagation?,
which you can find online at http://people.idsia.ch/~juergen/who-invented-backpropagation.
html.

This section will provide both a short, clear summary and the bigger picture of how this fascinat-
ing algorithm works before we dive into more mathematical details. In essence, we can think of
backpropagation as a very computationally efficient approach to compute the partial derivatives of
a complex, non-convex loss function in multilayer NNs. Here, our goal is to use those derivatives to
learn the weight coefficients for parameterizing such a multilayer artificial NN. The challenge in the
parameterization of NNs is that we are typically dealing with a very large number of model param-
eters in a high-dimensional feature space. In contrast to loss functions of single-layer NNs such as
Adaline or logistic regression, which we have seen in previous chapters, the error surface of an NN
loss function is not convex or smooth with respect to the parameters. There are many bumps in this
high-dimensional loss surface (local minima) that we have to overcome in order to find the global
minimum of the loss function.

You may recall the concept of the chain rule from your introductory calculus classes. The chain rule
is an approach to compute the derivative of a complex, nested function, such as f(g(x)), as follows:𝑑𝑑𝑑𝑑𝑑𝑑 [𝑓𝑓(𝑔𝑔(𝑑𝑑))] = 𝑑𝑑𝑓𝑓𝑑𝑑𝑔𝑔 ⋅ 𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑

Similarly, we can use the chain rule for an arbitrarily long function composition. For example, let’s
assume that we have five different functions, f(x), g(x), h(x), u(x), and v(x), and let F be the function
composition: F(x) = f(g(h(u(v(x))))). Applying the chain rule, we can compute the derivative of this
function as follows: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑(𝑑𝑑) = 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓(𝑔𝑔(ℎ(𝑢𝑢(𝑣𝑣(𝑑𝑑))))) = 𝑑𝑑𝑓𝑓𝑑𝑑𝑔𝑔 ⋅ 𝑑𝑑𝑔𝑔𝑑𝑑ℎ ⋅ 𝑑𝑑ℎ𝑑𝑑𝑢𝑢 ⋅ 𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣 ⋅ 𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑

http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Chapter 11 363

In the context of computer algebra, a set of techniques, known as automatic differentiation, has
been developed to solve such problems very efficiently. If you are interested in learning more about
automatic differentiation in machine learning applications, read A.G. Baydin and B.A. Pearlmutter’s
article, Automatic Differentiation of Algorithms for Machine Learning, arXiv preprint arXiv:1404.7456,
2014, which is freely available on arXiv at http://arxiv.org/pdf/1404.7456.pdf.

Automatic differentiation comes with two modes, the forward and reverse modes; backpropagation
is simply a special case of reverse-mode automatic differentiation. The key point is that applying the
chain rule in forward mode could be quite expensive since we would have to multiply large matrices
for each layer (Jacobians) that we would eventually multiply by a vector to obtain the output.

The trick of reverse mode is that we traverse the chain rule from right to left. We multiply a matrix by
a vector, which yields another vector that is multiplied by the next matrix, and so on. Matrix-vector
multiplication is computationally much cheaper than matrix-matrix multiplication, which is why
backpropagation is one of the most popular algorithms used in NN training.

Training neural networks via backpropagation
In this section, we will go through the math of backpropagation to understand how you can learn the
weights in an NN very efficiently. Depending on how comfortable you are with mathematical repre-
sentations, the following equations may seem relatively complicated at first.

In a previous section, we saw how to calculate the loss as the difference between the activation of
the last layer and the target class label. Now, we will see how the backpropagation algorithm works
to update the weights in our MLP model from a mathematical perspective, which we implemented
in the .backward() method of the NeuralNetMLP() class. As we recall from the beginning of this
chapter, we first need to apply forward propagation to obtain the activation of the output layer, which
we formulated as follows:𝒁𝒁(ℎ) = 𝑿𝑿(𝑖𝑖𝑖𝑖)𝑾𝑾(ℎ)𝑇𝑇 + 𝒃𝒃(ℎ) (net input of the hidden layer)𝑨𝑨(ℎ) = 𝜎𝜎𝜎𝒁𝒁(ℎ)) (activation of the hidden layer)𝒁𝒁(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑨𝑨(ℎ)𝑾𝑾(𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇 + 𝒃𝒃(𝑜𝑜𝑜𝑜𝑜𝑜) (net input of the output layer)𝑨𝑨(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜎𝜎𝜎𝒁𝒁(𝑜𝑜𝑜𝑜𝑜𝑜)) (activation of the output layer)

A basic calculus refresher

To fully understand backpropagation, we need to borrow certain concepts from differential
calculus, which is outside the scope of this book. However, you can refer to a review chapter
of the most fundamental concepts, which you might find useful in this context. It discusses
function derivatives, partial derivatives, gradients, and the Jacobian. This text is freely
accessible at https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.
pdf. If you are unfamiliar with calculus or need a brief refresher, consider reading this
text as an additional supporting resource before reading the next section.

http://arxiv.org/pdf/1404.7456.pdf
https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.pdf
https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.pdf

Implementing a Multilayer Artificial Neural Network from Scratch364

Concisely, we just forward-propagate the input features through the connections in the network, as
shown by the arrows in Figure 11.11 for a network with two input features, three hidden nodes, and
two output nodes:

Figure 11.11: Forward-propagating the input features of an NN

In backpropagation, we propagate the error from right to left. We can think of this as an application
of the chain rule to the computation of the forward pass to compute the gradient of the loss with
respect to the model weights (and bias units). For simplicity, we will illustrate this process for the
partial derivative used to update the first weight in the weight matrix of the output layer. The paths of
the computation we backpropagate are highlighted via the bold arrows below:

Figure 11.12: Backpropagating the error of an NN

If we include the net inputs z explicitly, the partial derivative computation shown in the previous
figure expands as follows: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜)
To compute this partial derivative, which is used to update 𝑤𝑤1,1(𝑜𝑜𝑜𝑜𝑜𝑜) , we can compute the three individual
partial derivative terms and multiply the results. For simplicity, we will omit averaging over the indi-
vidual examples in the mini-batch, so we drop the 1𝑛𝑛 ∑𝑛𝑛𝑖𝑖𝑖1 averaging term from the following equations.

Chapter 11 365

Let’s start with 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) , which is the partial derivative of the MSE loss (which simplifies to the squared

error if we omit the mini-batch dimension) with respect to the predicted output score of the first
output node: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) (𝑦𝑦1 − 𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜))2 = 2(𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑦𝑦)
The next term is the derivative of the logistic sigmoid activation function that we used in the output layer:𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) 11 + 𝑒𝑒𝑧𝑧1(𝑜𝑜𝑜𝑜𝑜𝑜) = … = (11 + 𝑒𝑒𝑧𝑧1(𝑜𝑜𝑜𝑜𝑜𝑜)) (1 − 11 + 𝑒𝑒𝑧𝑧1(𝑜𝑜𝑜𝑜𝑜𝑜))

 = 𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)(1 − 𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜))

Lastly, we compute the derivative of the net input with respect to the weight:𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜕𝜕𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) 𝑎𝑎1(ℎ)𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑏𝑏1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑎𝑎1(ℎ)
Putting all of it together, we get the following:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) = 2(𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑦𝑦𝑦 ⋅ 𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)(1 − 𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝑦 ⋅ 𝜕𝜕1(ℎ)
We then use this value to update the weight via the familiar stochastic gradient descent update with
a learning rate of 𝜂𝜂 : 𝑤𝑤1,1(𝑜𝑜𝑜𝑜𝑜𝑜) ≔ 𝑤𝑤1,1(𝑜𝑜𝑜𝑜𝑜𝑜) − 𝜂𝜂 𝜕𝜕𝜕𝜕𝜕𝜕𝑤𝑤1,1(𝑜𝑜𝑜𝑜𝑜𝑜)
In our code implementation of NeuralNetMLP(), we implemented the computation 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) in vectorized

form in the .backward() method as follows:

 # Part 1: dLoss/dOutWeights
 ## = dLoss/dOutAct * dOutAct/dOutNet * dOutNet/dOutWeight
 ## where DeltaOut = dLoss/dOutAct * dOutAct/dOutNet for convenient re-use

 # input/output dim: [n_examples, n_classes]
 d_loss__d_a_out = 2.*(a_out - y_onehot) / y.shape[0]

 # input/output dim: [n_examples, n_classes]
 d_a_out__d_z_out = a_out * (1. - a_out) # sigmoid derivative

 # output dim: [n_examples, n_classes]
 delta_out = d_loss__d_a_out * d_a_out__d_z_out # "delta (rule)
 # placeholder"

 # gradient for output weights

 # [n_examples, n_hidden]

Implementing a Multilayer Artificial Neural Network from Scratch366

 d_z_out__dw_out = a_h

 # input dim: [n_classes, n_examples] dot [n_examples, n_hidden]
 # output dim: [n_classes, n_hidden]
 d_loss__dw_out = np.dot(delta_out.T, d_z_out__dw_out)
 d_loss__db_out = np.sum(delta_out, axis=0)

As annotated in the code snippet above, we created the following “delta” placeholder variable:

𝛿𝛿1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)
This is because 𝛿𝛿(𝑜𝑜𝑜𝑜𝑜𝑜) terms are involved in computing the partial derivatives (or gradients) of the
hidden layer weights as well; hence, we can reuse 𝛿𝛿(𝑜𝑜𝑜𝑜𝑜𝑜) .
Speaking of hidden layer weights, Figure 11.13 illustrates how to compute the partial derivative of the
loss with respect to the first weight of the hidden layer:

Figure 11.13: Computing the partial derivatives of the loss with respect to the first hidden layer weight

It is important to highlight that since the weight 𝑤𝑤1,1(ℎ) is connected to both output nodes, we have to
use the multi-variable chain rule to sum the two paths highlighted with bold arrows. As before, we can
expand it to include the net inputs z and then solve the individual terms:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1,1(ℎ)

 + 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕2(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕2(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕2(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1,1(ℎ)

Notice that if we reuse 𝛿𝛿(𝑜𝑜𝑜𝑜𝑜𝑜) computed previously, this equation can be simplified as follows:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1,1(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝛿𝛿1(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕1(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1,1(ℎ)
 + 𝛿𝛿2(𝑜𝑜𝑜𝑜𝑜𝑜) ⋅ 𝜕𝜕𝜕𝜕2(𝑜𝑜𝑜𝑜𝑜𝑜)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1(ℎ) ⋅ 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1,1(ℎ)

Chapter 11 367

The preceding terms can be individually solved relatively easily, as we have done previously, because

there are no new derivatives involved. For example, 𝜕𝜕𝜕𝜕1(ℎ)𝜕𝜕𝜕𝜕1(ℎ) is the derivative of the sigmoid activation, that

is, 𝑎𝑎1(ℎ)(1 − 𝑎𝑎1(ℎ)) , and so forth. We’ll leave solving the individual parts as an optional exercise for you.

About convergence in neural networks
You might be wondering why we did not use regular gradient descent but instead used mini-batch
learning to train our NN for the handwritten digit classification earlier. You may recall our discussion
on SGD that we used to implement online learning. In online learning, we compute the gradient based
on a single training example (k = 1) at a time to perform the weight update. Although this is a stochastic
approach, it often leads to very accurate solutions with a much faster convergence than regular gra-
dient descent. Mini-batch learning is a special form of SGD where we compute the gradient based on
a subset k of the n training examples with 1 < k < n. Mini-batch learning has an advantage over online
learning in that we can make use of our vectorized implementations to improve computational effi-
ciency. However, we can update the weights much faster than in regular gradient descent. Intuitively,
you can think of mini-batch learning as predicting the voter turnout of a presidential election from a
poll by asking only a representative subset of the population rather than asking the entire population
(which would be equal to running the actual election).

Multilayer NNs are much harder to train than simpler algorithms such as Adaline, logistic regres-
sion, or support vector machines. In multilayer NNs, we typically have hundreds, thousands, or even
billions of weights that we need to optimize. Unfortunately, the output function has a rough surface,
and the optimization algorithm can easily become trapped in local minima, as shown in Figure 11.14:

Figure 11.14: Optimization algorithms can become trapped in local minima

Note that this representation is extremely simplified since our NN has many dimensions; it makes it
impossible to visualize the actual loss surface for the human eye. Here, we only show the loss surface
for a single weight on the x axis. However, the main message is that we do not want our algorithm to
get trapped in local minima. By increasing the learning rate, we can more readily escape such local
minima. On the other hand, we also increase the chance of overshooting the global optimum if the
learning rate is too large. Since we initialize the weights randomly, we start with a solution to the
optimization problem that is typically hopelessly wrong.

Implementing a Multilayer Artificial Neural Network from Scratch368

A few last words about the neural network
implementation
You may be wondering why we went through all of this theory just to implement a simple multilayer
artificial network that can classify handwritten digits instead of using an open source Python machine
learning library. In fact, we will introduce more complex NN models in the next chapters, which we
will train using the open source PyTorch library (https://pytorch.org).

Although the from-scratch implementation in this chapter seems a bit tedious at first, it was a good
exercise for understanding the basics behind backpropagation and NN training. A basic understand-
ing of algorithms is crucial for applying machine learning techniques appropriately and successfully.

Now that you have learned how feedforward NNs work, we are ready to explore more sophisticated
DNNs using PyTorch, which allows us to construct NNs more efficiently, as we will see in Chapter 12,
Parallelizing Neural Network Training with PyTorch.

PyTorch, which was originally released in September 2016, has gained a lot of popularity among ma-
chine learning researchers, who use it to construct DNNs because of its ability to optimize mathematical
expressions for computations on multidimensional arrays utilizing graphics processing units (GPUs).

Lastly, we should note that scikit-learn also includes a basic MLP implementation, MLPClassifier,
which you can find at https://scikit-learn.org/stable/modules/generated/sklearn.neural_
network.MLPClassifier.html. While this implementation is great and very convenient for training
basic MLPs, we strongly recommend specialized deep learning libraries, such as PyTorch, for imple-
menting and training multilayer NNs.

Summary
In this chapter, you have learned the basic concepts behind multilayer artificial NNs, which are cur-
rently the hottest topic in machine learning research. In Chapter 2, Training Simple Machine Learning
Algorithms for Classification, we started our journey with simple single-layer NN structures and now
we have connected multiple neurons to a powerful NN architecture to solve complex problems such
as handwritten digit recognition. We demystified the popular backpropagation algorithm, which is
one of the building blocks of many NN models that are used in deep learning. After learning about the
backpropagation algorithm in this chapter, we are well equipped for exploring more complex DNN
architectures. In the remaining chapters, we will cover more advanced deep learning concepts and
PyTorch, an open source library that allows us to implement and train multilayer NNs more efficiently.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://pytorch.org
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://packt.link/MLwPyTorch

12
Parallelizing Neural Network
Training with PyTorch

In this chapter, we will move on from the mathematical foundations of machine learning and deep
learning to focus on PyTorch. PyTorch is one of the most popular deep learning libraries currently
available, and it lets us implement neural networks (NNs) much more efficiently than any of our
previous NumPy implementations. In this chapter, we will start using PyTorch and see how it brings
significant benefits to training performance.

This chapter will begin the next stage of our journey into machine learning and deep learning, and
we will explore the following topics:

• How PyTorch improves training performance
• Working with PyTorch’s Dataset and DataLoader to build input pipelines and enable efficient

model training
• Working with PyTorch to write optimized machine learning code
• Using the torch.nn module to implement common deep learning architectures conveniently
• Choosing activation functions for artificial NNs

PyTorch and training performance
PyTorch can speed up our machine learning tasks significantly. To understand how it can do this,
let’s begin by discussing some of the performance challenges we typically run into when we execute
expensive calculations on our hardware. Then, we will take a high-level look at what PyTorch is and
what our learning approach will be in this chapter.

Performance challenges
The performance of computer processors has, of course, been continuously improving in recent
years. That allows us to train more powerful and complex learning systems, which means that we
can improve the predictive performance of our machine learning models. Even the cheapest desktop
computer hardware that’s available right now comes with processing units that have multiple cores.

Parallelizing Neural Network Training with PyTorch370

In the previous chapters, we saw that many functions in scikit-learn allow us to spread those com-
putations over multiple processing units. However, by default, Python is limited to execution on one
core due to the global interpreter lock (GIL). So, although we indeed take advantage of Python’s mul-
tiprocessing library to distribute our computations over multiple cores, we still have to consider that
the most advanced desktop hardware rarely comes with more than 8 or 16 such cores.

You will recall from Chapter 11, Implementing a Multilayer Artificial Neural Network from Scratch, that
we implemented a very simple multilayer perceptron (MLP) with only one hidden layer consisting of
100 units. We had to optimize approximately 80,000 weight parameters ([784*100 + 100] + [100 * 10] +
10 = 79,510) for a very simple image classification task. The images in MNIST are rather small (28×28),
and we can only imagine the explosion in the number of parameters if we wanted to add additional
hidden layers or work with images that have higher pixel densities. Such a task would quickly become
unfeasible for a single processing unit. The question then becomes, how can we tackle such problems
more effectively?

The obvious solution to this problem is to use graphics processing units (GPUs), which are real work-
horses. You can think of a graphics card as a small computer cluster inside your machine. Another
advantage is that modern GPUs are great value compared to the state-of-the-art central processing
units (CPUs), as you can see in the following overview:

Figure 12.1: Comparison of a state-of-the-art CPU and GPU

The sources for the information in Figure 12.1 are the following websites (date accessed: July 2021):

• https://ark.intel.com/content/www/us/en/ark/products/215570/intel-core-i9-
11900kb-processor-24m-cache-up-to-4-90-ghz.html

• https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/

At 2.2 times the price of a modern CPU, we can get a GPU that has 640 times more cores and is capa-
ble of around 46 times more floating-point calculations per second. So, what is holding us back from
utilizing GPUs for our machine learning tasks? The challenge is that writing code to target GPUs is
not as simple as executing Python code in our interpreter. There are special packages, such as CUDA
and OpenCL, that allow us to target the GPU. However, writing code in CUDA or OpenCL is probably
not the most convenient way to implement and run machine learning algorithms. The good news is
that this is what PyTorch was developed for!

https://ark.intel.com/content/www/us/en/ark/products/215570/intel-core-i9-11900kb-processor-24m-cache-up-to-4-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/215570/intel-core-i9-11900kb-processor-24m-cache-up-to-4-90-ghz.html
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/

Chapter 12 371

What is PyTorch?
PyTorch is a scalable and multiplatform programming interface for implementing and running ma-
chine learning algorithms, including convenience wrappers for deep learning. PyTorch was primarily
developed by the researchers and engineers from the Facebook AI Research (FAIR) lab. Its development
also involves many contributions from the community. PyTorch was initially released in September
2016 and is free and open source under the modified BSD license. Many machine learning research-
ers and practitioners from academia and industry have adapted PyTorch to develop deep learning
solutions, such as Tesla Autopilot, Uber’s Pyro, and Hugging Face’s Transformers (https://pytorch.
org/ecosystem/).

To improve the performance of training machine learning models, PyTorch allows execution on CPUs,
GPUs, and XLA devices such as TPUs. However, its greatest performance capabilities can be discov-
ered when using GPUs and XLA devices. PyTorch supports CUDA-enabled and ROCm GPUs officially.
PyTorch’s development is based on the Torch library (www.torch.ch). As its name implies, the Python
interface is the primary development focus of PyTorch.

PyTorch is built around a computation graph composed of a set of nodes. Each node represents an
operation that may have zero or more inputs or outputs. PyTorch provides an imperative program-
ming environment that evaluates operations, executes computation, and returns concrete values
immediately. Hence, the computation graph in PyTorch is defined implicitly, rather than constructed
in advance and executed after.

Mathematically, tensors can be understood as a generalization of scalars, vectors, matrices, and so
on. More concretely, a scalar can be defined as a rank-0 tensor, a vector can be defined as a rank-1
tensor, a matrix can be defined as a rank-2 tensor, and matrices stacked in a third dimension can be
defined as rank-3 tensors. Tensors in PyTorch are similar to NumPy’s arrays, except that tensors are
optimized for automatic differentiation and can run on GPUs.

To make the concept of a tensor clearer, consider Figure 12.2, which represents tensors of ranks 0 and
1 in the first row, and tensors of ranks 2 and 3 in the second row:

Figure 12.2: Different types of tensor in PyTorch

Now that we know what PyTorch is, let’s see how to use it.

https://pytorch.org/ecosystem/
https://pytorch.org/ecosystem/
www.torch.ch

Parallelizing Neural Network Training with PyTorch372

How we will learn PyTorch
First, we are going to cover PyTorch’s programming model, in particular, creating and manipulating
tensors. Then, we will see how to load data and utilize the torch.utils.data module, which will
allow us to iterate through a dataset efficiently. In addition, we will discuss the existing, ready-to-use
datasets in the torch.utils.data.Dataset submodule and learn how to use them.

After learning about these basics, the PyTorch neural network torch.nn module will be introduced.
Then, we will move forward to building machine learning models, learn how to compose and train
the models, and learn how to save the trained models on disk for future evaluation.

First steps with PyTorch
In this section, we will take our first steps in using the low-level PyTorch API. After installing PyTorch,
we will cover how to create tensors in PyTorch and different ways of manipulating them, such as
changing their shape, data type, and so on.

Installing PyTorch
To install PyTorch, we recommend consulting the latest instructions on the official https://pytorch.org
website. Below, we will outline the basic steps that will work on most systems.

Depending on how your system is set up, you can typically just use Python’s pip installer and install
PyTorch from PyPI by executing the following from your terminal:

pip install torch torchvision

This will install the latest stable version, which is 1.9.0 at the time of writing. To install the 1.9.0 ver-
sion, which is guaranteed to be compatible with the following code examples, you can modify the
preceding command as follows:

pip install torch==1.9.0 torchvision==0.10.0

If you want to use GPUs (recommended), you need a compatible NVIDIA graphics card that supports
CUDA and cuDNN. If your machine satisfies these requirements, you can install PyTorch with GPU
support, as follows:

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.
pytorch.org/whl/torch_stable.html

for CUDA 11.1 or:

pip install torch==1.9.0 torchvision==0.10.0\ -f https://download.pytorch.org/
whl/torch_stable.html

for CUDA 10.2 as of the time of writing.

As macOS binaries don’t support CUDA, you can install from source: https://pytorch.org/get-
started/locally/#mac-from-source.

For more information about the installation and setup process, please see the official recommenda-
tions at https://pytorch.org/get-started/locally/.

https://pytorch.org
https://pytorch.org/get-started/locally/#mac-from-source
https://pytorch.org/get-started/locally/#mac-from-source
https://pytorch.org/get-started/locally/

Chapter 12 373

Note that PyTorch is under active development; therefore, every couple of months, new versions are
released with significant changes. You can verify your PyTorch version from your terminal, as follows:

python -c 'import torch; print(torch.__version__)'

Creating tensors in PyTorch
Now, let’s consider a few different ways of creating tensors, and then see some of their properties and
how to manipulate them. Firstly, we can simply create a tensor from a list or a NumPy array using the
torch.tensor or the torch.from_numpy function as follows:

>>> import torch
>>> import numpy as np
>>> np.set_printoptions(precision=3)
>>> a = [1, 2, 3]
>>> b = np.array([4, 5, 6], dtype=np.int32)
>>> t_a = torch.tensor(a)
>>> t_b = torch.from_numpy(b)
>>> print(t_a)
>>> print(t_b)
tensor([1, 2, 3])
tensor([4, 5, 6], dtype=torch.int32)

This resulted in tensors t_a and t_b, with their properties, shape=(3,) and dtype=int32, adopted
from their source. Similar to NumPy arrays, we can also see these properties:

>>> t_ones = torch.ones(2, 3)
>>> t_ones.shape
torch.Size([2, 3])
>>> print(t_ones)

Troubleshooting your installation of PyTorch

If you experience problems with the installation procedure, read more about system-
and platform-specific recommendations that are provided at https://pytorch.org/
get-started/locally/. Note that all the code in this chapter can be run on your CPU;
using a GPU is entirely optional but recommended if you want to fully enjoy the benefits
of PyTorch. For example, while training some NN models on a CPU could take a week,
the same models could be trained in just a few hours on a modern GPU. If you have a
graphics card, refer to the installation page to set it up appropriately. In addition, you
may find this setup guide helpful, which explains how to install the NVIDIA graphics card
drivers, CUDA, and cuDNN on Ubuntu (not required but recommended requirements
for running PyTorch on a GPU): https://sebastianraschka.com/pdf/books/dlb/
appendix_h_cloud-computing.pdf. Furthermore, as you will see in Chapter 17, Gener-
ative Adversarial Networks for Synthesizing New Data, you can also train your models using
a GPU for free via Google Colab.

https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://sebastianraschka.com/pdf/books/dlb/appendix_h_cloud-computing.pdf
https://sebastianraschka.com/pdf/books/dlb/appendix_h_cloud-computing.pdf

Parallelizing Neural Network Training with PyTorch374

tensor([[1., 1., 1.],
 [1., 1., 1.]])

Finally, creating a tensor of random values can be done as follows:

>>> rand_tensor = torch.rand(2,3)
>>> print(rand_tensor)
tensor([[0.1409, 0.2848, 0.8914],
 [0.9223, 0.2924, 0.7889]])

Manipulating the data type and shape of a tensor
Learning ways to manipulate tensors is necessary to make them compatible for input to a model or an
operation. In this section, you will learn how to manipulate tensor data types and shapes via several
PyTorch functions that cast, reshape, transpose, and squeeze (remove dimensions).

The torch.to() function can be used to change the data type of a tensor to a desired type:

>>> t_a_new = t_a.to(torch.int64)
>>> print(t_a_new.dtype)
torch.int64

See https://pytorch.org/docs/stable/tensor_attributes.html for all other data types.

As you will see in upcoming chapters, certain operations require that the input tensors have a certain
number of dimensions (that is, rank) associated with a certain number of elements (shape). Thus, we
might need to change the shape of a tensor, add a new dimension, or squeeze an unnecessary dimen-
sion. PyTorch provides useful functions (or operations) to achieve this, such as torch.transpose(),
torch.reshape(), and torch.squeeze(). Let’s take a look at some examples:

• Transposing a tensor:

>>> t = torch.rand(3, 5)
>>> t_tr = torch.transpose(t, 0, 1)
>>> print(t.shape, ' --> ', t_tr.shape)
torch.Size([3, 5]) --> torch.Size([5, 3])

• Reshaping a tensor (for example, from a 1D vector to a 2D array):

>>> t = torch.zeros(30)
>>> t_reshape = t.reshape(5, 6)
>>> print(t_reshape.shape)
torch.Size([5, 6])

• Removing the unnecessary dimensions (dimensions that have size 1, which are not needed):

>>> t = torch.zeros(1, 2, 1, 4, 1)
>>> t_sqz = torch.squeeze(t, 2)
>>> print(t.shape, ' --> ', t_sqz.shape)
torch.Size([1, 2, 1, 4, 1]) --> torch.Size([1, 2, 4, 1])

https://pytorch.org/docs/stable/tensor_attributes.html

Chapter 12 375

Applying mathematical operations to tensors
Applying mathematical operations, in particular linear algebra operations, is necessary for building
most machine learning models. In this subsection, we will cover some widely used linear algebra
operations, such as element-wise product, matrix multiplication, and computing the norm of a
tensor.

First, let’s instantiate two random tensors, one with uniform distribution in the range [–1, 1) and the
other with a standard normal distribution:

>>> torch.manual_seed(1)

>>> t1 = 2 * torch.rand(5, 2) - 1

>>> t2 = torch.normal(mean=0, std=1, size=(5, 2))

Note that torch.rand returns a tensor filled with random numbers from a uniform distribution in
the range of [0, 1).

Notice that t1 and t2 have the same shape. Now, to compute the element-wise product of t1 and t2,
we can use the following:

>>> t3 = torch.multiply(t1, t2)

>>> print(t3)

tensor([[0.4426, -0.3114],

 [0.0660, -0.5970],

 [1.1249, 0.0150],

 [0.1569, 0.7107],

 [-0.0451, -0.0352]])

To compute the mean, sum, and standard deviation along a certain axis (or axes), we can use torch.
mean(), torch.sum(), and torch.std(). For example, the mean of each column in t1 can be com-
puted as follows:

>>> t4 = torch.mean(t1, axis=0)

>>> print(t4)

tensor([-0.1373, 0.2028])

The matrix-matrix product between t1 and t2 (that is, 𝑡𝑡1 × 𝑡𝑡2T , where the superscript T is for transpose)
can be computed by using the torch.matmul() function as follows:

>>> t5 = torch.matmul(t1, torch.transpose(t2, 0, 1))

>>> print(t5)

tensor([[0.1312, 0.3860, -0.6267, -1.0096, -0.2943],

 [0.1647, -0.5310, 0.2434, 0.8035, 0.1980],

 [-0.3855, -0.4422, 1.1399, 1.5558, 0.4781],

 [0.1822, -0.5771, 0.2585, 0.8676, 0.2132],

 [0.0330, 0.1084, -0.1692, -0.2771, -0.0804]])

Parallelizing Neural Network Training with PyTorch376

On the other hand, computing 𝑡𝑡1𝑇𝑇 × 𝑡𝑡2 is performed by transposing t1, resulting in an array of size 2×2:

>>> t6 = torch.matmul(torch.transpose(t1, 0, 1), t2)
>>> print(t6)
tensor([[1.7453, 0.3392],
 [-1.6038, -0.2180]])

Finally, the torch.linalg.norm() function is useful for computing the Lp norm of a tensor. For ex-
ample, we can calculate the L2 norm of t1 as follows:

>>> norm_t1 = torch.linalg.norm(t1, ord=2, dim=1)
>>> print(norm_t1)
tensor([0.6785, 0.5078, 1.1162, 0.5488, 0.1853])

To verify that this code snippet computes the L2 norm of t1 correctly, you can compare the results with
the following NumPy function: np.sqrt(np.sum(np.square(t1.numpy()), axis=1)).

Split, stack, and concatenate tensors
In this subsection, we will cover PyTorch operations for splitting a tensor into multiple tensors, or
the reverse: stacking and concatenating multiple tensors into a single one.

Assume that we have a single tensor, and we want to split it into two or more tensors. For this, PyTorch
provides a convenient torch.chunk() function, which divides an input tensor into a list of equally
sized tensors. We can determine the desired number of splits as an integer using the chunks argument
to split a tensor along the desired dimension specified by the dim argument. In this case, the total size
of the input tensor along the specified dimension must be divisible by the desired number of splits.
Alternatively, we can provide the desired sizes in a list using the torch.split() function. Let’s have
a look at an example of both these options:

• Providing the number of splits:

>>> torch.manual_seed(1)
>>> t = torch.rand(6)
>>> print(t)
tensor([0.7576, 0.2793, 0.4031, 0.7347, 0.0293, 0.7999])
>>> t_splits = torch.chunk(t, 3)
>>> [item.numpy() for item in t_splits]
[array([0.758, 0.279], dtype=float32),
 array([0.403, 0.735], dtype=float32),
 array([0.029, 0.8], dtype=float32)]

In this example, a tensor of size 6 was divided into a list of three tensors each with size 2. If the
tensor size is not divisible by the chunks value, the last chunk will be smaller.

Chapter 12 377

• Providing the sizes of different splits:

Alternatively, instead of defining the number of splits, we can also specify the sizes of the
output tensors directly. Here, we are splitting a tensor of size 5 into tensors of sizes 3 and 2:

>>> torch.manual_seed(1)

>>> t = torch.rand(5)

>>> print(t)

tensor([0.7576, 0.2793, 0.4031, 0.7347, 0.0293])

>>> t_splits = torch.split(t, split_size_or_sections=[3, 2])

>>> [item.numpy() for item in t_splits]

[array([0.758, 0.279, 0.403], dtype=float32),

 array([0.735, 0.029], dtype=float32)]

Sometimes, we are working with multiple tensors and need to concatenate or stack them to create a
single tensor. In this case, PyTorch functions such as torch.stack() and torch.cat() come in handy.
For example, let’s create a 1D tensor, A, containing 1s with size 3, and a 1D tensor, B, containing 0s
with size 2, and concatenate them into a 1D tensor, C, of size 5:

>>> A = torch.ones(3)

>>> B = torch.zeros(2)

>>> C = torch.cat([A, B], axis=0)

>>> print(C)

tensor([1., 1., 1., 0., 0.])

If we create 1D tensors A and B, both with size 3, then we can stack them together to form a 2D
tensor, S:

>>> A = torch.ones(3)

>>> B = torch.zeros(3)

>>> S = torch.stack([A, B], axis=1)

>>> print(S)

tensor([[1., 0.],

 [1., 0.],

 [1., 0.]])

The PyTorch API has many operations that you can use for building a model, processing your data, and
more. However, covering every function is outside the scope of this book, where we will focus on the
most essential ones. For the full list of operations and functions, you can refer to the documentation
page of PyTorch at https://pytorch.org/docs/stable/index.html.

https://pytorch.org/docs/stable/index.html

Parallelizing Neural Network Training with PyTorch378

Building input pipelines in PyTorch
When we are training a deep NN model, we usually train the model incrementally using an iterative
optimization algorithm such as stochastic gradient descent, as we have seen in previous chapters.

As mentioned at the beginning of this chapter, torch.nn is a module for building NN models. In cas-
es where the training dataset is rather small and can be loaded as a tensor into the memory, we can
directly use this tensor for training. In typical use cases, however, when the dataset is too large to fit
into the computer memory, we will need to load the data from the main storage device (for example,
the hard drive or solid-state drive) in chunks, that is, batch by batch. (Note the use of the term “batch”
instead of “mini-batch” in this chapter to stay close to the PyTorch terminology.) In addition, we may
need to construct a data-processing pipeline to apply certain transformations and preprocessing steps
to our data, such as mean centering, scaling, or adding noise to augment the training procedure and
to prevent overfitting.

Applying preprocessing functions manually every time can be quite cumbersome. Luckily, PyTorch
provides a special class for constructing efficient and convenient preprocessing pipelines. In this sec-
tion, we will see an overview of different methods for constructing a PyTorch Dataset and DataLoader,
and implementing data loading, shuffling, and batching.

Creating a PyTorch DataLoader from existing tensors
If the data already exists in the form of a tensor object, a Python list, or a NumPy array, we can easily
create a dataset loader using the torch.utils.data.DataLoader() class. It returns an object of the
DataLoader class, which we can use to iterate through the individual elements in the input dataset. As
a simple example, consider the following code, which creates a dataset from a list of values from 0 to 5:

>>> from torch.utils.data import DataLoader
>>> t = torch.arange(6, dtype=torch.float32)
>>> data_loader = DataLoader(t)

We can easily iterate through a dataset entry by entry as follows:

>>> for item in data_loader:
... print(item)
tensor([0.])
tensor([1.])
tensor([2.])
tensor([3.])
tensor([4.])
tensor([5.])

Chapter 12 379

If we want to create batches from this dataset, with a desired batch size of 3, we can do this with the
batch_size argument as follows:

>>> data_loader = DataLoader(t, batch_size=3, drop_last=False)
>>> for i, batch in enumerate(data_loader, 1):
... print(f'batch {i}:', batch)
batch 1: tensor([0., 1., 2.])
batch 2: tensor([3., 4., 5.])

This will create two batches from this dataset, where the first three elements go into batch #1, and
the remaining elements go into batch #2. The optional drop_last argument is useful for cases when
the number of elements in the tensor is not divisible by the desired batch size. We can drop the last
non-full batch by setting drop_last to True. The default value for drop_last is False.

We can always iterate through a dataset directly, but as you just saw, DataLoader provides an automatic
and customizable batching to a dataset.

Combining two tensors into a joint dataset
Often, we may have the data in two (or possibly more) tensors. For example, we could have a tensor
for features and a tensor for labels. In such cases, we need to build a dataset that combines these
tensors, which will allow us to retrieve the elements of these tensors in tuples.

Assume that we have two tensors, t_x and t_y. Tensor t_x holds our feature values, each of size 3, and
t_y stores the class labels. For this example, we first create these two tensors as follows:

>>> torch.manual_seed(1)
>>> t_x = torch.rand([4, 3], dtype=torch.float32)
>>> t_y = torch.arange(4)

Now, we want to create a joint dataset from these two tensors. We first need to create a Dataset class
as follows:

>>> from torch.utils.data import Dataset
>>> class JointDataset(Dataset):
... def __init__(self, x, y):
... self.x = x
... self.y = y
...
... def __len__(self):
... return len(self.x)
...

Parallelizing Neural Network Training with PyTorch380

... def __getitem__(self, idx):

... return self.x[idx], self.y[idx]

A custom Dataset class must contain the following methods to be used by the data loader later on:

• __init__(): This is where the initial logic happens, such as reading existing arrays, loading a
file, filtering data, and so forth.

• __getitem__(): This returns the corresponding sample to the given index.

Then we create a joint dataset of t_x and t_y with the custom Dataset class as follows:

>>> joint_dataset = JointDataset(t_x, t_y)

Finally, we can print each example of the joint dataset as follows:

>>> for example in joint_dataset:
... print(' x: ', example[0], ' y: ', example[1])
 x: tensor([0.7576, 0.2793, 0.4031]) y: tensor(0)
 x: tensor([0.7347, 0.0293, 0.7999]) y: tensor(1)
 x: tensor([0.3971, 0.7544, 0.5695]) y: tensor(2)
 x: tensor([0.4388, 0.6387, 0.5247]) y: tensor(3)

We can also simply utilize the torch.utils.data.TensorDataset class, if the second dataset is a labeled
dataset in the form of tensors. So, instead of using our self-defined Dataset class, JointDataset, we
can create a joint dataset as follows:

>>> joint_dataset = JointDataset(t_x, t_y)

Note that a common source of error could be that the element-wise correspondence between the orig-
inal features (x) and labels (y) might be lost (for example, if the two datasets are shuffled separately).
However, once they are merged into one dataset, it is safe to apply these operations.

If we have a dataset created from the list of image filenames on disk, we can define a function to load
the images from these filenames. You will see an example of applying multiple transformations to a
dataset later in this chapter.

Shuffle, batch, and repeat
As was mentioned in Chapter 2, Training Simple Machine Learning Algorithms for Classification, when
training an NN model using stochastic gradient descent optimization, it is important to feed training
data as randomly shuffled batches. You have already seen how to specify the batch size using the
batch_size argument of a data loader object. Now, in addition to creating batches, you will see how
to shuffle and reiterate over the datasets. We will continue working with the previous joint dataset.

Chapter 12 381

First, let’s create a shuffled version data loader from the joint_dataset dataset:

>>> torch.manual_seed(1)
>>> data_loader = DataLoader(dataset=joint_dataset, batch_size=2, shuffle=True)

Here, each batch contains two data records (x) and the corresponding labels (y). Now we iterate through
the data loader entry by entry as follows:

>>> for i, batch in enumerate(data_loader, 1):
... print(f'batch {i}:', 'x:', batch[0],
 '\n y:', batch[1])
batch 1: x: tensor([[0.4388, 0.6387, 0.5247],
 [0.3971, 0.7544, 0.5695]])
 y: tensor([3, 2])
batch 2: x: tensor([[0.7576, 0.2793, 0.4031],
 [0.7347, 0.0293, 0.7999]])
 y: tensor([0, 1])

The rows are shuffled without losing the one-to-one correspondence between the entries in x and y.

In addition, when training a model for multiple epochs, we need to shuffle and iterate over the dataset
by the desired number of epochs. So, let’s iterate over the batched dataset twice:

>>> for epoch in range(2):
>>> print(f'epoch {epoch+1}')
>>> for i, batch in enumerate(data_loader, 1):
... print(f'batch {i}:', 'x:', batch[0],
 '\n y:', batch[1])
epoch 1
batch 1: x: tensor([[0.7347, 0.0293, 0.7999],
 [0.3971, 0.7544, 0.5695]])
 y: tensor([1, 2])
batch 2: x: tensor([[0.4388, 0.6387, 0.5247],
 [0.7576, 0.2793, 0.4031]])
 y: tensor([3, 0])
epoch 2
batch 1: x: tensor([[0.3971, 0.7544, 0.5695],
 [0.7576, 0.2793, 0.4031]])
 y: tensor([2, 0])
batch 2: x: tensor([[0.7347, 0.0293, 0.7999],
 [0.4388, 0.6387, 0.5247]])
 y: tensor([1, 3])

Parallelizing Neural Network Training with PyTorch382

This results in two different sets of batches. In the first epoch, the first batch contains a pair of values
[y=1, y=2], and the second batch contains a pair of values [y=3, y=0]. In the second epoch, two
batches contain a pair of values, [y=2, y=0] and [y=1, y=3] respectively. For each iteration, the
elements within a batch are also shuffled.

Creating a dataset from files on your local storage disk
In this section, we will build a dataset from image files stored on disk. There is an image folder asso-
ciated with the online content of this chapter. After downloading the folder, you should be able to see
six images of cats and dogs in JPEG format.

This small dataset will show how building a dataset from stored files generally works. To accomplish
this, we are going to use two additional modules: Image in PIL to read the image file contents and
transforms in torchvision to decode the raw contents and resize the images.

Before we start, let’s take a look at the content of these files. We will use the pathlib library to gen-
erate a list of image files:

>>> import pathlib
>>> imgdir_path = pathlib.Path('cat_dog_images')
>>> file_list = sorted([str(path) for path in
... imgdir_path.glob('*.jpg')])
>>> print(file_list)
['cat_dog_images/dog-03.jpg', 'cat_dog_images/cat-01.jpg', 'cat_dog_images/cat-
02.jpg', 'cat_dog_images/cat-03.jpg', 'cat_dog_images/dog-01.jpg', 'cat_dog_
images/dog-02.jpg']

Next, we will visualize these image examples using Matplotlib:

>>> import matplotlib.pyplot as plt
>>> import os
>>> from PIL import Image
>>> fig = plt.figure(figsize=(10, 5))
>>> for i, file in enumerate(file_list):
... img = Image.open(file)
... print('Image shape:', np.array(img).shape)
... ax = fig.add_subplot(2, 3, i+1)
... ax.set_xticks([]); ax.set_yticks([])

The PIL.Image and torchvision.transforms modules provide a lot of additional and
useful functions, which are beyond the scope of the book. You are encouraged to browse
through the official documentation to learn more about these functions:

https://pillow.readthedocs.io/en/stable/reference/Image.html for PIL.Image

https://pytorch.org/vision/stable/transforms.html for torchvision.
transforms

https://pillow.readthedocs.io/en/stable/reference/Image.html
https://pytorch.org/vision/stable/transforms.html

Chapter 12 383

... ax.imshow(img)

... ax.set_title(os.path.basename(file), size=15)
>>> plt.tight_layout()
>>> plt.show()
Image shape: (900, 1200, 3)
Image shape: (900, 1200, 3)
Image shape: (900, 1200, 3)
Image shape: (900, 742, 3)
Image shape: (800, 1200, 3)
Image shape: (800, 1200, 3)

Figure 12.3 shows the example images:

Figure 12.3: Images of cats and dogs

Just from this visualization and the printed image shapes, we can already see that the images have
different aspect ratios. If you print the aspect ratios (or data array shapes) of these images, you will see
that some images are 900 pixels high and 1200 pixels wide (900×1200), some are 800×1200, and one is
900×742. Later, we will preprocess these images to a consistent size. Another point to consider is that
the labels for these images are provided within their filenames. So, we extract these labels from the
list of filenames, assigning label 1 to dogs and label 0 to cats:

>>> labels = [1 if 'dog' in
... os.path.basename(file) else 0
... for file in file_list]
>>> print(labels)
[0, 0, 0, 1, 1, 1]

Now, we have two lists: a list of filenames (or paths of each image) and a list of their labels. In the pre-
vious section, you learned how to create a joint dataset from two arrays. Here, we will do the following:

>>> class ImageDataset(Dataset):
... def __init__(self, file_list, labels):
... self.file_list = file_list

Parallelizing Neural Network Training with PyTorch384

... self.labels = labels

...

... def __getitem__(self, index):

... file = self.file_list[index]

... label = self.labels[index]

... return file, label

...

... def __len__(self):

... return len(self.labels)

>>> image_dataset = ImageDataset(file_list, labels)
>>> for file, label in image_dataset:
... print(file, label)

cat_dog_images/cat-01.jpg 0
cat_dog_images/cat-02.jpg 0
cat_dog_images/cat-03.jpg 0
cat_dog_images/dog-01.jpg 1
cat_dog_images/dog-02.jpg 1
cat_dog_images/dog-03.jpg 1

The joint dataset has filenames and labels.

Next, we need to apply transformations to this dataset: load the image content from its file path, de-
code the raw content, and resize it to a desired size, for example, 80×120. As mentioned before, we
use the torchvision.transforms module to resize the images and convert the loaded pixels into
tensors as follows:

>>> import torchvision.transforms as transforms
>>> img_height, img_width = 80, 120
>>> transform = transforms.Compose([
... transforms.ToTensor(),
... transforms.Resize((img_height, img_width)),
...])

Now we update the ImageDataset class with the transform we just defined:

>>> class ImageDataset(Dataset):
... def __init__(self, file_list, labels, transform=None):
... self.file_list = file_list
... self.labels = labels
... self.transform = transform
...

Chapter 12 385

... def __getitem__(self, index):

... img = Image.open(self.file_list[index])

... if self.transform is not None:

... img = self.transform(img)

... label = self.labels[index]

... return img, label

...

... def __len__(self):

... return len(self.labels)
>>>
>>> image_dataset = ImageDataset(file_list, labels, transform)

Finally, we visualize these transformed image examples using Matplotlib:

>>> fig = plt.figure(figsize=(10, 6))
>>> for i, example in enumerate(image_dataset):
... ax = fig.add_subplot(2, 3, i+1)
... ax.set_xticks([]); ax.set_yticks([])
... ax.imshow(example[0].numpy().transpose((1, 2, 0)))
... ax.set_title(f'{example[1]}', size=15)
...
>>> plt.tight_layout()
>>> plt.show()

This results in the following visualization of the retrieved example images, along with their labels:

Figure 12.4: Images are labeled

Parallelizing Neural Network Training with PyTorch386

The __getitem__ method in the ImageDataset class wraps all four steps into a single function, including
the loading of the raw content (images and labels), decoding the images into tensors, and resizing the
images. The function then returns a dataset that we can iterate over and apply other operations that
we learned about in the previous sections via a data loader, such as shuffling and batching.

Fetching available datasets from the torchvision.datasets library
The torchvision.datasets library provides a nice collection of freely available image datasets for
training or evaluating deep learning models. Similarly, the torchtext.datasets library provides
datasets for natural language. Here, we use torchvision.datasets as an example.

The torchvision datasets (https://pytorch.org/vision/stable/datasets.html) are nicely format-
ted and come with informative descriptions, including the format of features and labels and their type
and dimensionality, as well as the link to the original source of the dataset. Another advantage is that
these datasets are all subclasses of torch.utils.data.Dataset, so all the functions we covered in the
previous sections can be used directly. So, let’s see how to use these datasets in action.

First, if you haven’t already installed torchvision together with PyTorch earlier, you need to install
the torchvision library via pip from the command line:

pip install torchvision

You can take a look at the list of available datasets at https://pytorch.org/vision/stable/datasets.
html.

In the following paragraphs, we will cover fetching two different datasets: CelebA (celeb_a) and the
MNIST digit dataset.

Let’s first work with the CelebA dataset (http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) with
torchvision.datasets.CelebA (https://pytorch.org/vision/stable/datasets.html#celeba). The
description of torchvision.datasets.CelebA provides some useful information to help us understand
the structure of this dataset:

• The database has three subsets, 'train', 'valid', and 'test'. We can select a specific subset
or load all of them with the split parameter.

• The images are stored in PIL.Image format. And we can obtain a transformed version using a
custom transform function, such as transforms.ToTensor and transforms.Resize.

• There are different types of targets we can use, including 'attributes', 'identity', and
'landmarks'. 'attributes' is 40 facial attributes for the person in the image, such as facial
expression, makeup, hair properties, and so on; 'identity' is the person ID for an image;
and 'landmarks' refers to the dictionary of extracted facial points, such as the position of the
eyes, nose, and so on.

https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/vision/stable/datasets.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://pytorch.org/vision/stable/datasets.html#celeba

Chapter 12 387

Next, we will call the torchvision.datasets.CelebA class to download the data, store it on disk in a
designated folder, and load it into a torch.utils.data.Dataset object:

>>> import torchvision
>>> image_path = './'
>>> celeba_dataset = torchvision.datasets.CelebA(
... image_path, split='train', target_type='attr', download=True
...)
1443490838/? [01:28<00:00, 6730259.81it/s]
26721026/? [00:03<00:00, 8225581.57it/s]
3424458/? [00:00<00:00, 14141274.46it/s]
6082035/? [00:00<00:00, 21695906.49it/s]
12156055/? [00:00<00:00, 12002767.35it/s]
2836386/? [00:00<00:00, 3858079.93it/s]

You may run into a BadZipFile: File is not a zip file error, or RuntimeError: The daily quota
of the file img_align_celeba.zip is exceeded and it can't be downloaded. This is a
limitation of Google Drive and can only be overcome by trying again later; it just means
that Google Drive has a daily maximum quota that is exceeded by the CelebA files. To work around
it, you can manually download the files from the source: http://mmlab.ie.cuhk.edu.hk/projects/
CelebA.html. In the downloaded folder, celeba/, you can unzip the img_align_celeba.zip file. The
image_path is the root of the downloaded folder, celeba/. If you have already downloaded the files
once, you can simply set download=False. For additional information and guidance, we highly recom-
mend to see accompanying code notebook at https://github.com/rasbt/machine-learning-book/
blob/main/ch12/ch12_part1.ipynb.

Now that we have instantiated the datasets, let’s check if the object is of the torch.utils.data.Dataset
class:

>>> assert isinstance(celeba_dataset, torch.utils.data.Dataset)

As mentioned, the dataset is already split into train, test, and validation datasets, and we only load the
train set. And we only use the 'attributes' target. In order to see what the data examples look like,
we can execute the following code:

>>> example = next(iter(celeba_dataset))
>>> print(example)
(<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218 at
0x120C6C668>, tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1]))

Note that the sample in this dataset comes in a tuple of (PIL.Image, attributes). If we want to pass
this dataset to a supervised deep learning model during training, we have to reformat it as a tuple of
(features tensor, label). For the label, we will use the 'Smiling' category from the attributes as
an example, which is the 31st element.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/rasbt/machine-learning-book/blob/main/ch12/ch12_part1.ipynb
https://github.com/rasbt/machine-learning-book/blob/main/ch12/ch12_part1.ipynb

Parallelizing Neural Network Training with PyTorch388

Finally, let’s take the first 18 examples from it to visualize them with their 'Smiling' labels:

>>> from itertools import islice
>>> fig = plt.figure(figsize=(12, 8))
>>> for i, (image, attributes) in islice(enumerate(celeba_dataset), 18):
... ax = fig.add_subplot(3, 6, i+1)
... ax.set_xticks([]); ax.set_yticks([])
... ax.imshow(image)
... ax.set_title(f'{attributes[31]}', size=15)
>>> plt.show()

The examples and their labels that are retrieved from celeba_dataset are shown in Figure 12.5:

Figure 12.5: Model predicts smiling celebrities

This was all we needed to do to fetch and use the CelebA image dataset.

Next, we will proceed with the second dataset from torchvision.datasets.MNIST (https://pytorch.
org/vision/stable/datasets.html#mnist). Let’s see how it can be used to fetch the MNIST digit
dataset:

• The database has two partitions, 'train' and 'test'. We need to select a specific subset to load.
• The images are stored in PIL.Image format. And we can obtain a transformed version using a

custom transform function, such as transforms.ToTensor and transforms.Resize.
• There are 10 classes for the target, from 0 to 9.

https://pytorch.org/vision/stable/datasets.html#mnist
https://pytorch.org/vision/stable/datasets.html#mnist

Chapter 12 389

Now, we can download the 'train' partition, convert the elements to tuples, and visualize 10 examples:

>>> mnist_dataset = torchvision.datasets.MNIST(image_path, 'train',
download=True)
>>> assert isinstance(mnist_dataset, torch.utils.data.Dataset)
>>> example = next(iter(mnist_dataset))
>>> print(example)
(<PIL.Image.Image image mode=L size=28x28 at 0x126895B00>, 5)
>>> fig = plt.figure(figsize=(15, 6))
>>> for i, (image, label) in islice(enumerate(mnist_dataset), 10):
... ax = fig.add_subplot(2, 5, i+1)
... ax.set_xticks([]); ax.set_yticks([])
... ax.imshow(image, cmap='gray_r')
... ax.set_title(f'{label}', size=15)
>>> plt.show()

The retrieved example handwritten digits from this dataset are shown as follows:

Figure 12.6: Correctly identifying handwritten digits

This concludes our coverage of building and manipulating datasets and fetching datasets from the
torchvision.datasets library. Next, we will see how to build NN models in PyTorch.

Building an NN model in PyTorch
So far in this chapter, you have learned about the basic utility components of PyTorch for manipulat-
ing tensors and organizing data into formats that we can iterate over during training. In this section,
we will finally implement our first predictive model in PyTorch. As PyTorch is a bit more flexible but
also more complex than machine learning libraries such as scikit-learn, we will start with a simple
linear regression model.

Parallelizing Neural Network Training with PyTorch390

The PyTorch neural network module (torch.nn)
torch.nn is an elegantly designed module developed to help create and train NNs. It allows easy pro-
totyping and the building of complex models in just a few lines of code.

To fully utilize the power of the module and customize it for your problem, you need to understand
what it’s doing. To develop this understanding, we will first train a basic linear regression model on a
toy dataset without using any features from the torch.nn module; we will use nothing but the basic
PyTorch tensor operations.

Then, we will incrementally add features from torch.nn and torch.optim. As you will see in the
following subsections, these modules make building an NN model extremely easy. We will also take
advantage of the dataset pipeline functionalities supported in PyTorch, such as Dataset and DataLoader,
which you learned about in the previous section. In this book, we will use the torch.nn module to
build NN models.

The most commonly used approach for building an NN in PyTorch is through nn.Module, which allows
layers to be stacked to form a network. This gives us more control over the forward pass. We will see
examples of building an NN model using the nn.Module class.

Finally, as you will see in the following subsections, a trained model can be saved and reloaded for
future use.

Building a linear regression model
In this subsection, we will build a simple model to solve a linear regression problem. First, let’s create
a toy dataset in NumPy and visualize it:

>>> X_train = np.arange(10, dtype='float32').reshape((10, 1))

>>> y_train = np.array([1.0, 1.3, 3.1, 2.0, 5.0,

... 6.3, 6.6,7.4, 8.0,

... 9.0], dtype='float32')

>>> plt.plot(X_train, y_train, 'o', markersize=10)

>>> plt.xlabel('x')

>>> plt.ylabel('y')

>>> plt.show()

Chapter 12 391

As a result, the training examples will be shown in a scatterplot as follows:

Figure 12.7: A scatterplot of the training examples

Next, we will standardize the features (mean centering and dividing by the standard deviation) and
create a PyTorch Dataset for the training set and a corresponding DataLoader:

>>> from torch.utils.data import TensorDataset

>>> X_train_norm = (X_train - np.mean(X_train)) / np.std(X_train)

>>> X_train_norm = torch.from_numpy(X_train_norm)

>>> y_train = torch.from_numpy(y_train)

>>> train_ds = TensorDataset(X_train_norm, y_train)

>>> batch_size = 1

>>> train_dl = DataLoader(train_ds, batch_size, shuffle=True)

Here, we set a batch size of 1 for the DataLoader.

Now, we can define our model for linear regression as z = wx + b. Here, we are going to use the torch.nn
module. It provides predefined layers for building complex NN models, but to start, you will learn how
to define a model from scratch. Later in this chapter, you will see how to use those predefined layers.

Parallelizing Neural Network Training with PyTorch392

For this regression problem, we will define a linear regression model from scratch. We will define the
parameters of our model, weight and bias, which correspond to the weight and the bias parameters,
respectively. Finally, we will define the model() function to determine how this model uses the input
data to generate its output:

>>> torch.manual_seed(1)
>>> weight = torch.randn(1)
>>> weight.requires_grad_()
>>> bias = torch.zeros(1, requires_grad=True)
>>> def model(xb):
... return xb @ weight + bias

After defining the model, we can define the loss function that we want to minimize to find the optimal
model weights. Here, we will choose the mean squared error (MSE) as our loss function:

>>> def loss_fn(input, target):
... return (input-target).pow(2).mean()

Furthermore, to learn the weight parameters of the model, we will use stochastic gradient descent.
In this subsection, we will implement this training via the stochastic gradient descent procedure
by ourselves, but in the next subsection, we will use the SGD method from the optimization package,
torch.optim, to do the same thing.

To implement the stochastic gradient descent algorithm, we need to compute the gradients. Rather
than manually computing the gradients, we will use PyTorch’s torch.autograd.backward function.
We will cover torch.autograd and its different classes and functions for implementing automatic
differentiation in Chapter 13, Going Deeper – The Mechanics of PyTorch.

Now, we can set the learning rate and train the model for 200 epochs. The code for training the model
against the batched version of the dataset is as follows:

>>> learning_rate = 0.001
>>> num_epochs = 200
>>> log_epochs = 10
>>> for epoch in range(num_epochs):
... for x_batch, y_batch in train_dl:
... pred = model(x_batch)
... loss = loss_fn(pred, y_batch)
... loss.backward()
... with torch.no_grad():
... weight -= weight.grad * learning_rate
... bias -= bias.grad * learning_rate
... weight.grad.zero_()
... bias.grad.zero_()
... if epoch % log_epochs==0:

Chapter 12 393

... print(f'Epoch {epoch} Loss {loss.item():.4f}')
Epoch 0 Loss 5.1701
Epoch 10 Loss 30.3370
Epoch 20 Loss 26.9436
Epoch 30 Loss 0.9315
Epoch 40 Loss 3.5942
Epoch 50 Loss 5.8960
Epoch 60 Loss 3.7567
Epoch 70 Loss 1.5877
Epoch 80 Loss 0.6213
Epoch 90 Loss 1.5596
Epoch 100 Loss 0.2583
Epoch 110 Loss 0.6957
Epoch 120 Loss 0.2659
Epoch 130 Loss 0.1615
Epoch 140 Loss 0.6025
Epoch 150 Loss 0.0639
Epoch 160 Loss 0.1177
Epoch 170 Loss 0.3501
Epoch 180 Loss 0.3281
Epoch 190 Loss 0.0970

Let’s look at the trained model and plot it. For the test data, we will create a NumPy array of values
evenly spaced between 0 and 9. Since we trained our model with standardized features, we will also
apply the same standardization to the test data:

>>> print('Final Parameters:', weight.item(), bias.item())
Final Parameters: 2.669806480407715 4.879569053649902
>>> X_test = np.linspace(0, 9, num=100, dtype='float32').reshape(-1, 1)
>>> X_test_norm = (X_test - np.mean(X_train)) / np.std(X_train)
>>> X_test_norm = torch.from_numpy(X_test_norm)
>>> y_pred = model(X_test_norm).detach().numpy()
>>> fig = plt.figure(figsize=(13, 5))
>>> ax = fig.add_subplot(1, 2, 1)
>>> plt.plot(X_train_norm, y_train, 'o', markersize=10)
>>> plt.plot(X_test_norm, y_pred, '--', lw=3)
>>> plt.legend(['Training examples', 'Linear reg.'], fontsize=15)
>>> ax.set_xlabel('x', size=15)
>>> ax.set_ylabel('y', size=15)
>>> ax.tick_params(axis='both', which='major', labelsize=15)

>>> plt.show()

Parallelizing Neural Network Training with PyTorch394

Figure 12.8 shows a scatterplot of the training examples and the trained linear regression model:

Figure 12.8: The linear regression model fits the data well

Model training via the torch.nn and torch.optim modules
In the previous example, we saw how to train a model by writing a custom loss function loss_fn()
and applied stochastic gradient descent optimization. However, writing the loss function and gradient
updates can be a repeatable task across different projects. The torch.nn module provides a set of loss
functions, and torch.optim supports most commonly used optimization algorithms that can be called
to update the parameters based on the computed gradients. To see how they work, let’s create a new
MSE loss function and a stochastic gradient descent optimizer:

>>> import torch.nn as nn
>>> loss_fn = nn.MSELoss(reduction='mean')
>>> input_size = 1
>>> output_size = 1
>>> model = nn.Linear(input_size, output_size)
>>> optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Note that here we use the torch.nn.Linear class for the linear layer instead of manually defining it.

Chapter 12 395

Now, we can simply call the step() method of the optimizer to train the model. We can pass a batched
dataset (such as train_dl, which was created in the previous example):

>>> for epoch in range(num_epochs):
... for x_batch, y_batch in train_dl:
... # 1. Generate predictions
... pred = model(x_batch)[:, 0]
... # 2. Calculate loss
... loss = loss_fn(pred, y_batch)
... # 3. Compute gradients
... loss.backward()
... # 4. Update parameters using gradients
... optimizer.step()
... # 5. Reset the gradients to zero
... optimizer.zero_grad()
... if epoch % log_epochs==0:
... print(f'Epoch {epoch} Loss {loss.item():.4f}')

After the model is trained, visualize the results and make sure that they are similar to the results of
the previous method. To obtain the weight and bias parameters, we can do the following:

>>> print('Final Parameters:', model.weight.item(), model.bias.item())
Final Parameters: 2.646660089492798 4.883835315704346

Building a multilayer perceptron for classifying flowers in the
Iris dataset
In the previous example, you saw how to build a model from scratch. We trained this model using
stochastic gradient descent optimization. While we started our journey based on the simplest possible
example, you can see that defining the model from scratch, even for such a simple case, is neither
appealing nor good practice. PyTorch instead provides already defined layers through torch.nn that
can be readily used as the building blocks of an NN model. In this section, you will learn how to use
these layers to solve a classification task using the Iris flower dataset (identifying between three spe-
cies of irises) and build a two-layer perceptron using the torch.nn module. First, let’s get the data
from sklearn.datasets:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> iris = load_iris()

Parallelizing Neural Network Training with PyTorch396

>>> X = iris['data']
>>> y = iris['target']
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=1./3, random_state=1)

Here, we randomly select 100 samples (2/3) for training and 50 samples (1/3) for testing.

Next, we standardize the features (mean centering and dividing by the standard deviation) and create
a PyTorch Dataset for the training set and a corresponding DataLoader:

>>> X_train_norm = (X_train - np.mean(X_train)) / np.std(X_train)
>>> X_train_norm = torch.from_numpy(X_train_norm).float()
>>> y_train = torch.from_numpy(y_train)
>>> train_ds = TensorDataset(X_train_norm, y_train)
>>> torch.manual_seed(1)
>>> batch_size = 2
>>> train_dl = DataLoader(train_ds, batch_size, shuffle=True)

Here, we set the batch size to 2 for the DataLoader.

Now, we are ready to use the torch.nn module to build a model efficiently. In particular, using the
nn.Module class, we can stack a few layers and build an NN. You can see the list of all the layers that
are already available at https://pytorch.org/docs/stable/nn.html. For this problem, we are going
to use the Linear layer, which is also known as a fully connected layer or dense layer, and can be best
represented by f(w × x + b), where x represents a tensor containing the input features, w and b are the
weight matrix and the bias vector, and f is the activation function.

Each layer in an NN receives its inputs from the preceding layer; therefore, its dimensionality (rank
and shape) is fixed. Typically, we need to concern ourselves with the dimensionality of output only
when we design an NN architecture. Here, we want to define a model with two hidden layers. The first
one receives an input of four features and projects them to 16 neurons. The second layer receives the
output of the previous layer (which has a size of 16) and projects them to three output neurons, since
we have three class labels. This can be done as follows:

>>> class Model(nn.Module):
... def __init__(self, input_size, hidden_size, output_size):
... super().__init__()
... self.layer1 = nn.Linear(input_size, hidden_size)
... self.layer2 = nn.Linear(hidden_size, output_size)
... def forward(self, x):
... x = self.layer1(x)
... x = nn.Sigmoid()(x)
... x = self.layer2(x)
... x = nn.Softmax(dim=1)(x)
... return x

https://pytorch.org/docs/stable/nn.html

Chapter 12 397

>>> input_size = X_train_norm.shape[1]
>>> hidden_size = 16
>>> output_size = 3
>>> model = Model(input_size, hidden_size, output_size)

Here, we used the sigmoid activation function for the first layer and softmax activation for the last
(output) layer. Softmax activation in the last layer is used to support multiclass classification since we
have three class labels here (which is why we have three neurons in the output layer). We will discuss
the different activation functions and their applications later in this chapter.

Next, we specify the loss function as cross-entropy loss and the optimizer as Adam:

>>> learning_rate = 0.001
>>> loss_fn = nn.CrossEntropyLoss()
>>> optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

Now, we can train the model. We will specify the number of epochs to be 100. The code of training
the flower classification model is as follows:

>>> num_epochs = 100
>>> loss_hist = [0] * num_epochs
>>> accuracy_hist = [0] * num_epochs
>>> for epoch in range(num_epochs):
... for x_batch, y_batch in train_dl:
... pred = model(x_batch)
... loss = loss_fn(pred, y_batch)
... loss.backward()
... optimizer.step()
... optimizer.zero_grad()
... loss_hist[epoch] += loss.item()*y_batch.size(0)
... is_correct = (torch.argmax(pred, dim=1) == y_batch).float()
... accuracy_hist[epoch] += is_correct.mean()
... loss_hist[epoch] /= len(train_dl.dataset)
... accuracy_hist[epoch] /= len(train_dl.dataset)

The loss_hist and accuracy_hist lists keep the training loss and the training accuracy after each
epoch. We can use this to visualize the learning curves as follows:

>>> fig = plt.figure(figsize=(12, 5))
>>> ax = fig.add_subplot(1, 2, 1)

The Adam optimizer is a robust, gradient-based optimization method, which we will talk
about in detail in Chapter 14, Classifying Images with Deep Convolutional Neural Networks.

Parallelizing Neural Network Training with PyTorch398

>>> ax.plot(loss_hist, lw=3)
>>> ax.set_title('Training loss', size=15)
>>> ax.set_xlabel('Epoch', size=15)
>>> ax.tick_params(axis='both', which='major', labelsize=15)
>>> ax = fig.add_subplot(1, 2, 2)
>>> ax.plot(accuracy_hist, lw=3)
>>> ax.set_title('Training accuracy', size=15)
>>> ax.set_xlabel('Epoch', size=15)
>>> ax.tick_params(axis='both', which='major', labelsize=15)
>>> plt.show()

The learning curves (training loss and training accuracy) are as follows:

Figure 12.9: Training loss and accuracy curves

Evaluating the trained model on the test dataset
We can now evaluate the classification accuracy of the trained model on the test dataset:

>>> X_test_norm = (X_test - np.mean(X_train)) / np.std(X_train)
>>> X_test_norm = torch.from_numpy(X_test_norm).float()
>>> y_test = torch.from_numpy(y_test)
>>> pred_test = model(X_test_norm)
>>> correct = (torch.argmax(pred_test, dim=1) == y_test).float()
>>> accuracy = correct.mean()
>>> print(f'Test Acc.: {accuracy:.4f}')
Test Acc.: 0.9800

Since we trained our model with standardized features, we also applied the same standardization to
the test data. The classification accuracy is 0.98 (that is, 98 percent).

Chapter 12 399

Saving and reloading the trained model
Trained models can be saved on disk for future use. This can be done as follows:

>>> path = 'iris_classifier.pt'
>>> torch.save(model, path)

Calling save(model) will save both the model architecture and all the learned parameters. As a com-
mon convention, we can save models using a 'pt' or 'pth' file extension.

Now, let’s reload the saved model. Since we have saved both the model architecture and the weights,
we can easily rebuild and reload the parameters in just one line:

>>> model_new = torch.load(path)

Try to verify the model architecture by calling model_new.eval():

>>> model_new.eval()

Model(

 (layer1): Linear(in_features=4, out_features=16, bias=True)

 (layer2): Linear(in_features=16, out_features=3, bias=True)

)

Finally, let’s evaluate this new model that is reloaded on the test dataset to verify that the results are
the same as before:

>>> pred_test = model_new(X_test_norm)

>>> correct = (torch.argmax(pred_test, dim=1) == y_test).float()

>>> accuracy = correct.mean()

>>> print(f'Test Acc.: {accuracy:.4f}')

Test Acc.: 0.9800

If you want to save only the learned parameters, you can use save(model.state_dict()) as follows:

>>> path = 'iris_classifier_state.pt'

>>> torch.save(model.state_dict(), path)

To reload the saved parameters, we first need to construct the model as we did before, then feed the
loaded parameters to the model:

>>> model_new = Model(input_size, hidden_size, output_size)

>>> model_new.load_state_dict(torch.load(path))

Parallelizing Neural Network Training with PyTorch400

Choosing activation functions for multilayer neural
networks
For simplicity, we have only discussed the sigmoid activation function in the context of multilayer
feedforward NNs so far; we have used it in the hidden layer as well as the output layer in the MLP
implementation in Chapter 11.

Note that in this book, the sigmoidal logistic function, 𝜎𝜎(𝑧𝑧) = 11+𝑒𝑒−𝑧𝑧 , is referred to as the sigmoid function

for brevity, which is common in machine learning literature. In the following subsections, you will
learn more about alternative nonlinear functions that are useful for implementing multilayer NNs.

Technically, we can use any function as an activation function in multilayer NNs as long as it is differ-
entiable. We can even use linear activation functions, such as in Adaline (Chapter 2, Training Simple
Machine Learning Algorithms for Classification). However, in practice, it would not be very useful to use
linear activation functions for both hidden and output layers, since we want to introduce nonlinearity
in a typical artificial NN to be able to tackle complex problems. The sum of linear functions yields a
linear function after all.

The logistic (sigmoid) activation function that we used in Chapter 11 probably mimics the concept of a
neuron in a brain most closely—we can think of it as the probability of whether a neuron fires. However,
the logistic (sigmoid) activation function can be problematic if we have highly negative input, since
the output of the sigmoid function will be close to zero in this case. If the sigmoid function returns
output that is close to zero, the NN will learn very slowly, and it will be more likely to get trapped in
the local minima of the loss landscape during training. This is why people often prefer a hyperbolic
tangent as an activation function in hidden layers.

Before we discuss what a hyperbolic tangent looks like, let’s briefly recapitulate some of the basics of
the logistic function and look at a generalization that makes it more useful for multilabel classification
problems.

Logistic function recap
As was mentioned in the introduction to this section, the logistic function is, in fact, a special case of a
sigmoid function. You will recall from the section on logistic regression in Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-Learn, that we can use a logistic function to model the probability that
sample x belongs to the positive class (class 1) in a binary classification task.

The given net input, z, is shown in the following equation:

𝑧𝑧 𝑧 𝑧𝑧0𝑥𝑥0 + 𝑧𝑧1𝑥𝑥1 + ⋯+ 𝑧𝑧𝑚𝑚𝑥𝑥𝑚𝑚 𝑧∑𝑧𝑧𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖𝑖0 𝑧 𝑧𝑧T𝑥𝑥

The logistic (sigmoid) function will compute the following:𝜎𝜎logistic(𝑧𝑧) = 11 + 𝑒𝑒−𝑧𝑧

Chapter 12 401

Note that w0 is the bias unit (y-axis intercept, which means x0 = 1). To provide a more concrete ex-
ample, let’s take a model for a two-dimensional data point, x, and a model with the following weight
coefficients assigned to the w vector:

>>> import numpy as np
>>> X = np.array([1, 1.4, 2.5]) ## first value must be 1
>>> w = np.array([0.4, 0.3, 0.5])
>>> def net_input(X, w):
... return np.dot(X, w)
>>> def logistic(z):
... return 1.0 / (1.0 + np.exp(-z))
>>> def logistic_activation(X, w):
... z = net_input(X, w)
... return logistic(z)
>>> print(f'P(y=1|x) = {logistic_activation(X, w):.3f}')
P(y=1|x) = 0.888

If we calculate the net input (z) and use it to activate a logistic neuron with those particular feature
values and weight coefficients, we get a value of 0.888, which we can interpret as an 88.8 percent
probability that this particular sample, x, belongs to the positive class.

In Chapter 11, we used the one-hot encoding technique to represent multiclass ground truth labels and
designed the output layer consisting of multiple logistic activation units. However, as will be demon-
strated by the following code example, an output layer consisting of multiple logistic activation units
does not produce meaningful, interpretable probability values:

>>> # W : array with shape = (n_output_units, n_hidden_units+1)
>>> # note that the first column are the bias units
>>> W = np.array([[1.1, 1.2, 0.8, 0.4],
... [0.2, 0.4, 1.0, 0.2],
... [0.6, 1.5, 1.2, 0.7]])
>>> # A : data array with shape = (n_hidden_units + 1, n_samples)
>>> # note that the first column of this array must be 1
>>> A = np.array([[1, 0.1, 0.4, 0.6]])
>>> Z = np.dot(W, A[0])
>>> y_probas = logistic(Z)
>>> print('Net Input: \n', Z)
Net Input:
[1.78 0.76 1.65]
>>> print('Output Units:\n', y_probas)
Output Units:
[0.85569687 0.68135373 0.83889105]

Parallelizing Neural Network Training with PyTorch402

As you can see in the output, the resulting values cannot be interpreted as probabilities for a three-class
problem. The reason for this is that they do not sum to 1. However, this is, in fact, not a big concern
if we use our model to predict only the class labels and not the class membership probabilities. One
way to predict the class label from the output units obtained earlier is to use the maximum value:

>>> y_class = np.argmax(Z, axis=0)
>>> print('Predicted class label:', y_class)
Predicted class label: 0

In certain contexts, it can be useful to compute meaningful class probabilities for multiclass predic-
tions. In the next section, we will take a look at a generalization of the logistic function, the softmax
function, which can help us with this task.

Estimating class probabilities in multiclass classification via the
softmax function
In the previous section, you saw how we can obtain a class label using the argmax function. Previously,
in the Building a multilayer perceptron for classifying flowers in the Iris dataset section, we determined
activation='softmax' in the last layer of the MLP model. The softmax function is a soft form of
the argmax function; instead of giving a single class index, it provides the probability of each class.
Therefore, it allows us to compute meaningful class probabilities in multiclass settings (multinomial
logistic regression).

In softmax, the probability of a particular sample with net input z belonging to the ith class can be
computed with a normalization term in the denominator, that is, the sum of the exponentially weighted
linear functions: 𝑝𝑝(𝑧𝑧) = 𝜎𝜎(𝑧𝑧) = 𝑒𝑒𝑧𝑧𝑖𝑖∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑀𝑀𝑗𝑗𝑗𝑗

To see softmax in action, let’s code it up in Python:

>>> def softmax(z):
... return np.exp(z) / np.sum(np.exp(z))
>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
[0.44668973 0.16107406 0.39223621]
>>> np.sum(y_probas)
1.0

As you can see, the predicted class probabilities now sum to 1, as we would expect. It is also notable
that the predicted class label is the same as when we applied the argmax function to the logistic output.

Chapter 12 403

It may help to think of the result of the softmax function as a normalized output that is useful for ob-
taining meaningful class-membership predictions in multiclass settings. Therefore, when we build a
multiclass classification model in PyTorch, we can use the torch.softmax() function to estimate the
probabilities of each class membership for an input batch of examples. To see how we can use the
torch.softmax() activation function in PyTorch, we will convert Z to a tensor in the following code,
with an additional dimension reserved for the batch size:

>>> torch.softmax(torch.from_numpy(Z), dim=0)
tensor([0.4467, 0.1611, 0.3922], dtype=torch.float64)

Broadening the output spectrum using a hyperbolic tangent
Another sigmoidal function that is often used in the hidden layers of artificial NNs is the hyperbolic
tangent (commonly known as tanh), which can be interpreted as a rescaled version of the logistic
function: 𝜎𝜎logistic(𝑧𝑧) = 11 + 𝑒𝑒−𝑧𝑧𝜎𝜎tanh(𝑧𝑧) = 2 × 𝜎𝜎logistic(2𝑧𝑧) − 1 = 𝑒𝑒𝑧𝑧 − 𝑒𝑒−𝑧𝑧𝑒𝑒𝑧𝑧 + 𝑒𝑒−𝑧𝑧

The advantage of the hyperbolic tangent over the logistic function is that it has a broader output
spectrum ranging in the open interval (–1, 1), which can improve the convergence of the backpropa-
gation algorithm (Neural Networks for Pattern Recognition, C. M. Bishop, Oxford University Press, pages:
500-501, 1995).

In contrast, the logistic function returns an output signal ranging in the open interval (0, 1). For a simple
comparison of the logistic function and the hyperbolic tangent, let’s plot the two sigmoidal functions:

>>> import matplotlib.pyplot as plt
>>> def tanh(z):
... e_p = np.exp(z)
... e_m = np.exp(-z)
... return (e_p - e_m) / (e_p + e_m)
>>> z = np.arange(-5, 5, 0.005)
>>> log_act = logistic(z)
>>> tanh_act = tanh(z)
>>> plt.ylim([-1.5, 1.5])
>>> plt.xlabel('net input z')
>>> plt.ylabel('activation $\phi(z)$')
>>> plt.axhline(1, color='black', linestyle=':')
>>> plt.axhline(0.5, color='black', linestyle=':')
>>> plt.axhline(0, color='black', linestyle=':')

Parallelizing Neural Network Training with PyTorch404

>>> plt.axhline(-0.5, color='black', linestyle=':')
>>> plt.axhline(-1, color='black', linestyle=':')
>>> plt.plot(z, tanh_act,
... linewidth=3, linestyle='--',
... label='tanh')
>>> plt.plot(z, log_act,
... linewidth=3,
... label='logistic')
>>> plt.legend(loc='lower right')
>>> plt.tight_layout()
>>> plt.show()

As you can see, the shapes of the two sigmoidal curves look very similar; however, the tanh function
has double the output space of the logistic function:

Figure 12.10: A comparison of the tanh and logistic functions

Note that we previously implemented the logistic and tanh functions verbosely for the purpose of
illustration. In practice, we can use NumPy’s tanh function.

Alternatively, when building an NN model, we can use torch.tanh(x) in PyTorch to achieve the same
results:

>>> np.tanh(z)
array([-0.9999092 , -0.99990829, -0.99990737, ..., 0.99990644,
 0.99990737, 0.99990829])
>>> torch.tanh(torch.from_numpy(z))
tensor([-0.9999, -0.9999, -0.9999, ..., 0.9999, 0.9999, 0.9999],
 dtype=torch.float64)

Chapter 12 405

In addition, the logistic function is available in SciPy’s special module:

>>> from scipy.special import expit
>>> expit(z)
array([0.00669285, 0.00672617, 0.00675966, ..., 0.99320669, 0.99324034,
 0.99327383])

Similarly, we can use the torch.sigmoid() function in PyTorch to do the same computation, as follows:

>>> torch.sigmoid(torch.from_numpy(z))
tensor([0.0067, 0.0067, 0.0068, ..., 0.9932, 0.9932, 0.9933],
 dtype=torch.float64)

Rectified linear unit activation
The rectified linear unit (ReLU) is another activation function that is often used in deep NNs. Before
we delve into ReLU, we should step back and understand the vanishing gradient problem of tanh and
logistic activations.

To understand this problem, let’s assume that we initially have the net input z1 = 20, which changes to
z2 = 25. Computing the tanh activation, we get 𝜎𝜎(𝑧𝑧1) = 1.0 and 𝜎𝜎(𝑧𝑧2) = 1.0 , which shows no change in
the output (due to the asymptotic behavior of the tanh function and numerical errors).

This means that the derivative of activations with respect to the net input diminishes as z becomes
large. As a result, learning the weights during the training phase becomes very slow because the gra-
dient terms may be very close to zero. ReLU activation addresses this issue. Mathematically, ReLU is
defined as follows: 𝜎𝜎(𝑧𝑧) = max(0, 𝑧𝑧)
ReLU is still a nonlinear function that is good for learning complex functions with NNs. Besides this,
the derivative of ReLU, with respect to its input, is always 1 for positive input values. Therefore, it
solves the problem of vanishing gradients, making it suitable for deep NNs. In PyTorch, we can apply
the ReLU activation torch.relu() as follows:

>>> torch.relu(torch.from_numpy(z))
tensor([0.0000, 0.0000, 0.0000, ..., 4.9850, 4.9900, 4.9950],
 dtype=torch.float64)

We will use the ReLU activation function in the next chapter as an activation function for multilayer
convolutional NNs.

Note that using torch.sigmoid(x) produces results that are equivalent to torch.
nn.Sigmoid()(x), which we used earlier. torch.nn.Sigmoid is a class to which you
can pass in parameters to construct an object in order to control the behavior. In contrast,
torch.sigmoid is a function.

Parallelizing Neural Network Training with PyTorch406

Now that we know more about the different activation functions that are commonly used in artificial
NNs, let’s conclude this section with an overview of the different activation functions that we have
encountered so far in this book:

Figure 12.11: The activation functions covered in this book

You can find the list of all activation functions available in the torch.nn module at https://pytorch.
org/docs/stable/nn.functional.html#non-linear-activation-functions.

Summary
In this chapter, you learned how to use PyTorch, an open source library for numerical computations,
with a special focus on deep learning. While PyTorch is more inconvenient to use than NumPy, due
to its additional complexity to support GPUs, it allows us to define and train large, multilayer NNs
very efficiently.

https://pytorch.org/docs/stable/nn.functional.html#non-linear-activation-functions
https://pytorch.org/docs/stable/nn.functional.html#non-linear-activation-functions

Chapter 12 407

Also, you learned about using the torch.nn module to build complex machine learning and NN models
and run them efficiently. We explored model building in PyTorch by defining a model from scratch
via the basic PyTorch tensor functionality. Implementing models can be tedious when we have to
program at the level of matrix-vector multiplications and define every detail of each operation. How-
ever, the advantage is that this allows us, as developers, to combine such basic operations and build
more complex models. We then explored torch.nn, which makes building NN models a lot easier
than implementing them from scratch.

Finally, you learned about different activation functions and understood their behaviors and applica-
tions. Specifically, in this chapter, we covered tanh, softmax, and ReLU.

In the next chapter, we’ll continue our journey and dive deeper into PyTorch, where we’ll find ourselves
working with PyTorch computation graphs and the automatic differentiation package. Along the way,
you’ll learn many new concepts, such as gradient computations.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

13
Going Deeper – The Mechanics
of PyTorch

In Chapter 12, Parallelizing Neural Network Training with PyTorch, we covered how to define and ma-
nipulate tensors and worked with the torch.utils.data module to build input pipelines. We further
built and trained a multilayer perceptron to classify the Iris dataset using the PyTorch neural network
module (torch.nn).

Now that we have some hands-on experience with PyTorch neural network training and machine
learning, it’s time to take a deeper dive into the PyTorch library and explore its rich set of features,
which will allow us to implement more advanced deep learning models in upcoming chapters.

In this chapter, we will use different aspects of PyTorch’s API to implement NNs. In particular, we
will again use the torch.nn module, which provides multiple layers of abstraction to make the im-
plementation of standard architectures very convenient. It also allows us to implement custom NN
layers, which is very useful in research-oriented projects that require more customization. Later in
this chapter, we will implement such a custom layer.

To illustrate the different ways of model building using the torch.nn module, we will also consider the
classic exclusive or (XOR) problem. Firstly, we will build multilayer perceptrons using the Sequential
class. Then, we will consider other methods, such as subclassing nn.Module for defining custom lay-
ers. Finally, we will work on two real-world projects that cover the machine learning steps from raw
input to prediction.

The topics that we will cover are as follows:

• Understanding and working with PyTorch computation graphs
• Working with PyTorch tensor objects
• Solving the classic XOR problem and understanding model capacity
• Building complex NN models using PyTorch’s Sequential class and the nn.Module class
• Computing gradients using automatic differentiation and torch.autograd

Going Deeper – The Mechanics of PyTorch410

The key features of PyTorch
In the previous chapter, we saw that PyTorch provides us with a scalable, multiplatform programming
interface for implementing and running machine learning algorithms. After its initial release in 2016
and its 1.0 release in 2018, PyTorch has evolved into one of the two most popular frameworks for deep
learning. It uses dynamic computational graphs, which have the advantage of being more flexible
compared to its static counterparts. Dynamic computational graphs are debugging friendly: PyTorch
allows for interleaving the graph declaration and graph evaluation steps. You can execute the code
line by line while having full access to all variables. This is a very important feature that makes the
development and training of NNs very convenient.

While PyTorch is an open-source library and can be used for free by everyone, its development is
funded and supported by Facebook. This involves a large team of software engineers who expand and
improve the library continuously. Since PyTorch is an open-source library, it also has strong support
from other developers outside of Facebook, who avidly contribute and provide user feedback. This has
made the PyTorch library more useful to both academic researchers and developers. A further conse-
quence of these factors is that PyTorch has extensive documentation and tutorials to help new users.

Another key feature of PyTorch, which was also noted in the previous chapter, is its ability to work
with single or multiple graphical processing units (GPUs). This allows users to train deep learning
models very efficiently on large datasets and large-scale systems.

Last but not least, PyTorch supports mobile deployment, which also makes it a very suitable tool for
production.

In the next section, we will look at how a tensor and function in PyTorch are interconnected via a
computation graph.

PyTorch’s computation graphs
PyTorch performs its computations based on a directed acyclic graph (DAG). In this section, we will
see how these graphs can be defined for a simple arithmetic computation. Then, we will see the dy-
namic graph paradigm, as well as how the graph is created on the fly in PyTorch.

Understanding computation graphs
PyTorch relies on building a computation graph at its core, and it uses this computation graph to
derive relationships between tensors from the input all the way to the output. Let’s say that we have
rank 0 (scalar) tensors a, b, and c and we want to evaluate z = 2 × (a – b) + c.

Chapter 13 411

This evaluation can be represented as a computation graph, as shown in Figure 13.1:

Figure 13.1: How a computation graph works

As you can see, the computation graph is simply a network of nodes. Each node resembles an oper-
ation, which applies a function to its input tensor or tensors and returns zero or more tensors as the
output. PyTorch builds this computation graph and uses it to compute the gradients accordingly. In the
next subsection, we will see some examples of creating a graph for this computation using PyTorch.

Creating a graph in PyTorch
Let’s look at a simple example that illustrates how to create a graph in PyTorch for evaluating
z = 2 × (a – b) + c, as shown in the previous figure. The variables a, b, and c are scalars (single numbers),
and we define these as PyTorch tensors. To create the graph, we can simply define a regular Python
function with a, b, and c as its input arguments, for example:

>>> import torch
>>> def compute_z(a, b, c):
... r1 = torch.sub(a, b)
... r2 = torch.mul(r1, 2)
... z = torch.add(r2, c)
... return z

Going Deeper – The Mechanics of PyTorch412

Now, to carry out the computation, we can simply call this function with tensor objects as function
arguments. Note that PyTorch functions such as add, sub (or subtract), and mul (or multiply) also
allow us to provide inputs of higher ranks in the form of a PyTorch tensor object. In the following code
example, we provide scalar inputs (rank 0), as well as rank 1 and rank 2 inputs, as lists:

>>> print('Scalar Inputs:', compute_z(torch.tensor(1),
... torch.tensor(2), torch.tensor(3)))
Scalar Inputs: tensor(1)
>>> print('Rank 1 Inputs:', compute_z(torch.tensor([1]),
... torch.tensor([2]), torch.tensor([3])))
Rank 1 Inputs: tensor([1])
>>> print('Rank 2 Inputs:', compute_z(torch.tensor([[1]]),
... torch.tensor([[2]]), torch.tensor([[3]])))
Rank 2 Inputs: tensor([[1]])

In this section, you saw how simple it is to create a computation graph in PyTorch. Next, we will look
at PyTorch tensors that can be used for storing and updating model parameters.

PyTorch tensor objects for storing and updating model
parameters
We covered tensor objects in Chapter 12, Parallelizing Neural Network Training with PyTorch. In PyTorch,
a special tensor object for which gradients need to be computed allows us to store and update the pa-
rameters of our models during training. Such a tensor can be created by just assigning requires_grad
to True on user-specified initial values. Note that as of now (mid-2021), only tensors of floating point
and complex dtype can require gradients. In the following code, we will generate tensor objects of
type float32:

>>> a = torch.tensor(3.14, requires_grad=True)
>>> print(a)
tensor(3.1400, requires_grad=True)
>>> b = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
>>> print(b)
tensor([1., 2., 3.], requires_grad=True)

Chapter 13 413

Notice that requires_grad is set to False by default. This value can be efficiently set to True by run-
ning requires_grad_().

Let’s take a look at the following example:

>>> w = torch.tensor([1.0, 2.0, 3.0])
>>> print(w.requires_grad)
False
>>> w.requires_grad_()
>>> print(w.requires_grad)
True

You will recall that for NN models, initializing model parameters with random weights is necessary to
break the symmetry during backpropagation—otherwise, a multilayer NN would be no more useful
than a single-layer NN like logistic regression. When creating a PyTorch tensor, we can also use a
random initialization scheme. PyTorch can generate random numbers based on a variety of proba-
bility distributions (see https://pytorch.org/docs/stable/torch.html#random-sampling). In the
following example, we will take a look at some standard initialization methods that are also available
in the torch.nn.init module (see https://pytorch.org/docs/stable/nn.init.html).

So, let’s look at how we can create a tensor with Glorot initialization, which is a classic random ini-
tialization scheme that was proposed by Xavier Glorot and Yoshua Bengio. For this, we first create
an empty tensor and an operator called init as an object of class GlorotNormal. Then, we fill this
tensor with values according to the Glorot initialization by calling the xavier_normal_() method. In
the following example, we initialize a tensor of shape 2×3:

>>> import torch.nn as nn
>>> torch.manual_seed(1)
>>> w = torch.empty(2, 3)
>>> nn.init.xavier_normal_(w)
>>> print(w)
tensor([[0.4183, 0.1688, 0.0390],
 [0.3930, -0.2858, -0.1051]])

method_() is an in-place method in PyTorch that is used for operations without making
a copy of the input.

https://pytorch.org/docs/stable/torch.html#random-sampling
https://pytorch.org/docs/stable/nn.init.html

Going Deeper – The Mechanics of PyTorch414

Now, to put this into the context of a more practical use case, let’s see how we can define two Tensor
objects inside the base nn.Module class:

>>> class MyModule(nn.Module):
... def __init__(self):
... super().__init__()
... self.w1 = torch.empty(2, 3, requires_grad=True)
... nn.init.xavier_normal_(self.w1)
... self.w2 = torch.empty(1, 2, requires_grad=True)
... nn.init.xavier_normal_(self.w2)

These two tensors can be then used as weights whose gradients will be computed via automatic dif-
ferentiation.

Xavier (or Glorot) initialization

In the early development of deep learning, it was observed that random uniform or random
normal weight initialization could often result in poor model performance during training.

In 2010, Glorot and Bengio investigated the effect of initialization and proposed a novel,
more robust initialization scheme to facilitate the training of deep networks. The general
idea behind Xavier initialization is to roughly balance the variance of the gradients across
different layers. Otherwise, some layers may get too much attention during training while
the other layers lag behind.

According to the research paper by Glorot and Bengio, if we want to initialize the weights
in a uniform distribution, we should choose the interval of this uniform distribution as
follows:

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 √6√𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 , √6√𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜)

Here, nin is the number of input neurons that are multiplied by the weights, and nout is the
number of output neurons that feed into the next layer. For initializing the weights from
Gaussian (normal) distribution, we recommend that you choose the standard deviation
of this Gaussian to be:

𝜎𝜎 𝜎 √2√𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜
PyTorch supports Xavier initialization in both uniform and normal distributions of weights.

For more information about Glorot and Bengio’s initialization scheme, including the ratio-
nale and mathematical motivation, we recommend the original paper (Understanding the
difficulty of deep feedforward neural networks, Xavier Glorot and Yoshua Bengio, 2010), which
is freely available at http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Chapter 13 415

Computing gradients via automatic differentiation
As you already know, optimizing NNs requires computing the gradients of the loss with respect to the
NN weights. This is required for optimization algorithms such as stochastic gradient descent (SGD).
In addition, gradients have other applications, such as diagnosing the network to find out why an NN
model is making a particular prediction for a test example. Therefore, in this section, we will cover
how to compute gradients of a computation with respect to its input variables.

Computing the gradients of the loss with respect to trainable
variables
PyTorch supports automatic differentiation, which can be thought of as an implementation of the chain
rule for computing gradients of nested functions. Note that for the sake of simplicity, we will use the
term gradient to refer to both partial derivatives and gradients.

When we define a series of operations that results in some output or even intermediate tensors, PyTorch
provides a context for calculating gradients of these computed tensors with respect to its dependent
nodes in the computation graph. To compute these gradients, we can call the backward method from
the torch.autograd module. It computes the sum of gradients of the given tensor with regard to leaf
nodes (terminal nodes) in the graph.

Let’s work with a simple example where we will compute z = wx + b and define the loss as the squared
loss between the target y and prediction z, Loss = (y – z)2. In the more general case, where we may have
multiple predictions and targets, we compute the loss as the sum of the squared error, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿 ∑ (𝑦𝑦𝑖𝑖 − 𝑧𝑧𝑖𝑖)2𝑖𝑖

. In order to implement this computation in PyTorch, we will define the model parameters, w and b,
as variables (tensors with the requires_gradient attribute set to True), and the input, x and y, as
default tensors. We will compute the loss tensor and use it to compute the gradients of the model
parameters, w and b, as follows:

>>> w = torch.tensor(1.0, requires_grad=True)
>>> b = torch.tensor(0.5, requires_grad=True)
>>> x = torch.tensor([1.4])
>>> y = torch.tensor([2.1])
>>> z = torch.add(torch.mul(w, x), b)
>>> loss = (y-z).pow(2).sum()

Partial derivatives and gradients

A partial derivative 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1 can be understood as the rate of change of a multivariate func-
tion—a function with multiple inputs, f(x1, x2, ...), with respect to one of its inputs (here: x1).
The gradient, ∇𝑓𝑓 , of a function is a vector composed of all the inputs’ partial derivatives, ∇𝑓𝑓 𝑓 (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕1 , 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2 , …) .

Going Deeper – The Mechanics of PyTorch416

>>> loss.backward()
>>> print('dL/dw : ', w.grad)
>>> print('dL/db : ', b.grad)
dL/dw : tensor(-0.5600)
dL/db : tensor(-0.4000)

Computing the value z is a forward pass in an NN. We used the backward method on the loss tensor
to compute 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 and 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 . Since this is a very simple example, we can obtain 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 2𝑥𝑥(𝑤𝑤𝑥𝑥 + 𝑏𝑏 𝑏 𝑏𝑏)
symbolically to verify that the computed gradients match the results we obtained in the previous
code example:

>>> # verifying the computed gradient
>>> print(2 * x * ((w * x + b) - y))
tensor([-0.5600], grad_fn=<MulBackward0>)

We leave the verification of b as an exercise for the reader.

Understanding automatic differentiation
Automatic differentiation represents a set of computational techniques for computing gradients of
arbitrary arithmetic operations. During this process, gradients of a computation (expressed as a series
of operations) are obtained by accumulating the gradients through repeated applications of the chain
rule. To better understand the concept behind automatic differentiation, let’s consider a series of
nested computations, y = f(g(h(x))), with input x and output y. This can be broken into a series of steps:

• u0 = x
• u1 = h(x)
• u2 = g(u1)
• u3 = f(u2) = y

The derivative 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 can be computed in two different ways: forward accumulation, which starts with 𝑑𝑑𝑑𝑑3𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑3𝑑𝑑𝑑𝑑2 𝑑𝑑𝑑𝑑2𝑑𝑑𝑑𝑑0 , and reverse accumulation, which starts with 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑0 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1 𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑0 . Note that PyTorch uses the

latter, reverse accumulation, which is more efficient for implementing backpropagation.

Adversarial examples
Computing gradients of the loss with respect to the input example is used for generating adversari-
al examples (or adversarial attacks). In computer vision, adversarial examples are examples that are
generated by adding some small, imperceptible noise (or perturbations) to the input example, which
results in a deep NN misclassifying them. Covering adversarial examples is beyond the scope of this
book, but if you are interested, you can find the original paper by Christian Szegedy et al., Intriguing
properties of neural networks at https://arxiv.org/pdf/1312.6199.pdf.

https://arxiv.org/pdf/1312.6199.pdf

Chapter 13 417

Simplifying implementations of common architectures
via the torch.nn module
You have already seen some examples of building a feedforward NN model (for instance, a multilayer
perceptron) and defining a sequence of layers using the nn.Module class. Before we take a deeper dive
into nn.Module, let’s briefly look at another approach for conjuring those layers via nn.Sequential.

Implementing models based on nn.Sequential
With nn.Sequential (https://pytorch.org/docs/master/generated/torch.nn.Sequential.
html#sequential), the layers stored inside the model are connected in a cascaded way. In the follow-
ing example, we will build a model with two densely (fully) connected layers:

>>> model = nn.Sequential(
... nn.Linear(4, 16),
... nn.ReLU(),
... nn.Linear(16, 32),
... nn.ReLU()
...)
>>> model
Sequential(
 (0): Linear(in_features=4, out_features=16, bias=True)
 (1): ReLU()
 (2): Linear(in_features=16, out_features=32, bias=True)
 (3): ReLU()
)

We specified the layers and instantiated the model after passing the layers to the nn.Sequential class.
The output of the first fully connected layer is used as the input to the first ReLU layer. The output of
the first ReLU layer becomes the input for the second fully connected layer. Finally, the output of the
second fully connected layer is used as the input to the second ReLU layer.

We can further configure these layers, for example, by applying different activation functions, initial-
izers, or regularization methods to the parameters. A comprehensive and complete list of available
options for most of these categories can be found in the official documentation:

• Choosing activation functions: https://pytorch.org/docs/stable/nn.html#non-linear-
activations-weighted-sum-nonlinearity

• Initializing the layer parameters via nn.init: https://pytorch.org/docs/stable/nn.init.
html

• Applying L2 regularization to the layer parameters (to prevent overfitting) via the parameter
weight_decay of some optimizers in torch.optim: https://pytorch.org/docs/stable/optim.
html

https://pytorch.org/docs/master/generated/torch.nn.Sequential.html#sequential
https://pytorch.org/docs/master/generated/torch.nn.Sequential.html#sequential
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.init.html
https://pytorch.org/docs/stable/nn.init.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

Going Deeper – The Mechanics of PyTorch418

• Applying L1 regularization to the layer parameters (to prevent overfitting) by adding the L1
penalty term to the loss tensor, which we will implement next

In the following code example, we will configure the first fully connected layer by specifying the
initial value distribution for the weight. Then, we will configure the second fully connected layer by
computing the L1 penalty term for the weight matrix:

>>> nn.init.xavier_uniform_(model[0].weight)
>>> l1_weight = 0.01
>>> l1_penalty = l1_weight * model[2].weight.abs().sum()

Here, we initialized the weight of the first linear layer with Xavier initialization. And we computed
the L1 norm of the weight of the second linear layer.

Furthermore, we can also specify the type of optimizer and the loss function for training. Again, a
comprehensive list of all available options can be found in the official documentation:

• Optimizers via torch.optim: https://pytorch.org/docs/stable/optim.html#algorithms
• Loss functions: https://pytorch.org/docs/stable/nn.html#loss-functions

Choosing a loss function
Regarding the choices for optimization algorithms, SGD and Adam are the most widely used methods.
The choice of loss function depends on the task; for example, you might use mean square error loss
for a regression problem.

The family of cross-entropy loss functions supplies the possible choices for classification tasks, which
are extensively discussed in Chapter 14, Classifying Images with Deep Convolutional Neural Networks.

Furthermore, you can use the techniques you have learned from previous chapters (such as techniques
for model evaluation from Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter
Tuning) combined with the appropriate metrics for the problem. For example, precision and recall,
accuracy, area under the curve (AUC), and false negative and false positive scores are appropriate
metrics for evaluating classification models.

In this example, we will use the SGD optimizer, and cross-entropy loss for binary classification:

>>> loss_fn = nn.BCELoss()
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

https://pytorch.org/docs/stable/optim.html#algorithms
https://pytorch.org/docs/stable/nn.html#loss-functions

Chapter 13 419

Next, we will look at a more practical example: solving the classic XOR classification problem. First,
we will use the nn.Sequential() class to build the model. Along the way, you will also learn about the
capacity of a model for handling nonlinear decision boundaries. Then, we will cover building a model
via nn.Module that will give us more flexibility and control over the layers of the network.

Solving an XOR classification problem
The XOR classification problem is a classic problem for analyzing the capacity of a model with regard
to capturing the nonlinear decision boundary between two classes. We generate a toy dataset of 200
training examples with two features (x0, x1) drawn from a uniform distribution between [–1, 1). Then,
we assign the ground truth label for training example i according to the following rule:𝑦𝑦(𝑖𝑖) = {0 if 𝑥𝑥0(𝑖𝑖) × 𝑥𝑥1(𝑖𝑖) < 01 otherwise

We will use half of the data (100 training examples) for training and the remaining half for validation.
The code for generating the data and splitting it into the training and validation datasets is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> torch.manual_seed(1)
>>> np.random.seed(1)
>>> x = np.random.uniform(low=-1, high=1, size=(200, 2))
>>> y = np.ones(len(x))
>>> y[x[:, 0] * x[:, 1]<0] = 0
>>> n_train = 100
>>> x_train = torch.tensor(x[:n_train, :], dtype=torch.float32)
>>> y_train = torch.tensor(y[:n_train], dtype=torch.float32)
>>> x_valid = torch.tensor(x[n_train:, :], dtype=torch.float32)
>>> y_valid = torch.tensor(y[n_train:], dtype=torch.float32)
>>> fig = plt.figure(figsize=(6, 6))
>>> plt.plot(x[y==0, 0], x[y==0, 1], 'o', alpha=0.75, markersize=10)
>>> plt.plot(x[y==1, 0], x[y==1, 1], '<', alpha=0.75, markersize=10)
>>> plt.xlabel(r'x_1', size=15)
>>> plt.ylabel(r'x_2', size=15)
>>> plt.show()

Going Deeper – The Mechanics of PyTorch420

The code results in the following scatterplot of the training and validation examples, shown with
different markers based on their class label:

Figure 13.2: Scatterplot of training and validation examples

In the previous subsection, we covered the essential tools that we need to implement a classifier in
PyTorch. We now need to decide what architecture we should choose for this task and dataset. As
a general rule of thumb, the more layers we have, and the more neurons we have in each layer, the
larger the capacity of the model will be. Here, the model capacity can be thought of as a measure of
how readily the model can approximate complex functions. While having more parameters means
the network can fit more complex functions, larger models are usually harder to train (and prone to
overfitting). In practice, it is always a good idea to start with a simple model as a baseline, for example,
a single-layer NN like logistic regression:

>>> model = nn.Sequential(
... nn.Linear(2, 1),
... nn.Sigmoid()
...)
>>> model
Sequential(
 (0): Linear(in_features=2, out_features=1, bias=True)
 (1): Sigmoid()
)

Chapter 13 421

After defining the model, we will initialize the cross-entropy loss function for binary classification
and the SGD optimizer:

>>> loss_fn = nn.BCELoss()
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

Next, we will create a data loader that uses a batch size of 2 for the train data:

>>> from torch.utils.data import DataLoader, TensorDataset
>>> train_ds = TensorDataset(x_train, y_train)
>>> batch_size = 2
>>> torch.manual_seed(1)
>>> train_dl = DataLoader(train_ds, batch_size, shuffle=True)

Now we will train the model for 200 epochs and record a history of training epochs:

>>> torch.manual_seed(1)
>>> num_epochs = 200
>>> def train(model, num_epochs, train_dl, x_valid, y_valid):
... loss_hist_train = [0] * num_epochs
... accuracy_hist_train = [0] * num_epochs
... loss_hist_valid = [0] * num_epochs
... accuracy_hist_valid = [0] * num_epochs
... for epoch in range(num_epochs):
... for x_batch, y_batch in train_dl:
... pred = model(x_batch)[:, 0]
... loss = loss_fn(pred, y_batch)
... loss.backward()
... optimizer.step()
... optimizer.zero_grad()
... loss_hist_train[epoch] += loss.item()
... is_correct = ((pred>=0.5).float() == y_batch).float()
... accuracy_hist_train[epoch] += is_correct.mean()
... loss_hist_train[epoch] /= n_train
... accuracy_hist_train[epoch] /= n_train/batch_size
... pred = model(x_valid)[:, 0]
... loss = loss_fn(pred, y_valid)
... loss_hist_valid[epoch] = loss.item()
... is_correct = ((pred>=0.5).float() == y_valid).float()
... accuracy_hist_valid[epoch] += is_correct.mean()
... return loss_hist_train, loss_hist_valid, \
... accuracy_hist_train, accuracy_hist_valid
>>> history = train(model, num_epochs, train_dl, x_valid, y_valid)

Going Deeper – The Mechanics of PyTorch422

Notice that the history of training epochs includes the train loss and validation loss and the train accu-
racy and validation accuracy, which is useful for visual inspection after training. In the following code,
we will plot the learning curves, including the training and validation loss, as well as their accuracies.

The following code will plot the training performance:

>>> fig = plt.figure(figsize=(16, 4))
>>> ax = fig.add_subplot(1, 2, 1)
>>> plt.plot(history[0], lw=4)
>>> plt.plot(history[1], lw=4)
>>> plt.legend(['Train loss', 'Validation loss'], fontsize=15)
>>> ax.set_xlabel('Epochs', size=15)
>>> ax = fig.add_subplot(1, 2, 2)
>>> plt.plot(history[2], lw=4)
>>> plt.plot(history[3], lw=4)
>>> plt.legend(['Train acc.', 'Validation acc.'], fontsize=15)
>>> ax.set_xlabel('Epochs', size=15)

This results in the following figure, with two separate panels for the losses and accuracies:

Figure 13.3: Loss and accuracy results

As you can see, a simple model with no hidden layer can only derive a linear decision boundary, which
is unable to solve the XOR problem. As a consequence, we can observe that the loss terms for both the
training and the validation datasets are very high, and the classification accuracy is very low.

To derive a nonlinear decision boundary, we can add one or more hidden layers connected via nonlinear
activation functions. The universal approximation theorem states that a feedforward NN with a single
hidden layer and a relatively large number of hidden units can approximate arbitrary continuous func-
tions relatively well. Thus, one approach for tackling the XOR problem more satisfactorily is to add a
hidden layer and compare different numbers of hidden units until we observe satisfactory results on
the validation dataset. Adding more hidden units would correspond to increasing the width of a layer.

Alternatively, we can also add more hidden layers, which will make the model deeper. The advantage
of making a network deeper rather than wider is that fewer parameters are required to achieve a
comparable model capacity.

Chapter 13 423

However, a downside of deep (versus wide) models is that deep models are prone to vanishing and
exploding gradients, which make them harder to train.

As an exercise, try adding one, two, three, and four hidden layers, each with four hidden units. In
the following example, we will take a look at the results of a feedforward NN with two hidden layers:

>>> model = nn.Sequential(
... nn.Linear(2, 4),
... nn.ReLU(),
... nn.Linear(4, 4),
... nn.ReLU(),
... nn.Linear(4, 1),
... nn.Sigmoid()
...)
>>> loss_fn = nn.BCELoss()
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.015)
>>> model
Sequential(
 (0): Linear(in_features=2, out_features=4, bias=True)
 (1): ReLU()
 (2): Linear(in_features=4, out_features=4, bias=True)
 (3): ReLU()
 (4): Linear(in_features=4, out_features=1, bias=True)
 (5): Sigmoid()
)
>>> history = train(model, num_epochs, train_dl, x_valid, y_valid)

We can repeat the previous code for visualization, which produces the following:

Figure 13.4: Loss and accuracy results after adding two hidden layers

Now, we can see that the model is able to derive a nonlinear decision boundary for this data, and the
model reaches 100 percent accuracy on the training dataset. The validation dataset’s accuracy is 95
percent, which indicates that the model is slightly overfitting.

Going Deeper – The Mechanics of PyTorch424

Making model building more flexible with nn.Module
In the previous example, we used the PyTorch Sequential class to create a fully connected NN with
multiple layers. This is a very common and convenient way of building models. However, it unfortu-
nately doesn’t allow us to create more complex models that have multiple input, output, or intermediate
branches. That’s where nn.Module comes in handy.

The alternative way to build complex models is by subclassing nn.Module. In this approach, we create a
new class derived from nn.Module and define the method, __init__(), as a constructor. The forward()
method is used to specify the forward pass. In the constructor function, __init__(), we define the
layers as attributes of the class so that they can be accessed via the self reference attribute. Then, in
the forward() method, we specify how these layers are to be used in the forward pass of the NN. The
code for defining a new class that implements the previous model is as follows:

>>> class MyModule(nn.Module):
... def __init__(self):
... super().__init__()
... l1 = nn.Linear(2, 4)
... a1 = nn.ReLU()
... l2 = nn.Linear(4, 4)
... a2 = nn.ReLU()
... l3 = nn.Linear(4, 1)
... a3 = nn.Sigmoid()
... l = [l1, a1, l2, a2, l3, a3]
... self.module_list = nn.ModuleList(l)
...
... def forward(self, x):
... for f in self.module_list:
... x = f(x)
... return x

Notice that we put all layers in the nn.ModuleList object, which is just a list object composed of
nn.Module items. This makes the code more readable and easier to follow.

Once we define an instance of this new class, we can train it as we did previously:

>>> model = MyModule()
>>> model
MyModule(
 (module_list): ModuleList(
 (0): Linear(in_features=2, out_features=4, bias=True)
 (1): ReLU()
 (2): Linear(in_features=4, out_features=4, bias=True)
 (3): ReLU()

Chapter 13 425

 (4): Linear(in_features=4, out_features=1, bias=True)
 (5): Sigmoid()
)
)
>>> loss_fn = nn.BCELoss()
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.015)
>>> history = train(model, num_epochs, train_dl, x_valid, y_valid)

Next, besides the train history, we will use the mlxtend library to visualize the validation data and
the decision boundary.

Mlxtend can be installed via conda or pip as follows:

conda install mlxtend -c conda-forge
pip install mlxtend

To compute the decision boundary of our model, we need to add a predict() method in the MyModule
class:

>>> def predict(self, x):
... x = torch.tensor(x, dtype=torch.float32)
... pred = self.forward(x)[:, 0]
... return (pred>=0.5).float()

It will return the predicted class (0 or 1) for a sample.

The following code will plot the training performance along with the decision region bias:

>>> from mlxtend.plotting import plot_decision_regions
>>> fig = plt.figure(figsize=(16, 4))
>>> ax = fig.add_subplot(1, 3, 1)
>>> plt.plot(history[0], lw=4)
>>> plt.plot(history[1], lw=4)
>>> plt.legend(['Train loss', 'Validation loss'], fontsize=15)
>>> ax.set_xlabel('Epochs', size=15)
>>> ax = fig.add_subplot(1, 3, 2)
>>> plt.plot(history[2], lw=4)
>>> plt.plot(history[3], lw=4)
>>> plt.legend(['Train acc.', 'Validation acc.'], fontsize=15)
>>> ax.set_xlabel('Epochs', size=15)
>>> ax = fig.add_subplot(1, 3, 3)
>>> plot_decision_regions(X=x_valid.numpy(),
... y=y_valid.numpy().astype(np.integer),
... clf=model)
>>> ax.set_xlabel(r'x_1', size=15)

Going Deeper – The Mechanics of PyTorch426

>>> ax.xaxis.set_label_coords(1, -0.025)
>>> ax.set_ylabel(r'x_2', size=15)
>>> ax.yaxis.set_label_coords(-0.025, 1)
>>> plt.show()

This results in Figure 13.5, with three separate panels for the losses, accuracies, and the scatterplot
of the validation examples, along with the decision boundary:

Figure 13.5: Results, including a scatterplot

Writing custom layers in PyTorch
In cases where we want to define a new layer that is not already supported by PyTorch, we can define
a new class derived from the nn.Module class. This is especially useful when designing a new layer or
customizing an existing layer.

To illustrate the concept of implementing custom layers, let’s consider a simple example. Imagine we
want to define a new linear layer that computes 𝑤𝑤(𝑥𝑥 𝑥 𝑥𝑥) 𝑥 𝑏𝑏 , where 𝜖𝜖 refers to a random variable as a
noise variable. To implement this computation, we define a new class as a subclass of nn.Module. For
this new class, we have to define both the constructor __init__() method and the forward() method.
In the constructor, we define the variables and other required tensors for our customized layer. We
can create variables and initialize them in the constructor if the input_size is given to the constructor.
Alternatively, we can delay the variable initialization (for instance, if we do not know the exact input
shape upfront) and delegate it to another method for late variable creation.

To look at a concrete example, we are going to define a new layer called NoisyLinear, which imple-
ments the computation 𝑤𝑤(𝑥𝑥 𝑥 𝑥𝑥) 𝑥 𝑏𝑏 , which was mentioned in the preceding paragraph:

>>> class NoisyLinear(nn.Module):
... def __init__(self, input_size, output_size,
... noise_stddev=0.1):
... super().__init__()
... w = torch.Tensor(input_size, output_size)
... self.w = nn.Parameter(w) # nn.Parameter is a Tensor
... # that's a module parameter.

Chapter 13 427

... nn.init.xavier_uniform_(self.w)

... b = torch.Tensor(output_size).fill_(0)

... self.b = nn.Parameter(b)

... self.noise_stddev = noise_stddev

...

... def forward(self, x, training=False):

... if training:

... noise = torch.normal(0.0, self.noise_stddev, x.shape)

... x_new = torch.add(x, noise)

... else:

... x_new = x

... return torch.add(torch.mm(x_new, self.w), self.b)

In the constructor, we have added an argument, noise_stddev, to specify the standard deviation for
the distribution of 𝜖𝜖 , which is sampled from a Gaussian distribution. Furthermore, notice that in the
forward() method, we have used an additional argument, training=False. We use it to distinguish
whether the layer is used during training or only for prediction (this is sometimes also called infer-
ence) or evaluation. Also, there are certain methods that behave differently in training and prediction
modes. You will encounter an example of such a method, Dropout, in the upcoming chapters. In the
previous code snippet, we also specified that the random vector, 𝜖𝜖 , was to be generated and added to
the input during training only and not used for inference or evaluation.

Before we go a step further and use our custom NoisyLinear layer in a model, let’s test it in the context
of a simple example.

1. In the following code, we will define a new instance of this layer, and execute it on an input
tensor. Then, we will call the layer three times on the same input tensor:

>>> torch.manual_seed(1)
>>> noisy_layer = NoisyLinear(4, 2)
>>> x = torch.zeros((1, 4))
>>> print(noisy_layer(x, training=True))
tensor([[0.1154, -0.0598]], grad_fn=<AddBackward0>)
>>> print(noisy_layer(x, training=True))
tensor([[0.0432, -0.0375]], grad_fn=<AddBackward0>)
>>> print(noisy_layer(x, training=False))
tensor([[0., 0.]], grad_fn=<AddBackward0>)

Going Deeper – The Mechanics of PyTorch428

2. Now, let’s create a new model similar to the previous one for solving the XOR classification task.
As before, we will use the nn.Module class for model building, but this time, we will use our
NoisyLinear layer as the first hidden layer of the multilayer perceptron. The code is as follows:

>>> class MyNoisyModule(nn.Module):
... def __init__(self):
... super().__init__()
... self.l1 = NoisyLinear(2, 4, 0.07)
... self.a1 = nn.ReLU()
... self.l2 = nn.Linear(4, 4)
... self.a2 = nn.ReLU()
... self.l3 = nn.Linear(4, 1)
... self.a3 = nn.Sigmoid()
...
... def forward(self, x, training=False):
... x = self.l1(x, training)
... x = self.a1(x)
... x = self.l2(x)
... x = self.a2(x)
... x = self.l3(x)
... x = self.a3(x)
... return x
...
... def predict(self, x):
... x = torch.tensor(x, dtype=torch.float32)
... pred = self.forward(x)[:, 0]
... return (pred>=0.5).float()
...
>>> torch.manual_seed(1)
>>> model = MyNoisyModule()
>>> model
MyNoisyModule(
 (l1): NoisyLinear()
 (a1): ReLU()
 (l2): Linear(in_features=4, out_features=4, bias=True)

Note that the outputs for the first two calls differ because the NoisyLinear layer
added random noise to the input tensor. The third call outputs [0, 0] as we didn’t
add noise by specifying training=False.

Chapter 13 429

 (a2): ReLU()
 (l3): Linear(in_features=4, out_features=1, bias=True)
 (a3): Sigmoid()
)

3. Similarly, we will train the model as we did previously. At this time, to compute the predic-
tion on the training batch, we use pred = model(x_batch, True)[:, 0] instead of pred =
model(x_batch)[:, 0]:

>>> loss_fn = nn.BCELoss()
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.015)
>>> torch.manual_seed(1)
>>> loss_hist_train = [0] * num_epochs
>>> accuracy_hist_train = [0] * num_epochs
>>> loss_hist_valid = [0] * num_epochs
>>> accuracy_hist_valid = [0] * num_epochs
>>> for epoch in range(num_epochs):
... for x_batch, y_batch in train_dl:
... pred = model(x_batch, True)[:, 0]
... loss = loss_fn(pred, y_batch)
... loss.backward()
... optimizer.step()
... optimizer.zero_grad()
... loss_hist_train[epoch] += loss.item()
... is_correct = (
... (pred>=0.5).float() == y_batch
...).float()
... accuracy_hist_train[epoch] += is_correct.mean()
... loss_hist_train[epoch] /= 100/batch_size
... accuracy_hist_train[epoch] /= 100/batch_size
... pred = model(x_valid)[:, 0]
... loss = loss_fn(pred, y_valid)
... loss_hist_valid[epoch] = loss.item()
... is_correct = ((pred>=0.5).float() == y_valid).float()
... accuracy_hist_valid[epoch] += is_correct.mean()

4. After the model is trained, we can plot the losses, accuracies, and the decision boundary:

>>> fig = plt.figure(figsize=(16, 4))
>>> ax = fig.add_subplot(1, 3, 1)
>>> plt.plot(loss_hist_train, lw=4)
>>> plt.plot(loss_hist_valid, lw=4)

Going Deeper – The Mechanics of PyTorch430

>>> plt.legend(['Train loss', 'Validation loss'], fontsize=15)
>>> ax.set_xlabel('Epochs', size=15)
>>> ax = fig.add_subplot(1, 3, 2)
>>> plt.plot(accuracy_hist_train, lw=4)
>>> plt.plot(accuracy_hist_valid, lw=4)
>>> plt.legend(['Train acc.', 'Validation acc.'], fontsize=15)
>>> ax.set_xlabel('Epochs', size=15)
>>> ax = fig.add_subplot(1, 3, 3)
>>> plot_decision_regions(
... X=x_valid.numpy(),
... y=y_valid.numpy().astype(np.integer),
... clf=model
...)
>>> ax.set_xlabel(r'x_1', size=15)
>>> ax.xaxis.set_label_coords(1, -0.025)
>>> ax.set_ylabel(r'x_2', size=15)
>>> ax.yaxis.set_label_coords(-0.025, 1)
>>> plt.show()

5. The resulting figure will be as follows:

Figure 13.6: Results using NoisyLinear as the first hidden layer

Here, our goal was to learn how to define a new custom layer subclassed from nn.Module and to
use it as we would use any other standard torch.nn layer. Although, with this particular example,
NoisyLinear did not help to improve the performance, please keep in mind that our objective was
to mainly learn how to write a customized layer from scratch. In general, writing a new customized
layer can be useful in other applications, for example, if you develop a new algorithm that depends
on a new layer beyond the existing ones.

Chapter 13 431

Project one – predicting the fuel efficiency of a car
So far, in this chapter, we have mostly focused on the torch.nn module. We used nn.Sequential to
construct the models for simplicity. Then, we made model building more flexible with nn.Module and
implemented feedforward NNs, to which we added customized layers. In this section, we will work
on a real-world project of predicting the fuel efficiency of a car in miles per gallon (MPG). We will
cover the underlying steps in machine learning tasks, such as data preprocessing, feature engineering,
training, prediction (inference), and evaluation.

Working with feature columns
In machine learning and deep learning applications, we can encounter various different types of fea-
tures: continuous, unordered categorical (nominal), and ordered categorical (ordinal). You will recall
that in Chapter 4, Building Good Training Datasets – Data Preprocessing, we covered different types of
features and learned how to handle each type. Note that while numeric data can be either continuous
or discrete, in the context of machine learning with PyTorch, “numeric” data specifically refers to
continuous data of floating point type.

Sometimes, feature sets are comprised of a mixture of different feature types. For example, consider
a scenario with a set of seven different features, as shown in Figure 13.7:

Figure 13.7: Auto MPG data structure

Going Deeper – The Mechanics of PyTorch432

The features shown in the figure (model year, cylinders, displacement, horsepower, weight, acceler-
ation, and origin) were obtained from the Auto MPG dataset, which is a common machine learning
benchmark dataset for predicting the fuel efficiency of a car in MPG. The full dataset and its descrip-
tion are available from UCI’s machine learning repository at https://archive.ics.uci.edu/ml/
datasets/auto+mpg.

We are going to treat five features from the Auto MPG dataset (number of cylinders, displacement,
horsepower, weight, and acceleration) as “numeric” (here, continuous) features. The model year
can be regarded as an ordered categorical (ordinal) feature. Lastly, the manufacturing origin can be
regarded as an unordered categorical (nominal) feature with three possible discrete values, 1, 2, and
3, which correspond to the US, Europe, and Japan, respectively.

Let’s first load the data and apply the necessary preprocessing steps, including dropping the incomplete
rows, partitioning the dataset into training and test datasets, as well as standardizing the continuous
features:

>>> import pandas as pd
>>> url = 'http://archive.ics.uci.edu/ml/' \
... 'machine-learning-databases/auto-mpg/auto-mpg.data'
>>> column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower',
... 'Weight', 'Acceleration', 'Model Year', 'Origin']
>>> df = pd.read_csv(url, names=column_names,
... na_values = "?", comment='\t',
... sep=" ", skipinitialspace=True)
>>>
>>> ## drop the NA rows
>>> df = df.dropna()
>>> df = df.reset_index(drop=True)
>>>
>>> ## train/test splits:
>>> import sklearn
>>> import sklearn.model_selection
>>> df_train, df_test = sklearn.model_selection.train_test_split(
... df, train_size=0.8, random_state=1
...)
>>> train_stats = df_train.describe().transpose()
>>>
>>> numeric_column_names = [
... 'Cylinders', 'Displacement',
... 'Horsepower', 'Weight',
... 'Acceleration'
...]

https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg

Chapter 13 433

>>> df_train_norm, df_test_norm = df_train.copy(), df_test.copy()
>>> for col_name in numeric_column_names:
... mean = train_stats.loc[col_name, 'mean']
... std = train_stats.loc[col_name, 'std']
... df_train_norm.loc[:, col_name] = \
... (df_train_norm.loc[:, col_name] - mean)/std
... df_test_norm.loc[:, col_name] = \
... (df_test_norm.loc[:, col_name] - mean)/std
>>> df_train_norm.tail()

This results in the following:

Figure 13.8: Preprocessed Auto MG data

The pandas DataFrame that we created via the previous code snippet contains five columns with values
of the type float. These columns will constitute the continuous features.

Next, let’s group the rather fine-grained model year (ModelYear) information into buckets to simplify
the learning task for the model that we are going to train later. Concretely, we are going to assign each
car into one of four year buckets, as follows:

bucket = {0 if year < 731 if 73 ≤ year < 762 if 76 ≤ year < 793 if year ≥ 79

Note that the chosen intervals were selected arbitrarily to illustrate the concepts of “bucketing.” In
order to group the cars into these buckets, we will first define three cut-off values: [73, 76, 79] for the
model year feature. These cut-off values are used to specify half-closed intervals, for instance, (–∞, 73),
[73, 76), [76, 79), and [76, ∞). Then, the original numeric features will be passed to the torch.bucketize
function (https://pytorch.org/docs/stable/generated/torch.bucketize.html) to generate the
indices of the buckets. The code is as follows:

>>> boundaries = torch.tensor([73, 76, 79])
>>> v = torch.tensor(df_train_norm['Model Year'].values)
>>> df_train_norm['Model Year Bucketed'] = torch.bucketize(

https://pytorch.org/docs/stable/generated/torch.bucketize.html

Going Deeper – The Mechanics of PyTorch434

... v, boundaries, right=True

...)
>>> v = torch.tensor(df_test_norm['Model Year'].values)
>>> df_test_norm['Model Year Bucketed'] = torch.bucketize(
... v, boundaries, right=True
...)
>>> numeric_column_names.append('Model Year Bucketed')

We added this bucketized feature column to the Python list numeric_column_names.

Next, we will proceed with defining a list for the unordered categorical feature, Origin. In PyTorch,
There are two ways to work with a categorical feature: using an embedding layer via nn.Embedding
(https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html), or using one-hot-en-
coded vectors (also called indicator). In the encoding approach, for example, index 0 will be encoded
as [1, 0, 0], index 1 will be encoded as [0, 1, 0], and so on. On the other hand, the embedding layer
maps each index to a vector of random numbers of the type float, which can be trained. (You can
think of the embedding layer as a more efficient implementation of a one-hot encoding multiplied
with a trainable weight matrix.)

When the number of categories is large, using the embedding layer with fewer dimensions than the
number of categories can improve the performance.

In the following code snippet, we will use the one-hot-encoding approach on the categorical feature
in order to convert it into the dense format:

>>> from torch.nn.functional import one_hot
>>> total_origin = len(set(df_train_norm['Origin']))
>>> origin_encoded = one_hot(torch.from_numpy(
... df_train_norm['Origin'].values) % total_origin)
>>> x_train_numeric = torch.tensor(
... df_train_norm[numeric_column_names].values)
>>> x_train = torch.cat([x_train_numeric, origin_encoded], 1).float()
>>> origin_encoded = one_hot(torch.from_numpy(
... df_test_norm['Origin'].values) % total_origin)
>>> x_test_numeric = torch.tensor(
... df_test_norm[numeric_column_names].values)
>>> x_test = torch.cat([x_test_numeric, origin_encoded], 1).float()

After encoding the categorical feature into a three-dimensional dense feature, we concatenated it with
the numeric features we processed in the previous step. Finally, we will create the label tensors from
the ground truth MPG values as follows:

>>> y_train = torch.tensor(df_train_norm['MPG'].values).float()
>>> y_test = torch.tensor(df_test_norm['MPG'].values).float()

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

Chapter 13 435

In this section, we have covered the most common approaches for preprocessing and creating fea-
tures in PyTorch.

Training a DNN regression model
Now, after constructing the mandatory features and labels, we will create a data loader that uses a
batch size of 8 for the train data:

>>> train_ds = TensorDataset(x_train, y_train)
>>> batch_size = 8
>>> torch.manual_seed(1)
>>> train_dl = DataLoader(train_ds, batch_size, shuffle=True)

Next, we will build a model with two fully connected layers where one has 8 hidden units and another
has 4:

>>> hidden_units = [8, 4]
>>> input_size = x_train.shape[1]
>>> all_layers = []
>>> for hidden_unit in hidden_units:
... layer = nn.Linear(input_size, hidden_unit)
... all_layers.append(layer)
... all_layers.append(nn.ReLU())
... input_size = hidden_unit
>>> all_layers.append(nn.Linear(hidden_units[-1], 1))
>>> model = nn.Sequential(*all_layers)
>>> model
Sequential(
 (0): Linear(in_features=9, out_features=8, bias=True)
 (1): ReLU()
 (2): Linear(in_features=8, out_features=4, bias=True)
 (3): ReLU()
 (4): Linear(in_features=4, out_features=1, bias=True)
)

After defining the model, we will define the MSE loss function for regression and use stochastic gra-
dient descent for optimization:

>>> loss_fn = nn.MSELoss()
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

Now we will train the model for 200 epochs and display the train loss for every 20 epochs:

>>> torch.manual_seed(1)
>>> num_epochs = 200
>>> log_epochs = 20

Going Deeper – The Mechanics of PyTorch436

>>> for epoch in range(num_epochs):
... loss_hist_train = 0
... for x_batch, y_batch in train_dl:
... pred = model(x_batch)[:, 0]
... loss = loss_fn(pred, y_batch)
... loss.backward()
... optimizer.step()
... optimizer.zero_grad()
... loss_hist_train += loss.item()
... if epoch % log_epochs==0:
... print(f'Epoch {epoch} Loss '
... f'{loss_hist_train/len(train_dl):.4f}')

Epoch 0 Loss 536.1047
Epoch 20 Loss 8.4361
Epoch 40 Loss 7.8695
Epoch 60 Loss 7.1891
Epoch 80 Loss 6.7062
Epoch 100 Loss 6.7599
Epoch 120 Loss 6.3124
Epoch 140 Loss 6.6864
Epoch 160 Loss 6.7648
Epoch 180 Loss 6.2156

After 200 epochs, the train loss was around 5. We can now evaluate the regression performance of the
trained model on the test dataset. To predict the target values on new data points, we can feed their
features to the model:

>>> with torch.no_grad():
... pred = model(x_test.float())[:, 0]
... loss = loss_fn(pred, y_test)
... print(f'Test MSE: {loss.item():.4f}')
... print(f'Test MAE: {nn.L1Loss()(pred, y_test).item():.4f}')
Test MSE: 9.6130
Test MAE: 2.1211

The MSE on the test set is 9.6, and the mean absolute error (MAE) is 2.1. After this regression project,
we will work on a classification project in the next section.

Project two – classifying MNIST handwritten digits
For this classification project, we are going to categorize MNIST handwritten digits. In the previous
section, we covered the four essential steps for machine learning in PyTorch in detail, which we will
need to repeat in this section.

Chapter 13 437

You will recall that in Chapter 12 you learned the way of loading available datasets from the torchvision
module. First, we are going to load the MNIST dataset using the torchvision module.

1. The setup step includes loading the dataset and specifying hyperparameters (the size of the
train set and test set, and the size of mini-batches):

>>> import torchvision
>>> from torchvision import transforms
>>> image_path = './'
>>> transform = transforms.Compose([
... transforms.ToTensor()
...])
>>> mnist_train_dataset = torchvision.datasets.MNIST(
... root=image_path, train=True,
... transform=transform, download=False
...)
>>> mnist_test_dataset = torchvision.datasets.MNIST(
... root=image_path, train=False,
... transform=transform, download=False
...)
>>> batch_size = 64
>>> torch.manual_seed(1)
>>> train_dl = DataLoader(mnist_train_dataset,
... batch_size, shuffle=True)

Here, we constructed a data loader with batches of 64 samples. Next, we will preprocess the
loaded datasets.

2. We preprocess the input features and the labels. The features in this project are the pixels
of the images we read from Step 1. We defined a custom transformation using torchvision.
transforms.Compose. In this simple case, our transformation consisted only of one method,
ToTensor(). The ToTensor() method converts the pixel features into a floating type tensor
and also normalizes the pixels from the [0, 255] to [0, 1] range. In Chapter 14, Classifying Imag-
es with Deep Convolutional Neural Networks, we will see some additional data transformation
methods when we work with more complex image datasets. The labels are integers from 0 to
9 representing ten digits. Hence, we don’t need to do any scaling or further conversion. Note
that we can access the raw pixels using the data attribute, and don’t forget to scale them to
the range [0, 1].

We will construct the model in the next step once the data is preprocessed.

Going Deeper – The Mechanics of PyTorch438

3. Construct the NN model:

>>> hidden_units = [32, 16]
>>> image_size = mnist_train_dataset[0][0].shape
>>> input_size = image_size[0] * image_size[1] * image_size[2]
>>> all_layers = [nn.Flatten()]
>>> for hidden_unit in hidden_units:
... layer = nn.Linear(input_size, hidden_unit)
... all_layers.append(layer)
... all_layers.append(nn.ReLU())
... input_size = hidden_unit
>>> all_layers.append(nn.Linear(hidden_units[-1], 10))
>>> model = nn.Sequential(*all_layers)
>>> model
Sequential(
 (0): Flatten(start_dim=1, end_dim=-1)
 (1): Linear(in_features=784, out_features=32, bias=True)
 (2): ReLU()
 (3): Linear(in_features=32, out_features=16, bias=True)
 (4): ReLU()
 (5): Linear(in_features=16, out_features=10, bias=True)
)

4. Use the model for training, evaluation, and prediction:

>>> loss_fn = nn.CrossEntropyLoss()
>>> optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
>>> torch.manual_seed(1)
>>> num_epochs = 20
>>> for epoch in range(num_epochs):
... accuracy_hist_train = 0
... for x_batch, y_batch in train_dl:

Note that the model starts with a flatten layer that flattens an input image into
a one-dimensional tensor. This is because the input images are in the shape of
[1, 28, 28]. The model has two hidden layers, with 32 and 16 units respectively.
And it ends with an output layer of ten units representing ten classes, activated
by a softmax function. In the next step, we will train the model on the train set
and evaluate it on the test set.

Chapter 13 439

... pred = model(x_batch)

... loss = loss_fn(pred, y_batch)

... loss.backward()

... optimizer.step()

... optimizer.zero_grad()

... is_correct = (

... torch.argmax(pred, dim=1) == y_batch

...).float()

... accuracy_hist_train += is_correct.sum()

... accuracy_hist_train /= len(train_dl.dataset)

... print(f'Epoch {epoch} Accuracy '

... f'{accuracy_hist_train:.4f}')
Epoch 0 Accuracy 0.8531
...
Epoch 9 Accuracy 0.9691
...
Epoch 19 Accuracy 0.9813

We used the cross-entropy loss function for multiclass classification and the Adam optimizer
for gradient descent. We will talk about the Adam optimizer in Chapter 14. We trained the model
for 20 epochs and displayed the train accuracy for every epoch. The trained model reached an
accuracy of 96.3 percent on the training set and we will evaluate it on the testing set:

>>> pred = model(mnist_test_dataset.data / 255.)
>>> is_correct = (
... torch.argmax(pred, dim=1) ==
... mnist_test_dataset.targets
...).float()
>>> print(f'Test accuracy: {is_correct.mean():.4f}')
Test accuracy: 0.9645

The test accuracy is 95.6 percent. You have learned how to solve a classification problem using PyTorch.

Higher-level PyTorch APIs: a short introduction to
PyTorch-Lightning
In recent years, the PyTorch community developed several different libraries and APIs on top of Py-
Torch. Notable examples include fastai (https://docs.fast.ai/), Catalyst (https://github.com/
catalyst-team/catalyst), PyTorch Lightning (https://www.pytorchlightning.ai), (https://
lightning-flash.readthedocs.io/en/latest/quickstart.html), and PyTorch-Ignite (https://
github.com/pytorch/ignite).

https://docs.fast.ai/
https://github.com/catalyst-team/catalyst
https://github.com/catalyst-team/catalyst
https://www.pytorchlightning.ai
https://lightning-flash.readthedocs.io/en/latest/quickstart.html
https://lightning-flash.readthedocs.io/en/latest/quickstart.html
https://github.com/pytorch/ignite
https://github.com/pytorch/ignite

Going Deeper – The Mechanics of PyTorch440

In this section, we will explore PyTorch Lightning (Lightning for short), which is a widely used Py-
Torch library that makes training deep neural networks simpler by removing much of the boilerplate
code. However, while Lightning’s focus lies in simplicity and flexibility, it also allows us to use many
advanced features such as multi-GPU support and fast low-precision training, which you can learn
about in the official documentation at https://pytorch-lightning.rtfd.io/en/latest/.

In an earlier section, Project two – classifying MNIST handwritten digits, we implemented a multilayer
perceptron for classifying handwritten digits in the MNIST dataset. In the next subsections, we will
reimplement this classifier using Lightning.

Setting up the PyTorch Lightning model
We start by implementing the model, which we will train in the next subsections. Defining a model
for Lightning is relatively straightforward as it is based on regular Python and PyTorch code. All that
is required to implement a Lightning model is to use LightningModule instead of the regular PyTorch
module. To take advantage of PyTorch’s convenience functions, such as the trainer API and automatic
logging, we just define a few specifically named methods, which we will see in the following code:

import pytorch_lightning as pl
import torch
import torch.nn as nn

from torchmetrics import Accuracy

class MultiLayerPerceptron(pl.LightningModule):
 def __init__(self, image_shape=(1, 28, 28), hidden_units=(32, 16)):
 super().__init__()

There is also a bonus introduction to PyTorch-Ignite at https://github.com/rasbt/
machine-learning-book/blob/main/ch13/ch13_part4_ignite.ipynb.

Installing PyTorch Lightning

Lightning can be installed via pip or conda, depending on your preference. For instance,
the command for installing Lightning via pip is as follows:

pip install pytorch-lightning

The following is the command for installing Lightning via conda:

conda install pytorch-lightning -c conda-forge

The code in the following subsections is based on PyTorch Lightning version 1.5, which
you can install by replacing pytorch-lightning with pytorch-lightning==1.5 in these
commands.

https://pytorch-lightning.rtfd.io/en/latest/
https://github.com/rasbt/machine-learning-book/blob/main/ch13/ch13_part4_ignite.ipynb
https://github.com/rasbt/machine-learning-book/blob/main/ch13/ch13_part4_ignite.ipynb

Chapter 13 441

 # new PL attributes:
 self.train_acc = Accuracy()
 self.valid_acc = Accuracy()
 self.test_acc = Accuracy()

 # Model similar to previous section:
 input_size = image_shape[0] * image_shape[1] * image_shape[2]
 all_layers = [nn.Flatten()]
 for hidden_unit in hidden_units:
 layer = nn.Linear(input_size, hidden_unit)
 all_layers.append(layer)
 all_layers.append(nn.ReLU())
 input_size = hidden_unit

 all_layers.append(nn.Linear(hidden_units[-1], 10))
 self.model = nn.Sequential(*all_layers)

 def forward(self, x):
 x = self.model(x)
 return x

 def training_step(self, batch, batch_idx):
 x, y = batch
 logits = self(x)
 loss = nn.functional.cross_entropy(self(x), y)
 preds = torch.argmax(logits, dim=1)
 self.train_acc.update(preds, y)
 self.log("train_loss", loss, prog_bar=True)
 return loss

 def training_epoch_end(self, outs):
 self.log("train_acc", self.train_acc.compute())

 def validation_step(self, batch, batch_idx):
 x, y = batch
 logits = self(x)
 loss = nn.functional.cross_entropy(self(x), y)
 preds = torch.argmax(logits, dim=1)
 self.valid_acc.update(preds, y)
 self.log("valid_loss", loss, prog_bar=True)
 self.log("valid_acc", self.valid_acc.compute(), prog_bar=True)

Going Deeper – The Mechanics of PyTorch442

 return loss

 def test_step(self, batch, batch_idx):
 x, y = batch
 logits = self(x)
 loss = nn.functional.cross_entropy(self(x), y)
 preds = torch.argmax(logits, dim=1)
 self.test_acc.update(preds, y)
 self.log("test_loss", loss, prog_bar=True)
 self.log("test_acc", self.test_acc.compute(), prog_bar=True)
 return loss

 def configure_optimizers(self):
 optimizer = torch.optim.Adam(self.parameters(), lr=0.001)
 return optimizer

Let’s now discuss the different methods one by one. As you can see, the __init__ constructor contains
the same model code that we used in a previous subsection. What’s new is that we added the accuracy
attributes such as self.train_acc = Accuracy(). These will allow us to track the accuracy during
training. Accuracy was imported from the torchmetrics module, which should be automatically
installed with Lightning. If you cannot import torchmetrics, you can try to install it via pip install
torchmetrics. More information can be found at https://torchmetrics.readthedocs.io/en/latest/
pages/quickstart.html.

The forward method implements a simple forward pass that returns the logits (outputs of the last fully
connected layer of our network before the softmax layer) when we call our model on the input data.
The logits, computed via the forward method by calling self(x), are used for the training, validation,
and test steps, which we’ll describe next.

The training_step, training_epoch_end, validation_step, test_step, and configure_optimizers
methods are methods that are specifically recognized by Lightning. For instance, training_step de-
fines a single forward pass during training, where we also keep track of the accuracy and loss so that
we can analyze these later. Note that we compute the accuracy via self.train_acc.update(preds, y)
but don’t log it yet. The training_step method is executed on each individual batch during training,
and via the training_epoch_end method, which is executed at the end of each training epoch, we
compute the training set accuracy from the accuracy values we accumulated via training.

The validation_step and test_step methods define, analogous to the training_step method,
how the validation and test evaluation process should be computed. Similar to training_step, each
validation_step and test_step receives a single batch, which is why we log the accuracy via respective
accuracy attributes derived from Accuracy of torchmetric. However, note that validation_step is
only called in certain intervals, for example, after each training epoch. This is why we log the validation
accuracy inside the validation step, whereas with the training accuracy, we log it after each training
epoch, otherwise, the accuracy plot that we inspect later will look too noisy.

https://torchmetrics.readthedocs.io/en/latest/pages/quickstart.html
https://torchmetrics.readthedocs.io/en/latest/pages/quickstart.html

Chapter 13 443

Finally, via the configure_optimizers method, we specify the optimizer used for training. The fol-
lowing two subsections will discuss how we can set up the dataset and how we can train the model.

Setting up the data loaders for Lightning
There are three main ways in which we can prepare the dataset for Lightning. We can:

• Make the dataset part of the model
• Set up the data loaders as usual and feed them to the fit method of a Lightning Trainer—the

Trainer is introduced in the next subsection
• Create a LightningDataModule

Here, we are going to use a LightningDataModule, which is the most organized approach. The
LightningDataModule consists of five main methods, as we can see in the following:

from torch.utils.data import DataLoader
from torch.utils.data import random_split
from torchvision.datasets import MNIST
from torchvision import transforms

class MnistDataModule(pl.LightningDataModule):
 def __init__(self, data_path='./'):
 super().__init__()
 self.data_path = data_path
 self.transform = transforms.Compose([transforms.ToTensor()])

 def prepare_data(self):
 MNIST(root=self.data_path, download=True)

 def setup(self, stage=None):
 # stage is either 'fit', 'validate', 'test', or 'predict'
 # here note relevant
 mnist_all = MNIST(
 root=self.data_path,
 train=True,
 transform=self.transform,
 download=False
)

 self.train, self.val = random_split(
 mnist_all, [55000, 5000], generator=torch.Generator().manual_
seed(1)
)

Going Deeper – The Mechanics of PyTorch444

 self.test = MNIST(
 root=self.data_path,
 train=False,
 transform=self.transform,
 download=False
)

 def train_dataloader(self):
 return DataLoader(self.train, batch_size=64, num_workers=4)

 def val_dataloader(self):
 return DataLoader(self.val, batch_size=64, num_workers=4)

 def test_dataloader(self):
 return DataLoader(self.test, batch_size=64, num_workers=4)

In the prepare_data method, we define general steps, such as downloading the dataset. In the setup
method, we define the datasets used for training, validation, and testing. Note that MNIST does not have
a dedicated validation split, which is why we use the random_split function to divide the 60,000-ex-
ample training set into 55,000 examples for training and 5,000 examples for validation.

The data loader methods are self-explanatory and define how the respective datasets are loaded. Now,
we can initialize the data module and use it for training, validation, and testing in the next subsections:

torch.manual_seed(1)
mnist_dm = MnistDataModule()

Training the model using the PyTorch Lightning Trainer class
Now we can reap the rewards from setting up the model with the specifically named methods, as well
as the Lightning data module. Lightning implements a Trainer class that makes the training model
super convenient by taking care of all the intermediate steps, such as calling zero_grad(), backward(),
and optimizer.step() for us. Also, as a bonus, it lets us easily specify one or more GPUs to use (if
available):

mnistclassifier = MultiLayerPerceptron()

if torch.cuda.is_available(): # if you have GPUs
 trainer = pl.Trainer(max_epochs=10, gpus=1)
else:
 trainer = pl.Trainer(max_epochs=10)

trainer.fit(model=mnistclassifier, datamodule=mnist_dm)

Chapter 13 445

Via the preceding code, we train our multilayer perceptron for 10 epochs. During training, we see a
handy progress bar that keeps track of the epoch and core metrics such as the training and validation
losses:

Epoch 9: 100% 939/939 [00:07<00:00, 130.42it/s, loss=0.1, v_num=0, train_
loss=0.260, valid_loss=0.166, valid_acc=0.949]

After the training has finished, we can also inspect the metrics we logged in more detail, as we will
see in the next subsection.

Evaluating the model using TensorBoard
In the previous section, we experienced the convenience of the Trainer class. Another nice feature
of Lightning is its logging capabilities. Recall that we specified several self.log steps in our Light-
ning model earlier. After, and even during training, we can visualize them in TensorBoard. (Note that
Lightning supports other loggers as well; for more information, please see the official documentation
at https://pytorch-lightning.readthedocs.io/en/latest/common/loggers.html.)

By default, Lightning tracks the training in a subfolder named lightning_logs. To visualize the
training runs, you can execute the following code in the command-line terminal, which will open
TensorBoard in your browser:

tensorboard --logdir lightning_logs/

Alternatively, if you are running the code in a Jupyter notebook, you can add the following code to a
Jupyter notebook cell to show the TensorBoard dashboard in the notebook directly:

%load_ext tensorboard
%tensorboard --logdir lightning_logs/

Installing TensorBoard

TensorBoard can be installed via pip or conda, depending on your preference. For instance,
the command for installing TensorBoard via pip is as follows:

pip install tensorboard

The following is the command for installing Lightning via conda:

conda install tensorboard -c conda-forge

The code in the following subsection is based on TensorBoard version 2.4, which you can
install by replacing tensorboard with tensorboard==2.4 in these commands.

https://pytorch-lightning.readthedocs.io/en/latest/common/loggers.html

Going Deeper – The Mechanics of PyTorch446

Figure 13.9 shows the TensorBoard dashboard with the logged training and validation accuracy. Note
that there is a version_0 toggle shown in the lower-left corner. If you run the training code multiple
times, Lightning will track them as separate subfolders: version_0, version_1, version_2, and so forth:

Figure 13.9: TensorBoard dashboard

Chapter 13 447

By looking at the training and validation accuracies in Figure 13.9, we can hypothesize that training
the model for a few additional epochs can improve performance.

Lightning allows us to load a trained model and train it for additional epochs conveniently. As men-
tioned previously, Lightning tracks the individual training runs via subfolders. In Figure 13.10, we
see the contents of the version_0 subfolder, which contains log files and a model checkpoint for
reloading the model:

Figure 13.10: PyTorch Lightning log files

For instance, we can use the following code to load the latest model checkpoint from this folder and
train the model via fit:

if torch.cuda.is_available(): # if you have GPUs
 trainer = pl.Trainer(max_epochs=15, resume_from_checkpoint='./lightning_
logs/version_0/checkpoints/epoch=8-step=7739.ckpt', gpus=1)
else:
 trainer = pl.Trainer(max_epochs=15, resume_from_checkpoint='./lightning_
logs/version_0/checkpoints/epoch=8-step=7739.ckpt')

trainer.fit(model=mnistclassifier, datamodule=mnist_dm)

Going Deeper – The Mechanics of PyTorch448

Here, we set max_epochs to 15, which trained the model for 5 additional epochs (previously, we trained
it for 10 epochs).

Now, let’s take a look at the TensorBoard dashboard in Figure 13.11 and see whether training the model
for a few additional epochs was worthwhile:

Figure 13.11: TensorBoard dashboard after training for five more epochs

Chapter 13 449

As we can see in Figure 13.11, TensorBoard allows us to show the results from the additional training
epochs (version_1) next to the previous ones (version_0), which is very convenient. Indeed, we can
see that training for five more epochs improved the validation accuracy. At this point, we may decide
to train the model for more epochs, which we leave as an exercise to you.

Once we are finished with training, we can evaluate the model on the test set using the following code:

trainer.test(model=mnistclassifier, datamodule=mnist_dm)

The resulting test set performance, after training for 15 epochs in total, is approximately 95 percent:

[{'test_loss': 0.14912301301956177, 'test_acc': 0.9499600529670715}]

Note that PyTorch Lightning also saves the model automatically for us. If you want to reuse the model
later, you can conveniently load it via the following code:

model = MultiLayerPerceptron.load_from_checkpoint("path/to/checkpoint.ckpt")

Summary
In this chapter, we covered PyTorch’s most essential and useful features. We started by discussing
PyTorch’s dynamic computation graph, which makes implementing computations very convenient.
We also covered the semantics of defining PyTorch tensor objects as model parameters.

After we considered the concept of computing partial derivatives and gradients of arbitrary functions,
we covered the torch.nn module in more detail. It provides us with a user-friendly interface for
building more complex deep NN models. Finally, we concluded this chapter by solving a regression
and classification problem using what we have discussed so far.

Now that we have covered the core mechanics of PyTorch, the next chapter will introduce the concept
behind convolutional neural network (CNN) architectures for deep learning. CNNs are powerful
models and have shown great performance in the field of computer vision.

Learn more about PyTorch Lightning

To learn more about Lightning, please visit the official website, which contains tutorials
and examples, at https://pytorch-lightning.readthedocs.io.

Lightning also has an active community on Slack that welcomes new users and con-
tributors. To find out more, please visit the official Lightning website at https://www.
pytorchlightning.ai.

https://pytorch-lightning.readthedocs.io
https://www.pytorchlightning.ai
https://www.pytorchlightning.ai

Going Deeper – The Mechanics of PyTorch450

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

14
Classifying Images with Deep
Convolutional Neural Networks

In the previous chapter, we looked in depth at different aspects of the PyTorch neural network and
automatic differentiation modules, you became familiar with tensors and decorating functions, and
you learned how to work with torch.nn. In this chapter, you will now learn about convolutional neural
networks (CNNs) for image classification. We will start by discussing the basic building blocks of CNNs,
using a bottom-up approach. Then, we will take a deeper dive into the CNN architecture and explore
how to implement CNNs in PyTorch. In this chapter, we will cover the following topics:

• Convolution operations in one and two dimensions
• The building blocks of CNN architectures
• Implementing deep CNNs in PyTorch
• Data augmentation techniques for improving the generalization performance
• Implementing a facial CNN classifier for recognizing if someone is smiling or not

The building blocks of CNNs
CNNs are a family of models that were originally inspired by how the visual cortex of the human
brain works when recognizing objects. The development of CNNs goes back to the 1990s, when Yann
LeCun and his colleagues proposed a novel NN architecture for classifying handwritten digits from
images (Handwritten Digit Recognition with a Back-Propagation Network by Y. LeCun, and colleagues,
1989, published at the Neural Information Processing Systems (NeurIPS) conference).

Classifying Images with Deep Convolutional Neural Networks452

Due to the outstanding performance of CNNs for image classification tasks, this particular type of
feedforward NN gained a lot of attention and led to tremendous improvements in machine learning
for computer vision. Several years later, in 2019, Yann LeCun received the Turing award (the most
prestigious award in computer science) for his contributions to the field of artificial intelligence (AI),
along with two other researchers, Yoshua Bengio and Geoffrey Hinton, whose names you encountered
in previous chapters.

In the following sections, we will discuss the broader concepts of CNNs and why convolutional ar-
chitectures are often described as “feature extraction layers.” Then, we will delve into the theoretical
definition of the type of convolution operation that is commonly used in CNNs and walk through
examples of computing convolutions in one and two dimensions.

Understanding CNNs and feature hierarchies
Successfully extracting salient (relevant) features is key to the performance of any machine learning
algorithm, and traditional machine learning models rely on input features that may come from a
domain expert or are based on computational feature extraction techniques.

Certain types of NNs, such as CNNs, can automatically learn the features from raw data that are most
useful for a particular task. For this reason, it’s common to consider CNN layers as feature extractors:
the early layers (those right after the input layer) extract low-level features from raw data, and the
later layers (often fully connected layers, as in a multilayer perceptron (MLP)) use these features to
predict a continuous target value or class label.

Certain types of multilayer NNs, and in particular, deep CNNs, construct a so-called feature hierarchy
by combining the low-level features in a layer-wise fashion to form high-level features. For example,
if we’re dealing with images, then low-level features, such as edges and blobs, are extracted from the
earlier layers, which are combined to form high-level features. These high-level features can form
more complex shapes, such as the general contours of objects like buildings, cats, or dogs.

The human visual cortex

The original discovery of how the visual cortex of our brain functions was made by David
H. Hubel and Torsten Wiesel in 1959, when they inserted a microelectrode into the primary
visual cortex of an anesthetized cat. They observed that neurons respond differently after
projecting different patterns of light in front of the cat. This eventually led to the discovery
of the different layers of the visual cortex. While the primary layer mainly detects edges and
straight lines, higher-order layers focus more on extracting complex shapes and patterns.

Chapter 14 453

As you can see in Figure 14.1, a CNN computes feature maps from an input image, where each element
comes from a local patch of pixels in the input image:

Figure 14.1: Creating feature maps from an image (photo by Alexander Dummer on Unsplash)

This local patch of pixels is referred to as the local receptive field. CNNs will usually perform very
well on image-related tasks, and that’s largely due to two important ideas:

• Sparse connectivity: A single element in the feature map is connected to only a small patch
of pixels. (This is very different from connecting to the whole input image, as in the case of
MLPs. You may find it useful to look back and compare how we implemented a fully connected
network that connected to the whole image in Chapter 11, Implementing a Multilayer Artificial
Neural Network from Scratch.)

• Parameter sharing: The same weights are used for different patches of the input image.

As a direct consequence of these two ideas, replacing a conventional, fully connected MLP with a
convolution layer substantially decreases the number of weights (parameters) in the network, and
we will see an improvement in the ability to capture salient features. In the context of image data, it
makes sense to assume that nearby pixels are typically more relevant to each other than pixels that
are far away from each other.

Typically, CNNs are composed of several convolutional and subsampling layers that are followed
by one or more fully connected layers at the end. The fully connected layers are essentially an MLP,
where every input unit, i, is connected to every output unit, j, with weight wij (which we covered in
more detail in Chapter 11).

Please note that subsampling layers, commonly known as pooling layers, do not have any learnable
parameters; for instance, there are no weights or bias units in pooling layers. However, both the
convolutional and fully connected layers have weights and biases that are optimized during training.

Classifying Images with Deep Convolutional Neural Networks454

In the following sections, we will study convolutional and pooling layers in more detail and see how
they work. To understand how convolution operations work, let’s start with a convolution in one
dimension, which is sometimes used for working with certain types of sequence data, such as text.
After discussing one-dimensional convolutions, we will work through the typical two-dimensional
ones that are commonly applied to two-dimensional images.

Performing discrete convolutions
A discrete convolution (or simply convolution) is a fundamental operation in a CNN. Therefore, it’s
important to understand how this operation works. In this section, we will cover the mathematical
definition and discuss some of the naive algorithms to compute convolutions of one-dimensional
tensors (vectors) and two-dimensional tensors (matrices).

Please note that the formulas and descriptions in this section are solely for understanding how con-
volution operations in CNNs work. Indeed, much more efficient implementations of convolutional
operations already exist in packages such as PyTorch, as you will see later in this chapter.

Discrete convolutions in one dimension
Let’s start with some basic definitions and notations that we are going to use. A discrete convolution
for two vectors, x and w, is denoted by 𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚 , in which vector x is our input (sometimes called
signal) and w is called the filter or kernel. A discrete convolution is mathematically defined as follows:

𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚[𝑖𝑖] 𝒚 ∑ 𝑥𝑥[𝑖𝑖 𝑖 𝑖𝑖] 𝑤𝑤[𝑖𝑖]+∞
𝑘𝑘𝑘𝑘∞

As mentioned earlier, the brackets, [], are used to denote the indexing for vector elements. The index,
i, runs through each element of the output vector, y. There are two odd things in the preceding formula
that we need to clarify: –∞ to +∞ indices and negative indexing for x.

Mathematical notation

In this chapter, we will use subscript to denote the size of a multidimensional array (ten-
sor); for example, 𝐴𝐴𝑛𝑛1×𝑛𝑛2 is a two-dimensional array of size n1×n2. We use brackets, [], to
denote the indexing of a multidimensional array. For example, A[i, j] refers to the element
at index i, j of matrix A. Furthermore, note that we use a special symbol, ∗ , to denote the
convolution operation between two vectors or matrices, which is not to be confused with
the multiplication operator, *, in Python.

Chapter 14 455

The fact that the sum runs through indices from –∞ to +∞ seems odd, mainly because in machine
learning applications, we always deal with finite feature vectors. For example, if x has 10 features with
indices 0, 1, 2, ..., 8, 9, then indices –∞: –1 and 10: +∞ are out of bounds for x. Therefore, to correctly
compute the summation shown in the preceding formula, it is assumed that x and w are filled with
zeros. This will result in an output vector, y, that also has infinite size, with lots of zeros as well. Since
this is not useful in practical situations, x is padded only with a finite number of zeros.

This process is called zero-padding or simply padding. Here, the number of zeros padded on each
side is denoted by p. An example padding of a one-dimensional vector, x, is shown in Figure 14.2:

Figure 14.2: An example of padding

Let’s assume that the original input, x, and filter, w, have n and m elements, respectively, where 𝑚𝑚 𝑚 𝑚𝑚 .
Therefore, the padded vector, xp, has size n + 2p. The practical formula for computing a discrete con-
volution will change to the following:

𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚[𝑖𝑖] 𝒚 ∑ 𝑥𝑥𝑝𝑝[𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑖] 𝑤𝑤[𝑖𝑖]𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘

Now that we have solved the infinite index issue, the second issue is indexing x with i + m – k. The
important point to notice here is that x and w are indexed in different directions in this summation.
Computing the sum with one index going in the reverse direction is equivalent to computing the sum
with both indices in the forward direction after flipping one of those vectors, x or w, after they are
padded. Then, we can simply compute their dot product. Let’s assume we flip (rotate) the filter, w, to
get the rotated filter, wr. Then, the dot product, x[i: i + m].wr, is computed to get one element, y[i], where
x[i: i + m] is a patch of x with size m. This operation is repeated like in a sliding window approach to
get all the output elements.

Classifying Images with Deep Convolutional Neural Networks456

The following figure provides an example with x = [3 2 1 7 1 2 5 4] and 𝒘𝒘 𝒘 [12 34 1 14] so that the first
three output elements are computed:

Figure 14.3: The steps for computing a discrete convolution

You can see in the preceding example that the padding size is zero (p = 0). Notice that the rotated filter,
wr, is shifted by two cells each time we shift. This shift is another hyperparameter of a convolution,
the stride, s. In this example, the stride is two, s = 2. Note that the stride has to be a positive number
smaller than the size of the input vector. We will talk more about padding and strides in the next section.

Cross-correlation

Cross-correlation (or simply correlation) between an input vector and a filter is denoted
by 𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚 and is very much like a sibling of a convolution, with a small difference: in
cross-correlation, the multiplication is performed in the same direction. Therefore, it
is not a requirement to rotate the filter matrix, w, in each dimension. Mathematically,
cross-correlation is defined as follows:

𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚[𝑖𝑖] 𝒚 ∑ 𝑥𝑥[𝑖𝑖 𝑖 𝑖𝑖] 𝑤𝑤[𝑖𝑖]+∞
𝑘𝑘𝑘𝑘∞

The same rules for padding and stride may be applied to cross-correlation as well. Note
that most deep learning frameworks (including PyTorch) implement cross-correlation
but refer to it as convolution, which is a common convention in the deep learning field.

Chapter 14 457

Padding inputs to control the size of the output feature maps
So far, we’ve only used zero-padding in convolutions to compute finite-sized output vectors. Technically,
padding can be applied with any 𝑝𝑝 𝑝 𝑝 . Depending on the choice of p, boundary cells may be treated
differently than the cells located in the middle of x.

Now, consider an example where n = 5 and m = 3. Then, with p = 0, x[0] is only used in computing one
output element (for instance, y[0]), while x[1] is used in the computation of two output elements (for
instance, y[0] and y[1]). So, you can see that this different treatment of elements of x can artificially
put more emphasis on the middle element, x[2], since it has appeared in most computations. We can
avoid this issue if we choose p = 2, in which case, each element of x will be involved in computing
three elements of y.

Furthermore, the size of the output, y, also depends on the choice of the padding strategy we use.

There are three modes of padding that are commonly used in practice: full, same, and valid.

In full mode, the padding parameter, p, is set to p = m – 1. Full padding increases the dimensions of
the output; thus, it is rarely used in CNN architectures.

The same padding mode is usually used to ensure that the output vector has the same size as the input
vector, x. In this case, the padding parameter, p, is computed according to the filter size, along with
the requirement that the input size and output size are the same.

Finally, computing a convolution in valid mode refers to the case where p = 0 (no padding).

Figure 14.4 illustrates the three different padding modes for a simple 5×5 pixel input with a kernel
size of 3×3 and a stride of 1:

Figure 14.4: The three modes of padding

The most commonly used padding mode in CNNs is same padding. One of its advantages over the
other padding modes is that same padding preserves the size of the vector—or the height and width
of the input images when we are working on image-related tasks in computer vision—which makes
designing a network architecture more convenient.

Classifying Images with Deep Convolutional Neural Networks458

One big disadvantage of valid padding versus full and same padding is that the volume of the tensors
will decrease substantially in NNs with many layers, which can be detrimental to the network’s per-
formance. In practice, you should preserve the spatial size using same padding for the convolutional
layers and decrease the spatial size via pooling layers or convolutional layers with stride 2 instead,
as described in Striving for Simplicity: The All Convolutional Net ICLR (workshop track), by Jost Tobias
Springenberg, Alexey Dosovitskiy, and others, 2015 (https://arxiv.org/abs/1412.6806).

As for full padding, its size results in an output larger than the input size. Full padding is usually used
in signal processing applications where it is important to minimize boundary effects. However, in a
deep learning context, boundary effects are usually not an issue, so we rarely see full padding being
used in practice.

Determining the size of the convolution output
The output size of a convolution is determined by the total number of times that we shift the filter,
w, along the input vector. Let’s assume that the input vector is of size n and the filter is of size m.
Then, the size of the output resulting from 𝒚𝒚 𝒚 𝒚𝒚 𝒚 𝒚𝒚 , with padding p and stride s, would be deter-
mined as follows: 𝑜𝑜 𝑜 𝑜𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛𝑛𝑠𝑠 ⌋ 𝑛 1

Here, ⌊⋅⌋ denotes the floor operation.

Consider the following two cases:

• Compute the output size for an input vector of size 10 with a convolution kernel of size 5,
padding 2, and stride 1:𝑛𝑛 𝑛 10, 𝑚𝑚 𝑛 𝑚,𝑚𝑚𝑚𝑚𝑚𝑚 𝑛 𝑚,𝑚𝑚𝑚𝑚𝑚𝑚 𝑛 1 𝑚 𝑚𝑚 𝑛 𝑚10 + 𝑚 × 𝑚 − 𝑚1] + 1 𝑛 10

(Note that in this case, the output size turns out to be the same as the input; therefore, we can
conclude this to be same padding mode.)

• How does the output size change for the same input vector when we have a kernel of size 3
and stride 2?𝑛𝑛 𝑛 10, 𝑚𝑚 𝑛 𝑚,𝑚𝑚𝑚𝑚𝑚𝑚 𝑛 𝑚,𝑚𝑚𝑚𝑚𝑚𝑚 𝑛 𝑚 𝑚 𝑚𝑚 𝑛 𝑚10 + 𝑚 × 𝑚 − 𝑚𝑚] + 1 𝑛 6

The floor operation

The floor operation returns the largest integer that is equal to or smaller than the input,
for example: floor(1.77) = ⌊1.77⌋ = 1

https://arxiv.org/abs/1412.6806

Chapter 14 459

If you are interested in learning more about the size of the convolution output, we recommend the
manuscript A guide to convolution arithmetic for deep learning by Vincent Dumoulin and Francesco Visin,
which is freely available at https://arxiv.org/abs/1603.07285.

Finally, in order to learn how to compute convolutions in one dimension, a naive implementation is
shown in the following code block, and the results are compared with the numpy.convolve function.
The code is as follows:

>>> import numpy as np
>>> def conv1d(x, w, p=0, s=1):
... w_rot = np.array(w[::-1])
... x_padded = np.array(x)
... if p > 0:
... zero_pad = np.zeros(shape=p)
... x_padded = np.concatenate([
... zero_pad, x_padded, zero_pad
...])
... res = []
... for i in range(0, int((len(x_padded) - len(w_rot))) + 1, s):
... res.append(np.sum(x_padded[i:i+w_rot.shape[0]] * w_rot))
... return np.array(res)
>>> ## Testing:
>>> x = [1, 3, 2, 4, 5, 6, 1, 3]
>>> w = [1, 0, 3, 1, 2]
>>> print('Conv1d Implementation:',
... conv1d(x, w, p=2, s=1))
Conv1d Implementation: [5. 14. 16. 26. 24. 34. 19. 22.]
>>> print('NumPy Results:',
... np.convolve(x, w, mode='same'))
NumPy Results: [5 14 16 26 24 34 19 22]

So far, we have mostly focused on convolutions for vectors (1D convolutions). We started with the 1D
case to make the concepts easier to understand. In the next section, we will cover 2D convolutions in
more detail, which are the building blocks of CNNs for image-related tasks.

Performing a discrete convolution in 2D
The concepts you learned in the previous sections are easily extendible to 2D. When we deal with 2D
inputs, such as a matrix, 𝑿𝑿𝑛𝑛1×𝑛𝑛2 , and the filter matrix, 𝑾𝑾𝑚𝑚1×𝑚𝑚2 , where 𝑚𝑚1 ≤ 𝑛𝑛1 and 𝑚𝑚2 ≤ 𝑛𝑛2 , then the
matrix 𝒀𝒀 𝒀 𝒀𝒀 𝒀𝒀𝒀 is the result of a 2D convolution between X and W. This is defined mathematically
as follows:

𝒀𝒀 𝒀 𝒀𝒀 𝒀 𝒀𝒀 𝒀 𝒀𝒀[𝑖𝑖𝑖 𝑖𝑖] 𝒀 ∑ ∑ 𝑋𝑋[𝑖𝑖 𝑖 𝑖𝑖1𝑖 𝑖𝑖 𝑖 𝑖𝑖2] 𝑊𝑊[𝑖𝑖1𝑖 𝑖𝑖2]+∞
𝑘𝑘2=−∞

+∞
𝑘𝑘1=−∞

https://arxiv.org/abs/1603.07285

Classifying Images with Deep Convolutional Neural Networks460

Notice that if you omit one of the dimensions, the remaining formula is exactly the same as the one
we used previously to compute the convolution in 1D. In fact, all the previously mentioned techniques,
such as zero padding, rotating the filter matrix, and the use of strides, are also applicable to 2D convo-
lutions, provided that they are extended to both dimensions independently. Figure 14.5 demonstrates
the 2D convolution of an input matrix of size 8×8, using a kernel of size 3×3. The input matrix is padded
with zeros with p = 1. As a result, the output of the 2D convolution will have a size of 8×8:

Figure 14.5: The output of a 2D convolution

The following example illustrates the computation of a 2D convolution between an input matrix, X3×3,
and a kernel matrix, W3×3, using padding p = (1, 1) and stride s = (2, 2). According to the specified pad-
ding, one layer of zeros is added on each side of the input matrix, which results in the padded matrix 𝑿𝑿5×5padded , as follows:

Figure 14.6: Computing a 2D convolution between an input and kernel matrix

With the preceding filter, the rotated filter will be:

𝑾𝑾𝑟𝑟 = [0.5 1 0.50.1 0.4 0.30.4 0.7 0.5]

Chapter 14 461

Note that this rotation is not the same as the transpose matrix. To get the rotated filter in NumPy, we
can write W_rot=W[::-1,::-1]. Next, we can shift the rotated filter matrix along the padded input
matrix, Xpadded, like a sliding window, and compute the sum of the element-wise product, which is
denoted by the ⨀ operator in Figure 14.7:

Figure 14.7: Computing the sum of the element-wise product

The result will be the 2×2 matrix, Y.

Let’s also implement the 2D convolution according to the naive algorithm described. The scipy.signal
package provides a way to compute 2D convolution via the scipy.signal.convolve2d function:

>>> import numpy as np

>>> import scipy.signal

>>> def conv2d(X, W, p=(0, 0), s=(1, 1)):

... W_rot = np.array(W)[::-1,::-1]

... X_orig = np.array(X)

... n1 = X_orig.shape[0] + 2*p[0]

... n2 = X_orig.shape[1] + 2*p[1]

... X_padded = np.zeros(shape=(n1, n2))

... X_padded[p[0]:p[0]+X_orig.shape[0],

... p[1]:p[1]+X_orig.shape[1]] = X_orig

...

... res = []

... for i in range(0,

... int((X_padded.shape[0] - \

... W_rot.shape[0])/s[0])+1, s[0]):

... res.append([])

Classifying Images with Deep Convolutional Neural Networks462

... for j in range(0,

... int((X_padded.shape[1] - \

... W_rot.shape[1])/s[1])+1, s[1]):

... X_sub = X_padded[i:i+W_rot.shape[0],

... j:j+W_rot.shape[1]]

... res[-1].append(np.sum(X_sub * W_rot))

... return(np.array(res))
>>> X = [[1, 3, 2, 4], [5, 6, 1, 3], [1, 2, 0, 2], [3, 4, 3, 2]]
>>> W = [[1, 0, 3], [1, 2, 1], [0, 1, 1]]
>>> print('Conv2d Implementation:\n',
... conv2d(X, W, p=(1, 1), s=(1, 1)))
Conv2d Implementation:
[[11. 25. 32. 13.]
 [19. 25. 24. 13.]
 [13. 28. 25. 17.]
 [11. 17. 14. 9.]]
>>> print('SciPy Results:\n',
... scipy.signal.convolve2d(X, W, mode='same'))
SciPy Results:
[[11 25 32 13]
 [19 25 24 13]
 [13 28 25 17]
 [11 17 14 9]]

Efficient algorithms for computing convolution

We provided a naive implementation to compute a 2D convolution for the purpose of
understanding the concepts. However, this implementation is very inefficient in terms of
memory requirements and computational complexity. Therefore, it should not be used
in real-world NN applications.

One aspect is that the filter matrix is actually not rotated in most tools like PyTorch. More-
over, in recent years, much more efficient algorithms have been developed that use the
Fourier transform to compute convolutions. It is also important to note that in the context
of NNs, the size of a convolution kernel is usually much smaller than the size of the input
image.

For example, modern CNNs usually use kernel sizes such as 1×1, 3×3, or 5×5, for which effi-
cient algorithms have been designed that can carry out the convolutional operations much
more efficiently, such as Winograd’s minimal filtering algorithm. These algorithms are
beyond the scope of this book, but if you are interested in learning more, you can read
the manuscript Fast Algorithms for Convolutional Neural Networks by Andrew Lavin and Scott
Gray, 2015, which is freely available at https://arxiv.org/abs/1509.09308.

https://arxiv.org/abs/1509.09308

Chapter 14 463

In the next section, we will discuss subsampling or pooling, which is another important operation
often used in CNNs.

Subsampling layers
Subsampling is typically applied in two forms of pooling operations in CNNs: max-pooling and
mean-pooling (also known as average-pooling). The pooling layer is usually denoted by 𝑃𝑃𝑛𝑛1×𝑛𝑛2 . Here, the
subscript determines the size of the neighborhood (the number of adjacent pixels in each dimension)
where the max or mean operation is performed. We refer to such a neighborhood as the pooling size.

The operation is described in Figure 14.8. Here, max-pooling takes the maximum value from a neigh-
borhood of pixels, and mean-pooling computes their average:

Figure 14.8: An example of max-pooling and mean-pooling

The advantage of pooling is twofold:

• Pooling (max-pooling) introduces a local invariance. This means that small changes in a local
neighborhood do not change the result of max-pooling. Therefore, it helps with generating
features that are more robust to noise in the input data. Refer to the following example, which
shows that the max-pooling of two different input matrices, X1 and X2, results in the same output:

𝑿𝑿1 = [
 10 255 125 0 170 10070 255 105 25 25 70255 0 150 0 10 100 255 10 10 150 2070 15 200 100 95 035 25 100 20 0 60]

𝑿𝑿2 = [
 100 100 100 50 100 5095 255 100 125 125 17080 40 10 10 125 150255 30 150 20 120 12530 30 150 100 70 7070 30 100 200 70 95]

}

 max pooling 𝑃𝑃2×2→ [255 125 170255 150 15070 200 95]

• Pooling decreases the size of features, which results in higher computational efficiency. Fur-
thermore, reducing the number of features may reduce the degree of overfitting as well.

Classifying Images with Deep Convolutional Neural Networks464

While pooling is still an essential part of many CNN architectures, several CNN architectures have also
been developed without using pooling layers. Instead of using pooling layers to reduce the feature
size, researchers use convolutional layers with a stride of 2.

In a sense, you can think of a convolutional layer with stride 2 as a pooling layer with learnable weights.
If you are interested in an empirical comparison of different CNN architectures developed with and
without pooling layers, we recommend reading the research article Striving for Simplicity: The All
Convolutional Net by Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
This article is freely available at https://arxiv.org/abs/1412.6806.

Putting everything together – implementing a CNN
So far, you have learned about the basic building blocks of CNNs. The concepts illustrated in this chap-
ter are not really more difficult than traditional multilayer NNs. We can say that the most important
operation in a traditional NN is matrix multiplication. For instance, we use matrix multiplications to
compute the pre-activations (or net inputs), as in z = Wx + b. Here, x is a column vector (ℝ𝑛𝑛𝑛𝑛 matrix)
representing pixels, and W is the weight matrix connecting the pixel inputs to each hidden unit.

In a CNN, this operation is replaced by a convolution operation, as in 𝒁𝒁 𝒁 𝒁𝒁 𝒁 𝒁𝒁 𝒁 𝒁𝒁 , where X is a
matrix representing the pixels in a height×width arrangement. In both cases, the pre-activations are
passed to an activation function to obtain the activation of a hidden unit, 𝑨𝑨 𝑨 𝑨𝑨(𝒁𝒁) , where 𝜎𝜎 is the
activation function. Furthermore, you will recall that subsampling is another building block of a CNN,
which may appear in the form of pooling, as was described in the previous section.

Working with multiple input or color channels
An input to a convolutional layer may contain one or more 2D arrays or matrices with dimensions N1×N2
(for example, the image height and width in pixels). These N1×N2 matrices are called channels. Conven-
tional implementations of convolutional layers expect a rank-3 tensor representation as an input, for
example, a three-dimensional array, 𝑿𝑿𝑁𝑁1×𝑁𝑁2×𝐶𝐶𝑖𝑖𝑖𝑖 , where Cin is the number of input channels. For example,
let’s consider images as input to the first layer of a CNN. If the image is colored and uses the RGB color
mode, then Cin = 3 (for the red, green, and blue color channels in RGB). However, if the image is in gray-
scale, then we have Cin = 1, because there is only one channel with the grayscale pixel intensity values.

Overlapping versus non-overlapping pooling

Traditionally, pooling is assumed to be non-overlapping. Pooling is typically performed
on non-overlapping neighborhoods, which can be done by setting the stride parameter
equal to the pooling size. For example, a non-overlapping pooling layer, 𝑃𝑃𝑛𝑛1×𝑛𝑛2 , requires
a stride parameter s = (n1, n2). On the other hand, overlapping pooling occurs if the stride
is smaller than the pooling size. An example where overlapping pooling is used in a con-
volutional network is described in ImageNet Classification with Deep Convolutional Neural
Networks by A. Krizhevsky, I. Sutskever, and G. Hinton, 2012, which is freely available as a
manuscript at https://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.

https://arxiv.org/abs/1412.6806
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Chapter 14 465

Now that you are familiar with the structure of input data, the next question is, how can we incorporate
multiple input channels in the convolution operation that we discussed in the previous sections? The
answer is very simple: we perform the convolution operation for each channel separately and then
add the results together using the matrix summation. The convolution associated with each channel
(c) has its own kernel matrix as W[:, :, c].

Reading an image file

When we work with images, we can read images into NumPy arrays using the uint8
(unsigned 8-bit integer) data type to reduce memory usage compared to 16-bit, 32-bit, or
64-bit integer types, for example.

Unsigned 8-bit integers take values in the range [0, 255], which are sufficient to store the
pixel information in RGB images, which also take values in the same range.

In Chapter 12, Parallelizing Neural Network Training with PyTorch, you saw that PyTorch
provides a module for loading/storing and manipulating images via torchvision. Let’s
recap how to read an image (this example RGB image is located in the code bundle folder
that is provided with this chapter):

>>> import torch
>>> from torchvision.io import read_image
>>> img = read_image('example-image.png')
>>> print('Image shape:', img.shape)
Image shape: torch.Size([3, 252, 221])
>>> print('Number of channels:', img.shape[0])
Number of channels: 3
>>> print('Image data type:', img.dtype)
Image data type: torch.uint8
>>> print(img[:, 100:102, 100:102])
tensor([[[179, 182],
 [180, 182]],

 [[134, 136],
 [135, 137]],

 [[110, 112],
 [111, 113]]], dtype=torch.uint8)

Note that with torchvision, the input and output image tensors are in the format of
Tensor[channels, image_height, image_width].

Classifying Images with Deep Convolutional Neural Networks466

The total pre-activation result is computed in the following formula:

Given an example 𝑿𝑿𝑛𝑛1×𝑛𝑛2×𝐶𝐶𝑖𝑖𝑖𝑖,a kernel matrix 𝑾𝑾𝑚𝑚1×𝑚𝑚2×𝐶𝐶𝑖𝑖𝑖𝑖,and a bias value 𝑏𝑏 ⟹ {
 𝒁𝒁𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶 =∑𝑾𝑾[: , : , 𝑐𝑐] ∗ 𝑿𝑿[: , : , 𝑐𝑐]𝐶𝐶𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐Pre-activation: 𝒁𝒁 = 𝒁𝒁𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶 + 𝑏𝑏𝑐𝑐Feature map: 𝑨𝑨 = 𝑨𝑨(𝒁𝒁)

The final result, A, is a feature map. Usually, a convolutional layer of a CNN has more than one feature
map. If we use multiple feature maps, the kernel tensor becomes four-dimensional: width×height×Cin×Cout.
Here, width×height is the kernel size, Cin is the number of input channels, and Cout is the number of
output feature maps. So, now let’s include the number of output feature maps in the preceding formula
and update it, as follows:

Given an example 𝑿𝑿𝑛𝑛1×𝑛𝑛2×𝐶𝐶𝑖𝑖𝑖𝑖,a kernel matrix 𝑾𝑾𝑚𝑚1×𝑚𝑚2×𝐶𝐶𝑖𝑖𝑖𝑖×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,and a bias vector 𝒃𝒃𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 ⟹ {
 𝒁𝒁𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛[: , : , 𝑘𝑘] =∑𝑾𝑾[: , : , 𝑐𝑐, 𝑘𝑘] ∗ 𝑿𝑿[: , : , 𝑐𝑐]𝐶𝐶𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝒁𝒁[: , : , 𝑘𝑘] = 𝒁𝒁𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛[: , : , 𝑘𝑘] + 𝑏𝑏[𝑘𝑘]𝑨𝑨[: , : , 𝑘𝑘] = 𝜎𝜎(𝒁𝒁[: , : , 𝑘𝑘])

To conclude our discussion of computing convolutions in the context of NNs, let’s look at the example
in Figure 14.9, which shows a convolutional layer, followed by a pooling layer. In this example, there
are three input channels. The kernel tensor is four-dimensional. Each kernel matrix is denoted as
m1×m2, and there are three of them, one for each input channel. Furthermore, there are five such
kernels, accounting for five output feature maps. Finally, there is a pooling layer for subsampling the
feature maps:

Figure 14.9: Implementing a CNN

Chapter 14 467

Lastly, as was already mentioned, the convolution operations typically are carried out by treating an
input image with multiple color channels as a stack of matrices; that is, we perform the convolution
on each matrix separately and then add the results, as was illustrated in the previous figure. However,
convolutions can also be extended to 3D volumes if you are working with 3D datasets, for example,
as shown in the paper VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition by
Daniel Maturana and Sebastian Scherer, 2015, which can be accessed at https://www.ri.cmu.edu/
pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf.

In the next section, we will talk about how to regularize an NN.

Regularizing an NN with L2 regularization and dropout
Choosing the size of a network, whether we are dealing with a traditional (fully connected) NN or a
CNN, has always been a challenging problem. For instance, the size of a weight matrix and the number
of layers need to be tuned to achieve a reasonably good performance.

How many trainable parameters exist in the preceding example?

To illustrate the advantages of convolution, parameter sharing, and sparse connectivity,
let’s work through an example. The convolutional layer in the network shown in Figure
14.9 is a four-dimensional tensor. So, there are m1×m2×3×5 parameters associated with the
kernel. Furthermore, there is a bias vector for each output feature map of the convolu-
tional layer. Thus, the size of the bias vector is 5. Pooling layers do not have any (trainable)
parameters; therefore, we can write the following:

m1 × m2 × 3 × 5 + 5

If the input tensor is of size n1×n2×3, assuming that the convolution is performed with the
same-padding mode, then the size of the output feature maps would be n1 × n2 × 5.

Note that if we use a fully connected layer instead of a convolutional layer, this number
will be much larger. In the case of a fully connected layer, the number of parameters
for the weight matrix to reach the same number of output units would have been as
follows:

(n1 × n2 × 3) × (n1 × n2 × 5) = (n1 × n2)2 × 3 × 5

In addition, the size of the bias vector is n1 × n2 × 5 (one bias element for each output unit).
Given that m1 < n1 and m2 < n2, we can see that the difference in the number of trainable
parameters is significant.

https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf
https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf

Classifying Images with Deep Convolutional Neural Networks468

You will recall from Chapter 13, Going Deeper – The Mechanics of PyTorch, that a simple network without
a hidden layer could only capture a linear decision boundary, which is not sufficient for dealing with
an exclusive or (or XOR) or similar problem. The capacity of a network refers to the level of complex-
ity of the function that it can learn to approximate. Small networks, or networks with a relatively
small number of parameters, have a low capacity and are therefore likely to underfit, resulting in
poor performance, since they cannot learn the underlying structure of complex datasets. However,
very large networks may result in overfitting, where the network will memorize the training data and
do extremely well on the training dataset while achieving a poor performance on the held-out test
dataset. When we deal with real-world machine learning problems, we do not know how large the
network should be a priori.

One way to address this problem is to build a network with a relatively large capacity (in practice,
we want to choose a capacity that is slightly larger than necessary) to do well on the training dataset.
Then, to prevent overfitting, we can apply one or multiple regularization schemes to achieve good
generalization performance on new data, such as the held-out test dataset.

In Chapters 3 and 4, we covered L1 and L2 regularization. Both techniques can prevent or reduce the
effect of overfitting by adding a penalty to the loss that results in shrinking the weight parameters
during training. While both L1 and L2 regularization can be used for NNs as well, with L2 being the
more common choice of the two, there are other methods for regularizing NNs, such as dropout,
which we discuss in this section. But before we move on to discussing dropout, to use L2 regularization
within a convolutional or fully connected network (recall, fully connected layers are implemented
via torch.nn.Linear in PyTorch), you can simply add the L2 penalty of a particular layer to the loss
function in PyTorch, as follows:

>>> import torch.nn as nn
>>> loss_func = nn.BCELoss()
>>> loss = loss_func(torch.tensor([0.9]), torch.tensor([1.0]))
>>> l2_lambda = 0.001
>>> conv_layer = nn.Conv2d(in_channels=3,
... out_channels=5,
... kernel_size=5)
>>> l2_penalty = l2_lambda * sum(
... [(p**2).sum() for p in conv_layer.parameters()]
...)
>>> loss_with_penalty = loss + l2_penalty
>>> linear_layer = nn.Linear(10, 16)

Chapter 14 469

>>> l2_penalty = l2_lambda * sum(
... [(p**2).sum() for p in linear_layer.parameters()]
...)
>>> loss_with_penalty = loss + l2_penalty

In recent years, dropout has emerged as a popular technique for regularizing (deep) NNs to avoid
overfitting, thus improving the generalization performance (Dropout: A Simple Way to Prevent Neural
Networks from Overfitting by N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdin-
ov, Journal of Machine Learning Research 15.1, pages 1929-1958, 2014, http://www.jmlr.org/papers/
volume15/srivastava14a/srivastava14a.pdf). Dropout is usually applied to the hidden units of
higher layers and works as follows: during the training phase of an NN, a fraction of the hidden units
is randomly dropped at every iteration with probability pdrop (or keep probability pkeep = 1 – pdrop). This
dropout probability is determined by the user and the common choice is p = 0.5, as discussed in the
previously mentioned article by Nitish Srivastava and others, 2014. When dropping a certain fraction
of input neurons, the weights associated with the remaining neurons are rescaled to account for the
missing (dropped) neurons.

The effect of this random dropout is that the network is forced to learn a redundant representation
of the data. Therefore, the network cannot rely on the activation of any set of hidden units, since
they may be turned off at any time during training, and is forced to learn more general and robust
patterns from the data.

Weight decay versus L2 regularization

An alternative way to use L2 regularization is by setting the weight_decay parameter in
a PyTorch optimizer to a positive value, for example:

optimizer = torch.optim.SGD(
 model.parameters(),
 weight_decay=l2_lambda,
 ...
)

While L2 regularization and weight_decay are not strictly identical, it can be shown that
they are equivalent when using stochastic gradient descent (SGD) optimizers. Interested
readers can find more information in the article Decoupled Weight Decay Regularization by
Ilya Loshchilov and Frank Hutter, 2019, which is freely available at https://arxiv.org/
abs/1711.05101.

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101

Classifying Images with Deep Convolutional Neural Networks470

This random dropout can effectively prevent overfitting. Figure 14.10 shows an example of applying
dropout with probability p = 0.5 during the training phase, whereby half of the neurons will become
inactive randomly (dropped units are selected randomly in each forward pass of training). However,
during prediction, all neurons will contribute to computing the pre-activations of the next layer:

Figure 14.10: Applying dropout during the training phase

As shown here, one important point to remember is that units may drop randomly during training
only, whereas for the evaluation (inference) phase, all the hidden units must be active (for instance,
pdrop = 0 or pkeep = 1). To ensure that the overall activations are on the same scale during training and pre-
diction, the activations of the active neurons have to be scaled appropriately (for example, by halving
the activation if the dropout probability was set to p = 0.5).

However, since it is inconvenient to always scale activations when making predictions, PyTorch and
other tools scale the activations during training (for example, by doubling the activations if the dropout
probability was set to p = 0.5). This approach is commonly referred to as inverse dropout.

While the relationship is not immediately obvious, dropout can be interpreted as the consensus (av-
eraging) of an ensemble of models. As discussed in Chapter 7, Combining Different Models for Ensemble
Learning, in ensemble learning, we train several models independently. During prediction, we then
use the consensus of all the trained models. We already know that model ensembles are known to
perform better than single models. In deep learning, however, both training several models and
collecting and averaging the output of multiple models is computationally expensive. Here, dropout
offers a workaround, with an efficient way to train many models at once and compute their average
predictions at test or prediction time.

Chapter 14 471

As mentioned previously, the relationship between model ensembles and dropout is not immediately
obvious. However, consider that in dropout, we have a different model for each mini-batch (due to
setting the weights to zero randomly during each forward pass).

Then, via iterating over the mini-batches, we essentially sample over M = 2h models, where h is the
number of hidden units.

The restriction and aspect that distinguishes dropout from regular ensembling, however, is that we
share the weights over these “different models,” which can be seen as a form of regularization. Then,
during “inference” (for instance, predicting the labels in the test dataset), we can average over all these
different models that we sampled over during training. This is very expensive, though.

Then, averaging the models, that is, computing the geometric mean of the class-membership proba-
bility that is returned by a model, i, can be computed as follows:

𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = [∏𝑝𝑝{𝑖𝑖}𝑀𝑀
𝑗𝑗𝑗𝑗]𝑗𝑀𝑀

Now, the trick behind dropout is that this geometric mean of the model ensembles (here, M models)
can be approximated by scaling the predictions of the last (or final) model sampled during training
by a factor of 1/(1 – p), which is much cheaper than computing the geometric mean explicitly using
the previous equation. (In fact, the approximation is exactly equivalent to the true geometric mean
if we consider linear models.)

Loss functions for classification
In Chapter 12, Parallelizing Neural Network Training with PyTorch, we saw different activation functions,
such as ReLU, sigmoid, and tanh. Some of these activation functions, like ReLU, are mainly used in the
intermediate (hidden) layers of an NN to add non-linearities to our model. But others, like sigmoid (for
binary) and softmax (for multiclass), are added at the last (output) layer, which results in class-member-
ship probabilities as the output of the model. If the sigmoid or softmax activations are not included at
the output layer, then the model will compute the logits instead of the class-membership probabilities.

Focusing on classification problems here, depending on the type of problem (binary versus multiclass)
and the type of output (logits versus probabilities), we should choose the appropriate loss function
to train our model. Binary cross-entropy is the loss function for a binary classification (with a single
output unit), and categorical cross-entropy is the loss function for multiclass classification. In the
torch.nn module, the categorical cross-entropy loss takes in ground truth labels as integers (for ex-
ample, y=2, out of three classes, 0, 1, and 2).

Classifying Images with Deep Convolutional Neural Networks472

Figure 14.11 describes two loss functions available in torch.nn for dealing with both cases: binary
classification and multiclass with integer labels. Each one of these two loss functions also has the
option to receive the predictions in the form of logits or class-membership probabilities:

Figure 14.11: Two examples of loss functions in PyTorch

Please note that computing the cross-entropy loss by providing the logits, and not the class-member-
ship probabilities, is usually preferred due to numerical stability reasons. For binary classification,
we can either provide logits as inputs to the loss function nn.BCEWithLogitsLoss(), or compute the
probabilities based on the logits and feed them to the loss function nn.BCELoss(). For multiclass
classification, we can either provide logits as inputs to the loss function nn.CrossEntropyLoss(), or
compute the log probabilities based on the logits and feed them to the negative log-likelihood loss
function nn.NLLLoss().

The following code will show you how to use these loss functions with two different formats, where
either the logits or class-membership probabilities are given as inputs to the loss functions:

>>> ####### Binary Cross-entropy
>>> logits = torch.tensor([0.8])
>>> probas = torch.sigmoid(logits)
>>> target = torch.tensor([1.0])
>>> bce_loss_fn = nn.BCELoss()
>>> bce_logits_loss_fn = nn.BCEWithLogitsLoss()
>>> print(f'BCE (w Probas): {bce_loss_fn(probas, target):.4f}')
BCE (w Probas): 0.3711
>>> print(f'BCE (w Logits): '
... f'{bce_logits_loss_fn(logits, target):.4f}')
BCE (w Logits): 0.3711

Chapter 14 473

>>> ####### Categorical Cross-entropy
>>> logits = torch.tensor([[1.5, 0.8, 2.1]])
>>> probas = torch.softmax(logits, dim=1)
>>> target = torch.tensor([2])
>>> cce_loss_fn = nn.NLLLoss()
>>> cce_logits_loss_fn = nn.CrossEntropyLoss()
>>> print(f'CCE (w Probas): '
... f'{cce_logits_loss_fn(logits, target):.4f}')
CCE (w Probas): 0.5996
>>> print(f'CCE (w Logits): '
... f'{cce_loss_fn(torch.log(probas), target):.4f}')
CCE (w Logits): 0.5996

Note that sometimes, you may come across an implementation where a categorical cross-entropy
loss is used for binary classification. Typically, when we have a binary classification task, the model
returns a single output value for each example. We interpret this single model output as the proba-
bility of the positive class (for example, class 1), P(class = 1|x). In a binary classification problem, it
is implied that P(class = 0|x)= 1 – P(class = 1|x); hence, we do not need a second output unit in order
to obtain the probability of the negative class. However, sometimes practitioners choose to return
two outputs for each training example and interpret them as probabilities of each class: P(class = 0|x)
versus P(class = 1|x). Then, in such a case, using a softmax function (instead of the logistic sigmoid)
to normalize the outputs (so that they sum to 1) is recommended, and categorical cross-entropy is
the appropriate loss function.

Implementing a deep CNN using PyTorch
In Chapter 13, as you may recall, we solved the handwritten digit recognition problem using the torch.
nn module. You may also recall that we achieved about 95.6 percent accuracy using an NN with two
linear hidden layers.

Now, let’s implement a CNN and see whether it can achieve a better predictive performance compared
to the previous model for classifying handwritten digits. Note that the fully connected layers that we
saw in Chapter 13 were able to perform well on this problem. However, in some applications, such
as reading bank account numbers from handwritten digits, even tiny mistakes can be very costly.
Therefore, it is crucial to reduce this error as much as possible.

The multilayer CNN architecture
The architecture of the network that we are going to implement is shown in Figure 14.12. The inputs
are 28×28 grayscale images. Considering the number of channels (which is 1 for grayscale images)
and a batch of input images, the input tensor’s dimensions will be batchsize×28×28×1.

Classifying Images with Deep Convolutional Neural Networks474

The input data goes through two convolutional layers that have a kernel size of 5×5. The first convo-
lution has 32 output feature maps, and the second one has 64 output feature maps. Each convolution
layer is followed by a subsampling layer in the form of a max-pooling operation, P2×2. Then a fully
connected layer passes the output to a second fully connected layer, which acts as the final softmax
output layer. The architecture of the network that we are going to implement is shown in Figure 14.12:

Figure 14.12: A deep CNN

The dimensions of the tensors in each layer are as follows:

• Input: [batchsize×28×28×1]
• Conv_1: [batchsize×28×28×32]
• Pooling_1: [batchsize×14×14×32]
• Conv_2: [batchsize×14×14×64]
• Pooling_2: [batchsize×7×7×64]
• FC_1: [batchsize×1024]
• FC_2 and softmax layer: [batchsize×10]

For the convolutional kernels, we are using stride=1 such that the input dimensions are preserved
in the resulting feature maps. For the pooling layers, we are using kernel_size=2 to subsample the
image and shrink the size of the output feature maps. We will implement this network using the
PyTorch NN module.

Loading and preprocessing the data
First, we will load the MNIST dataset using the torchvision module and construct the training and
test sets, as we did in Chapter 13:

>>> import torchvision
>>> from torchvision import transforms
>>> image_path = './'
>>> transform = transforms.Compose([
... transforms.ToTensor()
...])

Chapter 14 475

>>> mnist_dataset = torchvision.datasets.MNIST(

... root=image_path, train=True,

... transform=transform, download=True

...)

>>> from torch.utils.data import Subset

>>> mnist_valid_dataset = Subset(mnist_dataset,

... torch.arange(10000))

>>> mnist_train_dataset = Subset(mnist_dataset,

... torch.arange(

... 10000, len(mnist_dataset)

...))

>>> mnist_test_dataset = torchvision.datasets.MNIST(

... root=image_path, train=False,

... transform=transform, download=False

...)

The MNIST dataset comes with a pre-specified training and test dataset partitioning scheme, but we
also want to create a validation split from the train partition. Hence, we used the first 10,000 training
examples for validation. Note that the images are not sorted by class label, so we do not have to worry
about whether those validation set images are from the same classes.

Next, we will construct the data loader with batches of 64 images for the training set and validation
set, respectively:

>>> from torch.utils.data import DataLoader

>>> batch_size = 64

>>> torch.manual_seed(1)

>>> train_dl = DataLoader(mnist_train_dataset,

... batch_size,

... shuffle=True)

>>> valid_dl = DataLoader(mnist_valid_dataset,

... batch_size,

... shuffle=False)

The features we read are of values in the range [0, 1]. Also, we already converted the images to tensors.
The labels are integers from 0 to 9, representing ten digits. Hence, we don’t need to do any scaling or
further conversion.

Now, after preparing the dataset, we are ready to implement the CNN we just described.

Classifying Images with Deep Convolutional Neural Networks476

Implementing a CNN using the torch.nn module
For implementing a CNN in PyTorch, we use the torch.nn Sequential class to stack different layers,
such as convolution, pooling, and dropout, as well as the fully connected layers. The torch.nn module
provides classes for each one: nn.Conv2d for a two-dimensional convolution layer; nn.MaxPool2d and
nn.AvgPool2d for subsampling (max-pooling and average-pooling); and nn.Dropout for regularization
using dropout. We will go over each of these classes in more detail.

Configuring CNN layers in PyTorch
Constructing a layer with the Conv2d class requires us to specify the number of output channels (which
is equivalent to the number of output feature maps, or the number of output filters) and kernel sizes.

In addition, there are optional parameters that we can use to configure a convolutional layer. The
most commonly used ones are the strides (with a default value of 1 in both x, y dimensions) and pad-
ding, which controls the amount of implicit padding on both dimensions. Additional configuration
parameters are listed in the official documentation: https://pytorch.org/docs/stable/generated/
torch.nn.Conv2d.html.

It is worth mentioning that usually, when we read an image, the default dimension for the channels
is the first dimension of the tensor array (or the second dimension considering the batch dimension).
This is called the NCHW format, where N stands for the number of images within the batch, C stands
for channels, and H and W stand for height and width, respectively.

Note that the Conv2D class assumes that inputs are in NCHW format by default. (Other tools, such as
TensorFlow, use NHWC format.) However, if you come across some data whose channels are placed
at the last dimension, you would need to swap the axes in your data to move the channels to the first
dimension (or the second dimension considering the batch dimension). After the layer is constructed,
it can be called by providing a four-dimensional tensor, with the first dimension reserved for a batch
of examples; the second dimension corresponds to the channel; and the other two dimensions are
the spatial dimensions.

As shown in the architecture of the CNN model that we want to build, each convolution layer is followed
by a pooling layer for subsampling (reducing the size of feature maps). The MaxPool2d and AvgPool2d
classes construct the max-pooling and average-pooling layers, respectively. The kernel_size argu-
ment determines the size of the window (or neighborhood) that will be used to compute the max or
mean operations. Furthermore, the stride parameter can be used to configure the pooling layer, as
we discussed earlier.

Finally, the Dropout class will construct the dropout layer for regularization, with the argument p that
denotes the drop probability pdrop, which is used to determine the probability of dropping the input
units during training, as we discussed earlier. When calling this layer, its behavior can be controlled
via model.train() and model.eval(), to specify whether this call will be made during training or
during the inference. When using dropout, alternating between these two modes is crucial to ensure
that it behaves correctly; for instance, nodes are only randomly dropped during training, not evalu-
ation or inference.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Chapter 14 477

Constructing a CNN in PyTorch
Now that you have learned about these classes, we can construct the CNN model that was shown in
the previous figure. In the following code, we will use the Sequential class and add the convolution
and pooling layers:

>>> model = nn.Sequential()

>>> model.add_module(

... 'conv1',

... nn.Conv2d(

... in_channels=1, out_channels=32,

... kernel_size=5, padding=2

...)

...)

>>> model.add_module('relu1', nn.ReLU())

>>> model.add_module('pool1', nn.MaxPool2d(kernel_size=2))

>>> model.add_module(

... 'conv2',

... nn.Conv2d(

... in_channels=32, out_channels=64,

... kernel_size=5, padding=2

...)

...)

>>> model.add_module('relu2', nn.ReLU())

>>> model.add_module('pool2', nn.MaxPool2d(kernel_size=2))

So far, we have added two convolution layers to the model. For each convolutional layer, we used a
kernel of size 5×5 and padding=2. As discussed earlier, using same padding mode preserves the spatial
dimensions (vertical and horizontal dimensions) of the feature maps such that the inputs and outputs
have the same height and width (and the number of channels may only differ in terms of the number
of filters used). As mentioned before, the spatial dimension of the output feature map is calculated by:𝑜𝑜 𝑜 𝑜𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛𝑛𝑛𝑠𝑠] 𝑛 1

where n is the spatial dimension of the input feature map, and p, m, and s denote the padding, kernel
size, and stride, respectively. We obtain p = 2 in order to achieve o = i.

The max-pooling layers with pooling size 2×2 and stride of 2 will reduce the spatial dimensions by
half. (Note that if the stride parameter is not specified in MaxPool2D, by default, it is set equal to the
pooling kernel size.)

Classifying Images with Deep Convolutional Neural Networks478

While we can calculate the size of the feature maps at this stage manually, PyTorch provides a conve-
nient method to compute this for us:

>>> x = torch.ones((4, 1, 28, 28))
>>> model(x).shape
torch.Size([4, 64, 7, 7])

By providing the input shape as a tuple (4, 1, 28, 28) (4 images within the batch, 1 channel, and
image size 28×28), specified in this example, we calculated the output to have a shape (4, 64, 7, 7),
indicating feature maps with 64 channels and a spatial size of 7×7. The first dimension corresponds
to the batch dimension, for which we used 4 arbitrarily.

The next layer that we want to add is a fully connected layer for implementing a classifier on top of
our convolutional and pooling layers. The input to this layer must have rank 2, that is, shape [batch-
size × input_units]. Thus, we need to flatten the output of the previous layers to meet this requirement
for the fully connected layer:

>>> model.add_module('flatten', nn.Flatten())
>>> x = torch.ones((4, 1, 28, 28))
>>> model(x).shape
torch.Size([4, 3136])

As the output shape indicates, the input dimensions for the fully connected layer are correctly set up.
Next, we will add two fully connected layers with a dropout layer in between:

>>> model.add_module('fc1', nn.Linear(3136, 1024))
>>> model.add_module('relu3', nn.ReLU())
>>> model.add_module('dropout', nn.Dropout(p=0.5))
>>> model.add_module('fc2', nn.Linear(1024, 10))

The last fully connected layer, named 'fc2', has 10 output units for the 10 class labels in the MNIST
dataset. In practice, we usually use the sofmax activation to obtain the class-membership probabili-
ties of each input example, assuming that the classes are mutually exclusive, so the probabilities for
each example sum to 1. However, the softmax function is already used internally inside PyTorch’s
CrossEntropyLoss implementation, which is why don’t have to explicitly add it as a layer after the
output layer above. The following code will create the loss function and optimizer for the model:

>>> loss_fn = nn.CrossEntropyLoss()
>>> optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Chapter 14 479

Now we can train the model by defining the following function:

>>> def train(model, num_epochs, train_dl, valid_dl):
... loss_hist_train = [0] * num_epochs
... accuracy_hist_train = [0] * num_epochs
... loss_hist_valid = [0] * num_epochs
... accuracy_hist_valid = [0] * num_epochs
... for epoch in range(num_epochs):
... model.train()
... for x_batch, y_batch in train_dl:
... pred = model(x_batch)
... loss = loss_fn(pred, y_batch)
... loss.backward()
... optimizer.step()
... optimizer.zero_grad()
... loss_hist_train[epoch] += loss.item()*y_batch.size(0)
... is_correct = (
... torch.argmax(pred, dim=1) == y_batch
...).float()
... accuracy_hist_train[epoch] += is_correct.sum()
... loss_hist_train[epoch] /= len(train_dl.dataset)
... accuracy_hist_train[epoch] /= len(train_dl.dataset)
...
... model.eval()

The Adam optimizer

Note that in this implementation, we used the torch.optim.Adam class for training the
CNN model. The Adam optimizer is a robust, gradient-based optimization method suited
to nonconvex optimization and machine learning problems. Two popular optimization
methods inspired Adam: RMSProp and AdaGrad.

The key advantage of Adam is in the choice of update step size derived from the running
average of gradient moments. Please feel free to read more about the Adam optimizer
in the manuscript, Adam: A Method for Stochastic Optimization by Diederik P. Kingma and
Jimmy Lei Ba, 2014. The article is freely available at https://arxiv.org/abs/1412.6980.

https://arxiv.org/abs/1412.6980

Classifying Images with Deep Convolutional Neural Networks480

... with torch.no_grad():

... for x_batch, y_batch in valid_dl:

... pred = model(x_batch)

... loss = loss_fn(pred, y_batch)

... loss_hist_valid[epoch] += \

... loss.item()*y_batch.size(0)

... is_correct = (

... torch.argmax(pred, dim=1) == y_batch

...).float()

... accuracy_hist_valid[epoch] += is_correct.sum()

... loss_hist_valid[epoch] /= len(valid_dl.dataset)

... accuracy_hist_valid[epoch] /= len(valid_dl.dataset)

...

... print(f'Epoch {epoch+1} accuracy: '

... f'{accuracy_hist_train[epoch]:.4f} val_accuracy: '

... f'{accuracy_hist_valid[epoch]:.4f}')

... return loss_hist_train, loss_hist_valid, \

... accuracy_hist_train, accuracy_hist_valid

Note that using the designated settings for training model.train() and evaluation model.eval() will
automatically set the mode for the dropout layer and rescale the hidden units appropriately so that
we do not have to worry about that at all. Next, we will train this CNN model and use the validation
dataset that we created for monitoring the learning progress:

>>> torch.manual_seed(1)
>>> num_epochs = 20
>>> hist = train(model, num_epochs, train_dl, valid_dl)
Epoch 1 accuracy: 0.9503 val_accuracy: 0.9802
...
Epoch 9 accuracy: 0.9968 val_accuracy: 0.9892
...
Epoch 20 accuracy: 0.9979 val_accuracy: 0.9907

Once the 20 epochs of training are finished, we can visualize the learning curves:

>>> import matplotlib.pyplot as plt
>>> x_arr = np.arange(len(hist[0])) + 1
>>> fig = plt.figure(figsize=(12, 4))
>>> ax = fig.add_subplot(1, 2, 1)
>>> ax.plot(x_arr, hist[0], '-o', label='Train loss')
>>> ax.plot(x_arr, hist[1], '--<', label='Validation loss')

Chapter 14 481

>>> ax.legend(fontsize=15)
>>> ax = fig.add_subplot(1, 2, 2)
>>> ax.plot(x_arr, hist[2], '-o', label='Train acc.')
>>> ax.plot(x_arr, hist[3], '--<',
... label='Validation acc.')
>>> ax.legend(fontsize=15)
>>> ax.set_xlabel('Epoch', size=15)
>>> ax.set_ylabel('Accuracy', size=15)
>>> plt.show()

Figure 14.13: Loss and accuracy graphs for the training and validation data

Now, we evaluate the trained model on the test dataset:

>>> pred = model(mnist_test_dataset.data.unsqueeze(1) / 255.)
>>> is_correct = (
... torch.argmax(pred, dim=1) == mnist_test_dataset.targets
...).float()
>>> print(f'Test accuracy: {is_correct.mean():.4f}')
Test accuracy: 0.9914

The CNN model achieves an accuracy of 99.07 percent. Remember that in Chapter 13, we got approx-
imately 95 percent accuracy using only fully connected (instead of convolutional) layers.

Finally, we can get the prediction results in the form of class-membership probabilities and convert
them to predicted labels by using the torch.argmax function to find the element with the maximum
probability. We will do this for a batch of 12 examples and visualize the input and predicted labels:

>>> fig = plt.figure(figsize=(12, 4))
>>> for i in range(12):
... ax = fig.add_subplot(2, 6, i+1)
... ax.set_xticks([]); ax.set_yticks([])

Classifying Images with Deep Convolutional Neural Networks482

... img = mnist_test_dataset[i][0][0, :, :]

... pred = model(img.unsqueeze(0).unsqueeze(1))

... y_pred = torch.argmax(pred)

... ax.imshow(img, cmap='gray_r')

... ax.text(0.9, 0.1, y_pred.item(),

... size=15, color='blue',

... horizontalalignment='center',

... verticalalignment='center',

... transform=ax.transAxes)
>>> plt.show()

Figure 14.14 shows the handwritten inputs and their predicted labels:

Figure 14.14: Predicted labels for handwritten digits

In this set of plotted examples, all the predicted labels are correct.

We leave the task of showing some of the misclassified digits, as we did in Chapter 11, Implementing a
Multilayer Artificial Neural Network from Scratch, as an exercise for the reader.

Smile classification from face images using a CNN
In this section, we are going to implement a CNN for smile classification from face images using the
CelebA dataset. As you saw in Chapter 12, the CelebA dataset contains 202,599 images of celebrities’
faces. In addition, 40 binary facial attributes are available for each image, including whether a celebrity
is smiling (or not) and their age (young or old).

Based on what you have learned so far, the goal of this section is to build and train a CNN model for
predicting the smile attribute from these face images. Here, for simplicity, we will only be using a small
portion of the training data (16,000 training examples) to speed up the training process. However, to
improve the generalization performance and reduce overfitting on such a small dataset, we will use
a technique called data augmentation.

Chapter 14 483

Loading the CelebA dataset
First, let’s load the data similarly to how we did in the previous section for the MNIST dataset. CelebA
data comes in three partitions: a training dataset, a validation dataset, and a test dataset. Next, we
will count the number of examples in each partition:

>>> image_path = './'
>>> celeba_train_dataset = torchvision.datasets.CelebA(
... image_path, split='train',
... target_type='attr', download=True
...)
>>> celeba_valid_dataset = torchvision.datasets.CelebA(
... image_path, split='valid',
... target_type='attr', download=True
...)
>>> celeba_test_dataset = torchvision.datasets.CelebA(
... image_path, split='test',
... target_type='attr', download=True
...)
>>>
>>> print('Train set:', len(celeba_train_dataset))
Train set: 162770
>>> print('Validation set:', len(celeba_valid_dataset))
Validation: 19867
>>> print('Test set:', len(celeba_test_dataset))
Test set: 19962

Next, we will discuss data augmentation as a technique for boosting the performance of deep NNs.

Image transformation and data augmentation
Data augmentation summarizes a broad set of techniques for dealing with cases where the train-

Alternative ways to download the CelebA dataset

The CelebA dataset is relatively large (approximately 1.5 GB) and the torchvision down-
load link is notoriously unstable. If you encounter problems executing the previous code,
you can download the files from the official CelebA website manually (https://mmlab.
ie.cuhk.edu.hk/projects/CelebA.html) or use our download link: https://drive.
google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing. If
you use our download link, it will download a celeba.zip file, which you need to unpack in
the current directory where you are running the code. Also, after downloading and unzip-
ping the celeba folder, you need to rerun the code above with the setting download=False
instead of download=True. In case you are encountering problems with this approach,
please do not hesitate to open a new issue or start a discussion at https://github.com/
rasbt/machine-learning-book so that we can provide you with additional information.

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing
https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing
https://github.com/rasbt/machine-learning-book
https://github.com/rasbt/machine-learning-book

Classifying Images with Deep Convolutional Neural Networks484

ing data is limited. For instance, certain data augmentation techniques allow us to modify or even
artificially synthesize more data and thereby boost the performance of a machine or deep learning
model by reducing overfitting. While data augmentation is not only for image data, there is a set of
transformations uniquely applicable to image data, such as cropping parts of an image, flipping, and
changing the contrast, brightness, and saturation. Let’s see some of these transformations that are
available via the torchvision.transforms module. In the following code block, we will first get five
examples from the celeba_train_dataset dataset and apply five different types of transformation:
1) cropping an image to a bounding box, 2) flipping an image horizontally, 3) adjusting the contrast,
4) adjusting the brightness, and 5) center-cropping an image and resizing the resulting image back to
its original size, (218, 178). In the following code, we will visualize the results of these transformations,
showing each one in a separate column for comparison:

>>> fig = plt.figure(figsize=(16, 8.5))
>>> ## Column 1: cropping to a bounding-box
>>> ax = fig.add_subplot(2, 5, 1)
>>> img, attr = celeba_train_dataset[0]
>>> ax.set_title('Crop to a \nbounding-box', size=15)
>>> ax.imshow(img)
>>> ax = fig.add_subplot(2, 5, 6)
>>> img_cropped = transforms.functional.crop(img, 50, 20, 128, 128)
>>> ax.imshow(img_cropped)
>>>
>>> ## Column 2: flipping (horizontally)
>>> ax = fig.add_subplot(2, 5, 2)
>>> img, attr = celeba_train_dataset[1]
>>> ax.set_title('Flip (horizontal)', size=15)
>>> ax.imshow(img)
>>> ax = fig.add_subplot(2, 5, 7)
>>> img_flipped = transforms.functional.hflip(img)
>>> ax.imshow(img_flipped)
>>>
>>> ## Column 3: adjust contrast
>>> ax = fig.add_subplot(2, 5, 3)
>>> img, attr = celeba_train_dataset[2]
>>> ax.set_title('Adjust constrast', size=15)
>>> ax.imshow(img)
>>> ax = fig.add_subplot(2, 5, 8)
>>> img_adj_contrast = transforms.functional.adjust_contrast(
... img, contrast_factor=2
...)
>>> ax.imshow(img_adj_contrast)
>>>
>>> ## Column 4: adjust brightness
>>> ax = fig.add_subplot(2, 5, 4)

Chapter 14 485

>>> img, attr = celeba_train_dataset[3]
>>> ax.set_title('Adjust brightness', size=15)
>>> ax.imshow(img)
>>> ax = fig.add_subplot(2, 5, 9)
>>> img_adj_brightness = transforms.functional.adjust_brightness(
... img, brightness_factor=1.3
...)
>>> ax.imshow(img_adj_brightness)
>>>
>>> ## Column 5: cropping from image center
>>> ax = fig.add_subplot(2, 5, 5)
>>> img, attr = celeba_train_dataset[4]
>>> ax.set_title('Center crop\nand resize', size=15)
>>> ax.imshow(img)
>>> ax = fig.add_subplot(2, 5, 10)
>>> img_center_crop = transforms.functional.center_crop(
... img, [0.7*218, 0.7*178]
...)
>>> img_resized = transforms.functional.resize(
... img_center_crop, size=(218, 178)
...)
>>> ax.imshow(img_resized)
>>> plt.show()

Figure 14.15 shows the results:

Figure 14.15: Different image transformations

In Figure 14.15, the original images are shown in the first row and their transformed versions in the

Classifying Images with Deep Convolutional Neural Networks486

second row. Note that for the first transformation (leftmost column), the bounding box is specified by
four numbers: the coordinate of the upper-left corner of the bounding box (here x=20, y=50), and the
width and height of the box (width=128, height=128). Also note that the origin (the coordinates at the
location denoted as (0, 0)) for images loaded by PyTorch (as well as other packages such as imageio)
is the upper-left corner of the image.

The transformations in the previous code block are deterministic. However, all such transformations
can also be randomized, which is recommended for data augmentation during model training. For
example, a random bounding box (where the coordinates of the upper-left corner are selected ran-
domly) can be cropped from an image, an image can be randomly flipped along either the horizontal
or vertical axes with a probability of 0.5, or the contrast of an image can be changed randomly, where
the contrast_factor is selected at random, but with uniform distribution, from a range of values. In
addition, we can create a pipeline of these transformations.

For example, we can first randomly crop an image, then flip it randomly, and finally, resize it to the
desired size. The code is as follows (since we have random elements, we set the random seed for
reproducibility):

>>> torch.manual_seed(1)
>>> fig = plt.figure(figsize=(14, 12))
>>> for i, (img, attr) in enumerate(celeba_train_dataset):
... ax = fig.add_subplot(3, 4, i*4+1)
... ax.imshow(img)
... if i == 0:
... ax.set_title('Orig.', size=15)
...
... ax = fig.add_subplot(3, 4, i*4+2)
... img_transform = transforms.Compose([
... transforms.RandomCrop([178, 178])
...])
... img_cropped = img_transform(img)
... ax.imshow(img_cropped)
... if i == 0:
... ax.set_title('Step 1: Random crop', size=15)
...
... ax = fig.add_subplot(3, 4, i*4+3)
... img_transform = transforms.Compose([
... transforms.RandomHorizontalFlip()
...])
... img_flip = img_transform(img_cropped)
... ax.imshow(img_flip)
... if i == 0:
... ax.set_title('Step 2: Random flip', size=15)

Chapter 14 487

...

... ax = fig.add_subplot(3, 4, i*4+4)

... img_resized = transforms.functional.resize(

... img_flip, size=(128, 128)

...)

... ax.imshow(img_resized)

... if i == 0:

... ax.set_title('Step 3: Resize', size=15)

... if i == 2:

... break
>>> plt.show()

Figure 14.16 shows random transformations on three example images:

Figure 14.16: Random image transformations

Note that each time we iterate through these three examples, we get slightly different images due to
random transformations.

For convenience, we can define transform functions to use this pipeline for data augmentation during

Classifying Images with Deep Convolutional Neural Networks488

dataset loading. In the following code, we will define the function get_smile, which will extract the
smile label from the 'attributes' list:

>>> get_smile = lambda attr: attr[18]

We will define the transform_train function that will produce the transformed image (where we will
first randomly crop the image, then flip it randomly, and finally, resize it to the desired size 64×64):

>>> transform_train = transforms.Compose([
... transforms.RandomCrop([178, 178]),
... transforms.RandomHorizontalFlip(),
... transforms.Resize([64, 64]),
... transforms.ToTensor(),
...])

We will only apply data augmentation to the training examples, however, and not to the validation or
test images. The code for the validation or test set is as follows (where we will first simply crop the
image and then resize it to the desired size 64×64):

>>> transform = transforms.Compose([
... transforms.CenterCrop([178, 178]),
... transforms.Resize([64, 64]),
... transforms.ToTensor(),
...])

Now, to see data augmentation in action, let’s apply the transform_train function to our training
dataset and iterate over the dataset five times:

>>> from torch.utils.data import DataLoader
>>> celeba_train_dataset = torchvision.datasets.CelebA(
... image_path, split='train',
... target_type='attr', download=False,
... transform=transform_train, target_transform=get_smile
...)
>>> torch.manual_seed(1)
>>> data_loader = DataLoader(celeba_train_dataset, batch_size=2)
>>> fig = plt.figure(figsize=(15, 6))
>>> num_epochs = 5
>>> for j in range(num_epochs):
... img_batch, label_batch = next(iter(data_loader))
... img = img_batch[0]

Chapter 14 489

... ax = fig.add_subplot(2, 5, j + 1)

... ax.set_xticks([])

... ax.set_yticks([])

... ax.set_title(f'Epoch {j}:', size=15)

... ax.imshow(img.permute(1, 2, 0))

...

... img = img_batch[1]

... ax = fig.add_subplot(2, 5, j + 6)

... ax.set_xticks([])

... ax.set_yticks([])

... ax.imshow(img.permute(1, 2, 0))
>>> plt.show()

Figure 14.17 shows the five resulting transformations for data augmentation on two example images:

Figure 14.17: The result of five image transformations

Next, we will apply the transform function to our validation and test datasets:

>>> celeba_valid_dataset = torchvision.datasets.CelebA(
... image_path, split='valid',
... target_type='attr', download=False,
... transform=transform, target_transform=get_smile
...)
>>> celeba_test_dataset = torchvision.datasets.CelebA(
... image_path, split='test',
... target_type='attr', download=False,
... transform=transform, target_transform=get_smile
...)

Classifying Images with Deep Convolutional Neural Networks490

Furthermore, instead of using all the available training and validation data, we will take a subset of
16,000 training examples and 1,000 examples for validation, as our goal here is to intentionally train
our model with a small dataset:

>>> from torch.utils.data import Subset
>>> celeba_train_dataset = Subset(celeba_train_dataset,
... torch.arange(16000))
>>> celeba_valid_dataset = Subset(celeba_valid_dataset,
... torch.arange(1000))
>>> print('Train set:', len(celeba_train_dataset))
Train set: 16000
>>> print('Validation set:', len(celeba_valid_dataset))
Validation set: 1000

Now, we can create data loaders for three datasets:

>>> batch_size = 32
>>> torch.manual_seed(1)
>>> train_dl = DataLoader(celeba_train_dataset,
... batch_size, shuffle=True)
>>> valid_dl = DataLoader(celeba_valid_dataset,
... batch_size, shuffle=False)
>>> test_dl = DataLoader(celeba_test_dataset,
... batch_size, shuffle=False)

Now that the data loaders are ready, we will develop a CNN model, and train and evaluate it in the
next section.

Training a CNN smile classifier
By now, building a model with torch.nn module and training it should be straightforward. The design
of our CNN is as follows: the CNN model receives input images of size 3×64×64 (the images have three
color channels).

The input data goes through four convolutional layers to make 32, 64, 128, and 256 feature maps using
filters with a kernel size of 3×3 and padding of 1 for same padding. The first three convolution layers
are followed by max-pooling, P2×2. Two dropout layers are also included for regularization:

>>> model = nn.Sequential()
>>> model.add_module(
... 'conv1',
... nn.Conv2d(
... in_channels=3, out_channels=32,
... kernel_size=3, padding=1
...)

Chapter 14 491

...)
>>> model.add_module('relu1', nn.ReLU())
>>> model.add_module('pool1', nn.MaxPool2d(kernel_size=2))
>>> model.add_module('dropout1', nn.Dropout(p=0.5))
>>>
>>> model.add_module(
... 'conv2',
... nn.Conv2d(
... in_channels=32, out_channels=64,
... kernel_size=3, padding=1
...)
...)
>>> model.add_module('relu2', nn.ReLU())
>>> model.add_module('pool2', nn.MaxPool2d(kernel_size=2))
>>> model.add_module('dropout2', nn.Dropout(p=0.5))
>>>
>>> model.add_module(
... 'conv3',
... nn.Conv2d(
... in_channels=64, out_channels=128,
... kernel_size=3, padding=1
...)
...)
>>> model.add_module('relu3', nn.ReLU())
>>> model.add_module('pool3', nn.MaxPool2d(kernel_size=2))
>>>
>>> model.add_module(
... 'conv4',
... nn.Conv2d(
... in_channels=128, out_channels=256,
... kernel_size=3, padding=1
...)
...)
>>> model.add_module('relu4', nn.ReLU())

Let’s see the shape of the output feature maps after applying these layers using a toy batch input (four
images arbitrarily):

>>> x = torch.ones((4, 3, 64, 64))
>>> model(x).shape

torch.Size([4, 256, 8, 8])

Classifying Images with Deep Convolutional Neural Networks492

There are 256 feature maps (or channels) of size 8×8. Now, we can add a fully connected layer to get
to the output layer with a single unit. If we reshape (flatten) the feature maps, the number of input
units to this fully connected layer will be 8 × 8 × 256 = 16,384. Alternatively, let’s consider a new layer,
called global average-pooling, which computes the average of each feature map separately, thereby
reducing the hidden units to 256. We can then add a fully connected layer. Although we have not dis-
cussed global average-pooling explicitly, it is conceptually very similar to other pooling layers. Global
average-pooling can be viewed, in fact, as a special case of average-pooling when the pooling size is
equal to the size of the input feature maps.

To understand this, consider Figure 14.18, showing an example of input feature maps of shape batch-
size×8×64×64. The channels are numbered k =0, 1, ..., 7. The global average-pooling operation calculates
the average of each channel so that the output will have the shape [batchsize×8]. After this, we will
squeeze the output of the global average-pooling layer.

Without squeezing the output, the shape would be [batchsize×8×1×1], as the global average-pooling
would reduce the spatial dimension of 64×64 to 1×1:

Figure 14.18: Input feature maps

Therefore, given that, in our case, the shape of the feature maps prior to this layer is [batchsize×256×8×8],
we expect to get 256 units as output, that is, the shape of the output will be [batchsize×256]. Let’s add
this layer and recompute the output shape to verify that this is true:

>>> model.add_module('pool4', nn.AvgPool2d(kernel_size=8))
>>> model.add_module('flatten', nn.Flatten())
>>> x = torch.ones((4, 3, 64, 64))
>>> model(x).shape

Chapter 14 493

torch.Size([4, 256])

Finally, we can add a fully connected layer to get a single output unit. In this case, we can specify the
activation function to be 'sigmoid':

>>> model.add_module('fc', nn.Linear(256, 1))
>>> model.add_module('sigmoid', nn.Sigmoid())
>>> x = torch.ones((4, 3, 64, 64))
>>> model(x).shape
torch.Size([4, 1])
>>> model
Sequential(
 (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (relu1): ReLU()
 (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_
mode=False)
 (dropout1): Dropout(p=0.5, inplace=False)
 (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (relu2): ReLU()
 (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_
mode=False)
 (dropout2): Dropout(p=0.5, inplace=False)
 (conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (relu3): ReLU()
 (pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_
mode=False)
 (conv4): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (relu4): ReLU()
 (pool4): AvgPool2d(kernel_size=8, stride=8, padding=0)
 (flatten): Flatten(start_dim=1, end_dim=-1)
 (fc): Linear(in_features=256, out_features=1, bias=True)
 (sigmoid): Sigmoid()
)

The next step is to create a loss function and optimizer (Adam optimizer again). For a binary classifi-
cation with a single probabilistic output, we use BCELoss for the loss function:

>>> loss_fn = nn.BCELoss()
>>> optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Classifying Images with Deep Convolutional Neural Networks494

Now we can train the model by defining the following function:

>>> def train(model, num_epochs, train_dl, valid_dl):
... loss_hist_train = [0] * num_epochs
... accuracy_hist_train = [0] * num_epochs
... loss_hist_valid = [0] * num_epochs
... accuracy_hist_valid = [0] * num_epochs
... for epoch in range(num_epochs):
... model.train()
... for x_batch, y_batch in train_dl:
... pred = model(x_batch)[:, 0]
... loss = loss_fn(pred, y_batch.float())
... loss.backward()
... optimizer.step()
... optimizer.zero_grad()
... loss_hist_train[epoch] += loss.item()*y_batch.size(0)
... is_correct = ((pred>=0.5).float() == y_batch).float()
... accuracy_hist_train[epoch] += is_correct.sum()
... loss_hist_train[epoch] /= len(train_dl.dataset)
... accuracy_hist_train[epoch] /= len(train_dl.dataset)
...
... model.eval()
... with torch.no_grad():
... for x_batch, y_batch in valid_dl:
... pred = model(x_batch)[:, 0]
... loss = loss_fn(pred, y_batch.float())
... loss_hist_valid[epoch] += \
... loss.item() * y_batch.size(0)
... is_correct = \
... ((pred>=0.5).float() == y_batch).float()
... accuracy_hist_valid[epoch] += is_correct.sum()
... loss_hist_valid[epoch] /= len(valid_dl.dataset)
... accuracy_hist_valid[epoch] /= len(valid_dl.dataset)
...
... print(f'Epoch {epoch+1} accuracy: '
... f'{accuracy_hist_train[epoch]:.4f} val_accuracy: '
... f'{accuracy_hist_valid[epoch]:.4f}')
... return loss_hist_train, loss_hist_valid, \
... accuracy_hist_train, accuracy_hist_valid

Chapter 14 495

Next, we will train this CNN model for 30 epochs and use the validation dataset that we created for
monitoring the learning progress:

>>> torch.manual_seed(1)
>>> num_epochs = 30
>>> hist = train(model, num_epochs, train_dl, valid_dl)
Epoch 1 accuracy: 0.6286 val_accuracy: 0.6540
...
Epoch 15 accuracy: 0.8544 val_accuracy: 0.8700
...
Epoch 30 accuracy: 0.8739 val_accuracy: 0.8710

Let’s now visualize the learning curve and compare the training and validation loss and accuracies
after each epoch:

>>> x_arr = np.arange(len(hist[0])) + 1
>>> fig = plt.figure(figsize=(12, 4))
>>> ax = fig.add_subplot(1, 2, 1)
>>> ax.plot(x_arr, hist[0], '-o', label='Train loss')
>>> ax.plot(x_arr, hist[1], '--<', label='Validation loss')
>>> ax.legend(fontsize=15)
>>> ax = fig.add_subplot(1, 2, 2)
>>> ax.plot(x_arr, hist[2], '-o', label='Train acc.')
>>> ax.plot(x_arr, hist[3], '--<',
... label='Validation acc.')
>>> ax.legend(fontsize=15)
>>> ax.set_xlabel('Epoch', size=15)
>>> ax.set_ylabel('Accuracy', size=15)
>>> plt.show()

Figure 14.19: A comparison of the training and validation results

Classifying Images with Deep Convolutional Neural Networks496

Once we are happy with the learning curves, we can evaluate the model on the hold-out test dataset:

>>> accuracy_test = 0
>>> model.eval()
>>> with torch.no_grad():
... for x_batch, y_batch in test_dl:
... pred = model(x_batch)[:, 0]
... is_correct = ((pred>=0.5).float() == y_batch).float()
... accuracy_test += is_correct.sum()
>>> accuracy_test /= len(test_dl.dataset)
>>> print(f'Test accuracy: {accuracy_test:.4f}')
Test accuracy: 0.8446

Finally, we already know how to get the prediction results on some test examples. In the following
code, we will take a small subset of 10 examples from the last batch of our pre-processed test dataset
(test_dl). Then, we will compute the probabilities of each example being from class 1 (which corre-
sponds to smile based on the labels provided in CelebA) and visualize the examples along with their
ground truth label and the predicted probabilities:

>>> pred = model(x_batch)[:, 0] * 100
>>> fig = plt.figure(figsize=(15, 7))
>>> for j in range(10, 20):
... ax = fig.add_subplot(2, 5, j-10+1)
... ax.set_xticks([]); ax.set_yticks([])
... ax.imshow(x_batch[j].permute(1, 2, 0))
... if y_batch[j] == 1:
... label='Smile'
... else:
... label = 'Not Smile'
... ax.text(
... 0.5, -0.15,
... f'GT: {label:s}\nPr(Smile)={pred[j]:.0f}%',
... size=16,
... horizontalalignment='center',
... verticalalignment='center',
... transform=ax.transAxes
...)
>>> plt.show()

Chapter 14 497

In Figure 14.20, you can see 10 example images along with their ground truth labels and the probabil-
ities that they belong to class 1, smile:

Figure 14.20: Image labels and their probabilities that they belong to class 1

The probabilities of class 1 (that is, smile according to CelebA) are provided below each image. As you
can see, our trained model is completely accurate on this set of 10 test examples.

As an optional exercise, you are encouraged to try using the entire training dataset instead of the small
subset we created. Furthermore, you can change or modify the CNN architecture. For example, you
can change the dropout probabilities and the number of filters in the different convolutional layers.
Also, you could replace the global average-pooling with a fully connected layer. If you are using the
entire training dataset with the CNN architecture we trained in this chapter, you should be able to
achieve above 90 percent accuracy.

Summary
In this chapter, we learned about CNNs and their main components. We started with the convolution
operation and looked at 1D and 2D implementations. Then, we covered another type of layer that is
found in several common CNN architectures: the subsampling or so-called pooling layers. We primarily
focused on the two most common forms of pooling: max-pooling and average-pooling.

Next, putting all these individual concepts together, we implemented deep CNNs using the torch.nn
module. The first network we implemented was applied to the already familiar MNIST handwritten
digit recognition problem.

Then, we implemented a second CNN on a more complex dataset consisting of face images and trained
the CNN for smile classification. Along the way, you also learned about data augmentation and dif-
ferent transformations that we can apply to face images using the torchvision.transforms module.

Classifying Images with Deep Convolutional Neural Networks498

In the next chapter, we will move on to recurrent neural networks (RNNs). RNNs are used for learn-
ing the structure of sequence data, and they have some fascinating applications, including language
translation and image captioning.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

15
Modeling Sequential Data Using
Recurrent Neural Networks

In the previous chapter, we focused on convolutional neural networks (CNNs). We covered the build-
ing blocks of CNN architectures and how to implement deep CNNs in PyTorch. Finally, you learned
how to use CNNs for image classification. In this chapter, we will explore recurrent neural networks
(RNNs) and see their application in modeling sequential data.

We will cover the following topics:

• Introducing sequential data
• RNNs for modeling sequences
• Long short-term memory
• Truncated backpropagation through time
• Implementing a multilayer RNN for sequence modeling in PyTorch
• Project one: RNN sentiment analysis of the IMDb movie review dataset
• Project two: RNN character-level language modeling with LSTM cells, using text data from

Jules Verne’s The Mysterious Island
• Using gradient clipping to avoid exploding gradients

Introducing sequential data
Let’s begin our discussion of RNNs by looking at the nature of sequential data, which is more com-
monly known as sequence data or sequences. We will look at the unique properties of sequences that
make them different from other kinds of data. We will then see how to represent sequential data and
explore the various categories of models for sequential data, which are based on the input and output
of a model. This will help us to explore the relationship between RNNs and sequences in this chapter.

Modeling Sequential Data Using Recurrent Neural Networks500

Modeling sequential data – order matters
What makes sequences unique, compared to other types of data, is that elements in a sequence ap-
pear in a certain order and are not independent of each other. Typical machine learning algorithms
for supervised learning assume that the input is independent and identically distributed (IID) data,
which means that the training examples are mutually independent and have the same underlying
distribution. In this regard, based on the mutual independence assumption, the order in which the
training examples are given to the model is irrelevant. For example, if we have a sample consisting
of n training examples, x(1), x(2), ..., x(n), the order in which we use the data for training our machine
learning algorithm does not matter. An example of this scenario would be the Iris dataset that we
worked with previously. In the Iris dataset, each flower has been measured independently, and the
measurements of one flower do not influence the measurements of another flower.

However, this assumption is not valid when we deal with sequences—by definition, order matters.
Predicting the market value of a particular stock would be an example of this scenario. For instance,
assume we have a sample of n training examples, where each training example represents the market
value of a certain stock on a particular day. If our task is to predict the stock market value for the next
three days, it would make sense to consider the previous stock prices in a date-sorted order to derive
trends rather than utilize these training examples in a randomized order.

Sequential data versus time series data
Time series data is a special type of sequential data where each example is associated with a dimen-
sion for time. In time series data, samples are taken at successive timestamps, and therefore, the
time dimension determines the order among the data points. For example, stock prices and voice or
speech records are time series data.

On the other hand, not all sequential data has the time dimension. For example, in text data or DNA
sequences, the examples are ordered, but text or DNA does not qualify as time series data. As you will
see, in this chapter, we will focus on examples of natural language processing (NLP) and text modeling
that are not time series data. However, note that RNNs can also be used for time series data, which is
beyond the scope of this book.

Representing sequences
We’ve established that order among data points is important in sequential data, so we next need to
find a way to leverage this ordering information in a machine learning model. Throughout this chapter,
we will represent sequences as 〈𝒙𝒙(1), 𝒙𝒙(2), … , 𝒙𝒙(𝑇𝑇)〉 . The superscript indices indicate the order of the
instances, and the length of the sequence is T. For a sensible example of sequences, consider time
series data, where each example point, x(t), belongs to a particular time, t. Figure 15.1 shows an example
of time series data where both the input features (x’s) and the target labels (y’s) naturally follow the
order according to their time axis; therefore, both the x’s and y’s are sequences.

Chapter 15 501

Figure 15.1: An example of time series data

As we have already mentioned, the standard NN models that we have covered so far, such as multilayer
perceptrons (MLPs) and CNNs for image data, assume that the training examples are independent
of each other and thus do not incorporate ordering information. We can say that such models do not
have a memory of previously seen training examples. For instance, the samples are passed through
the feedforward and backpropagation steps, and the weights are updated independently of the order
in which the training examples are processed.

RNNs, by contrast, are designed for modeling sequences and are capable of remembering past informa-
tion and processing new events accordingly, which is a clear advantage when working with sequence data.

The different categories of sequence modeling
Sequence modeling has many fascinating applications, such as language translation (for example,
translating text from English to German), image captioning, and text generation. However, in order
to choose an appropriate architecture and approach, we have to understand and be able to distinguish
between these different sequence modeling tasks. Figure 15.2, based on the explanations in the excellent
article The Unreasonable Effectiveness of Recurrent Neural Networks, by Andrej Karpathy, 2015 (http://
karpathy.github.io/2015/05/21/rnn-effectiveness/), summarizes the most common sequence
modeling tasks, which depend on the relationship categories of input and output data.

Figure 15.2: The most common sequencing tasks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Modeling Sequential Data Using Recurrent Neural Networks502

Let’s discuss the different relationship categories between input and output data, which were depicted
in the previous figure, in more detail. If neither the input nor output data represent sequences, then
we are dealing with standard data, and we could simply use a multilayer perceptron (or another clas-
sification model previously covered in this book) to model such data. However, if either the input or
output is a sequence, the modeling task likely falls into one of these categories:

• Many-to-one: The input data is a sequence, but the output is a fixed-size vector or scalar, not
a sequence. For example, in sentiment analysis, the input is text-based (for example, a movie
review) and the output is a class label (for example, a label denoting whether a reviewer liked
the movie).

• One-to-many: The input data is in standard format and not a sequence, but the output is a
sequence. An example of this category is image captioning—the input is an image and the
output is an English phrase summarizing the content of that image.

• Many-to-many: Both the input and output arrays are sequences. This category can be further
divided based on whether the input and output are synchronized. An example of a synchronized
many-to-many modeling task is video classification, where each frame in a video is labeled.
An example of a delayed many-to-many modeling task would be translating one language into
another. For instance, an entire English sentence must be read and processed by a machine
before its translation into German is produced.

Now, after summarizing the three broad categories of sequence modeling, we can move forward to
discussing the structure of an RNN.

RNNs for modeling sequences
In this section, before we start implementing RNNs in PyTorch, we will discuss the main concepts of
RNNs. We will begin by looking at the typical structure of an RNN, which includes a recursive com-
ponent to model sequence data. Then, we will examine how the neuron activations are computed in
a typical RNN. This will create a context for us to discuss the common challenges in training RNNs,
and we will then discuss solutions to these challenges, such as LSTM and gated recurrent units (GRUs).

Understanding the dataflow in RNNs
Let’s start with the architecture of an RNN. Figure 15.3 shows the dataflow in a standard feedforward
NN and in an RNN side by side for comparison:

Figure 15.3: The dataflow of a standard feedforward NN and an RNN

Chapter 15 503

Both of these networks have only one hidden layer. In this representation, the units are not displayed,
but we assume that the input layer (x), hidden layer (h), and output layer (o) are vectors that contain
many units.

In a standard feedforward network, information flows from the input to the hidden layer, and then from
the hidden layer to the output layer. On the other hand, in an RNN, the hidden layer receives its input
from both the input layer of the current time step and the hidden layer from the previous time step.

The flow of information in adjacent time steps in the hidden layer allows the network to have a mem-
ory of past events. This flow of information is usually displayed as a loop, also known as a recurrent
edge in graph notation, which is how this general RNN architecture got its name.

Similar to multilayer perceptrons, RNNs can consist of multiple hidden layers. Note that it’s a common
convention to refer to RNNs with one hidden layer as a single-layer RNN, which is not to be confused
with single-layer NNs without a hidden layer, such as Adaline or logistic regression. Figure 15.4 illus-
trates an RNN with one hidden layer (top) and an RNN with two hidden layers (bottom):

Figure 15.4: Examples of an RNN with one and two hidden layers

Determining the type of output from an RNN

This generic RNN architecture could correspond to the two sequence modeling catego-
ries where the input is a sequence. Typically, a recurrent layer can return a sequence as
output, 〈𝒐𝒐(0), 𝒐𝒐(1), … , 𝒐𝒐(𝑇𝑇)〉 , or simply return the last output (at t = T, that is, o(T)). Thus, it
could be either many-to-many, or it could be many-to-one if, for example, we only use the
last element, o(T), as the final output.

We will see later how this is handled in the PyTorch torch.nn module, when we take a de-
tailed look at the behavior of a recurrent layer with respect to returning a sequence as output.

Modeling Sequential Data Using Recurrent Neural Networks504

To examine the architecture of RNNs and the flow of information, a compact representation with a
recurrent edge can be unfolded, which you can see in Figure 15.4.

As we know, each hidden unit in a standard NN receives only one input—the net preactivation as-
sociated with the input layer. In contrast, each hidden unit in an RNN receives two distinct sets of
input—the preactivation from the input layer and the activation of the same hidden layer from the
previous time step, t – 1.

At the first time step, t = 0, the hidden units are initialized to zeros or small random values. Then, at a
time step where t > 0, the hidden units receive their input from the data point at the current time, x(t),
and the previous values of hidden units at t – 1, indicated as h(t–1).

Similarly, in the case of a multilayer RNN, we can summarize the information flow as follows:

• layer = 1: Here, the hidden layer is represented as 𝒉𝒉1(𝑡𝑡) and it receives its input from the data
point, x(t), and the hidden values in the same layer, but at the previous time step, 𝒉𝒉1(𝑡𝑡𝑡1) .

• layer = 2: The second hidden layer, 𝒉𝒉2(𝑡𝑡) , receives its inputs from the outputs of the layer below
at the current time step (𝒐𝒐1(𝑡𝑡)) and its own hidden values from the previous time step, 𝒉𝒉2(𝑡𝑡𝑡𝑡) .

Since, in this case, each recurrent layer must receive a sequence as input, all the recurrent layers except
the last one must return a sequence as output (that is, we will later have to set return_sequences=True).
The behavior of the last recurrent layer depends on the type of problem.

Computing activations in an RNN
Now that you understand the structure and general flow of information in an RNN, let’s get more spe-
cific and compute the actual activations of the hidden layers, as well as the output layer. For simplicity,
we will consider just a single hidden layer; however, the same concept applies to multilayer RNNs.

Each directed edge (the connections between boxes) in the representation of an RNN that we just
looked at is associated with a weight matrix. Those weights do not depend on time, t; therefore, they
are shared across the time axis. The different weight matrices in a single-layer RNN are as follows:

• Wxh: The weight matrix between the input, x(t), and the hidden layer, h
• Whh: The weight matrix associated with the recurrent edge
• Who: The weight matrix between the hidden layer and output layer

These weight matrices are depicted in Figure 15.5:

Figure 15.5: Applying weights to a single-layer RNN

Chapter 15 505

In certain implementations, you may observe that the weight matrices, Wxh and Whh, are concatenated
to a combined matrix, Wh = [Wxh; Whh]. Later in this section, we will make use of this notation as well.

Computing the activations is very similar to standard multilayer perceptrons and other types of feed-
forward NNs. For the hidden layer, the net input, zh (preactivation), is computed through a linear
combination; that is, we compute the sum of the multiplications of the weight matrices with the
corresponding vectors and add the bias unit:𝒛𝒛ℎ(𝑡𝑡) = 𝑾𝑾𝑥𝑥ℎ𝒙𝒙(𝑡𝑡) + 𝑾𝑾ℎℎ𝒉𝒉(𝑡𝑡𝑡𝑡) + 𝒃𝒃ℎ

Then, the activations of the hidden units at the time step, t, are calculated as follows:𝒉𝒉(𝑡𝑡) = 𝜎𝜎ℎ(𝒛𝒛ℎ(𝑡𝑡)) = 𝜎𝜎ℎ(𝑾𝑾𝑥𝑥ℎ𝒙𝒙(𝑡𝑡) + 𝑾𝑾ℎℎ𝒉𝒉(𝑡𝑡𝑡𝑡) + 𝒃𝒃ℎ)
Here, bh is the bias vector for the hidden units and 𝜎𝜎𝜎𝜎𝜎 is the activation function of the hidden layer.

In case you want to use the concatenated weight matrix, Wh = [Wxh; Whh], the formula for computing
hidden units will change, as follows:𝒉𝒉(𝑡𝑡) = 𝜎𝜎ℎ ([𝑾𝑾𝑥𝑥ℎ;𝑾𝑾ℎℎ] [𝒙𝒙(𝑡𝑡)𝒉𝒉(𝑡𝑡𝑡𝑡)] + 𝒃𝒃ℎ)

Once the activations of the hidden units at the current time step are computed, then the activations
of the output units will be computed, as follows:𝒐𝒐(𝑡𝑡) = 𝜎𝜎0(𝑾𝑾ℎ𝑜𝑜𝒉𝒉(𝑡𝑡) + 𝒃𝒃0)
To help clarify this further, Figure 15.6 shows the process of computing these activations with both
formulations:

Figure 15.6: Computing the activations

Modeling Sequential Data Using Recurrent Neural Networks506

Hidden recurrence versus output recurrence
So far, you have seen recurrent networks in which the hidden layer has the recurrent property. How-
ever, note that there is an alternative model in which the recurrent connection comes from the output
layer. In this case, the net activations from the output layer at the previous time step, ot–1, can be added
in one of two ways:

• To the hidden layer at the current time step, ht (shown in Figure 15.7 as output-to-hidden
recurrence)

• To the output layer at the current time step, ot (shown in Figure 15.7 as output-to-output re-
currence)

Training RNNs using backpropagation through time (BPTT)

The learning algorithm for RNNs was introduced in 1990: Backpropagation Through Time:
What It Does and How to Do It (Paul Werbos, Proceedings of IEEE, 78(10): 1550-1560, 1990).

The derivation of the gradients might be a bit complicated, but the basic idea is that the
overall loss, L, is the sum of all the loss functions at times t = 1 to t = T:

𝐿𝐿 𝐿𝐿𝐿𝐿(𝑡𝑡)𝑇𝑇
𝑡𝑡𝑡𝑡

Since the loss at time t is dependent on the hidden units at all previous time steps 1 : t, the
gradient will be computed as follows:𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕ℎℎ = 𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕(𝑡𝑡) × 𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕(𝑡𝑡) × (∑ 𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕(𝑘𝑘) × 𝜕𝜕𝜕𝜕(𝑘𝑘)𝜕𝜕𝜕𝜕ℎℎ

𝑡𝑡
𝑘𝑘𝑘𝑘)

Here, 𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕(𝑘𝑘) is computed as a multiplication of adjacent time steps:𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕(𝑘𝑘) = ∏ 𝜕𝜕𝜕𝜕(𝑖𝑖)𝜕𝜕𝜕𝜕(𝑖𝑖𝑖𝑖)𝑡𝑡
𝑖𝑖𝑖𝑘𝑘𝑖𝑖

Chapter 15 507

Figure 15.7: Different recurrent connection models

As shown in Figure 15.7, the differences between these architectures can be clearly seen in the recur-
ring connections. Following our notation, the weights associated with the recurrent connection will
be denoted for the hidden-to-hidden recurrence by Whh, for the output-to-hidden recurrence by Woh,
and for the output-to-output recurrence by Woo. In some articles in literature, the weights associated
with the recurrent connections are also denoted by Wrec.

To see how this works in practice, let’s manually compute the forward pass for one of these recurrent
types. Using the torch.nn module, a recurrent layer can be defined via RNN, which is similar to the
hidden-to-hidden recurrence. In the following code, we will create a recurrent layer from RNN and
perform a forward pass on an input sequence of length 3 to compute the output. We will also manually
compute the forward pass and compare the results with those of RNN.

Modeling Sequential Data Using Recurrent Neural Networks508

First, let’s create the layer and assign the weights and biases for our manual computations:

>>> import torch
>>> import torch.nn as nn
>>> torch.manual_seed(1)
>>> rnn_layer = nn.RNN(input_size=5, hidden_size=2,
... num_layers=1, batch_first=True)
>>> w_xh = rnn_layer.weight_ih_l0
>>> w_hh = rnn_layer.weight_hh_l0
>>> b_xh = rnn_layer.bias_ih_l0
>>> b_hh = rnn_layer.bias_hh_l0
>>> print('W_xh shape:', w_xh.shape)
>>> print('W_hh shape:', w_hh.shape)
>>> print('b_xh shape:', b_xh.shape)
>>> print('b_hh shape:', b_hh.shape)
W_xh shape: torch.Size([2, 5])
W_hh shape: torch.Size([2, 2])
b_xh shape: torch.Size([2])
b_hh shape: torch.Size([2])

The input shape for this layer is (batch_size, sequence_length, 5), where the first dimension is the
batch dimension (as we set batch_first=True), the second dimension corresponds to the sequence,
and the last dimension corresponds to the features. Notice that we will output a sequence, which, for
an input sequence of length 3, will result in the output sequence 〈𝒐𝒐(0), 𝒐𝒐(1), 𝒐𝒐(2)〉 . Also, RNN uses one layer
by default, and you can set num_layers to stack multiple RNN layers together to form a stacked RNN.

Now, we will call the forward pass on the rnn_layer and manually compute the outputs at each time
step and compare them:

>>> x_seq = torch.tensor([[1.0]*5, [2.0]*5, [3.0]*5]).float()
>>> ## output of the simple RNN:
>>> output, hn = rnn_layer(torch.reshape(x_seq, (1, 3, 5)))
>>> ## manually computing the output:
>>> out_man = []
>>> for t in range(3):
... xt = torch.reshape(x_seq[t], (1, 5))
... print(f'Time step {t} =>')
... print(' Input :', xt.numpy())
...
... ht = torch.matmul(xt, torch.transpose(w_xh, 0, 1)) + b_hh
... print(' Hidden :', ht.detach().numpy()
...

Chapter 15 509

... if t > 0:

... prev_h = out_man[t-1]

... else:

... prev_h = torch.zeros((ht.shape))

... ot = ht + torch.matmul(prev_h, torch.transpose(w_hh, 0, 1)) \

... + b_hh

... ot = torch.tanh(ot)

... out_man.append(ot)

... print(' Output (manual) :', ot.detach().numpy())

... print(' RNN output :', output[:, t].detach().numpy())

... print()
Time step 0 =>
 Input : [[1. 1. 1. 1. 1.]]
 Hidden : [[-0.4701929 0.5863904]]
 Output (manual) : [[-0.3519801 0.52525216]]
 RNN output : [[-0.3519801 0.52525216]]

Time step 1 =>
 Input : [[2. 2. 2. 2. 2.]]
 Hidden : [[-0.88883156 1.2364397]]
 Output (manual) : [[-0.68424344 0.76074266]]
 RNN output : [[-0.68424344 0.76074266]]

Time step 2 =>
 Input : [[3. 3. 3. 3. 3.]]
 Hidden : [[-1.3074701 1.886489]]
 Output (manual) : [[-0.8649416 0.90466356]]
 RNN output : [[-0.8649416 0.90466356]]

In our manual forward computation, we used the hyperbolic tangent (tanh) activation function since it
is also used in RNN (the default activation). As you can see from the printed results, the outputs from the
manual forward computations exactly match the output of the RNN layer at each time step. Hopefully,
this hands-on task has enlightened you on the mysteries of recurrent networks.

The challenges of learning long-range interactions
BPTT, which was briefly mentioned earlier, introduces some new challenges. Because of the multipli-

cative factor, 𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕(𝑘𝑘) , in computing the gradients of a loss function, the so-called vanishing and exploding

gradient problems arise.

Modeling Sequential Data Using Recurrent Neural Networks510

These problems are explained by the examples in Figure 15.8, which shows an RNN with only one
hidden unit for simplicity:

Figure 15.8: Problems in computing the gradients of the loss function

Basically, 𝜕𝜕𝜕𝜕(𝑡𝑡)𝜕𝜕𝜕𝜕(𝑘𝑘) has t – k multiplications; therefore, multiplying the weight, w, by itself t – k times results

in a factor, wt–k. As a result, if |w| < 1, this factor becomes very small when t – k is large. On the other
hand, if the weight of the recurrent edge is |w| > 1, then wt–k becomes very large when t – k is large.
Note that a large t – k refers to long-range dependencies. We can see that a naive solution to avoid
vanishing or exploding gradients can be reached by ensuring |w| = 1. If you are interested and would
like to investigate this in more detail, read On the difficulty of training recurrent neural networks by R.
Pascanu, T. Mikolov, and Y. Bengio, 2012 (https://arxiv.org/pdf/1211.5063.pdf).

In practice, there are at least three solutions to this problem:

• Gradient clipping
• Truncated backpropagation through time (TBPTT)
• LSTM

Using gradient clipping, we specify a cut-off or threshold value for the gradients, and we assign this
cut-off value to gradient values that exceed this value. In contrast, TBPTT simply limits the number of
time steps that the signal can backpropagate after each forward pass. For example, even if the sequence
has 100 elements or steps, we may only backpropagate the most recent 20 time steps.

While both gradient clipping and TBPTT can solve the exploding gradient problem, the truncation limits
the number of steps that the gradient can effectively flow back and properly update the weights. On
the other hand, LSTM, designed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber, has been more
successful in vanishing and exploding gradient problems while modeling long-range dependencies
through the use of memory cells. Let’s discuss LSTM in more detail.

https://arxiv.org/pdf/1211.5063.pdf

Chapter 15 511

Long short-term memory cells
As stated previously, LSTMs were first introduced to overcome the vanishing gradient problem (Long
Short-Term Memory by S. Hochreiter and J. Schmidhuber, Neural Computation, 9(8): 1735-1780, 1997).
The building block of an LSTM is a memory cell, which essentially represents or replaces the hidden
layer of standard RNNs.

In each memory cell, there is a recurrent edge that has the desirable weight, w = 1, as we discussed, to
overcome the vanishing and exploding gradient problems. The values associated with this recurrent
edge are collectively called the cell state. The unfolded structure of a modern LSTM cell is shown in
Figure 15.9:

Figure 15.9: The structure of an LSTM cell

Notice that the cell state from the previous time step, C(t–1), is modified to get the cell state at the cur-
rent time step, C(t), without being multiplied directly by any weight factor. The flow of information in
this memory cell is controlled by several computation units (often called gates) that will be described
here. In the figure, ⨀ refers to the element-wise product (element-wise multiplication) and ⨁ means
element-wise summation (element-wise addition). Furthermore, x(t) refers to the input data at time t,
and h(t–1) indicates the hidden units at time t – 1. Four boxes are indicated with an activation function,
either the sigmoid function (𝜎𝜎) or tanh, and a set of weights; these boxes apply a linear combination by
performing matrix-vector multiplications on their inputs (which are h(t–1) and x(t)). These units of com-
putation with sigmoid activation functions, whose output units are passed through ⨀ , are called gates.

In an LSTM cell, there are three different types of gates, which are known as the forget gate, the input
gate, and the output gate:

The forget gate (ft) allows the memory cell to reset the cell state without growing indefinitely. In fact,
the forget gate decides which information is allowed to go through and which information to suppress.
Now, ft is computed as follows: 𝒇𝒇𝑡𝑡 = 𝜎𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝒙𝒙(𝑡𝑡) + 𝜎𝜎ℎ𝑥𝑥𝒉𝒉(𝑡𝑡𝑡𝑡) + 𝒃𝒃𝑥𝑥)

Modeling Sequential Data Using Recurrent Neural Networks512

Note that the forget gate was not part of the original LSTM cell; it was added a few years later to im-
prove the original model (Learning to Forget: Continual Prediction with LSTM by F. Gers, J. Schmidhuber,
and F. Cummins, Neural Computation 12, 2451-2471, 2000).

The input gate (it) and candidate value (�̃�𝑪𝑡𝑡) are responsible for updating the cell state. They are com-
puted as follows: 𝒊𝒊𝑡𝑡 = 𝜎𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝒙𝒙(𝑡𝑡) + 𝜎𝜎ℎ𝑥𝑥𝒉𝒉(𝑡𝑡𝑡𝑡) + 𝒃𝒃𝑥𝑥)�̃�𝑪𝑡𝑡 = tanh𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝒙𝒙(𝑡𝑡) + 𝜎𝜎ℎ𝑥𝑥𝒉𝒉(𝑡𝑡𝑡𝑡) + 𝒃𝒃𝑥𝑥)
The cell state at time t is computed as follows:𝑪𝑪(𝑡𝑡) = (𝑪𝑪(𝑡𝑡𝑡𝑡)⨀𝒇𝒇𝑡𝑡)⨁(𝒊𝒊𝑡𝑡⨀�̃�𝐶𝑡𝑡)
The output gate (ot) decides how to update the values of hidden units:𝒐𝒐𝑡𝑡 = 𝜎𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝒙𝒙(𝑡𝑡) + 𝜎𝜎ℎ𝑥𝑥𝒉𝒉(𝑡𝑡𝑡𝑡) + 𝒃𝒃𝑥𝑥)
Given this, the hidden units at the current time step are computed as follows:𝒉𝒉(𝑡𝑡) = 𝒐𝒐𝑡𝑡⨀ tanh(𝑪𝑪(𝑡𝑡))
The structure of an LSTM cell and its underlying computations might seem very complex and hard to
implement. However, the good news is that PyTorch has already implemented everything in optimized
wrapper functions, which allows us to define our LSTM cells easily and efficiently. We will apply RNNs
and LSTMs to real-world datasets later in this chapter.

Other advanced RNN models

LSTMs provide a basic approach for modeling long-range dependencies in sequences. Yet,
it is important to note that there are many variations of LSTMs described in literature (An
Empirical Exploration of Recurrent Network Architectures by Rafal Jozefowicz, Wojciech Zaremba,
and Ilya Sutskever, Proceedings of ICML, 2342-2350, 2015). Also worth noting is a more recent
approach, gated recurrent unit (GRU), which was proposed in 2014. GRUs have a simpler
architecture than LSTMs; therefore, they are computationally more efficient, while their
performance in some tasks, such as polyphonic music modeling, is comparable to LSTMs.
If you are interested in learning more about these modern RNN architectures, refer to
the paper, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling by
Junyoung Chung and others, 2014 (https://arxiv.org/pdf/1412.3555v1.pdf).

https://arxiv.org/pdf/1412.3555v1.pdf

Chapter 15 513

Implementing RNNs for sequence modeling in PyTorch
Now that we have covered the underlying theory behind RNNs, we are ready to move on to the more
practical portion of this chapter: implementing RNNs in PyTorch. During the rest of this chapter, we
will apply RNNs to two common problem tasks:

1. Sentiment analysis
2. Language modeling

These two projects, which we will walk through together in the following pages, are both fascinating but
also quite involved. Thus, instead of providing the code all at once, we will break the implementation
up into several steps and discuss the code in detail. If you like to have a big picture overview and want
to see all the code at once before diving into the discussion, take a look at the code implementation first.

Project one – predicting the sentiment of IMDb movie reviews
You may recall from Chapter 8, Applying Machine Learning to Sentiment Analysis, that sentiment analysis
is concerned with analyzing the expressed opinion of a sentence or a text document. In this section
and the following subsections, we will implement a multilayer RNN for sentiment analysis using a
many-to-one architecture.

In the next section, we will implement a many-to-many RNN for an application of language modeling.
While the chosen examples are purposefully simple to introduce the main concepts of RNNs, language
modeling has a wide range of interesting applications, such as building chatbots—giving computers
the ability to directly talk and interact with humans.

Preparing the movie review data
In Chapter 8, we preprocessed and cleaned the review dataset. And we will do the same now. First, we
will import the necessary modules and read the data from torchtext (which we will install via pip
install torchtext; version 0.10.0 was used as of late 2021) as follows:

>>> from torchtext.datasets import IMDB
>>> train_dataset = IMDB(split='train')
>>> test_dataset = IMDB(split='test')

Each set has 25,000 samples. And each sample of the datasets consists of two elements, the sentiment
label representing the target label we want to predict (neg refers to negative sentiment and pos refers
to positive sentiment), and the movie review text (the input features). The text component of these
movie reviews is sequences of words, and the RNN model classifies each sequence as a positive (1)
or negative (0) review.

Modeling Sequential Data Using Recurrent Neural Networks514

However, before we can feed the data into an RNN model, we need to apply several preprocessing steps:

1. Split the training dataset into separate training and validation partitions.
2. Identify the unique words in the training dataset
3. Map each unique word to a unique integer and encode the review text into encoded integers

(an index of each unique word)
4. Divide the dataset into mini-batches as input to the model

Let’s proceed with the first step: creating a training and validation partition from the train_dataset
we read earlier:

>>> ## Step 1: create the datasets
>>> from torch.utils.data.dataset import random_split
>>> torch.manual_seed(1)
>>> train_dataset, valid_dataset = random_split(
... list(train_dataset), [20000, 5000])

The original training dataset contains 25,000 examples. 20,000 examples are randomly chosen for
training, and 5,000 for validation.

To prepare the data for input to an NN, we need to encode it into numeric values, as was mentioned
in steps 2 and 3. To do this, we will first find the unique words (tokens) in the training dataset. While
finding unique tokens is a process for which we can use Python datasets, it can be more efficient to
use the Counter class from the collections package, which is part of Python’s standard library.

In the following code, we will instantiate a new Counter object (token_counts) that will collect the
unique word frequencies. Note that in this particular application (and in contrast to the bag-of-words
model), we are only interested in the set of unique words and won’t require the word counts, which
are created as a side product. To split the text into words (or tokens), we will reuse the tokenizer
function we developed in Chapter 8, which also removes HTML markups as well as punctuation and
other non-letter characters:

The code for collecting unique tokens is as follows:

>>> ## Step 2: find unique tokens (words)
>>> import re
>>> from collections import Counter, OrderedDict
>>>
>>> def tokenizer(text):
... text = re.sub('<[^>]*>', '', text)
... emoticons = re.findall(
... '(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower()
...)
... text = re.sub('[\W]+', ' ', text.lower()) +\
... ' '.join(emoticons).replace('-', '')
... tokenized = text.split()

Chapter 15 515

... return tokenized
>>>
>>> token_counts = Counter()
>>> for label, line in train_dataset:
... tokens = tokenizer(line)
... token_counts.update(tokens)
>>> print('Vocab-size:', len(token_counts))
Vocab-size: 69023

If you want to learn more about Counter, refer to its documentation at https://docs.python.org/3/
library/collections.html#collections.Counter.

Next, we are going to map each unique word to a unique integer. This can be done manually using a
Python dictionary, where the keys are the unique tokens (words) and the value associated with each
key is a unique integer. However, the torchtext package already provides a class, Vocab, which we
can use to create such a mapping and encode the entire dataset. First, we will create a vocab object
by passing the ordered dictionary mapping tokens to their corresponding occurrence frequencies
(the ordered dictionary is the sorted token_counts). Second, we will prepend two special tokens to
the vocabulary – the padding and the unknown token:

>>> ## Step 3: encoding each unique token into integers
>>> from torchtext.vocab import vocab
>>> sorted_by_freq_tuples = sorted(
... token_counts.items(), key=lambda x: x[1], reverse=True
...)
>>> ordered_dict = OrderedDict(sorted_by_freq_tuples)
>>> vocab = vocab(ordered_dict)
>>> vocab.insert_token("<pad>", 0)
>>> vocab.insert_token("<unk>", 1)
>>> vocab.set_default_index(1)

To demonstrate how to use the vocab object, we will convert an example input text into a list of integer
values:

>>> print([vocab[token] for token in ['this', 'is',
... 'an', 'example']])
[11, 7, 35, 457]

Note that there might be some tokens in the validation or testing data that are not present in the training
data and are thus not included in the mapping. If we have q tokens (that is, the size of token_counts
passed to Vocab, which in this case is 69,023), then all tokens that haven’t been seen before, and are
thus not included in token_counts, will be assigned the integer 1 (a placeholder for the unknown to-
ken). In other words, the index 1 is reserved for unknown words. Another reserved value is the integer
0, which serves as a placeholder, a so-called padding token, for adjusting the sequence length. Later,
when we are building an RNN model in PyTorch, we will consider this placeholder, 0, in more detail.

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter

Modeling Sequential Data Using Recurrent Neural Networks516

We can define the text_pipeline function to transform each text in the dataset accordingly and the
label_pipeline function to convert each label to 1 or 0:

>>> ## Step 3-A: define the functions for transformation
>>> text_pipeline =\
... lambda x: [vocab[token] for token in tokenizer(x)]
>>> label_pipeline = lambda x: 1. if x == 'pos' else 0.

We will generate batches of samples using DataLoader and pass the data processing pipelines declared
previously to the argument collate_fn. We will wrap the text encoding and label transformation
function into the collate_batch function:

>>> ## Step 3-B: wrap the encode and transformation function
... def collate_batch(batch):
... label_list, text_list, lengths = [], [], []
... for _label, _text in batch:
... label_list.append(label_pipeline(_label))
... processed_text = torch.tensor(text_pipeline(_text),
... dtype=torch.int64)
... text_list.append(processed_text)
... lengths.append(processed_text.size(0))
... label_list = torch.tensor(label_list)
... lengths = torch.tensor(lengths)
... padded_text_list = nn.utils.rnn.pad_sequence(
... text_list, batch_first=True)
... return padded_text_list, label_list, lengths
>>>
>>> ## Take a small batch
>>> from torch.utils.data import DataLoader
>>> dataloader = DataLoader(train_dataset, batch_size=4,
... shuffle=False, collate_fn=collate_batch)

So far, we’ve converted sequences of words into sequences of integers, and labels of pos or neg into
1 or 0. However, there is one issue that we need to resolve—the sequences currently have different
lengths (as shown in the result of executing the following code for four examples). Although, in general,
RNNs can handle sequences with different lengths, we still need to make sure that all the sequences
in a mini-batch have the same length to store them efficiently in a tensor.

PyTorch provides an efficient method, pad_sequence(), which will automatically pad the consecutive
elements that are to be combined into a batch with placeholder values (0s) so that all sequences within
a batch will have the same shape. In the previous code, we already created a data loader of a small
batch size from the training dataset and applied the collate_batch function, which itself included
a pad_sequence() call.

Chapter 15 517

However, to illustrate how padding works, we will take the first batch and print the sizes of the indi-
vidual elements before combining these into mini-batches, as well as the dimensions of the resulting
mini-batches:

>>> text_batch, label_batch, length_batch = next(iter(dataloader))
>>> print(text_batch)
tensor([[35, 1742, 7, 449, 723, 6, 302, 4,
...
0, 0, 0, 0, 0, 0, 0, 0]],
>>> print(label_batch)
tensor([1., 1., 1., 0.])
>>> print(length_batch)
tensor([165, 86, 218, 145])
>>> print(text_batch.shape)
torch.Size([4, 218])

As you can observe from the printed tensor shapes, the number of columns in the first batch is 218,
which resulted from combining the first four examples into a single batch and using the maximum
size of these examples. This means that the other three examples (whose lengths are 165, 86, and 145,
respectively) in this batch are padded as much as necessary to match this size.

Finally, let’s divide all three datasets into data loaders with a batch size of 32:

>>> batch_size = 32
>>> train_dl = DataLoader(train_dataset, batch_size=batch_size,
... shuffle=True, collate_fn=collate_batch)
>>> valid_dl = DataLoader(valid_dataset, batch_size=batch_size,
... shuffle=False, collate_fn=collate_batch)
>>> test_dl = DataLoader(test_dataset, batch_size=batch_size,
... shuffle=False, collate_fn=collate_batch)

Now, the data is in a suitable format for an RNN model, which we are going to implement in the fol-
lowing subsections. In the next subsection, however, we will first discuss feature embedding, which
is an optional but highly recommended preprocessing step that is used to reduce the dimensionality
of the word vectors.

Embedding layers for sentence encoding
During the data preparation in the previous step, we generated sequences of the same length. The
elements of these sequences were integer numbers that corresponded to the indices of unique words.
These word indices can be converted into input features in several different ways. One naive way is
to apply one-hot encoding to convert the indices into vectors of zeros and ones. Then, each word will
be mapped to a vector whose size is the number of unique words in the entire dataset. Given that the
number of unique words (the size of the vocabulary) can be in the order of 104 – 105, which will also
be the number of our input features, a model trained on such features may suffer from the curse of
dimensionality. Furthermore, these features are very sparse since all are zero except one.

Modeling Sequential Data Using Recurrent Neural Networks518

A more elegant approach is to map each word to a vector of a fixed size with real-valued elements (not
necessarily integers). In contrast to the one-hot encoded vectors, we can use finite-sized vectors to
represent an infinite number of real numbers. (In theory, we can extract infinite real numbers from
a given interval, for example [–1, 1].)

This is the idea behind embedding, which is a feature-learning technique that we can utilize here to
automatically learn the salient features to represent the words in our dataset. Given the number of
unique words, nwords, we can select the size of the embedding vectors (a.k.a., embedding dimension)
to be much smaller than the number of unique words (embedding_dim << nwords) to represent the entire
vocabulary as input features.

The advantages of embedding over one-hot encoding are as follows:

• A reduction in the dimensionality of the feature space to decrease the effect of the curse of
dimensionality

• The extraction of salient features since the embedding layer in an NN can be optimized (or
learned)

The following schematic representation shows how embedding works by mapping token indices to
a trainable embedding matrix:

Figure 15.10: A breakdown of how embedding works

Chapter 15 519

Given a set of tokens of size n + 2 (n is the size of the token set, plus index 0 is reserved for the pad-
ding placeholder, and 1 is for the words not present in the token set), an embedding matrix of size
(n + 2) × embedding_dim will be created where each row of this matrix represents numeric features
associated with a token. Therefore, when an integer index, i, is given as input to the embedding, it
will look up the corresponding row of the matrix at index i and return the numeric features. The em-
bedding matrix serves as the input layer to our NN models. In practice, creating an embedding layer
can simply be done using nn.Embedding. Let’s see an example where we will create an embedding
layer and apply it to a batch of two samples, as follows:

>>> embedding = nn.Embedding(
... num_embeddings=10,
... embedding_dim=3,
... padding_idx=0)
>>> # a batch of 2 samples of 4 indices each
>>> text_encoded_input = torch.LongTensor([[1,2,4,5],[4,3,2,0]])
>>> print(embedding(text_encoded_input))
tensor([[[-0.7027, 0.3684, -0.5512],
 [-0.4147, 1.7891, -1.0674],
 [1.1400, 0.1595, -1.0167],
 [0.0573, -1.7568, 1.9067]],

 [[1.1400, 0.1595, -1.0167],
 [-0.8165, -0.0946, -0.1881],
 [-0.4147, 1.7891, -1.0674],
 [0.0000, 0.0000, 0.0000]]], grad_fn=<EmbeddingBackward>)

The input to this model (embedding layer) must have rank 2 with the dimensionality batchsize × in-
put_length, where input_length is the length of sequences (here, 4). For example, an input sequence in
the mini-batch could be <1, 5, 9, 2>, where each element of this sequence is the index of the unique
words. The output will have the dimensionality batchsize × input_length × embedding_dim, where em-
bedding_dim is the size of the embedding features (here, set to 3). The other argument provided to
the embedding layer, num_embeddings, corresponds to the unique integer values that the model will
receive as input (for instance, n + 2, set here to 10). Therefore, the embedding matrix in this case has
the size 10×6.

padding_idx indicates the token index for padding (here, 0), which, if specified, will not contribute
to the gradient updates during training. In our example, the length of the original sequence of the
second sample is 3, and we padded it with 1 more element 0. The embedding output of the padded
element is [0, 0, 0].

Modeling Sequential Data Using Recurrent Neural Networks520

Building an RNN model
Now we’re ready to build an RNN model. Using the nn.Module class, we can combine the embedding
layer, the recurrent layers of the RNN, and the fully connected non-recurrent layers. For the recurrent
layers, we can use any of the following implementations:

• RNN: a regular RNN layer, that is, a fully connected recurrent layer
• LSTM: a long short-term memory RNN, which is useful for capturing the long-term dependencies
• GRU: a recurrent layer with a gated recurrent unit, as proposed in Learning Phrase Representations

Using RNN Encoder–Decoder for Statistical Machine Translation by K. Cho et al., 2014 (https://
arxiv.org/abs/1406.1078v3), as an alternative to LSTMs

To see how a multilayer RNN model can be built using one of these recurrent layers, in the following
example, we will create an RNN model with two recurrent layers of type RNN. Finally, we will add a
non-recurrent fully connected layer as the output layer, which will return a single output value as the
prediction:

>>> class RNN(nn.Module):
... def __init__(self, input_size, hidden_size):
... super().__init__()
... self.rnn = nn.RNN(input_size, hidden_size, num_layers=2,
... batch_first=True)
... # self.rnn = nn.GRU(input_size, hidden_size, num_layers,
... # batch_first=True)
... # self.rnn = nn.LSTM(input_size, hidden_size, num_layers,
... # batch_first=True)
... self.fc = nn.Linear(hidden_size, 1)
...
... def forward(self, x):
... _, hidden = self.rnn(x)
... out = hidden[-1, :, :] # we use the final hidden state
... # from the last hidden layer as
... # the input to the fully connected
... # layer
... out = self.fc(out)
... return out
>>>
>>> model = RNN(64, 32)
>>> print(model)
>>> model(torch.randn(5, 3, 64))
RNN(
 (rnn): RNN(64, 32, num_layers=2, batch_first=True)
 (fc): Linear(in_features=32, out_features=1, bias=True)
)

https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3

Chapter 15 521

tensor([[0.0010],
 [0.2478],
 [0.0573],
 [0.1637],
 [-0.0073]], grad_fn=<AddmmBackward>)

As you can see, building an RNN model using these recurrent layers is pretty straightforward. In the
next subsection, we will go back to our sentiment analysis task and build an RNN model to solve that.

Building an RNN model for the sentiment analysis task
Since we have very long sequences, we are going to use an LSTM layer to account for long-range effects.
We will create an RNN model for sentiment analysis, starting with an embedding layer producing word
embeddings of feature size 20 (embed_dim=20). Then, a recurrent layer of type LSTM will be added.
Finally, we will add a fully connected layer as a hidden layer and another fully connected layer as the
output layer, which will return a single class-membership probability value via the logistic sigmoid
activation as the prediction:

>>> class RNN(nn.Module):
... def __init__(self, vocab_size, embed_dim, rnn_hidden_size,
... fc_hidden_size):
... super().__init__()
... self.embedding = nn.Embedding(vocab_size,
... embed_dim,
... padding_idx=0)
... self.rnn = nn.LSTM(embed_dim, rnn_hidden_size,
... batch_first=True)
... self.fc1 = nn.Linear(rnn_hidden_size, fc_hidden_size)
... self.relu = nn.ReLU()
... self.fc2 = nn.Linear(fc_hidden_size, 1)
... self.sigmoid = nn.Sigmoid()
...
... def forward(self, text, lengths):
... out = self.embedding(text)
... out = nn.utils.rnn.pack_padded_sequence(
... out, lengths.cpu().numpy(), enforce_sorted=False, batch_first=True
...)
... out, (hidden, cell) = self.rnn(out)
... out = hidden[-1, :, :]
... out = self.fc1(out)
... out = self.relu(out)
... out = self.fc2(out)
... out = self.sigmoid(out)
... return out

Modeling Sequential Data Using Recurrent Neural Networks522

>>>
>>> vocab_size = len(vocab)
>>> embed_dim = 20
>>> rnn_hidden_size = 64
>>> fc_hidden_size = 64
>>> torch.manual_seed(1)
>>> model = RNN(vocab_size, embed_dim,
 rnn_hidden_size, fc_hidden_size)
>>> model
RNN(
 (embedding): Embedding(69025, 20, padding_idx=0)
 (rnn): LSTM(20, 64, batch_first=True)
 (fc1): Linear(in_features=64, out_features=64, bias=True)
 (relu): ReLU()
 (fc2): Linear(in_features=64, out_features=1, bias=True)
 (sigmoid): Sigmoid()
)

Now we will develop the train function to train the model on the given dataset for one epoch and
return the classification accuracy and loss:

>>> def train(dataloader):
... model.train()
... total_acc, total_loss = 0, 0
... for text_batch, label_batch, lengths in dataloader:
... optimizer.zero_grad()
... pred = model(text_batch, lengths)[:, 0]
... loss = loss_fn(pred, label_batch)
... loss.backward()
... optimizer.step()
... total_acc += (
... (pred >= 0.5).float() == label_batch
...).float().sum().item()
... total_loss += loss.item()*label_batch.size(0)
... return total_acc/len(dataloader.dataset), \
... total_loss/len(dataloader.dataset)

Similarly, we will develop the evaluate function to measure the model’s performance on a given dataset:

>>> def evaluate(dataloader):
... model.eval()
... total_acc, total_loss = 0, 0

Chapter 15 523

... with torch.no_grad():

... for text_batch, label_batch, lengths in dataloader:

... pred = model(text_batch, lengths)[:, 0]

... loss = loss_fn(pred, label_batch)

... total_acc += (

... (pred>=0.5).float() == label_batch

...).float().sum().item()

... total_loss += loss.item()*label_batch.size(0)

... return total_acc/len(dataloader.dataset), \

... total_loss/len(dataloader.dataset)

The next step is to create a loss function and optimizer (Adam optimizer). For a binary classification
with a single class-membership probability output, we use the binary cross-entropy loss (BCELoss)
as the loss function:

>>> loss_fn = nn.BCELoss()
>>> optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Now we will train the model for 10 epochs and display the training and validation performances:

>>> num_epochs = 10
>>> torch.manual_seed(1)
>>> for epoch in range(num_epochs):
... acc_train, loss_train = train(train_dl)
... acc_valid, loss_valid = evaluate(valid_dl)
... print(f'Epoch {epoch} accuracy: {acc_train:.4f}'
... f' val_accuracy: {acc_valid:.4f}')
Epoch 0 accuracy: 0.5843 val_accuracy: 0.6240
Epoch 1 accuracy: 0.6364 val_accuracy: 0.6870
Epoch 2 accuracy: 0.8020 val_accuracy: 0.8194
Epoch 3 accuracy: 0.8730 val_accuracy: 0.8454
Epoch 4 accuracy: 0.9092 val_accuracy: 0.8598
Epoch 5 accuracy: 0.9347 val_accuracy: 0.8630
Epoch 6 accuracy: 0.9507 val_accuracy: 0.8636
Epoch 7 accuracy: 0.9655 val_accuracy: 0.8654
Epoch 8 accuracy: 0.9765 val_accuracy: 0.8528
Epoch 9 accuracy: 0.9839 val_accuracy: 0.8596

After training this model for 10 epochs, we will evaluate it on the test data:

>>> acc_test, _ = evaluate(test_dl)
>>> print(f'test_accuracy: {acc_test:.4f}')
test_accuracy: 0.8512

Modeling Sequential Data Using Recurrent Neural Networks524

It showed 85 percent accuracy. (Note that this result is not the best when compared to the state-of-the-
art methods used on the IMDb dataset. The goal was simply to show how an RNN works in PyTorch.)

More on the bidirectional RNN
In addition, we will set the bidirectional configuration of the LSTM to True, which will make the
recurrent layer pass through the input sequences from both directions, start to end, as well as in the
reverse direction:

>>> class RNN(nn.Module):
... def __init__(self, vocab_size, embed_dim,
... rnn_hidden_size, fc_hidden_size):
... super().__init__()
... self.embedding = nn.Embedding(
... vocab_size, embed_dim, padding_idx=0
...)
... self.rnn = nn.LSTM(embed_dim, rnn_hidden_size,
... batch_first=True, bidirectional=True)
... self.fc1 = nn.Linear(rnn_hidden_size*2, fc_hidden_size)
... self.relu = nn.ReLU()
... self.fc2 = nn.Linear(fc_hidden_size, 1)
... self.sigmoid = nn.Sigmoid()
...
... def forward(self, text, lengths):
... out = self.embedding(text)
... out = nn.utils.rnn.pack_padded_sequence(
... out, lengths.cpu().numpy(), enforce_sorted=False, batch_first=True
...)
... _, (hidden, cell) = self.rnn(out)
... out = torch.cat((hidden[-2, :, :],
... hidden[-1, :, :]), dim=1)
... out = self.fc1(out)
... out = self.relu(out)
... out = self.fc2(out)
... out = self.sigmoid(out)
... return out
>>>
>>> torch.manual_seed(1)
>>> model = RNN(vocab_size, embed_dim,
... rnn_hidden_size, fc_hidden_size)
>>> model

Chapter 15 525

RNN(
 (embedding): Embedding(69025, 20, padding_idx=0)
 (rnn): LSTM(20, 64, batch_first=True, bidirectional=True)
 (fc1): Linear(in_features=128, out_features=64, bias=True)
 (relu): ReLU()
 (fc2): Linear(in_features=64, out_features=1, bias=True)
 (sigmoid): Sigmoid()
)

The bidirectional RNN layer makes two passes over each input sequence: a forward pass and a reverse
or backward pass (note that this is not to be confused with the forward and backward passes in the
context of backpropagation). The resulting hidden states of these forward and backward passes are
usually concatenated into a single hidden state. Other merge modes include summation, multiplication
(multiplying the results of the two passes), and averaging (taking the average of the two).

We can also try other types of recurrent layers, such as the regular RNN. However, as it turns out, a model
built with regular recurrent layers won’t be able to reach a good predictive performance (even on the
training data). For example, if you try replacing the bidirectional LSTM layer in the previous code with
a unidirectional nn.RNN (instead of nn.LSTM) layer and train the model on full-length sequences, you
may observe that the loss will not even decrease during training. The reason is that the sequences in
this dataset are too long, so a model with an RNN layer cannot learn the long-term dependencies and
may suffer from vanishing or exploding gradient problems.

Project two – character-level language modeling in PyTorch
Language modeling is a fascinating application that enables machines to perform human language-re-
lated tasks, such as generating English sentences. One of the interesting studies in this area is Gen-
erating Text with Recurrent Neural Networks by Ilya Sutskever, James Martens, and Geoffrey E. Hinton,
Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011 (https://pdfs.
semanticscholar.org/93c2/0e38c85b69fc2d2eb314b3c1217913f7db11.pdf).

In the model that we will build now, the input is a text document, and our goal is to develop a model
that can generate new text that is similar in style to the input document. Examples of such input are
a book or a computer program in a specific programming language.

In character-level language modeling, the input is broken down into a sequence of characters that
are fed into our network one character at a time. The network will process each new character in
conjunction with the memory of the previously seen characters to predict the next one.

https://pdfs.semanticscholar.org/93c2/0e38c85b69fc2d2eb314b3c1217913f7db11.pdf
https://pdfs.semanticscholar.org/93c2/0e38c85b69fc2d2eb314b3c1217913f7db11.pdf

Modeling Sequential Data Using Recurrent Neural Networks526

Figure 15.11 shows an example of character-level language modeling (note that EOS stands for “end
of sequence”):

Figure 15.11: Character-level language modeling

We can break this implementation down into three separate steps: preparing the data, building the
RNN model, and performing next-character prediction and sampling to generate new text.

Preprocessing the dataset
In this section, we will prepare the data for character-level language modeling.

To obtain the input data, visit the Project Gutenberg website at https://www.gutenberg.org/, which
provides thousands of free e-books. For our example, you can download the book The Mysterious
Island, by Jules Verne (published in 1874) in plain text format from https://www.gutenberg.org/
files/1268/1268-0.txt.

Note that this link will take you directly to the download page. If you are using macOS or a Linux op-
erating system, you can download the file with the following command in the terminal:

curl -O https://www.gutenberg.org/files/1268/1268-0.txt

If this resource becomes unavailable in the future, a copy of this text is also included in this chapter’s
code directory in the book’s code repository at https://github.com/rasbt/machine-learning-book.

Once we have downloaded the dataset, we can read it into a Python session as plain text. Using the
following code, we will read the text directly from the downloaded file and remove portions from the
beginning and the end (these contain certain descriptions of the Gutenberg project). Then, we will
create a Python variable, char_set, that represents the set of unique characters observed in this text:

>>> import numpy as np
>>> ## Reading and processing text
>>> with open('1268-0.txt', 'r', encoding="utf8") as fp:
... text=fp.read()
>>> start_indx = text.find('THE MYSTERIOUS ISLAND')
>>> end_indx = text.find('End of the Project Gutenberg')
>>> text = text[start_indx:end_indx]
>>> char_set = set(text)

https://www.gutenberg.org/
https://www.gutenberg.org/files/1268/1268-0.txt
https://www.gutenberg.org/files/1268/1268-0.txt
https://github.com/rasbt/machine-learning-book

Chapter 15 527

>>> print('Total Length:', len(text))
Total Length: 1112350
>>> print('Unique Characters:', len(char_set))
Unique Characters: 80

After downloading and preprocessing the text, we have a sequence consisting of 1,112,350 characters
in total and 80 unique characters. However, most NN libraries and RNN implementations cannot deal
with input data in string format, which is why we have to convert the text into a numeric format. To do
this, we will create a simple Python dictionary that maps each character to an integer, char2int. We
will also need a reverse mapping to convert the results of our model back to text. Although the reverse
can be done using a dictionary that associates integer keys with character values, using a NumPy array
and indexing the array to map indices to those unique characters is more efficient. Figure 15.12 shows
an example of converting characters into integers and the reverse for the words "Hello" and "world":

Figure 15.12: Character and integer mappings

Building the dictionary to map characters to integers, and reverse mapping via indexing a NumPy
array, as was shown in the previous figure, is as follows:

>>> chars_sorted = sorted(char_set)
>>> char2int = {ch:i for i,ch in enumerate(chars_sorted)}
>>> char_array = np.array(chars_sorted)
>>> text_encoded = np.array(
... [char2int[ch] for ch in text],
... dtype=np.int32
...)
>>> print('Text encoded shape:', text_encoded.shape)
Text encoded shape: (1112350,)
>>> print(text[:15], '== Encoding ==>', text_encoded[:15])
>>> print(text_encoded[15:21], '== Reverse ==>',
... ''.join(char_array[text_encoded[15:21]]))
THE MYSTERIOUS == Encoding ==> [44 32 29 1 37 48 43 44 29 42 33 39 45 43 1]
[33 43 36 25 38 28] == Reverse ==> ISLAND

Modeling Sequential Data Using Recurrent Neural Networks528

The text_encoded NumPy array contains the encoded values for all the characters in the text. Now,
we will print out the mappings of the first five characters from this array:

>>> for ex in text_encoded[:5]:
... print('{} -> {}'.format(ex, char_array[ex]))
44 -> T
32 -> H
29 -> E
1 ->
37 -> M

Now, let’s step back and look at the big picture of what we are trying to do. For the text generation
task, we can formulate the problem as a classification task.

Suppose we have a set of sequences of text characters that are incomplete, as shown in Figure 15.13:

Figure 15.13: Predicting the next character for a text sequence

In Figure 15.13, we can consider the sequences shown in the left-hand box to be the input. In order to
generate new text, our goal is to design a model that can predict the next character of a given input
sequence, where the input sequence represents an incomplete text. For example, after seeing “Deep
Learn,” the model should predict “i” as the next character. Given that we have 80 unique characters,
this problem becomes a multiclass classification task.

Chapter 15 529

Starting with a sequence of length 1 (that is, one single letter), we can iteratively generate new text
based on this multiclass classification approach, as illustrated in Figure 15.14:

Figure 15.14: Generating next text based on this multiclass classification approach

To implement the text generation task in PyTorch, let’s first clip the sequence length to 40. This means
that the input tensor, x, consists of 40 tokens. In practice, the sequence length impacts the quality of
the generated text. Longer sequences can result in more meaningful sentences. For shorter sequences,
however, the model might focus on capturing individual words correctly, while ignoring the context
for the most part. Although longer sequences usually result in more meaningful sentences, as men-
tioned, for long sequences, the RNN model will have problems capturing long-range dependencies.
Thus, in practice, finding a sweet spot and good value for the sequence length is a hyperparameter
optimization problem, which we have to evaluate empirically. Here, we are going to choose 40, as it
offers a good trade-off.

As you can see in the previous figure, the inputs, x, and targets, y, are offset by one character. Hence,
we will split the text into chunks of size 41: the first 40 characters will form the input sequence, x, and
the last 40 elements will form the target sequence, y.

Modeling Sequential Data Using Recurrent Neural Networks530

We have already stored the entire encoded text in its original order in text_encoded. We will first create
text chunks consisting of 41 characters each. We will further get rid of the last chunk if it is shorter
than 41 characters. As a result, the new chunked dataset, named text_chunks, will always contain
sequences of size 41. The 41-character chunks will then be used to construct the sequence x (that is, the
input), as well as the sequence y (that is, the target), both of which will have 40 elements. For instance,
sequence x will consist of the elements with indices [0, 1, ..., 39]. Furthermore, since sequence y will
be shifted by one position with respect to x, its corresponding indices will be [1, 2, ..., 40]. Then, we
will transform the result into a Dataset object by applying a self-defined Dataset class:

>>> import torch
>>> from torch.utils.data import Dataset
>>> seq_length = 40
>>> chunk_size = seq_length + 1
>>> text_chunks = [text_encoded[i:i+chunk_size]
... for i in range(len(text_encoded)-chunk_size)]
>>> from torch.utils.data import Dataset
>>> class TextDataset(Dataset):
... def __init__(self, text_chunks):
... self.text_chunks = text_chunks
...
... def __len__(self):
... return len(self.text_chunks)
...
... def __getitem__(self, idx):
... text_chunk = self.text_chunks[idx]
... return text_chunk[:-1].long(), text_chunk[1:].long()
>>>
>>> seq_dataset = TextDataset(torch.tensor(text_chunks))

Let’s take a look at some example sequences from this transformed dataset:

>>> for i, (seq, target) in enumerate(seq_dataset):
... print(' Input (x): ',
... repr(''.join(char_array[seq])))
... print('Target (y): ',
... repr(''.join(char_array[target])))
... print()
... if i == 1:
... break
 Input (x): 'THE MYSTERIOUS ISLAND ***\n\n\n\n\nProduced b'
Target (y): 'HE MYSTERIOUS ISLAND ***\n\n\n\n\nProduced by'

 Input (x): 'HE MYSTERIOUS ISLAND ***\n\n\n\n\nProduced by'
Target (y): 'E MYSTERIOUS ISLAND ***\n\n\n\n\nProduced by '

Chapter 15 531

Finally, the last step in preparing the dataset is to transform this dataset into mini-batches:

>>> from torch.utils.data import DataLoader
>>> batch_size = 64
>>> torch.manual_seed(1)
>>> seq_dl = DataLoader(seq_dataset, batch_size=batch_size,
... shuffle=True, drop_last=True)

Building a character-level RNN model
Now that the dataset is ready, building the model will be relatively straightforward:

>>> import torch.nn as nn
>>> class RNN(nn.Module):
... def __init__(self, vocab_size, embed_dim, rnn_hidden_size):
... super().__init__()
... self.embedding = nn.Embedding(vocab_size, embed_dim)
... self.rnn_hidden_size = rnn_hidden_size
... self.rnn = nn.LSTM(embed_dim, rnn_hidden_size,
... batch_first=True)
... self.fc = nn.Linear(rnn_hidden_size, vocab_size)
...
... def forward(self, x, hidden, cell):
... out = self.embedding(x).unsqueeze(1)
... out, (hidden, cell) = self.rnn(out, (hidden, cell))
... out = self.fc(out).reshape(out.size(0), -1)
... return out, hidden, cell
...
... def init_hidden(self, batch_size):
... hidden = torch.zeros(1, batch_size, self.rnn_hidden_size)
... cell = torch.zeros(1, batch_size, self.rnn_hidden_size)
... return hidden, cell

Notice that we will need to have the logits as outputs of the model so that we can sample from the
model predictions in order to generate new text. We will get to this sampling part later.

Then, we can specify the model parameters and create an RNN model:

>>> vocab_size = len(char_array)
>>> embed_dim = 256
>>> rnn_hidden_size = 512
>>> torch.manual_seed(1)
>>> model = RNN(vocab_size, embed_dim, rnn_hidden_size)
>>> model
RNN(
 (embedding): Embedding(80, 256)

Modeling Sequential Data Using Recurrent Neural Networks532

 (rnn): LSTM(256, 512, batch_first=True)
 (fc): Linear(in_features=512, out_features=80, bias=True)
 (softmax): LogSoftmax(dim=1)
)

The next step is to create a loss function and optimizer (Adam optimizer). For a multiclass classifi-
cation (we have vocab_size=80 classes) with a single logits output for each target character, we use
CrossEntropyLoss as the loss function:

>>> loss_fn = nn.CrossEntropyLoss()
>>> optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Now we will train the model for 10,000 epochs. In each epoch, we will use only one batch randomly
chosen from the data loader, seq_dl. We will also display the training loss for every 500 epochs:

>>> num_epochs = 10000
>>> torch.manual_seed(1)
>>> for epoch in range(num_epochs):
... hidden, cell = model.init_hidden(batch_size)
... seq_batch, target_batch = next(iter(seq_dl))
... optimizer.zero_grad()
... loss = 0
... for c in range(seq_length):
... pred, hidden, cell = model(seq_batch[:, c], hidden, cell)
... loss += loss_fn(pred, target_batch[:, c])
... loss.backward()
... optimizer.step()
... loss = loss.item()/seq_length
... if epoch % 500 == 0:
... print(f'Epoch {epoch} loss: {loss:.4f}')
Epoch 0 loss: 1.9689
Epoch 500 loss: 1.4064
Epoch 1000 loss: 1.3155
Epoch 1500 loss: 1.2414
Epoch 2000 loss: 1.1697
Epoch 2500 loss: 1.1840
Epoch 3000 loss: 1.1469
Epoch 3500 loss: 1.1633
Epoch 4000 loss: 1.1788
Epoch 4500 loss: 1.0828
Epoch 5000 loss: 1.1164
Epoch 5500 loss: 1.0821
Epoch 6000 loss: 1.0764

Chapter 15 533

Epoch 6500 loss: 1.0561
Epoch 7000 loss: 1.0631
Epoch 7500 loss: 0.9904
Epoch 8000 loss: 1.0053
Epoch 8500 loss: 1.0290
Epoch 9000 loss: 1.0133
Epoch 9500 loss: 1.0047

Next, we can evaluate the model to generate new text, starting with a given short string. In the next
section, we will define a function to evaluate the trained model.

Evaluation phase – generating new text passages
The RNN model we trained in the previous section returns the logits of size 80 for each unique char-
acter. These logits can be readily converted to probabilities, via the softmax function, that a particular
character will be encountered as the next character. To predict the next character in the sequence, we
can simply select the element with the maximum logit value, which is equivalent to selecting the char-
acter with the highest probability. However, instead of always selecting the character with the highest
likelihood, we want to (randomly) sample from the outputs; otherwise, the model will always produce
the same text. PyTorch already provides a class, torch.distributions.categorical.Categorical,
which we can use to draw random samples from a categorical distribution. To see how this works, let’s
generate some random samples from three categories [0, 1, 2], with input logits [1, 1, 1]:

>>> from torch.distributions.categorical import Categorical
>>> torch.manual_seed(1)
>>> logits = torch.tensor([[1.0, 1.0, 1.0]])
>>> print('Probabilities:',
... nn.functional.softmax(logits, dim=1).numpy()[0])
Probabilities: [0.33333334 0.33333334 0.33333334]
>>> m = Categorical(logits=logits)
>>> samples = m.sample((10,))
>>> print(samples.numpy())
[[0]
 [0]
 [0]
 [0]
 [1]
 [0]
 [1]
 [2]
 [1]
 [1]]

Modeling Sequential Data Using Recurrent Neural Networks534

As you can see, with the given logits, the categories have the same probabilities (that is, equiprobable
categories). Therefore, if we use a large sample size (num_samples → ∞), we would expect the number of
occurrences of each category to reach ≈ 1/3 of the sample size. If we change the logits to [1, 1, 3], then
we would expect to observe more occurrences for category 2 (when a very large number of examples
are drawn from this distribution):

>>> torch.manual_seed(1)
>>> logits = torch.tensor([[1.0, 1.0, 3.0]])
>>> print('Probabilities:', nn.functional.softmax(logits, dim=1).numpy()[0])
Probabilities: [0.10650698 0.10650698 0.78698605]
>>> m = Categorical(logits=logits)
>>> samples = m.sample((10,))
>>> print(samples.numpy())
[[0]
 [2]
 [2]
 [1]
 [2]
 [1]
 [2]
 [2]
 [2]
 [2]]

Using Categorical, we can generate examples based on the logits computed by our model.

We will define a function, sample(), that receives a short starting string, starting_str, and generate
a new string, generated_str, which is initially set to the input string. starting_str is encoded to
a sequence of integers, encoded_input. encoded_input is passed to the RNN model one character
at a time to update the hidden states. The last character of encoded_input is passed to the model to
generate a new character. Note that the output of the RNN model represents the logits (here, a vector
of size 80, which is the total number of possible characters) for the next character after observing the
input sequence by the model.

Here, we only use the logits output (that is, o(T)), which is passed to the Categorical class to generate
a new sample. This new sample is converted to a character, which is then appended to the end of the
generated string, generated_text, increasing its length by 1. Then, this process is repeated until the
length of the generated string reaches the desired value. The process of consuming the generated
sequence as input for generating new elements is called autoregression.

The code for the sample() function is as follows:

>>> def sample(model, starting_str,
... len_generated_text=500,
... scale_factor=1.0):

Chapter 15 535

... encoded_input = torch.tensor(

... [char2int[s] for s in starting_str]

...)

... encoded_input = torch.reshape(

... encoded_input, (1, -1)

...)

... generated_str = starting_str

...

... model.eval()

... hidden, cell = model.init_hidden(1)

... for c in range(len(starting_str)-1):

... _, hidden, cell = model(

... encoded_input[:, c].view(1), hidden, cell

...)

...

... last_char = encoded_input[:, -1]

... for i in range(len_generated_text):

... logits, hidden, cell = model(

... last_char.view(1), hidden, cell

...)

... logits = torch.squeeze(logits, 0)

... scaled_logits = logits * scale_factor

... m = Categorical(logits=scaled_logits)

... last_char = m.sample()

... generated_str += str(char_array[last_char])

...

... return generated_str

Let’s now generate some new text:

>>> torch.manual_seed(1)
>>> print(sample(model, starting_str='The island'))
The island had been made
and ovylore with think, captain?" asked Neb; "we do."

It was found, they full to time to remove. About this neur prowers, perhaps
ended? It is might be
rather rose?"

"Forward!" exclaimed Pencroft, "they were it? It seems to me?"

"The dog Top--"

Modeling Sequential Data Using Recurrent Neural Networks536

"What can have been struggling sventy."

Pencroft calling, themselves in time to try them what proves that the sailor
and Neb bounded this tenarvan's feelings, and then
still hid head a grand furiously watched to the dorner nor his only

As you can see, the model generates mostly correct words, and, in some cases, the sentences are par-
tially meaningful. You can further tune the training parameters, such as the length of input sequences
for training, and the model architecture.

Furthermore, to control the predictability of the generated samples (that is, generating text following
the learned patterns from the training text versus adding more randomness), the logits computed by
the RNN model can be scaled before being passed to Categorical for sampling. The scaling factor, 𝛼𝛼 ,
can be interpreted as an analog to the temperature in physics. Higher temperatures result in more
entropy or randomness versus more predictable behavior at lower temperatures. By scaling the logits
with 𝛼𝛼 𝛼 𝛼 , the probabilities computed by the softmax function become more uniform, as shown in
the following code:

>>> logits = torch.tensor([[1.0, 1.0, 3.0]])
>>> print('Probabilities before scaling: ',
... nn.functional.softmax(logits, dim=1).numpy()[0])
>>> print('Probabilities after scaling with 0.5:',
... nn.functional.softmax(0.5*logits, dim=1).numpy()[0])
>>> print('Probabilities after scaling with 0.1:',
... nn.functional.softmax(0.1*logits, dim=1).numpy()[0])
Probabilities before scaling: [0.10650698 0.10650698 0.78698604]
Probabilities after scaling with 0.5: [0.21194156 0.21194156 0.57611688]
Probabilities after scaling with 0.1: [0.31042377 0.31042377 0.37915245]

As you can see, scaling the logits by 𝛼𝛼 𝛼 𝛼 results in near-uniform probabilities [0.31, 0.31, 0.38]. Now,
we can compare the generated text with 𝛼𝛼 𝛼 𝛼𝛼𝛼 and 𝛼𝛼 𝛼 𝛼𝛼𝛼 , as shown in the following points:

• 𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 :

>>> torch.manual_seed(1)
>>> print(sample(model, starting_str='The island',
... scale_factor=2.0))
The island is one of the colony?" asked the sailor, "there is not to be
able to come to the shores of the Pacific."
"Yes," replied the engineer, "and if it is not the position of the
forest, and the marshy way have been said, the dog was not first on the
shore, and
found themselves to the corral.

Chapter 15 537

The settlers had the sailor was still from the surface of the sea, they
were not received for the sea. The shore was to be able to inspect the
windows of Granite House.
The sailor turned the sailor was the hor

• 𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 :

>>> torch.manual_seed(1)
>>> print(sample(model, starting_str='The island',
... scale_factor=0.5))
The island
deep incomele.
Manyl's', House, won's calcon-sglenderlessly," everful ineriorouins.,
pyra" into
truth. Sometinivabes, iskumar gave-zen."

Bleshed but what cotch quadrap which little cedass
fell oprely
by-andonem. Peditivall--"i dove Gurgeon. What resolt-eartnated to him
ran trail.

Withinhe)tiny turns returned, after owner plan bushelsion lairs; they
were
know? Whalerin branch I
pites, Dougg!-iteun," returnwe aid masses atong thoughts! Dak,
Hem-arches yone, Veay wantzer? Woblding,
Herbert, omep

The results show that scaling the logits with 𝛼𝛼 𝛼 𝛼𝛼𝛼 (increasing the temperature) generates more
random text. There is a trade-off between the novelty of the generated text and its correctness.

In this section, we worked with character-level text generation, which is a sequence-to-sequence
(seq2seq) modeling task. While this example may not be very useful by itself, it is easy to think of
several useful applications for these types of models; for example, a similar RNN model can be trained
as a chatbot to assist users with simple queries.

Summary
In this chapter, you first learned about the properties of sequences that make them different from
other types of data, such as structured data or images. We then covered the foundations of RNNs for
sequence modeling. You learned how a basic RNN model works and discussed its limitations with
regard to capturing long-term dependencies in sequence data. Next, we covered LSTM cells, which
consist of a gating mechanism to reduce the effect of exploding and vanishing gradient problems,
which are common in basic RNN models.

Modeling Sequential Data Using Recurrent Neural Networks538

After discussing the main concepts behind RNNs, we implemented several RNN models with different
recurrent layers using PyTorch. In particular, we implemented an RNN model for sentiment analysis,
as well as an RNN model for generating text.

In the next chapter, we will see how we can augment an RNN with an attention mechanism, which
helps it with modeling long-range dependencies in translation tasks. Then, we will introduce a new
deep learning architecture called transformer, which has recently been used to further push the state
of the art in the natural language processing domain.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

16
Transformers – Improving Natural
Language Processing with
Attention Mechanisms

In the previous chapter, we learned about recurrent neural networks (RNNs) and their applications
in natural language processing (NLP) through a sentiment analysis project. However, a new architec-
ture has recently emerged that has been shown to outperform the RNN-based sequence-to-sequence
(seq2seq) models in several NLP tasks. This is the so-called transformer architecture.

Transformers have revolutionized natural language processing and have been at the forefront of
many impressive applications ranging from automated language translation (https://ai.googleblog.
com/2020/06/recent-advances-in-google-translate.html) and modeling fundamental properties
of protein sequences (https://www.pnas.org/content/118/15/e2016239118.short) to creating an
AI that helps people write code (https://github.blog/2021-06-29-introducing-github-copilot-
ai-pair-programmer).

In this chapter, you will learn about the basic mechanisms of attention and self-attention and see how
they are used in the original transformer architecture. Then, equipped with an understanding of how
transformers work, we will explore some of the most influential NLP models that emerged from this
architecture and learn how to use a large-scale language model, the so-called BERT model, in PyTorch.

We will cover the following topics:

• Improving RNNs with an attention mechanism
• Introducing the stand-alone self-attention mechanism
• Understanding the original transformer architecture
• Comparing transformer-based large-scale language models
• Fine-tuning BERT for sentiment classification

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://www.pnas.org/content/118/15/e2016239118.short
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer

Transformers – Improving Natural Language Processing with Attention Mechanisms540

Adding an attention mechanism to RNNs
In this section, we discuss the motivation behind developing an attention mechanism, which helps
predictive models to focus on certain parts of the input sequence more than others, and how it was
originally used in the context of RNNs. Note that this section provides a historical perspective explaining
why the attention mechanism was developed. If individual mathematical details appear complicated,
you can feel free to skip over them as they are not needed for the next section, explaining the self-at-
tention mechanism for transformers, which is the focus of this chapter.

Attention helps RNNs with accessing information
To understand the development of an attention mechanism, consider the traditional RNN model for
a seq2seq task like language translation, which parses the entire input sequence (for instance, one or
more sentences) before producing the translation, as shown in Figure 16.1:

Figure 16.1: A traditional RNN encoder-decoder architecture for a seq2seq modeling task

Chapter 16 541

Why is the RNN parsing the whole input sentence before producing the first output? This is motivat-
ed by the fact that translating a sentence word by word would likely result in grammatical errors, as
illustrated in Figure 16.2:

Figure 16.2: Translating a sentence word by word can lead to grammatical errors

However, as illustrated in Figure 16.2, one limitation of this seq2seq approach is that the RNN is trying
to remember the entire input sequence via one single hidden unit before translating it. Compressing
all the information into one hidden unit may cause loss of information, especially for long sequences.
Thus, similar to how humans translate sentences, it may be beneficial to have access to the whole
input sequence at each time step.

In contrast to a regular RNN, an attention mechanism lets the RNN access all input elements at
each given time step. However, having access to all input sequence elements at each time step can
be overwhelming. So, to help the RNN focus on the most relevant elements of the input sequence,
the attention mechanism assigns different attention weights to each input element. These attention
weights designate how important or relevant a given input sequence element is at a given time step.
For example, revisiting Figure 16.2, the words “mir, helfen, zu” may be more relevant for producing
the output word “help” than the words “kannst, du, Satz.”

The next subsection introduces an RNN architecture that was outfitted with an attention mechanism
to help process long sequences for language translation.

Transformers – Improving Natural Language Processing with Attention Mechanisms542

The original attention mechanism for RNNs
In this subsection, we will summarize the mechanics of the attention mechanism that was originally
developed for language translation and first appeared in the following paper: Neural Machine Transla-
tion by Jointly Learning to Align and Translate by Bahdanau, D., Cho, K., and Bengio, Y., 2014, https://
arxiv.org/abs/1409.0473.

Given an input sequence 𝑥𝑥 𝑥 𝑥𝑥𝑥(1), 𝑥𝑥(2), … , 𝑥𝑥(𝑇𝑇)) , the attention mechanism assigns a weight to each
element 𝑥𝑥(𝑖𝑖) (or, to be more specific, its hidden representation) and helps the model identify which
part of the input it should focus on. For example, suppose our input is a sentence, and a word with a
larger weight contributes more to our understanding of the whole sentence. The RNN with the atten-
tion mechanism shown in Figure 16.3 (modeled after the previously mentioned paper) illustrates the
overall concept of generating the second output word:

Figure 16.3: RNN with attention mechanism

The attention-based architecture depicted in the figure consists of two RNN models, which we will
explain in the next subsections.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473

Chapter 16 543

Processing the inputs using a bidirectional RNN
The first RNN (RNN #1) of the attention-based RNN in Figure 16.3 is a bidirectional RNN that generates
context vectors, 𝑐𝑐𝑖𝑖 . You can think of a context vector as an augmented version of the input vector, 𝑥𝑥(𝑖𝑖) .
In other words, the 𝑐𝑐𝑖𝑖 input vector also incorporates information from all other input elements via an
attention mechanism. As we can see in Figure 16.3, RNN #2 then uses this context vector, prepared
by RNN #1, to generate the outputs. In the remainder of this subsection, we will discuss how RNN #1
works, and we will revisit RNN #2 in the next subsection.

The bidirectional RNN #1 processes the input sequence x in the regular forward direction (1. . . 𝑇𝑇) as
well as backward (𝑇𝑇𝑇 𝑇 𝑇 𝑇). Parsing a sequence in the backward direction has the same effect as revers-
ing the original input sequence—think of reading a sentence in reverse order. The rationale behind
this is to capture additional information since current inputs may have a dependence on sequence
elements that came either before or after it in a sentence, or both.

Consequently, from reading the input sequence twice (that is, forward and backward), we have two
hidden states for each input sequence element. For instance, for the second input sequence element 𝑥𝑥(2) , we obtain the hidden state ℎ𝐹𝐹(2) from the forward pass and the hidden state ℎ𝐵𝐵(2) from the backward
pass. These two hidden states are then concatenated to form the hidden state ℎ(2) . For example, if
both ℎ𝐹𝐹(2) and ℎ𝐵𝐵(2) are 128-dimensional vectors, the concatenated hidden state ℎ(2) will consist of 256
elements. We can consider this concatenated hidden state as the “annotation” of the source word since
it contains the information of the jth word in both directions.

In the next section, we will see how these concatenated hidden states are further processed and used
by the second RNN to generate the outputs.

Generating outputs from context vectors
In Figure 16.3, we can consider RNN #2 as the main RNN that is generating the outputs. In addition
to the hidden states, it receives so-called context vectors as input. A context vector 𝑐𝑐𝑖𝑖 is a weighted
version of the concatenated hidden states, ℎ(1) … ℎ(𝑇𝑇) , which we obtained from RNN #1 in the previous
subsection. We can compute the context vector of the ith input as a weighted sum:

𝑐𝑐𝑖𝑖 = ∑𝛼𝛼𝑖𝑖𝑖𝑖ℎ(𝑖𝑖)𝑇𝑇
𝑖𝑖𝑗𝑗

Here, 𝛼𝛼𝑖𝑖𝑖𝑖 represents the attention weights over the input sequence 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑗 𝑗𝑗 in the context of the ith
input sequence element. Note that each ith input sequence element has a unique set of attention
weights. We will discuss the computation of the attention weights 𝛼𝛼𝑖𝑖𝑖𝑖 in the next subsection.

For the remainder of this subsection, let us discuss how the context vectors are used via the second
RNN in the preceding figure (RNN #2). Just like a vanilla (regular) RNN, RNN #2 also uses hidden
states. Considering the hidden layer between the aforementioned “annotation” and final output, let
us denote the hidden state at time 𝑖𝑖 as 𝑠𝑠(𝑖𝑖𝑖 . Now, RNN #2 receives the aforementioned context vector 𝑐𝑐𝑖𝑖 at each time step i as input.

Transformers – Improving Natural Language Processing with Attention Mechanisms544

In Figure 16.3, we saw that the hidden state 𝑠𝑠(𝑖𝑖𝑖 depends on the previous hidden state 𝑠𝑠(𝑖𝑖𝑖𝑖𝑖 , the previous
target word 𝑦𝑦(𝑖𝑖𝑖𝑖𝑖 , and the context vector 𝑐𝑐(𝑖𝑖𝑖 , which are used to generate the predicted output 𝑜𝑜(𝑖𝑖𝑖 for
target word 𝑦𝑦(𝑖𝑖𝑖 at time i. Note that the sequence vector 𝒚𝒚 refers to the sequence vector representing
the correct translation of input sequence 𝒙𝒙 that is available during training. During training, the true
label (word) 𝑦𝑦(𝑖𝑖𝑖 is fed into the next state 𝑠𝑠(𝑖𝑖𝑖𝑖𝑖 ; since this true label information is not available for
prediction (inference), we feed the predicted output 𝑜𝑜(𝑖𝑖𝑖 instead, as depicted in the previous figure.

To summarize what we have just discussed above, the attention-based RNN consists of two RNNs. RNN
#1 prepares context vectors from the input sequence elements, and RNN #2 receives the context vectors
as input. The context vectors are computed via a weighted sum over the inputs, where the weights
are the attention weights 𝛼𝛼𝑖𝑖𝑖𝑖. The next subsection discusses how we compute these attention weights.

Computing the attention weights
Finally, let us visit the last missing piece in our puzzle—attention weights. Because these weights
pairwise connect the inputs (annotations) and the outputs (contexts), each attention weight 𝛼𝛼𝑖𝑖𝑖𝑖 has
two subscripts: j refers to the index position of the input and i corresponds to the output index posi-
tion. The attention weight 𝛼𝛼𝑖𝑖𝑖𝑖 is a normalized version of the alignment score 𝑒𝑒𝑖𝑖𝑖𝑖 , where the alignment
score evaluates how well the input around position j matches with the output at position i. To be more
specific, the attention weight is computed by normalizing the alignment scores as follows:

𝛼𝛼𝑖𝑖𝑖𝑖 = exp(𝑒𝑒𝑖𝑖𝑖𝑖)∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖𝑘𝑘

Note that this equation is similar to the softmax function, which we discussed in Chapter 12, Paral-
lelizing Neural Network Training with PyTorch, in the section Estimating class probabilities in multiclass
classification via the softmax function. Consequently, the attention weights 𝛼𝛼𝑖𝑖𝑖 ... 𝛼𝛼𝑖𝑖𝑖𝑖 sum up to 1.

Now, to summarize, we can structure the attention-based RNN model into three parts. The first part
computes bidirectional annotations of the input. The second part consists of the recurrent block,
which is very much like the original RNN, except that it uses context vectors instead of the original
input. The last part concerns the computation of the attention weights and context vectors, which
describe the relationship between each pair of input and output elements.

The transformer architecture also utilizes an attention mechanism, but unlike the attention-based RNN,
it solely relies on the self-attention mechanism and does not include the recurrent process found in
the RNN. In other words, a transformer model processes the whole input sequence all at once instead
of reading and processing the sequence one element at a time. In the next section, we will introduce
a basic form of the self-attention mechanism before we discuss the transformer architecture in more
detail in the following section.

Introducing the self-attention mechanism
In the previous section, we saw that attention mechanisms can help RNNs with remembering context
when working with long sequences. As we will see in the next section, we can have an architecture
entirely based on attention, without the recurrent parts of an RNN. This attention-based architecture
is known as transformer, and we will discuss it in more detail later.

Chapter 16 545

In fact, transformers can appear a bit complicated at first glance. So, before we discuss transformers
in the next section, let us dive into the self-attention mechanism used in transformers. In fact, as we
will see, this self-attention mechanism is just a different flavor of the attention mechanism that we
discussed in the previous section. We can think of the previously discussed attention mechanism as
an operation that connects two different modules, that is, the encoder and decoder of the RNN. As we
will see, self-attention focuses only on the input and captures only dependencies between the input
elements. without connecting two modules.

In the first subsection, we will introduce a basic form of self-attention without any learning param-
eters, which is very much like a pre-processing step to the input. Then in the second subsection, we
will introduce the common version of self-attention that is used in the transformer architecture and
involves learnable parameters.

Starting with a basic form of self-attention
To introduce self-attention, let’s assume we have an input sequence of length T, 𝒙𝒙(1), … , 𝒙𝒙(𝑇𝑇), as well
as an output sequence, 𝒛𝒛(1), 𝒛𝒛(2), … , 𝒛𝒛(𝑇𝑇) . To avoid confusion, we will use 𝒐𝒐 as the final output of the
whole transformer model and 𝒛𝒛 as the output of the self-attention layer because it is an intermediate
step in the model.

Each ith element in these sequences, 𝒙𝒙(𝑖𝑖) and 𝒛𝒛(𝑖𝑖) , are vectors of size d (that is, 𝒙𝒙(𝑖𝑖) ∈ 𝑅𝑅𝑑𝑑) representing
the feature information for the input at position i, which is similar to RNNs. Then, for a seq2seq task,
the goal of self-attention is to model the dependencies of the current input element to all other input
elements. To achieve this, self-attention mechanisms are composed of three stages. First, we derive
importance weights based on the similarity between the current element and all other elements in
the sequence. Second, we normalize the weights, which usually involves the use of the already famil-
iar softmax function. Third, we use these weights in combination with the corresponding sequence
elements to compute the attention value.

More formally, the output of self-attention, 𝒛𝒛(𝑖𝑖), is the weighted sum of all T input sequences, 𝒙𝒙(𝑗𝑗)
(where 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑗 𝑗𝑗). For instance, for the ith input element, the corresponding output value is computed
as follows:

𝒛𝒛(𝑖𝑖) = ∑𝛼𝛼𝑖𝑖𝑖𝑖𝒙𝒙(𝑖𝑖)𝑇𝑇
𝑖𝑖𝑗𝑗

Hence, we can think of 𝒛𝒛(𝑖𝑖) as a context-aware embedding vector in input vector 𝒙𝒙(𝑖𝑖) that involves all
other input sequence elements weighted by their respective attention weights. Here, the attention
weights, 𝛼𝛼𝑖𝑖𝑖𝑖 , are computed based on the similarity between the current input element, 𝒙𝒙(𝑖𝑖) , and all
other elements in the input sequence, 𝒙𝒙(1). . . 𝒙𝒙(𝑇𝑇) . More concretely, this similarity is computed in two
steps explained in the next paragraphs.

First, we compute the dot product between the current input element, 𝒙𝒙(𝑖𝑖) , and another element in
the input sequence, 𝒙𝒙(𝑗𝑗) : ω𝑖𝑖𝑖𝑖 = 𝒙𝒙(𝑖𝑖)⊤𝒙𝒙(𝑖𝑖)

Transformers – Improving Natural Language Processing with Attention Mechanisms546

Before we normalize the ω𝑖𝑖𝑖𝑖 values to obtain the attention weights, a𝑖𝑖𝑖𝑖 , let’s illustrate how we compute
the ω𝑖𝑖𝑖𝑖 values with a code example. Here, let’s assume we have an input sentence “can you help me to
translate this sentence” that has already been mapped to an integer representation via a dictionary as
explained in Chapter 15, Modeling Sequential Data Using Recurrent Neural Networks:

>>> import torch
>>> sentence = torch.tensor(
>>> [0, # can
>>> 7, # you
>>> 1, # help
>>> 2, # me
>>> 5, # to
>>> 6, # translate
>>> 4, # this
>>> 3] # sentence
>>>)

>>> sentence
tensor([0, 7, 1, 2, 5, 6, 4, 3])

Let’s also assume that we already encoded this sentence into a real-number vector representation via
an embedding layer. Here, our embedding size is 16, and we assume that the dictionary size is 10. The
following code will produce the word embeddings of our eight words:

>>> torch.manual_seed(123)
>>> embed = torch.nn.Embedding(10, 16)
>>> embedded_sentence = embed(sentence).detach()
>>> embedded_sentence.shape
torch.Size([8, 16])

Now, we can compute ω𝑖𝑖𝑖𝑖 as the dot product between the ith and jth word embeddings. We can do
this for all ω𝑖𝑖𝑖𝑖 values as follows:

>>> omega = torch.empty(8, 8)
>>> for i, x_i in enumerate(embedded_sentence):
>>> for j, x_j in enumerate(embedded_sentence):
>>> omega[i, j] = torch.dot(x_i, x_j)

While the preceding code is easy to read and understand, for loops can be very inefficient, so let’s
compute this using matrix multiplication instead:

>>> omega_mat = embedded_sentence.matmul(embedded_sentence.T)

Chapter 16 547

We can use the torch.allclose function to check that this matrix multiplication produces the expect-
ed results. If two tensors contain the same values, torch.allclose returns True, as we can see here:

>>> torch.allclose(omega_mat, omega)
True

We have learned how to compute the similarity-based weights for the ith input and all inputs in the
sequence (𝒙𝒙(1) to 𝒙𝒙(T)), the “raw” weights (𝜔𝜔𝑖𝑖𝑖 to 𝜔𝜔𝑖𝑖𝑖). We can obtain the attention weights, 𝛼𝛼𝑖𝑖𝑖𝑖 , by
normalizing the 𝜔𝜔𝑖𝑖𝑖𝑖 values via the familiar softmax function, as follows:

𝛼𝛼𝑖𝑖𝑖𝑖 = exp(ω𝑖𝑖𝑖𝑖)∑ exp(𝜔𝜔𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖𝑗𝑗 = softmax ([ω𝑖𝑖𝑖𝑖]𝑖𝑖𝑗𝑗𝑗𝑇𝑇)

Notice that the denominator involves a sum over all input elements (1. . . 𝑇𝑇). Hence, due to applying this
softmax function, the weights will sum to 1 after this normalization, that is,

∑𝛼𝛼𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖𝑗𝑗 = 1

We can compute the attention weights using PyTorch’s softmax function as follows:

>>> import torch.nn.functional as F
>>> attention_weights = F.softmax(omega, dim=1)
>>> attention_weights.shape
torch.Size([8, 8])

Note that attention_weights is an 8 × 8 matrix, where each element represents an attention weight, 𝛼𝛼𝑖𝑖𝑖𝑖 . For instance, if we are processing the ith input word, the ith row of this matrix contains the
corresponding attention weights for all words in the sentence. These attention weights indicate how
relevant each word is to the ith word. Hence, the columns in this attention matrix should sum to 1,
which we can confirm via the following code:

>>> attention_weights.sum(dim=1)
tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000])

Now that we have seen how to compute the attention weights, let us recap and summarize the three
main steps behind the self-attention operation:

1. For a given input element, 𝒙𝒙(𝑖𝑖) , and each jth element in the set {1, ..., T}, compute the dot
product, 𝒙𝒙(𝑖𝑖)⊤𝒙𝒙(𝑗𝑗)

2. Obtain the attention weight, 𝛼𝛼𝑖𝑖𝑖𝑖 , by normalizing the dot products using the softmax function
3. Compute the output, 𝒛𝒛(𝑖𝑖) , as the weighted sum over the entire input sequence: 𝒛𝒛(𝑖𝑖) = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝒙𝒙(𝑖𝑖)𝑇𝑇𝑖𝑖𝑗𝑗

Transformers – Improving Natural Language Processing with Attention Mechanisms548

These steps are further illustrated in Figure 16.4:

Figure 16.4: A basic self-attention process for illustration purposes

Lastly, let us see a code example for computing the context vectors, 𝒛𝒛(𝑖𝑖) , as the attention-weighted sum
of the inputs (step 3 in Figure 16.4). In particular, let’s assume we are computing the context vector for
the second input word, that is, 𝒛𝒛(2) :

>>> x_2 = embedded_sentence[1, :]
>>> context_vec_2 = torch.zeros(x_2.shape)
>>> for j in range(8):
... x_j = embedded_sentence[j, :]
... context_vec_2 += attention_weights[1, j] * x_j
>>> context_vec_2
tensor([-9.3975e-01, -4.6856e-01, 1.0311e+00, -2.8192e-01, 4.9373e-01,
-1.2896e-02, -2.7327e-01, -7.6358e-01, 1.3958e+00, -9.9543e-01,
-7.1288e-04, 1.2449e+00, -7.8077e-02, 1.2765e+00, -1.4589e+00,
-2.1601e+00])

Chapter 16 549

Again, we can achieve this more efficiently by using matrix multiplication. Using the following code,
we are computing the context vectors for all eight input words:

>>> context_vectors = torch.matmul(
... attention_weights, embedded_sentence)

Similar to the input word embeddings stored in embedded_sentence, the context_vectors matrix has
dimensionality 8 × 16 . The second row in this matrix contains the context vector for the second input
word, and we can check the implementation using torch.allclose() again:

>>> torch.allclose(context_vec_2, context_vectors[1])
True

As we can see, the manual for loop and matrix computations of the second context vector yielded
the same results.

This section implemented a basic form of self-attention, and in the next section, we will modify this
implementation using learnable parameter matrices that can be optimized during neural network
training.

Parameterizing the self-attention mechanism: scaled dot-product
attention
Now that you have been introduced to the basic concept behind self-attention, this subsection sum-
marizes the more advanced self-attention mechanism called scaled dot-product attention that is
used in the transformer architecture. Note that in the previous subsection, we did not involve any
learnable parameters when computing the outputs. In other words, using the previously introduced
basic self-attention mechanism, the transformer model is rather limited regarding how it can update
or change the attention values during model optimization for a given sequence. To make the self-at-
tention mechanism more flexible and amenable to model optimization, we will introduce three ad-
ditional weight matrices that can be fit as model parameters during model training. We denote these
three weight matrices as 𝑼𝑼𝑞𝑞 , 𝑼𝑼𝑘𝑘 , and 𝑼𝑼𝑣𝑣 . They are used to project the inputs into query, key, and value
sequence elements, as follows:

• Query sequence: 𝒒𝒒(𝑖𝑖) = 𝑼𝑼𝑞𝑞𝒙𝒙(𝑖𝑖) for 𝑖𝑖 𝑖 [1, 𝑇𝑇]
• Key sequence: 𝒌𝒌(𝑖𝑖) = 𝑼𝑼𝑘𝑘𝒙𝒙(𝑖𝑖) for 𝑖𝑖 𝑖 [1, 𝑇𝑇]
• Value sequence: 𝒗𝒗(𝑖𝑖) = 𝑼𝑼𝑣𝑣𝒙𝒙(𝑖𝑖) for 𝑖𝑖 𝑖 [1, 𝑇𝑇]

Transformers – Improving Natural Language Processing with Attention Mechanisms550

Figure 16.5 illustrates how these individual components are used to compute the context-aware em-
bedding vector corresponding to the second input element:

Figure 16.5: Computing the context-aware embedding vector of the second sequence element

Here, both 𝒒𝒒(𝑖𝑖) and 𝒌𝒌(𝑖𝑖) are vectors of size 𝑑𝑑𝑘𝑘 . Therefore, the projection matrices 𝑼𝑼𝑞𝑞 and 𝑼𝑼𝑘𝑘 have the
shape 𝑑𝑑𝑘𝑘 × 𝑑𝑑 , while 𝑼𝑼𝑣𝑣 has the shape 𝑑𝑑𝑣𝑣 × 𝑑𝑑 . (Note that 𝑑𝑑 is the dimensionality of each word vector, 𝒙𝒙(𝑖𝑖) .)
For simplicity, we can design these vectors to have the same shape, for example, using 𝑑𝑑𝑘𝑘 = 𝑑𝑑𝑣𝑣 = 𝑑𝑑 .
To provide additional intuition via code, we can initialize these projection matrices as follows:

>>> torch.manual_seed(123)
>>> d = embedded_sentence.shape[1]
>>> U_query = torch.rand(d, d)
>>> U_key = torch.rand(d, d)
>>> U_value = torch.rand(d, d)

Query, key, and value terminology

The terms query, key, and value that were used in the original transformer paper are in-
spired by information retrieval systems and databases. For example, if we enter a query,
it is matched against the key values for which certain values are retrieved.

Chapter 16 551

Using the query projection matrix, we can then compute the query sequence. For this example, con-
sider the second input element, 𝒙𝒙(𝑖𝑖) , as our query, as illustrated in Figure 16.5:

>>> x_2 = embedded_sentence[1]
>>> query_2 = U_query.matmul(x_2)

In a similar fashion, we can compute the key and value sequences, 𝒌𝒌(𝑖𝑖) and 𝒗𝒗(𝑖𝑖) :
>>> key_2 = U_key.matmul(x_2)
>>> value_2 = U_value.matmul(x_2)

However, as we can see from Figure 16.5, we also need the key and value sequences for all other input
elements, which we can compute as follows:

>>> keys = U_key.matmul(embedded_sentence.T).T
>>> values = U_value.matmul(embedded_sentence.T).T

In the key matrix, the ith row corresponds to the key sequence of the ith input element, and the same
applies to the value matrix. We can confirm this by using torch.allclose() again, which should
return True:

>>> keys = U_key.matmul(embedded_sentence.T).T
>>> torch.allclose(key_2, keys[1])
>>> values = U_value.matmul(embedded_sentence.T).T
>>> torch.allclose(value_2, values[1])

In the previous section, we computed the unnormalized weights, 𝜔𝜔𝑖𝑖𝑖𝑖 , as the pairwise dot product
between the given input sequence element, 𝒙𝒙(𝑖𝑖) , and the jth sequence element, 𝒙𝒙(𝑗𝑗) . Now, in this pa-
rameterized version of self-attention, we compute 𝜔𝜔𝑖𝑖𝑖𝑖 as the dot product between the query and key:𝜔𝜔𝑖𝑖𝑖𝑖 = 𝒒𝒒(𝑖𝑖)⊤𝒌𝒌(𝑖𝑖)
For example, the following code computes the unnormalized attention weight, 𝜔𝜔23 , that is, the dot
product between our query and the third input sequence element:

>>> omega_23 = query_2.dot(keys[2])
>>> omega_23
tensor(14.3667)

Since we will be needing these later, we can scale up this computation to all keys:

>>> omega_2 = query_2.matmul(keys.T)
>>> omega_2
tensor([-25.1623, 9.3602, 14.3667, 32.1482, 53.8976, 46.6626, -1.2131,
-32.9391])

Transformers – Improving Natural Language Processing with Attention Mechanisms552

The next step in self-attention is to go from the unnormalized attention weights, 𝜔𝜔𝑖𝑖𝑖𝑖 , to the normalized

attention weights, 𝛼𝛼𝑖𝑖𝑖𝑖 , using the softmax function. We can then further use 1/√𝑚𝑚 to scale 𝜔𝜔𝑖𝑖𝑖𝑖 before
normalizing it via the softmax function, as follows:𝛼𝛼𝑖𝑖𝑖𝑖 = softmax (ω𝑖𝑖𝑖𝑖√𝑚𝑚)

Note that scaling 𝜔𝜔𝑖𝑖𝑖𝑖 by 1/√𝑚𝑚 , where typically 𝑚𝑚 𝑚 𝑚𝑚𝑘𝑘 , ensures that the Euclidean length of the weight
vectors will be approximately in the same range.

The following code is for implementing this normalization to compute the attention weights for the
entire input sequence with respect to the second input element as the query:

>>> attention_weights_2 = F.softmax(omega_2 / d**0.5, dim=0)
>>> attention_weights_2
tensor([2.2317e-09, 1.2499e-05, 4.3696e-05, 3.7242e-03, 8.5596e-01, 1.4025e-01,
8.8896e-07, 3.1936e-10])

Finally, the output is a weighted average of value sequences: 𝒛𝒛(𝑖𝑖) = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝒗𝒗(𝑖𝑖)𝑇𝑇𝑖𝑖𝑗𝑗 , which can be imple-
mented as follows:

>>> context_vector_2 = attention_weights_2.matmul(values)
>>> context_vector_2
tensor([-1.2226, -3.4387, -4.3928, -5.2125, -1.1249, -3.3041,
-1.4316, -3.2765, -2.5114, -2.6105, -1.5793, -2.8433, -2.4142,
-0.3998, -1.9917, -3.3499])

In this section, we introduced a self-attention mechanism with trainable parameters that lets us com-
pute context-aware embedding vectors by involving all input elements, which are weighted by their
respective attention scores. In the next section, we will learn about the transformer architecture, a
neural network architecture centered around the self-attention mechanism introduced in this section.

Attention is all we need: introducing the original
transformer architecture
Interestingly, the original transformer architecture is based on an attention mechanism that was first
used in an RNN. Originally, the intention behind using an attention mechanism was to improve the text
generation capabilities of RNNs when working with long sentences. However, only a few years after ex-
perimenting with attention mechanisms for RNNs, researchers found that an attention-based language
model was even more powerful when the recurrent layers were deleted. This led to the development
of the transformer architecture, which is the main topic of this chapter and the remaining sections.

The transformer architecture was first proposed in the NeurIPS 2017 paper Attention Is All You Need
by A. Vaswani and colleagues (https://arxiv.org/abs/1706.03762). Thanks to the self-attention
mechanism, a transformer model can capture long-range dependencies among the elements in an
input sequence—in an NLP context; for example, this helps the model better “understand” the mean-
ing of an input sentence.

https://arxiv.org/abs/1706.03762

Chapter 16 553

Although this transformer architecture was originally designed for language translation, it can be
generalized to other tasks such as English constituency parsing, text generation, and text classification.
Later, we will discuss popular language models, such as BERT and GPT, which were derived from this
original transformer architecture. Figure 16.6, which we adapted from the original transformer paper,
illustrates the main architecture and components we will be discussing in this section:

Figure 16.6: The original transformer architecture

Transformers – Improving Natural Language Processing with Attention Mechanisms554

In the following subsections, we go over this original transformer model step by step, by decompos-
ing it into two main blocks: an encoder and a decoder. The encoder receives the original sequential
input and encodes the embeddings using a multi-head self-attention module. The decoder takes in
the processed input and outputs the resulting sequence (for instance, the translated sentence) using
a masked form of self-attention.

Encoding context embeddings via multi-head attention
The overall goal of the encoder block is to take in a sequential input 𝑿𝑿 𝑿 𝑿𝑿𝑿(1), 𝑿𝑿(2), … , 𝑿𝑿(𝑇𝑇)) and map it
into a continuous representation 𝒁𝒁 𝒁 𝒁𝒁𝒁(1), 𝒁𝒁(2), … , 𝒁𝒁(𝑇𝑇)) that is then passed on to the decoder.

The encoder is a stack of six identical layers. Six is not a magic number here but merely a hyperparam-
eter choice made in the original transformer paper. You can adjust the number of layers according to
the model performance. Inside each of these identical layers, there are two sublayers: one computes
the multi-head self-attention, which we will discuss below, and the other one is a fully connected layer,
which you have already encountered in previous chapters.

Let’s first talk about the multi-head self-attention, which is a simple modification of scaled dot-product
attention covered earlier in this chapter. In the scaled dot-product attention, we used three matrices
(corresponding to query, value, and key) to transform the input sequence. In the context of multi-head
attention, we can think of this set of three matrices as one attention head. As indicated by its name,
in multi-head attention, we now have multiple of such heads (sets of query, value, and key matrices)
similar to how convolutional neural networks can have multiple kernels.

To explain the concept of multi-head self-attention with ℎ heads in more detail, let’s break it down
into the following steps.

First, we read in the sequential input 𝑿𝑿 𝑿 𝑿𝑿𝑿(1), 𝑿𝑿(2), … , 𝑿𝑿(𝑇𝑇)) . Suppose each element is embedded by
a vector of length d. Here, the input can be embedded into a 𝑇𝑇 𝑇 𝑇𝑇 matrix. Then, we create ℎ sets of
the query, key, and value learning parameter matrices:

• 𝑼𝑼𝒒𝒒1, 𝑼𝑼𝒌𝒌1, 𝑼𝑼𝒗𝒗1

• 𝑼𝑼𝒒𝒒2, 𝑼𝑼𝒌𝒌2, 𝑼𝑼𝒗𝒗2

• ...
• 𝑼𝑼𝒒𝒒ℎ, 𝑼𝑼𝒌𝒌ℎ, 𝑼𝑼𝒗𝒗ℎ

Because we are using these weight matrices to project each element 𝒙𝒙(𝑖𝑖) for the required dimen-
sion-matching in the matrix multiplications, both 𝑼𝑼𝒒𝒒𝑗𝑗 and 𝑼𝑼𝒌𝒌𝑗𝑗 have the shape 𝑑𝑑𝑘𝑘 × 𝑑𝑑 , and 𝑼𝑼𝑣𝑣𝑗𝑗 has the
shape 𝑑𝑑𝑣𝑣 × 𝑑𝑑 . As a result, both resulting sequences, query and key, have length 𝑑𝑑𝑘𝑘 , and the resulting
value sequence has length 𝑑𝑑𝑣𝑣 . In practice, people often choose 𝑑𝑑𝑘𝑘 = 𝑑𝑑𝑣𝑣 = 𝑚𝑚 for simplicity.

Chapter 16 555

To illustrate the multi-head self-attention stack in code, first consider how we created the single
query projection matrix in the previous subsection, Parameterizing the self-attention mechanism: scaled
dot-product attention:

>>> torch.manual_seed(123)
>>> d = embedded_sentence.shape[1]
>>> one_U_query = torch.rand(d, d)

Now, assume we have eight attention heads similar to the original transformer, that is, ℎ = 8 :

>>> h = 8
>>> multihead_U_query = torch.rand(h, d, d)
>>> multihead_U_key = torch.rand(h, d, d)
>>> multihead_U_value = torch.rand(h, d, d)

As we can see in the code, multiple attention heads can be added by simply adding an additional
dimension.

After initializing the projection matrices, we can compute the projected sequences similar to how
it’s done in scaled dot-product attention. Now, instead of computing one set of query, key, and value
sequences, we need to compute h sets of them. More formally, for example, the computation involving
the query projection for the ith data point in the jth head can be written as follows: 𝒒𝒒𝑗𝑗(𝑖𝑖) = 𝑼𝑼𝒒𝒒𝑗𝑗𝒙𝒙(𝑖𝑖)
We then repeat this computation for all heads 𝑗𝑗𝑗 𝑗 𝑗 𝑗𝑗𝑗 𝑗 𝑗 𝑗 𝑗𝑗 .

In code, this looks like the following for the second input word as the query:

>>> multihead_query_2 = multihead_U_query.matmul(x_2)
>>> multihead_query_2.shape
torch.Size([8, 16])

The multihead_query_2 matrix has eight rows, where each row corresponds to the jth attention head.

Splitting data across multiple attention heads

In practice, rather than having a separate matrix for each attention head, transformer
implementations use a single matrix for all attention heads. The attention heads are then
organized into logically separate regions in this matrix, which can be accessed via Boolean
masks. This makes it possible to implement multi-head attention more efficiently because
multiple matrix multiplications can be implemented as a single matrix multiplication
instead. However, for simplicity, we are omitting this implementation detail in this section.

Transformers – Improving Natural Language Processing with Attention Mechanisms556

Similarly, we can compute key and value sequences for each head:

>>> multihead_key_2 = multihead_U_key.matmul(x_2)
>>> multihead_value_2 = multihead_U_value.matmul(x_2)
>>> multihead_key_2[2]
tensor([-1.9619, -0.7701, -0.7280, -1.6840, -1.0801, -1.6778, 0.6763, 0.6547,
 1.4445, -2.7016, -1.1364, -1.1204, -2.4430, -0.5982, -0.8292, -1.4401])

The code output shows the key vector of the second input element via the third attention head.

However, remember that we need to repeat the key and value computations for all input sequence
elements, not just x_2—we need this to compute self-attention later. A simple and illustrative way to
do this is by expanding the input sequence embeddings to size 8 as the first dimension, which is the
number of attention heads. We use the .repeat() method for this:

>>> stacked_inputs = embedded_sentence.T.repeat(8, 1, 1)
>>> stacked_inputs.shape
torch.Size([8, 16, 8])

Then, we can have a batch matrix multiplication, via torch.bmm(), with the attention heads to com-
pute all keys:

>>> multihead_keys = torch.bmm(multihead_U_key, stacked_inputs)
>>> multihead_keys.shape
torch.Size([8, 16, 8])

In this code, we now have a tensor that refers to the eight attention heads in its first dimension. The
second and third dimensions refer to the embedding size and the number of words, respectively. Let
us swap the second and third dimensions so that the keys have a more intuitive representation, that
is, the same dimensionality as the original input sequence embedded_sentence:

>>> multihead_keys = multihead_keys.permute(0, 2, 1)
>>> multihead_keys.shape
torch.Size([8, 8, 16])

After rearranging, we can access the second key value in the second attention head as follows:

>>> multihead_keys[2, 1]
tensor([-1.9619, -0.7701, -0.7280, -1.6840, -1.0801, -1.6778, 0.6763, 0.6547,
 1.4445, -2.7016, -1.1364, -1.1204, -2.4430, -0.5982, -0.8292, -1.4401])

We can see that this is the same key value that we got via multihead_key_2[2] earlier, which indicates
that our complex matrix manipulations and computations are correct. So, let’s repeat it for the value
sequences:

>>> multihead_values = torch.matmul(
 multihead_U_value, stacked_inputs)
>>> multihead_values = multihead_values.permute(0, 2, 1)

Chapter 16 557

We follow the steps of the single head attention calculation to calculate the context vectors as de-
scribed in the Parameterizing the self-attention mechanism: scaled dot-product attention section. We will
skip the intermediate steps for brevity and assume that we have computed the context vectors for
the second input element as the query and the eight different attention heads, which we represent as
multihead_z_2 via random data:

>>> multihead_z_2 = torch.rand(8, 16)

Note that the first dimension indexes over the eight attention heads, and the context vectors, similar to
the input sentences, are 16-dimensional vectors. If this appears complicated, think of multihead_z_2
as eight copies of the 𝑧𝑧(2) shown in Figure 16.5; that is, we have one 𝑧𝑧(2) for each of the eight attention
heads.

Then, we concatenate these vectors into one long vector of length 𝑑𝑑𝑣𝑣 × ℎ and use a linear projection (via
a fully connected layer) to map it back to a vector of length 𝑑𝑑𝑣𝑣 . This process is illustrated in Figure 16.7:

Figure 16.7: Concatenating the scaled dot-product attention vectors into one vector and passing it
through a linear projection

In code, we can implement the concatenation and squashing as follows:

>>> linear = torch.nn.Linear(8*16, 16)
>>> context_vector_2 = linear(multihead_z_2.flatten())
>>> context_vector_2.shape
torch.Size([16])

Transformers – Improving Natural Language Processing with Attention Mechanisms558

To summarize, multi-head self-attention is repeating the scaled dot-product attention computation
multiple times in parallel and combining the results. It works very well in practice because the multiple
heads help the model to capture information from different parts of the input, which is very similar to
how the multiple kernels produce multiple channels in a convolutional network, where each channel
can capture different feature information. Lastly, while multi-head attention sounds computationally
expensive, note that the computation can all be done in parallel because there are no dependencies
between the multiple heads.

Learning a language model: decoder and masked multi-head
attention
Similar to the encoder, the decoder also contains several repeated layers. Besides the two sublayers
that we have already introduced in the previous encoder section (the multi-head self-attention layer
and fully connected layer), each repeated layer also contains a masked multi-head attention sublayer.

Masked attention is a variation of the original attention mechanism, where masked attention only
passes a limited input sequence into the model by “masking” out a certain number of words. For
example, if we are building a language translation model with a labeled dataset, at sequence position
i during the training procedure, we only feed in the correct output words from positions 1,…,i-1. All
other words (for instance, those that come after the current position) are hidden from the model to
prevent the model from “cheating.” This is also consistent with the nature of text generation: although
the true translated words are known during training, we know nothing about the ground truth in
practice. Thus, we can only feed the model the solutions to what it has already generated, at position i.

Figure 16.8 illustrates how the layers are arranged in the decoder block:

Figure 16.8: Layer arrangement in the decoder part

First, the previous output words (output embeddings) are passed into the masked multi-head atten-
tion layer. Then, the second layer receives both the encoded inputs from the encoder block and the
output of the masked multi-head attention layer into a multi-head attention layer. Finally, we pass the
multi-head attention outputs into a fully connected layer that generates the overall model output: a
probability vector corresponding to the output words.

Chapter 16 559

Note that we can use an argmax function to obtain the predicted words from these word probabili-
ties similar to the overall approach we took in the recurrent neural network in Chapter 15, Modeling
Sequential Data Using Recurrent Neural Networks.

Comparing the decoder with the encoder block, the main difference is the range of sequence elements
that the model can attend to. In the encoder, for each given word, the attention is calculated across
all the words in a sentence, which can be considered as a form of bidirectional input parsing. The
decoder also receives the bidirectionally parsed inputs from the encoder. However, when it comes to
the output sequence, the decoder only considers those elements that are preceding the current input
position, which can be interpreted as a form of unidirectional input parsing.

Implementation details: positional encodings and layer
normalization
In this subsection, we will discuss some of the implementation details of transformers that we have
glanced over so far but are worth mentioning.

First, let’s consider the positional encodings that were part of the original transformer architecture
from Figure 16.6. Positional encodings help with capturing information about the input sequence
ordering and are a crucial part of transformers because both scaled dot-product attention layers and
fully connected layers are permutation-invariant. This means, without positional encoding, the order
of words is ignored and does not make any difference to the attention-based encodings. However, we
know that word order is essential for understanding a sentence. For example, consider the following
two sentences:

1. Mary gives John a flower
2. John gives Mary a flower

The words occurring in the two sentences are exactly the same; the meanings, however, are very
different.

Transformers enable the same words at different positions to have slightly different encodings by
adding a vector of small values to the input embeddings at the beginning of the encoder and decoder
blocks. In particular, the original transformer architecture uses a so-called sinusoidal encoding:𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖) = sin(𝑝𝑝𝑝𝑝𝑝𝑝/10000𝑖𝑖𝑖/𝑘𝑘model) 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = cos(𝑝𝑝𝑝𝑝𝑝𝑝/10000𝑖𝑖𝑖/𝑘𝑘model)

Here 𝑖𝑖 is the position of the word and k denotes the length of the encoding vector, where we choose k
to have the same dimension as the input word embeddings so that the positional encoding and word
embeddings can be added together. Sinusoidal functions are used to prevent positional encodings from
becoming too large. For instance, if we used absolute position 1,2,3…, n to be positional encodings,
they would dominate the word encoding and make the word embedding values negligible.

Transformers – Improving Natural Language Processing with Attention Mechanisms560

In general, there are two types of positional encodings, an absolute one (as shown in the previous
formula) and a relative one. The former will record absolute positions of words and is sensitive to
word shifts in a sentence. That is to say, absolute positional encodings are fixed vectors for each given
position. On the other hand, relative encodings only maintain the relative position of words and are
invariant to sentence shift.

Next, let’s look at the layer normalization mechanism, which was first introduced by J. Ba, J.R. Kiros,
and G.E. Hinton in 2016 in the same-named paper Layer Normalization (URL: https://arxiv.org/
abs/1607.06450). While batch normalization, which we will discuss in more detail in Chapter 17, Gen-
erative Adversarial Networks for Synthesizing New Data, is a popular choice in computer vision contexts,
layer normalization is the preferred choice in NLP contexts, where sentence lengths can vary. Figure
16.9 illustrates the main differences of layer and batch normalization side by side:

Figure 16.9: A comparison of batch and layer normalization

While layer normalization is traditionally performed across all elements in a given feature for each
feature independently, the layer normalization used in transformers extends this concept and com-
putes the normalization statistics across all feature values independently for each training example.

Since layer normalization computes mean and standard deviation for each training example, it relaxes
minibatch size constraints or dependencies. In contrast to batch normalization, layer normalization
is thus capable of learning from data with small minibatch sizes and varying lengths. However, note
that the original transformer architecture does not have varying-length inputs (sentences are padded
when needed), and unlike RNNs, there is no recurrence in the model. So, how can we then justify
the use of layer normalization over batch normalization? Transformers are usually trained on very
large text corpora, which requires parallel computation; this can be challenging to achieve with batch
normalization, which has a dependency between training examples. Layer normalization has no such
dependency and is thus a more natural choice for transformers.

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

Chapter 16 561

Building large-scale language models by leveraging
unlabeled data
In this section, we will discuss popular large-scale transformer models that emerged from the original
transformer. One common theme among these transformers is that they are pre-trained on very large,
unlabeled datasets and then fine-tuned for their respective target tasks. First, we will introduce the
common training procedure of transformer-based models and explain how it is different from the
original transformer. Then, we will focus on popular large-scale language models including Generative
Pre-trained Transformer (GPT), Bidirectional Encoder Representations from Transformers (BERT),
and Bidirectional and Auto-Regressive Transformers (BART).

Pre-training and fine-tuning transformer models
In an earlier section, Attention is all we need: introducing the original transformer architecture, we dis-
cussed how the original transformer architecture can be used for language translation. Language
translation is a supervised task and requires a labeled dataset, which can be very expensive to obtain.
The lack of large, labeled datasets is a long-lasting problem in deep learning, especially for models
like the transformer, which are even more data hungry than other deep learning architectures. How-
ever, given that large amounts of text (books, websites, and social media posts) are generated every
day, an interesting question is how we can use such unlabeled data for improving the model training.

The answer to whether we can leverage unlabeled data in transformers is yes, and the trick is a process
called self-supervised learning: we can generate “labels” from supervised learning from plain text
itself. For example, given a large, unlabeled text corpus, we train the model to perform next-word
prediction, which enables the model to learn the probability distribution of words and can form a
strong basis for becoming a powerful language model.

Self-supervised learning is traditionally also referred to as unsupervised pre-training and is essential
for the success of modern transformer-based models. The “unsupervised” in unsupervised pre-training
supposedly refers to the fact that we use unlabeled data; however, since we use the structure of the
data to generate labels (for example, the next-word prediction task mentioned previously), it is still a
supervised learning process.

To elaborate a bit further on how unsupervised pre-training and next-word prediction works, if we
have a sentence containing n words, the pre-training procedure can be decomposed into the following
three steps:

1. At time step 1, feed in the ground-truth words 1, …, i-1.
2. Ask the model to predict the word at position i and compare it with the ground-truth word i.
3. Update the model and time step, i:= i+1. Go back to step 1 and repeat until all words are pro-

cessed.

We should note that in the next iteration, we always feed the model the ground-truth (correct) words
instead of what the model has generated in the previous round.

Transformers – Improving Natural Language Processing with Attention Mechanisms562

The main idea of pre-training is to make use of plain text and then transfer and fine-tune the model
to perform some specific tasks for which a (smaller) labeled dataset is available. Now, there are many
different types of pre-training techniques. For example, the previously mentioned next-word prediction
task can be considered as a unidirectional pre-training approach. Later, we will introduce additional
pre-training techniques that are utilized in different language models to achieve various functionalities.

A complete training procedure of a transformer-based model consists of two parts: (1) pre-training
on a large, unlabeled dataset and (2) training (that is, fine-tuning) the model for specific downstream
tasks using a labeled dataset. In the first step, the pre-trained model is not designed for any specific
task but rather trained as a “general” language model. Afterward, via the second step, it can be gen-
eralized to any customized task via regular supervised learning on a labeled dataset.

With the representations that can be obtained from the pre-trained model, there are mainly two strat-
egies for transferring and adopting a model to a specific task: (1) a feature-based approach and (2) a
fine-tuning approach. (Here, we can think of these representations as the hidden layer activations
of the last layers of a model.)

The feature-based approach uses the pre-trained representations as additional features to a labeled
dataset. This requires us to learn how to extract sentence features from the pre-trained model. An early
model that is well-known for this feature extraction approach is ELMo (Embeddings from Language
Models) proposed by Peters and colleagues in 2018 in the paper Deep Contextualized Word Representa-
tions (URL: https://arxiv.org/abs/1802.05365). ELMo is a pre-trained bidirectional language model
that masks words at a certain rate. In particular, it randomly masks 15 percent of the input words
during pre-training, and the modeling task is to fill in these blanks, that is, predicting the missing
(masked) words. This is different from the unidirectional approach we introduced previously, which
hides all the future words at time step i. Bidirectional masking enables a model to learn from both
ends and can thus capture more holistic information about a sentence. The pre-trained ELMo model
can generate high-quality sentence representations that, later on, serve as input features for specific
tasks. In other words, we can think of the feature-based approach as a model-based feature extraction
technique similar to principal component analysis, which we covered in Chapter 5, Compressing Data
via Dimensionality Reduction.

The fine-tuning approach, on the other hand, updates the pre-trained model parameters in a regular
supervised fashion via backpropagation. Unlike the feature-based method, we usually also add another
fully connected layer to the pre-trained model, to accomplish certain tasks such as classification, and
then update the whole model based on the prediction performance on the labeled training set. One
popular model that follows this approach is BERT, a large-scale transformer model pre-trained as a
bidirectional language model. We will discuss BERT in more detail in the following subsections. In
addition, in the last section of this chapter, we will see a code example showing how to fine-tune a
pre-trained BERT model for sentiment classification using the movie review dataset we worked with
in Chapter 8, Applying Machine Learning to Sentiment Analysis, and Chapter 15, Modeling Sequential Data
Using Recurrent Neural Networks.

https://arxiv.org/abs/1802.05365

Chapter 16 563

Before we move on to the next section and start our discussion of popular transformer-based language
models, the following figure summarizes the two stages of training transformer models and illustrates
the difference between the feature-based and fine-tuning approaches:

Figure 16.10: The two main ways to adopt a pre-trained transformer for downstream tasks

Leveraging unlabeled data with GPT
The Generative Pre-trained Transformer (GPT) is a popular series of large-scale language models
for generating text developed by OpenAI. The most recent model, GPT-3, which was released in May
2020 (Language Models are Few-Shot Learners), is producing astonishing results. The quality of the text
generated by GPT-3 is very hard to distinguish from human-generated texts. In this section, we are
going to discuss how the GPT model works on a high level, and how it has evolved over the years.

As listed in Table 16.1, one obvious evolution within the GPT model series is the number of parameters:

Model Release
year

Number of
parameters

Title Paper link

GPT-1 2018 110 million Improving Language
Understanding by
Generative Pre-Training

https://www.cs.ubc.
ca/~amuham01/LING530/papers/
radford2018improving.pdf

GPT-2 2019 1.5 billion Language Models are
Unsupervised Multitask
Learners

https://www.semanticscholar.
org/paper/Language-Models-are-
Unsupervised-Multitask-Learners-
Radford-Wu/9405cc0d6169988371b2
755e573cc28650d14dfe

GPT-3 2020 175 billion Language Models are
Few-Shot Learners

https://arxiv.org/
pdf/2005.14165.pdf

Table 16.1: Overview of the GPT models

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf

Transformers – Improving Natural Language Processing with Attention Mechanisms564

But let’s not get ahead of ourselves, and take a closer look at the GPT-1 model first, which was released
in 2018. Its training procedure can be decomposed into two stages:

1. Pre-training on a large amount of unlabeled plain text
2. Supervised fine-tuning

As Figure 16.11 (adapted from the GPT-1 paper) illustrates, we can consider GPT-1 as a transformer
consisting of (1) a decoder (and without an encoder block) and (2) an additional layer that is added
later for the supervised fine-tuning to accomplish specific tasks:

Figure 16.11: The GPT-1 transformer

In the figure, note that if our task is Text Prediction (predicting the next word), then the model is ready
after the pre-training step. Otherwise, for example, if our task is related to classification or regression,
then supervised fine-tuning is required.

During pre-training, GPT-1 utilizes a transformer decoder structure, where, at a given word position,
the model only relies on preceding words to predict the next word. GPT-1 utilizes a unidirectional
self-attention mechanism, as opposed to a bidirectional one as in BERT (which we will cover later in
this chapter), because GPT-1 is focused on text generation rather than classification. During text gen-
eration, it produces words one by one with a natural left-to-right direction. There is one other aspect
worth highlighting here: during the training procedure, for each position, we always feed the correct
words from the previous positions to the model. However, during inference, we just feed the model
whatever words it has generated to be able to generate new texts.

Chapter 16 565

After obtaining the pre-trained model (the block in the previous figure labeled as Transformer), we
then insert it between the input pre-processing block and a linear layer, where the linear layer serves
as an output layer (similar to previous deep neural network models we discussed earlier in this book).
For classification tasks, fine-tuning is as simple as first tokenizing the input and then feeding it into
the pre-trained model and the newly added linear layer, which is followed by a softmax activation
function. However, for more complicated tasks such as question answering, inputs are organized
in a certain format that is not necessarily matching the pre-trained model, which requires an extra
processing step customized for each task. Readers who are interested in specific modifications are
encouraged to read the GPT-1 paper for additional details (the link is provided in the previous table).

GPT-1 also performs surprisingly well on zero-shot tasks, which proves its ability to be a general lan-
guage model that can be customized for different types of tasks with minimal task-specific fine-tuning.
Zero-shot learning generally describes a special circumstance in machine learning where during
testing and inference, the model is required to classify samples from classes that were not observed
during training. In the context of GPT, the zero-shot setting refers to unseen tasks.

GPT’s adaptability inspired researchers to get rid of the task-specific input and model setup, which
led to the development of GPT-2. Unlike its predecessor, GPT-2 does not require any additional mod-
ification during the input or fine-tuning stages anymore. Instead of rearranging sequences to match
the required format, GPT-2 can distinguish between different types of inputs and perform the corre-
sponding downstream tasks with minor hints, the so-called “contexts.” This is achieved by modeling
output probabilities conditioned on both input and task type, 𝑝𝑝(𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜|𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑜𝑜𝑖 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖) , instead of only
conditioning on the input. For example, the model is expected to recognize a translation task if the
context includes translate to French, English text, French text.

This sounds much more “artificially intelligent” than GPT and is indeed the most noticeable improve-
ment besides the model size. Just as the title of its corresponding paper indicates (Language Models are
Unsupervised Multitask Learners), an unsupervised language model may be key to zero-shot learning,
and GPT-2 makes full use of zero-shot task transfer to build this multi-task learner.

Compared with GPT-2, GPT-3 is less “ambitious” in the sense that it shifts the focus from zero- to one-
shot and few-shot learning via in-context learning. While providing no task-specific training examples
seems to be too strict, few-shot learning is not only more realistic but also more human-like: humans
usually need to see a few examples to be able to learn a new task. Just as its name suggests, few-shot
learning means that the model sees a few examples of the task while one-shot learning is restricted
to exactly one example.

Transformers – Improving Natural Language Processing with Attention Mechanisms566

Figure 16.12 illustrates the difference between zero-shot, one-shot, few-shot, and fine-tuning proce-
dures:

Figure 16.12: A comparison of zero-shot, one-shot, and few-shot learning

The model architecture of GPT-3 is pretty much the same as GPT-2 except for the 100-fold parameter
size increase and the use of a sparse transformer. In the original (dense) attention mechanism we
discussed earlier, each element attends to all other elements in the input, which scales with 𝑂𝑂(𝑛𝑛2)
complexity. Sparse attention improves the efficiency by only attending to a subset of elements with
limited size, normally proportional to 𝑛𝑛1/𝑝𝑝 . Interested readers can learn more about the specific subset
selection by visiting the sparse transformer paper: Generating Long Sequences with Sparse Transformers
by Rewon Child et al. 2019 (URL: https://arxiv.org/abs/1904.10509).

Using GPT-2 to generate new text
Before we move on to the next transformer architecture, let us take a look at how we can use the
latest GPT models to generate new text. Note that GPT-3 is still relatively new and is currently only
available as a beta version via the OpenAI API at https://openai.com/blog/openai-api/. However,
an implementation of GPT-2 has been made available by Hugging Face (a popular NLP and machine
learning company; http://huggingface.co), which we will use.

https://arxiv.org/abs/1904.10509
https://openai.com/blog/openai-api/
http://huggingface.co

Chapter 16 567

We will be accessing GPT-2 via transformers, which is a very comprehensive Python library created
by Hugging Face that provides various transformer-based models for pre-training and fine-tuning.
Users can also discuss and share their customized models on the forum. Feel free to check out and
engage with the community if you are interested: https://discuss.huggingface.co.

Once we have installed the transformers library, we can run the following code to import a pre-trained
GPT model that can generate new text:

>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2')

Then, we can prompt the model with a text snippet and ask it to generate new text based on that input
snippet:

>>> set_seed(123)
>>> generator("Hey readers, today is",
... max_length=20,
... num_return_sequences=3)

[{'generated_text': "Hey readers, today is not the last time we'll be seeing
one of our favorite indie rock bands"},
 {'generated_text': 'Hey readers, today is Christmas. This is not Christmas,
because Christmas is so long and I hope'},
 {'generated_text': "Hey readers, today is CTA Day!\n\nWe're proud to be
hosting a special event"}]

As we can see from the output, the model generated three reasonable sentences based on our text
snippet. If you want to explore more examples, please feel free to change the random seed and the
maximum sequence length.

Installing transformers version 4.9.1

Because this package is evolving rapidly, you may not be able to replicate the results in
the following subsections. For reference, this tutorial uses version 4.9.1 released in June
2021. To install the version we used in this book, you can execute the following command
in your terminal to install it from PyPI:

pip install transformers==4.9.1

We also recommend checking the latest instructions on the official installation page:

https://huggingface.co/transformers/installation.html

https://discuss.huggingface.co
https://huggingface.co/transformers/installation.html

Transformers – Improving Natural Language Processing with Attention Mechanisms568

Also, as previously illustrated in Figure 16.10, we can use a transformer model to generate features
for training other models. The following code illustrates how we can use GPT-2 to generate features
based on an input text:

>>> from transformers import GPT2Tokenizer
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> text = "Let us encode this sentence"
>>> encoded_input = tokenizer(text, return_tensors='pt')
>>> encoded_input
{'input_ids': tensor([[5756, 514, 37773, 428, 6827]]), 'attention_mask':
tensor([[1, 1, 1, 1, 1]])}

This code encoded the input sentence text into a tokenized format for the GPT-2 model. As we can
see, it mapped the strings to an integer representation, and it set the attention mask to all 1s, which
means that all words will be processed when we pass the encoded input to the model, as shown here:

>>> from transformers import GPT2Model
>>> model = GPT2Model.from_pretrained('gpt2')
>>> output = model(**encoded_input)

The output variable stores the last hidden state, that is, our GPT-2-based feature encoding of the
input sentence:

>>> output['last_hidden_state'].shape
torch.Size([1, 5, 768])

To suppress the verbose output, we only showed the shape of the tensor. Its first dimension is the batch
size (we only have one input text), which is followed by the sentence length and size of the feature
encoding. Here, each of the five words is encoded as a 768-dimensional vector.

Now, we could apply this feature encoding to a given dataset and train a downstream classifier based
on the GPT-2-based feature representation instead of using a bag-of-words model as discussed in
Chapter 8, Applying Machine Learning to Sentiment Analysis.

Moreover, an alternative approach to using large pre-trained language models is fine-tuning, as we
discussed earlier. We will be seeing a fine-tuning example later in this chapter.

If you are interested in additional details on using GPT-2, we recommend the following documenta-
tion pages:

• https://huggingface.co/gpt2

• https://huggingface.co/docs/transformers/model_doc/gpt2

https://huggingface.co/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2

Chapter 16 569

Bidirectional pre-training with BERT
BERT, its full name being Bidirectional Encoder Representations from Transformers, was created
by a Google research team in 2018 (BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding by J. Devlin, M. Chang, K. Lee, and K. Toutanova, https://arxiv.org/abs/1810.04805).
For reference, even though we cannot compare GPT and BERT directly as they are different architec-
tures, BERT has 345 million parameters (which makes it only slightly larger than GPT-1, and its size
is only 1/5 of GPT-2).

As its name suggests, BERT has a transformer-encoder-based model structure that utilizes a bidirection-
al training procedure. (Or, more accurately, we can think of BERT as using “nondirectional” training
because it reads in all input elements all at once.) Under this setting, the encoding of a certain word
depends on both the preceding and the succeeding words. Recall that in GPT, input elements are
read in with a natural left-to-right order, which helps to form a powerful generative language model.
Bidirectional training disables BERT’s ability to generate a sentence word by word but provides input
encodings of higher quality for other tasks, such as classification, since the model can now process
information in both directions.

Recall that in a transformer’s encoder, token encoding is a summation of positional encodings and
token embeddings. In the BERT encoder, there is an additional segment embedding indicating which
segment this token belongs to. This means that each token representation contains three ingredients,
as Figure 16.13 illustrates:

Figure 16.13: Preparing the inputs for the BERT encoder

Why do we need this additional segment information in BERT? The need for this segment information
originated from the special pre-training task of BERT called next-sentence prediction. In this pre-training
task, each training example includes two sentences and thus requires special segment notation to
denote whether it belongs to the first or second sentence.

https://arxiv.org/abs/1810.04805

Transformers – Improving Natural Language Processing with Attention Mechanisms570

Now, let us look at BERT’s pre-training tasks in more detail. Similar to all other transformer-based
language models, BERT has two training stages: pre-training and fine-tuning. And pre-training includes
two unsupervised tasks: masked language modeling and next-sentence prediction.

In the masked language model (MLM), tokens are randomly replaced by so-called mask tokens, [MASK],
and the model is required to predict these hidden words. Compared with the next-word prediction in
GPT, MLM in BERT is more akin to “filling in the blanks” because the model can attend to all tokens
in the sentence (except the masked ones). However, simply masking words out can result in inconsis-
tencies between pre-training and fine-tuning since [MASK] tokens do not appear in regular texts. To
alleviate this, there are further modifications to the words that are selected for masking. For instance,
15 percent of the words in BERT are marked for masking. These 15 percent of randomly selected words
are then further treated as follows:

1. Keep the word unchanged 10 percent of the time
2. Replace the original word token with a random word 10 percent of the time
3. Replace the original word token with a mask token, [MASK], 80 percent of the time

Besides avoiding the aforementioned inconsistency between pre-training and fine-tuning when in-
troducing [MASK] tokens into the training procedure, these modifications also have other benefits.
Firstly, unchanged words include the possibility of maintaining the information of the original token;
otherwise, the model can only learn from the context and nothing from the masked words. Secondly,
the 10 percent random words prevent the model from becoming lazy, for instance, learning nothing
but returning what it is being given. The probabilities for masking, randomizing, and leaving words
unchanged were chosen by an ablation study (see the GPT-2 paper); for instance, authors tested dif-
ferent settings and found that this combination worked best.

Figure 16.14 illustrates an example where the word fox is masked and, with a certain probability, re-
mains unchanged or is replaced by [MASK] or coffee. The model is then required to predict what the
masked (highlighted) word is as illustrated in Figure 16.14:

Figure 16.14: An example of MLM

Next-sentence prediction is a natural modification of the next-word prediction task considering the
bidirectional encoding of BERT. In fact, many important NLP tasks, such as question answering, depend
on the relationship of two sentences in the document. This kind of relationship is hard to capture via
regular language models because next-word prediction training usually occurs on a single-sentence
level due to input length constraints.

Chapter 16 571

In the next-sentence prediction task, the model is given two sentences, A and B, in the following format:

[CLS] A [SEP] B [SEP]

[CLS] is a classification token, which serves as a placeholder for the predicted label in the decoder
output, as well as a token denoting the beginning of the sentences. The [SEP] token, on the other hand,
is attached to denote the end of each sentence. The model is then required to classify whether B is the
next sentence (“IsNext”) of A or not. To provide the model with a balanced dataset, 50 percent of the
samples are labeled as “IsNext” while the remaining samples are labeled as “NotNext.”

BERT is pre-trained on these two tasks, masked sentences and next-sentence prediction, at the same
time. Here, the training objective of BERT is to minimize the combined loss function of both tasks.

Starting from the pre-trained model, specific modifications are required for different downstream tasks
in the fine-tuning stage. Each input example needs to match a certain format; for example, it should
begin with a [CLS] token and be separated using [SEP] tokens if it consists of more than one sentence.

Roughly speaking, BERT can be fine-tuned on four categories of tasks: (a) sentence pair classification;
(b) single-sentence classification; (c) question answering; (d) single-sentence tagging.

Among them, (a) and (b) are sequence-level classification tasks, which only require an additional
softmax layer to be added to the output representation of the [CLS] token. (c) and (d), on the other
hand, are token-level classification tasks. This means that the model passes output representations of
all related tokens to the softmax layer to predict a class label for each individual token.

Question answering

Task (c), question answering, appears to be less often discussed compared to other popular
classification tasks such as sentiment classification or speech tagging. In question answer-
ing, each input example can be split into two parts, the question and the paragraph that
helps to answer the question. The model is required to point out both the start and end
token in the paragraph that forms a proper answer to the question. This means that the
model needs to generate a tag for every single token in the paragraph, indicating whether
this token is a start or end token, or neither. As a side note, it is worth mentioning that
the output may contain an end token that appears before the start token, which will lead
to a conflict when generating the answer. This kind of output will be recognized as “No
Answer” to the question.

Transformers – Improving Natural Language Processing with Attention Mechanisms572

As Figure 16.15 indicates, the model fine-tuning setup has a very simple structure: an input encoder
is attached to a pre-trained BERT, and a softmax layer is added for classification. Once the model
structure is set up, all the parameters will be adjusted along the learning process.

Figure 16.15: Using BERT to fine-tune different language tasks

The best of both worlds: BART
The Bidirectional and Auto-Regressive Transformer, abbreviated as BART, was developed by re-
searchers at Facebook AI Research in 2019: BART: Denoising Sequence-to-Sequence Pre-training for Nat-
ural Language Generation, Translation, and Comprehension, Lewis and colleagues, https://arxiv.org/
abs/1910.13461. Recall that in previous sections we argued that GPT utilizes a transformer’s decoder
structure, whereas BERT utilizes a transformer’s encoder structure. Those two models are thus capable
of performing different tasks well: GPT’s specialty is generating text, whereas BERT performs better
on classification tasks. BART can be viewed as a generalization of both GPT and BERT. As the title
of this section suggests, BART is able to accomplish both tasks, generating and classifying text. The
reason why it can handle both tasks well is that the model comes with a bidirectional encoder as well
as a left-to-right autoregressive decoder.

https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461

Chapter 16 573

You may wonder how this is different from the original transformer. There are a few changes to the
model size along with some minor changes such as activation function choices. However, one of the
more interesting changes is that BART works with different model inputs. The original transformer
model was designed for language translation so there are two inputs: the text to be translated (source
sequence) for the encoder and the translation (target sequence) for the decoder. Additionally, the
decoder also receives the encoded source sequence, as illustrated earlier in Figure 16.6. However, in
BART, the input format was generalized such that it only uses the source sequence as input. BART can
perform a wider range of tasks including language translation, where a target sequence is still required
to compute the loss and fine-tune the model, but it is not necessary to feed it directly into the decoder.

Now let us take a closer look at the BART’s model structure. As previously mentioned, BART is com-
posed of a bidirectional encoder and an autoregressive decoder. Upon receiving a training example as
plain text, the input will first be “corrupted” and then encoded by the encoder. These input encodings
will then be passed to the decoder, along with the generated tokens. The cross-entropy loss between
encoder output and the original text will be calculated and then optimized through the learning pro-
cess. Think of a transformer where we have two texts in different languages as input to the decoder:
the initial text to be translated (source text) and the generated text in the target language. BART can
be understood as replacing the former with corrupted text and the latter with the input text itself.

Figure 16.16: BART’s model structure

To explain the corruption step in a bit more detail, recall that BERT and GPT are pre-trained by recon-
structing masked words: BERT is “filling in the blanks” and GPT is “predicting the next word.” These
pre-training tasks can also be recognized as reconstructing corrupted sentences because masking
words is one way of corrupting a sentence. BART provides the following corruption methods that can
be applied to the clean text:

• Token masking
• Token deletion
• Text infilling
• Sentence permutation
• Document rotation

One or more of the techniques listed above can be applied to the same sentence; in the worst scenario,
where all the information is contaminated and corrupted, the text becomes useless. Hence, the encod-
er has limited utility, and with only the decoder module working properly, the model will essentially
become more similar to a unidirectional language.

Transformers – Improving Natural Language Processing with Attention Mechanisms574

BART can be fine-tuned on a wide range of downstream tasks including (a) sequence classification,
(b) token classification, (c) sequence generation, and (d) machine translation. As with BERT, small
changes to the inputs need to be made in order to perform different tasks.

In the sequence classification task, an additional token needs to be attached to the input to serve as
the generated label token, which is similar to the [CLS] token in BERT. Also, instead of disturbing the
input, uncorrupted input is fed into both the encoder and decoder so that the model can make full
use of the input.

For token classification, additional tokens become unnecessary, and the model can directly use the
generated representation for each token for classification.

Sequence generation in BART differs a bit from GPT because of the existence of the encoder. Instead
of generating text from the ground up, sequence generation tasks via BART are more comparable to
summarization, where the model is given a corpus of contexts and asked to generate a summary or an
abstractive answer to certain questions. To this end, whole input sequences are fed into the encoder
while the decoder generates output autoregressively.

Finally, it’s natural for BART to perform machine translation considering the similarity between BART
and the original transformer. However, instead of following the exact same procedure as for training
the original transformer, researchers considered the possibility of incorporating the entire BART
model as a pre-trained decoder. To complete the translation model, a new set of randomly initialized
parameters is added as a new, additional encoder. Then, the fine-tuning stage can be accomplished
in two steps:

1. First, freeze all the parameters except the encoder
2. Then, update all parameters in the model

BART was evaluated on several benchmark datasets for various tasks, and it obtained very competi-
tive results compared to other famous language models such as BERT. In particular, for generation
tasks including abstractive question answering, dialogue response, and summarization tasks, BART
achieved state-of-the-art results.

Fine-tuning a BERT model in PyTorch
Now that we have introduced and discussed all the necessary concepts and the theory behind the
original transformer and popular transformer-based models, it’s time to take a look at the more prac-
tical part! In this section, you will learn how to fine-tune a BERT model for sentiment classification
in PyTorch.

Note that although there are many other transformer-based models to choose from, BERT provides
a nice balance between model popularity and having a manageable model size so that it can be fine-
tuned on a single GPU. Note also that pre-training a BERT from scratch is painful and quite unnecessary
considering the availability of the transformers Python package provided by Hugging Face, which
includes a bunch of pre-trained models that are ready for fine-tuning.

Chapter 16 575

In the following sections, you’ll see how to prepare and tokenize the IMDb movie review dataset and
fine-tune the distilled BERT model to perform sentiment classification. We deliberately chose sentiment
classification as a simple but classic example, though there are many other fascinating applications
of language models. Also, by using the familiar IMDb movie review dataset, we can get a good idea
of the predictive performance of the BERT model by comparing it to the logistic regression model
in Chapter 8, Applying Machine Learning to Sentiment Analysis, and the RNN in Chapter 15, Modeling
Sequential Data Using Recurrent Neural Networks.

Loading the IMDb movie review dataset
In this subsection, we will begin by loading the required packages and the dataset, split into train,
validation, and test sets.

For the BERT-related parts of this tutorial, we will mainly use the open-source transformers library
(https://huggingface.co/transformers/) created by Hugging Face, which we installed in the pre-
vious section, Using GPT-2 to generate new text.

The DistilBERT model we are using in this chapter is a lightweight transformer model created by distill-
ing a pre-trained BERT base model. The original uncased BERT base model contains over 110 million
parameters while DistilBERT has 40 percent fewer parameters. Also, DistilBERT runs 60 percent faster
and still preserves 95 percent of BERT’s performance on the GLUE language understanding benchmark.

The following code imports all the packages we will be using in this chapter to prepare the data and
fine-tune the DistilBERT model:

>>> import gzip
>>> import shutil
>>> import time

>>> import pandas as pd
>>> import requests
>>> import torch
>>> import torch.nn.functional as F
>>> import torchtext

>>> import transformers
>>> from transformers import DistilBertTokenizerFast
>>> from transformers import DistilBertForSequenceClassification

Next, we specify some general settings, including the number of epochs we train the network on,
the device specification, and the random seed. To reproduce the results, make sure to set a specific
random seed such as 123:

>>> torch.backends.cudnn.deterministic = True
>>> RANDOM_SEED = 123
>>> torch.manual_seed(RANDOM_SEED)

https://huggingface.co/transformers/

Transformers – Improving Natural Language Processing with Attention Mechanisms576

>>> DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

>>> NUM_EPOCHS = 3

We will be working on the IMDb movie review dataset, which you have already seen in Chapters 8 and
15. The following code fetches the compressed dataset and unzips it:

>>> url = ("https://github.com/rasbt/"
... "machine-learning-book/raw/"
... "main/ch08/movie_data.csv.gz")
>>> filename = url.split("/")[-1]

>>> with open(filename, "wb") as f:
... r = requests.get(url)
... f.write(r.content)

>>> with gzip.open('movie_data.csv.gz', 'rb') as f_in:
... with open('movie_data.csv', 'wb') as f_out:
... shutil.copyfileobj(f_in, f_out)

If you have the movie_data.csv file from Chapter 8 still on your hard drive, you can skip this download
and unzip procedure.

Next, we load the data into a pandas DataFrame and make sure it looks all right:

>>> df = pd.read_csv('movie_data.csv')
>>> df.head(3)

Figure 16.17: The first three rows of the IMDb movie review dataset

The next step is to split the dataset into separate training, validation, and test sets. Here, we use 70
percent of the reviews for the training set, 10 percent for the validation set, and the remaining 20
percent for testing:

>>> train_texts = df.iloc[:35000]['review'].values
>>> train_labels = df.iloc[:35000]['sentiment'].values

>>> valid_texts = df.iloc[35000:40000]['review'].values

Chapter 16 577

>>> valid_labels = df.iloc[35000:40000]['sentiment'].values

>>> test_texts = df.iloc[40000:]['review'].values
>>> test_labels = df.iloc[40000:]['sentiment'].values

Tokenizing the dataset
So far, we have obtained the texts and labels for the training, validation, and test sets. Now, we are
going to tokenize the texts into individual word tokens using the tokenizer implementation inherited
from the pre-trained model class:

>>> tokenizer = DistilBertTokenizerFast.from_pretrained(
... 'distilbert-base-uncased'
...)

>>> train_encodings = tokenizer(list(train_texts), truncation=True, padding=True)
>>> valid_encodings = tokenizer(list(valid_texts), truncation=True, padding=True)
>>> test_encodings = tokenizer(list(test_texts), truncation=True, padding=True)

Finally, let’s pack everything into a class called IMDbDataset and create the corresponding data loaders.
Such a self-defined dataset class lets us customize all the related features and functions for our custom
movie review dataset in DataFrame format:

>>> class IMDbDataset(torch.utils.data.Dataset):
... def __init__(self, encodings, labels):
... self.encodings = encodings
... self.labels = labels

>>> def __getitem__(self, idx):
... item = {key: torch.tensor(val[idx])
... for key, val in self.encodings.items()}
... item['labels'] = torch.tensor(self.labels[idx])

Choosing different tokenizers

If you are interested in applying different types of tokenizers, feel free to explore the
tokenizers package (https://huggingface.co/docs/tokenizers/python/latest/),
which is also built and maintained by Hugging Face. However, inherited tokenizers main-
tain the consistency between the pre-trained model and the dataset, which saves us the
extra effort of finding the specific tokenizer corresponding to the model. In other words,
using an inherited tokenizer is the recommended approach if you want to fine-tune a
pre-trained model.

https://huggingface.co/docs/tokenizers/python/latest/

Transformers – Improving Natural Language Processing with Attention Mechanisms578

... return item

>>> def __len__(self):
... return len(self.labels)

>>> train_dataset = IMDbDataset(train_encodings, train_labels)
>>> valid_dataset = IMDbDataset(valid_encodings, valid_labels)
>>> test_dataset = IMDbDataset(test_encodings, test_labels)

>>> train_loader = torch.utils.data.DataLoader(
... train_dataset, batch_size=16, shuffle=True)
>>> valid_loader = torch.utils.data.DataLoader(
... valid_dataset, batch_size=16, shuffle=False)
>>> test_loader = torch.utils.data.DataLoader(
... test_dataset, batch_size=16, shuffle=False)

While the overall data loader setup should be familiar from previous chapters, one noteworthy detail
is the item variable in the __getitem__ method. The encodings we produced previously store a lot of
information about the tokenized texts. Via the dictionary comprehension that we use to assign the
dictionary to the item variable, we are only extracting the most relevant information. For instance,
the resulting dictionary entries include input_ids (unique integers from the vocabulary correspond-
ing to the tokens), labels (the class labels), and attention_mask. Here, attention_mask is a tensor
with binary values (0s and 1s) that denotes which tokens the model should attend to. In particular, 0s
correspond to tokens used for padding the sequence to equal lengths and are ignored by the model;
the 1s correspond to the actual text tokens.

Loading and fine-tuning a pre-trained BERT model
Having taken care of the data preparation, in this subsection, you will see how to load the pre-trained
DistilBERT model and fine-tune it using the dataset we just created. The code for loading the pre-
trained model is as follows:

>>> model = DistilBertForSequenceClassification.from_pretrained(
... 'distilbert-base-uncased')
>>> model.to(DEVICE)
>>> model.train()

>>> optim = torch.optim.Adam(model.parameters(), lr=5e-5)

DistilBertForSequenceClassification specifies the downstream task we want to fine-tune the model
on, which is sequence classification in this case. As mentioned before, 'distilbert-base-uncased'
is a lightweight version of a BERT uncased base model with manageable size and good performance.
Note that “uncased” means that the model does not distinguish between upper- and lower-case letters.

Chapter 16 579

Now, it’s time to train the model. We can break this up into two parts. First, we need to define an
accuracy function to evaluate the model performance. Note that this accuracy function computes
the conventional classification accuracy. Why is it so verbose? Here, we are loading the dataset batch
by batch to work around RAM or GPU memory (VRAM) limitations when working with a large deep
learning model:

>>> def compute_accuracy(model, data_loader, device):
... with torch.no_grad():
... correct_pred, num_examples = 0, 0
... for batch_idx, batch in enumerate(data_loader):
... ### Prepare data
... input_ids = batch['input_ids'].to(device)
... attention_mask = \
... batch['attention_mask'].to(device)
... labels = batch['labels'].to(device)

... outputs = model(input_ids,
... attention_mask=attention_mask)
... logits = outputs['logits']
... predicted_labels = torch.argmax(logits, 1)
... num_examples += labels.size(0)
... correct_pred += \
... (predicted_labels == labels).sum()
... return correct_pred.float()/num_examples * 100

In the compute_accuracy function, we load a given batch and then obtain the predicted labels from the
outputs. While doing this, we keep track of the total number of examples via num_examples. Similarly,
we keep track of the number of correct predictions via the correct_pred variable. Finally, after we
iterate over the complete dataset, we compute the accuracy as the proportion of correctly predicted
labels.

Overall, via the compute_accuracy function, you can already get a glimpse at how we can use the
transformer model to obtain the class labels. That is, we feed the model the input_ids along with the
attention_mask information that, here, denotes whether a token is an actual text token or a token for
padding the sequences to equal length. The model call then returns the outputs, which is a transformer
library-specific SequenceClassifierOutput object. From this object, we then obtain the logits that we
convert into class labels via the argmax function as we have done in previous chapters.

Using other pre-trained transformers

The transformers package also provides many other pre-trained models and various
downstream tasks for fine-tuning. Check them out at https://huggingface.co/
transformers/.

https://huggingface.co/transformers/
https://huggingface.co/transformers/

Transformers – Improving Natural Language Processing with Attention Mechanisms580

Finally, let us get to the main part: the training (or rather, fine-tuning) loop. As you will notice, fine-tun-
ing a model from the transformers library is very similar to training a model in pure PyTorch from
scratch:

>>> start_time = time.time()

>>> for epoch in range(NUM_EPOCHS):

... model.train()

... for batch_idx, batch in enumerate(train_loader):

... ### Prepare data
... input_ids = batch['input_ids'].to(DEVICE)
... attention_mask = batch['attention_mask'].to(DEVICE)
... labels = batch['labels'].to(DEVICE)

... ### Forward pass

... outputs = model(input_ids,

... attention_mask=attention_mask,

... labels=labels)

... loss, logits = outputs['loss'], outputs['logits']

... ### Backward pass
... optim.zero_grad()
... loss.backward()
... optim.step()

... ### Logging
... if not batch_idx % 250:
... print(f'Epoch: {epoch+1:04d}/{NUM_EPOCHS:04d}'
... f' | Batch'
... f'{batch_idx:04d}/'
... f'{len(train_loader):04d} | '
... f'Loss: {loss:.4f}')

... model.eval()

... with torch.set_grad_enabled(False):

... print(f'Training accuracy: '

... f'{compute_accuracy(model, train_loader, DEVICE):.2f}%'

Chapter 16 581

... f'\nValid accuracy: '

... f'{compute_accuracy(model, valid_loader, DEVICE):.2f}%')

... print(f'Time elapsed: {(time.time() - start_time)/60:.2f} min')

... print(f'Total Training Time: {(time.time() - start_time)/60:.2f} min')
... print(f'Test accuracy: {compute_accuracy(model, test_loader, DEVICE):.2f}%')

The output produced by the preceding code is as follows (note that the code is not fully deterministic,
which is why the results you are getting may be slightly different):

Epoch: 0001/0003 | Batch 0000/2188 | Loss: 0.6771
Epoch: 0001/0003 | Batch 0250/2188 | Loss: 0.3006
Epoch: 0001/0003 | Batch 0500/2188 | Loss: 0.3678
Epoch: 0001/0003 | Batch 0750/2188 | Loss: 0.1487
Epoch: 0001/0003 | Batch 1000/2188 | Loss: 0.6674
Epoch: 0001/0003 | Batch 1250/2188 | Loss: 0.3264
Epoch: 0001/0003 | Batch 1500/2188 | Loss: 0.4358
Epoch: 0001/0003 | Batch 1750/2188 | Loss: 0.2579
Epoch: 0001/0003 | Batch 2000/2188 | Loss: 0.2474
Training accuracy: 96.32%
Valid accuracy: 92.34%
Time elapsed: 20.67 min
Epoch: 0002/0003 | Batch 0000/2188 | Loss: 0.0850
Epoch: 0002/0003 | Batch 0250/2188 | Loss: 0.3433
Epoch: 0002/0003 | Batch 0500/2188 | Loss: 0.0793
Epoch: 0002/0003 | Batch 0750/2188 | Loss: 0.0061
Epoch: 0002/0003 | Batch 1000/2188 | Loss: 0.1536
Epoch: 0002/0003 | Batch 1250/2188 | Loss: 0.0816
Epoch: 0002/0003 | Batch 1500/2188 | Loss: 0.0786
Epoch: 0002/0003 | Batch 1750/2188 | Loss: 0.1395
Epoch: 0002/0003 | Batch 2000/2188 | Loss: 0.0344
Training accuracy: 98.35%
Valid accuracy: 92.46%
Time elapsed: 41.41 min
Epoch: 0003/0003 | Batch 0000/2188 | Loss: 0.0403
Epoch: 0003/0003 | Batch 0250/2188 | Loss: 0.0036
Epoch: 0003/0003 | Batch 0500/2188 | Loss: 0.0156
Epoch: 0003/0003 | Batch 0750/2188 | Loss: 0.0114
Epoch: 0003/0003 | Batch 1000/2188 | Loss: 0.1227
Epoch: 0003/0003 | Batch 1250/2188 | Loss: 0.0125

Transformers – Improving Natural Language Processing with Attention Mechanisms582

Epoch: 0003/0003 | Batch 1500/2188 | Loss: 0.0074
Epoch: 0003/0003 | Batch 1750/2188 | Loss: 0.0202
Epoch: 0003/0003 | Batch 2000/2188 | Loss: 0.0746
Training accuracy: 99.08%
Valid accuracy: 91.84%
Time elapsed: 62.15 min
Total Training Time: 62.15 min
Test accuracy: 92.50%

In this code, we iterate over multiple epochs. In each epoch we perform the following steps:

1. Load the input into the device we are working on (GPU or CPU)
2. Compute the model output and loss
3. Adjust the weight parameters by backpropagating the loss
4. Evaluate the model performance on both the training and validation set

Note that the training time may vary on different devices. After three epochs, accuracy on the test
dataset reaches around 93 percent, which is a substantial improvement compared to the 85 percent
test accuracy that the RNN achieved in Chapter 15.

Fine-tuning a transformer more conveniently using the Trainer
API
In the previous subsection, we implemented the training loop in PyTorch manually to illustrate that
fine-tuning a transformer model is really not that much different from training an RNN or CNN model
from scratch. However, note that the transformers library contains several nice extra features for
additional convenience, like the Trainer API, which we will introduce in this subsection.

The Trainer API provided by Hugging Face is optimized for transformer models with a wide range of
training options and various built-in features. When using the Trainer API, we can skip the effort of
writing training loops on our own, and training or fine-tuning a transformer model is as simple as a
function (or method) call. Let’s see how this works in practice.

After loading the pre-trained model via

>>> model = DistilBertForSequenceClassification.from_pretrained(
... 'distilbert-base-uncased')
>>> model.to(DEVICE)
>>> model.train();

The training loop from the previous section can then be replaced by the following code:

>>> optim = torch.optim.Adam(model.parameters(), lr=5e-5)

>>> from transformers import Trainer, TrainingArguments

Chapter 16 583

>>> training_args = TrainingArguments(
... output_dir='./results',
... num_train_epochs=3,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
... logging_dir='./logs',
... logging_steps=10,
...)

>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=train_dataset,
... optimizers=(optim, None) # optim and learning rate scheduler
...)

In the preceding code snippets, we first defined the training arguments, which are relatively self-ex-
planatory settings regarding the input and output locations, number of epochs, and batch sizes. We
tried to keep the settings as simple as possible; however, there are many additional settings available,
and we recommend consulting the TrainingArguments documentation page for additional details:
https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments.

We then passed these TrainingArguments settings to the Trainer class to instantiate a new trainer
object. After initiating the trainer with the settings, the model to be fine-tuned, and the training
and evaluation sets, we can train the model by calling the trainer.train() method (we will use this
method further shortly). That’s it, using the Trainer API is as simple as shown in the preceding code,
and no further boilerplate code is required.

However, you may have noticed that the test dataset was not involved in these code snippets, and we
haven’t specified any evaluation metrics in this subsection. This is because the Trainer API only shows
the training loss and does not provide model evaluation along the training process by default. There
are two ways to display the final model performance, which we will illustrate next.

The first method for evaluating the final model is to define an evaluation function as the compute_
metrics argument for another Trainer instance. The compute_metrics function operates on the
models’ test predictions as logits (which is the default output of the model) and the test labels. To
instantiate this function, we recommend installing Hugging Face’s datasets library via pip install
datasets and use it as follows:

>>> from datasets import load_metric
>>> import numpy as np

>>> metric = load_metric("accuracy")

>>> def compute_metrics(eval_pred):

https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments

Transformers – Improving Natural Language Processing with Attention Mechanisms584

... logits, labels = eval_pred

... # note: logits are a numpy array, not a pytorch tensor

... predictions = np.argmax(logits, axis=-1)

... return metric.compute(

... predictions=predictions, references=labels)

The updated Trainer instantiation (now including compute_metrics) is then as follows:

>>> trainer=Trainer(
... model=model,
... args=training_args,
... train_dataset=train_dataset,
... eval_dataset=test_dataset,
... compute_metrics=compute_metrics,
... optimizers=(optim, None) # optim and learning rate scheduler
...)

Now, let’s train the model (again, note that the code is not fully deterministic, which is why you might
be getting slightly different results):

>>> start_time = time.time()
>>> trainer.train()

***** Running training *****
 Num examples = 35000
 Num Epochs = 3
 Instantaneous batch size per device = 16
 Total train batch size (w. parallel, distributed & accumulation) = 16
 Gradient Accumulation steps = 1
 Total optimization steps = 6564

Step Training Loss
10 0.705800
20 0.684100
30 0.681500
40 0.591600
50 0.328600
60 0.478300
...

>>> print(f'Total Training Time: '
... f'{(time.time() - start_time)/60:.2f} min')
Total Training Time: 45.36 min

Chapter 16 585

After the training has completed, which can take up to an hour depending on your GPU, we can call
trainer.evaluate() to obtain the model performance on the test set:

>>> print(trainer.evaluate())

***** Running Evaluation *****
Num examples = 10000
Batch size = 16
100%|███| 625/625 [10:59<00:00, 1.06s/
it]
{'eval_loss': 0.30534815788269043,
 'eval_accuracy': 0.9327,
 'eval_runtime': 87.1161,
 'eval_samples_per_second': 114.789,
 'eval_steps_per_second': 7.174,
 'epoch': 3.0}

As we can see, the evaluation accuracy is around 94 percent, similar to our own previously used Py-
Torch training loop. (Note that we have skipped the training step, because the model is already fine-
tuned after the previous trainer.train() call.) There is a small discrepancy between our manual
training approach and using the Trainer class, because the Trainer class uses some different and
some additional settings.

The second method we could employ to compute the final test set accuracy is re-using our compute_
accuracy function that we defined in the previous section. We can directly evaluate the performance
of the fine-tuned model on the test dataset by running the following code:

>>> model.eval()
>>> model.to(DEVICE)

>>> print(f'Test accuracy: {compute_accuracy(model, test_loader,
DEVICE):.2f}%')

Test accuracy: 93.27%

In fact, if you want to check the model’s performance regularly during training, you can require the
trainer to print the model evaluation after each epoch by defining the training arguments as follows:

>>> from transformers import TrainingArguments

>>> training_args = TrainingArguments("test_trainer",
... evaluation_strategy="epoch", ...)

Transformers – Improving Natural Language Processing with Attention Mechanisms586

However, if you are planning to change or optimize hyperparameters and repeat the fine-tuning pro-
cedure several times, we recommend using the validation set for this purpose, in order to keep the
test set independent. We can achieve this by instantiating the Trainer using valid_dataset:

>>> trainer=Trainer(
... model=model,
... args=training_args,
... train_dataset=train_dataset,
... eval_dataset=valid_dataset,
... compute_metrics=compute_metrics,
...)

In this section, we saw how we can fine-tune a BERT model for classification. This is different from
using other deep learning architectures like RNNs, which we usually train from scratch. However, un-
less we are doing research and are trying to develop new transformer architectures—a very expensive
endeavor—pre-training transformer models is not necessary. Since transformer models are trained
on general, unlabeled dataset resources, pre-training them ourselves may not be a good use of our
time and resources; fine-tuning is the way to go.

Summary
In this chapter, we introduced a whole new model architecture for natural language processing, the
transformer architecture. The transformer architecture is built on a concept called self-attention, and
we started introducing this concept step by step. First, we looked at an RNN outfitted with attention
in order to improve its translation capabilities for long sentences. Then, we gently introduced the
concept of self-attention and explained how it is used in the multi-head attention module within the
transformer.

Many different derivatives of the transformer architecture have emerged and evolved since the origi-
nal transformer was published in 2017. In this chapter, we focused on a selection of some of the most
popular ones: the GPT model family, BERT, and BART. GPT is a unidirectional model that is partic-
ularly good at generating new text. BERT takes a bidirectional approach, which is better suited for
other types of tasks, for example, classification. Lastly, BART combines both the bidirectional encoder
from BERT and the unidirectional decoder from GPT. Interested readers can find out about additional
transformer-based architectures via the following two survey articles:

1. Pre-trained Models for Natural Language Processing: A Survey by Qiu and colleagues, 2020. Avail-
able at https://arxiv.org/abs/2003.08271

2. AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing by
Kayan and colleagues, 2021. Available at https://arxiv.org/abs/2108.05542

Transformer models are generally more data hungry than RNNs and require large amounts of data for
pre-training. The pre-training leverages large amounts of unlabeled data to build a general language
model that can then be specialized to specific tasks by fine-tuning it on smaller labeled datasets.

https://arxiv.org/abs/2003.08271
https://arxiv.org/abs/2108.05542

Chapter 16 587

To see how this works in practice, we downloaded a pre-trained BERT model from the Hugging Face
transformers library and fine-tuned it for sentiment classification on the IMDb movie review dataset.

In the next chapter, we will discuss generative adversarial networks. As the name suggests, generative
adversarial networks are models that can be used for generating new data, similar to the GPT models
we discussed in this chapter. However, we are now leaving the natural language modeling topic behind
us and will look at generative adversarial networks in the context of computer vision and generating
new images, the task that these networks were originally designed for.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

17
Generative Adversarial Networks
for Synthesizing New Data

In the previous chapter, we focused on recurrent neural networks for modeling sequences. In this
chapter, we will explore generative adversarial networks (GANs) and see their application in synthe-
sizing new data samples. GANs are considered to be one of the most important breakthroughs in deep
learning, allowing computers to generate new data (such as new images).

In this chapter, we will cover the following topics:

• Introducing generative models for synthesizing new data
• Autoencoders, variational autoencoders, and their relationship to GANs
• Understanding the building blocks of GANs
• Implementing a simple GAN model to generate handwritten digits
• Understanding transposed convolution and batch normalization
• Improving GANs: deep convolutional GANs and GANs using the Wasserstein distance

Introducing generative adversarial networks
Let’s first look at the foundations of GAN models. The overall objective of a GAN is to synthesize new
data that has the same distribution as its training dataset. Therefore, GANs, in their original form, are
considered to be in the unsupervised learning category of machine learning tasks, since no labeled
data is required. It is worth noting, however, that extensions made to the original GAN can lie in both
the semi-supervised and supervised domains.

The general GAN concept was first proposed in 2014 by Ian Goodfellow and his colleagues as a meth-
od for synthesizing new images using deep neural networks (NNs) (Generative Adversarial Nets, in
Advances in Neural Information Processing Systems by I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, pp. 2672-2680, 2014). While the initial GAN archi-
tecture proposed in this paper was based on fully connected layers, similar to multilayer perceptron
architectures, and trained to generate low-resolution MNIST-like handwritten digits, it served more
as a proof of concept to demonstrate the feasibility of this new approach.

Generative Adversarial Networks for Synthesizing New Data590

However, since its introduction, the original authors, as well as many other researchers, have proposed
numerous improvements and various applications in different fields of engineering and science; for
example, in computer vision, GANs are used for image-to-image translation (learning how to map
an input image to an output image), image super-resolution (making a high-resolution image from a
low-resolution version), image inpainting (learning how to reconstruct the missing parts of an image),
and many more applications. For instance, recent advances in GAN research have led to models that
are able to generate new, high-resolution face images. Examples of such high-resolution images can
be found on https://www.thispersondoesnotexist.com/, which showcases synthetic face images
generated by a GAN.

Starting with autoencoders
Before we discuss how GANs work, we will first start with autoencoders, which can compress and
decompress training data. While standard autoencoders cannot generate new data, understanding
their function will help you to navigate GANs in the next section.

Autoencoders are composed of two networks concatenated together: an encoder network and a de-
coder network. The encoder network receives a d-dimensional input feature vector associated with
example x (that is, 𝒙𝒙 𝒙 𝒙𝒙𝑑𝑑) and encodes it into a p-dimensional vector, z (that is, 𝒛𝒛 𝒛 𝒛𝒛𝑝𝑝). In other
words, the role of the encoder is to learn how to model the function z = f(x). The encoded vector, z,
is also called the latent vector, or the latent feature representation. Typically, the dimensionality of
the latent vector is less than that of the input examples; in other words, p < d. Hence, we can say that
the encoder acts as a data compression function. Then, the decoder decompresses 𝒙𝒙 from the low-
er-dimensional latent vector, z, where we can think of the decoder as a function, 𝒙𝒙 = 𝑔𝑔(𝒛𝒛) . A simple
autoencoder architecture is shown in Figure 17.1, where the encoder and decoder parts consist of
only one fully connected layer each:

Figure 17.1: The architecture of an autoencoder

https://www.thispersondoesnotexist.com/

Chapter 17 591

While Figure 17.1 depicts an autoencoder without hidden layers within the encoder and decoder, we
can, of course, add multiple hidden layers with nonlinearities (as in a multilayer NN) to construct a
deep autoencoder that can learn more effective data compression and reconstruction functions. Also,
note that the autoencoder mentioned in this section uses fully connected layers. When we work with
images, however, we can replace the fully connected layers with convolutional layers, as you learned
in Chapter 14, Classifying Images with Deep Convolutional Neural Networks.

The connection between autoencoders and dimensionality reduction

In Chapter 5, Compressing Data via Dimensionality Reduction, you learned about dimen-
sionality reduction techniques, such as principal component analysis (PCA) and linear
discriminant analysis (LDA). Autoencoders can be used as a dimensionality reduction
technique as well. In fact, when there is no nonlinearity in either of the two subnetworks
(encoder and decoder), then the autoencoder approach is almost identical to PCA.

In this case, if we assume the weights of a single-layer encoder (no hidden layer and no
nonlinear activation function) are denoted by the matrix U, then the encoder models
z = UTx. Similarly, a single-layer linear decoder models �̂�𝒙 = 𝑼𝑼𝑼𝑼 . Putting these two compo-
nents together, we have �̂�𝒙 = 𝑼𝑼𝑼𝑼𝑇𝑇𝒙𝒙 . This is exactly what PCA does, with the exception that
PCA has an additional orthonormal constraint: UUT = In×n.

Other types of autoencoders based on the size of latent space

As previously mentioned, the dimensionality of an autoencoder’s latent space is typically
lower than the dimensionality of the inputs (p < d), which makes autoencoders suitable
for dimensionality reduction. For this reason, the latent vector is also often referred to as
the “bottleneck,” and this particular configuration of an autoencoder is also called under-
complete. However, there is a different category of autoencoders, called overcomplete,
where the dimensionality of the latent vector, z, is, in fact, greater than the dimensionality
of the input examples (p > d).

When training an overcomplete autoencoder, there is a trivial solution where the encoder
and the decoder can simply learn to copy (memorize) the input features to their output
layer. Obviously, this solution is not very useful. However, with some modifications to the
training procedure, overcomplete autoencoders can be used for noise reduction.

In this case, during training, random noise, 𝝐𝝐 , is added to the input examples and the
network learns to reconstruct the clean example, x, from the noisy signal, 𝒙𝒙 𝒙 𝒙𝒙 . Then,
at evaluation time, we provide the new examples that are naturally noisy (that is, noise
is already present such that no additional artificial noise, 𝝐𝝐 , is added) in order to remove
the existing noise from these examples. This particular autoencoder architecture and
training method is referred to as a denoising autoencoder.

If you are interested, you can learn more about it in the research article Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion
by Pascal Vincent and colleagues, 2010 (http://www.jmlr.org/papers/v11/vincent10a.
html).

http://www.jmlr.org/papers/v11/vincent10a.html
http://www.jmlr.org/papers/v11/vincent10a.html

Generative Adversarial Networks for Synthesizing New Data592

Generative models for synthesizing new data
Autoencoders are deterministic models, which means that after an autoencoder is trained, given an
input, x, it will be able to reconstruct the input from its compressed version in a lower-dimensional
space. Therefore, it cannot generate new data beyond reconstructing its input through the transfor-
mation of the compressed representation.

A generative model, on the other hand, can generate a new example, 𝒙𝒙 , from a random vector, z (cor-
responding to the latent representation). A schematic representation of a generative model is shown in
the following figure. The random vector, z, comes from a distribution with fully known characteristics,
so we can easily sample from such a distribution. For example, each element of z may come from the
uniform distribution in the range [–1, 1] (for which we write 𝑧𝑧𝑖𝑖~Uniform(−1, 1)) or from a standard
normal distribution (in which case, we write 𝑧𝑧𝑖𝑖~Normal(𝜇𝜇 𝜇 𝜇𝜇 𝜇𝜇2 𝜇 1)):

Figure 17.2: A generative model

As we have shifted our attention from autoencoders to generative models, you may have noticed that
the decoder component of an autoencoder has some similarities with a generative model. In particular,
they both receive a latent vector, z, as input and return an output in the same space as x. (For the auto-
encoder, 𝒙𝒙 is the reconstruction of an input, x, and for the generative model, 𝒙𝒙 is a synthesized sample.)

However, the major difference between the two is that we do not know the distribution of z in the autoen-
coder, while in a generative model, the distribution of z is fully characterizable. It is possible to generalize
an autoencoder into a generative model, though. One approach is the variational autoencoder (VAE).

In a VAE receiving an input example, x, the encoder network is modified in such a way that it com-
putes two moments of the distribution of the latent vector: the mean, 𝝁𝝁 , and variance, 𝝈𝝈2 . During the
training of a VAE, the network is forced to match these moments with those of a standard normal
distribution (that is, zero mean and unit variance). Then, after the VAE model is trained, the encoder
is discarded, and we can use the decoder network to generate new examples, 𝒙𝒙 , by feeding random
z vectors from the “learned” Gaussian distribution.

Chapter 17 593

Besides VAEs, there are other types of generative models, for example, autoregressive models and nor-
malizing flow models. However, in this chapter, we are only going to focus on GAN models, which are
among the most recent and most popular types of generative models in deep learning.

Generating new samples with GANs
To understand what GANs do in a nutshell, let’s first assume we have a network that receives a random
vector, z, sampled from a known distribution, and generates an output image, x. We will call this
network generator (G) and use the notation 𝒙𝒙 = 𝐺𝐺(𝒛𝒛) to refer to the generated output. Assume our
goal is to generate some images, for example, face images, images of buildings, images of animals, or
even handwritten digits such as MNIST.

As always, we will initialize this network with random weights. Therefore, the first output images,
before these weights are adjusted, will look like white noise. Now, imagine there is a function that
can assess the quality of images (let’s call it an assessor function).

If such a function exists, we can use the feedback from that function to tell our generator network
how to adjust its weights to improve the quality of the generated images. This way, we can train the
generator based on the feedback from that assessor function, such that the generator learns to improve
its output toward producing realistic-looking images.

While an assessor function, as described in the previous paragraph, would make the image generation
task very easy, the question is whether such a universal function to assess the quality of images exists
and, if so, how it is defined. Obviously, as humans, we can easily assess the quality of output images
when we observe the outputs of the network; although, we cannot (yet) backpropagate the result from
our brain to the network. Now, if our brain can assess the quality of synthesized images, can we design
an NN model to do the same thing? In fact, that’s the general idea of a GAN.

What is a generative model?

Note that generative models are traditionally defined as algorithms that model data input
distributions, p(x), or the joint distributions of the input data and associated targets, p(x, y).
By definition, these models are also capable of sampling from some feature, xi, conditioned
on another feature, xj, which is known as conditional inference. In the context of deep
learning, however, the term generative model is typically used to refer to models that
generate realistic-looking data. This means that we can sample from input distributions,
p(x), but we are not necessarily able to perform conditional inference.

Generative Adversarial Networks for Synthesizing New Data594

As shown in Figure 17.3, a GAN model consists of an additional NN called discriminator (D), which is
a classifier that learns to detect a synthesized image, 𝒙𝒙 , from a real image, x:

Figure 17.3: The discriminator distinguishes between the real image and the one created by the
generator

In a GAN model, the two networks, generator and discriminator, are trained together. At first, after
initializing the model weights, the generator creates images that do not look realistic. Similarly, the
discriminator does a poor job of distinguishing between real images and images synthesized by the
generator. But over time (that is, through training), both networks become better as they interact with
each other. In fact, the two networks play an adversarial game, where the generator learns to improve
its output to be able to fool the discriminator. At the same time, the discriminator becomes better at
detecting the synthesized images.

Understanding the loss functions of the generator and
discriminator networks in a GAN model
The objective function of GANs, as described in the original paper Generative Adversarial Nets by I.
Goodfellow and colleagues (https://papers.nips.cc/paper/5423-generative-adversarial-nets.
pdf), is as follows:𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 𝑉𝑉(𝐺𝐺)) = 𝐸𝐸𝒙𝒙𝒙𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙)[log 𝐷𝐷(𝒙𝒙)] + 𝐸𝐸𝒛𝒛𝒙𝒙𝒙𝒛𝒛(𝒛𝒛) [log (1 − 𝐷𝐷𝑉𝐷𝐷(𝒛𝒛)))]
Here, 𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 𝑉𝑉(𝐺𝐺)) is called the value function, which can be interpreted as a payoff: we want to max-
imize its value with respect to the discriminator (D), while minimizing its value with respect to the
generator (G), that is, min𝐺𝐺 max𝐷𝐷 𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 𝑉𝑉(𝐺𝐺)) . D(x) is the probability that indicates whether the input
example, x, is real or fake (that is, generated). The expression 𝐸𝐸𝒙𝒙𝒙𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙)[log𝐷𝐷(𝒙𝒙)] refers to the expected
value of the quantity in brackets with respect to the examples from the data distribution (distribution

of the real examples); 𝐸𝐸𝒛𝒛𝒛𝒛𝒛𝒛𝒛(𝒛𝒛) [log (1 − 𝐷𝐷𝐷𝐷𝐷(𝒛𝒛)))] refers to the expected value of the quantity with
respect to the distribution of the input, z, vectors.

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Chapter 17 595

One training step of a GAN model with such a value function requires two optimization steps: (1)
maximizing the payoff for the discriminator and (2) minimizing the payoff for the generator. A prac-
tical way of training GANs is to alternate between these two optimization steps: (1) fix (freeze) the
parameters of one network and optimize the weights of the other one, and (2) fix the second network
and optimize the first one. This process should be repeated at each training iteration. Let’s assume
that the generator network is fixed, and we want to optimize the discriminator. Both terms in the value
function 𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 𝑉𝑉(𝐺𝐺)) contribute to optimizing the discriminator, where the first term corresponds
to the loss associated with the real examples, and the second term is the loss for the fake examples.
Therefore, when G is fixed, our objective is to maximize 𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 𝑉𝑉(𝐺𝐺)) , which means making the dis-
criminator better at distinguishing between real and generated images.

After optimizing the discriminator using the loss terms for real and fake samples, we then fix the dis-
criminator and optimize the generator. In this case, only the second term in 𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 𝑉𝑉(𝐺𝐺)) contributes
to the gradients of the generator. As a result, when D is fixed, our objective is to minimize 𝑉𝑉𝑉𝑉𝑉(𝐷𝐷), 𝑉𝑉(𝐺𝐺)) ,
which can be written as min𝐺𝐺 𝐸𝐸𝒛𝒛𝒛𝒛𝒛𝒛𝒛(𝒛𝒛) [log (1 − 𝐷𝐷𝐷𝐷𝐷(𝒛𝒛)))] . As was mentioned in the original GAN paper

by Goodfellow and colleagues, this function, log (1 − 𝐷𝐷𝐷𝐷𝐷(𝒛𝒛))) , suffers from vanishing gradients in
the early training stages. The reason for this is that the outputs, G(z), early in the learning process,
look nothing like real examples, and therefore D(G(z)) will be close to zero with high confidence. This
phenomenon is called saturation. To resolve this issue, we can reformulate the minimization objective, min𝐺𝐺 𝐸𝐸𝒛𝒛𝒛𝒛𝒛𝒛𝒛(𝒛𝒛) [log (1 − 𝐷𝐷𝐷𝐷𝐷(𝒛𝒛)))] , by rewriting it as max𝐺𝐺 𝐸𝐸𝒛𝒛𝒛𝒛𝒛𝒛𝒛(𝒛𝒛) [log (𝐷𝐷𝐷𝐷𝐷(𝒛𝒛)))] .
This replacement means that for training the generator, we can swap the labels of real and fake
examples and carry out a regular function minimization. In other words, even though the examples
synthesized by the generator are fake and are therefore labeled 0, we can flip the labels by assigning
label 1 to these examples and minimize the binary cross-entropy loss with these new labels instead of

maximizing max𝐺𝐺 𝐸𝐸𝒛𝒛𝒛𝒛𝒛𝒛𝒛(𝒛𝒛) [log (𝐷𝐷𝐷𝐷𝐷(𝒛𝒛)))] .
Now that we have covered the general optimization procedure for training GAN models, let’s explore
the various data labels that we can use when training GANs. Given that the discriminator is a binary
classifier (the class labels are 0 and 1 for fake and real images, respectively), we can use the binary
cross-entropy loss function. Therefore, we can determine the ground truth labels for the discriminator
loss as follows: Ground truth labelsfor the discriminator = { 1: for real images, i.e., 𝒙𝒙0: for outputs of 𝐺𝐺, i.e., 𝐺𝐺(𝒛𝒛)

What about the labels to train the generator? As we want the generator to synthesize realistic images,
we want to penalize the generator when its outputs are not classified as real by the discriminator.
This means that we will assume the ground truth labels for the outputs of the generator to be 1 when
computing the loss function for the generator.

Generative Adversarial Networks for Synthesizing New Data596

Putting all of this together, the following figure displays the individual steps in a simple GAN model:

Figure 17.4: The steps in building a GAN model

In the following section, we will implement a GAN from scratch to generate new handwritten digits.

Implementing a GAN from scratch
In this section, we will cover how to implement and train a GAN model to generate new images such
as MNIST digits. Since the training on a normal central processing unit (CPU) may take a long time,
in the following subsection, we will cover how to set up the Google Colab environment, which will
allow us to run the computations on graphics processing units (GPUs).

Training GAN models on Google Colab
Some of the code examples in this chapter may require extensive computational resources that go
beyond a conventional laptop or a workstation without a GPU. If you already have an NVIDIA GPU-en-
abled computing machine available, with CUDA and cuDNN libraries installed, you can use that to
speed up the computations.

Chapter 17 597

However, since many of us do not have access to high-performance computing resources, we will
use the Google Colaboratory environment (often referred to as Google Colab), which is a free cloud
computing service (available in most countries).

Google Colab provides Jupyter Notebook instances that run on the cloud; the notebooks can be saved
on Google Drive or GitHub. While the platform provides various different computing resources, such
as CPUs, GPUs, and even tensor processing units (TPUs), it is important to highlight that the execution
time is currently limited to 12 hours. Therefore, any notebook running longer than 12 hours will be
interrupted.

The code blocks in this chapter will need a maximum computing time of two to three hours, so this
will not be an issue. However, if you decide to use Google Colab for other projects that take longer
than 12 hours, be sure to use checkpointing and save intermediate checkpoints.

Accessing Google Colab is very straightforward. You can visit https://colab.research.google.com,
which automatically takes you to a prompt window where you can see your existing Jupyter notebooks.
From this prompt window, click the Google Drive tab, as shown in Figure 17.5. This is where you will
save the notebook on your Google Drive.

Jupyter Notebook

Jupyter Notebook is a graphical user interface (GUI) for running code interactively and
interleaving it with text documentation and figures. Due to its versatility and ease of use,
it has become one of the most popular tools in data science.

For more information about the general Jupyter Notebook GUI, please view the official
documentation at https://jupyter-notebook.readthedocs.io/en/stable/. All the
code in this book is also available in the form of Jupyter notebooks, and a short introduc-
tion can be found in the code directory of the first chapter.

Lastly, we highly recommend Adam Rule et al.’s article Ten simple rules for writing and
sharing computational analyses in Jupyter Notebooks on using Jupyter Notebook effectively
in scientific research projects, which is freely available at https://journals.plos.org/
ploscompbiol/article?id=10.1371/journal.pcbi.1007007.

https://colab.research.google.com
https://jupyter-notebook.readthedocs.io/en/stable/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007007
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007007

Generative Adversarial Networks for Synthesizing New Data598

Then, to create a new notebook, click on the New notebook link at the bottom of the prompt window:

Figure 17.5: Creating a new Python notebook in Google Colab

This will create and open a new notebook for you. All the code examples you write in this notebook
will be automatically saved, and you can later access the notebook from your Google Drive in a direc-
tory called Colab Notebooks.

In the next step, we want to utilize GPUs to run the code examples in this notebook. To do this, from
the Runtime option in the menu bar of this notebook, click on Change runtime type and select GPU,
as shown in Figure 17.6:

Figure 17.6: Utilizing GPUs in Google Colab

Chapter 17 599

In the last step, we just need to install the Python packages that we will need for this chapter. The Colab
Notebooks environment already comes with certain packages, such as NumPy, SciPy, and the latest
stable version of PyTorch. At the time of writing, the latest stable version on Google Colab is PyTorch 1.9.

Now, we can test the installation and verify that the GPU is available using the following code:

>>> import torch
>>> print(torch.__version__)
1.9.0+cu111
>>> print("GPU Available:", torch.cuda.is_available())
GPU Available: True
>>> if torch.cuda.is_available():
... device = torch.device("cuda:0")
... else:
... device = "cpu"
>>> print(device)
cuda:0

Furthermore, if you want to save the model to your personal Google Drive, or transfer or upload other
files, you need to mount Google Drive. To do this, execute the following in a new cell of the notebook:

>>> from google.colab import drive
>>> drive.mount('/content/drive/')

This will provide a link to authenticate the Colab Notebook accessing your Google Drive. After following
the instructions for authentication, it will provide an authentication code that you need to copy and
paste into the designated input field below the cell you have just executed. Then, your Google Drive
will be mounted and available at /content/drive/My Drive. Alternatively, you can mount it via the
GUI interface as highlighted in Figure 17.7:

Figure 17.7: Mounting your Google Drive

Generative Adversarial Networks for Synthesizing New Data600

Implementing the generator and the discriminator networks
We will start the implementation of our first GAN model with a generator and a discriminator as two
fully connected networks with one or more hidden layers, as shown in Figure 17.8:

Figure 17.8: A GAN model with a generator and discriminator as two fully connected networks

Figure 17.8 depicts the original GAN based on fully connected layers, which we will refer to as a vanilla
GAN.

In this model, for each hidden layer, we will apply the leaky ReLU activation function. The use of
ReLU results in sparse gradients, which may not be suitable when we want to have the gradients for
the full range of input values. In the discriminator network, each hidden layer is also followed by
a dropout layer. Furthermore, the output layer in the generator uses the hyperbolic tangent (tanh)
activation function. (Using tanh activation is recommended for the generator network since it helps
with the learning.)

Chapter 17 601

The output layer in the discriminator has no activation function (that is, linear activation) to get the
logits. Alternatively, we can use the sigmoid activation function to get probabilities as output.

Leaky rectified linear unit (ReLU) activation function

In Chapter 12, Parallelizing Neural Network Training with PyTorch, we covered different
nonlinear activation functions that can be used in an NN model. If you recall, the ReLU
activation function was defined as 𝜎𝜎(𝑧𝑧) = max(0, 𝑧𝑧) , which suppresses the negative (pre-
activation) inputs; that is, negative inputs are set to zero. Consequently, using the ReLU
activation function may result in sparse gradients during backpropagation. Sparse gradi-
ents are not always detrimental and can even benefit models for classification. However,
in certain applications, such as GANs, it can be beneficial to obtain the gradients for the
full range of input values, which we can achieve by making a slight modification to the
ReLU function such that it outputs small values for negative inputs. This modified version
of the ReLU function is also known as leaky ReLU. In short, the leaky ReLU activation
function permits non-zero gradients for negative inputs as well, and as a result, it makes
the networks more expressive overall.

The leaky ReLU activation function is defined as follows:

Figure 17.9: The leaky ReLU activation function

Here, 𝛼𝛼 determines the slope for the negative (preactivation) inputs.

Generative Adversarial Networks for Synthesizing New Data602

We will define two helper functions for each of the two networks, instantiate a model from the PyTorch
nn.Sequential class, and add the layers as described. The code is as follows:

>>> import torch.nn as nn
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> ## define a function for the generator:
>>> def make_generator_network(
... input_size=20,
... num_hidden_layers=1,
... num_hidden_units=100,
... num_output_units=784):
... model = nn.Sequential()
... for i in range(num_hidden_layers):
... model.add_module(f'fc_g{i}',
... nn.Linear(input_size, num_hidden_units))
... model.add_module(f'relu_g{i}', nn.LeakyReLU())
... input_size = num_hidden_units
... model.add_module(f'fc_g{num_hidden_layers}',
... nn.Linear(input_size, num_output_units))
... model.add_module('tanh_g', nn.Tanh())
... return model
>>>
>>> ## define a function for the discriminator:
>>> def make_discriminator_network(
... input_size,
... num_hidden_layers=1,
... num_hidden_units=100,
... num_output_units=1):
... model = nn.Sequential()
... for i in range(num_hidden_layers):
... model.add_module(
... f'fc_d{i}',
... nn.Linear(input_size, num_hidden_units, bias=False)
...)
... model.add_module(f'relu_d{i}', nn.LeakyReLU())
... model.add_module('dropout', nn.Dropout(p=0.5))
... input_size = num_hidden_units
... model.add_module(f'fc_d{num_hidden_layers}',
... nn.Linear(input_size, num_output_units))
... model.add_module('sigmoid', nn.Sigmoid())
... return model

Chapter 17 603

Next, we will specify the training settings for the model. As you will remember from previous chapters,
the image size in the MNIST dataset is 28×28 pixels. (That is only one color channel because MNIST
contains only grayscale images.) We will further specify the size of the input vector, z, to be 20. Since
we are implementing a very simple GAN model for illustration purposes only and using fully connected
layers, we will only use a single hidden layer with 100 units in each network. In the following code, we
will specify and initialize the two networks, and print their summary information:

>>> image_size = (28, 28)
>>> z_size = 20
>>> gen_hidden_layers = 1
>>> gen_hidden_size = 100
>>> disc_hidden_layers = 1
>>> disc_hidden_size = 100
>>> torch.manual_seed(1)
>>> gen_model = make_generator_network(
... input_size=z_size,
... num_hidden_layers=gen_hidden_layers,
... num_hidden_units=gen_hidden_size,
... num_output_units=np.prod(image_size)
...)
>>> print(gen_model)
Sequential(
 (fc_g0): Linear(in_features=20, out_features=100, bias=False)
 (relu_g0): LeakyReLU(negative_slope=0.01)
 (fc_g1): Linear(in_features=100, out_features=784, bias=True)
 (tanh_g): Tanh()
)

>>> disc_model = make_discriminator_network(
... input_size=np.prod(image_size),
... num_hidden_layers=disc_hidden_layers,
... num_hidden_units=disc_hidden_size
...)
>>> print(disc_model)
Sequential(
 (fc_d0): Linear(in_features=784, out_features=100, bias=False)
 (relu_d0): LeakyReLU(negative_slope=0.01)
 (dropout): Dropout(p=0.5, inplace=False)
 (fc_d1): Linear(in_features=100, out_features=1, bias=True)
 (sigmoid): Sigmoid()
)

Generative Adversarial Networks for Synthesizing New Data604

Defining the training dataset
In the next step, we will load the MNIST dataset from PyTorch and apply the necessary preprocessing
steps. Since the output layer of the generator is using the tanh activation function, the pixel values
of the synthesized images will be in the range (–1, 1). However, the input pixels of the MNIST images
are within the range [0, 255] (with a data type PIL.Image.Image). Thus, in the preprocessing steps,
we will use the torchvision.transforms.ToTensor function to convert the input image tensors to
a tensor. As a result, besides changing the data type, calling this function will also change the range
of input pixel intensities to [0, 1]. Then, we can shift them by –0.5 and scale them by a factor of 0.5
such that the pixel intensities will be rescaled to be in the range [–1, 1], which can improve gradient
descent-based learning:

>>> import torchvision
>>> from torchvision import transforms
>>> image_path = './'
>>> transform = transforms.Compose([
... transforms.ToTensor(),
... transforms.Normalize(mean=(0.5), std=(0.5)),
...])
>>> mnist_dataset = torchvision.datasets.MNIST(
... root=image_path, train=True,
... transform=transform, download=False
...)
>>> example, label = next(iter(mnist_dataset))
>>> print(f'Min: {example.min()} Max: {example.max()}')
>>> print(example.shape)
Min: -1.0 Max: 1.0
torch.Size([1, 28, 28])

Furthermore, we will also create a random vector, z, based on the desired random distribution (in
this code example, uniform or normal, which are the most common choices):

>>> def create_noise(batch_size, z_size, mode_z):
... if mode_z == 'uniform':
... input_z = torch.rand(batch_size, z_size)*2 - 1
... elif mode_z == 'normal':
... input_z = torch.randn(batch_size, z_size)
... return input_z

Let’s inspect the dataset object that we created. In the following code, we will take one batch of exam-
ples and print the array shapes of this sample of input vectors and images. Furthermore, in order to
understand the overall data flow of our GAN model, in the following code, we will process a forward
pass for our generator and discriminator.

Chapter 17 605

First, we will feed the batch of input, z, vectors to the generator and get its output, g_output. This will
be a batch of fake examples, which will be fed to the discriminator model to get the probabilities for
the batch of fake examples, d_proba_fake. Furthermore, the processed images that we get from the
dataset object will be fed to the discriminator model, which will result in the probabilities for the real
examples, d_proba_real. The code is as follows:

>>> from torch.utils.data import DataLoader
>>> batch_size = 32
>>> dataloader = DataLoader(mnist_dataset, batch_size, shuffle=False)
>>> input_real, label = next(iter(dataloader))
>>> input_real = input_real.view(batch_size, -1)
>>> torch.manual_seed(1)
>>> mode_z = 'uniform' # 'uniform' vs. 'normal'
>>> input_z = create_noise(batch_size, z_size, mode_z)
>>> print('input-z -- shape:', input_z.shape)
>>> print('input-real -- shape:', input_real.shape)
input-z -- shape: torch.Size([32, 20])
input-real -- shape: torch.Size([32, 784])

>>> g_output = gen_model(input_z)
>>> print('Output of G -- shape:', g_output.shape)
Output of G -- shape: torch.Size([32, 784])

>>> d_proba_real = disc_model(input_real)
>>> d_proba_fake = disc_model(g_output)
>>> print('Disc. (real) -- shape:', d_proba_real.shape)
>>> print('Disc. (fake) -- shape:', d_proba_fake.shape)
Disc. (real) -- shape: torch.Size([32, 1])
Disc. (fake) -- shape: torch.Size([32, 1])

The two probabilities, d_proba_fake and d_proba_real, will be used to compute the loss functions
for training the model.

Training the GAN model
As the next step, we will create an instance of nn.BCELoss as our loss function and use that to calculate
the binary cross-entropy loss for the generator and discriminator associated with the batches that
we just processed. To do this, we also need the ground truth labels for each output. For the generator,
we will create a vector of 1s with the same shape as the vector containing the predicted probabilities
for the generated images, d_proba_fake. For the discriminator loss, we have two terms: the loss for
detecting the fake examples involving d_proba_fake and the loss for detecting the real examples
based on d_proba_real.

Generative Adversarial Networks for Synthesizing New Data606

The ground truth labels for the fake term will be a vector of 0s that we can generate via the torch.
zeros() (or torch.zeros_like()) function. Similarly, we can generate the ground truth values for
the real images via the torch.ones() (or torch.ones_like()) function, which creates a vector of 1s:

>>> loss_fn = nn.BCELoss()
>>> ## Loss for the Generator
>>> g_labels_real = torch.ones_like(d_proba_fake)
>>> g_loss = loss_fn(d_proba_fake, g_labels_real)
>>> print(f'Generator Loss: {g_loss:.4f}')
Generator Loss: 0.6863

>>> ## Loss for the Discriminator
>>> d_labels_real = torch.ones_like(d_proba_real)
>>> d_labels_fake = torch.zeros_like(d_proba_fake)
>>> d_loss_real = loss_fn(d_proba_real, d_labels_real)
>>> d_loss_fake = loss_fn(d_proba_fake, d_labels_fake)
>>> print(f'Discriminator Losses: Real {d_loss_real:.4f} Fake {d_loss_
fake:.4f}')
Discriminator Losses: Real 0.6226 Fake 0.7007

The previous code example shows the step-by-step calculation of the different loss terms for the purpose
of understanding the overall concept behind training a GAN model. The following code will set up the
GAN model and implement the training loop, where we will include these calculations in a for loop.

We will start with setting up the data loader for the real dataset, the generator and discriminator model,
as well as a separate Adam optimizer for each of the two models:

>>> batch_size = 64
>>> torch.manual_seed(1)
>>> np.random.seed(1)
>>> mnist_dl = DataLoader(mnist_dataset, batch_size=batch_size,
... shuffle=True, drop_last=True)

>>> gen_model = make_generator_network(
... input_size=z_size,
... num_hidden_layers=gen_hidden_layers,
... num_hidden_units=gen_hidden_size,
... num_output_units=np.prod(image_size)
...).to(device)
>>> disc_model = make_discriminator_network(
... input_size=np.prod(image_size),
... num_hidden_layers=disc_hidden_layers,
... num_hidden_units=disc_hidden_size
...).to(device)

Chapter 17 607

>>> loss_fn = nn.BCELoss()
>>> g_optimizer = torch.optim.Adam(gen_model.parameters())
>>> d_optimizer = torch.optim.Adam(disc_model.parameters())

In addition, we will compute the loss gradients with respect to the model weights and optimize the
parameters of the generator and discriminator using two separate Adam optimizers. We will write
two utility functions for training the discriminator and the generator as follows:

>>> ## Train the discriminator
>>> def d_train(x):
... disc_model.zero_grad()
... # Train discriminator with a real batch
... batch_size = x.size(0)
... x = x.view(batch_size, -1).to(device)
... d_labels_real = torch.ones(batch_size, 1, device=device)
... d_proba_real = disc_model(x)
... d_loss_real = loss_fn(d_proba_real, d_labels_real)
... # Train discriminator on a fake batch
... input_z = create_noise(batch_size, z_size, mode_z).to(device)
... g_output = gen_model(input_z)
... d_proba_fake = disc_model(g_output)
... d_labels_fake = torch.zeros(batch_size, 1, device=device)
... d_loss_fake = loss_fn(d_proba_fake, d_labels_fake)
... # gradient backprop & optimize ONLY D's parameters
... d_loss = d_loss_real + d_loss_fake
... d_loss.backward()
... d_optimizer.step()
... return d_loss.data.item(), d_proba_real.detach(), \
... d_proba_fake.detach()
>>>
>>> ## Train the generator
>>> def g_train(x):
... gen_model.zero_grad()
... batch_size = x.size(0)
... input_z = create_noise(batch_size, z_size, mode_z).to(device)
... g_labels_real = torch.ones(batch_size, 1, device=device)
...
... g_output = gen_model(input_z)
... d_proba_fake = disc_model(g_output)
... g_loss = loss_fn(d_proba_fake, g_labels_real)

Generative Adversarial Networks for Synthesizing New Data608

... # gradient backprop & optimize ONLY G's parameters

... g_loss.backward()

... g_optimizer.step()

... return g_loss.data.item()

Next, we will alternate between the training of the generator and the discriminator for 100 epochs.
For each epoch, we will record the loss for the generator, the loss for the discriminator, and the loss
for the real data and fake data respectively. Furthermore, after each epoch, we will generate some
examples from a fixed noise input using the current generator model by calling the create_samples()
function. We will store the synthesized images in a Python list. The code is as follows:

>>> fixed_z = create_noise(batch_size, z_size, mode_z).to(device)
>>> def create_samples(g_model, input_z):
... g_output = g_model(input_z)
... images = torch.reshape(g_output, (batch_size, *image_size))
... return (images+1)/2.0
>>>
>>> epoch_samples = []
>>> all_d_losses = []
>>> all_g_losses = []
>>> all_d_real = []
>>> all_d_fake = []
>>> num_epochs = 100
>>>
>>> for epoch in range(1, num_epochs+1):
... d_losses, g_losses = [], []
... d_vals_real, d_vals_fake = [], []
... for i, (x, _) in enumerate(mnist_dl):
... d_loss, d_proba_real, d_proba_fake = d_train(x)
... d_losses.append(d_loss)
... g_losses.append(g_train(x))
... d_vals_real.append(d_proba_real.mean().cpu())
... d_vals_fake.append(d_proba_fake.mean().cpu())
...
... all_d_losses.append(torch.tensor(d_losses).mean())
... all_g_losses.append(torch.tensor(g_losses).mean())
... all_d_real.append(torch.tensor(d_vals_real).mean())
... all_d_fake.append(torch.tensor(d_vals_fake).mean())
... print(f'Epoch {epoch:03d} | Avg Losses >>'
... f' G/D {all_g_losses[-1]:.4f}/{all_d_losses[-1]:.4f}'
... f' [D-Real: {all_d_real[-1]:.4f}'
... f' D-Fake: {all_d_fake[-1]:.4f}]')

Chapter 17 609

... epoch_samples.append(

... create_samples(gen_model, fixed_z).detach().cpu().numpy()

...)

Epoch 001 | Avg Losses >> G/D 0.9546/0.8957 [D-Real: 0.8074 D-Fake: 0.4687]
Epoch 002 | Avg Losses >> G/D 0.9571/1.0841 [D-Real: 0.6346 D-Fake: 0.4155]
Epoch ...
Epoch 100 | Avg Losses >> G/D 0.8622/1.2878 [D-Real: 0.5488 D-Fake: 0.4518]

Using a GPU on Google Colab, the training process that we implemented in the previous code block
should be completed in less than an hour. (It may even be faster on your personal computer if you
have a recent and capable CPU and a GPU.) After the model training has completed, it is often helpful
to plot the discriminator and generator losses to analyze the behavior of both subnetworks and assess
whether they converged.

It is also helpful to plot the average probabilities of the batches of real and fake examples as computed
by the discriminator in each iteration. We expect these probabilities to be around 0.5, which means
that the discriminator is not able to confidently distinguish between real and fake images:

>>> import itertools
>>> fig = plt.figure(figsize=(16, 6))
>>> ## Plotting the losses
>>> ax = fig.add_subplot(1, 2, 1)
>>> plt.plot(all_g_losses, label='Generator loss')
>>> half_d_losses = [all_d_loss/2 for all_d_loss in all_d_losses]
>>> plt.plot(half_d_losses, label='Discriminator loss')
>>> plt.legend(fontsize=20)
>>> ax.set_xlabel('Iteration', size=15)
>>> ax.set_ylabel('Loss', size=15)
>>>
>>> ## Plotting the outputs of the discriminator
>>> ax = fig.add_subplot(1, 2, 2)
>>> plt.plot(all_d_real, label=r'Real: $D(\mathbf{x})$')
>>> plt.plot(all_d_fake, label=r'Fake: $D(G(\mathbf{z}))$')
>>> plt.legend(fontsize=20)
>>> ax.set_xlabel('Iteration', size=15)
>>> ax.set_ylabel('Discriminator output', size=15)
>>> plt.show()

Generative Adversarial Networks for Synthesizing New Data610

Figure 17.10 shows the results:

Figure 17.10: The discriminator performance

As you can see from the discriminator outputs in the previous figure, during the early stages of the
training, the discriminator was able to quickly learn to distinguish quite accurately between the real
and fake examples; that is, the fake examples had probabilities close to 0, and the real examples had
probabilities close to 1. The reason for that was that the fake examples were nothing like the real ones;
therefore, distinguishing between real and fake was rather easy. As the training proceeds further, the
generator will become better at synthesizing realistic images, which will result in probabilities of both
real and fake examples that are close to 0.5.

Furthermore, we can also see how the outputs of the generator, that is, the synthesized images, change
during training. In the following code, we will visualize some of the images produced by the generator
for a selection of epochs:

>>> selected_epochs = [1, 2, 4, 10, 50, 100]
>>> fig = plt.figure(figsize=(10, 14))
>>> for i,e in enumerate(selected_epochs):
... for j in range(5):
... ax = fig.add_subplot(6, 5, i*5+j+1)
... ax.set_xticks([])
... ax.set_yticks([])
... if j == 0:
... ax.text(
... -0.06, 0.5, f'Epoch {e}',
... rotation=90, size=18, color='red',
... horizontalalignment='right',
... verticalalignment='center',
... transform=ax.transAxes
...)

Chapter 17 611

...

... image = epoch_samples[e-1][j]

... ax.imshow(image, cmap='gray_r')

...
>>> plt.show()

Figure 17.11 shows the produced images:

Figure 17.11: Images produced by the generator

As you can see from Figure 17.11, the generator network produced more and more realistic images as
the training progressed. However, even after 100 epochs, the produced images still look very different
from the handwritten digits contained in the MNIST dataset.

In this section, we designed a very simple GAN model with only a single fully connected hidden layer
for both the generator and discriminator. After training the GAN model on the MNIST dataset, we
were able to achieve promising, although not yet satisfactory, results with the new handwritten digits.

Generative Adversarial Networks for Synthesizing New Data612

As we learned in Chapter 14, Classifying Images with Deep Convolutional Neural Networks, NN architec-
tures with convolutional layers have several advantages over fully connected layers when it comes to
image classification. In a similar sense, adding convolutional layers to our GAN model to work with
image data might improve the outcome. In the next section, we will implement a deep convolutional
GAN (DCGAN), which uses convolutional layers for both the generator and the discriminator networks.

Improving the quality of synthesized images using a
convolutional and Wasserstein GAN
In this section, we will implement a DCGAN, which will enable us to improve the performance we
saw in the previous GAN example. Additionally, we will briefly talk about an extra key technique,
Wasserstein GAN (WGAN).

The techniques that we will cover in this section will include the following:

• Transposed convolution
• Batch normalization (BatchNorm)
• WGAN

The DCGAN was proposed in 2016 by A. Radford, L. Metz, and S. Chintala in their article Unsupervised
representation learning with deep convolutional generative adversarial networks, which is freely available
at https://arxiv.org/pdf/1511.06434.pdf. In this article, the researchers proposed using convolu-
tional layers for both the generator and discriminator networks. Starting from a random vector, z, the
DCGAN first uses a fully connected layer to project z into a new vector with a proper size so that it can
be reshaped into a spatial convolution representation (h×w×c), which is smaller than the output image
size. Then, a series of convolutional layers, known as transposed convolution, are used to upsample
the feature maps to the desired output image size.

Transposed convolution
In Chapter 14, you learned about the convolution operation in one- and two-dimensional spaces. In
particular, we looked at how the choices for the padding and strides change the output feature maps.
While a convolution operation is usually used to downsample the feature space (for example, by set-
ting the stride to 2, or by adding a pooling layer after a convolutional layer), a transposed convolution
operation is usually used for upsampling the feature space.

To understand the transposed convolution operation, let’s go through a simple thought experiment.
Assume that we have an input feature map of size n×n. Then, we apply a 2D convolution operation with
certain padding and stride parameters to this n×n input, resulting in an output feature map of size
m×m. Now, the question is, how we can apply another convolution operation to obtain a feature map
with the initial dimension n×n from this m×m output feature map while maintaining the connectivity
patterns between the input and output? Note that only the shape of the n×n input matrix is recovered
and not the actual matrix values.

https://arxiv.org/pdf/1511.06434.pdf

Chapter 17 613

This is what transposed convolution does, as shown in Figure 17.12:

Figure 17.12: Transposed convolution

Upsampling feature maps using transposed convolution works by inserting 0s between the elements
of the input feature maps. Figure 17.13 shows an example of applying transposed convolution to an
input of size 4×4, with a stride of 2×2 and kernel size of 2×2. The matrix of size 9×9 in the center shows
the results after inserting such 0s into the input feature map. Then, performing a normal convolution
using the 2×2 kernel with a stride of 1 results in an output of size 8×8. We can verify the backward
direction by performing a regular convolution on the output with a stride of 2, which results in an
output feature map of size 4×4, which is the same as the original input size:

Figure 17.13: Applying transposed convolution to a 4×4 input

Transposed convolution versus deconvolution

Transposed convolution is also called fractionally strided convolution. In deep learning
literature, another common term that is used to refer to transposed convolution is decon-
volution. However, note that deconvolution was originally defined as the inverse of a convo-
lution operation, f, on a feature map, x, with weight parameters, w, producing feature map
x′, fw(x) = x′. A deconvolution function, f–1, can then be defined as 𝑓𝑓𝒘𝒘−1(𝑓𝑓(𝒙𝒙)) = 𝒙𝒙 . However,
note that the transposed convolution is merely focused on recovering the dimensionality
of the feature space and not the actual values.

Generative Adversarial Networks for Synthesizing New Data614

Figure 17.13 shows how transposed convolution works in general. There are various cases in which
input size, kernel size, strides, and padding variations can change the output. If you want to learn
more about all these different cases, refer to the tutorial A Guide to Convolution Arithmetic for Deep
Learning by Vincent Dumoulin and Francesco Visin, 2018 (https://arxiv.org/pdf/1603.07285.pdf.)

Batch normalization
BatchNorm was introduced in 2015 by Sergey Ioffe and Christian Szegedy in the article Batch Normal-
ization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, which you can access
via arXiv at https://arxiv.org/pdf/1502.03167.pdf. One of the main ideas behind BatchNorm
is normalizing the layer inputs and preventing changes in their distribution during training, which
enables faster and better convergence.

BatchNorm transforms a mini-batch of features based on its computed statistics. Assume that we have
the net preactivation feature maps obtained after a convolutional layer in a four-dimensional tensor,
Z, with the shape [m×c×h×w], where m is the number of examples in the batch (i.e., batch size), h×w
is the spatial dimension of the feature maps, and c is the number of channels. BatchNorm can be
summarized in three steps, as follows:

1. Compute the mean and standard deviation of the net inputs for each mini-batch:𝝁𝝁𝐵𝐵 = 1𝑚𝑚 𝑚 𝑚 𝑚 𝑚𝑚∑𝒁𝒁[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝝈𝝈𝐵𝐵2 = 1𝑚𝑚 𝑚 𝑚 𝑚 𝑚𝑚∑(𝒁𝒁[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] − 𝝁𝝁𝐵𝐵)2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

where 𝝁𝝁𝐵𝐵 and 𝝈𝝈𝐵𝐵2 both have size c.

2. Standardize the net inputs for all examples in the batch:

𝒁𝒁std[𝑖𝑖] = 𝒁𝒁[𝑖𝑖] − 𝝁𝝁𝐵𝐵𝝈𝝈𝐵𝐵 + 𝜖𝜖

where 𝜖𝜖 is a small number for numerical stability (that is, to avoid division by zero).

3. Scale and shift the normalized net inputs using two learnable parameter vectors, 𝜸𝜸 and 𝜷𝜷 , of
size c (number of channels): 𝑨𝑨pre[𝑖𝑖] = 𝜸𝜸𝜸𝜸std[𝑖𝑖] + 𝜷𝜷

https://arxiv.org/pdf/1603.07285.pdf
https://arxiv.org/pdf/1502.03167.pdf

Chapter 17 615

Figure 17.14 illustrates the process:

Figure 17.14: The process of batch normalization

In the first step of BatchNorm, the mean, 𝝁𝝁𝐵𝐵 , and standard deviation, 𝝈𝝈𝐵𝐵 , of the mini-batch are com-
puted. Both 𝝁𝝁𝐵𝐵 and 𝝈𝝈𝐵𝐵 are vectors of size c (where c is the number of channels). Then, these statistics
are used in step 2 to scale the examples in each mini-batch via z-score normalization (standardization),
resulting in standardized net inputs, 𝒁𝒁std[𝑖𝑖] . As a consequence, these net inputs are mean-centered and
have unit variance, which is generally a useful property for gradient descent-based optimization. On
the other hand, always normalizing the net inputs such that they have the same properties across
the different mini-batches, which can be diverse, can severely impact the representational capacity
of NNs. This can be understood by considering a feature, 𝑥𝑥𝑥𝑥𝑥(0,1) , which, after sigmoid activation
to 𝜎𝜎(𝑥𝑥) , results in a linear region for values close to 0. Therefore, in step 3, the learnable parameters, 𝜷𝜷 and 𝜸𝜸 , which are vectors of size c (number of channels), allow BatchNorm to control the shift and
spread of the normalized features.

During training, the running averages, 𝝁𝝁𝐵𝐵 , and running variance, 𝝈𝝈𝐵𝐵2 , are computed, which are used
along with the tuned parameters, 𝜷𝜷 and 𝜸𝜸 , to normalize the test example(s) at evaluation.

Generative Adversarial Networks for Synthesizing New Data616

The PyTorch API provides a class, nn.BatchNorm2d() (nn.BatchNorm1d() for 1D input), that we can
use as a layer when defining our models; it will perform all of the steps that we described for Batch-
Norm. Note that the behavior for updating the learnable parameters, 𝜸𝜸 and 𝜷𝜷 , depends on whether
the model is a training model not. These parameters are learned only during training and are then
used for normalization during evaluation.

Implementing the generator and discriminator
At this point, we have covered the main components of a DCGAN model, which we will now implement.
The architectures of the generator and discriminator networks are summarized in the following two
figures.

The generator takes a vector, z, of size 100 as input. Then, a series of transposed convolutions using
nn.ConvTranspose2d() upsamples the feature maps until the spatial dimension of the resulting feature
maps reaches 28×28. The number of channels is reduced by half after each transposed convolutional
layer, except the last one, which uses only one output filter to generate a grayscale image. Each trans-
posed convolutional layer is followed by BatchNorm and leaky ReLU activation functions, except the
last one, which uses tanh activation (without BatchNorm).

Why does BatchNorm help optimization?

Initially, BatchNorm was developed to reduce the so-called internal covariance shift,
which is defined as the changes that occur in the distribution of a layer’s activations due
to the updated network parameters during training.

To explain this with a simple example, consider a fixed batch that passes through the
network at epoch 1. We record the activations of each layer for this batch. After iterating
through the whole training dataset and updating the model parameters, we start the second
epoch, where the previously fixed batch passes through the network. Then, we compare
the layer activations from the first and second epochs. Since the network parameters have
changed, we observe that the activations have also changed. This phenomenon is called
the internal covariance shift, which was believed to decelerate NN training.

However, in 2018, S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry further investigated what
makes BatchNorm so effective. In their study, the researchers observed that the effect of
BatchNorm on the internal covariance shift is marginal. Based on the outcome of their
experiments, they hypothesized that the effectiveness of BatchNorm is, instead, based
on a smoother surface of the loss function, which makes the non-convex optimization
more robust.

If you are interested in learning more about these results, read through the original paper,
How Does Batch Normalization Help Optimization?, which is freely available at http://papers.
nips.cc/paper/7515-how-does-batch-normalization-help-optimization.pdf.

http://papers.nips.cc/paper/7515-how-does-batch-normalization-help-optimization.pdf
http://papers.nips.cc/paper/7515-how-does-batch-normalization-help-optimization.pdf

Chapter 17 617

The architecture for the generator (the feature maps after each layer) is shown in Figure 17.15:

Figure 17.15: The generator network

The discriminator receives images of size 1×28×28, which are passed through four convolutional
layers. The first three convolutional layers reduce the spatial dimensionality by 4 while increasing
the number of channels of the feature maps. Each convolutional layer is also followed by BatchNorm
and leaky ReLU activation. The last convolutional layer uses kernels of size 7×7 and a single filter to
reduce the spatial dimensionality of the output to 1×1×1. Finally, the convolutional output is followed
by a sigmoid function and squeezed to one dimension:

Figure 17.16: The discriminator network

Generative Adversarial Networks for Synthesizing New Data618

The code for the helper function to make the generator and the discriminator network class is as follows:

>>> def make_generator_network(input_size, n_filters):
... model = nn.Sequential(
... nn.ConvTranspose2d(input_size, n_filters*4, 4,
... 1, 0, bias=False),
... nn.BatchNorm2d(n_filters*4),
... nn.LeakyReLU(0.2),
... nn.ConvTranspose2d(n_filters*4, n_filters*2,
... 3, 2, 1, bias=False),
... nn.BatchNorm2d(n_filters*2),
... nn.LeakyReLU(0.2),
... nn.ConvTranspose2d(n_filters*2, n_filters,
... 4, 2, 1, bias=False),
... nn.BatchNorm2d(n_filters),
... nn.LeakyReLU(0.2),
... nn.ConvTranspose2d(n_filters, 1, 4, 2, 1,
... bias=False),
... nn.Tanh()
...)
... return model
>>>
>>> class Discriminator(nn.Module):
... def __init__(self, n_filters):
... super().__init__()
... self.network = nn.Sequential(
... nn.Conv2d(1, n_filters, 4, 2, 1, bias=False),

Architecture design considerations for convolutional GANs

Notice that the number of feature maps follows different trends between the generator
and the discriminator. In the generator, we start with a large number of feature maps and
decrease them as we progress toward the last layer. On the other hand, in the discriminator,
we start with a small number of channels and increase it toward the last layer. This is an
important point for designing CNNs with the number of feature maps and the spatial size
of the feature maps in reverse order. When the spatial size of the feature maps increases,
the number of feature maps decreases and vice versa.

In addition, note that it’s usually not recommended to use bias units in the layer that follows
a BatchNorm layer. Using bias units would be redundant in this case, since BatchNorm
already has a shift parameter, 𝜷𝜷 . You can omit the bias units for a given layer by setting
bias=False in nn.ConvTranspose2d or nn.Conv2d.

Chapter 17 619

... nn.LeakyReLU(0.2),

... nn.Conv2d(n_filters, n_filters*2,

... 4, 2, 1, bias=False),

... nn.BatchNorm2d(n_filters * 2),

... nn.LeakyReLU(0.2),

... nn.Conv2d(n_filters*2, n_filters*4,

... 3, 2, 1, bias=False),

... nn.BatchNorm2d(n_filters*4),

... nn.LeakyReLU(0.2),

... nn.Conv2d(n_filters*4, 1, 4, 1, 0, bias=False),

... nn.Sigmoid()

...)

...

... def forward(self, input):

... output = self.network(input)

... return output.view(-1, 1).squeeze(0)

With the helper function and class, you can build a DCGAN model and train it by using the same
MNIST dataset object we initialized in the previous section when we implemented the simple, fully
connected GAN. We can create the generator networks using the helper function and print its archi-
tecture as follows:

>>> z_size = 100
>>> image_size = (28, 28)
>>> n_filters = 32
>>> gen_model = make_generator_network(z_size, n_filters).to(device)
>>> print(gen_model)
Sequential(
 (0): ConvTranspose2d(100, 128, kernel_size=(4, 4), stride=(1, 1), bias=False)
 (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
 (2): LeakyReLU(negative_slope=0.2)
 (3): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1,
1), bias=False)
 (4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
 (5): LeakyReLU(negative_slope=0.2)
 (6): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1,
1), bias=False)
 (7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)

Generative Adversarial Networks for Synthesizing New Data620

 (8): LeakyReLU(negative_slope=0.2)
 (9): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1,
1), bias=False)
 (10): Tanh()
)

Similarly, we can generate the discriminator network and see its architecture:

>>> disc_model = Discriminator(n_filters).to(device)
>>> print(disc_model)
Discriminator(
 (network): Sequential(
 (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1),
bias=False)
 (1): LeakyReLU(negative_slope=0.2)
 (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1),
bias=False)
 (3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
 (4): LeakyReLU(negative_slope=0.2)
 (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)
 (6): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
 (7): LeakyReLU(negative_slope=0.2)
 (8): Conv2d(128, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
 (9): Sigmoid()
)
)

Also, we can use the same loss functions and optimizers as we did in the Training the GAN model
subsection:

>>> loss_fn = nn.BCELoss()
>>> g_optimizer = torch.optim.Adam(gen_model.parameters(), 0.0003)
>>> d_optimizer = torch.optim.Adam(disc_model.parameters(), 0.0002)

Chapter 17 621

We will be making a few small modifications to the training procedure. The create_noise() function
for generating random input must change to output a tensor of four dimensions instead of a vector:

>>> def create_noise(batch_size, z_size, mode_z):
... if mode_z == 'uniform':
... input_z = torch.rand(batch_size, z_size, 1, 1)*2 - 1
... elif mode_z == 'normal':
... input_z = torch.randn(batch_size, z_size, 1, 1)
... return input_z

The d_train() function for training the discriminator doesn’t need to reshape the input image:

>>> def d_train(x):
... disc_model.zero_grad()
... # Train discriminator with a real batch
... batch_size = x.size(0)
... x = x.to(device)
... d_labels_real = torch.ones(batch_size, 1, device=device)
... d_proba_real = disc_model(x)
... d_loss_real = loss_fn(d_proba_real, d_labels_real)
... # Train discriminator on a fake batch
... input_z = create_noise(batch_size, z_size, mode_z).to(device)
... g_output = gen_model(input_z)
... d_proba_fake = disc_model(g_output)
... d_labels_fake = torch.zeros(batch_size, 1, device=device)
... d_loss_fake = loss_fn(d_proba_fake, d_labels_fake)
... # gradient backprop & optimize ONLY D's parameters
... d_loss = d_loss_real + d_loss_fake
... d_loss.backward()
... d_optimizer.step()
... return d_loss.data.item(), d_proba_real.detach(), \
... d_proba_fake.detach()

Generative Adversarial Networks for Synthesizing New Data622

Next, we will alternate between the training of the generator and the discriminator for 100 epochs.
After each epoch, we will generate some examples from a fixed noise input using the current generator
model by calling the create_samples() function. The code is as follows:

>>> fixed_z = create_noise(batch_size, z_size, mode_z).to(device)
>>> epoch_samples = []
>>> torch.manual_seed(1)
>>> for epoch in range(1, num_epochs+1):
... gen_model.train()
... for i, (x, _) in enumerate(mnist_dl):
... d_loss, d_proba_real, d_proba_fake = d_train(x)
... d_losses.append(d_loss)
... g_losses.append(g_train(x))
... print(f'Epoch {epoch:03d} | Avg Losses >>'
... f' G/D {torch.FloatTensor(g_losses).mean():.4f}'
... f'/{torch.FloatTensor(d_losses).mean():.4f}')
... gen_model.eval()
... epoch_samples.append(
... create_samples(
... gen_model, fixed_z
...).detach().cpu().numpy()
...)
Epoch 001 | Avg Losses >> G/D 4.7016/0.1035
Epoch 002 | Avg Losses >> G/D 5.9341/0.0438
...
Epoch 099 | Avg Losses >> G/D 4.3753/0.1360
Epoch 100 | Avg Losses >> G/D 4.4914/0.1120

Finally, let’s visualize the saved examples at some epochs to see how the model is learning and how
the quality of synthesized examples changes over the course of learning:

>>> selected_epochs = [1, 2, 4, 10, 50, 100]
>>> fig = plt.figure(figsize=(10, 14))
>>> for i,e in enumerate(selected_epochs):
... for j in range(5):
... ax = fig.add_subplot(6, 5, i*5+j+1)
... ax.set_xticks([])
... ax.set_yticks([])
... if j == 0:
... ax.text(-0.06, 0.5, f'Epoch {e}',
... rotation=90, size=18, color='red',
... horizontalalignment='right',
... verticalalignment='center',

Chapter 17 623

... transform=ax.transAxes)

...

... image = epoch_samples[e-1][j]

... ax.imshow(image, cmap='gray_r')
>>> plt.show()

Figure 17.17 shows the results:

Figure 17.17: Generated images from the DCGAN

We used the same code to visualize the results as in the section on vanilla GAN. Comparing the new
examples shows that DCGAN can generate images of a much higher quality.

You may wonder how we can evaluate the results of GAN generators. The simplest approach is visual
assessment, which involves evaluating the quality of the synthesized images in the context of the target
domain and the project objective. Furthermore, there have been several more sophisticated evaluation
methods proposed that are less subjective and less limited by domain knowledge. For a detailed survey,
see Pros and Cons of GAN Evaluation Measures: New Developments (https://arxiv.org/abs/2103.09396).
The paper summarizes generator evaluation into qualitative and quantitative measures.

https://arxiv.org/abs/2103.09396

Generative Adversarial Networks for Synthesizing New Data624

There is a theoretical argument that training the generator should seek to minimize the dissimilar-
ity between the distribution observed in the real data and the distribution observed in synthesized
examples. Hence our current architecture would not perform very well when using cross-entropy as
a loss function.

In the next subsection, we will cover WGAN, which uses a modified loss function based on the so-
called Wasserstein-1 (or earth mover’s) distance between the distributions of real and fake images for
improving the training performance.

Dissimilarity measures between two distributions
We will first see different measures for computing the divergence between two distributions. Then,
we will see which one of these measures is already embedded in the original GAN model. Finally,
switching this measure in GANs will lead us to the implementation of a WGAN.

As mentioned at the beginning of this chapter, the goal of a generative model is to learn how to syn-
thesize new samples that have the same distribution as the distribution of the training dataset. Let
P(x) and Q(x) represent the distribution of a random variable, x, as shown in the following figure.

First, let’s look at some ways, shown in Figure 17.18, that we can use to measure the dissimilarity
between two distributions, P and Q:

Figure 17.18: Methods to measure the dissimilarity between distributions P and Q

The function supremum, sup(S), used in the total variation (TV) measure, refers to the smallest value
that is greater than all elements of S. In other words, sup(S) is the least upper bound for S. Vice versa,
the infimum function, inf(S), which is used in EM distance, refers to the largest value that is smaller
than all elements of S (the greatest lower bound).

Chapter 17 625

Let’s gain an understanding of these measures by briefly stating what they are trying to accomplish
in simple words:

• The first one, TV distance, measures the largest difference between the two distributions at
each point.

• The EM distance can be interpreted as the minimal amount of work needed to transform one
distribution into the other. The infimum function in the EM distance is taken over Π(𝑃𝑃𝑃 𝑃𝑃) ,
which is the collection of all joint distributions whose marginals are P or Q. Then, 𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢) is
a transfer plan, which indicates how we redistribute the earth from location u to v, subject
to some constraints for maintaining valid distributions after such transfers. Computing EM
distance is an optimization problem by itself, which is to find the optimal transfer plan, 𝛾𝛾(𝑢𝑢𝑢 𝑢𝑢) .

• The Kullback-Leibler (KL) and Jensen-Shannon (JS) divergence measures come from the field
of information theory. Note that KL divergence is not symmetric, that is, 𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) ≠ 𝐾𝐾𝐾𝐾(𝑄𝑄‖𝑃𝑃)
in contrast to JS divergence.

The dissimilarity equations provided in Figure 17.18 correspond to continuous distributions but can
be extended for discrete cases. An example of calculating these different dissimilarity measures with
two simple discrete distributions is illustrated in Figure 17.19:

Figure 17.19: An example of calculating the different dissimilarity measures

Note that, in the case of the EM distance, for this simple example, we can see that Q(x) at x = 2 has the
excess value of 0.5 − 13 = 0.166 , while the value of Q at the other two x’s is below 1/3. Therefore, the
minimal amount of work is when we transfer the extra value at x = 2 to x = 1 and x = 3, as shown in Figure
17.19. For this simple example, it’s easy to see that these transfers will result in the minimal amount
of work out of all possible transfers. However, this may be infeasible to do for more complex cases.

Generative Adversarial Networks for Synthesizing New Data626

Now, going back to our discussion of GANs, let’s see how these different distance measures are related
to the loss function for GANs. It can be mathematically shown that the loss function in the original GAN
indeed minimizes the JS divergence between the distribution of real and fake examples. But, as discussed
in an article by Martin Arjovsky and colleagues (Wasserstein Generative Adversarial Networks, http://
proceedings.mlr.press/v70/arjovsky17a/arjovsky17a.pdf), JS divergence has problems training
a GAN model, and therefore, in order to improve the training, the researchers proposed using the EM
distance as a measure of dissimilarity between the distribution of real and fake examples.

The relationship between KL divergence and cross-entropy

KL divergence, 𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) , measures the relative entropy of the distribution, P, with respect
to a reference distribution, Q. The formulation for KL divergence can be extended as:𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) = −∫𝑃𝑃(𝑥𝑥) log(𝑄𝑄(𝑥𝑥)) 𝑑𝑑𝑥𝑥 − (−∫𝑃𝑃(𝑥𝑥) log(𝑃𝑃(𝑥𝑥)))

Moreover, for discrete distributions, KL divergence can be written as:𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) = −∑𝑃𝑃(𝑥𝑥𝑖𝑖) 𝑃𝑃(𝑥𝑥𝑖𝑖)𝑄𝑄(𝑥𝑥𝑖𝑖)𝑖𝑖

which can be similarly extended as:

𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) = −∑𝑃𝑃(𝑥𝑥𝑖𝑖) log(𝑄𝑄(𝑥𝑥𝑖𝑖))𝑖𝑖 − (−∑𝑃𝑃(𝑥𝑥𝑖𝑖) log(𝑃𝑃(𝑥𝑥𝑖𝑖))𝑖𝑖)

Based on the extended formulation (either discrete or continuous), KL divergence is viewed
as the cross-entropy between P and Q (the first term in the preceding equation) subtracted
by the (self-) entropy of P (second term), that is, 𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) = 𝐻𝐻(𝑃𝑃𝑃 𝑄𝑄) − 𝐻𝐻(𝑃𝑃) .

What is the advantage of using EM distance?

To answer this question, we can consider an example that was given in the previously
mentioned article by Martin Arjovsky and colleagues. To put it in simple words, assume
we have two distributions, P and Q, which are two parallel lines. One line is fixed at x = 0
and the other line can move across the x-axis but is initially located at 𝑥𝑥 𝑥 𝑥𝑥 , where 𝜃𝜃 𝜃 𝜃 .

It can be shown that the KL, TV, and JS dissimilarity measures are 𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) = +∞ , 𝑇𝑇𝑇𝑇(𝑃𝑃𝑃 𝑃𝑃) = 1 , and 𝐽𝐽𝐽𝐽(𝑃𝑃𝑃 𝑃𝑃) = 12 log 2 . None of these dissimilarity measures are a function
of the parameter 𝜃𝜃 , and therefore, they cannot be differentiated with respect to 𝜃𝜃 toward
making the distributions, P and Q, become similar to each other. On the other hand, the EM
distance is 𝐸𝐸𝐸𝐸(𝑃𝑃𝑃 𝑃𝑃) = |𝜃𝜃| , whose gradient with respect to 𝜃𝜃 exists and can push Q toward P.

http://proceedings.mlr.press/v70/arjovsky17a/arjovsky17a.pdf
http://proceedings.mlr.press/v70/arjovsky17a/arjovsky17a.pdf

Chapter 17 627

Now, let’s focus our attention on how EM distance can be used to train a GAN model. Let’s assume Pr
is the distribution of the real examples and Pg denotes the distributions of fake (generated) examples.
Pr and Pg replace P and Q in the EM distance equation. As was mentioned earlier, computing the EM
distance is an optimization problem by itself; therefore, this becomes computationally intractable,
especially if we want to repeat this computation in each iteration of the GAN training loop. Fortunately,
though, the computation of the EM distance can be simplified using a theorem called Kantorovich-Ru-
binstein duality, as follows: 𝑊𝑊𝑊𝑊𝑊𝑟𝑟, 𝑊𝑊𝑔𝑔) = 𝑠𝑠𝑠𝑠𝑠𝑠‖𝑓𝑓‖𝐿𝐿≤1 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑟𝑟[𝑓𝑓(𝑠𝑠)] − 𝐸𝐸𝑣𝑣𝑢𝑢𝑢𝑔𝑔[𝑓𝑓(𝑣𝑣)]
Here, the supremum is taken over all the 1-Lipschitz continuous functions denoted by ‖𝑓𝑓‖𝐿𝐿 ≤ 1 .

Using EM distance in practice for GANs
Now, the question is, how do we find such a 1-Lipschitz continuous function to compute the Wasserstein
distance between the distribution of real (Pr) and fake (Pg) outputs for a GAN? While the theoretical
concepts behind the WGAN approach may seem complicated at first, the answer to this question is
simpler than it may appear. Recall that we consider deep NNs to be universal function approximators.
This means that we can simply train an NN model to approximate the Wasserstein distance function.
As you saw in the previous section, the simple GAN uses a discriminator in the form of a classifier. For
WGAN, the discriminator can be changed to behave as a critic, which returns a scalar score instead of
a probability value. We can interpret this score as how realistic the input images are (like an art critic
giving scores to artworks in a gallery).

To train a GAN using the Wasserstein distance, the losses for the discriminator, D, and generator, G,
are defined as follows. The critic (that is, the discriminator network) returns its outputs for the batch
of real image examples and the batch of synthesized examples. We use the notations D(x) and D(G(z)),
respectively.

Lipschitz continuity

Based on 1-Lipschitz continuity, the function, f, must satisfy the following property:|𝑓𝑓(𝑥𝑥1) − 𝑓𝑓(𝑥𝑥2)| ≤ |𝑥𝑥1 − 𝑥𝑥2|
Furthermore, a real function, f:R→R, that satisfies the property|𝑓𝑓(𝑥𝑥1) − 𝑓𝑓(𝑥𝑥2)| ≤ 𝐾𝐾|𝑥𝑥1 − 𝑥𝑥2|
is called K-Lipschitz continuous.

Generative Adversarial Networks for Synthesizing New Data628

Then, the following loss terms can be defined:

• The real component of the discriminator’s loss:𝐿𝐿real𝐷𝐷 = − 1𝑁𝑁∑𝐷𝐷(𝒙𝒙𝑖𝑖)𝑖𝑖

• The fake component of the discriminator’s loss:𝐿𝐿fake𝐷𝐷 = 1𝑁𝑁∑𝐷𝐷𝐷𝐷𝐷(𝒛𝒛𝑖𝑖))𝑖𝑖

• The loss for the generator: 𝐿𝐿𝐺𝐺 = − 1𝑁𝑁∑𝐷𝐷𝐷𝐷𝐷(𝒛𝒛𝑖𝑖))𝑖𝑖

That will be all for the WGAN, except that we need to ensure that the 1-Lipschitz property of the crit-
ic function is preserved during training. For this purpose, the WGAN paper proposes clamping the
weights to a small region, for example, [–0.01, 0.01].

Gradient penalty
In the paper by Arjovsky and colleagues, weight clipping is suggested for the 1-Lipschitz property of
the discriminator (or critic). However, in another paper titled Improved Training of Wasserstein GANs by
Ishaan Gulrajani and colleagues, 2017, which is freely available at https://arxiv.org/pdf/1704.00028.
pdf, Ishaan Gulrajani and colleagues showed that clipping the weights can lead to exploding and
vanishing gradients. Furthermore, weight clipping can also lead to capacity underuse, which means
that the critic network is limited to learning only some simple functions, as opposed to more complex
functions. Therefore, rather than clipping the weights, Ishaan Gulrajani and colleagues proposed gra-
dient penalty (GP) as an alternative solution. The result is the WGAN with gradient penalty (WGAN-GP).

The procedure for the GP that is added in each iteration can be summarized by the following sequence
of steps:

1. For each pair of real and fake examples (𝒙𝒙[𝑖𝑖], 𝒙𝒙[𝑖𝑖]) in a given batch, choose a random number, 𝛼𝛼[𝑖𝑖] , sampled from a uniform distribution, that is, 𝛼𝛼[𝑖𝑖] ∈ 𝑈𝑈(0,1) .
2. Calculate an interpolation between the real and fake examples: 𝒙𝒙[𝑖𝑖] = 𝛼𝛼𝒙𝒙[𝑖𝑖] + (1 − 𝛼𝛼)𝒙𝒙[𝑖𝑖] , re-

sulting in a batch of interpolated examples.
3. Compute the discriminator (critic) output for all the interpolated examples, 𝐷𝐷𝐷𝐷𝐷[𝑖𝑖]) .
4. Calculate the gradients of the critic’s output with respect to each interpolated example, that

is, ∇�̌�𝒙[𝑖𝑖] 𝐷𝐷𝐷𝒙𝒙[𝑖𝑖]) .
5. Compute the GP as: 𝐿𝐿𝑔𝑔𝑔𝑔𝐷𝐷 = 1𝑁𝑁∑(‖∇�̌�𝒙[𝑖𝑖] 𝐷𝐷𝐷𝒙𝒙[𝑖𝑖])‖2 − 1)2𝑖𝑖

https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1704.00028.pdf

Chapter 17 629

The total loss for the discriminator is then as follows:𝐿𝐿total𝐷𝐷 = 𝐿𝐿real𝐷𝐷 + 𝐿𝐿fake𝐷𝐷 + 𝜆𝜆𝐿𝐿𝑔𝑔𝑔𝑔𝐷𝐷

Here, 𝜆𝜆 is a tunable hyperparameter.

Implementing WGAN-GP to train the DCGAN model
We have already defined the helper function and class that create the generator and discriminator
networks for DCGAN (make_generator_network() and Discriminator()). It is recommended to use
layer normalization in WGAN instead of batch normalization. Layer normalization normalizes the
inputs across features instead of across the batch dimension in batch normalization. The code to build
the WGAN model is as follows:

>>> def make_generator_network_wgan(input_size, n_filters):
... model = nn.Sequential(
... nn.ConvTranspose2d(input_size, n_filters*4, 4,
... 1, 0, bias=False),
... nn.InstanceNorm2d(n_filters*4),
... nn.LeakyReLU(0.2),
...
... nn.ConvTranspose2d(n_filters*4, n_filters*2,
... 3, 2, 1, bias=False),
... nn.InstanceNorm2d(n_filters*2),
... nn.LeakyReLU(0.2),
...
... nn.ConvTranspose2d(n_filters*2, n_filters, 4,
... 2, 1, bias=False),
... nn.InstanceNorm2d(n_filters),
... nn.LeakyReLU(0.2),
...
... nn.ConvTranspose2d(n_filters, 1, 4, 2, 1, bias=False),
... nn.Tanh()
...)
... return model
>>>
>>> class DiscriminatorWGAN(nn.Module):
... def __init__(self, n_filters):
... super().__init__()
... self.network = nn.Sequential(
... nn.Conv2d(1, n_filters, 4, 2, 1, bias=False),
... nn.LeakyReLU(0.2),
...

Generative Adversarial Networks for Synthesizing New Data630

... nn.Conv2d(n_filters, n_filters*2, 4, 2, 1,

... bias=False),

... nn.InstanceNorm2d(n_filters * 2),

... nn.LeakyReLU(0.2),

...

... nn.Conv2d(n_filters*2, n_filters*4, 3, 2, 1,

... bias=False),

... nn.InstanceNorm2d(n_filters*4),

... nn.LeakyReLU(0.2),

...

... nn.Conv2d(n_filters*4, 1, 4, 1, 0, bias=False),

... nn.Sigmoid()

...)

...

... def forward(self, input):

... output = self.network(input)

... return output.view(-1, 1).squeeze(0)

Now we can initiate the networks and their optimizers as follows:

>>> gen_model = make_generator_network_wgan(
... z_size, n_filters
...).to(device)
>>> disc_model = DiscriminatorWGAN(n_filters).to(device)
>>> g_optimizer = torch.optim.Adam(gen_model.parameters(), 0.0002)
>>> d_optimizer = torch.optim.Adam(disc_model.parameters(), 0.0002)

Next, we will define the function to compute the GP component as follows:

>>> from torch.autograd import grad as torch_grad
>>> def gradient_penalty(real_data, generated_data):
... batch_size = real_data.size(0)
...
... # Calculate interpolation
... alpha = torch.rand(real_data.shape[0], 1, 1, 1,
... requires_grad=True, device=device)
... interpolated = alpha * real_data + \
... (1 - alpha) * generated_data
...
... # Calculate probability of interpolated examples
... proba_interpolated = disc_model(interpolated)
...

Chapter 17 631

... # Calculate gradients of probabilities

... gradients = torch_grad(

... outputs=proba_interpolated, inputs=interpolated,

... grad_outputs=torch.ones(proba_interpolated.size(),

... device=device),

... create_graph=True, retain_graph=True

...)[0]

...

... gradients = gradients.view(batch_size, -1)

... gradients_norm = gradients.norm(2, dim=1)

... return lambda_gp * ((gradients_norm - 1)**2).mean()

The WGAN version of discriminator and generator training functions are as follows:

>>> def d_train_wgan(x):
... disc_model.zero_grad()
...
... batch_size = x.size(0)
... x = x.to(device)
...
... # Calculate probabilities on real and generated data
... d_real = disc_model(x)
... input_z = create_noise(batch_size, z_size, mode_z).to(device)
... g_output = gen_model(input_z)
... d_generated = disc_model(g_output)
... d_loss = d_generated.mean() - d_real.mean() + \
... gradient_penalty(x.data, g_output.data)
... d_loss.backward()
... d_optimizer.step()
... return d_loss.data.item()
>>>
>>> def g_train_wgan(x):
... gen_model.zero_grad()
...
... batch_size = x.size(0)
... input_z = create_noise(batch_size, z_size, mode_z).to(device)
... g_output = gen_model(input_z)
...
... d_generated = disc_model(g_output)
... g_loss = -d_generated.mean()
...

Generative Adversarial Networks for Synthesizing New Data632

... # gradient backprop & optimize ONLY G's parameters

... g_loss.backward()

... g_optimizer.step()

... return g_loss.data.item()

Then we will train the model for 100 epochs and record the generator output of a fixed noise input:

>>> epoch_samples_wgan = []
>>> lambda_gp = 10.0
>>> num_epochs = 100
>>> torch.manual_seed(1)
>>> critic_iterations = 5
>>> for epoch in range(1, num_epochs+1):
... gen_model.train()
... d_losses, g_losses = [], []
... for i, (x, _) in enumerate(mnist_dl):
... for _ in range(critic_iterations):
... d_loss = d_train_wgan(x)
... d_losses.append(d_loss)
... g_losses.append(g_train_wgan(x))
...
... print(f'Epoch {epoch:03d} | D Loss >>'
... f' {torch.FloatTensor(d_losses).mean():.4f}')
... gen_model.eval()
... epoch_samples_wgan.append(
... create_samples(
... gen_model, fixed_z
...).detach().cpu().numpy()
...)

Finally, let’s visualize the saved examples at some epochs to see how the WGAN model is learning
and how the quality of synthesized examples changes over the course of learning. The following fig-
ure shows the results, which demonstrate slightly better image quality than what the DCGAN model
generated:

Chapter 17 633

Figure 17.20: Generated images using WGAN

Mode collapse
Due to the adversarial nature of GAN models, it is notoriously hard to train them. One common cause
of failure in training GANs is when the generator gets stuck in a small subspace and learns to generate
similar samples. This is called mode collapse, and an example is shown in Figure 17.21.

The synthesized examples in this figure are not cherry-picked. This shows that the generator has failed
to learn the entire data distribution, and instead, has taken a lazy approach focusing on a subspace:

Generative Adversarial Networks for Synthesizing New Data634

Figure 17.21: An example of mode collapse

Besides the vanishing and exploding gradient problems that we saw previously, there are some further
aspects that can also make training GAN models difficult (indeed, it is an art). Here are a few suggested
tricks from GAN artists.

One approach is called mini-batch discrimination, which is based on the fact that batches consisting
of only real or fake examples are fed separately to the discriminator. In mini-batch discrimination,
we let the discriminator compare examples across these batches to see whether a batch is real or fake.
The diversity of a batch consisting of only real examples is most likely higher than the diversity of a
fake batch if a model suffers from mode collapse.

Another technique that is commonly used for stabilizing GAN training is feature matching. In feature
matching, we make a slight modification to the objective function of the generator by adding an extra
term that minimizes the difference between the original and synthesized images based on interme-
diate representations (feature maps) of the discriminator. We encourage you to read more about this
technique in the original article by Ting-Chun Wang and colleagues, titled High Resolution Image Syn-
thesis and Semantic Manipulation with Conditional GANs, which is freely available at https://arxiv.
org/pdf/1711.11585.pdf.

During the training, a GAN model can also get stuck in several modes and just hop between them. To
avoid this behavior, you can store some old examples and feed them to the discriminator to prevent
the generator from revisiting previous modes. This technique is referred to as experience replay. Fur-
thermore, you can train multiple GANs with different random seeds so that the combination of all of
them covers a larger part of the data distribution than any single one of them.

https://arxiv.org/pdf/1711.11585.pdf
https://arxiv.org/pdf/1711.11585.pdf

Chapter 17 635

Other GAN applications
In this chapter, we mainly focused on generating examples using GANs and looked at a few tricks and
techniques to improve the quality of synthesized outputs. The applications of GANs are expanding
rapidly, including in computer vision, machine learning, and even other domains of science and en-
gineering. A nice list of different GAN models and application areas can be found at https://github.
com/hindupuravinash/the-gan-zoo.

It is worth mentioning that we covered GANs in an unsupervised fashion; that is, no class label in-
formation was used in the models that were covered in this chapter. However, the GAN approach can
be generalized to semi-supervised and supervised tasks, as well. For example, the conditional GAN
(cGAN) proposed by Mehdi Mirza and Simon Osindero in the paper Conditional Generative Adversarial
Nets, 2014 (https://arxiv.org/pdf/1411.1784.pdf) uses the class label information and learns to
synthesize new images conditioned on the provided label, that is, 𝒙𝒙 = 𝐺𝐺(𝒛𝒛|𝑦𝑦) —applied to MNIST. This
allows us to generate different digits in the range 0-9 selectively. Furthermore, conditional GANs allow
us to do image-to-image translation, which is to learn how to convert a given image from a specific
domain to another. In this context, one interesting work is the Pix2Pix algorithm, published in the
paper Image-to-Image Translation with Conditional Adversarial Networks by Philip Isola and colleagues,
2018 (https://arxiv.org/pdf/1611.07004.pdf). It is worth mentioning that in the Pix2Pix algorithm,
the discriminator provides the real/fake predictions for multiple patches across the image as opposed
to a single prediction for an entire image.

CycleGAN is another interesting GAN model built on top of the cGAN, also for image-to-image trans-
lation. However, note that in CycleGAN, the training examples from the two domains are unpaired,
meaning that there is no one-to-one correspondence between inputs and outputs. For example, using
a CycleGAN, we could change the season of a picture taken in summer to winter. In the paper Unpaired
Image-to-Image Translation Using Cycle-Consistent Adversarial Networks by Jun-Yan Zhu and colleagues, 2020
(https://arxiv.org/pdf/1703.10593.pdf), an impressive example shows horses converted into zebras.

Summary
In this chapter, you first learned about generative models in deep learning and their overall objective:
synthesizing new data. We then covered how GAN models use a generator network and a discrimina-
tor network, which compete with each other in an adversarial training setting to improve each other.
Next, we implemented a simple GAN model using only fully connected layers for both the generator
and the discriminator.

We also covered how GAN models can be improved. First, you saw a DCGAN, which uses deep convo-
lutional networks for both the generator and the discriminator. Along the way, you also learned about
two new concepts: transposed convolution (for upsampling the spatial dimensionality of feature maps)
and BatchNorm (for improving convergence during training).

We then looked at a WGAN, which uses the EM distance to measure the distance between the distribu-
tions of real and fake samples. Finally, we talked about the WGAN with GP to maintain the 1-Lipschitz
property instead of clipping the weights.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1703.10593.pdf

Generative Adversarial Networks for Synthesizing New Data636

In the next chapter, we will look at graph neural networks. Previously, we have been focused on tab-
ular and image datasets. In contrast, graph neural networks are designed for graph-structured data,
which allows us to work with datasets that are ubiquitous in social sciences, engineering, and biology.
Popular examples of graph-structure data include social network graphs and molecules consisting of
atoms connected by covalent bonds.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

18
Graph Neural Networks for
Capturing Dependencies in
Graph Structured Data

In this chapter, we will introduce a class of deep learning models that operates on graph data, namely,
graph neural networks (GNNs). GNNs have been an area of rapid development in recent years. Ac-
cording to the State of AI report from 2021 (https://www.stateof.ai/2021-report-launch.html),
GNNs have evolved “from niche to one of the hottest fields of AI research.”

GNNs have been applied in a variety of areas, including the following:

• Text classification (https://arxiv.org/abs/1710.10903)
• Recommender systems (https://arxiv.org/abs/1704.06803)
• Traffic forecasting (https://arxiv.org/abs/1707.01926)
• Drug discovery (https://arxiv.org/abs/1806.02473)

While we can’t cover every new idea in this rapidly developing space, we’ll provide a basis to under-
stand how GNNs function and how they can be implemented. In addition, we’ll introduce the PyTorch
Geometric library, which provides resources for managing graph data for deep learning as well as
implementations of many different kinds of graph layers that you can use in your deep learning models.

The topics that will be covered in this chapter are as follows:

• An introduction to graph data and how it can be represented for use in deep neural networks
• An explanation of graph convolutions, a major building block of common GNNs
• A tutorial showing how to implement GNNs for molecular property prediction using PyTorch

Geometric
• An overview of methods at the cutting edge of the GNN field

https://www.stateof.ai/2021-report-launch.html
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1704.06803
https://arxiv.org/abs/1707.01926
https://arxiv.org/abs/1806.02473

Graph Neural Networks for Capturing Dependencies in Graph Structured Data638

Introduction to graph data
Broadly speaking, graphs represent a certain way we describe and capture relationships in data. Graphs
are a particular kind of data structure that is nonlinear and abstract. And since graphs are abstract
objects, a concrete representation needs to be defined so the graphs can be operated on. Furthermore,
graphs can be defined to have certain properties that may require different representations. Figure
18.1 summarizes the common types of graphs, which we will discuss in more detail in the following
subsections:

Figure 18.1: Common types of graphs

Undirected graphs
An undirected graph consists of nodes (in graph theory also often called vertices) that are connected
via edges where the order of the nodes and their connection does not matter. Figure 18.2 sketches two
typical examples of undirected graphs, a friend graph, and a graph of a chemical molecule consisting
of atoms connected through chemical bonds (we will be discussing such molecular graphs in much
more detail in later sections):

Chapter 18 639

Figure 18.2: Two examples of undirected graphs

Other common examples of data that can be represented as undirected graphs include images, pro-
tein-protein interaction networks, and point clouds.

Mathematically, an undirected graph G is a pair (V, E), where V is a set of the graph’s nodes, and E is
the set of edges making up the paired nodes. The graph can then be encoded as a |V|×|V| adjacency
matrix A. Each element xij in matrix A is either a 1 or a 0, with 1 denoting an edge between nodes
i and j (vice versa, 0 denotes the absence of an edge). Since the graph is undirected, an additional
property of A is that xij = xji.

Directed graphs
Directed graphs, in contrast to undirected graphs discussed in the previous section, connect nodes
via directed edges. Mathematically they are defined in the same way as an undirected graph, except
that E, the set of edges, is a set of ordered pairs. Therefore, element xij of A does need not equal xji.

Graph Neural Networks for Capturing Dependencies in Graph Structured Data640

An example of a directed graph is a citation network, where nodes are publications and edges from a
node are directed toward the nodes of papers that a given paper cited.

Figure 18.3: An example of a directed graph

Labeled graphs
Many graphs we are interested in working with have additional information associated with each of
their nodes and edges. For example, if you consider the caffeine molecule shown earlier, molecules
can be represented as graphs where each node is a chemical element (for example, O, C, N, or H atoms)
and each edge is the type of bond (for example, single or double bond) between its two nodes. These
node and edge features need to be encoded in some capacity. Given graph G, defined by the node set
and edge set tuple (V, E), we define a |V|×fV node feature matrix X, where fV is the length of the label
vector of each node. For edge labels, we define an |E|×fE edge feature matrix XE, where fE is the length
of the label vector of each edge.

Molecules are an excellent example of data that can be represented as a labeled graph, and we will be
working with molecular data throughout the chapter. As such, we will take this opportunity to cover
their representation in detail in the next section.

Representing molecules as graphs
As a chemical overview, molecules can be thought of as groups of atoms held together by chemical
bonds. There are different atoms corresponding to different chemical elements, for example, common
elements include carbon (C), oxygen (O), nitrogen (N), and hydrogen (H). Also, there are different kinds
of bonds that form the connection between atoms, for example, single or double bonds.

We can represent a molecule as an undirected graph with a node label matrix, where each row is a
one-hot encoding of the associated node’s atom type. Additionally, there is an edge label matrix where
each row is a one-hot encoding of the associated edge’s bond type. To simplify this representation,
hydrogen atoms are sometimes made implicit since their location can be inferred with basic chemical
rules. Considering the caffeine molecule we saw earlier, an example of a graph representation with
implicit hydrogen atoms is shown in Figure 18.4:

Chapter 18 641

Figure 18.4: Graph representation of a caffeine molecule

Understanding graph convolutions
The previous section showed how graph data can be represented. The next logical step is to discuss
what tools we have that can effectively utilize those representations.

In the following subsections, we will introduce graph convolutions, which are the key component for
building GNNs. In this section, we’ll see why we want to use convolutions on graphs and discuss what
attributes we want those convolutions to have. We’ll then introduce graph convolutions through an
implementation example.

The motivation behind using graph convolutions
To help explain graph convolutions, let’s briefly recap how convolutions are utilized in convolutional
neural networks (CNNs), which we discussed in Chapter 14, Classifying Images with Deep Convolutional
Neural Networks. In the context of images, we can think of a convolution as the process of sliding a
convolutional filter over an image, where, at each step, a weighted sum is computed between the filter
and the receptive field (the part of the image it is currently on top of).

Graph Neural Networks for Capturing Dependencies in Graph Structured Data642

As discussed in the CNN chapter, the filter can be viewed as a detector for a specific feature. This ap-
proach to feature detection is well-suited for images for several reasons, for instance, the following
priors we can place on image data:

1. Shift-invariance: We can still recognize a feature in an image regardless of where it is located
(for example, after translation). A cat can be recognized as a cat whether it is in the top left,
bottom right, or another part of an image.

2. Locality: Nearby pixels are closely related.
3. Hierarchy: Larger parts of an image can often be broken down into combinations of associated

smaller parts. A cat has a head and legs; the head has eyes and a nose; the eyes have pupils
and irises.

Interested readers can find a more formal description of these priors, and priors assumed by GNNs,
in the 2019 article Understanding the Representation Power of Graph Neural Networks in Learning Graph
Topology, by N. Dehmamy, A.-L. Barabasi, and R. Yu (https://arxiv.org/abs/1907.05008).

Another reason convolutions are well-suited for processing images is that the number of trainable
parameters does not depend on the dimensionality of the input. You could train a series of 3×3 con-
volutional filters on, for example, a 256×256 or a 9×9 image. (However, if the same image is presented
in different resolutions, the receptive fields and, therefore, the extracted features will differ. And for
higher-resolution images, we may want to choose larger kernels or add additional layers to extract
useful features effectively.)

Like images, graphs also have natural priors that justify a convolutional approach. Both kinds of data,
images and graphs, share the locality prior. However, how we define locality differs. In images, the
prior is on locality in 2D space, while with graphs, it is structural locality. Intuitively, this means that
a node that is one edge away is more likely to be related than a node five edges away. For example, in
a citation graph, a directly cited publication, which would be one edge away, is more likely to have
similar subject matter than a publication with multiple degrees of separation.

A strict prior for graph data is permutation invariance, which means that the ordering of the nodes
does not affect the output. This is illustrated in Figure 18.5, where changing the ordering of a graph’s
nodes does not change the graph’s structure:

https://arxiv.org/abs/1907.05008

Chapter 18 643

Figure 18.5: Different adjacency matrices representing the same graph

Since the same graph can be represented by multiple adjacency matrices, as illustrated in Figure 18.5,
consequently, any graph convolution needs to be permutation invariant.

A convolutional approach is also desirable for graphs because it can function with a fixed parame-
ter set for graphs of different sizes. This property is arguably even more important for graphs than
images. For instance, there are many image datasets with a fixed resolution where a fully connected
approach (for example, using a multilayer perceptron) could be possible, as we have seen in Chapter
11, Implementing a Multilayer Artificial Neural Network from Scratch. In contrast, most graph datasets
contain graphs of varying sizes.

While image convolutional operators are standardized, there are many different kinds of graph con-
volutions, and the development of new graph convolutions is a very active area of research. Our focus
is on providing general ideas so that readers can rationalize about the GNNs they wish to utilize. To
this end, the following subsection will show how to implement a basic graph convolution in PyTorch.
Then, in the next section, we will construct a simple GNN in PyTorch from the ground up.

Graph Neural Networks for Capturing Dependencies in Graph Structured Data644

Implementing a basic graph convolution
In this subsection, we will introduce a basic graph convolution function and see what happens when
it is applied to a graph. Consider the following graph and its representation:

Figure 18.6: A representation of a graph

Figure 18.6 depicts an undirected graph with node labels specified by an n×n adjacency matrix A and
n×fin node feature matrix X, where the only feature is a one-hot representation of each node’s color—
green (G), blue (B), or orange (O).

One of the most versatile libraries for graph manipulation and visualization is NetworkX, which we
will be using to illustrate how to construct graphs from a label matrix X and a node matrix A.

Using NetworkX, we can construct the graph shown in Figure 18.6 as follows:

>>> import numpy as np
>>> import networkx as nx

Installing NetworkX

NetworkX is a handy Python library for manipulating and visualizing graphs. It can be
installed via pip:

pip install networkx

We used version 2.6.2 to create the graph visualizations in this chapter. For more infor-
mation, please visit the official website at https://networkx.org.

https://networkx.org

Chapter 18 645

>>> G = nx.Graph()
... # Hex codes for colors if we draw graph
>>> blue, orange, green = "#1f77b4", "#ff7f0e", "#2ca02c"
>>> G.add_nodes_from([
... (1, {"color": blue}),
... (2, {"color": orange}),
... (3, {"color": blue}),
... (4, {"color": green})
...])
>>> G.add_edges_from([(1,2), (2,3), (1,3), (3,4)])
>>> A = np.asarray(nx.adjacency_matrix(G).todense())
>>> print(A)
[[0 1 1 0]
[1 0 1 0]
[1 1 0 1]
[0 0 1 0]]

>>> def build_graph_color_label_representation(G, mapping_dict):
... one_hot_idxs = np.array([mapping_dict[v] for v in
... nx.get_node_attributes(G, 'color').values()])
>>> one_hot_encoding = np.zeros(
... (one_hot_idxs.size, len(mapping_dict)))
>>> one_hot_encoding[
... np.arange(one_hot_idxs.size), one_hot_idxs] = 1
>>> return one_hot_encoding
>>> X = build_graph_color_label_representation(
... G, {green: 0, blue: 1, orange: 2})
>>> print(X)
[[0., 1., 0.],
[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.]]

To draw the graph constructed in the preceding code, we can then use the following code:

>>> color_map = nx.get_node_attributes(G, 'color').values()
>>> nx.draw(G,with_labels=True, node_color=color_map)

In the preceding code example, we first initiated a new Graph object from NetworkX. We then added
nodes 1 to 4 together with color specifications for visualization. After adding the nodes, we specified
their connections (edges). Using the adjacency_matrix constructor from NetworkX, we create the
adjacency matrix A, and our custom build_graph_color_label_representation function creates
the node label matrix X from the information we added to the Graph object earlier.

Graph Neural Networks for Capturing Dependencies in Graph Structured Data646

With graph convolutions, we can interpret each row of X as being an embedding of the information that
is stored at the node corresponding to that row. Graph convolutions update the embeddings at each
node based on the embeddings of their neighbors and themselves. For our example implementation,
the graph convolution will take the following form:𝒙𝒙𝑖𝑖′ = 𝒙𝒙𝑖𝑖𝑾𝑾1 + ∑ 𝒙𝒙𝑗𝑗𝑾𝑾2 + 𝑏𝑏𝑗𝑗𝑗𝑗𝑗(𝑖𝑖)

Here, 𝒙𝒙𝑖𝑖′ is the updated embedding for node i; W1 and W2 are fin×fout matrices of learnable filter weights;
and b is a learnable bias vector of length fout.

The two weight matrices W1 and W2 can be considered filter banks, where each column is an individual
filter. Note that this filter design is most effective when the locality prior on graph data holds. If a value
at a node is highly correlated with the value at another node many edges away, a single convolution
will not capture that relationship. Stacking convolutions will capture more distant relationships, as
illustrated in Figure 18.7 (we set the bias to zero for simplicity):

Figure 18.7: Capturing relationships from a graph

Chapter 18 647

The design of the graph convolution illustrated in Figure 18.7 fits our priors on graph data, but it may
not be clear how to implement the sum over neighbors in matrix form. This is where we utilize the
adjacency matrix A. The matrix form of this convolution is XW1 + AXW2. Here, the adjacency matrix,
consisting of 1s and 0s, acts as a mask to select nodes and compute the desired sums. In NumPy, ini-
tializing this layer and computing a forward pass on the previous graph could be written as follows:

>>> f_in, f_out = X.shape[1], 6
>>> W_1 = np.random.rand(f_in, f_out)
>>> W_2 = np.random.rand(f_in, f_out)
>>> h = np.dot(X, W_1)+ np.dot(np.dot(A,X), W_2)

Computing a forward pass of a graph convolution is that easy.

Ultimately, we want a graph convolutional layer to update the representation of the node information
encoded in X by utilizing the structural (connectivity) information provided by A. There are many
potential ways to do this, and this plays out in the numerous kinds of graph convolutions that have
been developed.

To talk about different graph convolutions, generally, it would be nice for them to have a unifying
framework. Thankfully, such a framework was presented in Neural Message Passing for Quantum Chem-
istry by Justin Gilmer and colleagues, 2017, https://arxiv.org/abs/1704.01212.

In this message-passing framework, each node in the graph has an associated hidden state ℎ𝑖𝑖(𝑡𝑡) , where
i is the node’s index at time step t. The initial value ℎ𝑖𝑖(0) is defined as Xi, which is the row of X associated
with node i.

Each graph convolution can be split into a message-passing phase and a node update phase. Let N(i)
be the neighbors of node i. For undirected graphs, N(i) is the set of nodes that share an edge with
node i. For directed graphs, N(i) is the set of nodes that have an edge whose endpoint is node i. The
message-passing phase can be formulated as follows:𝑚𝑚𝑖𝑖 = ∑ 𝑀𝑀𝑡𝑡(ℎ𝑖𝑖(𝑡𝑡), ℎ𝑗𝑗(𝑡𝑡), 𝑒𝑒𝑖𝑖𝑗𝑗)𝑗𝑗𝑗𝑗𝑗(𝑖𝑖)

Here, Mt is a message function. In our example layer, we define this message function as 𝑀𝑀𝑡𝑡 = ℎ𝑗𝑗(𝑡𝑡)𝑊𝑊2 .
The node update phase with the update function Ut is ℎ𝑖𝑖(𝑡𝑡𝑡𝑡) = 𝑈𝑈𝑡𝑡(ℎ𝑖𝑖(𝑡𝑡), 𝑚𝑚𝑖𝑖) . In our example layer, this
update is ℎ𝑖𝑖(𝑡𝑡𝑡𝑡) = ℎ𝑖𝑖(𝑡𝑡)𝑊𝑊𝑡 +𝑚𝑚𝑖𝑖 + 𝑏𝑏 .

https://arxiv.org/abs/1704.01212

Graph Neural Networks for Capturing Dependencies in Graph Structured Data648

Figure 18.8 visualizes the message-passing idea and summarizes the convolution we have implemented:

Figure 18.8: The convolutions implemented on the graph and the message form

In the next section, we’ll incorporate this graph convolution layer into a GNN model implemented
in PyTorch.

Implementing a GNN in PyTorch from scratch
The previous section focused on understanding and implementing a graph convolution operation. In
this section, we’ll walk you through a basic implementation of a graph neural network to illustrate how
to apply these methods to graphs if you start from scratch. If this approach appears complicated, don’t
worry; GNNs are relatively complex models to implement. Thus, we’ll introduce PyTorch Geometric
in a later section, which provides tools to ease the implementation of, and the data management for,
graph neural networks.

Chapter 18 649

Defining the NodeNetwork model
We will start this section by showing a PyTorch from-scratch implementation of a GNN. We will take
a top-down approach, starting with the main neural network model, which we call NodeNetwork, and
then we will fill in the individual details:

import networkx as nx
import torch
from torch.nn.parameter import Parameter
import numpy as np
import math
import torch.nn.functional as F

class NodeNetwork(torch.nn.Module):
 def __init__(self, input_features):
 super().__init__()
 self.conv_1 = BasicGraphConvolutionLayer (
 input_features, 32)
 self.conv_2 = BasicGraphConvolutionLayer(32, 32)
 self.fc_1 = torch.nn.Linear(32, 16)
 self.out_layer = torch.nn.Linear(16, 2)

 def forward(self, X, A, batch_mat):
 x = F.relu(self.conv_1(X, A))
 x = F.relu(self.conv_2(x, A))
 output = global_sum_pool(x, batch_mat)
 output = self.fc_1(output)
 output = self.out_layer(output)
 return F.softmax(output, dim=1)

The NodeNetwork model we just defined can be summarized as follows:

1. Perform two graph convolutions (self.conv_1 and self.conv_2)
2. Pool all the node embeddings via global_sum_pool, which we will define later
3. Run the pooled embeddings through two fully connected layers (self.fc_1 and self.out_

layer)
4. Output a class-membership probability via softmax

Graph Neural Networks for Capturing Dependencies in Graph Structured Data650

The structure of the network along with a visualization of what each layer is doing is summarized in
Figure 18.9:

Figure 18.9: A visualization of each neural network layer

The individual aspects, such as the graph convolution layers and global pooling, will be discussed in
the next subsections.

Coding the NodeNetwork’s graph convolution layer
Now, let’s define the graph convolution operation (BasicGraphConvolutionLayer) that was used inside
the previous NodeNetwork class:

class BasicGraphConvolutionLayer(torch.nn.Module):
 def __init__(self, in_channels, out_channels):
 super().__init__()
 self.in_channels = in_channels

Chapter 18 651

 self.out_channels = out_channels
 self.W2 = Parameter(torch.rand(
 (in_channels, out_channels), dtype=torch.float32))
 self.W1 = Parameter(torch.rand(
 (in_channels, out_channels), dtype=torch.float32))

 self.bias = Parameter(torch.zeros(
 out_channels, dtype=torch.float32))
 def forward(self, X, A):
 potential_msgs = torch.mm(X, self.W2)
 propagated_msgs = torch.mm(A, potential_msgs)
 root_update = torch.mm(X, self.W1)
 output = propagated_msgs + root_update + self.bias
 return output

As with fully connected layers and image convolutional layers, we add a bias term so that the intercept
of the linear combination of the layer outputs (prior to the application of a nonlinearity like ReLU) can
vary. The forward() method implements the matrix form of the forward pass, which we discussed in
the previous subsection, with the addition of a bias term.

To try out the BasicGraphConvolutionLayer, let’s apply it to the graph and adjacency matrix that we
defined in the section Implementing a basic graph convolution previously:

>>> print('X.shape:', X.shape)
X.shape: (4, 3)

>>> print('A.shape:', A.shape)
A.shape: (4, 4)

>>> basiclayer = BasicGraphConvolutionLayer(3, 8)
>>> out = basiclayer(
... X=torch.tensor(X, dtype=torch.float32),
... A=torch.tensor(A, dtype=torch.float32)
...)

>>> print('Output shape:', out.shape)
Output shape: torch.Size([4, 8])

Based on the code example above, we can see that our BasicGraphConvolutionLayer converted the
four-node graph consisting of three features into a representation with eight features.

Graph Neural Networks for Capturing Dependencies in Graph Structured Data652

Adding a global pooling layer to deal with varying graph sizes
Next, we define the global_sum_pool() function that was used in the NodeNetwork class, where
global_sum_pool() implements a global pooling layer. Global pooling layers aggregate all of a graph’s
node embeddings into a fixed-sized output. As shown in Figure 18.9, global_sum_pool() sums all the
node embeddings of a graph. We note that this global pooling is relatively similar to the global average
pooling used in CNNs, which is used before the data is run through fully connected layers, as we have
seen in Chapter 14, Classifying Images with Deep Convolutional Neural Networks.

Summing all the node embeddings results in a loss of information, so reshaping the data would be
preferable, but since graphs can have different sizes, this is not feasible. Global pooling can be done
with any permutation invariant function, for example, sum, max, and mean. Here is the implementation
of global_sum_pool():

def global_sum_pool(X, batch_mat):
 if batch_mat is None or batch_mat.dim() == 1:
 return torch.sum(X, dim=0).unsqueeze(0)
 else:
 return torch.mm(batch_mat, X)

If data is not batched or the batch size is one, this function just sums over the current node embed-
dings. Otherwise, the embeddings are multiplied with batch_mat, which has a structure based on
how graph data is batched.

When all data in a dataset has the same dimensionality, batching the data is as straightforward as
adding a dimension by stacking the data. (Side note: the function called in the default batching func-
tion in PyTorch is literally called stack.) Since graph sizes vary, this approach is not feasible with
graph data unless padding is used. However, padding can be inefficient in cases where graph sizes
can vary substantially. Usually, the better way to deal with varying graph sizes is to treat each batch
as a single graph where each graph in the batch is a subgraph that is disconnected from the rest. This
is illustrated in Figure 18.10:

Chapter 18 653

Figure 18.10: How to deal with varying graph sizes

To describe Figure 18.10 more formally, suppose we are given graphs G1, ..., Gk of sizes n1, ..., nk with
f features per node. In addition, we are given the corresponding adjacency matrices A1, ..., Ak and
feature matrices X1, ..., Xk. Let N be the total number of nodes, 𝑁𝑁 𝑁 ∑ 𝑛𝑛𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖 , s1 = 0, and si = si–1 + ni–1 for 1 < 𝑖𝑖 𝑖 𝑖𝑖 . As shown in the figure, we define a graph GB with N×N adjacency matrix AB and N×f feature
matrix XB. Using Python index notation, AB[si:si + ni, si + ni] = Ai, and all other elements of AB outside
these index sets are 0. Additionally, XB[si:si + ni, :] = Xi.

By design, disconnected nodes will never be in the same receptive field of a graph convolution. As a
result, when backpropagating gradients of GB through graph convolutions, the gradients attached to
each graph in the batch will be independent. This means that if we treat a set of graph convolutions as
a function f, if hB = f(XB, AB) and hi = f(Xi, Ai), then hB[si:si + n, :] = hi. If the sum global pooling extracts the
sums of each hi from hB as separate vectors, passing that stack of vectors through fully connected layers
would keep the gradients of each item in the batch separate throughout the entire backpropagation.

Graph Neural Networks for Capturing Dependencies in Graph Structured Data654

This is the purpose of batch_mat in global_sum_pool()—to serve as a graph selection mask that
keeps the graphs in the batch separate. We can generate this mask for graphs of sizes n1, ..., nk with
the following code:

def get_batch_tensor(graph_sizes):
 starts = [sum(graph_sizes[:idx])
 for idx in range(len(graph_sizes))]
 stops = [starts[idx] + graph_sizes[idx]
 for idx in range(len(graph_sizes))]
 tot_len = sum(graph_sizes)
 batch_size = len(graph_sizes)
 batch_mat = torch.zeros([batch_size, tot_len]).float()
 for idx, starts_and_stops in enumerate(zip(starts, stops)):
 start = starts_and_stops[0]
 stop = starts_and_stops[1]
 batch_mat[idx,start:stop] = 1
 return batch_mat

Thus, given a batch size, b, batch_mat is a b×N matrix where batch_mat[i–1, si:si + ni] = 1 for 1 ≤ 𝑖𝑖 ≤ 𝑖𝑖
and where elements outside these index sets are 0. The following is a collate function for constructing
a representation of some GB and a corresponding batch matrix:

batch is a list of dictionaries each containing
the representation and label of a graph
def collate_graphs(batch):
 adj_mats = [graph['A'] for graph in batch]
 sizes = [A.size(0) for A in adj_mats]
 tot_size = sum(sizes)
 # create batch matrix
 batch_mat = get_batch_tensor(sizes)
 # combine feature matrices
 feat_mats = torch.cat([graph['X'] for graph in batch], dim=0)
 # combine labels
 labels = torch.cat([graph['y'] for graph in batch], dim=0)
 # combine adjacency matrices
 batch_adj = torch.zeros([tot_size, tot_size], dtype=torch.float32)
 accum = 0
 for adj in adj_mats:
 g_size = adj.shape[0]
 batch_adj[accum:accum+g_size,accum:accum+g_size] = adj
 accum = accum + g_size
 repr_and_label = {'A': batch_adj,

Chapter 18 655

 'X': feat_mats, 'y': labels,
 'batch': batch_mat}
 return repr_and_label

Preparing the DataLoader
In this section, we will see how the code from the previous subsections all comes together. First,
we will generate some graphs and put them into a PyTorch Dataset. Then, we will use our collate
function in a DataLoader for our GNN.

But before we define the graphs, let’s implement a function that builds a dictionary representation
that we will use later:

def get_graph_dict(G, mapping_dict):
 # Function builds dictionary representation of graph G
 A = torch.from_numpy(
 np.asarray(nx.adjacency_matrix(G).todense())).float()
 # build_graph_color_label_representation()
 # was introduced with the first example graph
 X = torch.from_numpy(
 build_graph_color_label_representation(
 G, mapping_dict)).float()
 # kludge since there is not specific task for this example
 y = torch.tensor([[1,0]]).float()
 return {'A': A, 'X': X, 'y': y, 'batch': None}

This function takes a NetworkX graph and returns a dictionary containing its adjacency matrix A,
its node feature matrix X, and a binary label y. Since we won’t actually be training this model on a
real-world task, we just set the labels arbitrarily. Then, nx.adjacency_matrix() takes a NetworkX
graph and returns a sparse representation that we convert to a dense np.array form using todense().

We’ll now construct graphs and use the get_graph_dict function to convert NetworkX graphs to a
format our network can handle:

>>> # building 4 graphs to treat as a dataset
>>> blue, orange, green = "#1f77b4", "#ff7f0e","#2ca02c"
>>> mapping_dict= {green:0, blue:1, orange:2}
>>> G1 = nx.Graph()
>>> G1.add_nodes_from([
... (1,{"color": blue}),
... (2,{"color": orange}),
... (3,{"color": blue}),
... (4,{"color": green})
...])

Graph Neural Networks for Capturing Dependencies in Graph Structured Data656

>>> G1.add_edges_from([(1, 2), (2, 3), (1, 3), (3, 4)])
>>> G2 = nx.Graph()
>>> G2.add_nodes_from([
... (1,{"color": green}),
... (2,{"color": green}),
... (3,{"color": orange}),
... (4,{"color": orange}),
... (5,{"color": blue})
...])
>>> G2.add_edges_from([(2, 3),(3, 4),(3, 1),(5, 1)])
>>> G3 = nx.Graph()
>>> G3.add_nodes_from([
... (1,{"color": orange}),
... (2,{"color": orange}),
... (3,{"color": green}),
... (4,{"color": green}),
... (5,{"color": blue}),
... (6,{"color":orange})
...])
>>> G3.add_edges_from([(2,3), (3,4), (3,1), (5,1), (2,5), (6,1)])
>>> G4 = nx.Graph()
>>> G4.add_nodes_from([
... (1,{"color": blue}),
... (2,{"color": blue}),
... (3,{"color": green})
...])
>>> G4.add_edges_from([(1, 2), (2, 3)])
>>> graph_list = [get_graph_dict(graph, mapping_dict) for graph in
... [G1, G2, G3, G4]]

Chapter 18 657

The graphs this code generates are visualized in Figure 18.11:

Figure 18.11: Four generated graphs

This code block constructs four NetworkX graphs and stores them in a list. Here, the constructor of
nx.Graph() initializes an empty graph, and add_nodes_from() adds nodes to the empty graph from
a list of tuples. The first item in each tuple is the node’s name, and the second item is a dictionary of
that node’s attributes.

Graph Neural Networks for Capturing Dependencies in Graph Structured Data658

The add_edges_from() method of a graph takes a list of tuples where each tuple defines an edge be-
tween its elements (nodes). Now, we can construct a PyTorch Dataset for these graphs:

from torch.utils.data import Dataset
class ExampleDataset(Dataset):
 # Simple PyTorch dataset that will use our list of graphs
 def __init__(self, graph_list):
 self.graphs = graph_list
 def __len__(self):
 return len(self.graphs)

 def __getitem__(self,idx):
 mol_rep = self.graphs[idx]
 return mol_rep

While using a custom Dataset may seem like unnecessary effort, it allows us to exhibit how collate_
graphs() can be used in a DataLoader:

>>> from torch.utils.data import DataLoader
>>> dset = ExampleDataset(graph_list)
>>> # Note how we use our custom collate function
>>> loader = DataLoader(
... dset, batch_size=2, shuffle=False,
... collate_fn=collate_graphs)

Using the NodeNetwork to make predictions
After we have defined all the necessary functions and set up the DataLoader, we now initialize a new
NodeNetwork and apply it to our graph data:

>>> node_features = 3
>>> net = NodeNetwork(node_features)

>>> batch_results = []
>>> for b in loader:
... batch_results.append(
... net(b['X'], b['A'], b['batch']).detach())

Note that for brevity, we didn’t include a training loop; however, the GNN model could be trained in a
regular fashion by computing the loss between predicted and true class labels, backpropagating the
loss via .backward(), and updating the model weights via a gradient descent-based optimizer. We
leave this as an optional exercise for the reader. In the next section, we will show how to do that with
a GNN implementation from PyTorch Geometric, which implements more sophisticated GNN code.

Chapter 18 659

To continue with our previous code, let’s now provide a single input graph to the model directly with-
out the DataLoader:

>>> G1_rep = dset[1]
>>> G1_single = net(
... G1_rep['X'], G1_rep['A'], G1_rep['batch']).detach()

We can now compare the results from applying the GNN to a single graph (G1_single) and to the first
graph from the DataLoader (also the first graph, G1, which we guaranteed, since we set shuffle=False)
to double-check that the batch loader works correctly. As we can see by using torch.isclose() (to
account for rounding errors), the results are equivalent, as we would have hoped:

>>> G1_batch = batch_results[0][1]
>>> torch.all(torch.isclose(G1_single, G1_batch))
tensor(True)

Congrats! You now understand how to construct, set up, and run a basic GNN. However, from this
introduction, you probably realize that managing and manipulating graph data can be somewhat
laborious. Also, we didn’t even build a graph convolution that uses edge labels, which would compli-
cate matters further. Thankfully, there is PyTorch Geometric, a package that makes this much easier
by providing implementations of many GNN layers. We’ll introduce this library with an end-to-end
example of implementing and training a more complex GNN on molecule data in the next subsection.

Implementing a GNN using the PyTorch Geometric
library
In this section, we will implement a GNN using the PyTorch Geometric library, which simplifies the
process of training GNNs. We apply the GNN to QM9, a dataset consisting of small molecules, to pre-
dict isotropic polarizability, which is a measure of a molecule’s tendency to have its charge distorted
by an electric field.

Installing PyTorch Geometric

PyTorch Geometric can be installed via conda or pip. We recommend you visit the official
documentation website at https://pytorch-geometric.readthedocs.io/en/latest/
notes/installation.html to select the installation command recommended for your
operating system. For this chapter, we used pip to install version 2.0.2 along with its
torch-scatter and torch-sparse dependencies:

pip install torch-scatter==2.0.9
pip install torch-sparse==0.6.12
pip install torch-geometric==2.0.2

https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html

Graph Neural Networks for Capturing Dependencies in Graph Structured Data660

Let’s start by loading a dataset of small molecules and look at how PyTorch Geometric stores the data:

>>> # For all examples in this section we use the following imports.
>>> # Note that we are using torch_geometric's DataLoader.
>>> import torch
>>> from torch_geometric.datasets import QM9
>>> from torch_geometric.loader import DataLoader
>>> from torch_geometric.nn import NNConv, global_add_pool
>>> import torch.nn.functional as F
>>> import torch.nn as nn
>>> import numpy as np
>>> # let's load the QM9 small molecule dataset
>>> dset = QM9('.')
>>> len(dset)
130831
>>> # Here's how torch geometric wraps data
>>> data = dset[0]
>>> data
Data(edge_attr=[8, 4], edge_index=[2, 8], idx=[1], name="gdb_1", pos=[5, 3],
x=[5, 11], y=[1, 19], z=[5])
>>> # can access attributes directly
>>> data.z
tensor([6, 1, 1, 1, 1])
>>> # the atomic number of each atom can add attributes
>>> data.new_attribute = torch.tensor([1, 2, 3])
>>> data
Data(edge_attr=[8, 4], edge_index=[2, 8], idx=[1], name="gdb_1", new_
attribute=[3], pos=[5, 3], x=[5, 11], y=[1, 19], z=[5])
>>> # can move all attributes between devices
>>> device = torch.device(
... "cuda:0" if torch.cuda.is_available() else "cpu"
...)
>>> data.to(device)
>>> data.new_attribute.is_cuda
True

The Data object is a convenient, flexible wrapper for graph data. Note that many PyTorch Geometric
objects require certain keywords in data objects to process them correctly. Specifically, x should
contain node features, edge_attr should contain edge features, edge_index should include an edge
list, and y should contain labels. The QM9 data contains some additional attributes of note: pos, the
position of each of the molecules’ atoms in a 3D grid, and z, the atomic number of each atom in the
molecule. The labels in the QM9 are a bunch of physical properties of the molecules, such as dipole
moment, free energy, enthalpy, or isotropic polarization. We are going to implement a GNN and train
it on QM9 to predict isotropic polarization.

Chapter 18 661

The bond types of molecules are important; that is, which atoms are connected via a certain bond type,
for example, single or double bonds, matters. Hence, we’ll want to use a graph convolution that can
utilize edge features. For this, we’ll use the torch_geometric.nn.NNConv layer. (If you are interested
in the implementation details, its source code be found at https://pytorch-geometric.readthedocs.
io/en/latest/_modules/torch_geometric/nn/conv/nn_conv.html#NNConv.)

This convolution in the NNConv layer takes the following form:𝑿𝑿𝑖𝑖(𝑡𝑡) = 𝑾𝑾𝑿𝑿𝑖𝑖(𝑡𝑡𝑡𝑡) + ∑ 𝑿𝑿𝑗𝑗(𝑡𝑡𝑡𝑡)𝑗𝑗𝑗𝑗𝑗(𝑖𝑖) . ℎΘ(𝑒𝑒𝑖𝑖𝑖𝑗𝑗)
Here, h is a neural network parameterized by a set of weights Θ , and W is a weight matrix for the node
labels. This graph convolution is very similar to the one we implemented previously from scratch:𝑿𝑿𝑖𝑖(𝑡𝑡) = 𝑾𝑾1𝑿𝑿𝑖𝑖(𝑡𝑡𝑡1) + ∑ 𝑿𝑿𝑗𝑗(𝑡𝑡𝑡1)𝑾𝑾2𝑗𝑗𝑗𝑗𝑗(𝑖𝑖)

The only real difference is that the W2 equivalent, the neural network h, is parametrized based on
the edge labels, which allows the weights to vary for different edge labels. Via the following code, we
implement a GNN utilizing two such graph convolutional layers (NNConv):

class ExampleNet(torch.nn.Module):
 def __init__(self, num_node_features, num_edge_features):
 super().__init__()
 conv1_net = nn.Sequential(
 nn.Linear(num_edge_features, 32),
 nn.ReLU(),
 nn.Linear(32, num_node_features*32))

 conv2_net = nn.Sequential(
 nn.Linear(num_edge_features, 32),
 nn.ReLU(),
 nn.Linear(32, 32*16))

 self.conv1 = NNConv(num_node_features, 32, conv1_net)
 self.conv2 = NNConv(32,16, conv2_net)

The QM9 dataset

The QM9 dataset contains 133,885 small organic molecules labeled with several geomet-
ric, energetic, electronic, and thermodynamic properties. QM9 is a common benchmark
dataset for developing methods for predicting chemical structure-property relationships
and hybrid quantum mechanic/machine learning methods. More information about the
dataset can be found at http://quantum-machine.org/datasets/.

https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/nn_conv.html#NNConv
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/nn_conv.html#NNConv
http://quantum-machine.org/datasets/

Graph Neural Networks for Capturing Dependencies in Graph Structured Data662

 self.fc_1 = nn.Linear(16, 32)
 self.out = nn.Linear(32, 1)

 def forward(self, data):
 batch, x, edge_index, edge_attr = (
 data.batch, data.x, data.edge_index, data.edge_attr)
 # First graph conv layer
 x = F.relu(self.conv1(x, edge_index, edge_attr))
 # Second graph conv layer
 x = F.relu(self.conv2(x, edge_index, edge_attr))
 x = global_add_pool(x,batch)
 x = F.relu(self.fc_1(x))
 output = self.out(x)
 return output

We’ll train this GNN to predict a molecule’s isotropic polarizability, a measure of the relative tendency
of a molecule’s charge distribution to be distorted by an external electric field. We’ll split the QM9
dataset into training, validation, and test sets, and use PyTorch Geometric DataLoader. Note that these
do not require a special collate function, but require a Data object with appropriately named attributes.

Next, let’s split the dataset:

>>> from torch.utils.data import random_split
>>> train_set, valid_set, test_set = random_split(
... dset,[110000, 10831, 10000])
>>> trainloader = DataLoader(train_set, batch_size=32, shuffle=True)
>>> validloader = DataLoader(valid_set, batch_size=32, shuffle=True)
>>> testloader = DataLoader(test_set, batch_size=32, shuffle=True)

The following code will initialize and train a network on a GPU (if available):

>>> # initialize a network
>>> qm9_node_feats, qm9_edge_feats = 11, 4
>>> net = ExampleNet(qm9_node_feats, qm9_edge_feats)

>>> # initialize an optimizer with some reasonable parameters
>>> optimizer = torch.optim.Adam(
... net.parameters(), lr=0.01)
>>> epochs = 4
>>> target_idx = 1 # index position of the polarizability label
>>> device = torch.device("cuda:0" if
... torch.cuda.is_available() else "cpu")
>>> net.to(device)

Chapter 18 663

The training loop, shown in the following code, follows the familiar pattern we have encountered in
previous PyTorch chapters, so we can skip the explanation details. However, one detail that is worth
highlighting is that here we are computing the mean squared error (MSE) loss instead of the cross-en-
tropy, since polarizability is a continuous target and not a class label:

>>> for total_epochs in range(epochs):
... epoch_loss = 0
... total_graphs = 0
... net.train()
... for batch in trainloader:
... batch.to(device)
... optimizer.zero_grad()
... output = net(batch)
... loss = F.mse_loss(
... output,batch.y[:, target_idx].unsqueeze(1))
... loss.backward()
... epoch_loss += loss.item()
... total_graphs += batch.num_graphs
... optimizer.step()
... train_avg_loss = epoch_loss / total_graphs
... val_loss = 0
... total_graphs = 0
... net.eval()
... for batch in validloader:
... batch.to(device)
... output = net(batch)
... loss = F.mse_loss(
... output,batch.y[:, target_idx].unsqueeze(1))
... val_loss += loss.item()
... total_graphs += batch.num_graphs
... val_avg_loss = val_loss / total_graphs
... print(f"Epochs: {total_epochs} | "
... f"epoch avg. loss: {train_avg_loss:.2f} | "
... f"validation avg. loss: {val_avg_loss:.2f}")
Epochs: 0 | epoch avg. loss: 0.30 | validation avg. loss: 0.10
Epochs: 1 | epoch avg. loss: 0.12 | validation avg. loss: 0.07
Epochs: 2 | epoch avg. loss: 0.10 | validation avg. loss: 0.05
Epochs: 3 | epoch avg. loss: 0.09 | validation avg. loss: 0.07

Graph Neural Networks for Capturing Dependencies in Graph Structured Data664

Over the first four training epochs, both training and validation loss are decreasing. The dataset is
large and may take a little while to train on a CPU, so we stop training after four epochs. However, if
we train the model further, the loss will continue to improve. You can train the model for additional
epochs to see how that changes the performance.

The following code predicts the values on the test data and collects the true labels:

>>> net.eval()
>>> predictions = []
>>> real = []
>>> for batch in testloader:
... output = net(batch.to(device))
... predictions.append(output.detach().cpu().numpy())
... real.append(
... batch.y[:,target_idx] .detach().cpu().numpy())
>>> real = np.concatenate(real)
>>> predictions = np.concatenate(predictions)

Now we can make a scatterplot with a subset of the test data. Since the test dataset is relatively large
(10,000 molecules), the results can be a bit cluttered, and for simplicity, we only plot the first 500
predictions and targets:

>>> import matplotlib.pyplot as plt
>>> plt.scatter(real[:500], predictions[:500])
>>> plt.xlabel('Isotropic polarizability')
>>> plt.ylabel('Predicted isotropic polarizability')

The resulting figure is shown here:

Figure 18.12: Predicted isotropic polarizability plotted against the actual isotropic polarizability

Chapter 18 665

Based on the plot, given that the points lie relatively near the diagonal, our simple GNN appears to have
done a decent job with predicting isotropic polarization values, even without hyperparameter tuning.

Other GNN layers and recent developments
This section will introduce a selection of additional layers that you can utilize in your GNNs, in addition
to providing a high-level overview of some recent developments in the field. While we will provide
background on the intuition behind these layers and their implementations, these concepts can
become a little complicated mathematically speaking, but don’t get discouraged. These are optional
topics, and it is not necessary to grasp the minutiae of all these implementations. Understanding the
general ideas behind the layers will be sufficient to experiment with the PyTorch Geometric imple-
mentations that we reference.

The following subsections will introduce spectral graph convolution layers, graph pooling layers, and
normalization layers for graphs. Lastly, the final subsection will provide a bird’s eye view of some
more advanced kinds of graph neural networks.

Spectral graph convolutions
The graph convolutions we have utilized up to this point have all been spatial in nature. This means
that they aggregate information based on the topological space associated with the graph, which is
just a fancy way of saying that spatial convolutions operate on local neighborhoods of nodes. As a
consequence of this, if a GNN that utilizes spatial convolutions needs to capture complex global pat-
terns in graph data, then the network will need to stack multiple spatial convolutions. In situations
where these global patterns are important, but network depth needs to be limited, spectral graph
convolutions are an alternative kind of convolution to consider.

Spectral graph convolutions operate differently than spatial graph convolutions. Spectral graph con-
volutions operate by utilizing the graph’s spectrum—its set of eigenvalues—by computing the eigende-
composition of a normalized version of the graph’s adjacency matrix called the graph Laplacian. That
last sentence may seem like a doozy, so let’s break it down and go over it step by step.

For an undirected graph, the Laplacian matrix of a graph is defined as L = D – A, where A is the ad-
jacency matrix of the graph and D is the degree matrix. A degree matrix is a diagonal matrix where
the element on the diagonal in the row with index i is the number of edges in and out of the node
associated with the ith row of the adjacency matrix.

TorchDrug – A PyTorch-based library for drug discovery

PyTorch Geometric is a comprehensive general-purpose library for working with graphs,
including molecules, as you have seen in this section. If you are interested in more in-
depth molecule work and drug discovery, we also recommend considering the recently
developed TorchDrug library, which offers many convenient utilities for working with
molecules. You can find out more about TorchDrug here: https://torchdrug.ai/.

https://torchdrug.ai/

Graph Neural Networks for Capturing Dependencies in Graph Structured Data666

L is a real-valued symmetric matrix, and it has been proven that real-valued symmetric matrices can
be decomposed as 𝑳𝑳 𝑳 𝑳𝑳𝑳𝑳𝑳𝑳𝑻𝑻 , where Q is an orthogonal matrix whose columns are the eigenvectors
of L, and 𝚲𝚲 is a diagonal matrix whose elements are the eigenvalues of L. You can think of Q as pro-
viding an underlying representation of the graph’s structure. Unlike spatial convolutions, which use
local neighborhoods of the graph that are defined by A, spectral convolutions utilize the alternative
representation of the structure from Q to update the node embeddings.

The following example of a spectral convolution utilizes the eigendecomposition of the symmetric
normalized graph Laplacian, which is defined for a graph as follows:𝑳𝑳𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑰𝑰 𝑰 𝑰𝑰−12𝑨𝑨𝑰𝑰−12

Here, I is the identity matrix. This is used because the normalization of the graph Laplacian can help
stabilize the gradient-based training procedure similar to feature standardization.

Given that 𝑸𝑸𝑸𝑸𝑸𝑸𝑻𝑻 is the eigendecomposition of Lsym, the graph convolution is defined as follows:𝑿𝑿′ = 𝑸𝑸(𝑸𝑸𝑇𝑇𝑿𝑿𝑿𝑸𝑸𝑇𝑇𝑾𝑾)
Here, W is a trainable weight matrix. The inside of the parentheses essentially multiplies X and W by a
matrix that encodes structural relationships in the graph. The ⊙ operator here denotes element-wise
multiplication of the inner terms, while the outside Q maps the result back into the original basis. This
convolution has a few undesirable properties, since computing a graph’s eigendecomposition has a
computational complexity of O(n3). This means that it is slow, and as it is structured, W is dependent
on the size of the graph. Consequently, the spectral convolution can only be applied to graphs of the
same size. Furthermore, the receptive field of this convolution is the whole graph, and this cannot be
tuned in the current formulation. However, various techniques and convolutions have been developed
to address these issues.

For example, Bruna and colleagues (https://arxiv.org/abs/1312.6203) introduced a smoothing
method that addresses the size dependence of W by approximating it with a set of functions, each
multiplied by their own scalar parameter, 𝛼𝛼 . That is, given the set of functions f1, ..., fn, 𝑾𝑾 𝑾 ∑𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖 .
The set of functions is such that the dimensionality can be varied. However, since 𝛼𝛼 remains scalar,
the convolutions parameter space can be independent of the graph size.

Other spectral convolutions worth mentioning include the Chebyshev graph convolution (https://
arxiv.org/abs/1606.09375), which can approximate the original spectral convolution at a lower
time complexity and can have receptive fields with varying sizes. Kipf and Welling (https://arxiv.
org/abs/1609.02907) introduce a convolution with properties similar to the Chebyshev convolutions,
but with a reduced parameter burden. Implementations of both of these are available in PyTorch
Geometric as torch_geometric.nn.ChebConv and torch_geometric.nn.GCNConv and are reasonable
places to start if you want to play around with spectral convolutions.

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

Chapter 18 667

Pooling
We will briefly discuss some examples of pooling layers that have been developed for graphs. While
the downsampling provided by pooling layers has been beneficial in CNN architectures, the benefit
of downsampling in GNNs has not been realized as clearly.

Pooling layers for image data (ab)use spatial locality, which graphs do not have. If a clustering of the
nodes in a graph is provided, we can define how a graph pooling layer should pool nodes. However, it
is unclear how to define optimal clustering, and different clustering approaches may be favored for
different contexts. Even after clustering is determined, if nodes are downsampled, it is unclear how
the remaining nodes should be connected. While these are still open research questions, we’ll look at
a few graph pooling layers and point out their approaches to the aforementioned issues.

As with CNNs, there are mean and max pooling layers that can be applied to GNNs. As shown in Figure
18.13, given a clustering of nodes, each cluster becomes a node in a new graph:

Figure 18.13: Applying max pooling to a graph

Graph Neural Networks for Capturing Dependencies in Graph Structured Data668

Each cluster’s embedding is equal to the mean or max of the embeddings of the nodes in the cluster.
To address connectivity, the cluster is assigned the union of all edge indices in the cluster. For example,
if nodes i, j, k are assigned to cluster c1, any node, or cluster containing a node, that shared an edge
with i, j, or k will share an edge with c1.

A more complex pooling layer, DiffPool (https://arxiv.org/abs/1806.08804), tries to address both
clustering and downsampling simultaneously. This layer learns a soft cluster assignment matrix 𝑺𝑺 𝑺 𝑺𝑛𝑛𝑛𝑛𝑛 , which distributes n node embeddings into c clusters. (For a refresher on soft versus hard
clustering, refer to the section Hard versus soft clustering in Chapter 10, Working with Unlabeled Data

– Clustering Analysis.) With this, X is updated as X′ = STX and A as A′ = STATS. Notably, A′ no longer con-
tains discrete values and can instead be viewed as a matrix of edge weightings. Over time, DiffPool
converges to an almost hard clustering assignment with interpretable structure.

Another pooling method, top-k pooling, drops nodes from the graph instead of aggregating them,
which circumvents clustering and connectivity issues. While this seemingly comes with a loss of the
information in the dropped nodes, in the context of a network, as long as a convolution occurs before
pooling, the network can learn to avoid this. The dropped nodes are selected using a projection score
against a learnable vector p. The actual formulation to compute (X′, A′), as stated in Towards Sparse
Hierarchical Graph Classifiers (https://arxiv.org/abs/1811.01287), is:𝑦𝑦 𝑦 𝑋𝑋𝑝𝑝‖𝑝𝑝‖ , 𝑖𝑖 𝑦 top-k(𝒚𝒚, 𝒚𝒚), 𝑿𝑿′ 𝑦 (𝑿𝑿 𝑿 𝑿𝑿𝑿𝑿(𝒚𝒚))𝑖𝑖, 𝑨𝑨′ 𝑦 𝐴𝐴𝑖𝑖𝑖𝑖
Here, top-k selects the indexes of y, with the top k values and the index vector i being used to drop rows
of X and A. Top-k pooling is implemented in PyTorch Geometric as torch_geometric.nn.TopKPooling.
Additionally, max and mean pooling are implemented as torch_geometric.nn.max_pool_x and torch_
geometric.nn.avg_pool_x, respectively.

Normalization
Normalization techniques are utilized in many kinds of neural networks to help stabilize and/or
speed up the training process. Many approaches, such as batch normalization (discussed in Chapter
17, Generative Adversarial Networks for Synthesizing New Data), can be readily applied in GNNs with
appropriate bookkeeping. In this section, we will briefly describe some of the normalization layers
that have been designed specifically for graph data.

As a quick review of normalization, we mean that given a set of feature values x1, ..., xn, we update the
values with 𝑥𝑥𝑖𝑖−𝜇𝜇𝜎𝜎 , where 𝜇𝜇 is the mean and 𝜎𝜎 the standard deviation of the set of values. Typically, most
neural network normalization methods take the general form 𝛾𝛾 𝑥𝑥𝑖𝑖−𝜇𝜇𝜎𝜎 + 𝛽𝛽 , where 𝛾𝛾 and 𝛽𝛽 are learnable

parameters, and the difference between methods has to do with the set of features the normalization
is applied over.

GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training by Tianle Cai and col-
leagues, 2020 (https://arxiv.org/abs/2009.03294), showed that the mean statistic after aggregation
in a graph convolution can contain meaningful information, so discarding it completely may not be
desirable. To address this, they introduced GraphNorm.

https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/1811.01287
https://arxiv.org/abs/2009.03294

Chapter 18 669

Borrowing notation from the original manuscript, let h be the matrix of node embeddings. Let hi, j be
the jth feature value of node vi, where i = 1, ..., n, and j = 1, ..., d. GraphNorm takes the following form:𝛾𝛾𝑗𝑗 ℎ𝑖𝑖𝑖𝑗𝑗 − 𝛼𝛼𝑗𝑗 ⋅ 𝜇𝜇𝑗𝑗𝜎𝜎𝜎𝑗𝑗 + 𝛽𝛽𝑗𝑗
Here, 𝜇𝜇𝑗𝑗 = ∑ ℎ𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛 and 𝜎𝜎𝜎𝑗𝑗 = ∑ (ℎ𝑖𝑖𝑖𝑖𝑖−𝛼𝛼𝑖𝑖𝜇𝜇𝑖𝑖)2𝑛𝑛𝑖𝑖𝑖𝑖 𝑛𝑛 . The key addition is the learnable parameter, 𝛼𝛼 , which can
control how much of the mean statistic, 𝜇𝜇𝑗𝑗 , to discard.

Another graph normalization technique is MsgNorm, which was described by Guohao Li and col-
leagues in the manuscript DeeperGCN: All You Need to Train Deeper GCNs in 2020 (https://arxiv.org/
abs/2006.07739). MsgNorm corresponds to the message-passing formulation of graph convolutions
mentioned earlier in the chapter. Using message-passing network nomenclature (defined at the end
of the subsection Implementing a basic graph convolution), after a graph convolution has summed over
Mt and produced mi but before updating the nodes embedding with Ut, MsgNorm normalizes mi with
the following formula: 𝑚𝑚𝑖𝑖′ = 𝑠𝑠 𝑠 ‖ℎ𝑖𝑖‖2 𝑠 𝑚𝑚𝑖𝑖‖𝑚𝑚𝑖𝑖‖2

Here, s is a learnable scaling factor and the intuition behind this approach is to normalize the features
of the aggregated messages in a graph convolution. While there is no theory to support this normal-
ization approach, it has worked well in practice.

The normalization layers we’ve discussed are all implemented and available via PyTorch Geomet-
ric as BatchNorm, GroupNorm, and MessageNorm. For more information, please visit the PyTorch
Geometric documentation at https://pytorch-geometric.readthedocs.io/en/latest/modules/
nn.html#normalization-layers.

Unlike graph pooling layers, which may require an additional clustering setup, graph normalization
layers can be more readily plugged into an existing GNN model. Testing a variety of normalization
methods during model development and optimization is a reasonable and recommended approach.

Pointers to advanced graph neural network literature
The field of deep learning focused on graphs is developing rapidly, and there are many methods that
we can’t cover in reasonable detail in this introductory chapter. So, before we conclude this chapter,
we want to provide interested readers with a selection of pointers to noteworthy literature for more
in-depth studies of this topic.

As you might remember from Chapter 16, Transformers – Improving Natural Language Processing with
Attention Mechanisms, attention mechanisms can improve the capabilities of models by providing
additional contexts. In this regard, a variety of attention methods for GNNs have been developed.
Examples of GNNs augmented with attention include Graph Attention Networks, by Petar Veličković
and colleagues, 2017 (https://arxiv.org/abs/1710.10903) and Relational Graph Attention Networks
by Dan Busbridge and colleagues, 2019 (https://arxiv.org/abs/1904.05811).

https://arxiv.org/abs/2006.07739
https://arxiv.org/abs/2006.07739
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#normalization-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#normalization-layers
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1904.05811

Graph Neural Networks for Capturing Dependencies in Graph Structured Data670

Recently, these attention mechanisms have also been utilized in graph transformers proposed by
Seongjun Yun and colleagues, 2020 (https://arxiv.org/abs/1911.06455) and Heterogeneous Graph
Transformer by Ziniu Hu and colleagues, 2020 (https://arxiv.org/abs/2003.01332).

Next to the aforementioned graph transformers, other deep generative models have been developed
specifically for graphs. There are graph variational autoencoders such as those introduced in Variation-
al Graph Auto-Encoders by Kipf and Welling, 2016 (https://arxiv.org/abs/1611.07308), Constrained
Graph Variational Autoencoders for Molecule Design by Qi Liu and colleagues, 2018 (https://arxiv.org/
abs/1805.09076), and GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
by Simonovsky and Komodakis, 2018 (https://arxiv.org/abs/1802.03480). Another notable graph
variational autoencoder that has been applied to molecule generation is the Junction Tree Variational
Autoencoder for Molecular Graph Generation by Wengong Jin and colleagues, 2019 (https://arxiv.org/
abs/1802.04364).

Some GANs have been designed to generate graph data, though, as of this writing, the performance
of GANs on graphs is much less convincing than in the image domain. Examples include GraphGAN:
Graph Representation Learning with Generative Adversarial Nets by Hongwei Wang and colleagues, 2017
(https://arxiv.org/abs/1711.08267) and MolGAN: An Implicit Generative Model for Small Molecular
Graphs by Cao and Kipf, 2018 (https://arxiv.org/abs/1805.11973).

GNNs have also been incorporated into deep reinforcement learning models—you will learn more
about reinforcement learning in the next chapter. Examples include Graph Convolutional Policy Network
for Goal-Directed Molecular Graph Generation by Jiaxuan You and colleagues, 2018 (https://arxiv.org/
abs/1806.02473) and a deep Q-network proposed in Optimization of Molecules via Deep Reinforcement
Learning by Zhenpeng Zhou and colleagues, 2018 (https://arxiv.org/abs/1810.08678), which utilizes
a GNN that was applied to molecule generation tasks.

Lastly, while not technically graph data, 3D point clouds are sometimes represented as such using
distance cutoffs to create edges. Applications of graph networks in this space include Point-GNN: Graph
Neural Network for 3D Object Detection in a Point Cloud by Weijing Shi and colleagues, 2020 (https://
arxiv.org/abs/2003.01251), which detects 3D objects in LiDAR point clouds. In addition, GAPNet:
Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud by Can Chen and
colleagues, 2019 (https://arxiv.org/abs/1905.08705) was designed to detect local features in point
cloud data, which had been challenging for other deep architectures.

https://arxiv.org/abs/1911.06455
https://arxiv.org/abs/2003.01332
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1805.09076
https://arxiv.org/abs/1805.09076
https://arxiv.org/abs/1802.03480
https://arxiv.org/abs/1802.04364
https://arxiv.org/abs/1802.04364
https://arxiv.org/abs/1711.08267
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1806.02473
https://arxiv.org/abs/1806.02473
https://arxiv.org/abs/1810.08678
https://arxiv.org/abs/2003.01251
https://arxiv.org/abs/2003.01251
https://arxiv.org/abs/1905.08705

Chapter 18 671

Summary
As the amount of data we have access to continues to increase, so too will our need to understand in-
terrelations within the data. While this will be done in numerous ways, graphs function as a distilled
representation of these relationships, so the amount of graph data available will only increase.

In this chapter, we explained graph neural networks from the ground up by implementing a graph
convolution layer and a GNN from scratch. We saw that implementing GNNs, due to the nature of
graph data, is actually quite complex. Thus, to apply GNNs to a real-world example, such as predict-
ing molecular polarization, we learned how to utilize the PyTorch Geometric library, which provides
implementations of many of the building blocks we need. Lastly, we went over some of the notable
literature for diving into the GNN literature more deeply.

Hopefully, this chapter provided an introduction to how deep learning can be leveraged to learn on
graphs. Methods in this space are currently a hot area of research, and many of the ones we have
mentioned were published in the last couple of years. With this text as a starting point, maybe the
next advancement in the space can be made by you.

In the next chapter, we will look at reinforcement learning, which is a completely different category
of machine learning compared to what we have covered so far in this book.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://packt.link/MLwPyTorch

19
Reinforcement Learning for
Decision Making in Complex
Environments

In the previous chapters, we focused on supervised and unsupervised machine learning. We also
learned how to leverage artificial neural networks and deep learning to tackle problems encountered
with these types of machine learning. As you’ll recall, supervised learning focuses on predicting a
category label or continuous value from a given input feature vector. Unsupervised learning focuses on
extracting patterns from data, making it useful for data compression (Chapter 5, Compressing Data via
Dimensionality Reduction), clustering (Chapter 10, Working with Unlabeled Data – Clustering Analysis), or
approximating the training set distribution for generating new data (Chapter 17, Generative Adversarial
Networks for Synthesizing New Data).

In this chapter, we turn our attention to a separate category of machine learning, reinforcement
learning (RL), which is different from the previous categories as it is focused on learning a series of
actions for optimizing an overall reward—for example, winning at a game of chess. In summary, this
chapter will cover the following topics:

• Learning the basics of RL, getting familiar with agent/environment interactions, and under-
standing how the reward process works, in order to help make decisions in complex environ-
ments

• Introducing different categories of RL problems, model-based and model-free learning tasks,
Monte Carlo, and temporal difference learning algorithms

• Implementing a Q-learning algorithm in a tabular format
• Understanding function approximation for solving RL problems, and combining RL with deep

learning by implementing a deep Q-learning algorithm

Reinforcement Learning for Decision Making in Complex Environments674

RL is a complex and vast area of research, and this chapter focuses on the fundamentals. As this chapter
serves as an introduction, and to keep our attention on the important methods and algorithms, we
will work mainly with basic examples that illustrate the main concepts. However, toward the end of
this chapter, we will go over a more challenging example and utilize deep learning architectures for
a particular RL approach known as deep Q-learning.

Introduction – learning from experience
In this section, we will first introduce the concept of RL as a branch of machine learning and see its
major differences compared with other tasks of machine learning. After that, we will cover the fun-
damental components of an RL system. Then, we will see the RL mathematical formulation based
on the Markov decision process.

Understanding reinforcement learning
Until this point, this book has primarily focused on supervised and unsupervised learning. Recall that
in supervised learning, we rely on labeled training examples, which are provided by a supervisor or
a human expert, and the goal is to train a model that can generalize well to unseen, unlabeled test
examples. This means that the supervised learning model should learn to assign the same labels or
values to a given input example as the supervisor human expert. On the other hand, in unsupervised
learning, the goal is to learn or capture the underlying structure of a dataset, such as in clustering
and dimensionality reduction methods; or learning how to generate new, synthetic training examples
with a similar underlying distribution. RL is substantially different from supervised and unsupervised
learning, and so RL is often regarded as the “third category of machine learning.”

The key element that distinguishes RL from other subtasks of machine learning, such as supervised and
unsupervised learning, is that RL is centered around the concept of learning by interaction. This means
that in RL, the model learns from interactions with an environment to maximize a reward function.

While maximizing a reward function is related to the concept of minimizing the loss function in su-
pervised learning, the correct labels for learning a series of actions are not known or defined upfront
in RL—instead, they need to be learned through interactions with the environment to achieve a cer-
tain desired outcome—such as winning at a game. With RL, the model (also called an agent) interacts
with its environment, and by doing so generates a sequence of interactions that are together called
an episode. Through these interactions, the agent collects a series of rewards determined by the en-
vironment. These rewards can be positive or negative, and sometimes they are not disclosed to the
agent until the end of an episode.

For example, imagine that we want to teach a computer to play the game of chess and win against
human players. The labels (rewards) for each individual chess move made by the computer are not
known until the end of the game, because during the game itself, we don’t know whether a particular
move will result in winning or losing that game. Only right at the end of the game is the feedback
determined. That feedback would likely be a positive reward given if the computer won the game
because the agent had achieved the overall desired outcome; and vice versa, a negative reward would
likely be given if the computer had lost the game.

Chapter 19 675

Furthermore, considering the example of playing chess, the input is the current configuration, for
instance, the arrangement of the individual chess pieces on the board. Given the large number of pos-
sible inputs (the states of the system), it is impossible to label each configuration or state as positive or
negative. Therefore, to define a learning process, we provide rewards (or penalties) at the end of each
game, when we know whether we reached the desired outcome—whether we won the game or not.

This is the essence of RL. In RL, we cannot or do not teach an agent, computer, or robot how to do
things; we can only specify what we want the agent to achieve. Then, based on the outcome of a par-
ticular trial, we can determine rewards depending on the agent’s success or failure. This makes RL
very attractive for decision making in complex environments, especially when the problem-solving
task requires a series of steps, which are unknown, or hard to explain, or hard to define.

Besides applications in games and robotics, examples of RL can also be found in nature. For example,
training a dog involves RL—we hand out rewards (treats) to the dog when it performs certain desirable
actions. Or consider a medical dog that is trained to warn its partner of an oncoming seizure. In this
case, we do not know the exact mechanism by which the dog is able to detect an oncoming seizure,
and we certainly wouldn’t be able to define a series of steps to learn seizure detection, even if we had
precise knowledge of this mechanism. However, we can reward the dog with a treat if it successfully
detects a seizure to reinforce this behavior!

While RL provides a powerful framework for learning an arbitrary series of actions to achieve a certain
goal, please do keep in mind that RL is still a relatively young and active area of research with many
unresolved challenges. One aspect that makes training RL models particularly challenging is that the
consequent model inputs depend on actions taken previously. This can lead to all sorts of problems,
and usually results in unstable learning behavior. Also, this sequence-dependence in RL creates a so-
called delayed effect, which means that the action taken at a time step t may result in a future reward
appearing some arbitrary number of steps later.

Defining the agent-environment interface of a reinforcement
learning system
In all examples of RL, we can find two distinct entities: an agent and an environment. Formally, an
agent is defined as an entity that learns how to make decisions and interacts with its surrounding
environment by taking an action. In return, as a consequence of taking an action, the agent receives
observations and a reward signal as governed by the environment. The environment is anything that
falls outside the agent. The environment communicates with the agent and determines the reward
signal for the agent’s action as well as its observations.

The reward signal is the feedback that the agent receives from interacting with the environment, which
is usually provided in the form of a scalar value and can be either positive or negative. The purpose of
the reward is to tell the agent how well it has performed. The frequency at which the agent receives
the reward depends on the given task or problem. For example, in the game of chess, the reward
would be determined after a full game based on the outcome of all the moves: a win or a loss. On the
other hand, we could define a maze such that the reward is determined after each time step. In such
a maze, the agent then tries to maximize its accumulated rewards over its lifetime—where lifetime
describes the duration of an episode.

Reinforcement Learning for Decision Making in Complex Environments676

Figure 19.1 illustrates the interactions and communication between the agent and the environment:

Figure 19.1: The interaction between the agent and its environment

The state of the agent, as illustrated in Figure 19.1, is the set of all of its variables (1). For example, in
the case of a robot drone, these variables could include the drone’s current position (longitude, latitude,
and altitude), the drone’s remaining battery life, the speed of each fan, and so forth. At each time step,
the agent interacts with the environment through a set of available actions At (2). Based on the action
taken by the agent denoted by At, while it is at state St, the agent will receive a reward signal Rt+1 (3),
and its state will become St+1 (4).

During the learning process, the agent must try different actions (exploration) so that it can progres-
sively learn which actions to prefer and perform more often (exploitation) in order to maximize the
total, cumulative reward. To understand this concept, let’s consider a very simple example where a
new computer science graduate with a focus on software engineering is wondering whether to start
working at a company (exploitation) or to pursue a master’s or Ph.D. degree to learn more about data
science and machine learning (exploration). In general, exploitation will result in choosing actions
with a greater short-term reward, whereas exploration can potentially result in greater total rewards
in the long run. The tradeoff between exploration and exploitation has been studied extensively, and
yet, there is no universal answer to this decision-making dilemma.

The theoretical foundations of RL
Before we jump into some practical examples and start training an RL model, which we will be doing
later in this chapter, let’s first understand some of the theoretical foundations of RL. The following
sections will begin by first examining the mathematical formulation of Markov decision processes,
episodic versus continuing tasks, some key RL terminology, and dynamic programming using the
Bellman equation. Let’s start with Markov decision processes.

Chapter 19 677

Markov decision processes
In general, the type of problems that RL deals with are typically formulated as Markov decision pro-
cesses (MDPs). The standard approach for solving MDP problems is by using dynamic programming,
but RL offers some key advantages over dynamic programming.

Dynamic programming is not a feasible approach, however, when the size of states (that is, the number
of possible configurations) is relatively large. In such cases, RL is considered a much more efficient
and practical alternative approach for solving MDPs.

The mathematical formulation of Markov decision processes
The types of problems that require learning an interactive and sequential decision-making process,
where the decision at time step t affects the subsequent situations, are mathematically formalized
as MDPs.

In the case of the agent/environment interactions in RL, if we denote the agent’s starting state as S0,
the interactions between the agent and the environment result in a sequence as follows:

{S0, A0, R1}, {S1, A1, R2}, {S2, A2, R3}, ...

Note that the braces serve only as a visual aid. Here, St and At stand for the state and the action taken
at time step t. Rt+1 denotes the reward received from the environment after performing action At. Note
that St, Rt+1, and At are time-dependent random variables that take values from predefined finite sets
denoted by 𝑠𝑠 𝑠 �̂�𝑠 , 𝑟𝑟 𝑟 �̂�𝑟 , and 𝑎𝑎 𝑎 �̂�𝑎 , respectively. In an MDP, these time-dependent random variables,
St and Rt+1, have probability distributions that only depend on their values at the preceding time step,
t – 1. The probability distribution for St+1 = s′ and Rt+1 = r can be written as a conditional probability
over the preceding state (St) and taken action (At) as follows:𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠) ≝ 𝑃𝑃(𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠′, 𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑟𝑟|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝑠𝑠𝑡𝑡 = 𝑠𝑠)

Dynamic programming

Dynamic programming refers to a set of computer algorithms and programming methods
that was developed by Richard Bellman in the 1950s. In a sense, dynamic programming
is about recursive problem solving—solving relatively complicated problems by breaking
them down into smaller subproblems.

The key difference between recursion and dynamic programming is that dynamic program-
ming stores the results of subproblems (usually as a dictionary or other form of lookup
table) so that they can be accessed in constant time (instead of recalculating them) if they
are encountered again in future.

Examples of some famous problems in computer science that are solved by dynamic
programming include sequence alignment and computing the shortest path from point
A to point B.

Reinforcement Learning for Decision Making in Complex Environments678

This probability distribution completely defines the dynamics of the environment (or model of the
environment) because, based on this distribution, all transition probabilities of the environment can
be computed. Therefore, the environment dynamics are a central criterion for categorizing different
RL methods. The types of RL methods that require a model of the environment or try to learn a model
of the environment (that is, the environment dynamics) are called model-based methods, as opposed
to model-free methods.

The environment dynamics can be considered deterministic if particular actions for given states are
always or never taken, that is, 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠) ∈ {0,1} . Otherwise, in the more general case, the environ-
ment would have stochastic behavior.

To make sense of this stochastic behavior, let’s consider the probability of observing the future state
St+1 = s′ conditioned on the current state St = s and the performed action At = a. This is denoted by:𝑝𝑝(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠) ≝ 𝑃𝑃(𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠′|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠)

Model-free and model-based RL

When the probability 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠) is known, then the learning task can be solved with
dynamic programming. But when the dynamics of the environment are not known, as is
the case in many real-world problems, then we would need to acquire a large number of
samples by interacting with the environment to compensate for the unknown environ-
ment dynamics.

Two main approaches for dealing with this problem are the model-free Monte Carlo
(MC) and temporal difference (TD) methods. The following chart displays the two main
categories and the branches of each method:

Figure 19.2: The different models to use based on the environment dynamics

We will cover these different approaches and their branches from theory to practical
algorithms in this chapter.

Chapter 19 679

It can be computed as a marginal probability by taking the sum over all possible rewards:𝑝𝑝(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠) ≝∑𝑝𝑝(𝑠𝑠′𝑠 𝑟𝑟|𝑠𝑠𝑠 𝑠𝑠)𝑟𝑟𝑟�̂�𝑟

This probability is called state-transition probability. Based on the state-transition probability, if the
environment dynamics are deterministic, then it means that when the agent takes action At = a at
state St = s, the transition to the next state, St+1 = s′, will be 100 percent certain, that is, 𝑝𝑝(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠) = 1 .

Visualization of a Markov process
A Markov process can be represented as a directed cyclic graph in which the nodes in the graph repre-
sent the different states of the environment. The edges of the graph (that is, the connections between
the nodes) represent the transition probabilities between the states.

For example, let’s consider a student deciding between three different situations: (A) studying for an
exam at home, (B) playing video games at home, or (C) studying at the library. Furthermore, there is a
terminal state (T) for going to sleep. The decisions are made every hour, and after making a decision,
the student will remain in a chosen situation for that particular hour. Then, assume that when staying
at home (state A), there is a 50 percent likelihood that the student switches the activity to playing video
games. On the other hand, when the student is at state B (playing video games), there is a relatively
high chance (80 percent) that the student will continue playing video games in the subsequent hours.

The dynamics of the student’s behavior is shown as a Markov process in Figure 19.3, which includes
a cyclic graph and a transition table:

Figure 19.3: The Markov process of the student

The values on the edges of the graph represent the transition probabilities of the student’s behavior,
and their values are also shown in the table to the right. When considering the rows in the table, please
note that the transition probabilities coming out of each state (node) always sum to 1.

Episodic versus continuing tasks
As the agent interacts with the environment, the sequence of observations or states forms a trajectory.
There are two types of trajectories. If an agent’s trajectory can be divided into subparts such that each
starts at time t = 0 and ends in a terminal state ST (at t = T), the task is called an episodic task.

Reinforcement Learning for Decision Making in Complex Environments680

On the other hand, if the trajectory is infinitely continuous without a terminal state, the task is called
a continuing task.

The task related to a learning agent for the game of chess is an episodic task, whereas a cleaning
robot that is keeping a house tidy is typically performing a continuing task. In this chapter, we only
consider episodic tasks.

In episodic tasks, an episode is a sequence or trajectory that an agent takes from a starting state, S0,
to a terminal state, ST:

S0, A0, R1, S1, A1, R2, ..., St, At, Rt+1, ..., St–1, At–1, Rt, St

For the Markov process shown in Figure 19.3, which depicts the task of a student studying for an exam,
we may encounter episodes like the following three examples:Episode 1: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 p𝐵ss (fin𝐵l rew𝐵rd = +1)Episode 2: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 f𝐵il (fin𝐵l rew𝐵rd = −1)Episode 3: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 p𝐵ss (fin𝐵l rew𝐵rd = +1)

RL terminology: return, policy, and value function
Next, let’s define some additional RL-specific terminology that we will need for the remainder of this
chapter.

The return
The so-called return at time t is the cumulated reward obtained from the entire duration of an episode.
Recall that Rt+1 = r is the immediate reward obtained after performing an action, At, at time t; the sub-
sequent rewards are Rt+2, Rt+3, and so forth.

The return at time t can then be calculated from the immediate reward as well as the subsequent
ones, as follows: 𝐺𝐺𝑡𝑡 ≝ 𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑡𝑅𝑅𝑡𝑡𝑡𝑡 + ⋯ =∑𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡𝑡𝑘𝑘𝑡𝑡𝑘𝑘𝑘𝑘

Here, 𝛾𝛾 is the discount factor in range [0, 1]. The parameter 𝛾𝛾 indicates how much the future rewards
are “worth” at the current moment (time t). Note that by setting 𝛾𝛾 𝛾 𝛾 , we would imply that we do not
care about future rewards. In this case, the return will be equal to the immediate reward, ignoring
the subsequent rewards after t + 1, and the agent will be short-sighted. On the other hand, if 𝛾𝛾 𝛾 𝛾 ,
the return will be the unweighted sum of all subsequent rewards.

Moreover, note that the equation for the return can be expressed in a simpler way by using recursion
as follows: 𝐺𝐺𝑡𝑡 = 𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝐺𝐺𝑡𝑡𝑡𝑡 = 𝑟𝑟 + 𝛾𝛾𝐺𝐺𝑡𝑡𝑡𝑡

Chapter 19 681

This means that the return at time t is equal to the immediate reward r plus the discounted future
return at time t + 1. This is a very important property, which facilitates the computations of the return.

Let’s compute the return at different time steps for the episodes in our previous student example.
Assume 𝛾𝛾 𝛾 𝛾𝛾𝛾 and that the only reward given is based on the result of the exam (+1 for passing the
exam, and –1 for failing it). The rewards for intermediate time steps are 0.Episode 1: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 p𝐵ss (fin𝐵l rew𝐵rd = +1) :

• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡0 𝑡 𝑅𝑅1 + 𝛾𝛾𝑅𝑅2 + 𝛾𝛾2𝑅𝑅3 + ⋯+ 𝛾𝛾6𝑅𝑅7 → 𝐺𝐺0 = 0 + 0 × 𝛾𝛾 + 𝛾 + 𝛾 × 𝛾𝛾6 = 0.96 ≈ 0.53𝛾

• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡1 𝑡 𝑡 × 𝛾𝛾5 𝑡 0.590

• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡2 𝑡 1 × 𝛾𝛾4 𝑡 0.656

• ...
• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡6 𝑡 1 × 𝛾𝛾 𝑡 𝛾𝛾𝛾

• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡7 𝑡 1 𝑡 1

Intuition behind the discount factor

To get an understanding of the discount factor, consider Figure 19.4, showing the value
of earning a $100 bill today compared to earning it in a year from now. Under certain
economic situations, like inflation, earning this $100 bill right now could be worth more
than earning it in the future:

Figure 19.4: An example of a discount factor based on the value of a $100 bill over time

Therefore, we say that if this bill is worth $100 right now, then it would be worth $90 in a
year with a discount factor 𝛾𝛾 𝛾 𝛾𝛾𝛾 .

Reinforcement Learning for Decision Making in Complex Environments682

Episode 2: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴i𝐴 (𝐴in𝐴𝐴 rew𝐴rd = −1) :

• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡0 𝑡 −1 × 𝛾𝛾8 𝑡 −𝑡.43𝑡

• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡0 𝑡 −𝑡 × 𝛾𝛾7 𝑡 −0.478

• ...
• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡0 𝑡 −1 × 𝛾𝛾 𝑡 −𝛾𝛾𝛾

• 𝑡𝑡 𝑡 𝑡 𝑡 𝑡𝑡10 𝑡 −1

We leave the computation of the returns for the third episode as an exercise for the reader.

Policy
A policy typically denoted by 𝜋𝜋(𝑎𝑎|𝑠𝑠) is a function that determines the next action to take, which can
be either deterministic or stochastic (that is, the probability for taking the next action). A stochastic
policy then has a probability distribution over actions that an agent can take at a given state:𝜋𝜋(𝑎𝑎|𝑠𝑠) ≝ 𝑃𝑃[𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠]
During the learning process, the policy may change as the agent gains more experience. For example,
the agent may start from a random policy, where the probability of all actions is uniform; meanwhile,
the agent will hopefully learn to optimize its policy toward reaching the optimal policy. The optimal
policy 𝜋𝜋∗(𝑎𝑎|𝑠𝑠) is the policy that yields the highest return.

Value function
The value function, also referred to as the state-value function, measures the goodness of each state—in
other words, how good or bad it is to be in a particular state. Note that the criterion for goodness is
based on the return.

Now, based on the return Gt, we define the value function of state s as the expected return (the average
return over all possible episodes) after following policy 𝜋𝜋 :

𝑣𝑣𝜋𝜋(𝑠𝑠) ≝ 𝐸𝐸𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠] = 𝐸𝐸𝜋𝜋 [∑𝛾𝛾𝑘𝑘𝑘𝑘𝑅𝑅𝑡𝑡𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 | 𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠
In an actual implementation, we usually estimate the value function using lookup tables, so we do
not have to recompute it multiple times. (This is the dynamic programming aspect.) For example,
in practice, when we estimate the value function using such tabular methods, we store all the state
values in a table denoted by V(s). In a Python implementation, this could be a list or a NumPy array
whose indices refer to different states; or, it could be a Python dictionary, where the dictionary keys
map the states to the respective values.

Moreover, we can also define a value for each state-action pair, which is called the action-value function
and is denoted by 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) . The action-value function refers to the expected return Gt when the agent
is at state St = s and takes action At = a.

Chapter 19 683

Extending the definition of the state-value function to state-action pairs, we get the following:

𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) ≝ 𝐸𝐸𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠] = 𝐸𝐸𝜋𝜋 [∑𝛾𝛾𝑘𝑘𝑘𝑘𝑅𝑅𝑡𝑡𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 | 𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑎
This is similar to referring to the optimal policy as 𝜋𝜋∗(𝑎𝑎|𝑠𝑠) , 𝑣𝑣∗(𝑠𝑠) , and 𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) also denote the optimal
state-value and action-value functions.

Estimating the value function is an essential component of RL methods. We will cover different ways
of calculating and estimating the state-value function and action-value function later in this chapter.

Before we move directly ahead into some RL algorithms, let’s briefly go over the derivation for the
Bellman equation, which we can use to implement the policy evaluation.

The difference between the reward, return, and value function

The reward is a consequence of the agent taking an action given the current state of the
environment. In other words, the reward is a signal that the agent receives when per-
forming an action to transition from one state to the next. However, remember that not
every action yields a positive or negative reward—think back to our chess example, where
a positive reward is only received upon winning the game, and the reward for all inter-
mediate actions is zero.

A state itself has a certain value, which we assign to it, to measure how good or bad this
state is—this is where the value function comes into play. Typically, the states with a “high”
or “good” value are those states that have a high expected return and will likely yield a
high reward given a particular policy.

For example, let’s consider a chess-playing computer once more. A positive reward may
only be given at the end of the game if the computer wins the game. There is no (positive)
reward if the computer loses the game. Now, imagine the computer performs a particular
chess move that captures the opponent’s queen without any negative consequences for
the computer. Since the computer only receives a reward for winning the game, it does
not get an immediate reward by making this move that captures the opponent’s queen.
However, the new state (the state of the board after capturing the queen) may have a high
value, which may yield a reward (if the game is won afterward). Intuitively, we can say
that the high value associated with capturing the opponent’s queen is associated with
the fact that capturing the queen often results in winning the game—and thus the high
expected return, or value. However, note that capturing the opponent’s queen does not
always lead to winning the game; hence, the agent is likely to receive a positive reward,
but it is not guaranteed.

In short, the return is the weighted sum of rewards for an entire episode, which would be
equal to the discounted final reward in our chess example (since there is only one reward).
The value function is the expectation over all possible episodes, which basically computes
how “valuable” it is, on average, to make a certain move.

Reinforcement Learning for Decision Making in Complex Environments684

Dynamic programming using the Bellman equation
The Bellman equation is one of the central elements of many RL algorithms. The Bellman equation
simplifies the computation of the value function, such that rather than summing over multiple time
steps, it uses a recursion that is similar to the recursion for computing the return.

Based on the recursive equation for the total return 𝐺𝐺𝑡𝑡 = 𝑟𝑟 𝑟 𝑟𝑟𝐺𝐺𝑡𝑡𝑡𝑡 , we can rewrite the value function
as follows: 𝑣𝑣𝜋𝜋(𝑠𝑠) ≝ 𝐸𝐸𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠] = 𝐸𝐸𝜋𝜋[𝑟𝑟 𝑟 𝑟𝑟𝐺𝐺𝑡𝑡𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠] = 𝑟𝑟 𝑟 𝑟𝑟 𝐸𝐸𝜋𝜋[𝐺𝐺𝑡𝑡𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠]
Notice that the immediate reward r is taken out of the expectation since it is a constant and known
quantity at time t.

Similarly, for the action-value function, we could write:𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) ≝ 𝐸𝐸𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠] = 𝐸𝐸𝜋𝜋[𝑟𝑟 𝑟 𝑟𝑟𝐺𝐺𝑡𝑡𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠] = 𝑟𝑟 𝑟 𝑟𝑟 𝐸𝐸𝜋𝜋[𝐺𝐺𝑡𝑡𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠]
We can use the environment dynamics to compute the expectation by summing all the probabilities
of the next state s′ and the corresponding rewards r:𝑣𝑣𝜋𝜋(𝑠𝑠) =∑𝜋𝜋(𝑎𝑎|𝑠𝑠)𝑎𝑎𝑎𝑎𝑎 ∑ 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑎𝑎)[𝑟𝑟 𝑟 𝑟𝑟 𝑟𝑟𝜋𝜋[𝐺𝐺𝑡𝑡𝑡𝑡|𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑠𝑠′]]𝑠𝑠′𝑎�̂�𝑆,𝑟𝑟𝑎�̂�𝑟

Now, we can see that expectation of the return, 𝐸𝐸𝜋𝜋[𝐺𝐺𝑡𝑡𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠′] , is essentially the state-value function 𝑣𝑣𝜋𝜋(𝑠𝑠′) . So, we can write 𝑣𝑣𝜋𝜋(𝑠𝑠) as a function of 𝑣𝑣𝜋𝜋(𝑠𝑠′) :𝑣𝑣𝜋𝜋(𝑠𝑠) =∑𝜋𝜋(𝑎𝑎|𝑠𝑠)𝑎𝑎𝑎𝑎𝑎 ∑ 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑎𝑎)[𝑟𝑟 𝑟 𝑟𝑟 𝑣𝑣𝜋𝜋(𝑠𝑠′)]𝑠𝑠′𝑎�̂�𝑆,𝑟𝑟𝑎�̂�𝑟

This is called the Bellman equation, which relates the value function for a state, s, to the value func-
tion of its subsequent state, s′. This greatly simplifies the computation of the value function because
it eliminates the iterative loop along the time axis.

Reinforcement learning algorithms
In this section, we will cover a series of learning algorithms. We will start with dynamic programming,
which assumes that the transition dynamics—or the environment dynamics, that is, 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠) —are
known. However, in most RL problems, this is not the case. To work around the unknown environ-
ment dynamics, RL techniques were developed that learn through interacting with the environment.
These techniques include Monte Carlo (MC), temporal difference (TD) learning, and the increasingly
popular Q-learning and deep Q-learning approaches.

Chapter 19 685

Figure 19.5 describes the course of advancing RL algorithms, from dynamic programming to Q-learning:

Figure 19.5: Different types of RL algorithms

In the following sections of this chapter, we will step through each of these RL algorithms. We will
start with dynamic programming, before moving on to MC, and finally on to TD and its branches of
on-policy SARSA (state–action–reward–state–action) and off-policy Q-learning. We will also move
into deep Q-learning while we build some practical models.

Dynamic programming
In this section, we will focus on solving RL problems under the following assumptions:

• We have full knowledge of the environment dynamics; that is, all transition probabilities 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠) —are known.
• The agent’s state has the Markov property, which means that the next action and reward depend

only on the current state and the choice of action we make at this moment or current time step.

The mathematical formulation for RL problems using a Markov decision process (MDP) was introduced
earlier in this chapter. If you need a refresher, please refer to the section entitled The mathematical for-
mulation of Markov decision processes, which introduced the formal definition of the value function 𝑣𝑣𝜋𝜋(𝑠𝑠)
following the policy 𝜋𝜋 , and the Bellman equation, which was derived using the environment dynamics.

We should emphasize that dynamic programming is not a practical approach for solving RL problems.
The problem with using dynamic programming is that it assumes full knowledge of the environment
dynamics, which is usually unreasonable or impractical for most real-world applications. However,
from an educational standpoint, dynamic programming helps with introducing RL in a simple fashion
and motivates the use of more advanced and complicated RL algorithms.

There are two main objectives via the tasks described in the following subsections:

1. Obtain the true state-value function, 𝑣𝑣𝜋𝜋(𝑠𝑠) ; this task is also known as the prediction task and
is accomplished with policy evaluation.

2. Find the optimal value function, 𝑣𝑣∗(𝑠𝑠) , which is accomplished via generalized policy iteration.

Reinforcement Learning for Decision Making in Complex Environments686

Policy evaluation – predicting the value function with dynamic
programming
Based on the Bellman equation, we can compute the value function for an arbitrary policy 𝜋𝜋 with
dynamic programming when the environment dynamics are known. For computing this value func-
tion, we can adapt an iterative solution, where we start from 𝑣𝑣〈0〉(𝑠𝑠) , which is initialized to zero values
for each state. Then, at each iteration i + 1, we update the values for each state based on the Bellman
equation, which, in turn, is based on the values of states from a previous iteration, i, as follows:𝑣𝑣〈𝑖𝑖𝑖𝑖〉(𝑠𝑠) =∑𝜋𝜋(𝑎𝑎|𝑠𝑠)𝑎𝑎 ∑ 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑎𝑎)[𝑟𝑟 𝑟 𝑟𝑟 𝑣𝑣〈𝑖𝑖〉(𝑠𝑠′)]𝑠𝑠′∈�̂�𝑆,𝑟𝑟∈�̂�𝑟

It can be shown that as the iterations increase to infinity, 𝑣𝑣〈𝑖𝑖〉(𝑠𝑠) converges to the true state-value
function, 𝑣𝑣𝜋𝜋(𝑠𝑠) .
Also, notice here that we do not need to interact with the environment. The reason for this is that we
already know the environment dynamics accurately. As a result, we can leverage this information
and estimate the value function easily.

After computing the value function, an obvious question is how that value function can be useful for
us if our policy is still a random policy. The answer is that we can actually use this computed 𝑣𝑣𝜋𝜋(𝑠𝑠) to
improve our policy, as we will see next.

Improving the policy using the estimated value function
Now that we have computed the value function 𝑣𝑣𝜋𝜋(𝑠𝑠) by following the existing policy, 𝜋𝜋 , we want to
use 𝑣𝑣𝜋𝜋(𝑠𝑠) and improve the existing policy, 𝜋𝜋 . This means that we want to find a new policy, 𝜋𝜋′ , that, for
each state, s, following 𝜋𝜋′ , would yield higher or at least equal value than using the current policy, 𝜋𝜋 .
In mathematical terms, we can express this objective for the improved policy, 𝜋𝜋′ , as:𝑣𝑣𝜋𝜋′(𝑠𝑠) ≥ 𝑣𝑣𝜋𝜋(𝑠𝑠) ∀𝑠𝑠 𝑠 �̂�𝑠

First, recall that a policy, 𝜋𝜋 , determines the probability of choosing each action, a, while the agent is at
state s. Now, in order to find 𝜋𝜋′ that always has a better or equal value for each state, we first compute
the action-value function, 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) , for each state, s, and action, a, based on the computed state value
using the value function 𝑣𝑣𝜋𝜋(𝑠𝑠) . We iterate through all the states, and for each state, s, we compare the
value of the next state, s′, that would occur if action a was selected.

After we have obtained the highest state value by evaluating all state-action pairs via 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) , we
can compare the corresponding action with the action selected by the current policy. If the action
suggested by the current policy (that is, arg max𝑎𝑎 𝜋𝜋(𝑎𝑎|𝑠𝑠)) is different than the action suggested by the

action-value function (that is, arg max𝑎𝑎 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠)), then we can update the policy by reassigning the

probabilities of actions to match the action that gives the highest action value, 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) . This is called
the policy improvement algorithm.

Chapter 19 687

Policy iteration
Using the policy improvement algorithm described in the previous subsection, it can be shown that
the policy improvement will strictly yield a better policy, unless the current policy is already optimal
(which means 𝑣𝑣𝜋𝜋(𝑠𝑠) = 𝑣𝑣𝜋𝜋′(𝑠𝑠) = 𝑣𝑣∗(𝑠𝑠) for each 𝑠𝑠 𝑠 �̂�𝑠). Therefore, if we iteratively perform policy evalu-
ation followed by policy improvement, we are guaranteed to find the optimal policy.

Value iteration
We saw that by repeating the policy evaluation (compute 𝑣𝑣𝜋𝜋(𝑠𝑠) and 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠)) and policy improvement
(finding 𝜋𝜋′ such that 𝑣𝑣𝜋𝜋′(𝑠𝑠) ≥ 𝑣𝑣𝜋𝜋(𝑠𝑠) ∀𝑠𝑠 𝑠 �̂�𝑠), we can reach the optimal policy. However, it can be more
efficient if we combine the two tasks of policy evaluation and policy improvement into a single step.
The following equation updates the value function for iteration i + 1 (denoted by 𝑣𝑣〈𝑖𝑖𝑖𝑖〉) based on the
action that maximizes the weighted sum of the next state value and its immediate reward (𝑟𝑟 𝑟 𝑟𝑟 𝑟𝑟〈𝑖𝑖〉(𝑠𝑠′)):𝑣𝑣〈𝑖𝑖𝑖𝑖〉(𝑠𝑠) = max𝑎𝑎 ∑𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠)[𝑟𝑟 𝑟 𝑟𝑟 𝑣𝑣〈𝑖𝑖〉(𝑠𝑠′)]𝑠𝑠′,𝑟𝑟

In this case, the updated value for 𝑣𝑣〈𝑖𝑖𝑖𝑖〉(𝑠𝑠) is maximized by choosing the best action out of all possible
actions, whereas in policy evaluation, the updated value was using the weighted sum over all actions.

Reinforcement learning with Monte Carlo
As we saw in the previous section, dynamic programming relies on a simplistic assumption that the
environment’s dynamics are fully known. Moving away from the dynamic programming approach,
we now assume that we do not have any knowledge about the environment dynamics.

That is, we do not know the state-transition probabilities of the environment, and instead, we want
the agent to learn through interacting with the environment. Using MC methods, the learning process
is based on the so-called simulated experience.

Note that this technique is referred to as generalized policy iteration (GPI), which is
common among many RL methods. We will use the GPI in later sections of this chapter
for the MC and TD learning methods.

Notation for tabular estimates of the state-value and action-value functions

In most RL literature and textbooks, the lowercase 𝑣𝑣𝜋𝜋 and 𝑞𝑞𝜋𝜋 are used to refer to the true
state-value and true action-value functions, respectively, as mathematical functions.

Meanwhile, for practical implementations, these value functions are defined as lookup
tables. The tabular estimates of these value functions are denoted by 𝑉𝑉(𝑆𝑆𝑡𝑡 = 𝑠𝑠) ≈ 𝑣𝑣𝜋𝜋(𝑠𝑠)
and 𝑄𝑄𝜋𝜋(𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑎𝑎) ≈ 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑎𝑎) . We will also use this notation in this chapter.

Reinforcement Learning for Decision Making in Complex Environments688

For MC-based RL, we define an agent class that follows a probabilistic policy, 𝜋𝜋 , and based on this
policy, our agent takes an action at each step. This results in a simulated episode.

Earlier, we defined the state-value function, such that the value of a state indicates the expected return
from that state. In dynamic programming, this computation relied on the knowledge of the environ-
ment dynamics, that is, 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠) .
However, from now on, we will develop algorithms that do not require the environment dynamics.
MC-based methods solve this problem by generating simulated episodes where an agent interacts
with the environment. From these simulated episodes, we will be able to compute the average return
for each state visited in that simulated episode.

State-value function estimation using MC
After generating a set of episodes, for each state, s, the set of episodes that all pass through state s is
considered for calculating the value of state s. Let’s assume that a lookup table is used for obtaining
the value corresponding to the value function, 𝑉𝑉(𝑆𝑆𝑡𝑡 = 𝑠𝑠) . MC updates for estimating the value function
are based on the total return obtained in that episode starting from the first time that state s is visited.
This algorithm is called first-visit Monte Carlo value prediction.

Action-value function estimation using MC
When the environment dynamics are known, we can easily infer the action-value function from a
state-value function by looking one step ahead to find the action that gives the maximum value, as
was shown in the Dynamic programming section. However, this is not feasible if the environment
dynamics are unknown.

To solve this issue, we can extend the algorithm for estimating the first-visit MC state-value prediction.
For instance, we can compute the estimated return for each state-action pair using the action-value
function. To obtain this estimated return, we consider visits to each state-action pair (s, a), which
refers to visiting state s and taking action a.

However, a problem arises since some actions may never be selected, resulting in insufficient explo-
ration. There are a few ways to resolve this. The simplest approach is called exploratory start, which
assumes that every state-action pair has a non-zero probability at the beginning of the episode.

Another approach for dealing with this lack-of-exploration issue is called the 𝜖𝜖 -greedy policy, which
will be discussed in the next section on policy improvement.

Finding an optimal policy using MC control
MC control refers to the optimization procedure for improving a policy. Similar to the policy iteration
approach in the previous section (Dynamic programming), we can repeatedly alternate between policy
evaluation and policy improvement until we reach the optimal policy. So, starting from a random
policy, 𝜋𝜋0 , the process of alternating between policy evaluation and policy improvement can be illus-
trated as follows: 𝜋𝜋0 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸→ 𝑞𝑞𝜋𝜋0 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼→ 𝜋𝜋1 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸→ 𝑞𝑞𝜋𝜋1 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼→ 𝜋𝜋2 … 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸→ 𝑞𝑞∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼→ 𝜋𝜋∗

Chapter 19 689

Policy improvement – computing the greedy policy from the action-
value function
Given an action-value function, q(s, a), we can generate a greedy (deterministic) policy as follows:𝜋𝜋(𝑠𝑠) ≝ arg max𝑎𝑎 𝑞𝑞(𝑠𝑠𝑠 𝑠𝑠)

To avoid the lack-of-exploration problem, and to consider the non-visited state-action pairs as discussed
earlier, we can let the non-optimal actions have a small chance (𝜖𝜖) to be chosen. This is called the 𝜖𝜖

-greedy policy, according to which, all non-optimal actions at state s have a minimal 𝜖𝜖|𝐴𝐴(𝑠𝑠)| probability

of being selected (instead of 0), and the optimal action has a probability of 1 − (|𝐴𝐴(𝑠𝑠)|−1)×𝜖𝜖|𝐴𝐴(𝑠𝑠)| (instead of 1).

Temporal difference learning
So far, we have seen two fundamental RL techniques—dynamic programming and MC-based learning.
Recall that dynamic programming relies on the complete and accurate knowledge of the environment
dynamics. The MC-based method, on the other hand, learns by simulated experience. In this section,
we will now introduce a third RL method called TD learning, which can be considered as an improve-
ment or extension of the MC-based RL approach.

Similar to the MC technique, TD learning is also based on learning by experience and, therefore, does
not require any knowledge of environment dynamics and transition probabilities. The main difference
between the TD and MC techniques is that in MC, we have to wait until the end of the episode to be
able to calculate the total return.

However, in TD learning, we can leverage some of the learned properties to update the estimated
values before reaching the end of the episode. This is called bootstrapping (in the context of RL, the
term bootstrapping is not to be confused with the bootstrap estimates we used in Chapter 7, Combining
Different Models for Ensemble Learning).

Similar to the dynamic programming approach and MC-based learning, we will consider two tasks:
estimating the value function (which is also called value prediction) and improving the policy (which
is also called the control task).

TD prediction
Let’s first revisit the value prediction by MC. At the end of each episode, we are able to estimate the
return, Gt, for each time step t. Therefore, we can update our estimates for the visited states as follows:𝑉𝑉(𝑆𝑆𝑡𝑡) ← 𝑉𝑉(𝑆𝑆𝑡𝑡) + 𝛼𝛼(𝐺𝐺𝑡𝑡 − 𝑉𝑉(𝑆𝑆𝑡𝑡))
Here, Gt is used as the target return to update the estimated values, and (Gt – V(St)) is a correction term
added to our current estimate of the value V(St). The value 𝛼𝛼 is a hyperparameter denoting the learning
rate, which is kept constant during learning.

Reinforcement Learning for Decision Making in Complex Environments690

Notice that in MC, the correction term uses the actual return, Gt, which is not known until the end
of the episode. To clarify this, we can rename the actual return, Gt, to Gt:T, where the subscript t:T
indicates that this is the return obtained at time step t while considering all the events that occurred
from time step t until the final time step, T.

In TD learning, we replace the actual return, Gt:T, with a new target return, Gt:t+1, which significantly
simplifies the updates for the value function, V(St). The update formula based on TD learning is as
follows: 𝑉𝑉(𝑆𝑆𝑡𝑡) ← 𝑉𝑉(𝑆𝑆𝑡𝑡) + 𝛼𝛼(𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉(𝑆𝑆𝑡𝑡))
Here, the target return, 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≝ 𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾 𝛾𝛾(𝑆𝑆𝑡𝑡𝑡𝑡) = 𝑟𝑟 + 𝛾𝛾 𝛾𝛾(𝑆𝑆𝑡𝑡𝑡𝑡) , is using the observed reward, Rt+1,
and the estimated value of the next immediate step. Notice the difference between MC and TD. In
MC, Gt:T is not available until the end of the episode, so we should execute as many steps as needed
to get there. On the contrary, in TD, we only need to go one step ahead to get the target return. This
is also known as TD(0).

Furthermore, the TD(0) algorithm can be generalized to the so-called n-step TD algorithm, which in-
corporates more future steps—more precisely, the weighted sum of n future steps. If we define n = 1,
then the n-step TD procedure is identical to TD(0), which was described in the previous paragraph. If 𝑛𝑛 𝑛 𝑛 , however, the n-step TD algorithm will be the same as the MC algorithm. The update rule for
n-step TD is as follows: 𝑉𝑉(𝑆𝑆𝑡𝑡) ← 𝑉𝑉(𝑆𝑆𝑡𝑡) + 𝛼𝛼(𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉(𝑆𝑆𝑡𝑡))
And Gt:t+n is defined as:

𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≝ {𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑅𝑅𝑡𝑡𝑡𝑡 + ⋯ + 𝛾𝛾𝑡𝑡𝑛𝑡𝑅𝑅𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑡𝑡 𝑉𝑉(𝑆𝑆𝑡𝑡𝑡𝑡𝑡) if 𝑡𝑡 + 𝑡𝑡 𝑡 𝑡𝑡𝐺𝐺𝑡𝑡𝑡𝑡𝑡 otherwise

Now that we have covered the prediction task using the TD algorithm, we can move on to the control
task. We will cover two algorithms for TD control: an on-policy control and an off-policy control. In
both cases, we use the GPI that was used in both the dynamic programming and MC algorithms. In
on-policy TD control, the value function is updated based on the actions from the same policy that
the agent is following; while in an off-policy algorithm, the value function is updated based on actions
outside the current policy.

MC versus TD: which method converges faster?

While the precise answer to this question is still unknown, in practice, it is empirically
shown that TD can converge faster than MC. If you are interested, you can find more de-
tails on the convergences of MC and TD in the book entitled Reinforcement Learning: An
Introduction, by Richard S. Sutton and Andrew G. Barto.

Chapter 19 691

On-policy TD control (SARSA)
For simplicity, we only consider the one-step TD algorithm, or TD(0). However, the on-policy TD
control algorithm can be readily generalized to n-step TD. We will start by extending the prediction
formula for defining the state-value function to describe the action-value function. To do this, we use
a lookup table, that is, a tabular 2D array, Q(St, At), which represents the action-value function for each
state-action pair. In this case, we will have the following:𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) ← 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) + 𝛼𝛼[𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾 𝑄𝑄(𝑆𝑆𝑡𝑡𝑡𝑡, 𝐴𝐴𝑡𝑡𝑡𝑡) − 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡)]
This algorithm is often called SARSA, referring to the quintuple (St, At, Rt+1, St+1, At+1) that is used in
the update formula.

As we saw in the previous sections describing the dynamic programming and MC algorithms, we
can use the GPI framework, and starting from the random policy, we can repeatedly estimate the
action-value function for the current policy and then optimize the policy using the 𝜖𝜖 -greedy policy
based on the current action-value function.

Off-policy TD control (Q-learning)
We saw when using the previous on-policy TD control algorithm that how we estimate the action-value
function is based on the policy that is used in the simulated episode. After updating the action-value
function, a separate step for policy improvement is performed by taking the action that has the higher
value.

An alternative (and better) approach is to combine these two steps. In other words, imagine the agent
is following policy 𝜋𝜋 , generating an episode with the current transition quintuple (St, At, Rt+1, St+1, At+1).
Instead of updating the action-value function using the action value of At+1 that is taken by the agent,
we can find the best action even if it is not actually chosen by the agent following the current policy.
(That’s why this is considered an off-policy algorithm.)

To do this, we can modify the update rule to consider the maximum Q-value by varying different
actions in the next immediate state. The modified equation for updating the Q-values is as follows:𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) ← 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) + 𝛼𝛼 [𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝑎𝑎 𝑄𝑄(𝑆𝑆𝑡𝑡𝑡𝑡, 𝑎𝑎) − 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡)]
We encourage you to compare the update rule here with that of the SARSA algorithm. As you can
see, we find the best action in the next state, St+1, and use that in the correction term to update our
estimate of Q(St, At).

To put these materials into perspective, in the next section, we will see how to implement the Q-learn-
ing algorithm for solving a grid world problem.

Implementing our first RL algorithm
In this section, we will cover the implementation of the Q-learning algorithm to solve a grid world
problem (a grid world is a two-dimensional, cell-based environment where the agent moves in four
directions to collect as much reward as possible). To do this, we use the OpenAI Gym toolkit.

Reinforcement Learning for Decision Making in Complex Environments692

Introducing the OpenAI Gym toolkit
OpenAI Gym is a specialized toolkit for facilitating the development of RL models. OpenAI Gym comes
with several predefined environments. Some basic examples are CartPole and MountainCar, where
the tasks are to balance a pole and to move a car up a hill, respectively, as the names suggest. There
are also many advanced robotics environments for training a robot to fetch, push, and reach for items
on a bench or training a robotic hand to orient blocks, balls, or pens. Moreover, OpenAI Gym provides
a convenient, unified framework for developing new environments. More information can be found
on its official website: https://gym.openai.com/.

To follow the OpenAI Gym code examples in the next sections, you need to install the gym library (at
the time of writing, version 0.20.0 was used), which can be easily done using pip:

pip install gym==0.20

If you need additional help with the installation, please refer to the official installation guide at https://
gym.openai.com/docs/#installation.

Working with the existing environments in OpenAI Gym
For practice with the Gym environments, let’s create an environment from CartPole-v1, which already
exists in OpenAI Gym. In this example environment, there is a pole attached to a cart that can move
horizontally, as shown in Figure 19.6:

Figure 19.6: The CartPole example in Gym

The movements of the pole are governed by the laws of physics, and the goal for RL agents is to learn
how to move the cart to stabilize the pole and prevent it from tipping over to either side.

Now, let’s look at some properties of the CartPole environment in the context of RL, such as its state
(or observation) space, action space, and how to execute an action:

>>> import gym
>>> env = gym.make('CartPole-v1')
>>> env.observation_space
Box(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)
>>> env.action_space
Discrete(2)

https://gym.openai.com/
https://gym.openai.com/docs/#installation
https://gym.openai.com/docs/#installation

Chapter 19 693

In the preceding code, we created an environment for the CartPole problem. The observation space for
this environment is Box(4,) (with float values from -inf to inf), which represents a four-dimensional
space corresponding to four real-valued numbers: the position of the cart, the cart’s velocity, the angle
of the pole, and the velocity of the tip of the pole. The action space is a discrete space, Discrete(2),
with two choices: pushing the cart either to the left or to the right.

The environment object, env, that we previously created by calling gym.make('CartPole-v1') has
a reset() method that we can use to reinitialize an environment prior to each episode. Calling the
reset() method will basically set the pole’s starting state (S0):

>>> env.reset()
array([-0.03908273, -0.00837535, 0.03277162, -0.0207195])

The values in the array returned by the env.reset() method call mean that the initial position of
the cart is –0.039, with a velocity –0.008, and the angle of the pole is 0.033 radians, while the angular
velocity of its tip is –0.021. Upon calling the reset() method, these values are initialized with random
values with uniform distribution in the range [–0.05, 0.05].

After resetting the environment, we can interact with the environment by choosing an action and
executing it by passing the action to the step() method:

>>> env.step(action=0)
(array([-0.03925023, -0.20395158, 0.03235723, 0.28212046]), 1.0, False, {})
>>> env.step(action=1)
(array([-0.04332927, -0.00930575, 0.03799964, -0.00018409]), 1.0, False, {})

Via the previous two commands, env.step(action=0) and env.step(action=1), we pushed the cart
to the left (action=0) and then to the right (action=1), respectively. Based on the selected action, the
cart and its pole can move as governed by the laws of physics. Every time we call env.step(), it returns
a tuple consisting of four elements:

• An array for the new state (or observations)
• A reward (a scalar value of type float)
• A termination flag (True or False)
• A Python dictionary containing auxiliary information

The env object also has a render() method, which we can execute after each step (or a series of steps)
to visualize the environment and the movements of the pole and cart, through time.

The episode terminates when the angle of the pole becomes larger than 12 degrees (from either side)
with respect to an imaginary vertical axis, or when the position of the cart is more than 2.4 units from
the center position. The reward defined in this example is to maximize the time the cart and pole are
stabilized within the valid regions—in other words, the total reward (that is, return) can be maximized
by maximizing the length of the episode.

Reinforcement Learning for Decision Making in Complex Environments694

A grid world example
After introducing the CartPole environment as a warm-up exercise for working with the OpenAI
Gym toolkit, we will now switch to a different environment. We will work with a grid world example,
which is a simplistic environment with m rows and n columns. Considering m = 5 and n = 6, we can
summarize this environment as shown in Figure 19.7:

Figure 19.7: An example of a grid world environment

In this environment, there are 30 different possible states. Four of these states are terminal states: a
pot of gold at state 16 and three traps at states 10, 15, and 22. Landing in any of these four terminal
states will end the episode, but with a difference between the gold and trap states. Landing on the
gold state yields a positive reward, +1, whereas moving the agent onto one of the trap states yields a
negative reward, –1. All other states have a reward of 0. The agent always starts from state 0. Therefore,
every time we reset the environment, the agent will go back to state 0. The action space consists of
four directions: move up, down, left, and right.

When the agent is at the outer boundary of the grid, selecting an action that would result in leaving
the grid will not change the state.

Next, we will see how to implement this environment in Python using the OpenAI Gym package.

Implementing the grid world environment in OpenAI Gym
For experimenting with the grid world environment via OpenAI Gym, using a script editor or IDE
rather than executing the code interactively is highly recommended.

First, we create a new Python script named gridworld_env.py and then proceed by importing the
necessary packages and two helper functions that we define for building the visualization of the
environment.

To render the environments for visualization purposes, the OpenAI Gym library uses the pyglet library
and provides wrapper classes and functions for our convenience. We will use these wrapper classes
for visualizing the grid world environment in the following code example. More details about these
wrapper classes can be found at https://github.com/openai/gym/blob/58ed658d9b15fd410c50d1
fdb25a7cad9acb7fa4/gym/envs/classic_control/rendering.py.

https://github.com/openai/gym/blob/58ed658d9b15fd410c50d1fdb25a7cad9acb7fa4/gym/envs/classic_control/rendering.py
https://github.com/openai/gym/blob/58ed658d9b15fd410c50d1fdb25a7cad9acb7fa4/gym/envs/classic_control/rendering.py

Chapter 19 695

The following code example uses those wrapper classes:

Script: gridworld_env.py
import numpy as np
from gym.envs.toy_text import discrete
from collections import defaultdict
import time
import pickle
import os
from gym.envs.classic_control import rendering

CELL_SIZE = 100
MARGIN = 10

def get_coords(row, col, loc='center'):
 xc = (col+1.5) * CELL_SIZE
 yc = (row+1.5) * CELL_SIZE
 if loc == 'center':
 return xc, yc
 elif loc == 'interior_corners':
 half_size = CELL_SIZE//2 - MARGIN
 xl, xr = xc - half_size, xc + half_size
 yt, yb = xc - half_size, xc + half_size
 return [(xl, yt), (xr, yt), (xr, yb), (xl, yb)]
 elif loc == 'interior_triangle':
 x1, y1 = xc, yc + CELL_SIZE//3
 x2, y2 = xc + CELL_SIZE//3, yc - CELL_SIZE//3
 x3, y3 = xc - CELL_SIZE//3, yc - CELL_SIZE//3
 return [(x1, y1), (x2, y2), (x3, y3)]

def draw_object(coords_list):
 if len(coords_list) == 1: # -> circle
 obj = rendering.make_circle(int(0.45*CELL_SIZE))
 obj_transform = rendering.Transform()
 obj.add_attr(obj_transform)
 obj_transform.set_translation(*coords_list[0])
 obj.set_color(0.2, 0.2, 0.2) # -> black
 elif len(coords_list) == 3: # -> triangle
 obj = rendering.FilledPolygon(coords_list)
 obj.set_color(0.9, 0.6, 0.2) # -> yellow
 elif len(coords_list) > 3: # -> polygon
 obj = rendering.FilledPolygon(coords_list)

Reinforcement Learning for Decision Making in Complex Environments696

 obj.set_color(0.4, 0.4, 0.8) # -> blue
 return obj

The first helper function, get_coords(), returns the coordinates of the geometric shapes that we will
use to annotate the grid world environment, such as a triangle to display the gold or circles to display
the traps. The list of coordinates is passed to draw_object(), which decides to draw a circle, a triangle,
or a polygon based on the length of the input list of coordinates.

Now, we can define the grid world environment. In the same file (gridworld_env.py), we define a
class named GridWorldEnv, which inherits from OpenAI Gym’s DiscreteEnv class. The most import-
ant function of this class is the constructor method, __init__(), where we define the action space,
specify the role of each action, and determine the terminal states (gold as well as traps) as follows:

class GridWorldEnv(discrete.DiscreteEnv):
 def __init__(self, num_rows=4, num_cols=6, delay=0.05):
 self.num_rows = num_rows
 self.num_cols = num_cols
 self.delay = delay
 move_up = lambda row, col: (max(row-1, 0), col)
 move_down = lambda row, col: (min(row+1, num_rows-1), col)
 move_left = lambda row, col: (row, max(col-1, 0))
 move_right = lambda row, col: (
 row, min(col+1, num_cols-1))
 self.action_defs={0: move_up, 1: move_right,
 2: move_down, 3: move_left}
 ## Number of states/actions
 nS = num_cols*num_rows
 nA = len(self.action_defs)
 self.grid2state_dict={(s//num_cols, s%num_cols):s
 for s in range(nS)}
 self.state2grid_dict={s:(s//num_cols, s%num_cols)

Using Gym 0.22 or newer

Note that gym is currently undergoing some internal restructuring. In version 0.22 and
newer, you may have to update the previous code example (from gridworld_env.py)
and replace the following line

from gym.envs.classic_control import rendering

with the following code:

from gym.utils import pyglet_rendering

For more details, please refer to the code repository at https://github.com/rasbt/
machine-learning-book/tree/main/ch19

https://github.com/rasbt/machine-learning-book/tree/main/ch19
https://github.com/rasbt/machine-learning-book/tree/main/ch19

Chapter 19 697

 for s in range(nS)}
 ## Gold state
 gold_cell = (num_rows//2, num_cols-2)

 ## Trap states
 trap_cells = [((gold_cell[0]+1), gold_cell[1]),
 (gold_cell[0], gold_cell[1]-1),
 ((gold_cell[0]-1), gold_cell[1])]
 gold_state = self.grid2state_dict[gold_cell]
 trap_states = [self.grid2state_dict[(r, c)]
 for (r, c) in trap_cells]
 self.terminal_states = [gold_state] + trap_states
 print(self.terminal_states)
 ## Build the transition probability
 P = defaultdict(dict)
 for s in range(nS):
 row, col = self.state2grid_dict[s]
 P[s] = defaultdict(list)
 for a in range(nA):
 action = self.action_defs[a]
 next_s = self.grid2state_dict[action(row, col)]

 ## Terminal state
 if self.is_terminal(next_s):
 r = (1.0 if next_s == self.terminal_states[0]
 else -1.0)
 else:
 r = 0.0
 if self.is_terminal(s):
 done = True
 next_s = s
 else:
 done = False
 P[s][a] = [(1.0, next_s, r, done)]
 ## Initial state distribution
 isd = np.zeros(nS)
 isd[0] = 1.0
 super().__init__(nS, nA, P, isd)
 self.viewer = None
 self._build_display(gold_cell, trap_cells)

Reinforcement Learning for Decision Making in Complex Environments698

 def is_terminal(self, state):
 return state in self.terminal_states

 def _build_display(self, gold_cell, trap_cells):
 screen_width = (self.num_cols+2) * CELL_SIZE
 screen_height = (self.num_rows+2) * CELL_SIZE
 self.viewer = rendering.Viewer(screen_width,
 screen_height)
 all_objects = []
 ## List of border points' coordinates
 bp_list = [
 (CELL_SIZE-MARGIN, CELL_SIZE-MARGIN),
 (screen_width-CELL_SIZE+MARGIN, CELL_SIZE-MARGIN),
 (screen_width-CELL_SIZE+MARGIN,
 screen_height-CELL_SIZE+MARGIN),
 (CELL_SIZE-MARGIN, screen_height-CELL_SIZE+MARGIN)
]
 border = rendering.PolyLine(bp_list, True)
 border.set_linewidth(5)
 all_objects.append(border)
 ## Vertical lines
 for col in range(self.num_cols+1):
 x1, y1 = (col+1)*CELL_SIZE, CELL_SIZE
 x2, y2 = (col+1)*CELL_SIZE,\
 (self.num_rows+1)*CELL_SIZE
 line = rendering.PolyLine([(x1, y1), (x2, y2)], False)
 all_objects.append(line)

 ## Horizontal lines
 for row in range(self.num_rows+1):
 x1, y1 = CELL_SIZE, (row+1)*CELL_SIZE
 x2, y2 = (self.num_cols+1)*CELL_SIZE,\
 (row+1)*CELL_SIZE
 line=rendering.PolyLine([(x1, y1), (x2, y2)], False)
 all_objects.append(line)

 ## Traps: --> circles
 for cell in trap_cells:
 trap_coords = get_coords(*cell, loc='center')
 all_objects.append(draw_object([trap_coords]))

Chapter 19 699

 ## Gold: --> triangle
 gold_coords = get_coords(*gold_cell,
 loc='interior_triangle')
 all_objects.append(draw_object(gold_coords))
 ## Agent --> square or robot
 if (os.path.exists('robot-coordinates.pkl') and
 CELL_SIZE==100):
 agent_coords = pickle.load(
 open('robot-coordinates.pkl', 'rb'))
 starting_coords = get_coords(0, 0, loc='center')
 agent_coords += np.array(starting_coords)
 else:
 agent_coords = get_coords(
 0, 0, loc='interior_corners')
 agent = draw_object(agent_coords)
 self.agent_trans = rendering.Transform()
 agent.add_attr(self.agent_trans)
 all_objects.append(agent)
 for obj in all_objects:
 self.viewer.add_geom(obj)

 def render(self, mode='human', done=False):
 if done:
 sleep_time = 1
 else:
 sleep_time = self.delay
 x_coord = self.s % self.num_cols
 y_coord = self.s // self.num_cols
 x_coord = (x_coord+0) * CELL_SIZE
 y_coord = (y_coord+0) * CELL_SIZE
 self.agent_trans.set_translation(x_coord, y_coord)
 rend = self.viewer.render(
 return_rgb_array=(mode=='rgb_array'))
 time.sleep(sleep_time)
 return rend

 def close(self):
 if self.viewer:
 self.viewer.close()
 self.viewer = None

Reinforcement Learning for Decision Making in Complex Environments700

This code implements the grid world environment, from which we can create instances of this envi-
ronment. We can then interact with it in a manner similar to that in the CartPole example. The im-
plemented class, GridWorldEnv, inherits methods such as reset() for resetting the state and step()
for executing an action. The details of the implementation are as follows:

• We defined the four different actions using lambda functions: move_up(), move_down(), move_
left(), and move_right().

• The NumPy array isd holds the probabilities of the starting states so that a random state will
be selected based on this distribution when the reset() method (from the parent class) is
called. Since we always start from state 0 (the lower-left corner of the grid world), we set the
probability of state 0 to 1.0 and the probabilities of all other 29 states to 0.0.

• The transition probabilities, defined in the Python dictionary P determine the probabilities
of moving from one state to another state when an action is selected. This allows us to have
a probabilistic environment where taking an action could have different outcomes based on
the stochasticity of the environment. For simplicity, we just use a single outcome, which is to
change the state in the direction of the selected action. Finally, these transition probabilities
will be used by the env.step() function to determine the next state.

• Furthermore, the _build_display() function will set up the initial visualization of the envi-
ronment, and the render() function will show the movements of the agent.

Now, we can test this implementation by creating a new environment and visualizing a random epi-
sode by taking random actions at each state. Include the following code at the end of the same Python
script (gridworld_env.py) and then execute the script:

if __name__ == '__main__':
 env = GridWorldEnv(5, 6)
 for i in range(1):
 s = env.reset()
 env.render(mode='human', done=False)
 while True:
 action = np.random.choice(env.nA)
 res = env.step(action)
 print('Action ', env.s, action, ' -> ', res)
 env.render(mode='human', done=res[2])
 if res[2]:
 break
 env.close()

Note that during the learning process, we do not know about the transition probabilities,
and the goal is to learn by interacting with the environment. Therefore, we do not have
access to P outside the class definition.

Chapter 19 701

After executing the script, you should see a visualization of the grid world environment as depicted
in Figure 19.8:

Figure 19.8: A visualization of our grid world environment

Solving the grid world problem with Q-learning
After focusing on the theory and the development process of RL algorithms, as well as setting up
the environment via the OpenAI Gym toolkit, we will now implement the currently most popular RL
algorithm, Q-learning. For this, we will use the grid world example that we already implemented in
the script gridworld_env.py.

Reinforcement Learning for Decision Making in Complex Environments702

Now, we create a new script and name it agent.py. In this agent.py script, we define an agent for
interacting with the environment as follows:

Script: agent.py
from collections import defaultdict
import numpy as np

class Agent:
 def __init__(
 self, env,
 learning_rate=0.01,
 discount_factor=0.9,
 epsilon_greedy=0.9,
 epsilon_min=0.1,
 epsilon_decay=0.95):
 self.env = env
 self.lr = learning_rate
 self.gamma = discount_factor
 self.epsilon = epsilon_greedy
 self.epsilon_min = epsilon_min
 self.epsilon_decay = epsilon_decay
 ## Define the q_table
 self.q_table = defaultdict(lambda: np.zeros(self.env.nA))

 def choose_action(self, state):
 if np.random.uniform() < self.epsilon:
 action = np.random.choice(self.env.nA)
 else:
 q_vals = self.q_table[state]
 perm_actions = np.random.permutation(self.env.nA)
 q_vals = [q_vals[a] for a in perm_actions]
 perm_q_argmax = np.argmax(q_vals)
 action = perm_actions[perm_q_argmax]
 return action

 def _learn(self, transition):
 s, a, r, next_s, done = transition
 q_val = self.q_table[s][a]
 if done:
 q_target = r

Chapter 19 703

 else:
 q_target = r + self.gamma*np.max(self.q_table[next_s])
 ## Update the q_table
 self.q_table[s][a] += self.lr * (q_target - q_val)
 ## Adjust the epsilon
 self._adjust_epsilon()

 def _adjust_epsilon(self):
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

The __init__() constructor sets up various hyperparameters, such as the learning rate, discount
factor (𝛾𝛾), and the parameters for the 𝜖𝜖 -greedy policy. Initially, we start with a high value of 𝜖𝜖 , but the
_adjust_epsilon() method reduces it until it reaches the minimum value, 𝜖𝜖min . The choose_action()
method chooses an action based on the 𝜖𝜖 -greedy policy as follows. A random uniform number is
selected to determine whether the action should be selected randomly or otherwise, based on the
action-value function. The _learn() method implements the update rule for the Q-learning algo-
rithm. It receives a tuple for each transition, which consists of the current state (s), selected action (a),
observed reward (r), next state (s′), as well as a flag to determine whether the end of the episode has
been reached. The target value is equal to the observed reward (r) if this is flagged as end-of-episode;
otherwise, the target is 𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑎𝑎 𝑄𝑄(𝑠𝑠′, 𝑎𝑎) .
Finally, for our next step, we create a new script, qlearning.py, to put everything together and train
the agent using the Q-learning algorithm.

In the following code, we define a function, run_qlearning(), that implements the Q-learning algo-
rithm, simulating an episode by calling the _choose_action() method of the agent and executing the
environment. Then, the transition tuple is passed to the _learn() method of the agent to update the
action-value function. In addition, for monitoring the learning process, we also store the final reward
of each episode (which could be –1 or +1), as well as the length of episodes (the number of moves
taken by the agent from the start of the episode until the end).

The list of rewards and the number of moves is then plotted using the plot_learning_history()
function:

Script: qlearning.py
from gridworld_env import GridWorldEnv
from agent import Agent
from collections import namedtuple
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)

Reinforcement Learning for Decision Making in Complex Environments704

Transition = namedtuple(
 'Transition', ('state', 'action', 'reward',
 'next_state', 'done'))

def run_qlearning(agent, env, num_episodes=50):
 history = []
 for episode in range(num_episodes):
 state = env.reset()
 env.render(mode='human')
 final_reward, n_moves = 0.0, 0
 while True:
 action = agent.choose_action(state)
 next_s, reward, done, _ = env.step(action)
 agent._learn(Transition(state, action, reward,
 next_s, done))
 env.render(mode='human', done=done)
 state = next_s
 n_moves += 1
 if done:
 break
 final_reward = reward
 history.append((n_moves, final_reward))
 print(f'Episode {episode}: Reward {final_reward:.2} '
 f'#Moves {n_moves}')
 return history

def plot_learning_history(history):
 fig = plt.figure(1, figsize=(14, 10))
 ax = fig.add_subplot(2, 1, 1)
 episodes = np.arange(len(history))
 moves = np.array([h[0] for h in history])
 plt.plot(episodes, moves, lw=4,
 marker='o', markersize=10)
 ax.tick_params(axis='both', which='major', labelsize=15)
 plt.xlabel('Episodes', size=20)
 plt.ylabel('# moves', size=20)
 ax = fig.add_subplot(2, 1, 2)
 rewards = np.array([h[1] for h in history])

Chapter 19 705

 plt.step(episodes, rewards, lw=4)
 ax.tick_params(axis='both', which='major', labelsize=15)
 plt.xlabel('Episodes', size=20)
 plt.ylabel('Final rewards', size=20)
 plt.savefig('q-learning-history.png', dpi=300)
 plt.show()

if __name__ == '__main__':
 env = GridWorldEnv(num_rows=5, num_cols=6)
 agent = Agent(env)
 history = run_qlearning(agent, env)
 env.close()
 plot_learning_history(history)

Executing this script will run the Q-learning program for 50 episodes. The behavior of the agent will
be visualized, and you can see that at the beginning of the learning process, the agent mostly ends
up in the trap states. But over time, it learns from its failures and eventually finds the gold state (for
instance, the first time in episode 7). Figure 19.9 shows the agent’s number of moves and rewards:

Figure 19.9: The agent’s number of moves and rewards

Reinforcement Learning for Decision Making in Complex Environments706

The plotted learning history shown in the previous figure indicates that the agent, after 30 episodes,
learns a short path to get to the gold state. As a result, the lengths of the episodes after the 30th episode
are more or less the same, with minor deviations due to the 𝜖𝜖 -greedy policy.

A glance at deep Q-learning
In the previous code, we saw an implementation of the popular Q-learning algorithm for the grid
world example. This example consisted of a discrete state space of size 30, where it was sufficient to
store the Q-values in a Python dictionary.

However, we should note that sometimes the number of states can get very large, possibly almost in-
finitely large. Also, we may be dealing with a continuous state space instead of working with discrete
states. Moreover, some states may not be visited at all during training, which can be problematic when
generalizing the agent to deal with such unseen states later.

To address these problems, instead of representing the value function in a tabular format like V(St), or
Q(St, At), for the action-value function, we use a function approximation approach. Here, we define a
parametric function, vw(xs), that can learn to approximate the true value function, that is, 𝑣𝑣𝑤𝑤(𝑥𝑥𝑠𝑠) ≈ 𝑣𝑣𝜋𝜋(𝑠𝑠) ,
where xs is a set of input features (or “featurized” states).

When the approximator function, qw(xs, a), is a deep neural network (DNN), the resulting model is
called a deep Q-network (DQN). For training a DQN model, the weights are updated according to
the Q-learning algorithm. An example of a DQN model is shown in Figure 19.10, where the states are
represented as features passed to the first layer:

Figure 19.10: An example of a DQN

Now, let’s see how we can train a DQN using the deep Q-learning algorithm. Overall, the main approach
is very similar to the tabular Q-learning method. The main difference is that we now have a multilayer
NN that computes the action values.

Training a DQN model according to the Q-learning algorithm
In this section, we describe the procedure for training a DQN model using the Q-learning algorithm.
The deep Q-learning approach requires us to make some modifications to our previously implemented
standard Q-learning approach.

Chapter 19 707

One such modification is in the agent’s choose_action() method, which, in the code of the previous
section for Q-learning, was simply accessing the action values stored in a dictionary. Now, this func-
tion should be changed to perform a forward pass of the NN model for computing the action values.

The other modifications needed for the deep Q-learning algorithm are described in the following two
subsections.

Replay memory
Using the previous tabular method for Q-learning, we could update the values for specific state-action
pairs without affecting the values of others. However, now that we approximate q(s, a) with an NN
model, updating the weights for a state-action pair will likely affect the output of other states as well.
When training NNs using stochastic gradient descent for a supervised task (for example, a classification
task), we use multiple epochs to iterate through the training data multiple times until it converges.

This is not feasible in Q-learning, since the episodes will change during the training and, as a result,
some states that were visited in the early stages of training will become less likely to be visited later.

Furthermore, another problem is that when we train an NN, we assume that the training examples
are IID (independent and identically distributed). However, the samples taken from an episode of
the agent are not IID, as they form a sequence of transitions.

To solve these issues, as the agent interacts with the environment and generates a transition quintu-
ple qw(xs, a), we store a large (but finite) number of such transitions in a memory buffer, often called
replay memory. After each new interaction (that is, the agent selects an action and executes it in the
environment), the resulting new transition quintuple is appended to the memory.

To keep the size of the memory bounded, the oldest transition will be removed from the memory (for
example, if it is a Python list, we can use the pop(0) method to remove the first element of the list).
Then, a mini-batch of examples is randomly selected from the memory buffer, which will be used for
computing the loss and updating the network parameters. Figure 19.11 illustrates the process:

Figure 19.11: The replay memory process

Reinforcement Learning for Decision Making in Complex Environments708

Determining the target values for computing the loss
Another required change from the tabular Q-learning method is how to adapt the update rule for
training the DQN model parameters. Recall that a transition quintuple, T, stored in the batch of ex-
amples, contains (𝑥𝑥𝑠𝑠, 𝑎𝑎, 𝑎𝑎, 𝑥𝑥𝑠𝑠′,done) .
As shown in Figure 19.12, we perform two forward passes of the DQN model. The first forward pass
uses the features of the current state (xs). Then, the second forward pass uses the features of the next
state (𝑥𝑥𝑠𝑠′). As a result, we will obtain the estimated action values, 𝑞𝑞𝑤𝑤(𝑥𝑥𝑠𝑠, :) and 𝑞𝑞𝑤𝑤(𝑥𝑥𝑠𝑠′, :) , from the first
and second forward pass, respectively. (Here, this 𝑞𝑞𝑤𝑤(𝑥𝑥𝑠𝑠, :) notation means a vector of Q-values for all
actions in �̂�𝐴 .) From the transition quintuple, we know that action a is selected by the agent.

Therefore, according to the Q-learning algorithm, we need to update the action value corresponding
to the state-action pair (xs, a) with the scalar target value 𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑎𝑎′∈𝐴𝐴 𝑞𝑞𝑤𝑤(𝑥𝑥𝑠𝑠′, 𝑎𝑎′) . Instead of forming a

scalar target value, we will create a target action-value vector that retains the action values for other
actions, 𝑎𝑎′ ≠ 𝑎𝑎 , as shown in Figure 19.12:

Implementing the replay memory

The replay memory can be implemented using a Python list, where every time we add
a new element to the list, we need to check the size of the list and call pop(0) if needed.

Alternatively, we can use the deque data structure from the Python collections library,
which allows us to specify an optional argument, max_len. By specifying the max_len
argument, we will have a bounded deque. Therefore, when the object is full, appending
a new element results in automatically removing an element from it.

Note that this is more efficient than using a Python list, since removing the first ele-
ment of a list using pop(0) has O(n) complexity, while the deque’s runtime complexi-
ty is O(1). You can learn more about the deque implementation from the official docu-
mentation that is available at https://docs.python.org/3.9/library/collections.
html#collections.deque.

https://docs.python.org/3.9/library/collections.html#collections.deque
https://docs.python.org/3.9/library/collections.html#collections.deque

Chapter 19 709

Figure 19.12: Determining the target value using the DQN

We treat this as a regression problem, using the following three quantities:

• The currently predicted values, 𝑞𝑞𝑤𝑤(𝑥𝑥𝑠𝑠, :)
• The target value vector as described
• The standard mean squared error (MSE) loss function

As a result, the losses will be zero for every action except for a. Finally, the computed loss will be
backpropagated to update the network parameters.

Reinforcement Learning for Decision Making in Complex Environments710

Implementing a deep Q-learning algorithm
Finally, we will use all these techniques to implement a deep Q-learning algorithm. This time, we use
the CartPole environment from the OpenAI Gym environment that we introduced earlier. Recall that
the CartPole environment has a continuous state space of size 4. In the following code, we define a
class, DQNAgent, that builds the model and specifies various hyperparameters.

This class has two additional methods compared to the previous agent that was based on tabular
Q-learning. The remember() method will append a new transition quintuple to the memory buffer, and
the replay() method will create a mini-batch of example transitions and pass that to the _learn()
method for updating the network’s weight parameters:

import gym
import numpy as np
import torch
import torch.nn as nn
import random
import matplotlib.pyplot as plt
from collections import namedtuple
from collections import deque
np.random.seed(1)
torch.manual_seed(1)

Transition = namedtuple(
 'Transition', ('state', 'action', 'reward',
 'next_state', 'done'))
class DQNAgent:
 def __init__(
 self, env, discount_factor=0.95,
 epsilon_greedy=1.0, epsilon_min=0.01,
 epsilon_decay=0.995, learning_rate=1e-3,
 max_memory_size=2000):
 self.env = env
 self.state_size = env.observation_space.shape[0]
 self.action_size = env.action_space.n
 self.memory = deque(maxlen=max_memory_size)
 self.gamma = discount_factor
 self.epsilon = epsilon_greedy
 self.epsilon_min = epsilon_min
 self.epsilon_decay = epsilon_decay
 self.lr = learning_rate

Chapter 19 711

 self._build_nn_model()

 def _build_nn_model(self):
 self.model = nn.Sequential(nn.Linear(self.state_size, 256),
 nn.ReLU(),
 nn.Linear(256, 128),
 nn.ReLU(),
 nn.Linear(128, 64),
 nn.ReLU(),
 nn.Linear(64, self.action_size))
 self.loss_fn = nn.MSELoss()
 self.optimizer = torch.optim.Adam(
 self.model.parameters(), self.lr)

 def remember(self, transition):
 self.memory.append(transition)

 def choose_action(self, state):
 if np.random.rand() <= self.epsilon:
 return np.random.choice(self.action_size)
 with torch.no_grad():
 q_values = self.model(torch.tensor(state,
 dtype=torch.float32))[0]
 return torch.argmax(q_values).item() # returns action

 def _learn(self, batch_samples):
 batch_states, batch_targets = [], []
 for transition in batch_samples:
 s, a, r, next_s, done = transition
 with torch.no_grad():
 if done:
 target = r
 else:
 pred = self.model(torch.tensor(next_s,
 dtype=torch.float32))[0]
 target = r + self.gamma * pred.max()
 target_all = self.model(torch.tensor(s,
 dtype=torch.float32))[0]
 target_all[a] = target

Reinforcement Learning for Decision Making in Complex Environments712

 batch_states.append(s.flatten())
 batch_targets.append(target_all)
 self._adjust_epsilon()
 self.optimizer.zero_grad()
 pred = self.model(torch.tensor(batch_states,
 dtype=torch.float32))
 loss = self.loss_fn(pred, torch.stack(batch_targets))
 loss.backward()
 self.optimizer.step()
 return loss.item()

 def _adjust_epsilon(self):
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

 def replay(self, batch_size):
 samples = random.sample(self.memory, batch_size)
 return self._learn(samples)

Finally, with the following code, we train the model for 200 episodes, and at the end visualize the
learning history using the plot_learning_history() function:

def plot_learning_history(history):
 fig = plt.figure(1, figsize=(14, 5))
 ax = fig.add_subplot(1, 1, 1)
 episodes = np.arange(len(history))+1
 plt.plot(episodes, history, lw=4,
 marker='o', markersize=10)
 ax.tick_params(axis='both', which='major', labelsize=15)
 plt.xlabel('Episodes', size=20)
 plt.ylabel('Total rewards', size=20)
 plt.show()

General settings
EPISODES = 200
batch_size = 32
init_replay_memory_size = 500

if __name__ == '__main__':
 env = gym.make('CartPole-v1')
 agent = DQNAgent(env)

Chapter 19 713

 state = env.reset()
 state = np.reshape(state, [1, agent.state_size])
 ## Filling up the replay-memory
 for i in range(init_replay_memory_size):
 action = agent.choose_action(state)
 next_state, reward, done, _ = env.step(action)
 next_state = np.reshape(next_state, [1, agent.state_size])
 agent.remember(Transition(state, action, reward,
 next_state, done))
 if done:
 state = env.reset()
 state = np.reshape(state, [1, agent.state_size])
 else:
 state = next_state
 total_rewards, losses = [], []
 for e in range(EPISODES):
 state = env.reset()
 if e % 10 == 0:
 env.render()
 state = np.reshape(state, [1, agent.state_size])
 for i in range(500):
 action = agent.choose_action(state)
 next_state, reward, done, _ = env.step(action)
 next_state = np.reshape(next_state,
 [1, agent.state_size])
 agent.remember(Transition(state, action, reward,
 next_state, done))
 state = next_state
 if e % 10 == 0:
 env.render()
 if done:
 total_rewards.append(i)
 print(f'Episode: {e}/{EPISODES}, Total reward: {i}')
 break
 loss = agent.replay(batch_size)
 losses.append(loss)
 plot_learning_history(total_rewards)

Reinforcement Learning for Decision Making in Complex Environments714

After training the agent for 200 episodes, we see that the agent indeed learned to increase the total
rewards over time, as shown in Figure 19.13:

Figure 19.13: The agent’s rewards increased over time

Note that the total rewards obtained in an episode are equal to the amount of time that the agent is
able to balance the pole. The learning history plotted in this figure shows that after about 30 episodes,
the agent learns how to balance the pole and hold it for more than 200 time steps.

Chapter and book summary
In this chapter, we covered the essential concepts in RL, starting from the very foundations, and how
RL can support decision making in complex environments.

We learned about agent-environment interactions and Markov decision processes (MDPs), and we
considered three main approaches for solving RL problems: dynamic programming, MC learning,
and TD learning. We discussed the fact that the dynamic programming algorithm assumes that the
full knowledge of environment dynamics is available, an assumption that is not typically true for most
real-world problems.

Then, we saw how the MC- and TD-based algorithms learn by allowing an agent to interact with the
environment and generate a simulated experience. After discussing the underlying theory, we im-
plemented the Q-learning algorithm as an off-policy subcategory of the TD algorithm for solving the
grid world example. Finally, we covered the concept of function approximation and deep Q-learning
in particular, which can be used for problems with large or continuous state spaces.

We hope you enjoyed this last chapter of Python Machine Learning and our exciting tour of machine
learning and deep learning. Throughout the journey of this book, we’ve covered the essential topics
that this field has to offer, and you should now be well equipped to put those techniques into action
to solve real-world problems.

We started our journey in Chapter 1, Giving Computers the Ability to Learn from Data, with a brief
overview of the different types of learning tasks: supervised learning, reinforcement learning, and
unsupervised learning.

Chapter 19 715

We then discussed several different learning algorithms that you can use for classification, starting
with simple single-layer NNs in Chapter 2, Training Simple Machine Learning Algorithms for Classification.

We continued to discuss advanced classification algorithms in Chapter 3, A Tour of Machine Learning
Classifiers Using Scikit-Learn, and we learned about the most important aspects of a machine learning
pipeline in Chapter 4, Building Good Training Datasets – Data Preprocessing, and Chapter 5, Compressing
Data via Dimensionality Reduction.

Remember that even the most advanced algorithm is limited by the information in the training data
that it gets to learn from. So, in Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter
Tuning, we learned about the best practices to build and evaluate predictive models, which is another
important aspect in machine learning applications.

If one single learning algorithm does not achieve the performance we desire, it can sometimes be
helpful to create an ensemble of experts to make a prediction. We explored this in Chapter 7, Combining
Different Models for Ensemble Learning.

Then, in Chapter 8, Applying Machine Learning to Sentiment Analysis, we applied machine learning to
analyze one of the most popular and interesting forms of data in the modern age, which is dominated
by social media platforms on the internet—text documents.

For the most part, our focus was on algorithms for classification, which is probably the most popular
application of machine learning. However, this is not where our journey ended! In Chapter 9, Predict-
ing Continuous Target Variables with Regression Analysis, we explored several algorithms for regression
analysis to predict continuous target variables.

Another exciting subfield of machine learning is clustering analysis, which can help us find hidden
structures in the data, even if our training data does not come with the right answers to learn from.
We worked with this in Chapter 10, Working with Unlabeled Data – Clustering Analysis.

We then shifted our attention to one of the most exciting algorithms in the whole machine learning
field—artificial neural networks. We started by implementing a multilayer perceptron from scratch
with NumPy in Chapter 11, Implementing a Multilayer Artificial Neural Network from Scratch.

The benefits of PyTorch for deep learning became obvious in Chapter 12, Parallelizing Neural Network
Training with PyTorch, where we used PyTorch to facilitate the process of building NN models, worked
with PyTorch Dataset objects, and learned how to apply preprocessing steps to a dataset.

We delved deeper into the mechanics of PyTorch in Chapter 13, Going Deeper – The Mechanics of PyTorch,
and discussed the different aspects and mechanics of PyTorch, including tensor objects, computing
gradients of a computation, as well as the neural network module, torch.nn.

In Chapter 14, Classifying Images with Deep Convolutional Neural Networks, we dived into convolutional
neural networks, which are widely used in computer vision at the moment, due to their great perfor-
mance in image classification tasks.

In Chapter 15, Modeling Sequential Data Using Recurrent Neural Networks, we learned about sequence
modeling using RNNs.

In Chapter 16, Transformers – Improving Natural Language Processing with Attention Mechanisms, we
introduced the attention mechanism to address one of the weaknesses of RNNs, that is, remembering
previous input elements when dealing with long sequences. We then explored various kinds of trans-
former architectures, which are deep learning architectures that are centered around the self-attention
mechanism and constitute the state of the art for creating large-scale language models.

Reinforcement Learning for Decision Making in Complex Environments716

In Chapter 17, Generative Adversarial Networks for Synthesizing New Data, we saw how to generate new
images using GANs and, along the way, we also learned about autoencoders, batch normalization,
transposed convolution, and Wasserstein GANs.

Previous chapters were centered around tabular datasets as well as text and image data. In Chapter
18, Graph Neural Networks for Capturing Dependencies in Graph Structured Data, we focused on deep
learning for graph-structured data, which is commonly used data representation for social networks
and molecules (chemical compounds). Moreover, we learned about so-called graph neural networks,
which are deep neural networks that are compatible with such data.

Finally, in this chapter, we covered a separate category of machine learning tasks and saw how to
develop algorithms that learn by interacting with their environment through a reward process.

While a comprehensive study of deep learning is well beyond the scope of this book, we hope that we’ve
kindled your interest enough to follow the most recent advancements in this field of deep learning.

If you’re considering a career in machine learning, or you just want to keep up to date with the current
advancements in this field, we can recommend that you keep an eye on the recent literature published
in this field. The following are some resources that we find particularly useful:

• A subreddit and community dedicated to learning machine learning: https://www.reddit.
com/r/learnmachinelearning/

• A daily updated list of the latest machine learning manuscripts uploaded to the arXiv preprint
server: https://arxiv.org/list/cs.LG/recent

• A paper recommendation engine built on top of arXiv: http://www.arxiv-sanity.com

Lastly, you can find out what we, the authors, are up to at these sites:

• Sebastian Raschka: https://sebastianraschka.com
• Hayden Liu: https://www.mlexample.com/
• Vahid Mirjalili: http://vahidmirjalili.com

You’re always welcome to contact us if you have any questions about this book or if you need some
general tips on machine learning.

Join our book’s Discord space
Join the book’s Discord workspace for a monthly Ask me Anything session with the authors:
https://packt.link/MLwPyTorch

https://www.reddit.com/r/learnmachinelearning/
https://www.reddit.com/r/learnmachinelearning/
https://arxiv.org/list/cs.LG/recent
http://www.arxiv-sanity.com
https://sebastianraschka.com
https://www.mlexample.com/
http://vahidmirjalili.com
https://packt.link/MLwPyTorch

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as in-
dustry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals
• Improve your learning with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Machine Learning, Third Edition

Sebastian Raschka

Vahid Mirjalili

ISBN: 9781789955750

• Master the frameworks, models, and techniques that enable machines to ‘learn’ from data
• Use scikit-learn for machine learning and TensorFlow for deep learning
• Apply machine learning to image classification, sentiment analysis, intelligent web applica-

tions, and more
• Build and train neural networks, GANs, and other models
• Discover best practices for evaluating and tuning models
• Predict continuous target outcomes using regression analysis
• Dig deeper into textual and social media data using sentiment analysis

https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750

Other Books You May Enjoy720

Transformers for Natural Language Processing

Denis Rothman

ISBN: 9781800565791

• Use the latest pretrained transformer models
• Grasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer models
• Create language understanding Python programs using concepts that outperform classical

deep learning models
• Use a variety of NLP platforms, including Hugging Face, Trax, and AllenNLP
• Apply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization,

speech recognition, machine translations, and more
• Measure the productivity of key transformers to define their scope, potential, and limits in

production

https://www.packtpub.com/product/transformers-for-natural-language-processing/9781800565791

Other Books You May Enjoy 721

Graph Machine Learning

Claudio Stamile

Aldo Marzullo

Enrico Deusebio

ISBN: 9781800204492

• Write Python scripts to extract features from graphs
• Distinguish between the main graph representation learning techniques
• Become well-versed with extracting data from social networks, financial transaction systems,

and more
• Implement the main unsupervised and supervised graph embedding techniques
• Get to grips with shallow embedding methods, graph neural networks, graph regularization

methods, and more
• Deploy and scale out your application seamlessly

https://www.packtpub.com/product/graph-machine-learning/9781800204492

Other Books You May Enjoy722

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Machine Learning with PyTorch and Scikit-Learn, we’d love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

authors.packtpub.com

Index

Symbols
5×2 cross-validation 192
7-Zip

URL 248

A
accuracy

versus classification error 57
action-value function 682

estimation, with Monte Carlo 688
greedy policy, computing from 689

activation function, for multilayer neural
network

selecting 400
activation functions, torch.nn module

reference link 406
activations

computing, in RNNs 504, 505
AdaBoost

applying, with scikit-learn 233-236
comparing, with gradient boosting 237

AdaBoost recognition 229
Adam optimizer 479
adaptive boosting

weak learners, leveraging 229
working 229-233

Adaptive Linear Neuron (Adaline) 35-37, 278
algorithm 337
implementation, converting into algorithm for

logistic regression 66-68
implementing, in Python 39-43

advanced graph neural network literature
pointers 669, 670

agent 6, 674, 675
agglomerative clustering

applying, via scikit-learn 327, 328
AI winters

reference link 336
Ames Housing dataset 272

loading, into data frame 272-274
nonlinear relationships, modeling 297-299

Anaconda 15
reference link 15

Anaconda Python distribution
using 15, 16

artificial intelligence (AI) 1, 19, 336, 452
artificial neural networks

training 360
used, for modeling complex functions 335, 336

artificial neuron 20
attention mechanism

for RNNs 540, 542
attention weights

computing 544

Index724

autoencoders 590, 591
automatic differentiation 363, 416
autoregression 534
average-pooling 463

B
backpropagation 350, 362, 363

neural networks, training via 363-367
resources 343

bagging 95, 223, 224
applying, to classify examples in Wine

dataset 225-228
for model ensembles 225

bag-of-words model 250
basic graph convolution

implementing 644-647
Basic Linear Algebra Subprograms (BLAS) 29
batch gradient descent 39
BatchNorm 614-616
Bellman equation 676

dynamic programming 684
bias unit 21
bias-variance tradeoff 73
Bidirectional and Auto-Regressive Transformer

(BART) 561, 572-574
Bidirectional Encoder Representations from

Transformers (BERT) 561, 569
bidirectional pre-training 569-571
model, fine-tuning in PyTorch 574

bidirectional RNN 524, 525
inputs, processing 543

bigger data
working with 261, 262

binary cross-entropy 471
binomial coefficient 207
boosting 95
border point 328

Breast Cancer Wisconsin dataset
loading 172, 173
obtaining 172

Broyden-Fletcher-Goldfarb-Shanno (BFGS) 71

C
candidate value 512
car’s fuel efficiency prediction project

DNN regression model, training 435, 436
feature columns, working with 431-434

Catalyst
URL 439

CatBoost
URL 244

categorical cross-entropy 471
categorical data

encoding, with pandas 111
handling 111

CelebA dataset
alternative ways, to download 483
loading 483

cell state 511
central processing units (CPUs) 370
centroid 306
channels 464
character-level language modeling,

PyTorch 525, 526
dataset, processing 526-531
text passages, generating 533-537

character-level RNN model
building 531, 532

classification
class labels, predicting 4, 5

classification algorithm
selecting 53

classification error 88
versus accuracy 57

Index 725

classification model
precision, optimizing 195-197
recall, optimizing 195-197

classification task 4
classifiers

combining, via majority vote 209
class imbalance

managing 201-203
class labels

encoding 112, 113
class membership probabilities

from decision trees 214
class probabilities

estimating, in multiclass classification
via softmax function 402

modeling, via logistic regression 59
cluster cohesion 314
cluster inertia 308
clustering 305

used, for finding subgroups 8
clusters

grouping 320, 321
organizing, as hierarchical tree 319

cluster separation 314
CNN layers

configuring, in PyTorch 476
CNN smile classifier

training 490-497
collinearity 159
color channels 464
common architectures implementations

custom layers, writing in PyTorch 426-430
loss function, selecting 418, 419
model building, making flexible

with nn.Module 424-426
nn.Sequential based model,

implementing 417, 418
simplifying, via torch.nn module 417

XOR classification problem, solving 419-423
complete linkage 320
complex functions

modeling, with artificial neural
networks 335, 336

complex NNs
applications 336

computation graphs, PyTorch 410
computer processors

performance challenge 369, 370
conda-forge

URL 16
conditional GAN (cGAN) 635
conditional inference 593
conditional probabilities 60-63
confusion matrix

reading 193-195
context embeddings

encoding, via multi-head attention 554-558
context vectors

outputs, generating from 543, 544
continuing task 680
convergence of learning 36
convex optimization

algorithms 71
convolutional GANs

architecture design considerations 618
used, for improving synthesized

images quality 612
convolutional neural networks (CNNs) 451, 452

constructing, in PyTorch 477-481
graphs, reference link 666
implementing 464
implementing, with torch.nn module 476
smile classification, from face images 482

convolution output
size, determining 458, 459

Index726

core point 328
correlation matrix

using 276-278
cross-correlation 456
cuML

reference link 102
curse of dimensionality 102, 132, 517
custom layers

writing, in PyTorch 424-430

D
data

preprocessing 13
synthesizing, with generative models 592, 593

data augmentation 482-484, 488
data frame

Ames Housing dataset, loading into 272-274
DataLoader

preparing 655-658
data science

packages 16, 17
dataset

partitioning, into separate training and test
datasets 117, 118

data visualization
via t-distributed stochastic neighbor

embedding 165-168
DBSCAN

regions of high density, locating 328-333
DCGAN model

training, to implement WGAN-GP 629-632
decision regions 57
decision tree 86, 87, 119

building 92-95
class membership probabilities 214

decision tree regression 300
decoder 558

decoder network 590
deconvolution 613
deconvolution function 613
deep CNN

implementing, with PyTorch 473
deep convolutional GAN (DCGAN) 612
DeeperGCN

reference link 669
deep learning 339
deep NN 339
deep Q-learning 706

algorithm, implementing 710, 714
deep Q-network (DQN) 706
dendrograms 319

attaching, to heat map 326, 327
density-based clustering 305
DiffPool 668
dimensionality reduction 128, 591

for data compression 8
directed acyclic graph (DAG) 410
directed graphs 639
discount factor 680
discrete convolutions

in 2D 459-461
in one dimension 454-456
performing 454

discriminator 594
discriminator networks

implementing 616-624
distance matrix

hierarchical clustering, performing on 321-324
DistilBERT model 575
distribution

dissimilarity measures 624-626
DNN regression model

training 435

Index 727

document classification
logistic regression model, training for 258-260

documents
processing, into tokens 256, 257

dot product 21
DQN model

training, according to Q-learning algorithm 706
dropout

NN, regularizing 469, 470
dynamic programming 677, 685

value function, predicting 686
with Bellman equation 684

E
eigendecomposition 141, 144
eigenvalues 141

reference link 141
eigenvectors 141

reference link 141
elastic net 292
elbow method 306

using, to find optimal number of
clusters 313, 314

element-wise product 511
element-wise summation 511
ELMo (Embeddings from Language Models) 562
embedding

advantages, over one-hot encoding 518
EM distance

advantages 626
using, for GANs 627

encoder block 554
encoder network 590
encoding schemes

for nominal data 116
ensemble 95

building, with stacking 223

training, based on loss gradients 237
ensemble classifier

evaluating 217-223
tuning 217-223

ensemble methods 205-208
entropy 88
environment 675
episode 674, 680
episodic task 679
epsilon 167
error function 12
estimated value function

policy, improving 686
estimators 110
expectation-maximization (EM)

reference link 266
explained variance 146
exploding gradient 510
exploitation 676
exploration 676
exploratory data analysis (EDA) 274

F
F1 score 193
Facebooks AI Research lab (FAIR) 371
false negative (FN) 194
false positive (FP) 194
false positive rate (FPR) 195
fastai

URL 439
feature 12
feature columns

working with 431-434
feature contributions

assessing 152-154
feature extraction 128, 139

Index728

feature hierarchy 452
feature importance

assessing, with random forests 134-136
feature maps 453
feature normalization 74
features 10

eliminating, with missing values 107, 108
selecting 122

feature scaling 119, 120
gradient descent, improving 43-45

feature selection 128
feature selection algorithms

in scikit-learn 134
feature space

examples 161
feature subspace

linear discriminants, selecting for 158-160
feature transformation 146-148
feature vectors

words, transforming into 250, 251
feedforward 342
few-shot learning 565, 566
filter 454
Fisher’s LDA 155
floor operation 458
forget gate 511
forward propagation

neural network, activating via 340, 341
fractionally strided convolution 613
full batch gradient descent 39
fully connected layers 452
fuzziness coefficient 312
fuzzy clustering 311
fuzzy C-means (FCM) algorithm 311
fuzzy k-means 311

G
GAN applications 635
gated recurrent unit (GRU) 512
gates 511
Gaussian kernel 83
generalization error 14
generalization performance

estimating 180
generalized policy iteration (GPI) 687
generative adversarial networks

(GANs) 589, 590
discriminator networks, implementing 600-603
discriminator networks, loss function 594, 595
EM distance, using 627
generator networks, implementing 600-603
generator networks, loss function 594, 595
implementing 596
model, training 605-612
model training, on Google Colab 596-599
training dataset, defining 604, 605
used, for generating samples 593

generative model 593
for synthesizing data 592, 593

Generative Pre-trained Transformer (GPT) 561
unlabeled data, leveraging 563-565

generator 593
generator networks

implementing 616-624
Gini impurity 88
global interpreter lock (GIL) 370
global pooling layer

adding, to deal with varying
graph sizes 652-654

Google Colab
reference link 597

GPT-1 564, 565

Index 729

GPT-2 565
references 568
using, to generate text 566-568

GPT-3 565, 566
gradient boosting 237

AdaBoost, comparing with 237
for classification 241-243
for regression 238

gradient boosting algorithm 237
for classification 239, 240

gradient clipping 510
gradient descent (GD) 56, 278

improving, through feature scaling 43-45
loss functions, minimizing 37-39
regression, solving for regression

parameters 279-283
gradient descent optimization algorithm 119
gradient penalty (GP) 628
gradients

adversarial examples 416
computing, via automatic differentiation 415
gradients of loss, computing 415, 416

graph
creating, in PyTorch 411, 412

graph convolutions 641, 642
basic graph convolution,

implementing 644-647
reasons, for using 642, 643

graphical processing units (GPUs) 410
graphics processing units (GPUs) 368-370, 596
graph Laplacian 665
graph neural network (GNN)

implementing, in PyTorch 648
implementing, with PyTorch Geometric

library 659-665
layers 665
recent developments 665

GraphNorm 669
reference link 668

graph normalization technique 668, 669
graphs 638

directed graphs 639
labeled graphs 640
molecules, representing as 640
undirected graph 638, 639

greedy algorithms 129
greedy policy

computing, from action-value function 689
grid search

hyperparameters, tuning 186
machine learning models, fine-tuning 185

grid world environment
implementing, in OpenAI Gym 694-701

grid world problem
solving, with Q-learning 701-706

H
handwritten digits, classifying 343

MNIST dataset, obtaining 343-346
MNIST dataset, preparing 343-346
multilayer perceptron (MLP),

implementing 347-351
neural network performance,

evaluating 357-360
neural network training loop,

coding 352-356
hard clustering 311
heat map 325

dendrograms, attaching to 326, 327
hidden recurrence

versus output recurrence 506-508
hidden structures

discovering, with unsupervised learning 7
hierarchical clustering 306, 319

agglomerative 320

Index730

divisive 320
performing, on distance matrix 321-324

Hierarchical Graph Representation Learning
with Differentiable Pooling

reference link 668
hierarchical tree

clusters, organizing as 319
high variance 122
HistGradientBoostingClassifier

URL 244
holdout method 175, 176
human visual cortex 452
hyperbolic tangent (tanh) 403

used, for broadening output spectrum 403, 404
hyperopt

reference link 191
hyperopt-sklearn

reference link 191
hyperparameter configurations

exploring, with randomized search 187, 188
hyperparameters 42, 175

tuning, via grid search 186

I
IID (independent and identically

distributed) 707
image transformations 486-489
IMDb movie review data

preparing, for text processing 247, 248
IMDb movie review dataset

loading 575, 576
tokenizing 577, 578

immediate reward 680
impurity 88
independent and identically

distributed (IID) 500

information gain (IG) 87, 300
maximizing 88-92

initial cluster centroids
placing, with k-means++ 310, 311

inliers 285
input gate 512
input pipelines

building, in PyTorch 378
inputs

padding, to control size of output
feature maps 457

processing, with bidirectional RNN 543
intelligent machines

building, to transform data into knowledge 1, 2
internal covariance shift 616
Iris dataset 54

loading 31
perceptron model, training on 29-35
reference link 9

J
Jensen-Shannon (JS) 625
Jupyter Notebook 597
Jupyter Notebook GUI

reference link 597

K
Kantorovich-Rubinstein duality 627
kernel 454
kernel function 83
kernel methods 81
kernel SVM 80

used, for solving nonlinear problems 80
kernel trick 83

using, to find separating hyperplanes in
high-dimensional space 82-86

Index 731

k-fold cross-validation 176-179
K-Lipschitz continuous 627
k-means

objects, grouping by similarity 305
k-means++

initial cluster centroids, placing 310, 311
k-means clustering

with scikit-learn 305-310
k-nearest neighbors (KNN) 98-102, 119
Kullback-Leibler (KL) 625

L
L1 regularization 123

sparse solutions 125-128
sparsity 125

L2 regularization 74, 122
geometric interpretation 123, 124
NN, regularizing 467
versus weight decay 469

labeled graph 640
language model 558
language modeling 525
language translation 561
large-scale language models

building, by leveraging unlabeled data 561
large-scale machine learning 45
Latent Dirichlet Allocation

text documents, decomposing 264
topic modeling 264
with scikit-learn 265-268

latent vector 590
layer normalization mechanism 560
lazy learner 98
leaky ReLU 601
learning curves 180

bias and variance problems,
diagnosing 180-183

learning rate 23, 337
least absolute shrinkage and selection

operator (LASSO) 292, 293
leave-one-out cross-validation (LOOCV)

method 178
LightGBM

URL 244
Linear Algebra Package (LAPACK) 29
linear discriminant analysis (LDA) 591

supervised data compression 154
versus principal component analysis 154, 155
via scikit-learn 162, 163
workings 156

linear discriminants
selecting, for feature subspace 158-160

linear least squares 278
linearly inseparable data

kernel methods 80, 81
linear regression 5, 269
linear regression model

performance, evaluating 288-292
turning, into curve 294

linkage matrix 322
linkages 320
Lipschitz continuity 627
loadings 152
local receptive field 453
logistic function 400, 402
logistic loss function

model weights, learning via 63-65
logistic regression 60-63

Adaline implementation, converting
into algorithm 66-68

class probabilities, modeling via 59
for multiple classes 60
resource 76
versus support vector machine (SVMs) 79

Index732

logistic regression model
training, for document classification 258-260
training, with scikit-learn 70-72

logistic sigmoid function 61
log-likelihood function 63
long-range interactions

challenges 509, 510
long short-term memory cells 511, 512
loss function 12

computing 360-362
for classification 471-473
minimizing, with gradient descent 37-39

low-level features 452

M
machine learning 11

implementations, with GPU support 102
models, fine-tuning via grid search 185
packages 16, 17
Python, using for 14
reinforcement learning 2
supervised learning 2
systems, workflow 12
unsupervised learning 2

majority vote 95
classifiers, combining via 209

majority vote classifier
implementing 209-213

majority voting principle 205
using, to make predictions 214-217

Markov decision processes
(MDPs) 676, 677, 685

mathematical formulation 677, 678
Markov process

visualization 679
masked attention 558
masked language model (MLM) 570
matrix multiplication 41

matrix transpose 21
Matthews correlation coefficient (MCC) 193
maximum margin classification

with support vector machines (SVM) 76
maximum margin intuition 77
max-pooling 463
MC control

used, for finding optimal policy 688
McCulloch-Pitts (MCP) neuron 19
McCulloch-Pitts neuron model 336
mean absolute error (MAE) 291
mean imputation 108
mean of squared errors (MSE) 337
mean-pooling 463
mean squared error derivative 38
mean squared error (MSE) 37, 279, 290-392
median absolute deviation 286
medoid 306
memory-based approaches

advantages 100
disadvantages 100

memory cell 511
message-passing framework 647
mini-batch discrimination 634
mini-batch gradient descent 47
Miniconda 15

reference link 15
Miniforge 15

reference link 15
min-max normalization 121
min-max scaling 120
mirrored projections 147
missing data

managing 105
missing values

features, eliminating 107, 108

Index 733

identifying, in tabular data 106
imputing 108, 109
training examples, eliminating 107, 108

MNIST dataset
loading 474, 475

MNIST handwritten digits classification
project 436-439

mode collapse 633, 634
model-based RL 678
model ensembles

with bagging 225
model-free RL 678
model parameters

storing, PyTorch tensor objects used 412-414
updating, PyTorch tensor objects used 412-414

models
evaluating 14

model selection 175
model weights

learning, via logistic loss function 63-65
molecules

representing, as graphs 640
Monte Carlo (MC) 678, 684

action-value function estimation 688
state-value function estimation 688

movie dataset
preprocessing 248, 249

movie review dataset
obtaining 248

MsgNorm 669
multiclass classification 5
multi-head attention

context embeddings, encoding 554-558
multi-head self-attention 554
multilayer CNN architecture 473, 474
multilayer neural network

activation function, selecting 400

multilayer neural network
architecture 338-340

multilayer perceptron (MLP) 338, 370, 452, 501
hidden layers, adding 339
layers 339

multinomial logistic regression 60
multiple decision trees

combining, via random forests 95-98
multiple input channels 465
multiple linear regression 271
multiprocessing

via n_jobs parameter 259
MurmurHash

URL 262

N
naïve Bayes classifier 260
Natural Language Toolkit (NLTK)

URL 256
nested cross-validation 191

algorithm selection 192, 193
NetworkX

installing 644
URL 644

Neural Message Passing for Quantum Chemistry
reference link 647

neural networks (NNs) 589
activating, via forward propagation 340-342
convergence 367, 368
implementation 368
training, via backpropagation 363, 364

next-word prediction 561
n-gram models 252
nn.Embedding

reference link 434
NN model

building, in PyTorch 389

Index734

nn.Module 424
model building, making flexible with 424-426

nn.Sequential
reference link 417

NodeNetwork
graph convolution layer, coding 650, 651
using, to make predictions 658, 659

NodeNetwork model
defining 649

nodes 638
no free lunch theorem 53
noise points 328
nominal features 111

one-hot encoding, performing on 113-115
NoneType error 263
nonlinear dimensionality reduction 164, 165
nonlinear problems

solving, with kernel SVM 80
nonlinear relationships

managing, with random forests 299
modeling, in Ames Housing dataset 297-299

non-overlapping pooling
versus overlapping pooling 464

non-parametric models
versus parametric models 99

normalization 120
NumPy array indexing 28

O
objective function 37
object-oriented perceptron API 25-29
objects

grouping, by similarity 305
off-policy Q-learning 685
off-policy TD control (Q-learning) 691
offsets 270

one-hot encoding
performing, on nominal features 113-115

one-hot vector representation 340
one-versus-all (OvA) technique 340

for multi-class classification 30
one-versus-rest (OvR) 56, 126
one-vs.-all (OvA) classification 200
online learning 46
on-policy SARSA (state-action-reward-state-

action) 685
on-policy TD control (SARSA) 691
OpenAI Gym 692

environments 692, 693
grid world environment,

implementing 694-701
grid world example 694
toolkit 692
URL 692

opinion mining 247
optimal policy

finding, with MC control 688
ordinal features 111

encoding 116
mapping 111, 112

ordinary least squares linear regression model
implementing 278

ordinary least squares (OLS) 278
out-of-core learning 261
output gate 512
output recurrence

versus hidden recurrence 506-508
outputs

generating, from context vectors 543, 544
output spectrum

broadening, with hyperbolic
tangent (tanh) 403-405

overcomplete autoencoder 591

Index 735

overfitting 57, 122
tackling, via regularization 73-76

overlapping pooling
versus non-overlapping pooling 464

P
package manager

using 15, 16
padding 455

modes 457
pandas

categorical data, encoding 111
pandas DataFrame

data handling 107
parametric models

versus non-parametric models 99
parser module

reference link 255
Pearson product-moment correlation

coefficient 276
perceptron

settings 59
perceptron convergence 35
perceptron learning algorithm

implementing, in Python 25
perceptron learning rule 22-24
perceptron model

training, on Iris dataset 29-35
performance evaluation metrics 193
permutation invariance 642
pipelines

transformers and estimators,
combining 173, 174

workflows, streamlining 171
plurality voting 205, 209
policy 682

improving, with estimated value function 686

policy evaluation 686
policy improvement 689
policy iteration 687
polynomial regression 294
polynomial terms

adding, with scikit-learn 294-296
pooling

advantage 463
pooling layers 453, 667, 668
pooling size 463
Porter stemmer algorithm 256
Porter stemming algorithm 257
positional encodings 559, 560
precision-recall curves 198
predicted class label 23
predictions

making, about future with supervised
learning 3, 4

making, with majority voting principle 214-217
predictive model

selecting 13, 14
training 13

pre-trained BERT model
fine-tuning 579-582
loading 578, 579

principal component analysis (PCA) 173, 591
in scikit-learn 149-152
unsupervised dimensionality

reduction 139-141
versus linear discriminant analysis 154, 155

principal components
extracting 142, 143

projects
car’s fuel efficiency prediction project 431
MNIST handwritten digits

classification 436-439
prototype-based clustering 305

Index736

prune 87
Python

Adaline, implementing in 39-43
installing, from Python Package Index 14
URL 14
using, for machine learning 14

Python Progress Indicator (PyPrind)
reference link 248

PyTorch 369, 371
BERT model, tuning 574
character-level language modeling 525
CNN, constructing 477-481
CNN layers, configuring 476
computation graphs 410
custom layers, writing 426-430
features 410
graph, creating 411, 412
graph neural network (GNN),

implementing 648
installing 372, 373
learning 372
reference link 377
RNNs, implementing for sequence

modeling 513
tensor objects 412
tensors, creating 373
training performance 369
URL 368
used, for implementing deep CNN 473

PyTorch Geometric library
for drug discovery 665
installation link 659
installing 659
used, for implementing GNN 659-665

PyTorch-Ignite
URL 439

PyTorch, input pipelines
batch data loader, creating 380-382
building 378

dataset, creating from file on local storage
disk 382-385

dataset, fetching from torchvision.datasets
library 386-389

PyTorch DataLoader, creating from tensor 378
repeat data loader, creating 380-382
shuffle data loader, creating 380-382
tensor, combining into joint dataset 379, 380

PyTorch Lightning
data loaders, setting up 443, 444
installing 440
model, setting up 440, 442
URL 439

PyTorch Lightning Trainer class
model, training 444, 445

PyTorch neural network module (torch.nn) 390
PyTorch, NN model

linear regression model, building 390-394
model training, via torch.nn module 394, 395
model training, via torch.optim

module 394, 395
multilayer perceptron, building for Iris flower

dataset 395-398
trained model, evaluating on test dataset 398
trained model, reloading 399
trained model, saving 399

Q
Q-learning

grid world problem, solving 701-706
QM9 dataset 661

reference link 661

R
radial basis function (RBF) kernel 83
radial basis function (RBF) kernel SVM 186
random forest regression 301-304
random forests 95, 119

feature importance, assessing 134-136

Index 737

multiple decision trees, combining via 95-98
nonlinear relationships, managing 299

randomized search
hyperparameter configurations,

exploring 187, 188
RANdom SAmple Consensus (RANSAC)

robust regression model, fitting 285-288
random sampling

without replacement 96
with replacement 96

raw term frequencies 251
receiver operating characteristic area under the

curve (ROC AUC) 212
receiver operating characteristic (ROC)

plotting 198, 200
rectified linear unit (ReLU) 405
recurrent edge 503
recurrent neural networks (RNNs)

activations, computing 504, 505
attention mechanism 540, 542
dataflow 502-504
for sequence modeling 502

regression 4, 5
continuous outcomes, predicting 5, 6

regression analysis 5
regression line 270
regular expressions 255
regularization 74
regularization parameter 74
regularized methods

using, for regression 292
reinforcement learning 2, 6, 674, 675

algorithms 684
example 6
used, for solving interactive problems 6, 7
with Monte Carlo 687

re module
reference link 255

replay memory 707, 708
residuals 270
resource-efficient hyperparameter search

with successive halving 189, 190
return 680-683
reward 683
reward signal 6, 675
ridge regression 293
RL algorithm

implementing 691
RNN model

building, for sentiment analysis task 521-523
RNNs, for sequence modeling

in PyTorch 513
ROC area under the curve (ROC AUC) 198

S
saturation 595
scaled dot-product attention 549
scatter matrices

computing 156-158
scatterplot matrix 274, 275
scientific computing

packages 16, 17
scientific computing stack, Python

references 26
scikit-fuzzy package

reference link 313
scikit-learn

agglomerative clustering, applying via 327, 328
alternative implementations 79
coefficient, estimating of regression model 283
k-means clustering 305-310
LDA 162, 163
perceptron, training 54-59
polynomial terms, adding 294-296
principal component analysis 149-151

Index738

used, for applying AdaBoost 233-236
used, for training logistic regression

model 70-72
scikit-learn estimator API 109, 110
scikit-learn imputation documentation

reference link 109
scikit-learn transfromer API 109
scoring metrics

for multiclass classification 200
self-attention mechanism 544

basic form 545-549
parameterizing 549-552

self-supervised learning 561
semi-supervised classification, with graph

convolutional networks
reference link 666

sentiment analysis task
RNN model, building for 521-523

sentiment classification 574
sentiment of IMDb movie reviews

prediction 513
layers, embedding for sentence

encoding 517-519
movie review data, preparing 513-516
RNN model, building 520, 521

sepal width 87
seq2seq task 540
sequence modeling 501

with RNNs 502
sequence modeling tasks

many-to-many 502
many-to-one 502
one-to-many 502

sequences
representing 500

sequential backward selection
(SBS) 129-132, 139

sequential data 499
modeling 500
versus time series data 500

sequential feature selection algorithms 129
sigmoid function 61
signal 454
silhouette analysis 314
silhouette coefficient 314
silhouette plots 306

quality of clustering, quantifying 314-319
similarity function 83
simple linear regression 270
single instruction, multiple data (SIMD) 29
single-layer network 338
single-layer neural network 337, 338
single linkage 320
sklearn.tree.plot_tree

reference link 94
slack variables

used, for dealing with nonlinearly separable
case 77-79

soft clustering 311
soft k-means 311
soft-margin classification 77
softmax function

used, for estimating class probabilities in multi-
class classification 402

softmax regression 60
sparse attention 566
spectral graph convolutions 665, 666
spectral networks and locally connected

networks on graphs
reference link 666

squared Euclidean distance 307
stack 652

Index 739

stacking
references 223
used, for building ensembles 223

standardization 44, 120, 121
state-transition probability 679
state-value function 682
state-value function estimation

with Monte Carlo 688
stochastic gradient descent

(SGD) 46, 47, 71, 261, 279, 338, 469
stop-word removal 257
stop-words 257
stride 456
subgroups

finding, with clustering 8
subsampling 463
subsequent rewards 680
sum of squared errors (SSE) 308
supervised data compression

via linear discriminant analysis 154
supervised learning 2, 674

used, for making predictions about future 3, 4
support vector machine (SVM) 181

logistic regression 79
maximum margin classification 76

support vectors 76
symmetric normalized graph Laplacian 666
synthesized images

quality, improving with convolutional 612
quality, improving with Wasserstein GAN 612

Synthetic Minority Over-sampling Technique
(SMOTE) 203

T
tabular data

missing values, identifying in 106

target 12
target values

determining, for computing loss 708, 709
t-distributed stochastic neighbor

embedding (t-SNE) 163
data visualization 165-168

TD learning 689
TD prediction 689, 690
temporal difference (TD) 678, 684
TensorBoard

installing 445
model, evaluating 445-449

tensor objects, PyTorch
model parameters, storing with 412-414
model parameters, updating with 412

tensor processing units (TPUs) 597
tensors

concatenating 376, 377
creating, in PyTorch 373
data type, manipulating 374
mathematical operations, applying to 375, 376
shape, manipulating 374
splitting 376, 377
stacking 376, 377

term frequency-inverse document frequency
word relevancy, assessing 252-254

text
generating, with GPT-2 566-568

text classification
with recurrent neural networks 261

text data
cleaning 254-256

text documents
decomposing, with LDA 264

text processing
IMDb movie review data, preparing for 247, 248

time series data 500
versus sequential data 500

Index740

tokenizers package
reference link 577

tokens
documents, processing into 256, 257

topic modeling 264
with LDA 264

top-k pooling 668
torch.bucketize function

reference link 433
TorchDrug library 665

reference link 665
torch.nn module

used, for implementing CNN 476
total variance 145
Towards Sparse Hierarchical Graph Classifiers

reference link 668
traditional RNN encoder-decoder architecture

for seq2seq modeling task 540
training 11
training example 11

eliminating, with missing values 107, 108
transformer

fine-tuning, with Trainer API 582-586
transformer architecture 539, 552
transformer models

fine-tuning 561, 562
pre-training 561, 562

transformers 539, 545
transformers package

reference link 579
transformers version 4.9.1

installing 567
transposed convolution 612, 613
Tree of Parzen Estimators (TPE) method 191
true class label 23
true negative (TN) 194

true positive rate (TPR) 195
true positive (TP) 194
Truncated backpropagation through time

(TBPTT) 510

U
undercomplete autoencoder 591
underfitting 73
undirected graph 638, 639
uniform manifold approximation and

projection (UMAP) 168
reference link 168

unigram model 252
unit step function 20
unlabeled data

leveraging, for building large-scale language
models 561

leveraging, with GPT 563-565
unseen data instances

predicting 14
unsupervised classification 8
unsupervised dimensionality reduction

via principal component analysis 139
unsupervised learning 2, 674

used, for discovering hidden structures 7
unsupervised pre-training 561

V
validation curves 180, 183

overfitting, addressing 185
underfitting, addressing 185

validation dataset 132
value function 594, 682, 683

predicting, with dynamic programming 686
value iteration 687
vanishing gradient 510

Index 741

variance explained ratios 144
variance reduction 300
variational autoencoder (VAE) 592
venv

reference link 17
vertices 638
VotingClassifier

reference link 214

W
Wasserstein GAN

used, for improving synthesized images
quality 612

Wasserstein GAN (WGAN) 612
weak learners

leveraging, via adaptive boosting 229
weight decay

versus L2 regularization 469
WGAN with gradient penalty (WGAN-GP) 628

implementing, to train DCGAN model 629-632
Widrow-Hoff rule 36
Wine dataset 117

obtaining 117, 142, 226
within-node variance 300
word2vec model 264
word capitalization

managing 255
word relevancy

assessing, via term frequency-inverse
document frequency (tf-idf) 252-254

words
transforming, into feature vectors 250, 251

word stemming 256
workflows

streamlining, with pipelines 171

X
XGBoost

URL 244
using 243-245

XOR classification problem 419
solving 419-423

Z
zero-padding 455
zero-shot tasks 565, 566

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Giving Computers the Ability to Learn from Data
	Building intelligent machines to transform data into knowledge
	The three different types of machine learning
	Making predictions about the future with supervised learning
	Classification for predicting class labels
	Regression for predicting continuous outcomes

	Solving interactive problems with reinforcement learning
	Discovering hidden structures with unsupervised learning
	Finding subgroups with clustering
	Dimensionality reduction for data compression

	Introduction to the basic terminology and notations
	Notation and conventions used in this book
	Machine learning terminology

	A roadmap for building machine learning systems
	Preprocessing – getting data into shape
	Training and selecting a predictive model
	Evaluating models and predicting unseen data instances

	Using Python for machine learning
	Installing Python and packages from the Python Package Index
	Using the Anaconda Python distribution and package manager
	Packages for scientific computing, data science, and machine learning

	Summary

	Chapter 2: Training Simple Machine Learning Algorithms for Classification
	Artificial neurons – a brief glimpse into the early history of machine learning
	The formal definition of an artificial neuron
	The perceptron learning rule

	Implementing a perceptron learning algorithm in Python
	An object-oriented perceptron API
	Training a perceptron model on the Iris dataset

	Adaptive linear neurons and the convergence of learning
	Minimizing loss functions with gradient descent
	Implementing Adaline in Python
	Improving gradient descent through feature scaling
	Large-scale machine learning and stochastic gradient descent

	Summary

	Chapter 3: A Tour of Machine Learning Classifiers Using Scikit-Learn
	Choosing a classification algorithm
	First steps with scikit-learn – training a perceptron
	Modeling class probabilities via logistic regression
	Logistic regression and conditional probabilities
	Learning the model weights via the logistic loss function
	Converting an Adaline implementation into an algorithm for logistic regression
	Training a logistic regression model with scikit-learn
	Tackling overfitting via regularization

	Maximum margin classification with support vector machines
	Maximum margin intuition
	Dealing with a nonlinearly separable case using slack variables
	Alternative implementations in scikit-learn

	Solving nonlinear problems using a kernel SVM
	Kernel methods for linearly inseparable data
	Using the kernel trick to find separating hyperplanes in a high-dimensional space

	Decision tree learning
	Maximizing IG – getting the most bang for your buck
	Building a decision tree
	Combining multiple decision trees via random forests

	K-nearest neighbors – a lazy learning algorithm
	Summary

	Chapter 4: Building Good Training Datasets – Data Preprocessing
	Dealing with missing data
	Identifying missing values in tabular data
	Eliminating training examples or features with missing values
	Imputing missing values
	Understanding the scikit-learn estimator API

	Handling categorical data
	Categorical data encoding with pandas
	Mapping ordinal features
	Encoding class labels
	Performing one-hot encoding on nominal features
	Optional: encoding ordinal features

	Partitioning a dataset into separate training and test datasets
	Bringing features onto the same scale
	Selecting meaningful features
	L1 and L2 regularization as penalties against model complexity
	A geometric interpretation of L2 regularization
	Sparse solutions with L1 regularization
	Sequential feature selection algorithms

	Assessing feature importance with random forests
	Summary

	Chapter 5: Compressing Data via Dimensionality Reduction
	Unsupervised dimensionality reduction via principal component analysis
	The main steps in principal component analysis
	Extracting the principal components step by step
	Total and explained variance
	Feature transformation
	Principal component analysis in scikit-learn
	Assessing feature contributions

	Supervised data compression via linear discriminant analysis
	Principal component analysis versus linear discriminant analysis
	The inner workings of linear discriminant analysis
	Computing the scatter matrices
	Selecting linear discriminants for the new feature subspace
	Projecting examples onto the new feature space
	LDA via scikit-learn

	Nonlinear dimensionality reduction and visualization
	Why consider nonlinear dimensionality reduction?
	Visualizing data via t-distributed stochastic neighbor embedding

	Summary

	Chapter 6: Learning Best Practices for Model Evaluation and Hyperparameter Tuning
	Streamlining workflows with pipelines
	Loading the Breast Cancer Wisconsin dataset
	Combining transformers and estimators in a pipeline

	Using k-fold cross-validation to assess model performance
	The holdout method
	K-fold cross-validation

	Debugging algorithms with learning and validation curves
	Diagnosing bias and variance problems with learning curves
	Addressing over- and underfitting with validation curves

	Fine-tuning machine learning models via grid search
	Tuning hyperparameters via grid search
	Exploring hyperparameter configurations more widely with randomized search
	More resource-efficient hyperparameter search with successive halving
	Algorithm selection with nested cross-validation

	Looking at different performance evaluation metrics
	Reading a confusion matrix
	Optimizing the precision and recall of a classification model
	Plotting a receiver operating characteristic
	Scoring metrics for multiclass classification
	Dealing with class imbalance

	Summary

	Chapter 7: Combining Different Models for Ensemble Learning
	Learning with ensembles
	Combining classifiers via majority vote
	Implementing a simple majority vote classifier
	Using the majority voting principle to make predictions
	Evaluating and tuning the ensemble classifier

	Bagging – building an ensemble of classifiers from bootstrap samples
	Bagging in a nutshell
	Applying bagging to classify examples in the Wine dataset

	Leveraging weak learners via adaptive boosting
	How adaptive boosting works
	Applying AdaBoost using scikit-learn

	Gradient boosting – training an ensemble based on loss gradients
	Comparing AdaBoost with gradient boosting
	Outlining the general gradient boosting algorithm
	Explaining the gradient boosting algorithm for classification
	Illustrating gradient boosting for classification
	Using XGBoost

	Summary

	Chapter 8: Applying Machine Learning to Sentiment Analysis
	Preparing the IMDb movie review data for text processing
	Obtaining the movie review dataset
	Preprocessing the movie dataset into a more convenient format

	Introducing the bag-of-words model
	Transforming words into feature vectors
	Assessing word relevancy via term frequency-inverse document frequency
	Cleaning text data
	Processing documents into tokens

	Training a logistic regression model for document classification
	Working with bigger data – online algorithms and out-of-core learning
	Topic modeling with latent Dirichlet allocation
	Decomposing text documents with LDA
	LDA with scikit-learn

	Summary

	Chapter 9: Predicting Continuous Target Variables with Regression Analysis
	Introducing linear regression
	Simple linear regression
	Multiple linear regression

	Exploring the Ames Housing dataset
	Loading the Ames Housing dataset into a DataFrame
	Visualizing the important characteristics of a dataset
	Looking at relationships using a correlation matrix

	Implementing an ordinary least squares linear regression model
	Solving regression for regression parameters with gradient descent
	Estimating the coefficient of a regression model via scikit-learn

	Fitting a robust regression model using RANSAC
	Evaluating the performance of linear regression models
	Using regularized methods for regression
	Turning a linear regression model into a curve – polynomial regression
	Adding polynomial terms using scikit-learn
	Modeling nonlinear relationships in the Ames Housing dataset

	Dealing with nonlinear relationships using random forests
	Decision tree regression
	Random forest regression

	Summary

	Chapter 10: Working with Unlabeled Data – Clustering Analysis
	Grouping objects by similarity using k-means
	k-means clustering using scikit-learn
	A smarter way of placing the initial cluster centroids using k-means++
	Hard versus soft clustering
	Using the elbow method to find the optimal number of clusters
	Quantifying the quality of clustering via silhouette plots

	Organizing clusters as a hierarchical tree
	Grouping clusters in a bottom-up fashion
	Performing hierarchical clustering on a distance matrix
	Attaching dendrograms to a heat map
	Applying agglomerative clustering via scikit-learn

	Locating regions of high density via DBSCAN
	Summary

	Chapter 11: Implementing a Multilayer Artificial Neural Network from Scratch
	Modeling complex functions with artificial neural networks
	Single-layer neural network recap
	Introducing the multilayer neural network architecture
	Activating a neural network via forward propagation

	Classifying handwritten digits
	Obtaining and preparing the MNIST dataset
	Implementing a multilayer perceptron
	Coding the neural network training loop
	Evaluating the neural network performance

	Training an artificial neural network
	Computing the loss function
	Developing your understanding of backpropagation
	Training neural networks via backpropagation

	About convergence in neural networks
	A few last words about the neural network implementation
	Summary

	Chapter 12: Parallelizing Neural Network Training with PyTorch
	PyTorch and training performance
	Performance challenges
	What is PyTorch?
	How we will learn PyTorch

	First steps with PyTorch
	Installing PyTorch
	Creating tensors in PyTorch
	Manipulating the data type and shape of a tensor
	Applying mathematical operations to tensors
	Split, stack, and concatenate tensors

	Building input pipelines in PyTorch
	Creating a PyTorch DataLoader from existing tensors
	Combining two tensors into a joint dataset
	Shuffle, batch, and repeat
	Creating a dataset from files on your local storage disk
	Fetching available datasets from the torchvision.datasets library

	Building an NN model in PyTorch
	The PyTorch neural network module (torch.nn)
	Building a linear regression model
	Model training via the torch.nn and torch.optim modules
	Building a multilayer perceptron for classifying flowers in the Iris dataset
	Evaluating the trained model on the test dataset
	Saving and reloading the trained model

	Choosing activation functions for multilayer neural networks
	Logistic function recap
	Estimating class probabilities in multiclass classification via the softmax function
	Broadening the output spectrum using a hyperbolic tangent
	Rectified linear unit activation

	Summary

	Chapter 13: Going Deeper – The Mechanics of PyTorch
	The key features of PyTorch
	PyTorch’s computation graphs
	Understanding computation graphs
	Creating a graph in PyTorch

	PyTorch tensor objects for storing and updating model parameters
	Computing gradients via automatic differentiation
	Computing the gradients of the loss with respect to trainable variables
	Understanding automatic differentiation
	Adversarial examples

	Simplifying implementations of common architectures via the torch.nn module
	Implementing models based on nn.Sequential
	Choosing a loss function
	Solving an XOR classification problem
	Making model building more flexible with nn.Module
	Writing custom layers in PyTorch

	Project one – predicting the fuel efficiency of a car
	Working with feature columns
	Training a DNN regression model

	Project two – classifying MNIST handwritten digits
	Higher-level PyTorch APIs: a short introduction to PyTorch-Lightning
	Setting up the PyTorch Lightning model
	Setting up the data loaders for Lightning
	Training the model using the PyTorch Lightning Trainer class
	Evaluating the model using TensorBoard

	Summary

	Chapter 14: Classifying Images with Deep Convolutional Neural Networks
	The building blocks of CNNs
	Understanding CNNs and feature hierarchies
	Performing discrete convolutions
	Discrete convolutions in one dimension
	Padding inputs to control the size of the output feature maps
	Determining the size of the convolution output
	Performing a discrete convolution in 2D

	Subsampling layers

	Putting everything together – implementing a CNN
	Working with multiple input or color channels
	Regularizing an NN with L2 regularization and dropout
	Loss functions for classification

	Implementing a deep CNN using PyTorch
	The multilayer CNN architecture
	Loading and preprocessing the data
	Implementing a CNN using the torch.nn module
	Configuring CNN layers in PyTorch
	Constructing a CNN in PyTorch

	Smile classification from face images using a CNN
	Loading the CelebA dataset
	Image transformation and data augmentation
	Training a CNN smile classifier

	Summary

	Chapter 15: Modeling Sequential Data Using Recurrent Neural Networks
	Introducing sequential data
	Modeling sequential data – order matters
	Sequential data versus time series data
	Representing sequences
	The different categories of sequence modeling

	RNNs for modeling sequences
	Understanding the dataflow in RNNs
	Computing activations in an RNN
	Hidden recurrence versus output recurrence
	The challenges of learning long-range interactions
	Long short-term memory cells

	Implementing RNNs for sequence modeling in PyTorch
	Project one – predicting the sentiment of IMDb movie reviews
	Preparing the movie review data
	Embedding layers for sentence encoding
	Building an RNN model
	Building an RNN model for the sentiment analysis task

	Project two – character-level language modeling in PyTorch
	Preprocessing the dataset
	Building a character-level RNN model
	Evaluation phase – generating new text passages

	Summary

	Chapter 16: Transformers – Improving Natural Language Processing with Attention Mechanisms
	Adding an attention mechanism to RNNs
	Attention helps RNNs with accessing information
	The original attention mechanism for RNNs
	Processing the inputs using a bidirectional RNN
	Generating outputs from context vectors
	Computing the attention weights

	Introducing the self-attention mechanism
	Starting with a basic form of self-attention
	Parameterizing the self-attention mechanism: scaled dot-product attention

	Attention is all we need: introducing the original transformer architecture
	Encoding context embeddings via multi-head attention
	Learning a language model: decoder and masked multi-head attention
	Implementation details: positional encodings and layer normalization

	Building large-scale language models by leveraging unlabeled data
	Pre-training and fine-tuning transformer models
	Leveraging unlabeled data with GPT
	Using GPT-2 to generate new text
	Bidirectional pre-training with BERT
	The best of both worlds: BART

	Fine-tuning a BERT model in PyTorch
	Loading the IMDb movie review dataset
	Tokenizing the dataset
	Loading and fine-tuning a pre-trained BERT model
	Fine-tuning a transformer more conveniently using the Trainer API

	Summary

	Chapter 17: Generative Adversarial Networks for Synthesizing New Data
	Introducing generative adversarial networks
	Starting with autoencoders
	Generative models for synthesizing new data
	Generating new samples with GANs
	Understanding the loss functions of the generator and discriminator networks in a GAN model

	Implementing a GAN from scratch
	Training GAN models on Google Colab
	Implementing the generator and the discriminator networks
	Defining the training dataset
	Training the GAN model

	Improving the quality of synthesized images using a convolutional and Wasserstein GAN
	Transposed convolution
	Batch normalization
	Implementing the generator and discriminator
	Dissimilarity measures between two distributions
	Using EM distance in practice for GANs
	Gradient penalty
	Implementing WGAN-GP to train the DCGAN model
	Mode collapse

	Other GAN applications
	Summary

	Chapter 18: Graph Neural Networks for Capturing Dependencies in Graph Structured Data
	Introduction to graph data
	Undirected graphs
	Directed graphs
	Labeled graphs
	Representing molecules as graphs

	Understanding graph convolutions
	The motivation behind using graph convolutions
	Implementing a basic graph convolution

	Implementing a GNN in PyTorch from scratch
	Defining the NodeNetwork model
	Coding the NodeNetwork’s graph convolution layer
	Adding a global pooling layer to deal with varying graph sizes
	Preparing the DataLoader
	Using the NodeNetwork to make predictions

	Implementing a GNN using the PyTorch Geometric library
	Other GNN layers and recent developments
	Spectral graph convolutions
	Pooling
	Normalization
	Pointers to advanced graph neural network literature

	Summary

	Chapter 19: Reinforcement Learning for Decision Making in Complex Environments
	Introduction – learning from experience
	Understanding reinforcement learning
	Defining the agent-environment interface of a reinforcement learning system

	The theoretical foundations of RL
	Markov decision processes
	The mathematical formulation of Markov decision processes
	Visualization of a Markov process

	Episodic versus continuing tasks
	RL terminology: return, policy, and value function
	The return
	Policy
	Value function

	Dynamic programming using the Bellman equation

	Reinforcement learning algorithms
	Dynamic programming
	Policy evaluation – predicting the value function with dynamic programming
	Improving the policy using the estimated value function
	Policy iteration
	Value iteration

	Reinforcement learning with Monte Carlo
	State-value function estimation using MC
	Action-value function estimation using MC
	Finding an optimal policy using MC control
	Policy improvement – computing the greedy policy from the action-value function

	Temporal difference learning
	TD prediction
	On-policy TD control (SARSA)
	Off-policy TD control (Q-learning)

	Implementing our first RL algorithm
	Introducing the OpenAI Gym toolkit
	Working with the existing environments in OpenAI Gym
	A grid world example
	Implementing the grid world environment in OpenAI Gym

	Solving the grid world problem with Q-learning

	A glance at deep Q-learning
	Training a DQN model according to the Q-learning algorithm
	Replay memory
	Determining the target values for computing the loss

	Implementing a deep Q-learning algorithm

	Chapter and book summary

	Other Books You May Enjoy
	Index

